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The Special Theory of Relativity

15-1 The principle of relativity

For over 200 years the equations of motion enunciated by Newton were be-
lieved to describe nature correctly, and the first time that an error in these laws
was discovered, the way to correct it was also discovered. Both the error and its
correction were discovered by Einstein in 1905.

Newton’s Second Law, which we have expressed by the equation

F = d(mv)/dt,

was stated with the tacit assumption that m is a constant, but we now know that
this is not true, and that the mass of a body increases with velocity. In Einstein’s
corrected formula m has the value

mo

V1 = v2jc2 (15.1)

where the “‘rest mass” m, represents the mass of a body that is not moving and
¢ is the speed of light, which is about 3 X 10° km - sec™! or about 186,000
mi - sec™ L,

For those who want to learn just enough about it so they can solve problems,
that is all there is to the theory of relativity—it just changes Newton’s laws by
introducing a correction factor to the mass. From the formula itself it is easy to
see that this mass increase is very small in ordinary circumstances. If the velocity
is even as great as that of a satellite, which goes around the earth at 5 mi/sec,
then v/c = 5/186,000: putting this value into the formula shows that the cor-
rection to the mass is only one part in two to three billion, which is nearly impossible
to observe. Actually, the correctness of the formula has been amply confirmed by
the observation of many kinds of particles, moving at speeds ranging up to practi-
cally the speed of light. However, because the effect is ordinarily so small, it
seems remarkable that it was discovered theoretically before it was discovered
experimentally. Empirically, at a sufficiently high velocity, the effect is very large,
but it was not discovered that way. Therefore it is interesting to see how a law
that involved so delicate a modification (at the time when it was first discovered)
was brought to light by a combination of experiments and physical reasoning.
Contributions to the discovery were made by a number of people, the final result
of whose work was Einstein’s discovery.

There are really two Einstein theories of relativity. This chapter is concerned
with the Special Theory of Relativity, which dates from 1905. In 1915 Einstein
published an additional theory, called the General Theory of Relativity. This
latter theory deals with the extension of the Special Theory to the case of the law
of gravitation; we shall not discuss the General Theory here.

The principle of relativity was first stated by Newton, in one of his corollaries
to the laws of motion: “The motions of bodies included in a given space are the
same among themselves, whether that space is at rest or moves uniformly forward
in a straight line.” This means, for example, that if a space ship is drifting along
at a uniform speed, all experiments performed in the space ship and all the phenom-
ena in the space ship will appear the same as if the ship were not moving, pro-
vided, of course, that one does not look outside. That is the meaning of the princi-
ple of relativity. This is a simple enough idea, and the only question is whether it
is true that in all experiments performed inside a moving system the laws of physics
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Fig. 15-1. Two coordinate systems
in uniform relative motion along their
x-axes.

will appear the same as they would if the system were standing still. Let us first
investigate whether Newton’s laws appear the same in the moving system.

Suppose that Moe is moving in the x-direction with a uniform velocity u, and
he measures the position of a certain point, shown in Fig. 15-1. He designates the
“x-distance” of the point in his coordinate system as x’. Joe is at rest, and measures
the position of the same point, designating its x-coordinate in his system as x.
The relationship of the coordinates in the two systems is clear from the diagram.
After time t Moe’s origin has moved a distance uz, and if the two systems originally
coincided,

X = Xx — u,

y=> (15.2)
Z = z,
t’

If we substitute this transformation of coordinates into Newton’s laws we find
that these laws transform to the same laws in the primed system; that is, the laws
of Newton are of the same form in 2 moving system as in a stationary system, and
therefore it is impossible to tell, by making mechanical experiments, whether the
system is moving or not.

The principle of relativity has been used in mechanics for a long time. It was
employed by various people, in particular Huygens, to obtain the rules for the
collision of billiard balls, in much the same way as we used it in Chapter 10 to
discuss the conservation of momentum. In the past century interest in it was
heightened as the result of investigations into the phenomena of electricity, mag-
netism, and light. A long series of careful studies of these phenomena by many
people culminated in Maxwell’s equations of the electromagnetic field, which
describe electricity, magnetism, and light in one uniform system. However, the
Maxwell equations did not seem to obey the principle of relativity. That is, if we
transform Maxwell’s equations by the substitution of equations 15.2, their form
does not remain the same; therefore, in a moving space ship the electrical and
optical phenomena should be different from those in a stationary ship. Thus
one could use these optical phenomena to determine the speed of the ship; in
particular, one could determine the absolute speed of the ship by making suitable
optical or electrical measurements. One of the consequences of Maxwell’s equa-
tions is that if there is a disturbance in the field such that light is generated, these
electromagnetic waves go out in all directions equally and at the same speed ¢, or
186,000 mi/sec. Another consequence of the equations is that if the source
of the disturbance is moving, the light emitted goes through space at the same
speed c¢. This is analogous to the case of sound, the speed of sound waves being
likewise independent of the motion of the source.

This independence of the motion of the source, in the case of light, brings up
an interesting problem:

Suppose we are riding in a car that is going at a speed u, and light from the
rear is going past the car with speed ¢. Differentiating the first equation in (15.2)
gives

dx'/dt = dx/dt — u,

which means that according to the Galilean transformation the apparent speed of
the passing light, as we measure it in the car, should not be ¢ but should be ¢ — u.
For instance, if the car is going 100,000 mi/sec, and the light is going 186,000
mi/sec, then apparently the light going past the car should go 86,000 mi/sec.
In any case, by measuring the speed of the light going past the car (if the Galilean
transformation is correct for light), one could determine the speed of the car. A
number of experiments based on this general idea were performed to determine
the velocity of the earth, but they all failed—they gave no velocity at all. We
shall discuss one of these experiments in detail, to show exactly what was done
and what was the matter; something was the matter, of course, something was
wrong with the equations of physics. What could it be?
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15-2 The Lorentz transformation

When the failure of the equations of physics in the above case came to light,
the first thought that occurred was that the trouble must lie in the new Maxwell
equations of electrodynamics, which were only 20 years old at the time. It seemed
almost obvious that these equations must be wrong, so the thing to do was to
change them in such a way that under the Galilean transformation the principle
of relativity woutlld be satisfied. When this was tried, the new terms that had to
be put into the equations led to predictions of new electrical phenomena that did
not exist at all when tested experimentally, so this attempt had to be abandoned.
Then it gradually became apparent that Maxwell’s laws of electrodynamics were
correct, and the trouble must be sought elsewhere.

In the meantime, H. A. Lorentz noticed a remarkable and curious thing when
he made the following substitutions in the Maxwell equations:

oo X —ut
V91— u?/c?
Y o=
"= g, (15.3)
g 1= ux/c?
V1 — u2/c?

namely, Maxwell’s equations remain in the same form when this transformation

is applied to them! Equations (15.3) are known as a Lorentz transformation.

Einstein, following a suggestion originally made by Poincaré, then proposed that

all the physical laws should be of such a kind that they remain unchanged under a L

Lorentz transformation. In other words, we should change, not the laws of electro-

dynamics, but the laws of mechanics. How shall we change Newton’s laws

so that they will remain unchanged by the Lorentz transformation? If this

goal is set, we then have to rewrite Newton’s equations in such a way that the

conditions we have imposed are satisfied. As it turned out, the only requiremeént is

that the mass m in Newton’s equations must be replaced by the form shown in

Eq. (15.1). When this change is made, Newton’s laws and the laws of electrody-

namics will harmonize. Then if we use the Lorentz transformation in comparing

Moe’s measurements with Joe’s, we shall never be able to detect whether either is o .

moving, because the form of all the equations will be the same in both coordinate A

systems! fo
It is interesting to discuss what it means that we replace the old transformation P

between the coordinates and time with a new one, because the old one (Galilean) /

seems to be self-evident, and the new one (Lorentz) looks peculiar. We wish to / \

know whether it is logically and experimentally possible that the new, and not the i/ L

old, transformation can be correct. To find that out, it is not enough to study the Source sbivllle \op N

laws of mechanics but, as Einstein did, we too must analyze our ideas of space A i W H‘ III

and time in order to understand this transformation. We shall have to discuss ‘

these ideas and their implications for mechanics at some length, so we say in o i}‘@/w;’;;;;:'

advance that the effort will be justified, since the results agree with experiment.

15-3 The Michelson-Morley experiment
Fig. 15-2. Schematic diagram of the
As mentioned above, attempts were made to determine the absolute velocity  michelson-Morley experiment.

of the earth through the hypothetical “ether” that was supposed to pervade all
space. The most famous of these experiments is one performed by Michelson
and Morley in 1887. It was 18 years later before the negative results of the experi-
ment were finally explained, by Einstein.

The Michelson-Morley experiment was performed with an apparatus like that
shown schematically in Fig. 15-2. This apparatus is essentially comprised of a
light source A, a partially silvered glass plate B, and two mirrors C and E, all
mounted on a rigid base. The mirrors are placed at equal distances L from B.
The plate B splits an oncoming beam of light, and the two resulting beams con-
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tinue in mutually perpendicular directions to the mirrors, where they are reflected
back to B. On arriving back at B, the two beams are recombined as two superposed
beams, D and F. If the time taken for the light to go from B to E and back is the
same as the time from B to C and back, the emerging beams D and F will be in
phase and will reinforce each other, but if the two times differ slightly, the beams
will be slightly out of phase and interference will result. If the apparatus is ““at
rest” in the ether, the times should be precisely equal, but if it is moving toward
the right with a velocity u, there should be a difference in the times. Let us see why.

First, let us calculate the time required for the light to go from B to E and
back. Let us say that the time for light to go from plate B to mirror E is ¢, and
the time for the return is ;. Now, while the light is on its way from B to the mirror,
the apparatus moves a distance ut;, so the light must traverse a distance L + utz,
at the speed c. We can also express this distance as ¢y, so we have

cty = L + uty, or t, = L/(c — u).

(This result is also obvious from the point of view that the velocity of light relative
to the apparatus is ¢ — u, so the time is the length L divided by ¢ — u.) In a like
manner, the time ¢, can be calculated. During this time the plate B advances a
distance ut,, so the return distance of the light is L — ut,. Then we have

ctg = L — uty, or to = L/(c + u).

Then the total time is
t; + 1y = 2Lc/(c? — u?).

For convenience in later comparison of times we write this as

2L/c

1—_-_W M (15.4)

4ty =

Our second calculation will be of the time #3 for the light to go from B to the
mirror C. As before, during time #3 the mirror C moves to the right a distance utg
to the position C’; in the same time, the light travels a distance ctz; along the
hypotenuse of a triangle, which is BC’. For this right triangle we have

(ct)* = L* + (utg)’
or
L? = ¢*E — o’ = (* — uP)i,
from which we get
t; = L/ — 2.

For the return trip from C’ the distance is the same, as can be seen from the
symmetry of the figure; therefore the return time is also the same, and the total
time is 2¢73. With a little rearrangement of the form we can write
2L 2L/c
2t = = .
Ve — w2 A1 — u2/c?

We are now able to compare the times taken by the two beams of light. In
expressions (15.4) and (15.5) the numerators are identical, and represent the time
that would be taken if the apparatus were at rest. In the denominators, the term
u?/c? will be small, unless u is comparable in size to ¢. The denominators represent
the modifications in the times caused by the motion of the apparatus. And behold,
these modifications are not the same—the time to go to C and back is a little less
than the time to E and back, even though the mirrors are equidistant from B, and
all we have to do is to measure that difference with precision.

Here a minor technical point arises—suppose the two lengths L are not
exactly equal? In fact, we surely cannot make them exactly equal. In that case
we simply turn the apparatus 90 degrees, so that BC is in the line of motion and
BE is perpendicular to the motion. Any small difference in length then becomes
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unimportant, and what we look for is a shift in the interference fringes when we
rotate the apparatus.

In carrying out the experiment, Michelson and Morley oriented the apparatus
so that the line BE was nearly parallel to the earth’s motion in 1its orbit (at certain
times of the day and night). This orbital speed is about 18 miles per second, and
any “‘ether drift” should be at least that much at some time of the day or night and
at some time during the year. The apparatus was amply sensitive to observe such
an effect, but no time difference was found—the velocity of the earth through the
ether could not be detected. The result of the experiment was null.

The result of the Michelson-Morley experiment was very puzzling and most
disturbing. The first fruitful idea for finding a way out of the impasse came from
Lorentz. He suggested that material bodies contract when they are moving, and
that this foreshortening is only in the direction of the motion, and also, that if
the length is L, when a body is at rest, then when it moves with speed u parallel
to its length, the new length, which we call L, (L-parallel), is given by

L= Lo1T — u2/c2. (15.6)

When this modification is applied to the Michelson-Morley interferometer appara-
tus the distance from B to C does not change, but the distance from B to E is
shortened to L\/1 — u2/c2. Therefore Eq. (15.5) is not changed, but the L of
Eq. (15.4) must be changed in accordance with Eq. (15.6). When this is done we
obtain

QLN — w2/ 2L/c

T 1 — u?/c? V1 - @2

f+ 1 (15.7)

Comparing this result with Eq. (15.5), we see that £, 4+ 5 = 2¢3. So if the ap-
paratus shrinks in the manner just described, we have a way of understanding why
the Michelson-Morley experiment gives no effect at all. Although the contraction
hypothesis successfully accounted for the negative result of the experiment, it was
open to the objection that it was invented for the express purpose of explaining
away the difficulty, and was too artificial. However, in many other experiments
to discover an ether wind, similar difficulties arose, until it appeared that nature
was in a “conspiracy” to thwart man by introducing some new phenomenon to
undo every phenomenon that he thought would permit a measurement of u.

It was ultimately recognized, as Poincaré pointed out, that a complete conspiracy
is itself a law of nature! Poincaré then proposed that there is such a law of nature,
that it is not possible to discover an ether wind by any experiment; that is, there
is no way to determine an absolute velocity.

15-4 Transformation of time

In checking out whether the contraction idea is in harmony with the facts in
other experiments, it turns out that everything is correct provided that the fimes
are also modified, in the manner expressed in the fourth equation of the set (15.3).
That is because the time 73, calculated for the trip from B to C and back, is not the
same when calculated by a man performing the experiment 1n a moving space
ship as when calculated by a stationary observer who is watching the space ship.
To the man in the ship the time is simply 2L/c, but to the other observer it is
QL/c)//1 — u?/c? (Eq. 15.5). In other words, when the outsider sees the man
in the space ship lighting a cigar, all the actions appear to be slower than normal,
while to the man inside, everything moves at a normal rate. So not only must the
lengths shorten, but also the time-measuring instruments (‘‘clocks’’) must appar-
ently slow down. That is, when the clock in the space ship records 1 second
elapsed, as seen by the man in the ship, it shows 1/4/1 — u2?/c2 second to the
man outside.

This slowing of the clocks in a moving system is a very peculiar phenomenon,
and is worth an explanation. In order to understand this, we have to watch the
machinery of the clock and see what happens when it is moving. Since that is
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rather difficult, we shall take a very simple kind of clock. The one we choose is
rather a silly kind of clock, but it will work in principle: it is a rod (meter stick)
with a mirror at each end, and when we start a light signal between the mirrors,
the light keeps going up and down, making a click every time it comes down, like
a standard ticking clock. We build two such clocks, with exactly the same lengths,
and synchronize them by starting them together ; then they agree always thereafter,
because they are the same in length, and light always travels with speed ¢. We
give one of these clocks to the man to take along in his space ship, and he mounts
the rod perpendicular to the direction of motion of the ship; then the length of
the rod will not change. How do we know that perpendicular lengths do not
change? The men can agree to make marks on each other’s y-meter stick as they
pass each other. By symmetry, the two marks must come at the same y- and
y'-coordinates, since otherwise, when they get together to compare results, one
mark will be above or below the other, and so we could tell who was really moving.

Now let us see what happens to the moving clock. Before the man took 1t
aboard, he agreed that it was a nice, standard clock, and when he goes along in
the space ship he will not see anything peculiar. If he did, he would know he was
moving—if anything at all changed because of the motion, he could tell he was
moving. But the principle of relativity says this is impossible in a uniformly moving
system, so nothing has changed. On the other hand, when the external observer
looks at the clock going by, he sees that the light, in going from mirror to mirror,
is “really” taking a zigzag path, since the rod is moving sidewise all the while.
We have already analyzed such a zigzag motion in connection with the Michelson-
Morley experiment. If in a given time the rod moves forward a distance propor-
tional to u in Fig. 15-3, the distance the light travels in the same time is propor-
tional to ¢, and the vertical distance is therefore proportional to v/c2 — uZ.

That is, it takes a Jonger time for light to go from end to end in the moving
clock than in the stationary clock. Therefore the apparent time between clicks is
longer for the moving clock, in the same proportion as shown in the hypotenuse
of the triangle (that is the source of the square root expressions in our equations).
From the figure it is also apparent that the greater u is, the more slowly the moving
clock appears to run. Not only does this particular kind of clock run more slowly,
but if the theory of relativity is correct, any other clock, operating on any principle
whatsoever, would also appear to run slower, and in the same proportion—we
can say this without further analysis. Why is this so?

To answer the above question, suppose we had two other clocks made exactly
alike with wheels and gears, or perhaps based on radioactive decay, or something
else. Then we adjust these clocks so they both run in precise synchronism with
our first clocks. When light goes up and back in the first clocks and announces
its arrival with a click, the new models also complete some sort of cycle, which
they simultaneously announce by some doubly coincident flash, or bong, or other
signal. One of these clocks is taken into the space ship, along with the first kind.
Perhaps this clock will not run slower, but will continue to keep the same time as
its stationary counterpart, and thus disagree with the other moving clock. Ah no,
if that should happen, the man in the ship could use this mismatch between his
two clocks to determine the speed of his ship, which we have been supposing
is impossible. We need not know anything about the machinery of the new clock
that might cause the effect—we simply know that whatever the reason, it will
appear to run slow, just like the first one.

Now if all moving clocks run slower, if no way of measuring time gives any-
thing but a slower rate, we shall just have to say, in a certain sense, that zime
itself appears to be slower in a space ship. All the phenomena there—the man’s
pulse rate, his thought processes, the time he takes to light a cigar, how long it
takes to grow up and get old—all these things must be slowed down in the same
proportion, because he cannot tell he is moving. The biologists and medical men
sometimes say it is not quite certain that the time it takes for a cancer to develop
will be longer in a space ship, but from the viewpoint of a modern physicist it is
nearly certain; otherwise one could use the rate of cancer development to determine
the speed of the ship!
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A very interesting example of the slowing of time with motion is furnished
by mu-mesons (muons), which are particles that disintegrate spontaneously
after an average lifetime of 2.2 X 107 sec. They come to the earth in cosmic
rays, and can also be produced artificiallyin the laboratory. Some of them
disintegrate in midair, but the remainder disintegrate only after they encounter
a piece of material and stop. It is clear that in its short lifetime a muon cannot
travel, even at the speed of light, much more than 600 meters. But although the
muons are created at the top of the atmosphere, some 10 kilometers up, yet they are
actually found in a laboratory down here, in cosmic rays. How can that be?
The answer is that different muons move at various speeds, some of which are
very close to the speed of light. While from their own point of view they live only
about 2 usec, from our point of view they live considerably longer—enough longer
that they may reach the earth. The factor by which the time 1s increased has already
been given as 1/4/1 — u?/c2. The average life has been measured quite accurately
for muons of different velocities, and the values agree closely with the formula.

We do not know why the meson disintegrates or what its machinery is, but
we do know its behavior satisfies the principle of relativity. That is the utility of
the principle of relativity—it permits us to make predictions, even about things
that otherwise we do not know much about. For example, before we have any
idea at all about what makes the meson disintegrate, we can still predict that when
it is moving at nine-tenths of the SPW the apparent length of time that

it lasts is (2.2 1075%/+4/1T — 92/102 sec; and our prediction works—that is
the good thing about it.

15-5 The Lorentz contraction

Now let us return to the Lorentz transformation (15.3) and try to get a better
understanding of the relationship between the (x, y, z, ) and the (x',)’, 2z, ¢')
coordinate systems, which we shall call the S and §’ systems, or Joe and Moe
systems, respectively. We have already noted that the first equation is based on
the Lorentz suggestion of contraction along the x-direction; how can we prove that
a contraction takes place? In the Michelson-Morley experiment, we now appre-
ciate that the rransverse arm BC cannot change length, by the principle of relativity;
yet the null result of the experiment demands that the times must be equal. So, in
order for the experiment to give a null result, the longitudinal arm BE must
appear shorter, by the square root /1 — u2/c2. What does this contraction mean,
in terms of measurements made by Joe and Moe? Suppose that Moe, moving
with the S’ system in the x-direction, is measuring the x’-coordinate of some point
with a meter stick. He lays the stick down x’ times, so he thinks the distance is
x’ meters. From the viewpoint of Joe in the S system, however, Moe is using a
foreshortened ruler, so the “real” distance measured is x'v/1 — u2/c? meters.
Then if the S’ system has travelled a distance uz away from the S system, the S
observer would say that the same point, measured in his coordinates, is at a

distance x = x'\/1 — u2/c% + ut, or

X — ut

VI = w2jer’

which is the first equation of the Lorentz transformation.

4

X

15-6 Simultaneity

In an analogous way, because of the difference in time scales, the denominator
expression 1s introduced into the fourth equation of the Lorentz transformation.
The most interesting term in that equation is the ux/c? in the numerator, because
that is quite new and unexpected. Now what does that mean? If we look at the
situation carefully we see that events that occur at two separated places at the same
time, as seen by Moe in $’, do not happen at the same time as viewed by Joe in S.
If one event occurs at point x, at time ¢, and the other event at x, and ¢ (the same
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time), we find that the two corresponding times 71 and ¢ differ by an amount

u(xy — x3)/c®

V1 — u/c?

This circumstance is called “failure of simultaneity at a distance,” and to make
the idea a little clearer let us consider the following experiment.

Suppose that a man moving in a space ship (system S’) has placed a clock at
each end of the ship and is interested in making sure that the two clocks are in
synchronism. How can the clocks be synchronized? There are many ways.
One way, involving very little calculation, would be first to locate exactly the
midpoint between the clocks. Then from this station we send out a light signal
which will go both ways at the same speed and will arrive at both clocks, clearly,
at the same time. This simultaneous arrival of the signals can be used to syn-
chronize the clocks. Let us then suppose that the man in S’ synchronizes his clocks
by this particular method. Let us see whether an observer in system S would agree
that the two clocks are synchronous. The man in S’ has a right to believe they are,
because he does not know that he is moving. But the man in S reasons that since
the ship is moving forward, the clock in the front end was running away from the
light signal, hence the light had to go more than halfway in order to catch up; the
rear clock, however, was advancing to meet the light signal, so this distance was
shorter. Therefore the signal reached the rear clock first, although the man in S’
thought that the signals arrived simultaneously. We thus see that when a man in a
space ship thinks the times at two locations are simultaneous, equal values of ¢’
in his coordinate system must correspond to different values of ¢ in the other
coordinate system!

th—1t =

15-7 Four-vectors

Let us see what else we can discover in the Lorentz transformation. It is
interesting to note that the transformation between the x’s and ¢’s is analogous in
form to the transformation of the x’s and y’s that we studied in Chapter 11 for a
rotation of coordinates. We then had

x' = xcos 8 4+ ysiné,

4

y

(15.8)

ycos§ — xsin 6,

in which the new x’ mixes the old x and y, and the new y’ also mixes the old x
and y; similarly, in the Lorentz transformation we find a new x’ which is a mixture
of x and ¢, and a new ¢’ which is a mixture of # and x. So the Lorentz transforma-
tion is analogous to a rotation, only it is a “rotation” in space and time, which
appears to be a strange concept. A check of the analogy to rotation can be made
by calculating the quantity

x/2 + y/2 “I‘ 2;2 - c2t/2 — x2 __|_ y2 + 22 — 0212. (159)

In this equation the first three terms on each side represent, in three-dimensional
geometry, the square of the distance between a point and the origin (surface of a
sphere) which remains unchanged (invariant) regardless of rotation of the co-
ordinate axes. Similarly, Eq. (15.9) shows that there is a certain combination
which includes time, that is invariant to a Lorentz transformation. Thus, the
analogy to a rotation is complete, and is of such a kind that vectors, i.e., quantities
involving “components” which transform the same way as the coordinates and
time, are also useful in connection with relativity.

Thus we contemplate an extension of the idea of vectors, which we have so
far considered 1o have only space components, 10 include a time component.
That is, we expect that there will be vectors with four components, three of which
are like the components of an ordinary vector, and with these will be associated
a fourth component, which 1s the analog of the time part.
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This concept will be analyzed further in the next chapters, where we shall
find that if the ideas of the preceding paragraph are applied to momentum, the
transformation gives three space parts that are like ordinary momentum com-
ponents, and a fourth component, the time part, which is the energy.

15-8 Relativistic dynamics

We are now ready to investigate, more generally, what form the laws of
mechanics take under the Lorentz transformation. [We have thus far explained
how length and time change, but not how we get the modified formula for m
(Eq. 15.1). We shall do this in the next chapter.] To see the consequences of
Einstein’s modification of m for Newtonian mechanics, we start with the Newtonian
law that force is the rate of change of momentum, or

F = d(mv)/d:.

Momentum is still given by mv, but when we use the new m this becomes
mov

This is Einstein’s modification of Newton’s laws. Under this modification, if
action and reaction are still equal (which they may not be in detail, but are in the
long run), there will be conservation of momentum in the same way as before,
but the quantity that is being conserved is not the old mv with its constant mass,
but instead is the quantity shown in (15.10), which has the modified mass. When
this change is made in the formula for momentum, conservation of momentum
still works.

Now let us see how momentum varies with speed. In Newtonian mechanics
it is proportional to the speed and, according to (15.10), over a considerable range
of speed, but small compared with c, it is nearly the same in relativistic mechanics,
because the square-root expression differs only slightly from 1. But when v is
almost equal to ¢, the square-root expression approaches zero, and the momentum
therefore goes toward infinity.

What happens if a constant force acts on a body for a long time? In Newtonian
mechanics the body keeps picking up speed until it goes faster than light. But this
is impossible in relativistic mechanics. In relativity, the body keeps picking up,
not speed, but momentum, which can continually increase because the mass is
increasing. After a while there is practically no acceleration in the sense of a change
of velocity, but the momentum continues to increase. Of course, whenever a force
produces very little change in the velocity of a body, we say that the body has a
great deal of inertia, and that is exactly what our formula for relativistic mass
says (see Eq. 15.10)—it says that the inertia is very great when v is nearly as great
as ¢. As an example of this effect, to deflect the high-speed electrons in the syn-
chrotron that is used here at Caltech, we need a magnetic field that is 2000 times
stronger than would be expected on the basis of Newton’s laws. In other words,
the mass of the electrons in the synchrotron is 2000 times as great as their normal
mass, and is as great as that of a proton! That m should be 2000 times m, means
that 1 — »2/c? must be 1/4,000,000, and that means that v2/c? differs from 1
by one part in 4,000,000, or that v differs from ¢ by one part in 8,000,000, so the
electrons are getting pretty close to the speed of light. If the electrons and light
were both to start from the synchrotron (estimated as 700 feet away) and rush
out to Bridge Lab, which would arrive first? The light, of course, because light
always travels faster.* How much earlier? That is too hard to tell—instead, we
tell by what distance the light is ahead: it is about 1/1000 of an inch, or } the thick-
ness of a piece of paper! When the electrons are going that fast their masses are
enormous, but their speed cannot exceed the speed of light.

P:mV:

(15.10)

* The electrons would actually win the race versus visible light because of the index of
refraction of air. A gamma ray would make out better.
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Now let us look at some further consequences of relativistic change of mass.
Consider the motion of the molecules in a small tank of gas. When the gas is
heated, the speed of the molecules is increased, and therefore the mass is also
increased and the gas is heavier. An approximate formula to express the increase
of mass, for the case when the velocity is small, can be found by expanding
mo/1 — v2/c2 = mo(1 — v2/¢?)™ V2 in a power series, using the binomial
theorem. We get

mo(l — ?/c)N2 = mo(1 + 3%/ + PAfet + ).

We see clearly from the formula that the series converges rapidly when v is small,
and the terms after the first two or three are negligible. So we can write

1
m = mg + %m0v2(c—2> (15.11)

in which the second term on the right expresses the increase of mass due to mo-
lecular velocity. When the temperature increases the v increases proportionately,
so we can say that the increase in mass is proportional to the increase in tempera-
ture. But since 4mqv? is the kinetic energy in the old-fashioned Newtonian sense,
we can also say that the increase in mass of all this body of gas is equal to the
increase in kinetic energy divided by ¢2, or am = A(K.E.)/c2.

15-9 Equivalence of mass and energy

The above observation led Einstein to the suggestion that the mass of a body
can be expressed more simply than by the formula (15.1), if we say that the mass
is equal to the total energy content divided by c2. If Eq. (15.11) is multiplied by
c? the result is

me? = moe? + Imgp? 4 - -+ (15.12)

Here, the term on the left expresses the total energy of a body, and we recognize
the last term as the ordinary kinetic energy. Einstein interpreted the large constant
term, moc?, to be part of the total energy of the body, an intrinsic energy known
as the “rest energy.”

Let us follow out the consequences of assuming, with Einstein, that the
energy of a body always equals mc2. As an interesting result, we shall find the
formula (15.1) for the variation of mass with speed, which we have merely assumed
up to now. We start with the body at rest, when its energy is mqoc2. Then we
apply a force to the body, which starts 1t moving and gives it kinetic energy;
therefore, since the energy has increased, the mass has increased—this is implicit
in the original assumption. So long as the force continues, the energy and the mass
both continue to increase. We have already seen (Chapter 13) that the rate of change
of energy with time equals the force times the velocity, or

—=F-v. 15.13

We also have (Chapter 9, Eq. 9.1) that F = d(mv)/dt. When these relations are
put together with the definition of E, Eq. (15.13) becomes

d(mc®) y. dm)
da dt

(15.14)

We wish to solve this equation for m. To do this we first use the mathematical
trick of multiplying both sides by 2m, which changes the equation to

d(mv)

2 dm _
c“(2m) v 2my 7

(15.15)

We need to get rid of the derivatives, which can be accomplished by integrating
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both sides. The quantity (2m) dm/dt can be recognized as the time derivative of
m?, and (2mv) - d(mv)/dt is the time derivative of (mv)2. So, Eq. (15.15) is the
same as
o dim®)  d(m%?)
R

: i (15.16)

If the derivatives of two quantities are equal, the quantities themselves differ at
most by a constant, say C. This permits us to write

m2? = m»? + C. (15.17)

We need to define the constant C more explicitly. Since Eq. (15.17) must be true
for all velocities, we can choose a special case where » = 0, and say that in this
case the mass is mo. Substituting these values into Eq. (15.17) gives

mic? =04 C.
We can now use this value of C in Eq. (15.17), which becomes
m?c® = m*® + mic®. (15.18)
Dividing by c? and rearranging terms gives

m*(1 — v*/c%) = mg,
from which we get

m = mo/V/1 — v2/c2, (15.19)

This is the formula (15.1), and is exactly what is necessary for the agreement be-
tween mass and energy in Eq. (15.12).

Ordinarily these energy changes represent extremely slight changes in mass,
because most of the time we cannot generate much energy from a given amount
of material; but in an atomic bomb of explosive energy equivalent to 20 kilotons
of TNT, for example, it can be shown that the dirt after the explosion is lighter by
1 gram than the initial mass of the reacting material, because of the energy that was
released, i.e., the released energy had a mass of 1 gram, according to the relationship
AE = A(mc?). This theory of equivalence of mass and energy has been beautifully
verified by experiments in which matter is annihilated—converted totally to energy:
An electron and a positron come together at rest, each with a rest mass my. When
they come together they disintegrate and two gamma rays emerge, each with the
measured energy of moc2. This experiment furnishes a direct determination of
the energy associated with the existence of the rest mass of a particle.
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