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Transients

24-1 The energy of an oscillator

Although this chapter is entitled “transients,” certain parts of it are, in a way,
part of the last chapter on forced oscillation. One of the features of a forced oscilla-
tion which we have not yet discussed is the energy in the oscillation. Let us now
consider that energy.

In a mechanical oscillator, how much kinetic energy is there? It is proportional
to the square of the velocity. Now we come to an important point. Consider an
arbitrary quantity 4, which may be the velocity or something else that we want to
discuss. When we write 4 = Ae™!, a complex number, the true and honest A4,
in the physical world, is only the real part; therefore if, for some reason, we want
to use the square of A, it is not right to square the complex number and then take
the real part, because the real part of the square of a complex number is not just
the square of the real part, but also involves the imaginary part. So when we wish
to find the energy we have to get away from the complex notation for a while to
see what the inner workings are.

Now the true physical 4 is the real part of 4qe*“!™® that is, 4 = Ag cos
(wt + A), where A, the complex number, is written as A4qe’s. Now the square of
this real physical quantity is 42 = 43 cos? (wz 4+ A). The square of the quantity,
then, goes up and down from a maximum to zero, like the square of the cosine.
The square of the cosinc has a maximum of 1 and a minimum of 0, and its average
value is 1/2.

In many circumstances we are not interested in the energy at any specific
moment during the oscillation; for a large number of applications we merely want
the average of 42, the mean of the square of 4 over a period of time large compared
with the period of oscillation. In those circumstances, the average of the cosine
squared may be used, so we have the following theorem: if A is represented by a
complex number, then the mean of 42 is equal to 345. Now A4 is the square of
the magnitude of the complex A. (This can be written in many ways—some people
like to write |4|2; others write, 44*, A times its complex conjugate.) We shall use
this theorem several times.

Now let us consider the energy in a forced oscillator. The equation for the
forced oscillator is

md®x/dt® + Yymdx/dt + mwix = F(1). (24.1)

In our problem, of course, F(?) is a cosine function of . Now let us analyze the
situation: how much work is done by the outside force F? The work done by the
force per second, i.e., the power, is the force times the velocity. (We know that
the differential work in a time dt is F dx, and the power is F dx/dt.) Thus

dx dx\[d*x o f[dx dx\?

But the first two terms on the right can also be written as d/d![im(dx/dr)? +
1mwix?], as is immediately verified by differentiating. That is to say, the term in
brackets is a pure derivative of two terms that are easy to understand—one is the
kinetic energy of motion, and the other is the potential energy of the spring. Let
us call this quantity the stored energy, that is, the energy stored in the oscillation.
Suppose that we want the average power over many cycles when the oscillator is
being forced and has been running for a long time. In the long run, the stored
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energy does not change—its derivative gives zero average effect. In other words,
if we average the power in the long run, all the energy ultimately ends up in the
resistive term Ym(dx/df)®. There is some energy stored in the oscillation, but that
does not change with time, if we average over many cycles. Therefore the mean
power (P) is

(P) = {Yym(dx/d1)?). (24.3)

Using our method of writing complex numbers, and our theorem that (42) =
343, we may find this mean power. Thus if x = %e*!, then dx/dt = iwke™!.
Therefore, in these circumstances, the average power could be written as

(P) = 3Ymw?xi. (24.4)

In the notation for electrical circuits, dx/dt is replaced by the current I (is
dq/dt, where g corresponds to x), and mY corresponds to the resistance R. Thus
the rate of the energy loss—the power used up by the forcing function—is the
resistance in the circuit times the average square of the current:

(P = R(I®) = R-3I2. (24.5)

This energy, of course, goes into heating the resistor; it is sometimes called the
heating loss or the Joule heating.

Another interesting feature to discuss is how much energy is stored. That is
not the same as the power, because although power was at first used to store up
some energy, after that the system keeps on absorbing power, insofar as there are
any heating (resistive) losses. At any moment there is a certain amount of stored
energy, so we would like to calculate the mean stored energy (E) also. We have
already calculated what the average of (dx/dr)? is, so we find

(E) = 3m((dx/dn)®) + tmwd(x?) (24.6)
= Im(v® + wi)hx3.

Now, when an oscillator is very efficient, and if w is near wy, so that |X] is large,
the stored energy is very high—we can get a large stored energy from a relatively
small force. The force does a great deal of work in getting the oscillation going,
but then to keep it steady, all it has to do is to fight the friction. The oscillator can
have a great deal of energy if the friction is very low, and even though it is oscillating
strongly, not much energy is being lost. The efficiency of an oscillator can be
measured by how much energy is stored, compared with how much work the force
does per oscillation.

How does the stored energy compare with the amount of work that is done in
one cycle? This is called the Q of the system, and Q is defined as 27 times the
mean stored energy, divided by the work done per cycle. (If we were to say the
work done per radian instead of per cycle, then the 27 disappears.)

= 2g 3@’ + 0)) - (x*) _ o + of
Q=2n YTmw(x2)  2w/w  2Yw @47

Q is not a very useful number unless it is very large. When it is relatively large, it
gives a measure of how good the oscillator is. People have tried to define Q in the
simplest and most useful way; various definitions differ a bit from one another,
but if Q is very large, all definitions are in agreement. The most generally accepted
definition is Eq. (24.7), which depends on w. For a good oscillator, close to reso-
nance, we can simplify (24.7) a little by setting w = wq, and we then have Q=
wo/7, which is the definition of Q that we used before.

What is Q for an electrical circuit? To find out, we merely have to translate
L for m, R for mv, and 1/C for mw} (see Table 23-1). The Q at resonance is
Lw/R, where w is the resonance frequency. If we consider a circuit with a high Q,
that means that the amount of energy stored in the oscillation is very large compared
with the amount of work done per cycle by the machinery that drives the oscilla-
tions.
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24-2 Damped oscillations

We now turn to our main topic of discussion: transients. By a transient is meant
a solution of the differential equation when there is no force present, but when the
system is not simply at rest. (Of course, if it is standing still at the origin with no
force acting, that is a nice problem—it stays there!) Suppose the oscillation starts
another way: say it was driven by a force for a while, and then we turn off the force.
What happens then? Let us first get a rough idea of what will happen for a very
high Q system. So long as a force is acting, the stored energy stays the same, and
there is a certain amount of work done to maintain it. Now suppose we turn off
the force, and no more work is being done; then the losses which are eating up the
energy of the supply are no longer eating up its energy—there is no more driver.
The losses will have to consume, so to speak, the energy that is stored. Let us
suppose that Q/2m = 1000. Then the work done per cycle is 1/1000 of the stored
energy. Is it not reasonable, since it is oscillating with no driving force, that in one
cycle the system will still lose a thousandth of its energy E, which ordinarily would
have been supplied from the outside, and that it will continue oscillating, always
losing 1/1000 of its energy per cycle? So, as a guess, for a relatively high Q
system, we would suppose that the following equation might be roughly right
(we will later do it exactly, and it will turn out that it was right!):

dE/dt = —wE/Q. (24.8)

This is rough because it is true only for large Q. In each radian the system loses a
fraction 1/Q of the stored energy E. Thus in a given amount of time d¢ the energy
will change by an amount w dt/Q, since the number of radians associated with the
time dt is w dt. What is the frequency? Let us suppose that the system moves so
nicely, with hardly any force, that if we let go it will oscillate at essentially the same
frequency all by itself. So we will guess that w is the resonant frequency wo. Then
we deduce from Eq. (24.8) that the stored energy will vary as

E = Egpe ot = Ege™, (24.9)

This would be the measure of the energy at any moment. What would the formula
be, roughly, for the amplitude of the oscillation as a function of the time? The
same? No! The amount of energy in a spring, say, goes as the square of the dis-
placement; the kinetic energy goes as the square of the velocity; so the total energy
goes as the square of the displacement. Thus the displacement, the amplitude of
oscillation, will decrease half as fast because of the square. In other words, we
guess that the solution for the damped transient motion will be an oscillation of
frequency close to the resonance frequency wo, in which the amplitude of the sine-
wave motion will diminish as e~"%2:

x = Age "2 cos wot. (24.10)

This equation and Fig. 24-1 give us an idea of what we should expect; now let us
try to analyze the motion precisely by solving the differential equation of the
motion itself.

So, starting with Eq. (24.1), with no outside force, how do we solve it? Being
physicists, we do not have to worry about the method as much as we do about what
the solution is. Armed with our previous experience, let us try as a solution an
exponential curve, x = Ae™‘. (Why do we try this? It is the easiest thing to
differentiate!) We put this into (24.1) (with F(z) = 0), using the rule that each
time we differentiate x with respect to time, we multiply by ie. So it is really quite
simple to substitute. Thus our equation looks like this:

(—a® + Yo + wi)de™ = 0. (24.11)

The net result must be zero for all times, which is impossible unless (a) 4 = 0,
which is no solution at all—it stands still, or (b)

—a? + iaY 4+ wi = 0. (24.12)
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If we can solve this and find an «, then we will have a solution in which 4 need

not be zero!
o =i/2 + Vi — v¥/4. (24.13)

For a while we shall assume that 7 is fairly small compared with w, so that
wg — v2/4 is definitely positive, and there is nothing the matter with taking the
square root. The only bothersome thing is that we get two solutions! Thus

ay = /2 + Vi — 74 = iv/2 + w, (24.14)
and

as = i7/2 — Vi — 1} /4 = iv/2 — w,. (24.15)

Let us consider the first one, supposing that we had not noticed that the square root
has two possible values. Then we know that a solution for x is X, = Ae™?
where 4 is any constant whatever. Now, in substituting «,, because it is going to
come so many times and it takes so long to write, we shall call v/. wg — 7%/4 = w,
Thus ia; = —7/2 + iw,, and we get x = 4e~"27%v? or what is the same,
because of the wonderful properties of an exponential,

X1 = Ae "M%, (24.16)

First, we recognize this as an oscillation, an oscillation at a frequency w, which is
not exactly the frequency wo, but is rather close to wq if it is a good system. Second,
the amplitude of the oscillation is decreasing exponentially! If we take, for instance,
the real part of (24.16), we get

x1 = Ae™ "% cos w,t. 24.17)

This is very much like our guessed-at solution (24.10), except that the frequency
really is w,. This is the only error, so it is the same thing—we have the right idea.
But everything is not all right! What is not all right is that there is another solution.
The other solution is a2, and we see that the difference is only that the sign

of w, is reversed:
Xg = Be "2gTiunt, (24.18)

What does this mean? We shall soon prove that if x; and x, are each a possible
solution of Eq. (24.1) with F = 0, then x; + x, is also a solution of the same
equation! So the general solution x is of the mathematical form

x = e"2(detrt 4 Be—iert), (24.19)

Now we may wonder why we bother to give this other solution, since we were so
happy with the first one all by itself. What is the extra one for, because of course
we know we should only take the real part? We know that we must take the real
part, but how did the mathematics know that we only wanted the real part? When
we had a nonzero driving force F(t), we put in an artificial force to go with it, and
the imaginary part of the equation, so to speak, was driven in a definite way. But
when we put F(f) = 0, our convention that x should be only the real part of
whatever we write down is purely our own, and the mathematical equations do
not know it yet. The physical world as a real solution, but the answer that we
were so happy with before is not real, it is complex. The equation does not know
that we are arbitrarily going to take the real part, so it has to present us, so to
speak, with a complex conjugate type of solution, so that by putting them together
we can make a truly real solution; that is what a3, is doing for us. In order for x
to be real, Be~*"* will have to be the complex conjugate of Ae™*, so that the
imaginary parts disappear. So it turns out that B is the complex conjugate of A4,
and our real solution is

x = eT"2(delrt - greTirt), (24.20)

So our real solution is an oscillation with a phase shifi and a damping—just as
advertised.
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24-3 Electrical transients

Now let us see if the above really works. We construct the electrical circuit
shown in Fig. 24-2, in which we apply to an oscilloscope the voltage across the
inductance L after we suddenly turn on a voltage by closing the switch S. It is an
oscillatory circuit, and it generates a transient of some kind. It corresponds to a
circumstance in which we suddenly apply a force and the system starts to oscillate.
It is the electrical analog of a damped mechanical oscillator, and we watch the
oscillation on an oscilloscope, where we should see the curves that we were trying
to analyze. (The horizontal motion of the oscilloscope is driven at a uniform
speed, while the vertical motion is the voltage across the inductor. The rest of the
circuit is only a technical detail. We would like to repeat the experiment many,
many times, since the persistence of vision is not good enough to see only one
trace on the screen. So we do the experiment again and again by closing the
switch 60 times a second ; each time we close the switch, we also start the oscillo-
scope horizontal sweep, and it draws the curve over and over.) In Figs. 24-3 to
24-6 we see examples of damped oscillations, actually photographed on an oscillo-
scope screen. Figure 24-3 shows a damped oscillation in a circuit which has a
high Q, a small v. Tt does not die out very fast; it oscillates many times on the
way down.

But let us see what happens as we decrease Q, so that the oscillation dies out
more rapidly. We can decrease Q by increasing the resistance R in the circuit.
When we increase the resistance in the circuit, it dies out faster (Fig. 24-4). Then
if we increase the resistance in the circuit still more, it dies out faster still (Fig.
24-5). But when we put in more than a certain amount, we cannot see any oscilla-
tion at all! The question is, is this because our eyes are not good enough? If we
increase the resistance still more, we get a curve like that of Fig. 24-6, which does
not appear to have any oscillations, except perhaps one. Now, how can we explain
that by mathematics?

The resistance is, of course, proportional to the ¥ term in the mechanical
device. Specifically, ¥ is R/L. Now if we increase the 7 in the solutions (24.14)
and (24.15) that we were so happy with before, chaos sets in when v/2 exceeds
wo; we must write it a different way, as

/2 + iVY/4 — i and  iv/2 — iVY?/4 — Wi

Those are now the two solutions and, following the same line of mathematical
reasoning as previously, we again find two solutions: e*‘ and e**2’. If we now
substitute for oy, we get

¥ = Ae_('y/2+v‘72/4—w(2,)t
a nice exponential decay with no oscillations. Likewise, the other solution is
X = Be_(“’/z_\/yz“_"’g)t

Note that the square root cannot exceed v/2, because even if wg = 0, one term
just equals the other. But wj is taken away from ¥2/4, so the square root is less
than v/2, and the term in parentheses is, therefore, always a positive number.
Thank goodness! Why? Because if it were negative, we would find e raised to a
positive factor times ¢, which would mean it was exploding! In putting more and
more resistance into the circuit, we know it is not going to explode—quite the
contrary. So now we have two solutions, each one by itself a dying exponential,
but one having a much faster “dying rate’’ than the other. The general solution is
of course a combination of the two; the coefficients in the combination depending
upon how the motion starts—what the initial conditions of the problem are. In
the particular way this circuit happens to be starting, the A4 is negative and the B
is positive, so we get the difference of two exponential curves.

Now let us discuss how we can find the two coefficients 4 and B (or 4 and A4*),
if we know how the motion was started.
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Suppose that at ¢t = 0 we know that x = xo, and dx/dt = v,y. If we put
t = 0, x = xy, and dx/dt = v, into the expressions

X = e—7t/2(Aeiu‘yt + A*e—wvt)’
dx/dt = e "2[(=7/2 + iw)Ae®r + (=V/2 — iw,)A*e "],

we find, since ¢ = ¢* = 1,

x0=A+A*=2AR,
vo = (=7/2)(4 + A*) + iw(4 — A%)
= —Txo/2 + iw,(2id}),

where A = Ap + iA;, and 4* = Ap — i4;. Thus we find

Ap = x0/2
and
Ar = (vo + 7x0/2)/2w,. (24.21)

This completely determines 4 and A4*, and therefore the complete curve of the
transient solution, in terms of how it begins. Incidentally, we can write the solution
another way if we note that

e’ + e =2cosf and e — e~ = 2jsin 0.
We may then write the complete solution as

Vo + Yxo/2

Wy

x = e 7?2 [xo COS Wyt + sin wyt], (24.22)
where wy, = 4+Vwj — ¥Z/4. This is the mathematical expression for the way
an oscillation dies out. We shall not make direct use of it, but there are a number
of points we should like to emphasize that are true in more general cases.

First of all the behavior of such a system with no external force is expressed
by a sum, or superposition, of pure exponentials in time (which we wrote as e™%).
This is a good solution to try in such circumstances. The values of « may be com-
plex in general, the imaginary parts representing damping. Finally the intimate
mathematical relation of the sinusoidal and exponential function discussed in
Chapter 22 often appears physically as a change from oscillatory to exponential
behavior when some physical parameter (in this case resistance, 7) exceeds some
critical value.
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