

 Nagios: System and Network Monitoring, 2nd Edition
Table of Contents
Foreword to the second edition
What's New in the Second Edition?

Information Sources on the Internet

Introduction
The tests

The suppliers of information

Keeping admins up-to-date

Taking in information from outside

Other tools for network monitoring

About This Book

Further notes on the book

Note of Thanks

I. From Source Code to a Running Installation

1. Installation

1.1 Preparations

1.1.1 Determining and setting up the required users

1.2 Compiling Source Code

1.3 Starting Nagios Automatically

1.4 Installing and Testing Plugins

1.4.1 Installation

1.4.2 Plugin test

1.5 Configuration of the Web Interface

1.5.1 Setting up Apache

1.5.2 SELinux

1.5.3 User authentication

2. Nagios Configuration

2.1 The Main Configuration File nagios.cfg

Simple structure

2.2 Objects—an Overview

Notes on the object examples below

2.3 Defining the Machines to Be Monitored, with host

2.4 Grouping Computers Together with hostgroup

2.5 Defining Services to Be Monitored with service

2.6 Grouping Services Together with servicegroup

2.7 Defining Addressees for Error Messages: contact

2.8 The Message Recipient: contactgroup

2.9 When Nagios Needs to Do Something: The command Object

2.10 Defining a Time Period with timeperiod

2.11 Templates

2.12 Configuration Aids for Those Too Lazy to Type

2.12.1 Defining services for several computers

2.12.2 One host group for all computers

2.12.3 Other configuration aids

2.13 CGI Configuration in cgi.cfg

2.14 The Resources File resource.cfg

3. Startup

3.1 Checking the Configuration

3.2 Getting Monitoring Started

3.2.1 Manual start

3.2.2 Making configuration changes come into effect

3.3 Overview of the Web Interface

II. In More Detail...

4. Nagios Basics

4.1 Taking into Account the Network Topology

4.2 On-Demand Host Checks vs. Periodic Reachability Tests

4.3 States of Hosts and Services

5. Service Checks and How They Are Performed

5.1 Testing Network Services Directly

5.2 Running Plugins via Secure Shell on the Remote Computer

5.3 The Nagios Remote Plugin Executor

5.4 Monitoring via SNMP

5.5 The Nagios Service Check Acceptor

6. Plugins for Network Services

6.1 Standard Options

6.2 Reachability Test with Ping

6.2.1 check_icmp as a Service Check

6.2.2 check_icmp as a Host Check

6.3 Monitoring Mail Servers

6.3.1 Monitoring SMTP with check_smtp

6.3.2 POP and IMAP

6.4 Monitoring FTP and Web Servers

6.4.1 FTP services

6.4.2 Web server control via HTTP

6.4.3 Monitoring Web proxies

6.5 Domain Name Server Under Control

6.5.1 DNS check with nslookup

6.5.2 Monitoring the name server with dig

6.6 Querying the Secure Shell Server

6.7 Generic Network Plugins

6.7.1 Testing TCP ports

6.7.2 Monitoring UDP ports

6.8 Monitoring Databases

6.8.1 PostgreSQL

6.8.2 MySQL

6.9 Monitoring LDAP Directory Services

6.10 Checking a DHCP Server

Granting the plugin root permissions

6.11 Monitoring UPS with the Network UPS Tools

The Network UPS Tools

6.12 Health Check of an NTP Server with check_ntp_peer

7. Testing Local Resources

7.1 Free Hard Drive Capacity

7.2 Utilization of the Swap Space

7.3 Testing the System Load

7.4 Monitoring Processes

7.5 Checking Log Files

7.5.1 The standard plugin check.log

7.5.2 The modern variation: check_logs.pl

7.5.3 The Swiss Army knife: check_logfiles

7.6 Keeping Tabs on the Number of Logged-In Users

7.7 Checking the System Time

7.7.1 Checking the system time via NTP

7.7.2 Checking system time with the time protocol

7.8 Regularly Checking the Status of the Mail Queue

7.9 Keeping an Eye on the Modification Date of a File

7.10 Monitoring UPSs with apcupsd

7.11 Nagios Monitors Itself

7.11.1 Running the plugin manually with a script

7.12 Hardware Checks with LM Sensors

8. Plugins for Special Tasks

8.1 The Dummy Plugin for Tests

8.2 Negating Plugin Results

8.3 Inserting Hyperlinks with urlize

8.4 Checking Host or Service Clusters as an Entity

8.5 Summarizing Checks with check_multi

8.5.1 Multiple-line plugin output

8.5.2 Installation requirements

8.5.3 Installation and testing

8.5.4 Configuration file

8.5.5 Command-line parameters

8.5.6 Performance data and PNP

8.5.7 Simple business process monitoring

9. Executing Plugins via SSH

9.1 The check_by_ssh Plugin

9.2 Configuring SSH

9.2.1 Generating SSH key pairs on the Nagios server

9.2.2 Setting up the user nagios on the target host

9.2.3 Checking the SSH connection and check_by_ssh

9.3 Nagios Configuration

10. The Nagios Remote Plugin Executor (NRPE)

10.1 Installation

10.1.1 Distribution-specific packages

10.1.2 Installation from the source code

10.2 Starting via the inet Daemon

10.2.1 xinetd configuration

10.2.2 inetd configurationt

10.2.3 Is the Inet daemon watching on the NRPE port?

10.3 NRPE Configuration on the Computer to Be Monitored

10.3.1 Passing parameters on to local plugins

10.4 NRPE Function Test

10.5 Nagios Configuration

10.5.1 NRPE without passing parameters on

10.5.2 Passing parameters on in NRPE

10.5.3 Optimizing the configuration

10.6 Indirect Checks

11. Collecting Information Relevant for Monitoring with SNMP

11.1 Introduction to SNMP

11.1.1 The Management Information Base

11.1.2 SNMP protocol versions

11.2 NET-SNMP

11.2.1 Tools for SNMP requests

11.2.2 The NET-SNMP daemon

11.3 Nagios's Own SNMP Plugins

11.3.1 The generic SNMP plugin check_snmp

11.3.2 Checking several interfaces simultaneously

11.3.3 Testing the operating status of individual interfaces

11.4 Other SNMP-based Plugins

11.4.1 Monitoring hard drive space and processes with nagios-snmp-plugins

11.4.2 Observing the load on network interfaces with check-iftraffic

11.4.3 The manubulon.com plugins for special application purposes

12. The Nagios Notification System

12.1 Who Should be Informed of What, When?

12.2 When Does a Message Occur?

12.3 The Message Filter

12.3.1 Switching messages on and off systemwide

12.3.2 Enabling and suppressing computer and service-related messages

12.3.3 Person-related filter options

12.3.4 Case examples

12.4 External Notification Programs

12.4.1 Notification via e-mail

12.4.2 Notification via SMS

12.5 Escalation Management

12.6 Accounting for Dependencies between Hosts and Services

12.6.1 The standard case: service dependencies

12.6.2 Only in exceptional cases: host dependencies

13. Passive Tests with the External Command File

13.1 The Interface for External Commands

13.2 Passive Service Checks

13.3 Passive Host Checks

13.4 Reacting to Out-of-Date Information of Passive Checks

14. The Nagios Service Check Acceptor (NSCA)

14.1 Installation

14.2 Configuring the Nagios Server

14.2.1 The configuration file nsca.cfg

14.2.2 Configuring the inet daemon

14.3 Client-side Configuration

14.4 Sending Test Results to the Server

14.5 Application Example I: Integrating syslog and Nagios

14.5.1 Preparing syslog-ng for use with Nagios

14.5.2 Nagios configuration: volatile services

14.5.3 Resetting error states manually

14.6 Application Example II: Processing SNMP Traps

14.6.1 Receiving traps with snmptrapd

14.6.2 Passing on traps to NSCA

14.6.3 The matching service definition

15. Distributed Monitoring

15.1 Switching On the OCSP/OCHP Mechanism

15.2 Defining OCSP/OCHP Commands

15.3 Practical Scenarios

15.3.1 Avoiding redundancy in configuration files

15.3.2 Defining templates

III. The Web Interface and Other Ways to Visualize Nagios Data

16. The Classical Web Interface

16.1 Recognizing and Acting On Problems

16.1.1 Comments on problematic hosts

16.1.2 Taking responsibility for problems

16.2 An Overview of the Individual CGI Programs

16.2.1 Variations in status display: status.cgi

16.2.2 Additional information and control center: extinfo.cgi

16.2.3 Interface for external commands: cmd.cgi

16.2.4 The most important things at a glance: tac.cgi

16.2.5 The topological map of the network: statusmap.cgi

16.2.6 Navigation in 3D: statuswrl.cgi

16.2.7 Querying the status with a cell phone: statuswml.cgi

16.2.8 Analyzing disrupted partial networks: outages.cgi

16.2.9 Querying the object definition with config.cgi

16.2.10 Availability statistics: avail.cgi

16.2.11 What events occur, how often?—histogram.Cgi

16.2.12 Filtering log entries after specific states: history.cgi

16.2.13 Who was told what, when?— notifications.Cgi

16.2.14 Showing all log file entries: showlog.cgi

16.2.15 Evaluating whatever you want: summary.cgi

16.2.16 Following states graphically over time: trends.Cgi

16.3 Planning Downtimes

16.3.1 Maintenance periods for hosts

16.3.2 Downtime for services

16.4 Additional Information on Hosts and Services

16.4.1 Extended host information

16.4.2 Extended service information

16.5 Configuration Changes through the Web Interfaces: the Restart Problem

16.6 Modern Layout with the Nuvola Style

17. Flexible Web Interface with the NDOUtils

17.1 The Event Broker

17.2 The Database Interface

17.3 The Installation

17.3.1 Compiling the source code

17.3.2 Preparing the MySQL database

17.3.3 Upgrading the database design

17.4 Configuration

17.4.1 Adjusting the Event Broker configuration

17.4.2 Configuring database access

17.4.3 Starting the ndo2db daemon

17.4.4 Loading the Event Broker module in Nagios

18. NagVis

18.1 Installation

18.1.1 Installing the source code

18.1.2 Initial configuration

18.1.3 User authentication

18.2 Creating NagVis Maps

18.2.1 Editing the configuration in text form

18.2.2 Adding NagVis maps to the Nagios Web interface

19. Graphic Display of Performance Data

19.1 Processing Plugin Performance Data with Nagios

19.1.1 The template mechanism

19.1.2 Using external commands to process performance data

19.2 Graphs for the Web with Nagiosgraph

19.2.1 Basic installation

19.2.2 Configuration

19.3 Preparing Performance Data for Evaluation with Perf2rrd

19.3.1 Installation

19.3.2 Nagios configuration

19.3.3 Perf2rrd in practice

19.4 The Graphics Specialist drraw

19.4.1 Installation

19.4.2 Configuration

19.4.3 Practical application

19.5 Automated to a Large Extent: NagiosGrapher

19.5.1 Installation

19.5.2 Configuration

19.6 Smooth Plotting with PNP

19.6.1 Installation

19.6.2 The standard configuration

19.6.3 The PNP Web interface

19.6.4 Bulk processing of performance data

19.6.5 How should the graphic appear?

19.7 Other Tools and the Limits of Graphic Evaluation

IV. Part IV Special Applications

20. Monitoring Windows Servers

20.1 Agent-less Checks via WMI

20.2 Installing and Configuring the Additional Services

20.2.1 NSClient

20.2.2 NC_Net

20.2.3 NSClient++

20.2.4 OpMon Agent

20.2.5 Rectifying problems with port 1248

20.3 The check_nt Plugin

20.3.1 Generally supported commands

20.3.2 Advanced functions of NC_Net

20.3.3 Installing the check_ncnet plugin

20.4 NRPE for Windows

20.4.1 NRPE_NT, the classic tool

20.4.2 Plugins for NRPE in Windows

20.4.3 NRPE with NSClient++

20.4.4 Internal NSClient++ functions

21. Monitoring Room Temperature and Humidity

21.1 Sensors and Software

21.1.1 The PCMeasure software for Linux

21.1.2 The query protocol

21.2 The Nagios Plugin check_pcmeasure2.pl

22. Monitoring SAP Systems

22.1 Checking without a Login: sapinfo

22.1.1 Installation

22.1.2 First test

22.1.3 The plugin check_sap.sh

22.1.4 More up to date and written in Perl: check_sap.pl

22.2 Monitoring with SAP's Own Monitoring System CCMS

22.2.1 A short overview over the alert monitor

22.2.2 Obtaining the necessary SAP usage permissions for Nagios

22.2.3 Monitors and templates

22.2.4 The CCMS plugins

22.2.5 Performance optimization

23. Processing Events with the EventDB

23.1 How the EventDB Works

23.2 Installation

23.2.1 Installation requirements

23.2.2 Preparing the MySQL database

23.2.3 Sending events to the database with syslog-ng

23.3 Using the Web Interface

23.3.1 Preselection of the filter with URL parameters

23.4 The Nagios Plugin for the EventDB

23.5 Maintenance

23.6 Sending Windows Events to Syslog

23.7 Making the Incomprehensible Legible with SNMPTT

23.7.1 The configuration file snmptt.ini

23.7.2 Converting MIBs

V. Part V Development

24. Writing Your Own Plugins

24.1 Programming Guidelines for Plugins

24.1.1 Return values

24.1.2 Information for the administrator on the standard output

24.1.3 Onboard online help?

24.1.4 Reserved options

24.1.5 Specifying thresholds

24.1.6 Timeout

24.1.7 Performance data

24.1.8 Copyright

24.2 The Perl Module Nagios::Plugin

24.2.1 Installation

25. Determining File and Directory Sizes

25.1 Splitting up the Command Line With Getopt::Long

25.2 The Perl Online Documentation

25.2.1 The module Pod::Usage

25.3 Determining Thresholds

25.4 Implementing Timeouts

25.5 Displaying Performance Data

25.6 Configuration Files for Plugins

26. Monitoring Oracle with the Instant Client

26.1 Installing the Oracle Instant Client

26.2 Establishing a Connection to the Oracle Database

26.3 A Wrapper Plugin for sqlplus

26.3.1 How the wrapper works

26.3.2 The Perl plugin in detail

VI. Part VI Appendixes
A. An Overview of the Nagios Configuration Parameters

A.1 The Main Configuration File nagios.cfg

A.2 CGI Configuration in cgi.cfg

A.2.1 Authentication parameters

A.2.2 Other Parameters

B. Rapidly Alternating States: Flapping

B.1 Flap Detection with Services

B.1.1 Nagios configuration

B.1.2 The history memory and the chronological progression of the changes in state

B.1.3 Representation in the Web interface

B.2 Flap Detection for Hosts

C. Event Handlers

C.1 Execution Times for the Event Handler

C.2 Defining the Event Handler in the Service Definition

C.3 The Handler Script

C.4 Things to Note When Using Event Handlers

D. Macros

D.1 Standard Macros

D.1.1 Host macros

D.1.2 Service macros

D.1.3 Group macros

D.1.4 Contact macros

D.1.5 Notification macros

D.1.6 Macros to specify time and date

D.1.7 Statistics macros

D.1.8 Using standard macros about the environment

D.2 On-Demand Macros

D.3 Macros for User-defined Variables

D.4 Macro Contents: Not Everything Is Allowed

E. Single Sign-On for the Nagios Web Interface

E.1 HTTP Authentication for Single Sign-On

E.2 Kerberos Authentication with mod_auth_kerb

E.2.1 Installation

E.2.2 Creating a service ticket for Apache

E.2.3 Kerberos configuration

E.2.4 Apache configuration

E.2.5 Definition of a Nagios contact

E.3 Single Sign-On with mod_auth_ntlm_winbind

E.3.1 Installation

E.3.2 Preparing Samba

E.3.3 Apache configuration

E.3.4 Defining a Nagios contact

E.4 Mozilla Firefox as a Web Client

E.4.1 Firefox and NTLM

E.5 Microsoft Internet Explorer as a Web Client

F. Tips on Optimizing Performance

F.1 Internal Statistics of Nagios

F.1.1 The command-line tool nagiostats

F.1.2 Showing Nagios performance graphically

F.1.3 A plugin to monitor latency

F.2 Measures for Improving Performance

F.2.1 Service checks: as often as necessary, as few as possible

F.2.2 Processing performance data intelligently

F.2.3 Avoiding plugins in interpreted languages

F.2.4 Optimizing host checks

F.2.5 The matter of the Reaper

F.2.6 Preferring passive checks

F.2.7 Optimizing large Nagios environments

F.2.8 Optimizing the NDOUtils database

G. The Embedded Perl Interpreter

G.1 Requirements of an ePN-capable Plugin

G.2 Using ePN

G.2.1 Compiling ePN

G.2.2 Interpreter-specific parameters in nagios.cfg

G.2.3 Disabling ePN on a per-plugin basis

G.3 The Testing Tool new_mini_epn

H. What's New in Nagios 3.0?

H.1 Changes in Object Definitions

H.1.1 The host object

H.1.2 The service object

H.1.3 Group objects

H.1.4 The contact object

H.1.5 Time definitions

H.1.6 Dependency descriptions

H.1.7 Escalation objects

H.1.8 Inheritance

H.2 Variable and Macros

H.3 Downtime, Comments, and Acknowledgments

H.4 Rapidly Changing States

H.5 External Commands

H.6 Embedded Perl

H.7 A New Logic for Host Checks

H.8 Restart

H.9 Performance Optimization

H.10 Extended Plugin Output

H.11 CGI

H.12 Miscellaneous

H.13 Upgrade from Nagios 2.x to 3.0

Nagios: System and Network Monitoring, 2nd Edition
Wolfgang Barth
Wolfgang Barth
Editor
William Pollock
Copyright © 2009
1 2 3 4 5 6 7 8 9 10—09 08 07 06
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.
The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor Open Source Press GmbH nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.
No Starch Press

Foreword to the second edition
As soon as the stable Nagios version 3.0 appeared, as can be expected after going to press, the question was raised: Nagios 2 or Nagios 3? For those just starting out with Nagios, Nagios 3.0 is a safe bet. Even the release candidate 3.0rc1 was sufficiently stable for production environments, and you can benefit directly from the new features, rather than having to get used to them later on.
If you are already using Nagios 2 in a sizable environment, then you'll surely be thinking, Never touch a running system. Why change if your existing system is running smoothly? But there has been further development on Nagios 2 since the first edition of this book appeared, and various bugs have been fixed.[1] So it is perhaps advisable to change to the current Nagios 2 version, and then wait and see how things develop.
On the other hand, Nagios 3.0 does contain a number of improvements. In particular where there are performance problems in large environments, this major version provides some adjusting screws that can help the system to achieve a higher performance through its greatly improved hostcheck logic, thanks to the caching of check results and a series of optimization parameters. Otherwise, it is smaller changes, ones that are not so obvious, that distinguish Nagios 3.0 from Nagios 2. Many things, often hardly noti-cable, combine to make your work with Nagios 3.0 easier, and sometimes more pleasant as well. You can get to know and appreciate all these small details best if, as a Nagios 2 administrator, you just try out Nagios 3. Newcomers will probably take all these small improvements for granted, and not even notice them.
Fortunately, converting from Nagios 2 to Nagios 3.0, as described in H.13 Upgrade from Nagios 2.x to 3.0 from page 693, is relatively simple, and you can continue using your existing configuration unchanged in most cases.
What's New in the Second Edition?
The second edition deals with Nagios in both version 2.x and version 3.0, since there is no difference in the basic principles. At first glance the structure of the book looks the same, as do the contents of many chapters. Nevertheless, much has changed, even in the chapters that existed in the first edition. Nearly all the chapters were revised and updated to do justice to the current state of development of the tools introduced, but also to take into account the differences between Nagios 2.x and Nagios 3.0.
The Monitoring Servers chapter was completely revised and expanded, in particular where the NSClient++ tool is concerned. The chapter on the processing of performance data was also extended. A new tool was added, in the shape of PNP, and the description of the NagiosGrapher was brought right up to date. Of the newly introduced plugins, check_logfiles by Gerhard Laußer and check_multi by Matthias Flacke in particular deserve special mention, and the author considers these to have great potential. But caution is advised: both are for the advanced user.
There is a new chapter on NagVis, with which you can define a Web interface based on your own images or graphics, with complete freedom in its design. NagVis requires the database interface NDOUtils, to which a separate chapter is devoted.
The EventDB reveals a database-supported approach to processing events as an alternative to the classic log file check. A separate chapter is also devoted to this. The chapters Writing Your Own Plugins and Determining File and Directory Sizes are also new, and describe step by step how to write your own Perl plugin, introducing the Perl module Nagios::Plugin in so doing. To optimize the performance of Perl scripts, Nagios provides its own interpreter, which is also given its own chapter.
A chapter called What's New in Nagios 3.0? can't be missing, of course, which compactly summarizes all the changes made compared to Nagios 2.x. For the sake of completeness, there is a new chapter on macros in the Appendix. This compares the various macro types and explains their intended use.
A chapter on performance optimization was also included. It certainly doesn't contain any patent remedies, since this is just not possible, given the wide range of monitored environments and scenarios for use. But it does take a look at the problem zones of Nagios, and provides some tips on where to look for support.
The fact that authentification on the Nagios Web interface does not have to be restricted to the simple basis authentification described in the installation chapter is demonstrated by another new chapter about Single-Sign-On in Microsoft Active Directory environments.

[1] Nagios 2.10 was the current version at the time of going to press.

Information Sources on the Internet
Despite an increase of over 200 pages, the book cannot describe all the existing tools and possibilities for use. The Internet provides a wealth of information that is useful while, or after, studying this book. The most important sources are listed here.
	The Nagios homepage at http://www.nagios.org/
	The homepage of Nagios plugins at http://www.nagiosplugins.org/
	The Nagios community at http://www.nagioscommunity.org/
	http://www.nagiosexchange.org/ as an exchange platform for plug-ins
	The original mailing lists at http://www.nagios.org/support/mailinglists.php

Introduction
It's ten o'clock on Monday morning. The boss of the branch office is in a rage. He's been waiting for hours for an important e-mail, and it still hasn't arrived. It can only be the fault of the mail server; it's probably misbehaving yet again. But a quick check of the computer shows that no mails have got stuck in the queue there, and there's no mention either in the log file that a mail from the sender in question has arrived. So where's the problem?
The central mail server of the company doesn't respond to a ping. That's probably the root of the problem. But the IT department at the company head office absolutely insists that it is not to blame. It also cannot ping the mail node of the branch office, but it maintains that the network at the head office is running smoothly, so the problem must lie with the network at the branch office. The search for the error continues...
The humiliating result: the VPN connection to head office was down, and although the ISDN backup connection was working, no route to the head office (and thus to the central mail server) was defined in the backup router. A globally operating IT service provider was responsible for the network connections (VPN and ISDN) between branch and head office, for whom something like this "just doesn't happen." The end result: many hours spent searching for the error, an irritated boss (the meeting for which the e-mail was urgently required has long since finished), and a sweating admin.
With a properly configured Nagios system, the adminstrator would already have noticed the problem at eight in the morning and been able to isolate its cause within a few minutes. Instead of losing valuable time, the IT service provider would have been informed directly. The time then required to eliminate the error (in this case, half an hour) would have been sufficient to deliver the e-mail in time.
A second example: somewhere in Germany, the hard drive on which the central Oracle database for a hospital stores its log files reaches full capacity Although this does not cause the "lights to go out" in the operating room, the database stops working and there is considerable disruption to work procedures: patients cannot be admitted, examination results cannot be saved, and reports cannot be documented until the problem has been fixed.
If the critical hard drive had been monitored with Nagios, the IT department would have been warned at an early stage. The problem would not even have occurred.
With personnel resources becoming more and more scarce, no IT department can really afford to regularly check all systems manually. Networks that are growing more and more complex especially demand the need to be informed early on of disruptions that have occurred or of problems that are about to happen. Nagios, the Open Source tool for system and network monitoring, helps the administrator to detect problems before the phone rings off the hook.
The aim of the software is to inform administrators quickly about questionable (WARNING) or critical conditions (CRITICAL). What is regarded as "questionable" or "critical" is defined by the administrator in the configuration. A Web page summary then informs the administrator of normally working systems and services, which Nagios displays in green, of questionable conditions (yellow), and of critical situations (red). There is also the possibility of informing the administrators in charge—depending on specific services or systems—selectively by e-mail but also by paging services such as SMS.
By concentrating on stop light states (green, yellow, red), Nagios is distinct from network tools that display elapsed time graphically (for example in the load of a WAN interface or a CPU throughout an entire day) or that record and measure network traffic (how high was the proportion of HTTP on a particular interface?). Nagios is involved plainly and simply with the issue of whether everything is on a green light. The software does an excellent job in looking after this, not just in terms of the current status but also over long periods of time.
The tests
When checking critical hosts and services, Nagios distinguishes between host and service checks. A host check tests a computer, called a host in Nagios slang, for reachability—as a rule, a simple ping is used. A service check selectively tests individual network services such as HTTP, SMTP, DNS, etc., but also running processes, CPU load, or log files. Host checks are performed by Nagios irregularly and only where required, for example if none of the services to be monitored can be reached on the host being monitored. As long as one service can be addressed there, then this is basically valid for the entire computer, so this test can be dropped.
The simplest test for network services consists of looking to see whether the relevant target port is open, and whether a service is listening there. But this does not necessarily mean that, for example, the SSH daemon really is running on TCP port 22. Nagios therefore uses tests for many services that go several steps further. With SMTP, for example, the software also tests whether the mail server announces itself with a "220" output, the so-called SMTP greeting; and for a PostgreSQL database, it checks whether this will accept an SQL query.
Nagios becomes especially interesting through the fact that it takes into account dependencies in the network topology (if it is configured to do so). If the target system can only be reached through a particular router that has just gone down, then Nagios reports that the target system is "unreachable" and does not bother to bombard it with further host and service checks. The software puts administrators in a position where they can more quickly detect the actual cause and rectify the situation.

The suppliers of information
The great strength of Nagios—even in comparison with other network monitoring tools—lies in its modular structure. The Nagios core does not contain one single test. Instead it uses external programs for service and host checks, which are known as plugins. The basic equipment already contains a number of standard plugins for the most important application cases. Special requests that go beyond these are answered—provided that you have basic programming knowledge—by plugins that you can write yourself. Before investing time in developing these, however, it is first worth taking a look on the Internet and browsing through the relevant mailing lists,[2] as there is lively activity in this area. Ready-to-use plugins are available, especially in The Nagios Exchange platform, http://www.nagiosexchange.org/.
A plugin is a simple program—often just a shell script (Bash, Perl, etc.)—that gives out one of the four possible conditions: OK, WARNING, CRITICAL, or (with operating errors, for example) UNKNOWN.
This means that in principle Nagios can test everything that can be measured or counted electronically: the temperature and humidity in the server room, the amount of rainfall, the presence of persons in a certain room at a time when nobody should enter it. There are no limits to this, provided that you can find a way of providing measurement data or events as information that can be evaluated by computer (for example, with a temperature and humidity sensor, an infrared sensor, etc.). Apart from the standard plugins, this book accordingly introduces further freely available plugins, such as the use of a plugin to query a temperature and humidity sensor in Chapter 21 from page 505.

[2] http://www.nagios.org/support/mailinglists.php

Keeping admins up-to-date
Nagios possesses a sophisticated notification system. On the sender side (that is, with the host or service check) you can configure when each group of persons—the so-called contact groups—are informed about which conditions or events (failure, recovery, warnings, etc.). On the receiver side you can also define on multiple levels what is to be done with a corresponding message—for example whether the system should forward it, depending on the time of day, or discard the message.
If a specific service is to be monitored seven days a week round the clock, this does not mean that the administrator in charge will never be able to take a break. For example, you can instruct Nagios to notify the person only from Monday to Friday between 8am and 5pm, every two hours at the most. If the administrator in charge is not able to solve the problem within a specified period of time, eight hours for example, then the head of department responsible should receive a message. This process is known as escalation management. The corresponding configuration is explained in Chapter 12 from page 282.
Nagios can also make use of freely configurable, external programs for notifications, so that you can integrate any system you like, from e-mail to SMS, to a voice server that the administrator calls up and receives a voice message concerning the error.
With its Web interface (Chapter 16 from page 327, Nagios provides the administrator with a wide range of information, clearly arranged according to the issues involved. Whether the admin needs a summary of the overall situation, a display of problematic services and hosts and the causes of network outages, or the status of entire groups of hosts or services, Nagios provides an individually structured information page for nearly every purpose.
Through the Web front end, an administrator can inform colleagues upon accepting a particular problem so that they can concentrate on other issues that have not yet been addressed. Information already obtained can be stored as comments on hosts and services.
By reviewing past events, the Web interface can reveal problems that occurred in a selected time interval, who was informed of the problems, and which hosts and/or services were affected. Nagios can be configured to recognize scheduled downtimes and to prevent false alarms from going off during these periods.

Taking in information from outside
For tests, notifications, and so on, Nagios makes use of external programs, but the reverse is also possible: through a separate interface (see 13.1 The Interface for External Commands from page 292), independent programs can send status information and commands to Nagios. The Web interface makes widespread use of this possibility, which allows the administrator to send interactive commands to Nagios. But a backup program unknown to Nagios can also transmit a success or failure to Nagios, as well as to a syslog daemon. The possibilities are limitless. Thanks to this interface, Nagios allows distributed monitoring. This involves several decentralized Nagios installations sending their test results to a central instance, which then helps to maintain an overview of the situation from a central location.

Other tools for network monitoring
Nagios is not the only tool for monitoring systems and networks. The most well-known "competitor," perhaps on an equal footing, is Big Brother (BB). Despite a number of differences, its Web interface serves the same purpose as that of Nagios: displaying to the administrator what is in the "green area" and what is not.
The reason why the author uses Nagios instead of Big Brother lies in the license for Big Brother, on the BB homepage[3] called Better Than Free License: the product continues to be commercially developed and distributed. If you use BB and earn money with it, you must buy the software. The fact that the software, including the source code, may not be passed on or modified, except with the explicit permission of the vendor, means that it cannot be reconciled with the criteria for Open Source licenses. This means that Linux distributors have their hands tied.
For the graphical display of certain measured values over a period of time, such as the load on a network interface, CPU load, or the number of mails per minute, there are other tools that perform this task better than Nagios. The original tool is certainly the Multi Router Traffic Grapher MRTG,[4] which, despite growing competition, still enjoys great popularity. A relatively young, but very powerful alternative is called Cacti[5]: this has a larger range of applications, can be configured via Web interface, and avoids the restrictions in MRTG, which can only display two measured values at the same time and cannot display any negative values. Another interesting new alternative is Munin.[6]
Nagios itself can also display performance data graphically, using extensions (Chapter 19 from page 403). In many cases this is sufficient, but for very dedicated requirements, the use of Nagios in tandem with a graphic representation tool such as MRTG or Cacti is recommended.

[3] http://www.bb4.org/
[4] http://www.mrtg.org/
[5] http://www.cacti.net/
[6] http://munin.projects.linpro.no/

About This Book
This book is directed at network administrators who want to find out about the condition of their systems and networks using an Open Source tool. It describes the Nagios versions 2.x and 3.0. The plugins, on the other hand, lead their own lives, are to a great extent independent of Nagios, and are therefore not restricted to a particular version.
Even though this book is based upon using Linux as the operating system for the Nagios computer, this is not a requirement. Most descriptions also apply to other Unix systems,[7] only system-specific details such as start scripts need to be adjusted accordingly. Nagios currently does not officially work under Windows, however.[8]
The first part of this book deals with getting Nagios up and running with a simple configuration, albeit one that is sufficient for many uses, as quickly as possible. This is why Chapter 1 through Chapter 3 do not have detailed descriptions and treatments of all options and features. These are examined in the second part of the book.
Chapter 4 looks at the details of service and host checks, and in particular introduces their dependency on network topologies.
The options available to Nagios for implementing service checks and obtaining their results is described in Chapter 5.
This is followed by the presentation of individual standard plugins and a number of additional, freely obtainable plugins. Chapter 6 takes a look at the plugins that inspect the services of a network protocol directly from the Nagios host, while Chapter 7 summarizes plugins that need to be installed on the machine that is being monitored, and for which Nagios needs additional utilities to get them running. Several auxiliary plugins, which do not perform any tests themselves, but manipulate already established results, are introduced in Chapter 8.
Two utilities that Nagios requires to run local plugins on remote hosts are introduced in the two subsequent chapters. Chapter 9 describes SSH, while Chapter 10 introduces a daemon developed specifically for Nagios.
Wherever networks are being monitored, SNMP also needs to be implemented. Chapter 11 not only describes SNMP-capable plugins but also examines the protocol and the SNMP world itself in detail, providing the background knowledge needed for this.
The Nagios notification system is introduced Chapter 12, which also deals with notification using SMS, escalation management, and taking account of dependencies.
The interface for external commands is discussed in Chapter 13. This forms the basis of other Nagios mechanisms, such as the Nagios Service Check Acceptor (NSCA), a client-server mechanism for transmitting passive test results, covered in Chapter 14. The use of this is shown in two concrete examples—integrating syslog-ng and processing SNMP traps. NSCA is also a requirement for distributed monitoring, discussed in Chapter 15.
The third part of the book is devoted to how the extracted information can be represented graphically. Chapter 16 explains how this works and how it is set up in detail, supported by some useful screenshots. It also explains a series of parameters, for which there are otherwise no documentation at all, except in the source code.
Nagios can be expanded by adding external applications. The NDOUtils enable database-driven storage of all Nagios objects and are described in Chapter 17. Connection to a database, using the addon described in Chapter 18, enables you to build a Web interface that can be configured far beyond the basic range of Nagios.
Although in its operation, Nagios concentrates primarily on stoplight signals (red-yellow-green), there are ways of evaluating and representing the performance data provided by plugins, which are described in detail in Chapter 19.
The fourth part of this book is dedicated to special applications. Networks are rarely homogeneous—that is, equipped only with Linux and other Unix-based operating systems. For this reason, Chapter 20 demonstrates what utilities can be used to integrate and monitor Windows systems.
Chapter 21 uses the example of a low-cost hardware sensor to show how room temperature and humidity can be monitored simply, yet effectively.
Nagios can also monitor proprietary commercial software, as long as mechanisms are available which can query states of the system integrated into a plugin. In Chapter 22, this is described using an SAP-R/3 system.
Whereas event processing is only briefly outlined in Chapter 14, Chapter 23 presents a database-supported approach that provides more options for selecting and processing events, including interlinking with Nagios.
Building your own plugins is the subject of the fifth part of this book. Chapter 24 looks at the general requirements for a standard plugin, while Chapter 25 uses a step-by-step example of how to write your own plugins that are fit for publishing. Chapter 26 takes an example of the Instant Client of Oracle to demonstrate how to build your own plugins based on programs not really intended for this purpose.
Appendix A introduces all the parameters of the two central configuration files nagios.cfg and cgi.cfg, while Appendix B and Appendix C are devoted to some useful but somewhat exotic features.
A separate appendix (Appendix D) is devoted to macros, which allow flexibility in configuration.
Appendix E wanders slightly away from the core topic of Nagios and demonstrates how single sign-on scenarios can also be used for authentication in the Nagios Web interface.
The larger the environment, the more important it is to have a powerful and quick-reacting Nagios system. Appendix F offers a series suggestions on this, while Appendix G is dedicated to a specific tool, the Perl interpreter integrated into Nagios.
Finally, Appendix H briefly summarizes all the changes made since Nagios 2.x

[7] For example, *BSD, HP-UX, AIX, and Solaris; the author does not know of any Nagios versions running under MacOS X.
[8] There are, however, rumors about Nagios running in Cygwin environments.

Further notes on the book
At the time of going to press, Nagios 3.0 is close to completion. By the time this book reaches the market, there could well be some modifications. Relevant notes, as well as corrections, in case some errors have slipped into the book, can be found at http://linux.swobspace.net/books/nagios/.

Note of Thanks
Many people have contributed to the success of this book. My thanks go first of all to Dr. Markus Wirtz, who initiated this book with his comment, "Why don't you write a Nagios book, then?!", when he refused to accept my Nagios activities as an excuse for delays in writing another book. A very special thanks goes to Patricia Jung, who, as the technical editor for the German language version, overhauled the manuscript and pestered me with thousands of questions—which was a good thing for the completeness of the book, and which has ultimately made it easier for the reader to understand.
The book would not be possible, of course, without all the tools it describes. Very special thanks go to Ethan Galstad, who as author, developer and maintainer has made Nagios what it is today: an awesome, incredibly useful and helpful tool that also fulfills high-level requirements, and one that can rely on a very large—and above all very active— community. Also many thanks to Ton Voon, representing all members of the Nagios Plugins Development Team, who, together with his colleagues, manages the development of Nagios plugins.
My thanks also go to those who have not only developed the Nagios-related software introduced in this book, but have also helped to polish and improve the book with their proofreading and feedback: Matthias Flacke (of check_multi fame), Jörg Linge (PNP), and Steffen Waitz, who proofread the first edition, Hendrik Bäcker (npcd), Lars Michelsen, Michael Luebben (NagVis), Gerhard Laußer (check_logfiles), and the employees of NETWAYS GmbH (NagiosGrapher, EventDB, the exchange platform, NagiosExchange).
It is not possible for me to name all the individuals who have contributed in one way or another to the success of Nagios. I would therefore like to thank everybody who actively supports the Nagios community, whether this is through free software or through involvement in forums and mailing lists. Where would Nagios be without its users?

Part I. From Source Code to a Running Installation

Chapter 1. Installation
The simplest method of installation is for you to install the Nagios packages that are supplied with the distribution you are using. Nagios 2.x is by now extremely mature and is therefore a component of most distributions. The paths of individual directories in those packages maintained by Linux distributors are usually different from the default specified in the source package, and thus from the paths used in this book.
Nagios 3.0 is relatively new; it is recommended here that you "get your hands dirty" by compiling and installing the software yourself. The following installation guide also applies to Nagios 2.x, and any differences between versions 2.x and 3.0 are mentioned explicitly in the text.
If you compile your own software, you have control over the directory structures and a number of other parameters. A Nagios system compiled in this way also provides an almost complete main configuration file, in which, initially, nothing has to be changed. But it should be mentioned here that compiling Nagios yourself might involve a laborious search for the necessary development packages, depending on what is already installed on the computer.
1.1 Preparations
For compiling Nagios itself you require gcc, make, autoconf, and automake. Required libraries are libgd[9] and openssl[10]. The development packages for these must also be installed (depending on the distribution, with either the ending -dev or -devel): libssl-dev, libgd-dev, libc6-dev.
With Debian and Ubuntu you prepare by using apt-get install to install the packages apache2, build-essential, and libgd2-dev. In Open-SUSE you install apache2 via YAST2, along with all C/C++ development libraries, as well as the package gd. In Fedora you run the command yum install on the command line and enter the packages httpd, gcc, glibc, glibc-common, gd, and gd-devel as arguments.
For the plugins it is recommended that you also install the following packages: ntpdate[11] (possibly contained in the package ntp or xntp), snmp,[12]
smbclient[13] (possibly a component of the package samba-client), the libldap2 library, and the relevant development package libldap2-dev[14] (depending on the distribution, the appropriate packages are also called openldap2-client and openldap2-devel). You will also need to install the client and developer packages for the database used (e.g., postgresql-client and postgresql-dev(el)).
1.1.1 Determining and setting up the required users
Prior to compiling and installing, use the command groupadd to set up the groups necessary for operation. Groups nagios and nagcmd are set up with groupadd, and the user nagios, who is assigned to these groups and with whose permissions the Nagios server runs is set up with useradd:
linux:~ # groupadd -g 9000 nagios
linux:~ # groupadd -g 9001 nagcmd
linux:~ # useradd -u 9000 -g nagios -G nagcmd -d /usr/local/nagios \
 -c "Nagios Admin" nagios
Instead of the user (9000) and group IDs (9000 or 9001) used here, any other available IDs may be used. The primary group nagios of the user nagios should remain reserved exclusively for this user.
The CGI scripts are run by Nagios under the user ID of the user with whose permissions the Apache Web server runs. In order for this user to access certain protected areas of Nagios, an additional group is required, the so-called Nagios Command Group
nagcmd. Only the Web user and the user nagios should belong to this group. The Web user can be determined from the Apache configuration file. In Debian/Ubuntu this is located at /etc/apache2/apache2.conf; in Fedora it is at /etc/httpd/httpd.conf:
linux:~ # grep "^User" /etc/apache2/apache2.conf
User www-data
The user determined in this way (in Debian/Ubuntu www-data, in Open-SUSE www-run, and in Fedora httpd) is additionally assigned to the group nagcmd, shown here using the example for Debian/Ubuntu:
linux:~ # usermod -G nagcmd www-data
In the example, the Web user is called www-data. The command usermod (this changes the data for an existing user account) also includes the Web user in the nagcmd group thanks to the -G option, by manipulating the corresponding entry in the file /etc/group.
In addition, the directory specified as the home directory of the user nagios, /usr/local/nagios, the configuration directory /etc/nagios, and the directory /var/nagios, which records variable data while Nagios is running, are set up manually and are assigned to the user nagios and to the group of the same name:
linux:~ # mkdir /usr/local/nagios /etc/nagios /var/nagios
linux:~ # chown nagios.nagios /usr/local/nagios /etc/nagios /var/nagios

[9] http://www.boutell.com/gd/
[10] http://www.openssl.org/ Depending on the distribution, the required RPM and Debian packages are sometimes named differently. Here you need to refer to the search help in the corresponding distribution. For Debian, the homepage will be of help. For example, if a configure instruction complains of a missing gd.h file, you can search specifically at http://www.debian.org/distrib/packages for the contents of packages. The search will then come up with all packages that contain the file gd.h.
[11] http://ntp.isc.org/bin/view/Main/SoftwareDownloads
[12] http://net-snmp.sourceforge.net/
[13] http://samba.org/samba/
[14] http://www.openldap.org/

1.2 Compiling Source Code
The Nagios source code is available for download on the project page.[15] The installation description below is for version 3.0, which is provided by the developers as a tarball. A Nagios 2.x installation runs in an almost identical manner:
linux:~ # mkdir /usr/local/src
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf path/to/nagios-3.0.tar.gz
...
The three commands unpack the source code into the directory created for this purpose, /usr/local/src. A subdirectory called nagios-3.0 is also created, containing the Nagios sources. To prepare these for compilation, enter the parameter deviating from the default value when running the configure command. Table 1-1 lists the most important parameters:
linux:~ # cd /usr/local/src/nagios-3.0
linux:src/nagios-3.0 # ./configure \
 --sysconfdir=/etc/nagios \
 --localstatedir=/var/nagios \
 --with-command-group=nagcmd
...
The values chosen here ensure that the installation routine selects the directories used in the book and sets all parameters correctly when generating the main configuration file. This simplifies fine tuning of the configuration considerably. If you want to use the Embedded Perl Interpreter to accelerate the execution of Perl scripts, then you also need the two switches --with-perlcache and --enable-embedded-perl.
In Nagios 3.0 you can leave out --with-perlcache, as it is enabled automatically by --enable-embedded-perl. You can find more on the Embedded Perl Interpreter in Appendix G, page 669.
Table 1-1. Installation parameters for Nagios

	Property
	Value
	configure Option

	Root directory
	/usr/local/nagios
	--prefix

	Configuration directory
	/etc/nagios
	--sysconfdir

	Directory for variable data
	/var/nagios
	--localstatedir

	Nagios user (UserID)
	nagios (9000)
	--with-nagios-user

	Nagios group (GroupID)
	nagios (9000)
	--with-nagios-group

	Nagios Command Group (GroupID)
	nagcmd (9001)
	--with-command-group

If --prefix is not specified, Nagios installs itself in the /usr/local/nagios directory. We recommend that you stick to this directory.[16]
The system normally stores its configuration files in the directory etc beneath its root directory. In general it is better to store these in the /etc hierarchy however. Here we use /etc/nagios.[17]
Variable data such as the log file and the status file are by default stored in the directory /usr/local/nagios/var. This is in the /usr hierarchy which should only contain programs and other read-only files, not writable ones. In order to ensure that this is the case, we use /var/nagios.[18]
Irrespective of these changes, in most cases configure does not run through faultlessly the very first time, since one package or another is missing. For required libraries such as libgd, Nagios almost always demands the relevant developer package with the header files (here, libgd-dev or libgd-devel). Depending on the distribution, their names will end in -devel or -dev.
After all the tests have been run through, configure presents a summary of all the important configuration parameters:
*** Configuration summary for nagios 3.0 ***:

General Options:

 Nagios executable: nagios
 Nagios user/group: nagios,nagios
 Command user/group: nagios,nagcmd
 Embedded Perl: yes, with caching
 Event Broker: yes
 Install $prefix: /usr/local/nagios
 Lock file: /var/nagios/nagios.lock
 Check result directory: /var/nagios/spool/checkresults
 Init directory: /etc/init.d
Apache conf.d directory: /etc/apache2/conf.d
 Mail program: /usr/bin/mail
 Host OS: linux-gnu

Web Interface Options:

 HTML URL: http://localhost/nagios/
 CGI URL: http://localhost/nagios/cgi-bin/
Traceroute (used by WAP): /usr/sbin/traceroute
In Nagios 2.x the lines Check result directory, Apache conf.d directory, and Mail program are missing.
If a yes is written after the item Embedded Perl, the Embedded Perl Interpreter is enabled. The Event Broker provides an interface for extensions that can be loaded as additional modules while the system is running.[19]
If you are satisfied with the result, make starts the actual compilation and then installs the software:[20]
linux:src/nagios-3.0 # make all
...
linux:src/nagios-3.0 # make install
...
linux:src/nagios-3.0 # make install-init
...
linux:src/nagios-3.0 # make install-commandmode
...
linux:src/nagios-3.0 # make install-config
...
The command make all compiles all the relevant programs, which are then copied to the appropriate directories, together with CGI scripts and documentation, by make install. Apart from /etc/nagios and /var/nagios, further directories are created under /usr/local/nagios, which are summarized in Table 1-2.
Table 1-2. Nagios directories under /usr/local/nagios

	Directory
	Contents

	./bin
	Executable Nagios main program

	./libexec
	Plugins

	./sbin
	CGI scripts

	./share
	Documentation, HTML files for the Web interface

The command make install-commandmode generates the directory that is required for later usage of the command file mechanism (see 13.1 The Interface for External Commands, page 292) onwards. This step is optional, depending on the intended use, but since it is easy to forget later on, it is better to take precautions now. The final make install-config creates the example configuration, which will be used in Chapter 2, page 53.

[15] http://www.nagios.org/
[16] In accordance with the Filesystem Hierarchy Standard FHS, version 2.3, or local programs loaded by the administrator should be installed in /usr/local
[17] This is not entirely compatible with FHS 2.3, which would prefer to have the configuration files in /etc/local/nagios.
[18] This also does not quite match the requirements of the FHS 2.3. But since Nagios makes no differentiation between spool, cache, and status information, an FHS-true reproduction is not possible to achieve in a simple manner.
[19] At the time of going to press there were not yet any external extensions, which is why the Event Broker is currently only of interest to developers.
[20] Caution is needed when updating from Nagios 2.x to Nagios 3.0: Here you should first back up the existing configuration, initially run only make all, and carefully read H.13 Upgrade from Nagios 2.x to 3.0 in page 693. In Nagios 3.0 a make install-config command overwrites existing files!

1.3 Starting Nagios Automatically
The command make install-init installs a suitable init script for the system start. Here make automatically tries to detect the correct path, which for most Linux distributions is /etc/init.d. Depending on your system, this may not be correct, which is why you should check it. In order for Nagios to start automatically when the system is booted, symbolic links are created in the /etc/rc?.d directories. With Debian and Ubuntu using System-V-Init, the included system script update-rc.d performs this task:
linux:~ # update-rc.d nagios defaults 99
This command creates symlinks beginning with the prefix S99 to the directories rc2.d to rc5.d, so that Nagios starts automatically when changing to runlevels 2 to 5. In addition it ensures that K99 symlinks in the directories rc0.d, rc1.d, and rc6.d are responsible for stopping Nagios when the system is shut down and rebooted, as well as when it changes to maintenance mode. This corresponds to the following command-line commands:
linux:~ # ln -s /etc/init.d/nagios /etc/rc2.d/S99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc3.d/S99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc4.d/S99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc5.d/S99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc0.d/K99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc1.d/K99nagios
linux:~ # ln -s /etc/init.d/nagios /etc/rc6.d/K99nagios
For OpenSUSE the required symlinks are created using the script insserv:
linux:~ # insserv nagios
Fedora users perform this task with chkconfig:
linux:~ # chkconfig --add nagios
linux:~ # nagios on

1.4 Installing and Testing Plugins
What is now still missing are the plugins. They must be downloaded separately from http://www.nagios.org/ and installed. As independent programs, they are subject to a different versioning system than Nagios. The current version at the time of going to press was version 1.4.11, but you can, for example, also use plugins from earlier version if you don't mind doing without the most recent features. Although the plugins are distributed in a common source distribution, they are independent of one another, so that you can replace one version of an individual plugin with another one at any time, or with one you have written yourself.
1.4.1 Installation
The installation of the plugin sources takes place, like the Nagios ones, in the directory /usr/local:
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf path /to/nagios-plugins-1.4.tar.gz
linux:src/nagios-plugins-1.4.11 # ./configure \
 --sysconfdir=/etc/nagios \
 --localstatedir=/var/nagios \
 --enable-perl-modules
...
When running the configure command you should specify the same non-default values as for the server, which here are the configuration directory (/etc/nagios) and the directory intended for the data saved by Nagios (/var/nagios). Since the Nagios plugins are not maintained by the same people as Nagios itself, you should always check in advance, with ./configure --help, whether the configure options for Nagios and the plugins really match or deviate from one another.
The switch --enable-perl-modules is only needed if you intend to install the Perl module Nagios::Plugin—for example, if you are using it to program your own plugins in Perl. You can read more on this in 24.2 The Perl Module Nagios::Plugin, page 560.
It is possible that a series of WARNINGs may appear in the output of the configure command, something like this:
...
configure: WARNING: Skipping radius plugin
configure: WARNING: install radius libs to compile this plugin (see
 REQUIREMENTS).
...
configure: WARNING: Tried /usr/bin/perl - install Net ::SNMP perl
 module if you want to use the perl snmp plugins
...
If you are not using Radius, you need not have qualms about ignoring the corresponding error messages. Otherwise you should install the missing packages and repeat the configure procedure. The quite frequently required SNMP functionality is missing a Perl module in this example. This may be installed either in the form of the distribution package or via the online CPAN archive:[21]
linux:~ # perl -MCPAN -e 'install Net::SNMP'
...
If you are running the CPAN procedure for the first time, it will guide you interactively through a self-explanatory setup, and you can answer nearly all of the questions with the default option.
Running make in the directory nagios-plugins-1.4.11 will compile all plugins. Afterwards you have the opportunity to perform tests, with make check. Because these tests have not been particularly carefully programmed, you will often see many error messages that have more to do with the test itself than with the plugin. If you still want to try it, then the Cache Perl module must also be installed. Regardless of whether you use make check, you should manually check the most important plugins after the installation.
The command make install finally anchors the plugins in the subdirectory libexec (which in our case is /usr/local/nagios/libexec). However, not all of them are installed through this command. The source directory contrib contains a number of plugins that make install does not install automatically.
Most plugins in this directory are shell or Perl scripts. Where needed, these are simply copied to the plugin directory /usr/local/nagios/libexec. The few C programs first must be compiled, which in some cases may be no laughing matter, since a corresponding makefile, and often even a description of the required libraries, can be missing. If a simple make is not sufficient, as in the case of
linux:nagios-plugins-1.4.11/contrib # make check_cluster2[22]
cc check_cluster2.c -o check_cluster2
then it is best to look for help in the mailing list nagiosplug-help.[23] The compiled program must also be copied to the plugin directory.
1.4.2 Plugin test
Because plugins are independent programs, they can already be used manually for test purposes right now—before the installation of Nagios has been completed. In any case you should check the check_icmp plugin, which plays an essential role. It checks whether another computer can be reached via ping, and it is the only plugin to be used both as a service check and a host check. If it is not working correctly, Nagios will not work correctly either, since the system cannot perform any service checks as long as it categorizes a host as "down." 6.2 Reachability Test with Ping, 108, describes check_icmp in detail, which is why there is only short introduction here describing its manual use.
In order for the plugin to function correctly it must, like the /bin/ping program, be run as the user root. This is done by providing it with the SUID bit.With current plugin versions, make install sets this automatically. One way this can be seen is in the fact that the sources contain an additional directory, plugins-root. With older plugin versions you have to do this manually:
linux:~ # chown root.nagios /usr/local/nagios/libexec/check_icmp
linux:~ # chmod 4711 /usr/local/nagios/libexec/check_icmp
linux:~ # ls -l /usr/local/nagios/libexec/check_icmp
-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_icmp
Brief instructions for the plugin are given with the -h option:[24]
nagios@linux:~$ /usr/local/nagios/libexec/check_icmp -h
Usage: check_icmp [options] [-H] host1 host2 hostn

Where options are any combination of:
 * -H | --host specify a target
 * -w | --warn warning threshold (currently 200.000ms,40%)
 * -c | --crit critical threshold (currently 500.000ms,80%)
 * -n | --packets number of packets to send (currently 5)
 * -i | --interval max packet interval (currently 80.000ms)
 * -I | --hostint max target interval (currently 0.000ms)
 * -l | --ttl TTL on outgoing packets (currently 0)
 * -t | --timeout timeout value (seconds, currently 10)
 * -b | --bytes icmp packet size (currenly ignored)
 -v | --verbose verbosity++
 -h | --help this cruft
The -H switch is optional. Naming a host (or several) to check is not.
For a simple test it is sufficient to specify an IP address (it is immaterial whether you prefix the -H flag or not):
user@linux:~$ cd /usr/local/nagios/libexec
user@linux:nagios/libexec$./check_icmp -H 192.168.1.13
OK - 192.168.1.13: rta 0.261ms, lost 0%|rta=0.261ms;200.000;500.000;0;
pl=0%;40;80;;
The output appears as a single line, which has been line-wrapped here for the printed version: with zero percent package loss (lost 0%), the test has been passed. Nagios uses only the first 300 bytes of the output line. If the plugin provides more information, this is cut off.
If you would like to test other plugins, we refer you to Chapter 6 and Chapter 7, which describe the most important plugins in detail. All (reasonably well-programmed) plugins provide somewhat more detailed instructions with the --help option.

[21] The Comprehensive Perl Archive Network at http://www.cpan.org/
[22] With check_cluster, hosts and services of a cluster can be monitored. Here you usually want to be notified if all nodes or redundant services provided fail at the same time. If one specific service fails on the other hand, this is not critical, as long as other hosts in the cluster provide this service.
[23] http://lists.sourceforge.net/lists/listinfo/nagiosplug-help
[24] The listed options are explained in detail in 6.2 Reachability Test with Ping from page 108.

1.5 Configuration of the Web Interface
In order for the Web front end of Nagios to function, the Web server must know the CGI directory and the main Web directory. The following description applies to both Apache 1.3, Apache 2.0, and 2.2.
1.5.1 Setting up Apache
As long as you have not added a different address for the front end, through the configure script with -with-cgiurl, Nagios expects the CGI programs at the URL /nagios/cgi-bin (actual directory: /usr/local/na-gios/sbin) as well as the remaining HTML files below /nagios (actual directory: /usr/local/nagios/share). Nagios 3.0 includes its own make target for the Web interface, which configures the directories and sets corresponding aliases for the two URLs:
linux:~ # make install-webconf
...
This command installs the file nagios.conf in the configuration directory of Apache. In Debian/Ubuntu and OpenSUSE it is named /etc/apache2/
conf.d, or in Fedora /etc/httpd/conf.d. It looks like this:
ScriptAlias /nagios/cgi-bin "/usr/local/nagios/sbin"
<Directory "/usr/local/nagios/sbin">
 Options ExecCGI
 AllowOverride None
 Order allow,deny
 Allow from all
Order deny,allow
Deny from all
Allow from 127.0.0.1
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /etc/nagios/htpasswd.users
Require valid-user
</Directory>
In Nagios 2.x you have to set up the file by hand.
The directive ScriptAlias ensures that Apache accesses the Nagios CGI directory when calling a URL such as http://nagios-server/nagios/cgi-bin, irrespective of where the Apache CGI directories may be located. Options ExcecCGI ensures that the Web server accepts all the scripts located there as CGI. Order and Allow initially allow unrestricted access here to the Web server. If you want to restrict access, the sequence of the Order arguments is altered:
Order deny, allow
Deny from all
Allow from 127.0.0.1
Allow from 192.0.2.0/24
This example ensures that only clients from the network 192.0.2.0/24 (/24 stands for the subnet mask 255.255.255.0) and localhost gain access to the directory specified. The three Auth*- and the Require directives ensure authenticated access; more on user authentication in 1.5.3 User authentication in page 49.
The section for the Nagios documents directory /usr/local/nagios/share is constructed in a similar fashion: the directive Alias allows the directory beneath the URL http://nagios-server/nagios to be addressed, independently of where the Apache-DocumentRoot is located.
The directives Order and Allow (and also Deny, if needed) are set in identical manner to the CGI section. Authentication is not absolutely essential in the documentation sphere, but it is certainly useful if you want to install extensions such as PNP there (see 19.6 Smooth Plotting with PNP, page 446).
The command
linux:~ # /etc/init.d/apache reload
loads the new configuration. If everything has worked out correctly, the Nagios main page appears in the Web browser under http://nagios-server/nagios.
1.5.2 SELinux
Just a few distributions—in particular, Fedora—enable the Security Enhanced Linux (SELinux) by default. When enabled and appropriately configured, this allows services such as the Apache Web server access only to files and directories explicitly mentioned. The directories /usr/local/nagios/bin and /usr/local/nagios/share used by Nagios are not among these. The consequence: SELinux first refuses Apache access until this is allowed via the configuration. The command getenforce shows whether the Enforcing Mode, in which SELinux enforces the strict observance of the configured access rights, is switched on. This can be switched off with the command
linux:~ # setenforce 0
To retain this status at the next system start, the settings in /etc/selinux/config are changed. Rather than switching off the Enforcing Mode, though, it is better to configure the required accesses specifically. This does require some understanding of how SELinux works, and some general Linux experience -knowledge that would go beyond the scope of this book. For those who want to get to grips more intensively with the subject, further information can be found in the Wiki of the Nagios community,[25] including a link to a concrete guide.[26]
1.5.3 User authentication
In the state in which it is delivered, Nagios allows only authenticated users access to the CGI directory. This means that users not "logged in" have no way to see anything other than the homepage and the documentation. They are blocked off from access to other functions.
There is a good reason for this: apart from status queries and other display functions, Nagios has the ability to send commands via the Web interface. The interface for external commands is used for this purpose (13.1 The Interface for External Commands, page 292). If this is active, checks can be switched on and off via the Web browser, for example, and Nagios can even be restarted. Only authorized users should be in a position to do this. Besides, general security considerations would indicate that the huge volume of information provided by Nagios should only be made available to trustworthy persons.
First of all, the parameter use_authenticationin the CGI configuration file cgi.cfg
[27] of Nagios must be set to 1:
use_authentication=1
This is the default during installation. The simplest authentication form provided by Apache is the file-based Basic authentication, which is already enabled in the configuration file:
AuthName "Nagios Access"
AuthType Basic
AuthUserFile /etc/nagios/htpasswd.users
Require valid-user
AuthName is an information field that the browser displays if the Web server requests authentication. AuthType Basic stands for simple authentication, in which the password is transmitted without encryption, as long as no SSL connection is used. It is best to save the password file—here htpasswd.users—in the Nagios configuration directory /etc/nagios. The final parameter, require valid-user, means that all authenticated users have access (there are no restrictions for specific groups; only the user-password pair must be valid).
The (freely selectable) name of the password file will be specified here so that it displays what type of password file is involved. It is generated with the htpasswd2 program, included in Apache. (In Apache 1.3 and some other distributions, the program is called htpasswd.) Running
linux:/etc/nagios # htpasswd2 -c htpasswd.users nagios
New password: passwort
Re-type new password: passwort
Adding password for user nagios
generates a new password file with a password for the user nagios. Its format is relatively simple:
nagios:7NlyfpdI2UZEs
Each line contains a user-password pair, separated by a colon.[28] If you want to add other users, you should ensure that you omit the -c (create) option. Otherwise htpasswd(2) will recreate the file and delete the old contents:
linux:/etc/nagios # htpasswd2 htpasswd.users another_user
The user name cannot be chosen freely but must match the name of a contact person (see 2.7 Defining Addressees for Error Messages: contact, page 70). Only the Web user (depending on your distro, www-data, www-run oder httpd, see 1.1.1 Determining and setting up the required users) can access the generated htpasswd.users file, and it should be protected from access by anyone else:
linux:/etc/nagios # chown www-data htpasswd.users
linux:/etc/nagios # chmod 600 htpasswd
In combination with its own modules and those of third parties, Apache allows a series of other authentication methods. These include authentication via an LDAP directory, via Pluggable Authentication Modules (PAM),[29] or using SMB via a Windows server. Here we refer you to the relevant literature and the highly detailed documentation on the Apache homepage.[30] A quite advanced example, in which a user already authenticated by Kerberos does not have to authenticate himself again, is described in Appendix E in page 637.
Even though configuration of the Web interface is now finished, at the moment only the documentation is properly displayed: Nagios itself must first be correspondingly adjusted—as described in detail in the following chapter—before it can be used for monitoring data made available in this way.

[25] Search http://www.nagioscommunity.org/wiki/ for the keyword SELinux.
[26] http://www.rickwargo.com/2006/10/29/fc6-selinux-and-nagios/
[27] More on this in 2.13 CGI Configuration in cgi.cfg from page 77.
[28] To be precise, the second position does not contain the password itself, but rather its hash value.
[29] The "Pluggable Authentication Modules" now control authentication in all Linux distributions, so that you can also use existing user accounts here.
[30] http://httpd.apache.org/

Chapter 2. Nagios Configuration
Although the Nagios configuration can become quite large, you only need to handle a small part of this to get a system up and running. Luckily many parameters in Nagios are already set to sensible default settings. So this chapter will be concerned primarily with the most basic and frequently used parameters, which is quite sufficient for an initial configuration.
Further details on the configuration are provided by the chapters on individual Nagios features: in Chapter 6 in network plugins (page 105), there are many examples on the configuration of services. All parameters of the Nagios messaging system are explained in detail in Chapter 12, page 265, and the parameters for controlling the Web interface are described in Chapter 16, page 327. In addition to this, Nagios includes its own extensive documentation (/usr/local/nagios/share/docs), which can also be reached from the Web interface. This can always be recommended as a useful source for further information, which is why each of the sections below refer to the corresponding location in the original documentation.
The installation routine in make install-config (see 1.2 Compiling Source Code in page 39) stores examples of individual configuration files in the directory /etc/nagios. But be careful: whereas the names of the example files in Nagios 2.0 ended in -sample (so that a possible update does not overwrite the files required for production), this is no longer the case in the current Nagios 2.x versions and in Nagios 3.0. Existing files are overwritten here. Admittedly, make install does rename existing files: thus nagios.cfg is turned into nagios.cfg˜. But this only happens once. After running make install one more time, the original contents of the file are deleted once and for all. For this reason it is essential that you back up the existing configuration prior to running make install-config.
After this command, the directory /etc/nagios of Nagios 3.0 contains the three main configuration files: nagios.cfg, cgi.cfg, and resource.cfg. Object definitions end up in other files in the subdirectory objects:
user@linux:/etc/nagios$ tree[31]
.
|-- nagios.cfg
|-- cgi.cfg
|-- resource.cfg
'-- objects
 |-- templates.cfg
 |-- commands.cfg
 |-- contacts.cfg
 |-- timeperiods.cfg
 |-- localhost.cfg
 |-- windows.cfg
 |-- printer.cfg
 '-- switch.cfg
Nagios 2.10 uses fewer files; objects are defined only in the files localhost.cfg and commands.cfg:
user@linux:/etc/nagios$ tree
.
|-- nagios.cfg
|-- cgi.cfg
|-- resource.cfg
|-- localhost.cfg
'-- commands.cfg
All subsequent work should be carried out as the user nagios. If you are editing files as the superuser, you must ensure yourself that the contents of directory /etc/nagios afterwards belong to the user nagios again. With the exception of the file resource.cfg—this may contain passwords, which is why only the owner nagios should have the read permission set— all other files may be readable for all.
2.1 The Main Configuration File nagios.cfg
The central configuration takes place in nagios.cfg. Instead of storing all configuration options there, it makes links to other configuration files (with the exception of the CGI configuration).
Those who compile and install Nagios themselves have the advantage that at first they do not even need to adjust nagios.cfg, since all paths are already correctly set.[32] And that's as much as you need to do. Nevertheless one small modification is recommended, which helps to maintain a clear picture and considerably simplifies configuration where larger networks are involved.
The parameter concerned is cfg_file, which integrates files with object definitions (see 2.2 Objects—an Overview through 2.10 Defining a Time Period with timeperiod in page 59). The file nagios.cfg, included in the Nagios 3.0 package, contains the following entries:
nagios@linux:/etc/nagios$ fgrep cfg_file nagios.cfg
...
cfg_file=/etc/nagios/objects/commands.cfg
cfg_file=/etc/nagios/objects/contacts.cfg
cfg_file=/etc/nagios/objects/timeperiods.cfg
cfg_file=/etc/nagios/objects/templates.cfg
cfg_file=/etc/nagios/objects/localhost.cfg
...
Nagios 2.x gathers all example object files into just two configuration files:
nagios@linux:/etc/nagios$ fgrep cfg_file nagios.cfg
...
cfg_file=/etc/nagios/commands.cfg
cfg_file=/etc/nagios/localhost.cfg
...
As an alternative to cfg_file, you can also use the parameter cfg_dir: this requests that you specify the name of a directory from which Nagios should integrate all configuration files ending in .cfg (files with other extensions are simply ignored). This also works recursively; Nagios thus evaluates all *.cfg files from all subdirectories. With the parameter cfg_dir you therefore only need to specify a signal directory, instead of calling all configuration files, with cfg_file, individually. The only restriction: these must be configuration files that describe objects. The configuration files cgi.cfg and resource.cfg are excluded from this, which is why, like the main configuration file nagios.cfg, they remain in the main directory /etc/nagios.
Simple structure
Simple structure
For the object-specific configuration, it is best to create a directory called /etc/nagios/mysite, then remove all cfg_file directives in nagios.cfg (or comment them out with a # at the beginning of the line) and replace them with the following:
...
cfg_dir=/etc/nagios/mysite
...
The contents of the directory /etc/nagios will be version-independent and look like this:
nagios@linux:/etc/nagios$ tree
.
|-- nagios.cfg
|-- cgi.cfg
|-- resource.cfg
|-- htpasswd
'-- mysite
 |-- contactgroups.cfg
 |-- misccommands.cfg
 |-- contacts.cfg
 |-- timeperiods.cfg
 |-- checkcommands.cfg
 |-- hosts.cfg
 |-- services.cfg
 '-- hostgroups.cfg
The main directory /etc/nagios contains only three configuration files and the password file for protected Web access. Whether you collect all objects of the same type in one separate file, that is all host definitions in hosts.cfg, all services in services.cfg, and so on, or divide these into separate files, is left to the individual.
In this example, only the top directory mysite needs to be integrated with cfg_dir in nagios.cfg. This forms the basis for our initial configuration.
A larger location
For larger installations, you should divide the object definitions into individual files (creating a separate file with the host definition for each host, for instance) and group these in subdirectories according to sensible criteria, as in the following example:
...
'-- mysite
 |-- linux
 | |-- services
 | '-- hosts
 | |-- linux01.cfg
 | |-- linux02.cfg
 | '-- linux03.cfg
 |-- windows
 | |-- services
 | '-- hosts
 | |-- win03.cfg

 | '-- win09.cfg
 '-- router
 |-- services
 '-- hosts
 |-- edge01.cfg
 |-- edge02.cfg
 '-- backbone.cfg
This example arranges the objects according to the operating system (linux, windows, and router). Each of these system directories has two further subdirectories: hosts and services.
Each of the individual host objects are described in a separate file (for example linux01.cfg). These can easily be copied if you want to create other host objects with similar properties. You can copy services in a similar manner.
The other object definitions are placed either directly in the directory my-site, as in the simple structure in Simple structure, or you can create subdirectories, as described in more detail in the next section.
In nagios.cfg the object definitions are again bound with a single directive:
cfg_dir=/etc/nagios/mysite
Large installations with several different locations
For large installations, it is better to split up host and service objects according to location. Even for the remaining objects, we recommend that you split them up into individual files and group these into subdirectories:
|-- global
| |-- commands
| | |-- check-host-alive.cfg
| | |-- check_http.cfg
| | |-- check_icmp.cfg
...
| |-- contacts
| | |-- nagios.cfg
| |-- templates
| | |-- host_generic_t.cfg
| | |-- service_generic_t.cfg
| | |-- service_perfdata_t.cfg
...
| '-- timeperiods
'-- sites
 |-- foreignsite
 | |-- hosts
 | '-- services
 |-- mysite
 | |-- hosts
 | '-- services
 '-- othersite
 |-- hosts
 '--services
In this example, the directory global gathers together all the objects that that do not themselves define a check (that is, everything that is not a host or service object). This is where the subdirectories commands, contacts, templates, and timeperiods are located, each of which contain the files for the object categories of the same name. For many command objects, individual files are easier to handle than one huge text file.
If the contact objects are also stored in individual files, it is easy to disable a contact: the file extension is simply changed from .cfg to .cfx and then a reload is performed. Nagios ignores all files in object directories that do not end in .cfg. The overlying directories global and sites are bound into nagios.cfg:
cfg_dir=/etc/nagios/global
cfg_dir=/etc/nagios/sites
Setting the European date format
The date specifications in Nagios appear by default in the American format MM-DD -YYYY:
date_format=us
If you prefer something else, e.g., the European date format, it is recommended that you change the parameter date_format in nagios.cfg right from the start. The value iso8601 ensures that Nagios date specifications are displayed in the ISO or DIN format YYYY-MM-DD HH-.MM: SS. Table 2-1 lists the possible values for date_format.
The other parameters in nagios.cfg are described in A.1 The Main Configuration File nagios.cfg; in the original documentation these can be found at http://localhost/nagios/docs/configmain.html or /usr/local/nagios/share/docs/config-main.html."
Table 2-1. Possible date format

	Value
	Representation

	us
	MM-DD-YYYY HH:MM:SS

	euro
	DD-MM-YYYY HH:MM:SS

	iso8601
	YYYY-MM-DD HH:MM:SS

	strict-iso8601
	YYYY-MM-DDTHH:MM:SS

[31] http://mama.indstate.edu/users/ice/tree/
[32] If Nagios is from a distribution package, it is worth checking at least the path details. In a well-maintained distribution these will also be matched to the Nagios directories used there.

2.2 Objects—an Overview
A Nagios object describes a specific unit: a host, a service, a contact, or the groups to which each belongs. Even commands are defined as objects. This definition has not come about by chance. Nagios is also able to inherit characteristics (2.11 Templates from page 75).
Object definitions follow the following pattern:
define object-type {
 parameter value
 parameter value
 ...
}
Nagios has the following values for the object-type:
host
The host object describes one of the network nodes that are to be monitored. Nagios expects the IP address as a parameter here (or the Fully Qualified Domain Name) and the command that should define whether the host is alive (see 2.3 Defining the Machines to Be Monitored, with host, page 62). The host definition is re-referenced in the service definition.

hostgroup
Several hosts can be combined into a group (see 2.4 Grouping Computers Together with hostgroup in page 65). This simplifies configuration, since entire host groups instead of single hosts can be specified when defining services (the service will then exist for each member of the group). In addition, Nagios represents the hosts of a host group together in a table in the Web front end, which helps to increase clarity.

service
The individual services to be monitored are defined as service objects (2.5 Defining Services to Be Monitored with service, page 66). A service never exists independently of a host. So it is quite possible to have several services with the same name, as long as they belong to different hosts. The following code,

define service {
 name PING
 host_name linux01
 ...
}
define service {
 name PING
 host_name linux03
}

describes two services that both have the same service name but belong to different hosts. So in the language of Nagios, a service is always a host-service pair.

servicegroup
As it does with host groups, Nagios combines several services and represents these in the Web front end as a unit with its own table (see 2.6 Grouping Services Together with servicegroup, page 69). Service groups are not absolutely essential, but help to improve clarity, and are also used in reporting.

contact
A person who is to be informed by Nagios of specific events (see 2.7 Defining Addressees for Error Messages: contact, page 70). Nagios uses contact objects to show to a user via the Web front end only those things for which the user is listed as a contact person. In the basic setting users do not get to see hosts and services for which they are not responsible.

contactgroup
Notification of events in hosts and services takes place via the contact group (2.8 The Message Recipient: contactgroup, page 72). A direct link between the host/service and a contact person is not possible.

timeperiod
Describes a time period within which Nagios should inform contact groups (2.10 Defining a Time Period with timeperiod, page 74). Outside such a time slot, the system will not send any messages. The messaging chain can be fine-tuned via various time periods, depending on the host/service and contact/contact groups. More on this will be presented in 12.3 The Message Filter, page 267.

command
Nagios always calls external programs via command objects (2.9 When Nagios Needs to Do Something: The command Object, page 72). Apart from plugins, messaging programs also include e-mail or SMS messaging applications.

servicedependency
This object type describes dependences between services. If, for example, an application does not function without a database, a corresponding dependency object will ensure that Nagios will represent the failed database as the primary problem instead of just announcing the nonfunctioning of the application (see 12.6 Accounting for Dependencies between Hosts and Services, page 285).

serviceescalation
Used to define proper escalation management: if a service is not available after a specific time period, Nagios informs a further or different circle of people. This can also be configured on multiple levels in any way you want (see 12.5 Escalation Management).

hostdependency
Like servicedependency, but for hosts.

hostescalation
Like serviceescalation, but for hosts.

hostextinfo (Nagios 2.x)
Extended Host Information objects are optional and define a specific graphic and/or URL, which Nagios additionally integrates into its graphic output. The URL can refer to a Web page that provides additional information on the host (see 16.4 Additional Information on Hosts and Services, page 362).

hostextinfo This object is deprecated in Nagios 3.0, but it is still available. Nagios 3.0 integrated the object parameters into the host definition.

serviceextinfo (Nagios 2.x)
Extended Service Information, like Extended Host Information.

Not all object types are absolutely essential; especially at the beginning. You easily can do without the *dependency, *escalation, and *extinfo objects, as well as the servicegroup. Chapter 12 looks at escalation and dependencies in detail. hostextinfo and serviceextinfo are used to provide a "more colorful" graphical representation, but they are not at all necessary for running Nagios. 16.4 Additional Information on Hosts and Services from page 362 looks at this in more detail. The original documentation also provides more information.[33]
Notes on the object examples below
Notes on the object examples below
Although the following chapters describe individual object types in detail, only the mandatory parameters and those that are absolutely essential for meaningful operation are described there. Mandatory parameters here are always printed in bold type. The first (comment) line in each example lists the file in which the recorded object definition is to be stored. For the parameters marked with (*), there are some differences between Nagios 2.x and Nagios 3.0, each of which will be explained in more depth in the text.
When you first start using Nagios, it is recommended that you restrict yourself to a minimal configuration with only one or two objects per object type, in order to keep potential sources of error to a minimum and to obtain a running system as quickly as possible. Afterwards extensions can be implemented very simply and quickly, especially if you incorporate the tips mentioned in 2.11 Templates in templates (page 75).
Time details in general refer to time units. A time unit consists of 60 seconds by default. It can be set to a different value in the configuration file nagios.cfg, using the parameter interval_length. You should really change this parameter only if you know exactly what you are doing.

[33] http://localhost/nagios/docs/objectdefinitions.html#hostextinfo or #serviceextinfo (Nagios 3.0)
http://localhost/nagios/docs/xodtemplate.html#hostextinfo or #ser-viceextinfo (Nagios 2.x); the files can be found locally in /usr/local/nagios/share/docs/.

2.3 Defining the Machines to Be Monitored, with host
The host object is the central command post on which all host and service checks are based. It defines the machine to be monitored. The parameters printed in bold must be specified in all cases:
-- /etc/nagios/mysite/hosts.cfg
define host{
 host_name linux01
 hostgroups linux-servers
 alias(*) Linux File Server
 address 192.168.1.9
 check_command check-host-alive
 max_check_attempts 3
 check_period 24×7
 contact_groups localadmins
 notification_interval 120
 notification_period 24×7
 notification_options d,u,r,f,s(*)
 parents router01
}
host_name
This parameter specifies the host name with which Nagios addresses the machine in services, host groups, and other objects. Only the special characters - and _ are allowed.

hostgroups
This parameter allocates the host to a host group object, which must already be defined (2.4 Grouping Computers Together with hostgroup, page 65). A host group in the Web interface combines several hosts into a group (see Figure 16-10 in page 334). The second possibility of assigning a host to a host group, compatible with version 1.x, uses the members parameter in defining the host group itself. The two methods can also be combined.

alias
This parameter contains a short description of the host, which Nagios displays at various locations as additional information. Ordinary text is allowed here. The parameter is no longer obligatory from Nagios 3.0. If it is missing, the value from host_name is used.

address
This specifies the IP address or the Fully Qualified Domain Name (FQDN) of the computer. If it is possible (i.e., for static IP addresses), you should use an IP address, since the resolution of a name to an IP address is always dependent on DNS working, which is not infallible.

check_command
This specifies the command with which Nagios checks, if necessary, to see whether the host is reachable. The parameter is optional. If it is omitted, Nagios will never carry out a host check! This can be useful for network components that are frequently switched off (for example, print servers).

The command usually used for check_command is called check-host -alive, which is already predefined in the supplied file, checkcom-mands.cfg (see 2.9 When Nagios Needs to Do Something: The command Object, page 72). This makes use of either the plugin check_ping or the more modern check_icmp. Both plugins check the reachability of the host via the ICMP packets ICMP Echo Request and Echo Reply.

max_check_attempts
This parameter determines how often Nagios should try to reach the computer if the first test has gone wrong. The value 3 in the example means that the test is repeated up to three times if it returns anything other than OK in the first test. As long as there are still repeat tests to be made, Nagios refers to this as a soft state. If the final test has been made, the system categorizes the state as hard. Nagios notifies the system administrator exclusively of hard states, and in the example, sends messages only if the third test also ends with an error or warning.

check_period
This specifies the time period in which the host should be monitored. Really, only "round the clock" makes sense—that is, 24×7. A timeperiod object is involved here, the definition of which is described in more detail in 2.10 Defining a Time Period with timeperiod in page 74. It only makes sense to use a specification other than 24×7 if you want to explicitly suppress the host check at certain times.

contact_groups
This specifies the receiver of messages which Nagios sends with respect to the hosts defined here, that is localadmin. 2.8 The Message Recipient: contactgroup explains this more fully in page 72.

notification_interval
This specifies at what intervals Nagios should repeat notification of the continued existence of the state. 120 time units normally mean one message every 120 minutes, provided the error state continues.

notification_period
This specifies at what time interval a message should be sent. A time period different from 24×7 could certainly be useful here. It is important to understand the difference here with check_period: if check_period excludes time periods, Nagios cannot even determine whether there is an error or not. But if the host is monitored round-the-clock and only the notification period is restricted by the parameter notification_period, Nagios will certainly log errors and also display them in the Web front end and in log evaluations. Outside the notification_period the system does not send any messages. A more detailed description of the notification system is given in 12.3 The Message Filter, page 267.

notification_options
This parameter describes the states about which Nagios should provide notification when they occur. Nagios knows the following states for computers:

	d

	down

	u

	unreachable (host is not reachable because a network node between Nagios and a host has failed and the actual state of the host cannot be determined)

	r

	recovery (OK state after an error)

	f

	flapping (state changes very quickly; more on this in Appendix B from page 611).

	s

	scheduled downtime (Nagios 3.0 provides information here on the start and end of a planned maintenance period, or in case a planned maintenance period is canceled. This option is not available for Nagios 2.x.)

By specifying d, u, the system will send messages if the host is not on the network or not reachable over the network, but not if it can be reached again after an error state (recovery). If n (none) is used as the value, Nagios will normally not give any notification.

The form in which Nagios sends out a message depends on how the contact is defined. Irrespective of when you want to be notified, the Web interface always shows the current state, even if Nagios does not send a message, because the time period does not match or the system is still repeating the tests (the so-called soft state).

parents
This allows the physical topology of the network to be taken into account. Here the router or the network component is given by which the host is reachable if it is not in direct contact in the same network segment. This can also be a switch between the Nagios server and the host. If Nagios does not reach the host because all parents (separated by commas) are down, then Nagios categorizes it as UNREACHABLE, but not as DOWN.

Further information is provided by the Nagios 3.0 online help under http://localhost/nagios/docs//objectdefinitions.html#host.[34] In Nagios 2.x the file is called xodtemplate.html and can be found in the same directory. The differences between Nagios 2.x and Nagios 3.0 are described in H.1.1 The host object, page 678.

[34] Locally in /usr/local/nagios/share/docs/objectdefinitions.html.

2.4 Grouping Computers Together with hostgroup
A host group contains one or more computers so that they can be represented in the Web interface together (see Figure 16-10 in page 334)—in addition, certain objects (e.g., services) can be applied to an entire group of computers instead of having to define them individually for each host.
The hostgroup_name parameter specifies a unique name for the group, alias accepts a short description. The members parameter lists all hosts names belonging to the group, separated by commas:
-- /etc/nagios/mysite/hostgroups.cfg
define hostgroup{
 hostgroup_name linux-servers
 alias Linux Servers
 members linux01,linux02
 hostgroup_members(*) hostgroup1,hostgroup2
}
If you specify to which group they belong in the host definition for individual member computers, with the parameter hostgroups (2.3 Defining the Machines to Be Monitored, with host), the members entry may be omitted from version 2.0. This means that you no longer have two search through all group definitions if you just want to delete a single host. The combined use—of members in the hostgroup object and at the same time, of hostgroups in the host object—is equally possible. A new host group in Nagios 3.0 is hostgroup_members, with which you can specify other host groups as members, and thus form hierarchies of host groups. This option is not available in Nagios 2.0.

2.5 Defining Services to Be Monitored with service
A service in Nagios always consists of the combination of a host and a service name. This combination must be unique. Service names, on the other hand, may occur many times, as long as they are combined with different hosts.
The simplest service consists of a simple ping, which tests whether the relevant host is reachable, and which registers the response time and any packet loss that may occur:
-- /etc/nagios/mysite/services.cfg
define service{
 host_name linux01
 service_description PING
 check_command check_ping!100.0,20%!500.0,60%
 max_check_attempts 3
 normal_check_interval(*) 5
 retry_check_interval(*) 1
 check_period 24×7
 notification_interval 120
 notification_period(*) 24×7
 notification_options w, u, c, r, f, s(*)
 contact_groups(*) localadmins
}
In contrast to a host check, which Nagios carries out only if it cannot reach any other service of the host, a ping service is carried out at regular intervals. Problems in the network can be detected relatively simply through response times and packet loss rates. The host check is less suitable for this purpose.
host_name
This refers to the name defined in the host object. Nagios also obtains the IP address of the computer via this. Instead of a single host name, you can also enter a comma-separated list of multiple hosts. As an alternative to host_name, it is also possible to use the parameter hostgroup_name to specify an entire host group instead of individual hosts. The service is then considered to be defined for each of the individual computers groups together in this way. Whether you make use of this optimization, or allocate your own service definitions to each computer individually, makes no difference to Nagios.

service_description
This parameter defines the actual name of the service. Spaces, colons, and dashes may be included in the name. Nagios always addresses a service as a combination of host name (here: linux01) and service description (PING). This must be unique.

servicegroups
assigns the service to a service group object that must already be defined (2.6 Grouping Services Together with servicegroup, page 69).

check_command
This defines the command with which Nagios tests the service for functionality Arguments are passed on to the actual command, ie. check_ping, separated by exclamation marks. The definition of the check_ping command, predefined in the example files, is explained in 2.9 When Nagios Needs to Do Something: The command Object in page 72.

In the example, the values for the warning limit (100 ms, 20%) and for the CRITICAL status (500 ms, 60%) are determined. You could compare this to a traffic light: the state OK (green) occurs if the response time remains under the warning limit of 100 milliseconds, and if none or less than 20 percent of packets have been lost. The WARNING state (yellow) occurs if the packet loss or response time lies above the defined warning limit, but still beneath the critical limit. Above the critical limit, Nagios issues a CRITICAL state (red). The return value of the plugin is described at the beginning of Chapter 6 (page 6), the underlying plugin check_icmp is introduced in detail in 6.2 Reachability Test with Ping from page 108.

max_check_attempts
This specifies how often Nagios should repeat a test in order to verify and definitively accept an error state which has been discovered (or also the recovered functionality), that is, to recognize it as a hard state. In the transitional phase (for example from OK to CRITICAL) we speak of a soft state. Basic distinctions between soft and hard are only made by the Nagios notification system, which is why the two states are described in more detail in the context of this system (Chapter 12, page 265). The difference has no influence in the representation in the Web interface.

normal_check_interval
This specifies at what interval Nagios should test the service when the system is in a stable condition—this can equally be an OK or an error state. In the example this is five time units, which is normally five minutes. In Nagios 3.0 the parameter may also be written as check_interval; as for the host definition, both forms are equivalent.

retry_check_interval
This describes the time interval between two tests when the state is in the process of changing (for example, from OK to WARNING), that is, when there is a soft state. In Nagios 3.0 the parameter may also be written as retry_interval; both forms are equivalent.

As soon as Nagios has performed the number of tests specified in max_check_attempts, it checks the service again at intervals of normal_check_interval.

check_period
This describes the time period in which the service is to be monitored. The entry represents a timeperiod object, the definition of which is described in more detail in 2.10 Defining a Time Period with timeperiod from page 74. Here you should enter 24×7 for "round the clock" unless you want to explicitly stop the test from running at specific times (perhaps because of a scheduled maintenance slot). If the notification is to be prevented only at specific times, it is better to use the option notification_period or other filters of the Nagios notification system (see Chapter 12, page 265).

notification_interval
This determines at what regular intervals Nagios repeats reports on error states. In the example, the system does this every 120 time units (normally minutes), as long as the error state continues. A value of 0 causes Nagios to announce the current state only once. Beginning with Nagios 3.0, notification_interval is no longer an obligatory parameter. If it is missing, the value is taken from the accompanying host definition.

notification_period
This describes the time period within which a notification should take place. This again involves a timeperiod object (see 2.10 Defining a Time Period with timeperiod). Here in the example, 24×7 is used, so notification is sent round the clock. A more detailed discussion of the notification_period parameter can be found in 12.3 The Message Filter from page 267. Beginning with Nagios 3.0 this parameter is optional. If it is missing, the value is taken from the accompanying host definition.

notification_options
This determines which error states Nagios should report. Possible values which can be used here are the same states already described for host objects, i.e., c (critical), w (warning), u (unknown), r (recovered), f (flapping), and (from Nagios 3.0) s (planned maintenance interval). Specifying c, r only informs the system when a service is in a CRITICAL state and if it subsequently recovers (RECOVERY).

If you use n (none) as the value, Nagios will normally not send any notification. The Web interface nevertheless shows the current states.

contact_groups
Finally, this parameter defines the recipient group whose members should receive the notifications. Several groups can be entered as a comma-separated list. Beginning with Nagios 3.0 this parameter can be omitted. Then the value is taken from the accompanying host definition.

Further information can be found in the Nagios 3.0 online help at http://localhost/nagios/docs/objectdefinitions.html#service.[35] For version 2.x the file is called xodtemplate.html. The differences between Nagios 2.x and Nagios 3.0 are described in H.1.2 The service object from page 680.

[35] The corresponding file is located after installation in the directory /usr/local/nagios/share/docs/.

2.6 Grouping Services Together with servicegroup
Service groups, like host groups, combine several services into a group, so that they can be represented together in the Web front end. This increases clarity and simplifies certain evaluations, but it is optional, and is not recommended at the beginning, in order to keep configuration simple.
-- /etc/nagios/mysite/servicegroups.cfg
define servicegroup{
 servicegroup_name all-ping
 alias All Pings
 members linux01, PING, linux02, PING
 servicegroup_members(*) servicegroup1, servicegroup2
}
servicegroup_name and alias have the same meanings as for the host group. It should be noted that the syntax is the same as for the members entry. Because a service in Nagios always consists of the combination of host and service names, both must always be listed in pairs. The computer comes first, and then the service:
members hostl,servicel,host2,service2, ...
The members details can be omitted if the servicegroups parameter is used in the service definition (2.5 Defining Services to Be Monitored with service). If you want, you can use the two possibilities in combination. As for the host groups, hierarchies can be formed from service groups from Nagios 3.0, using the parameter service-group_members.

2.7 Defining Addressees for Error Messages: contact
A contact is basically a person to whom a message addressed via a contact group is sent:
-- /etc/nagios/mysite/contacts.cfg
define contact{
 contact_name nagios
 alias Nagios Admin
 host_notification_period 24×7
 service_notification_period 24×7
 service_notification_options w, u, c, r
 host_notification_options d, u, r
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email nagios-admin@localhost
 can_submit_commands(*) 1
}
The contact also plays a role during authentication: a user who logs in at the Web front end only gets to see the hosts and services for which that user is entered as the contact. The user for logging in to the Web interface must therefore be identical with the value of contact_name specified here. The first time it is used, the user nagios is sufficient.
contact_name
This parameter defines the user name. It must match the corresponding user name in the password file htpasswd.

alias
This parameter describes the contact briefly. Spaces are allowed here.

host_notification_period
This defines the time period during which messages on the reachability of a computer can be sent. 12.3 The Message Filter (page 267) shows how the time period details can be sensibly combined in the different object types. At the beginning, the value 24×7 (that is: always) is certainly not a bad option.

service_notification_period
This defines the time period in which Nagios sends notifications to the relevant user service. The entry takes effect as a filter: the generated message is simply discarded here if it is sent outside the specified time period. If no further message follows, the contact remains uninformed. You must therefore think about combining individual time periods in various different definitions. Dependencies are described extensively in 12.3 The Message Filter.

host_notification_options
This defines what types of host messages the user should receive. The same options are used here as for the host parameter notification_options (2.3 Defining the Machines to Be Monitored, with host).

service_notification_options
This parameter describes what types of service messages are received by the contact. The same five values are involved as for the notification_options parameter for service and host objects.

service_notification_commands
This parameter defines which commands (one or more) take charge of notification. They must be defined as the command object type (see 2.9 When Nagios Needs to Do Something: The command Object); basically any external programs can be integrated.

host_notification_commands
Like the service_notification_commands this parameter specifies which commands are to be carried out to send the notification, although here it concerns the reachability of computers.

email
This specifies one or more e-mail addresses (separated by commas) to which a message should be sent. The notification command can evaluate this value (one example of this is the command notify-by-email[36]).

can_submit_commands (Nagios 3.0)
This controls whether the contact may execute commands via the Web interface. The value 0 forbids him from doing this. For Nagios 2.x, in general any contact may run commands via the Web interface (see 16.2.3 Interface for external commands: cmd.cgi, page 343). Beginning with Nagios 3.0, this parameter now also allows the definition of contacts with read-only permission.

Further information can be found in the Nagios 3.0 online help at http://localhost/nagios/docs/objectdefinitions.html#contact. In Nagios 2.x the file is called xodtemplate.html. The differences between Nagios 2.x and Nagios 3.0 are described in H.1.4 The contact object, page 681.

[36] see Table 12-1 in page 277

2.8 The Message Recipient: contactgroup
The contactgroup serves as the interface between the notification system and the individual contacts. Nagios never addresses individual contacts directly in various object definitions, but always goes through the contact group.
Here Nagios also expects a name (contactgroup_name) and a comment (alias), which reveals to visitors of the Web site what the purpose of the group is. For members (members) of the group, you can enter an individual contact or a comma-separated list of several contacts:
-- /etc/nagios/mysite/contactgroups.cfg
define contactgroup{
 contactgroup_name localadmins
 alias Local Site Administrators
 members nagios
 contactgroup_members(*) contactgroup1,contactgroup2
}
The additional parameter contactgroup_members allows Nagios 3.0 to include further contact groups as members. In Nagios 2.x this parameter is not available.

2.9 When Nagios Needs to Do Something: The command Object
Everything that Nagios does is defined in command objects. In the example file supplied, checkcommands.cfg defines a broad range of commands which only need to be included. To do this, you just copy the file to the subdirectory mysite:[37]
nagios@linux:/etc/nagios$ cp objects/checkcommands.cfg \ mysite/checkcommands.cfg
The existing command check_ping illustrates the definition of this object type:
-- /etc/nagios/mysite/checkcommands.cfg
...
define command{
 command_name check_ping
 command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$
-p 5
}
...
check_ping is the name by which the command will later be called when defining a service. commard_line describes the command to be executed. Not only is the old plugin check_ping used here, but so is the more efficient check_icmp. The differences between the two are explained in more detail in 6.2 Reachability Test with Ping from page 108, but they use the same parameters to a large extent.
The identifiers used here, surrounded by dollar signs, are macros. Nagios recognizes three different types of macros: $USERx$ macros (x may take on values between 1 and 32) define the file resource.cfg. The macro $USER1$, which contains the path to the plugin directory, belongs to this.
The second group of macros are arguments which can be passed on when a command is called. These include $ARG1$ and $ARG2$.
The third group defined by Nagios includes the macro $HOSTADDRESS$, which references the IP address of the host in the host definition (that is, the parameter address). This type of macro is documented in the online help at http://localhost/nagios/docs/macros.html.
If you call the service linux01, PING, defined in 2.4 Grouping Computers Together with hostgroup, as a check_command
check_ping!100.0,20%!500.0,60%
then 100.0,20% will appear in $ARG1$, and 500.0,60% in $ARG2$. To separate the command and the arguments to be passed on, the exclamation mark is used.
In theory, any programs at all can be started via the command_line, but Nagios expects a certain type of behavior here, particularly where the return value is concerned. For this reason, only Nagios plugins should be used (see Chapter 6 to Chapter 9).

[37] In Nagios 2.0 the example file lies directly in the directory /etc/nagios.

2.10 Defining a Time Period with timeperiod
timeperiod objects describe time periods in which Nagios generates and/ or sends notifications. The included example files (Nagios 3.0: objects/timeperiods.cfg; Nagios 2.x: localhost.cfg) contain a number of definitions that can simply be copied to your own timeperiods.cfg file.
In this, the definition of 24×7 is stated as "Sundays to Saturdays, from 0 to 24 hours in each case:"
-- /etc/nagios/mysite/timeperiods.cfg
define timeperiod{
 timeperiod_name 24×7
 alias 24 Hours A Day, 7 Days A Week
 Sunday 00:00-24:00
 Monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 Thursday 00:00-24:00
 Friday 00:00-24:00
 Saturday 00:00-24:00
}
The times of day on individual weekdays can also be "cobbled together" from time periods, separated by a comma:
define timeperiod{
 ...
 Monday 00:00-09:00,12:00-13:00,17:00-24:00
 ...
}
If a day specification is omitted completely, the defined time period will not include this day in its entirety.
Nagios 3.0 allows periods for individual calendar days to be defined:
2007-12-24 08:00-12:00
may 1 00:00-24:00
monday 2 may 00:00-24:00
monday 3 00:00-24:00
...
2007-12-24 - 2008-01-08 / 2 00:00-24:00
The first line names a fixed calendar day in the ISO format, the second line describes every 1st May. The details in the third line refer to the second Monday in May, and those of the fourth line, to the third Monday of each month. The details can also be combined, in the form from - to. A subsequent / acts as a separator: the sixth line describes every second day (/ 2) in the period from 24.12. 2007 to 8.1. 2008.
H.1.5 Time definitions, page 682 is also devoted to the extended format of Nagios 3.0. The complete documentation can be found in the Nagios 3.0 online help at http://localhost/nagios/docs/objectdefinitions.html#contact. In Nagios 2.x the corresponding file is called xodtemplate.html.

2.11 Templates
Nagios categorizes definitions as objects for a very good reason: their features can namely be inherited by other objects—a feature that can save a lot of time otherwise spent typing. You can define a so-called template and pass this on to other objects as a basis from which you only need to describe those details that are different.
This is best illustrated by an example (the parameters that are required for the use of templates are printed in bold):
-- /etc/nagios/mysite/hosts.cfg
define host{
 name Generic-Host
 register 0

 check_command check-host-alive
 max_check_attempts 3
 check_period 24×7
 contact_groups localadmins
 notification_interval 120
 notification_period 24×7
 notification_options d, u, r, f
}
With name, the template is first given a name so that it can be referenced later on. The following entry, register 0, prevents Nagios from trying to treat this template as a real host. In the example, the entries for the genuine host object are not sufficient; consequently Nagios would break off when reading the configuration file, with the error message that parameters are missing that are obligatory for such a definition, for example:
Error: Host name is NULL
All the other parameters involve settings that are to apply to all definitions dependent on Generic-Host.
In the actual host definition—in the following example for linux03 and linux04—the parameter use references the template and thus takes over the preset values:
-- /etc/nagios/mysite/hosts.cfg
define host{
 host_name linux03
 use Generic-Host
 alias Linux File Server
 address 192.168.0.1
}
define host{
 host_name linux04
 use Generic-Host
 alias Linux Print Server
 address 192.168.0.2
}
In this way you only need to complete those entries that vary in any way between the two hosts.
But parameters may also appear in host definitions that have already been defined by the template. In this case the definition at the host has priority it overwrites the value from the template.
Templates created in this way can generally be used for all object types. Further information on their use can be found in the Nagios 3.0 online help at http://localhost/nagios/docs//objectinheritance.html.[38] In Nagios 2.x the file is called templaterecursion.html. The extended possibilities of Nagios 3.0, which only begin to play a role in more complex setups, are described by H.1.8 Inheritance from page 684.

[38] Locally in /usr/local/nagios/share/docs//objectinheritance.html.

2.12 Configuration Aids for Those Too Lazy to Type
2.12.1 Defining services for several computers
You can simplify things a lot in the service definition by defining a service for several hosts, or even host groups, at the same time:
-- /etc/nagios/mysite/services.cfg
define service{
 host_name linux01,linux02,linux04,...
 service_description PING
 ...
}
Specifying several hosts, separated by commas, ensures that Nagios defines multiple services in parallel. You can go one step further by specifying the * character instead of individual computer aliases. This will assign this service to all hosts.
A third possibility is an allocation in parallel via host groups:
-- /etc/nagios/mysite/services.cfg
define service{
 hostgroup_name linux-servers,windows-servers
 service_description PING
 ...
}
In this case the parameter hostgroup_name is used instead of the parameter host_name.
2.12.2 One host group for all computers
The quickest way to describe a host group containing all defined computers is with the wild card *:
-- /etc/nagios/mysite/hostgroups.cfg
define hostgroup{
 hostgroup_name all-hosts
 members *
 ...
}
2.12.3 Other configuration aids
In practice, the definition of services covering multiple hosts, described in 2.11 Templates, is by far the most important. But there are other configuration aids based on the escalation and dependency objects, introduced in Informing different admins at different times (see 12.5 Escalation Management in page 282 and 12.6 Accounting for Dependencies between Hosts and Services12.6 in 285). There you can also use hostgroup_name instead of host_name (a list of host groups) or servicegroup_name instead of service_description. In addition you may set the value * for host_name and service_description, which covers all hosts or services.

2.13 CGI Configuration in cgi.cfg
In order for the Web front end to work correctly, Nagios needs the configuration file cgi.cfg. Nagios' example file can initially be taken over one-to-one, since the paths contained in it were set correctly during installation:
nagios@linux:/etc/nagios$ cp sample/cgi.cfg-sample ./cgi.cfg
Important: the file cgi.cfg must be located in the same directory as the file nagios.cfg, because the CGI programs have been compiled in this path permanently. If cgi.cfg is located in a different directory, the Web server must also be given an environment variable with the correct path, called NAGIOS_CGI_CONFIG. How this is set in the case of Apache is described in the corresponding online documentation.[39]
Out of the box, several parameters are enabled in the CGI configuration file. What these are is revealed by the following egrep command, which excludes comments and empty lines:
nagios@linux:/etc/nagios$ egrep -v '^$|^#' cgi.cfg-sample | less
main_config_file=/etc/nagios/nagios.cfg
physical_html_path=/usr/local/nagios/share
url_html_path=/nagios
show_context_help=0
use_authentication=1
...
main_config_file
This parameter specifies the main configuration file.

physical_html_path
This specifies the absolute path in the file tree to the directory in which the HTML documents—including online documentation, images, and CSS stylesheets—are located.

url_html_path
This also describes the path to the Nagios HTML documents, but from the perspective of the Web server, not of the operating system.

show_context_help
This option provides—as long as it is switched on (value 1)—a context-dependent help if you move the mouse in the Web interface over individual links or buttons.

use_authentication
This option should always be switched on (value 1). Nagios will then only allow access to authenticated users. The authentication itself is configured in a .htaccess file in the CGI directory (see 1.5 Configuration of the Web Interface in page 47). If this file is missing, and if use_authentication=1, then the CGI programs will refuse to work.

default_statusmap_layout and default_statuswrl_layout
These two layout parameters describe forms of representation in the graphical illustration of network dependencies. Possible values are described in A.2 CGI Configuration in cgi.cfg in page 608.

refresh_rate
This specifies the timespan in seconds after which the browser is instructed to reload data from the Web server. In this way the display in the browser is always up-to-date.

authorized_for_all_services and authorized_for_all_hosts
In order for a specific user to be able to see all computers and services in the Web interface right from the beginning, without taking account of the allocation of hosts and services to the correct contact group, you should also activate the following two parameters in the file cgi.cfg:

authorized_for_all_services=nagios
authorized_for_all_hosts=nagios

The Web user (and contact) nagios is now able to see all hosts and all services in the Web interface, even if he is not entered as the contact responsible for all hosts or services.

A complete list of all parameters can be found in A.2 CGI Configuration in cgi.cfg in page 606.

[39] http://httpd.apache.org/docs-2.0/env.html

2.14 The Resources File resource.cfg
Nagios expects to find the definition of macros, concerning how they are used to create command objects (2.9 When Nagios Needs to Do Something: The command Object from page 72), in the resources file resource.cfg. This can also be use as supplied.
The location where Nagios should search for this file is defined by the resource.cfg parameter in the main configuration file nagios.cfg. It makes sense here to use the same directory in which nagios.cfg is also located.
In its "factory settings", resource.cfg defines only the $USER1$ macro, which contains the path to the plugins:
$USER1$=/usr/local/nagios/libexec
In total, Nagios has provisions for 32 freely definable $USERx$ macros, where x can be from 1 to 32. These can be very useful in combination with passwords, for example: a password is defined via such a macro in the file resource.cfg, which may be read only by the user nagios. The defined macro is used in the actual service definitions, thus hiding the password from view of curious onlookers.

Chapter 3. Startup
Once Nagios and the plugins are installed, Apache is set up for the Web interface, and a minimal configuration is created as previously described, operation of the system can get under way. If you have not already done so, it is recommended that you first spend a bit of time on the test for the check_icmp plugin, described in 1.4 Installing and Testing Plugins (page 43), to check the initial configuration.
3.1 Checking the Configuration
The nagios program, which normally runs as a daemon and continually collects data, can also be used to test the configuration:
nagios@linux:~$ /usr/local/nagios/bin/nagios -v /etc/nagios/nagios.cfg
Nagios 3.0rc1
Copyright (c) 1999-2007 Ethan Galstad (http://www.nagios.org)
Last Modified: 12-17-2007
License: GPL

Reading configuration data...

Running pre-flight check on configuration data...

Checking services...
 Checked 2092 services.
Checking hosts...
Warning: Host 'eli-sw01' has no services associated with it!
 Checked 183 hosts.
Checking host groups...
 Checked 55 host groups.
Checking service groups...
 Checked 34 service groups.
Checking contacts...
 Checked 59 contacts.
Checking contact groups...
 Checked 7 contact groups.
Checking service escalations...
 Checked 0 service escalations.
Checking service dependencies...
 Checked 24 service dependencies.
Checking host escalations...
 Checked 0 host escalations.
Checking host dependencies...
 Checked 0 host dependencies.
Checking service groups...
 Checked 34 service groups.
Checking contacts...
 Checked 59 contacts.
Checking contact groups...
 Checked 7 contact groups.
Checking service escalations...
 Checked 0 service escalations.
Checking service dependencies...
 Checked 24 service dependencies.
Checking host escalations...
 Checked 0 host escalations.
Checking host dependencies...
 Checked 0 host dependencies.
Checking commands...
 Checked 105 commands.
Checking time periods...
 Checked 6 time periods.
Checking for circular paths between hosts...
Checking for circular host and service dependencies...
Checking global event handlers...
Checking obsessive compulsive processor commands...
Checking misc settings...
Total Warnings: 1
Total Errors: 0

Things look okay - No serious problems were detected during the pre-flig
ht check
Although warnings displayed here can in principle be ignored, this is not always what the inventor had in mind: perhaps you made a mistake in the configuration, and Nagios is ignoring a specific object, which you would actually like to use.
If you have not defined any service for a host, for instance, Nagios will issue a warning, as in the example above for eli-sw01. It is therefore recommended to define a "PING" service for every host, although this is not absolutely essential. Even if the same plugin, check_icmp, is used here as with the host check, this is not the same thing. The host check is satisfied with a single response packet—after all, it only wants to find out if the host "is alive". As a service check, check_icmp registers packet run times and loss rates, which can be used to draw conclusions, if necessary, concerning existing problems with a network card.
In contrast to warnings, genuine errors must be eliminated, because Nagios will usually not start if the parser finds an error, as in the following example:
Error: Could not find any host matching 'linux03'
Error: Could not expand hostgroups and/or hosts specified in service
(config file '/etc/nagios/mysite/services.cfg', starting on line 0)

***> One or more problems was encountered while processing the config files...
Here the configuration mistakenly contains a host called linux03, for which there is no definition. If you read through the error message carefully, you will quickly realize that the error can be found in the file /etc/nagios/mysite/services.cfg.
In the definition of independencies (host and service dependencies; see 12.6 Accounting for Dependencies between Hosts and Services, page 285) there is a fundamental risk that circular dependencies could be specified by mistake. Because Nagios cannot automatically resolve such dependencies, this is also checked before the start, and if necessary, an error is displayed.
When using the parents parameter, it is also possible that two hosts may inadvertently serve mutually as "parents;" Nagios also tests this.

3.2 Getting Monitoring Started
During the Nagios installation, the command
linux:src/nagios # make install-init
...
saves a startup script in the directory containing the boot-up scripts, usually /etc/init.d.
3.2.1 Manual start
If the configuration test ran without error, Nagios on Debian, Ubuntu, and OpenSuSE is first started manually with this script:
linux:~ # /etc/init.d/nagios start
Fedora provides its own startup mechanism:
linux:~ # service nagios start
If everything runs smoothly here (which can be checked by running the Web interface—see 3.3 Overview of the Web Interface in page 85), you only need to make sure that the script is executed at system start. The required steps, depending on the distribution, are described in 1.3 Starting Nagios Automatically in page 43.
3.2.2 Making configuration changes come into effect
If configuration changes are made, it is not required, and not even recommended, that you restart Nagios each time. Instead, you just perform a reload:
linux:~ # /etc/init.d/nagios reload
This causes Nagios to reread the configuration, end tests for hosts and services that no longer exist, and integrate new computers and services into the test. However, with each reload there is a renewed scheduling of checks, meaning that Nagios plans to carry out all tests afresh.
To prevent all tests from being started simultaneously at bootup, Nagios performs a so-called spreading. Here the server spreads the start times of the tests over a configurable period.[40] Therefore, for a large number of services, it can take a while before Nagios continues the test for a specific service. For this reason you should never run reloads at short intervals: in the worst case, Nagios will not manage to perform some checks in the intervening period and will perform them only some time after the most recent reload.
Before being reloaded, the configuration is tested to eliminate any existing errors, as shown in 3.1 Checking the Configuration.

[40] The relevant configuration parameters are called max_host_check_spread and max_service_check_spread, see A.1 The Main Configuration File nagios.cfg, page 599.

3.3 Overview of the Web Interface
If you call the URL http://nagios-server/nagios in the browser when the Nagios daemon is running, you will be taken to the welcome screen shown in Figure 3-1.

Figure 3-1. The start screen
The so-called "tactical overview" (Tactical Overview), which can be reached via the first monitoring link in the left menu bar, is shown in Figure 3-2. It summarizes the status of all tested systems.
Considerably more interesting in practice, however, is the display of the menu item Service Problems (Figure 3-3). It documents the services that are currently causing problems, those that are not in the OK status, in the very sense for which Nagios was conceived: to inform the administrator precisely of any problems.

Figure 3-2. "Tactical" overview of all systems and services to be monitored

Figure 3-3. Nagios: summary of all service problems
The first column names the host involved. If this has a gray background, Nagios can reach the computer in principle. If the host is "down" this can be seen by the red background. For services, red stands for CRITICAL and yellow for WARNING.
The second column provides the service name, the third column the status again, in plain text. Column four specifies the time of the last check. Column five is interesting—it shows how long the current status has been going on.
The sixth column with the heading Attempt reveals how often Nagios has already performed the test (unsuccessfully): 3/3 means that the error status has been confirmed for the third time in succession, but that the test is only performed three times if there is an error (parameter max_check_attempts, see 2.3 Defining the Machines to Be Monitored, with host).
Finally, the last column passes on the information from the plugin to the administrator, to whom it describes the current status in more detail. The above line in Figure 3-3 warns that only 21 percent of disk space is still available on drive D (service DISK_D) of the Windows server ELISAN01.

Figure 3-4. An overview of all hosts (extract)
The Host Detail (Figure 3-4) and Service Detail overviews provide an overview of all hosts and services. In practice you will be looking more precisely for information, either via a single host or on a host group or service group. The name in question is entered in the Show Host search field. Figure 3-5 shows this using the example of the elix01 host.
Alternatively you can search for the names of host and service groups. An interesting variation here is to have a status grid output shown via the link Hostgroup Grid, which displays an overview of all hosts and their corresponding services, together with the status of these (Figure 3-6). Through the color of the service (green/yellow/red), you can quickly see at a glance whether there are problems in the service group or host group that you are viewing.

Figure 3-5. Services to the host elix01 (extract)

Figure 3-6. The host group eliLINUX in the grid representation

Part II. In More Detail...

Chapter 4. Nagios Basics
The fact that a host can be reached, in itself, has little meaning if no service is running on it on which somebody or something relies. Accordingly, everything in Nagios revolves around service checks. After all, no service can run without a host. If the host computer fails, it cannot provide the desired service. Things get slightly more complicated if, for example, a router that lies between users and the system providing services is brought into play. If this fails, the desired service may still be running on the target host, but it is nevertheless no longer reachable for the user.
Nagios is in a position to reproduce such dependencies and to precisely inform the administrator of the failure of an important network component, instead of flooding the administrator with irrelevant error messages concerning services that cannot be reached. An understanding of such dependencies is essential for the smooth operation of Nagios, which is why 4.1 Taking into Account the Network Topology will examine these dependencies and the way Nagios works in more detail.
Another important item is the state of a host or service. On the one hand Nagios allows a much finer distinction than just OK or "not OK;" on the other hand the distinction between soft state and hard state means that the administrator does not have to deal with short-term disruptions that have long since disappeared by the time the administrator has received the information. These states also influence the intensity of the service checks. How this functions is described in detail in 4.3 States of Hosts and Services.
4.1 Taking into Account the Network Topology
How Nagios handles dependencies of hosts and services can be best illustrated with an example. Figure 4-1 represents a small network in which the Domain Name Service on proxy is to be monitored.

Figure 4-1. Topology of an example network
The service check always serves as the starting point for monitoring that is regularly performed by the system. As long as the service can be reached, Nagios takes no further steps; that is, it does not perform any host checks.[41]
For switch1, switch2, and proxy, such a check would be pointless anyway, because if the DNS service responds to proxy, then the hosts mentioned are automatically accessible.
If the name service fails, however, Nagios tests the computer involved with a host check, to see whether the service or the host is causing the problem.
If proxy cannot be reached, Nagios might test the parent hosts entered in the configuration (Figure 4-2). With the parents host parameter, the administrator has a means available to provide Nagios with information on the network topology.

Figure 4-2. The order of tests performed after a service failure
When doing this, the administrator only enters the direct neighbor computer for each host on the same path to the Nagios server as the parent.[42] Hosts that are allocated in the same network segment as the Nagios server itself are defined without a parent. For the network topology from Figure 4-1, the corresponding configuration (reduced to the host name and parent) appears as follows:
define host{
 host_name proxy
 ...
 parents switch2
}
define host{
 host_name switch2
 ...
 parents switch1
}
define host{
 host_name switch1
 ...
}
switch1 is located in the same network segment as the Nagios server, so it is therefore not allocated a parent computer. What belongs to a network segment is a matter of opinion. If you interpret the switches as the segment limit, as is the case here, this has the advantage of being able to more closely isolate a disruption. But you can also take a different view and interpret an IP subnetwork as a segment. Then a router would form the segment limit; in our example, proxy would then count in the same network as the Nagios server. However, it would no longer be possible to distinguish between a failure of proxy and a failure of switch1 or switch2.

Figure 4-3. Classification of individual network nodes by Nagios
If switch1 in the example fails, Figure 4-3 shows the sequence in which Nagios proceeds. First the system checks the DNS service on proxy and determines that this service is no longer reachable (1). To differentiate, it now performs a host check to determine the state of the proxy computer (2). Since proxy cannot be reached, but it has switch2 as a parent, Nagios performs a host check on switch2 (3). If this switch also cannot be reached, the system checks its parent, switch1 (4).
If Nagios can establish contact with switch1, the cause for the failure of the DNS service on proxy can be isolated to switch2. The system accordingly specifies the states of the host: switch1 is UP, switch2 DOWN; proxy, on the other hand, is UNREACHABLE. Through a suitable configuration of the Nagios messaging system (see 12.3 The Message Filter in page 267) you can use this distinction to determine, for example, that the administrator is informed only about the host that is in the DOWN state and represents the actual problem, but not about the hosts that are dependent on the down host.
In a further step, Nagios can determine other topology-specific failures in the network (so-called network outages). proxy is the parent of gate, so gate is also represented as UNREACHABLE (5). gate in turn functions as a parent; the Internet server dependent on this is also classified as "UNREACHABLE."
This "intelligence," which distinguishes Nagios, helps the administrator all the more when more hosts and services are dependent on a failed component. For a router in the backbone, on which hundreds of hosts and services are dependent, the system informs administrators of the specific disruption, instead of sending them hundreds of error messages that are not wrong in principle, but are not really of any help in trying to eliminate the disruption.

[41] 4.2 On-Demand Host Checks vs. Periodic Reachability Tests from page 95 deals with these on-demand checks
[42] The parameter name parents can be explained by the fact that there are scenarios— such as in high availability environments—in which a host has two upstream routers that guarantee the Internet connection, for example.

4.2 On-Demand Host Checks vs. Periodic Reachability Tests
As a matter of principle, Nagios performs service checks at regular intervals, with the exception of passive service checks. (See 13.2 Passive Service Checks in page 293.) Some slightly different rules apply for host checks, which play the main role. Nagios executes host checks when it needs them—that is, on demand—and uses them to monitor hosts where a service installed on them changes to an error state or hosts that lie in topological dependency to a failed host. A third way is via host dependencies, as described in 12.6.2 Only in exceptional cases: host dependencies in page 289. On-demand host checks are a core function of Nagios, as this is the only way the system can precisely inform the administrator about a failed central switch, instead of bombarding him with thousands of error messages about unreachable services.
Planned host checks at regular intervals—active host checks in Nagios terminology —play only a minor role. Although Nagios 2.0 does provide a way to do this, Nagios 2.x only performs active host checks serially, which is considered to be a real performance killer.
In Nagios 3.0, checks are executed simultaneously, eliminating the drop in performance of earlier versions. If a Nagios version prior to 3.0 is used, you would be well advised not to use active host checks. However, in Nagios 3.0 regular host checks like these can help to improve performance, because this version caches the check results, if required, for a time that can be specified. Instead of running an on-demand check, Nagios then reverts to the cached result, saving considerable time—provided that this is still sufficiently up-to-date. The new logic for host checks in Nagios 3.0 is dealt with in H.7 A New Logic for Host Checks in page 689.
The reachability of a host can also be regularly be checked in Nagios 2.x by using a trick in the shape of a ping-based service check (see 6.2 Reachability Test with Ping in page 108). Nagios performs service checks in parallel, so the serial brake in performance under Nagios 2.x is released. At the same time you will obtain further information such as the response times or possible packet losses, which provides indirect clues about the network load or possible network problems. A host check, on the other hand, also issues an OK even if many packets go missing and the network performance is catastrophic. What is involved here, as the name "host check" implies, is only reachability in principle and not the quality of the connection.

4.3 States of Hosts and Services
Nagios uses plugins for the host and service checks. They provide four different return values (see Table 6-1 in page 105): 0 (OK), 1 (WARNING), 2 (CRITICAL), and 3 (UNKNOWN).
The return value UNKNOWN means that the running of the plugin generally went wrong, perhaps because of wrong parameters. You can normally specify the situations in which the plugin issues a warning or a critical state when it is started.
Nagios determines the states of services and hosts from the return values of the plugin. The states for services are the same as the return values OK, WARNING, CRITICAL, and UNKNOWN. For the hosts the picture is slightly different: the UP state describes a reachable host, DOWN means that the computer is down, and UNREACHABLE refers to the state of nonreachability, where Nagios cannot test whether the host is available or not, because a parent is down (see 4.1 Taking into Account the Network Topology, page 92).
In addition to this, Nagios makes a distinction between two types of state: soft state and hard state. If a problem occurs for the first time (that is, if there was nothing wrong with the state of a service until now), then the program categorizes the new state initially as a soft state and repeats the test several times. It may be the case that the error state was just a one-off event that was eliminated a short while later. Only if the error continues to exist after multiple tests is it then categorized by Nagios as a hard state. Administrators are informed only of hard states, because messages involving short-term disruptions that disappear again immediately afterwards only add to an unnecessary flood of information.
In our example the chronological sequence of states of a service can be illustrated quite simply. A service with the following parameters is used for this purpose:
define service{
 host_name proxy
 service_description DNS
 ...
 normal_check_interval[43] 5
 retry_check_interval[44] 1
 max_check_attempts 5
 ...
}
normal_check_interval specifies at what interval Nagios should check the corresponding service as long as the state is OK or if a hard state exists—in this case, every five minutes. retry_check_interval defines the interval between two service checks during a soft state—one minute in the example. If a new error occurs, then Nagios will take a closer look at the service at shorter intervals.
max_check_attempts determines how often the service check is to be repeated after an error has first occurred. If max_check_attempts has been reached and if the error state continues, Nagios inspects the service again at the intervals specified in normal_check_interval.
Figure 4-4 represents the chronological progression in graphic form. The illustration begins with an OK state (which is always a hard state). Normally Nagios will repeat the service check at five-minute intervals. After ten minutes an error occurs; the state changes to CRITICAL, but this is initially a soft state. At this point in time, Nagios has not yet issued any message.
Now the system checks the service at intervals specified in retry_check_interval. Here this is every minute. After a total of five checks (as specified in max_check_attempts) with the same result, the state changes from soft to hard. Only now does Nagios inform the relevant people. The tests are now repeated at the intervals specified in normal_check_interval.

Figure 4-4. Example of the chronological progression of states in a monitored service
In the next test the service is again available; thus its state changes from CRITICAL to OK. Since an OK state is always a hard state, this change is not subject to any tests by Nagios at shorter intervals.
The transition of the service to the OK state after an error in the hard state is referred to as a hard recovery. The system informs the administrators of this (if it is configured to do so) as well as of the change between various error-connected hard states (such as from WARNING to UNKNOWN). If the service recovers from an error soft state to the normal state (OK)—also called a soft recovery—the administrators will not be notified.
Even if the messaging system leaves out soft states and switches back to soft states, it will still record such states in the Web interface and in the log files. In the Web front end, soft states can be identified by the fact that the value 2/5 is listed in the column Attempts, for example. This means that max_check_attempts expects five attempts, but only two have been carried out until now. With a hard state, max_check_attempts is listed twice at the corresponding position, which in the example is 5/5.
More important for the administrator in the Web interface than the distinction of whether the state is still "soft" or already "hard," is the duration of the error state in the column Duration. From this a better judgment can be made of how large the overall problem may be.
For services that are not available because the host is down, the entry 1/5 in the column Attempts would appear, since Nagios does not repeat service checks until the entire host is reachable again. The failure of a computer can be more easily recognized by its color in the Web interface: the service overview figure in 3.3 Overview of the Web Interface marks the failed host in red; if the computer is reachable, the background remains gray.

[43] As an alternative, Nagios 3.0 allows the notation known from the host definition, check_interval.
[44] For Nagios 3.0 you can alternatively use retry_interval.

Chapter 5. Service Checks and How They Are Performed
To test services, Nagios makes use of external programs called plugins. In the simplest case this involves testing an Internet service, for example, SMTP. Here the service can be addressed directly over the network, so it is sufficient to call a program locally on the Nagios server that tests the mail server on the remote host.
Not everything you might want to test can be reached so easily over the network, however; there is no network protocol for checking free capacity on a hard drive, for example. Then you must either start a plugin on the remote host via a remote shell (but first this has to be installed on the remote computer), or you use other methods, such as the Simple Network Management Protocol (SNMP), to test the hard drive capacity.
The fact that different methods are available here does not make it any easier to get started with Nagios. For this reason, this chapter provides an overview of the common methods and attempts to develop an understanding of the underlying concepts involved. Later chapters then provide detailed configuration examples.

Figure 5-1. Nagios allows different testing methods.
Figure 5-1 shows an overview of the various test methods supported by Nagios. The upper box with a gray background marks all the components that run directly on the Nagios server machine: this includes the server itself, as well as plugins and other auxiliary tools. This unit is in contact with five clients, which are tested in various ways. The following sections will go into somewhat more detail regarding the individual methods.
In order to monitor the network service on the first client (starting from the left) marked as service, the Nagios server runs its "own" plugin, check_xyz (5.1 Testing Network Services Directly, page 101). For the second client it starts the "middle plugin" check_by_ssh, in order to execute the plugin it really wants remotely on the client (5.2 Running Plugins via Secure Shell on the Remote Computer, page 102).
In the third case the plugin is also executed directly on the client machine, but now Nagios uses the NRPE service, created specifically for this purpose. The query is made on the Nagios side with check_nrpe (5.3 The Nagios Remote Plugin Executor, page 102).
The fourth method performs a query via SNMP. For this, the client must have an SNMP agent available (11.1 Introduction to SNMP, page 228). Various plugins are available for querying data via SNMP (5.4 Monitoring via SNMP, page 103).
These four methods represent "active" checks, because Nagios takes the initiative and triggers the test itself. The fifth method, in contrast, is passive. Here Nagios does nothing actively, but waits for incoming information that the client sends to the Nagios server with the program send_nsca. On the Nagios server itself the Nagios Service Check Acceptor, NSCA, is running as a daemon that accepts the transmitted results and forwards them to the interface for external commands (see 5.5 The Nagios Service Check Acceptor, page 104).
There are other ways of performing checks in addition to these. Usually a separate service is installed on the client, which is then queried by the Nagios server via a specialized plugin. A typical example here is NSClient/NC_Net, which can be used to monitor Windows servers (20.2.1 NSClient, page 464).
5.1 Testing Network Services Directly
Mail or Web servers can be tested very simply over the network, since the underlying protocols, SMTP and HTTP, are by definition network-capable (Figure 5-1, page 100, Client 1). Nagios can call here on a wide range of plugins, each specialized for a particular service.
Such a specific program has advantages over a generic one. A generic plugin tests only whether the corresponding TCP or UDP port is open and whether the service is waiting there, but it does not determine whether the correct service is on the port, or whether it is active.
Specific plugins adopt the network protocol and test whether the service on the port in question behaves as it is expected to. A mail server, for example, normally responds with a so-called Greeting after a connection has been established:
220 swobspace.de ESMTP
The important thing here is the number 220. A number in the 200 range means OK, 220 stands for the greeting. The check_smtp plugin evaluates this reply. It can also simulate the initial dialog when sending mail (in addition to the greeting), as shown in 6.3 Monitoring Mail Servers in page 113.
It behaves in a similar way with other specific plugins, such as check_http, which not only can handle a simple HTTP dialog, but also manipulates HTTP headers where required, checks SSL capabilities and certificates of the Web server, and even sends data to the server with the POST command (more on this in 6.4 Monitoring FTP and Web Servers from page 118).
The package with the Nagios plugins, which is installed separately (see 1.4 Installing and Testing Plugins from page 43), includes specific plugins for the most important network services. If one is missing for a specific service, it is worth taking a look at the Nagios homepage[45] or the Exchange for Nagios Add-ons.[46]
If no suitable plugin can be found in these locations, you can use the generic plugins check_tcp or check_udp, which apart from performing a pure port test, also send data to the target port and evaluate the response. (In most cases, this only makes sense if an ASCII-based protocol is involved.) More on generic plugins in 6.7.1 Testing TCP ports in page 132.

[45] http://www.nagios.org/
[46] http://www.nagiosexchange.org/

5.2 Running Plugins via Secure Shell on the Remote Computer
To test local resources such as hard drive capacity, the load on the swap area, the current CPU load, or whether a specific process is running, various local plugins are available. They are called "local" because they have to be installed on the computer that is to be checked.
The Nagios server has no way to directly access such information over the network, without taking further measures. However, it can start local plugins on the remote host via a remote shell (Figure 5-1, page 100, Client 2). Only the Secure Shell, SSH, should be considered for use here; the Remote Shell, RSH, simply has too many security holes.
To do this, the Nagios server runs the program check_by_ssh, which is given the command, as an argument, to run the local plugin on the target host. For this, check_by_ssh needs a way of logging into the target host without a password, which can be set up with Public Key Authentication.
From the viewpoint of the Nagios server, check_by_ssh is the plugin whose results are processed. It does not notice anything concerning the start of the secure shell connection and of the remote plugin—the main thing is that the reply corresponds to the Nagios standard and contains the status plus a line of comment text for the administrator. (See the introduction to Chapter 6 in page 105.)
Further information on the Remote Execution of plugins via Secure Shell is provided in Chapter 9 in page 205.

5.3 The Nagios Remote Plugin Executor
An alternative method of running plugins installed on the target computer via the secure shell is represented by the Nagios Remote Plugin Executor (NRPE). Figure 5-1 (page 100) illustrates this with the middle client.
The NRPE is installed on the target host and started via the inet daemon, which must be configured accordingly. If NRPE receives a query from the Nagios server via the (selectable) TCP port 5666, it will run the matching query for this. As with the method using the Secure Shell, the plugin that is to perform the test must be installed on the target host.
So all of this is somewhat more work than using the Secure Shell, especially as SSH should be installed on almost every Unix machine, and when it is used, enables monitoring to be configured centrally on the Nagios server. The Secure Shell method requires an account with a local shell, however, thus enabling any command to be run on the target host.[47] The Remote Plugin Executor, on the other hand, is restricted to the commands configured.
If you don't want the user nagios to be able to do anything more than run plugins on the target host without a password, than you are better off sticking with NRPE. The installation configuration for this is described in Chapter 10 in page 213.

[47] The Secure Shell does allow a single command to be executed without opening a separate shell. Usually, however, you will want to test several resources, so you'll need to run more than one command.

5.4 Monitoring via SNMP
With the Simple Network Management Protocol, SNMP, local resources can be queried over the network (see also Client 4 in Figure 5-1, page 100). If an SNMP daemon is installed (NET-SNMPD is used extensively and is described in 11.2.2 The NET-SNMP daemon in page 238), Nagios can use it to query local resources such as processes, hard drive, and interface load.
The advantage of SNMP lies in the fact that it is widely used. There are corresponding services for both UNIX and Windows systems, and almost all modern network components such as routers and switches can be queried via SNMP. Even uninterruptable power supplies (UPSs) and other equipment sometimes have a network connection and can provide current status information via SNMP.
Apart from the standard plugin check_snmp, a generic SNMP plugin, there are various specialized plugins that concentrate on specific SNMP queries but are sometimes more simple to use. check_ifstatus and check_if-operstatus, for example, focus on the status of network interfaces.
If you are grappling with SNMP for the first time, you will soon come to realize that the phrase "human-readable" did not seem to be high on the list of priorities when the protocol was defined. SNMP queries are optimized for machine processing, such as for a network monitoring tool.
If you use the tool available from the vendor for its network components, SNMP will basically remain hidden to the user. But to use it with Nagios, you have to get your hands dirty and get involved with the protocol and its underlying syntax. It takes some getting used to, but it's not really as difficult as it seems at first sight.
The use of SNMP is the subject of Chapter 11 (page 227); there you can learn how to configure and use an SNMP daemon for Linux and other UNIX systems.

5.5 The Nagios Service Check Acceptor
The fifth method of processing the results of service checks leads to the use of the Nagios Service Check Acceptor, NSCA. This runs as a daemon on the Nagios server and waits for incoming test results (see Figure 5-1 in the right in Chapter 5). This method is referred to as passive, because Nagios itself does not take the initiative.
NSCA uses the interface for external commands used by CGI scripts, among others, to send commands to Nagios. It consists of a named pipe[48] from which Nagios reads the external commands. With the command PROCESS_SERVICE_CHECK_RESULT Nagios processes test results that were determined elsewhere. The interface itself is described in more detail in 13.1 The Interface for External Commands in page 292.
The main use for NSCA is Distributed Monitoring. By this we mean having several different Nagios installations that send their results to a central Nagios server. The distributed Nagios servers, perhaps in different branches of a company, work as autonomous and independent Nagios instances, except that they also send the results to a head office. This does not check the decentralized networks actively, but processes the information sent from the branches in a purely passive manner.
NSCA is not just restricted to distributed monitoring, however. With the program send_nsca, test results can be sent which were not obtained from a Nagios instance, but rather from a cron job, for example, which executes the desired service check.
Before you use NSCA, you should consider the security aspects. Because it can be used by external programs to send information and commands to Nagios, there is a danger that it could be misused. This should not stop you from using NSCA, but rather should motivate you into paying attention to security aspects during the NSCA configuration.
Further information on using NSCA, distributed monitoring and on security in general is provided in Chapter 14 in page 299.

[48] A named pipe is a buffer to which a process writes something and from which another process reads out the data. This buffer is given a name in the file system so that it can be specifically addressed, which is why it is called named pipe.

Chapter 6. Plugins for Network Services
Every plugin that is used for host and service checks is a separate and independent program that can also be used independently of Nagios. The other way round, it is not so easy: in order for Nagios to use an external program, it must obey certain rules. The most important of these concerns the return status that is returned by the program. Using this, Nagios precisely evaluates the status. Table 6-1 displays the possible values.
Table 6-1. Return values for Nagios plugins

	Status
	Name
	Description

	0
	OK
	Everything in order

	1
	WARNING
	Warning limit has been exceeded, but critical limit not yet reached

	2
	CRITICAL
	Critical limit exceeded or the plugin has broken off the test after a timeout

	3
	UNKNOWN
	Error has occurred inside the plugin (the wrong parameter has been used, for example)

A plugin therefore does not distinguish by using the pattern "OK—Not OK," but instead is more highly differentiated. In order for it to be able to categorize a status as WARNING, it requires details of up to what measured value a certain event is regarded as OK, when it is seen as a WARNING, and when it is CRITICAL.
For example, apart from the response time, a ping also returns the rate of packet loss. For a slow network connection (ISDN, DSL), a response time of 1000 milliseconds could be seen as a warning limit and 5000 milliseconds as critical, because that would mean that interactive working is no longer possible. If there is a high load on the network connection, occasional packet loss could also occur,[49] so that 20 percent packet loss can be specified as a warning limit and 60 percent as the critical limit.
In all cases, the administrator decides what values shall serve as warning signs or be regarded as critical. Since all services can be individually configured, the values for each host may vary, even in the same plugin.
Plugins always have a timeout, which is usually ten seconds. This prevents the program from waiting endlessly, thus stopping a large number of plugin processes from accumulating at the Nagios host. In other ways too, a response time above 10 seconds makes little sense for many applications, since these interrupt connection attempts themselves after a certain time span, which has the same effect as the total failure of the corresponding service. Here the administrator can step in and explicitly specify a different timeout.
A further characteristic of all plugins is a text output, which Nagios shows in its overview. It is principally intended for the administrator, so it needs to be "human-readable." Nagios 2.x processes only the first line, and here the output may not exceed 300 characters. Nagios since version 3.0 no longer has this restriction. The output may have multiple lines and can be up to 8KB in length (see 8.5.1 Multiple-line plugin output, page 193). In the Web interface, however, Nagios 3.0 also displays only the first line. Simple plugins should therefore restrict their output to a single line, the multiple-line output is recommended only for special applications such as the plugin check_multi (8.5 Summarizing Checks with check_multi from page 191). The following form has become established for the text output:
TYPE_OF_CHECK STATUS - informational text
In practice, the text output looks like this:
SMTP OK - 0.186 sec. response time
DISK WARNING - free space: /net/eli02/a 3905 MB (7%);
The above examples are from the plugin check_smtp and check_disk, respectively. In both cases, the type of check (here SMTP or DISK) is followed by the status in text form and then the actual information. Not all plugins adhere to this recommendation in their output. Sometimes the detail of the test type is missing, and sometimes even the status is missing.
Various plugins also provide performance information, which can be evaluated and graphically represented with external programs (see Chapter 19, page 403):
OK - 172.17.129.2: rta 97.751ms, lost 0%| rta=97.751ms;200.000;500.000;0; pl=0%;40;80;;
As can be seen here from the example of the check_icmp plugin, the performance data follows the text output, separated by the pipe character |. These data do not appear in the Web interface.
check_icmp here provides two values: the medium reply time, rta (Real Time Answer), in milliseconds and the packet loss rate, pl.[50] For each variable, the plugin first displays the measured value (97.751 ms and 0%), followed by the warning limit (200 milliseconds or 40 percent) and the critical limit (500 milliseconds or 80 percent). The fact that only the first value in the rta or pl list is provided with a scale unit is specified by the Developer Guidelines—since the unit of a variable does not change, it only needs to be given once.
To keep the installation (1.4 Installing and Testing Plugins from page 43) as simple as possible, there are no manual pages for the plugins. Each of these programs must maintain an online help, which is displayed with the option -h or --help. Some plugins distinguish here between a short help (-h) and a long one (--help); it is therefore recommended that you always try --help as well.
This chapter introduces the most important plugins from the basic distribution of the nagios-plugins package, version 1.4.11,[51] which test network services. With their help, the Nagios server queries services on other servers. The description is restricted to the functionality that is important for normal operation. If you are interested in all the options, we refer you to the integrated online help.
6.1 Standard Options
Table 6-2 lists the options that are common to all plugins. The options in bold type must be known to all plugins. The key words not in bold type can be omitted by the programs, but if they are supported at all, they must be used in the sense specified.
If an option demands an argument, it is usually separated by spaces in the short form, but by equals signs in the long form. But for Perl or shell scripts in particular, not all authors adhere to these, so you have no option here but to take a look at the corresponding description.
Table 6-2. Standard options of plugins

	Short form
	Long form
	Description

	[a]

	-h
	--help
	Output of the online help

	-V
	--version
	Output of the plugin version

	-v
	--verbose
	Output of additional information-this option may be given multiple times [a]

	-H
	--hostname
	Host name or IP address of the target

	-t
	--timeout
	Timeout in seconds after which the plugin will interrupt the operation and return the CRITICAL status

	-w
	--warning
	Specificies the warning limit value

	-c
	--critical
	Specifies the critical limit value

	−4
	--use-ipv4
	Force IPv4 to be used

	−6
	--use-ipv6
	Force IPv6 to be used

	[a] Whether this leads to more information depends on the individual plugin ...

Thus it is not allowed to use -c, for example, for anything other than specifying a critical limit. How exactly -c and -w are used may, on the other hand, vary from plugin to plugin, because sometimes an individual value may be required, at other times, multiple values (see also the explanations on the plugin check_icmp), described below.
Most plugins also have the options −4 and −6, which was not necessarily the case prior to version 1.4.

[49] ICMP packets are not re-sent; a lost packet remains lost.
[50] Short for packet loss.
[51] Versions prior to 1.4 should no longer be used. Some parameters have changed, and often performance data output is missing. In addition, plugin developers make great efforts to clean up existing errors and to continually improve the plugins.

6.2 Reachability Test with Ping
The classic reachability test in UNIX systems has always been a ping, which sends an ICMP echo request packet and waits for an ICMP echo response packet. The Nagios plugin package includes two programs that carry out this ping check: check_icmp and check_ping. Even though check_ping is used in the standard configuration, you should replace it with the more efficient check_icmp, which has been included since plugin version 1.4.
Whereas check_ping calls the UNIX program /bin/ping, which is why there are always compatibility problems with the existing ping version, check_icmp sends ICMP without any external help programs. check_icmp basically works more efficiently, since it does not wait for one second between individual packets, as ping does. In addition it evaluates ICMP error messages such as ICMP host unreachable, while check_ping discards these. check_icmp is backward-compatible to check_ping; this makes it easy to do without check_ping entirely and to replace it with check_icmp.
check_icmp measures the reply time of the ICMP packets and determines the proportion of packets that have been lost. If an error message arrives instead of the expected ICMP echo reply, this is evaluated immediately. Thus Nagios breaks off the test if an ICMP host unreachable message arrives.
check_icmp has the following options:[52]
-H
address
Without the host name or the IP address of the computer to be tested, check_icmp cannot work. With -H, multiple host entries can be separated, using spaces.

-w
response_time,packet_loss_percent%
This switch sets the warning limit for a warning. response time stands here for the desired response time in milliseconds, packet loss percent stands for the corresponding packet loss as a percentage. If you specify -w 500.0,20% the plugin will give a warning either if the response time is at least 500.0 milliseconds or if 20 percent or more of ICMP packets are lost.

-c
response_time,packet_loss_percent%
This switch specifies the critical limit in the same way as -w defines the warning value. The critical limit should always be larger than the warning limit.

-n
packets
With packets you can set the number of packets that check_icmp should use for each test. The default is 5 packets.

-i
packet_interval
This switch sets the time interval between two single packets that are going to the same host. The default is 80 milliseconds. It is specified as a floating point (e.g., -i 80.000).

-I
target_interval
This switch sets the time interval in which packets are sent to different hosts (provided that -H contains more than one host). The default is 0 milliseconds, meaning that packets to multiple hosts are sent simultaneously.

-m
number_of_reachable_hosts
This switch specifies the number of hosts that must be reachable for the plugin to return OK. This option allows a simple cluster check:

nagios@linux:local/libexec$./check_icmp -m 2 -H 192.168.1.9
\
192.168.1.11 192.168.1.13
OK - 192.168.1.9: rta 0.098ms, lost 0% :: 192.168.1.11: rta nan, lost 100% ::
192.168.1.13: rta 0.744ms, lost 0%|192.168.1.9rta=0.09 8ms;200.000;500.000;0;
 192.168.1.9pl=0%;40;80;; 192.168.1.11rta=0. 000ms;200.000;500.000;0;
 192.168.1.11pl=100%;40;80;;
 192.168.1.13r ta=0.744ms;200.000 ;500.000;0; 192.168.1.13pl=0%;40;80;;

Of the three hosts specified, 192.168.1.11 (printed in bold) is not reachable. -m 2 requests only two reachable hosts; therefore, the result is OK. Without this detail, the result would be CRITICAL, because one host is not reachable.

-l
ttl
A value larger than 0 sets the TTL (Time to Live) of the IP packet. The default is the value 0, which means that the plugin leaves the choice of the TTL to the operating system.

-t
timeout
After timeout seconds have passed, the plugin interrupts the test and returns the CRITICAL status. The default is 10 seconds.

Like the program /bin/ping, check_icmp must also run with root permissions, which is why the SUID bit is set:
linux:~ # chown root.nagios /usr/local/nagios/libexec/check_icmp
linux:~ # chmod 4711 /usr/local/nagios/libexec/check_icmp
linux:~ # ls -l /usr/local/nagios/libexec/check_icmp
-rwsr-x--x l root nagios 61326 2005-02-08 19:49 check_icmp
As a test, you should execute the plugin on the command line as the user nagios, since Nagios will later execute it under this account:
nagios@linux:~$ cd /usr/local/nagios/libexec
nagios@linux:nagios/libexec$./check_icmp -H 192.168.1.13 \ -w 100.0,20%
 -c 200.0,40%

OK - 192.168.1.13: rta 0.253ms, lost 0%| rta=0.253ms;100.000;200.000;0; pl=0%;20;40;;
check_icmp then sends the standard number of five ICMP packets on their way. Instead of an OK, it issues a WARNING as soon as the response time, averaged over all the packets, is at least 100.0 milliseconds or if 20 percent or more are lost—that is, at least one packet in five. For a CRITICAL status, the average response time must be at least 200.0 milliseconds, or at least two packets (40 percent of five) must remain unanswered.
6.2.1 check_icmp as a Service Check
In order for check_icmp to be used as a service check, you need to have a suitable command object. The file checkcommands.cfg, with check_ping, already has one for the ping service. We will just replace the check_ping plugin in it with check_icmp:
define command{
 command_name check_ping
 command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ -c
 $ARG2$
}
The macro $HOSTADDRESS$ provides the IP address of the address parameter from the host definition, and with the two freely defined macros $ARG1$ and $ARG2$, parameters can be taken over from the service definition, so that warning and critical limits can be set with these.
In the service definition (an extract of it is shown here)[53] for the PING service, the check_command entry, in addition to the name of the command object to be executed, now needs two arguments, which are entered after the command and separated by an exclamation mark:
define service{
 service_description PING
 host_name linux01
 check_command check_ping!100.0,20%!500.0,60%
 ...
}
From the definition of the command object, you can see that the first parameter (100.0,20%) defines the warning limit, and the second one (500.0,60%) defines the critical value.
6.2.2 check_icmp as a Host Check
To be able to use the plugin under the name check_host for host checks, a corresponding symbolic link to check_icmp is set:
linux:~ # cd /usr/local/nagios/libexec
linux:nagios/libexec # ln -s check_icmp check_host
If it is called under its new name, check_host, the plugin modifies its behavior somewhat: it interrupts the test after receiving the first ICMP echo reply, because a single reply packet is enough to prove that the host "is alive." The same applies if the first response to be returned is an error message such as ICMP network unreachable or host unreachable—the host is then considered to be unreachable.
Host checks are defined like every other check. The only difference is that this test is specified during the definition of the host object (and not of a service object):
define host{
 host_name linux01
 alias Linux File Server
 address 192.168.1.21
 check_command check-host-alive
 ...
}
The name used here, check-host-alive, can be freely defined and can be specified separately for each host. The definition of the command itself is made in checkcommands.cfg:
define command{
 command_name check-host-alive
 command_line $USER1$/check_host -H $HOSTADDRESS$
}
Host checks do not always need to be executed with check_icmp. You could just as well measure the refrigerator temperature or test, with the generic plugins for TCP or UDP (check_tcp and check_udp; see 6.7.1 Testing TCP ports from page 132), whether a specific port is open or not. The port scanner nmap, for example, uses TCP port 80 (HTTP).
The disadvantage of such a method lies in the fact that, apart from the host itself, another application also needs to run—that is, the Web server. In addition, the test of a specific application by no means proves that the computer is no longer reachable. A ping has the great advantage that the kernel replies to ICMP echo request messages itself, so that no application needs to be running for this. You should therefore change from ping to other host check methods only if there is a good reason to do so. One example might be a firewall that filters ICMP messages, and over which the administrator has no influence, but that does let through HTTP queries on TCP port 80.

[52] The online help check_icmp -h says that it knows some of the options in the long form as well, but these have not been implemented as of today.
[53] Like any other object, service definitions can also be defined in a file of your choice, from which Nagios loads object definitions. For the sake of clarity it is best to choose a descriptive name for the file, such as services.cfg, as in our example in Simple structure.

6.3 Monitoring Mail Servers
A number of plugins are also available to monitor mail servers. The mail server itself (Mail Transport Agent (MTA)) is monitored by check_smtp, and the mail queue on the mail server can be checked with check_mailq. Since the latter test takes place locally, the plugin is described in the next chapter in 7.8 Regularly Checking the Status of the Mail Queue (page 180).
To monitor the Mail User Agent (MUA) protocols POP3 and IMAP —including the SSL variants, POP3S and IMAPS—the plugin check_tcp is used. check_pop and so forth are symbolic links to check_tcp, which determines which protocol it should test by means of the name by which it is called, and makes the relevant presettings.
6.3.1 Monitoring SMTP with check_smtp
The SMTP monitoring plugin check_smtp has the following options:
-H
address
/--host=address
Details the computer on which the SMTP service should be checked.

-p
port
/--port=port
port determines the ports, in case the mail service is not listening on the standard port 25. In this way the mail virus scanner Amavis (usually port 10024) can be monitored, for example. But this can normally be reached only from localhost.

-e
string
/--expect=string
string defines the text which the mail server must provide in the very first reply line. The default setting for string is 220, with which the normal SMTP greeting begins, but there may be servers that have different settings. A wrong reply from the service monitored will generate a WARNING.

-f
address
/--from=address
With address you specify a mail address that check_smtp then sends to the server with the "MAIL FROM:" command. This option is required to test a Microsoft Exchange 2000 Server.

-C
"mail command"
/--command="mail command"
With -C you can send individual mail commands to the server, to extend the test slightly (see example below).

-R
"string"
/--response=
"string"
If you send an SMTP command to the server with -C, you can specify the expected reply here instead of string (for example, 250). A "wrong" reply triggers a WARNING.

-S / --starttls
The connection setup during the test uses STARTTLS.

-D
duration/--certificate=duration
The minimum duration in days for which the certificate used for STARTTLS must still be valid.

-A / --authtype=autheutication type
The authentication type for the SMTP-Auth procedure. The default is none (no authentication). The only procedure supported until now is LOGIN, which is based on user-password pairs.

-U / --authuser=user
The user name for the SMTP authentication, if -A LOGIN is used.

-P / --authpass=password
The accompanying password if -A LOGIN is specified.

-w
floating_point_dec
/--warning=floatii2g_point_dec
If the server takes longer than floating_point_dec seconds for the answer, check_smtp issues a WARNING.

-c
floating_point_dec
/--critical=floating_point_dec
Like -w, except that check_smtp issues a CRITICAL after floating_point_dec seconds.

In the simplest case, you just enter the name or the IP address of the mail server:
nagios@linux:nagios/libexec$./check_smtp -H smtp01
SMTP OK - 0,008 sec. response time|time=0,008157s;;;0,000000
The plugin check_smtp sends back a HELO
hostname after receiving the SMTP greeting, which should contain the reply 250.
The definition of the corresponding command object in this case appears as follows:
define command{
 command_name check_smtp
 command_line $USER1$/check_smtp -H $HOSTADDRESS$
}
To check the host object linux01 with this, it requires the following service definition:
define service{
 service_description SMTP
 host_name linux01
 check_command check_smtp
 ...
}
Using the -C option, the SMTP dialog can be extended even further, roughly until RCPT TO:
nagios@linux:nagios/libexec$./check_smtp -H localhost \
 -C "MAIL FROM: <bla@gna.dot>" -R "250" \
 -C "RCPT TO: <bla@gna.dot>" -R "554"
SMTP OK - 0,019 sec. response time|time=0,018553s;;;0,000000
Such a test could be used, for example, to check the configuration of the restrictions built into the mail server (invalid domains, spam defenses, and more). The example checks whether the mail server refuses to accept a mail containing the invalid domain gna.dot (that is, in the RCPT TO:). The test runs successfully, therefore, if the server rejects the mail with 554. What check_smtp does here corresponds to the following mail dialog reproduced by telnet:
user@linux:~$ telnet localhost 25
Trying 127.0.0.1...
Connected to loca1host.
Escape character is '^]'.
220 swobspace.de ESMTP
helo swobspace
250 swobspace.de
MAIL FROM: <bla@gna.dot>
250 Ok
RCPT TO: <bla@gna.dot>
554 <bla@gna.dot>: Recipient address rejected: test not existing top lev
el domain
...
If the mail server did not reject the recipient domain because of the configuration error, the reply would no longer contain 554 and the plugin would issue a WARNING.
In general you should remember, when checking restrictions, that the server rejects mails only after a RCPT TO:, depending on the configuration, even if the reason for this (a certain client IP address, the server name in HELO or the sender address in MAIL FROM:) has already occurred before this.
6.3.2 POP and IMAP
Four pseudo plugins are available for testing the POP and IMAP protocols: check_pop, check_spop, check_imap, and check_simap. They are called pseudo plugins because they are just symbolic links to the plugin check_tcp. By means of the name with which the plugin is called, this determines its intended use and correspondingly sets the required parameters, such as the standard port, whether something should be sent to the server, the expected response, and how the connection should be terminated. The options are the same for all plugins, which is why we shall introduce them all together:
-H
address
/--host=address
This specifies the computer on which POP or IMAP is to be checked.

-p
port
/--port=port
port specifies an alternative port if the plugin is intended to monitor a different port from the standard one: 110 for check_pop, 995 for check_spop, 143 for check_imap, and 993 for check_simap (see also /etc/services).

-w
floating_point_dec
/--warning=floating_point_dec
The placeholder floating_point_dec is replaced by the warning limit for the response time in seconds, specified as a floating point decimal.

-c
floating_point_dec
/--critical=floating_point_dec
This sets the critical limit for the response time in seconds (see -w).

-s
"string"
/--send="string"
This string is to be sent to the server. In the default setting, none of the four plugins uses this option.

-e
"string"
/--expect="string"
string specifies a text string, which must be contained in the response of the server. The default is +0K for (S) POP and * OK for (S)IMAP. This option may be given multiple times to search for different partial strings in the answer.

-E / --escape
This switch allows the use of the escape sequences \n, \r, \t, or simply \ in the details for -s and -e. In all cases -E must be placed in front of the options -s and -e on which it is to have an influence.

-A / --all
If you specify several reply strings with -e, the plugin with -A will only return OK if all required reply strings were found. Without this option, one string out of several sought is enough to trigger a positive acknowledgment.

-M
return value
/ -mismatch=return value
How should the plugin react if a returned string does not match the statement in -e? The default is warn, which means there is a WARNING. With crit a false return can be assigned as CRITICAL, with ok as OK.

-q
"string"
/--quit="string"
This is the string with which the service is requested to end the connection. For (S)POP this is QUIT\r\n, for (S)IMAP, al L0G0UT\r\n.

-S / --ssl
The connection set up during the test uses SSL/TLS for the connection. If you call the plugins check_simap and check_spop, this option is set automatically. In order for a connection to be established, the server must support SSL/TLS directly on the addressed port.

STARTTLS[54] on its own does not support the plugin. With

./check_imap -H computer -s "a1 CAPABILITY" -e "STARTTLS"

you can at least check whether the server provides this method: the plugin returns OK if the reply string contains STARTTLS, or WARNING if it doesn't. But this is not really a genuine test of whether STARTTLS really does work properly.

-D
duration
/--certificate=duration
This switch specifies the number of days the certificate used for STARTTLS will remain valid.

-r
return_value
/ -refuse=return_value
This switch specifies which value the plugin returns if the server rejects the TCP connection. The default is crit (CRITICAL). The value ok can be set in case no POP or IMAP service is available. The third possible value, warn, triggers a WARNING.

-m
bytes
/--maxbytes=bytes
This switch advices the plugin to close the TCP connection when the specified data amount (in bytes) has been received.

-d
seconds
/--delay=seconds
This switch waits for the specified time after a string has been sent to the server before the answer is searched for the string specified with -e.

Of course, all the other options of the generic plugin check_tcp (described in 6.7.1 Testing TCP ports in page 132) can be used with check_pop, check_spop, check_imap, and check_simap.
In the simplest case you just need to give the name of the computer to be tested (here: mailsrv) or the IP address:
nagios@linux:nagios/libexec$./check_pop -H mailsrv
POP OK - 0.064 second response time on port 110 [+OK eli11 Cyrus POP3
v2.1.16 server ready <1481963980.1118597146@eli11>]
|time=0.064228s;0.000000;0.000000;0.000000;10.000000
In each case the plugin provides just one line of output, which has been line-wrapped here for layout reasons. The details after the pipe character | in turn involve performance data not shown by the Web interface. The structure of performance data and how they are processed are described in more detail in 19.1 Processing Plugin Performance Data with Nagios in page 404.
Implemented as a command object, the above check_pop command looks like this:
define command{
 command_name check_pop
 command_line $USER1$/check_pop -H $HOSTADDRESS$
}
As a service for the machine linuxO1, it is integrated like this:
define service{
 service_description POP
 host_name linux01
 check_command check_pop
 ...
}

[54] STARTTLS refers to the capacity of a service to set up an SSL/TLS-secured connection after a normal connection has been established—for example, for POP3, via TCP port 110. Every service that implements STARTTLS must have a suitable command available to do this. With POP3 this is called STLS (see RFC 2595). STARTTLS is used with SMTP, LDAP, IMAP, and POP3, among others, but not every server supports this method automatically.

6.4 Monitoring FTP and Web Servers
The Nagios plugin package provides two plugins to monitor the classic Internet services FTP and HTTP (including HTTPS): check_ftp and check_ http. When many users from a network are using Web services, a proxy is usually used in addition. To monitor this, you could also use check_http, but with the check_squid.pl plugin, The Nagios Exchange has a better tool available.
6.4.1 FTP services
The plugin check_ftp is, like the plugins for POP and IMAP, a symbolic link to the generic plugin check_tcp, so that it also has the same options. They are described in detail in 6.7.1 Testing TCP ports in page 132.
The generic plugin sets the following parameters if it is called with the name check_ftp:
--port=21 --expect="220" --quit="QUIT\r\n"
It does not send a string to the server, but it expects a reply containing the text 220, and it ends the connection to the standard port 21 cleanly with QUIT\r\n.
On the command line there is, as usual, a one-line reply (with line breaks for the printed version) with performance data after the | character that is not shown by the Web interface, (see 19.1 Processing Plugin Performance Data with Nagios from page 404) for an explanation of this:
nagios@linux:nagios/libexec$./check_ftp -H ftp.gwdg.de
FTP OK - 0,130 second response time on port 21 [220-Gesellschaft fuer wi
ssenschaftliche Datenverarbeitung mbH Goettingen] |time=0,130300s;0,0000
00;0,000000;0,000000;10,000000
As a command object, this call appears as follows:
define command{
 command_name check_ftp
 command_line $USER1$/check_ftp -H $HOSTADDRESS$
}
A corresponding service definition looks like this:
define service{
 service_description FTP
 host_name linux01
 check_command check_ftp
 ...
}
6.4.2 Web server control via HTTP
The check_http plugin for HTTP and HTTPS checks contains a large number of very useful options, depending on the intended use:
-H
virtual_host
/--hostn.ame=virtual_host
This switch specifies the virtual host name that the plugin transmits in the HTTP header in the host: field:

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de
HTTP OK HTTP/1.1 200 OK - 2553 bytes in 0.154 seconds

If you don't want check_http to send this, you can use -I instead.

-I
ip-address
/--IP-address=ip-address
Instead of ip, the host name or IP address of the target computer is given. For systems with several virtual environments, you will land in the default environment, and for most Web hosting providers you will then receive an error message:

nagios@linux:nagios/libexec$./check_http -I www.swobspace.de
HTTP WARNING: HTTP/1.1 404 Not Found

-u
url_or_path
/--url=url_or_path
The argument is the URL to be sent to the Web server. If the design document lies on the server to be tested, it is sufficient to enter the directory path, starting from the document root of the server:

nagios@linux:nagios/libexec$./check_http -H linux.swobspace.net \
 -u /mailinglisten/index.html
HTTP OK HTTP/1.1 200 OK - 5858 bytes in 3.461 seconds

If this option is not specified, the plugin asks for the document root/.

-p
port
/--port=port
This is an alternative port specification for HTTP.

-w
floating_point_dec
/--warning=floati.ng_point_dec
This is the warning limit for the response time of the Web server in seconds.

-c
floating_point_dec
/--critical=floating_point_dec
This is the critical limit for the response time of the Web server in seconds.

-t
timeout
/--timeout=timeout
After timeout seconds have expired, the plugin interrupts the test and returns the CRITICAL status. The default is 10 seconds.

-L
/--link-url
This option ensures that the virtual host in the text output appears on the Web interface as a link.

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de -L
 HTTP OK HTT P/1.1 200 OK
 - 2553 bytes in 0.156 seconds

-a
username : password
/--authorization=username : password
If the Web server requires authentication, this option can be used to specify a user-password pair. The plugin can only handle basic authentication, however; digest authentication is currently not yet possible.

-f
behavior
/--onredirect=behavior
If the Web server sends a redirect as a reply to the requested Web page, the behavior parameter influences the behavior of the plugin. The values ok, warning, critical and follow are allowed. The default is ok, so the plugin will simply return an OK, without following the redirect. The plugin can be made to follow the redirect with follow. warning and critical with a redirect return the WARNING or CRITICAL status.

-e
"string"
/--expect="string"
This is the text that the server response should contain in its first status line. If this option is not specified, the plugin expects HTTP/1. as a string.

-s
"string"
/--string="string"
This is the search text that the plugin looks for in the contents of the page returned, not in the header.

-r
"regexp"
/--regex="regexp"
This is a regular expression[55] for which the plugin should search in the page returned.

-R
"regexp"
/--eregi="regexp"
This switch works like -r, except that the plugin now makes no distinction between upper and lower case.

--invert-regex
This inverts the search with -r or -R. The plugin now returns CRITICAL instead of OK if there is a match.

-l
/--linespan
Normally the search for regular expressions is restricted to one line with -r and -R. If −l precedes these options, the search pattern can refer to text covering multiple lines.

-P
string
/--post=string
Use this switch for data that you would like to send via a POST command to the Web server. The characters in string must be encoded in accordance with RFC 1738:[56] only the letters A to Z (upper and lower case), the special characters $-_. + !*' (), and the numbers 0 to 9 are allowed.

To send the text Übung für Anfänger ("Exercise For Beginners" in German) as a string, umlauts and spaces must be encoded before they are sent:%DCbung%20f%FCr%20Anf%E4nger.

-T
string
/ -content-type=string
This specifies the content type of the header, if you are sending something with --post, for example, to the server. The default is application/x-www-form-urlencoded. A list of all content types is given in the file /etc/mime.types, and a description of the format can be found in RFC2045.[57]

-m
min_bytes:max_bytes
/--pagesize=min_bytes:max_bytes
This parameter defines that the page returned must be at least min_bytes in size, otherwise the plugin will issue a WARNING. You can optionally use an upper limit as well—separated by a colon—to specify the size of the Web page. Now check_http will also give a warning if the page returned is larger than max_bytes. In the following example, everything is in order if the page returned is at least 500 bytes and at most 2000 bytes in size:

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de \
 m 500:2000
HTTP WARNING: page size 2802 too large|size=2802B;500;0;0

-N
/--no-body
With this option the plugin does not wait for the server to return the complete page contents, but just reads in the header data. To do this it uses the HTTP commands GET or POST, and not HEAD.

-M
seconds
/--max-age=seconds
If the returned document is older than the date specified in the header (HTTP header field Date:), the plugin will generate a WARNING. Instead of seconds (without additional details) you can also use explicit units such as 5m (five minutes), 12h (twelve hours), or 3d (three days); combinations are not allowed.

-A
"string"
/--useragent="string"
This parameter explicitly specifies a user agent in the HTTP header, such as -A "Lynx/1.12" for Lynx version 1.12. Normally the plugin does not send this field.

-k
"string"
/--header="string"
This specifies any HTTP header tags. If several tags are to be specified, they must be separated by a semicolon, as in the following example:

-k "Accept-Charset: iso-8859-1; Accept-Encoding: compress, gzip;"

-S
/--ssl
This forces an SSL connection to be used:

nagios@linux:nagios/libexec$./check_http --ssl -H \
 www.verisign.com
HTTP OK HTTP/1.1 200 OK - 33836 bytes in 1.911 seconds

The host www.verisign.com allows an SSL connection. If this is not the case, the server returns an error and the plugin returns the value CRITICAL:[58]

nagios@linux:nagios/libexec$./check_http --ssl -H www.swobspace.de
Connection refused
Unable to open TCP socket

-C
days
/--certificate=days
Tests whether the certificate is at least valid for the given number of days. Otherwise a WARNING is issued.

−4
/--use-ipv4
The test is made explicitly over an IPv4 connection.

−6
/--use-ipv6
The test is made explicitly over an IPv6 connection.

The definition of a corresponding command object and its use as a service is no different from that based on other plugins; 6.4.3 Monitoring Web proxies shows an example.
6.4.3 Monitoring Web proxies
Proxy test with check_http
A proxy such as Squid can also be tested with check_http, but this assumes that you have some knowledge of how a browser makes contact with the proxy. It does this in the form of an HTTP header:
GET http://www.swobspace.de/ HTTP/1.1
Host: www.swobspace.de
User-Agent: Mozilla/5.0 (X11; U; Linux i686; de-DE; rv:1.7.5)
Gecko/20041108 Firefox/1.0
Accept: text/xml,application/xml,application/xhtml+xml,...
Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-15,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache
The decisive entries are printed in bold type. In contrast to normal Web server queries, the browser requests the document from the server via a GET command, not by specifying the directory path, but by using the complete URL, including the protocol type. In the Host: field it specifies the host name of the Web server that it actually wants to reach. With normal HTTP queries that go directly to a Web server (and not via a proxy), the host name of the Web server would be written there. This behavior can be reproduced with check_http:
nagios@linux:nagios/libexec$./check_http -H www.swobspace.de \
 -I 192.168.1.13 -p 3128 -u http://www.swobspace.de
HTTP OK HTTP/1.0 200 OK - 2553 bytes in 0.002 seconds
In order to set the Host: field in the header, you specify the name of a Web server with -H. The nonlocal URL is forced by a -u, and specifying -I at the same time ensures that the proxy is addressed, and not the Web server itself. Finally you need to select the proxy port, and the proxy test is then complete. Then check_http will send the following HTTP header to the proxy:
GET http://www.swobspace.de HTTP/1.0
User-Agent: check_http/v1861 (nagios-plugins 1.4.11)
Connection: close
Host: www.swobspace.de
This test does not use any implementation-specific information of the proxy, so it should work with every Web proxy.
The command object is defined as follows:
define command{
 command_name check_proxy
 command_line $USER1$/check_http -H www.googl
e.de -u http://www.google.de -I $HOSTADDRESS$ -p $ARG1$
}
The proxy computer linuxO1 is then tested with the following service:
define service{
 service_description Webproxy
 host_name linux01
 check_command check_proxy!3128
 ...
}
The parameter 3128 ensures that the command object check_proxy can read out the port from $ARG1$.
Proxy test with check_squid
The proxy check with check_http, introduced in the last section, works only if the desired Web page is available or is already in the cache. If neither is the case, this test will produce an error, even if the proxy is working in principle.
The plugin check_squid.pl uses a different method, but it is not part of the standard installation, and is to be found in the Check Plugins category, under Software | HTTP & FTP | Squid Proxy.[59]
It makes use of the cache manager of the Squid proxy, which is queried by a pseudo protocol. A command is sent in the form
GET cache_object: //ip_address/command HTTP/1.1\n\n
to Squid and obtains the desired information. The plugin check_squid.pl uses the info command, which queries a range of statistical usage information:
user@linux:~$ echo "GET cache_object://192.168.1.13/info HTTP/1.1\n\n" \
 | netcat 192.168.1.13 3128
...
File descriptor usage for squid:
 Maximum number of file descriptors: 1024
 Largest file desc currently in use: 18
 Number of file desc currently in use: 15
 Files queued for open: 0
 Available number of file descriptors: 1009
 Reserved number of file descriptors: 100
 Store Disk files open: 0
...
It is targeted at the number of still-free file descriptors (the third line from the end); you can set a warning or critical limit for this value. The number of file descriptors plays a role when access is made to objects in the Squid cache at the same time. In environments with a high number of parallel accesses to the proxy, it is quite possible that 1024 file descriptors are insufficient. In smaller networks with just a few hundred users, not all of whom are surfing at the same time, the compiled-in value of 1024 will be sufficient.
Squid configuration Normally Squid allows access to the cache manager only from localhost. So that Nagios can query it over the network, the proxy must be reconfigured accordingly:
...
acl manager proto cache_object
acl nagiosserver 192.168.1.9
http_access allow manager nagiosserver
http_access deny manager
cachemgr_passwd none info menu
...
The necessary changes to the configuration file squid.conf are printed in bold type, and the other relevant lines are already contained in the default file. The first line to be printed defines an access control list (Access Control List, acl) called manager by means of the internal protocol cache_object, so it refers to everything that accesses the proxy using the cache_object protocol. This is followed by an access control list for the Nagios server, based on its IP address, here 192.168.1.9. The list name nagiosserver may be freely chosen here (as can manager in the first line). With http_access allow, nagiosserver obtains access to the cache manager (manager), before the line
http_access deny manager
prohibits access to all others through the cache_object protocol. Finally, cachemgr_passwd provides a password for the cache manager access. If you omit this, with none, then only selected commands should be allowed that have no potential to change things, such as info and menu, which shows all the things that the cache manager can do. After the configuration file has been modified, Squid needs to read it in again:
linux:~ # /etc/init.d/squid reload
Applying the plugin The test plugin check_squid.pl itself has the following options:
-H
address
/--hostname=address
This is the server on which Squid is to be tested, specified by IP address or FQDN.

-P
port
/ --port=port
This specifies the port on which Squid is listening. The default is the standard port 3128.

-p
password
/ --password=password
This is the password for access to the cache manager.

-w
free_descriptors
/ --warning=free_descriptors
This is the number of free file descriptors, where the plugin will issue a warning if the number drops below this. The default is 200.

-c
free_descriptors
/ --critical=free_descriptors
This is the critical limit for free file descriptors. If the number falls below this, check_squid returns CRITICAL. The default is 50.

When check_squid is run, it is usually very unspectacular:
nagios@linux:nagios/libexec$./check_squid.pl -H 192.168.1.13
Squid cache OK (1009 FreeFileDesc)
The matching command also presents no problems ...
define command{
 command_name check_squid.pl
 command_line $USER1$/check_squid.pl -H $HOSTADDRESS$
}
... and the same goes for service definitions:
define service{
 service_description Squid
 host_name linux01
 check_command check_squid.pl
 ...
}

[55] Posix regular expressions, see man 7 regex.
[56] http://www.faqs.org/rfcs/rfcl738.html, paragraph 2.2
[57] http://tools.ietf.org/html/rfc2045#section-5
[58] This can be checked in the shell with echo $?.
[59] http://www.nagiosexchange.org/cgi-bin/pages/Detailed/1764.html

6.5 Domain Name Server Under Control
Two plugins are also available for testing the Domain Name Service (DNS):
check_dns and check_dig. While check_dns tests whether a host name can be resolved, using the external nslookup program, check_dig allows any records at all to be queried. Both plugins are part of the standard distribution.
The situations in which they are used overlap somewhat. With check_dns, you can also explicitly query a specific DNS server, although this plugin is really for checking whether the name service is available generally.

6.5.1 DNS check with nslookup
The check_dns plugin checks whether a specified host name can be resolved to an IP address. Used locally, the plugin tests the DNS configuration of the computer on which it is run. For the name resolution, it uses the name server configured in /etc/resolv.conf.
The possible options are just as unspectacular.
-H
host
/ --hostname=host
This is the host name to be resolved to an IP address.

-s
dns-server
/ --server=dns-server
This switch explicitly specifies the name server to be used. If this option is missing, check_dns uses the name server from /etc/resolv.conf.

-a
ip_address
/ --expected-address=ip_address
The ip_address is the IP address that host should have. If the name service returns a different address, the plugin will raise the alarm with CRITICAL. This option makes sense only if it is necessary for the name server to provide a fixed IP address. Without this option, the plugin will accept every IP address as a reply.

-A / --expect-authority
The name server specified with -s should answer the given query authoritatively, so the corresponding domain must act as a primary or secondary name server. If this is not the case, the plugin returns CRITICAL.

-w
floating point
/ - warning=floating point
This switch specifies the warning limit for the response time of the name server in seconds (specified as a floating point).

-c
floating point
/ - critical=floating point
This switch gives the critical response time of name server in seconds, specified as a floating point.

-t
timeout
/ --timeout=timeout
After timeout seconds have expired, the plugin interrupts the test and returns the CRITICAL state. The default is 10 seconds.

For the local test of the DNS configuration (not that for a name server) you just require a host name that is highly unlikely to disappear from the DNS, such as www.google.com:
nagios@linux:nagios/libexec$ /check_dns -H www.google.com
DNS OK: 0,009 seconds response time www.google.com returns 216.239.59.99
The corresponding command definition appears as follows in this case:
define command{
 command_name check_dns
 command_line $USER1$/check_dns -H www.google.de
}
The following service tests whether the name server configuration for the computer linux01 is functioning:
define service{
 service_description DNS/nslookup
 host_name linux01
 check_command check_dns
 ...
}

6.5.2 Monitoring the name server with dig
The plugin check_dig provides more options for monitoring a name server than check_dns. As the name implies, it is based on the external utility dig, intended for precisely this purpose.
-H
address / --hostname=address
The address is the IP address for the DNS server to be tested. It is also possible to specify a host name (instead of an IP address), but in most cases this makes little sense, because this would first have to be resolved before it can reach the name server.

-p
port
/ --port=port
This switch specifies the UDP port to be used. The default is 53.

−1
hostname
/ --lookup=
hostuame
The hostname is the host name to be tested. If no particular computer is looked up, but only the functionality of the DNS server is to be tested, you should specify an address here easily reachable from the Internet, such as www.google.com.

-T
record_type
/ --record_type=record_type
This switch specifies the record type to be queried. The default is A (IPv4 address), but often NS (relevant name server), MX (relevant Mail Exchange), PTR(Pointer; IP address for reverse lookup), or S0A(Source of Authority, the administration details of the domain) are also used.

-w
floating_point_dec
/ --warning=floating_point_dec
This switch sets the warning limit for the response time of the name server in seconds (floating point decimal).

-c
floating_point_dec
/ --critical=floating_point_dec
This switch sets the critical response time of the name server in seconds (floating point decimal).

-a
address
/ --expected_address=address
This is the address that dig should return in the ANSWER SECTION. In contrast to check_dns, check_dig delivers a WARNING only if the IP address does not match, but the reply itself has arrived within the given time limit.

-t
timeout
/ --timeout=timeout
After timeout seconds have expired, the plugin breaks off the test and returns the CRITICAL state. The default is 10 seconds.

The following two examples check the name server 194.25.2.129, by requesting it for the IP address of the computer www.swobspace.de The second example ends with a WARNING, since the reply of the name server for www.swobspace.de returns a different IP address from 1.2.3.4 in the ANSWER SECTION:
nagios@linux:nagios/libexec$./check_dig -H 194.25.2.129 -l \
 www.swobspace.de
DNS OK - 2,107 Sekunden Antwortzeit (www.swobspace.de. 1800 IN A 21
2.227.119.101)
nagios@linux:nagios/libexec$./check_dig -H 194.25.2.129 -l \
 www.swobspace.de -a 1.2.3.4
DNS WARNING - 0,094 Sekunden Antwortzeit (Server nicht gefunden in ANSWE
R SECTION)
Example 1 is implemented as a command object as follows:
define command{
 command_name check_dig
 command_line $USER1$/check_dig -H $HOSTADDRESS$ −1 $ARG1$
}
In order to test the specific name server linux0l, you look for an address that Nagios should always be able to resolve, such as www.google.com
define service{
 service_description DNS/dig
 host_name linux01
 check_command check_dig!www.google.com
 ...
}

6.6 Querying the Secure Shell Server
Monitoring of Secure Shell servers (irrespective of whether they use protocol version 1 or 2) is taken over by the plugin check_ssh (included in the standard distribution). It is quite a simple construction and just evaluates the SSH handshake. User name and password are not required for the test.
Not to be confused with check_sshis the plugin check_by_ssh (see Chapter 9 from page 205), which starts plugins remotely on a different computer.
-H
address
/ --hostname=address
Host name or IP address of the computer to which the plugin should set up an SSH connection.

-p
port
/ --port=port
This specifies an alternative port. The default is 22.

-r
version
/ --remote-version=version
The version details for the tested Secure Shell must match the specified text instead of version, otherwise a WARNING will be sent (see example below). If the version details contain spaces, the string must be enclosed by double quotes.

-t
timeout
/ --timeout=timeout
After timeout (by default, 10) seconds the plugin breaks off the test and returns the CRITICAL state.

The following example in turn tests the Secure Shell daemons on the local computer and on wobgate, to see whether the current SSH version from Debian Etch is being used:
nagios@linux:nagios/libexec$./check_ssh -H localhost \
 -r 'OpenSSH_4.3p2 Debian-9'
SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)
nagios@linux:nagios/libexec$./check_ssh -H wobgate -r \
 'OpenSSH_4.3p2 Debian-9'
SSH WARNING - OpenSSH_3.8.1p1 Debian-8.sarge.6 (protocol 2.0) version mi
smatch, expected 'OpenSSH_4.3p2 Debian-9'
The latest version of SSH is not in use on wobgate.
In heterogeneous environments with various Linux distributions, you will usually use version checking "manually" only for plugin calls, and only rarely integrate them into the Nagios configuration. Instead, it is normally sufficient to use command and service definitions using the following simple pattern:
define command{
 command_name check_ssh
 command_line $USER1$/check_ssh -H $HOSTADDRESS$
}

define service{
 service_description SSH
 host_name linux01
 check_command check_ssh
 ...
}
Otherwise you run the risk of having to adjust the version number in the command object after every security update.

6.7 Generic Network Plugins
Sometimes no plugin can be found that is precisely geared to the service to be monitored. For such cases, two generic plugins are available: check_tcp and check_udp. Both of them test whether a service is active on the target port for the protocol in question. Although this does not yet guarantee that the service running on the port really is the one in question, in an environment that one adminstrator looks after and configures, this can be sufficiently guaranteed in other ways.
Both plugins send a string to the server and evaluate the reply. This is at its most simple for text-based protocols such as POP or IMAP: these two "specific" plugins, which are tailor-made for these two mail services (see 6.3.2 POP and IMAP from page 115), use nothing more than symbolic links to check_tcp, which has already completed the corresponding question-and-answer game with relevant default settings.
If you know the protocol to be tested and you configure a "quiz" that will fit this (no easy task for binary protocols), a check becomes considerably more than just a port scan. In this way the generic plugins can also be substituted for specific missing plugins.
6.7.1 Testing TCP ports
check_tcp is concentrated on TCP-based services. In line with its generic nature, it has a large number of options:
-H
address
/ --hostname=address
This is the IP address or host name of the computer whose port should be tested.

-p
port
/ --port=port
This specifies the target port. In contrast to the plugins that are formed as a symbolic link to check_tcp, this detail is always required.

-w
floating_point_dec
/ --warning=floating_point_dec
This sets the warning limit for the response time in seconds.

-c
floating_point_dec
/ --critical=floating_point_dec
This sets a time limit like -w but specifies the critical limit value.

-s
"string"
/ --send="string"
This is the string that the plugin should send to the server.

-e
"string"/ --expect="string"
This is the string that the reply of the server should contain. The plugin does not restrict its search here to the first line.

-E
/ --escape
This allows the use of the escape sequences \n, \r, \t or simply \ for -s and -e. In all cases -E must be placed in front of the options -s and -e on which it should have an influence.

-A
/ --all
If you specify multiple reply strings with -e, the plugin with -A will only return OK if all required reply strings were found. Without this option it is enough for a positive return if just one of several strings is found.

-M
return_value
/ --mismatch=return_value
How should the plugin react if a returned string does not match what is specified with -e? The default is warn, which means that a WARNING is given. With crit, a false return value could be categorized as CRITICAL, and with ok, as OK.

-q
"string"
/ --quit="string"
This is the string that requests the service to end the connection.

-m
bytes
/ --maxbytes=bytes
The plugin closes the connection if it has received more than bytes.

-d
floating_point_decimal
/ --delay=floating_point_decimal
This is the time period in seconds between sending a string and checking the response.

-t
timeout
/ --timeout=timeout
After timeout (the default is 10) seconds the plugin stops the test and returns the CRITICAL status.

-j
/ --jail
Setting this displays the TCP output. For text-based protocols such as POP or IMAP, this is usually "human-readable", but for binary protocols you generally cannot decipher the output, so that -j is appropriate.

-r
return_value
/ --refuse=return_value
This switch specifies what value the plugin returns if the server rejects the TCP connection. The default is crit (CRITICAL). With ok as the return_value, you can test whether a service is available that should not be accessible from outside. The third possible value, warn, ensures that a WARNING is given.

-D
days
/ --certificate=days
This is the time span in days for which a server certificate must at least be valid for the test to run successfully. It is relevant only for SSL connections. Note that there is a danger of confusion: in the check_http plugin this same option is -C (see 6.4.2 Web server control via HTTP). If the time span drops below the time period specified for the server certificate, the plugin returns a WARNING.

-S
/ --ssl
SSL/TLS should be used for the connection. The plugin cannot handle STARTTLS[60].

The following example checks on the command line whether a service on the target host 192.168.1.89 is active on port 5631, the TCP port for the Windows remote-control software, PCAnywhere:
nagios@linux:nagios/libexec$./check_tcp -H 192.168.1.89 -p 5631
TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0,
000000;0,000000;0,000000;10,000000
For all services for which the computer name and port detail are sufficient as parameters for the test, the command object is as follows:
define command{
 command_name check_tcp
 command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p $ARG1$
}
To monitor the said PCAnywhere on the machine Win0l, the following service definition would be used:
define service{
 service_description pcAnywhere
 host_name Win01
 check_command check_tcp!5631
 ...
}

[60] See footnote in 6.3.2 POP and IMAP.

6.7.2 Monitoring UDP ports
It is not so simple to monitor UDP ports, since there is no standard connection setup, such as the three-way-handshake for TCP, in the course of which a connection is opened, but data is not yet transferred. For a stateless protocol such as UDP there is no regulated sequence for sent and received packets. The server can reply to a UDP packet sent by the client with a UDP packet, but it is not obliged to do this.
If you find an unoccupied port, the requested host normally sends back an ICMP port unreachable message, which evaluates the plugin. If there is no reply, there are two possibilities: either the service on the target port is not reacting to the request, or a firewall is filtering out network traffic (either the UDP traffic itself or the ICMP message). This is why you can never be sure with UDP whether the server behind a particular port really is offering a service or not.
In order to force a positive response where possible, you normally have to send data to the server, with the option -s, containing some kind of meaningful message for the underlying protocol. Most services will not respond to empty or meaningless packets. This is why you cannot avoid getting to grips with the corresponding protocol, since you will otherwise not be in a position to send meaningful data to the server, to prompt it into giving a reply at all.
Ever since Nagios plugin version 1.4.4, check_udp has been a symlink to check_tcp, so that check_udp has the same options as check_tcp (see 6.6 Querying the Secure Shell Server). -p
port, -s
string, and -e
string are obligatory entries, even though the integrated online help declares these to be optional.
The following example tests whether a service on the target host 192.168.1.13 is active on the time server (NTP) Port 123. The NTP daemon only replies to packets containing a meaningful request (e.g., to ones whose contents begin with w):
nagios@linux:nagios/libexec$./check_udp -H 192.168.1.13 -p 123 -s "w" \
 -e""
UDP OK - 0.001 second response time on port 123 []|time=0.000586s;;;0.00
0000;10.000000
The reply remains empty, so the reply string is specified as -e "". The NTP server does not respond to packets with data not in the protocol form. Normally NTP expects a relatively complex packet[61] containing various information. The w used here was found out by trial and error: It does not contain really meaningful data, but it does provoke the server into giving a response.
The command line command shown above is implemented as follows as a command object:
define command{
 command_name check_udp
 command_line $USER1$/check_udp -H $HOSTADDRESS$ -p $ARG1$ -s $ARG2$
}
Here we pass on the port as the first argument; all the other switches of the plugin are accessed through $ARG2$.
Checking an NTP time server is then taken over by the following service definition:
define service{
 service_description
 host_name timesrv
 check_command check_tcp!123!-s "w" -e ""
 ...
}
As in the command line example, Nagios sends the string w to the service to provoke a positive response.

[61] The protocol version NTPv3 is described in RFC 1305: http://rfc.sunsite.dk/rfc/rfcl305.html.

6.8 Monitoring Databases
Nagios provides three plugins for monitoring databases: check_pgsql for PostgreSQL, check_mysql for MySQL, and check_oracle for Oracle. The last will not be covered in this book.[62] They all have in common the fact that they can be used both locally and over the network. The latter has the advantage that the plugin in question does not have to be installed on the database server. The disadvantage is that you have to get more deeply involved with the subject of authentication, because configuring a secure local access to the database is somewhat more simple.
For less critical systems, network access by the plugin can be done without a password. To do this, the user nagios is set up with its own database in the database management system to be tested, which does not contain any (important) data. Areas accessed by this user can be isolated from other data, stored in the DBMS, through the database's own permissions system.
Of course, there is nothing stopping you from setting up a password for the user nagios. But if you cannot make use of SSL-encrypted connections, this will be transmitted in plain text for most database connections. In addition, it is stored unencrypted in the Nagios configuration files. In this respect the password does offer some protection, but it is not really that secure.
As an additional measure, you should certainly restrict the IP address from which a user nagios user can access the database on the Nagios server.
The plugins introduced here have only read access to the database. check_mysql additionally allows a pure connection check, without read access. A write access to the database is not available in any of the plugins mentioned. For Oracle there is a plugin on Nagios Exchange[63] called check_oracle_writeaccess.sh, which also tests the writeability of the database.
6.8.1 PostgreSQL
With the check_pgsql plugin you can establish both local and network connections to the database. Local connections are handled by PostgreSQL via a Unix socket, which is a purely local mechanism. An IP connection is set up by check_pgsql if a target host is explicitly passed to it. The plugin performs a pure connection test to a test database but does not read any data from it.
In order that PostgreSQL can be reached over the network, you must start the postmaster program, either with -i, or by setting the parameter tcpip_socket in the configuration file postgresql.conf to the value true.
Configuring a monitor-friendly DBMS
In order to separate the data that the user nagios (executing the plugin) gets to see more clearly from other data, you first set up a database user with the same name, and a database to which this user is given access:
postgres@linux:~$ createuser --no-adduser --no-createdb nagios
postgres@linux:~$ createdb --owner nagios nagdb
Of particular importance when creating a database user with the command createuser is the option --no-adduser. To PostgreSQL, the ability to be allowed to create users automatically means that you are the superuser, who can easily get round the various permissions set.[64] But nagios should not be given superuser permissions under any circumstances.
createdb finally creates a new, empty database called nagdb, which belongs to nagios.
Access to the database can be restricted in the file pg_hba.conf. Depending on the distribution, this can be found either in /etc/postgresql or in the subdirectory ./data of the database itself (for example, /var/lib/pgsql/data for SUSE). The following extract restricts access by the database user nagios to a specific database and to the IP address of the Nagios server (instead of the IP address to be completed by ip-nagios):
#type db user ip-address ip-mask method options
local nagdb nagios ident sameuser
host nagdb nagios ip-nagios 255.255.255.255 ident sameuser
The first line is a comment describing the function of the columns. The second line allows the database user nagios access to the database nagdb over a local connection. Even though the authentication method here is called ident, you do not need a local ident daemon for Linux and BSD variants (NetBSD, FreeBSD, etc.).
The last line describes the same restriction, but this time it is for a TCP/IP connection to the Nagios server. But now PostgreSQL asks the ident daemon of the Nagios server which user has set off the connection request. This means that an ident daemon must be installed on ip-nagios. In this way the DBMS tests whether the user initiating the connection from the Nagios server really is called nagios. It will not permit another user (or a connection from a different host).
Normally the ident protocol is only partially suited for user authentication. But in the case of the Nagios server you can assume that a host is involved that is under the control of the administrator who can ensure that an ident daemon really is running on port 113.
There is a huge range of different ident daemons. pidentd[65] is widely used and is included in most Linux distributions. Normally it is already precon-figured and just needs to be started. But how it is started depends on the distribution; usually inetd or xinetd takes over this task. A glance at the documentation (should) put you straight.
After modifying the configuration in pg_hba.conf you must stop the DBMS so that it can reload the configuration files. This is best done with the command
linux:~ # /etc/init.d/postgresql reload
(a restart is not necessary). If the configuration of the inetd/xinetd was modified, this daemon is reinitialized in the same way.
The test plugin check_pgsql
check_pgsql has the following options:
-H
address
/ --hostname=address
If given this option, the plugin establishes a TCP/IP connection instead of making contact with a local DBMS through a Unix socket.

-P
port
/ --port=port
In contrast to the plugins discussed until now, check_pgsql uses a capital P to specify the port on which PostgreSQL is running. In its default value it is connected to port 5432. This option is only useful if PostgreSQL allows TCP/IP connections.

-d
database
/ --database=database
Specifies the name of the database to which the plugin should connect. If this detail is missing, it uses the standard database template1.

-w
floating_point_dec
/ --warning=floating_point_dec
This is the warning time in seconds for the performance time for the test.

-c
floating_point_dec
/ --critical=floating_point_dec
This is the critical limit for the performance time of the test in seconds.

−1
user
/ --logname=user
This is the name of the user who should establish contact to the database.

-p
passwd
/ --password=passwd
This switch sets the password for access to the database. Since this must be stored in plain text in the service definition, a potential security problem is involved. It is preferable to explicitly define a restricted, password-free access to the database in the PostgreSQL configuration for the user nagios.

-t
timeout
/ --timeout=timeout
After 10 seconds have expired, the plugin stops the test and returns the CRITICAL status. This option allows the default value to be changed.

To test the reachability across the network of the database nagdb set up specially for this purpose, this is passed on as a parameter together with the target host (here: linux01):
nagios@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb
CRITICAL - no connection to 'nagdb' (FATAL: IDENT authentication failed
for user "nagios")
The fact that the check went wrong in the example is clearly due to the ident authentication. This happens, for example, if you forget to reload the ident daemon after the configuration has been modified. Once the error has been rectified, the plugin—hopefully—will work better:
nagios@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb
OK - database nagdb (0 sec.)|time=0,000000s;2,000000;8,000000;0,000000
If the database parameter is omitted, check_pgsql will address the database template1:
nagios@linux:nagios/libexec$./check_pgsql -H linux01
CRITICAL - no connection to 'template1' (FATAL: no pg_hba.conf entry fo
r host "172.17.129.2", user "nagios", database "template1", SSL off)
A similar result is obtained if you run the test with the correct database, but with the wrong user:
wob@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb
CRITICAL - no connection to 'nagdb' (FATAL: no pg_hba.conf entry for ho
st "172.17.129.2", user "wob", database "nagdb", SSL off)
You should certainly run the last two tests, just to check that the PostgreSQL database really does reject corresponding requests. Otherwise you will have a security leak, and we recommend that you remove settings in the configuration that are too generous.
If you have created a separate database for the check, there is no reason why you shouldn't write this explicitly in the command definition, instead of using parameters, with $ARG1$:
define command{
 command_name check_pgsql
 command_line $USER1$/check_pgsql -H $HOSTADDRESS$ -d nagdb
}
Then the service definition for linux01 is as simple as this:
define service{
 service_description PostgreSQL
 host_name linux01
 check_command check_pgsql
 ...
}
6.8.2 MySQL
With the check_mysql plugin, MySQL databases can be tested both locally and across the network. For local connections, it makes contact via a Unix socket, and not via a real network connection.
MySQL configuration
In order that the database can be reached across the network, the skip-networking option in the configuration file my.cnf must be commented out. The database should then be running on TCP port 3306, which can be tested with netstat -ant, for example:
user@linux:~$ netstat -ant | grep 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN
To set up the password-free access to the database relatively securely, a separate nagdb database is created here that does not contain any critical data, and for which the user nagios is given restricted access from the Nagios server. To do this, you connect yourself, as the database user root, to the database mysql, and there you create the database nagdb:
user@linux:~$ mysql --user=root mysql
mysql> CREATE DATABASE nagdb;
If the command mysql --user=root mysql functions without the need to enter a root password, then you have a serious security problem. In that case, anyone—at least from the database server—is able to obtain full access to the database. If this is the case, it is essential that you read the security notes in the MySQL documentation.[66]
Recreating a user and the access restrictions can be done in one and the same step:
mysql> GRANT select ON nagdb.* TO nagios@ ip-nagios;
The command sets up the user nagios, if it does not exist. It may only accept connections from the Nagios server with the IP address ip-nagios and obtains access to all tables in the database nagdb, but may execute only the SELECT command there (no INSERT, no UPDATE or DELETE); that is, user nagios only has read access.
The test plugin check_mysql
check_mysql has fewer options than its PostgreSQL equivalent—apart from -H, it does not implement any standard flags and has neither a warning not a critical limit for the performance time of the test. For the database-specific options, it uses the same syntax as check_pgsql, except for the user entry:
-H
address
/ --hostname=address
This sets the host name or IP address of the database server. If the option -H is omitted, or if it is used in connection with the argument localhost, check_mysql does not set up a network connection but uses a Unix socket. If you want to establish an IP connection to localhost, you must explicitly specify the IP address 127.0.0.1.

-P
port
/ --port=port
This is the TCP port on which MySQL is installed. In the default, port 3306 is used.

-d
database
/ --database=database
This is the name of the database to which the plugin should set up a connection. If this option is omitted, it only makes a connection to the database process, without addressing a specific database.

-u
user
/ --username=user
This is the user in whose name the plugin should log in to the DBMS.

-p
passwd
/ --password=passwd
This switch is used to provide the password for logging in to the database.

To set up a connection to the database nagdb as the user nagios, both parameters are passed on to the plugin:
nagios@linux:nagios/libexec$./check_mysql -H dbhost -u nagios -d nagdb
Uptime: 19031 Threads: 2 Questions: 80 Slow queries: 0 Opens: 12
Flush tables: 1 Open tables: 6 Queries per second avg: 0.004
In contrast to PostgreSQL, with MySQL you can also make contact without establishing a connection to a specific database:
nagios@linux:nagios/libexec$./check_mysql -H dbhost
Uptime: 19271 Threads: 1 Questions: 84 Slow queries: 0 Opens: 12
Flush tables: 1 Open tables: 6 Queries per second avg: 0.004
With a manual connection to the database, with mysql, you can then subsequently change to the desired database, using the MySQL command use:
user@linux:~$ mysql -u nagios
mysql> use nagdb;
Database changed
mysql>
With this plugin, a subsequent database change is not possible. Here you must decide from the beginning whether you want to contact a database or whether you just want to establish a connection to the MySQL database system.
To test a nagdb database set up explicitly for this purpose, you can do without parameters when creating the corresponding command object, and explicitly specify both user and database:
define command{
 command_name check_mysql
 command_line $USER1$/check_mysql -H $HOSTADDRESS$ -u nagios -d nagdb
}
This simplifies the service definition:
define service{
 service_description MySQL
 host_name linux01
 check_command check_mysql
 ...
}

[62] The plugin check_oracle assumes the installation of an Oracle Full Client on the Nagios server; it does not work together with the Instant Client and expects its users to have an extensive knowledge of Oracle. To explain all this here is far beyond the scope of this book.
[63] http://www.nagiosexchange.org/153;3
[64] Permissions in PostgreSQL are given by the database command GRANT.
[65] http://www.lysator.liu.se/~pen/pidentd/.
[66] To be found at http://dev.mysql.com/doc/mysql/de/Security.html.

6.9 Monitoring LDAP Directory Services
For monitoring LDAP directory services, the check_ldap plugin is available. It runs a search query that can be specified anonymously or with authentication. It has the following parameters to do this:
-H
address
/ --hostname=address
This is the host name or IP address of the LDAP server.

-b
base_dn
/ --base=base_dn
This is the top element (Base Domain Name) of the LDAP directory, formed for example from the components of the domain name: dc=swobspace,dc=de.

-p
port
/ --port=port
This is the port on which the LDAP server is running. The default is the standard port 389.

-a
"ldap-attribute"
/ --attr="ldap-attribute"
This switch enables a search according to specific attributes. Thus -a "(objectclass=inetOrgPerson)" searches for all nodes in the directory tree containing the object class inetOrgPerson (normally used for telephone and e-mail directories, for example).

Specifying attributes in the check is less useful than it may seem. If you search through an LDAP directory for nonexistent attributes, you will normally receive an answer with zero results, but no errors.

-D
ldap_bind_dn
/ --bin.d=ldap_bind_dn
This specifies a bind DN[67] for an authenticated connection, such as:

uid=wob,dc=swobspace,dc=de

Without this entry, the plugin establishes an anonymous connection.

-P
ldap_passwd
/ --pass=ldap_passwd
This is the password for an authenticated connection. It only makes sense in conjunction with the option -D.

-t
timeout
/ --timeout=timeout
After timeout seconds have expired (10 seconds if this option is not given), the plugin stops the test and returns the CRITICAL status.

−2
/ --ver2
Use LDAP version v2 (the default). If the server does not support this protocol version, the connection will fail. In OpenLDAP from version 2.1, v3 is used by default; to activate protocol version v2, the following line is entered in the configuration file slapd.conf:

allow bind_v2

Many clients, such as Mozilla and the Thunderbird address book, are still using LDAP version v2.

−3 / --ver3
Use LDAP version v3. For many modern LDAP servers such as Open-LDAP, this is now the standard, but they usually also have parallel support for the older version v2, since various clients cannot yet implement v3.

-w
floating_point_dec
/ --warning=floating_point_dec
If the performance time of the plugin exceeds floating_point_dec seconds, it issues a warning.

-c
floating_point_dec
/ --critical=floating_point_dec
If the performance time of the plugin exceeds floating_point_dec seconds, it returns CRITICAL.

-T
/ --starttls
Uses the STARTTLS intended in LDAPv3.[68]

-S
/ --ssl
Uses SSL encrypted LDAP (LDAPS) from LDAPv2 and at the same time sets the port used for this, port 636. Whenever possible you should choose STARTTLS. LDAP with STARTTLS uses the same port as LDAP without SSL encryption; in many cases this allows the unencrypted LDAP access to be configured as a fallback for LDAP with STARTTLS. Such a fallback is not possible for LDAPS due to the different ports.

In the simplest case it is sufficient to query whether the LDAP server really does own the base DN specified with -b:
nagios@linux:nagios/libexec$./check_ldap -H ldap.swobspace.de \
 -b "dc=swobspace,c=de"
LDAP OK - 0,002 seconds response time|time=0,002186s;;;0,000000
This query corresponds to the following command object:
define command{
 command_name check_ldap
 command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$
}
Since an LDAP server can handle many LDAP directories with different base DNs, it is recommended that you configure this with parameters:
define service{
 service_description LDAP
 host_name linux01
 check_command check_ldap!dc=swobspace,dc=de
 ...
}
If authentication is involved, things get slightly more complicated. On the one hand the plugin is given the bind-DN of the nagios user, with -D. On the other hand, the following example protects the necessary password from curious onlookers by storing this as the macro $USER3$ in the file resource.cfg, which may be readable only for the user nagios (see 2.14 The Resources File resource.cfg, page 79):
define command{
 command_name check_ldap_auth
 command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$ -D $ARG2$
-P $USER3$
}
Accordingly, the matching service definition contains the base DN and bind DN as arguments, but not the password:
define service{
 service_description LDAP
 host_name linux01
 check_command check_ldap_auth!dc=swobspace,dc=de!uid=nagios,\
 dc=swobspace,dc=de
 ...
}

[67] A bind DN serves to identify the user and refers to the user's nodes in the directory tree, specifying all the overlying nodes. The bind DN in LDAP corresponds in its function more or less to the user name when logging in under Unix.
[68] See footnote in 6.3.2 POP and IMAP.

6.10 Checking a DHCP Server
To monitor DHCP services, the plugin check_dhcp is available. It sends a DHCPDISCOVER via UDP broadcast to the target port 67 and waits for an offer from a DHCP server in the form of a DHCPOFFER, which offers an IP address and further configuration information.
Because check_dhcp does not send a DHCPREQUEST after this, the server does not need to reserve the sources and to confirm this reservation with DHCPACK, nor does it need to reject the request with DHCPNACK.
Granting the plugin root permissions
Granting the plugin root permissions
There is a further restriction to the check_dhcp: it requires full access to the network interface and must therefore run with root privileges.
In order for the user nagios to be able to run the plugin with root permissions, the plugin must belong to the user root and the SUID bit must be set. If you install the plugins from a current tarball, the permissions will be set correctly. Several distributions disable the SUID bit, as it represents a potential danger—it is possible that general root permissions may slip in via buffer overflows in uncleanly programmed code. Here the program owner must be changed manually to the user root so that the SUID bit can be set with chmod. When this is done, only the group nagios, apart from root, is allowed to run the plugin:
linux:nagios/libexec # chown root.nagios check_dhcp
linux:nagios/libexec # chmod 4750 check_dhcp
linux:nagios/libexec # ls -l check_dhcp
-rwsr-x--- 1 root nagios 115095 Jan 8 12:15 check_dhcp
The chown command assigns the plugin to the user root and to the group nagios, to whom nobody else should belong apart from the user nagios itself. (The user in whose name the Web server is running should be a member of a different group, such as nagcmd, as is described in Chapter 1 from page 37.)
In addition the chmod ensures that nobody apart from root may even read the plugin file, let alone edit it.
Applying the plugin
check_dhcp only the following options:
-s
server_ip
/ --serverip=server_ip
This is the IP address of a DHCP server that the plugin should explicitly query. Without this entry, it is sufficient to have a functioning DHCP server in the network to pass the test satisfactorily. So you have to decide whether you want to test the general availability of the DHCP service or the functionality of a specific DHCP server.

-r
requested_ip
/ --requestedip=requested_ip
With this option the plugin attempts to obtain the IP address requested_ip from the server. If this is not successful because it is already reserved or lies outside the configured area, check_dhcp reacts with a warning.

-i
interface
/ --interface=interface
This selects a specific network interface through which the DHCP request should pass. Without this parameter, the plugin always uses the first network card to be configured (in Linux, usually ethO).

-m
mac_address
/ -mac=mac_address (from version 1.4.10)
Uses the specified MAC address in DHCP queries instead of that of the Nagios server. This explicit detail is required if the DHCP server only assigns IP addresses to specific MAC addresses, and the MAC address of the Nagios server is not one of these.

-u
/ --unicast (from version 1.4.10)
Sends a unicast message instead of a broadcast.[69] The IP address to which the DHCP request is addressed is specified with -s
server_ip.

-t
timeout
/ --timeout=timeout
After 10 seconds have expired (the default), otherwise timeout seconds, the plugin stops the test and returns the CRITICAL state.

With a configurable warning or critical limit for the performance time, the plugin is of no use. Here you must, where necessary, explicitly set a timeout, which causes the CRITICAL return value to be issued.
The following example shows that the DHCP service in the network is working:
nagios@linux:nagios/libexec$./check_dhcp -i eth0
DHCP ok: Received 1 DHCPOFFER(s), max lease time = 600 sec.
The plugin includes only the lease time as additional information, that is, the time for which the client would be assigned an IP address. If you want to see all the information contained in DHCPOFFER, you should use the option -v ("verbose").
In the next example the plugin explicitly requests a specific IP address (192.168.1.40), but this is not available:
nagios@linux:nagios/libexec$./check_dhcp -i ethO -r 192.168.1.40
DHCP problem: Received 1 DHCPOFFER(s), requested address (192.168.1.40)
was not offered, max lease time = 600 sec.
nagios@linux:nagios/libexec$ echO $?
1
The result is a WARNING, as is shown by the output of the status, with $?.
If you want to test both the availability of the DHCP service overall and the servers in question individually, you need two different commands:
define command{
 command_name check_dhcp_service
 command_line $USER1$/check_dhcp -i etho
}
check_dhcp_service grills the DHCP service as a whole by sending a broadcast, to which any DHCP server at all may respond.
define command{
 command_name check_dhcp_server
 command_line $USER1$/check_dhcp -i etho -s $HOSTADDRESS$
}
check_dhcp_server on the other hand explicitly tests the DHCP service on a specific server.
To match this, you can then define one service that monitors DHCP as a whole and another one that tests DHCP for a specific host. Even if the first variation is in principle not host-specific, it still needs to be assigned explicitly to a computer for it to run in Nagios:
define service{
 service_description DHCP Services
 host_name linux01
 check_command check_dhcp_service
 ...
}

define service{
 service_description DHCP Server
 host_name linux01
 check_command check_dhcp_server
 ...
}

[69] A unicast message is addressed to exactly one IP address, whereas a broadcast message is meant for all stations in the local network.

6.11 Monitoring UPS with the Network UPS Tools
There are two possibilities for monitoring uninterruptible power supplies (UPS): the Network UPS Tools support nearly all standard devices. The apcupsd daemon is specifically tailored to UPS's from the company APC, described in 7.10 Monitoring UPSs with apcupsd from page 182. The plugin check_ups included in Nagios only supports the first implementation.
The following rule generally applies: no plugin directly accesses the UPS interface. Rather they rely on a corresponding daemon that monitors the UPS and provides status information. This daemon primarily serves the purpose of shutting down the connected servers in time in case of a power failure. But it also always provides status information, which plugins can query and which can be processed by Nagios.
Both the solution with the Network UPS Tools and that with apcupsd are fundamentally network-capable, that is, the daemon is always queried via TCP/IP (through a proprietary protocol, or alternatively SNMP). But you should be aware here that a power failure may affect the transmission path, so that the corresponding information might no longer even reach Nagios. Monitoring via the network therefore makes sense only if the entire network path is safeguarded properly against power failure. In the ideal scenario, the UPS is connected directly to the Nagios server. Calling the check_ups plugin is no different in this case from that for the network configuration, since even for local use it communicates via TCP/IP—but in this case, with the host localhost.
The Network UPS Tools
The Network UPS Tools
The Network UPS Tools is a manufacturer-independent package containing tools for monitoring uninterruptible power supplies. Different specific drivers take care of hardware access, so that new power supplies can be easily supported, provided their protocols are known.
The remaining functionality is also spread across various programs: while the daemon upsd provides information, the program upsmon shuts down the computers supplied by the UPS in a controlled manner. It takes care both of machines connected via serial interface to the UPS and, in client/ server mode, of computers supplied via the network.
http://www.networkupstools.org/ lists the currently supported models and provides further information on the topic of UPS. Standard distributions already contain the software, but not always with package names that are very obvious: in SuSE and Debian they are known by the name of nut.
To query the information provided by the daemon upsd, there is the check_ups plugin from the Nagios Plugin package. It queries the status of the UPS through the network UPS Tools' own network protocol. A subproject also allows it to query the power supplies via SNMP.[70] However, further development on it is not taking place at the present time.
For purely monitoring purposes via Nagios (without shutting down the computer automatically, depending on the test result), it is sufficient to configure and start the upsd on the host to which the UPS is connected via serial cable. The relevant configuration file in the directory /etc/nut is called ups.conf. If you perform the query via the network, you must normally add an entry for the Nagios server in the (IP-based) access permissions. Detailed information can be found directly in the files themselves or in the documentation included, which in Debian is in the directory /usr/share/doc/nut, and in SuSE, in /usr/share/doc/packages/nut.
Provided that the Network UPS Tools include a suitable driver for the uninterruptable power supply used, the driver and communication interface are entered in the file ups.conf:
-- /etc/nut/ups.conf

[upsfw]
 driver = apcsmart
 port = /dev/ttySO
 desc = "Firewalling/DMZ"
In the example, a UPS of the company APC is used. Communication takes place on the serial interface /dev/ttySO. A name for the UPS is given in square brackets, with which it is addressed later on: desc can be used to describe the intended purpose of the UPS in more detail, but Nagios ignores this.
Next you must ensure that the user with whose permissions the Network UPS Tools are running (such as the user nut from the group nut) has full access to the interface /dev/ttySO:
user@linux:~$ chown nut:nut /dev/ttyS0
user@linux:~$ chmod 660 /dev/ttyS0
In order for Nagios to access information from the UPS via the upsd daemon, corresponding data is entered in an Access Control List in the upsd configuration file upsd.conf:
-- /etc/nut/upsd.conf

ACL aclname ipblock
ACL all 0.0.0.0/0
ACL localhost 127.0.0.1/32
ACL nagios 172.17.129.2/32

ACCEPT localhost nagios
REJECT all
With the keyword ACL you first define hosts and network ranges with their IP address. You must always specify a network block here: /32 means that all 32 bits of the netmask are set to 1 (this corresponds to 255.255.255.255), which is therefore a single host address. It is not sufficient just to specify the IP address here.
An ACCEPT entry allows access for the computer specified in the ACL acl-name. ACCEPT rules may be used more than once. The final REJECT entry then refuses access to all other hosts.
To conclude the configuration, you should make sure that the UPS daemon is started with every system start. In SuSE this is done via YaST2; in Debian this is taken care of during the installation.
The check_ups plugin
The monitoring plugin itself has the following options:
-H
address
/ --host=address
This is the computer on which upsd is installed.

-u
identifier
/ --ups=identifier
This is the name for the UPS in ups.conf, specified in square brackets.

-p
port
/ --port=port
This is the number of the port on which the upsd is running. The default is TCP port 3493.

-w
whole_number
/ --warning=whole_number
This switch defines a warning limit as a whole number. If no variable is given (see -v), whole_number means a response time in seconds; otherwise the value range of the variable (e.g., 80 for 80% in BATTPCT). Specifying multiple warning limits is currently not possible: the plugin then only uses the last variable and the last warning limit.

-c
whole_number
/ --critical=whole_number
This option specifies a critical limit in connection with a variable (see -v).

-v
variable
/ --variable=variable
With this option, specific values of the UPS can be queried. The limit values then referred to this parameter. check_ups currently supports only the following variables:

LINE:

input voltage of the UPS.

TEMP:

Temperature of the USV.

BATTPCT:

Remaining battery capacity in percent.

LOADPCT:

Load on the UPS in percent.

If this option is missing, the plugin only checks the status of the UPS (online or offline).

Since -v thus has another value, check_ups does not know the obligatory option --verbose (see Table 6-2 in page 108), even in its long form.

-T /--temperature
This command issues temperature values in degrees Celsius instead of Fahrenheit.

-t
timeout
/ --timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns the CRITICAL state. The default is 10 seconds.

The following example tests the above defined local UPS with the name upsfw. The -T switch ensures that the output of the temperature is given in degrees Celsius:
user@linux:nagios/libexec$./check_ups -H localhost -u upsfw -T
UPS OK - Status=Online Utility=227.5V Batt=100.0% Load=27.0% Temp=30.6C|
voltage=227500mV;;;0 battery=100%;;;0;100 load=27%;;;0;100 temp=30degF;;
;0
If a variable is not used, the plugin returns a CRITICAL if the UPS is switched off (Status=Off) or has reached low battery capacity (Status=0n Battery, Low Battery). check_ups issues a warning if at least one of the three states On Battery, Low Battery, or Replace Battery applies, but this is not sufficient for a CRITICAL status (for example, because of correspondingly set variables). With On Battery the power supply is provided by the battery, with Low Battery the UPS is online with a low battery state, and with Replace Battery, the battery must be replaced.
If none of these points apply, the plugin issues an OK for the following states:
	In the normal online state
	If the UPS is being calibrated (Calibrating)
	If it is currently being bypassed and the power supply is provided directly from the power supply grid (On Bypass)
	If the UPS is overloaded (Overload)
	If the voltage in the power grid is too high and the UPS restricts the voltage to the normal value (Trimming)
	If the voltage in the power grid is too low and is supplemented by the UPS (Boosting)
	If the UPS is currently being charged (Charging)
	If the UPS is currently being discharged (e.g., during a programmed maintenance procedure) (Discharging)

Transformed into a command object, the above test for any host looks like this:
define command{
 command_name check_ups
 command_line $USER1$/check_ups -H $HOSTADDRESS$ -u $ARG1$ -T
}
The corresponding service definition for the computer linux01, to which the UPS is connected, and for the above defined UPS upsfw, would then look like this:
define service{
 service_description UPS
 host_name linux01
 check_command check_ups!upsfw
 ...
}
If check_ups is to determine the UPS status by means of the current load, the relevant information is taken from the variable LOADPCT:
user@linux:nagios/libexec$./check_ups -H linux01 -u upsfw -T -v \
 LOADPCT -W 60 -c 80
UPS WARNING - Status=Online Utility=227.5V Batt=100.0% Load=61.9%
Temp=30.6C|voltage=227500mV;;;0 battery=100%;;;0;100 load=61%;60000;
80000;0;100 temp=30degC;;;0
With 61 percent, the UPS has a heavier load than specified in the limit value -w, but it does not yet reach the critical area above 80 percent, so there is just a warning. If two error criteria occur, such as a warning limit for a queried variable being exceeded and a critical state simultaneously, because the UPS is losing power (On Battery and Low Battery simultaneously), the most critical state has priority for the return value of the plugin, so here, check_ups would return CRITICAL, and not the WARNING which results from the query of LOADPCT.

[70] http://eul.networkupstools.org/server-projects/

6.12 Health Check of an NTP Server with check_ntp_peer
The plugin check_ntp_peer, which is included from plugin version 1.4.11, tests the quality of an NTP server. If you want to check the time deviation of a local server against an NTP server, you need to use the plugin check_ntp_time, described in 7.7.1 Checking the system time via NTP in page 177.
Several parameters characterize the quality: the offset describes the time difference from other NTP servers (the reference servers). Jitter is a measurement of the fluctuations in the packet delay to a remote reference server, and stratum specifies the topological distance from the next atomic clock. Stratum 0 is the atomic clock itself, stratum 1 refers to an NTP server directly connected to an atomic clock. Stratum 2 is an NTP server that obtains its time from an NTP server with stratum 1. The further an NTP server is away from the atomic clock, the higher the stratum value. The imprecision of the server also increases the higher this value is.
These parameters can also be queried with the program ntpq, by giving the IP address of the NTP server. The option -p reveals the reference server from which the queried NTP server obtains its time details. The option -n prevents name resolution on the reference servers, thus accelerating the execution of ntpq:
nagios@linux:nagios/libexec$ ntpq -np 192.168.1.13
remote refid st t when poll reach delay offset jitter
127.127.1.1 .LOCL. 10 1 26 64 377 0.000 0.000 0.001
*81.169.141.30 81.169.172.219 3 u 1 128 377 27.515 −4.411 1.219
+217.160.215.119 212.82.32.26 3 u 125 128 377 17.834 1.505 1.069
The remote column specifies the reference server that uses the queried NTP server. 127.127.1.1 here is a special case, and stands for the local system clock. The stratum value (column st), with 10, is relatively high, but the local system clock only plays a role if no other NTP source can is reachable. The other two quality parameters, offset and jitter, are located in the last two columns.
In the simplest case you can run check_ntp_peer, specifying only the NTP server to be checked (option -H):
nagios@linux:nagios/libexec$./check_ntp_peer -H 192.168.1.13
NTP OK: Offset −0.004411 secs|offset=−0.004411s;60.000000;120.000000;
Without further details the plugin checks the time deviation from the reference servers, and the stratum and jitter are not taken into account. All threshold details from check_ntp_peer are specified in the format described in 24.1.5 Specifying thresholds from page 557. The plugin has the following options:
-H
address
/ -host=address
This is the name or IP address of the NTP server to be checked.

-p
port
/--port=port
This is the UDP port on which the NTP server is listening. The default is port 123.

-q
/--quiet
This returns UNKNOWN instead of WARNING or CRITICAL if the NTP server is not synchronized.

-w
threshold
/ -warning=threshold
This is the warning threshold for the time deviation. A warning is issued if the time deviation between the NTP server and at least one of the reference servers is greater than the specified number of seconds. The default is 60 seconds.

-c
seconds
/ -critical=seconds
This is the critical threshold for the time deviation. If the time of one of the reference servers used deviates by more than seconds seconds (in the default: 120) from that of the NTP server, the state becomes CRITICAL.

-W
threshold
/ -swarn=threshold
This is the warning threshold based on the stratum value. A warning is issued if no reference server is available whose stratum value matches the specified threshold. This means that -W 1:2 causes a WARNING if no reference server is available with stratum 1 or stratum 2. Without the detail of this parameter the stratum value is not included in the check.

-C
threshold
/ -scrit=threshold
This is the critical threshold based on the stratum value. See -W.

-j
threshold
/ -jwarn=threshold
This is the warning threshold for the jitter in milliseconds, given in the threshold format. The plugin returns OK if at least one reference server displays a jitter within the specified range. If this option is not given, the jitter is not included in the evaluation; there is no default.

-k
threshold
/ -jcrit=threshold
This is the critical threshold for the jitter in milliseconds in the threshold format.

Chapter 7. Testing Local Resources
The plugins introduced in this chapter, originating from the nagios-plugins package,[71] test local resources that do not have their own network protocol and therefore cannot be easily queried over the network. They must therefore be locally installed on the computer to be tested. Such plugins on the Nagios server can test only the server itself—with command and service definitions as described in Chapter 6.
To perform such local tests from a central Nagios server on remote hosts, you require further utilities: the plugins are started via a secure shell, or you use the Nagios Remote Plugin Executor (NRPE). Using the secure shell is described in Chapter 9 from page 205, and Chapter 10 (page 213) is devoted to NRPE.
The definition of command and service depends on the choice of mechanism. If you want to test for free hard drive capacity with the check_by_ssh plugin installed on the Nagios server, which remotely calls check_disk on the target server (see Chapter 7, page 157), then a special command definition is required for this, which differs somewhat from the definitions given in Chapter 6 (page 105). What command and service definitions for remotely executed local plugins look like is described in the aforementioned chapters on NRPE and SSH.
For the remote query of some local resources you can also use SNMP (see Chapter 11 from page 227), but the checks are then restricted to the capabilities of the SNMP daemon used. Local plugins are usually more flexible here and provide more options for querying.
7.1 Free Hard Drive Capacity
The question of when the hard drive(s) of a computer may threaten to overflow is answered by the check_disk plugin. It has the following options for specifying thresholds:
-w
limit /--warning=limit
The plugin will give a warning if the free hard drive capacity drops below this limit, expressed as a percentage or as an integer. If you specify percentage, the percent sign % must also be included; floating point decimals such as 12.5% are possible. Integer values represent the absolute free space in the unit that defines the --units switch. The default is --units=MB, or megabytes.

-c
limit / --critical=limit
If the free hard drive capacity level falls below this as a percentage or integer (see -w), check_disk displays the CRITICAL status. The critical limit must be smaller than the warning limit.

-W
limit / -iwarning=limit
The number of free inodes in the file system as a percentage; check_ disk issues a warning if this drops below the limit.

-K
limit / -icritical=limit
Like -W, except that this is the critical threshold.

-u
unit / --units=unit
In what unit do you specify integer limit values? kB, MB, GB, and TB are all possible.

-k / --kilobytes
With this switch, limit values given as whole numbers with -c and -w are to be interpreted as KB. This is the same as --units=kB.

-m / --megabytes
With this switch, whole number limit values with -c and -w are interpreted by the plugin as MB (the default). This is the same as --units=MB.

Before one of the following path selectors is specified, at least one threshold must be given (-w, -c, -W, or -K).
-p
path_or_partition / --path=path or --partition=partitioin
This specifies the root directory in file systems or the physical device in partitions (e.g., /dev/sda5). From version 1.4 -p can be called multiple times. If the path is not specified, the plugin tests all file systems (see also -x and -X).

-E / --exact-match
This demands that the root of the file system is included for all paths or partitions specified with -p, otherwise the plugin will issue an error:

nagios@linux:nagios/libexec$ df /usr/local
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md2 9843168 7062980 2280172 76% /usr

/usr/local is not a file system, but a directory within the /usr file system on the partition /dev/md2. If you call the plugin with the switches -p /usr/local and -E, you will receive an error, since /usr/local is not itself the root of the file system as required by -E:

nagios@linux:nagios/libexec$./check_disk -w 10% -E -p/usr/local
DISK CRITICAL: /usr/local not found

-x
path / --exclude_device=path
This switch excludes the mount point specified as path from the test. This option assumes that paths are specified with -p and that they may be run in a plugin call multiple times.

-X
fs_typ / --exclude-type=fs_typ (from 1.4)
This switch excludes a specific file system type from the test. It is given the same abbreviation as in the -t option of the mount command. In this way fs_type can take the values ext3, reiserfs, or proc, for example (see also man 8 mount). This option can be used several times in a plugin command.

-R
regexp / --eregi-path=regexp,--eregi-partition=regexp
From version 1.4.8: a regular expression that selects all paths or partitions with which it matches. Upper/lower case is ignored here. The following example checks all partitions that end with mdO thru md2:

nagios@linux:nagios/libexec$./check_disk -w 10% -r 'md[0-2]$'
DISK OK - free space: / 281 MB (31% inode=80%); /usr 2226 MB (24% i
node=77%);| /=626MB;861;;0;957 /usr=6897MB;8650;;0;9612

The swap partition /dev/mdl is ignored here.

-r
regexp / --ereg-path=regexp, --ereg-partition=regexp
From version 1.4.8: a regular expression to check partitions and/or paths. Like -R, except that it is now case-sensitive.

-A / --all
From version 1.4.10: checks all partitions and file systems. The equivalent of -R '.*'.

-I
regexp / --ignore-eregi-path=regexp, --ignore-eregi-partition=regexp
From version 1.4.10: a regular expression that excludes paths or partitions that match it from the check. Upper/lower case is ignored.

-i
regexp / --ignore-ereg-path=regexp, --ignore-ereg-partition=regexp
From version 1.4.10: like -I, except that it is now case-sensitive.

In addition the plugin has the following options:
-e / --errors-only
With this switch, the plugin shows only the file systems or partitions that are in a WARNING or CRITICAL state.

-M / --mountpoint
From version 1.4 on, check_disk by default displays the file system path (e.g., /usr). With -M you are told instead what physical device (e.g., /dev/sda5) is involved.

-C / --clear
From version 1.4 on, -p can be used multiple times. If you want to test several file systems at the same time, but using different limit values, -C can be used to delete old limit values that have been set:

-w 10% -c 5% -p / -p /usr -C -w 500 -c 100 -p /var

The order is important here: the limit values are valid for the file system details until they are reset with -C. Then new limits must be set with -w and -c.

−1 / --local
Only checks local file systems, others-file systems mounted via NFS, for example-are ignored.

-L / --stat-remote-fs (ab Version 1.4.10)
Checks local file systems for the specified thresholds, but checks network file systems only for availability. With this switch you can test, for example, whether a stale file handle exists for a path connected via NFS.[72]

-g
group_name / --group-type=group_name
Refers to the thresholds of the sum of all specified partitions and paths. Without this switch the plugin compares each path and each partition separately with the thresholds. -g requires a name to be given, which the plugin includes as additional information in the output:

nagios@linux:nagios/libexec$./check_disk -g CLUSTER -w 10%\
 -r 'md[0-3]'
DISK OK - free space: CLUSTER 7437 MB (38% inode=86%);| CLUSTER=11
719MB;18163;;0;20182

This option must be placed in front of the path specification to which it refers.

-t
timeout / --timeout=timeout
After timeout seconds have expired the plugin stops the test and returns the CRITICAL status. The default is 10 seconds.

Here is a somewhat more extensive example of the use of check_disk:
user@linux:nagios/libexec$./check_disk -w 10% -c 5% -p / -p /usr \
 -p /var -C -w 5% -c 3% -p /net/emil1/a -p /net/emil1/c -e
DISK WARNING - free space: /net/emil1/c 915 MB (5%);| /=146MB;458;483;0;
509 /usr=1280MB;3633;3835;0;4037 /var=2452MB;3633;3835;0;4037 /net/emil1
/a=1211MB;21593;22048;0;22730 /net/emil1/c=17584MB;17574;17944;0;18499
Everything is in order on the file system /, /usr, and /var, since more space is available on them—as can be seen from the performance data—than the limit value of 10 percent (for a warning), and certainly more than 5 percent (for the critical status). The file systems /net/emil1/a and /net/emil1/c encompass significantly larger ranges of data, which is why the limit values are set lower, after the previous ones have been deleted with -C.
-e ensures that Nagios shows only the file systems that really display an error status. In fact the output of the plugin before the | sign, with /net/ emil1/c, only displays one single file system. The performance information after the pipe can only be seen on the command line—it contains all file systems tested, as before. This is slightly confusing, because a Nagios plugin restricts its output to a single line, which has been line wrapped here for this printed version.

[71] This edition is based on version 1.4.11.
[72] The error message NFS stale file handle indicates the non-availability of the NFS path.

7.2 Utilization of the Swap Space
The check_swap plugin tests the locally available swap space:
-w
limit / --warning=limit
The warning limit can be specified as a percentage or as an integer, as with check_disk, but the integer value is specified in bytes, not in kilobytes!

If at least 10 percent should remain free, specify -c 10%. The integer specification refers to the remaining free space, too.

-c
limit / --critical=limit
Critical limit, similar to the warning limit.

-a / --allswaps
Tests the threshold values for each swap partition individually.

The following example tests to see whether at least half of the swap space is available. If there is less than 20 percent free swap space, the plugin should return a critical status. After the | sign the program again provides performance data, which is logged by Nagios but not displayed in the message on the Web interface:
user@linux:nagios/libexec$./check_swap -w 50% -c 20%
swap OK: 100% free (3906 MB out of 3906 MB) |swap=3906MB;1953;781;0;3906

7.3 Testing the System Load
The load on a system can be seen from the number of simultaneously running processes, which is tested by the check_load plugin. With the help of the uptime program, it determines the average value for the last minute, the last five minutes, and the last 15 minutes. uptime displays these values in this sequence after the keyword load average:
user@linux:~$ uptime
16:33:35 up 7:05, 18 users, load average: 1.87, 1.38, 0.74
check_loadhas only two options (the two limit values), but these can be specified in two different ways:
-w
limit / --warning=limit
This option specifies the warning limit either as a simple floating point decimal (5.0) or as a comma-separated triplet containing three floating point decimals (10.0,8.0,5.0).

In the first case, the limit specified applies to all three average values. The plugin issues a warning if (at least) one of these is exceeded. In the second case the triplet allows the limit value to be specified separately for each average value. Here as well, check_load issues a warning as soon as one of the average values exceeds the limit defined for it.

-c
limit / --critical=limit
This specifies the critical limit in the same way as -w specifies the warning limit. These critical limit values should be higher than the values for -w.

-r / --percpu (from Version 1.4.9)
Divides the system load determined by the number of existing CPU kernels, to get a better idea of the load per CPU kernel.

In the following example Nagios would raise the alarm if more than 15 processes were active on average in the last minute, if more than 10 were active on average in the last five minutes, or if eight were active on average in the last 15 minutes. There is a warning for average values of ten, eight, or five processes:
user@linux:local/libexec$./check_load -w 10.0,8.0,5.0 -c 15.0,10.0,8.0
OK - load average: 1.93, 0.95, 0.50| load1=1.930000;10.000000;15.000000;
0.000000 load5=0.950000;8.000000;10.000000;0.000000 load15=0.500000;
5.000000;8.000000;0.000000

7.4 Monitoring Processes
The check_procs plugin monitors processes according to various criteria. Usually it is used to monitor the running processes of just one single program. Here the upper and lower limits can also be specified.
nmbd, for example, the name service of Samba, always runs as a daemon with two processes. A larger number of nmbd entries in the process table is always a sure sign of a problem; it is commonly encountered, especially in older Samba versions.
Services such as Nagios itself should only have one main process. This can be seen by the fact that its parent process has the process ID 1, marking it as a child of the init process. It was often the case, in the development phase of Nagios 2.0, that several such processes were active in parallel after a failed restart or reload, which led to undesirable side effects. You can test to see whether there really is just one single Nagios main process active, as follows:
nagios@linux:nagios/libexec$./check_procs -c 1:1 -C nagios -p 1
PROCS OK: 1 process with command name 'nagios', PPID = 1
The program to be monitored is called nagios (option -C), and its parent process should have the ID 1 (option -p). Exactly one Nagios process must be running, no more and no less; otherwise the plugin will issue a CRITICAL status. This is specified as a range: -c 1:1.
Another example: between one and four simultaneous processes of the OpenLDAP replication service slurpd should be active:
nagios@linux:nagios/libexec$./check_procs -w 1:4 -c 1:7 -C slurpd
PROCS OK: 1 process with command name 'slurpd'
If the actual process number lies between 1 and 4, the plugin returns OK, as is the case here. If it finds between five and seven processes, however, a warning will be given. Outside this range, check_procs categorizes the status as CRITICAL. This is the case here if there are either no processes running at all, or more than seven running.
Instead of the number of processes of the same program, you can also monitor the CPU load caused by it, its use of memory, or even the CPU runtime used. check_procs has the following options:
-w
start: end / --warning=start: end
The plugin issues a warning if the actual values lie outside the range specified by the start and end value. Without further details, it assumes that it should count processes: -w 2:10 means that check_ procs gives a warning if it finds less than two or more than ten processes.

If you omit one of the two limit values, zero applies as the lower value, or infinite as the upper limit. This means that the range :10 is identical to 0:10; 10: describes any number larger than or equal to 10. If you just enter a single whole number instead of a range, this represents the maximum. The entry 5 therefore stands for 0:5.

If you swap the maximum and minimum, the plugin will give a warning if the actual value lies within the range, so for -w 10:5 this will be if the value is 5, 6, 7, 8, 9, or 10. You may always specify only one interval.

-c
start : end / --critical=start : end
This specifies the critical range, in the same way as for the warning limit.

-m
type / --metric=type
This switch selects one of the following metrics for the test:

PROCS:

number of processes (the default if no specific type is given)

VSZ:

the virtual size of a process in the memory (virtual memory size), consisting of the main memory space that the process uses exclusively, plus that of the shared libraries used. These only take up memory space once, even if they are used by several different processes. The specification is given in bytes.

RSS:

the proportion of main memory in KB that the process actually uses for itself (Resident Set Size), that is, VSZ minus the shared memory.

CPU:

CPU usage in percent. The plugin here checks the CPU usage for each individual process for morning and critical limits. If one of the processes exceeds the warning limit, Nagios will issue a warning. In the text output the plugin also shows how many processes have exceeded the warning or critical limit.

ELAPSED:

The overall time that has passed since the process was started.

-s
flags / --state=flags
This restricts the test to processes with the specified status flag. [73] The plugin in the following example gives a warning if there is more than one zombie process (status flag:Z) :

nagios/libexec@linux: $./check_procs -w 1 -c 5 -s Z
PROCS OK: 0 processes with STATE = Z

Things become critical here if more than five zombies "block up" the process table. Several states can be queried at the same time by by adding individual flags together, as in -s DSZ. Now Nagios cancels the processes that are in at least one of the states mentioned.

-p
ppid / --ppid=ppid
This switch restricts the test to processes whose parent processes have the parent process ID (ppid). The only PPIDs that are known from the beginning, and that do not change, are 0 (started by the kernel, and usually only concerns the init process) and 1 (the init process itself).

-P
pcpu / --pcpu=pcpu
This option filters processes according to the percentage of CPU they use :

nagios/libexec@linux: $./check_procs -w 1 -c 5 -P 10
PROCS OK: 1 process with PCPU >= 10,00

The plugin in this example takes into account only processes which have at least a ten percent share of CPU usage. As long as there is just one such process (-w 1), it returns OK. If there are between two and five such processes, the return value is a WARNING. With at least six processes, each with a CPU usage of at least ten percent, things get critical.

-r
rss / --rss=rss
This option filters out processes that occupy at least rss bytes of main memory. It is used like -P.

-z
vsz / --vsz=vsz
This option filters out processes whose VSZ (see above) is at least vsz bytes. It is used like -P.

-u
user / --user=user
This option filters out processes that belong to the specified user (see example below).

-a
"string" / --argument-array="string"
Filters out commands whose argument list contains string. -a. tex, for example, refers to all processes that work with *. tex files; -a -v to all processess that are called with the -v flag.

-C
command / --command=command
This causes the process list to be searched for the specified command name. command must exactly match the command specified, without a path (see example below).

-t
timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns the CRITICAL status. The default is 10 seconds.

The following example checks to see whether exactly one process called master is running on a mail server on which the Cyrus IMAPd is installed. No process is just as much an error as more than one process:
user@linux : nagios/libexec$./check_procs -w 1 : 1 -c 1 : 1 -C master
CRITICAL - 2 processes running with command name master
The first attempt returns two processes, although only a single Cyrus Master process is running. The reason can be found if you run ps:
user@linux : ~$ ps -fC master
UID PID PPID C STIME TTY TIME CMD
cyrus 431 1 0 2004 ? 00 : 00 : 28 /usr/lib/cyrus/bin/master
root 1042 1 0 2004 ? 00 : 00 : 57 /usr/lib/postfix/master
The Postfix mail service also has a process with the same name. To keep an eye just on the master process of the IMAPd, the search is additionally restricted to processes running with the permissions of the user cyrus:
user@linux : nagios/libexec$./check_procs -w 1 : 1 -c 1:1 -C master -u \
 cyrus
OK - 1 processes running with command name master, UID = 96 (cyrus)

[73] The following states are possible in Linux: D (uninterruptible waiting, usually a Disk Wait), R (running process), S (wait status), T (process halted), W (paging, only up to kernel 2.4), X (a finished, killed process), and Z (zombie). Further information is provided by man ps.

7.5 Checking Log Files
Monitoring log files is not really part of the concept of Nagios. On the one hand, the syslog daemon notices critical events there immediately, so that an error status can be correctly determined. But if the error status continues, this cannot be seen in the log file in most cases.
Correspondingly the plugins described here can determine only whether other, new entries on error events are added. In order to communicate information on a continuing error behavior to Nagios via a log file, the service monitored must log the error status regularly—at least at the same intervals as Nagios reads the log file—and repeatedly. Otherwise the plugin will alternate between returning an error status, and then an OK status, depending on whether the (continuing) error has in the meantime turned up in the log or not.
Under no circumstances may Nagios repeat its test. The parameter max_check_attempts (see 2.3 Defining the Machines to Be Monitored, with host) must have the value 1. Otherwise Nagios would first assign the error status as a soft state, would repeat the test, and would almost always arrive at an OK, since it only takes into account new entries during repeat tests. max_check_attempts = 1 ensures that Nagios diagnoses a hard state after the first test.
For events that log an error just once, Nagios has volatile services, described in 14.5.2 Nagios configuration: volatile services from page 309. For services defined in this way, the system treats every error status as if it was occurring for the first time (causing a message to be sent each time, for example).
Nagios periodically performs (active) checks with the plugins introduced here. If the entry sought does not reoccur, the plugin returns an OK. This is desired in many cases, and the administrator does not need to worry about the earlier error event. But if an error event needs to be handled in all cases, a simple Nagios check is no longer sufficient, since it will be easily overlooked due to the OK of a subsequent check. A slightly different approach, in which an administrator has to explicitly confirm every error result, is introduced in Chapter 23 in page 531.
7.5.1 The standard plugin check.log
With check_log, Nagios provides a simple plugin for monitoring log files. It creates a copy of the tested log file each time it is run. If the log file has changed since the previous call, check_log searches the newly added data for simple text patterns. The plugin does not have any longer options and just has the states OK and CRITICAL :
-F
logfile
This is the name and path of the log file to be tested. It must be readable for the user nagios.

-O
oldlog
This is the name and path of the log file copy. The plugin just examines the difference between oldlog and logfile when it is run. Afterward it copies the current log file to oldlog. oldlog must contain the absolute path and be readable for the user nagios.

-q
query
This is the pattern searched for in examining the log file. Not found means OK; a match returns the CRITICAL status.

It is recommended that you generally do not use messages of the type recovery notification (OK after an error state).
An OK in a repeated test just means that no new error in events have occurred since the last test. The notification_options parameter (see 2.3 Defining the Machines to Be Monitored, with host) in the service definition should therefore not contain an r.
The following command examines the file /var/log/auth for failed logins :
nagios@linux : local/libexec$./check_log -F /var/log/auth \
 -O /tmp/check_log.badlogin -q "authentication failure"
(1) < Jan 1 18 : 47 : 56 swobspace su[22893]: (pam_unix) authentication
failure; logname=wob uid=200 euid=0 tty=pts/8 ruser=wob rhost= user=root
This produces one hit. The plugin does not show its return value in the text, but it can be displayed in the shell with echo $?. In the example, a 2 for CRITICAL is returned.
If you examine the log file for several different events, you must specify a separate oldlog for each log file:
./check_log -F /var/log/messages -O /tmp/check_log.pluto -q "pluto"
./check_log -F /var/log/messages -O /tmp/check_log.ntpd -q "ntpd"
Even if you are searching in the same original log file, you cannot avoid using two different oldlogs: otherwise check_log would not work correctly.
7.5.2 The modern variation: check_logs.pl
As an alternative, The Nagios Exchange[74] provides a completely new plugin for monitoring log files. check_logs.pi represents a further development of the Perl plugin check_log2.pl, which is included in the contrib directory for Nagios plugins but is not installed automatically.
check_logs.pl can examine several log files simultaneously for events, in contrast to check_log and check_log2.pl. It requires a configuration file to do this.
It does have a simple command line mode, but this functions only if you specify a single log file and a single regular expression simultaneously. But the really interesting feature of check_logs.pl is that you can perform several examinations in one go. This is why we will not spend any more time describing the command line mode.
Initially we create a configuration file with roughly the following contents, preferably in the directory /etc/nagios:
/etc/nagios/check_logs.cfg
$seek_file_template='/var/nagios/$log_file.check_log.seek';

@log_files = (
 {'file_name' ⇒ '/var/log/messages',
 'reg_exp' ⇒ 'ntpd',
 },
 {'file_name' ⇒ '/var/log/warn',
 'reg_exp' ⇒ '(named|dhcpd)',
 },
);
 1;
The Perl variable $seek_file_template contains the path to the file in which the plugin saves the current position of the last search. check_logs.pl remembers here at what point in the log file it should carry on searching the next time it is run. This means that the plugin does not require a copy of the processed log file. Instead of the variable $log_file, it uses the name of the log file to be examined in each case and creates a separate position file for each log file.
What exactly check_logs.pl is to do is defined by the Perl array @log_files. The entry file_name points to the log file to be tested (with the absolute path), and reg_exp contains the regular expression,[75] for which check_logs.pl should search the log file. In the example above this is just a simple text called ntpd in the case of the /var/log/messages log file, but there is an alternative in the case of /var/log/warn: the regular expression (named | dhcpd) matches lines that contain either the text named or the text dhcpd.
The only specification that the plugin itself requires when it is run is the configuration file (option -c):
nagios@linux : local/libexec$./check_logs.pl -c \
/etc/nagios/check_logs.cfg
messages ⇒ OK; warn ⇒ OK;

nagios@linux : local/libexec$./check_logs.pl -c \
/etc/nagios/check_logs.cfg
messages ⇒ OK; warn ⇒ (4): Jul 2 14 : 33 : 25 swobspace dhcpd: Configuration file
 errors encountered -- exiting;
The first command shows the basic principle: in the text output the plugin for each log file announces separately whether it has found a matching event or not. In the above example it didn't find anything, so it returns OK. In the second command the plugin comes across four relevant entries in the warn log file, but it doesn't find any in /var/log/messages. Because of this, the plugin returns a WARNING; OK is given only if no relevant events were found in any of the log files checked. In its output line, after (4):, the plugin remembers the last of the four lines found.
7.5.3 The Swiss Army knife: check_logfiles
If you have many requirements from a log file check and the tools introduced so far do not meet your needs, then you really should take a look at the plugin check_logfiles by Gerhard Laußer. As well as sophisticated search options, it can handle any rotation methods you please, so that no information will be lost after a rotation. Its range of functions can be extended by scripts, which can be used to restart applications that have crashed, to send SNMP traps, or send passive check results to an NSCA daemon via send_nsca (14.4 Sending Test Results to the Server, page 305).
For simple tasks the plugin can be operated easily from the command line, but to use it in more advanced ways you will need to have some knowledge of Perl: the configuration file that is needed to make use of all the features uses the Perl syntax.
The plugin[76] is unpacked in a suitable directory, for example in /usr/local/src:
linux: local/src # tar xvzf /pfad-zu/check_logfiles-2.3.1.2.tar.gz
...
linux: local/src # cd check_logfiles-2.3.1.2
linux: check_logfiles-2.3.1.2 # ./configure \
 --with-seekfiles-dir=/var/tmp \
 --with-protocols-dir=/var/tmp
...
linux: check_logfiles-2.3.1.2 # make && make install
...
The installation is done with the three commands configure && make && make install. --with-seekf iles-dir specifies the directory in which check_logfiles writes status information, and --with-protocol-dir specifies the directory in which check_logfiles explicitly retains matches it has found. When doing this you should select a directory that is not deleted directly after every reboot. Logging can be switched off in the configuration, depending on the check defined.
On the command line, check_logfiles offers the following options :
--tag=designator
Indicates individual checks, to make better distinction between them. The names of the variables in the performance data also start with this designator, so that the values can later be reassigned to a check. Specifying --tag is optional, but the author of the plugin generally recommends its use.

--logfile=logfile
Specifies the name and path of the log files to be examined. check_logfiles takes note of the last line of the file to be considered during each check, so that it can continue at the same place the next time it is called. In addition, check_logfiles saves other information such as inode and timestamp, so that it can detect log file rotations.

--rotation=rotation method
Specifies the rotation procedure for the log file: loglog0log1gz is used if if you want to turn logfile into logfile.0 and turn this into Logfile.1.gz.

loglog0gzlog1gz means that logfile is first compressed to logfile. 0. gz and is later renamed logfile.1.gz.

loglogdate8gz states that logfile will be converted into logfile. YYYYMMDD.gz.

loglog01og1 describes the rotation method that turns logfile into logfile.0 and creates the file logfile.1 in the next rotation step.

hpux in turn describes the variation " logfile is turned into OLDlogfile".

If a suitable rotation method is missing, you can specify a regular expression that matches the archived files instead. For Debian, you therefore specify --rotation='
logfile\. (0|[0-9]+\.gz). This is in case the ending .0 is missed during the initial rotation of the file, and if all older archived files end in .number.gz.

--criticalpattern=regexp
Regular expression in Perl syntax that triggers a CRITICAL. More detailed information on this is provided by man perlre.

--warningpattern=regexp
Like --criticalpattern, except that the regular expression here triggers a WARNING.

--noprotocol
Switches off logging of matches to a separate file.

--syslogserver
Restricts the evaluation of log files of a syslog server to lines that the server itself has entered.

--syslogclient=clientname
Restricts the evaluation of log files of a syslog server to lines that originate from the syslog client clientname.

-f
configfile
Specifies a configuration file that allows a more extensive configuration than that allowed by just a few command line parameters. A knowledge of Perl is essential for this (see 7.5.3 The Swiss Army knife: check_logfiles).

-d
Switches on debugging. Useful for searching for errors; this option should not be used during normal operation.

check_logfiles is initialized when it is first called so that it can orient itself. The plugin only takes into account log entries that are subsequently appended to the log file, so it cannot evaluate already existing details.
For demonstration purposes we will first use the logger program to generate an entry in the file /var/log/messages: [77]
user@linux: ~$ logger -p daemon.info hellowob
The log file now contains the following entry:
Dec 16 17 : 46 : 06 swobspace wob: hellowob
A simple call of check_logfiles returns the following result :
nagios@linux : nagios/libexec$./check_logfiles --tag=hellowob \
 --logfile=/var/log/messages --criticalpattern='hellowob'
CRITICAL - (1 errors in check_logfiles.protocol-2007-12-16-17-46-08) - D
ec 16 17 : 46 : 06 swobspace wob: hellowob |hellowob_lines=2 hellowob_warni
ngs=0 hellowob_criticals=1 hellowob_unknowns=0
All variables in the performance data are appended to the hellowob tag so that the respective events can be referenced again, if check_logfiles is to simultaneously search for several different entries.
Re-running check_logfiles again returns an OK, since none of the 32 newly added entries (hellowob_lines=32) contains the text being sought:
nagios@linux : nagios/libexec$./check_logfiles --tag=hellowob \
 --logfile=/var/log/messages --criticalpattern='hellowob'
OK - no errors or warnings |hellowob_lines=32 hellowob_warnings=0 hellow
ob_criticals=0 hellowob_unknowns=0
Configuration Files
Configuration files for check_logfiles basically contain an array consisting of search instructions, each of which are written as an anonymous hash:
@searches = (
 { search_instruction_1 },
 { search_instruction_2 },
 ...
 { search_instruction_n },
)
The array is called @searches; each instruction enclosed in {} is a search instruction. A configuration file for the hellowob example could look like this:
@searches = (
 {
 tag ⇒ 'hellowob',
 logfile ⇒ '/var/log/messages',
 criticalpatterns ⇒ 'hellowob',
 rotation ⇒ 'debian',
 options ⇒ 'noprotocol,nocase',
 },
)
The instructions tag and rotation correspond to the command line parameters of the same name. The instructions criticalpatterns and warningpatterns are notated here -in contrast to the equivalent command line parameter-in the plural. The configuration file also allows multiple details :
criticalpatterns ⇒ ['VIRUS found', 'hellowob'],
Instead of a scalar, an anonymous array may also be specified within square brackets. Here are some more instructions for @searches:
archivedir
Archive directory for rotated log files. The default is the directory in which the log file is located.

type
Specifies the type of log file: rotation is accepted by default if the parameter rotation is set. simple describes log files without rotation, check_logfiles does not continue searching for archived files. virtual indicates files that should always be searched from the beginning, such as sockets or files from the /proc directory in Linux. For AIX, the option errpt is also available: instead of a real file, the plugin now searches for the output of the errpt command.

criticalpatterns
Like the command line option --criticalpattern, except that now a number of expressions may be specified as an array:

criticalpatterns ⇒ ['.*hallowob.*', '.*hellowob.* ', '!dontcryforme'],

The exclamation mark ensures a CRITICAL if no line is found with the text dontcryforme.

criticalexceptions
Like criticalpatterns, except as an exception: If a line matches an expression from criticalpatterns, a CRITICAL would be triggered. If an expression from criticalexceptions also matches this very same line, this then stops the critical state. The instruction is used to intercept special cases.

criticalthreshold
Sets a threshold. The value 5, for example, means that only every fifth match from criticalpatterns is really counted as CRITICAL. Below this threshold, the result remains OK.

warningpatterns
Like criticalpatterns, except for warnings.

warningexceptions
Like criticalexceptions, except for warnings.

warningthreshold
Like criticalthreshold, except for warnings.

okpatterns
Sometimes errors can rectify themselves. In such cases the administrator does not want to be woken up by unnecessary alarms.

okpatterns cancels all previous WARNINGs and CRITICALs. It is possible to specify multiple details (see criticalpatterns).

script
Allows a script to be executed in case a match is found. To following instructions supplement this: scriptparams passes additional command line options to the script, scriptstdin allows to specify strings that are expected by the script on STDIN, and scriptdelay forces check_logfiles to take a break after the script has been executed.

options
This instruction allows further settings options to be made, the meanings of which can be negated by placing the prefix no in front of the option:

script

Executes the specified script. The default is noscript.

smartscript

Controls whether the return value of the script and its output should be included in the match list. The default is nosmartscript.

supersmartscript

Defines whether the return value and the output of the script should replace previous matches (the default is nosupersmartscript). The return value 0 (OK) of the script would, for example, suppress a found match, by overwriting the return value that is normally returned by check_logfiles.

protocol

Controls whether matches are to be retained in a separate log file. (The default is protocol).

count

Should matches be counted or not? count is the default. If this option is switched off with nocount, you can still use check_logfiles to just execute scripts.

syslogserver

Corresponds to the option --syslogserver (the default is nosyslogserver).

syslogclient=string

Like --syslogclient, except that an additional filter may be specified, for example, to search only for the files of a specific client (nosyslogclient is the default).

perfdata

Should performance data be displayed? The default is perfdata.

logfilenocry

If a log file does not exist, check_logfiles outputs UNKNOWN, in accordance with the default, logfilenocry. The parameter nologfilenocry tells the plugin to omit an error message if the log file is missing.

case nocase

ignores upper/lower case. The default, with case, is the opposite of this.

sticky=seconds

With this option check_logfiles notices an error state for the amount of time specified. Normally a subsequent check that does not find any more matches would return an OK, so that the administrator might overlook an important entry.

Let us assume that you only accept the truce when there have been no more matches in the log file for two hours. Then the check with sticky=7200 will announce an error state for up to two hours. Only after this period has expired will check_logfiles return to an OK, provided that in the meantime no new entry restarts the two-hour time limit.

If the search pattern contains okpattern, check_logfiles returns an OK directly after a match, that is, before the specified time has expired.

savethresholdcount

If an event does not attain the number of matches required in the *threshold options, no error is announced. The question here is how the matches overall should be handled. savethresholdcount (the default) saves the number of matches until the next check and adds these together until the threshold is reached and an error is triggered. The parameter nosavethresholdcount prevents the event counter from always being reset to zero between two checks.

It is beyond the scope of this book to describe all the possible applications of check_logfiles. For this reason, we refer to the documentation, available in German and English, on the check_logfiles Web site.[78]

[74] http://www.nagiosexchange.org/54;279
[75] In the form of Perl-compatible regular expressions (PCRE, see man perlre), since check_logs.pi is a Perl script.
[76] http://www.consol.de/opensource/nagios/check-logfiles
[77] We are assuming here that the daemon facility is logged with the info priority in /var/log/messages. This is dependent on the distribution, however. In Debian, such entries land in /var/log/daemon.log.
[78] http://www.consol.com/opensource/nagios/check-logfiles

7.6 Keeping Tabs on the Number of Logged-In Users
The plugin check_users is used to monitor the number of logged-in users:
user@linux:nagios/libexec$./check_users -w 5 -c 10
USERS CRITICAL - 20 users currently logged in |users=20;5;10;0
It has just two options:
-w
number
/ --warning=number
This is the threshold for the number of logged-in users after which the plugin should give a warning.

-c
number
/ --critical=number
This is the threshold for a critical state, measured by the number of logged-in users.

The performance data after the | is as usual visible only on the command line; Nagios does not include it in the Web interface.

7.7 Checking the System Time
7.7.1 Checking the system time via NTP
The two plugins check_ntp and check_ntp_time compare the clock time of the local computer with that of an available NTP server in the network. If the Nagios server keeps time via NTP accurately enough, so that it can serve as a reference itself, then it can also be used as a network plugin, provided that the host to be checked in the network has an NTP daemon installed.
From plugin version 1.4.11, the plugins check_ntp_time and check_ntp_peer (6.12 Health Check of an NTP Server with check_ntp_peer, page 154) replace check_ntp, which contains the functions of both: the comparison of the local system time with an NTP server described here and the health check of the NTP server itself. The options here apply both to check_ntp and to check_ntp_time.
In the simplest case, check_ntp is called, specifying the computer (here: ntpserver) whose time should be compared with that of the local computer:
nagios@linux:nagios/libexec$./check_ntp_time -H ntpserver
NTP OK: Offset −0.009505749214 secs|offset=−0.009506s;60.000000;120.0000
00;
The deviation determined here amounts to just 9.5 milliseconds, a good value. How much deviation can be tolerated depends on the particular intended use. If you want to compare the log file entries of several different computers, they ought to be NTP-synchronized. Then you can certainly use -w 1 -c 2, that is, assign a deviation of two seconds as critical. In environments in which Kerberos is used for authentication, time synchronization of all hosts involved is also important, but not quite as critical: Microsoft's Active Directory under Windows Server 2003 tolerates a maximum deviation of five minutes, and only when there are larger deviations do real problems arise.
check_ntp_time and check_ntp have the following options:
-H
address
/ --host=address
This is the NTP server with which the plugin should compare the local system time.

-p
port
/ --port=port
The UDP port on which the NTP server runs. The default is port 123.

-w
threshold
/ --warning=threshold
This is the warning limit, specified in the standard threshold format (24.1.5 Specifying thresholds, page 557). The warning is given if the fluctuation of the local system time is larger than the threshold specified. The default is 60 seconds.

-c
threshold
/ --critical=threshold
Critical threshold in seconds, specified in the standard threshold format (24.1.5 Specifying thresholds, page 557). If the local system time deviates more than the given number of seconds (in the default setting 120 seconds) from that of the NTP server, the status becomes CRITICAL.

-q / --quiet (only check_ntp_time)
Returns UNKNOWN instead of CRITICAL if the NTP server-for whatever reason-does not provide an offset.

7.7.2 Checking system time with the time protocol
Apart from the Network Time Protocol NTP there is another protocol, older and more simple: the Time Protocol described in RFC 868, in which communication takes place via TCP port 37. On many Unix systems the corresponding server is integrated into the inet daemon, so you do not have to start a separate daemon. With check_time, Nagios provides an appropriate test plugin.
check_time can also be used as a network plugin, in a similar way to check_ntp, but this again assumes that the time service is available for every client. In most cases it will therefore be used as a local plugin that compares its own clock time with that of a central time server (here: timesrv):
nagios@linux:nagios/libexec$./check_time -H timesrv -w 10 -c 60
TIME CRITICAL - 1160 second time difference| time=0s;;;0 offset=1160s;10 ;60;0
The performance data after the | sign, not shown in the Web interface, contains the response time in seconds, with time (here: zero seconds); offset describes by how much the clock time differs from that of the time server (here: 1160 seconds). The other values, each separated by a semicolon, provide the warning limit, the critical threshold, and the minimum (see also 19.1 Processing Plugin Performance Data with Nagios from page 404). Since we have not set any threshold values with the options -W or -C, the corresponding entries for time are empty
check_time has the following options:
-H
address
/ --hostname=address
This is the host name or IP address of the time server.

-p
port
/ --port=port
This is the TCP port specification, if different from the default 37.

-u / --udp
Normally the time server is queried via TCP. With -u you can use UDP if the server supports this.

-w
integer
/ --warning-variance=integer
If the local time deviates more than integer seconds from that of the time server, the plugin returns a WARNING. integer is always positive, and this covers clocks that are running both slow and fast.

-c
integer
/ --critical-variance=integer
If there is more than integer seconds difference between the local and the time server time, the return value of the plugin is CRITICAL.

-W
integer
/ --warning-connect=integer
If the time server needs more than integer seconds for the response, a WARNING is returned.

-C
integer
/ --critical-connect=integer
If the time server does not respond within integer seconds, the plugin reacts with the return value CRITICAL.

7.8 Regularly Checking the Status of the Mail Queue
The check_mailq plugin can be used to monitor the mail queue of a mail server for e-mails that have not yet been delivered. check_mailq runs the program mailq of the mail service installed. Unfortunately each MTA interprets the mail queue differently, so the plugin can evaluate only mail queues from mail services that the programmer has taken into account. These are, specifically: sendmail, qmail, postfix, and exim. The check_mailq plugin has the following options:
-w
number
/ --warning=number
If there are at least number mails in the mail queue, the plugin gives a warning.

-c
number
/ --critical=number
As soon as there are at least number of mails in the queue waiting to be delivered, then the critical status has been reached.

-W
number_of_domains
/ --Warning=number_of_domains
This is the warning limit with respect to the number of recipient domains of a message waiting in the mail queue. Thus -W 3 generates a warning if there are any mails in the queue that are addressed to three or more different recipient domains.

-C
number_of_domains
/ --Critical=number_of_domains
This is the critical threshold with respect to the number of recipient domains (like -W).

-M
daemon
/ --mailserver=daemon (from version 1.4)
This specifies the mail service used. Possible values for daemon are sendmail (the default), qmail, postfix, and exim.

-t
timeout
/ --timeout=timeout
After timeout seconds, the plugin stops the test and returns the CRITICAL status. The default here—as an exception—is 15 seconds (usually it is 10 seconds).

In the following example, Nagios should give a warning if there are at least five mails in the queue; if the number reaches ten, the status of the MTAs Postfix used here becomes CRITICAL:
user@linux:nagios/libexec$./check_mailq -w 5 -c 10 -M postfix
OK: mailq reports queue is empty|unsent=0;5;10;0
Since the queue is empty, check_mailq returns OK here.

7.9 Keeping an Eye on the Modification Date of a File
With the check_file_age plugin you can monitor not only the last modification date of a file, but also its size. In the simplest case it is just run with the name and path of the file to be monitored:
user@linux:nagios/libexec$./check_file_age /var/log/messages
WARNING - /var/log/syslog/messages is 376 seconds old and 7186250 bytes
Here the plugin gives a warning, since the warning limit set is 240 seconds and the critical limit, 600 seconds. The last modification of the file was 376 seconds ago—that is, inside the warning range.
The file size is taken into account by check_file_age only if a warning limit for the file size (option -W) is explicitly specified. The plugin could then give a warning if the file is smaller than the given limit (in bytes). The defaults for the warning and critical limits here are both zero bytes.
check_file_age has the following options:
-w
integer
/ --warning-age=integer
If the file is older than integer[79] (the default is 240) seconds, the plugin issues a warning.

-c
integer
/ --critical-age=integer
A critical status occurs if the file is older than integer (default: 600) seconds.

-W
size
/ --warning-size=size
If the file is smaller than size bytes, the plugin gives a warning. If the option is omitted, 0 bytes is the limit. In this case check_file_age does not take the file size into account.

-C
size
/ --critical-size=size
A file size smaller than size bytes sets off a critical status. The default is 0 bytes, which means that the file size is ignored.

-f
file
/ --file=file
The name of the file to be tested. The option may be omitted if you instead—as in the above example—just give the file name itself as an argument.

[79] Because check_file_age is a Perl script, it does not matter in this case whether an integer or a floating point decimal is specified. Fractions of a second do not play a role in the file system.

7.10 Monitoring UPSs with apcupsd
To monitor uninterruptible power supplies (UPS) from the company APC there is the possibility, apart from the Network UPS Tools described in 6.11 Monitoring UPS with the Network UPS Tools from page 149 of using the apcupsd daemon, optimized specifically for use with these UPSs. The software can be obtained from http://www.apcupsd.com/ and is licensed under the GPL, despite the fact that it is vendor-dependent.
The principal function here is the capacity to be able to shut down systems in the event of power failure, rather than a mere monitoring function with Nagios. For this latter purpose, it is easier to configure the Network UPS Tools.
Nearly all Linux distributions contain a working apcupsd package,[80] so you don't have to worry about installing it. Nagios does not include an apcupsd plugin, but there is a very simple and effective script available for download at http://www.negativel.org/check_apc/: check_apc.[81] It is also licensed under the GPL, but it has no network capabilities. The plugin cannot be given a host when it is run, and it also does not support any other types of options. Instead of this, internal commands control its functionality, which are given as the first argument.
Executing check_apc status tests whether the UPS is online. If this is the case, the plugin returns the OK status, in all other cases it returns CRITICAL:
user@linux:nagios/libexec$./check_apc status
UPS OK - ONLINE
check_apc load
warn crit checks the load currently on the UPS and displays it as a percentage of the maximum capacity A warning is given if the load is greater than the warning limits specified in warn (in the following example, 60 percent), CRITICAL if the load is greater than crit (here 80 percent):
user@linux:nagios/libexec$./check_apc load 60 80
UPS OK - LOAD: 39%
The load status of the UPS is checked by the command check_apc bcharge
warn crit. Here the warning limit warn and the critical limit crit are also given in percent. The value 100 means "fully loaded." The plugin accordingly gives a warning if the load is smaller than the warning limit, and a CRITICAL if the load is smaller than the critical limit:
user@linux:nagios/libexec$./check_apc bcharge 50 30
UPS OK - Battery Charge: 100%
You can find out how long the saved energy will last with check_apc time
warn crit. Here check_apc gives a warning if the remaining time is less than warn minutes, and a CRITICAL if the remaining time is less than crit minutes:
user@linux:nagios/libexec$./check_apc time 20 10
UPS OK - Time Left: 30 mins

[80] At least SuSE and Debian use this package name.
[81] It can also be obtained at: http://www.nagiosexchange.org/54;615.

7.11 Nagios Monitors Itself
If necessary, Nagios can even monitor itself: the included plugin, check_nagios, tests, on the one hand, whether Nagios processes are running and, on the other hand, the age of the log file nagios.log in the Nagios var directory, for example, /var/nagios/nagios.log.
Despite this, the question needs to be asked: if Nagios itself is not running, then the system simply cannot perform the plugin, which in turn cannot deliver an error message. The solution to this problem consists in having two Nagios servers, each of which addresses the locally installed plugin on the opposite server, with the help of NRPE (see Chapter 10 from page 213).
If you have just one Nagios server you can also run check_nagios alone via cron and have the return value checked using a shell script. In this case, you take action yourself, as shown in 7.11.1 Running the plugin manually with a script, so that you are suitably informed of this.
The plugin has the following options:
-C
/path/to/nagios
/ --command=/path/to/nagios
This is the complete nagios command, including the path (e.g., -C /usr/local/nagios/bin/nagios).

-F
/path/to/logfile
/ --filename=/path/to/logfile
This is the path to where the Nagios log file nagios.log is saved. The file is located in the Nagios var directory.

-e
integer
/ --expires=integer
This is the maximum age of the log file. If there have been no changes to the file for longer than integer minutes, check_nagios issues a warning.

You should make sure that this time specification is large enough: if no errors are currently occurring, Nagios will not log anything in the log file. The only reliable way to obtain a regular entry is with the parameter retention_update_interval in the configuration file nagios.cfg (see A.1 The Main Configuration File nagios.cfg). The default value is 60 minutes.

In the following example the log file should not be older than 60 minutes (this corresponds to the default retention update interval; see A.1 The Main Configuration File nagios.cfg):
user@linux:nagios/libexec$./check_nagios -e 60 \
 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios
NAGIOS OK: 1 process, status log updated 184 seconds ago
With one running Nagios process and a log file last changed 183 seconds (about three minutes) ago, everything is in order here. If the -e parameter is omitted, the plugin always gives a warning.
7.11.1 Running the plugin manually with a script
The following example script demonstrates how the plugin is called outside the Nagios environment. It starts check_nagios initially as Nagios does and then evaluates the return value. If the status is not 0, it sends an e-mail to the administrator nagios-admin@example.com, using the external mailx program:
#!/bin/bash
NAGCHK="/usr/local/nagios/libexec/check_nagios"
PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios"

INFO='$NAGCHK $PARAMS'
STATUS=$?

case $STATUS in
 0) echo "OK : " $INFO
 ;;
 *) echo "ERROR : " $INFO | \
 /usr/bin/mailx -s "Nagios Error" nagios-admin@example.com
 ;;
esac
The script can be run at regular intervals via a cron job—such as every 15 minutes. But then it will also "irritate" the administrator every quarter of an hour with an e-mail. There is certainly room for improvement in this respect—but that would go beyond the scope of this book.

7.12 Hardware Checks with LM Sensors
Modern mainboards are equipped with sensors that allow you to check the "health" of the system. In the lm-sensors[82] project it is also possible in Linux to query this data via I2C or SMBus (System Management Bus, a I2C special case).
To enable this, the kernel must have a suitable driver. Kernel 2.4.x normally requires additional modules, which are included in the software.[83] With a little luck, your distribution may include precompiled modules (e.g., SUSE). Kernel 2.6, however, already includes many drivers; here you just compile the entire branch below I2C Hardware Sensors Chip support.
It would take too much space here to detail the installation of the necessary modules. We will therefore only go into detail for the check_sensors plugin, and assume that the corresponding kernel driver is already loaded as a module. Help is provided during operation with the sensors-detect program from the lm-sensors package, which does a number of tests and then tells you which modules need to be loaded. If all requirements are fulfilled, running the sensors program will produce an output similar to the following one, and shows that the onboard sensors are providing data:
user@linux:~$ sensors
fscher-i2c-0-73
Adapter: SMBus I801 adapter at 2400
Temp1/CPU: +41.00 C
Temp2/MB: +45.00 C
Temp3/AUX: failed
Fan1/PS: 1440 RPM
Fan2/CPU: 0 RPM
Fan3/AUX: 0 RPM
+12V: +11.86 V
+5V: +5.10 V
Battery: +3.07 V
The output depends on the hardware, so it will be slightly different for each computer. Here you can see, for example, the CPU and motherboard temperatures (41 and 45 degrees Celsius), the rotation speed of the fans, and the voltages on the 12- and 5-volt circuits and on the battery. Depending on the board design and the manufacturer, some details may be missing; in this example, only the fan for the power supply FAN1/PS[84] provides information; Fan3/AUX refers to an additional fan inside the computer box that, although it is running, is not recorded by the chipset.
Apart from the standard options -h (help function), -v (verbose), which displays the response of the sensors, and -V, which shows the plugin version, the plugin itself has no special options. Warning and critical limits must be set via the lm-sensors configuration. check_sensors only returns the status given by the onboard sensors:
user@linux:nagios/libexec$./check_sensors
sensor ok
If this is called with the -v option, you can see more clearly whether the test works:
user@linux:nagios/libexec$./check_sensors -v
fscher-i2c-0-73 Adapter: SMBus I801 adapter at 2400 Temp1/CPU: +40.00 C Temp2/MB:
 +45.00 C Temp3/AUX: failed Fan1/PS: 1440 RPM Fan2/CPU: 0 RPM
Fan3/AUX: 0 RPM +12V: +11.86 V +5V: +5.10 V Battery: +3.07 V
sensor ok
The output line is only wrapped for printing purposes; the plugin displays verbose information on a single line.
Alternatively you can use SNMP to access the sensor data: the NET-SNMP package (see 11.2 NET-SNMP from page 234) provides the data delivered by lm-sensors, and with the SNMP plugin check_snmp, warning limits can also be set from Nagios. This solution is described in 11.3.1 The generic SNMP plugin check_snmp from page 246.

[82] http://www.lm-sensors.nu/
[83] http://secure.netroedge.com/˜lm78/download.html
[84] PS stands for power supply; but the names displayed can be edited in /etc/sensors.conf.

Chapter 8. Plugins for Special Tasks
A number of plugins do not really fit into the category of local checks versus remote checks because they themselves do not detect operating states but manipulate the results of other checks or summarize them into new results. These include the plugin check_dummy, which always returns a fixed result in order to create a well-defined environment for test scenarios.
negate (which negates the return value) and urlize (which adds a hyperlink to the text output) manipulate the outputs. Summarizing and processing check results is the task of check_cluster and check_multi. Whereas check_cluster only combines and evaluates existing states, check_multi calls the specified plugins itself and combines their results.
8.1 The Dummy Plugin for Tests
For tests expected to end with a defined response, the check_dummy plugin can be used. it is given a return value and the desired response text as parameters, and it provides exactly these two responses as a result:
nagios@linux:nagios/libexec$./check_dummy 1 "Debugging"
WARNING: Debugging
nagios@linux:nagios/libexec$ echo $?
1
The output line contains the defined response, preceded by the status in text form. the return value can again be checked with echo $?: 1 stands for WARNING.
Alternatively you can give check_dummy a 0 (OK), an 2 (CRITICAL) or a 3 (UNKNOWN) as the first argument. The second argument, the response text, is optional.

8.2 Negating Plugin Results
In some situations you may want to test the opposite of what the standard plugin normally tests, such as an interface that should not be active, a Web page or a host that should normally not be reached. In these cases the program negate, included in the Nagios plugins, provides a way of negating the return value of the original check.
Like plugins, negate has an option to specify a timeout in seconds, with -t, after which it should abort the operation. The actual command line must always contain the complete path to the plugin:
negate plugin command
negate -t timeout plugin command
negate changes the return value of 2 (CRITICAL) to 0 (OK) and vice versa. The return codes 1 (WARNING) and 3 (UNKNOWN) remain unchanged.
The following example carries out check_icmp on the host 192.0.2.1, which in normal cases should not be reachable:
nagios@linux:nagios/libexec$./negate \
 /usr/local/nagios/libexec/check_icmp -H 192.0.2.1
CRITICAL - 192.0.2.1: rta nan, lost 100%| rta=0.000ms;200.000;500.000;0;
pl=100%;40;80;;
nagios@linux:nagios/libexec$ echo $?
0
The plugin itself returns a CRITICAL in this case with a corresponding text. negate "inverts" the return value; 2 (CRITICAL) turns into 0 (OK). Since the text originates from the plugin and is not changed, the information CRITICAL remains here. For Nagios itself, however, nothing but the return value is of any interest.

8.3 Inserting Hyperlinks with urlize
The program urlize represents the text output of a plugin as a hyperlink, if required, so that clicking in the Nagios Web interface on the test result takes you to another Web page. Like negate, urlize functions as a wrapper around the normal plugin command and is included with the other Nagios plugins.
As the first argument it expects a valid URL to which the hyperlink should point. This is followed by the plugin command, including its path:
urlize url plugin command
To avoid problems with spaces in plugin arguments, you can set the complete
plugin command in double quotation marks.
The hyperlink around the normal plugin output can be easily recognized when running the command manually:
nagios@linux:nagios/libexec$./urlize http://www.swobspace.de \ /usr/local/nagios/
libexec/check_http -H www.swobspace.de
HTTP OK HTTP/1.1 200 OK - 2802 bytes
in 0.132 seconds |time=0.132491s;;;0.000000 size=2802B;;;0
In version 1.4 urlize also embeds the performance output in the link text, but Nagios cut this off before the representation in the Web interface, together with the end tag. But most browsers do not have any problem with the missing .

8.4 Checking Host or Service Clusters as an Entity
Plugins normally check an individual host or service, compare the result with the specified thresholds, and then return an appropriate result. On systems with redundant designs (such as in clusters) you can also check the respective host or service individually. In addition, a check of the virtual host or service provides a clue as to whether or not the virtual system as a whole is reachable. The plugin check_cluster allows more complex values to be queried.
As an example, we will take a host cluster consisting of five identical single systems. One of these hosts may fail without any problem, but if a second one fails, the plugin should issue a WARNING. If a third host should fail, a CRITICAL should certainly be signalled.
The special feature of check_cluster is that it does not actively perform a check itself but determines the return value from already-existing status values from the desired hosts or services. To do this it uses on-demand macros (see D.2 On-Demand Macros from page 632). Whereas the standard macros always refer to the current host or service, which obviously makes little sense for check_cluster, on-demand macros allow access to all existing information on other hosts or services.
For check_cluster we require the status of various hosts or services. These can be determined through the on-demand macros $HOSTSTATEID:host$ and $SERVICESTATEID:
host:
service_description$. They both provide the respective status in numerical form: 0 for OK; for hosts, 1 for DOWN and 2 for UNREACHABLE; for services, 1 for WARNING, 2 for CRITICAL, and 3 for UNKNOWN).[85] In each case the host name must be specified, and for $SERVICESTATEID$ the service description of the host or service from which Nagios is to obtain the values must also be given.
The plugin has the following options:
-s / --service
Handles the status values as the results of service checks, that is, 0 as OK, 1 as WARNING and 2 as CRITICAL

-h / --host
Handles the status values as the results of host checks, that is, 0 as UP, 1 as DOWN, and 2 as UNREACHABLE

-l
label
/ --label=label
Inserts the text specified with label into the text output

-d
statusliste
/ --data=statusliste
Comma-separated list of the states from which the total result should be determined; here the already mentioned macros are used:

--data=$HOSTSTATEID:srv1$,$HOSTSTATEID:srv2$,$HOSTSTATEID:srv3$

-w
schwellwert
/ --warning=schwellwert
Warning threshold in the threshold format,[86] with respect to the number of error states. So by specifying -w 0:2, a maximum of two error states are allowed for an OK result. From the third error state, a WARNING is issued.

-c
threshold
/ --critical=threshold
Like --warning, but refers to the critical threshold

The following call simulates the failure of two out of a total of five existing Web servers. A third server displays a WARNING. This means that we have a total of three error states:
nagios@linux:local/libexec$./check cluster -s -d 0,2,1,0,2 -w 0:2 -c 0:3
CLUSTER WARNING: Service cluster: 2 ok, 1 warning, 0 unknown, 2 critical
The check issues a WARNING because the warning threshold is exceeded (even though the critical threshold is not). The definition of the check_cluster command is kept simple:
define command{
 command_name check_cluster
 command_line $USER1$/check_cluster -l $ARG1$ $ARG2$
}
The command expects a label as the first argument, and the plugin prefixes it to the text output. Everything else is defined in the second argument in the host or service definition:
define service{
 host_name mycluster
 service_description Web Cluster
 command check_cluster!Web Cluster!--service -d $SERVICESTATEID:srv1:
HTTP$, $SERVICESTATEID:srv2:HTTP$ -w 0:0 -c 0:1
}
The service Web Cluster checks the service states of the two services srv1:HTTP and srv2:HTTP. As long as they are both working without errors, the command returns OK. If there is an error state, the result will be a WARNING, and if both services have errors, CRITICAL is returned.
This completes the possibilities of check_cluster. If you are not satisfied with simply evaluating the number of existing error states, you should take a closer look at the plugin check_multi, which also allows AND and OR operations.

[85] See Appendix D from page 625.
[86] For the specification of thresholds, see 24.1.5 Specifying thresholds in page 557.

8.5 Summarizing Checks with check_multi
There are various reasons for grouping different checks into a single one. On one hand it simplifies work for Nagios, because the system now only needs to manage 1,000 procedures instead of maybe 20,000—this increases performance significantly in many cases. If you summarize checks remotely, Nagios now performs 1 instead of 20 network queries, which results in better network performance. The Nagios administrator may also have an easier time, as the configuration is more concise.
The method originally planned for load distribution and reducing checks was via distributed Nagios instances. There are certainly productive installations in which a Nagios instance performs only 50 checks and transmits these to a central Nagios installation. If there are some several hundred Nagios instances, this method does ease the load on the central Nagios installation but not on the administrator, who has a considerable amount of work managing such configurations.
The plugin check_multi, by Matthias Flacke, takes a different approach. It performs (almost) any number of checks decentrally and returns just a sum total of the results to the Nagios server (Figure 8-1). The plugin is executed remotely; it is called either via NRPE (Chapter 10 from page 213) or via the plugin check_by_ssh (9.1 The check_by_ssh Plugin from page 206).

Figure 8-1. Summarizing checks with check_multi
Information is lost during this process—ultimately, there can be only one return value for each check_multi call. But you gain clarity with the configuration of services, and you acquire—unexpectedly—a nice feature: The checks that must be performed are listed in an NRPE-like configuration file on the corresponding target system on which check_multi is also installed. This makes it possible to delegate certain tasks, such as the maintenance of threshold values, to other (non-Nagios) administrators. They require write access to the relevant check_multi configuration file but do not need to continue grappling—apart from correctly running the plugins used—with a Nagios configuration.
To be able to pass on as much information as possible, check_multi makes regular use of the multiple-line plugin output format that was introduced with Nagios 3.0 (see 8.5.1 Multiple-line plugin output). This restricts the use of check_multi essentially to Nagios 3.0. Starting from check_multi in version 0.14, there have been approaches to support Nagios 2.x. These are only of limited use, however, since the entire amount of information for plugins in Nagios 2.x is about 300 bytes, and only the first line of the plugin output is utilized.
8.5.1 Multiple-line plugin output
Starting with Nagios 3.0, an expanded output format for plugins has been introduced. Instead of squeezing everything onto a single line, the output may be spread over several lines:
normal text output | optional performance data
longtext, 1st line
longtext, 2nd line
...
longtext, n-th line | performance data, 2nd line
performance data, 3rd line
...
performance data, n-th line
The first line contains the standard text output, supplemented with performance data if required. This line can still be processed by Nagios 2.x, so it shouldn't be longer than 300 bytes. In the following lines a plugin may supply other text information until the character | closes the text output and allows other performance data to be written. Nagios 3.0 displays the entire text information in the status information generated by extinfo.cgi on the Web interface (see 16.2.2 Additional information and control center: extinfo.cgi from page 339).
When accessing text information via macros (See D.1 Standard Macros from page 627), Nagios splits up the information into two macros: $HOSTOUTPUT$ contains the first line of the text information of host checks (that is, the contents of the placeholder normal text output), and $LONGHOSTOUTPUT$ contains only the long text. For service checks the macros are called $SERVICEOUTPUT$ and $LONGSERVICEOUTPUT$. The LONG* variation of the macro is available only in Nagios 3.0 and later; Nagios 2.x only knows the short version.
The performance data from the first line and from the end is summarized by Nagios 3.0 in the macros $HOSTPERFDATA$ and $SERVICEPERFDATA$. There is no LONG* variation, as is the case for the output.
The entire output, including performance data, is a maximum of 8 KB long in Nagios 3.0. If Nagios runs a plugin directly, as opposed to indirectly, (for instance, via NRPE or check_by_ssh), you must ensure that the entire 8 KB really are passed across the entire transmission path. This is covered in 8.5.2 Installation requirements.
8.5.2 Installation requirements
check_multi does not put any restrictions on the size of its output. In order to support enough checks, you should ensure that all the resources used allow at least 8 KB of plugin output. For Nagios version 3.0, the developers have increased the buffer size to to 8 KB, so no adjustments are necessary. For scenarios involving remote use with NRPE or check_by_ssh, you may need to make manual adjustments.
Adjusting buffer sizes for NRPE
By default, NRPE (Chapter 10, page 213) transmits no more than 1,024 characters. To make proper use of check_multi, you need to adjust the buffer size in the source code. To do this, you set the appropriate values in the file include/common.h to 8192:
#define MAX_INPUT_BUFFER 8192
#define MAX_PACKETBUFFER_LENGTH 8192
Afterward, you must re-compile and re-install the NRPE daemon and the check_nrpe plugin.
Adjusting buffer sizes for check_by_ssh
The plugin check_by_ssh (9.1 The check_by_ssh Plugin from page 206) can handle multiple-line output from plugins in versions 1.4.10 and later, so it can be used unchanged. A patch is required for older versions, which can be found on the check_multi homepage.[87]
8.5.3 Installation and testing
After downloading the plugin from the very extensive and well-documented homepage,[88] you should unpack it in a directory anywhere, and then change to that directory to carry out an initial test. In the subdirectory contrib of the source code there is a preconfigured file, check_multi.cmd, containing several example checks. When running the plugin, specify this file with the option -f; check_multi will perform all the checks defined there in one go. This output gives you a feeling of how the plugin functions:
user@linux:~$./check_multi -f contrib/check_multi.cmd
MULTI CRITICAL - 35 plugins checked, 7 critical (network_rsync, proc_acp id,
 proc_httpd, system_syslog, system_users, nagios_system, dummy_critical), 2 warning
 (nagios_tac, dummy_warning), 2 unknown (network_if_ethl, dummy_unknown), 24 ok
[1] network_ping PING OK - Packet loss = 0%, RTA = 0.06 ms
[2] network_interfaces OK: host 'localhost', interfaces up: 6, down: 0, dormant: 0,
 excluded: 0, unused: 0
[3] network_if_eth1 Either a valid snmpkey key (-k) or a ifDescr (-d) must be
 provided)
...
[16] system_load OK - load average: 0.89, 0.71, 0.71
[17] system_mail TCP OK - 0.000 second response time on port 25
[18] system_mailqueue OK: mailq is empty
[19] system_mysql Uptime: 5573 Threads: 1 Questions: 140 Slow queries
: 0 Opens: 137 Flush tables: 1 Open tables: 19 Queries per second avg
: 0.025
[20] system_ntp NTP OK: Offset −0.07118669868 secs
[21] system_portmapper OK: RPC program portmapper version 2 udp running
[22] system_rootdisk DISK OK - free space: / 287 MB (31% inode=81%);
[23] system_ssh SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)
...
|MULTI::check_multi::plugins=35 time=10.92 network_interfaces::check_ifs tatus::
up=6,down=0,dormant=0,excluded=0,unused=0 system_load::check_load ::
load1=0.890;5.000;10.000;0; load5=0.710;4.000;8.000;0; load15=0.710;3. 000;6.000;0;
 system_mail::
check_tcp::time=0.000225s;;;0.000000;10.000000 system_mailqueue::check_mailq::
unsent=0;2;4;0
 system_ntp::check_ntp::off set=−0.071187s;60.000000;120.000000; system_rootdisk::
check_disk::
/=620M B;909;937;0;957 system_swap::check_swap::swap=3906MB;0;0;0;3906 system_u sers::
check_users::users=25;5;10;0 nagios.org_dns::check_dns::time=0.039 187s;;;
0.000000 nagios.org_http::check_http::time=0.674044s;;;0.000000 s ize=21530B;;;0
The first line of the output—starting with MULTI CRITICAL—summarizes all the executed checks. These lines (line-wrapped here for display purposes) are also processed by Nagios 2.x. The output from the individual checks begins on line 2 (starting with [1]), which looks exactly like the output of a single call of the plugin currently being run. The performance data is summarized by check_multi, but only at the the end, in a totals line—starting with | MULTI::check_multi::plugins. The individual variables are separated by spaces. The purpose for the variable names, along with their format (which takes some getting used to), is explained in 8.5.6 Performance data and PNP from page 198.
8.5.4 Configuration file
The format of the configuration file is based on that of NRPE (10.3 NRPE Configuration on the Computer to Be Monitored from page 218). For check_multi, however, only the commands are defined. Here is an extract from the example file included, check_multi.cmd:
...
command[network_interfaces] = check_ifstatus -H localhost
command[system_load] = check_load -w 5,4,3 -c 10,8,6
command[system_mail] = check_tcp -H localhost -p 25
command[system_mailqueue] = check_mailq -w 2 -c 4
command[system_mysql] = check_mysql -u admin
command[system_ntp] = check_ntp -H ntp1.fau.de
command[system_portmapper] = check_rpc -H localhost -C portmapper
command[system_rootdisk] = check_disk -w 5% -c 2% -p /
command[system_ssh] = check_ssh localhost
...
The command command[
Name_of_check] specifies the name for the appropriate check. This is used in the text output and in the performance data.
After the equal sign comes the check to be executed. When calling the plugin, path details can be omitted if the plugins are located in the default path, /usr/local/nagios/libexec. Alternatively, you can include the plugin path with the option −1 when running check_multi. You can also specify the absolute path in the configuration file, of course.
8.5.5 Command-line parameters
check_multi has the following options:
-f
/path/to/config/file
/ --filename=/path/to/config/file
This specifies the configuration file. So that Nagios can find it, you should always specify the complete path. This option does not have a default value; it can be given several times.

-l
/path/to/the/plugins
/ --libexec=/path/to/the/plugins
The default for calling plugins is the path /usr/local/nagios/libexec. If they are located in a different directory, this is specified here with the -l option.

-n
name
/ --name=name
This is the name of a check that check_multi outputs in the text output and in the performance data. The default is an empty string. If you run check_multi on a machine several times with different checks, it is better here to use different names so that they are more clearly separated from each other.

-t
sekunden
/ --timeout=seconds
This specifies the timeout for an individual check. The default is 10 seconds.

-T
seconds
/ --TIMEOUT=seconds
For all checks together, check_multi requires a further timeout parameter, which is defined with -T (the default is 60 seconds).

This ensures that the call of check_multi will end within the time specified. The plugin does not start any new checks if the starting time and the timeout of a single plugin exceed the timeout of the entire check_multi call.[89] Such individual checks are given the status UNKNOWN; in the output, check_multi assigns them the message plugin cancelled due to global timeout.

-r
integer
/ --report=integer
This option controls the output behavior of check_multi. The placeholder integer can take on the following values:

	1 includes the service name for error states in parentheses in the plugin output:..., 2 critical (network_rsync, proc_acpid), 1 warning (nagios_tac), 1 unknown
 (if_eth1), dummy_unknown), 24 ok

	2 formats the output as HTML. Here the numbers of the individual checks (e.g., [3]) are stored along with the color of the respective return value (green for OK, yellow for WARNING, red for CRITICAL, and orange for UNKNOWN).If you use check_multi recursively (a check_multi itself calls other instances of check_multi), the output of the subordinate checks are indented (see Figure 8-3 in page 202).

	4 shows the output of the individual check—if they exist—on STD-ERR.
	8 outputs the performance data in the multi-format (see 8.5.6 Performance data and PNP from page 198).
	16 has the same function as 1, except that states for which there are no check results (e.g., 0 unknown) are also included.
	32 outputs performance data in the classical format (see 8.5.6 Performance data and PNP).
	128 extends the HTML format required by 2 by including a hyperlink to an installed PNP if performance data is available and the output is in multi-format (8). PNP is described in 19.6 Smooth Plotting with PNP from page 446.
	256 displays the output in XML formatting.
	512 ensures that the output is Nagios 2.x compatible in order to bring the output below the 300-byte limit.

Indivudal values may be combined; the default is 13 (8 + 4 + 1).

-w
expression
/ --warning=expression
This sets the status WARNING if expression is true, e.g., COUNT (WARNING) > 0 (the default). For all states, check_multi separately checks whether or not the corresponding status was determined. Eventually, the status with the highest priority wins out: CRITICAL trumps WARNING, trumps UNKNOWN, trumps OK. The definition and use of expressions is explained in 8.5.7 Simple business process monitoring from page 199.

-c
ausdruck
/ --critical=expression
If the expression is true, the status is set to CRITICAL. Eventually, the status with the highest priority wins out (see --warning and 8.5.7 Simple business process monitoring).

-u
expression
/ --unknown=expression
If the expression is true, the status UNKNOWN is set. The status with the highest priority (see --warning and 8.5.7 Simple business process monitoring) wins out.

-o
expression
/ --ok=expression
If ausdruck is true, the status OK is set. Here the status with the highest priority also wins out (see --warning and 8.5.7 Simple business process monitoring).

-v / --verbose
This increases the verbosity of the plugin for debugging purposes. The option can be used up to three times; if specified three times, you will obtain the most detailed information.

8.5.6 Performance data and PNP
In the simple output form for performance data (which can be set with the option -r
32), check_multi simply lists all variables provided by the plugins:
...|rta=0.111ms;500.000;1000.000;0; pl=0%;5;10;; offset=0.002980s;60.000 000;
120.000000;
The performance data for the plugin check_icmp (the average response time rta and the packet loss pl) in this example seamlessly follow the performance data of check_ntp in the form of deviation from the local system time (offset). You can't tell, at first glance, what information comes from which plugin—you have to consult the order in the configuration file and the outputs of the individual checks.
This is not particularly suitable for automatic processing. check_multi therefore provides an extended output with the default option -r8, which is modified specifically to handle PNP (see 19.6 Smooth Plotting with PNP from page 446). When doing this, the plugin adds a service description and the name of the plugin used to the name of the variables. No deviation is made from the standardized format; the label is just given a more extensive form:
servicedescription:: plugin:: label = values [label = calues]
PNP requires information on the plugin executed so that it can select a suitable template for processing the graphics (see 19.6.5 How should the graphic appear? from page 454). In addition, check_multi now also provides performance data referring to the overall processing:
|MULTI::check_multi::plugins=5 time=0.18 net_ping::check_icmp::rta=0.048 ms;
500.000;1000.000;0; pl=0%;5;10;; system_ntp::check_ntp::offset=0.0022 66s;60.000000;
120.000000;
First check_multi announces that it has called 5 plugins and has used a total of 0.18 seconds for processing. This is followed by the performance data for the other plugins, each supplemented with the service description and plugin name. If a plugin issues more than one variable, the service description and plugin name are not repeated.
8.5.7 Simple business process monitoring
In order to evaluate business processes, you generally want to know whether a particular process is working—for instance, whether or not a customer can perform online banking. Individual pieces of information on all hosts and services involved are not relevant from this perspective and are also not always useful if systems are designed redundantly in different forms.

Figure 8-2. For the terminal server farm to be reachable from the Internet, an OpenVPN access and a terminal server must be available.
One example is shown in Figure 8-2: Home office users access a terminal server farm via OpenVPN. For access from the Internet, two connections are available, and with gate1 and gate2, two OpenVPN gateways are available. The terminal server farm consists of the eight terminal servers ts01 through ts08.
In order for home office users to be able to work, at least one Internet connection (including the accompanying gateway) must be available, and the server farm must be reachable. The business process can be split into two processes: Our example looks at the Internet access separated from the server farm, and afterward it can connect the two results with one another.
The condition for a critical status for Internet access could be formulated as follows:
(gate1 > 1 || provider1 > 1) && (gate2 > 1 || provider2 > 1)
Access is unusable if the provider is unreachable or (||) the OpenVPN service is not available on the gateway. But it is sufficient if one of the two access points is functioning (thus the AND logical operator with &&). The syntax is taken from Perl and can equally be processed by check_multi. The configuration file for the Internet check therefore contains four commands and the logocal operators:
openvpn.cmd
command[gate1] = check_nrpe -H gate1 -c check_openvpn
command[provider1] = check_icmp -H provider1 -c 1000.0,60%
command[gate2] = check_nrpe -H gate2 -c check_openvpn
command[provider2] = check_icmp -H provider2 -c 1000.0,60%

state[warning] = count(CRITICAL) > 0 || count(UNKNOWN) > 0
state[critical] = (gate1 > 1 || provider1 > 1) && (gate2 > 1 || provider
2 > 1)
The two gate* commands each check (via NRPE) whether the gateway of the OpenVPN service is running. The provider test sends ICMP echo packets to the dial-up router of the respective provider. You should take great care here to ensure that routing is correctly set up, that is, that the ICMP packets to the respective provider really are sent across the accompanying connection.
For a business process, a Boolean expression for individual states is defined in the configuration file, so depending on requirements, there may be one for CRITICAL, one for WARNING, and, if necessary, one for UNKNOWN as well. The syntax and the operators are passed on to Perl as specified and are described in detail in the Perl online documentation (man
perlop). Before evaluating the expression, check_multi undertakes the following substitutions:
	If the expression contains the name of a check previously defined with command, the return value of this check will be used instead. Let's assume that check gatel returns 2 and check providerl returns 1. Then the partial expression shown above will becomestate [critical] = (2 > 1 || 1 > 1) ...

Within the brackets, the first condition is true, and through the subsequent OR (|| in Perl syntax) the partial expression evaluates to true.

	The function count determines the number of all checks that provided the return value given as an argument.
	Instead of the numerical value of a status, the text form (UNKNOWN, WARNING, CRITICAL, WARNING, OK) can also be included in the expression (so you can write something like gate1 > WARNING). This detail is replaced by check_multi with the numerical value before the expression is evaluated.

The WARNING status is set in openvpn.cmd if at least one critical status occurs, at least one check delivers UNKNOWN, or at least one check returns WARNING. The CRITICAL status appears if both accesses should fail (because of the AND logical operator between the two partial expressions in brackets). The partial expressions on their own are true if either of the gate or provider checks delivers a CRITICAL (return value 2) or an UNKNOWN (return value 3). The condition for the UNKNOWN status can be omitted since UNKNOWN results always lead to the WARNING status.
The second partial process—the function of the terminal server farm—is described in the configuration file terminalserver.cmd:
terminalserver.cmd
command[ts01] = check_tcp -H ts01 -p 3389
command[ts02] = check_tcp -H ts02 -p 3389
command[ts03] = check_tcp -H ts03 -p 3389
command[ts04] = check_tcp -H ts04 -p 3389
command[ts05] = check_tcp -H ts05 -p 3389
command[ts06] = check_tcp -H ts06 -p 3389
command[ts07] = check_tcp -H ts07 -p 3389
command[ts08] = check_tcp -H ts08 -p 3389

state[warning] = count(CRITICAL) > 0 || count(UNKNOWN) > 0 || count(WA
RNING) > 0
state[critical] = ts01 >= CRITICAL || count(CRITICAL) > 3
The individual checks here consist of only a primitive TCP check of the RDP port 3389 in order to keep the example relatively simple. WARNING should be indicated if at least one CRITICAL or at least one UNKNOWN occurs so that the administrator has the opportunity to fix the problem at an early stage. The condition for the CRITICAL status stipulates that ts01 must not be CRITICAL because a very specific application is running there which is not available on the other servers. In addition, no more than three terminal servers may fail, as otherwise the load on the other servers may increase so heavily that useful work would no longer be possible.

Figure 8-3. Recursive output of chech_multi on the Extended Infro page of the Nagios Web interface
The two checks of the partial processes are summarized by a check_multi call into a single result (the lines are wrapped for display purposes):
homeoffice.cmd
command[openvpn] = check_multi -f /etc/nagios/check_multi/openvpn.cmd
-r31
command[terminalserver] = check_multi -f /etc/nagios/check_multi/termi
nalserver.cmd -r31
So that the Extended Info page of Nagios (Figure 8-3) is more presentable, the details of the respective plugin names are omitted (through the missing option -n; the recursive HTML output of check_multi adds the name of the check called anyway). The -r 31 detail sets all reporting functions from 1 to 16, including HTML formatting (-r
2). Special conditions for a status are not formulated, so a WARNING of a partial process leads to a WARNING in the overlying check, and a CRITICAL leads to a CRITICAL.
Figure 8-3 shows the two partial processes quite clearly separated. The serial numbers of the checks are stored with the respective status colors, which are unfortunately not visible in this black-and-white book. A complex color example of recursive display in the Extended Info Web page can be found on the homepage of the plugin.[90]
For the sake of completeness, here is the definition of command and service for Nagios. The former is kept deliberately simple, and all the details for the command line are repeated in the service definition:
define command{
 command_name check_multi
 command_line $USER1$/check_multi $ARG1$
}

define service{
 host_name elix01
 service_description homeoffice
 check_command check_multi!-f /etc/nagios/check_multi/homeoffice.cmd -n
 homeoffice -r 31
 ...
}
If the mapping of business processes with check_multi isn't enough for you, you should take a look at the somewhat more complex addon Nagios Business Process View and Nagios Business Impact Analysis from the Sparda-Datenverarbeitung eG, Nuremberg, Germany, which is available on the Nagios-Exchange.[91]
In contrast to check_multi, which appears as the only Nagios service and which also needs to be managed only once by Nagios, this addon uses services already defined in Nagios, which means that Nagios performs each individual check as usual. It retrieves the results of individual checks, links these, and displays them on its own Web interface.
When doing so, the result of such links—business processes, so to speak—can be redefined in Nagios as a separate service so that it is possible, for instance, to use the notification logic of Nagios. Furthermore, the addon includes a mode with which it can simulate a "what would happen if" scenario. Individual services are set to an expected status, and the effects can be seen via the Web interface.
check_multi and the Nagios Business Process View and Nagios Business Impact Analysis addon are thus not in competition. Depending on the intended use, either check_multi will reduce the complexity of the services represented in Nagios and therefore will reduce the number of checks performed, or the addon will allow a more detailed view of overall events, though it does demand that all services are individually mapped in Nagios.

[87] http://www.my-plugin.de/wiki/de/projects/check_multi/installation#c heck_by_ssh
[88] http://www.my-plugin.de/wiki/de/projects/check_multi/start
[89] Let us assume that 53 have passed since check_multi was called, but not all planned individual checks have yet been processed. The total from starting time and individual timeout (53 + 10 = 63) exceeds the timeout of the check_multi call, so check_multi does not start any further checks.
[90] http://www.my-plugin.de/wiki/de/projects/check_multi/screenshot#ser-vice_extended_info_rekursiv
[91] http://www.nagioserchange.org/22;1088

Chapter 9. Executing Plugins via SSH
Local plugins, that is, programs that only run tests locally because there are no network protocols available, must be installed on the target system and started there. They check processes, CPU load, or how much free hard disk capacity is still available, among other things.
But if you still want to execute these plugins from the Nagios server, it is recommended that you use the secure shell, especially if any kind of Unix system is installed on the machine to be tested—a Secure Shell daemon will almost always be running on such a target system, and you do not require any special permissions to run most plugins. The Nagios administrator needs nothing more than an account, which he can use from the Nagios server. On the server itself, the check_by_ssh plugin must be installed.
In heterogeneous environments the Secure Shell itself often create conditions that may cause problems: depending on the operating system, an SSH daemon may be in use that returns a false return code[92] or is so old that it cannot handle the SSH protocol version 2.0. In this case it is better to install the current OpenSSH version.[93] In pure Linux environments with up-to-date and maintained installations, such problems generally do not occur.
9.1 The check_by_ssh Plugin
check_by_ssh is run on the Nagios server and establishes a Secure Shell connection to a remote computer so that it can perform local tests on it. The programs run on the remote machine are to a large extent local plugins (see Chapter 7 from page 157); the use of check_by_ssh is not just restricted to these, however.
The plugin sends a complete command line to the remote computer and then waits for a plugin-compatible response: a response status between 0 (OK) and 3 (UNKNOWN), as well as a one-line text information for the administrator (Chapter 6).
If you run network plugins via check_by_ssh in order to perform tests on other computers, these are known as indirect checks, which will be explained in the context of the Nagios Remote Plugin Executor in 10.6 Indirect Checks from page 224.
The following example shows how check_by_ssh can be used to check the swap partition on the target computer:
nagios@linux:nagios/libexec$./check_by_ssh -H target_computer \
 -i /etc/nagios/.ssh/id_dsa \
 -C "/usr/local/nagios/libexec/check_swap -w 50% -c 10%"
SWAP OK: 100% free (972 MB out of 972 MB) |swap=972MB;486;97;0;972
The command is similar to that for a secure shell, in the form of
ssh -i private_key target_computer "command"
The fact that a separate private key—not the default private key in the home directory—is used, is optional and is described in detail in 9.2 Configuring SSH from page 208. The command to be run is specified in check_by_ssh—in contrast to the secure shell ssh—with the option -C, the plugin is always specified with an absolute path.
check_by_sshhas the following options:
-H
address
/ --hostname=address
The host name or IP address of the computer to which the plugin should set up an SSH connection.

-C
command
/--command=command
The command to be run on the remote computer, that is, the plugin with its complete path and all the necessary parameters:

-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

−1 /--proto1
Force version 1 of the secure shell protocol.

−2 /--proto2
Force version 2 of the secure shell protocol.

-o
ssh_option
/--ssh-option=ssh_option (from version 1.4.6)
Passes an SSH option to the secure shell on the target host. To specify multiple options, use of the switch is repeated.

-i
keyfile
/--ldentlty=keyfile
Which file should be used instead of the standard key file containing the private key of the user nagios? For one option, which is recommended, see 9.2.3 Checking the SSH connection and check_by_ssh, page 210.

-p
port
/--port=port
This specifies the port if the Secure Shell daemon on the target server is not listening on the standard TCP port 22.

-l
user
/--logname=user
User name on the target host. [-S
number /--skip-stdout=number (from version 1.4.9)]

Ignores the specified number of lines at the beginning of the output to STDOUT. If this option is omitted, the entire output is ignored.

-E
number
/--skip-stderr=lines (from version 1.4.9)
Like --skip-stdout, but refers only to the output of STDERR.

-w
floating_point_decimal
/--warning=floating_point_decimal
If the response to the command to be executed takes more than floating_point_decimal seconds, the plugin will issue a warning.

-c
floating_point_decimal
/--critical=floating_point_decimal
The critical value in seconds concerning the response time of the command to be executed.

-f[94]
Starts a background process without opening an interactive terminal (tty).

-t
timeout /--timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns the CRITICAL status. The default is 10 seconds.

In addition to this, check_by_ssh has parameters available, -o, -s and -n, enabling it to write the result in passive mode to the interface for external commands (see 13.1 The Interface for External Commands from page 292). The mode is named this way because Nagios does not receive the information itself but reads it indirectly from the interface.
This procedure has the advantage of being able to run several separate commands simultaneously over a single SSH connection. This may cause the command definition to be rather complicated, however. Since the plugins themselves are called and executed as programs on the target server, it hardly matters whether the SSH connection is established once or three times. For this reason it is better to use a simple command definition rather than the passive mode.
But if you still want to find more information about this, you can look in the online help, which is called with check_by_ssh -h.

[92] In the nagios-users mailing list it was reported that Sun_SSH_1.0 returns a return code of 255 instead of 0, which makes it unsuitable for the deployment described here.
[93] http://www.openssh.org/
[94] There is currently no long form for this option.

9.2 Configuring SSH
So that Nagios can run plugins over the secure shell remotely and automatically, it—or, strictly speaking, the user nagios on the Nagios server—must not be distracted by any password queries. This is avoided with a login via a Public Key mechanism.
9.2.1 Generating SSH key pairs on the Nagios server
The key pair required to do this is stored by the key generator ssh-keygen by default in the subdirectory .ssh of the respective user's home directory (for the user nagios, this therefore corresponds to the installation guide in 1.2 Compiling Source Code from page 39, that is, /usr/local/nagios). If it is also sent on its way with the -f
private_keyfile option (without path specification), it will land in the current working directory, which in the following example is /etc/nagios/.ssh:
nagios@linux:~$ mkdir /etc/nagios/.ssh
nagios@linux:~$ cd /etc/nagios/.ssh
nagios@linux:/etc/nagios/.ssh$ ssh-keygen -b 1024 -f id_dsa -t dsa -N"
Generating public/private dsa key pair.
Your identification has been saved in id_dsa.
Your public key has been saved in id_dsa.pub.
The key fingerprint is:
02:0b:5a:16:9c:b4:fe:54:24:9c:fd:c3:12:8f:69:5c nagios@nagserv
The length of the key here is 1024 bits, and DSA is used to encrypt the keys. -N' ' ensures that the private key in id_dsa does not receive separate password protection: this option forces an empty password.
9.2.2 Setting up the user nagios on the target host
Similar to the configuration on the Nagios server, the group and the user nagios are also set up on the computer to be monitored:
target_computer:~ # groupadd -g 9000 nagios
target_computer:~ # useradd -u 9000 -g nagios -d /home/nagios -m \
 -c "Nagios Admin" nagios
target_computer:~ # mkdir /home/nagios/.ssh
The target computer is given the directory /home/nagios as the home directory, where a subdirectory .ssh is created. In this the administrator (or another user[95]) saves the public key generated on the Nagios server /etc/nagios/.ssh/id_dsa.pub, in a file called authorized_keys:
linux:~ # scp /etc/nagios/.ssh/id_dsa.pub \
 target_computer:/home/nagios/.ssh/authorized_keys
Now the user nagios does not require its own password on the target server. You just need to make sure that on the target server the .ssh directory, together with authorized_keys, belongs to the user nagios:
target_computer:~ # chown -R nagios.nagios /home/nagios/.ssh
target_computer:~ # chmod 700 /home/nagios/.ssh
9.2.3 Checking the SSH connection and check_by_ssh
With this configuration you should first check whether the secure shell connection is working properly. The test is performed as the user nagios, since Nagios makes use of this during the checks:
nagios@linux:~$ ssh -i /etc/nagios/.ssh/id_dsa target_computer w
18:02:09 up 128 days, 10:03, 8 users, load average: 0.01, 0.02, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
wob pts/1 linux01:S.1 08Sep04 1:27 4.27s 0.03s -bin/tcsh
...
The -i option explicitly specifies the path to the private key file. If the command w to be run on the target computer does not provide any output or if the opposite SSH daemon requests a password, then the login via public key is not working. In this case you must first find and eliminate the error before you can move on to testing check_by_ssh.
In this next step, you run the local plugin on the target computer, with check_by_ssh, which later on is run automatically, from the command line of the Nagios server. Make sure that the plugin paths are correct in each case. The path to the private key file of the user nagios on the server is specified with -i:
nagios@linux:~$ /usr/local/nagios/libexec/check_by_ssh \
 -H target_computer -i /etc/nagios/.ssh/id_dsa \
 -C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"
DISK CRITICAL [2588840 kB (5%) free on /net/linux04/b] [937152 kB (5%)
free on /net/linux04/c]
In the example, check_by_ssh should start the /usr/local/nagios/libexec/check_disk plugin on the target computer with the options -w 10% -c 5% -e -m. If this does not work, then this is first run locally on the target host with the same parameter. By doing this you can rule out that the problem lies in the plugin command itself and not in the secure shell connection.

[95] ... but not the user nagios, because when an account is created, useradd first sets an invalid password here, which we do not change into a valid one. This means that you cannot currently log in to the target computer as nagios.

9.3 Nagios Configuration
The matching command object is again defined in the file checkcommands.cfg; similar to check_local_disk, it should be named check_ssh_disk:
check_ssh_disk command definition
define command{
 command_name check_ssh_disk
 command_line $USER1$/check_by_ssh -H $HOSTADDRESS$ \
 -i /etc/nagios/.ssh/id_dsa \
 -C "$USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$"
}
The command line stored in command_line first runs check_by_ssh; $USER1$ contains the local plugin path on the Nagios server. Next come the arguments—the IP address of the target host (parameter -H), the private key file (parameter -i) and finally, with the -C parameter, the complete command that the target host should carry out. If the plugin path on the target host and on the Nagios server are identical, then you can also use the $USER1$ macro in it; otherwise the plugin path on the target computer is given explicitly.
Setting up the command is no different here to the one in check_local_disk in 7.1 Free Hard Drive Capacity in page 158. This means that apart from the warning and critical limits, we explicitly specify a file system or a hard drive partition, with the -p parameter.
The command check_ssh_disk defined in this way is applied as follows, here on a computer called linux02:
define service{
 host_name linux02
 service_description FS_root
 ...
 check_command check_ssh_disk!10%!5%!/
 ...
}
The service object defined in this way ensures that Nagios checks its / file system. The warning limit lies at 10 percent, the critical limit at 5 percent.
If you use the check_by_ssh plugin with check_ssh_disk, as in the example here, you must make sure that the plugin path is identical on all target hosts. This is also worth doing for reasons of simplicity, though it is not always possible in practice. The following service definition, for this reason, gives the plugin path to the target computer as an additional argument:
define service{
 host_name linux02
 service_description FS_root
 ...
 check_command check_ssh_disk!/usr/lib/nagios/plugins!10%!5%!/
 ...
}
In order for this to work, you must change the command line in the command definition, passed on with -C, as follows:
-C "$ARG1$/check_disk -w $ARG2$ -c $ARG3$ -p $ARG4$"
Caution: this causes the numbers of each of the $ARGx macros for -w, -c, and -p to be shifted by one.

Chapter 10. The Nagios Remote Plugin Executor (NRPE)
The Nagios Remote Plugin Executor (or in short, NRPE) as the name suggests, executes programs on a remote host. These are usually plugins that test the corresponding computer locally and therefore must be installed on it. The use of NRPE is not restricted to local plugins; any plugins at all can be executed, including those intended to test network services—for example, to indirectly test computers that are not reachable from the Nagios server (as shown in 10.6 Indirect Checks from page 224).
While a genuine user account must be available on the remote computer when the secure shell is used (see Chapter 9), which can also be used to do other things than just start plugins, NRPE is restricted exclusively to explicitly configured tests. If you want to, or are forced to, do without a login shell on the target host, it is better to use NRPE, even if there is somewhat more configuration work involved than with the secure shell. In addition to the Nagios configuration and the installation of the check_nrpe plugin on the Nagios server, the following tasks remain on the target system:
	The program nrpe must be installed.
	The inet daemon there (inetd or xinetd) must be configured with administrator privileges.
	All the plugins called via NRPE must be installed.

10.1 Installation
NRPE and the plugins are installed from the sources, or you can fall back on the packages provided by the distributor. You should use at least version 2.0 of NRPE, since this is incompatible with its predecessors. Starting with version 2.6, NRPE has the switch -u. If the NRPE service on the target system is not reachable, the plugin check_nrpe on the Nagios server returns an UNKNOWN for this switch. Starting with version 2.8, NRPE supports the multi-line output of plugins that was introduced with Nagios 3.0 (see 8.5.1 Multiple-line plugin output from page 193). At the time this book went to press, the current version was 2.12, dated 26. 03. 2008.
All established distributions include the plugin collection from at least version 1.4. Whether you need the most up-to-date version depends on your expectations of the respective plugins.
10.1.1 Distribution-specific packages
SuSE Linux 10.3 includes the packages nagios-nrpe-2.10-4.1.i586.rpm, nagios-plugins-1.4.10-12.1.i586.rpm, and nagios-plugins-extras −1.4.10-12.1.i586.rpm.nagios-nrpe contains both the daemon and the plugin check_nrpe. nagios-plugins-extras installs several additional plugins, such as database checks, FPing test or Radius test, which can be omitted, depending on your specific monitoring needs.
For the sake of simplicity, the design packages are installed via YAST2[96] or rpm -ihv
package. the second method is also open to Fedora users.
For Fedora Core and Red Hat Enterprise Linux, Dag Wieers has made available corresponding Nagios packages of several versions.[97]
Debian/Sarge distributes the NRPE daemon and the NRPE plugin check_nrpe in two different packages called nagios-nrpe-server and nagios-nrpe-plugin, which can be installed separately via apt-get install
package. If you want to do without local documentation, you can omit the package nagios-nrpe-doc and just add the plugin package nagios-plugins to the target hosts.
The paths for the program nrpe, the configuration file nrpe.cfg, and the plugin directory are listed in Table 10-1.
Table 10-1. Installation paths for NRPE and plugins

	Distribution
	NRPE program
	Configuration file
	Plugins

	[a]

	[b]

	Self-compiled [a]
	/usr/local/sbin/nrpe
	/etc/nagios/nrpe.cfg
	/usr/local/nagios/libexec

	SuSE
	/usr/bin/nrpe
	/etc/nagios/nrpe.cfg
	/usr/lib/nagios/plugins

	Debian
	/usr/sbin/nrpe
	/etc/nagios/nrpe.cfg
	/usr/lib/nagios/plugins

	Fedora [b]
	/usr/sbin/nrpe
	/etc/nagios/nrpe.cfg
	/usr/lib/nagios/plugins

	[a] Recommended.
[b] From the packages provided by Dag Wieers.

10.1.2 Installation from the source code
The plugins are installed on the computers to be monitored exactly as described in 1.4 Installing and Testing Plugins from page 43 for the Nagios server.
The NRPE source code is obtained from the Nagios homepage.[98] The directory /usr/local/src[99] is ideal for unloading the sources.
linux:~ # mkdir /usr/local/src
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /path/to/nrpe-2.11.tar.gz
In the new directory that has been created, you run the configure command:
linux:local/src # cd nrpe-2.11
linux:src/rnpe-2.11 # ./configure --sysconfdir=/etc/nagios --enable-ssl
The recommended path specifications are listed in Table 10-1. The only difference from the default settings are for the directory in which the NRPE configuration file is stored (configure option --sysconfdir).
Accordingly, we can leave out the entry for --with-nrpe-user and --with-nrpe-group in the configure command. Both options are relevant only if the nrpe program is running as a daemon, and they can be overwritten in the configuration file. If the inet daemon is used, you should specify the user with whose permissions nrpe should start in the configuration file for the inet daemon.
--enable-ssl ensures that NRPE communicates over an SSL-encrypted channel. This will only work, of course, if both nrpe on the target host and check_nrpe on the Nagios server have both been compiled accordingly.
The command make all compiles the programs nrpe and check_nrpe, but it does not copy them from /usr/local/src/nrpe-2.11/src to the corresponding system directories. Since there is no make install, you must do this yourself, following the details in Table 10-1: you need to have nrpe on the computer to be monitored and the check_nrpe plugin on the Nagios server.
If the Nagios server and the target host used the same platform, you can compile both programs on one computer (e.g., the server) and then copy nrpe together with its configuration file to the computer to be monitored, instead of separately compiling check_nrpe on the Nagios server and nrpe on the target system.

[96] On the command line, using yast -i
package.
[97] http://dag.wieers.com/
[98] http://www.nagios.org/download/
[99] The subdirectory src may need to be created first.

10.2 Starting via the inet Daemon
It is best to start the program nrpe on the machine to be monitored via the inet daemon rather than as a separate daemon, since the Nagios server only performs the tests occasionally, and nrpe does not need to load any large resources.
If you have a choice, you should use the more modern xinetd. But to keep work to a minimum, the inet daemon will normally be used, as it is already running on the target system. In order that NRPE can be started as a service via inetd or xinetd, the nrpe service is defined in the file /etc/services:
nrpe 5666/tcp # Nagios Remote Plugin Executor NRPE
Even if this has been installed as a package, you should still check to see whether this entry exists. By default, NRPE uses TCP port 5666.
10.2.1 xinetd configuration
If xinetd is used, a separate file is stored in the directory /etc/xinetd.d. for each service to be started, so for nrpe it is best to create a file called nrpe or nagios-nrpe:
/etc/xinetd.d/nrpe
description: NRPE
default: on
service nrpe
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = nobody
 group = nogroup
 server = /usr/local/sbin/nrpe
 server_args = -c /etc/nagios/nrpe.cfg --inetd
 log_on_failure += USERID
 disable = no
 only_from = 127.0.0.1 ip_of_the_nagios_server
}
The values printed in italics are passed on to your own environment; instead of the placeholder ip_of_the_nagios_server you should enter, for example for only_from, the IP address of your own Nagios server. The NRPE access from outside is then restricted to this computer and to local-host (127.0.0.1). The latter address allows local tests; multiple IP addresses are separated by a space. However, this restrictive configuration functions only if xinetd has been compiled with support for the TCP wrapper (this is normally the case).
Under no circumstances should NRPE run with the permissions of a privileged user—nobody is therefore a sensible value. The server parameter specifies the complete path to the program nrpe; for server_args you should enter the matching path to the configuration file. After this modification, the configuration of xinetd is reloaded, with
linux:~ # /etc/init.d/xinetd reload
10.2.2 inetd configurationt
In the standard inetd, the following line is added to the configuration file /etc/inetd.conf:
nrpe stream tcp nowait nobody /usr/sbin/tcpd /usr/local/sbin/nrpe -c/
etc/nagios/nrpe.cfg --inetd
The line has been split up for reasons of space, but in the configuration file this must all be in a single line. Here the TCP wrapper tcpd is used. If this is not intended, you simply leave out this entry[100] Here you should also explicitly enter the user nobody, the complete path to the binary nrpe, and the configuration file, also with its complete path. These strings, printed above in italics, should be adjusted to your own system, where necessary. After the configuration change, inetd is reloaded:
linux:~ # /etc/init.d/inetd reload
10.2.3 Is the Inet daemon watching on the NRPE port?
A simple test shows whether the inet daemon wants to respond to queries on port 5666:
linux:~ # netstat -lnt | grep ':5666'
...
tcp 0 0 0.0.0.0:5666 0.0.0.0:* LISTEN
...
The program netstat uses option −1 to display all the ports on which a service is waiting for incoming queries, that is, a service which is in the LISTEN state. Option -n suppresses the name resolution of hosts and ports and speeds up the display of information, and -t restricts the otput to TCP ports.
The test shows only whether the inet daemon was properly configured and newly started, for instance, whether the nrpe service is correctly entered in /etc/services. It does not clarify whether the paths to the NRPE daemon and its configuration file are correct. Errors like this are announced by the inet daemon only when a concrete access attempt takes place on NRPE port 5666. The subsequent complete function test is carried out only after the NRPE daemon has been configured. This is described in 10.4 NRPE Function Test from page 221.

[100] inetd does not have a built-in method to allow access to services only from specific IP addresses. This function is added in the TCP wrapper tcpd. The access configuration is then taken over by the files /etc/hosts.allow and /etc/hosts.deny. More information on this is given by man host_access.

10.3 NRPE Configuration on the Computer to Be Monitored
When compiling NRPE, the file nrpe.cfg is created in the source directory, which contains several parameters as well as the commands to run NRPE. These are copied manually to the configuration directory, which normally first has to be created on the target computer:
linux:src/rnpe-2.11 # mkdir /etc/nagios
linux:src/rnpe-2.11 # cp nrpe.cfg /etc/nagios/.
Distribution-specific packages are unpacked from the location specified in Table 10-1 in page 215.
nrpe is given the permissions of the user at runtime specified in the inet daemon configuration, which in our case is that of nobody. Therefore nrpe.cfg needs to be readable for this user. As long as the file does not contain any passwords (these really should not be used) or other critical information, then read permissions for all can be allowed.
The configuration file contains many comments; the following command displays the active parameters:[101]
user@linux:~$ egrep -v '^#|^$' nrpe.cfg | less
server_port=5666
allowed_hosts=127.0.0.1
nrpe_user=nobody
nrpe_group=nogroup
dont_blame_nrpe=0
debug=0
command_timeout=60
...
The parameters server_port, allowed_hosts, nrpe_user, and nrpe_group are only relevant if nrpe is working as a daemon. When the inet daemon is used, the program ignores these values since they have already been determined by the (x) indetd configuration.
The entry dont_blame_nrpe=0 prevents nrpe from accepting parameters, thus closing a potential security hole. debug=l allows extensive logging, useful if you are looking for errors (debug=0 switches off the output for debugging information), and command_timeout specifies a timespan in seconds after which nrpe abruptly interrupts a plugin that has hung. Comments in the configuration file explain all these parameters as well.
After this, the commands are defined that are to be executed by NRPE. The configuration file nrpe.cfg already contains some, but first they all have to be commented out, and only those commands activated that really are intended for use.
The keyword command is followed in square brackets by the name with which check_nrpe should call the command. After the equals sign (=), the corresponding plugin command is specified, with its complete path:[102]
command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10
command[check_load]=/usr/lib/nagios/libexec/check_load -w 8,5,3 -c 15,10,7
command[check_zombies]=/usr/lib/nagios/libexec/check_procs -w :1 -c :2 -s Z
With the path, care must be taken that this really does point to the local plugin directory. In the directory specified here, /usr/local/nagios/libexec, the self-compiled plugins are located[103]; and for installations from distribution packages the path is usually /usr/lib/nagios/plugins.
From the Nagios server, the command just defined, check_users is now run on the target computer via check_nrpe:
nagios@linux:nagios/libexec$./check_nrpe -H target_host -c check_users
10.3.1 Passing parameters on to local plugins
The method described so far has one disadvantage: for each test on the target system, a separately defined command is required for this. Here is the example of a server on which the plugin check_disk (see 7.1 Free Hard Drive Capacity from page 158) is required to monitor nine file systems:
command[check_disk_a]=path/to/check_disk -w 5% -c 2% -p /net/linux01/a
command[check_disk_b]=path/to/check_disk -w 4% -c 2% -p /net/linux01/b
command[check_disk_c]=path/to/check_disk -w 5% -c 2% -p /net/linux01/c
command[check_disk_d]=path/to/check_disk -w 5% -c 2% -p /net/linux01/d
command[check_disk_root]=path/to/check_disk -w 10% -c 5% -p /
command[check_disk_usr]=path/to/check_disk -w 10% -c 5% -p /usr
command[check_disk_var]=path/to/check_disk -w 10% -c 5% -p /var
command[check_disk_home]=path/to/check_disk -w 10% -c 5% -p /home
command[check_disk_tmp]=path/to/check_disk -w 10% -c 5% -p /tmp
To avoid all this work, NRPE can also be configured so that parameters may be passed on to check_nrpe:
dont_blame_nrpe=1
...
command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$
In order for this to work, the NRPE configure script must be run with the option
--enable-command-args. The reason for this inconvenient procedure is that passing parameters on is a fundamental risk, since it cannot be ruled out that a certain choice of parameters could cause an (as yet unknown) buffer overflow, allowing the target system to be penetrated.
If you still decide on this, despite all the security risks, you should use a TCP wrapper (see 10.2.2 inetd configurationt, page 217), to ensure that only the Nagios server itself is allowed to send commands to NRPE.
If the plugin provides the corresponding options, there is sometimes a third method, however: the above-mentioned problem can also be solved by getting check_disk, if necessary, to test all file systems with one single command:
user@linux:nagios/libexec$./check_disk -w 10% -c 4% -e -m
DISK WARNING [2588840 kB (5%) free on /net/linux1/b] [937160 kB (5%) free on
 /net/linux1/c]
The -e parameter persuades the plugin to display only those file systems that produced a warning or an error. One restriction remains: the warning and critical limits are, by necessity, the same for all file systems.

[101] The regular expression ^#|^$ matches all lines that either begin with a comment sign # or that consist of an empty line. The option -v ensures that egrep shows all lines that are not matched by this.
[102] The check_users command is explained in 7.6 Keeping Tabs on the Number of Logged-In Users from page 177, check_load is explained in 7.3 Testing the System Load from page 162, and 7.4 Monitoring Processes from page 163 deals with check_procs.
[103] ... provided you have followed the instructions in the book.

10.4 NRPE Function Test
For a concluding function test, the plugin check_nrpe on the Nagios server is called. The command -H
target
host returns the IP address specified for the server on which the NRPE service has just been installed:
nagios@linux:nagios/libexec$./check_nrpe -H swobspace
CHECK_NRPE: Error - Could not complete SSL handshake.
The error message given here occurs very frequently and causes confusion almost as often because although problems may occur with the SSL handshake, the cause is to be found elsewhere in most cases. You only have an SSL problem if the SSL versions used by the plugin check_nrpe and the NRPE daemon addressed are incompatible or if one of the two software packages was compiled without SSL and the other was compiled with SSL.
Otherwise, the cause will lie elsewhere: The problem could be caused by an error in the configuration file, the inet daemon being unable to find the NRPE program or configuration file, or access permissions for the file nrpe.cfg that are not sufficient. You would also receive the error message mentioned if the Nagios server cannot access the NRPE service at all via the inetd configuration. In this case, you need to check the parameter only_from for xinetd or the same restrictions via the tcpd for inetd.
You can search for the exact cause of error in the syslog files, particularly in the file messages, and depending on the distribution, also in warn.log, daemon.log, or another log file:
linux:~ # grep nrpe /var/log/messages
...
nrpe[19844]: Unable to open config file '/etc/nagios/nrpe.cfg' for reading
nrpe[19844]: Config file '/etc/nagios/nrpe.cfg' contained errors, aborting...
...
In this example, the file nrpe.cfg is either not in the path being searched or nrpe cannot open it. Since nrpe is running with the permissions of the user nobody, it must also be able to read the configuration file.
A successful call of check_nrpe will then provide the version of the installed NRPE service:
nagios@linux:nagios/libexec$./check_nrpe -H swobspace
NRPE v2.11

10.5 Nagios Configuration
Commands that "trigger" local plugins on remote computers via check_nrpe are defined as before in the file checkcommands.cfg on the Nagios server.
10.5.1 NRPE without passing parameters on
If no parameters are passed on to the target plugin, things will look like this:
define command{
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}
As the only argument, Nagios passes the command here that NRPE is to execute. If the check_nrpe plugin on the Nagios server is located in a different directory to the other plugins, you must enter the correct path instead of $USER1$.
A service to be tested via NRPE uses the command just defined, check_nrpe, as check_command. As an argument, the command is specified that was defined in nrpe.cfg on the target system (here: linux04):
define service{
 host_name linux04
 service_description FS_var
 ...
 check_command check_nrpe!check_disk_var
 ...
}
10.5.2 Passing parameters on in NRPE
In order to address the command defined in 10.3.1 Passing parameters on to local plugins in page 220
command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$
from the Nagios server, the check_nrpe is given the corresponding arguments through the option -a:
define command{
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$ -a $ARG2$
}
So that $ARG2$ can correctly transport the parameters for the remote plugin, these are separated by spaces in the service definition. in addition, you should ensure that the order is correct:
define service{
 host_name linux04
 service_description FS_var
 ...
 check_command check_nrpe!check_disk!10% 5% /var
 ...
}
The locally installed check_disk on linux04 distributes the three strings 10%, 5%, and /var to its own three macros $ARG1$, $ARG2$, and $ARG3$ for the command defined in nrpe.cfg.
10.5.3 Optimizing the configuration
If the NRPE commands are given identical names on all target systems, then all NRPE commands with the same name can be included in a single service definition. When doing this you can make use of the possibility of specifying several hosts, or even an entire group of hosts:
define service{
 host_name linux04,linux02,linux11
 service_description FS_var
 ...
 check_command check_nrpe!check_disk_var
 ...
}
With the command check_disk_var, defined at the beginning of 10.3.1 Passing parameters on to local plugins in page 220, Nagios now checks the /var file systems on the computers linux04, linux02, and linux11. If other file systems are to be included in the test, a separate service is created for each one, thus avoiding the security problem involved in passing parameters on. If you use the option of testing all file systems at the same time, with the check_disk plugin (see 7.1 Free Hard Drive Capacity), then ultimately, one single service definition is sufficient to monitor all file systems on all Linux servers— provided you have a corresponding NRPE configuration on the target system:
define service{
 hostgroup_name linux-servers
 service_description Disks
 ...
 check_command check_nrpe!check_disk
 ...
}

10.6 Indirect Checks
NRPE executes not just local plugins, but any plugins that are available. If you use network plugins via NRPE, these are referred to as indirect checks, as illustrated graphically in Figure 10-1.

Figure 10-1. Indirect checks with NRPE
If every network service was tested directly across the firewall, it would have to open all the required ports. In the example, these would be the ports for SMTP, HTTP, LDAP, PostgreSQL, and SSH. If the checks are performed indirectly from a computer that is behind the firewall, on the other hand, then it is sufficient just to have the port for NRPE (TCP port 5666) open on the firewall. As long as it is configured via NRPE, the NRPE server behind the firewall can perform any tests it wants.
Whether the effort involved in indirect checks is greater than that for direct ones is dependent on the specific implementation: if this means that you would have to "drill holes into your firewall," then the additional work on the NRPE server may be worthwhile. But if the ports involved are open anyway, then the direct test can usually be recommended; this would make additional configuration work on an NRPE host unnecessary.

Chapter 11. Collecting Information Relevant for Monitoring with SNMP
SNMP stands for Simple Network Management Protocol, a protocol defined above all to monitor and manage network devices. This means being able to have not only read access, but also write access to network devices, so that you can turn a specific port on a switch on or off, or intervene in other ways.
Nearly all network-capable devices that can also be addressed via TCP/IP can handle SNMP, and not just switches and routers. For Unix systems there are SNMP daemons; even Windows servers contain an SNMP implementation in their standard distribution, although this must be explicitly installed. But even uninterruptible power supplies (UPSs) or network-capable sensors are SNMP-capable.
If you are using Nagios, then at some point you can't avoid coming into contact with SNMP, because although you usually have a great choice of querying techniques for Unix and Windows systems, when it comes to hardware-specific components such as switches, without their own sophisticated operating system, then SNMP is often the only way to obtain information from the network device. SNMP certainly does not have a reputation of being easy to understand, which among other things lies in the fact that it is intended for communication between programs, and machine processing is in the foreground. In addition, you generally do not make direct contact with the protocol and with the original information, since even modems or routers provide a simple-to-operate interface that disguises the complexity of the underlying SNMP.
If you want to use SNMP with Nagios, you cannot avoid getting involved with the information structure of the protocol. 11.1 Introduction to SNMP therefore provides a short introduction to SNMP. 11.2 NET-SNMP from page 234 introduces NET-SNMP, probably the most widely used implementation for SNMP on Unix systems. On the one hand it shows how to obtain an overview of the information structure of a network device with command-line tools, and on the other it describes the configuration of the SNMP daemon in Linux. Finally, 11.3 Nagios's Own SNMP Plugins from page 246 is devoted to the concrete use of SNMP with Nagios.
11.1 Introduction to SNMP
Although SNMP contains the P for "protocol" in its name, this does not stand for a protocol alone, but is used as a synonym for the Internet Standard Management Framework. This consists of the following components:
	Manageable network nodes that can be controlled remotely via SNMP. A specific implementation of an SNMP engine, whether by software or hardware, is referred to as an agent.
	At least one SNMP unit consisting of applications with which the agents can be managed. This unit is referred to as a manager.
	A protocol with which agent and manager can exchange information: the Simple Network Management Protocol (SNMP).
	A well-defined information structure, so that any managers and agents can understand each other: the so-called Management Information Base, or in short, MIB.

The framework assigns the manager the active role. The agent itself just waits passively for incoming commands. In addition, so-called traps extend the application possibilities of SNMP: these are messages that the agent actively sends to a single manager or a whole group of managers, for example if predefined limit values are exceeded or if functions of the network device fail.
As agents, SNMP engines implemented by the manufacturer are used for hardware-specific devices (switches, routers). For Linux and general Unix systems, the NET-SNMP implementation is available (see 11.2 NET-SNMP), for Windows servers there is equivalent software already included with the operating system.
In combination with Nagios, there are two possibilities. With respect to Nagios in the active role, corresponding Nagios plugins, as the manager, ask the agents for the desired information. The other way round, Nagios can also passively receive incoming SNMP traps using utilities and process these. 14.6 Application Example II: Processing SNMP Traps from page 312 is devoted to this topic.
An understanding of the SNMP information structure, the so-called Management Information Base (MIB), is critical if you want to use SNMP with Nagios successfully. For this reason this section will focus on this. The protocol itself is only mentioned briefly to illustrate the differences between different protocol versions.
If you want to get involved more deeply with SNMP, we refer you to the numerous Request for Comments (RFCs) describing SNMP. The best place to start would be in RFC 3410, "Introduction and Applicability Statements for Internet Standard Management Framework", and RFC 3411: "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks." Apart from an introduction and numerous crosslinks, you will also find references there to the original documents of the older versions, today referred to as SNMPv1 and SNMPv2.
11.1.1 The Management Information Base
The SNMP information structure consists of a hierarchical namespace construction of numbers. Figure 11-1 shows an extract from this. The tree structure is similar to those of other hierarchical directory services, such as DNS or LDAP.
Its root is called 1 (iso) and stands for the International Organization for Standardization. The next level, 3 (org) shown in Figure 11-1 provides a space for general, national and international organizations. Beneath this is 6 (dod) for the U.S. Department of Defense. The general (IP-based) internet owes its assignment as a subitem 1 (internet) of dod to its origin as a military project.
If you bring together the corresponding numbers from left to right and separate them with the dot, then for the internet node in the tree, you arrive at the designation 1.3.6.1. Such nodes are referred to in general as object identifiers (OID). Their syntax is used not only in SNMP but also in the definition of LDAP objects and attributes, for example.
The OID 1.3.6.1 is not exactly easily readable for humans, which is why other notation methods have gained acceptance: both iso.org.dod.internet and the combination iso(1).org(3).dod(6).internet(1) is allowed. Because this would quickly make readable descriptions infinitely long if the tree were deep enough, another abbreviated notation method has become established: as long as the term remains unique, you may simply write internet instead of 1.3.6.1.
The important thing here is that the communication between manager and agent is exclusively of a numerical nature. Whether the manager also allows text input or is capable of issuing information as text instead of as a numeric OID depends on the implementation in each case. The information on individual nodes is provided by the manufacturer of the SNMP agent as a Management Information Base (MIB) in file form.

Figure 11-1. SNMP namespace using the example of the MIB-II interfaces
The data stored in the MIB includes contact information (who designed the MIB; usually the manufacturer of the device will be given here), the definition of individual subnodes and attributes, and the data types used. If an MIB file also describes the individual subnodes and attributes, this puts the manager in a position to supply the user with additional information on the meaning and purpose of the entry in question.
Below internet, the next level is divided into various namespaces. The management node 1.3.6.1.2 is especially important for SNMP, that is, iso(1) .org(3) .dod(6) .internet(1) .mgmt(2). The namespace here is described by RFC 1155, "Structure and Identification of Management Information for TCP/IP-based Internets."
In order for manager and agent to be able to understand each other, the manager needs to know how the agent structures its data. This is where the Management Information Base, Version II comes into play. SNMP requests information from the agents on their implementation; with this, every manager can access the most important parameters of the agent, without a previous exchange of MIB definitions. The Management Information Base II, or MIB-II (or mib-2) for short, can be found in the namespace at 1.3.6.1.2.1 or iso(1).org(3).dod(6).internet(1).mgmt(2).mib-2(1). Since it is well-defined and unique, OIDs lying beneath that are usually described in short, starting with MIB-II or mib-2.
Manufacturer-specific information can also be defined in your own Management Information Base. Corresponding MIBs are located beneath internet.private.enterprise. Once an OID has been described in an MIB, the meaning of this entry may never be changed. The description format for an MIB is standardized by RFC 1212, which is the reason that special MIBs, included by a vendor for its agents, can be integrated into almost any manager.
MIB-II
MIB-II, the Management Information Base, which is obligatory for all SNMP agents, contains several information groups. The most important of these are summarized in Table 11-1. The notation mib-2.x stands for 1.3.6.1.2.1.x.
Table 11-1. MIB-II groups (a selection)

	Group
	OID
	Description

	system
	mib-2.1
	Information on the device, (e.g., the location, contact partner, or uptime)

	interfaces
	mib-2.2
	Information on the network interfaces (Name, interface type, status, statistics etc.)

	at
	mib-2.3
	Assignment of physical addresses (e.g., of MAC addresses) to the IP address (Address Translation Table)

	ip
	mib-2.4
	Routing tables and IP packet statistics

	icmp
	mib-2.5
	Statistics on individual ICMP packet types

	tcp
	mib-2.6
	Open ports and existing TCP connections

	udp
	mib-2.7
	ditto for UDP

	host
	mib-2.25
	Information on storage media, devices, running processes and their use of resources

How you specifically handle information stored in the MIB-II can be explained using the example of the interfaces group: Figure 11-1 shows how they are split up into the two OID interfaces.if Number and interfaces.if Table. This is because one network node initially reveals an unknown number of interfaces. This number is taken up by ifNumber. Before looking at these interfaces more closely, a manager can get the information from ifNumber about how many there really are.
ifTable then contains the actual information on the different interfaces. To obtain this information for a specific interface, the manager queries all the entries in which the last number is the same, like this:
ifEntry.ifIndex.1 = INTEGER: 1
ifEntry.ifDescr.1 = STRING: eth0
ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)
ifEntry.ifMtu.1 = INTEGER: 1500
ifEntry.ifSpeed.1 = Gauge32: 100000000
ifEntry.ifPhysAddress.1 = STRING: 0:30:5:6b:70:70
ifEntry.ifAdminStatus.1 = INTEGER: up(1)
ifEntry.ifOperStatus.1 = INTEGER: up(1)
ifIndex describes the device-internal index—SNMP always starts counting from 1, switches start counting here from 100. ifDescr contains the name of the interface, here eth0—this is obviously a Linux machine. It can be assumed from the next four entries that a normal 100-Mbit Ethernet interface is involved.
The interface type ifType is given as ethernetCsmacd,[104] that is, Ethernet. ifMtu specifies the Maximum Transfer Unit, which in local networks is always 1,500 bytes for Ethernet. The interface speed ifSpeed is 100,000,000 bits here, that is, 100 Mbit. And ifPhysAddress contains the physical network address, also called the MAC address.
ifAdminStatus reveals whether the admin has switched the interface on (up) or off (down) via the configuration. ifOperStatus on the other hand specifies the actual status, since even interfaces activated by an administrator are not necessarily connected to a device, or even switched on.
There is a similar picture for the second interface:
ifEntry.ifIndex.2 = INTEGER: 2
ifEntry.ifDescr.2 = STRING: lo
ifEntry.ifType.2 = INTEGER: softwareLoopback(24)
ifEntry.ifMtu.2 = INTEGER: 16436
ifEntry.ifSpeed.2 = Gauge32: 10000000
ifEntry.ifPhysAddress.2 = STRING:
ifEntry.ifAdminStatus.2 = INTEGER: up(1)
ifEntry.ifOperStatus.2 = INTEGER: up(1)
...
This is not an Ethernet card here, however, but a local loopback device.
11.1.2 SNMP protocol versions
The first SNMP version and Internet Standard Management Framework were described back in 1988 in RFCs 1065–1067; the current documentation on this version, named SNMPv1, can be found in RFC 1155–1157. It is still used today, since higher versions are fundamentally backward-compatible.
The big disadvantage of SNMPv1 is that this version allows only unsatisfactory authentication in precisely three stages: no access, read access, and full access for read and write operations. Two simple passwords, the so-called communities, provide a little protection here: they divide users into one community with read permissions, and the second one with read and write permissions. No further differentiation is possible. If this was not enough, the community is transmitted in plain text, making it an easy prey for sniffer tools.
Further development on the second version, SNMPv2, was intended to solve problems concerning the display of value ranges, error events, and the performance if there are mass requests (RFC 1905). This RFC was never fully implemented, however. The only relatively complete implementation that was used in practice is known as the Community-based SNMPv2, or SNMPv2c for short (RFC 1901-1908). The current version, SNMPv3 (RFC 3411–3418), has the status of an Internet standard. Agents with SNMPv3 implementations always understand requests from SNMPv1.
Apart from extended protocol operations, there are no fundamental differences between SNMPv1 and SNMPv2c. This is probably also the reason why SNMPv2 could not really gain a foothold. The hoped-for increase in security was certainly missing in this version. It is only the extensions of the framework in SNMPv3 which allow more precise access control, but this is much more complicated than the two community strings in SNMPv1. RFC 3414 describes the user-based security model (USM), RFC 3415 the view-based access control model (VACM).
When accessing an SNMP agent, you must tell all tools, including plugins, which protocol version is to be used. In Nagios you exclusively require read access. If this is restricted to the required information and you only allow the access from the Nagios server, you need have no qualms about doing without the extended authentication of SNMPv3. It is only important that you configure the agent—if possible—so that it completely prevents write accesses, or at least demands a password. You should never use this: since it is transmitted in plain text, there is always a danger that somebody may be listening, and misuse the password later on.
In NET-SNMP, write accesses can be completely prevented, access can be restricted to specific hosts, and information revealed can be limited. For other agents implemented in hardware such as switches and routers, you must weigh up whether you really need SNMPv3, assuming the manufacturer has made this available. SNMPv1, however, is available for all SNMP devices.
We will therefore only explain access via SNMPv1 below, and assume that this is generally read access only. If you still want to get involved with SNMPv3, we refer you to the NET-SNMP documentation.[105]

[104] Carrier Sense (CS) means that each network interface checks to see whether the line is free, based on the network signal (in contrast to Token Ring, for example, where the network card may use the line only if it explicitly receives a token); Multiple Access (MA) means that several network cards may access a common network medium simultaneously.
[105] http://net-snmp.sourceforge.net/docs/FAQ.html#How_do_I_use_SNMPv

11.2 NET-SNMP
Probably the most widely used SNMP implementation for Linux and other UNIX systems is NET-SNMP [106] and was originally conceived at Carnegie-Mellon University Wes Hardaker, a system administrator at the University of California in Davis, continued developing the code and first published it under the name UCD-SNMP (Version 3.0).
With version 5.0 the project finally got the name NET-SNMP. But various distributions still call the package UCD-SNMP, in part because it contains version 4.2, in part because the maintainer has simply not gotten around to renaming it.
NET-SNMP consists of a set of command line tools, a graphical browser (tkmib), an agent (snmpd, see 11.2.2 The NET-SNMP daemon in page 238) and a library, which now forms the basis of nearly all SNMP implementations in the Open Source field.
All common distributions include corresponding packages. In SuSE this is called net-snmp and contains all the components; Debian packs the tools in the package snmp, and the daemon in the package snmpd. At the time of going to press, version 5.4.1 was the current version, but an older 5.x version will do the job for our purposes. Their outputs differ to some extent, but the exact options can be looked up where necessary in the man page.
11.2.1 Tools for SNMP requests
For read access, the programs snmpget, snmpgetnext and snmpwalk are used. snmpget specifically requests a single OID and returns a single value from it. snmpgetnext displays the next variable existing in the Management Information Base, including its value:
user@linux:~$ snmpget -v1 -c public localhost ifDescr.1
IF-MIB::ifDescr.1 = STRING: eth0
user@linux:~$ snmpgetnext -v1 -c public localhost ifDescr.1
IF-MIB::ifDescr.2 = STRING: lo
user@linux:~$ snmpgetnext -v1 -c public localhost ifDescr.3
IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)
The option -v1 instructs snmpget to use SNMPv1 as the protocol. With -c you specify the read community an; in this case then, the password is public. This is followed by the computer to be queried, here localhost, and finally there is the OID whose value we would like to find out.
The NET-SNMP tools are masters of OID abbreviation: without special instructions, they always assume that an OID is involved which lies inside the MIB-II. For unique entries such as ifDescr.1, this is sufficient. But whether the various SNMP plugins for Nagios can also handle this depends on the specific implementation; it is best to try out cases on an individual basis. To be on the safe side, it is better to use complete OIDs, either numerical in readable form. The latter is obtained if you instruct snmpget to display the full OID:
user@linux:~$ snmpget -v1 -On -c public localhost ifDescr.1
.1.3.6.1.2.1.2.2.1.2.1 = STRING: eth0
user@linux:~$ snmpget -v1 -Of -c public localhost ifDescr.1
.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.1 = STRING: eth0
The -On option provides the numerical OID, -Of the text version. In this way you can easily find out the complete OID, for plugins which cannot handle the abbreviation. It is important to remember here: each OID always starts with a period. If you omit this, there will always be a plugin which doesn't work properly.
In order to obtain the entire information stored in the MIB-II, it is better to use snmpwalk. As the name suggests, the program takes a walk through the Management Information Base, either in its entirety or in a specified part of the tree. If you would like to find out about all the entries beneath the node mib-2.interfaces (Figure 11-1 in page 230), you simply give snmpwalk the required OID:
user@linux:~$ snmpwalk -v1 -c public localhost mib-2.interfaces
IF-MIB::ifNumber.0 = INTEGER: 3
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifDescr.1 = STRING: eth0
IF-MIB::ifDescr.2 = STRING: lo
IF-MIB::ifDescr.3 = STRING: eth1
IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)
...
snmpwalk hides the exact structure slightly (links to ifTable and ifEntry are missing, for example, see Figure 11-1), so that it is better to use -Of:
user@linux:~$ snmpwalk -v1 -Of -c public localhost mib-2.interfaces
...mib-2.interfaces.ifNumber.0 = INTEGER: 3
...mib-2.interfaces.ifTable.ifEntry.ifIndex.1 = INTEGER: 1
...mib-2.interfaces.ifTable.ifEntry.ifIndex.2 = INTEGER: 2
...mib-2.interfaces.ifTable.ifEntry.ifIndex.3 = INTEGER: 3
...mib-2.interfaces.ifTable.ifEntry.ifDescr.1 = STRING: eth0
...mib-2.interfaces.ifTable.ifEntry.ifDescr.2 = STRING: lo
...mib-2.interfaces.ifTable.ifEntry.ifDescr.3 = STRING: eth1
...mib-2.interfaces.ifTable.ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)
The three dots ... in the version here abbreviated for print stand for .iso.org.dod.internet.mgmt.
As the next step, you could take a look around your own network and query the Management Information Bases available there. Normally you will get quite far with the read community public, since this is often the default setting. So you should also try out the community string private, which is the default set by many vendors. An extremely dubious practice, by the way: anyone who knows a bit about SNMP and who has access to the network can use this to manipulate device settings, such as switching off certain ports or the entire switch. But even with all the other default passwords, you should take the trouble to change them. Entire password lists can be found on the Internet, sorted by vendors and devices—easily found through Google.
Whether you also change the preset read community (such as public) depends on the information available on it and on your own security requirements. But the read-write community should under no circumstances retain the default setting. In addition it is recommended that you switch off SNMP completely for devices that are neither queried nor administrated via SMNP, just to be on the safe side.
Taking a graphic walk with mbrowse
A graphical interface is often recommended for interactive research and for initial explorations of the Management Information Base, such as the SNMP browser mbrowse[107] (see Figure 11-2). This is not a component of NET-SNMP, but most Linux distributions provide an mbrowse package for installation.

Figure 11-2. SNMP browser mbrowse
If you highlight an entry and click on the Walk button, the lower window displays the same output as snmpwalk. The graphical display, however, allows better orientation—it is easier to see in which partial tree you are currently located. It is also interesting that mbrowse shows the numeric OID of each selected object, in Object Identifier.
11.2.2 The NET-SNMP daemon
The NET-SNMP daemon snmpd works as an SNMP agent for Linux and other Unix systems; that is, it answers requests from a manager and also provides a way of making settings to the Linux system via write accesses, such as manipulating the routing table.
Supported Mangement Information Bases
The agent initially provides information on the MIB-II described in RFC 1213 (11.1.1 The Management Information Base from page 229), but also the host extensions belonging to this from RFC 2790 (host MIB). Table 11-2 summarizes the groups of the host MIB, and the most important MIB-II groups are introduced in Table 11-1 (page 231).
If you are interested in a detailed description of the MIB-II, including the host MIB, we refer you to http://www.snmplink.org/. There you can surf through a huge number of MIBs and download them if you wish.
In addition to the basic MIB-II, the NET-SNMP implementation has its own extension at private.enterprises.ucdavis (UCD-SNMP-MIB). The directives given in Table 11-3 refer to instructions in the configuration file snmpd.conf (see Supported Mangement Information Bases). Some of the information here is also given in the Host Resources MIB.
Table 11-2. Components of the Host Resources MIB mib-2.host (RFC 2790)

	Group
	OID
	Description

	hrSystem
	host.1
	System time and uptime of the host, logged-in users, and number of active processes

	hrStorage
	host.2
	Details on all storage media such as swap, hard drives, removable media, and main memory

	hrDevice
	host.3
	List of available devices and their properties: apart from details on the processor, network interfaces, printer and DVD-/CD-ROM drives, there is also information on hard drives, their partitioning, file systems, mount points and file system types

	hrSWRun
	host.4
	All running processes including PID and command line parameters

	hrSWRunPerf
	host.5
	CPU usage and memory usage for the processes from hrSWRun

	hrSWInstalled
	host.6
	Installed software; the information originates from the RPM database (unfortunately this does not work in Debian).

Table 11-3. Extract from the UCD-SNMP-MIB

	Group
	OID
	Directive
	description

	prTable
	ucdavis.2
	proc
	details of running processes

	memory
	ucdavis.4
	-
	Memory and Swap space load, as in the program free

	extTable
	ucdavis.8
	exec
	Information on self-defined commands in the configuration file [a]

	dskTable
	ucdavis.9
	disk
	Information on file systems, see example in the text

	laTable
	ucdavis.10
	load
	System load

	ucdExper-
	ucdavis.13
	-
	Experimental extension containing an entry with lm-sensor information, among other things

	fileTable
	ucdavis.15
	file
	Information on files to be explicitly monitored

	version
	ucdavis.100 -
	-
	Details on the NET-SNMP version and the parameters with which the daemon was compiled

	[a] Any executable programs can be used here.

While mib-2.host only specifies absolute values, such as for file systems, UCD-SNMP-MIB also allows threshold values to be set for agent pages, which then explicitly generate an error value (dskErrorFlag) with error text (dskErrorMsg):
user@linux:~$ snmpwalk -v1 -c public localhost ucdavis.dskTable |\ grep '.2 ='
UCD-SNMP-MIB::dskIndex.2 = INTEGER: 2
UCD-SNMP-MIB::dskPath.2 = STRING: /net/swobspace/b
UCD-SNMP-MIB::dskDevice.2 = STRING: /dev/md6
UCD-SNMP-MIB::dskMinimum.2 = INTEGER: −1
UCD-SNMP-MIB::dskMinPercent.2 = INTEGER: 10
UCD-SNMP-MIB::dskTotal.2 = INTEGER: 39373624
UCD-SNMP-MIB::dskAvail.2 = INTEGER: 1694904
UCD-SNMP-MIB::dskUsed.2 = INTEGER: 35678636
UCD-SNMP-MIB::dskPercent.2 = INTEGER: 95
UCD-SNMP-MIB::dskPercentNode.2 = INTEGER: 1
UCD-SNMP-MIB::dskErrorFlag.2 = INTEGER: 1
UCD-SNMP-MIB::dskErrorMsg.2 = STRING: /net/swobspace/b: less than 10% free (= 95%)
The grep '. 2 =' filters all entries on the second device from the snmpwalk output, the Linux software-RAID /dev/md6. The entry dskPercent shows the current load of this data medium. An error exists if dskErrorFlag contains the value 1 instead of 0; dskErrorMsg adds a readable message to the error message. It can be assumed from this that the agent is being configured so that it will announce an error if free capacity falls below 10 percent.
The configuration file snmpd.conf
Configuring the agent is done in the file snmpd.conf, which is either located in the directory /etc directly (the case for SUSE) or in /etc/snmp (Debian), depending on the distribution.
Authentication and security As the first step towards a finely tuned access control, you first need to define who should have access to which community:
#(1) source addressesQuelladressen
com2sec localnet 192.168.1.0/24 public
com2sec localhost 127.0.0.1 public
com2sec nagiossrv 192.168.1.9 public
com2sec links the source IP addresses to a community string (the SNMP password). This keyword is followed by an alias for the IP address range, the address range itself, and then a freely selectable community string, for which we will use public here, to keep things simple.[108]. 192.168.1.0/24 refers to the local network; the Nagios server itself has the IP address 192.168.1.9. If you set access permissions for the alias localnet later on, they will apply to the entire local network 192.168.1.0/24, but if you reference nagiossrv when doing this, they will only apply to the Nagios server itself.
Then the defined computers and networks are assigned via their aliases to groups which have different security models:
(2) assignment of group - security model - source-IP alias
group Local v1 localhost
group Nagios v1 nagiossrv
The keyword group is followed first by a freely selectable group name: here we define the group Local with the security model v1, which belongs to the address range defined as localhost, and the group Nagios with the same security model contained in the Nagios server.
You can choose from v1 (SNMPv1), v2c (community-based SNMPv2), and usm (the User Model from SNMPv3) as the security model. If you assign a computer or a network several security models at the same time, then separate entries with the same group name are required:
group Nagios v1 nagiossrv
 group Nagios usm nagiossrv
With the definition of views (keyword view) the view from the outside can be restricted precisely to partial trees of the Management Information Base. Each view here is also given a name for referencing:
#(3) View definition for partial trees of the SNMP namespace
 view all included .1
 view system included .iso.org.dod.internet.mgmt.mib-2.system
The reference included includes the following partial tree in the view. Thus the view all covers the entire tree (.1). If you want to exclude certain partial trees in this, then the keyword excluded is used:
view all included .1
 view all excluded .iso.org.dod.internet.private
The partial tree beneath private in all is now blocked, such as the MIB ucdavis (private.enterprises.ucdavis).
One interesting feature is the mask; it specifies in hexadecimal notation which nodes correspond exactly to the subtree:
view all included .iso.org.dod.internet.mgmt F8
All places of the queried OID, for which the mask contains a 1 in binary notation, must be identical in the queried partial tree to the OID specified here, .iso.org.dod.internet.mgmt, otherwise the daemon will refuse access and not provide any information. .iso.org.dod.internet.mgmt is written numerically as .1.3.6.1.2.
Thanks to the mask F8,[109] binary 11111000, the first five places from the left in the OID must always be .iso.org.dod.internet.mgmt. If somebody queried an OID (such as the private tree .1.3.6.1.4), which deviates from this, the agent would remain silent and not provide any information. If you leave out the mask detail, FF will be used.
If you have defined the alias, community, security model, and view, you just need to bring them together for the purpose of access control. This is done with the access instruction:
(4) Definition of the access control
access Local any noauth exact all none none
access NagiosGrp any noauth exact all none none
The access restrictions are bound to the group. The context column remains empty ('""), since only SNMPv3 requires it.[110]. As the security model, you then normally choose any, but you may define a specific model with v1, v2c or usm, since several different security models may be assigned to a group, as shown in the discussion of "Authentication and Security" at the beginning of this Section. The fifth column specifies the security level, which is also of interest only for SNMPv3. In the other two security models (we are only using v1), noauth is given here. The fourth last column also has just one meaning in SNMPv3. But since you must enter a valid value forSNMPv1 and SNMPv2c as well, then exact is chosen here.
The last two columns specify which view should be used for which access (read or write). In the example, the groups Local and NagiosGrp obtain read access for the view all, but no write access. The final column defines whether the agent should send SNMP traps—that is, active messages, to the manager—for events that occur within the range of validity of the view. 14.6 Application Example II: Processing SNMP Traps from page 312 goes into more detail about SNMP traps.
With the configuration described here, you can now exclusively access the Nagios server and localhost via SNMPv1 for information. The server access can be restricted further by defining a view that makes only parts of the MIB visible. But you should only try this once the configuration described is working, to avoid logical errors and time-consuming debugging.
System and local information The partial tree mib-2.system provides information on the system itself and on the available (that is, implemented) MIBs. With syslocation you can specify where a system is located in the company or on the campus, and after the keyword syscontact you enter the e-mail address of the administrator responsible:
#(5) mib-2.system
syslocation Server room Martinstr., 2nd rack from the left
syscontact root <wob@swobspace.de>
As long as you do not redefine the parameters sysname and sysdescr at this point, the corresponding MIBs in the default will reveal the host name and/or the system and kernel specification, corresponding to uname -a:
user@linux:~$ snmpwalk -v1 -c public localhost system
system.sysDescr.0 = STRING: Linux swobspace 2.6.10 #20 SMP Mon Dec 27 11:55:25 CET
 2004 i686
system.sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
system.sysUpTime.0 = Timeticks: (1393474) 3:52:14.74
system.sysContact.0 = STRING: root <wob@swobspace.de>
system.sysName.0 = STRING: swobspace
system.sysLocation.0 = STRING: Serverraum Martinstr., 2. Rack von links
Defining processes to be monitored Processes that you want to monitor using SNMP are specified with the proc directive, and if required you can specify the minimum or maximum number of processes:
(6) Processes: enterprises.ucdavis.procTable
proc process maximum minimum
proc process maximum
proc process
proc sshd
proc nmbd 2 1
proc smbd
proc slapd
If the entry for maximum and minimum is missing, at least one process must be running. If only the minimum is omitted, NET-SNMP will define this with zero processes. The corresponding entries end up in the MIB ucdavis.prTable; in case of error you will receive an error flag (prError-Flag and an error description (prErrMessage) (which unfortunately you cannot define yourself):
user@linux:~$ snmpwalk -v1 -c public localhost prTable
...
prTable.prIndex.4 = INTEGER: 4
prTable.prNames.4 = STRING: slapd
prTable.prMin.4 = INTEGER: 0
prTable.prMax.4 = INTEGER: 0
prTable.prCount.4 = INTEGER: 0
prTable.prErrorFlag.4 = INTEGER: 1
prTable.prErrMessage.4 = STRING: No slapd process running.
...
ucdavis. prTable only reveals the configured processes; on the other hand it allows mib-2.host.hrSWRun and mib-2.host.hrSWRunPerf in general to query all running processes. If you want to prevent this, the view must exclude the area you do not want.
Your own commands With the exec directive you can specify commands in the extension ucdavis.extTable, which the agent will execute in the corresponding queries. The result then appears in the relevant entries. In the following example the agent calls /bin/echo if it is asked for ucdavis.extTable:
(7) your own commands: enterprises.ucdavis.extTable
exec name command arguments
exec echotest /bin/echo hello world
The program to be executed must appear with its absolute path in the configuration. Running snmpwalk provides only the following:
user@linux:~$ snmpwalk -v1 -c public localhost extTable
extTable.extEntry.extIndex.1 = INTEGER: 1
extTable.extEntry.extNames.1 = STRING: echotest
extTable.extEntry.extCommand.1 = STRING: /bin/echo hello world
extTable.extEntry.extResult.1 = INTEGER: 0
extTable.extEntry.extOutput.1 = STRING: hello world
...
extTable.extEntry.extResult contains the return value of the command executed, and extTable.extEntry.extOutput contains the text output.
With the exec directive you can thus query everything that a local script or program can find out. This could be a security problem, however: if the programs used are susceptible to buffer overflows, this feature could be misused as a starting point for a denial-of-service attack.
Monitoring hard drive capacity The disk directive is suitable for monitoring file systems. The keyword disk is followed by the path for a mount point, and then the minimum hard drive space in KB or in percent that should be available. If you omit the capacity entry, at least 100 MB must be available; otherwise an error message will be given.
In the following example the free capacity in the / file system should not drop below 10% and on /usr, at least 800 MB [111] should remain free:
#(8) File systems: enterprises.ucdavis.dskTable
#disk mount point
#disk mount point minimum_capacity_in_KB
#disk mountpoint minimum_capacity_in_percent%
disk / 10%
disk /usr 819200
disk /data 50%
As far as the data partition /data is concerned, the alarm should be raised if free capacity falls below 50%. dskErrorFlag in this case contains the value 1 instead of 0, and dskErrorMsg contains an error text:
...
UCD-SNMP-MIB::dskPercent.3 = INTEGER: 65
UCD-SNMP-MIB::dskErrorFlag.3 = INTEGER: 1
UCD-SNMP-MIB::dskErrorMsg.3 = STRING: /data: less than 50% free (= 65%)
dskPercent reveals a current load of 65%. Instead of the partial tree configured here, ucdavis.dskTable, mib-2.host.hrStorage also provides an overview of all file systems, even those not explicitly defined. These are missing percentage details, however, and you do not receive an error status or error message, as supplied by ucdavis.dskTable.
You should think hard about whether you set the warning limit in the NET-SNMP or in the Nagios configuration. In the first case you must configure the values on each individual host. If you query the percentage load, however, with the check_snmp plugin (see 11.3.1 The generic SNMP plugin check_snmp from page 246), then you set warning and critical limits centrally on the Nagios server, saving yourself a lot of work if you make changes later on. The includeAHDisks directive adds all existing file systems to the dskTable table:
includeAllDisks 10%
It requires a minimum limit to be specified in percent, and also returns error values. An absolute specification in KB is not possible here. If you set warning and error limits centrally for check_snmp; (see 11.3.1 The generic SNMP plugin check_snmp from page 246) the error attributes dskErrorFlag and dskErrorMsg are not queried, so that the value set here as the minimum limit can be ignored.
System load The load directive queries the CPU load. As the limit values, you specify the average values for one minute, and optionally for five and 15 minutes:
(9) System Load: enterprises.ucdavis.laTable
load max1
load max1 max5
load max1 max5 max15
load 5 3 2
If the values are overstepped, laErrorFlag will contain the status 1 (otherwise: 0) and laErrMessage will have the text of the error message.
In a system that exceeds one of the specified limits, snmpwalk returns the following:
user@linux:~$ snmpwalk -v1 -c public localhost laTable
...
UCD-SNMP-MIB::laNames.1 = STRING: Load-1
UCD-SNMP-MIB::laNames.2 = STRING: Load-5
UCD-SNMP-MIB::laNames.3 = STRING: Load-15
UCD-SNMP-MIB::laLoad.1 = STRING: 5.31
UCD-SNMP-MIB::laLoad.2 = STRING: 2.11
UCD-SNMP-MIB::laLoad.3 = STRING: 0.77
...
UCD-SNMP-MIB::laLoadInt.1 = INTEGER: 530
UCD-SNMP-MIB::laLoadInt.2 = INTEGER: 210
UCD-SNMP-MIB::laLoadInt.3 = INTEGER: 77
UCD-SNMP-MIB::laLoadFloat.1 = Opaque: Float: 5.310000
UCD-SNMP-MIB::laLoadFloat.2 = Opaque: Float: 2.110000
UCD-SNMP-MIB::laLoadFloat.3 = Opaque: Float: 0.770000
UCD-SNMP-MIB::laErrorFlag.1 = INTEGER: 1
UCD-SNMP-MIB::laErrorFlag.2 = INTEGER: 0
UCD-SNMP-MIB::laErrorFlag.3 = INTEGER: 0
UCD-SNMP-MIB::laErrMessage.1 = STRING: 1 min Load Average too high (=5.31)
UCD-SNMP-MIB::laErrMessage.2 = STRING:
UCD-SNMP-MIB::laErrMessage.3 = STRING:
From laLoadlnt.1 we are told the one-minute average value for the system load as an integer, from laLoad.l as a string, and from laLoadFloat.1 as a floating-point decimal. laErrorFlag.1 contains the corresponding error status, laErrMessage.1 the corresponding error message. The same applies for the other two averages.
You can also use the check_snmp plugin here to query the floating-point decimal values just as accurately, and specify limit values centrally.

[106] http://net-snmp.sourceforge.net/
[107] http://www.kill-9.org/mbrowse/
[108] See also page 236
[109] F= 1.23+1.22+1.21 +1.20 = 1111, 8=1000
[110] Corresponding descriptions on SNMPv3 would go beyond the bounds of this book
[111] 1024KB * 800

11.3 Nagios's Own SNMP Plugins
Among the standard Nagios plugins there are three programs with which data can be obtained via SNMP: a generic plugin that queries any OIDs you want, and two Perl scripts that are specialized in interface data of network cards and the ports of switches, routers and so forth. In addition to this, the directory contrib contains the source code of other SNMP plugins that are not automatically installed. Apparently these are no longer maintained and cannot run without major adjustments to the code.
http://www.nagiosexchange.org/ also provides some useful specialized plugins, some of which are introduced in 11.4 Other SNMP-based Plugins from page 255. The following descriptions are limited, for reasons of space, to SNMPv1/2 queries; for SNMPv3-specific options, we refer you to the online help for the corresponding plugin.
11.3.1 The generic SNMP plugin check_snmp
With check_snmp a generic plugin is available that queries all available information via SNMP, according to your requirements. However, its operation does require a degree of care, since as a generic plugin, it has no idea of specifically what data it is querying.
For this reason as well, its output looks quite meager; specialized plugins provide more convenience here. But since these don't exist for every purpose, check_snmp is then quite justified. It calls the program snmpget auf, which means that the NET-SNMP tools must be installed.
It provides the following options:
-H
address/ --host=address
This is the host name or IP address of the SNMP agent to be queried.

-o
OID /--oid=OID
This is the object identifier to be queried, either as a complete numerical OID or as a string, which is interpreted by snmpget (e.g., system.sysName.O).

Attention: in contrast to snmpwalk, you must always specify the end nodes containing the information.

-p
port
/ --port=port
This is the alternative port on which the SNMP agent is running. The default is UDP port 161.

-C
password
/ --community=password
This is the community string for read access. The default value is public.

-w
start:end
/ --warning=start:end
If the queried value lies within the range specified by start and end, check_snmp does not give out a warning. For -w 0:90 it must therefore be larger than 0 and smaller than 90.

-c
start:end
/ --critical=start:end
If the query value lies outside the range, the plugin gives out CRITICAL. If the warning and critical limits overlap, the critical limit always has priority

-s
string
/ --string=string
The contents of the queried OID must correspond exactly to the specified string, otherwise check_snmp will give out an error.

-r
regexp
/ --ereg=regexp
This option checks the contents of the queried OID to see whether the regular expression regexp[112] is matched. If this is the case, the plugin returns OK, otherwise CRITICAL.

-R
regexp
/ --erexi=regexp
As -r, except that there is no case distinction.

−1
prefix
/ --label=prefix
A string that is placed in front of the plugin response. The default is SNMP.

-u
string
/ --units=string
SNMP only has simple values, not units. A string that is specified instead of string is extended by the plugin in the text output so that it serves the value as a unit. Because only text is involved here, you can also specify apples or pears, for example, as "units".

-d
delimiter
/ --delimiter=delimiter
This character separates the OID in the snmpget output from the value. The default is =.

-D
delimiter
/ --output-
delimiter=delimiter
The plugin is able to query several OIDs simultaneously. The result values are separated with delimiter, which in the default is a space.

-m
mibs
/ --miblist=mibs
This specifies the MIBs that should be loaded for snmpget. The default is ALL.-m +UCD-DEMO-MIB[113]. loads in addition, -m UCD-DEMO-MIB <without the + sign> only loads the specified MIB.[114].

-P
version
/ --protocol=version
Defines the SNMP protocol version. The values for version are 1 or 3. Without this option, SNMPv1 is used.

SNMP provides almost unlimited possibilities, so the following examples can merely convey a feeling for other plugins used.
Testing hard drive capacity via SNMP
The following command queries the load of a file system and to do this accesses the partial tree ucdavis.dskTable of a locally running NET-SNMP agent:
nagios@linux:local/libexec$./check_snmp -H swobspace -C public \
 -o dskTable.dskEntry.dskPercent.2 -w 0:90 -c 0:95 -u percent SNMP WARNING
 - *95* percent
The query applies to the percentage load of the file system with the index number 2. As long as no more than 90 percent of the hard drive space is then occupied, the test should return OK; here a warning will be returned if it is between 91 and 95 percent, and critical status if it goes beyond this. Thanks to the -u option, check_snmp adds the description percent to the output of the figure determined.
Nevertheless, the plugin does not tell the whole truth: a test check with df shows a 96 percent load, which comes from the fact that this program correctly rounded up the actual 95.8 percent load, while integer values in SNMP are seldom rounded up, but simply cut off. So you just have to live with slight inaccuracies as long as the MIB does not provide any floatingpoint decimals.
If you would like things to be more detailed, you can use the option −1: −1 'SNMP-DISK: /net/swobspace/b' causes other, self-defined information to be added to the output of the above command:
SNMP-DISK: /net/swobspace/b WARNING - *95* percent
The above query can be more generally run through a command object such as the following:
define command{
 command_name check_snmp
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $USER3$ -P 1 -o $ARG1$
 -w $ARG2$ -c $ARG3$ -l $ARG4$
}
This definition assumes that the value being queried is numerical, and not Boolean (see Monitoring network interfaces), otherwise specifying a warning and critical value simultaneously would make no sense. We store the community here in the macro $USER3$.[115]. this is followed by the protocol version (-P 1 stands for SNMPv1), the OID, the warning and critical limits, and a prefix.
The call for this command in service definitions is then made in the form
check_snmp! oid! warn! critical !prefix
If you want to specifically monitor the load of the file system with the index number 2 on the computer swobspace through dskTable, then the following definition would be used:
define service{
 service_description SNMP-DISK-a
 host_name swobspace
 check_command check_snmp!dskTable.dskEntry.dskPercent.2!0:90!0:95!DIS
 K: /net/swobspace/a
...
}
Even though the check_command line is wrapped here, in practice all parameters must be on a single line, separated by an exclamation point ! (without spaces before or after the delimiter).
Measuring temperature via lm-sensors
The next test checks the CPU temperature of the host. For the sensor, the package lm-sensors[116] is used here, which accesses corresponding chips on modern mainboards. As soon as lm-sensors is active, it allows the NET-SNMP agents to read out the corresponding information from the partial tree ucdavis.ucdExperimental.lmSensors:
nagios@linux:local/libexec$./check_snmp -H localhost -C public \ -o
 lmTempSensorsValue.1 -w 25000:45000 -c 20000:48000 \ -u 'degrees Celsius (* 1000)'
 -l 'Temp1/CPU'
 Temp1/CPU OK - 41000 degrees Celsius (* 1000)
The output depends on the chipset: here you must multiply the query values by the factor 1000. Accordingly, you have no other alternative but to adjust the warning and critical limits to the main board you are using. In the example, the CPU temperature, 41 degrees Celsius, is "on a green light": if it were to drop below 25 degrees or rise above 45 degrees, it would cause a warning, while below 20 or above 48 degrees, this would be critical.
Regular expressions and comparing fixed strings
You can check whether the text swobspace occurs in the system name as follows:
nagios@linux:local/libexec$./check_snmp -H localhost -C public \ -o system.sysName.0
 -r swobspace
 SNMP OK - "swobspace"
Instead of defining the string being searched for, with -r as the regular expression, you could also use the -s option. Then the text must match exactly, however, which may be quite tricky, since everything counts that snmpget outputs after the delimiter, =.
Monitoring network interfaces
The final example queries whether the first network interface of a Cisco router is in operation:
nagios@linux:local/libexec$./check_snmp -H cisco1 -C public \
-o ifOperStatus.1 -w 1:1 -l 'SNMP: Port Status for Port 1 is: '
SNNP: Port Status for Port 1 is: OK - 1
The information sought can be found in ifOperStatus. Here we are querying port 1. While ifOperStatus gives out the operating status, ifAdmin-Status reveals whether the interface is administratively switched on or off.
When specifying the warning limit here, we use the range 1:1, so that the plugin gives out a warning if the interface is physically switched off, and the return value is thus 0. We will do without the definition of a critical status here, since there are only two states, "on" or "off." If the plugin returns a CRITICAL when the interface is switched off, you should use -c 1:1 and omit -w entirely.
If you just want to query the status of network interfaces, you should certainly take a look at the plugins check_ifstatus and check_ifoperstatus, described below, which provide slightly more operating convenience.
If MIB-II or MIB ucdavis do not provide the desired information, you could also take a look at the MIB provided by the manufacturer. You can find out from mib-2.system in which partial tree the overall MIB is hidden:
user@linux:~$ snmpwalk -v1 -c public konica01 system
system.sysDescr.0 = Konica IP Controller
system.sysObjectID.0 = OID: enterprises.2364
...
The example involves a network-capable Konica photocopying machine called konica01.system.sysObjectID.0 reveals that enterprises.2364 serves as the entry point for device specific details. With snmpwalk you can then obtain further information:
user@linux:~$ snmpwalk -v1 -c public konica01 enterprises.2364
...
enterprises.2364.1.2.6.1.1.5.1.1 = "Ready to Print"
...
In the concrete case of this photocopier, you can query the current device status through enterprises.2364.1.2.6.1.1.5.1.1. Manufacturers usually store information on the implemented MIBs, so that you are not restricted to just guessing.
11.3.2 Checking several interfaces simultaneously
Active network components such as switches usually have quite a large number of ports, and it would be very time-consuming to check every single one of them. Here the check_ifstatus plugin is very useful, since it tests all ports simultaneously. It retrieves the information necessary for this via SNMP, and has the following options:
-H
address
/ --host=address
This is the host name or IP address of the SNMP agent to be queried.

-C
password
/ --community=password
This sets the community string for read access.

-p
port
/ --port=port
This parameter is the alternative port on which the SNMP agent is running. The default is UDP port 161.

-v
version
/ --snmp_version=version
This parameter specifies the SNMP version (1, 2, or 3) for the query.

-x
list
/ --exclude=list
Use this to specify a comma-separated list of interface types that should not be queried (see example below).

-u
list
/ --unused_ports=list
Use this to specify a comma-separated list of all ports that should be excluded from the test. Like -x, the list consists of the indices of the interfaces which are determined from if Index: -u 13,14,15,16.

-M
bytes
/ --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is 1472 bytes.

With exclusion lists it is possible to exclude certain interface types or port numbers from the test, perhaps because these are not occupied, or are connected to PCs or other devices that are not always running.
With the following query we can find out, for example, which interface types are gathered together on the Cisco switch here named cisco01:
user@linux:~$ snmpwalk -v1 -c public cisco01 ifType
...
interfaces.ifTable.ifEntry.ifType.12 = ethernetCsmacd(6)
interfaces.ifTable.ifEntry.ifType.13 = other(1)
interfaces.ifTable.ifEntry.ifType.14 = propVirtual(53)
...
If the interface types other(1) and propVirtual(53) should now be excluded, the plugin is sent off with the two figures, separated by a comma, as the exclusion list -x 1,53:
nagios@linux:local/libexec$./check_ifstatus -C public -H cisco01 \
 -x 1,53
CRITICAL: host 'cisco01', interfaces up: 2, down: 10, dormant: 0,
excluded: 4, unused: 0
GigabitEthernet0/2: down

GigabitEthernet0/3: down
GigabitEthernet0/4: down

GigabitEthernet0/10: down
GigabitEthernet0/5: down

GigabitEthernet0/11: down
GigabitEthernet0/6: down

GigabitEthernet0/7: down
GigabitEthernet0/8: down

GigabitEthernet0/9: down
 |up=2, down=10, dormant=0, excluded=4, unu
sed=0
In reality, this plugin also does not display its output over several lines, as the line wrap here may suggest. The fact that this information appears on the Nagios Web interface in a relatively clear form is because the HMTL formatting element
 is thrown in. This causes the output for each port to be displayed on a separate line. The | character defines the beginning of the performance data, which does not appear at all in the Web interface.
A query of this type is implemented as a command object as follows:
define command{
 command_name check_ifstatus
 command_line $USER1$/check_ifstatus -H $HOSTADDRESS$ -C
 $USER3$
 -x $ARG1$
}
Here the macro $USER3$ is also used to define the community string in the file resource.cfg. Altogether, 32 $USERx$ macros are available, of which the first two usually contain path details, and the others can be used in any way you want.
If you would prefer to exclude ports rather than interface types, you can use the -u option instead of -x in the definition.
If Nagios is to monitor the switch cisco01, as shown above, excluding the two interface types 1 and 53, the corresponding service definition begins as follows:
define service{
 service_description Interfaces
 host_name cisco01
check_command check_ifstatus!1, 53
 ...
}
11.3.3 Testing the operating status of individual interfaces
To test an individual interface, you can use either the generic plugin check_snmp or check_ifoperstatus, which specifically tests the operating status (ifOperStatus) of the network card. The advantage of this over the generic plugin consists above all in its ease of use: instead of an index for the port, you can also specify its description here—for example, eth0.
check_ifoperstatus has the following options:
-H
address
/ --host=address
This is the host name or IP address of the SNP agent to be queried.

-C
password
/ --community=password
This parameter gives the community string for read access.

-p
port
/ --port=port
As long as the SNMP agent is not running on UDP port 161, the port is specified with this option.

-k
ifIndex
/ --key=ifIndex
ifIndex is the number of the network interface to be queried (such as the network card of a computer or the port of a switch).

-d
ifDescr
/ --descr=ifDescr
Instead of the index key, the plugin processes the name of the interface from ifDescr (see below).

-v
version
/ --snmp_version=version
This specifies the SNMP version (1, 2, or 3) for the query.

-w
return_value
/ --warn=return_value
This option selects the return value if the interface is dormant. The return_value can be i (ignore the dormant status and return OK!), w (WARNING) or c (CRITICAL, the default).

-D
return_value
/ --admin-down=return_value
What value (i, w or c) should the plugin return if the interface has been shut down administratively? The default, w, issues a warning, c returns CRITICAL, and i returns OK.

-M
bytes
/ --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is 1472 bytes.

On a system called igate, on which snmpwalk finds the following interfaces ...
...
interfaces.ifTable.ifEntry.ifDescr.3 = ipsec0
interfaces.ifTable.ifEntry.ifDescr.4 = ipsec1

...
interfaces.ifTable.ifEntry.ifDescr.7 = eth0
interfaces.ifTable.ifEntry.ifDescr.8 = eth1
interfaces.ifTable.ifEntry.ifDescr.9 = eth2
interfaces.ifTable.ifEntry.ifDescr.10 = ppp0
the first Ethernet card is tested either with -k 7 or with -d etho. Since the plugin in the second case has to query all ifDescr entries to determine the index itself, this variation generates a somewhat higher network load. It can be especially useful if not all network interfaces are active on a host, causing its index to change.
The plugin itself reveals which index this port currently has:
nagios@linux:local/libexec$./check_ifoperstatus -H igate -c public \
 -d eth0
OK: Interface eth0 (index 7) is up.
As the command object in the Nagios configuration, the call looks like this:
define command{
 command_name check_ifoperstatus
 command_line $USER1$/check_ifoperstatus -H $HOSTADDRESS$ -C $USER
3$ -d $ARG1$
}
The $USER3$ macro again contains the community string, defined in the file resource.cfg. The service definition for igate specifies the name of the interface to be tested as a plugin argument:
define service{
 service_description Interface eth0
 host_name igate
check_command check_ifoperstatus!eth0
}

[112] POSIX regular expression, see man 7 regex.
[113] UCD-DEMO-MIB is an MIB included for demonstration purposes
[114] See also the online help, with man snmpcmd
[115] The $USERx$ macros are defined in the resource file resource.cfg
[116] http://www.lm-sensors.nu/

11.4 Other SNMP-based Plugins
Apart form the SNMP plugins from the Nagios Plugin package, the Nagios community provides a large variety of other plugins for special purposes. Most of them can be found at http://www.nagiosexchange.org/ in the category Check Plugins | SNMP.[117]
11.4.1 Monitoring hard drive space and processes with nagios-snmp-plugins
One of these is the package nagios-snmp-plugins,[118] which exists not only as source code but also as an RPM package (for Red Hat and Fedora). It contains two very easy-to-use plugins: check_snmp_disk and check_snmp_proc.
Both absolutely require the NET-SNMP agent as the partner on the other side (see 11.2.2 The NET-SNMP daemon from page 238) and use ucdavis.dskTable and ucdavis.prTable to test the processes and file systems specified in the configuration file snmpd.conf. Its options are restricted to specifying the host and the community string:
-H
address
/ --host=address
This is the host name or IP address of the NET-SNMP agent to be queried.

-C
password
/ --community=password
This is the community string for read access.

The next example tests the available capacity of the /data file system; public is again used as the community string:
nagios@linux:local/libexec$./check_snmp_disk -H swobspace -C public
/data: less than 50% free (= 95%) (/dev/md6)
The configuration of the NET-SNMP agent specifies, with the disk directive (The configuration file snmpd.conf), 50% as the threshold for this file system. In this case the plugin accordingly returns a CRITICAL. It can only distinguish between an error and OK; it does not have a WARNING status.
Using check_snmp_proc is just as easy:
nagios@linux:local/libexec$./check_snmp_proc -H localhost -C public
No slapd process running.
The plugin again tests the processes defined in the configuration of the NET-SNMP agent with the proc directive (The configuration file snmpd.conf). The process slapd is missing here, which is why a CRITICAL is returned. The return value is revealed by echo $?.
The corresponding command objects are defined in a similar unspectacular way:
define command{
 command_name check_snmp_proc
 command_line $USER1$/check_snmp_proc -H $HOSTADDRESS$ -C $USER3$
}

define command{
 command_name check_snmp_disk
 command_line $USER1$/check_snmp_disk -H $HOSTADDRESS$ -C $USER3$
}
This definition also assumes that the community string is stored in the $USER3$ macro in the file resource.cfg. In order to query the NET-SMTPD on the computer linux01 for its hard drive load, the following service object is defined:
define service{
 service_description DISK
 host_name linux01
check_command check_snmp_disk
 ...
}
11.4.2 Observing the load on network interfaces with check-iftraffic
The MIB-II contains only numbers that provide information on the load on network interfaces, but no average values for the used bandwidth, for example. If the vendor has not specifically made such an entry available in his MIB, then you will always have to make a note of the last counter status and the timestamp, so that you can work out the relative usage yourself.
http://www.nagiosexchange.org/ introduces two plugins that take over this task. The Perl-based plugin check_traffic[119] writes the query values into a round-robin database (RRD, see 19.2 Graphs for the Web with Nagiosgraph), which makes it somewhat more complex to handle.
The same purpose is achieved, but with more simple means, by the check_iftraffic.pl plugin.[120]. It has the following options:
-H
address
/ --host=address
address is the host name or IP address of the NET-SNMP agent that is to be queried.

-C
password
/ --community=password
password is the community string for read access. The default is public.

-i
ifDescr
/ --interface=ifDescr
From the interface name ifDescr the plugin determines the index so that it can access other values (e. g., the counter states).

-b
integer
/ --bandwith=integer
This is the maximum bandwidth of the interface in bits (see -u).

-u
unit
/ --units=unit
This is the unit for bandwidth specification with -b. Possible values are g (Gbit), m (Mbit), k (kbit) and the default b (bit): -b 100 -u m corresponds to 100 Megabits (Fast Ethernet).

-w
integer
/ --warning=integer
If traffic exceeds this warning limit in percent (default: 85 percent), the plugin issues a WARNING.

-c
integer
/ --critical=integer
This is the critical threshold in percent (default: 92 percent).

The plugin saves the timestamp and counter status of the interface queried in files in /tmp, to which it adds the prefix traffic. So if you are using a different user ID than nagios for the manual test on the command line, you should delete the files /tmp/traffic_interface_computer before activating the appropriate Nagios service.
The following command line example queries the Fast Ethernet network interface etho on the computer linux01, which in theory has a bandwidth of 100 Mbit:
nagios@linux:local/libexec$./check_iftraffic.pl -H linux01 -i etho \
-b 100 -u m
Total RX Bytes: 60.32 MB, Total TX Bytes: 26.59 MB
 Average Traffic:
1.14 kB/s (0.0%) in, 777.93 B/s (0.0%) out | inUsage=0.0,85,98 outUsage
=0.0,85,98
The amount of data transmitted here is reported separately by the plugin, depending on the direction, and here it announces 60.32 (RX, "received") and 26.59 MB (TX, "transmitted"). The text contains the HTML element
 (line break), to display the output in the Nagios Web interface on two lines. This is followed by the average transmission rate, again separated for incoming and outgoing data traffic. The performance data (see 19.1 Processing Plugin Performance Data with Nagios, page 404) after the | sign contain only the average load as a percentage, each separated by incoming and outgoing values. The numbers 85 and 98 are the default values for the warning and critical limits.
The corresponding command object is implemented as follows:
define command{
 command_name check_iftraffic
 command_line $USER1$/check_iftraffic.pl -H $HOSTADDRESS$ -C $USER3$
-i $ARG1$ -b $ARG2$ -u m
}
If the definition is taken over literally, you must define the community string in the $USER3$ macro. If you only generally use public as the password, it is better to write -C public instead of -C $USER3$.
To simplify the call of the command within the following service definition, we set the unit to Mbit/second (-u m).
define service{
 service_description Traffic load eth0
 host_name linux01
check_command check_iftraffic!eth0!100
 ...
 max_check_attempts 1
 normal_check_interval 5
 retry_check_interval 5
 ...
}
check_iftraffic calculates the bandwidth used by comparing two counter states at different times. Because Nagios does not test exactly down to the second, the check interval you choose should not be too small. The Multi Router Traffic Grapher,[121] which displays the bandwidth used in graphic form, normally works at five-minute intervals.
If you select max_check_attempts other than 1, you should make sure that the retry interval (retry_check_interval) is the same as the normal check interval. For max_check_attempts 1 this makes no difference, but you have to define a retry_check_interval at some time or other.
11.4.3 The manubulon.com plugins for special application purposes
The Nagios Exchange, with the SNMP plugins to be found under http://www.manubulon.com/nagios/ (see Table 11-4), also includes some that are customized to a specific application, such as querying hard drive space. They are relatively simple to use.
Table 11-4. The manubulon.com-SNMP plugins

	Plugin
	Description

	check_sn.mp_storage.pl
	Query of storage devices (hard drives, swap space, main memory, etc.)

	check_snmp_int.pl
	Interface status and load

	check_snmp_process.pl
	processes: status, CPU and memory usage

	check_snmp_load.pl
	System load

	check_snmp_mem.pl
	main memory and swap usage

	check_snmp_vrrp.pl
	querying a Nokia-VRRP cluster [a]

	check_snmp_cpfw.pl
	querying a Checkpoint firewall-1 [b]

	check_snmp_env.pl
	tests environment parameters of switches such as temperature, power supply unit, and fan (Cisco, Foundry, and others)

	check_snmp_win.pl
	Queries Windows services via SNMP

	[a] The abbreviation VRRP stands for Virtual Router Redundancy Protocol.
[b] http://www.checkpoint.com/products/firewall-1/

We will introduce two of the plugins—check_snmp_storage.pl and check _snmp_load.pl—in detail here.
Keeping checks on storage media with check_snmp_storage
While the check_snmp_disk plugin, introduced in 11.4.1 Monitoring hard drive space and processes with nagios-snmp-plugins from page 256, only checks the file systems entered in the NET-SNMP configuration, check_snmp_storage.pl is capable of querying any storage media—even swap space or main memory—without previous configuration on the target host. check_snmp_storage.pl tests the partial tree mib-2. host here, while check_snmp_mem.pl uses ucdavis.memory, so that it remains restricted to NET-SNMP.
The fact that you do not have to battle with OIDs, but instead can work with descriptions of the swap space type to specify the type of the storage medium, provides a certain level of convenience. These can be queried with snmpwalk as follows:
user@linux:~$ snmpwalk -v1 -c public swobspace hrStorageDescr
hrStorageDescr.2 = STRING: Real Memory
hrStorageDescr.3 = STRING: Swap Space
hrStorageDescr.4 = STRING: /
...
hrStorageDescr.11 = STRING: /net/swobspace/b
When the plugin is called, the text specified after the STRING: is sufficient or—if unique—a part of this:
nagios@linux:local/libexec$./check_snmp_storage.pl -H swobspace \
 -C public -m /net/swobspace/b -w 90 -c 95
/net/swobspace/b : 91 %used (34842MB/38451MB) (< 90) : WARNING
nagios@linux:local/libexec$./check_snmp_storage.pl -H swobspace \
 -C public -m "Swap" -w 50 -c 75 -f
Swap Space : 0 %used (0MB/3906MB) (< 50) : OK | 'Swap Space'=0MB;1953;
2930;0;3906
In the second example, it is sufficient to specify Swap, in order to query the data for Swap Space, since the pattern is unique. The -f option ensures that check_snmp_storage.pl will include performance data in its output.
-w and -c specify in normal fashion the warning or critical limits in percent of the available memory space. The following overview lists all the options:
-H
address
/ --host=address
This is the host name or IP address of the NET-SNMP agent that is to be queried.

-C
string
/ --community=string
This is the community string for read access.

-p
port
/ --port=port
port specifies an alternative port if the SNMP agent is not running on the default UDP port 161.

-m
string
/ --name=string
string contains a description of the device to be queried, corresponding to its description in hrStorageDescr (see above), such as -m "Swap Space" for swap devices, -m "Real Memory" for the main memory, or -m "/usr" for the partition mounted under /usr in the file tree.

-w
percent
/ --warn=percent
A warning is given in the default if the proportion of used memory is larger than the specified threshold. Other warning limits can be defined with the -T parameter.

-c
crit
/ --critical=crit
In the default, the status is categorized as critical if the proportion of used memory is larger than the specified critical limit. Other critical limits can also be specified with the -T parameter.

-T
option
/ --type=option
What do the critical and the warning thresholds refer to?

	pu (percent used): used capacity in percent
	pl (percent left): free capacity in percent
	bu (bytes used): used capacity in megabytes
	bl (bytes left): free capacity in megabytes

The default is -T pu.
-r
/ --noregexp
Normally the description in the -m parameter is treated as a regular expression. For example, /var here stands for all file systems containing /var, for example /var and /var/spool/imap, provided that these are really two independent file systems. The -r option switches off the regular expression capability, so that specifying /var will then match this file system exactly, but not /var/spool/imap, for example.

-s
/ --sum
Instead of performing individual tests for several specified storage media, the total occupied space is added up and compared to the total capacity. It is then determined whether thresholds are exceeded.

-i
/ --index
With -m, a text is normally specified, which turns up again in the description hrStorageDescr. With the -i option, the index table is used instead of the description. Here the Regexp capability also applies: -m 2 matches all the entries containing the number 2 in the index (that is, 2, 12, 20, etc.). It then makes sense to use the -r option at the same time.

-e
/ --exclude
Now all the memories that are matched by the -m specification are excluded from the test, the remaining ones are included in the test.

-f
/--perfparse
This option provides an additional output of performance data that is not shown in the Web interface but can be evaluated by additonal tools (see Chapter 19).

Testing system load with check_snmp_load
The plugin compares either the average system load in form of averages of 1 min, 5 min, and 15 min, or the CPU load in percent.
-H
address
/ --host=address
This is the host name or IP address of the NET-SNMP agent to be queried.

-C
string
/ --community=string
This is the community string for read access.

-p
port
/ --port=port
port is the alternative UDP port on which the SNMP agent is running. The default is UDP port 161.

-w
warning_limit
/ --warn=warning_limit
The warning limit is given either as a simple integer value in percent (e.g., 90) or as an integer triplet separated by commas, which defines the thresholds for the system load average for one, five, and 15 minutes (e.g., 8,5,5). The percentage load, on the other hand, always refers to the CPU load of the last minute.

If the plugin queries a NET-SNMP agent, you must additionally specify the -L option in the second variation, for the percentage, -N.

-c
critical_limit
/ --crit=critical_limit
This specifies a critical limit; the syntax is the same as that for -w.

-L
/ --linux
This option specifies that the plugin queries the system mode of a Linux system via NET-SNMP.

-A
/ --as400
This option specifies that the CPU loaded on an AS/400 machine is queried.

-I
/ --cisco
This option specifies that the CPU load of a Cisco network component is involved.

-N
/ --netsnmp
If the plugin queries the percentage CPU load of a Linux system via NET-SNMP, the -N option must be specified.

-f
/--perfparse
This option ensures the output of performance data that is not displayed in the Web interface, but can be evaluated by additional tools (see Chapter 19).

The following example queries the system load on the computer swobspace via NET-SNMP and specifies threshold values for the one-, five-, and fifteen-minute averages:
nagios@linux:local/libexec$./check_snmp_load.pl -H swobspace \
 -C public -w 1,2,3 -c 3,5,6 -L
Load : 0.05 0.07 0.06 : OK
nagios@linux:local/libexec$./check_snmp_load.pl -H swobspace \
-C public -N -w 80 -c 90 -f
CPU used 3.0 : < 80 : OK | cpu_prct_used=3%;80;90
The second example involves the percentage CPU load on the same machine. Here we additionally request performance data, which as usual repeats not only the measured value but also the thresholds.

[117] http://www.nagiosexchange.org/SNMP.51.0.html
[118] ftp://ftp.hometree.net/pub/nagios-snmp-plugins/
[119] http://nagios.sourceforge.net/download/contrib/misc/check_traffic/
[120] http://www.nagiosexchange.org//51;37
[121] http://www.mrtg.org/

Chapter 12. The Nagios Notification System
What would be the point of system and network monitoring if it did not inform the right contact partner when things went wrong? Hardly any system or network administrator can afford to keep an eye on the Nagios Web interface continually and wait for changes in status to occur. A practical working system must inform the admin actively (push information), so that the admin has time to devote to other things and needs to intervene only when Nagios raises the alarm.
Whether a notification system does its job in practice or not is ultimately decided by how well it can be adjusted to the requirements of a specific situation. What may already be a critical error for one person may, for another, not be normal but still tolerable, and nothing is worse than being bombarded with supposed error messages that are not even seen as errors in a certain environment. An excess of wrong information can make the administrator careless, and at some point the real problems get lost in a flood of false messages.
Nagios provides a sophisticated notification system allowing your own environment to be fine-tuned to your own requirements. The wide range of settings at first seem confusing, but once you have understood the basic principle, everything becomes much clearer.
The efforts to keep Nagios small and modular also apply to the notification system: sending a message is again left by the system to external programs: from a simple e-mail through SMS, down to hardware solutions—such as a real traffic light on the server cabinet—anything is possible.
12.1 Who Should be Informed of What, When?
In order for Nagios to send meaningful messages, the administrator must answer four questions:
	When should the system generate a message?
	When should it be delivered?
	Whom should the system inform?
	How should the message be sent?

Figure 12-1. An overview of the notification system
Figure 12-1 gives a rough outline of the concept. The service and host check generate the message, which then runs through various filters,[122] which usually refer to the time. The contact refers to the person whom Nagios should inform. If the message has passed all tests, the system hands it to an external program, which informs the respective contact.

[122] Strictly speaking, filters defined in the host or service prevent a message from being created, instead of filtering already generated messages. To keep things simple, however, we pretend that Nagios has created a message that is then discarded by a corresponding filter.

12.2 When Does a Message Occur?
Each message is preceded by a host or service check, which determines the current status. In the following two cases it generates a message:
	One hard state changes to another hard state.
	One computer or service remains in a hard error state. (The test therefore confirms a problem that already exists.)

To remind you: the max_check_attempts parameter (see 2.3 Defining the Machines to Be Monitored, with host and 2.5 Defining Services to Be Monitored with service) defines in host and service objects how often a test should be repeated before Nagios categorizes a new status as "hard." If it is set to 1, this is immediately the case and is followed by the corresponding message. With a value greater than 1, the system repeats the test that number of times, and only if they all come to the same new result—such as determining the CRITICAL error status—does the status finally change to the new hard state, thus triggering a new notification.
As long as Nagios has not exhausted the specified number of repeats, a soft state exists. If the old status reoccurs before these have finished, the administrator remains uninformed unless he looks at the Web interface or in the log file. Ultimately the administrator is only interested in genuine unsolved problems. On the other hand, to assess availability as such, it normally does matter if a service is not available for minutes on end, which is why the soft states are also taken into account in the evaluation.

12.3 The Message Filter
Even if you define on a systemwide basis that Nagios may bring attention to errors not just through the Web interface and log files but also via e-mail and/or SMS, filter parameters in the host and service definition may in individual cases cancel out these basic decisions. In all cases the final word is had by the filters defined for the relevant contact. Which parameters play a role on each of these three levels (systemwide, host/service, contact), is described in Figure 12-2.
If a filter stops a notification, the filter chain ends "in a vacuum," so to speak—filter options further down in the hierarchy remain unaccounted for—and Nagios does not generate any message.

Figure 12-2. The filter sequence in the Nagios notification system (some parameters are only available starting with Nagios version 3.0)
12.3.1 Switching messages on and off systemwide
With the enable_notifications parameter in the central configuration file nagios.cfg, you can in principal define whether Nagios should send messages at all. Only if it is set to 1 will the notification system work:
enable_notifications=1
12.3.2 Enabling and suppressing computer and service-related messages
When defining a host or service, various parameters can influence the messaging system. Here you can define, for example, at what time Nagios should send messages, whether the contact person is regularly informed of error states, and about which states or changes in state he should be informed (just CRITICAL, or WARNING as well, etc.).
The switch notifications_enabled determines whether this specific computer or service is important enough for the admin to be informed of errors not just through the Web interface, but also in other ways as well. If this is so, the parameter must be set to 1:
notifications_enabled=1
This is also the case in the default, so that you have to set the value explicitly to 0 at this point to stop separate notifications.
Taking downtimes into account
At times when a specific service or host is intentionally not available, Nagios should certainly not send any error messages through the network. The configuration of corresponding maintenance periods (downtime scheduling) is only possible through the Web interface and is described in 16.3 Planning Downtimes from page 359.
What states and changes of state are worth a notification?
If a regular test shows that service or computer is changing its data continuously, this is called flapping in Nagios (see also Appendix B from page 611). If the flap_detection_enabled parameter is set to 1, the system tries to detect this situation.
Whether Nagios sends a message in this case depends on the notification_options filter. This decides on which states or changes of state Nagios will inform the contact involved. In host definitions it can have the following combinations of values, separated by commas: d (switched off or crashed, down), u (unreachable), r (computer again reachable, recovered), and f (quickly alternating state, flapping). Starting with Nagios 3.0, there is an additional value s, which is used to send notifications if a planned maintenance period is about to start, end, or is canceled.
For service objects, notification_options recognizes the following states: c (CRITICAL), w (WARNING), u (UNKNOWN, unknown problem), r (service again reachable, recovered), and f (flapping). From Nagios 3.0 onward, the value s is also available for sending notifications on planned maintenance periods.
Nagios correspondingly informs the admin of the state of the service whose definition is contained in the line
notification_options=c,r
only if this is critical or was recreated after an error state. Messages involving a WARNING or flapping are discarded by the system.
If notification_options is set to n (none), Nagios will generally not send a message concerning this computer or service.
When should Nagios send messages?
At what time should a message be sent? This can be defined with the notification_period parameter:
notification_period=24x7h
notification_period expects a time object (see 2.10 Defining a Time Period with timeperiod from page 74) as the value; 24x7h is such a value and stands for "round the clock."
Outside the specified time period, Nagios suppresses possible messages, but does not simply discard them, in contrast to the other filters. Instead of this, the system places the message in a kind of queue and sends it as soon as the notification period begins (rescheduling). This means that the relevant contact will certainly get to hear about the problem. Nagios also ensures that the admin receives the message only once, even if multiple messages on the same event were generated outside the time period.
notification_period is the only time-controlled filter in which a message is not lost, despite filtering. With all the other time filters, the message never reaches its destination outside the specified period of time.
With an interval check, Nagios can be instructed to report at regular intervals on problems that persist for a longer time:
notification_interval=120
If a state persists that Nagios should normally report, corresponding to the notification_option parameter—CRITICAL, for example—for along time, the system would grant this wish, in the example, every 120 time units (normally, minutes). In other words it suppresses the notification that is generated anyway with every check, after a corresponding notification until the specified time has elapsed. If nothing has changed in the state until then, it then sends the corresponding notification.
If you set notification_interval to 0, Nagios will send a notification of this only once. You should be careful when doing this, however: filters defined for the contact can also reject messages. If you normally generate just one single message, which might arrive at the relevant admin outside the admin's chosen contact time period, then the admin will never be told anything about the problem, even if it persists into working hours.
Starting with Nagios 3.0, the parameter first_notification_delay allows the delayed sending of a notification. With the setting
first_notification_delay=15
Nagios sends notification only after 15 time units (usually minutes) have expired. If the system administrator responsible for handling the problem posts an acknowledgement within the delay period (16.1.2 Taking responsibility for problems from page 332), the notification will not be sent, but if the administrator does not react in time, then Nagios sends the first notification once the delay period has expired. This option is useful for avoiding unneeded notifications when administrators use the Web interface to check on the system periodically during their regular working hours.
Whose concern is the message?
The contact group defined in the host or service object does not itself belong to the message filters, but it still decides on who is informed and who is not:
contact_group=admins
What contacts belong to the specified group (here: admins) is defined by the corresponding contact_group object in its definition object (see also 2.8 The Message Recipient: contactgroup from page 72):
-- /etc/nagios/global/contactgroups.cfg
define contactgroup{
 contactgroup_name admins
 alias administrators
 members nagios,wob,mwi
}
The specified contact group, though, merely makes a rough preselection: which of the contacts specified in it actually receive the message depends on the filter functions in the definition of the individual contact. In this way you can ensure that one employee is only notified during normal office hours, another one round-the-clock, and that one of them is kept up to date about all changes in status, and the other one is informed only of a selection (for example, only CRITICAL but not WARNING).
12.3.3 Person-related filter options
When defining the contact objects, the method is also specified in which Nagios delivers the notification in specific cases (see 12.4 External Notification Programs from page 275). It can be described separately for host and service problems. Several parallel methods are also possible, such as via e-mail and SMS.
Since the contact-related filters are specifically for the corresponding contact object, it can certainly be useful to define several contacts for one and the same recipient that differ in individual parameters, such as a contact object that keeps the person informed via e-mail of all problems during normal working hours, and a second one for SMS messages concerning critical events outside working hours.
What should Nagios inform you about?
The events for which somebody should be informed can be specified not only by host or service, but also by contact. Host and service-related states are defined separately here:
host_notification_options=d,u,r
service_notification_options=c,r,u
The possible values are the same as those for the host-service parameter notification_options (12.3.2 Enabling and suppressing computer and service-related messages).
From Nagios 3.0 onward you can normally switch notifications for host and service on and off via an additional parameter:
host_notifications_enabled=1
service_notifications_enabled=1
The value 0 prevents the corresponding messages, and the value 1 ensures that the messages are sent. At first glance this corresponds to the value n (no notification) for the accompanying option parameter.
The two *_notifications_enabled parameters can also be switched on and off with the external commands ENABLE/DISABLE_CONTACT_HOST_NOTIFICATIONS and ENABLE/DISABLE_C0NTACT_SVC_N0TIFICATI0NS[123] via the interface for external commands (13.1 The Interface for External Commands from page 292). This can be done with a script where the contact is concerned, without having to alter the preset *_notification_options.
When do messages reach the recipient?
The final filter in the filter chain again refers to time periods. If a message is produced in the time period specified here, Nagios notifies the contact; otherwise it discards the message. The notification window can again be set separately for hosts and services, and as a value it expects a timeperiod object defined elsewhere:
host_notification_period=24x7
service_notification_period=workhours
12.3.4 Case examples
Letting you know once, but doing this reliably
What should you do if only a single message should be sent for each change in status of the service, but this message must always reach the relevant recipient during working hours? We can illustrate the solution to this problem through the example of the admins contact group to which the contact wob is assigned, ...
define contactgroup{
 contactgroup_name admins
 alias Local Site Administrators
 members wob
}
... and to the PING service for the computer linux01:
define service{
 host_name linux01
 service_description PING
 check_command check_ping!100.0,20%!500.0,60%
 max_check_attempts 3
 normal_check_interval 2
 retry_check_interval 1
 check_period 24x7
notification_interval 0
notification_period workhours
notification_options w,u,c,r,f
contact_groups admins
}
notification_interval 0 normally forces Nagios not to produce any repeat messages. The notification_period ensures the desired time period through the timeperiod object workhours: if Nagios raises the alarm at other times, the inbuilt rescheduling is used, that is, the notification is sent on its way only if the specified time period again applies. It is definitely not discarded.
In order for Nagios to be active in all changes of state, the notification_options must always cover all possible events for services.
To guarantee that the contact wob always receives the messages, it is essential that the service_notification_period in the corresponding contact object is 24x7:
define contact{
 contact_name wob
 alias Wolfgang
 host_notification_period 24x7
 host_notification_options d,u,r
 service_notification_period 24x7
 service_notification_options w,u,c,r,f
}
A restricted time filter at this position could, under certain circumstances, lead to the loss of each of the individual messages. The same applies for the values of service_notification_options: only if all are entered here as well will no message be lost.
Informing different admins at different times
If you want to inform different persons at different times about different events, you may not restrict either the notification_period or the notification_options of a host or service:
define service{
 ...
notification_interval 120
notification_period 24x7
notification_options w,u,c,r,f
 ...
}
Filtering takes place exclusively for individual contacts. For this to work on a time level you must ensure that Nagios generates a message regularly (here every 120 time units, normally minutes) if error states persist.
If admin A is to be informed only during his working hours, and then only of changes to critical or OK states, A's contact object will be sent with the following parameters:
define contact{
 ...
service_notification_period workhours
service_notification_options c,r
 ...
}
There is also a second and not quite so obvious difference to the first example: let us assume that the service reports the CRITICAL status at 7:30 in the morning, which will persist for several hours. The workhours object is defined so that it describes the time from Monday to Friday between 8:00 and 18:00. In the above example, Nagios holds back the message (rescheduling), until the time period defined in it has been reached. The administrator therefore receives a corresponding message at 8:00.
In the case described here, no rescheduling takes place, Nagios generates a corresponding message every two hours, which is filtered out if the contact is currently taking a "break." The system correspondingly discards the message at 7:30, but allows the next message two hours later to pass through. The administrator therefore does not receive the corresponding information until 9:30, provided that the problem still exists at this point in time.
Which of the two solutions is more suitable depends on specific requirements. For an e-mail notification, for example, it makes little difference if the administrator receives mails round-the-clock but reads them only when sitting in his office. A filter for Nagios messages in the mail client, sorting them in reverse chronological order (the most current mail first) makes sense in this case. Sitting in front of the screen, the administrator can also take a quick look at the Web interface when problems are announced, to check whether anything has changed.
If the methods of differentiation described so far are not sufficient, then escalation management, described in 12.5 Escalation Management, may be of further help.

[123] See http://www.nagios.org/developerinfo/externalcommands/.

12.4 External Notification Programs
Which external programs deliver the messages is defined by the contact definition.
Here there are again two parameters to define the commands to be used, one for services and one for hosts:
define contact{
 ...
 service_notification_commands notify-by-email,notify-by-sms
 host_notification_commands host-notify-by-email,host-notify-by-sms
 email nagios-admin@localhost
 pager +49-1234-56789
address1 root@example.com
 address2 123-456789
 ...
}
Both *_notification_commands allow comma-separated lists, so it is permitted to specify more than one command at the same time. The message is then sent simultaneously to the recipient in all the ways defined. The names of the command objects describe these ways: via e-mail and via SMS.
To achieve a better overview, the corresponding commands are not defined together with the plugin commands in the file checkcommands.cfg, but in a separate object file, misccommands.cfg. Nagios loads these like any other file with object definitions, which is why any name can be chosen for them.
The other parameters, email, pager, address1, and address2, can be regarded as variables. The delivery commands access the values set in these through macros. Whether pager contains a telephone number for SMS delivery or an e-mail address pointing to an e-mail SMS gateway is immaterial for the contact definition. The decisive factor is that the value matches the corresponding command that references this variable.
12.4.1 Notification via e-mail
In defining the notify-by-email command, a name and the command line to be executed is specified, as with every other command object. Only its length is unusual, which is why it has had to be line-wrapped several times for this printed version:
define command{
 command_name notify-by-email
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\n Notificat
ion Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS
$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $LONGDATE
TIME$\n\nAdditional Info:\n\n$SERVICEOUTPUT$" | /usr/bin/mail -s "** $N
OTIFICATIONTYPE$ alert - $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **"
$CONTACTEMAIL$
}
The printed-out command object comes from the included example file misccommands.cfg-sample. The command line defined in it can be reduced in principle to the following pattern:
printf text | mail -s "subject" e-mail_address
With the help of the macro, printf generates the message text, which is passed on to the mail program through a pipe. What is caused by the macros specifically used is revealed in Table 12-1.[124] Using this, the jumbo line shown above produces messages that look something like this:
To: wob@swobspace.de
Subject: ** PROBLEM alert - mail-WOB/SMTP is CRITICAL **
Date: Fri, 14 Jan 2005 16:22:47 +0100 (CET)
From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: PROBLEM

Service: SMTP
Host: mail-WOB
Address: 172.17.168.2
State: CRITICAL

Date/Time: Fri Jan 14 16:22:47 CET 2005

Additional Info:

CRITICAL - Socket timeout after 10 seconds
Table 12-1. Macros used in notify-by-email and host-notify-by-email

	Macro
	Description

	$CONTACTEMAIL$
	Value of the email parameter from the contact definition

	$LONGDATETIME$
	Long form of data specification, e.g., Fri Jan 14 16:22:47 CET 2005

	$HOSTALIAS$
	Value of the alias parameter from the host definition

	$HOSTADDRESS$
	Value of the address parameter from the host definition

	$HOSTNAME$
	Value of the host_name parameter from the host definition

	$HOSTOUTPUT$
	Text output of the last host check

	$HOSTSTATE$
	State of the host: UP, DOWN, or UNREACHABLE

	$NOTIFICATIONTYPE$
	Type of notification: PROBLEM (CRITICAL, WARNING, or UNKNOWN), RECOVERY (OK after error state), ACKNOWLEDGEMENT (an admin has confirmed the error state; see 16.1.2 Taking responsibility for problems, page 332), FLAPPINGSTART or FLAPPINGSTOP

	$SERVICEDESC$
	Value of the description parameter in the service definition

	$SERVICEOUTPUT$
	Text output of the last service check

	$SERVICESTATE$
	State of the service: OK, WARNING, CRITICAL, UNKNOWN

For the command host-notify-by-email, the command line looks similar, except that now host-related macros are used:
/usr/bin/printf "%b" "***** Nagios *****\n\nNotification Type:
$NOTIFICATIONTYPE$\nHost: $HOSTNAME$\nState: $HOSTSTATE$\nAddress:
$HOSTADDRESS$\nInfo: $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" |
/usr/bin/mail -s "Host $HOSTSTATE$ alert for $HOSTNAME$!" $CONTACTEMAIL$
It generates e-mails with the following content:
To: wob@swobspace.de
Subject: Host UP alert for wob-proxy!
Date: Fri, 14 Jan 2005 17:50:21 +0100 (CET)
From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: RECOVERY
Host: wob-proxy
State: UP
Address: 172.17.168.19
Info: PING OK - Packet loss = 0%, RTA = 69.10 ms

Date/Time: Fri Jan 14 17:50:21 CET 2005
12.4.2 Notification via SMS
While the infrastructure necessary for sending e-mails[125] is usually available anyway, programs for sending SMS messages such as yaps,[126]
smssend,[127] or smsclient[128] usually have to be additionally installed. yaps and smsclient require a local modem or ISDN card and "telephone" directly with the cell phone provider (e.g., T-Mobile), smssend establishes a connection to the Internet servers of the cellphone provider and sends the SMS message on this route. With yaps and smsclient you can also use a mail gateway that generates and sends an SMS message from an e-mail.
Whichever method you choose, you should be aware of possible interference in sending messages: a connection between the Nagios server and the Internet passes through many hosts, routers, and firewalls. Especially if Nagios is itself monitoring one of the computers involved, things get interesting: if this machine is down, then a message sent via smssend will no longer work either. The same thing applies for e-mail-SMS gateways. Whether a self-made construction is involved, with yaps or smsclient, each of which represents its own SMS gateway, or a telecom installation with a sophisticated unified messaging solution, if the actual sender of the SMS is many nodes removed from the Nagios server (because you have a networked telephone installation with several locations, for example), the chances increase that the message will not reach its destination because of an interrupted connection.
For this reason the best solution is an smsclient or yaps installation on the Nagios server itself with a direct telephone access. In larger, networked telephone systems you can also consider giving the telephone access a dedicated, direct line from the telephone system. Whether this is ISDN or analog is just a question here of the technology used.
To represent the programs mentioned here, we will take a closer look at smsclient, which can be configured very simply, and has an active community On its homepage you can also find a link to a mailing list whose members will be pleased to help in case you have questions.
Setting up smsclient
While Debian has its own precompiled smsclient package, for SuSE and other distributions you have to compile the software yourself. For historical reasons the program itself is called sms_client; a short subtext is provided with man sms_client.
The installation from the source code follows the usual procedure:
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /path/to/sms_client-2.x.y
linux:local/src # cd ./sms_client-2.x.y
linux:src/sms_client-2.x.y # ./configure
linux:src/sms_client-2.x.y # make && make install
The only point worth mentioning here is that the "homemade" configure procedure manages without autoconf and automake.
The configuration files listed in Table 12-2 are now located in the directory /etc/sms; the Debian package installs it to /etc/smsclient.
Table 12-2. smsclients configuration files

	File
	Description

	sms_addressbook
	Definition of aliases and groups

	sms_config
	Main configuration file

	sms_daemons
	Configuration file for the daemon mode of smsclient, in which this can be reached via a proprietary protocol. Is not required.

	sms_modem
	Modem configuration

	sms_services
	Supported provider

The file sms_services lists the supported providers and at the same time assigns them to the protocol used. The precise telephone number dialed is specified by the corresponding service file in the directory services (if you have compiled this yourself) or /usr/lib/smsclient/services (for Debian). In case of doubt, you should request the telephone number of your own mobile cell provider. The mailing list can also be of assistance here.
In the file sms_config you set a default provider, which the program uses for calls when the provider is not specifically given:
SMS_default_service = "d1"
Only the configuration of the modem is now missing in the file sms_modem. In principle, however, any modem that functions under Linux can be used. In the following example we address an ISDN card with the Isdn4Linux-HiSax driver:
MDM_lock_dir = "/var/lock" # directory for the lock files
MDM_device = "ttyI0" # device name of the modem
...
MDM_command_prefix = "AT"
MDM_init_command = "Z&E<MSN>"
MDM_dial_command = "D"
MDM_number_prefix = "0" # outside line, if required
...
/dev/ttyI0 is used as the device here; for MDM_init_command, your own MSN is used. This applies particularly to private branch exchanges, which allow a connection only if your own MSN has been correctly specified.
Since Isdn4Linux does not recognize tone or pulse dialing, we use only D instead of the usual DT as the MDM_dial_command. If the ISDN connection requires an outside line as part of a phone exchange, you should enter the corresponding prefix; otherwise this string remains empty.
smsclient requires write permissions both for the device used and for the log file /var/log/smsclient.log:
linux:~ # touch /var/log/smsclient.log
linux:~ # chgrp dialout /usr/bin/sms_client
linux:~ # chgrp dialout /dev/ttyI0 /var/log/smsclient.log
linux:~ # chmod 2755 /usr/bin/sms_client
linux:~ # chmod 664 /dev/ttyI0 /var/log/smsclient.log
To test this, you should now send—preferably as the user nagios, who will later use smsclient—an SMS message to your own cellphone (here to be reached at the number 01604711):
nagios@linux:~$ sms_client 01604711 "Text"
Dialing SMSC 01712521002...
WARNING: read() Timeout
Connection Established.
Login...
SMSC Acknowledgment received
Login successful
Ready to receive message
Received Message Response: Message 3003123223 send successful - message
submitted for processing<CR>
Successful message submission
Disconnect...
Disconnected from SMSC
Hangup...
d1 Service Time: 17 Seconds
[000] d1:01604711 "Text"
Total Elapsed Time: 17 Seconds
Getting Nagios to work together with smsclient
If the second argument is missing in smsclient, which contains the message text, the program will read it from STDIN:
nagios@linux:~$ /bin/printf "%b" message | sms_client number
Based on the command notify-by-email, described from page 276, we will use the second variation here for defining the notify-by-sms command:
'notify-by-sms' command definition
define command{
command_name notify-by-sms
 command_line /usr/bin/printf "%.150s" "$NOTIFICATIONTYPE$ $HOSTNAM
 E$[$HOSTADDRESS$]/$SERVICEDESC$ is $SERVICESTATE$ /$SHORTDATETIME$/ $SER
 VICEOUTPUT$" | /usr/bin/smsclient $CONTACTPAGER$

}
As usual, the entire command_line is written on a single line. Nagios obtains the telephone number (or alias) through the macro $CONTACTPAGER$, which reads out the value of the pager parameter from the contact definition. Since an SMS here may not be longer than 150 characters, we will considerably abbreviate the information, compared to the e-mail message. To be on the safe side (you never know how long the plugin output ($SERVICEOUTPUT$) really is), the printf format specification .150 (instead of %b) cuts off the text after 150 characters. Although we then do without the line breaks in the message, by means of \n, an SMS is never formatted cleanly, due to its limited display. Thus notify-by-sms generates a one-line message of the following type:
PROBLEM elimail[172.17.130.1]/UPS is CRITICAL /2005-03-30 17:00:53/ Connection refused

[124] A complete list of all macros is contained in the original documentation at http://localhost/nagios/docs/macros.html (normally to be found in the file system under /usr/local/nagios/share/docs/macros.html). For Nagios 3.0 the corresponding file macrolist.html can also be found in this directory.
[125] Apart from the /usr/bin/mail client, a local mail server is required.
[126] http://www.sta.to/ftp/yaps/
[127] http://zekiller.skytech.org/smssend_menu_en.html
[128] http://www.smsclient.org/

12.5 Escalation Management
Whenever the administrators responsible cannot find a solution in the specified time when important components fail, although Service Level Agreements or other contracts commit the IT department to do this,[129] Nagios's ability to escalate notifications makes allowances for conflicts, at least on an organizational level. It can be used to provide multilevel support. For example, Nagios first informs the First Level Support (usually the Help Desk). If the problem still persists after one day, then the Second Level Support is notified, and so on.
Nagios also makes a distinction here between host- and service-related escalation stages. In essence, both function identically.
In the escalation, Nagios does not count in time units, but in how many messages it has already sent out. In the following example the system should report on error states of the Database service on linux01 every 120 minutes,[130] and this, round-the-clock:
define service{
 host_name linux01
service_description Database
 notification_period 24x7
 notification_interval 120
 ...
 contact_groups admins
}
The corresponding messages always go to a contact group, so without escalation, that is to admins.

Figure 12-3. Nagios escalates, depending on the number of messages already sent
After the fourth notification, Nagios should switch on the first stage of escalation (as illustrated in Figure 12-3) and, in addition to admins, should notify the second-level contact group. The eighth message triggers the second level, at which Nagios informs the contact_group third-level.
As shown in Figure 12-3, escalations may certainly overlap. It can also be seen from the graphics that the contact group defined in the service object only applies as long as Nagios does not escalate. As soon as an escalation stage is switched on, the system puts the default contact group out of action.
If the original contact group—here admins—should also receive a message in the first escalation level, then this must be additionally specified in the escalation definition. If several levels overlap, Nagios informs all the groups involved. In Figure 12-3 the eighth to the tenth messages accordingly go both to admins and to second-level and third-level, while only the latter receives message numbers 11 and 12. From message number 13, Nagios keeps only the contact group admins informed, since escalation is no longer defined here.
The latter takes place via separate serviceescalation (for services) and hostescalation objects (for computers). For a service escalation object, Nagios requires the beginning and the end of exceptional circumstances to be defined, apart from service details (consisting of the service_description and host_name) parameters and the name of the contact groups responsible:
define serviceescalation{
 host_name linux01
 service_description Database
 first_notification 4
 last_notification 10
 notification_interval 60
 contact_groups admins, second-level
}
The escalation level defined here starts, as desired, with message No 4 and ends with message No 10. If last_notification is given the value 0, the escalation only ends if the service changes back to the OK state.
In addition you must specify the notification_interval parameter for service escalations: this changes the notification interval (previously 120 according to the service definition) to 60 time units. This parameter is also mandatory for a host escalation. The only difference in the definition of a hostescalation object is that instead of the host name, you can also specify one or more host groups (in addition the service_description parameter is dropped, of course).
The second escalation step is defined in the same way:
define serviceescalation{
 host_name linux01
 service_description Database
 first_notification 8
 last_notification 12
 notification_interval 90
 contact_groups third-level
}
If there are overlapping escalations with different notification_intervals, Nagios chooses the smallest defined time unit in each case. Nagios therefore sends messages 8 to 10 at intervals of 60 minutes, numbers 11 and 12 at intervals of 90 minutes, and then the original interval of 120 minutes again applies.
With escalation_period and escalation_options there are two more setting parameters specially for escalations. Both have the same function as notification_period and notification_options in the host or service definition, but they refer only to the escalation case.
In contrast to notification_interval, escalation_period
does not replace the notification_period, but acts in addition to this. From the intersection of notification_period and escalation_period, the actual time period is deduced. Suppose that notification_period refers to the time between 7:00 A:M and 5:00 P.M., and escalation_period to the period from 8:00 A.M. to 8:00 P.M.. Then Nagios will only send out messages in the escalation level between 8:00 A.M. and 5:00 P.M.. You must always remember here that it is only the number of messages that have already been sent that decides whether an escalation level exists. escalation_period and escalation_options only have an effect as additional filters.
Before these two parameters are used, you should carefully consider what it is you want to achieve with them. To restrict the escalation to a specific time period could under certain circumstances result in it being omitted entirely. If you restrict them to weekdays, for example, this would mean that if the Database service failed during the weekend, Nagios would inform the contact group admins only on Monday morning: over the weekend the system has already sent more than 12 messages, so it no longer even uses its escalation mechanism. If there is a time restriction via escalation_period, you should set last_notification to 0 to ensure that the escalation really does take place.
Every case of error is followed at some point in time by a recovery. An intelligent mechanism ensures that Nagios only notifies those contacts of the corresponding recovery who are in charge, depending on the active escalation level, and who also received the last notification to be sent.

[129] These can also be internal specialist departments.
[130] To be precise, every 120 time units, whereby the default time unit is 60 seconds.

12.6 Accounting for Dependencies between Hosts and Services
If you test services with local plugins (see Chapter 7) via NRPE (see Chapter 10), all these tests will come to nothing the moment the Plugin Executor fails. With service dependencies you can prevent Nagios from flooding the appropriate administrator with messages on the dependent services. Instead of this, the system informs him specifically of the NRPE failure.
Aa with such service dependencies, Nagios also has host dependencies, which suppress messages, depending on individual hosts. Both variations can also be used to specifically "switch off" tests.
12.6.1 The standard case: service dependencies
Let us take as an example the host linux01, illustrated in Figure 12-4, on which locally installed plugins, controlled via NRPE, monitor hard drive space (Disks service, see 10.5.3 Optimizing the configuration), the number of logged-in users (Users service), and the system load (Load service). If NRPE were now to fail, Nagios would announce the CRITICAL state for all three services, although their actual state is unknown, and the real problem is the "NRPE daemon."
In order to solve this contradiction, NRPE is monitored as a separate service and describes the dependencies in a servicedependency object.

Figure 12-4. The three above-mentioned services depend on NRPE
To define the additional service check for NRPE, we make use of the possibility of calling the check_nrpe plugin (see Chapter 10) (almost) without any parameters at all. It then simply returns the version of the NRPE daemons being used:
nagios@linux:~$ /usr/local/nagios/libexec/check_nrpe -H linux01
NRPE v2.0
The command defined in 10.5 Nagios Configuration in page 222, check_nrpe, requires further arguments and therefore cannot be used for our purposes. For this reason we set up a new command object, test_nrpe, which exclusively tests NRPE:
define command{
 command_name test_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$
}
With this, an NRPE service can now be defined:
define service{
 host_name linux01
 service_description NRPE
 check_command test_nrpe
 ...
}
The dependencies of the three local services of NRPE are described by the following servicedependency object.
define servicedependency{
 host_name linux01
 service_description NRPE
 dependent_host_name linux01
 dependent_service_description Disks, Users, Load
 notification_failure_criteria c, u
 execution_failure_criteria n
}
host_name and service_description define the master service, the failure of which leads to the failure of the services named in dependent_service_description on the computer specified in dependent_host_name. Multiple entries, separated by commas, are possible for all four parameters mentioned. You should bear in mind, however, that each dependent service is dependent on every possible master service.
The remaining parameters influence service checks and notifications: notification_failure_criteria specifies for which states of the master service notifications involving an error of the dependent services (e.g., Disks) should not appear. Possible values are u (UNKNOWN), w (WARNING), c (CRITICAL), p (PENDING, i.e., an initial check is planned but was so far not yet carried out), o (OK), and n (None).
u, c in the example above means that Nagios does not inform the administrators responsible of "errors" in the services Disks, Users, and Load on linux01 if the master service is in the CRITICAL or UNKNOWN state. With an o for OK, the logic can be reversed: here there is no message if there is an error in the dependent service, as long as the master service is in an OK state. Accordingly, n means that Nagios provides a notification irrespective of the status of the master service.
The execution_failure_criteria parameter controls tests, depending on the state of the master service. The details u (UNKNOWN), w (WARNING), c (CRITICAL), p (PENDING), o (OK), and n (None), as with notification_failure_criteria, refer to states of the master service for which there should be no check. In the example, n is specified, so that Nagios tests Disks, Users, and Load even if NRPE fails.
Nagios therefore suppresses messages, but since it still carries out the service checks on the dependent services, the Web interface always shows the current status of these.
The details for notification_failure_criteria interact with the Freshness mechanism of passive tests (see 13.4 Reacting to Out-of-Date Information of Passive Checks from page 295). If check_freshness is used in the service definition, and if Nagios considers the most recently determined status to be out of date, it will carry out active tests even if it ought to suppress them, according to the service dependency.
Inheritance
Nagios does not automatically inherit dependencies. An example of this is shown in Figure 12-5: on the internal side of a firewall, the system should query various resources via SNMP. For security reasons, the test is performed indirectly via NRPE, that is, the Nagios server runs the SNMP plugins, which are installed on a host inside the file, indirectly via NRPE.

Figure 12-5. Multilevel dependencies for services
The following two servicedependency objects describe a dependency between the SNMP (Master) service and the Disks service (dependent service) on the host linux04, as well as between the NRPE service on linux01 and the SNMP service on linux04:
define servicedependency{
 host_name linux04
 service_description SNMP
 dependent_host_name linux04
 dependent_service_description Disks
 notification_failure_criteria c, u
 execution_failure_criteria c, u
}

define servicedependency{
 host_name linux01
 service_description NRPE
 dependent_host_name linux04
 dependent_service_description SNMP
 notification_failure_criteria c, u
 execution_failure_criteria c, u
}
If the NRPE daemon on linux01 fails, Nagios would only recognize the defined dependencies between NRPE and SNMP, but not the implicit dependency between NRPE and Disks. To take these into account as well, the parameter inherits_parent is inserted in the definition of the service dependency between Disks and SNMP:
inherits_parent 1
With this, Nagios tests whether the master service itself (here SNMP) is dependent on another service, thanks to a corresponding servicedependency. If the NRPE service on linux01 fails (CRITICAL state), Nagios leaves out the check of Disks on linux04, thanks to execution_failure_criteria c, u, and also does not send any notification of the most recently detected status of Disks.
Other application cases
Dependency definitions between services are particularly useful if a great deal depends on a single service, so that the actual problem is in danger of disappearing under a flood of error messages. Apart from the already described use in combination with NRPE, this applies for all services that the Nagios server cannot test directly and for which it must use tools instead (NRPE, SNMP, or even NSCLIENT for Windows, see 20.2.1 NSClient). If a simple connection to the utility cannot be established and a constant value (version number, system name) cannot be queried, you can still use a generic plugin to address the corresponding port.
Another example of using service dependencies are the applications that depend on a database: a Web application with dynamic Web pages fails if the underlying database (which may be located somewhere in the network on another host) is not working. A precisely defined dependency between the database service and dynamic Web application also ensures here that the administrator is notified of the actual cause.
Additional functions in Nagios 3.0
Nagios 3.0 includes two innovations: On one hand, the parameter dependency_period now allows a time restriction to be placed on the dependency. The default is 7x24h, that is, round the clock.
On the other hand, Nagios 3.0 makes it easier to define the dependencies between services and dependent services on the same host. Specifying dependent_host_name, as was done in the previous examples, can be omitted if this is identical to host_name. An example of this so-called same-host dependency is described in H.1.6 Dependency descriptions in page 683.
12.6.2 Only in exceptional cases: host dependencies
Host dependencies function in principle exactly like service dependencies; the hostdependency object is also capable of suppressing messages.
There are a number of subtle differences in the detail, however. Only explicitly configured regular host checks can be suppressed in which checked intervals are defined as for services. This type of host check should be used only in exceptional circumstances, however, since it can have a significant influence on the performance of Nagios. Normally Nagios decides for itself when it will perform a host check (see 4.1 Taking into Account the Network Topology from page 92).
In nearly all cases the parents parameter in the host definition is better at describing the dependencies between hosts. As long as Nagios can test individual hosts directly, the system can distinguish much better between DOWN and UNREACHABLE (see 4.1 Taking into Account the Network Topology from page 92). If you do not want any notification for particular hosts, dependent on the network topology, then you should be informed only for DOWN, but not for UNREACHABLE.
Host dependencies should be used only when Nagios can no longer distinguish between DOWN and UNREACHABLE. This is usually the case when indirect checksthe host check is performed indirectly (e. g., in the figure shown in 10.5.3 Optimizing the configuration).

Chapter 13. Passive Tests with the External Command File
Apart from active service and host checks, Nagios also makes use of passive tests (and combinations of both types of test). While the system itself defines the time for active checks when they are performed, and then initiates them, Nagios in passive mode only processes incoming results.
For this to work, an interface is required that allows test results from the outside to be passed on to Nagios, as well as commands that perform checks and feed in the results through the interface. Normally remote hosts send their test results, determined by shell scripts, via the Nagios Service Check Acceptor (NSCA), which is introduced in the next chapter (Chapter 14), to the Nagios server.
Passive checks are used in particular with distributed monitoring, in which noncentral Nagios servers send all their results to a central Nagios instance. This subject is discussed in Chapter 15. Another field in which they are used is in the processing of asynchronous events, the time of which Nagios cannot define itself. One example of this is a backup script that sends a result to Nagios (OK or CRITICAL) when it has completed a data backup, and another example is processing SNMP traps (see 14.6 Application Example II: Processing SNMP Traps).
13.1 The Interface for External Commands
The interface for external commands, known in Nagios jargon as External Command Files, consists of a named pipe (FIFO)[131] in the subdirectory rw of the Nagios var directory:
user@linux:~$ ls -lF /var/nagios/rw
prw-rw---- 1 nagios nagcmd 0 Dec 19 10:56 nagios.cmd|
The pipe, marked in the ls output with p, correctly sets up the make install-commandmode command during installation. For reasons of security it is essential that you ensure that only the group nagcmd can read from and write to the pipe. Anyone who has access here can control Nagios remotely via commands, and can, if they want, shut it down entirely.
Commands that Nagios accepts from the External Command File have the following form:
[timestamp] command;arguments
As the timestamp in square brackets, Nagios expects the current time in epoch seconds, that is the number of seconds which have elapsed in the UTC time zone since January 1, 1970. This is followed by a space, then a command followed by a matching number of arguments, separated by a semicolon.
The interface makes extensive use of this mechanism, allowing its users to make various settings via mouse click. A detailed description of all possible commands is provided by the online documentation.[132] An example script for each command can be found there, which can be copied to a file with cut-and-paste and used after a few path adjustments have been made.
In this chapter we will limit ourselves to the two processing commands with which computers deliver the results of passive checks to the Nagios server, PROCESS_SERVICE_CHECK_RESULT and PROCESS_HOST_CHECK_RESULT.
For reasons of security, the processing of external commands must be explicitly switched on in the main configuration file nagios.cfg with the directive check_external_commands=1:
/etc/nagios/nagios.cfg
...
check_external_commands=1
command_check_interval=-1
command_file=/var/nagios/rw/nagios.cmd
...
The command_check_interval determines that Nagios checks the interface for existing commands every so many seconds. −1 means "as often as possible." command_file specifies the path to the named pipe.

[131] A named pipe is a buffer to which a process can write something, which can then be read by another process. Whatever is written first is also read first: First In, First Out (FIFO). Since this involves space in the main memory, a named pipe does not need any space on the hard drive.
[132] http://www.nagios.org/developerinfo/externalcommands/

13.2 Passive Service Checks
In order for Nagios to be able to accept passive service checks via the interface, this must be explicitly allowed in the global configuration and in the corresponding service definition. The corresponding entry in nagios.cfg is
/etc/nagios/nagios.cfg
...
accept_passive_service_checks=1
...
In the service definition you can select whether you want to perform active checks in parallel to the passive ones. Active checks are only possible, of course, if Nagios can query the information itself. The following example allows passive checks and stops all active ones:
define service{
 host_name linux01
 service_description Disks
 passive_checks_enabled 1
 active_checks_enabled 0
 check_command check_dummy
 check_period none
 ...
}
An exception is normally made for freshness checks (see 13.4 Reacting to Out-of-Date Information of Passive Checks from page 295)—here Nagios makes use of the command defined in check_command. To ban active checks entirely, the check_period parameter is set to none. The check command does not play a role in this case, so you can just enter a dummy check here, for example (which like all other commands has to be defined, of course).
On the computer to be tested passively (in this example, linux01) you must ensure, via NSCA (see Chapter 14), that it contacts the Nagios server through the interface for external commands. There it writes the command for passive service checks in the following one-line form:
[timestamp] PROCESS_SERVICE_CHECK_RESULT; host-name;service;
return value; plugin output
The timestamp can be created in a shell script, for example with date:
user@linux:~$ date +%s
1112435763
A simple script that passes on the result of a passive service check on the Nagios server itself to the Nagios installed there, could look like this:
#!/bin/bash
EXTCMDFILE="/var/nagios/rw/nagios.cmd"
TIME='date +%s'
HOST=$1
SRV=$2
RESULT=$3
OUTPUT=$4
CMD="[$TIME] PROCESS_SERVICE_CHECK_RESULT;$HOST;$SRV;$RESULT;$OUTPUT"

/bin/echo $CMD >> $EXTCMDFILE
When it is run it expects the parameters in the correct sequence:
name_of_script linux01 Disks 0 'Disks ok: everything in order :-)'
After the host and service names, the test status follows as a digit, and finally the output text. If the service name contains spaces, then it should also be set in quotation marks.

13.3 Passive Host Checks
Passive host checks follow the same principle as passive service checks, except that they involve computers and not services. To allow them globally, the accept_passive_host_checks parameter is set in nagios.cfg to 1:
/etc/nagios/nagios.cfg
...
accept_passive_host_checks=1
...
In addition, the host definition for the computer to be monitored passively must allow this kind of host check:
define host{
 host_name linux01
 passive_checks_enabled 1
 active_checks_enabled 0
 check_period none
 check_command check_dummy
 ...
}
In this example it simultaneously forbids active checks.
The command to be sent through the external interface with which the computer delivers its test results differs here only marginally from the syntax used in the service check command already introduced:
[timestamp] PROCESS_HOST_CHECK_RESULT;hostname;return value; plugin output
Active and passive host checks differ in one important respect: with passive checks, Nagios is no longer in a position to distinguish between DOWN and UNREACHABLE (see 4.1 Taking into Account the Network Topology from page 92). If you still want to take account of network topology dependencies when making notifications and to give specific information on the actual host that is down, you must make use of host dependencies in this case (see 12.6.2 Only in exceptional cases: host dependencies from page 289).

13.4 Reacting to Out-of-Date Information of Passive Checks
It lies in the nature of passive checks that Nagios is content with the information delivered. Nagios has no influence over when and at what intervals the remote host delivers them. It may even be the case that the information does not arrive at all.
In order to classify the "knowledge state" of the server as out of date, Nagios has the ability to become active itself, with a freshness check. Like passive checks, freshness checking must be enabled both globally and in the relevant serviceable host object. To do this, you need to set the following global parameters in the file nagios.cfg:
/etc/nagios/nagios.cfg
...
check_service_freshness=1
service_freshness_check_interval=60
check_host_freshness=0
host_freshness_check_interval=60
...
The value 0 in check_host_freshness and the value 1 in check_service_freshness ensure that Nagios carries out freshness checks only for services, and not for hosts. The check interval defines the intervals at which the server updates its information, in this case, every 60 seconds. When Nagios really becomes active in the case of a specific service or host depends on the threshold value, which you can set in the appropriate service or host definition with the freshness_threshold parameter:[133]
define service{
 host_name linux01
 service_description Disks
 passive_checks_enabled 1
 active_checks_enabled 0
 check_freshness 1
 freshness_threshold 3600
 check_command service_is_stale
 ...
}
So in this example Nagios performs the freshness check for this service only if the last transmitted value is older than 3600 seconds (one hour). Then Nagios starts the command defined in check_command, even if active checks have been switched off in the corresponding host or service definition, or even globally.
If you define the command named here in the example, service_is_stale, so that Nagios really does check the service or host, then Nagios will perform active tests even if active checking is switched off, but always only if passive results are overdue for longer than the threshold value set.
If active checks are not possible or not wanted, you can ensure, using a pseudo-test, that Nagios will explicitly signal an error status, so that the administrator's attention is drawn to it. Otherwise Nagios will always display the last status to be received. If this was OK, then it will not necessarily be noticed that current results have not been arriving for some time. The following pseudo-test script delivers an appropriate error message with echo, and with exit 2 delivers the return value for CRITICAL, so that the administrator can react accordingly:
#!/bin/bash
/bin/echo "CRITICAL: no current results of the service"
exit 2
If you start the script from the plugin directory as service_is_stale. sh, the Nagios command service_is_stale will be defined as follows:
define command{
 command_name service_is_stale
 command_line $USER1$/service_is_stale.sh
}
If the results for the service Disks on linux01 fail to appear for longer than one hour, Nagios will run the script service_is_stale.sh, which always returns CRITICAL, irrespective of what data linux01 last sent. This CRITICAL status is only ended when the host passes on new and more positive results to the server through a passive check.

[133] If you do not explicitly specify freshness_threshold, the value set for normal_check_interval will be used in the hard state, and if there is a soft state, the value retry_check_interval will serve as the default.

Chapter 14. The Nagios Service Check Acceptor (NSCA)
In order to send service and host checks across the network to the central Nagios server, a transmission mechanism is required. This is provided by the Nagios Service Check Acceptor (NSCA). It consists of two components: a client program send_nsca, which accepts the results of a service or host check on the remote host and sends them to the Nagios server, and the NSCA daemon nsca, which runs on the server, receives data from the client, processes this for the External Command File interface (see 13.1 The Interface for External Commands), and passes this data on to it (Figure 14-1).
The Nagios Service Check Acceptor was originally developed to enable distributed monitoring in which decentralized Nagios servers can send their results to a central Nagios server (see Chapter 15 from page 317). In principle, the data that send_nsca sends to the Nagios server can come from any applications you like.
Sending commands across the network to the central Nagios instance is not insignificant, from a security point of view, since Nagios could be completely switched off using the External Command File. This is why NSCA sends the data in encrypted form, and clients must have the correct key to obtain access to the interface. This prevents an arbitrary network participant from being able to run any commands at all on the Nagios server.

Figure 14-1. How the NSCA functions
14.1 Installation
NSCA version 2.7.2, current at the time of going to press, was published in the spring of 2007; the chances are therefore quite high that the distribution you are using contains a current package. The source code[134] is quite easy to compile yourself, however. As a prerequisite, you need to have the library libmcrypt installed, together with the relevant header files,[135] or else the integrated encryption cannot be used.
In the unpacked source directory, you should run the included configure script, specifying the Nagios configuration and var directories:
linux:local/src # tar xvzf/path/to/nsca-2.7.2.tar.gz
...
linux:local/src # cd nsca-2.7.2
linux:src/nsca-2.7.2 # ./configure --sysconfdir=/etc/nagios \
--localstatedir=/var/nagios
...
*** Configuration summary for nsca 2.7.2 07-03-2007 ***:

 General Options:

 NSCA port: 5667
 NSCA user: nagios
 NSCA group: nagios
...
At the end it displays output, showing the permissions with which the NSCA user starts by default, if not otherwise specified in the configuration. Normally the NSCA daemon waits on TCP port 5667.
A final make all compiles the two programs nsca and send_nsca. They are now located in the subdirectory src and need to be copied manually to a suitable directory:
linux:src/nsca-2.7.2 # cp src/nsca /usr/local/sbin/.
linux:src/nsca-2.7.2 # scp src/send_nsca remote host: /usr/local/bin/.
nsca is copied to the Nagios server, preferably to the directory /usr/local/ sbin. send_nsca belongs on the remote host that is to send its test results to the Nagios server. If this computer has a different operating system version or platform, it is possible that the client to run there will need to be recompiled. Both programs each require their own configuration file, which is best stored in the directory /etc/nagios:
linux:src/nsca-2.7.2 # cp nsca.cfg /etc/nagios/.
linux:src/nsca-2.7.2 # scp send_nsca.cfg remote_host: /etc/nagios/.

[134] http://www.nagios.org/download/
[135] The corresponding binary package usually contains -dev or -devel in its name.

14.2 Configuring the Nagios Server
14.2.1 The configuration file nsca.cfg
For NSCA to work, the External Command File interface on the Nagios server must be activated in the configuration file /etc/nagios/nagios.cfg (13.1 The Interface for External Commands, page 292) and the corresponding data entered in the NSCA configuration file nsca.cfg:
/etc/nagios/nsca.cfg
server_port=5667
server_address=192.168.1.1
allowed_hosts=127.0.0.1
nsca_user=nagios
nsca_group=nagios
debug=0
command_file=/var/nagios/rw/nagios.cmd
alternate_dump_file=/var/nagios/rw/nsca.dump
aggregate_writes=0
append_to_file=0
max_packet_age=30
password=verysecret
decryption_method=10
The parameters server_port, server_address, allowed_hosts, nsca_user, and nsca_group take effect only if nsca is started as a daemon. If it is started as an inet daemon, the values set in its configuration apply to the NSCA server address and the port on which the NSCA is listening, the IP addresses of the hosts that are allowed to access the interface,[136] and the users and group with whose permissions the Service Check Acceptor runs.
The debug parameter makes it easier to search for errors, but it should normally be switched off (value 0). If it is set to 1, NSCA writes debugging information in the syslog.
The named pipe is defined by the entry command_file. If you specify an alternative output file, with alternate_dump_file, this serves as a fallback in case the named pipe given does not exist. Before version 2.0, Nagios removed the pipe each time it was shut down, but this should not happen anymore.
If it is set to 1, aggregate_writes ensures that NSCA collects all the incoming commands just once and then passes these on to the interface as a block. If the value at this position is 0, then NSCA sends on each incoming command immediately to the External Command File.
append_to_file can have the values 0 (opens the External Command File in write mode) or 1 (opens it in the append mode), and it should always be set to 0.[137]
Client messages older than max_packet_age seconds are discarded by NSCA, to avoid replay attacks. This value may not be larger than 900 seconds (15 minutes) and should be as small as possible.
The last two parameters refer to the encryption of the communication. password contains the actual key, which is identical for clients, and which must be entered in the configuration for the clients (see 14.3 Client-side Configuration in page 304). Because the key is written in the file in plain text, nsca.cfg should be readable only for the user with whose permissions the NSCA is running, which in our case is nagios:
linux:/etc/nagios # chown nagios.nagios nsca.cfg
linux:/etc/nagios # chmod 400 nsca.cfg
Finally, decryption_method defines the encryption algorithm. The default is 1 (XOR), which is almost as insecure as 0 (no encryption). 10 stands for LOKI97, which is regarded as secure.[138] The list of all possible algorithms is contained in the supplied configuration file, which contains many old algorithms and some newer ones, such as DES (2), Triple-DES (3), Blowfish (8), and Rijndael (AES).[139]
14.2.2 Configuring the inet daemon
If you want to start nsca with the inet daemon, the following entry is added in the file /etc/services:
nsca 5667/tcp # Nagios Service Check Acceptor (NSCA)
xinetd configuration
If the newer xinetd is used, the file nagios-nsca is created in the directory /etc/xinetd.d with the following contents:
/etc/xinetd.d/nsca
description: NSCA
default: on
service nsca
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = nagios
 group = nagios
 server = /usr/local/sbin/nsca
 server_args = -c /etc/nagios/nsca.cfg --inetd
 log_on_failure += USERID
 disable = no
 only_from = 127.0.0.1 ip1 ip2... ipn
}
The values printed in bold type for the user and group with whose permissions the NSCA should run, and the path to the NSCA daemon nsca (parameter server) and the corresponding configuration file, are adjusted if necessary to your own environment. The line only_from, as an equivalent to the nsca.cfg parameter allowed_hosts, takes in all the IP addresses, separated by spaces, from which the NSCA may be addressed. Distributions that include NSCA as a finished package and install xinetd by default, include a ready-to-use xinetd configuration file, where you only need to adjust this last parameter.
In order for the new configuration to become effective, the xinetd init script is run with the reload argument:
linux:~ # /etc/init.d/xinetd reload
inetd configuration
If the standard inetd command is run, the following line is added (line-wrapped for the printed version) in the configuration file /etc/inetd.conf:
nsca stream tcp nowait nagios /usr/sbin/tcpd
 /usr/local/sbin/nsca -c /etc/nagios/nsca.cfg --inetd
If you want to leave out the TCP wrapper tcpd, you just omit the string /usr/sbin/tcpd. In this case you must also explicitly specify the user (nagios) with whose permissions the NSCA starts, the complete path to the binary nsca, and the configuration file with its absolute path. So that the Internet daemon can take account of the modification, its configuration must be reloaded:
linux:~ # /etc/init.d/inetd reload

[136] If you want to define more than one IP address for allowed_hosts, they are separated by a comma.
[137] The append mode only makes sense if the External Command File is replaced for debugging purposes with a simple file.
[138] http://en.wikipedia.org/wiki/L0KI97
[139] Rijndael-128: 14; Rijndael-192: 15; Rijndael-256: 16

14.3 Client-side Configuration
The configuration file send_nsca.cfg on the client side must contain the same encryption parameters as the file on the Nagios server:
password=verysecret
decryption_method=10
Since the key is also written here in plain text, it should not be readable for just any user. For this reason it is best to create a user nagios and a group nagios on the client side:
linux:~ # groupadd -g 9000 nagios
linux:~ # useradd -u 9000 -g nagios -d /usr/local/nagios \
 -c "Nagios Admin" nagios
You should now protect the file send_nsca.cfg so that only the user nagios can read it, and ensure, using the SUID mechanism, that the program send_nsca always runs under the user ID of this user. If you now grant execute permission to the group nagios, only its members may execute the NSCA client program:
linux:~ # chown nagios.nagios /etc/nagios/send_nsca.cfg
linux:~ # chown nagios.nagios /usr/bin/send_nsca
linux:~ # chmod 400 /etc/nagios/send_nsca.cfg
linux:~ # chmod 4710 /usr/bin/send_nsca
linux:~ # ls -l /usr/bin/send_nsca
-rws--x--- 1 nagios nagios 83187 Apr 2 17:56 /usr/local/bin/send_nsca

14.4 Sending Test Results to the Server
The client program send_nsca reads the details of a host or service check from the standard input, which the administrator must format as follows:[140]
host-name\tservice\treturn value\toutput
host-name\treturn value\toutput
send_nsca sends this to the Nagios server. The first line describes the format for service checks and the second line, that for host checks. The placeholder return value is replaced by the status determined, that is, 0 for OK, 1 for WARNING, 2 for CRITICAL, and 3 for UNKNOWN. By output, a one-line text is meant, of the type that plugins provide as a support for the administrator. As the separator, a tab sign is used (\t).
In order to make a complete command from this that can be understood by the external command, the NSCA daemon first prefixes the timestamp and the matching command (PROCESS_SERVICE_CHECK_RESULT or PROCESS. HOST_CHECK_RESULT). This is why only these two commands can be sent using NSCA.
send_nsca itself has the following options:
-H
address
This is the host name or IP address of the Nagios server to be addressed by NSCA.

-d
delimiter
This is the delimiter for the input; the default is a tab sign. The following example page uses the semicolon as a delimiter.

-c
path/to_the/configuration_file
This parameter specifies the path to the configuration file send_nsca.cfg. Since no path has been compiled into the client, send_nsca expects by default to find the file in the current directory. For this reason it makes sense to specify the absolute path with this option.

-p
port
This defines an alternative port if the default, the TCP port 5667, is not used.

-to
timeout
After timeout seconds (by default, 10) send_nsca aborts the connection attempt to the NSCA daemon, if no connection is established.

With simple test scripts such as the following one, the functionality of the NSCA can be tested. A service is chosen as the test object, which is in a state other than UNKNOWN (e.g., OK), in this case, nmbd on the host linux0l:
#!/bin/bash
CFG="/etc/nagios/send_nsca.cfg"
CMD="linux01;nmbd;3;UNKNOWN - just one NSCA test"

/bin/echo $CMD | /usr/local/bin/send_nsca -H nagios -d ';' -c $CFG
The script puts it, from Nagios's point of view, into the UNKNOWN status. After it is run, you should discover if the transfer was successful:
nagios@linux:~$ bash./test_nsca
1 data packet(s) sent to host successfully.
As soon as Nagios processes the command and you have reloaded the page in your browser, the Web interface displays the UNKNOWN status for the selected service. With the next active check, the previous status will be recovered.
Because it is so simple to send Nagios check results with send_nsca, it is essential that you protect the NSCA from misuse, as already demonstrated. On the client, you should restrict access to the client program send_nsca and to its configuration file and you should make sure that you have secure encryption, and on the server explicitly define the sender and IP addresses that are to be allowed.

[140] Normally you have to ensure that test scripts you have written yourself produce the correct output; if you use Nagios plugins, you must reformat their output accordingly. Since the latter can be run much better directly with NRPE, this should be the exception to the rule.

14.5 Application Example I: Integrating syslog and Nagios
Linux and Unix systems as a rule log system-relevant events through syslog. Sooner or later you will probably want Nagios to also inform the administrator of important syslog events. To do this, you require passive service checks, NSCA for transmitting the results to the Nagios server, and a method of filtering individual block entries.
If you are using syslog-ng[141] instead of the standard BSD syslog, you can make use of its ability to set filters and to format the output using templates. The use of NSCA compensates for the fact that the program cannot itself transmit data in encrypted form.
This connection to Nagios is supplemented by programs to evaluate log files, such as logcheck,[142] which is contained in almost every Linux distribution, but it does not replace them. This is because Nagios can send individual e-mails for each event, but not for a summary of events, as logcheck does (usually once per hour). In addition to this, the Web interface always displays the last event in each case.
14.5.1 Preparing syslog-ng for use with Nagios
Apart from the source code, the syslog-ng homepage[143] also provides a detailed manual, which is why we shall only discuss the basic principle at this point. The software differentiates between the source, filter, and destination. All three objects can be combined in any form; they are defined in the configuration file /etc/syslog-ng/syslog-ng.conf:
/etc/syslog-ng/syslog-ng.conf
source local {
 unix-stream("/dev/log");
 internal();
 file("/proc/kmsg" log_prefix("kernel: "));
};

destination console_10 {
 file("/dev/tty10");
};

filter f_messages {
 not facility(auth, authpriv) and
 level(info.. alert);
};

log {
 source(local);
 filter(f_messages);
 destination(console_10);
};
This example defines three sources at the same time: unix-stream reads from the socket /dev/log, through which most programs send their messages to the syslog. internal is the name of the source syslog-ng feeds with internal messages, and from the file /proc/kmsg syslog receives kernel messages. These are given the kernel: prefix, so that they can be be distinguished from normal log entries.
The destination definition ensures that all syslog output appears on the console ttyl0 (this can be displayed with -).
filter defines what messages should reach this destination, if any. In the case of the f_messages filter, this is all messages matching the category (the level) info and that syslog does not provide with the stamp (the facility; see man syslog.conf and man 3 syslog) auth or authpriv. Alternatively syslog-ng filters according to a search pattern, with the instruction match ("pattern"), according to the program doing the logging (program("program name")) and according to the source host (host ("hostname")).
Finally the keyword log links the source, filter, and destination. Multiple specifications are possible here, so several sources and destinations can be specified in a single statement:
log {
 source1); source2;...
 filter1; filter2;...
 destination1; destination2;...
}
If you specify several filters in a log statement, syslog-ng only allows data through that matches all filter criteria (AND link).
To integrate this into Nagios, use is made of the option of defining a program as a target, which is called for every event:
destination d_nagios_warn {
 program("/usr/local/nagios/misc/send_syslog.sh"
 template("$HOST;syslog-ng;1;WARNING: $MSG\n") template_escape(no));
};

destination d_nagios_crit {
 program("/usr/local/nagios/misc/send_syslog.sh"
 template("$HOST;syslog-ng;2;CRITICAL: $MSG\n") template_escape(no));
};
The template directive formats the output so that it is suitable for send_nsca, using a semicolon as the delimiter: host and service names (syslog-ng) are followed by the state (1 = WARNING; 2 = CRITICAL), and then the actual output text is given. Apart from $H0ST and $MSG, syslog-ng has a series of further macros, which are described individually in the documentation on the homepage. The parameter template_escape protects quotation marks in the text and is intended principally for SQL commands, so in this case it can be set to no.
The following script send_syslog.sh uses the bash function read to read from the standard input line by line, and for each line read it calls up send_nsca, which sends on the data—as described in this chapter—as a passive test result to Nagios:
#!/bin/bash
while read -r line; do
 echo $line | /usr/bin/send_nsca -H nagsrv -d ';' \
 -c /etc/nagios/send_nsca.cfg \
 1>/usr/local/nagios/var/send_syslog.log 2>&1
done
Because a semicolon is used as a delimiter, we specify this explicitly with the option -d. The status report that each send_nsca command displays on the standard output is diverted by the script into a separate log file (/usr/local/nagios/var/send_syslog.log).
Thanks to the program instruction in the syslog configuration, syslog-ng starts the script automatically. This is also the reason that the send_nsca command is in an endless loop: this means that syslog-ng does not run an external program every time there is a relevant event.
14.5.2 Nagios configuration: volatile services
In Nagios slang, "volatile" refers to services that show an error state only once. This refers to devices, for example, that automatically reset the state when an error is queried—which means that the error cannot be reproduced. The same applies for syslog entries: if a check following an error state returns an error, this will always be a second event. So we don't have a continuing error state here, but a problem that has again occurred.
For continuing error states, Nagios normally does not send any further messages for the time being. With the is_volatile parameter, however, it treats every error as if it had just occurred. Nagios logs the state, sends a notification, and implements the event handler—provided it is defined—(see Appendix C from page 619).
For syslog-ng, this means that each entry is seen as an independent event. In order that Nagios sees things in this way as well, the corresponding service definition contains the is_volatile parameter:
define service{
 host_name linux01
 service_description syslog-ng
 active_checks_enabled 0
 passive_checks_enabled 1
 check_freshness 0
 is_volatile 1
 max_check_attempts 1
 normal_check_interval 1
 retry_check_interval 1
 check_command check_dummy!3!active check
 check_period none
 contact_groups localadmins
 notification_options w,c,u
 notification_interval 480
 notification_period 24x7
}
Since the Nagios server should not test anything on its own, active_checks_enabled 0 switches off active service checks. However, freshness checking (see 13.4 Reacting to Out-of-Date Information of Passive Checks from page 295) can always cause Nagios to perform active tests. To prevent this, we set the check_freshness parameter in this case explicitly to 0.
This service definition does not really require the parameters check_command and check_period, but since these are mandatory parameters, they must still be specified: as check_command, the plugin check_dummy (see 8.1 The Dummy Plugin for Tests in page 188) is used.
It is also important that max_check_attempts is set to 1, so that a transmitted error state immediately triggers a hard state. With a value larger than 1, Nagios would wait for further error results here before categorizing the problem state as a hard state.
The notification_options parameter ensures that the system informs the specified contact group of all error states (WARNING, CRITICAL, and UNKNOWN). The notification_interval, which defines the interval between two notifications for a continuing error state, is actually superfluous, since Nagios, thanks to is_volatile 1, provides notification of every event immediately, irrespective of what the previous state looked like. But since it is a mandatory parameter, notification_interval still has to be specified.
14.5.3 Resetting error states manually
Events that are taken into account by the syslog filter always inform you of only one current state, which is why the syslog service in Nagios never displays an OK state on its own (Figure 14-2).

Figure 14-2. The syslog-ng service in an error state
This problem can be solved with the Web interface, which allows a passive check result to be generated manually.
If you click on the service name in Figure 14-2, the extended status information will be shown (Figure 14-3). There you will find the entry Submit passive check result for this service, with which a test result can be sent manually (Figure 14-4). In this way the syslog-ng service can be reset to its normal state. Since the Web interface always shows only the most recent error state, but not individual error messages, you must look through the e-mail messages to see whether other errors have occurred apart from those errors displayed by Nagios in the Web interface.

Figure 14-3. The arrow points to the possibility of "generating" a passive test result for the syslog-ng service
You can also define your own service for each syslog event, of course. This may sometimes be quite time-consuming, but it does allow you to separate various messages and their processing states in the Web interface. If the filter in syslog-ng is restricted so that a syslog service object always refers to just one resource to be monitored, you can also leave out the is_volatile parameter.

Figure 14-4. Creating a passive check result syslog-ng

[141] The "ng" stands here for next generation.
[142] http://sourceforge.net/projects/logcheck/
[143] http://www.balabit.com/products/syslog_ng/

14.6 Application Example II: Processing SNMP Traps
Asynchronous messages that are sent by an SNMP agent (see 11.1 Introduction to SNMP from page 228) to a central management unit, called traps in SNMP jargon, can be processed by Nagios in a way similar to the Nagios Service Check Acceptor (NSCA). In addition, it allows SNMP traps to be accepted on a host other than the Nagios server itself.
Processing SNMP traps with Nagios is particularly worthwhile if the system monitors the network almost completely, and only a few devices or services restrict their communication just to SNMP and SNMP traps. Nagios, or the Open Source tool OpenNMS,[144] are no substitutes for real commercial SNMP management systems.
In many cases, SNMP traps are vendor-specific, so that you cannot avoid getting to grips with the appropriate documentation and the vendor-specific MIB (Management Information Base; see 11.1.1 The Management Information Base from page 229).
14.6.1 Receiving traps with snmptrapd
In order to receive SNMP traps, you require a special Unix/Linux daemon that generates messages for Nagios from them. The software package NET-SNMP, described in 11.2.2 The NET-SNMP daemon from page 238, includes the daemon snmptrapd.
In the following scenario, snmptrapd is installed on a third host (neither the computer generating the trap, nor the Nagios server). It evaluates the information received by means of a script and forwards it with NSCA to the Nagios server.[145]
In the snmptrapd configuration file /etc/snmp/snmptrapd.conf, each trap type is given a separate entry, the syntax of which corresponds to one of the following lines:
traphandle oid program
traphandle oid program arguments
traphandle default program
traphandle default program arguments
The keyword traphandle is followed either by the object identifier of the desired trap, or by the keyword default. In the second case the entry applies to all traps that do not have their own configuration entry. Finally the program that should run if a relevant trap arrives is specified.
In addition you can also include arguments used with this program. But you must be a bit careful when doing this. Quotation marks are passed on by snmptrapd as characters and spaces are always used as delimiters. This means that you cannot pass on any arguments containing spaces, which you should bear in mind when assigning name services in Nagios.
snmpdtrapd gives this program information via the standard output in the following format:
hostname
ip-address
oid value
...
The first line contains the fully qualified domain name of the host that sends the message and the second, its IP address. Then one or more OID-value pairs are given, each on a separate line. A particular event is very often linked to a unique OID-value pair, so that the program can often omit the evaluation of the OID-value pair entirely.
In the following snmptrapd.conf example, the lines are wrapped for readability Each traphandle instruction must be entered on a single line:
snmptrapd.conf
traphandle SNMPv2-MIB::coldStart /usr/local/nagios/libexec/eventhandler/
handle-trap SNMP cold-start
traphandle NET-SNMP-AGENT-MIB::nsNotifyRestart /usr/local/nagios/libexec
/eventhandler/handle-trap SNMP restart
traphandle NET-SNMP-AGENT-MIB::nsNotifyShutdown /usr/local/nagios/libexe
c/eventhandler/handle-trap SNMP shutdown
traphandle default /usr/local/nagios/libexec/eventhandler/handle-trap SN
MP unknown
The traps used here are sent by the SNMP agent snmpd from the NET-SNMP package by default, as long as a destination was specified in snmpd.conf:
snmpd.conf
trapsink name_or_ip_of_the_nagios-server
If a trap arrives with the OID SNMPv2-MIB::coldStart, for example, snmptrapd starts the script handle-trap with the argument cold-start. In this way it does not have to search first for the necessary information from the OID-value pairs. However, this shortcut only works with trap OID names that describe their function.
14.6.2 Passing on traps to NSCA
The script handle-trap, which is run by snmptrapd, breaks down the information passed on and hands it over, correctly formatted, to send_nsca:
#!/bin/bash

NAGIOS="nagsrv"
LOGFILE="/usr/local/nagios/var/handle-trap.log"

read HOST && echo "host: $HOST" >> $LOGFILE
read IPADDR && echo "ip: $IPADDR" >> $LOGFILE

case $IPADDR in
 192.168.201.4)
 HOSTNAME="irouter"
 ;;
 *)
 # silent discard from unknown hosts
 exit 0
 ;;
esac

if [-z "$1"]; then
 echo "usage: $0 <service> <key>"
 echo "usage: $0 <service> <key>" >> $LOGFILE
 exit 1
else
 SERVICE="$1"
fi

if [! -z "$2"]; then
 SWITCH="$2"
fi

case $SWITCH in
 "cold-start")
 OUTPUT="snmpd: Cold Start"
 STATE=0
 restart)
 OUTPUT="snmpd: Restart"
 STATE=1
 ;;
 shutdown)
 OUTPUT="snmpd: Shutdown"
 STATE=2
 ;;
 *)
 OUTPUT="Unknown Trap"
 STATE=1
 ;;
esac

CMD="$HOSTNAME;$SERVICE;$STATE;$OUTPUT"

echo "$CMD" >> $LOGFILE

echo "$CMD" | /usr/bin/send_nsca -H $NAGIOS -d ';' \
 -c /etc/nagios/send_nsca.cfg >> $LOGFILE 2>&1
First it saves the log file and the name of the Nagios server nagsrv, each in a separate variable. The first case statement specifies the host name used by Nagios for the IP address passed on (and temporarily stored in IPADDR). HOST normally contains the fully qualified domain name, which also cannot be used directly, and sometimes also just contains one IP address, so that it is better to use the latter here. The explicit test also allows it to discard traps from undesired hosts. Finally, matching traps land without further authentication on the Nagios server.[146]
The following if statement determines whether a service name was also given to the script. If this is the case, then it is saved in the SERVICE variable. If there was a second argument, the procedure is similar. Depending on the value, the next case $SWITCH instruction defines the output text and the desired status for Nagios.
The command for NSCA is finally assembled and the CMD variable is passed on by the script to send_nsca. As in previous examples, a semicolon is used as the delimiter, which must be specified in send_nsca with the option -d.
14.6.3 The matching service definition
As in the syslog-ng example (14.5.1 Preparing syslog-ng for use with Nagios), we again define the service on the Nagios server as a purely passive one:
define service{
 host_name irouter
 service_description SNMP
 active_checks_enabled 0
 passive_checks_enabled 1
 check_freshness 0
 max_check_attempts 1
 is_volatile 1
 ...
}
Since soft states do not make any sense in a single trap message, we should set max_check_attempts back to 1. Whether the parameter is_volatile is used or not depends on the purpose to which the service is put. As long as you define a separate service for each error category, there is no problem in omitting is_volatile. But if you form different error categories using a single service, you should set is_volatile 1, because in this case the previous error will seldom have anything to do with the new one. 14.5.2 Nagios configuration: volatile services in page 309 is devoted to the subject of volatile services.

[144] http://www.opennms.org/
[145] If you install the snmptrapd on the Nagios server itself, you do not need NSCA and you can send a correspondingly formatted command, as described in 13.2 Passive Service Checks from page 293 directly to the interface for external commands.
[146] Although SNMPv3 does provide authentication for SNMP traps, this would go beyond the scope of this book.

Chapter 15. Distributed Monitoring
Passive service and host checks can be used to create a scenario in which several noncentral Nagios instances send their results to a central server. In general they transfer their results using the Nagios Service Check Acceptor (see Chapter 14); the central Nagios instance receives them through the External Command File interface and continues processing them as passive checks (see Chapter 13 from page 291).
What is now missing is the mechanism that prepares each test result of a noncentral Nagios instance to be sent with NSCA. For such cases, Nagios provides the commands OCSP ("Obsessive Compulsive Service Processor") and OCHP ("Obsessive Compulsive Host Processor"), two commands designed specifically for distributed monitoring. In contrast to event handler (see Appendix C from page 619), which shows changes in status and only passes on check results if the status has changed, these two commands obsessively pass on every test result (Figure 15-1).

Figure 15-1. Distributed monitoring with Nagios
15.1 Switching On the OCSP/OCHP Mechanism
In order to use OCSP/OCHP, several steps are necessary. The mechanism is initially switched on (only) on the noncentral Nagios servers in the global configuration file /etc/nagios/nagios.cfg, where a global command for hosts (OCHP) and services (OCSP) is defined. This causes the noncentral Nagios instance to send every result to the central server.
In the service and host definitions you can additionally set whether the corresponding service or host should use the mechanism or not. For the central Nagios server to be able to use the results transferred, each service or host on it must finally be defined once again.
You should only switch on the two parameters obsess_over_services and obsess_over_hosts in nagios.cfg if you really do want distributed monitoring:
/etc/nagios/nagios.cfg
...
obsess_over_services=1
ocsp_command=submit_service_check
ocsp_timeout=5
obsess_over_hosts=1
ochp_command=submit_host_check
ochp_timeout=5
Every time a new test result arrives on the Nagios server, it calls the command object defined with ocsp_command or ochp_command. This causes an additional load on resources.
The two timeouts prevent Nagios from spending too much time on one command. If processing does not terminate (because the command itself does not receive a timeout and the central Nagios server does not react), then the process table of the noncentral Nagios instance would fill very quickly, and might overflow.
If you want to selectively exclude test results for specific services and hosts from transmission to the central Nagios server, the following parameters are used:
define host{
 ...
 obsess_over_hosts=0
 ...
}

define service{
 ...
 obsess_over_services=0
 ...
}
With a value of 1 the local Nagios instance sends the results of the host or service check to the central server, but with a value of 0, this does not happen. The 1 is the default for both obsess_over_hosts and obsess_over_services; if results are not to be transferred, then you have to specify the two parameters. This is always recommended if the central location is only responsible for particular things, and the remaining administration is carried out on site.

15.2 Defining OCSP/OCHP Commands
Defining the two commands with which the noncentral instances send their results to the Nagios main server in most cases involves scripts that are based on send_nsca (see also the example in 14.4 Sending Test Results to the Server). For services, such a script would look like the following one, in this case called submit_service_check:
#!/bin/bash
Script submit_service_check

PRINTF="/usr/bin/printf"
CMD="/usr/local/bin/send_nsca"
CFG="/etc/nagios/send_nsca.cfg"
HOST=$1
SRV=$2
RESULT=$3
OUTPUT=$4

$PRINTF "%b" "$HOST\t$SRV\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG
When run, the command expects four parameters on the command line in the correct order: the host monitored, the service name, the return value for the plugin opened (0 for OK, 1 for WARNING, etc.), and the one-line info text that is issued by the plugin. To format the data we use the printf function (man printf). The newly formatted string is finally passed on to send_nsca.
The equivalent script for OCHP (stored here in the file submit_host_check) looks something like this:
#!/bin/bash
Script submit_host_check

PRINTF="/usr/bin/printf"
CMD="/usr/local/bin/send_nsca"
CFG="/etc/nagios/send_nsca.cfg"
HOST=$1
RESULT=$2
OUTPUT=$3

$PRINTF "%b" "$HOST\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG
The only thing missing is the specification of the service description.
It is best to store the two scripts, in conformity with the Nagios documentation, in a subdirectory eventhandlers (which normally needs to be created) in the plugin directory (usually /usr/local/nagios/libexec, but for some distributions this will be /usr/lib/nagios/plugins). You can retrieve this from the definition of the matching command object using the macro $USER1$. This is best defined in the misccommands.cfg file:
define command{
 command_name submit_service_check
 command_line $USER1$/eventhandlers/submit_service_check $HOSTNAME$ '$
 SERVICEDESC$' $SERVICESTATEID$ '$SERVICEOUTPUT$'

define command{
 command_name submit_host_check
 command_line $USER1$/eventhandlers/submit_host_check $HOSTNAME$ $HO STSTATEID$
 '$HOSTOUTPUT$'
If you use a separate file for this, you must make sure that Nagios will load this file by adding an entry to /etc/nagios/nagios.cfg. The single quotes surrounding the $SERVICEDESC$ macro and the two output macros in the command_line line are important. Their values sometimes contain empty spaces, which the command line would interpret as delimiters without the quotes.

15.3 Practical Scenarios
One application for distributed monitoring is the monitoring of branches or external offices in which a noncentral Nagios installation is limited to running service and host checks and sending the results to the central instance. The noncentral instances do not need further Nagios functions, such as the notification system or the Web interface.
On the other hand, if administrators look after the networks at the distributed locations, while the central IT department only looks after special services, then the noncentral Nagios server is set up as a normal, full-fledged installation and selectively forwards only those check results over the OCSP/OCHP mechanism to the central office for which the specialists there are responsible.
Whatever the case, you must ensure that the host and service definition is available both noncentrally and centrally. This can be done quite simply using templates (2.11 Templates in page 75) and the cfg_dir directive (2.1 The Main Configuration File nagios.cfg, page 55): you set up the definition so that the configuration files can be copied 1:1.
15.3.1 Avoiding redundancy in configuration files
In the following example we assume that the noncentral servers only perform host and service checks and send the results to the central server, and do not provide any other Nagios functions. The following directories are set up on the central host:
/etc/nagios/global
/etc/nagios/local
/etc/nagios/sites
/etc/nagios/sites/bonn
/etc/nagios/sites/Frankfurt
/etc/nagios/sites/berlin
...
Each of the configurations used for a location lands in the directory /etc/nagios/sites/location. After global, all the definitions follow that can be used identically at all locations (e.g., the command definitions in checkcommands.cfg). The directory local takes in specific definitions for the central server definitions. These include the templates for services and hosts, where distinction must be made between central and noncentral.
This directory is also created separately on the noncentral servers: only the folders global and sites/location are copied from the central instance to the branch offices.
The three directories are read in with the cfg_dir directive in /etc/nagios/nagios.cfg:
-- /etc/nagios/nagios.cfg
...
cfg_dir=/etc/nagios/global
cfg_dir=/etc/nagios/local
cfg_dir=/etc/nagios/sites
...
Only settings that are identical for the noncentral and central page are used in the service definition:
-- /etc/nagios/sites/bonn/services.cfg
define service{
 host_name bonn01
 service_description HTTP
 use bonn-svc-template
 ...
 check_command check_http
 ...
}
The location-dependent parameters are dealt with by the templates.
15.3.2 Defining templates
In order that service definitions are identical on both the central and non-central servers, the local templates must have the same names as the central ones. In addition you should ensure that the obligatory parameters (see Chapter 2 from page 53) are also all entered, even if they are not even required at one of the locations, because together, the template and service definitions must cover all obligatory parameters.
The following example shows a service template for one of the noncentral locations:
-- On-Site configuration for the Bonn location
define service{
 name bonn-svc-template
 register 0
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
 active_checks_enabled 1
 passive_checks_enabled 1
 check_period 24×7
 obsess_over_services 1
 notification_interval 0
 notification_period none
 notification_options n
 notifications_enabled 0
 contact_groups dummy
}
The parameters that are important for the noncentral page are printed in bold type. Besides the parameters that refer to the test itself, the parameter obsess_over_services must also not be left out. This ensures that the check results are sent to the central server.
notifications_enabled switches off notification in this case, since the local admins do not need to worry about error messages from services that are centrally monitored. Alternatively this can be done globally in the non-central /etc/nagios/nagios.cfg.
register 0 ensures that the template is used exclusively as a template, so that Nagios does not interpret it as a separate service definition.
The counterpart with the same name on the central server looks something like this:
-- Service template for the central Nagios server
define service{
 name bonn-svc-template
 register 0

 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
 active_checks_enabled 0
 passive_checks_enabled 1
 check_period none
 check_freshness 0
obsess_over_services 0
notification_interval 480
 notification_period 24×7
 notification_options u,c,r
 notifications_enabled 1
 contact_groups admins
}
The parameter passive_checks_enabled is of importance here, as well as the configuration of the notification system. On the central side, the parameters involving the test itself come into play only if freshness checking is used (see 13.4 Reacting to Out-of-Date Information of Passive Checks from page 295). This works only if the central Nagios server is itself in a position to actively test all services if there is any doubt. Since the check_command in this simple template solution is given in the location-dependent service definition, which is identical on the non-central and central servers, this will work only if the same command object can be used both centrally and noncentrally—if the object definitions in global/checkcommands.cfg match on both sides.
In the example, however, we completely switch off active tests of services at the Bonn location, with check_period none and check_freshness set to 0. The system described so far can also be applied to host checks, of course.

Part III. The Web Interface and Other Ways to Visualize Nagios Data

Chapter 16. The Classical Web Interface
On the right is the navigation area with the unmistakable black background, and the remaining area is for displaying the CGI scripts called (Figure 16-1)-the Nagios Web interface is that simple. The start screen provides access to the program documentation—extremely useful if you just want to look up something quickly.
Provided you have the correct access rights, the Web interface allows much more than just looking up information. You can run a series of commands and control Nagios actively: from setting a single command, to switching messages on and off, to restarting the server.
A separate book would be needed to describe all the features completely. This is why we will just describe the concept here on which the CGI programs are based,[147] in this way giving you a picture of the extensive range of options available.
Many functions use the very same CGI program. If you move the mouse up and down in the navigation area shown in Figure 16-1 and observe the status display of the browser when doing this, which reveals the URLs to be called, you will see that in the Monitoring section up to the Show Hosts: entry field, the CGI program status.cgi is always called, with just four exceptions. Only the parameters are different. Things are similar for the CGI program cmd.cgi, with which general commands can be run. The parameters passed specify whether a comment is to be read, or a message enabled or disabled, or if Nagios is to be restarted.

Figure 16-1. The subitem Unhandled under both the Service Problems and Host Problems menu items has only been on the start page of the Nagios Web interface since Nagios 3.0.
Table 16-1. overview of CGI programs

	CGI program
	Description

	status.cgi
	Status display in various forms; by far the most important CGI program (Figure 16-10 to Figure 16-15, page 334.)

	statusmap.cgi
	Topological representation of the monitored host (see Figure 16-27, page 347)

	statuswrl.cgi
	Topological representation in 3D format; requires a VRML-capable browser and allows interactive navigation in a virtual space (Figure 16-29, page 349)

	statuswml.cgi
	Simple status page for WAP devices (cellphone)

	extinfo.cgi
	Additional information on a host or service, with the possibility of running commands (Figure 16-4, page 331)

	cmd.cgi
	Running commands (Figure 16-23, page 343)

	tac.cgi
	Overview of all services and hosts to be monitored, the Tactical Overview (see Figure 16-26 in page 346)

	outages.cgi
	Network nodes that cause the failure of partial networks (Figure 16-30, page 350)

	config.cgi
	Display of Nagios object definitions (Figure 16-31, page 351)

	avail.cgi
	Availability report (e.g., "98 percent of all systems OK, 2 percent WARNING", see Figure 16-32, page 352)

	histogram.cgi
	Histogram of the number of events occurring (Figure 16-34, page 353)

	History.cgi
	Display of all events that have ever occurred (Figure 16-35, page 355)

	notifications.cgi
	Overview of all sent notifications (Figure 16-36, page 355)

	showlog.cgi
	Display of all log file entries (Figure 16-37, page 356)

	summary.cgi
	Report of events, which can be compiled by host, service, error category and time period (Figure 16-39, page 358)

	trends.cgi
	Time axis recording the states that have occurred (Figure 16-40, page 359)

Table 16-1 shows an overview of all the CGI programs included in the package. They all check to see whether the person running the requested action is allowed to do so. Normally a user can only access the hosts and services for which he is entered as the contact. In addition there is the possibility of assigning specific users more comprehensive rights, so that they are basically allowed to display all hosts and services, for example, or to request system information. Settings for other users are made in the cgi.cfg configuration file, and the authentication parameters are described in A.2 CGI Configuration in cgi.cfg, page 606.
16.1 Recognizing and Acting On Problems
A suitable starting point for the administrator is the Service Problems page, which can be reached through the menu item, shown in Figure 16-2. You can see all problems at a glance. If there is just a service-related problem, but not a host-related one, the host name in the Host column has a gray background, but a red background means the host itself is the source of the trouble.

Figure 16-2. The menu item Service Problems brings current problems to attention
The hosts sis-mail and sis-proxy, which have failed in Figure 16-2, can be seen again in the Host Problems menu item (Figure 16-3): sis-mail cannot be reached (UNREACHABLE), so the real problem therefore exists in the failure of the host sls-proxy. This dependency is illustrated in the Outages menu item (Figure 16-30, page 350) or the Status Map (Figure 16-27, page 347). In Figure 16-27 the two failed hosts are shown with a red background, and you can also clearly see which host is dependent on the other (always from the point of view of the central Nagios host).

Figure 16-3. The Host Problems menu item reveals this display
16.1.1 Comments on problematic hosts
The administrator clarifies the problem with the external office by telephone: the DSL connection has failed. He announces this failure to the provider responsible. To stop his colleagues from going to the same trouble again, the admin enters a corresponding comment on the failed host. To do this he clicks in the status display on the host name, which takes him to an information page for this specific host (Figure 16-4), the options of which are described in more detail in 16.2.2 Additional information and control center: extinfo.cgi, page 339.

Figure 16-4. extinfo.cgi provides additional information on the selected host
Using the Add a new comment link at the bottom of the page, the CGI program cmd.cgi (16.2.3 Interface for external commands: cmd.cgi, page 343), which by passing on a corresponding parameter is already prepared for this task,[148] allows a comment to be recorded (Figure 16-5). The host name is already shown, the check mark in the Persistent box ensures that the comments will also "survive" a Nagios restart. The user name filled out in the Author (Your Name): field can be edited, as can the actual comment in the Comment field.[149]

Figure 16-5. Entering a comment for a host
The administrator confirms the entry with the Commit button. Returning to the status overview, for example with the Service Problems menu item, the administrator will see a speech bubble next to the host name, indicating that a comment exists for this host (Figure 16-6). Clicking on the icon opens the corresponding information page and takes the admin directly to the comment entries (Figure 16-7). Clicking on the icon of the trash can in the Actions column deletes these individually, if required.

Figure 16-6. A speech bubble displays the existence of comments

Figure 16-7. A click on Delete all comments deletes all comments at once
16.1.2 Taking responsibility for problems
Acknowledgements (so spelled on the Web interface) are oriented more closely to the workflow than simple comments. An acknowledgement signals to other administrators that somebody is already working on a problem, so nobody else needs to get involved with it for the time being. In the status overview, a small laborer icon symbolizes this form of taking responsibility (Figure 16-8), and Nagios additionally notifies the relevant contacts.
To issue such a statement, the link Acknowledge this Host Problem is used on the extended info page for the host in question. As well as the fields used for entering a normal comment, there are two checkboxes in this case, Sticky Acknowledgement (Figure 16-9)—if checked, this option prevents period notification if the error status persists—and Send Notification. If the latter is also checked, Nagios notifies the other administrators.

Figure 16-8. A laborer icon shows that an admin has already taken on responsibility for the problem (acknowledgement)

Figure 16-9. Entry dialog for a host acknowlegement
The effect of Persistent Comment is different in Nagios 2.x and Nagios 3.0: In Nagios 2.x the comment is only preserved on a reboot if the checkbox has been marked. Unfortunately, using this to save comments in case of a reboot has the disadvantage that the comment does not disappear automatically when the problem has been solved. On the other hand, Nagios 3.0 normally retains all comments after a reboot. If the check mark for Persistent Comment is deleted, Nagios will remove the comment automatically as soon as the problem has been rectified. If the check mark is set, the comment must be removed manually if it is no longer needed, as in Nagios 2.x.
What we are demonstrating here, using a faulty host state, can also be applied to faulty services. The CGI programs are the same, and through the passing of parameters they receive information on whether a host or service is involved, and react accordingly; only the host field receives company in the form of a Service entry.

[147] There is a good reason that we refer here to CGI programs and not to CGI scripts: all CGI programs for Nagios 2.x and 3.0 are C programs.
[148] cmd_type=1&host=sls-proxy. More on the parameters in 16.2.3 Interface for external commands: cmd.cgi following, page 343.
[149] Starting with Nagios 3.0, amending the author name can be prevented by using the parameter lock_author_name (see A.2.2 Other Parameters).

16.2 An Overview of the Individual CGI Programs
At the time of going to press, this chapter was the most extensive documentation on the Nagios Web interface, especially for the individual CGI scripts. But for reasons of space, we shall not go into every detail. If you want to know more, you must take a look at the source code of the scripts or look at the nagios-users[150] mailing list. Some of these are also read by the Nagios developers, and many a question is answered there for which there is currently no documentation.
16.2.1 Variations in status display: status.cgi
By far the most important CGI program, status.cgi is responsible for the status display. What it shows is determined by three parameter groups. The first one defines whether the Web page generated displays all hosts, a specific host, or a service group:
http://nagiosserver/nagios/cgi-bin/status.cgi?host=all
http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=all
http://nagiosserver/nagios/cgi-bin/status.cgi?servicegroup=all
With host you can select individual hosts, and all in this case stands for all hosts. hostgroup enables a specific host group to be displayed, and again you can use all to stand for all host groups. Finally, servicegroup tells the CGI program to display either the individual service group given as a value, or all service groups, given with all.

Figure 16-10. The overview output style
The outputs of host=all and hostgroup=all are only different in their style, which is defined by the second parameter group. For host=all, style=detail is the default setting, and for hostgroup=all, it is style=overview.status.cgi?host=all&style=overview therefore delivers the same result as status.cgi?hostgroup=all.
Hosts that do not belong to a host group only appear in the detail view host=all&style=detail or hostgroup=all&style=hostdetail. All other display styles always show entire host groups from which individual hosts may be missing. status.cgi provides five possible output styles: overview represents the hosts in a table, but summarizes the services according to states (Figure 16-10). For the host group SAP, you would call the corresponding display with the URL
http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=SAP&style=overview
The style value summary compresses the output of overview: status.cgi only displays one host group for each line (Figure 16-11 shows this for Nagios 2.x, Figure 16-12 for Nagios 3.0). For Nagios 3.0, error states are distinguished as unhandled (no acknowledgement set) or acknowledged.

Figure 16-11. The summary output style of Nagios 2.x

Figure 16-12. The summary output style of Nagios 3.0
The grid style provides an extremely attractive summary in which you can see the status of each individual service by means of the color with which it is highlighted (Figure 16-13). detail shows each service in detail on a separate line. The hostdetail output style is limited just to host information, providing detailed information with one line for each host (Figure 16-15).

Figure 16-13. The grid output style

Figure 16-14. The detail output style

Figure 16-15. The hostdetail output style
The third and final parameter group allows you to influence, through selectors, what states and what properties are shown by status.cgi, such as all services in an error state for which no acknowledgement has yet been set by an administrator (see 16.1.2 Taking responsibility for problems, page 332). States are passed on with the hoststatustypes or servicestatustypes parameter, properties with hostprops and serviceprops. All four parameters demand numerical values after the equals sign, and these are summarized in Table 16-2, Table 16-3, and Table 16-4.
Table 16-2. Possible values for Hoststatustypes

	Value
	Description

	1
	PENDING (a result of the very first test planned for this host is not yet available)

	2
	UP

	4
	DOWN

	8
	UNREACHABLE

The third and final parameter group allows selectors to be used to influence what states and properties are displayed by status.cgi, fofr instance all services in an error state for which no administrator has yet set an acknowledgement (see 16.1.2 Taking responsibility for problems, page 332). Conditions are passed with the parameter hoststatustypes or servicestatustypes, and properties with the hostprops and serviceprops parameters. All four parameters require numerical values after the equals sign, and these are summarized in Table 16-2, Table 16-3, and Table 16-4.
Table 16-3. Possible values for Servicestatus types

	Value
	Description

	1
	PENDING (Service was originally planned for a check, but so far no result is available)

	2
	OK

	4
	WARNING

	8
	UNKNOWN

	16
	CRITICAL

Table 16-4. Possible values for host and serviceprops

	Value
	Description

	1
	Scheduled downtime (downtime planned)

	2
	No Scheduled downtime (no downtime planned)

	4
	Acknowledgement (status confirmed by the admin)

	8
	No acknowledgement

	16
	Host/Service check disabled

	32
	Host/Service check enabled

	64
	Event Handler disabled

	128
	Event Handler enabled

	256
	Flap Detection disabled

	512
	Flap Detection enabled

	1024
	Host/Service oscillates (flapping)

	2048
	Host/Service does not oscillate

	4096
	Hosts or services currently excluded from a notification

	8192
	Notification enabled

	16384
	Passive host/service checks disabled (Chapter 13, page 291)

	32768
	Passive host/service checks enabled

	65536
	Hosts/services for which there is at least one result determined for each passive test

	131072
	Hosts/services for which there is at least one active check result

	262144
	Hosts/services in the hard state (from Nagios 3.0)

	524288
	Hosts/services in the soft state (from Nagios 3.0)

If you want to query several states or properties simultaneously, you just add the specified values together: status.cgi?host=all&servicestatustypes=28 shows all services with an error status: WARNING, UNKNOWN, and CRITICAL, that is, 4+8+16 = 28. This query is identical to the Service Problems menu item in the navigation area.
status.cgi?hostgroup=all&hoststatustypes=12&style=hostdetail corresponds to the Host Problems menu item in the navigation area. It queries all hosts which are either DOWN or UNREACHABLE (here 4+8 = 12). Since only host information should be shown, but no service information, the output style is in the form of hostdetail.
status.cgi?host=all&servicestatustypes=24&serviceprops=10 is the variation of the first example: only the states UNKNOWN and CRITICAL (8 + 16 = 24) are shown, and only those that neither show a planned downtime, nor have already been confirmed (2 + 8 = 10).
The CGI program specifies the filter parameter each time in a separate checkbox. Figure 16-16 shows this for the third example.

Figure 16-16. This information box shows what states and properties status.cgi should display
If you want, you can define your own navigation area to your own requirements or just use the existing one. The main page consists of one frame, and the navigation area itself is defined by a normal HTML file: /usr/local/nagios/share/side.html.[151]
One example of a changed side.html is provided on the Nagios Demo page[152] at Netways;[153] another is the Nuvola style, shown in the figure in 16.6 Modern Layout with the Nuvola Style.
16.2.2 Additional information and control center: extinfo.cgi
If called with the host or service parameter, extinfo.cgi not only provides detailed information on a specific host (Figure 16-4, page 331) or service, it also serves as a control center for hosts and services (parameter hostgroup) and for service groups (servicegroup). Depending on the object class for which it is called, you can run various commands from here.
In the area on the left, the status of the host is extensively documented and in the box on the right—overwritten with Host Commands—there is a selection of commands that can be run. The latter commands call cmd.cgi (16.2.3 Interface for external commands: cmd.cgi, page 343) and only function if the interface for external commands (13.1 The Interface for External Commands, page 292) is active. The lower area of the page allows you to enter object-specific comments, read them, and delete them again. The Web page that extinfo.cgi generates for services also follows this pattern.
Corresponding pages for service and host groups (Figure 16-17), on the other hand, allow only group-specific commands to be run and do not show any additional information. Each command applies to the entire group, sparing you from a lot of mouse clicking. Disabling notifications for all hosts in this hostgroup, for example, ensures that Nagios does not send any more messages for hosts in this host group.

Figure 16-17. Command center for the SAP host group: extinfo.cgi?type=5&hostgroup=SAP
Apart from hosts, services, and corresponding groups, the CGI program has other display functions, enabled by the CGI parameter type:
http://nagsrv/nagios/cgi-bin/extinfo.cgi?type=value
Depending on the value specified, further parameters are required, so to display the service you also have to include the host name and service designation:
extinfo.cgi?type=0
Shows information (such as starting time and process ID) for the Nagios process itself and all global parameters (normally notifications are sent, performance data processed, etc.; see Figure 16-18). In the Process Commands box the global parameters can be changed, and Nagios can also be stopped and restarted.

Figure 16-18. Information on the Nagios process and global settings: extinfo.cgi?type=0

extinfo.cgi?type=l&host=host
Shows commands and information on the host (see Figure 16-4, page 331).

extinfo.cgi?type=2&service=service
The same for the service.

extinfo.cgi?type=3
Shows all available host and service comments on a single page (Figure 16-19).

Figure 16-19. Overview of all existing comments: extinfo.cgi?type=3

extinfo.cgi?type=4
Provides information on the performance of Nagios, separated according to host and service, as well as active and passive checks (Figure 16-20).

Figure 16-20. Information on the performance: extinfo.cgi?type= 4

The middle column reveals how many of the planned tests Nagios has already performed in the last 1, 5, 15, and 60 minutes. As long as there are checks for which normal_check_irLterval is more than five minutes, the first two values can never reach 100 percent.

The right-hand columns define the actual value for this page: Check Execution Time specifies the minimum, maximum, and average time which Nagios requires to perform active host and service checks. Check Latency measures the distance between the planned start and the actual running time of a test. If this delay is considerably larger than one or two seconds, Nagios probably has a performance problem. One possible cause is that the system is processing performance data too slowly, but low-performance hardware may also play a role here. Searching for the cause can sometimes turn out to be very difficult, and the original documentation[154] provides a number of tips on the subject.

extinfo.cgi?type=5&hostgroup=hostgroup
Shows command center for a host group (Figure 16-17 in page 339).

extinfo.cgi?type=6
Shows all planned maintenance periods for hosts and services (Figure 16-21).

Figure 16-21. Overview of all planned maintenance periods: extinfo.cgi?type=6

extinfo.cgi?type=7
Shows an overview of all planned tests, sorted by the next implementation time (see Figure 16-22). Next to this, extinfo.cgi also lists the time of the last check.

The Active Checks column shows if the respective tests are active or not, and in the Actions column the planned check can be deleted or moved to a different time.

extinfo.cgi?type=8&servicegroupservicegroup
Shows the command centre for a service group, identical in structure to the command center of a host group.

Figure 16-22. All planned tests, sorted by their planned implementation time: extinfo.cgi?type=7

16.2.3 Interface for external commands: cmd.cgi
As a real all-rounder, cgi.cmd, with some 100 functions, covers nearly all the possibilities that the interface provides for external commands. The cmd_typ parameter defines which of these the CGI program should run. The command
http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=6
switches off active service checks for a specific service (Figure 16-23). In order to describe the desired service uniquely, you must specify the host and service description. If you run the CGI program manually, the Web form shown queries these values, and if cmd.cgi is started by another CGI program, the required data is passed through CGI parameters. Possible parameters here are host, service, hostgroup, and servicegroup, which are followed by an equals (=) sign and then the appropriate Nagios object.

Figure 16-23. Disabling a service check with cmd.cgi?cmd_typ=6
Figure 16-24 lists the most important commands which refer to a host or service, and Figure 16-25 shows those that refer to the control of global parameters (corresponding to the values in the main configuration file nagios.cfg). The source code file include/common.h contains a complete list of all possible values, including ones that are planned but not yet implemented.
The first column in Figure 16-24 and Figure 16-25 describes the function of the command: ADD_HOST_COMMENT adds a comment to a host, and DISABLE_ ACTIVE_SVC_CHECK switches off active checks for a service (in abbreviated form: SVC).
The columns after this specify the object type to which the respective function refers. To add a comment with ADD_HOST_COMMENT, you must specify the host in question. For this reason the function code 1 is shown in the Host column. A specific active service check can only be switched off if the matching service is named, so the function code 6 is to be found in the Service column. With 16 you switch off all active service checks on a host to be specified; there are also corresponding codes for all active service checks for a host or service group.
With ACKNOWLEDGE_PROBLEM, an administrator confirms that he is taking care of a specific problem. 33 (Host column) refers to a host problem, and 34 (Service column) to a service problem. The gray fields mean that there is no corresponding function for host and service groups. The Web form that opens with cmd_typ=33 (Figure 16-9, page 333) then allows a comment to be entered.

Figure 16-24. The most important host and service related codes for cmd.cgi?cmd_typ=
Functions that refer to global parameters (Figure 16-25) can normally only be switched on or off. So the value 11 in the Start column for NOTIFICATIONS means that this command code switches on all notifications globally, while 12 switches them off globally.
If you are not quite certain whether the determined function does what you really wanted, it is best to run cmd.cgi manually with the corresponding function code, such as shown here:
http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=12
The Web page generated in this way always has a small gray box available next to the required entry fields that explains the corresponding command (Figure 16-23, on the right side of the page).

Figure 16-25. cmd.cgi command codes for global parameters
16.2.4 The most important things at a glance: tac.cgi
As a "tactical overview," tac.cgi provides a wealth of information on a single Web page, displayed in a summary (Figure 16-26). On the left-hand side of the page you can see, in order of priority, first the failure of entire network ranges (Network Outages), followed by the status of hosts and services, and at the bottom tac.cgi lists whether individual monitoring features such as notifications and event handlers are active.
Up to this final section, everything is concentrated on displaying problems. Provided everything is OK, the CGI merely shows the number of unproblematic services or hosts, highlighted in light gray (and announces 47 Up, for example, in the Hosts box). In problem cases it distinguishes between open problems, which nobody has looked at yet (highlighted in red, e.g., 2 Unhandled Problems for Services | Critical), and those for which an adminstrator has already taken responsibility through an acknowledgement (pink background, like 1 Acknowledged for Services | Unknown). If host or service checks are disabled, these are also shown with a pink background, since they are problems that do not require the immediate attention of the admin (e.g., 2 Disabled for Services | Ok).
Enabled features in the lower parts are marked by tac.cgi in green, and disabled ones, in red. The vertically written green Enabled in Notifications means that notifications are enabled globally, whereas the red background on the other hand, 2 Services Disabled, means that they were explicitly switched off for two individual services.
For all the problems displayed you are taken to a single overview specifically showing the hosts and services in question.

Figure 16-26. Tactical overview with tac.cgi
On the right-hand side of the page the upper box summarizes the extinfo.cgi?type=4 (see 16.2.2 Additional information and control center: extinfo.cgi) Nagios performance data, which can be shown in detail. The bar graph beneath it shows the health of the entire network monitored as a percentage. If you move the mouse over one of the bars, you will also see the percentage as a number.
16.2.5 The topological map of the network: statusmap.cgi
statusmap.cgi (Figure 16-27) provides a view of the dependencies between the monitored hosts. Starting from the central Nagios server in the middle, lines connect all hosts that the server reaches directly—and whose host definitions do not need the parents parameter to be specified (see 2.3 Defining the Machines to Be Monitored, with host, page 62.).
The graphics also reveal the hosts to which Nagios has only indirect access through other hosts. So between sis-mail and the Nagios server in Figure 16-27 lie the hosts sis-proxy, hspvip, and pfint. sis-proxy, as the comment Down and the red (instead of green) background suggest, has failed. Since sis-mail depends on this, it is in an UNREACHABLE state, which statusmap.cgi also marks with a red background.

Figure 16-27. Dependencies of monitored hosts shown graphically
How Nagios arranges the hosts in the graphics is defined by the parameter default_statusmap_layout (A.2.1 Authentication parameters) in the configuration file cgi.cfg. The layout can also be changed with a selection window in the Web interface (at the top right in Figure 16-28). The figure shows the demo system of Netways,[155] whose appearance depends on user-specific coordinates, which in this case you have to specify individually for each host (see 16.4.1 Extended host information). The question mark icon supplied by Nagios has been replaced with nicer pictures by the operator of the site. Coordinates and icons are defined with the hostextinfo object, described in more detail in 16.4.1 Extended host information).

Figure 16-28. Statusmap with self-defined coordinates and icons
If you move the mouse onto a particular host, Nagios opens a yellow window at the top left with status information, which includes the IP address, current status information, and the time of the last check. At the bottom of this box, statusmap.cgi summarizes the states of the services running on this host.
If you double-click on a particular host, Nagios branches off to the usual status overview, which apart from data on the host selected, also displays all the services belonging to this host (Figure 16-14 in page 336 gives an example).
16.2.6 Navigation in 3D: statuswrl.cgi
statuswrl.cgi allows Nagios to move through a 3D representation of the network plan (Figure 16-29). In this you can zoom on to hosts, move the overall view, rotate it, etc.
A VRML-capable browser is necessary for the display.[156] Although the original documentation[157] provides links to the corresponding plugins, two of them are out of date, and only Cortona[158] could be reached at the time of going to press. This plugin does not work under Linux, however; in Windows it works with Internet Explorer, and also with Netscape, Mozilla, and Firefox.[159] A good overview of VRML software, organized according to operating system and browser, is provided by the National Institute of Standards and Technology (NIST) on its Web site.[160]
Of the VRML plugins for Linux, OpenVRML,[161] and free WRL[162] are the most likely to be used. The standard Linux distributions usually do not include a finished package. OpenVRML is included in Fedora in Extras; on the homepage of freeWRL there are binary packages for Fedora and Ubuntu. You should not try compiling the software yourself unless you are an experienced system administrator or software developer: there are a large number of pitfalls. If you have never worked with the Java compiler before and have not compiled complex software packages such as Mozilla or Firefox yourself, then you should leave it alone.

Figure 16-29. This picture marks the beginning of the tour through your own network
But all of this is no reason to despair, since the use of 3D navigation is questionable anyway, especially as the 2D view of the normal status map displays all the information required, and displaying simple flat graphics in the browser takes up considerably less time than CPU-intensive 3D rendering. Before you rush into the adventure of compiling software yourself, we recommend that you decide for yourself, using the Cortona plugin, whether it is worth the effort of compiling a project like OpenVRML.
16.2.7 Querying the status with a cell phone: statuswml.cgi
In order to make the information provided by Nagios accessible for WAP[163]-capable devices without a fully functional browser, statuswml.cgi generates a Web page in the WML format,[164] which can be displayed with a cellphone—provided that the Nagios server is reachable in the Internet. Apart from the status query for hosts and services, it also allows the CGI program to switch off tests and notifications and to confirm existing problems with acknowledgements.
You should think carefully before you make Nagios accessible over the Internet: Nagios makes available much sensitive data that can be misused by hackers. In case of doubt, you're better off doing without it. Without direct Internet access, statuswml.cgi is useless, since a cellphone cannot use protected access methods such as a VPN tunnel. This is why we shall not introduce statuswml.cgi in great detail at this point.
16.2.8 Analyzing disrupted partial networks: outages.cgi
The CGI program outages.cgi only shows those network nodes in a host overview that are responsible for the failure of a partial network: In contrast to a status overview, as in Figure 16-15, page 336, outages.cgi specifies in the # Hosts Affected column how many services and hosts this affects in each case (Figure 16-30).

Figure 16-30. As long as sis-proxy fails, Nagios cannot reach any hosts lying behind it
With the icons in the Actions column you call other CGI programs that selectively filter out information on the host shown here. From left to right, they show the status display in the detail view (traffic light), the topological network view (network tree), the 3D view (3-D), the trend display (graph), the log file entries for the host (spreadsheet), and the display of notifications which have been made (megaphone).
16.2.9 Querying the object definition with config.cgi
config.cgi shows a tabular overview of the definition of all objects for a type that can be specified (Figure 16-31)—the type of object involved can be defined in the selection field in the top right corner. Where the consideration itself contains Nagios objects (in the host view Host Check Command, Default Contact Group, and—not visible in the picture—Notification Period), a link takes you directly to the configuration view of this object type.

Figure 16-31. config.cgi displays the current configuration of the selected object class—here hosts—(extract)
The CGI program does not provide any way of changing anything in the settings. In addition, only users who are entered in the parameter authorized _for_configuration_information (configuration file cgi.cfg, p. 607) have access to this view.
16.2.10 Availability statistics: avail.cgi
If you are monitoring systems, then you also take an interest in their availability. avail.cgi first asks if you are interested in Hosts, Services, Host-groups, and Servicegroups. After you have selected a time period, you will see an overview, as in Figure 16-32. For Services and Hosts you can also have the availability data presented through All Hosts or All Services as a CSV file.
avail.cgi shows the hosts involved separately from the services. How long a service or host remained in a particular state can be seen from the corresponding colored column—green for OK, yellow for WARNING, red for CRITICAL (service), DOWN and UNREACHABLE (host)—in percent. The column that shows how much time the status of a service was UNKNOWN is shown in orange. Incomplete log files are shown in theUndetermined column. If there is a value larger than zero, then there are periods for which Nagios cannot make a statement concerning the state.
Below each table, the Average line specifies the average of the individual values. In Figure 16-32 the hosts involved were available 99.965 percent of the time.
avail.cgi shows the availability twice in each case: first as an absolute value for the evaluation period, and then (in brackets) with respect to the time during which data actually was available. As long as the Time Undetermined column displays 0.000%, the two availability values match.

Figure 16-32. An availability report using the example of the SAP-Services service group
If you click on one of the hosts or services displayed, a detailed view will appear. Figure 16-33 shows such a view for the host sap-12.

Figure 16-33. The availability of the host sap-12 explained in detail
On a bar diagram that shows the states over the selected period in color, there is detailed information on the host itself, followed by statistics on the availability of the service that is monitored on this host. This includes an extract from the log file, which only shows the relevant entries for the availability of the host; that is, HOST UP, HOST DOWN, or HOST UNREACHABLE. The log file entries are cut off by avail.cgi to save space.
16.2.11 What events occur, how often?—histogram.Cgi
If the state of a host or service changes, this is called an event. The CGI program histogram.cgi shows the frequency of this in different views. If you select Day of the Month as the Breakdown type, it illustrates what event took place on which day of the month, and how often (Figure 16-34). The red graph in services stands for CRITICAL, the orange one for UNKNOWN, yellow for WARNING, and green for OK. The curve for hosts in the DOWN state is marked by histogram.cgi in red, that for UNREACHABLE hosts in wine-red, and the green line stands, as usual, for OK.

Figure 16-34. How many events of what type were there on which day?
If you choose the variation Day of Week, the Web page shows on which day of the week most events occur, so you can find out whether Monday really is always the worst day. In addition to this you can have the frequency presented by day (Hour of Day) or by the month of a year (Month). With Report Period you can adjust the report period. With Assume state retention you can adjust whether the previously existing states are retained and included in the evaluation (yes) or not (no).
If you have configured Nagios so that it explicitly logs the states of the monitored hosts and services for a restart or when the log file is changed,[165] and if you set Initial states logged to yes, the script includes this explicitly in the evaluation. A no ignores the entry; histogram.cgi then assumes that the state after a system start is identical to that which existed directly before the restart.[166]
Ignore repeated states makes allowances if a state persists for a long time and therefore delivers the same result again and again. If you set yes here, the script evaluates it once instead of many times.
If you select the item Hard and soft states in State types to graph:, histogram.cgi also counts soft states. If a service changes from OK to CRITICAL, for example, while retry_check_interval is set to 4,[167] then histogram.cgi counts a total of four results, three soft and one hard. If you only evaluate hard states, the statistics evaluate the value 1. If an error is rectified, there are no soft states; therefore the value for CRITICAL is usually larger that that for RECOVERY if you include soft states in the evaluation.
16.2.12 Filtering log entries after specific states: history.cgi
The history.cgi script allows the states of a type (soft or hard) to be extracted selectively from the log file using the selection field State type options (at the top right in Figure 16-35), and specific events to be extracted (all, all related to hosts, all service events, only host-recovery, only host-down, etc.) using History detail level for all hosts. The entries to be shown can be restricted through parameters to individual hosts, services, or host or service groups when the CGI program is called. So the command
histogram.cgi?host=sap-12
only displays log file entries for the host sap-12. If the output should be restricted to a specific host, then the service description needs to be specified as well:
histogram.cgi?host=sap-12&service=PING
Selecting a host and service group is done in the same way:
histogram.cgi?hostgroup=SAP
histogram.cgi?servicegroup=SAP-Services
The period that history.cgi views depends on the archiving interval of the log file. The script always refers to the contents of an archive file. If you set the parameter log_rotation_method (A.1 The Main Configuration File nagios.cfg) in the configuration file nagios.cfg to d for daily archiving, the Web page presents the entries for one day. Using the arrows (at the top in Figure 16-35) you can then scroll up and down through the days.

Figure 16-35. history.cgi filters the information from the log file
16.2.13 Who was told what, when?— notifications.Cgi
Another filtered view of the log file is offered by notifications.cgi: It shows all sent messages. Here the view can aso be restricted to a specific message group, through the selection field at the top right in Figure 16-36: to all notifications involving hosts, to all which are about services in a critical state, and so on.

Figure 16-36. notifications.cgi answers the question of who gets messages when, about what
If you just want to see messages here concerning particular hosts and services, you must again specify this with parameters when running the CGI program:
notifications.cgi?host=host
notifications.cgi?host=host&service=service name
notifications.cgi?contact=contact
Apart from host and service, you can also select a particular contact, but selecting host or service groups is not possible.
16.2.14 Showing all log file entries: showlog.cgi
The CGI program showlog.cgi shows the log file as it is, with the few colored icons added to help you find your way: a red button marks critical service states or DOWN/UNREACHABLE hosts, a yellow button marks WARNINGs, and a green one, OK. Other buttons refer to information entries or Nagios restarts (Figure 16-37).
You only have a single option here: the chronological order. Normally showlog.cgi shows the newest entries first. If you enable the check mark in Older Entries First: (top right), the oldest entries will be shown first.
The period represented here also depends on the archiving method: if you archive once a day, you will obtain just one day for each Web page. To reach the entries for other days you must make your way through the individual archive files of the log file using the arrows at the top of the picture.

Figure 16-37. A blue button marks information entries, the graph changing from red to green stands for Nagios restarts, and the icon marked GO with a green checked background represents restarts of the monitoring system
16.2.15 Evaluating whatever you want: summary.cgi
If the display and selection options are introduced so far are not sufficient for you, you can create your own report with summary.cgi, which generates the selection dialog shown in Figure 16-38. The upper section, Standard Reports:, provides a quick summary in which just one fixed report type can be selected. Clicking on the button directly below this generates the report.
The second section is more sophisticated. The field Report Type: with the report type Most Recent Alerts provides an individual listing of the last n of individual events. The number n is defined further down in the selection dialog in Max List Items:.[168]
Report Type: can also be used to show all events individually on a separate line, with Most Recent Alerts, or you can have statistics displayed, for the number of events that have occurred overall, for each host group, etc., with Alert Totals, Alert Totals by Hostgroups, etc.
One particularly interesting report type is Top Alert Producer: such reports show in a hit list of who has caused most trouble during the report period.
In Report Period: you can either choose the desired report period from predefined intervals (this week, the past seven days, this month, last week, last month, etc.), or you can specify CUSTOM REPORT PERIOD and define any period you choose. If you forget to specify CUSTOM REPORT PERIOD explicitly, the CGI program ignores the dates you have set and selects what is currently entered in Report Period.

Figure 16-38. Selection template for parameters in summary.cgi
The details that follow the report period filter according to host, services or their groups, state types, and/or individual states (e.g., only services in a CRITICAL state). It is important to specify Max List Items at the end: summary.cgi always shows only as many entries as are specified here. The default is a little small; if you want all the entries in the selected period to be shown, you should enter 0 as the value. The largest value that can be given explicitly here is 999. The Create Summary Report! button then generates the requested report (Figure 16-39).
The header of the report contains details of the report period and the selection made. The detail directly above the table is interesting: Displaying most recent 25 of 3721 total matching alerts shows that the selection criteria matched a total of 3721 entries, but that the CGI script restricted the output to the 25 most current entries, thanks to Max List Items:.

Figure 16-39. An individual report, as generated by summary.cgi
16.2.16 Following states graphically over time: trends.Cgi
A rapid overview of what state occurred when for a particular host or service is provided by the graphic output of trends.cgi (Figure 16-40). After selecting a specific host or service, you can define a period, as with summary.cgi. The states are color-coded by trends.cgi, which makes the overview easier to follow.
The zoom function of the CGI program is an interesting detail. If you click in the colored area on a particular section, the selected area is enlarged or reduced in size by the zoom factor specified at the top right. Negative entries (−1, −2, −3, and −4 are possible) expand the report period instead of reducing it.

Figure 16-40. trends.cgi represents the chronological sequence of states—here using the example of a service

[150] http://lists.sourceforge.net/mailman/listinfo/nagios-users
[151] If you have kept to the installation in this book.
[152] http://nagios-demo.netways.de/
[153] http://www.netways.de/
[154] /usr/local/nagios/share/docs/tuning.html
[155] http://netways.de/Demosystem.1621.0.html
[156] The Virtual Reality Markup Language (VRML), version 2.0/1997, is used to describe the virtual "space."
[157] /usr/local/nagios/share/docs/cgis.html#statuswrl_cgi
[158] http://www.parallelgrafics.com/products/cortona
[159] For Firefox you have to install it manually, select Custom instead of Typical in the installation routine, and in not supported browsers specify the plugin directory of the browser.
[160] http://cic.nist.gov/vrml/vbdetect.html
[161] http://www.openvrml.org/
[162] http://freewrl. sourcef orge. net/
[163] Wireless Access Protocol.
[164] The Wireless Markup Language contains a part of HTML, heavily reduced in its functionality.
[165] Parameter log_initial_state in nagios.cfg; see page 597.
[166] The subtle difference here lies in retain_state_information (see A.1 The Main Configuration File nagios.cfg). If this parameter is set to 0, Nagios forgets the previous state. Without log_initial_state = yes, Nagios accepts an OK after the restart.
[167] Nagios thus repeats the test four times before it categorizes the state as "hard."
[168] If the number of events in the report period is less than specified in Max List Items:, the report covers all the events that have happened during this period.

16.3 Planning Downtimes
In every system environment maintenance work accumulates from time to time that the administrator can normally plan, so that users can be informed accordingly beforehand. Nagios refers to such maintenance windows as Scheduled Downtime; the administrator enters these either in the information page for the host or service generated by extinfo.cgi (Figure 16-4, page 331) or for the corresponding host or service group (Figure 16-17, page 339). In doing this, extinfo.cgi makes use of cmd.cgi (16.2.3 Interface for external commands: cmd.cgi, page 343), which can also be called selectively:
http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=55
opens the import template for maintenance times for a single host. The values for cmd_typ are summarized by Figure 16-24 in page 344.
A further method of recording maintenance periods is provided by addons, which, like the CGI programs, use the external command interface, but which can be automated, in contrast to the interactive Web interface. Such addons can also be found on the Nagios Exchange.[169]
For scheduled downtimes, Nagios prevents notifications from being sent. This ensures that the administrator is not flooded with false alarms. When checks are made to see whether messages should be sent, a downtime is the third item in the list (Figure 16-2, page 268). In addition, avail.cgi (16.2.10 Availability statistics: avail.cgi, page 351.) takes account of the downtime when evaluating the availability of individual hosts and services, and assigns error states that occur during these times not as error states, but as OK.
Maintenance periods can overlap. If one maintenance window lasts from 8:00 A.M. till 12:00 P.M., and a second one involving the same host or service, from 10:00 A.M. to 2:00 P.M., then Nagios does not send any error messages between 8:00 A.M. and 2:00 P.M., and the whole period is also ignored in the availability statistics.
16.3.1 Maintenance periods for hosts
What data is required to record the maintenance window can be explained quite clearly using the Web interface. Figure 16-41 shows the input template for the downtime of a host (cmd.cgi?cmd_typ=55).

Figure 16-41. The downtime for a host in the Web interface is recorded using this dialog
The first line defines the host, and in the second line Nagios automatically enters the login with which you have logged in to the Web interface. In the input field after the Comment: keyword, you can describe the reason for the planned downtime. Specifying the trigger shows whether it was generated indirectly through another entry. When recording a new downtime, you should leave the value N/A (not available, that is, no trigger) as it is.
In the next four lines you have the option of entering two different downtime types: fixed ones (Type: Fixed) or variable periods (Flexible). The first has a fixed start and a fixed end. In this case Nagios ignores the period entry in hours and minutes in the Flexible Duration: fields completely.
A flexible downtime starts when the first-ever event occurs in the period specified. From this point in time Nagios plans the downtime for the length of time that was specified here in hours and minutes. This may certainly exceed the end point specified in End Time:.
If further hosts are dependent on the computer specified in Host Name: (perhaps because a router is involved, which other host objects have entered as parents), you have the possibility of extending the downtime to all dependent hosts with the last item, Child Hosts:. Schedule triggered downtime for all child hosts passes on flexible downtimes to all "child hosts," Schedule non-triggered downtime for all child hosts does the same for fixed downtimes, and Do nothing with child hosts ignores dependencies, so that Nagios does not plan for any downtime for any hosts other than the one specified here.
How this hereditary behavior takes effect in Figure 16-41 is shown by the overview of all scheduled downtimes in Figure 16-21 in page 342. The first line contains the downtime just described for the host eli-saprouter with the Downtime ID number 1. Entries that are caused by inheriting this timeout contain the Downtime ID of the downtime causing them in the Trigger ID column: for sap-12 this is 1, since the maintenance of eli-saprouter also affects this host.
Nagios simultaneously generates a comment entry when planning a downtime, which is automatically removed when this period has passed. This is why a speech bubble appears in the status display. During the downtime Nagios supplements this with a "snoring sign," which is meant to represent a sleep state (Figure 16-42).

Figure 16-42. The snoring sign zzzzz shows that the downtime for the host has begun
16.3.2 Downtime for services
Downtimes for services differ from those for hosts in two small details. Apart from host name, the service description must be included, and the possibility of inheritance is excluded, since there are no corresponding dependencies for services.
A downtime for a host does not automatically apply to the services running on it. But since they are also not available if the host is down, it is recommended that you plan the same downtime for all dependent services. It can be quite strenuous to enter all the services individually. It is much easier to do this using a host group (cmd_typ=85), as shown in Figure 16-43. With this you can define the downtime for services in a specific host group with a single command, and much more as well: a check mark in Schedule Downtime For Hosts Too at the same time defines the same downtime for all hosts belonging to this group.[170]

Figure 16-43. One downtime for all services of a host group

[169] http://www.nagiosexchange.org/Downtimes.38.0.html.
[170] Up until (at least) Nagios version 3.0rc1, the check mark has no effect, however; there you have to enter the downtime of the hosts separately by running cmd.cgi?cmd_typ=84 again.

16.4 Additional Information on Hosts and Services
With the extended information for hosts and services, you can incorporate additional information in the Web interface and also brighten up its appearance somewhat, using suitable icons. Two separate objects hold this information in Nagios 2.x: hostextinfo and serviceextinfo. Starting with Nagios 3.0, the additional information is defined directly in the host and service objects. Although Nagios 3.0 still evaluates the hostextinfo and serviceextinfo objects, it issues a warning message when checking the configuration and considers these objects to be obsolete.
It is planned to leave these out of Nagios entirely, by version 4 at the latest. Those using Nagios 3.0 for the first time should specify the information introduced below directly in the host and service definitions and leave out hostextinfo and serviceextinfo right from the start. If you are changing from Nagios 2.x to Nagios 3.0, you don't need to worry about this, and you can continue using existing instances of these objects.
To make this clearer, below we will use the terms hostextinfo and serviceextinfo object information. For Nagios 2.x, the term refers to the object of the same name, whereas for Nagios 3.0 it refers to the corresponding details given in the host and service objects. The parameters themselves are identical for Nagios 2.x and 3.0. The object information only influences the Web interface and has no effect on the capabilities of Nagios.
16.4.1 Extended host information
Object information for hosts allow you to enhance the display of hosts in the Web interface through additional functions in the form of links and enhancement features in the form of icons and coordinates:
Nagios 2.x # Nagios 3.0
define hostextinfo{ define host{
 host_name linux01
 notes Samba Primary Domaincontroller
 notes_url /hosts/linux01.html
 action_url /hosts/actions/linux01.html
 icon_image base/linux40.png
 icon_image_alt Linux Host
 vrml_image base/linux40.png
 statusmap_image base/linux40.gd2
 2d_coords 120, 80
 3d_coords 70.0,30.0,40.0
}
The only obligatory parameter when these are defined is the specification of the host, with host_name; everything else is optional:
host_name
This is the name of the host object whose Web pages are to be expanded by the following properties.

notes
Use this for additional information that extinfo.cgi takes into account in its information pages. (The entry specified in the above example, Samba Primary Domaincontroller, can be found in Figure 16-44 below the Linux icon.)

Figure 16-44. extinfo.cgi also shows an alternative text here for the Linux icon (beneath the Tux in brackets) and the additional information from the parameter notes (beneath the alternative text)

notes_url
This is the URL of a (HTML) file with additional information on the host in question, to which you are linked by an icon in the form of a red, slightly opened manual, both in the status overview (Figure 16-45) and in the info page generated by extinfo.cgi (Figure 16-44). If the documentation on the host involved is stored in the Intranet, then maintenance contracts, hotline numbers, system configuration, etc. are then just a mouse click away.

The parameter may contain an absolute path (from the view of the Web server) or a complete URL (http://...).

Figure 16-45. This detail view shows an icon each for notes_url (open, read booklet) action_url (pink star), and icon_ image (here, Linux penguin)

action_url
This is a link pointing to an action to be run for the host, which executes a CGI program such as cmd.cgi, for example, with just a mouse click. Since a link in the browser is always just a link, this does not have to be a command, and you can just as easily link another Web page. Both in the status overview (Figure 16-45), and on the extinfo.cgi info page (Figure 16-44) it is hidden behind the pink star.

As a value, absolute paths from the view of the Web server or complete URLs can be used.

icon_image
This is an icon to enhance the Web interface, but also to provide help: if you systematically use pictures here that represent the operating system (e.g., the Tux for Linux, the Windows window for Microsoft operating systems, the Sun logo for Solaris computers, etc.), this helps you to keep an overview of the operating systems in the status view—especially if you have a large number of hosts (Figure 16-45). extinfo.cgi also uses this icon (Figure 16-44).

Icons should be approximately 40×40 pixels large and be available as a GIF, JPEG, or PNG file. If you specify a relative path (or none at all), then this begins with the directory /usr/local/nagios/share/images/logos/.[171]

icon_image_alt
This alternative text for the icon appears if the browser does not show a picture (for example for reading devices or output devices for Braille). From the icon and the icon text details, Nagios generates the following HTML code:

IMG SRC= icon_image ALT=icon_image_alt>

vrml_image
This is an image symbolizing the host in the 3D representation of statuswrl.cgi. Permissible formats are again GIF, JPEG, or PNG. You should avoid slides, since the image is placed on a cube, and the transparent parts in the 3D interface may lead to unexpected results.

statusmap_image
This is the image with which statusmap.cgi (see 16.2.5 The topological map of the network: statusmap.cgi, page 346) symbolizes the host in its topological map. The Nagios demo page of Netways,[172] (Figure 16-28 in page 348) shows a nice example.

Although GIFs, JPEGs, and PNGs are allowed, it is better to use the GD2 format, because then Nagios requires less computer time to generate the status map. Using the program pngtogd2, which ought to be available as a component of the utilities for Thomas Boutells GD library in most Linux distributions, PNG files can be easily converted. Again the image size of 40×40 pixels is recommended.

2d_coords
This parameter specifies coordinates for a user-defined layout of the topological map. Details are given in pixels, with the origin, (0, 0), at the top left, and values must be positive: a positive x value counts the number of pixels from the origin to the right, a positive y value from the origin downwards.

Figure 16-28 works with fixed coordinates for individual hosts. Nagios ignores 2d_coords details if the status maps a different layout to the user-defined one.

3d_coords
These are the coordinates for the 3D representation. Positive and negative floating-point numbers are allowed. (0.0,0.0,0.0) is used as the origin. In the start view, statuswrl.cgi scales the 3D image so that all existing hosts appear on the screen. Where the starting point lies on the screen can therefore not be predicted.

On The Nagios Exchange there is a wide range of finished icons in the category Logos and Images.[173] It is best to unpack these into separate subdirectories, and then the individual packages will not get in each other's way:
linux:~ # cd /usr/local/nagios/share/images/logos
linux:images/logos # tar xvzf imagepak-base.tar.gz
base/aix.gd2
base/aix.gif
base/aix.jpg
base/aix.png
base/amiga.gd2
...
imagepak-base.tar.gz contains a basic selection of icons, which can be supplemented as you please with other packages. The base subdirectory created, as with the object definition at the beginning of this chapter, must also be included.
16.4.2 Extended service information
Extended service object information is more or less identical to the host equivalents, so that we will only mention the differences. In addition to the host name, the service description in service_description is obligatory, but the details on the 2D (status map) and 3D views are omitted:
Nagios 2.x # Nagios 3.0
define serviceextinfo{ define service{
 ...
 host_name linux01
 service_description LPD
 notes Linux Print Services
 notes_url /hosts/linux01-lpd.html
 action_url /hosts/linux01-lpd-action.html
 icon_image base/hp-printer40.png
 icon_image_alt Linux Print Server
}
In contrast to extended host information, the status overview for this example only shows the printer icon specified in icon_image, but not the two icons defined in notes_url and action_url for the two links notes_url and action_url. They only appear in the page generated by extinfo.cgi with the same icons as for the extended host information (Figure 16-44, page 363).

[171] If you have kept to the paths suggested in this book.
[172] http://nagios-demo.netways.de/
[173] http://www.nagiosexchange.org/Image_Packs.75.0.html

16.5 Configuration Changes through the Web Interfaces: the Restart Problem
The CGI program cmd.cgi (16.2.3 Interface for external commands: cmd.cgi, page 343) enables a series of changes to be made to the current configuration through the Web interface.[174] In this way notifications or active checks can be switched on and off, for example.
Nagios does not save such changes in the accompanying configuration file, but notes the the current status in a separately defined file, with the parameter state_retention_file in nagios.cfg (see A.1 The Main Configuration File nagios.cfg). But what happens if you restart Nagios after many changes using the Web interface?
Whether Nagios retains the interactive changes made after a restart or forgets them is dependent on the parameter retain_state_informationin the configuration file nagios.cfg (A.1 The Main Configuration File nagios.cfg). The default 0 tells the system to forget interactive changes. For Nagios to remember this, you have to set
/etc/nagios/nagios.cfg
...
retain_state_information=1
...
But this causes a new problem: settings made in the Web interface do not have priority over the details in the configuration files. If you change the active_checks_enabled parameter there for a service, a direction of the parameter in the configuration file is ignored, since the current, temporarily stored setting in the file defined with state_retention_file will always "win out." This behavior affects all parameters for external commands that can be changed in the interface, and therefore also via the CGI program cmd.cgi. The original documentation of Nagios[175] labels these with a red star.
Two approaches provide a remedy in this case: on the one hand you can set the parameter retain_state_information to 0 shortly before a restart. Then Nagios forgets all the changes when it restarts and reads the configuration files in from scratch. This procedure is recommended only in exceptional cases, as in large environments it will hardly be possible to go through all the interactive changes in the configuration files. Alternatively you can get into the habit, whenever you make changes in the configuration file, of making them a second time in the Web interface. Although this means slightly more work, there is never a danger that current, and perhaps very important settings, will be lost.
Two additional parameters in the host and service definitions provide opportunities for fine-tuning:
define host{
 ...
 retain_status_information 1
 retain_nonstatus_information 1
 ...
}
define service{
 ...
 retain_status_information 1
 retain_nonstatus_information 1
 ...
}
retain_status_information specifies whether the current state of ahost or service should survive the Nagios restart: 1 means that the system temporarily stores the state, and 0, that it forgets it. 1 is certainly the more sensible value for states, and you should depart from this only in cases that can be justified.
retain_nonstatus_information, on the other hand, refers to all information that describes no status. This includes, for example, whether active checks are switched on or off, whether passive checks are allowed or not, or whether admins are to be informed of status changes for this object. With a value of 1, the system stores this information temporarily and uses it again after a restart, whereas with a value of 0, Nagios forgets the current settings and reads the settings from the configuration file when it restarts.

[174] The CGI program makes use of the External Command File interface when doing this.
[175] Nagios 2.x: /usr/local/nagios/share/docs/xodtemplate.html, Nagios 3.0: /usr/local/nagios/docs/objectdefinitions.html

16.6 Modern Layout with the Nuvola Style
The classical view of the Nagios Web interface described so far uses only a few of the CGI configuration options. However, it is hardly possible to pack any more items into the navigation bar on the left, which has become somewhat amateurish in appearance. One solution to this is the Nuvola style, shown in Figure 16-46.
The layout for the actual CGI program—this example shows a view of the service problems with ustatus.cgi on the right of the picture—is not only in color, but there are also new icons. On the left of the picture you can see the rather elegant navigation, spiced up with corresponding icons. The real highlight, though, is the use of a Javascript-based menu tree: The individual entries (such as the sections Home, Monitoring, Reporting, and Configuration) can be opened and closed via mouse click.

Figure 16-46. Nagios in the Nuvola style: shown here are the Service Problems
Before installing the Nuvola style it is essential that you back up the directory /usr/local/nagios/share so that you can restore the old setup if you don't like the new one.
The current version 1.0.3 of Nuvola from NagiosExchange[176] at the time of going to press is from September 2005, but it does work very well with Nagios 3.0 as well. The contents are unpacked into a suitable empty directory:
linux:~ # cd /usr/local/src; mkdir nuvola; cd nuvola
linux:src/nuvola # tar xvzfpfad/zu/nagios-nuvola-1.0.3.tar.gz
...
linux:src/nuvola # cd html
The sources contain files (index.html, main.html) and directories (stylesheets, images) that already exist in Nagios, and they overwrite the originals during installation. In addition, the Nuvola style includes a new subdirectory, side, which contains the actual Javascript code for the tree navigation:
linux:nuvola/html # tree
|-- config.js
|-- images
| |
... ...
|-- index.html
|-- main.html
|-- side
| |-- apytmenu.css
| |-- apytmenu.js
| |-- apytmenu_data.js
... ...
| |-- dtree.css
| |-- dtree.js
| |-- dtree_data.js
... ...
| |-- icons
| | |
... ...
|-- sidel.html
'-- stylesheets
 |
... ...
5 directories, 175 files
The contents of the directory html are simply copied to /usr/local/share, for example, with rsync:
linux:nuvola/html # rsync -av. /usr/local/nagios/share/.
...
For the new navigation to appear, the file sidel.html must be installed. If you just rename it to side.html, though, the make install of a new Nagios version will just overwrite it again. So it is better to use a separate index file instead, such as index1.html, and run the Nagios Web interface from this:
http://nagiosserver/nagios/index1.html
To do this, you copy the index.html file included in Nuvola to the Nagios share directory with the name index1.html:
linux:nuvola/html # cp index.html/usr/local/nagios/share/index1.html
In the file index1.html you replace side.html with side1.html so that the Javascript navigation is called:
...
document.write('<FRAME SCROLLING="no" SRC="side1.html" NAME="side"
...
...
If, like the author of this book, you consider it to be going over the top to change the styles of all the CGI programs, you can just pick out the improved navigation and supplement and redesign this as you think fit. Instead of making a complete copy of the directory html, you just select the files you require:
linux:nuvola/html # cp -r side /usr/local/nagios/share/.
 linux:nuvola/html # cp side1.html config.js/usr/local/nagios/share/.
 linux:nuvola/html # cp index.html/usr/local/nagios/share/index1.html
You change the file index1.html as we have just shown and check the cgipath variable in config.js:
...
var cgipath = "/nagios/cgi-bin/";
...
Nuvola uses a ready-made menu tree library, which is available in a commercial version called apytmenu,[177] which will not be discussed here, or in a free variation, dTree.[178] dTree is the default setting in config.js (treeType = 'dtree') and is included in full. Configuration of the menu and trees is done in the file dtree_data.js in the directory side. The basic principle can be briefly explained using the Home menu as an example:
general = new dTree('general');
general.header('Home', 'icon', ...);
general.add(0,-1);
general.add(1, 0,'Documentation','docs/index.html', ...);
document.write(general);
The dTree function generates a new menu tree. Its parameter is a freely selectable identifier (in this case, general), which is used to reference the tree. general.header sets the title of the menu to Home. The function requires other parameters as well, including an icon (as shown).
The first general.add call anchors the tree still to be created. The first two parameters of the add function refer to the number of the node to be added, followed by its parent node. The topmost node is called 0, and beneath this is the entry Documentation, to which the number 1 is assigned. If Documentation itself is to have subnodes, the invocations would be written as follows:
general.add(2, 1, 'new_entry', ...);
general.add(3, 1, 'new_entry', ...);
general.add(4, 1, 'new_entry', ...);
Finally document.write builds the entire menu tree. The header function has the following parameters:
menu_name. header(title, icon, height, background image, background color, open);
title
contains the heading and can also be set up as a URL. A mouse click on the heading opens the hyperlink specified.

icon
specifies the path to a small graphic that is displayed in front of the heading.

height
specifies the height of the background beneath the heading. Following this, the property of this background can be specified either as a background image, with backgroundimage, or as a color (background colorw).

Finally open specifies whether the menu tree should be open (1) or closed (0) at the start. Arguments specifying textual values are enclosed in single quotes, and numerical arguments are written directly, as shown in the examples.
The add function is invoked in a similar way:
menu_name.add(id, pid, name,
url, title, target, icon,varlistentry58
iconOpen, open, css)
id is the node number, and pid is the number of the node beneath which the entry should be integrated. name defines the name of the node in the menu, and url defines the hyperlink to be called. title and target optionally specify a page title and the target frame for displaying the page called via url. Both parameters normally remain empty here; the default for the target—correctly for Nagios—is the frame main.
icon defines the mini-graphic that is placed in front of the menu entry, and iconOpen optionally contains another icon that is used in its place when the menu entry is open. open again defines whether the entry should be opened (value 1) or closed (value 0) on starting, and css optionally allows an alternative CSS definition. For all optional parameters, the following applies: If they are at the end, they can be omitted, but if they are followed by other details, their omission must be marked by a pair of single quotation marks ('').
The included file dtree_data.js contains four extensive menus. If you have little experience with handling Javascript, it is best to save this template and adjust it in small steps. In case of error, information is very sparse and usually misleading, so it is particularly important that you note exactly what has been changed from one step to the next in order to be able to quickly isolate the error.
At this point we would like to mention the dTree homepage[179] once again, which provides examples with extracts of code, along with a description of the programming interface.
Those who are not satisfied with the possibilities of the Nagios Web interface described in this chapter should take a look at NagVis (Chapter 18 from page 389). The addon enables a freely definable interface and supplements the standard CGIs in an impressive manner. However, a prerequisite for NagVis is the installation of the database interface NDOUtils (Chapter 17 from page 375), which sets the installation hurdle slightly higher.

[176] http://www.nagiosexchange.org/75;252
[177] http://dhtml-menu.com/
[178] http://www.destroydrop.com/javascripts/tree/
[179] http://www.destroydrop.com/javascripts/tree/

Chapter 17. Flexible Web Interface with the NDOUtils
The Web interface of Nagios 2.x ansd 3.0, introduced in Chapter 16 from page 327, has a crucial disadvantage for large environments with hundreds of hosts: It cannot be scaled up. As long as you only observe error states and work intensively with acknowledges, you will manage fine with the CGI-based Web interface. But if you try to display several thousand services, you will have to be prepared to wait—it does not matter what their states are. Setting up the page can take a long time, and then practical work is hardly possible.
Nagios extensions struggle with the CGI Web interface because this directly evaluates Nagios internals, such as object configuration, status data, and log files. This means that every extension that is used to supplement or replace the Web interface must follow this logic.
The solution to this is called NDOUtils (Nagios Data Objects Utilities). These consist of a handful of tools that write all data—from configuration through events and check results to historical records—to a database and make them available via a uniform database model.
The mechanism that connects the NDOUtils to Nagios is called Nagios Event Broker (NEB). This adds a modular interface to Nagios. The NEB loads the extensions as modules when Nagios starts so that the modules can be used without having to recompile Nagios. This approach is similar to that of the Apache modules, which are loaded when required and add new functions to the Web server.
The NDOUtils form the basis for the future Web interface of Nagios, implemented with PHP, which should see the light of day starting with Nagios 4.x. With NagVis (see Chapter 18 from page 389), however, there is already an alternative Web interface that is based on the NDOUtils.
17.1 The Event Broker
The NEB provides an interface between Nagios and external modules based on shared libraries. An external, application-dependent module makes callback functions available. The Nagios kernel itself calls the accompanying callback function from the loaded module for every event: If there is no matching function, nothing happens. What actions the callback function executes is left to the imagination of the developer: Either it does something itself or it passes on configuration, status, and event data to an external application, as outlined in Figure 17-1.
For the transfer of data to external tools, Unix sockets or network sockets can be used, although it is also possible to use the file system. The application further processes information (saves it in a database, for example, or sends it as messages via SNMP traps, writes it to the syslog, etc.).

Figure 17-1. An external application communicates with a loaded NEB module
When a callback function is called, Nagios waits for it to finish. This means that long execution times hinder the system. For this reason callback functions should always leave time-consuming processing steps to an external application and be restricted to sending on the necessary information as quickly as possible.
Building event broker modules is something that should be left to experienced programmers; mere mortals must be content with using ready-made modules. An NEB module can be integrated via the instruction broker_module in the main configuration file nagios.cfg:
/etc/nagios/nagios.cfg
...
broker_module=module-with-path arguments
event_broker_options=-1
Whether you pass on arguments to the module or not depends on its concrete implementation. The parameter event_broker_options controls what information Nagios passes on to event broker modules. With the option −1 it is all of them, while the value 0 prevents any information from being passed on. An alternate approach, of selectively passing on specific information, is provided by the file broker.h from the Nagios sources:
/* broker.h from the Nagios sources */
...
/*************** EVENT BROKER OPTIONS *****************/

#define BROKER_NOTHING 0
#define BROKER_EVERYTHING 1048575

#define BROKER_PROGRAM_STATE 1 /* DONE */
...
#define BROKER_DOWNTIME_DATA 512 /* DONE */
...
#define BROKER_STATUS_DATA 4096 /* DONE */
...
#define BROKER_RETENTION_DATA 32768 /* DONE */
#define BROKER_ACKNOWLEDGEMENT_DATA 65536
Table 17-1. Data to be transferred to NagVis

	Broker Option
	Value
	Explanation

	BROKER_PROGRAM_STATE
	1
	Is the program Nagios running

	BROKER_DOWNTIME_DATA
	512
	Details of planned maintenance periods

	BROKER_STATUS_DATA
	4096
	Current status information of all checks

	BROKER_RETENTION_DATA
	32768
	Data which is buffered for a restart of Nagios

	BROKER_ACKNOWLEDGEMENT_DATA
	65536
	Confirmations that have been made on error states of host and service checks

NagVis 1.1, introduced in Chapter 18, requires the information listed in Table 17-1. The corresponding numerical values add up to 102913, so that event_broker_options can be modified as follows so that is tailor-made for NagVis:
/etc/nagios/nagios.cfg
...
event_broker_options=102913
Information on the event broker is currently very sparse. The only descriptions of the interface are a quite old documentation from Nagios 2.0 and the Nagios Event Broker API[180].

[180] http://www.nagios.org/developerinfo

17.2 The Database Interface
As a concrete and practically-oriented application of the event broker concept, the Nagios data object utilities, or NDOUtils, save all configuration and event data to a database. In order to be able to make use of the database, further applications are required. For Nagios 4.x, this will in all probability be a newly designed, PHP-based Web interface. Whether this Nagios version will immediately manage all the configuration data in the database was still a matter of speculation at press time (when Nagios 3.0 was not quite finished).
For the database, the NDOUtils currently support only MySQL; the use of PostgreSQL is planned, but is not yet implemented in version 1.4, introduced here.
Since the NDOUtils addons provide a database interface that is relatively simple to use, it is expected that their use with Nagios 3.x will increase. NagVis (discussed in the next chapter from page 389) already provides a powerful NDO-based front end that in many cases can replace the status map, which remains relatively simple and is discussed in 16.2.5 The topological map of the network: statusmap.cgi from page 346.
Figure 17-2 shows the various paths by which Nagios data can be imported into the NDOUtils database. Export of data from Nagios is handled by the event broker module ndomod. It can either operate a TCP or Unix socket, or write the data to a file. If Nagios is installed on the same computer as the NDOUtils database, the Unix socket interface will provide the best performance and the greatest security (Unix sockets cannot be addressed from a network, in contrast to TCP sockets). The socket of the ndo2db daemon that ultimately writes the data to a database is queried.
The method using a file involves the utility FILE2SOCK, which reads in the file and also delivers data to the nd02db daemon via a TCP or Unix socket. FILE2SOCK can also read data from the standard input.

Figure 17-2. How can you integrate Nagios data into the NDOUtils database?
For each database you need exactly one ndo2db daemon. If several different clients have access to the socket interface, it will start several processes to handle these.
The program LOG2NDO is one of the NDOUtils. It reads log files from Nagios 2.x and 3.0 and passes this data to the ndo2db daemon—either directly via the socket interface or via a file that has to be separately imported with FILE2SOCK. If you want to integrate such historical data into the database, you will have to make plenty of storage space available, because the log files are compressed when they are archived but are saved in the database in uncompressed form. Thus the log files occupy more space when they are managed using the database.
FILE2SOCK and LOG2NDO are primarily used to import historical data. The data later required by NagVis is updated by Nagios at very short intervals. Since historical data is not required here, we shall not describe these two programs in any more detail.

17.3 The Installation
Since there are problems with INSERT statements in some tables of the NDOUtils database when MySQL in version 4.0 is used, it is better to use MySQL 5 right from the start.[181] In addition to the MySQL server package (in Debian, "Etch" mysql-server-5.0) and the libraries that are usually selected automatically during the installation of the server package, you also require the accompanying development package (in Debian, "Etch" libmysqlclient15-dev) in order to be able to compile the NDOUtils.
One consequence of the far-reaching integration of the NDOUtils into Nagios is that the version must exactly match that of the Nagios version used. Both Nagios and the NDOUtils define their version status in the source code with the macro CURRENT_OBJECT_STRUCTURE_VERSION. The macro can be found in the file ./include/objects.h in the Nagios source code (for Nagios 3.0, in this example):
linux:src/nagios-3.0rc1 # fgrep CURRENT_OBJECT_STRUCTURE_VERSION \
 include/objects.h
#define CURRENT_OBJECT_STRUCTURE_VERSION 307
The NDOUtils package contains two include files, one for Nagios 2.x and one for Nagios 3.x:
linux:src/ndoutils-1.4b7 # fgrep CURRENT_OBJECT_STRUCTURE_VERSION \
 include/*/objects.h
include/nagios-2x/objects.h:#define CURRENT_OBJECT_STRUCTURE_VERSION 2
include/nagios-3x/objects.h:#define CURRENT_OBJECT_STRUCTURE_VERSION 307
If the CURRENT_OBJECT_STRUCTURE_VERSION value of Nagios does not match one of the two values in the NDOUtils source code, the NDOUtils module will unload itself and refuse to perform. The procedure is documented in the log file nagios.log with an entry like the following (the two different versions are marked in bold type):
[1186152181] ndomod: NDOMOD 1.4b4 (06-19-2007) Copyright (c) 2005 -2007
Ethan Galstad (nagios@nagios.org)
[1186152181] ndomod: I've been compiled with support for revision 303 of
the internal Nagios object structures, but the Nagios daemon is currentl
y using revision 304. I'm going to unload so I don't cause any probl...
17.3.1 Compiling the source code
The up-to-date NDOUtils code can be downloaded from the Nagios Web page[182] and then unpacked to a suitable directory:
linux:~ # cd /usr/local/src/nagios
linux:src/nagios # tar xvzf /path/to/ndoutils-1.4b7.tar.gz
...
linux:src/nagios # cd ndoutils-1.4b7
linux:nagios/ndoutils-1.4.b7 # ./configure --sysconfdir=/etc
...
linux:nagios/ndoutils-1.4.b7 # make
...
We start the configure run with the switch --sysconfdir=/etc in order to install the configuration files for the module and daemon to match the convention in this book, that is, to the directory /etc/nagios. The make call compiles the program code, and the installation is then done manually:
linux:nagios/ndoutils-1.4.b7 # cd ./src
linux:ndoutils-1.4.b7/src # cp ndo2db-3x ndomod-3x.o log2ndo file2sock \
 /usr/local/nagios/bin/
For Nagios 2.x the daemon ndo2db-2x and the module ndomod-2x.o are copied to /usr/local/nagios/bin instead of the 3.x versions.
17.3.2 Preparing the MySQL database
In the MySQL database system, we require a database storing appropriate access options for the user nagios. In order to set this up, we first log in to MySQL as the user root:
user@linux:~$ mysql --user=root -p
Enter password: root-passwort_for_the_db
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1861
Server version: 5.0.32-Debian_7etch1 Debian etch distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>
The switch -p ensures that the password is requested. The following command tests whether a password is set or not:
user@linux:~$ mysql --user=root
If the login triggered by this works without an error message, then the root password is missing. This should be specified with the command
user@linux:~$ /usr/bin/mysqladmin -u root password 'secret'
You should replace secret with your own secure password.[183]
The database (it is given the name nagios) is created with the SQL command CREATE DATABASE, and it is then given the required permissions with GRANT:
mysql> CREATE DATABASE nagios;
Query OK, 1 row affected (0.01 sec)
mysql> GRANT USAGE ON *.* TO 'nagios'@'localhost' IDENTIFIED BY 'secret'
 WITH MAX_QUERIES_PER_HOUR 0
 MAX_CONNECTIONS_PER_HOUR 0
 MAX_UPDATES_PER_HOUR 0 ;
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON 'nagios'.*
 TO 'nagios'@'localhost';
Query OK, 0 rows affected (0.01 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)
mysql> quit
The GRANT USAGE command defines the user, along with his password, and specifies that for him there are no restrictions in the number of queries, database connections, or database updates per hour. For the password, something slighty more secure than secret is chosen, but it must be written here in plain text. GRANT USAGE does not yet give any access permissions to the tables of the nagios database. This is handled by the second GRANT command. The changes to the permissions of the nagios user are activated with FLUSH PRIVILEGES.
The NDOUtils require SELECT, INSERT, UPDATE, and DELETE permissions. For NagVis and other applications, which only read data from the database, the SELECT permission is sufficient.
In the next step the tables are generated in which the NDOUtils will later save data. A finished SQL script in the db subdirectory of the NDOUtils sources is provided for this purpose, and needs only to be executed:
user@linux:src/ndoutils-1.4b7$ cd db
user@linux:ndoutils-1.4b7/db$ mysql -u root -p nagios < mysql.sql
The script should run without error in all cases (meaning without any messages). The tables created can be shown with the SQL command show tables.
Various distributions install MySQL by default with logging switched on. With the (usually binary) log files, the current status of the database can be replicated or restored. In combination with the NDOUtils, however, these log files grow very quickly. If you are using the database only for the NDOUtils, you will need such tools only in rare cases, and you can therefore comment out all the *log* parameters in the my.cnf configuration file and restart MySQL—this time without logging.
17.3.3 Upgrading the database design
Since the NDOUtils are actively undergoing development, larger changes to the database structure cannot be ruled out. For an upgrade, it is possible that the database design must also be changed. The NDOUtils provide a script for this purpose, upgradedb in the subdirectory db, which automatically adjusts the tables:
linux:~ # cd /usr/local/src/nagios/ndoutils-1.4b7/db
linux:ndoutils-1.4b7/db # ./upgradedb -u root -p password \
-h localhost -d nagios
Current database version: 1.4b5
** DB upgrade required for 1.4b7
 Using mysql-upgrade-1.4b5.sql for upgrade...
** Upgrade to 1.4b7 complete
The script detects the existing NDOUtils version and adjusts the tables accordingly. Among other things, it uses the SQL command ALTER TABLE, for which the MySQL user nagios, created in the last section, does not have sufficient permissions. The script therefore needs to be run as the MySQL user root.

[181] The author has tested version 5.0.23, but there are also reports of NDOUtils working successfully with MySQL 4.1.x.
[182] http://www.nagios.org/download/
[183] Further notes on the secure adminstration of MySQL can be found in the online documentation at http://www.mysql.org/doc/refman/5.0/en/security-guidelines.html and possibly in the documentation delivered with the distribution under /usr/share/doc/.

17.4 Configuration
The NDOUtils are configured at three different locations. The file ndomod.cfg specifies the settings for the Event Broker module. ndo2db.cfg controls the daemon ndo2db, which accepts data from the Broker and writes to the database. An entry in /etc/nagios/nagios.cfg finally ensures that Nagios loads the Event Broker module ndomod when it starts.
The NDOUtils source code in the subdirectory ./config provides a template for each of the two configuration files. The command
linux:src/ndoutils-1.4b7 # cp config/ndo*.cfg /etc/nagios/.
copies these, in accordance with the convention used in this book, to the directory /etc/nagios.
17.4.1 Adjusting the Event Broker configuration
The template for ndomod.cfg can almost be used unchanged; you need to adjust only the path to the var directory:
/etc/nagios/ndomod.cfg
instance_name=default
output_type=unixsocket
output=/var/nagios/ndo.sock
tcp_port=5668
output_buffer_items=5000
buffer_file=/var/nagios/ndomod.tmp
file_rotation_command=rotate_ndo_log
file_rotation_interval=14400
file_rotation_timeout=60
reconnect_interval=15
reconnect_warning_interval=15
data_processing_options=-1
config_output_options=2
instance_name refers to the instance in the database to be used. Provided that you map only one Nagios instance in the database, it is no problem to keep to the default settings. Assuming that Nagios and the ndo2db daemon are running on the same host, a Unix socket can be used as the output_type, the name of which is defined by the output parameter. tcp_port is used only for output_type=tcpsocket and is therefore commented out.
In case the ndomod module cannot release data via the socket interface (because the daemon has just restarted, for instance), these are saved temporarily in the file buffer_file. The number of entries to be saved in this in the output_buffer_items parameter should not be set too low. A tried-and-tested rule of thumb here is to take the number of all defined host and service objects and multiply this by five. This is an empirical value: When reloaded, or when Nagios is restarted, the NDOUtils write the start state for each host and each service to the database, along with all planned and started checks. These might be supplemented by the results of new or still running checks.
The file_rotation_* parameters are required only for output_type=file, which requires the use of the additional daemon FILE2SOCK. For reasons of performance it is recommended, however, that you use the socket interface instead of the file-based one. The file interface also makes the configuration more complex, due to additional daemons.
The parameters reconnect_interval and reconnect_warning_interval are also intended for cases where a connection using the ndo2db daemon could not be established. They specify in seconds how often Nagios should try to make contact with them and how often a warning should appear in the log file if a connection is not established. These two parameters should be left as they are in the default.
17.4.2 Configuring database access
There is also little to adjust in the template for the configuration file of the ndo2db daemon. Apart from the path to the socket interface, the relevant password for write access to the database must be specified here:
/etc/nagios/ndo2db.cfg
ndo2db_user=nagios
ndo2db_group=nagios
socket_type=unix
socket_name=/var/nagios/ndo.sock
tcp_port=5668
db_servertype=mysql
db_host=localhost
db_port=3306
db_name=nagios
db_prefix=nagios_
db_user=nagios
db_pass=secret
max_timedevents_age=1440
max_systemcommands_age=1440
max_servicechecks_age=1440
max_hostchecks_age=1440
max_eventhandlers_age=10080
The two ndo2db_* parameters specify the user and group with whose permissions the daemon runs after the start. socket_type and socket_name must be set to the configuration in ndomod.cfg.
The only database type that can currently be specified db_servertype is mysql; for db_port the standard port of MySQL (3306) is normally entered. The database name in db_name must match the name selected in the CREATE DATABASE command (in this case, nagios), and the database user and password must also be given in the same way as described when setting up the database. The value of the parameter db_prefix should not be changed under any circumstances, otherwise the name of the tables to be created in the mysql.sql script must also be adjusted.
The parameters beginning with max_* define in minutes how long the NDOUtils data on system commands, planned events, service and host checks, and event handlers[184] should be kept in the database. The value 1440 corresponds to one day. If you are using the NDOUtils only with NagVis, you won't need longer times. Short intervals go easy on the database, as well as the hard disk.
17.4.3 Starting the ndo2db daemon
When everything is configured, the ndo2db daemon is first called manually:
/usr/local/nagios/bin/ndo2db-3x -c /etc/nagios/ndo2db.cfg
Later on it is recommended that you create an init script by copying and modifying the script /etc/init.d/skeleton, provided in the distribution. The daemon must match the Nagios version: ndo2db-3x works together with Nagios version 3.x, ndo2db-2x with version 2.x. After it has started you should look to see whether the socket specified in the configuration exists:
linux:~ # ls -l /var/nagios/ndo.sock
srwxr-xr-x 1 nagios nagios 0 Jul 18 21:16 /var/nagios/ndo.sock
If the message Socket already in use appears when the daemon is run, then either the daemon is already running or the socket ndo.sock was not removed when the daemon was stopped. In this case you should delete it manually before restarting it.
17.4.4 Loading the Event Broker module in Nagios
In order for Nagios to load the Event Broker module of the NDOUtils when it is started, the following entry is added to the configuration file /etc/nagios/nagios.cfg:
/etc/nagios/nagios.cfg:
...
=== NDO ===
broker_module=/usr/local/nagios/bin/ndomod-3x.o config_file=/etc/nagios/
ndomod.cfg
In this example the module for Nagios version 3.x is used; if you are using Nagios 2.x, you enter ndomod-2x.o instead. A reload activates the module:
linux:~ # /etc/init.d/nagios reload
Shortly after the reload, all host and service objects should be recorded in the database:
user@linux:~$ mysql --user=nagios -p nagios
mysql> select name1,name2 from nagios_objects WHERE objecttype_id=2 ;
+---------+----------------------+
| name1 | name2 |
+---------+----------------------+
AHDC01	CPU_LOAD
AHDC01	DISK_C
AHDC01	DISK_D
...
The table nagios_objects contains all the objects, and objecttype_id=2 shows all the services. Alternatively the object type 1 refers to hosts, 3 to host groups, and 4 to service groups. A complete description of the tables is provided in the file NDOUTILS DB Model.pdf, included in the NDOUtils in the subdirectory ./docs.

[184] For event handlers, see Appendix C in page 619

Chapter 18. NagVis
NagVis[185] is an addon for Nagios that displays host and service states against a background image selected by the user. This must be available in the PNG format; the choice is yours whether you use a map, a diagram of your own system documentation, a photo of the server room, or a schematic diagram of the system environment as a background, as shown in Figure 18-1.
Via the Web interface, you can place objects wherever you want on the background. NagVis displays different icons, depending on the state of the object: red for the CRITICAL state, yellow for WARNING, green for OK, and a question mark on a gray background for UNKNOWN. If an acknowledgment was set, this is indicated by a green button with a picture of a worker on it.
There are different icons for hosts and services; in the default template, host icons are rectangular, and service icons are round. A finished NagVis display—NagVis refers to this as a map—is shown in Figure 18-2. Further examples—such as using a geographical map, or a photo of the server room, as a background—are provided on the NagVis homepage.[186]

Figure 18-1. Schematic diagram of a system environment as a template for NagVis
In addition to hosts and services, host and service groups can also be integrated into a NagVis display, as well as additional maps. Thus a geographical overview map could be used for the start page, which has an icon for each location monitored that links to a detailed NagVis map specifically for that location.
If an icon contains several states, as is the case for host and service groups, for instance, NagVis displays the state with the highest priority CRITICAL has a higher priority than WARNING, WARNING trumps UNKNOWN, UNKNOWN gets more attention than an acknowledgment, and OK has the lowest priority of all. If any host in a host group assumes the CRITICAL state, this is shown accordingly for the entire host group.
For hosts and host groups, NagVis offers you the choice of having only host states considered in determining the state that is displayed, or having the services dependent on these hosts are included as well (see 18.1.2 Initial configuration). In the latter case, a red stop light is displayed if even a single service of a host is in the critical state.
Of particular interest is NagVis's ability to evaluate only hard states (18.1.2 Initial configuration). For routine work with the Web interface, it turns out to be quite useful if not every temporary soft CRITICAL state immediately generates a red light.

Figure 18-2. Displaying the system environment
It will especially please fans of object-oriented programming that NagVis makes full use of object-oriented concepts. For example, the system inherits defaults from the global configuration for individual maps and settings on the map level and passes these on to individual objects, with the option of overwriting settings locally always available. This simplifies the configuration to a considerable extent, and NagVis also indicates in the graphical editor (also called the Web user interface or WUI) which settings are object-specific and which have been inherited (Figure 18-8 in page 399).
NagVis is published under the GNU Public License Version 2 (GPLv2); the description below refers to version 1.3.
18.1 Installation
NagVis makes use of NDOUtils and is implemented in PHP. Therefore, besides an NDO database in running order, as described in Chapter 17 from page 375, you need a Web server with PHP 4.2 or higher, as well as the packages php-mysql for access to the NDO database and php-gd to be able to draw lines.[187] Depending on the distribution and the PHP version used, the package names may vary slightly. For Debian "Etch" and PHP5 you need the packages libapache2-mod-php5, php5, php5-common, php5-gd, and php5-mysql.
NagVis does not necessarily have to be installed on the same computer as Nagios and the NDOUtils, although in many cases they are packed onto one host. The configuration of the NDO database—NagVis documentation refers to this as the backend—can refer (as described in 18.1.2 Initial configuration) to any system you please. NagVis even allows the backend to be selected separately for each individual object so that maps can be generated that combine several Nagios installations in a single graphic.
18.1.1 Installing the source code
The NagVis source code, from http://www.nagvis.org/downloads, is unpacked in a directory of your choice:
linux:~ # tar xvzf /pfad/zu/nagvis-1.3.tar.gz
...
If a previous installation exists, you should back this up first. Then you copy the directory that has been created (in our case, nagvis-1.3) with the name nagvis to /usr/local/nagios/share:
linux:~ # mv nagvis-1.3 /usr/local/nagios/share/nagvis
linux:~ # ls -F /usr/local/nagios/share/nagvis
INSTALL LICENCE README config.php etc/ index.php nagvis/ var/ wui/
The duplicated directory name nagvis can sometimes lead to confusion, but it is correct:
/usr/local/nagios/share/nagvis
/usr/local/nagios/share/nagvis/nagvis
/usr/local/nagios/share/nagvis/wui
/usr/local/nagios/share/nagvis represents the main directory of the NagVis installation, while the subdirectory nagvis contains the NagVis application, together with its configuration. Finally the subdirectory wui contains the graphic editor that enables NagVis maps to be edited via the browser.
At present, the correct access permissions for directories and files must be set manually. To do this, you first need to determine the user with whose permissions the Web server is running (see also 1.2 Compiling Source Code, page 39):
linux:~ # grep "^User" /etc/apache2/apache2.conf
User www-data
linux:~ # id www-data
uid=33(www-data) gid=33(www-data) Groups=33 (www=data),9001 (nagcmd)
The first grep command looks for the corresponding user in the configuration file for the Web server—in this case, Apache2—and then the id command searches for the primary group of this user. This can be found after the gid= specification. The access permissions are now set accordingly:
linux:~ # chown www-data.www-data -R /usr/local/nagios/share/nagvis
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/nagvis.ini.php
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/nagvis/images/maps
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/nagvis/images/maps/*
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/etc/maps
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/maps/*
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/var
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/var/*
Before the Web user interface can be used, you must create the central configuration file and ensure that access to NagVis is only possible after successful authentication.
18.1.2 Initial configuration
A template for the central NagVis configuration file config.ini.php can be found in the directory /usr/local/nagios/share/nagvis/etc, which only needs to be renamed and modified:
linux:~ # cd /usr/local/nagios/share/nagvis/etc
linux:nagvis/etc # cp config.ini.php.dist config.ini.php
linux:nagvis/etc # chown www-data.www-data config.ini.php
linux:nagvis/etc # chmod 664 config.ini.php
The commands chown and chmod ensure that the correct access permissions are set for the Web user (here, www-data) and his group.
Apart from the configuration of the backend (that is, the NDO database), the included config.ini.php already has usable defaults. The following description is therefore limited to introducing the most important parameters:[188]
[global]
language="german"
refreshtime=60
In the [global] section you can set the language with language; the default is english. refreshtime defines every how many seconds the display in the brower is refreshed.
The section [defaults] specifies defaults that are inherited by the defined objects from the map configuration. The values can be overwritten via the map, if required. It is best to define settings here that are identical for the majority of objects, in order to avoid the repeated work of defining them explicitly in the object definitions:
[defaults]
backend="ndomy_1"
icons="std_medium"
recognizeservices=1
onlyhardstates=1
backend specifies which NDO database is used as the default backend. The name for this can be anything you like, but the backend itself must still be defined in a separate section (see 18.1.2 Initial configuration). If you are just getting started, it is best to keep the name supplied, ndomy_1.
The parameter icons defines the icon set from the directory ./nagvis/nagvis/images/iconsets that is to be used. Four sets are included: std_small, std_medium, std_big, and folder. Other icons can be downloaded from the NagVis homepage,[189] or you can create them yourself.[190]
The setting recognizeserivces=1 ensures for hosts and host groups that the current states of the accompanying services are included when the overall state is being determined. The value 0 switches off this behavior.
onlyhardstates=1 on the other hand instructs NagVis to take only hard states into account. The default 0 also includes soft states.
The [wui] section allows settings to be made for the NagVis editor:
[wui]
autoupdatefreq=25
maplocktime=5
autoupdatefreq determines how often (in number of seconds) the Web user interface automatically saves changes, while maplocktime specifies the number of minutes after which any further changes to a map that is currently being edited should be blocked, from the time of the last change. This is intended to prevent several users from simultaneously editing the same map.
The paths to the NagVis installation from the perspective of the file system (base) and—separately for NagVis data and NagVis CGIs—from the perspective of the browser, are specified in Section [paths]:
[paths]
base="/usr/local/nagios/share/nagvis/"
htmlbase="/nagios/nagvis"
htmlcgi="/nagios/cgi-bin"
The defaults listed here match the standard installation described above.
The configuration for the backend, that is, for accessing the NDO database, follows at the bottom of the file:
[backend_ndomy_1]
backendtype="ndomy"
dbhost="localhost"
dbport=3306
dbname="nagios"
dbuser="nagios"
dbpass="verysecret"
dbprefix="nagios_"
dbinstancename="default"
maxtimewithoutupdate=180
This name of this section must contain the name specified with the backend parameter under [defaults], according to the pattern [backend_value_of_backend]. The default here is ndomy_1. If the backend parameter value does not match any of the defined backend sections, NagVis will refuse to work.
backendtype defines the type of backend, and for now ndomy—an NDO database based on MySQL—is the only possible value.
dbhost and dbport specify the host name or IP address and the accompanying TCP port for access to the database. dbname contains the name of the NDO database, and dbuser and dbpass give the user and the password for access.
The values defined by default for dbprefix and dbinstancename are set for a NDOUtils standard installation. Provided that you have not changed the parameter instance_name in the file ndomod.cfg (see 17.4.1 Adjusting the Event Broker configuration from page 384) and db_prefix in the file ndo2db.cfg (see 17.4.2 Configuring database access from page 385), you can use the values given here.
One parameter to which you should pay particular attention is maxtime-withoutupdate: This defines how much time in seconds is allowed for the status update of Nagios to appear. If the time specified here is exceeded, NagVis assumes that the data is obsolete and displays this as an error. If NagVis accesses NDO databases that are distributed across several servers, it is essential that the clock times of the servers be synchronized with one another, otherwise NagVis will refuse to work if it comes across a time difference greater than maxtimewithoutupdate seconds.
At this point we shall mention another problem involving data exchange between the NDO database and NagVis: NagVis evaluates the current program status. Nagios versions prior to 3.0b1, however, only write this to the NDO database after the nightly change of the log files. Starting with version 3.0b1, Nagios updates the status every five seconds, so that NagVis always has up-to-date information.
18.1.3 User authentication
NagVis demands authentication from the user. Without user authentication, it will just issue an error message.[191]
If the share directory of Nagios is not accessible for authentication, as in the Apache configuration in 1.5.1 Setting up Apache, you should change this in the Apache configuration file /etc/apache2/conf.d/nagios. The authentication data are best taken from the CGI directory (see 1.5 Configuration of the Web Interface from page 47).

Figure 18-3. After a right mouse click on the graphic displayed, the menu will appear

[185] http://www.nagvis.org/
[186] http://www.nagvis.org/screenshots
[187] You can manage without using the GD libraries if the parameter usedgdlibs in the NagVis configuration file config.ini.php (see 18.1.1 Installing the source code) is set to 0.
[188] The complete documentation can be found at http://www.nagvis.org/docs/1.3/nagvis_config_format_description.
[189] http://www.nagvis.org/downloads
[190] A corresponding guide can be found at http://www.nagvis.org/docs/extending/iconsets.
[191] The FAQ entry http://www.nagvis.org/docs/general/faq#how/to/run/nagvis/without/authentication/ describes away of using NagVis without authentication, but you should avoid this, for reasons of security.

18.2 Creating NagVis Maps
The NagVis configuration interface is accessed through the URL http://nagiosserver/nagios/wui/index.php. Here you replace nagiosserver with your own Nagios host name (Figure 18-3 shows the start page).
It is operated through a menu that opens when you click the right mouse button. For browsers that overlay the NagVis menu with their own menu, a second click with the right mouse button will cause the browser menu to disappear.
If you don't have a suitable background graphic available in PNG format, you can create a new, empty background image via the menu item Manage | Backgrounds, as shown in Figure 18-4. In this example, a gray image of size 800x600 pixels is created.

Figure 18-4. Creating a new, empty background
This image is displayed on screen in its original size, that is, not scaled. To avoid scrolling, it should not be too large, with the proper size depending on the screen resolution and taking into account possible window frames.
Later on the image size can only be altered to a limited extent: although you can upload or create a background image at any time, objects that have already been placed are not affected by any changes in the size or other characteristics of the background, and so they may not fit properly into a new background image. The only option then is to reposition all the objects. The best approach is to experiment at first with just a few objects in the definitive environment before you set up an extensive map.

Figure 18-5. If the entry for Map Iconset remains empty, NagVis uses the defaults from the central configuration.
You now create a new map for the generated or uploaded image. Via the menu entry Manage | Maps (Figure 18-3) you navigate to the dialog shown in Figure 18-5. There you define the name of the map and select the background image. If every authenticated user should see the map, you enter EVERYONE as User with read permissions. For the User with write permissions, on the other hand, you would probably enter a specific user, or several user names, separated by commas. Defining the icon sets is optional at this point, although the example shown specifies them.
Newly created maps are automatically opened by NagVis in editing mode. You can reach this later on via the menu item Open Map in the context menu of the opening dialog or by calling it directly with the URL http://nagios/nagvis/wui/index.php?map=mapname.

Figure 18-6. Inserting objects via the graphical interface
The mapname for the map created in Figure 18-5 is Test. In the map itself you now insert objects using the right mouse button (see Figure 18-6). An object can be an icon, a line, or a special object. Icons and lines represent the current state of a host or service and can also stand for entire host or service groups. Icons can only reflect the overall state of a map. Special objects are graphics representing stateless objects (which might be icons as well, for example) or text boxes, which can also be provided with a hyperlink.
To insert a host group you select Add Object |Icon| Hostgroup in the menu. Then you place the mouse over the desired position and define the destination of the icon with a left mouse click (the position can be changed later on).
When this is done a dialog opens, as shown in Figure 18-7. The entry backend_id can remain empty, and NagVis will then use the value of the backend parameter from the central configuration file config.php.ini. In the hostgroup_name pulldown menu, NagVis allows you to select from all defined host groups.
Icons can be positioned according to the x and y coordinates by either entering numerical values or using the mouse. For simple icons, the point (x, y) corresponds to the center, and for lines to the start or end points. The z coordinate is only used when icons overlap. The value 0 describes the underlying image at the rear and is reserved for the background, and the object with the highest z value is right at the front. If the z coordinate is explicitly left empty when the object is inserted, it automatically receives the value 1.

Figure 18-7. Defining a host group in the graphical interface
The parameter recognize_services allows the recognizeservices setting from the config.ini.php (see 18.1.2 Initial configuration) to be overridden, and only_hard_states does the same for the parameter onlyhardstates (18.1.2 Initial configuration).
The object inserted in this way always appears in the graphical editor in the form of the OK icon from the icon set chosen; the Web interface takes no account of its actual state.
If you move the mouse over the icon, a hover menu opens, as shown in Figure 18-8. It clearly distinguishes which settings are inherited and which ones have been specified directly in the object. If you follow the Change link there, the settings can be changed again.

Figure 18-8. If you move the mouse over the inserted object, a hover menu opens
When your work is finished, don't forget to save your changes via the context menu entry Save (see Figure 18-3 in page 396). The menu item Open Map in NagVis will then take you to the finished view, which now does display the actual states.
In Figure 18-9 a text box has been added to the host group icon. The field displayed beneath this is a hover menu, which shows information on the object and its state if you move the mouse over the object. This example shows that two hosts of the host group display a Not OK state and that this has already been confirmed with an acknowledgment.

Figure 18-9. Object in the final view with text box and hover menu
The finished map can be called directly via the URL http://nagiosserver/nagios/nagvis/nagvis/index.php?map=mapname.
18.2.1 Editing the configuration in text form
NagVis stores the entire configuration of a map in text files, which can also be edited with a text editor. The files are located in the directory /usr/local/nagios/share/nagvis/etc/maps/. If you are using a background image with a known raster, you can insert several objects in the WUI and continue editing the map in the editor using the coordinates just determined. This is how the map shown in Figure 18-2 was created. The background image (Figure 18-1) was created with OpenOffice in order to obtain a reproducible raster; the OpenOffice drawing is subsequently exported as a PNG file.
The configuration options for the text files, which altogether are very extensive, are described in the online documentation.[192]
18.2.2 Adding NagVis maps to the Nagios Web interface
NagVis maps can also be integrated into the Nagios Web interface. Figure 18-10 shows these after a third frame has been added to the index.html page, which binds a 32-pixel-high map beneath the main window. No matter what the administrator is currently working on, the most important states (here these are the host groups) are always displayed directly and can be reached with a single mouse click. There are no limits to your user interface dreams when using NagVis!

Figure 18-10. NagVis map as a "footnote" in the Nagios Web interface

[192] http://www.nagvis.org/docs

Chapter 19. Graphic Display of Performance Data
When Nagios reports to the administrator quickly and selectively on problems that have occurred, it can basically only distinguish between OK states and error states, sparing the admin a flood of information on problematic services and hosts. The graphic display of measured values over a time period cannot be integrated into this "traffic light approach," but it is available through third-party software. Nagios supports external processing of values with an interface created specifically for this. The data processed through it is referred to in Nagios jargon as performance data.
Nagios has two different classes of performance data. The first is Nagiosinternal performance data, statistics on the performance times of tests and on the difference between the actual test time and the planned time (the latency). The second class includes performance data that the plugin passes on with the test result. This involves everything that the plugin can measure: response times, hard drive usage, system load, and so on. These are the very things that are of interest to an administrator, which is why the book concentrates on how they are processed.
Nagios extracts this data and either writes it to a file where it can be processed by other programs, or passes it on directly to the external software that is run after every service or host check.
19.1 Processing Plugin Performance Data with Nagios
Performance data provided by service and host checks can be processed only if the corresponding plugin delivers it in a predefined format. As shown here using the check_icmp plugin (6.2 Reachability Test with Ping, page 108), it is preceded by a | sign and is not shown in the Web interface:
nagios@linux:libexec/nagios$./check_icmp -H vpn01
OK - eli02: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=0%;
40;80;;
This standardized form is provided by most plugins only after version 1.4.[193] The performance data itself consists of one or more variables in the following form:
name= value ; warn ; crit;min; max
The variable name may contain spaces, but then it must be surrounded by single quotation marks. After the equals sign comes first the measured value as an integer or floating-point decimal, with or without a unit. Possible units are % (percentage), s (time in seconds), B (data size in bytes), or c (counter, an incremental counter).
This is followed, separated by a semicolon, by the warning and critical limits, and then the minimum and maximum value. Percentage values can be left out by the plugin. You can also specify 0 for minimum/maximum, as well as for the warning or critical limit, if there is no such threshold value. If there are several variables, these are separated with spaces, as in the check_icmp example. However, in contrast to this, the final specification should not end with a semicolon, according to the Developer Guidelines.
19.1.1 The template mechanism
Nagios has two methods of processing performance data: either the system saves the data to a file using a template, or it executes an external command. If you just want to write data consistently to a log file, the template procedure is somewhat easier to configure.
In order that Nagios can process performance data at all, the parameter
/etc/nagios/nagios.cfg
...
process_performance_data=1
...
must be set to 1. The file to which Nagios writes the host or service performance data is specified by the parameters host_perfdata_file and service_perfdata_file:
/etc/nagios/nagios.cfg
...
host_perfdata_file=/var/nagios/host-perfdata.dat
service_perfdata_file=/var/nagios/service-perfdata.dat
host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t$HOST
EXECUTIONTIME\tHOSTOUTPUT\tHOSTPERFDATA$
service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$
SERVICEDESC\tSERVICEEXECUTIONTIME\tSERVICELATENCY\tSERVICEOUTPUT$\
t$SERVICEPERFDATA$
...
If host_perf data_file is commented out, as in this example, Nagios does not save any performance data of host checks. But since they are only used if all service checks fail, it lies in the nature of host checks that they only provide data sporadically and at irregular intervals. This is why it is not worth evaluating them in most cases.
The *_perf data_file_template parameters define the output format. The definition shown above, service_perfdata_file_template, delivers (one-line) log file entries in the following pattern:
[SERVICEPERFDATA] 1114353266 linux01 PING 0.483 0.104 OK
- 10.128.254.12: rta 100.436ms, lost 0% rta=100.436ms;3000.000;6000.000
;0; pl=0%;40;80;;
Each line begins with a [SERVICEPERFDATA] "stamp," followed by the test time in epoch seconds ($TIMET$), the host name and service description ($HOSTNAME$ and $SERVICEDESC$), the time Nagios requires for the test ($SERVICEEXECUTIONTIME$), and the latency between the planned and actual time of performance ($SERVICELATENCY$), each separated by a tab.
Then Nagios writes the output for the Web interface to the log file ($SER-VICEOUTPUT$) and finally the actual performance data ($SERVICEPERF-DATA$). \t in the parameter definition ensures that a tab separates the individual details from each other in the log. With the *_perfdata_file_mode parameters you can define whether Nagios appends the data to an existing file (a) or overwrites the existing file (w):
/etc/nagios/nagios.cfg
...
host_perfdata_file_mode=a
service_perfdata_file_mode=a
...
This is suitable for external programs that can read the data from a (previously set up) named pipe. This method provides better performance and does not require any space on the hard drive. If the processing software is not running, however, the data may be lost: Nagios does try for a time to continue writing to the pipe, but aborts this process after a timeout if the data cannot be read out.
Programs that read from a log file generally delete it afterwards, to prevent the file system from overflowing. If the program does not retrieve any data, the file will grow quickly, but nothing will be lost as long as there is still space on the file system.
It is best to run external evaluation software as a permanent service. But you can also configure Nagios so that it regularly triggers a program for further processing:
/etc/nagios/nagios.cfg
...
host_perfdata_file_processing_interval=0
service_perfdata_file_processing_interval=0
host_perfdata_file_processing_command=process-host-perfdata-file
service_perfdata_file_processing_command=process-service-perfdata-file
With the *_perfdata_file_processing_interval parameters you set an interval in seconds after which Nagios will carry on running the corresponding *_perf data_file_processirLg_command at specific intervals. This command is defined as a normal Nagios command object:
misccommands.cfg
...
define command{
 command_name process-service-perfdata-file
 command_line /path/to_the/evaluation_program
}
...
As long as the external software itself looks after the further processing of the file with the performance data, you do need to use the *_perf data_file_processing_* parameters.
19.1.2 Using external commands to process performance data
As an alternative to the template method, Nagios can also directly call a command that takes over further processing of data. This is done directly after each test result; so after each individual check, an external program is started. If you have a large number of services to be checked, this can, depending on the software, considerably degrade performance.
The command itself is defined with the process_perfdata_command parameter instead of the perfdata_file parameter:
/etc/nagios/nagios.cfg
...
process_performance_data=1
service_perfdata_command=process-service-perfdata
...
In the same way as with service performance data, you can also process the results of host checks, using the host_perfdata_command parameter. process-service-perfdata itself again refers to a normal Nagios command object:
misccommands.cfg
...
define command{
 command_name process-service-perfdata
 command_line /pfad/zum/programm "$LASTSERVICECHECK$||$HOSTNAME$||$
SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"
}
...
This opens the external program, which is given the necessary information as arguments. This should include at least the timestamp of the last service check ($LASTSERVICECHECK$), the host name ($HOSTNAME$), and the service description ($SERVICEDESC$), as well as the actual service performance data ($SERVICEPERFDATA$). The delimiter depends on the program used: this example uses ||, as is used by the Nagiosgraph program.

[193] Some tools such as Nagiosgraph and NagiosGrapher make use of the fact that the remaining text normally contains performance data as well. If they are correspondingly configured, they are able to extract the performance data contained there. In this way they can further process data that does not conform to the standard format.

19.2 Graphs for the Web with Nagiosgraph
With the program Nagiosgraph from http://nagiosgraph.sf.net/, performance data supplied by plugins can be displayed graphically in a Web interface in chronological form. The software consists of two Perl scripts. The script insert.pl writes the Nagios performance data to a round-robin database, a ring buffer in which the newest data overwrites the oldest.[194] The advantage of this is the small amount of space required, which can be defined beforehand.
The trick consists of saving data in various resolutions, depending on its age: older data with a lower resolution (e.g., one measurement value per day), current data with a high resolution (e.g., one measurement every five minutes). When setting up the database, you also define how long the data is retained. This defines space requirements right from the beginning.
Provided that Nagiosgraph detects the performance data, the program creates a separate round-robin database for each new service, when it appears for the first time. The map configuration file included describes just a few services, so that usually some manual work—and a basic knowledge of Perl—is required.
The second Nagiosgraph script show.cgi, a CGI script, represents the information from the database in a dynamic HTML page. To do this, it is run (after configuration is completed) in the form
http://nagsrv/path/to/show.cgi?host=host&service=service_description
Nagiosgraph then displays four graphs (a daily, a weekly, a monthly, and a yearly summary) for the desired service.
19.2.1 Basic installation
An installed RRDtool package, which is contained in most Linux distributions, is a prerequisite for Nagiosgraph. Alternatively you can obtain the current source code from http://www.rrdtool.org/.[195] For reasons of performance, it is recommended here that you also install the included Perl module RRDs.
The Nagiosgraph tar file itself is preferably unpacked in the directory /usr/local/nagios:
nagios@linux:local/nagios$ tar xvzf nagiosgraph-0.5.tar.gz
nagiosgraph/INSTALL
nagiosgraph/README
nagiosgraph/README.map
nagiosgraph/insert.pl
nagiosgraph/insert_fast.pl
nagiosgraph/map
nagiosgraph/nagiosgraph.conf
nagiosgraph/show.cgi
nagiosgraph/testcolor.cgi
nagiosgraph/testentry.pl
insert.pl extracts the data transferred by Nagios and inserts this into the RRD database. If this does not exist, however, the script will create it. Alternatively insert_fast.pl can take on this task. This script uses the Perl module RRDs, which is considerably more efficient than calling up rrdtool as an external program each time, which is what insert.pl does.
Another Perl script called testentry.pl helps if you are testing your own map entries. But since you have to write these directly into this file, you can also change the map file itself (as shown below)—provided you have made a backup copy first. The CGI script testcolor.cgi looks more like a developer's utility left over in the package, rather than a tool that is of any use for users.
Apart from the already mentioned map configuration file, there is a second one, nagiosgraph.conf, and its path must be defined correctly in both insert.pl (or insert_fast.pl) and show.cgi, so it is recommended that you check this:
my $configfile = '/usr/local/nagios/nagiosgraph/nagiosgraph.conf';
19.2.2 Configuration
The configuration file nagiosgraph.conf
All other relevant paths—such as those to the map file and to the rrdtool—are adjusted in nagiosgraph.conf:
rrdtool = /usr/bin/rrdtool
rrddir = /var/lib/rrd/nagiosgraph
logfile = /var/nagios/nagiosgraph.log
mapfile = /usr/local/nagios/nagiosgraph/map
debug = 2
colorscheme = 4
Nagiosgraph creates the RRD databases in the rrddir directory. Here the user nagios must have write access and the user with whose rights the Web server is running must have read access:
linux:~ # mkdir -p /var/lib/rrd/nagiosgraph
linux:~ # chown nagios.nagcmd /var/lib/rrd/nagiosgraph
linux:~ # chmod 755 /var/lib/rrd/nagiosgraph
The log file, for which both users need write access (the Web user because the CGI script also records information to the log file), is also critical:
linux:~ # touch /var/nagios/nagiosgraph.log
linux:~ # chown nagios.nagcmd /var/nagios/nagiosgraph.log
linux:~ # chmod 775 /var/nagios/nagiosgraph.log
How verbose Nagiosgraph is can be adjusted with debug. The possible debug levels are documented in the configuration file included: 2 means "errors," 4 "information"—here Nagiosgraph is already so verbose that you must watch out that the file system does not overflow. Except for debugging purposes (such as when setting up the system), it is better to choose 2.
With colorscheme, which can accept values from 1 to 8, you can influence the amount of color in the graphs—it is best to try out the options to see which color scheme matches your personal taste best.
Nagios configuration
Nagiosgraph grabs the performance data directly from Nagios. For this reason nagios.cfg does not require any *_perfdata_file_* parameters.
/etc/nagios/nagios.cfg
...
process_performance_data=1
service_perfdata_command=process-service-perfdata
...
process_performance_data switches on processing of performance data in general; service_perfdata_command refers to the Nagios command object that contains the external command:
misccommands.cfg
...
define command{
 command_name process-service-perfdata
 command_line /usr/local/nagios/nagiosgraph/insert_fast.pl "$LASTSERV
ICECHECK$||$HOSTNAME$||$SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"
}
...
The definition of the parameter command_line must be written on one line (without the backslashes \), as usual.
So that the CGI script can run directly from the Nagios Web interface, a serviceextinfo object is defined:
define serviceextinfo{
 service_description PING
 host_name *
 notes_url /nagiosgraph/show.cgi?host=$HOSTNAME$&service=PING
 icon_image graph.gif
 icon_image_alt show graphics
}
If the graphic defined in icon_image is in the directory /usr/local/nagios/share/images/logos, the Web interface marks the PING services for all hosts in the status display with this.[196] Here the strength of show.cgi can be seen: only because this script is called explicitly with host and service names is a definition like the one above possible. Instead of an individual host name, you can also specify a host group, or, as in this example, a *. A requirement for this is that PING really is defined as a service for every host.
The $HOSTNAME$ macro then automatically inserts the appropriate host. The additional information for a specific service type (which must have the same service description in all hosts) can therefore be catered for with just one single definition.
Apache configuration
So that the Apache Web server can accept the CGI script as it is, a Script-Alias is created, for example:
ScriptAlias /nagiosgraph/ /usr/local/nagios/nagiosgraph/
This entry is best placed in the configuration file discussed in 1.5 Configuration of the Web Interface (page 47), nagios.conf. Only after Apache is reloaded can the CGI script be run from the URL specified in 19.2 Graphs for the Web with Nagiosgraph.
Adjustments to the map
Depending on the service, the round-robin database may also save several series of measurements, which can be requested individually through the CGI script:
http://nagsrv/path/to/show.cgi?host=host&service=service_description&db=
database,entry1,entry2&db=database,entry3
The database used here contains at least three different series of measurements, the first two of which are shown together in one graphic, while the third is shown in a separate graphic. What is shown together and what is separate depends on the standardization. It makes little sense to display the percentage load of a hard drive and the absolute value in bytes in the same graphic, since the Y axis can only have one scale. It is better here to display percentage values in one graphic and absolute byte values in a second one. On the other hand you can display the various average values of the system load (for one, five, and 15 minutes) in a single graphic. If you leave out all db= specifications, Nagiosgraph always displays all measured values for a service in a single graphic.
What individual databases and measured values display is defined by the map file. To understand how the instructions contained there influence the extraction of data, you just need to switch the debugging level to 4 and take a look at the output in the log file nagiosgraph.log. Each time the insert function is run, Nagiosgraph rereads the configuration files, so that this does not cause any kind of reset.
In the following extract from the log file the three dots mark sections which we will not print, for the sake of clarity:
... INSERT info:... servicedescr:PING
... INSERT info:... hostname:linux01
... INSERT info:... perfdata:rta=99.278ms;3000.000;7000.000;0; pl=0%;60;
80;;
... INSERT info:... lastcheck:1114853435
... INSERT info:... output:OK - 172.17.4.11: rta 99.278ms, lost 0%
The output is from the check_icmp plugin. The host name, service description, performance data, (perfdata:) and the standard output line (output:) each have their own line. In the performance data the plugin announces the round trip average with the variable rta, and the number of packets that have gone missing with pl (packet loss).
The map file contains Perl instructions that filter these outputs and extracts the corresponding data if there are hits. Each of them starts with a search instruction:
/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/
The classic Perl search function consists of the two forward slashes / with a search pattern in the form of a regular expression in between. Round pairs of brackets enclose partial patterns with which the text found in this way can later be accessed using the variables $1, $2, etc.
The pattern in the first bracket thus matches a single digit (\d) or a dot,[197] and the next + states that there can be several of them (or none at all). In the second round brackets, though, one or more digits are allowed, but no period. In concrete terms $1 delivers the numerical value of the response time, $2 provides the packet loss in percent.
The full instruction in the map file links two Perl statements with the and operator:
-- check_icmp
perfdata:rta=100.424ms;5000.000;9000 .000;0; pl=0%;40;80;;
/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/
and push @s, ['ping',
 ['rta', 'GAUGE', $1],
 ['losspct', 'GAUGE', $2],
];
If the first one—the search function—is successful, then it is the turn of the push statement. It adds the expression in square brackets following to the array @s. The instruction ends with a semicolon. If the search function provides no result, the map instruction will not save any entry in the @s array. The expression to be included in the array has the following format:
[db-name,
 [name_of_data_source, type, value],
 [name_of_data_source, type, value],
 ...
]
The file name for a Nagiosgraph database file consists of the host name, service description, and the database name together, for example, linux01_PING_ping.rrd. The desired string for the database name is entered instead of the placeholder db-name into the map file (in this case, ping).
The name of the data source can be chosen freely, but should contain an indication of the data that is stored here, such as rta for the response time or losspct for percentage of packets that have been lost.
What type you specify is determined by the RRD tools. GAUGE stands for simple measured values that are displayed simply as they are. DERIVE is recommended by Nagiosgraph author Soren Dossing for processing counters, such as in querying a packet counter on the network interface. Counters grow incrementally and, when they run over, start again at zero. What is of interest here is the difference between two points in time. The RRD database determines these automatically if the data source type DERIVE is specified.
The database name, data source, and type should always be placed in single quotation marks in the map file, so that no name conflicts can occur with keywords reserved in Perl.
The measured value itself is determined using Perl methods, and the placeholder value is substituted with the corresponding instructions. In the simplest case, you take over the values found with the search pattern in the performance data with $1, $2, etc. (see example above), or calculate new values from these by multiplying[198] by 1024 or by calculating the percentage:
-- check_nt -v USEDDISKSPACE
perfdata:C:\ Used Space=1.71Gb;6.40;7.20;0.00;8.00
/perfdata:.*Used Space=([.\d]+)Gb;([.\d]+);([.\d]+);([.\d]+);([.\d]+)/
and push @s, ['disk',
 ['used', 'GAUGE', $1*1024],
 ['usepct', 'GAUGE', ($1/$5)*100],
 ['freepct', ' 'GAUGE', (($5-$1)/$5)*100],
];

-- check_disk (unix)
perfdata:/=498MB;1090;1175;0;1212
m@perfdata:.*/([^ =]+)=([.\d]+)MB;([.\d]+);([.\d]+);([.\d]+);([.\d]+)@
and push @s, [$1,
 ['used', 'GAUGE', $2*1024**2],
 ['warn', 'GAUGE', $3*1024**2],
 ['crit', 'GAUGE', $4*1024**2],
];
The first entry evaluates the query of hard drive space on a Windows server with check_nt (see 20.2.1 NSClient, page 476). The performance data also contains, apart from the occupied space in $1, the size of the data carrier in $5. This can be used to calculate the percentage that is available (freepct) and the percentage used (usepct).
The second example evaluates data obtained on a Unix host, with check_ disk, by multiplying the free hard drive space specified in MB by 10242 to convert it to bytes. The critical and warning limits always remain constant, which leads to horizontal lines, as seen in Figure 19-1: the lower line at 12.1 GB represents the warning limit, the middle line the current load, and the top line at 18.1 GB, the critical limit. The keys for the individual graphs each list minimum, maximum, and average as a numerical value. This differentiation for the two limit values is not of any use, but it cannot be avoided, since Nagiosgraph does not know that these are constant values: it treats warning and critical limits just like any other measured values.
If a plugin does not provide any performance data, but values that are used in normal output, the search function can be applied to the output (/output:.../) instead of to the performance data. Help is provided, for example, by the Nagiosgraph Forum at http://sourceforge.net/forum/forum.php?forum_id=394748.

Figure 19-1. Used space and limit values for the file system /net/linux01/a on the host linux0l, as Nagiosgraph represents them
Changes to the map are critical. It is therefore recommended that you copy the file first and edit the copy and then perform a syntax check, using perl -c:
nagios@linux:libexec/nagios$ cp map map.new
nagios@linux:libexec/nagios$ vi map.new
nagios@linux:libexec/nagios$ perl -c map.new
nagios@linux:libexec/nagios$ mv map.new map
If the syntax check is in order, you can install the new file as map.

[194] Further information on this topic can be found at http://www.rrdtool.org/.
[195] To install, see 19.4.1 Installation.
[196] A more detailed description of the serviceextinfo object is contained in 16.4.2 Extended service information, page 366.
[197] A pair of square brackets contains alternatives.
[198] This turns kilobytes into bytes.

19.3 Preparing Performance Data for Evaluation with Perf2rrd
Another tool which transfers Nagios performance data to an RRD database is the Java application Perf2rrd. This requires an installed Java Runtime Environment (1.4.2 Plugin test, or preferably 1.5 Configuration of the Web Interface). Since the virtual machine generates a noticeable load on less powerful computers, and also requires a large amount of memory, the requirements made of the Nagios server by Perf2rrd are significantly higher than those made by Nagiosgraph.
On the other hand there is no more work after the installation as far as generating the RRD databases is concerned, because Perf2rrd uses the template mechanism of Nagios (see 19.1 Processing Plugin Performance Data with Nagios, page 404). For each service and each variable contained in the template, the tool creates a separate RRD database using the following naming pattern:
host+service_description+variable_name.rrd
So to evaluate the check_icmp variables rta (round trip average) and pl (packet loss), the file names are linux01+PING+pl.rrd and linux01+PING+rta.rrd.
Perf2rrd only looks after the storage of data in an RRD database and does not provide any tools to graphically display the data saved there. The Perf2rrd author Marc DeTrano refers here to the drraw tool (see 19.4 The Graphics Specialist drraw, page 420). It can be advantageous to use this, because on the one hand drraw allows far more than just the one display provided by Nagiosgraph, and on the other hand you do not have to struggle with regular expressions in Perl.
19.3.1 Installation
For the installation you should get hold of the archive in tar format from http://perf2rrd.sf.net/, and copy it, preferably to the /usr/local hierarchy:
linux:~ # cd /usr/local
linux:usr/local # tar xvzf /path/to/perf2rrd-1.0.tar.gz
...
perf2rrd/run
...
The executable program that is later run is a script called run, which in turn calls the Java bytecode interpreter, java. Besides this the directory contains the Java class files and other utilities, with which you can recompile the included shared library librrdj.so, if required. This is normally not necessary for the newer distributions.
In order for run to be able to find the java program, it must be located in /usr/bin. If this is not the case (because you have installed the Java archive from http://www.sun.com/, for example), then you should set a link:
linux:~ # ln -s /usr/local/jre1.5.0_02/bin/java/usr/bin/java
A short test shows whether or not Perf2rrd starts correctly:
nagios@linux:local/perf2rrd$./run
perf2rrd starting
Using Nagios Config: /etc/nagios/nagios.cfg
Using RRD Repository: /var/log/nagios/rrd
Unable to create RRD Repository
The error message issued in the last line is not a problem at the moment, since we have saved the RRD databases in a different directory anyway (Perf2rrd in permanent operation).
19.3.2 Nagios configuration
Perf2rrd searches in the Nagios configuration for all the data it requires: to what file Nagios should write the performance data, the write mode used for this,[199] and the format of the template:
/etc/nagios/nagios.cfg
...
process_performance_data=1
...
service_perfdata_file=/var/nagios/service-perfdata.dat

service_perfdata_file_template=$TIMET$\t$HOSTNAME$\t\
 $SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t\
 $SERVICEOUTPUT$\t$SERVICEPERFDATA$

service_perfdata_file_mode=w
...
The named pipe used here, thanks to service_perfdata_file_mode=w, must be created manually—Perf2rrd 1.0 in Nagios 2.0 has problems with the normal file interface (service_perfdata_file_mode=a):
linux:~ # mknod /var/nagios/service-perfdata.dat p
linux:~ # ls -l /var/nagios/service-perfdata.dat
prw-r--r-- 1 nagios nagios 0 May 1 10:49 /var/nagios/service-perfdata.dat
In the template the introductory [SERVICEPERFDATA] stamp is missing (see 19.1 Processing Plugin Performance Data with Nagios), since Perf2rrd 1.0 does not parse this correctly. Changes to the Nagios configuration require a reload:
linux:~ # /etc/init.d/nagios reload
Finally you create the directory for the RRD databases:
linux:~ # mkdir /var/lib/rrd/perf2rrd
linux:~ # chown nagios.nagios /var/lib/rrd/perf2rrd
19.3.3 Perf2rrd in practice
Loading the Java Virtual Machine each time Perf2rrd is started requires considerable resources. For this reason you should not use the method of startingPerf2rrdwiththeparameter service_perfdata_file_processing_command at specific intervals of Nagios, and also should not use the one-shot mode, with ./run -o, in which the software processes one file at a time. In theory this would make it possible to run Perf2rrd regularly with a cron job. Instead, it is recommended that you keep the program running permanently.
When using this for the first time, we recommend that you switch on the debugging mode, which will show any problems that occur. The option -d specifies the directory in which the tools should create and update the RRD databases:
nagios@linux:local/perf2rrd$./run -d /var/lib/rrd/perf2rrd -x
perf2rrd starting
Using Nagios Config: /etc/nagios/nagios.cfg
Using RRD Repository: /var/lib/rrd/perf2rrd
Debug Mode is on
Reading perfdata from named pipe.
Perf Data File is : /var/nagios/service-perfdata.dat
I believe we are using Nagios ver. 2
Object Cache File is : /var/nagios/objects.cache
Nagios interval_length 60
called update with: .../eli02+PING+rta.rrd 1114938329:0.079
called update with: .../eli02+PING+pl.rrd 1114938329:0.0
/var/lib/rrd/perf2rrd/sap-14+SAP-3202+time.rrd created.
called update with: .../sap-14+SAP-3202+time.rrd 1114938688:0.030775
...
The output of the Nagios configuration file, the RRD repository, and the data transfer mode (named pipe) is followed by the time unit used by Nagios (and set with the interval_length parameter). Normally this is 60 seconds, that is, a check interval of 5 is five minutes long. It is extremely important that this parameter is correctly recognized, since Perf2rrd determines the step interval of the RRD database by multiplying the normal_check_interval and interval_length parameters together.
All measured values that occur during a step interval are averaged by the database. If this time period is too small, it is possible that the database will never issue any values, since it expects considerably more data than it obtains for saving.
While Nagiosgraph works with a fixed five-minute interval, Perf2rrd adjusts itself to the Nagios configuration. The software only takes into account the interval when creating the RRD database, however; changing the Nagios configuration later on has no further consequences. The only thing you can do here to alter this is delete the RRD database and set it up again.
Perf2rrd in permanent operation
Operating Perf2rrd on a named pipe has one disadvantage: if Nagios restarts, it closes the pipe before opening it again. Unfortunately when the pipe closes, Perf2rrd closes as well.
This can be prevented by the use of the Daemon Tools by Daniel J. Bernstein. They monitor programs and restart them, if these programs should ever stop. They are themselves started through an /etc/inittab entry by the init process, and are restarted if they were to shut themselves down at some point. The Daemon Tools tar file can be obtained from http://cr.yp.to/daemorLtools/install.html and it is unpacked in the directory /usr/local/src:
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /path/to/daemontools-0.76.tar.gz
admin
admin/daemontools-0.76
admin/daemontools-0.76/package
admin/daemontools-0.76/package/README
...
admin/daemontools-0.76/src
This creates the directory admin/daemontools-0.76, with the subdirectories package and src. From there you should run the install script, which compiles and installs the program:
linux:local/src # cd admin/daemontools-0.76
linux:admin/daemontools-0.76 # package/install
The binaries land in the newly created directory daemontools-0.76/com-mand and remain there. The installation routine also sets up symbolic links pointing to them from the—also newly created—folder/command.
The install script also includes the following line in the file /etc/init-tab, which ensures that the Daemon Tools run permanently:
SV:123456:respawn:/command/svscanboot
The program svscanboot searches regularly for new or crashed daemons. For this purpose it scans the /service directory, which is also created during the installation. Just one symbolic link is required to have Perf2rrd monitored:
linux:~ # ln -s /usr/local/perf2rrd /service/perf2rrd
The Daemon Tools search in this directory for a script called run and start it. In order for run to be able to find the path to the RRD repository, an actual command-line option is entered in the script file instead of $*:
exec java -cp $classpath perf2rrd $*
exec java -cp $classpath perf2rrd -d /var/lib/rrd/perf2rrd
Starting and ending Perf2rrd is now taken over by the program svc:
linux:~ # /command/svc -d /service/perf2rrd
linux:~ # /command/svc -u /service/perf2rrd
The -d option (for down) stops the service specified, and -u (up) starts it again. It is not necessary to run it at the beginning, since the Daemon Tools regularly scan the /service directory for new services and automatically start them. This is important insofar as the Nagios-2.0 beta versions, on which this book is based, had problems if the configured named pipe was not read. Then it might not deliver any more data at all until a reload or restart. Whether this problem has been fixed in the final version 2.0 of Nagios could not be clarified at the time of going to press.

[199] With a, Nagios appends the data to a normal log file; with w it makes it accessible through a named pipe. See 19.1 Processing Plugin Performance Data with Nagios, page 404.

19.4 The Graphics Specialist drraw
From the RRD databases, generated for example by Perf2rrd or Nagios-graph, the CGI script drraw creates interactive graphics—simple ones relatively quicky, whereas for more complex ones you need to know a bit more about the RRDtools.[200]
19.4.1 Installation
For the drraw installation, you need to obtain the current tar file from http://www.taranis.org/drraw/ and unpack it to its own subdirectory in the CGI hierarchy[201] on the Web server:
linux:~ # cd /usr/lib/cgi-bin
linux:lib/cgi-bin # tar xvzf /path/to/drraw-2.1.1.tar.gz
drraw-2.1.1/
...
drraw-2.1.1/drraw.cgi
drraw-2.1.1/drraw.conf
drraw-2.1.1/icons/
...
The directory created by this is then renamed to drraw:[202]
linux:lib/cgi-bin # mv drraw-2.1.1 drraw
drraw.cgi itself requires, apart from Perl, the Perl CGI module (CGI.pm), and the RRDtools, from at least version 1.0.47; nothing will work below version 1.0.36. If your distribution does not include a current version, you should obtain the sources from http://www.rrdtool.org/ and compile them yourself:
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /path/to/rrdtool-1.0.49.tar.gz
...
linux:local/src # cd rrdtool-1.0.49
linux:src/rrdtool-1.0..49 # ./configure
...
linux:src/rrdtool-1.0..49 # make
...
linux:src/rrdtool-1.0..49 # make install
...
linux:src/rrdtool-1.0..49 # make site-perl-install
The CGI script drraw.cgi uses the Perl module RRDs, which after the installation with make site-perl-install, is found automatically.
19.4.2 Configuration
The drraw configuration is contained in the file drraw.conf:
linux:cgi-bin/drraw # egrep -v '^#|^$' drraw.conf
...
%datadirs = ('/var/lib/rrd' ⇒ '[RRDbase]',
);
$vrefresh = '120';
@dv_def = ('end - 6 hours', 'end - 28 hours', 'end - 1 week', 'end - 1
month', 'end - 1 year');
@dv_name = ('Past 6 Hours', 'Past 28 Hours', 'Past Week', 'Past Month',
'Past Year');
@dv_secs = (21600, 100800, 604800, 2419200, 31536000);
$saved_dir = '/var/lib/drraw/saved';
$tmp_dir = '/var/lib/drraw/tmp';
...
The extract shown specifies the RRD repository (here: /var/lib/rrd) as the most important detail, but several directories can also be specified:
%datadirs = ('/var/lib/rrd' ⇒ '[RRDbase]',
 '/data/rrd' ⇒ '[RRDdata]',
);
The text in square brackets (e.g., [RRDbase]) appears later on the Web interface, which allows a distinction to be made between various different repositories. The variables @dv_def, @dv_name, and @dv_secs influence the layout and number of graphics.
The configuration shown above generates one graphic more than the standard configuration. This represents the past six hours: the extended statement 'end--6 hours' in @dv_def describes the time period for rrdtool (see man rrdgraph), in @dv_name the representation is given a suitable title with 'Past 6 Hours', and @dv_secs contains the six hours, converted into (21600) seconds, displayed by drraw as a time period in a separate graphic.
The repository must be readable for the user with whose rights the Web server is running, and the directories specified in $saved_dir and $tmp_dir must also be readable. If a user other than www-data runs this, the following command must be adapted accordingly:
linux:~ # mkdir -p /var/lib/drraw/{saved,tmp}
linux:~ # chown -R www-data.www-data /var/lib/drraw
Data arrives in the temporary directory $temp_dir, whose contents can be deleted at any time, whereas in $saved_dir drraw stores configuration data which the program needs in order to access already created graphics later on. This data must not be lost.
drraw implements asimple access protection in three stages: read-only (0), restricted editing (1), and full access (2). Users logged in to the Web server automatically obtain level 2. Nonauthorized users are treated as guests and assigned level 0. To avoid the hassle with authentication at the beginning, you can grant the user guest full access via the following directive in the configuration file:
%users = ('guest' ⇒ 2);
19.4.3 Practical application
The CGI script in the CGI directory of the Web server can be addressed through the URL http://nagiosserver/cgi-bin/drraw/drraw.cgi.

Figure 19-2. The ddraw start menu
New graphics are generated in the menu item Create a new graph in the start picture, which is shown in Figure 19-2. The dialog shown in Figure 19-3 allows the appropriate RRD database to be selected. Using a regular expression[203] in the Data Source filter regexp field, the data sources available can be further restricted; this expression can also be a simple literal text, such as sap-12.

Figure 19-3. Selecting the data source
Once you have chosen an RRD database, you just need to specify the round-robin archive (RRA) to be used. Each of these archives saves data in a particular form, processed with a consolidation function: the AVERAGE function averages all measurement data that accumulates in a measurement period, MIN saves only the minimum value of the data in an interval, and MAX saves only the maximum. Since the original data is lost, the archives must be specified when the round-robin database is created; maximum values can only be recalled later if this was taken into account at the time.
If you cannot remember what archives exist, you can display them using the button RRD Info for selected DB. Clicking on the Add DB(s) to Data Sources button takes you to a dialog where you first have to scroll down a bit to reach the item Data Source Configuration (Figure 19-4). There you can fine-tune the desired graph—now or later. You can define your own colors, and whether a line or a surface will be shown. You should only make use of the other possibilities if you are familiar with the concepts of the RRDtools and the way they work[204]
The Update button provides a preview of the finished graphic, which at the same time reveals the rrdtool options used (Figure 19-5). When you save, with Save Graph, you obtain a link in the form
http://nagiosserver/cgi-bin/drraw/drraw.cgi?Mode=view;Graph=11149589.4932
with which the graphic can be accessed at any time. Alternatively you can now find the graphic in the drraw starting menu under All Graphs.

Figure 19-4. Fine-tuning the graphic configuration

Figure 19-5. Preview and specifying the rrdtool options

Figure 19-6. The finished graphic represents different time periods
The link mentioned when you save a graphic can be recorded in a service-extinfo object, making it directly accessible through the Nagios interface:
define serviceextinfo{
 service_description PING
 host sap-12
 notes_url /nagiosgraph/drraw/drraw.cgi?Mode=view;Graph=11149589.4932
 icon_image graph.gif
 icon_image_alt View graphics
}
With templates and dashboards, drraw includes other features, which cannot be discussed in detail here, for reasons of space. Templates allow several sources of the same type to be shown in the same graphic. What these are can be specified in Create a new Graph (see Figure 19-3). Since you can only add one source at a time there, you must click the Add button for each separate source, before moving on to the next one.
A dashboard presents a display containing several preview graphics. If you click on one of the graphics, you are shown the detailed representation. The interactive menu Create a Dashboard contains brief instructions where you can obtain help on the two features.

[200] Apart from the documentation on the homepage http://www.rrdtool.org/, the tutorial included (man rrdtutorial) is a useful starting point, as well as the man page man rrdgraph.
[201] Which directory this is depends on the distribution or Apache configuration you are using.
[202] A symbolic link would also be possible, but then Apache must be configured so that it follows symbolic links, which is normally not automatically the case.
[203] POSIX regular expression; see man 7 regex.
[204] There are a number of tutorials on the homepage of the RRDtools author, Tobias Oetiker, at http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/tut/index.en.html.

19.5 Automated to a Large Extent: NagiosGrapher
NagiosGrapher from Netways, the host of The Nagios Exchange Platform http://www.nagiosexchange.org/, is a powerful representation tool for performance data, but already a very powerful one. This also saves data in round-robin databases and uses the RRDtools for processing and representation. It claims to be easy to install and to work automatically to a large extent in contrast to the "competition." The latter promise has so far not been kept; as in Nagiosgraph, you have to configure search patterns in order to interpret the plugin output or performance data correspondingly. The RRD databases are generated by NagiosGrapher automatically; in addition to this, the tool serviceextinfo also generates entries.
As soon as it once recognizes the performance data, you don't have to worry any more about integrating it into Nagios. A reload is sufficient to make the serviceextinfo entries generated in the meantime usable in Nagios. The entries are created "intelligently," so that if you click on the corresponding icon in the service summary (see Figure 19-7 in page 434), you are taken directly to the graphic display of the performance data.
As far as functionality and installation efforts are concerned, NagiosGrapher lies somewhere between Nagiosgraph and Perf2rrd: the initial configuration needed is somewhat more than for Nagiosgraph, but the possibilities of variations in the graphic output are considerably larger, and you do not have to generate each graphic individually, as is the case with Perf2rrd/drraw.
19.5.1 Installation
In addition to the RRDtools (in version 1.2, at least) and the program auto-conf, NagiosGrapher requires a series of Perl modules: CGI, CGI::Carp, Calendar:: Simple,Carp,Data:: Dumper, File::Basename,File::Copy, GD, IO::Handle, Image::Magick, POSIX, RRDs, Storable, Time::HiRes, Time :: Local, and URI::Escape.
There are two alternatives for installing them, namely from the packages included in the distribution or from CPAN. On Debian "Etch" and comparable Debian-based systems, you have all the modules if you select the packages autoconf,rrdtool,perl-modules,libcalendar-simple-perl,libgd-gd2-perl,perlmagick,librrds-perl, and liburi-perl for installation. In other distributions you must search for the above-mentioned modules, preferably using the graphic package installer in the distribution. You can see whether you have installed all the required modules by running make testdeps after the configure command. Installing each of the most current module versions from the CPAN is done with the command make fixdeps.
The NagiosGrapher sources can be obtained from NagiosExchange,[205] and they are unpacked into the directory /usr/local/src:
linux:~ # cd /usr/local/src
linux:local/src # tar xvjf/path/to/NagiosGrapher-1.6.1.tar.bz2
...
linux:local/src # cd NagiosGrapher-1.6.1
linux:src/NagiosGrapher-1.6.1 # autoconf
The command autoconf generates a configure script. Before you run this, edit the file config.layout, which provides various layouts. In the NagiosGrapher documentation, this term means the definition of all installation paths that are required.
config.layout contains a series of distribution-dependent suggestions that need to be changed in certain aspects in order to comply with the conventions in this book. For this purpose it is best if you copy the section that matches your distribution and rename it to <Layout nagiosbook> and modify a number of entries.[206] For Debian "Etch," the following entries apply (the changed values are shown in bold print):
config.layout
<Layout nagiosbook>
 prefix: /usr/local/nagios
 nagios_config: /etc/nagios
 nagios_config_cgi: /etc/nagios/cgi.cfg
 nagios_images: ${prefix}/share/images
 nagios_images_logos: ${prefix}/share/images/logos
 nagios_folder_cgi: ${prefix}/sbin
 nagios_contribution: ${prefix}/contrib
 perl_inc: ${prefix}/perl/lib
 ng_config: /etc/nagios
 ng_config_sub: ${ng_config}/ngraph.d
 ng_daemon: /var/nagios_grapher
 ng_srvext_file: /etc/nagios/serviceextinfo.cfg
 ng_srvext_dir: /etc/nagios/serviceext
 ng_interface_pipe: /var/nagios/rw/ngraph.pipe
 ng_perffile_path: /var/nagios/
 ng_logfile: /var/nagios/ngraph.log
 ng_rrd: /var/lib/rrd/nagios_grapher
 ng_rrd_font: /usr/share/fonts/truetype/ttf-dejavu/DejaVuSansCondensed.ttf
 ng_cgi: /nagios/cgi-bin
 ng_logos: /nagios/images/logos
 ng_pid_file: ${ng_daemon}/nagios_grapher.pid
 init_script_dir: /etc/init.d
 logrotate_conf_dir: /etc/logrotate.d
</Layout>
The path for the Perl modules defined in the parameter perl_inc corresponds in this case to the directory suggested by Ton Voon for the Perl module Nagios::Plugin (see The method using the CPAN).
The new layout is included in the configure script:
linux:src/NagiosGrapher-1.6.1 # ./configure --with-layout=nagiosbook
...
You can run make
testdeps to check whether all dependencies, especially the ones for the Perl modules, have been met:
linux:src/NagiosGrapher-1.6.1 # make testdeps
/usr/bin/perl ./tools/testdeps.pl
Checking Data::Dumper ... found
...
Checking IO::Handle ... found
Checking URI::Escape ... found
Checking Calendar::Simple ... not installed!
make: *** [testdeps] Error 1
If an error occurs, as in this example, you must install the appropriate module (here Calendar::Simple). This can be done from the CPAN with the command
linux:src/NagiosGrapher-1.6.1 # make fixdeps
...
For Debian-based distributions, the package naming scheme is quite simple: The Perl module Calendar:: Simple is turned into the package lib-calendar-simple-perl, which is installed with apt-get or aptitude:
linux:src/NagiosGrapher-1.6.1 # apt-get install libcalendar-simple-perl
...
Running make testdeps again shows whether all requirements have now been met.
An already installed NagiosGrapher is updated with make update, since the make install, intended for a new installation, does not take account of already existing configuration files and simply overwrites them.[207]
make install creates all the necessary directories, ensures that the correct access permissions are set, and copies all the files to where they should go:
linux:src/NagiosGrapher-1.6.1 # make install
mkdir -p /etc/nagios/serviceext
chown -R nagios /etc/nagios/serviceext
mkdir -p /var/lib/rrd/nagios_grapher
chown -R nagios /var/lib/rrd/nagios_grapher
...
==
Just a few steps to run the grapher ...
...
The output of make ends with some instructions on the configuration of NagiosGrapher and of Nagios, which we will examine in more detail in 19.5.1 Installation and Advanced options of graphic reprocessing.
A core component of NagiosGrapher is the daemon collect2.pl, which is started via the startup script nagios_grapher in /etc/init.d:
linux:~ # /etc/init.d/nagios_grapher start
So that the daemon starts automatically on system start, corresponding symlinks are set in distributions that use the system V init. On Debian/Ubuntu this is done by the system script update-rc.d:
linux:~ # update-rc.d nagios_grapher defaults 98
OpenSUSE includes the script insserv for this purpose:
linux:~ # insserv nagios_grapher
In Fedora this task is performed by chkconfig:
linux:~ # chkconfig --add nagios_grapher
 linux:~ # nagios on
19.5.2 Configuration
The configuration file ngraph.ncfg
The configuration file ngraph.ncfg contains a global config section with paths and general settings. This is followed by an include instruction with the parameter cfg_dir, which, as in Nagios, integrates all the configuration files located in the directory specified. In contrast to Nagios, the configuration files for NagiosGrapher all end in .ncfg.
It can be seen even from a quick glance that the syntax complies with the convention used by Nagios:
/etc/nagios/ngraph.ncfg
define config {
 interface file
 perffile_path /var/nagios/
 pipe /var/nagios/rw/ngraph.pipe
 port 5667
 buffer 1024
 pidfile /var/nagios_grapher/nagios_grapher.pid

 user nagios
 group nagios

 step 300
 heartbeat AUTO

 rrdpath /var/lib/rrd/nagios_grapher/
 tmppath /tmp/nagiosgrapher/

 fontfile /usr/share/fonts/truetype/ttf-dejavu/DejaVuSansCon
densed.ttf

 serviceext_type MULTIPLE
 serviceextinfo /etc/nagios/serviceextinfo.cfg
 serviceext_path /etc/nagios/serviceext

 url /nagios/cgi-bin/graphs.cgi
 #notes_url /wiki/index.php/$HOSTNAME$#$SERVICEDESC$
 notes_url

 nagios_config /etc/nagios
 cgi_config /etc/nagios/cgi.cfg
 icon_image_tag dot.png' border="0"><A TARGET="_blank" HREF="g
raphs.cgi?###URL###"><img src='###IMAGESRC###' '
 icon_image_src /nagios/images/logos/graph.png
 icon_image_script /nagios/cgi-bin/rrd2-system.cgi?###URL###&start=-5
400&title=Actual&width=20&height=20&type=AVERAGE&only-graph=true
 icon_image_static true

 log_file /var/nagios/ngraph.log
 log_level 1023

 rrd_color_background ffffff
 rrd_color_font 333333
 rrd_color_arrow ff0000
 rrd_color_frame ffffff
 rrd_color_grid
 rrd_color_canvas ffffff
 rrd_color_shadea c0c0c0
 rrd_color_shadeb c0c0c0

 fe_use_browser_all false
 fe_use_browser_for nagiosadmin
 fe_use_browser_url false
 fe_use_timefilter true
 use_authentication true
 ...
}
Includes
cfg_dir=/etc/nagios/ngraph.d
The config section contains the following parameters:
interface
This defines the type of connection to Nagios. Possible connections are pipe, network, and file. For the pipe type, Nagios and the collect2.pl daemon communicate via a named pipe (see the pipe parameter); for the network type, Nagios sends the performance data via the UDP transport protocol over a network socket (see parameter port).

In contrast to the interface types just described, the file type (available from version 1.7) makes use of the template mechanism,[208] which means that Nagios writes the performance data to a file which is periodically evaluated by the daemon collect2.pl. This makes possible, for the first time, bulk processing of performance data, thus saving resources. The default interface type is pipe up to version 1.6, and file from version 1.7.

perffile_path
This defines the directory for the file to which Nagios writes all performance data via the template mechanism.

pipe
This defines a named pipe to which Nagios writes data with the program fifo_write and from which the collector script collect2.pl reads them out again. The named pipe is created automatically by make install from version 1.6.1.

port
This specifies the UDP port for the network communication type. The default is 5667.

buffer
This determines the size of the buffer for sending performance data via UDP in bytes. The default is 1024 bytes.

pidfile
This defines the file to which NagiosGrapher writes its own process ID on starting.

user, group
These define the user and group with whose permissions the daemon collect2.pl runs. Here it makes sense to specify the user and group with whose permissions Nagios is working.

step
This defines the step size in seconds for the RRD database. All values recorded during this period are summarized by the RRDtools in a single value. step therefore also describes the smallest time resolution of data in the RRD database. The value only has an effect on newly created RRD databases, and a modification made later on has no effect on existing databases.

heartbeat
The heartbeat defines a time period in seconds, during which the RRD database always expects data. If no measured value at all arrives during this period, NagiosGrapher generates an invalid entry (nan, not a number).

In order for valid entries to materialize in the above example, at least one measured value must arrive every 600 seconds. Since the resolution is 60 seconds, the database contains ten entries for the period of the "heartbeat." If one of these values is missing, NagiosGrapher simply replaces it with the last valid one. If just one measured value arrives in ten minutes, it will be recorded ten times in the database.

rrdpath
This specifies the directory for the RRD databases. It must be writable for the user nagios and (along with the database files) readable for the Web server user. The directory is created automatically during the installation of NagiosGrapher.

tmppath
This defines where NagiosGrapher temporarily saves internal XML files.

fontfile
This specifies the font file for the font used by the RRDtools for labeling the graphics.

serviceext_type
This describes how the serviceextinfo objects are created. With the SINGLE type, NagiosGrapher writes everything to the file specified in serviceextinfo.

Nagios 2.0 can also read directories recursively, and in this case it is better to use the MULTIPLE type. Then NagiosGrapher creates a separate file for each host with the corresponding serviceextinfo object. The directory is specified with the serviceext_path parameter. This must be made known to Nagios through the cfg_dir directive.

url
This contains the path to the CGI script graphs.cgi from the point of view of the Web server (a path starting from the server root) or of the browser (that is, the complete URL).

notes_url
NagiosGrapher automatically generates serviceextinfo objects; it is useful to also be able to set the parameter notes_url (16.4.2 Extended service information from page 366), for example, to generate a service-related link to a Wiki entry.

nagios_config
This reveals to NagiosGrapher where the standard configuration file of Nagios is located.

cgi_config
This specifies the Nagios CGI configuration file. NagiosGrapher uses this to find out who, apart from the contact groups, has the right to query information on all hosts.

icon_image_tag
This parameter corresponds to the entry that is later to be found in the serviceextinfo object as the icon_image parameter. In the serviceextinfo object, NagiosGrapher replaces the text ###URL### with the host and service names. The entry ###IMAGESRC###, on the other hand, is replaced by NagiosGrapher with the contents of the parameter icon_image_src.

Here the program outwits Nagios with a trick: dot.png is a graphic that is one pixel in size, which is invisible on the screen. To create a second, visible icon, graph.png, around it, a hyperlink is set to the CGI script graphs.cgi.

Normally if you click on an image specified in icon_image, Nagios will take you to the Extended info page, and the graphic can be reached at url (Nagios: notes_url) only with another mouse click. With the trick used here, you can do this directly.

The specification following icon_image_tag must be written on a single line. Figure 19-7 shows the icon graph.png, which is visible on the Nagios interface, thanks to the automatically generated serviceextinfo objects.

Figure 19-7. The NagiosGrapher icon (arrow) in the Nagios Web interface indicates a time-related evaluation for this service

icon_image_static
This specifies whether the icon integrated in Figure 19-7 is generated statically or dynamically. Possible values are true (static icon) or false (dynamically generated icon).

icon_image_src
This specifies astatic icon, which NagiosGrapher integrates into icon_image_tag.

icon_image_script
This defines a script that generates a mini-view of a graph rather than a dynamic icon.

log_file
This defines the log file to which the NagiosGrapher writes information. If you want log rotation, you have to set it up yourself, as NagiosGrapher does not clean up automatically. Because Nagios requries write permissions for the file, it is better stored in the Nagios var directory (in this case: /var/nagios).

log_level
This parameter specifies what information the log file should contain. Possible values are 1 (detected services and values), 2 (performance data delivered by Nagios which has not been recognized by NagiosGrapher), 4 (program states), 8 (information on the serviceextinfo object), 16 (RRD actions), and 32 (input which is read from the pipe). For more extensive debugging, there are the values 64 (details of how regular expressions are parsed) and 128 (advanced information on how the configuration files are parsed).

If you want to log several of these information types, you just add the relevant values together, so the most extensive output is obtained with 255; page 445 shows an example of this. It is recommended that you only use these log levels for debugging purposes, and you should normally use 0 or 4.

rrd_color_*
The rrd_color options bring color to the Web interface (Figure 19-8): rrd_color_background defines the background color for the entire image, rrd_color_font the font color, rrd_color_arrow the color of the arrow tips, rrd_color_frame the frame color for the keys, rrd_color_grid the grid color, and rrd_color_canvas the background of the diagram itself. rrd_color_shadea defines the colors for the top and left of the frame, and rrd_color_shadeb does so for the right and bottom of the frame. Colors are specified as RGB values in hexadecimal notation, with a preceding #, as is the norm for Web pages. Changes to these options take effect immediately the next time the Web page is reloaded.

Figure 19-8. The influence of the rrd_color_* color options

fe_use_browser_all
From version 1.2, NagiosGrapher provides a method of switching from the display of a specific service to that of other services for any host at all. To do this it integrates a selection window into the graphs.cgi display (see Figure 19-9).

The value 1 activates the pulldown menus host and service, 0 hides them.

Figure 19-9. Whether NagiosGrapher shows the host and services fields is determined by the fe_use_browser parameters

fe_use_browser_for
This option allows particular users to use the host/service selection. Several users can be specified, separated by commas. So that only the users specified here can see the selection fields for host and service, fe_use_browser_all must also be set to 0 at the same time.

fe_use_browser_url
This option allows the selection fields for host and service to be inserted through the URL graphs.cgi?browser=l, provided the value is 1. This is not possible if the value is 0.

fe_use_timefilter
This controls whether the time selection via Start and End appears in the browser menu (see Figure 19-9 in page 436). The value true displays the selection, false hides it.

use_authentication
This defines whether NagiosGrapher should take the result of authentication by Nagios into account or not. The value true allows the observer only to access hosts and services for which he is responsible as the contact. The value false switches off authentication entirely, so that everyone has access to everything.

The cfg_dir configuration parameter already mentioned in 19.5.1 Installation defines a directory containing additional configuration files, in particular the definition of the various graphs:
cfg_dir=/etc/nagios/ngraph.d
NagiosGrapher examines it recursively for configuration files of any name; they just need to end in .ncfg. The parameter must stand outside the config{} block; there has to be an = sign between the parameter and the value.
Configuring the graphics—the basic principle
ngraph objects are used to define what data is to be extracted and written to an RRD database, but the objects also contain information on the display form. Like Nagios, NagiosGrapher saves the information temporarily in a cache file, which is why the data collection script collect2.pl must be restarted after every change to a configuration file with /etc/init.d/ nagios_grapher restart. collect2.pl also updates the object cache when this is done.
During its installation, NagiosGrapher provides a number of templates for ngraph objects; these can be found in the subdirectories standard and extra below /etc/nagios/ngraph.d/templates. These templates all end in .ncfg_disabled so that they are not considered by NagiosGrapher. In order to use them, the file extension is renamed:
nagios@linux:nagios/ngraph.d$ cp \
templates/standard/check_ping.ncfg_disabled ./check_ping.ncfg
The example in check_ping.ncfg_disabled, however, only works with check_ping and not with check_icmp (see 6.2 Reachability Test with Ping). So that NagiosGrapher can graphically display the average response time rta (round trip average) and the pl (packet loss) from the performance data of the check_icmp plugin,
nagios@linux:libexec/nagios$./check_icmp -H linux01
OK - linux01: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=
0%;40;80;;
the following ngraph objects are used:
check_icmp.ncfg
...
Ping Packet loss
define ngraph{
 service_name PING
 graph_perf_regex pl=([0-9]*)%
 graph_value Loss
 graph_units %
 graph_legend Packet Loss
 graph_legend_eol none
 page Packet Loss
 rrd_plottype LINE2
 rrd_color ff0000
}
Ping RTA
define ngraph{
 service_name PING
 graph_perf_regex rta=([0-9]*\.[0-9]*)
 graph_value RTA
 graph_units ms
 graph_legend Time to answer
 page RTA
 rrd_plottype AREA
 rrd_color 00a000
}
service_name
This consists of a regular expression,[209] with which the NagiosGrapher identifies the service to be displayed in the data passed on. If the service description in service objects that use the same plugin is provided with the same prefix, one ngraph definition is enough for all: Disk_ matches both Disk_usr, as well as Disk_var or Disk_tmp. In order for this to work, the performance data must be structured identically, which is always the case if the same plugin is used.

graph_perf_regex
With this regular expression, NagiosGrapher finds the value being searched for in the performance data. The pattern in the round brackets must match the value itself.

If a plugin does not provide any performance data, you can use graph_log_regex instead. The search pattern specified there is applied by NagiosGrapher to the normal text output of the plugin.

graph_value
The name of the variable in the RRD database must be unique for each service and may not contain empty spaces or special characters (exception: _ is allowed).

graph_units
This parameter defines the unit of the y axis.

graph_legend
This contains the key for the variables.

graph_legend_eol
This determines whether and how a line break should be inserted into the legend after the entry for these graphs. Possible values: left (line break, line is left-aligned), right (line break, line is right-aligned), center (line break, line is centrally aligned), justify (line break, fully aligned), and none (no line break, left-aligned). You can append to all values the number of empty spaces to be added, separated from it by a colon: none: 20 does not create a line break, but the entry is followed by 20 empty spaces.

graph_legend_max
This defines a column width for the legend. Instead of formatting this manually with empty spaces, using graph_legend_eol, this parameter specifies how wide the column for a legend entry should be. Entries that are longer are truncated.

page
This optional parameter ensures that NagiosGrapher displays the variables in different diagrams if the standardization does not match. All values which are to be used in a single graphic are given the same page entry. For the selection of the "page" to be displayed, the CGI script contains its own page entry field (see Figure 19-10).

Figure 19-10. The average response time to pings, represented by NagiosGrapher

For the two check_icmp outputs, it is recommended that the percentage of Loss, which is in the value range from 0 to 100, be separated from RTA, which can be several thousand milliseconds.

If you leave out the page parameter, both graphs—the one for Packet Loss and that for RTA—are displayed in one graphic.

rrd_plottype
This parameter defines which drawing function the RRDtools should use:

	LINE1: simple line,
	LINE2: double line,
	LINE3: extra-fat line,
	AREA: filled out surface,
	STACK: adds the current value to the previous one. In this case the display (line or surface) depends on the previous value.

rrd_color
This is the color of the graph in RGB hexadecimal notation (rrggbb).

Figure 19-10 shows how NagiosGrapher displays the average response time RTA for the PING service on the host sap-13. The respective output page can be selected at the top of the Web form. In addition you can adjust the width: and height: of an individual graphic, as well as the Refresh rate.
Starting with version 1.7, NagiosGrapher also has a zoom function: If you click on one of the graphics in Figure 19-10, you can see it in greater detail. You can select a time period in the diagram with the mouse, and NagiosGrapher will display the diagram for this period after the mouse button has been released.
Advanced options of graphic reprocessing
You may not always want the measured values to be displayed directly. With the CDEF feature of the RRDtools you can add new values that are calculated from the ones recorded.
As an example, we will use the output of the check_disk plugin (7.1 Free Hard Drive Capacity, page 158), which determines amount of a file system occupied:
DISK OK - free space: /usr 287 MB (19%);| /usr=1225MB;1359;1465;0;1511
The used space is shown as an dark grey area, the free capacity as a light grey one. The performance data provides the current used space (1225MB) and uncritical warning limits, as well as the minimum and maximum (the size of the file system). The capacity that is still free is determined as the difference between the maximum and the current occupied space. In addition, the unit of MB is somewhat unfortunate: the graphic would show 10 GB as 10k MB. For this reason you first determine the value that the plugin returns, so that you can then scale it as you wish:
(1) readout current occupancy of hard drive space,
but do not show it as a graphic
define ngraph{
 service_name fs_
 graph_perf_regex =([.].+)MB;[.].+;[.].+;[.].+;[.]. +
 graph_value disk_used
 graph_units Bytes
 graph_legend used space
 rrd_plottype AREA
 rrd_color 00a000
 hide yes
}
The regular expression specified after service_name matches all service descriptions that start with fs_ (short for file system), that is, fs_root, fs_usr, fs_var, fs_tmp, etc. The parameter hide ensures that the CGI script does not show the graphs. Instead, NagiosGrapher just stores the data in a database.
In the second step, the values determined are standardized with the RRD feature CDEF:
(2) display used hard drive space in scaled form
define ngraph{
 service_name fs_
 type CDEF
 graph_value DISK_USED
 graph_legend used space
 graph_calc disk_used,1024,1024,*,*
 rrd_plottype AREA
 rrd_color 666666
 hide no
}
type identifies the entry as a CDEF definition, which calculates new values from already existing ones. graph_value must be unique, which is why the entry here is given its own name.
graph_calc finally processes the data. This parameter expects the instructions in reverse Polish notation (RPN).[210] In this, the values to be processed are pushed, in turn, onto a stack, to be removed and operated on later.
Adding 2 + 3 is noted in RPN accordingly as 2, 3, +. In the example we multiply the variable defined in Advanced options of graphic reprocessing, disk_used, by 10242 so that the result is in bytes. hide no now ensures that this value is displayed.
To display available space according to the same pattern, we first determine the entire space available (disk_max), which NagiosGrapher should not display, calculate the difference between disk_max and the above disk_ used value, and convert the result to bytes:
(3) defining the space available,
but not displaying it in the graphic
define ngraph{
 service_name fs_
 graph_perf_regex =[.].+MB;[.].+;[.].+;[.].+;([.].sb>+)
 graph_value disk_max
 graph_legend max space
 rrd_plottype LINE2
 rrd_color 0000a0
 hide yes
}

(4) calculate and display free space
define ngraph{
 service_name fs_
 type CDEF
 graph_value DISK_MAX
 graph_legend free space
 rrd_plottype STACK
 rrd_color CCCCCC
 graph_calc disk_max,disk_used,-,1024,1024,*,*
 hide no
}
The corresponding formula is (disk_max-disk_used)x10242 The plot type STACK ensures that the value determined from the previous disk_used value is placed on top of this. Figure 19-11 shows a corresponding output: The lower part of the screen represents the current used space on the file system for the past six hours and the past day and week, and the top part shows the remaining free hard drive space. The graph also contains a monthly and a yearly view, not shown here.
At this point it should again be emphasized that with this definition, NagiosGrapher automatically records all services that begin with fs_ and are matched by the search pattern, writes the data to an RRD database, and generates a corresponding serviceextinfo entry, which appears automatically in the Web interface after a Nagios reload (see Figure 19-7 in page 434).
After changes have been made to the configuration file ngraph.ncfg, the file collector collect2.pl must also be restarted:
linux:~ # /etc/init.d/nagios_grapher restart

Figure 19-11. Displaying the calculated load data
Nagios configuration
Nagios passes on data for NagiosGrapher through the command interface, that is, each individual result leads to an external command being started. Correspondingly, the Nagios main configuration file contains the following parameter:
/etc/nagios/nagios.cfg
...
process_performance_data=1
service_perfdata_command=process-service-perfdata
The definition of the command object process-service-perfdata— which is best achieved by creating a separate file with the name process_service_perfdata_n.graph.cfg—depends on the interface type used.
For interface pipe, the program fifo_write is used, whereas for interface network, NagiosGrapher requires the program udpecho.
The definition of the command with fifo_write is as follows:
process_service_perfdata_ngraph.cfg
...
define command{
 command_name process-service-perfdata
 command_line /usr/local/nagios/contrib/fifo_write /var/nagios/rw/ngr
aph.pipe '$HOSTNAME$\t$SERVICEDESC$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$\
n' 3
}
...
process-service-perfdata calls the script fifo_write.pl, which is given three arguments as parameters: the named pipe, a string with the performance details, and a timeout in seconds. The latter ensures that the script aborts the action if the data cannot be written within three seconds. The command_line must, as usual, be writen on one line.
For the program udpecho, the definition of the command is somewhat simpler:
process_service_perfdata_ngraph.cfg
...
define command{
 command_name process-service-perfdata
 command_line /usr/local/nagios/contrib/udpecho
}
...
udpecho does not need any parameters: It retrieves the required information from the environment variables NAGIOS_HOSTNAME, NAGIOS_SERVICE-DESC, NAGIOS_SERVICEOUTPUT, and NAGIOS_SERVICEPERFDATA. Nagios has to make these available with enable_environment_macros=1 (see A.1 The Main Configuration File nagios.cfg) so that udpecho can provide NagiosGrapher with usable data.[211]
For the file interface type, the command process-service-perfdata has another meaning: It is not called for every check result, but rather shifts the file into which Nagios writes all performance data via the template mechanism:
process_service_perfdata_ngraph.cfg
...
define command{
 command_name process-service-perfdata
command_line mv /var/nagios/service-perfdata /var/nagios/service-per
fdata.$TIMET$
}
...
The current timestamp is simply appended to the file name service-perf-data. The daemon collect2.pl searches for all files called service-perfdata.time_stamp from the specified directory and processes these.
What data is written to the file by Nagios is specified by service_perf data_file_template in nagios.cfg:
/etc/nagios/nagios.cfg
...
service_perfdata_file_processing_command=process-service-perfdata
service_perfdata_file=/var/nagios/service-perfdata
service_perfdata_file_template=$HOSTNAME$\t$SERVICEDESC$\t$SERVICEOUTPUT
\tSERVICEPERFDATA\tTIMET$
service_perfdata_file_mode=a
service_perfdata_file_processing_interval=60
...
Compared to the variation with fifo_write.pl, Nagios now also passes on a timestamp for each check. This is necessary because the data are not processed immediately, but periodically at intervals of service_perfdata_ file_processing_interval—this is 60 seconds in our example.
If you want to squeeze a little more performance out of this, you can select a temporary file system such as /dev/shm for the service-perfdata* files. The file then is not written to the hard drive, but remains in the main memory of the Nagios server.
As usual, changes to the Nagios configuration require a reload:
linux:~ # /etc/init.d/nagios reload
The success of this can be clearly observed in the log file if you set the loglevel to 255 (see The configuration file ngraph.ncfg).[212] For the sake of clarity we will omit the timestamp at the beginning of the line:
CFG: buffer ⇒ '1024'
 CFG: cgi_config ⇒ '/etc/nagios/cgi.cfg'
 ...
 PRG: Starting up collect2.pl (PID: 25003) ...
 PRG: using UDP socket (port: 5667)
 ...
 NET: got udp message from localhost:32783
 PIPE: swobspace PING OK - 192.168.1.9: rta 0.104ms, lost 0% rt a
 =0.104ms;200.000;500.000;0; pl=0%;20;60;;
 REGEX: 2 blocks for 'PING' found.
 REGEX: graph_value=RTA
 REGEX: output=perfdata
 REGEX: regex=m/rta=([0-9]* [0-9]*)/i
 REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;
 REGEX: match=0.104
 REGEX: graph_value=Loss
 REGEX: output=perfdata
 REGEX: regex=m/.*pl=([0-9]*)/i
 REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;
 REGEX: match=0
 VALUES: [swobspace][PING]: RTA=0.104 Loss=0
 RRD: rrdtool update /var/lib/rrd/nagios_grapher/swobspace/f66ffe61c885 d
 e2d8b6d0c41ff444b39.rrd --template=RTA:Loss N:0.104:0
...
The label PRG identifies program states, such as the restart here. PIPE reproduces in full all the data taken from the named pipe (host name, service description, plugin output, and performance data, each separated by a tab). REGEX shows how the search for matching entries takes place and how the values are extracted from them. RRD reveals the commands performed with rrdtool and VALUES shows the recognized values(PING).

[205] http://www.nagiosexchange.org/42;195
[206] Starting from NagiosGrapher 1.7, the file config.layout already contains the entry <Layout nagiosbook>.
[207] Even when running make update, it doesn't hurt for you to back up the configuration files beforehand.
[208] See 19.1.1 The template mechanism in page 405
[209] Since we have a Perl script on our hands, this is, of course, a Perl regexp.
[210] An introduction to RPN can be found at http://people.ee.ethz.ch/˜oetiker/webtools/rrdtool/tut/rpntutorial.en.html.
[211] Environment macros are described in D.1.8 Using standard macros about the environment from page 631.
[212] In general: 2n - 1 with n≥8

19.6 Smooth Plotting with PNP
PNP is not PerfParse—with this recursive acronym, which is an allusion to the PerfParse tool (not described in this book)—the authors of PNP, Jörg Linge and Hendrik B$aUcker, are clearly heralding the virtues of their own tool for processing performance data: It is allegedly very easy to install (in contrast to PerfParse) and can be used (almost) without configuration, yet provides extensive configuration options for advanced usage.
Besides providing the usual graphs for a specific check, PNP also creates an overview of all graphs belonging to one host. An AJAX-based input field allows host names to be typed in. The names are auto-completed during input, and a match list of alternative completions is displayed. The graphics have a sophisticated appearance and can be exported to PDF format.
PNP takes the performance data directly from the area reserved for the plugin output, that is, only plugins that display performance data in the standard format can be used. In contrast to NagiosGrapher, no data can be extracted from the normal text output. To compensate for this slight limitation, PNP outputs the performance data for all plugins automatically. If PNP does not recognize the plugin, it uses a generic template.
On the PNP homepage[213] you can find addresses of English mailing lists[214] and a German-language forum, where you can, however, ask questions in English.[215] The English homepage is http://www.pnp4nagios.org/pnp/.
The following description refers to PNP version 0.4; older versions do not have all the features described here.
19.6.1 Installation
The requirements for installation are quite minimal: Apache, Perl (without any special modules), PHP4 from version 4.3.0 or PHP5, and all the RRDtools.[216] If possible you should install the Perl module RRDs from the Perl package included with your distribution (e.g., librrds-perl in Debian). The Perl script process_perfdata.pl, which forwards Nagios performance data to PNP, then accesses the RRD databases directly, without running an external program.
The PNP source code is downloaded from the homepage[217] and is unpacked appropriately in the directory /usr/local/src:
linux:~ # cd /usr/local/src/
linux:local/src # tar xvzf /path/to/pnp-0.4.tar.gz
...
linux:local/src # cd pnp-0.4
linux:src/pnp-0.4 # ./configure --sysconfdir=/etc/pnp
...
Finally, make all compiles the necessary C programs, and make install installs PNP in full. In the configure command, --sysconfdir=/etc/pnp allows for the later installation of the configuration examples in /etc/pnp, in accordance with the conventions used in this book. Other configure options are shown with ./configure --help.
19.6.2 The standard configuration
During the installation of PNP a variety of data is placed in the configuration directory (in this case /etc/pnp), including config.php, the configuration file for the Web interface. There you must first check to see if the paths to rrdtool and to the performance data directory are correctly set:
/etc/pnp/config.php
 ...
 $conf['rrdtool'] = "/usr/bin/rrdtool"
 $conf['rrdbase'] = "/usr/local/nagios/share/perfdata"
 ...
/etc/pnp also contains example configurations for the data collector pro-cess_perfdata.pl, in the files process_perfdata.cfg-sample and rra.cfg-sample. Neither of these are absolutely essential: PNP also functions correctly without any adjustments. But in order to use the data collector you need to rename the files process_perfdata.cfg and rra.cfg and modify them accordingly. If the Perl module RRDs is installed, then it is activated in the file process_perfdata.cfg with USE_RRDS=1:
/etc/pnp/process_perfdata.cfg
 TIMEOUT = 5
 USE_RRDs = 1
 RRDPATH = /usr/local/nagios/share/perfdata
 RRDTOOL = /usr/bin/rrdtool
 CFG_DIR = /etc/pnp/
 RRA_CFG = /etc/pnp/rra.cfg
 RRA_STEP =60
 LOG_FILE = /var/nagios/pnp-perfdata.log
 LOG_LEVEL = 0
The second change (here in bold type) to the sample file refers to the Nagios directory for log files, which in this book is named /var/nagios.
rra.cfg is used as a template for the RRD databases to be newly created. If an existing database is to be modified, it must be deleted; but then all existing data will be lost. The template is a good compromise between length of storage and time resolution: This causes data with a time resolution of one hour to be stored for up to four years, such an RRD database that is about 400 KB in size. Information on settings for RRD databases is provided by the command man rrdcreate.
In the directory /etc/pnp there is also the configuration file npcd.cfg for the Nagios Performance Data C Daemon
npcd and a subdirectory check_ commands for so-called custom templates. Both will be discussed in 19.6.4 Bulk processing of performance data.
Adjusting the Nagios configuration
There are a number of ways in which Nagios can pass on performance data to the PNP data collector process_perfdata.pl. The simplest way is for the system to run a separate program for each event, called service-perf-data-pnp. To do this, performance data processing is switched on in the file /etc/nagios/nagios.cfg with the parameter process_performance_data, and the command to be executed is defined with service_perfdata_command:
/etc/nagios/nagios.cfg
 ...
 illegal_macro_output_chars='~$&|"<>
 # -- perfdata
 process_performance_data=1
 service_perfdata_command=service-perfdata-pnp
 ...
The performance data of various plugins contains names that are set in single quotes. So that these do not get lost in the plugin output, a single quote may not be used in the parameter illegal_macro_output_chars.[218]
The command service-perfdata-pnp runs process_perfdata.pl:
/etc/nagios/global/commands/service-perfdata-pnp.cfg
define command{
 command_name service-perfdata-pnp
 command_line /usr/bin/perl /usr/local/nagios/libexec/process_perfdat
 a.pl
}
The embedded Perl interpreter ePN (see Appendix G in page 669) cannot execute this Perl script, which is why it is called explictly with /usr/bin/perl. If ePN is not compiled into Nagios, you can leave out the /usr/bin/perl path.
The performance data is taken here by process_perfdata.pl via the environment variable NAGIOS_SERVICEPERFDATA, so that environment variables in general must not be switched off.[219]
19.6.3 The PNP Web interface
If you run http://nagios_server/nagios/pnp/index.php you will be taken to the PNP overview page (see Figure 19-12). This displays the data of the first host, in alphabetical order, that is found by PNP. The input field at the top right is implemented with AJAX and shows a hit list, matching the text entered so far, from which the desired host is selected. The accompanying overview page presents all services in a 24-hour view.
This can also be accessed directly via http://nagiosserver/nagios/ pnp/index.php?host=hostname. If you replace hostname with elix01, you will arrive at the overview page for the host of that name (Figure 19-12).

Figure 19-12. All services of elix01 on one page
A mouse click on a service graph or on the accompanying link on the right in the overview causes the selected display to be shown in a different time resolution (Figure 19-13): four hours, one day and (not shown) one week, one month, and one year. The periods presented here by PNP are defined in the configuration file config.php:
$views[0]["title"] = "4 Hours";
 $views[0]["start"] = (60*60*4);

 $views[1]["title"] = "24 Hours";
 $views[1]["start"] = (60*60*24);

 $views[2]["title"] = "One Week";
 $views[2]["start"] = (60*60*24*7);

 $views[3]["title"] = "One Month";
 $views[3]["start"] = (60*60*24*30);

 $views[4]["title"] = "One Year";
 $views[4]["start"] = (60*60*24*365);
The specific title labels can be chosen freely, so you could also use text in other languages. The images themselves cannot be localized, however.

Figure 19-13. System load in PNP: host elix01, service lx-load
The start details specify for how many seconds before a defined reference point the graphic will begin. Normally the current time is used as a reference point, but this can also be selected using the calendar included. To do this, you click the calendar icon (see Figure 19-14), select the end time after Time with a mouse click, and then select the day. Selecting the time takes some getting used to: One click increases the value displayed by one, and holding down the key at the same time reduces the time value displayed. You can also hold down the left mouse button and drag the mouse to the left to increase the value, or drag to the right to decrease it.

Figure 19-14. PNP's calendar function
In order to display a specific service directly, just add the detail svc=servicename to the URL, so that you have http://nagiosserver/nagios/pnp/index.php?host=hostname&svc=servicename.
A particular feature of PNP is that each graphic can be addressed directly, without using HTML or PHP pages. You require the two optional parameters display and view: http://nagiosserver/nagios/pnp/index.php?host=host&svc=servicename&display=image&view=0. display can currently handle only the value image, and for view you enter the index defined in config.php: view=0 refers to the time period that was defined there with $views [0] ["start"] (so this is the default, with a four-hour overview).
Integrating PNP into the Nagios Web interface
To display a single service directly from the Nagios Web interface, in Nagios 3 you need to integrate the following URL as action_url in the service definition:
Nagios 3
define service {
 hostname hostname
 service_description servicename
 ...
 action_url /pnp/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$
}
In Nagios 2.x you require the object serviceextinfo to achieve the same purpose:
Nagios 2.x
define serviceextinfo {
 hostname hostname
 service_description servicedesc
 ...
 action_url /pnp/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$
}
19.6.4 Bulk processing of performance data
The standard configuration discussed calls the command defined in service_perfdata_command for each check. Since the embedded Perl interpreter ePN (see Appendix G in page 669) cannot execute process_perf-data.pl, Nagios has to restart the Perl interpreter for every service whose performance data is to be processed. This takes a toll on resources and, depending on the capabilities of the host and the number of services to be processed, has a negative influence on the performance of Nagios (to measure Nagios performance, see Appendix F from page 653). Nagios then really is brought to its knees, which means that the latency time that passes between the planned starting point and the actual start of a check increases considerably, and Nagios's timetable (the scheduling) gets out of control.
One solution to this is offered by PNP's bulk mode in combination with the Nagios Performance Data C Daemon (NPCD).[220] When this is used, Nagios writes the performance data—formatted by templates (defined in service_perfdata_file_template)—to a file that is regularly renamed by a command in service_perfdata_file_processing_command. NPCD now runs the Perl script process_perfdata.pl only once for each file.
service_perfdata_file_template defines the format in which the data is written to the file specified in service_perfdata_file:[221]
/etc/nagios/nagios.cfg
...
service_perfdata_file_template=DATATYPE::SERVICEPERFDATA\tTIMET::$TIMET$
\tHOSTNAME::$HOSTNAME$\tSERVICEDESC::$SERVICEDESC$\tSERVICEPERFDATA::$SE
RVICEPERFDATA$\tSERVICECHECKCOMMAND::$SERVICECHECKCOMMAND$\tHOSTSTATE::
$HOSTSTATE$\tHOSTSTATETYPE::$HOSTSTATETYPE$\tSERVICESTATE::$SERVICEST
ATE$\tSERVICESTATETYPE::$SERVICESTATETYPE$

service_perfdata_file=/var/nagios/service-perfdata
service_perfdata_file_mode=a
service_perfdata_file_processing_interval=30
service_perfdata_file_processing_command=service-perfdata-npcd
...
service_perfdata_file_mode specifies how Nagios handles the file: The value a stands for append. Thus Nagios appends new results to an already existing file. Every 30 seconds (as specified in service_perfdata_file_processing_interval) the File Processing Command
service-perfdata-npcd starts. It shifts the file, renames it, and adds the current times-tamp, using the Nagios macro $TIMET$:
define command{
 command_name service-perfdata-npcd
 command_line /bin/mv /var/nagios/service-perfdata /var/nagios/perfsp
ool/service-perfdata-$TIMET$
}
Renaming and shifting doesn't use up any time. So Nagios can immediately resume its normal tasks and leave further processing of performance data to the external NPCD daemon. NPCD has its own configuration file, in npcd.cfg, which is copied during installation to the directory /etc/pnp:
user=nagios
group=nagios
log_type=syslog
log_level=0
perfdata_spool_dir=/var/nagios/perfspool/
perfdata_file_run_cmd=/usr/local/nagios/libexec/process_perfdata.pl
perfdata_file_run_cmd_args=-b
npcd_max_threads=1
The first two entries specify with which user and which group membership NPCD is to be started. The daemon can currently only log its work in the syslog. Future versions should also allow this to be written to a separate file. log_level=0 ensures that NPCD itself behaves quietly and passes on all errors only to the syslog daemon.
The parameter perfdata_spool_dir renames the directory to be monitored. It must already exist; the NPCD does not create it automatically. Thanks to the argument -b given in perfdata_file_run_cmd_args, process_perfdata.pl starts in bulk mode.
The NPCD installs itself during the "make install" command for PNP to the directory /usr/local/nagios/bin. Running make install-init causes an additional startup script to be placed in /etc/init.d, in which you have to check the path to the configuration file:
...
CONF=/etc/pnp/npcd.cfg
...
With the help of this, the daemon is started with the following command:
linux:~ # /etc/init.d/npcd start
Depending on your distribution, the init script in the rc directories is linked to the relevant runlevel:
linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc2.d/S99npcd
linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc3.d/S99npcd
linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc5.d/S99npcd
19.6.5 How should the graphic appear?
The appearance of PNP graphics is determined by templates. The examples included are located in the directory /usr/local/nagios/share/pnp/templates.dist. You should not touch these, as they will be overwritten at the next update. The directory templates is intended for some templates. PNP takes the name of the check that was defined in the command_name and searches here for a matching template called command_name.php.
If PNP cannot find this either in ./templates or in ./templates.dist, it uses the default template default.php.
Sometimes there is already a suitable template in templates.dist (for example, check_ping.php for the plugin check_icmp), the name of which does not match the command name (in the case of check_icmp, we have defined this as command_name check_icmp). Then you must create a symlink in ./templates to the desired file:
linux:~ # cd /usr/local/nagios/share/pnp/templates
linux:pnp/templates # ln -s../templates.dist/check_ping.php \
check_icmp.php
A simple template which can be used for all plugins that transmit a simple response time is response.php:
<?php
#
For all plugins that provide response times
$Id: response.php 53 2006-06-07 07:16:50Z linge $
#

$opt[1] = "--vertical-label \"Response Time\" \
 --title \"Response Time For $hostname / $serviced
esc\" ";

$def[1] = "DEF:var1=$rrdfile:$DS[1]:AVERAGE " ;
$def[1] .= "AREA:var1#00FF00:\"Response Times \" " ;
$def[1] .= "LINE1:var1#000000:\"\" " ;
$def[1] .= "GPRINT:var1:LAST:\"%3.41g %s$UNIT[1] LAST \" ";
$def[1] .= "GPRINT:var1:MAX:\"%3.41g %s$UNIT[1] MAX \" ";
$def[1] .= "GPRINT:var1:AVERAGE:\"%3.4lg %s$UNIT[1] AVERAGE \" ";
?>
The variable $opt[1] defines the options for rrdtool, and the variable $def[1] defines the RRD graph. If you want to create your own templates, you will need to get involved with rrdtool in more detail. The definition of a graphic is explained in detail by man rrdgraph, and further information can be found on the homepage.[222]
Custom Templates
PNP is based on the name of the defined command object. If this is not informative enough, as in the case of command_name check_nrpe, then so-called custom templates in the directory /etc/pnp/check_commands are used. These must contain the name of the original command, however, which in our example is check_nt.cfg:
#
Adapt the Template if check_command should not be the PNP Template
#
check_command check_nt!MEMUSE!80%!90%
________0__________| | | |
________1________________| | |
________2_____________________| |
________3________________________|
#
CUSTOM_TEMPLATE = 0,1
#
If check_nt is not given MEMUSE as the first parameter, the actual command for the plugin check_nt, only this parameter will differentiate whether memory usage or CPU load, for instance, is measured. The parameter CUSTOM_TEMPLATE puts together the command that PNP uses when searching for templates: The example below puts together check_nt (entry number 0) and MEMUSE (entry number 1). This means that PNP will search for a template with the name check_nt_MEMUSE.php. With CUSTOM_TEMPLATE = 1, PNP would search for MEMUSE.php. A suitable symlink is now set in the directory ./templates:
linux:~ # cd /usr/local/nagios/share/pnp/templates
linux:pnp/templates # ln -s ../templates.dist/check_nt_mem.php\
check_nt_MEMUSE.php

[213] http://www.pnp4nagios.org/pnp/
[214] https://lists.sourceforge.net/mailman/listinfo/pnp4nagios-users (generally on PNP usage) and https://lists.sourceiorge.net/mailman/listinio/ pnp4nagios-devel (feature requests, bugs, patches, and the like)
[215] http://nagios-portal.de/forum/board.php?boardid=58
[216] http://www.rrdtool.org/, see also 19.4.1 Installation.
[217] http://www.pnp4nagios.org/pnp/
[218] Performance data is provided by the macro $SERVICEPERFDATA$; see D.1.1 Host macros.
[219] This has only been possible since Nagios 3.0, with the enable_environment_macros parameter (see A.1 The Main Configuration File nagios.cfg). More on environment variables in D.1.8 Using standard macros about the environment from page 631.
[220] The C in the name alludes to the considerably faster performance speed of a C program compared to a Perl script, for which Nagios has to restart the Perl interpreter each time.
[221] This is just a single line, which has been line-wrapped here for display purposes.
[222] http://www.rrdtool.org/

19.7 Other Tools and the Limits of Graphic Evaluation
Apart from the tools introduced here, http://www.nagiosexchange.org/ provides further tools for the graphic evaluation of performance data. Many of these are also based on the RRDtools and round-robin databases, the consequence of which is that they are not much use for exact evaluations over several years, just like the ones described here.
Several tools, such as the current APAN[223] version, save their data in an SQL database, thus enabling long-term statistics without data loss.
PerfParse[224] is very extensive, and it stores data in a MySQL or PostgreSQL database and also includes its own wide range of evaluation tools. Because it uses various current libraries which are not included in every distribution, the installation hurdles are quite high. Nevertheless, those for whom the RRD-based tools do not offer enough should look to see if the PerfParse tools can provide the missing functionality that is required.
For all the options it offers, the graphical display of Nagios performance data also has its limits. If you check WAN connections with a ping to a remote host and measure the average response time, all the pretty graphics don't mean much if the check interval is only every five minutes. You will receive only a momentary snapshot every five minutes, which does not provide any serious clues to the traffic load of the connection over a period of time.
To be able to sensibly assess the load of a Unix computer reported by a plugin every one, five, and 15 minutes, the check interval should be one minute. Less critical data are such things as used hard drive space or temperature. Equally noncritical is the display of network traffic, for which the plugin displays the values as a counter. RRD-based tools can automatically detect the difference between two measurements and display them; it makes no difference here whether the check interval is one, two, or five minutes; no data is lost.
If the measuring precision of Nagios leaves something to be desired, you can deploy other tools in parallel, such as Cricket[225] or Cacti.[226] If the external tool—like Munin[227] —works with RRD databases, you can check these for critical values, so that they are included in the sophisticated Nagios notification system. Alternatively the external tool can provide an interface with which recorded data can be further processed. These can be passed on as a passive test result to Nagios, for example using NSCA (see Chapter 14).
But an additional tool always has the disadvantage of adding to the configuration effort. Whether this is justified, or whether Nagios performance monitoring is sufficient, depends on the information required in a particular situation.

[223] http://apan.sf.net/.
[224] http://perfparse.sf.net/
[225] http://cricket.sourceforge.net/
[226] http://www.cacti.net/
[227] http://munin.projects.linpro.no/

Part IV. Part IV Special Applications

Chapter 20. Monitoring Windows Servers
You don't always deal with a homogeneous server landscape consisting of just Linux or Linux/Unix computers. As long as you are just monitoring pure network services, operating systems make no difference. But if you want to query local, non-network-capable resources, that is a different matter altogether.
With Unix-based systems such as Mac OS X, you can normally use the tools described so far (local plugins, NRPE, NSCA). In Windows you have to find other solutions. To some extent, local plugins can be run and/or compiled in an environment emulating Unix (for example, Cygwin[228]).
Because of the different philosophies of the operating system families, there are peculiarities as well, features in one operating system that are not comparable with anything in the other operating system. So although the Windows event log fulfils much the same purpose as syslog in Unix, it is queried in a completely different way, seen from a technical point of view. Here you cannot simply compile the Unix plugin in Windows and then use it.
One monitoring approach for Windows servers is to use SNMP, for which Microsoft includes a native implementation that just needs to be installed. Since the SNMP query of a Windows agent does not differ in principle from that of other SNMP agents, we refer you to Chapter 11, page 227. The Microsoft implementation, however, does not always work reliably where the display of figures—particularly CPU load and hard drive space—is concerned.

Figure 20-1. check_nt queries local Windows resources about the NSClient mechanism.
But local Windows resources can also be queried if you install a service on the Windows server that can be addressed over the network. Previously, only a single tool was available, NSClient, but today you have a choice of various programs: NSClient, NSClient++, OpMon Agent, or NC_Net. For all of them, basic parameters such as CPU and hard disk load, memory usage or Windows counters are queried with the check_nt plugin (see Figure 20-1), which is one of the standard Nagios plugins.

Figure 20-2. check_nrpe uses the NRPE mechanism to execute checks via NSClient++, OpMon Agent, and NRPE_NT.
In addition, NSClient++ and OpMon Agent support NRPE (see Chapter 10 from page 213). Querying the locally installed plugins is done by check_ nrpe (Figure 20-2).
NC_Net in turn allows passive checks, the results of which are sent to the Nagios server by the NSCA (Chapter 14, page 299). If you query the data with check_ncnet (Figure 20-3) instead of the standard plugin check_nt, an extended set of commands is available (20.3.3 Installing the check_ncnet plugin, page 480).

Figure 20-3. check_ncnet allows passive checks.
Finally, there is also a purely NRPE service for Windows: NRPE_NT, which is configured the same as in Unix. Due to the additional NRPE functionality of NSClient++ and OpMon Agent, however, this has lost some of its significance.
20.1 Agent-less Checks via WMI
With Windows Management Instrumentation, or WMI for short, Microsoft provides an interface that allows network-wide querying of system properties, assuming that the user doing the query has sufficient permissions. The WMI query is made from a central Windows system; NRPE is used for communication between the Nagios server and the WMI proxy (Figure 20-4). Just a single Windows server is required, on which one NRPE service and all the desired plugins are installed in the form of WMI scripts—although to do this, you have to be familiar with the Microsoft WMI world.

Figure 20-4. Using the WMI interface with Nagios
Extensive configuration examples can be found at the NagiosExchange[229] under Categories | Check Plugins | Operating Systems | Windows | Windows NRPE, for instance, under the entry wmi agentless plugins.[230] We will not go into further details of the WMI interface here.

[228] http://www.cygwin.com/
[229] http://www.nagiosexchange.org
[230] http://www.nagiosexchange.org/66;235

20.2 Installing and Configuring the Additional Services
In contrast to the WMI approach, the additional services NSClient, NS-Client++, OpMon Agent, and NC_Net must be installed on every single Windows server.
20.2.1 NSClient
NSClient, as the oldest package, has been widely tested and is in widespread use, but it is no longer being actively developed. The last current version is from October 2003; the package can be downloaded from the Nagios Exchange.[231]. It also runs in Windows NT, Windows 2000 and Windows XP.
For Windows 2003, in particular Windows 2003 R2, the original package is no longer suitable, because numerous error messages in the form
PDH.dll Collect CPU - ERROR:...
land in the event log, which lengthens the execution time considerably. At the NagiosExchange a recompiled version can be found in the package nsclient_-_no_pdh.zip,[232] which does not have this problem.
For the NSClient installation, you unpack the archive nsclient_201.zip or nsclient_-_no_pdh.zip. This creates subdirectories named according to the architecture: Win_NT4_Bin for Windows NT and Win_2k_XP_Bin for Windows 2000 and higher. Copy the contents of the appropriate folder to the directory C:\Programs\NSClient and install NSClient from there as a service:
C:\Programs\NSClient> pNSClient.exe /install
C:\Programs\NSClient> net start nsclient
Running pNSClient.exe /install installs the service, and the switch /uninstall removes the service again. You should make sure that the operating system starts automatically using the services management.
NSClient has two parameters: port and password, with the defaults 1248 (port) and none (password). The values can only be changed (with regedit) in the registry under HKEY_LOCAL_MACHINE\SOFTWARE\NSClient\Parms.
20.2.2 NC_Net
NC_Net, by Tony Montibello, is one of the successors to NSClient, and its calls are also compatible with NSClient. Thus, NSClient can simply be replaced with NC_Net on the Windows server, without the need to change the Nagios configuration. Development on NC_Net is very active. The current version at the time this book went to press, version 4.x, is based on the DOT.NET framework, version 2.0. This is included by default only starting from Windows Server 2003 R2, but even there it is not installed automatically. For those who cannot or who don't want to install the new framework, the older NC_Net version 2.28 runs under DOT.NET 1.1 and is very stable and well established.
NC_Net Version 2.28 is available on the NC_Net homepage,[233] and all newer versions can be found at SourceForge.[234]. Make sure that any previous version installed is first uninstalled. Since NC_Net uses the Microsoft Installer, you do this through the software administration utility. Even an NSClient that might exist should be removed first.
Double clicking on the file NC_Net_setup.msi installs the service, but you should check in the service management that it really is running, and whether or not automatic is entered as the starting type.
NC_Net has the same parameters as NSClient, with password and port, but these can also be specified in the services management under properties in the Start parameters line:
port 4711 password password
20.2.3 NSClient++
NSClient++ combines two query methods. On one hand, it is compatible with NSClient and can make queries as usual with check_nt. On the other hand, it contains a built-in NRPE service which can be configured and used like NRPE_NT (see 20.4.1 NRPE_NT, the classic tool from page 488). NSClient++ provides all the NSClient functions via loadable modules, as well as other features such as event log querying or WMI queries via NRPE. In contrast to NRPE_NT, it is not essential to have external plugins for querying the CPU and hard disk load if you are using the modules.
NSClient++ is being actively developed; the homepage[235] provides not only a download area and documentation in the form of a Wiki, but also a bug-tracking system which allows you to report any errors and to make requests, including tracing open tickets.
Installation
The current NSClient++ version can be downloaded as a zip file from the homepage[236] or from SourceForge.[237] The contents of this file are unpacked, for instance in D:\Program Files\Nagios\nsclient++, and from there they are installed as a service, and the program is started:
D:\Program Files\Nagios\nsclient++> NSClient++/install
D:\Program Files\Nagios\nsclient++> NSClient++/start
If you want to use the classical net start command instead of the administrative tools to start and stop the service, you need to know that it is called nsclientpp (and not nsclient++):
D:\> net start nsclientpp
D:\> net stop nsclientpp
Configuration
NSClient++ requires a configuration file NSC.ini located in the same directory where the NSClient++-EXE file resides. The NSC.ini included in the distrubution needs to be edited in all cases.
This file is divided into a number of sections:
[modules]
; loadable modules
[Settings]
; general settings
[log]
; Logging and debugging
[NSClient]
; Parameters for NSClient-compatible queries
[Check System]
; Fine-tuning configuration for system checks (CPU, memory, ...)
[NRPE]
; Parameters for NRPE
[NRPE Handlers]
; NRPE commands
Each section begins with a keyword in square brackets, and comment lines start with a semicolon. The section [modules] loads the individual modules. The following modules are currently available:
[modules]
FileLogger.dll
CheckDisk.dll
CheckSystem.dll
NSClientListener.dll
NRPEListener.dll
; SysTray.dll
; CheckHelpers.dll
; CheckWMI.dll
The internal module FileLogger.dll logs the work of NSClient++ to a file and does not provide any checks.
CheckDisk.dll checks the file size and hard disk usage, and CheckSystem.dll checks the CPU, the memory, counters, uptime, and service and process states.
NSClientListener.dll ensures compatibility with NSClient. If this module is not loaded, queries with check_nt will fail. The module NRPEListener.dll implements the NRPE service. This means you can choose whether you use NSClient++ as an NSClient or as an NRPE_NT replacement, or whether you use both functions at the same time.
SysTray.dll installs a systray icon on the server for access to NSClient++.
CheckHelpers.dll is a test module that always provides a specific return value (e.g., OK) and is not required for normal operation.
CheckWMI.dll provides queries for the WMI interface, but it is not yet completely finished.
The global section [Settings] contains settings that apply across section boundaries, including the password parameters and allowed_hosts, which are inherited by the sections [NSClient] (Configuration) and [NRPE] (Perl plugins in Windows), unless these options are set differently there:
[Settings]
; obfuscated_password=Jw0KAUUdXlAAUwASDAAB
; password=secret-password
allowed_hosts=
use_file=1
obfuscated_password, like password, is currently used only by the NS-Client-compatible part of NSClient++, and not for NRPE. Both parameters set the password for check_nt. obfuscated_password obscures this, so that it does not appear in plain text in the INI file. However, this is not real encryption. An obfuscated_password is generated by running nsclient++ /encrypt. This utility asks for a password, which it then displays in obscured form.[238]
The parameter allowed_hosts controls which IP addresses may access NSClient++. If it is left empty, there are no access restrictions. You can specify several IP addresses by separating them with commas, but it is not possible to use host names here.
Finally, use_file controls whether the configuration file is to be used at all (use_file=1). If the value 0 is entered here, NSClient++ searches in the registry for the settings. Configuration via the registry is currently still experimental, and it poses a security risk due to lack of sufficient protection, and so we will not look at it in more detail.
The next section is devoted to logging:
[log]
debug=0
; file=NSC.log
date_mask=%Y-%m-%d %H:%M:%S
With debug=1, debugging—which is disabled by default, using the value 0—can be switched on. file specifies the log file. If you omit this parameter or (as shown here) comment it out, NSClient++ writes its error messages to nsclient.log, in the same directory in which the binary file lies. The software does this even if debugging is switched off. With date_mask you can specify the date format of the timestamp with which every log message begins. This format corresponds to what is described in man date.
The [NSClient] section sets a number of options concerning compatibility with NSClient. Although nothing else can be configured here, NSClient functions (see 20.3 The check_nt Plugin from page 472) are only available if the NS-ClientListener.dll module, CheckDisk.dll, and CheckSystem.dll (see Configuration) have been loaded.[239]
The parameter allowed_hosts overrides the setting in the [Settings] section. In this way, NSClient++ can use a configuration for working with check_nt that is different from the one used for NRPE:
[NSClient]
; allowed_hosts=
port=12489
; bind_to_address=
The port and bind_to_address parameters specify the socket on which NSClient++ accepts check_nt queries. The default for the port is 1248, which regularly leads to problems on some Windows servers (e.g., Exchange servers) (see also page 471). You should therefore change to a higher port number (e.g., 12489).
bind_to_address specifies the IP address of the intended host, on which the service will listen. This parameter is only needed if the computer has more than one network interface and a specific IP address is to be set.
The [Check System] section allows system checks to be fine-tuned. Normally you won't need to configure anything here:
[Check System]
; CPUBufferSize=1h
; CheckResolution=10
CPUBufferSize determines how long NSClient++ stores information on the CPU load. The allowed value range starts at one second (1s), with a maximum often weeks (10w). To save data for a long period, however, you need a large amount of memory. The default value of one hour is enough for most purposes.
CheckResolution specifies the resolution of the stored measurement values in tenths of a second. The value 10 therefore means that a value is determined every second. CheckResolution currently influences only CPU measurement values.
Other parameters for the [Check System] section are rarely required and are documented in the Wiki.[240]
Configuration of the NRPE services in the two sections [NRPE Handlers] and [NRPE] is dealt with in 20.4.3 NRPE with NSClient++ from page 493, and the internal functions of NSClient++ that can be called via NRPE are described in 20.4.4 Internal NSClient++ functions from page 495.
20.2.4 OpMon Agent
OpMon Agent is nothing more than a further development of the original NSClient code by the company OPServices.[241]. It can therefore be considered to be a succcessor to the NSClient program. Like its predecessor, the software is published under the GNU Public License.
To install it, you unpack the current zip file from http://www. opservices.com.br/downloads/ to C:\Program Files\Nagios\opmonagent and enter the following commands:
C:\Program Files\Nagios\opmonagent> opmonagent/install
C:\Program Files\Nagios\opmonagent> net startopmonagent
OpMon Agent also stores its configuration in an INI file. The original opmo-nagent.ini looks like this:
[OPMONAGENT]
enable=1
password=None
port=5667
allow_from=127.0.0.1,192.168.10.2,192.168.2.1
autodetect_counters=1
use_counters=W2K
max_connections=300
debuglevel=0

[NRPE]
enable=1
port=5666
command_timeout=60
allow_from=127.0.0.1,192.168.10.1,192.168.2.1
The NSClient functionality is configured in the [OPMONAGENT] section. enable=1 allows queries via check_nt, but if this parameter is set to 0, OpMon Agent ignores this.
password sets a password, and the value None means that no password is required. Otherwise, the password is written in plain text after the equals sign.
5667 is entered here as the standard port, but if you want to use the usual port 1248, you just change the entry and restart the service. allow_from restricts access to specific hosts.
autodetect_counters=1 tries to automatically determine the exact name of the Windows performance counter, depending on the language setting of Windows and the exact Windows version. If you switch off this capability with the value 0, you must specify the name explicitly in use_counters. Possible values for this parameter are listed in the file counters.def, which is located in the same directory as opmonagent.ini.
max_connections restricts the number of possible simultaneous connections. A debuglevel value larger than 0 switches on debugging.
In the future, it should be possible to configure the NRPE functions of OpMon Agent, which will be introduced in a later version, in the [NRPE] section. The current version of OpMon Agent at the time this book goes to press, version 2.4, does not yet provide official support for NRPE.
20.2.5 Rectifying problems with port 1248
All NSClient-compatible services work by default on port 1248. This can sometimes turn out to be a problem, because Windows operating systems work intensively with RPCs (Remote Procedure Calls). Here ports are assigned dynamically, starting at port 1025. Thus, under certain circumstances—for servers with many services or many simultaneous connections, for example—port 1248 is often already occupied when NSClient is started as a service. For Exchange servers, this happens fairly often after a reboot. You should therefore change to a high, unproblematic port number, such as 12489.
If you are not installing Nagios for the first time but are working with an existing installation, you may not be able to easily change the port for all hosts to be monitored. For Nagios 2.x, there is no choice but to define a separate command for every port used. With Nagios 3.0, this can be done more elegantly. The solution is to use self-defined variables (see H.2 Variable and Macros from page 685). In the host template (see 2.11 Templates, page 75) the value is now globally specified as the standard port (in the example shown here, 1248):
define host{
 name host_t
 register 0
 ...
 _NSCLIENT_PORT 1248
 ...
}
For hosts that have already been converted to the new port, you overwrite the _NSCLIENT_PORT variable with the new port:
define host{
 host_name winsrv
 use host_t
 ...
 _NSCLIENT_PORT 12489
}
For all other hosts, the value defined in the template applies. The definition of the command object takes into account the desired port by evaluating the variable, as shown here:
define command{
 command_name check_nt
 command_line $USER1$/check_nt -H $HOSTADDRESS$ -p $_HOSTNSCLIENT_POR
T$ -v $ARG1$ $ARG2$
}
This means that for each newly converted host, only the variable needs to be set in this way, and all the service definitions remain unchanged.

[231] http://www.nagiosexchange.org/49;65
[232] http://www.nagiosexchange.org/49;508
[233] http://www.shatterit.com/NC_Net
[234] http://sourceforge.net/projects/nc-net
[235] http://trac.nakednuns.org/nscp/
[236] http://trac.nakednuns.org/nscp/downloads
[237] http://sourceforge.net/projects/nscplus/
[238] The algorithm used is not documented, hence the utility should be treated with mistrust.
[239] The MEMUSE command (see Main memory usage) thus requires the module CheckSystem.dll.
[240] http://trac.nakednuns.org/nscp/wiki/Documentation
[241] http://www.opservices.com.br/

20.3 The check_nt Plugin
When installing the standard Nagios plugins, the check_nt plugin is automatically loaded to the hard drive. The checks that can be queried here correspond to the function range of NSClient provided in NSClient, NS-Client++, OpMon Agent, and NC_Net. To make use of the extensions of NC_Net, you must download the extended sourcecode (the file check_nt.c) from http://www.shatterit.com/NC_Net and compile it yourself.
The actual effect that the check_nt parameters have, described below, depends on the command that is specified with the -v option:[242]:
-H
address / --host=address
IP address or host name of the host on which the NSClient/NC_Net is installed.

-v
command / --variable=command
The command to be executed.

-p
port / --port=port
This defines an alternative port for NSClient/NC_Net (see 20.2.5 Rectifying problems with port 1248 in page 471). The default is TCP port 1248.

-w
integer / --warning=integer
This defines a warning limit. This option is not available for all commands.

-c
integer / --critical=integer
The critical limit option is also not available for all commands.

-l
parameter
This is used for passing parameters along, such as the drive for the hard drive check or the process name when checking processes.

-d
option
When checking services or processes, you can specify several services or processes simultaneously. Normally check_nt then only shows the defective ones (-d SHOWFAIL). To have all of them displayed you must specify SHOWALL as the option.

-s
password
A password for authentication is only required if NC_Net or NSClient starts the corresponding service with the password parameter.

-t
timeout / --timeout=timeout
After timeout seconds have elapsed, the plugin aborts the test and returns the CRITICAL state. The default is 10 seconds.

20.3.1 Generally supported commands
For the commands introduced here, it makes no difference whether you use NSClient, NSClient++, NC_Net or OpMon; they can be run with the unpatched check_nt.
Querying the client version
The version of the installed NSClient or NC_Net service is returned by running the command
check_nt -H address -v CLIENTVERSION
All other arguments are ignored:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v CLIENTVERSION
NC_Net 2.21 03/13/05
The first edition of this book defined a separate command for each check_nt function. But this is not necessary at all, as Ethan Galstad has shown in the online documentation for Nagios:[243]
define command{
 command_name check_nt_nsclient
 command_line $USER1$/check_nt -H $HOSTADDRESS$ -v $ARG1$ $ARG2$
}
For Nagios 3.0 with NSClient ports defined in a host-dependent fashion (see 20.2.5 Rectifying problems with port 1248, page 471), the command object check_nt would look like this:
define command{
 command_name check_nt
 command_line $USER1$/check_nt -H $HOSTADDRESS$ -p$_HOSTNSCLIENT_POR
T$ -v $ARG1$ $ARG2$
}
The command line to be executed expects two arguments: The macro $ARG1$ expands in each case into the command to be called, and the contents of $ARG2$ are dependent on the respective command and may be empty in certain circumstances:
define service{
 host_name winsrv
 service_description NSClient
 check_command check_nt!CLIENTVERSION
 ...
}
The command CLIENTVERSION does not have any other arguments, so the second argument is simply left out.
This unassuming service is extremely useful in describing dependencies. If NSClient/NC_Net fails on the Windows server, Nagios normally informs the administrator of all services that may have failed. By querying CLIENT-VERSION, it becomes clear that the problem lies in the unavailability of NSClient. If you define appropriate dependencies, Nagios can provide more precise information.[244] Here is an example for the NSClient application:
define servicedependency{
 host_name winsrv
 service_description NSClient
 dependent_host_name winsrv
 dependent_service_description Disks,Load,Memory
 notification_failure_criteria c,u
 execution_failure_criteria n
}
With NSClient as a master service on which the other services are dependent, Nagios does not trouble the admins with messages from these other services, as long as NSClient is in a CRITICAL or UNKNOWN state.
In Nagios 2.x you must set dependency objects for each host individually. In Nagios 3.0 there are the same host dependencies: If you omit the entry dependent_host_name, the dependency defined here applies to the same host. This allows host groups to be used in a sensible manner:
Nagios 3.0
define servicedependency{
 hostgroup_name WINDOWS_SERVER
 service_description NSClient
 dependent_service_description Disks,Load,Memory
 notification_failure_criteria c,u
 execution_failure_criteria n
}
Here the Disks service in each case only depends on the NSClient service of the same host. When using host groups in Nagios 2.x, Disks would be dependent on all NSClient services on all hosts of the host group WINDOWS.SERVER—and this is normally not what is wanted.
CPU load
How heavy the load is on the processor is revealed by the command CPU-LOAD:
check_nt -H address -v CPULOAD -l interval, warning limit, critical_limit
It expects a triplet of parameters, separated by commas, consisting of the length of the time interval that is to be averaged, in minutes, and the two thresholds for the warning and critical limits in percent:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v CPULOAD -l 5,80,90
CPU Load 10% (5 min average) | '5 min avg Load'=10%;80;90;0;100
So CPULOAD, with 5,80,90, forms the average over five minutes and issues a warning if the value determined exceeds 80 percent. If there is over 90% CPU load, the command returns CRITICAL.
The output here also contains additional performance data after the | sign, which Nagios ignores in the Web interface. If you are interested in average values over several intervals, you just add further triplet values following to the first one:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v CPULOAD \
 -l 5,80,90,15,70,80
CPU Load 10% (5 min average) 10% (15 min average) | '5 min avg Load'=10
%;80;90;0;100 '15 min avg Load'=10%;70;80;0;100
In this example CPULOAD checks two intervals: the past five minutes and the past 15 minutes. In the second case there are deviating limit values. The plugin always returns the more critical value; for example, it returns CRITICAL if one interval issues CRITICAL and the other just a WARNING.
The service definition therefore looks like this:
define service{
 host_name winsrv
 service_description CPU Load
 check_command check_nt!CPULOAD!-l 5,80,90,15,70,80
 ...
}
Main memory usage
When specifying the limit values, the command for monitoring the amount of main memory used—in contrast to CPULOAD—is based on the syntax of "normal" Nagios plugins:
check_nt -H address -v MEMUSE -w integer -c integer
MEMUSE returns the memory usage in percent. It should be remembered that Windows refers here to the sum of memory and swap files, that is, the entire available virtual memory. The command expects the warning and critical limits as percentages, given without a percent sign:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v MEMUSE \
 -w 70 -c 90
Memory usage: total:4331.31Mb - used: 257.04Mb (6%) - free: 4074.27Mb (9
4%) | 'Memory usage'=257.04Mb;3031.91;3898.18;0.00;4331.31
On the example host, winsrv, only six percent of the virtual memory is used. The fact that the physical size of the main memory itself (here: 256 MB) is already exceeded is not shown in the output.
It does not necessarily make sense, however, to request the memory usage as in Unix: Windows regularly swaps program and data code from the main memory, even when it still has spare reserves. In Unix, programs and data land in the swap partition only if more space is required than is currently free. In this respect the load of the entire virtual memory in Windows is the more important parameter.
The command mentioned above is again packed into a service object:
define service{
 host_name winsrv
 service_description MEM Usage
 check_command check_nt!MEMUSE!-w 70 -c 90
 ...
}
Hard drive capacity
The load on a file system is tested by USEDDISKSPACE:
check_nt -H address -v USEDDISKSPACE -l drive letter -w integer -c integer
in Windows fashion, the file system is specified as drive letters, the limit values in percent:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v USEDDISKSPACE\
 -l C -w 70 -c 80
C: - total: 4.00 Gb - used: 2.06 Gb (52%) - free 1.94 Gb (48%) | 'C: Use
d Space'=2.06Gb;2.80;3.20;0.00;4.00
nagios@linux:nagios/libexec$ echo $?
0
In the example, check_nt should issue a Warning if drive C is more than 70 percent full, and a CRITICAL if the load exceeds 80%. The current value lies at 52 percent, so check_nt therefore returns an OK, which you can check with echo $?.
The corresponding service object would look something like this:
define service{
 host_name winsrv
 service_description Disk_C
 check_command check_nt!USEDDISKSPACE!-l C -w 70 -c 80
 ...
}
Uptime
How long ago the last reboot was performed is revealed by the command UPTIME:
check_nt -H address -v UPTIME
Defining a warning or critical limit is not possible, which is why such a query is only for information purposes (the plugin returns either OK, or UNKNOWN if it is used wrongly):
nagios@linux:nagios/libexec$./check_nt -H winsrv -v UPTIME
System Uptime - 17 day(s) 9 hour(s) 54 minute(s)
so the host winsrv has already been running for 17 days. A suitable definition of the corresponding service object looks like this:
define service{
 host_name winsrv
 service_description UPTIME
 check_command check_nt!UPTIME
 ...
}
Status of services
The current status of Windows services can be checked with SERVICESTATE:
check_nt -H address -v SERVICESTATE -d SHOWALL -l service1, service2,...
The optional -d SHOWALL ensures that the output text lists all services. If you leave this option out, the plugin provides information only on those services that are not running.
To find the name of the service description to be specified for NSClient after the -l option is quite a challenge. It is not the display name which is displayed by the services management (e.g., Routing and RAS), that is being sought, but the registry entry that corresponds to this. Accordingly you search with the Registry editor regedit in the partial tree HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services for the node with the corresponding display name. It contains the service description being sought, which in the case of Routing and RAS is something like Remote-Access.
If you use NC_Net, you have an easier task: the software accepts both the service description and the display name, in which no distinction is made between upper and lower case. The following two examples use the display name:
nagios@linux:nagios/libexec$./check_nt -H winsrv1 -v SERVICESTATE \
 -l "RemoteAccess"
RemoteAccess: Stopped
nagios@linux:nagios/libexec$./check_nt -H winsrv2 -v SERVICESTATE \
 -l "Routing and RAS"
All services are running
In the first case the service name was used; in the second case, the display name was used. The service first queried is not running, as the output Stopped shows, and check_nt returns 2 (CRITICAL) as the return value. The service addressed with the second command is working, which is why the plugin does not display it if the -d SHOWALL option is not given. The return value here is 0 (OK). Several services (separated by commas) can also be queried in a single query. The worst-case result here dictates the return value. A matching service object looks something like this:
define service{
 host_name winsrv
 service_description Routing and RAS
 check_command check_nt!SERVICESTATE!-l RemoteAccess
 ...
}
Status of processes
As with the services, PROCSTATE monitors running processes:
check_nt -H address -v PROCSTATE -d SHOWALL -l process1, process2,...
The process name, which almost always ends in .exe, is best determined in the process list of the task manager; upper and lower case are also ignored here:
nagios@linux:nagios/libexec$./check_nt -H winsrv -v PROCSTATE \
WinVNC.exe,winlogon.exe,notexist.exe
 notexist.exe: not running
As with the services, you can also specify a list of several processes, separated by commas. Without -d SHOWALL, PROCSTATE shows only those processes that are not running, in this example, notexist.exe. A corresponding service definition might look like this:
define service{
 host_name winsrv
 service_description WinVNC
 check_command check_nt!PROCSTATE!-l winvnc.exe
 ...
}
Age of files
It is worth monitoring the time since the last modification of critical files with FILEAGE, particularly for log files and other files that change regularly:
check_nt -H address -v FILEAGE -l path -w integer -c integer
FILEAGE can be used to check the age of a file, for instance a log file to which data should be written regularly. The file name is specified with the full path, and backslashes must be written twice: C:\\xyz.log. If the thresholds, specified in minutes, are exceeded, the plugin issues a WARNING or a CRITICAL. However, it gives the age of the file, by default, in epoch seconds:[245]
nagios@linux:nagios/libexec$./check_nt -H winsrv -v FILEAGE \
 -l "C:\\test.log" -w 1 -c 20
1113158517
nagios@linux:nagios/libexec$ echo $?
1
The status can again be checked with echo $?. Here as well, the service definition does not hold any secrets:
define service{
 host_name winsrv
 service_description Log file
 check_command check_nt_fileage!C: xyz.log!60!1440
 ...
}
Querying Windows counters and instances
The duo of NSClient and check_nt provides two other functions: querying Windows counters with COUNTER and querying Windows performance counter objects with INSTANCES. Querying performance counters varies in small details from service to service, however (such as using a double backslash rather than a single backslash in the counter name). For this reason, we shall describe both in the discussion of the extended functions of NC_Net from page 481. If you want to use counters with OpMon Agent, NSClient, or NSClient++, we recommend that you take a look at the original documentation of each service.
When using NSClient++, it is recommended that you use the internal function CheckCounter, which is described in Checking memory load with CheckMem.
20.3.2 Advanced functions of NC_Net
NC_Net's range of functions is expanding constantly; this chapter describes the possibilities that go beyond NSClient for version 2.28. These can only be used with the modified check_nt plugin. The extended version is based on the original check_nt version 1.4.1. But it is possible that both plugins will continue to be developed in different ways, and thus diverge.
We will therefore rename the NC_Net version to check_ncnet, so that we can keep the two separate and run them at the same time. Thus, check_nt examples in this book demonstrate functions that are available for all NSClient-compatible services; if check_ncnet is used, the NC_Net functionality in combination with the extended plugin is available.
20.3.3 Installing the check_ncnet plugin
check_ncnet exists only in the source code; it consists of a single file that unfortunately has the same name as the original plugin check_nt.c. The file ends up on the hard drive during the installation of NC_Net, but it can also be downloaded separately from http://www.shatterit.com/nc_net.
The source can currently be compiled without problems only in combination with the entire Nagios plugin package (see 1.4 Installing and Testing Plugins, page 43). To do this, you overwrite the existing file check_nt.c in the subdirectory plugins with the extended version. To be on the safe side, the old check_nt binary should be renamed; then you run make check_nt to recompile the source file. Afterward, you copy the binary under the name check_ncnet to the libexec directory of Nagios, along with the other plugins:
linux:~ # cp check_nt.c /usr/local/src/nagios-plugins-1.4/plugins
linux:~ # cd /usr/local/src/nagios-plugins-1.4/plugins
linux:nagios-plugins-1.4/plugins # mv check_nt check_nt_orig
linux:nagios-plugins-1.4/plugins # make check_nt
...
linux:nagios-plugins-1.4/plugins # mv check_nt check_ncnet
linux:nagios-plugins-1.4/plugins # cp check_ncnet \
 /usr/local/nagios/libexec/.
Windows Performance Counter
Through so-called Performance Counters, Windows provides values for everything in the system that can be expressed in numbers: hard drive usage, CPU usage, number of logins, number of terminal server sessions, the load on the network interface, and many more things. check_ncnet queries these with the command ENUMCOUNTER:
check_ncnet -H address -v ENUMCOUNTER -l category1, category2
If you omit the -l parameter, ENUMCOUNTER will display a list of all performance counter categories:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMCOUNTER
... Processor; ... Terminal services; .NET CLR loading procedure; tot
al RAS services; Process; ...
Otherwise, it shows all counters in the category specified with -l. Several categories are separated with commas. The Terminal services category contains three counter objects in all:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMCOUNTER \
 -l Terminal services
Terminal Services: Total Sessions; Active Sessions; Inactive Sessions
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMCOUNTER \
 -l "Terminal Services","Process"
Terminal Services: Total Sessions; Active Sessions; Inactive Sessions-Process: %
 Processor Time; % User Time; % Privileged Time; Virtual Bytes Peak; Virtual Bytes;
 Page Faults/sec; Working Set Peak; Working Set; ...
The precise object name is important for later use, in which the % sign (as, for example, in % Processor Time) is part of the name. If the counter or category name contains spaces, you must remember to place it within quotation marks when formulating the the request.
The description stored in the Windows Performance Counter objects are shown, by the way, with the command ENUMCOUNTERDESC.
Several counter categories contain instances, which you must specify when querying a counter object. For this reason you should always check first, using the INSTANCES function, whether the category you want works with instances:
check_ncnet -H address -v INSTANCES -l category1, category2
For the terminal services, this is not the case:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v INSTANCES \
 -l "Terminal Services"
 Terminal Services:
Typical categories with instances are Processor or Process:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v INSTANCES \
 -l "Process"
Process: svchost#6,svchost,Idle,explorer,services,...
Here it becomes apparent what is meant by instances: Windows views every running process as an instance in the Process Performance Counter category. As can be seen in 20.3.3 Installing the check_ncnet plugin, the counter object (% Processor Time), which contains the percentage use of processor time), is in this category. It can be queried only for individual instances, such as for the explorer process, or for all processes together. In case of the latter you specify _Total instead of an instance.
In order to access a Windows Performance Counter, therefore, you always need to give the following details:
\category\counter object
\category(instance)\counter object
The instance is specified only if the category has instances available. There must be no space between the category name and the first bracket. The corresponding query command is called COUNTER; the placeholder name is replaced by the combination just described:
check_nt -H adresse -v COUNTER -l name, formatbeschreibung -w ganzzahl -c
ganzzahl
This function asks after the Windows Performance Counter object that is specified after the -l option with its exact name. The warning and critical limits given as integer values refer to the size measured: if an object is involved that has a percentage figure (e.g., the processor load), just imagine a percent sign added to it; the numbers of processes, sessions, etc., are just values that are not specified in units.
The number of active sessions is checked with the Active Sessions object, for which there are no instances:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v COUNTER \
 -l "\Terminal Services\Active Sessions"
1
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v COUNTER \
 -l "\Process(Idle)\% Processor Time"
98
Because the Idle instance always looks at the difference between used and spare processor load, so that the sum of the two is always 100 percent, querying the _Total pseudo-instance in the second example does not make much sense.
Normally COUNTER does not format its output. This can be changed by following the object name with a description in the printf format,[246] separated from it with a comma:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v COUNTER \
 -l "\Process(Idle)\% Processor Time","Idle Process: %.2f %%"
Idle Process Usage is: 54.00 % | 'Idle Process Usage is: %.2f %%'=54.000000%;
0.000000;0.000000;
Not only does this cause the output to be clearer, it also returns additional performance data. A corresponding service definition might look like this:
define service{
 host_name winsrv
 service_description Terminal Sessions
 check_command check_nt!COUNTER!-v "\Terminal Services\Active Sessions"
-w 20 -c 30
 ...
}
Listing processes and services
To find out the names of processes, you can work your way through the Task Manager—or have a list of all running processes displayed with ENUMPROCESS:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMPROCESS
System Idle Process; System; smss.exe; csrss.exe; winlogon.exe;
services.exe; lsass.exe; svchost.exe; svchost.exe; svchost.exe;
...
The equivalent command for listing all installed services is ENUMSERVICE:
check_ncnet -H host -v ENUMSERVICE -l typ, short
The optional −1 restricts the output to specific categories (see Table 20-1):
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMSERVICE
 \ -l manual,short
ALG; AppMgmt; BITS; COMSysApp; dmadmin; EventSystem; HTTPFilter; LPDSVC; MSIServer;
 Netman; Nla; NtFrs; NtLmSsp; NtmsSvc; RasAuto;
...
With the short option, ENUMSERVICE displays the service names as they are entered in the registry; if you leave out the keyword, it shows the display names.
Table 20-1. Limiting option for ENUMSERVICE

	Type
	Description

	all
	all services

	running
	all currently active services

	stopped
	all services which have been stopped

	automatic
	services starting automatically

	manual
	services which must be started manually

	disabled
	disabled services

Querying the Windows event log
With the EVENTLOG command, the Windows Event Log can be queried:
check_ncnet -H adress -v EVENTLOG -w integer -c integer -l eventlog, event_type,
interval,source_filter, description_filter, id_filter
Using it does take some getting used to, however:[247] the first three parameters to follow -l select the events to be taken into account by type and by time.
The placeholder eventlog is replaced with one of the three log areas application, security, and system that you want to look at. If EVENTLOG is to include all three, you just specify any; but you cannot choose only two of the three areas.
For the event type you can choose from error, Warning, Information, or any for all three.
In place of interval you specify a time interval in minutes: 5 limits the selection to events which occurred in the last five minutes, for example; 1440 stands for a whole day.
The last three parameters in effect work as filters with which specific results can be determined from the preselection that all originate from a particular source (the source_filter placeholder), that contain a specific pattern in their descriptions (description_filter), or that have a specific event ID (id_filter).
Each of these filters consists of two parts: in the first an integer reveals how many search patterns are to follow (formulated as regular expressions in accordance with the .NET-Regexp class), and then the actual filter entries are specified, separated by commas. If one of the filters is not used, its placeholder is replaced with a 0, which searches for exactly zero search patterns. A source filter which only looks for NC_Net events would be called 1,NC_Net; if you want to search for NC_Net and Perflib events, it would be called 2,NC_Net,Perflib.
-l any, any,5,0,0,0 evaluates all entries from all event ranges from the last five minutes. -l application,error,1440,0,0,0 determines all events of the type error, which occurred in the event range application within the last 24 hours. With −1 application, error, 60,1,NC_Net,0,0, the time window is set to 60 minutes and filters the event source using the string NC_Net. Finally -l application,any,60,0,2, start, stop,0 searches the event description for two keywords: start and stop.
With the warning and critical limits you can specify how many matching entries are needed before the plugin returns a WARNING or CRITICAL value. If you leaveout these two parameters, Nagios shows OK as long as no events occurred; otherwise, it shows CRITICAL.
The following example asks how many messages there were within the last 24 hours in the applications area:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v EVENTLOG \
 -l "Application,any,1440,0,0,0"
9 Errors with ID: 13001;2003;1010;6013;1111;262194;26;262194;26 LAST - I
D 262194;Not all data for the file "\Device\LanmanRedirector" were sa
ved. Possible causes are computer hardware or the network connection. P
lease specify a different file path.
The service we defined below searches for errors in all classes in the System area which occurred in the past five minutes. (When specifying the time period you should generally ensure that it correlates with the time period in normal_check_interval.) The service examines the descriptions of the entries found for the text data loss. The source and ID filters are not used here:
define service{
 host_name winsrv
 service_description Eventlog data loss
 check_command check_ncnet!EVENTLOG!-l System,any,5,0,1,data loss,0
 is_volatile 1
 normal_check_interval 5
 max_check_attempts 1
 ...
}
Log files have the characteristic of pointing out a problem only once under certain circumstances, even if the problem continues. You must therefore ensure that Nagios immediately makes a notification the first time the event occurs, and leaves out repeated tests and soft states. This can be achieved with max_check_attempts 1: this immediately sets off a hard state, and notification is given right away.
But if the hard state remains, this would mean in practice that new errors might occur in the meantime (the next test after five minutes no longer records the old states), while the state has not changed; the admin would only be informed again after the notification_interval has expired. For such cases, Nagios has available the is_volatile parameter (see 14.5.2 Nagios configuration: volatile services, page 309), with which the system provides notification on every single error.
Displaying and manipulating the NC_Net configuration
The ENUMCONFIG function displays the current settings of NC_Net in a readable form:
nagios@linux:nagios/libexec$./check_ncnet -H winsrv -v ENUMCONFIG
Date: 16.04.2005 18:15:10;
Version: NC_Net 2.21 03/13/05;
NC_Net Config Path: c:\Programs\shatter it\nc_net\config\;
Startup Config: c:\Programs\shatter it\nc_net\config\startup.cfg;
Debug Log: c:\Programs\shatter it\nc_net\config\deb.log;
...
Port: 1248;
Pass: None;
...
Date shows the current query date, Version the NC_Net version used. NC_Net Config Path describes the path to the configuration directory, Startup Config the configuration file used. Debug Log specifies the log file containing the debugging output, but only if the MYDEBUG true parameter is set in the configuration file. Port reveals the port on which NC_Net is listening, and Pass shows whether a password has been used for the connection (None: no password).
There is also the command CONFIG to manipulate the configuration of the NC_Net installation over the network. For reasons of security you should use this for test purposes only, and otherwise keep the function switched off. Accordingly you should keep the following default set in the configuration filestartup.cfg:
lock_passive_config true
lock_active_config true
This means that the configuration cannot be changed from the outside.
Other functions
NC_Net's range of functions is growing all the time, and to describe all the functions in detail would need a separate book. We'll just mention a few quite useful commands:
FREEDISKSPACE
The equivalent of USEDDISKSPACE (Main memory usage) expects the free hard drive capacity (instead of the used space) in percent for warning and critical limits

WMIQUERY
This function enables the SQL-capable WMI[248] database to be queried, which contains the .NET configuration data.

WMICOUNTER
Objects comparable to the Windows performance counters also exist in the WMI area (only .NET); they can be queried with this.

Passive Checks
From version 2.0, NC_Net also supports passive checks based on the NSCA mechanism (see Chapter 14, page 299). A short documentation can be found in the included passive.cfg file.

More information can be found in the file readme.html, included in the installation, but it can also be viewed directly at http://www.shatterit.com/nc_net/files/readme.html.

[242] You can read about them in more detail in 20.3 The check_nt Plugin.
[243] http://nagios.sourceforge.net/docs/3_0/monitoring-windows.html
[244] This problem is similar to one with NRPE, which was solved through the definition of dependencies (see 12.6 Accounting for Dependencies between Hosts and Services, page 285).
[245] That is, in seconds elapsed since 01.01.1970.
[246] man 3 printf
[247] According to his own comments, author Tony Montibello wanted to change the syntax for defining services in version 2.25. But up to and including version 2.28, this resolution has not yet been implemented.
[248] Short for Windows Management Instrumentation.

20.4 NRPE for Windows
Besides NRPE_NT (an NRPE daemon ported to Windows), NSClient++ and now also OpMon Agent provide NRPE services. Its task is to execute plugins on the target system if a particular test is only possible locally and no suitable network protocol exists to query the resource concerned. As with the Unix version (see Chapter 10 in page 213), the desired plugins must be installed locally on the target system, apart from the daemon (in this case: NRPE_NT) and the tests must be entered in a local configuration file.
NRPE can also be used for other purposes: once installed on the Windows server, you can use the mechanism to run other scripts remotely, apart from Nagios plugins. If you want Nagios to restart a service remotely through the Eventhandler, this can be done just as easily with NRPE_NT.[249]
20.4.1 NRPE_NT, the classic tool
NRPE_NT can be used like the Nagios Remote Plugin Executor, introduced in Chapter 10—in reality, this is just the Windows version of the same tool. At the present time, however, it doesn't look as if this tool will continue to be actively developed.
The current zip archive from The Nagios Exchange,[250] SourceForge[251] or http://www.miwi-dv.com/nrpert is unpacked to a suitable directory, such as D:\Programs\Nagios\nrpe_nt:
D:\Programs\Nagios\nrpe_nt> unzip nrpe_nt.0.8-bin.zip
...
It contains a subdirectory bin, in which are found the daemon NRPE_NT.exe, two DLLs for using SSL (libeay32.dll and ssleay32.dll), an example of a simple plugin script (test.cmd), and the configuration file nrpe.cfg.
The service is installed from this directory with the command nrpe_nt -i, after which it just needs to be started, either in the Windows services manager or from the command line:
D:\Programs\Nagios\nrpe_nt\bin> nrpe_nt -i
D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt
The configuration file nrpe.cfg is only slightly different from the Unix version of NRPE 2.0 (see 10.3 NRPE Configuration on the Computer to Be Monitored, page 218): only the directive include_dir does not function in NRPE_NT.
The file in Windows also has the classical Unix text format,[252] so either you require a suitable editor (notepad.exe is not sufficient) or you must edit it in Linux and copy it afterwards to the test system.
Since there is no inet daemon in Windows, you must specify the port (standard: server_port=5666) and the hosts from which NRPE should be addressed (you should only enter the Nagios server here; for example: allowed_hosts=172.17.129.2)[253] in nrpe.cfg. The parameters nrpe_user and nrpe_group have no meaning in Windows, and the other parameters correspond to those discussed in 10.3 NRPE Configuration on the Computer to Be Monitored.
In the definition of executable commands (here for the included test plugin) you must remember the Windows-typical syntax with hard drive letters and backslashes:
command [check_cmd]=D: \Programs\Nagios\nrpe_nt\plugins\test.cmd
In this example the plugins are in a separate subdirectory called plugins. After changes to the configuration file you should always restart NRPE_NT:
D:\Programs\Nagios\nrpe_nt\bin> net stop nrpe_nt
D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt
Function test
Before putting NRPE_NT into service, you should check whether it is functioning correctly. To do this, run the plugin check_nt on the Nagios server as the user nagios, with just one host specification and no other parameters:
nagios@linux:nagios/libexec$./check_nrpe -H winsrv
NRPE_NT v0.8/2.0
If the service has been correctly installed and configured, it will reply with a version number. Another simple test is performed by the included test.cmd plugin. It provides a short text and ends with the return value 1:
@echo off
echo hallo from cmd
exit 1
The command to be executed (defined in the previous section) is passed to the plugin check_nt with the -c option:
nagios@linux:nagios/libexec$./check_nrpe -H winsrv -c check_cmd
hallo from cmd
nagios@linux:nagios/libexec$ echo $?
1
The return value, determined with echo $?, must be 1 in this case, since the script exits with an exit 1.
20.4.2 Plugins for NRPE in Windows
A series of plugins can be found on the Internet that run in Windows and are suitable for use with NRPE. The first port of call is the subcategory Check Plugins | Operating Systems | Windows NRPE at the NagiosExchange.[254] Some of these are programs that are based on the same source code as their Unix equivalents, which was just recompiled for Windows. However, the portings also include Perl scripts that require Perl to be installed—and in most cases the script language must be installed in Windows first.
The Cygwin plugins
In the Check Plugins | Windows[255] category, The Nagios Exchange includes the CygwinPlugins package for downloading. It consists of Nagios standard plugins, which have been compiled for Windows with the help of the Cygwin Tools.[256] The package is based on the somewhat older plugin version 1.3.1, but this is enough for most purposes. Apart from the executable plugins (*.exe) the package also contains all the necessary DLLs. It is therefore sufficient to unpack the zip archive into a directory:
D:\Tmp> unzip CygwinPlugins1-3-1.zip
D:\Tmp> dir NagPlug
check_dummy.exe check_ssh.exe check_udp.exe cygwin1.dll
check_http.exe check_tcp.exe cygcrypto-0.9.7.dll negate.exe
check_smtp.exe check_time.exe cygssl-0.9.7.dll urlize.exe
For the sake of simplicity just copy the contents of the directory that is created, NagPlug, to a separate plugin directory:
D:\Tmp\NagPlug> copy * D:\Programme\Nagios\plugins
The plugin functions in the same way as in Linux. Table 20-2 refers to the corresponding sections in this book.
Table 20-2. Cygwin Plugins for NRPE_NT

	Plugin
	Page
	Description

	check_dummy.exe
	188
	Test plugin

	check_http.exe
	119
	Reachability of a Web site

	check_smtp.exe
	113
	Testing a mail server

	check_ssh.exe
	131
	SSH availability

	check_tcp.exe
	132
	Generic plugin

	check_time.exe
	178
	Clock time comparison of two hosts

	check_udp.exe
	135
	Generic plugin

	negate.exe
	188
	Negates the return value of a plugin

	urlize.exe
	189
	Turns the plugin output in the Nagios Web interface into a link

As in Unix, each of the corresponding command definitions in the configuration file nrpe.cfg must be written on a single line:
command [check_web]=D:\Programme\nagios\plugins\check_http -H www.swobspa ce.de
command [check_identd]=D:\Programme\nagios\plugins\check_tcp -H linux01 -p 113
The first line checks whether a Web server is running on the HTTP standard port 80 of the host www.swobspace.de. The second line tests whether an identd daemon (TCP port 113) is active on the host linux01.
In the event that version 1.3.1 of the plugins is too old, or if you are missing plugins, you can also compile the plugins yourself under Windows in the Cygwin environment if you have some basic knowledge of the development of C programs and how to handle Makefiles. However, not all recompiled plugins will function under Windows/Cygwin. For instance, check_icmp makes direct use of the network socket, whose construction in Windows is quite different from that of the Unix socket; thus, the plugin will not work in Windows unless changes are made to the code first. Notes on compiling under Cygwin, along with an already compiled binary archive of the plugin version 1.4.5, can be obtained at http://www.psychoticwolf.net/blog/2007/07/nagios_plugins_for_windows.php.
Perl plugins in Windows
Unfortunately the Cygwin plugins do not contain a check_ping or check_icmp. You can use the Perl script check_ping.pl instead, which is available for download on The Nagios Exchange in the Networking category.[257] It uses the Perl module Net::Ping for the network connection. In contrast to check_tcp, check_ping.pl sends several packets, so it can make a more precise assessment of response times and packet losses.
An up-to-date and simple to install Perl for Windows can be obtained from ActiveState.[258] To download the Active Perl Free Distribution, no registration is required, even if the download procedure would suggest otherwise. Of the versions offered, you should use the latest Perl version (currently 5.8.7), and only fall back on the older version 5.6.1 if this should cause problems.
The plugin script itself contains a BEGIN statement, which you must comment out for use in Windows:
BEGIN{
push @INC, "/usr/lib/perl5/site_perl/...
}
It sends a TCP echo request to port 7, alternatively you can also explicitly set a different port by adding the following line after the Net::Ping->new statement:
$p->port = 80;
This would cause a TCP ping to port 80 (HTTP). So that NRPE_NT can execute the script, you must explicitly start the Perl executable:
command [check_ping_eli02]=C:\Perl\bin\perl.exe D:\Programme\Nagios\plugi ns\
check_ping.pl --host 172.17.129.2 --loss 10,20--rta 50,250
The command has been line-wrapped for the printed version, but in the configuration file the whole command must be written on a single line. With the --host parameter you specify a host name which can be resolved or an IP address, --loss is followed by a pair of values for the warning and critical limits for packet loss in percent, separated by a comma, (so values between 0 and 100 are possible here). The --rta option also demands a threshold value pair as an argument, for the average response time in milliseconds. Since this is a Perl script, it does not matter if these are specified as integers or floating comma decimals.
20.4.3 NRPE with NSClient++
NSClient++ contains its own NRPE service, so you don't need to install an additional NRPE service when using it. It is activated by loading the library NR.PEListener.dll in the [modules] section of the configuration file NSC.ini (Configuration). Configuration of the service is handled by the [NRPE] and [NRPE Handlers] sections. The first section contains the NRPE base configuration, and the second one defines the checks to be performed.
The default port in NRPE is port 5666, and the parameter allow_arguments, when set to 1, allows arguments to be passed and corresponds to the NRPE parameter dont_blame_nrpe (10.3 NRPE Configuration on the Computer to Be Monitored):
[NRPE]
port=5666
allow_arguments=1
allow_nasty_meta_chars=1
use_ssl=1
; bind_to_address=
; allowed_hosts=
command_timeout=10
performance_data=1
allow_nasty_meta_chars=1 allows the use of special characters |'&><' "\[]{} in check_nrpe arguments. These are not allowed if the value 0 is entered here instead of 1. use_ssl should only be switched off (that is, set to 0) if check_nrpe cannot be compiled with SSL support.
The bind_to_address und allowed_hosts parameters allow for NRPE settings that are different from the default. command_timeout interrupts an external command to be executed after the time specified (in seconds), but the timeout only has an effect on external commands. NRPE commands based on internal functions are unaffected by this. Finally, the performance_data parameter controls whether or not performance data should be returned. The default (value 1) is to return it, and it is not returned with the value 0.
In the [NRPE Handlers] section, the actual commands are defined. You can use the same syntax used in NRPE or a short notation, in which the keyword command is omitted entirely:
command [command_name]=command line
command_name=command line
Along with the usual plugin calls that make use of external plugins, there is the command inject. This runs an internal function (which is described in 20.4.4 Internal NSClient++ functions from page 495):
[NRPE Handlers]
; ---
; external plugins
; ---
; NRPE-stylish:
;command [check_tcp]=C:\Plugins\check_tcp -H $ARG1$ -p $ARG2$
; shorter:
check_tcp=C:\Plugins\check_tcp -H $ARG1$ -p $ARG2$
;
check_smtp=C:\Plugins\check_smtp -H $ARG1$ -f wob@example.net
;
check_uptime=inject CheckUpTime ShowAll MinWarn=1d MinCrit=12h
In this example, check_uptime calls the internal function CheckUpTime by means of inject. If passing arguments via NRPE is allowed, you can greatly simplify the definition of inject commands:
check_inject=inject $ARG1$
Now you include the internal function, together with all required parameters, as an argument when calling check_nrpe:
nagios@linux:nagios/libexec$./check_nrpe -H winsrv -ccheck_inject \
 -a "checkUpTime ShowAll MinWarn=1d MinCrit=12h"
OK: uptime: 6d 7:19|'uptime'=544771000;86400000;43200000;
If you define the command object in Nagios just as generally, the exact formulation of the command will be shifted entirely to the service definition:
define command{
 command_name check_inject
 command_line $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c check_inject -a "$ARG1$"
}
define service{
 host_name winsrv
 service_description Uptime
 check_command check_inject!checkUpTime ShowAll MinWarn=1d MinCr
it=12h
 ...
}
There is a security issue that should be pointed out here, however. If you define check_inject=inject $ARG1$ as described above, then you are opening a door to attackers who might be hoping for a buffer overflow in the code of NSClient++. In that event, the client will be able to run any command at all. You should therefore use this rather generous command only in secure environments, and even then you should restrict the hosts that are allowed to access NSClient++ via NRPE using allowed_hosts. On the other hand, such a free definition makes life much easier during the implementation phase, since you can try out all sorts of combinations and checks on the command line without having to adjust the configuration file NSC.ini to many hosts each time.
20.4.4 Internal NSClient++ functions
NSClient++ provides a series of internal functions that can be called by the inject command via NRPE, and usually also with the plugin check_nt. These are stored in several loadable modules. Table 20-3 gives an overview of which module is required for a particular function.
Table 20-3. Internal functions of the NSClient++ module

	Modules
	Function

	CheckDisk
	CheckFileSize, CheckDriveSize

	CheckSystem
	CheckCPU, CheckUpTime, CheckServiceState, CheckProcState, CheckMem, CheckCounter

	CheckEventLog
	CheckEventLog

	CheckHelpers
	CheckAlwaysOK, CheckAlwaysCRITICAL, CheckAlwaysWARNING, CheckMultiple

To use one of these functions with check_nt, you only need to ensure that the required modules are loaded in the [modules] section. Calling via NRPE and inject provides additional configuration options, however.
Thus, for the hard disk load check with check_nt, which uses the function CheckDriveSize internally, you can just have a warning and a critical threshold displayed:
nagios@linux:nagios/libexec$./check_nt -H winsrv -vUSEDDISKSPACE \
 -l C -w 80 -c 90
...
If, on the other hand, you access CheckDriveSize directly, you may specify higher and lower thresholds, and instead of using a hard drive letter, you can use a UNC path (see Checking file sizes with CheckFileSize).
Many of the parameters listed below are optional, at least if you go by the documentation in the Wiki. This convention does not seem to have been uniformly adhered to, however. Performance data, for instance, is obtained only if you specify a warning and a critical threshold. You can also omit one or both thresholds and the call will still function; what is missing is the performance data. The ShowAll and nsclient parameters are optional, provided that the function allows this.
For all other functions, you should test to see whether your configuration really fulfills the desired purpose and whether NSClient++ works without an error message before you deploy it in a production environment.
Checking file sizes with CheckFileSize
CheckFileSize tests the size of individual files or directories:
CheckFileSize MaxWarn=size MaxCrit=size
MinWarn=size MinCrit=size
File=path:alias ShowAll
The last ones here are processed recursively. You can also test drives if you specify File=C:*.*, for instance. The threshold parameters do require size values to be given, however. If you want to monitor how full a drive is in percent, you are better off using the command CheckDriveSize.
When specifying the threshold size values you can include a suffix: B for bytes, K for KB, M for MB, and G for GB (e.g., MaxWarn=2198M). A number without a suffix specifies a size in bytes.
The syntax allows several files and/or directories to be given. In this case, the File parameter follows the associated thresholds:
user@linux:nagios/libexec$./check_nrpe -H 172.17.129.25 \
 -c check_inject -a "CheckFileSize \
 MaxWarn=500M MaxCrit=1024MFile=E:\Exchsvr\mdbdata_log*.*\
 MaxWarn=10G MaxCrit=30G File=F:\store02\priv2.edb
\
 File=G:\store03\pub3.edb ShowAll"

WARNING: E:\Exchsvr\mdbdata_log*.*: 77M,
F:\store02\priv2.edb: 11.4G > w
arning, G:\store03\pub3.edb: 3.09G|
'E:\Exchsvr\mdbdata_log*.*'=80740352
;524288000;1073741824;
'F:\store02\priv2.edb'=12234989568;10737418240 ;322
12254720;
'G:\store03\pub3.edb'=3316719616;10737418240;32212254720;
When monitoring directories, it is not sufficient to give just the directory names. Instead, as shown in the example for the directory E:\Exchsvr\mdbdata_log\, you need to specify with *.* that all the files and subdirectories (together with their contents) contained in the directory must be included in the calculation.
Of course, you can also use wildcards, for example, *.log to find out the total size of all files ending in .log in a directory. The thresholds always refer to the total of all files and directories specified in the corresponding File parameter.
If there are several consecutive File specifications, the last thresholds that were specified before them are used. ShowAll displays the statuses of all files or directories specified, and if this parameter is not given, the display contains only files and directories with an error state.
The display contains the full path of the file and directories tested, which can become very confusing. CheckFileSize therefore allows the optional use of aliases. Calling
MaxWarn=500M MaxCrit=1024M File:TMP=C:\tmp*.*
will display just the alias TMP instead of the full path:
OK: TMP: 0B|'TMP'=0;524288000;1073741824;
Checking how full drives are with CheckDriveSize
CheckDriveSize checks how full drives are. The thresholds can be given very flexibly here: You can either use the *Free parameters to determine the remaining free drive space or the *Used parameters to establish the used drive space:
CheckDriveSize MaxWarnFree=größe MaxCritFree=size
MinWarnFree=size Min
CritFree=size MaxWarnUsed=size
MaxCritUsed=size MinWarnUsed=size Min
CritUsed=size Drive=laufwerk FilterType=type
CheckAll CheckAllOthers Sho
wAll
When giving thresholds, you can again use sizes, or use the % suffix to obtain percentages. In contrast to CheckFileSize, the suffixes for size parameters must be written in lower case: b for bytes, k for KB, m for MB, and g for GB.
For the placeholder disk you can use either the respective disk letter or the UNC path of a network share: for example, Drive=\\WinSRV\C$. If CheckAllOthers is specified, NSClient++ checks all hard disks that have not been individually specified. CheckAll deals with all drives, so the Drive parameter can be omitted. An additional filter allows only certain drive types to be considered: FilterType=FIXED restricts itself to all drives that are permanently installed, while FilterType=REMOVABLE just considers removable drives. The filter FilterType=CDROM describes CD-ROM drives, and FilterType=REMOTE looks at all network drives. It is possible to combine several filters:
CheckDriveSize CheckAll FilterType=FIXED FilterType=REMOTE
checks all permanently installed local drives and all connected network drives.
Checking CPU load with CheckCPU
CheckCPU checks the processor load in percent, and thresholds are given here without the percentage sign:
CheckCPU warn=percentage crit=percentage
time=period ShowAll nsclient
The load is calculated over a period specified with the time parameter. If no suffix is given, the period is in seconds, otherwise the suffixes w for weeks, d for days, h for hours, m for minutes, and s for seconds are available. For longer periods, you must make sure that the parameter CpuBufferSize in the configuration file under [CheckSystem] has a sufficiently large value. The default period is one hour.
To display the CPU load over several different time intervals all at once, you can specify the time parameter multiple times:
CheckCPU warn=30 crit=80 time=1m time=5m time=15m
ShowAll influences the display of the plugin output (but not of the performance data; these have been omitted below):
OK CPU Load ok.
OK: 1m: 2%, 5m: 2%, 15m: 2%
OK: 1m: average load 2%, 5m: average load 2%, 15m: average load 2%
The first line shows the output without ShowAll, the second line shows it with this parameter. Here CheckCPU displays the values for each time interval individually. The third line demonstrates the parameter ShowAll=long. This does not give you more information, just more text.
The remaining parameter is nsclient, which displays the output in the style of the original NSClient and separates the details for the time intervals with the & sign: 2&2&2. Performance data is not displayed when using this parameter.
Determining the uptime with CheckUpTime
CheckUpTime shows how much time has passed since the system was started. As with CheckCPU, the thresholds can be set using a suffix (s, m, h, d, w):
CheckUpTime MaxWarn=time MaxCrit=time
MinWarn=time MinCrit=time ShowAll
nsclient Alias=string
ShowAll also displays the time even when there is no error state. nsclient changes the output to a simple value in seconds, without any other text. With Alias, the word Uptime can be replaced with a different text:
OK: uptime: 1d 20:11
OK: Running_Time: 1d 20:12
The first line shows a normal output with ShowAll; in the second line an additional Alias=Running_Time has been set.
Activity check with CheckServiceState
CheckServiceState checks whether services are active (started) or not (stopped). You can either check one or more individually listed services or use the CheckAll switch, which checks all services for which the autostart flag has been set and which should be running after every system start:
CheckServiceState service ShowFail CheckAll
exclude= servicename
CheckServiceState ShowFail ShowAll CheckAll exclude=servicename
Individual services can be explicitly checked for the desired state:
CheckServiceState MSExchangeSA=started MSSEARCH=stopped ShowFail
This call checks whether the MSExchangeSA service is running and the MSSEARCH service is not. If the state of either of the two services is different from what is specified, CRITICAL is displayed. ShowFail ensures that only services with errors appear in the output.
CheckAll normally includes all services with an autostart flag. Individual services can be excluded from this with exclude.
Monitoring processes with CheckProcState
CheckProcState checks the state of processes, and it functions in the same way as CheckServiceState, except that here there are fewer options available:
CheckProcState ShowAll ShowFail
CheckProcState ShowFail prozess
For single processes you can again specify the desired state (process=started or process=stopped); otherwise only ShowAll will be left to control the output. ShowFail is the default and can be omitted.
Checking memory load with CheckMem
CheckMem checks the load level of the memory. The type parameter is of interest here:
CheckMem MaxWarn=size MaxCrit=size
MinWarn=size MinCrit=size ShowAll
type=typ
type=page and type=paged show the entire memory (physical plus swap) and correspond to the value of check_nt -v MEMUSE. The difference between page and paged lies only in the routine used: The former uses the PDH library that is used by NSClient, and which originates from the days of Windows NT, whereas the latter uses the newer routines of Windows 2000 and Windows 2003. type=virtual refers to the swap memory used, and type=physical refers to the physical memory used.
The output of CheckMem only provides details of the entire memory available if there is an error state; for the OK state, only what is actually used of the specified category is shown.
As with CheckFileSize, suffixes for thresholds are written in upper case for this function: B, K, M, and G. Specifying percentages with the suffix % is also allowed.
Checking the performance counter with CheckCounter
With CheckCounter you can query Windows performance counters that record nearly all the parameters that Windows has to offer:
CheckCounter MaxWarn=number MaxCrit=number
MinWarn=number MinCrit=number showAll
Averages=value Counter=countername
With Averages=true, CheckCounter calculates averages for performance counters, which on their own do not provide averages. The value false switches this off, so that the query takes less time. The Averages parameter has no influence on performance counters that Windows already provides as an average.
The trick lies in finding the right performance counter. One starting point is the performance monitor itself, which is started in Windows via the perfmon program. If you insert a new performance counter in this for viewing, you will be shown all available objects (the performance counter categories) and performance indicators. All available counters are also shown by NSClient++ when it is run directly from the command line. Because of the large number of counters, it is best to redirect the output to a text file:
C:\Programme\Nagios\nsclient++> nsclient++CheckSystem listpdh > All.txt
CheckCounter takes as thresholds only whole numbers, since counters generally do not have units. This function allows an alias for the counter to be specified (see Checking file sizes with CheckFileSize):
CheckCounter "Counter:Logins=\Terminal services\Active
sessions" MaxWarn=2
0 MaxCrit=30 showAll
The quotation marks are important here. You must ensure that the parameter itself is within the quotation marks. If an alias is specified, NSClient++ replaces the performance counter in the output with the alias:
OK: Login: 1|'Login'=1;20;30;
Evaluating log entries with CheckEventLog
CheckEventLog searches through the event log for specific events and issues a WARNING or CRITICAL if the number of entries found exceeds the respective threshold. The function is very powerful and complex—and, regrettably, is not very easy to understand:
CheckEventLog file=typ filter=value truncate=number
MaxWarn=number MaxCrit=
number descriptions filtermodetype=string
The Windows event log has various log files: for applications themselves (file=Application), for security aspects (file=Security), and for system parameters (file=System). There are some additional ones for domain controllers. If you want to search for events in more than one log file, you just repeat the file parameter:
file=Application file=Security file=System
The first filter parameter is used as a switch that is combined with filter expressions that are listed later on. filter=in includes all events that match the actual filter expression, filter=out excludes such events. filter=all demands that all filter expressions match the event (logical AND), but for filter=any, one single match (logical OR) is sufficient.
Writing the filter expression itself takes some getting used to: It starts with the keyword filter—an unfortunate choice, because the same keyword has already been used. This is followed by a mode: + or . ensure that the event is counted if the filter matches, whereas - excludes the event. For +, if the filter does not match, the event is excluded, even if filter=any is used and another filter expression demands that it be counted.
The mode is followed by the filter type. eventType describes whether an error or piece of information is involved (possible values for this are error, warning, info, auditSuccess, and auditFailure):
filter+eventType==warning
This expression includes all events in which the event type matches warning. The plus sign ensures that this filter is taken into account whatever the case, even if filter=any has been set.
The eventSource filter type specifies the source of the event (for example Print, Netlogon, or Service Control Manager). The following example searches for all events for which the source contains the partial string KCC:
filter.eventSource=substr:KCC
The generated and written filter types refer to time details: generated stands for the time at which the event entry was generated, written for the time at which the event was written to the log file:
filter-generated⇒2d
This expression excludes all events that are more than two days old.
The message filter type refers to the text for the event entry and allows filtering according to text content:
filter.message=regexp:(hans|lisa)
Here a regular expression searches for events containing either the text hans or lisa.
With the event ID filter type you can filter according to the event number:
filter.eventID==7031
There is also the severity type, which is intended to filter according to the event priority. Since the author does not know of a suitable use for this, we will not look at it in any more detail.
It is not immediately clear when you need to write = for a filter expression and when == is needed. For expressions with purely text arguments (eventSource, message), a single equals sign is sufficient. For all other expressions which also allow a comparison, a relation symbol is part of the expression itself: =warning, =7031, >2d in the examples just mentioned. Together with the equals sign belonging to the filter type, this then looks like a double equals sign or a "greater than or equal to" sign—but this is not the case, there is no "greater than or equal to."
The following example searches in the System log file for crashes of the NSClient++ service:
user@linux:nagios/libexec$./check_nrpe -H 172.17.133.10 \
 -c check_inject -a 'CheckEventLog \
 file=System filter=in filter=all filter.eventID==7031 \
 filter.generated=<1d filter.message=substr:NSClientpp \
 MaxWarn=1 MaxCrit=2 descriptions'
Service Control Manager(error, 7031, error)[NSClientpp (Nagios) 0.2.7 20 07-03-06, 1,
 60000, 1, Starten Sie den Dienst neu.,], : 1 > warning|''= 1;1;2;
Because of filter=in filter=all, all filter expressions must match simultaneously. The event number being looked for is 7031, the event should not be older than one day, and it should contain the substring NSClientpp in the text. If this is found, the test returns a WARNING, and if two or more matching events are found, the return value is CRITICAL. The descriptions switch here ensures that not only the name of the source, but the entire text is displayed. In addition, there is the truncate parameter, which restricts the entire output that is returned to check_nrpe.
When using CheckEventLog, the expression "practice makes perfect" applies. If you filter too unspecifically, so that CheckEventLog has to process too many event entries, strange side effects may occur. The message UNKNOWN: No handler for that command is sometimes shown, although the reason for this is actually a buffer overflow. In case of doubt, you should switch on debugging for NSClient++ (don't forget to stop/start) and examine the log file, which is in the same directory as the executable program and the INI file, for relevant error entries. Further information on CheckEventLog is contained in the Wiki.[259].
The debug functions CheckAlwaysOK, CheckAlwaysWARNING, and CheckAlwaysCRITICAL
The functions CheckAlwaysOK, CheckAlwaysWARNING, and CheckAlwaysCRITICAL are used for debugging purposes and always return the same status. Their use is relatively simple: The chosen debugging function is simply inserted in front of a normally defined function, such as CheckFileSize:
CheckAlwaysOK CheckFileSize ...
Summarizing several checks with CheckMultiple
If several checks need to be summarized into one single check, Check-Multiple is used:
CheckMultiple command=CheckFileSize ... command=CheckUpTime ... command=...
All individual checks are written one after another, each beginning with command=. Quotation marks in the style of command="" are not required. The highest error value that occurs in the individual checks is returned as the result.

[249] To execute scripts remotely on a Windows server, you can also use the Windows version of the Secure Shell, a topic that is too large to go into in this book.
[250] http://www.nagiosexchange.org/77;139
[251] http://sourceforge.net/project/showfiles.php?group_id=83239
[252] The line break in Unix consists of only a line feed character, whereas Windows text files have a line break consisting of the two characters carriage return and line feed.
[253] This security measure, however, is restricted to a simple comparison of IP addresses.
[254] http://www.nagiosexchange.org/NRPE_Plugins.66.0.html
[255] http://www.nagiosexchange.org/49;63.
[256] The Cygwin tools contain a large number of GNU tools, including a compiler, libraries, and shells—all for Windows. This means that many Unix programs can be ported to Windows directly. The necessary files normally require only the Cygwin DLL (cygwin1.dll).
[257] http://www.nagiosexchange.org/Networking.53.0.html
[258] http://www.activestate.com/store/languages/register.plex?id=ActivePerl
[259] http://trac.nakednuns.org/nscp/wiki/CheckEventLog/CheckEventLog

Chapter 21. Monitoring Room Temperature and Humidity
There are a number of sensors for monitoring room temperature and humidity. Most of them are integrated into the network as independent network devices, and are normally addressed via SNMP.
But you have to spend at least three hundred dollars on your first sensor. Searching for a cheaper and modular system, the author finally came across http://www.pcmeasure.com/; it has met all his requirements until now.
The fact that this chapter is restricted to this sensor is not meant to detract from other systems, but is down to the fact that this topic alone would be enough for a separate book.
21.1 Sensors and Software
A complete monitoring system for physical data normally consists of three components: a sensor (for temperature or humidity for example), an adapter to connect to the serial or parallel port of a PC, and software to query the sensor.[260]
There are adapters for the PCMeasure system in variations from one to four sensors, which can be operated simultaneously. For the power supply the adapters need an available USB interface; alternatively a separate "USB power supply" is available. Instead of the adapter solution, there is also an optionally available Ethernet box with four sensor connections, which is somewhat more expensive, that can be expanded to accept 12 sensors.
The measurement querying software PCMeasure is available for both Linux and Windows.[261] Some features are exclusive to the Windows version, which is why it is slightly more expensive. For use with Nagios, the Linux version is totally sufficient, since only the measurement values are transmitted over a simple network protocol.
The sensors themselves are interesting: as well as those for temperature and humidity (as well as combinations of the two) there is also a contact sensor, a smoke and water alarm, a movement detector, and voltage detectors. These are normally connected with a twisted-pair cable (RJ45 connector); according to the FAQ,[262] they can be used up to 100 meters from the adapter or Ethernet box, provided you have good cables, that is, throughout a building.
21.1.1 The PCMeasure software for Linux
The tar archive pcmeasure.tar.gz with the Linux software is unpacked in its own directory, such as /usr/local/pcmeasure. The configuration file pcmeasure41in.ux.cfg is also installed here. The port entries in this file need to be adjusted so that only those ports are listed to which a sensor is actually connected:
[ports]
com1.1=01
com1 stands for the first serial port; if you are using the first parallel port instead, the entry before the period is lpt1. The digit following the port refers to the adapter slot used by the sensor, so depending on how many adapters you have, this is a number from 1 to 4. The = sign is followed by the sensor type: 01 stands for a temperature sensor, 03 for a humidity sensor. An additional humidity sensor on the second slot of the same adapter would then be addressed as coml.2=03.
The query program pcmeasure requires the configuration file to be specified as an argument:
linux:local/pcmeasure # ./pcmeasure ./pcmeasure4linux.cfg
It runs as a daemon in the background and only ends if it is terminated with kill. In principle, any user can start it who has read permissions for the corresponding interface.
21.1.2 The query protocol
The software opens TCP port 4000 by default and accepts requests from the network. The protocol used is quite simple: you send a text in the format
pcmeasure.interface.slot<CR><LF>
(that is, with a DOS line ending) and you receive a response in the format
port;valid=validity;value=value;...
The validity placeholder is replaced by a 1 for a valid value or 0 for an invalid one. The port specification complies with the internal numbering system: lpt1.1 corresponds to port1, com1.1 to port13. Whether everything functions correctly or not can be tested with telnet:
user@linux:~$ telnet localhost 4000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
pcmeasure.com1.1
port13;valid=1;value=22.59;counter0=10627;counter1=14373;
Connection closed by foreign host.
The current temperature in this example is 22.59°C, and the value is valid.

[260] The PCMeasure Web site showed the following prices as of February 2008: simple temperature sensor 30101, $36; serial single-port adapter 30201 $51; Linux software, $38 (Windows: $53).
[261] The access data for the download comes with the invoice.
[262] http://www.pcmeasure.com/faq.php

21.2 The Nagios Plugin check_pcmeasure2.pl
The plugin check_pcmeasure2.pl[263] allows a single sensor to be queried across a network. In exceptional cases—when measuring air pressure, for example—one call may also query two sensors. The plugin replaces check_pcmeasure.pl and uses the Perl module Nagios::Plugin to correctly represent the thresholds (see 24.1.5 Specifying thresholds, page 557). The older check_pc-measure.pl is still available under the same link, but is no longer maintained by the author.
Apart from the usual standard options, -h (online help), -t (timeout), -V (displays the version), and -v (verbose, additional information when looking for errors), check_pcmeasure2.pl has the following options:
-H
address / --host=address
This is the host name or IP address of the measuring computer on which the software is running and to which the sensors are connected, or the IP address or host name of the Ethernet box.

-S
sensor / --sensor=sensor
This switch defines the sensor, such as coml.1 or lpt1.2 (see above). When querying air pressure values, you need two sensors, which are separated by a comma when specified: --sensor=com1.1, com1.2.

-p
port / --port=port
This specifies an alternative TCP port for the software or for the Ethernet box. The default is port 4000.

-w
thresholds / --warning=thresholds
If the measured value lies outside the warning range specified here (e.g., -w 18.0:22.0, see 24.1.5 Specifying thresholds from page 557), check_pc-measure2.pl sets off a warning.

-c
threshold / --critical=threshold
This defines the critical threshold; see -w.

-T
sensor type / --type=sensor type
This specifies the sensor type for sensors with special requirements. Types currently implemented are brightness, barometer (this needs two sensors to be specified in --sensor), and standard (the default).

-R
file / --rrd-database=file
This option specifies the round-robin database to save measured values independently of Nagios. The file must be writable for the user nagios. If this is missing, the plugin will create it again.

In order to work with a round-robin database (see 19.2 Graphs for the Web with Nagiosgraph) you need the Perl module RRDs used by the plugin, from the RRDtools.[264] The plugin automatically detects whether or not the module is available. If it is missing, it does not save the data separately.

In the following example the plugin asks for the temperature of the sensor connected to the host with the IP address 192.168.1.199:
nagios@linux:nagios/libexec$./check_pcmeasure2.pl -H 192.168.1.199 \
 -S com1.1 -w 18.0:22.0 -c 16.0:24.0
WARNING: Value com1.1: 23.5 |value=23.5;18.0:22.0;16.0:24.0;
Since the measured value lies above the warning limit of 22.0°C, but below the critical limit of 24°C, there is a WARNING. The interval details correspond to those in the figure in 24.1.5 Specifying thresholds.
The corresponding Nagios command can be specified with or without a round-robin database:
define command{
 command_name check_temp_max
 command_line $USER1$/check_pcmeasure2.pl -H $HOSTADDRESS$ -S $ARG1$
-w $ARG2$ -c $ARG3$
}
define command{
 command_name check_temp_max_rrd
 command_line $USER1$/check_pcmeasure2.pl -H $HOSTADDRESS$ -S $ARG1$
-w $ARG2$ -c $ARG3$ -R $ARG4$
}
Without a RRD, you only need to specify the maximum and critical warning limits, apart from the sensor details. In the second example the RRD file predefined in $ARG4$ saves the measured data. The following service uses the file /var/lib/rrd/temperatur-serverroom1.rrd for this purpose:
define service{
 host_name linux01
 service_description Room temperature
 max_check_attempts 1
 normal_check_interval 2
 check_command check_temp_max_rrd!com1.1!18.0:22.0!16.0:24.0!/var/lib
/rrd/temperatur-serverroom1.rrd

 ...
}
With max_check_attempts set to 1, Nagios does not repeat the query in case of an error at intervals of retry_check_interval. Instead the temperature is measured constantly every two minutes.
Since room temperatures normally change very slowly, you could use a normal_check_interval of five minutes. If you choose larger measuring intervals, you can set max_check_attempts to a value greater than 1 and repeat the measurement at shorter intervals in case of errors (e.g., retry_check_interval 1).

[263] http://www.nagiosexchange.org/60;575
[264] http://www.rrdtool.org/

Chapter 22. Monitoring SAP Systems
There are several ways of monitoring an SAP system. The simplest is just to check the ports on which the corresponding SAP services are running. Normally these are TCP ports 3200/3300 for system number 00, 3201/3301 for system number 01 etc. This can be done with the generic plugin described in 6.7.1 Testing TCP ports, page 132. But it is possible that no user is able to log in even though the port is reachable, because SAP-internal services fail, making it impossible to work with the system.
To really test the complex interaction of various SAP components, you require a program that communicates on an application layer with the SAP system. There are two alternatives here: the more simple one uses the program sapinfo, which queries the available information without a direct login—like the SAP-GUI at the start. With somewhat more effort you can communicate with the SAP system over an SAP standard interface. This is no use, however, unless you have an SAP login with corresponding permissions. With the Computing Center Management System (CCMS), SAP provides its own internal monitoring system, which can also be queried with the RFC[265] interface, and which can be put to excellent use in Nagios, with the right plugins.
22.1 Checking without a Login: sapinfo
The program sapinfo is part of an optional software package for the development of client-side RFC interfaces. The Linux version which you require, RFC_0PT_46C.SAR, can be obtained either at ftp://ftp.sap.com/pub/linuxlab/contrib/, or you can log in to the SAP Service Marketplace at http://service.sap.com/ (a password is required for this) and use the search help there to look for the keyword RFC-SDK. Information is also provided by the SAP notes 413708 (at present the current RFC library), 27517 (installation of the RFC SDK), and 212876 (the new archiving tool SAPCAR).
22.1.1 Installation
SAP has its own archiving format in which the precompiled software is stored. To unpack programs you require the program SAPCAR, which can also be obtained through the FTP link mentioned or through the SAP Service Marketplace. It is operated in a way similar to tar:
linux:~ # mkdir /usr/local/sap
linux:~ # cd /usr/local/sap
linux:local/sap # /path/to/SAPCAR -xvf RFC_OPT_46C.SAR
SAPCAR: processing archive RFC_OPT_46C.SAR
x rfcsdk
x rfcsdk/bin
x rfcsdk/bin/sapinfo
...
The data contained in the archive lands in its own subdirectory, rfcsdk. If you run SAPCAR without any parameters, a short operating manual is displayed.
22.1.2 First test
The program sapinfo can be tested now without further configuration. To do this you require the so-called connect string; if the connection is running through an SAP gateway, this is a string such as /H/ip_of_the_sap-gate-way/S/3297/H/ip_of_the_sap_system; without a gateway you simply specify an IP address or a host name that can be resolved, instead of this complex expression. In case of doubt, the administrator responsible for the SAP system will reveal the exact connect string. In addition you must specify the system number,[266] in this example, 01:
nagios@linux:~$ cd /usr/local/sap/rfcsdk/bin
nagios@linux:rfcsdk/bin$./sapinfo ashost=10.128.254.13 sysnr=01

SAP System Information
--

Destination p10ap013_P10_01
Host p10ap013
System ID P10
Database P10
DB host P10DB012
DB system ORACLE

SAP release 620
SAP kernel release 640

RFC Protokoll 011
Characters 1100 (NON UNICODE PCS=1)
Integers LIT
Floating P. IE3
SAP machine id 560

Timezone 3600
The output provides various information on the SAP installation, including the SAP release (620), the SAP system ID (P10), the host on which the database is located, and the database system used, which in this case is Oracle.
With the ashost parameter you query a specific application server. For a message server, sapinfo requires the following details:
nagios@linux:rfcsdk/bin$./sapinfo r3name=P10 mshost=10.128.254.12 \
 group=ISH
The r3name parameter specifies the SAP system ID, mshost defines the IP address of the server, and group describes the logon group. As long as the PUBLIC group exists, you can leave this parameter out, and then the default, PUBLIC, will be used.
If the query ends with an error message such as
ERROR service 'sapmsP10' unknown
then the definition of the sapmsP10 service is missing for the Nagios server[267] in /etc/services:
sapmsP10 3600/tcp
For the port you define the TCP port on which the message server is running. Which one this is depends on the particular SAP installation; the standard port is 3600.
22.1.3 The plugin check_sap.sh
The plugin check_sap.sh, a shell script based on sapinfo, is included in the standard Nagios Plugins package, but it is in the contrib directory and is not automatically installed. You can copy it manually to the plugin directory:
linux:~ # cp /usr/local/src/nagios-plugins-1.4/contrib/check_sap.sh \
 /usr/local/nagios/libexec/.
Then you look in the plugin for the variable sapinfocmd and adjust the path for sapinfo:
sapinfocmd='/usr/local/sap/rfcsdk/bin/sapinfo'
If the plugin sapinfo is not found at the location given here, check_sap.sh will write an error message to STDERR, but if no error occurrs, you will receive an OK message on STDOUT and the return value 0:
./check_sap.sh: line 79: /usr/sap/rfcsdk/bin/sapinfo: No such file or directory
OK - SAP server available.
Like sapinfo, the plugin can be run in two ways: with the argument as it queries an application server, and with ms, a message server. The second argument in each case is the connect string, and if no SAP gateway is used, then it is the IP address or the host name of the host to be queried:
check_sap.sh as connect_string system_number
check_sap.sh ms connect_string SID logon_group
The first variation demands the two-digit system number of the application server as the third parameter, the counting of which starts at 00:
nagios@linux:nagios/libexec$./check_sap.sh as 10.128.254.13 01
OK - SAP server p10ap013_P10_01 available.
This means that the application server running on the host 10.128.254.13 is available.
When the message server is queried, the plugin displays the application server belonging to the specified login group (given as the fourth argument). If this information is missing, it determines the application server for the PUBLIC group.
For a message server, you specify the SAP system ID (SID), for example, P10,[268] instead of the system number:
nagios@linux:nagios/libexec$./check_sap.sh ms 10.128.254.12 P10 ISH
OK - SAP server p10ap014_P10_02 available.
In this example the message server running on 10.128.254.12 detects p10ap014_P10_02 as the application server for the logon group ISH and also reveals that this is reachable.
The following two command definitions assume that it is sufficient to use the IP address, and that no SAP connect string is required:
define command{
 command_name check_sap_as
 command_line $USER1$/check_sap.sh as $HOSTADDRESS$ $ARG1$
}
define command{
 command_name check_sap_ms
 command_line $USER1$/check_sap.sh ms $HOSTADDRESS$ $ARG1$ $ARG2$
}
If this is not the case, the command_line for querying an application server could look like this:
$USER1$/check_sap.sh as /H/sapgw/S/3297/H/$HOSTADDRESS$ $ARG1$
The following service definition can be used for all application servers:
define service{
 service_description SAP_AS
 host_name sap01
 check_command check_sap_as!00
 ...
}
Since there is only a single message server in an SAP system, it makes more sense to define a separate service for each logon group. The following example shows this for the group ISH:
define service{
 service_description SAP_MS_ISH
 host_name sap09
 check_command check_sap_ms!P10!ISH
 ...
}
In this way you can test whether a user may log in without actually logging in. If there are interruptions between the database and the application server that make it impossible to log in, sapinfo provides a corresponding error message after a timeout. The author was able to observe several times that sapinfo and check_sap.sh reported an error in such a situation, while the TCP port-only test of the application server, check_tcp, returned an OK, although no user could log in any longer. So check_sap.sh, even without a login, provides more reliable information than a port-only check.
22.1.4 More up to date and written in Perl: check_sap.pl
check_sap.sh is not only getting on in years, it is apparently also no longer maintained, so once in a blue moon you just have to put up with the fact that it returns an OK, even when there is an error. The author of this book has therefore written his own version of the plugin in Perl and made this available on NagiosExchange.[269] As befits a reputable Perl plugin, it uses the Perl module Nagios::Plugin (more on this in 24.2 The Perl Module Nagios::Plugin from page 560), parses the command line with Getopt::Long (25.1 Splitting up the Command Line With Getopt::Long, page 565), and includes integrated online help.
The plugin check_sap.pl also uses sapinfo (22.1 Checking without a Login: sapinfo) and has the following options:
--ashost=connect_string
Tests the application server. A connect string (21.2 The Nagios Plugin check_pcmeasure2.pl) must be specified, which in the simplest case is the IP address of the application server. The test needs an SAP system number to be given at the same time, with --sap-sysnr.

--mshost=connect_string
Tests the message server. A connect string is expected, as with --ashost, and you also need to specify at least the SAP-SID of the system (e.g., P10). The test uses a logon group, and the default is PUBLIC. If this is not available in the SAP system, you must specify the group in question with --group.

--sap-sysnr=system_number
Defines the system number for the test of an application server. Normally the system number begins counting upwards from 00 for the first application server. In case of doubt, you should ask your SAP administrator for the correct system number.

--sap-id=sid
Defines the SAP-SID for the overall system for the test of the message server. In case of doubt, you should also ask your SAP administrator about this parameter.

--group=logon group
Defines the logon group that is to be used for the test of the message server. This must exist in the SAP system, otherwise the message server test will fail. The default is PUBLIC.

--sapinfo=path_to_sapinfo
Specifies the path to the program sapinfo. The default is /usr/local/sap/rfcsdk/bin/sapinfo.

-h / --help
Displays the online help.

-V / --version
Shows the version and the license conditions of the plugin (GPLv2).

-v / --verbose
Increases the verbosity of the plugin. This option can be given several times, to make the output increasingly extensive.

The following example tests an application server with the SAP system number 00:
nagios@linux:nagios/libexec$./check_sap.pl--ashost=10.128.254.12 \
 --sap-sysnr=00
CHECKSAP OK - system p10db012_P10_00 available
To test the message server you require the SID instead of the system number and, in our case, a logon group as well, since the default logon group PUBLIC does not exist in the P10 system:
nagios@linux:nagios/libexec$./check_sap.pl--mshost=10.128.254.12 \
 --sap-id=P10 --group=ISH
CHECKSAP OK - system p10ap014_P10_02 available
In contrast to the example given for check_sap.sh, the definition of the command is kept very general:
define command{
 command_name check_sap
 command_line $USER1$/check_sap.pl $ARG1$
}
Because of $ARG1$, a single command definition is sufficient for all checks, whether for application or message server, whether with or without an SAP connect string. The definition of the service for the test of an application server then looks like this:
define service{
 service_description SAP_AS
 host_name sap01
 check_command check_sap!--ashost=$HOSTADDRESS$--sap-sysnr=00
 ...
}
The service obtains the IP address of the host from the accompanying host definition via the $HOSTADDRESS$ macro, so that the service definition works for an entire host group if you define the name of the host group with hostgroup_name instead of host_name. If an SAP connect string is required, you replace $HOSTADDRESS$ with the connect string:
check_sap!--ashost=/H/sapgw/S/3297/H/$HOSTADDRESS$ --sap-sysnr=00
In an SAP system there is just one message server, therefore the service check only makes sense for this one host. If there are several different logon groups, you define a separate service for each of these. The following example shows this for the group ISH:
define service{
 service_description SAP_MS_ISH
 host_name sap00
 check_command check_sap!--mshost=$HOSTADDRESS$--sap-id=P10 -
 -group=ISH
 ...
}
Here it is also possible to add a connect string that might be required.

[265] Remote Function Call.
[266] The SAP administrator will also know this.
[267] Instead of P10, the appropriate system ID will always be shown here.
[268] The first instance of this has the system number 00, the second one, 01, etc.
[269] http://www.nagiosexchange.org/21;744

22.2 Monitoring with SAP's Own Monitoring System CCMS
With SAP's own Computing Center Management System framework (CCMS), not only SAP systems, but also external applications can be monitored. Here local agents collect data from each of the hosts, which, since Release R/3 4.6C,[270] can be queried from a central component. The data examined includes not only SAP-specific features such as SAP buffers or batch jobs, but also operating system data such as memory and CPU usage, or disk IO and swapping. Even information on the database used or the average response times of applications can be queried.
The data of the CCMS can also be queried externally through RFC (Remote Function Calls, a standard SAP interface). Corresponding libraries for Unix and Windows platforms, with which a Linux program, for example, can query information from the CCMS over the network, are provided by SAP.
22.2.1 A short overview over the alert monitor
Within the SAP world you gain access to this data through the CCMS Alert Monitor (transaction RZ20) (Figure 22-1). The illustration shows so-called monitor connections that categorize various information in groups.

Figure 22-1. The SAP CCMS Alert Monitor
SAP provides several monitor collections with preconfigured values in its distribution. A trained SAP administrator can create and operate monitors at any time. We shall restrict ourselves here to the monitor collection SAP CCMS Monitor Templates and focus on the Dialog Overview monitor (Figure 22-2).
The dialog response times specified there (accessible through the monitor attribute
Dialog Response Time) provide a measurable equivalent for performance problems corresponding to what the user feels is a "slow system." This value specifies the average processing time of a transaction (without network transmission time and without the time needed to render the information in the GUI of the client).

Figure 22-2. The SAP CCMS monitor dialog Overview
The monitor attribute Network Time reveals how much time the system needs to send data during a dialog stage from the client (the SAP GUI) to the SAP system and back again.
For each of the attributes, the monitor shows which context defined in the SAP system—normally which SAP instance—is involved in the measured values specified. Most measurement parameters have a warning and a critical limit. If the value lies beneath the warning limit, the monitor displays the line in green; for monochrome devices the color is listed as text. If the warning limit is exceeded, yellow is shown, and if the critical limit is exceeded, red. If an entry of a partial tree lies outside the green limit, the monitor also sets the overlying nodes to yellow or red, so that the administrator can see that something is not right, even when the menus are not open.
You do not normally need to worry about the thresholds. The settings configured by SAP are sensible and should only be changed if there is a sound reason to do so.
The Nagios plugins for the CCMS query described in 22.2.4 The CCMS plugins (page 525), return the status defined in the CCMS: OK if the traffic light is on green, WARNING for yellow, and CRITICAL for red. The thresholds are therefore set by the SAP system, and not by Nagios.
If you want to find out more about CCMS, we refer you to the documentation at http://service.sap.com/monitoring (password required). There SAP provides detailed information on the installation and operation of CCMS. The SAP online help also has an extensive range of information available. If you just want a short summary of the subject and are more interested in the way the Nagios plugins work, you can find two informative PDF documents at http://www.nagiosexchange.org/Misc.54.0.html under the keyword SAP CCMS.
22.2.2 Obtaining the necessary SAP usage permissions for Nagios[271]
Retrieving information from the CCMS is done through RFC (Remote Function Calls), which requires a login on the SAP side. Luckily the user only needs a minimal set of permissions.
A new role is set up in the role generator (transaction PFCG) with a name that conforms to the company-internal conventions. It is not given any transaction assignment in the menu.

Figure 22-3. For access from Nagios you require these SAP authorization objects
When maintaining permissions, the following permission objects are added manually: S_RFC, S_XMI_LOG, and S_XMI_PROD (see also Figure 22-3).
Whether these permissions are sufficient or not can be tested with the plu-gin check_sap_cons described in 22.2.4 The CCMS plugins, page 525 check_sap_cons. If a function group (such as SALG) is missing from the permission object S_RFC, the plugin shows name of this in plain text in the error message.
The login data is stored on the Nagios server in the file /etc/sapmon/login.cfg. When doing this, various target hosts (called RFC destinations in SAP) can be configured simultaneously. Such a login configuration for a target system is called an RFC template in the language of the CCMS plugins (22.2.4 The CCMS plugins, page 525). It has the following form:
[LOGIN_template]
LOGIN=-d target -u user -p password -c client-id -h address
 -s system_number
The complete LOGIN definition must be written on a single line, and it is essential that it contain the following details:
-d
target
This is the name of the SAP system, also referred to as SID or system ID.

-u
user
-p
password
These parameters state the SAP user and corresponding password. Remember that a newly created dialog user has to change his or her password on first logon.

In addition, there are problems with upper/lower case on some systems: In some cases the password must be written entirely in capitals.

If the login is to work later on, the password may not contain the # sign. Which special characters are allowed seems to depend on the system settings. Here you just have to experiment a bit, if necessary. If you have problems, it is best to start with a very simple password, so that errors of this type can be ruled out.

-c
client-id
This is the three digit client ID.

-h
address
The host name of the host on which the named user should log in. This must resolve to an IP address.

-s
system_number
The SAP system number. The first SAP instance is normally 00, then increased incrementally.

Below, the user with the password secret should login from the client with the ID 020 to the host p10ap013 whose SAP installation has the system number 01:
[LOGIN_P10]
LOGIN=-d P10 -u user -p secret -c 020 -h p10ap013 -s 01
The RFC template name in square brackets consists of the text LOGIN_ and the SAP system ID (SID). The RFC template defined here belongs to the SAP system P10.
22.2.3 Monitors and templates
The interface provided by SAP that is used by the plugins is available in a simple and an extendable variant. Only additional functions enable all information from the CCMS to be retrieved, which is why we are omitting the description of the simple interface.[272]
For the extended interface, templates define the monitor data to be used. These are stored on the Nagios server in the file /etc/sapmon/agent.cfg and have the following format:
[TEMPLATE_name]
DESCRIPTION description
MONI_SET_NAME= monitor collection
MONI_NAME= name_of_the_monitor
PATTERN_0=SID\context\monitor_object\attribute
The placeholders written in italics are replaced as follows:
name
This is the name with which the plugins address the template. The name may consist of digits, letters, and the characters _ and -. When it is called by the plugin, the name must be written in lower case, irrespective of whether it is called TEST, Test, or test, for example. If you are having problems with alphanumerical names, it is better to select template names consisting of two digits when you are getting started, e.g., 00, 01, and so on.

description
A freely selectable, simple text.

monitor collection
This is the name of the monitor, set exactly as it is in the CCMS (including upper/lower case and spaces).

name_of_the_monitor
The name of the monitor must also match the SAP name exactly.

context
This pattern filters out the desired values from those contained in the monitor. In most cases you specify the identifier for the SAP instance, such as p10ap013_P10_01 (p10ap013 is the host name, P10 the SID of the SAP system, and 01 is the system number).

monitor_object
This is the name of the desired monitor object, for example Dialog. Unfortunately the term demanded here rarely corresponds to the one shown in the SAP GUI. It is best to determine it using PATTERN_0=*, as described below.

attribute
This is the variable to be queried. Each monitor object may contain severable variables. Dialog, for example, has, apart from the ResponseTime variable, the FrontendNetTime variable, which reveals the average processing time of a transaction, restricted to the network transmission time and processing time on the client.

The challenge here is in specifying the filter in PATTERN_0. It must exactly match the SAP-internal names, and these are not identical to the terms that are displayed in the CCMS Alert Monitor (Transaction RZ20).
It is best to start with PATTERN_0=*, which ensures that the entire tree appears. We shall call the template for this simply 00:
[TEMPLATE_00]
DESCRIPTION=Dialog response time
MONI_SET_NAME=SAP CCMS Monitor Templates
MONI_NAME=Dialog Overview
PATTERN_0=*
With this entry in /etc/sapmon/agent.cfg you query the complete list of all monitor entries, in this case those of the system with the ID P10, using the check_sap_cons plugin:
nagios@linux:nagios/libexec$./check_sap_cons 00 P10
...
P10 p10ap013_P10_01 Dialog ResponseTime 262 msec
P10 p10ap014_P10_02 Dialog ResponseTime 61 msec
P10 p10db012_P10_00 Dialog ResponseTime 11 msec
...
The entries contain the following information—with items separated by spaces:
SID context monitor_object attribute value
The information for the P10 system queried above first gives the SAP instance, such as p10ap013_P10_01, then the monitor object (Dialog) and the attribute (ResponseTime) together with values. In the SAP GUI (Figure 22-2) this latter is called Dialog Response Time, and since each empty space is significant, this is a completely different name.
In a template that is only interested in the response time of the instance p10ap014_P10_02, the PATTERN_0 is defined as follows:
PATTERN_0=P10\p10ap014_P10_02\Dialog\ResponseTime
If you want to query all the entries of a query level, you must use the wildcard *. The following example defines templates for the dialog response time, the network response time, and the average CPU load for all instances of the system P10:
[TEMPLATE_00]
DESCRIPTION=Dialog response time
MONI_SET_NAME=SAP CCMS Monitor Templates
MONI_NAME=Dialog Overview
PATTERN_0=P10*\Dialog\ResponseTime

[TEMPLATE_01]
DESCRIPTION=network response time
MONI_SET_NAME=SAP CCMS Monitor Templates
MONI_NAME=Dialog Overview
PATTERN_0=P10*\Dialog\FrontEndNetTime

[TEMPLATE_10]
DESCRIPTION=System load in five-minute average
MONI_SET_NAME=SAP CCMS Monitor Templates
MONI_NAME=Operating System
PATTERN_0="P10*\CPU\5minLoadAverage"
22.2.4 The CCMS plugins
SAP demonstrates the use of the RFC interface to the CCMS with the CCMS plugins for SuSE. In Debian you can convert the RPM package nagios-plugins-sap-ccms-0.7.3[273] to a tar file with alien, or alternatively you can obtain the source RPM from a SuSE FTP mirror[274] and compile the source code yourself. This will give you the plugins listed in Table 22-1.
Table 22-1. The SAP-CCMS Plugins

	Plugin
	Description

	[a]

	check_sap
	Output of the monitor data in HTML format

	check_sap_cons
	Ditto, but without HTML formatting and without hyperlinks for the output on the command line

	check_sap_instance
	Dialog response time and number of logged-in users on a particular application server (requires CCMS Ping [a])

	check_sap_instance_cons
	Ditto, as text output without HTML markup

	check_sap_multiple
	HTML-formatted output of data of a monitor template, which returns more than one value

	check_sap_mult_no_thr
	Output of multiple values with simple HTML formatting, without hyperlinks, in contrast to check_sap_multiple

	check_sap_system
	Shows the application servers of the SAP system and their states (requires CCMS Ping)

	check_sap_system_cons
	Like check_sap_system, only without HTML formatting

	[a] As components of the CCMS monitoring system, CCMS Ping monitors the availability of the application server belonging to the SAP system.

The plugins that end in _cons are especially suitable for test purposes: they simply pass the data on to the command line, without further formatting. The output of the others contains HTML formatting for a Nagios version modified by SAP; with Nagios 2.0 they usually lead to an incorrect view and are therefore useless.
Individual values are best retrieved with check_sap_cons. For Nagios 2.x the monitor definition must then really return only one single value. The remaining ones would be returned on additional lines, ignored by Nagios 2.x.
If you are using Nagios from version 3.0 onward, you can certainly formulate the monitor definition in such a way that check_sap_cons returns several values. Although the Web interface will only display the first line of these, the extended view, with extinfo.cgi, will show the rest of the output up to a length of 8 KB (see Figure 22-4).

Figure 22-4. check_sap_cons with a mulitiple-line output in Nagios 3.0.
If Nagios 2.x is to display several return values, it is best to use check_sap_mult_no_thr, which provides these values with some HTML formatting elements that also work with Nagios 2.x. This causes all results to appear in the Web interface as well.
All plugins demand two arguments: check_sap, check_sap_cons, check_sap_multiple, and check_sap_mult_no_thr first require the name of the monitor template from the file /etc/sapmon/agent.cfg, such as 00, 00_sapl3, 01, or 10 (see 22.2.2 Obtaining the necessary SAP usage permissions for Nagios), followed by the name of the RFC templates, as defined in /etc/sapmon/login.cfg (in the examples in this book we use the system ID P10).
For check_sap_system/check_sap_system_cons and check_sap_instance/check_sap_system_cons, the first argument changes: instead of the monitor template, check_sap_system demands the system ID (here, P10), and check_sap_instance demands the SAP instance, consisting of the host name, the SID, and the system number (for example, p10apl3_P10_01).
First steps with check_sap_cons
The plugin check_sap_cons is probably best suited to your first attempts. Only after this has worked for you properly on the command line should you move on to the actual Nagios configuration. The example in 22.2.3 Monitors and templates already showed how you determine the dialog response time with the monitor template 00, and the following example queries the network time which the SAP GUI requires till the result of the transaction appears in the SAP GUI, using the monitor template 01:
nagios@linux:nagios/libexec$./check_sap_cons 01 P10
P10 p10ap013_P10_01 Dialog FrontEndNetTime 383 msec
P10 p10ap014_P10_02 Dialog FrontEndNetTime 673 msec
P10 p10db012_P10_00 Dialog FrontEndNetTime 1491 msec
The definitions in the two templates can be found in 22.2.3 Monitors and templates in page 523. In both examples, check_sap_cons returns multiple values, only the first line of which would be noticed by Nagios in the Web interface and in notifications. If the instance p10ap014_P10_02 displayed a critical status, but p10ap013_P10_01 did not, the plugin would return a CRITICAL, but the Web interface would only present the first line (like the notification), which would not give any reason to worry. This means that the admin would not see the very thing that has set off the critical state.
If check_sap_cons only returns error messages instead of the data you want, there could be several reasons for this. In the following example the login fails:
nagios@linux:nagios/libexec$./check_sap_cons 00 P10
<== RfcLastError
FUNCTION: SXMI_LOGON
RFC operation/code SYSTEM_FAILURE
ERROR/EXCEPTION
key :
status :
message : User account not in validity date
internal:
<== RfcClose
The reason is given in the message: field: the user currently does not have a valid account. If the following message were to be found there
message : User 910WOB has no RFC authorization for function group SXMI.
this would mean that the user 910W0B does not have the necessary permission in the authorization object S_RFC. In order to grant it, that user should be assigned to the function group SXMI.
The plugins record such RFC error messages in the file dev_rfc in the current working directory. If Nagios runs the plugin, then it will generate this file in the Nagios home directory (/usr/local/nagios, if you have followed the installation description in this book).
In the next case the login works perfectly, but the plugin does not return any values:
nagios@linux:nagios/libexec$./check_sap_cons 01 P10
No information gathered! System up?
The error here lies in the monitor definition: often the name of the monitor set or the monitor is written wrongly, or the pattern does not match the monitor used. The intersection of monitor and pattern is then empty, and SAP also does not warn explicitly if the monitor or monitor set do not even exist.
Checking multiple values with check_sap_mult_no_thr
If Nagios is to represent multiple queried values in the Web interface, you should use check_sap_mult_no_thr:
nagios@linux:nagios/libexec$./check_sap_mult_no_thr 00 P10
<table>
<tr><td CLASS='statusOK'>P10 p10ap013_P10_01

 Dialog ResponseTime 785 msec</td></tr>
<tr><td CLASS='statusOK'>P10 p10ap014_P10_02

 Dialog ResponseTime 352 msec</td></tr>
<tr><td CLASS='statusOK'>P10 p10db012_P10_00

 Dialog ResponseTime 22 msec</td></tr>
</table>
The output is given in a single line, which we have reformatted manually here so that it can be more easily read. With the HTML code, the plugin ensures that each value (thanks to the CLASS specifications) is shown on a separate line in the color matching its status. The status of the Nagios service changes to CRITICAL if at least one measured value is critical. Such a case is shown in Figure 22-5.

Figure 22-5. Check_sap_mult_no_thr uses HTML. Markups which Nagios 2.0 also understands
In this case as well you should remember that Nagios 2.x altogether processes no more than 300 bytes of the plugin output, and cuts off the rest. For HTML-formatted output, not only is information then missing, there are also side effects in the table layout in the Web interface. In case of doubt, you must share the test among several service checks. Starting with Nagios 3.0, this problem generally no longer occurs, as the limit of 8 KB for the plugin output is also usually sufficient to display extensive output.
In the definition of the Nagios command objects, the host name, exceptionally, does not play a role for the CCMS plugins. This means that the $HOSTADDRESS$ macro is not used:
define command{
 command_name check_sap_ccms
 command_line $USER1$/check_sap_mult_no_thr $ARG1$ $ARG2$
}
If you request several values simultaneously, they will normally belong to different hosts. This means that services can only be assigned to a host in one-to-one single value queries. Nevertheless, Nagios expects a specific host in the service definition:
define service{
 service_description SAP Dialog Response Time
 host_name sap01
 check_command check_sap_ccms!00!P10
 ...
}
22.2.5 Performance optimization
Since the monitor always transmits all the data it has available over the RFC interface, filtering always takes place on the client side through the plugin. For this reason it is not recommended that you query single values from a large monitor one after another: this consumes considerable resources.
You should either have a single service provide all the values,[275] or you should define a separate monitor yourself containing precisely those values you would like to test. This latter method is recommended by SAP.
If you want to check several monitors, or even single values of the monitor one after the other, you should keep an eye on the necessary network bandwidth. Within a local network this is normally not a problem, but it can place a considerable burden on narrow-bandwidth long-distance connections (ISDN, simple VPNs). In such cases you should measure the network traffic when starting operation, so that you can increase the check intervals accordingly in case of problems.

[270] Central evaluation was not possible in earlier releases.
[271] This section is intended for SAP authorization administrators. If you do not maintain SAP authorizations yourself, you can skip this section.
[272] Information on this is provided by the PDF documents mentioned in 22.2.1 A short overview over the alert monitor.
[273] It can be found at http://www.rpmseek.com/, for example, if you search there for nagios-plugins-sap-ccms.
[274] e.g., ftp://ftp5.gwdg.de/pub/linux/suse/opensuse/distribution/SL-OSS-factory/inst-source/suse/i586/nagios-plugins-sap-ccms-0.7.3-143.i586.rpm
[275] Using a plugin predestined for the output of multiple values.

Chapter 23. Processing Events with the EventDB
Events are fundamentally different from the other, usual host and service states in Nagios. The check of a service in a critical state returns a CRITICAL until the state of the service changes, irrespective of the number of checks and the repeat interval. An event, on the other hand, occurs only once, for instance in the form of a syslog entry or an SNMP trap.
If the events of an uninterruptible power supply (UPS) are logged via syslog to a log file, the message that the UPS has switched to battery because the voltage supply has failed will appear there only once. If you now test regularly whether a corresponding entry occurred within the last half hour, simple log file checks will not announce a match after this time has expired, so they will return an OK, since there is no critical event. But the UPS is still in a critical state. The critical state only really ends when the message arrives that the voltage supply has been restored.
Monitoring via SNMP traps comes close to the desired behavior: An alarm trap announces the failure of the voltage supply, the state of the service is set to CRITICAL, a subsequent OK trap announces the restoration of the voltage supply, and the state changes back to OK.
Events can be integrated into Nagios in various ways. A simple syslog integration is described in 14.5 Application Example I: Integrating syslog and Nagios from page 306, and another processing method for SNMP traps, also kept very simple, is dealt with in 14.6 Application Example II: Processing SNMP Traps from page 312. For Windows events it is often sufficient to test whether a specific event has occurred in the past 12 to 24 hours. The check can be made with NSClient++ and the module CheckEventLog (20.4.4 Internal NSClient++ functions, page 502), for instance.
The procedure described in this chapter goes a little further. All events are collected in an event database. An administrator processes all these events and sets an acknowledge via a Web interface. Nagios now checks via plugin whether a defined number of events is exceeded for a specific group, so that the administrator will have to act—to set acknowledges and undertake further action, if necessary.
A similar approach is taken by nagtrap[276] (formerly SNMPTT Web Frontend, not to be confused with the SNMPTT GUI[277]). nagtrap is specialized for SNMP traps and is integrated directly into the Nagios Web interface. For reasons of space, we will not go into a detailed description here.
23.1 How the EventDB Works
The EventDB of NETWAYS[278] basically consists of four components: a syslog connection, which collects the events, a MySQL database to save the events, a Web interface for interactive processing, and a Nagios plugin, which connects the EventDB to Nagios. Figure 23-1 shows a diagram of the setup.
A central syslog service—syslog-ng is used because of its more flexible configuration—collects events from various sources. There are various software packages available for the integration of Windows event logs, one of which is described in 23.6 Sending Windows Events to Syslog (page 545). The SNMP trap daemon installed on the syslog server, snmptrapd (14.6.1 Receiving traps with snmptrapd, page 312), is able to pass the traps it receives on to the syslog. To provide more meaningful and readable messages from the cryptic OIDs, the SNMP Trap Translator (SNMPTT) is on hand to help out the snmptrapd, and this is described briefly in 23.7 Making the Incomprehensible Legible with SNMPTT from page 546.
syslog-ng allows existing events to be arranged in a self-defined format and to be sent to a named pipe. From this a daemon reads the incoming events and writes them to a MySQL database. Via a Web interface (Figure 23-2, page 539) the administrator confirms processed events with acknowledges. Nagios uses a plugin to test whether there are one or more non-confirmed entries for a specific event and informs the administrator accordingly about the notification functions.
It should also be mentioned that the EventDB is ideal for processing sys-log entries, even when Nagios is not used at all. The Web interface of the EventDB provides a simple but effective interface that can be used to search the database quickly and easily for a particular event or for similar events, especially when events of the same type are collected from a large number of hosts.

Figure 23-1. syslog-ng collects data from various sources and writes these to named pipe. A separate daemon reads the events from this and writes them to the database. From this they can be queried via web interface or via Nagios plugin.

[276] http://www.nagtrap.org/
[277] http://snmptt-gui.sourceforge.net/
[278] http://www.netways.de/

23.2 Installation
The current version of the EventDB can be obtained from NagiosExchange,[279] and the contents of the tar archive are unpacked in the directory /usr/local/src:
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /pfad/eventdb.tgz
eventdb/
eventdb/plugin/
eventdb/plugin/check_eventdb.pl
eventdb/agenten/
eventdb/agenten/syslog-ng/
eventdb/agenten/syslog-ng/syslog-ng2mysql
eventdb/agenten/syslog-ng/syslog-ng.conf
eventdb/agenten/syslog-ng/syslog-ng2mysql.pl
...
eventdb/db/
eventdb/db/create_tables.sql
eventdb/webinterface/
eventdb/webinterface/index.php
...
eventdb/cleanup/
eventdb/cleanup/eventdb-clean_database.sh
eventdb/cleanup/rotate_eventdb.sh
...
The Nagios plugin is located in the plugin subdirectory. The subdirectory agenten contains the integration with syslog-ng. In db there is a MySQL script that creates the necessary tables in the database. The webinterface directory contains the Web interface for the EventDB
23.2.1 Installation requirements
A prerequisite for the EventDB is syslog-ng in at least version 1.9.1, since the template mechanism required is only implemented from this version onward. For the database you require a current MySQL-5.0 server (included in the Debian package mysql-server-5.0, for example), and for the syslog-ng2mysql.pl daemon written in Perl, the module DBD::MySQL (in Debian, the package libdbd-mysql-perl).
The Web interface is implemented in PHP 5. This requires, along with Apache 2, the PHP-5 module for this server version (in Debian libapache2-mod-php5) and the PHP5-MySQL package (in Debian, php5-mysql).
An automatic installation routine that checks that all required packages are present is not included in EventDB.
If the SNMPTT, to be described later in 23.7 Making the Incomprehensible Legible with SNMPTT, is to be integrated, then you will also require the daemons snmpd and snmptrapd, as well as the accompanying client programs. Debian provides these programs in the packages snmpd and snmp. The SNMP trap translator requires SNMP Perl (in Debian, included in the package libsnmp-perl), which must not be confused with Net::SNMP.
23.2.2 Preparing the MySQL database
After the installation of the MySQL-5 server package for the respective distribution, you set up the database eventdb and the database user eventdb:
linux:~ # mysql -p
mysql> CREATE DATABASE eventdb;
Query OK, 1 row affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON eventdb.* TO \
 'eventdb'@'localhost' IDENTIFIED by 'mypassword';
Query OK, 0 rows affected (0.00 sec)
mysql> quit
Bye
The GRANT command gives eventdb the necessary permissions to work with the event database; instead of the password set here, you use your own, secure password. Then you change to the directory where the source code has been unpacked (in this case, /usr/local/src/eventdb) and set up the necessary tables with the script create_tables.sql from the subdirectory db:
linux:~ # cd /usr/local/src/eventdb
linux:src/eventdb # mysql -p eventdb < db/create_tables.sql
If no errors occur when doing this, the prompt will appear, without any other output. What has been created by the script can then be displayed with show tables and describe
tablename:
user@linux:~$ mysql -u eventdb -p eventdb
mysql> show tables;
+-------------------+
| Tables_in_eventdb |
+-------------------+
| comments |
| events |
+-------------------+
2 rows in set (0.00 sec)

mysql> describe events;
+-------------+---------------------+-----+-----+---------------+
| Field | Type | Null| Key | Default |
+-------------+---------------------+-----------+---------------+
uid	int(11)	NO	PRI	NULL
type	varchar(50)	NO	MUL	
host	varchar(50)	NO	MUL	
facility	varchar(50)	NO	MUL	
priority	varchar(20)	NO	MUL	
level	varchar(10)	NO		
tag	varchar(10)	NO		
program	varchar(50)	NO		
datetime	datetime	NO		0000-00-00 00:00:00
message	blob	NO	MUL	
acknowledged	tinyint(1) unsigned	NO		0
+-------------+---------------------+-----+-----+---------------+
11 rows in set (0.00 sec)
The MySQL command show tables shows the tables created. All events are saved in events. The comments table is just an auxiliary table, which is used for comments that the administrator might make when setting acknowledges.
23.2.3 Sending events to the database with syslog-ng
The configuration of syslog-ng has already been described in 14.5 Application Example I: Integrating syslog and Nagios from page 306, which is why we will deal here only with the adjustments for the EventDB. In order for the syslog daemon to be able to pass on data to the EventDB, we need suitable destinations and a log entry that uses these. To make the configuration more clear we will write our own template to the file syslog-ng.conf, which formats the output and which is referenced in the definition of the two destinations d_eventdb and df_eventdb:
template t_eventdb {
 template("$HOST\t$FACILITY\t$PRIORITY\t$LEVEL\t$TAG\t$YEAR-$MONTH-$DAY
\t$HOUR:$MIN:$SEC\t$PROGRAM\t$MSG\n");
 template_escape(no);
};
destination d_eventdb {
 pipe("/var/run/syslog-ng.pipe" template(t_eventdb));
};
destination df_eventdb {
 file("/var/log/eventdb" template(t_eventdb));
};
In the TAG variable there is a non-documented combination of $FACILITY and $PRIORITY, that is, of the type of program to be logged (daemon, authorization tool, kernel, cron daemon, printer, and so on; see also man 3 syslog) and the significance of the message. $HOST is a placeholder for the computer, $YEAR-$MONTH-$DAY for the date, $HOUR:$MIN:$SEC for the time, $PROGRAM for the program for which the message applies, and $MSG for the log message itself.
The LEVEL variable is actually unnecessary, since it contains the same value as PRIORITY. The database layout demands both values, however, which is why they must be specified. The entire template definition must be written on one line in the configuration file syslog-ng.conf; it is only line-wrapped here for printing purposes.
The destination d_eventdb is a named pipe that is fed with the data of the template. The destination df_eventdb is used for debugging purposes and can be used as a substitute or in parallel when you are searching for errors. The data here ends up in a normal log file. Since the same template is used, it produces exactly the same text as is contained in the named pipe.
The only things missing now are a source, a filter, and a log entry:
source local {
 unix-stream("/dev/log");
 internal();
};
source remote {
 udp(ip(0.0.0.0) port(514));
};

filter f_warn {
 level(warn .. alert);
};

log {
 source(local); source(remote);
 filter(f_warn);
 destination(d_eventdb);
 # destination(df_eventdb);
};
The source local reads all local and system-internal events that arrive at the syslog-ng, but no kernel events. remote describes the classic method of receiving packets from remote syslog daemons via UDP port 514. The filter f_warn covers all events that have a priority (or level) of at least warn. Finally, log writes events from the two sources that are matched by the filter, to the destination d_eventdb.
The configuration shown uses /var/run/syslog-ng.pipe as a named pipe. Debian-based systems delete the contents of the directory /var/run/ when the system is booted, however. For this reason the named pipe must be newly created at each system start. The startup script included with Event-DB, syslog-ng2mysql in the directory agenten/syslog-ng, has been doing this since version 2007-11-30; for older installations you should add the following two lines at the beginning of the script:
FIFO="/var/run/syslog-ng.pipe"
test -p $FIFO || mkfifo $FIFO
Then you copy the script to /etc/init.d and ensure, depending on the distribution, that it is run automatically on system start, and certainly before /etc/init.d/syslog-ng.
The Perl daemon syslog-ng2mysql.pl is also located in the subdirectory agenten/syslog-ng. In this script you need to change the variables $dbuser and $dbpass to match your own MySQL installation:
my $db = "eventdb";
my $dbhost = "localhost";
my $dbuser = "eventdb";
my $dbpass = "mypasswd";
my $dbtable = "events";
Then you copy the file to /usr/local/sbin, where the init script expects it to be. With
linux:~ # /etc/init.d/syslog-ng2mysql start
linux:~ # /etc/init.d/syslog-ng restart
you restart the Perl daemon and perform a restart of the syslog daemon.
An initial overview of whether events end up in the database can be obtained by entering a simple select * command on the events table:
user@linux:~$ mysql -u eventdb -p eventdb
mysql> select * from events;
...
If nothing happens here, you can use the logger program to test whether the syslog daemon is writing entries at all to the log files (for further information, see man logger):
user@linux:~$ logger -p daemon.warn "hallo wob"
If no entries appear, despite the syslog working correctly, you should enable the destination df_eventdb and check to see if the output of the template appears correctly formatted.

[279] http://www.nagiosexchange.org/36;1129

23.3 Using the Web Interface
The Web interface for the EventDB consists of a single PHP file, index.php, which is included in the tarfile in the subdirectory webinterface. It accesses the database directly and therefore requires details of the database, such as user and password. You should check (and change) the following four lines of the file accordingly:
// Database
cset('db.user', 'eventdb');
cset('db.pass', 'mypasswd');
cset('db.host', 'localhost');
cset('db.name', 'eventdb');
Then you copy index.php to the (previously created) directory /usr/local/nagios/share/eventdb. The Web interface, as shown in Figure 23-2, can then be reached via the URL http://nagios-server/nagios/eventdb/index.php.
The Web interface is roughly divided into three areas: the selection window at the top, which allows data to be selectively filtered, the event display in the middle, and a third section which allows acknowledges to be commented.

Figure 23-2. The Web interface for the EventDB allows certain entries to be selected, and the administrator the administrator can also set acknowledges for each event via the Web interface.
The selection filter Type refers to the event source, which is normally syslog. If SNMP traps are being processed, another type, snmptrap, is included. With Host you specify the system of origin of the event by means of the host details in the syslog entries. The selection options for Facility and Priority also correspond to the naming convention used in syslog (see 23.2.2 Preparing the MySQL database).
If you set a check mark for Display acknowledged items, too, the Web interface will display all events. Normally you will just see the events for which there are no acknowledges.
Of more interest is the Text box in the center: At the top you can enter simple patterns. If you are looking for all the entries of the program pluto, for example, you just enter pluto* here. Distinction is made between upper and lower case. More options are provided by regular expressions, which can be specified in the second line: The entry (smbd|nmbd|win/bind) searches for all entries in which either smbd, nmbd or winbind occur. The Regexp search is considerably slower, however. A check mark for String not exists negates the previous selection.
The option Message is empty can only be used on its own. It ignores all the other settings in the Text box and displays all events that do not contain any message text.
The Display box affects the presentation. You can select different sorting methods, and define the number of entries to be displayed. The default of 20 entries is too low for many purposes. If the Web interface displays a larger number by default, you should change the following line in the file index.php accordingly:
cset('page.maxrows', 20);
The data range shows normal syslog entries, together with the number of the dataset in the database in the ID column. For an acknowledgement, you can put a check mark in front of the entry, enter a comment in the lower section if necessary, and select the acknowledge button. Confirmed entries disappear when the Web page is reloaded.
If you want to confirm all entries shown simultaneously, select the rev header of the first table column, which inverts the current state of the selection fields. A subsequent acknowledge via the button confirms all entries at the same time.
The person responsible for an acknowledge is listed in the Author line. Once the user has logged in to the Web server, his user name will be given automatically there; otherwise, AnonymousGnome will appear as the author. This entry can be overwritten as you please.
23.3.1 Preselection of the filter with URL parameters
Specific parameters can be passed on to the Web interface through a URL so that a preselection is already made for the call:
http://nagios-server/nagios/eventdb/index.php?host[0]=swobspace
This example calls all non-confirmed entries assigned to the host swob-space. The entries for a multiple selection are represented by the Web interface as an array, which is why it must be specified in square brackets for the parameters host, type, facility, and priority. The entries for multiple hosts are queried with a consecutive index: index.php?host[0]=swobspace&host[1]=wobgate or index.php?host[0]=wobgate&host[1]=swobspace—the order of the menu entries in the Web interface does not have to match that of the indices.
The following CGI parameters can be specified, separated from one another by &:
type[index]=type
corresponds to the Type filter.

host[index]=host
ensures that the selection is in the Host field.

facility[index]=facility
selects the Facility entry.

priority[index]=priority
corresponds to the Priority selection.

message=pattern
the placeholder pattern is replaced by the expression that you would write in the Message box. Special characters must first be compiled in HTML-compatible code. Thus, *Bad TCP* is turned into %2Abad%20TCP%2A:[280]

event.php?message=%2ABad%20TCP%2A

regexp=regular_expression
allows a regular search expression to be given. As with message, special characters must also be given in an HTML-compatible form.

displayack=value
also displays confirmed entries when set to true. The default is the opposite value, false.

message_notexists=value
simulates setting the check mark in front of String not exists: the value true negates the message and regexp selection. The opposite value, false, is the default.

message_notext=value
when set to true, shows only entries with an empty message. Here the default is also false.

order=sorting
enables the sorting order to be defined: ASC for ascending, DESC for descending.

orderby=criterion
defines the field by which sorting should be done: datetime, priority, host, facility, or uid (database index).

displayrows=number
defines the number of rows to be displayed.

23.4 The Nagios Plugin for the EventDB
Querying the EventDB from Nagios is done with the plugin check_event-db.pl in the subdirectory plugin, which is copied to the directory /usr/local/nagios/libexec/. It has the following options:
--db=database_name
The name of the EventDB. This is only specified if it is different from the default eventdb.

--dbtable=database_table
The event table in the database. The default events is rarely changed.

--dbuser=database_user
This parameter must always be given, since none is set by default for the database user.

--dbpassword=database_password
The same applies for the password for this user.

--dbhost=database_host
Details of the host on which the database is running. The default is set to localhost.

-H
hostname
/--host=hostname
Host from which the message in the syslog really originates.

-p
priority
/ --priority=priority
The desired syslog priority (or level), for example warning, err, or crit. For other information, see man 3 syslog.

-f
facility
/ --facility=facility
The syslog facility to be queried, such as cron, daemon, or auth (see also man 3 syslog).

-m
text
/ --message=text
The event text for which the plugin should look. It starts with the name of the program from which the message originates. If you are looking for entries from the program snmpd, you enter -m ' snmpd*'. As wildcards, * (shell syntax) and % (SQL syntax) can be used equivalently; the plugin replaces * with %.

-t
type
/ --type=type
Event type, usually syslog.

-l
prefix
/ --label=prefix
Text placed in front of the plugin output in order to better identify a specific check.

-w
integer
/ --warning=integer
If the plugin finds at least integer matches it will issue a WARNING.

-c
integer
/ --critical=integer
If the plugin finds at least integer matches it will issue a CRITICAL.

The following plugin call looks for all error messages with the priority err from the daemon facility that originate from the snmpd and contain any type of message text. If the plugin finds one entry, it should issue a WARNING; if it find two or more, it should issue a CRITICAL:
nagios@linux:nagios/libexec$./check_eventdb.pl --dbuser=eventdb \
 --dbpassword=secret --facility daemon --priority err -m "snmpd%" \
 -w 1 -c 2 --label=syslog-snmpd
CRITICAL: syslog-snmpd 6 matches found!|matches=6
--label prefixes the actual result to the syslog-snmpd text, so that the statement can be more easily interpreted.
The command definition is kept really simple, due to the fact that the actual logic is stored in the service definition. The entire command_line must, as before, be written in a single line:
define command {
 command_name check_eventdb
 command_line $USER1$/check_eventdb.pl --dbuser=eventdb --dbpass=$USER
9$ $ARG1$
}
Database user and password are firmly joined together here. So that no password is visible at this point, we use the macro $USER9$ from the resources file (see A.1 The Main Configuration File nagios.cfg). All other parameters are specified by the service definition for $ARG1$, for example, as follows:
define service {
 host_name nagios
 service_description syslog_snmpd
 check_command check_eventdb!--facility daemon --priority err -m
 "snmpd%" -w 1 -c 2 --label=syslog-snmpd
 ...
}

[280] A special character is converted to % followed by its hexadecimal value: a space corresponds to 20, a *, to 2A; see man ascii.

23.5 Maintenance
The MySQL database can, under some circumstances—depending on the number of connected systems and events passed on by the syslog—fill up very quickly. Then it is time to clean up. To do this you need to find all the entries that are older than a certain date, test whether an acknowledge exists for them, and delete them. The following SELECT statement demonstrates the principle:
user@linux:~$ mysql -u eventdb -p eventdb
mysql> SELECT * FROM events WHERE datetime < '2007-11-16'
 -> AND acknowledged;
The date is stored by MySQL in the format YYYY-mm-dd HH:MM:SS, which is why a simple string comparison works. If an admin has confirmed an entry, the acknowledged field will contain the value 1. The following simple cleanup script deletes all confirmed entries that are more than two weeks old:
#!/bin/bash
OLDDATE='date --date '-2 weeks' "+%Y-%m-%d %H:%M:%S"'
MYSQL="mysql --user=eventdb --passwordmypassword eventdb"

$MYSQL --execute="DELETE FROM events WHERE datetime < '$OLDDATE' AND acknowledged;"
$MYSQL --execute="optimize table events;"
The script is run daily via cron, but not before it has been thoroughly tested. If you want to archive data before it is deleted, you need to export it prior to the DELETE statement. To do this, you add the SQL statement INTO OUTFILE to the SELECT command introduced above, between SELECT * and FROM. This saves data to a text file, with tabs as separators, as shown below:
SELECT *
 INTO OUTFILE '/var/backups/eventdb/$OLDDATE.txt'
 FIELDS TERMINATED BY '\t'
 FROM events WHERE datetime < '2007-11-16' AND acknowledged;
The EventDB tarfile contains the two example scripts eventdb-clean_database.sh and rotate_eventdb.sh in the cleanup subdirectory, which essentially call the functions just described. You should nevertheless carefully consider how you are going to clean up the database, and modify and test the scripts accordingly.

23.6 Sending Windows Events to Syslog
In order to integrate Windows systems into a syslog environment, you need a service that reads out the Windows event log and sends this on via the syslog protocol to the central Syslog server. This task is performed by the freely available and easy-to-install evtsys tool (an abbreviation of the project name Eventlog to Syslog), from the homepage of the Engineering Computer Network of Purdue University[281] The Web page provides two binary packages for download, one for 32-bit and one for 64-bit systems (evtsys_exe_32.zip or evtsys_exe_64.zip), along with the source code.
The files evtsys.exe and evtsys.dll contained in the package are copied to the subdirectory system32 of the system root of the Windows server (usually C:\Windows\system32). The service is then installed and activated with the command
C:\Windows\system32> evtsys -i -h syslogserver
C:\Windows\system32> net start evtsys
If the current evtsys version is to be installed on a system on which the service is already running, you must first de-install the old version entirely:
C:\Windows\system32> net stop evtsys
C:\Windows\system32> evtsys -u
evtsys sends all event log entries without exception to the central syslog server. Messages go the daemon facility, and possible priorities are notice, warning, and err.
In all cases you should make use of the extensive filter options of the syslog-ng on the syslog server, since the security messages from a single domain controller alone may total 1,000 or more entries per hour, even in small environments!
If you want to filter event log entries first on the Windows side, you will need to use other services. One tool that is free, but also rather old, and which may not work faultlessly from Windows 2003 R2 onward, is NTsyslog.[282] You will also find various commercial solutions on the Internet that can be purchased.
Another filter option for Windows is provided by the Nagios EventLog Agent for Windows, nagevtlog, by Steve Shipway,[283] which is also available on NagiosExchange.[284] But this is not compatble with the EventDB, since data is sent via NSCA to the Nagios server.
All services that provide filtering on the Windows side have one disadvantage: Unknown events may, under certain circumstances, not even end up in the syslog and must be individually supplemented in the configuration. Provided that the central syslog server can cope with the flood of data, the approach with a central filter is easier to maintain.

[281] https://engineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys/
[282] http://ntsyslog.sourceforge.net/
[283] http://www.steveshipway.org/software/f_nagios.html
[284] http://www.nagiosexchange.org/49;221

23.7 Making the Incomprehensible Legible with SNMPTT
The SNMP Trap Translator (SNMPTT)[285] translates numerical object identifiers, which are difficult to understand, to readable text by means of the accompanying MIB.[286] To install this, you unpack the SNMPTT sources from Sourceforge[287] to /usr/local/src:
linux:local/src # tar xvzf /pfad/snmptt_1.2.tgz
linux:local/src # cd snmptt_1.2
linux:src/snmptt_1.2 # cp snmptt snmptthandler snmpttconvertmib /usr/sbin/.
linux:src/snmptt_1.2 # chmod +x /usr/sbin/snmptt*
linux:src/snmptt_1.2 # cp snmptt.ini /etc/snmp/.
The files snmptt, snmptthandler, and snmpttconvertmib contained in the archive are copied to /usr/sbin and made executable with chmod. The configuration file snmptt.ini is copied to the directory /etc/snmp, which was set up during the installation of the snmpd package.
SNMP traps are accepted by the snmptrapd. In order for this to forward them to snmptt, the following is entered in the snmptrapd.conf configuration file:
/etc/snmp/snmptrapd.conf
traphandle default /usr/sbin/snmptt
So that all traps are forwarded to snmptt, the file may contain only this default rule. snmptt accepts the object identifier in a numerical form, which is why snmptrapd needs to be started with the -On option. Depending on the distribution, the snmptrapd startup script may need to be adjusted. For Debian the file /etc/default/snmpdis modified accordingly:
/etc/default/snmpd (Debian)
...
TRAPDRUN=yes
TRAPDOPTS='-Lsd -On -p /var/run/snmptrapd.pid'
The -Lsd option logs all traps for debugging purposes in parallel via syslog. This should be switched off later on, by replacing -Lsd with -t.
23.7.1 The configuration file snmptt.ini
To describe all the parameters of the central SNMPTT configuration file /etc/snmp/snmptt.ini would go beyond the scope of this book. We will just look at the sections and options that can be checked and which might need to be adjusted:
[General]
mode = standalone
net_snmp_perl_enable = 1
mibs_environment = ALL
...
[Logging]
log_enable = 1
log_system_enable = 1
unknown_trap_log_enable = 1
syslog_enable = 1
syslog_level = warning
...
[TrapFiles]
snmptt_conf_files = <<END
/etc/snmp/snmptt/snmptt.conf
/etc/snmp/snmptt/messbox.conf
END
The setting mode=stardlone in the [General] section states that the snmptrapd calls snmptt directly. With mode=daemon, SNMPTT runs as a separate daemon. net_snmp_perl_enable=1 enables the use of the Perl module SNMP, which translates OIDs into meaningful text. Since the default 0 disables the module, this parameter certainly needs to be changed. mibs_environment=ALL integrates all installed MIBs. These must be free of errors, however, which is normally the case for MIBs installed from the distribution (for Debian, in the package libsnmp-base).
The parameter snmptt_conf_files in the [TrapFiles] section contains a list of configuration files that translate incoming SNMP traps and set off actions, if necessary. These are obtained from the MIB belonging to the device—how this is done is explained in 23.7.2 Converting MIBs.
The three variables log_enable=1, log_system_enable=1, and unknown_trap_log_enable=1 in the [Logging] section ensure that SNMPTT logs its activities to /var/log/snmptt*, which is very useful when searching for errors. By logging unknown traps, with unknown_trap_log_enable=1, you can see why SNMPTT does not translate a trap that it has received (for example, perhaps it contains OIDs other than those intended from the configuration file obtained from the MIB).
The two syslog_* parameters forward translated traps to the syslog daemon here with the syslog priority warning so that the data will then appear in the EventDB.
The parameters allowed in snmptt.ini and in the device-dependent configuration files are documented in detail on the SNMPTT homepage.[288]
23.7.2 Converting MIBs
The included program snmpttconvertmib converts existing MIBs into a configuration file which can be used by SNMPTT. The translator only translates files that are explicitly listed in configuration files which have been integrated with snmptt_conf_files.
snmptt convertmib uses snmptranslate, so before using this you should check that the actual translation program works properly. To do this, run snmptranslate -m ALL without any other parameters. An online help will appear, starting with the following lines:
USAGE: snmptranslate [OPTIONS] OID [OID]...
No other error message should appear before this line; if one does, this means that the MIBs are not correctly installed. If the MIBs were installed directly from the distribution, no errors should occur.
The conversion process—depending on the quality of the MIB—ranges from very simple (for correctly formed MIBs) to almost impossible (for MIBs with many errors). A flawless MIB is provided by Debian, for example, in the file rfcl628-UPS.mib. This distribution stores the MIBs in the directory /usr/share/snmp/mibs.
Before you start looking for and installing MIBs from other sources, you should test the conversion with a "clean" MIB. The already mentioned UPS-MIB is converted as follows to an SNMPTT configuration file:
user@linux:~$ /usr/sbin/snmpttconvertmib \
 --in=/usr/share/snmp/mibs/rfc1628-UPS.mib \
 --out=rfc1628-UPS.conf
....
Done

Total translations: 4
Successful translations: 4
Failed translations: 0
No error should appear in the summary at the end of the output, as is the case here. The contents of the new configuration file now appear as follows:
EVENT upsTrapOnBattery .1.3.6.1.2.1.33.2.1 "Status Events" CRITICAL
FORMAT UPS On Battery - Utility Power Failure: The UPS is operating on ba
ttery power (Minutes Remaining=%0 Seconds on Battery=$1)
...
The two decisive entries here are EVENT and FORMAT. The first contains the status (here: CRITICAL) together with the OID, while FORMAT defines the text with which a corresponding event is described in the syslog, and thus in the EventDB. More information can be found in the ConvertMIB documentation on the SNMPTT homepage.[289]

[285] http://www.snmptt.org/
[286] For SNMP, see Chapter 11 from page 227; SNMP traps were described in 14.6 Application Example II: Processing SNMP Traps from page 312.
[287] http://www.sourceforge.net/projects/snmptt
[288] http://www.snmptt.org/docs/snmptt.shtml
[289] http://www.snmptt.org/docs/snmpttconvertmib.shtml

Part V. Part V Development

Chapter 24. Writing Your Own Plugins
Plugins are independent programs—called by Nagios—that perform a check and return the result in standardized form. If there is neither a standard plugin for the task you want to perform, nor something appropriate in Categories | Check Plugins on NagiosExchange,[290] then the best solution is for you to write a plugin yourself.
The plugin needs only to be executable on the command line, and to return a short text output for the admin and a standardized return value. If you want to make it available on the Internet as well, you need to comply with various guidelines so that it will be widely used and accepted without the need for extensive support.
There is no restriction in theory on the programming language used. Exotic programming languages do restrict portability to other systems and platforms, however, and script languages need to be interpreted, so scripted plugins require more time to execute than compiled ones. But this should not stop anyone from using the language of his or her choice where rapid implementation is more important than portability and speed of execution. But if you are planning to run 2,000 or more checks at five-minute intervals using a script language, you will be forced to tackle the issue of performance.
Below we will be using the Perl programming language. This exists on almost every Unix system, and the many small tasks that a plugin has to perform, requiring simple text output, are within the classical domain of this script language. There are also numerous ready-made modules available via the CPAN,[291] which you can use to deal with emerging tasks in a modular fashion. There remains the problem of the drag on performance caused by the script language. However, with ePN, Nagios has its own integrated Perl interpreter, which considerably improves performance. A separate chapter is devoted to this, from page 669.
The central hub used when developing a Nagios plugin with Perl is the Perl module Nagios::Plugin by Tom Voon, which really simplifies concrete programming in many aspects. The module Pod::Usage is also used, which enables man pages embedded in the source code of the plugin to be formatted as online help.
24.1 Programming Guidelines for Plugins
Even if you just want to quickly throw something together, you will ultimately make life easier for yourself if you keep to the official Developer Guidelines[292] right from the beginning, as you will seldom be the only person involved with the resulting plugin.
The Developer Guidelines currently do not provide an option for processing multiple-line output with Nagios 3.0. The new Application Programming Interface (API) for Nagios 3 plugins is described on the Nagios homepage.[293]
24.1.1 Return values
Nagios expects from a plugin a standardized return value from 0 to 3, which describes the current state of the check performed. The differentiation between the values 0 (OK) and 2 (CRITICAL) is almost always defined by the adminstrator when defining the individual check via warning and critical thresholds—only for a few plugins does the plugin itself specify the thresholds.
The return value 3 (UNKNOWN) is reserved for errors in operating the plugin (the wrong setting for options, nonexistent options) or internal plugin errors that may prevent the plugin from carrying out its work. The Development Guidelines cite the example here of a network socket which the plugin would like to open, but the call fails. Normal timeouts, on the other hand, should not be answered with UNKNOWN. There are certainly plugins which return WARNING when there is a timeout and only return CRITICAL if a specific threshold has been exceeded. In many cases CRITICAL makes more sense for a general timeout, since this can normally be interpreted as service xyz won't work.
Table 24-1 summarizes the return values and their meanings, arranged by service and host checks. For host checks, Nagios has the states OK, DOWN, and UNREACHABLE, where the difference between DOWN and UNREACHABLE reflects only the spatial arrangement: Is the failed host itself involved, or a host that lies behind a failed host? This is why it makes sense to distinguish only between return values for state ok (0) and error state (2).
Table 24-1. Return values for Nagios plugins

	Status
	Service Check
	Host Check

	0
	OK
	UP

	1
	WARNING
	UP or DOWN/UNREACHABLE [a]

	2
	CRITICAL
	DOWN/UNREACHABLE

	3
	UNKNOWN
	DOWN/UNREACHABLE

	[a] see text

How the return value 1 is handled in Nagios 3.0 depends on the parameter use_aggressive_host_checking (A.1 The Main Configuration File nagios.cfg): if this is set to 1, the return value 1 means DOWN/UNREACHABLE, otherwise Nagios will evaluate the host as UP.
24.1.2 Information for the administrator on the standard output
Nagios expects a text on the standard output that informs the administrator—in the Web interface, for instance—about the current state. This output should keep to specific form, however:
TYPE_OF_CHECK STATUS-text information
In practice this looks something like what is shown in the following three examples:
SMTP OK - 0 second response time
CHECKSAP OK - system p10db012_P10_00 available
PROCS WARNING: 4 processes with command name 'pppoe'
The Web interface shows the return value itself only indirectly via the color, and the text contains the current state in a legible form. The contents of the text output should otherwise be based on what will provide the administrator with the most information for the check specifically carried out.
There are considerable differences between Nagios 2.x and Nagios 3.0 with respect to the requirements of the text output. For Nagios 2.x the text must be in one line, as shown in the examples. It will only process the first line of a multiple-line output. The entire text, including the performance data (we will discuss this in 24.1.6 Timeout) may not exceed a length of 300 bytes.
Nagios 3.0 processes output of up to a maximum length of 8192 bytes, and the output may contain several lines. The multiple-line format is described in 8.5.1 Multiple-line plugin output in page 193.
If you are programming a plugin that makes use of the advantages of Nagios 3.0 (multiple lines, text longer than 300 bytes), you need to realize that this plugin can only be used with limitations in Nagios 2.x. You should therefore carefully consider whether the multiple-line output format is the right approach for the specific problem. Remember that you can summarize the results of several individual checks with the check_multi plugin (see 8.5 Summarizing Checks with check_multi, page 191) and in this way reduce the number of individual checks performed—to optimize performance, say—without missing out on detailed text information. However, an individual check always provides just one return value, which in this case is a collective result. Another approach would be to start the test via a script and cron, and pass on individual results to Nagios as passive checks.
For this reason, it is recommended that you do without multiple-line output for general plugins and comply with the limitations of Nagios 2.x.
24.1.3 Onboard online help?
Classic Nagios plugins, including the core plugins, do not include separate man pages but are self-documenting: Help is obtained by calling with the switches -h or --help. This does not mean that there cannot be any other documentation, but the integrated help shold be be complete and all existing options described in detail, so that the plugin can be used without any further documentation.
Some plugins provide just a short help text with -h and the complete help text with --help. In this case, the output of -h should indicate that more information can be retrieved with the long form.
The help text should also be adjusted to the width of a normal terminal and not exceed 80 characters in length. It is quite often the case that an administrator is in the server room trying to solve a problem, faced with a simple console.
The help should always be written in English. For localization purposes, that is, output in different languages, gettext can be used. This tool translates text to be displayed using a simple file-based database. If no text exists for the target language, gettext displays the untranslated text, so it behaves in an error-tolerant manner. Further information can be found in the man page or info page for gettext.
For Perl scripts, man perllocale[294] is a good starting point. For a concrete application, we recommend the Perl module Text::Domain, which considerably simplifies localization.
24.1.4 Reserved options
The programming guidelines provide options that have the same meaning for all plugins. The most important of these are listed in Table 6-2 in page 108.
In addition there are several reserved options which are sometimes assigned twice in the short form. Thus, -u can stand for a user name (--user), but also for a URL (--url). The option -p in turn allows a TCP or UDP port (--port) to be specified, but also a password (--password). The user name can also be passed on with −l or --logname, and the password (in more general terms, the authentication string, which can also be a Kerberos realm) with -a or --authentication.
The fact that these options may have two different meanings is rather unfortunate, and is presumably for historical reasons. In case of doubt you should steer clear of such double assignments and use only the long form of the option whose meaning is clear. Many GNU and other Open Source programs behave in a similar fashion (e.g., tar, rsync,...). The main thing here is that a reserved option is not used for another purpose. The reserved option -C/--community, for instance, only makes sense in combination with SNMP queries. If the plugin has nothing to do with SNMP, you should not misuse it for other purposes.
24.1.5 Specifying thresholds
Thresholds determine whether a plugin returns OK or an error value (WARNING, CRITICAL). Thresholds always specify a range according to the pattern from:to.
The exclusion principle here takes some getting used to. A warning threshold in the form -w 10:20 means that a value within the specified range does not lead to a WARNING. The warning state includes all values from -∞ to and including 9 and from 21 to ∞.
The interaction between warning and critical thresholds can best be explained by means of an example. Suppose Nagios is monitoring the temperature in the server room. Normally the temperature should lie between 18°C and 22°C. In each case, two degrees Centigrade above and below this range is set as the tolerance range, for which a WARNING should be shown. Below 16°C and above 24°C, Nagios should report a CRITICAL state.
Converted into thresholds, the scenario sketched in Figure 24-1 should look like this: -w 18:22 -c 16:24. The temperatures between 22°C and 24°C are not critical, but are only covered by the warning range. The temperature range above 24°C covers both threshold intervals, and there the stronger error value (CRITICAL) predominates.

Figure 24-1. What happens with the thresholds -w 18:22 -c 16:24?
To negate a value range, you just place a @ in front of it: -w @10:20 now ensures that a WARNING will be shown if the value determined is larger or equal to 10 and smaller or equal to 20. If the start value equals 0, this can be left out: -w 20 has the same effect as -w 0:20. An infinite final value does not need to be specified, but the colon after the start value must remain in place: -w 10:. The tilde (˜) stands for negative infinity, and no provision is made for a separate sign for infinity (see Table 24-2).
Table 24-2. Special syntax for specifying thresholds

	Threshold
	Area covered

	end
	0:
end

	start:
	start:∞

	˜:
end
	-∞ :end

	@start:end
	not start:end

24.1.6 Timeout
A plugin may not always perform its task in a reasonable amount of time. For instance, it may use df to access a volume mounted via NFS, the host of which is not currently available. Or, a firewall may reject the network packets from a network plugin, and the plugin was not designed to notice this. However, Nagios would like to receive a sensible reply from its plugins at some point in time; if any type of checks are hanging around in limbo somewhere, this consumes unnecessary resources and can really cause chaos for the Nagios scheduler.
Each plugin should therefore cancel its actions after a preset time—normally ten seconds—and return a corresponding error result to Nagios. The option -t (--timeout) enables a different timeout value to be specified when a plugin is called.
A modified timeout makes sense, for instance, if a plugin is run indirectly via NRPE (see Chapter 10 from page 213). The timeout of check_nrpe, which Nagios is running directly, should sensibly be somewhat longer than the timeout for the plugin itself, so that check_nrpe does not cancel the execution without learning something about the real cause.
24.1.7 Performance data
Performance data present result values in a standardized form, described from page 404, which enables these values to be processed automatically by external programs. They come after the normal text output, separated by the | sign.
As long as the plugin finds numerical values, it should always display these values as performance data. If an external program can process such data automatically, there is little configuration work for the administrator. There are some external programs that can, if necessary, fish out information from the normal text output, but because of the lack of standardization, this is always associated with extra work—and not every Nagios admin can handle Perl-compatible regular expressions perfectly. For this reason, every plugin programmer should always include performance data provided that the specific application allows this.
24.1.8 Copyright
A plugin should be furnished with a clear copyright notice that names the license and the author. For plugins written in languages that are compiled (such as C), the two items are stored in separate text files so that this information is not lost when the plugin is later distributed in binary form. The standard approach is to have one COPYING file containing the complete license in question (for example, the GNU Public License) and an AUTHORS file with the names of the authors.
For plugins written in script languages, it is sufficient to have the copyright notice in the source code itself, since the plugin is normally distributed in a readable form.
It is also useful to provide a brief output of the copyright when displaying the version number with the option --version.
If the plugin is based on already existing code, or if individuals have been involved in the form of patches or suggestions, the Developer Guidelines require the files ACKNOWLEDGEMENTS and THANKS. The first one is used if the code originally had a different author (or if parts of code are recycled), and the latter includes the names of those who have made contributions in the form of patches and sometimes in the form of important ideas.

[290] http://www.nagiosexchange.org/Check_Plugins.21.0.html
[291] http://www.cpan.org
[292] http://nagiosplug.sourceforge.net/developer-guidelines.html
[293] http://nagiosplug.sourceforge.net/developer-guidelines.html
[294] http://perldoc.perl.org/perllocale.html

24.2 The Perl Module Nagios::Plugin
If you want to create plugins in Perl with as little effort as possible, while at the same time conforming to the programming guidelines, the Perl module Nagios::Plugin is at hand to provide support to developers. We will introduce it here in version 0.21 from October 2007. In this version the main functions are well developed and should not undergo any major changes, apart from the message functions, which are still marked as being experimental.
This object-oriented module contains constants and variables to represent states; exit functions that use not only a Nagios-compatible exit code, but also the same formatting; and functions for testing thresholds and for the correct output of performance data. In addition, it provides functions for parsing the command line, as well as an integrated help function. On this last point, the module deviates from the standard Perl convention: There is already an extensive module for the command line with Getopt::Long, and for online help, Perl provides the Perl Online Documentation (POD).
24.2.1 Installation
Nagios::Plugin is one of the core plugins, but it can alternatively be installed via the CPAN. This anchors the module in the system in such a way that Perl finds it automatically. But the module does cause other modules to be installed as well, which is not always desirable on a certified system.
After the installation of the core plugins, Nagios::Plugin can be found in its own directory, together with all dependent modules. The existing Perl installation is not affected by this, but Perl does not find the module automatically in this way. Any plugins based on this must explicitly set the path to the base directory of the module themselves.
The method using the CPAN
The CPAN installation command for Nagios::Plugin checks existing dependencies and at the same time installs any modules required:
linux:~ # perl -MCPAN -e 'install Nagios::Plugin'
...
In some circumstances, modules that you have previously installed will be updated. If you are running perl -MCPAN for the first time, Perl will ask a number of questions that are answered interactively—apart from the selection of the download server, the suggested defaults can be used.
Together with the core plugins
Starting with version 1.4.10, the nagios-plugins* tar archive also contains the Perl module. It is included in the installation if you use the --enable-perl-modules switch (see 1.4 Installing and Testing Plugins, page 43) when running the configure command. The module is installed to the directory /usr/local/nagios/perl, complying with the conventions used in this book.
In order for a plugin to be able to find the module, you must explicitly set the path, via use lib. In his FAQ,[295] Ton Voon recommends using the Perl module FindBin:
use FindBin;
use lib "$FindBin::Bin/../perl/lib";
use Nagios::Plugin;
FindBin is a component of the Perl distribution and finds the path to the directory from which the plugin was called. In accordance with our conventions, this is the directory /usr/local/nagios/libexec. This path is queried with the variable $FindBin::Bin, and use lib then integrates the Nagios-specific Perl directory relative to this directory. Whether the Linux distributions will set up a Perl directory with an identical relative path remains to be seen. As long as you install the core plugins yourself, the three-line command will work as intended.
If Nagios::Plugin cannot be found in the path specified, Perl will search through all other standard paths. In this way the module will be found if it originates from the CPAN or (in the future) from distribution packages.

[295] http://www.nagiosplugins.org/faq/development/nagios-plugin-perl

Chapter 25. Determining File and Directory Sizes
For a specific example of a Perl plugin, we will look at check_du.pl.[296] It is used to determine the size of specified files or directories and to check whether the total size lies within preset thresholds. To do this, it calls the system program du:
user@linux:~$ du -cs /var/spool/var/log
26524 /var/spool
745640 /var/log
772164 total
When used with the -s option, du does not list all the individual subdirectories but just shows the total size. -c adds up individual values to reach a total size.
At the beginning, the plugin generates a new new Nagios::Plugin object with the new constructor so that it can make use of the functions of the module:
#!/usr/bin/perl -w
use strict;
use warnings;
use FindBin;
use lib "$FindBin::Bin/../perl/lib";
use Nagios::Plugin;

my $np = Nagios::Plugin->new(shortname ⇒ "CHECK_DU");
Various parameters can be used here. shortname contains the short name of the check to be performed, which will be later prefixed to all outputs:[297]
CHECK_DU OK - check size: 1128 kByte | size=1128kB;;
The contents of the first line after #! define the interpreter to be run, which is Perl. The option -w and the following use warnings—which both ensure extensive output, provided that Perl objects to something in the script—are duplicated here intentionally. In Perl versions prior to 5.6, there is no use warnings parameter, so you must comment out the statement and use -w. To make sure that no one forgets this, -w is included from the beginning. The instruction use strict enforces a strict syntactical check and forces the programmer to pre-declare all variables. Many simple errors are avoided when this is used.
The core function of the plugin is constructed in a relatively simple manner:
open (OUT, "LANG=C /usr/bin/du -cs $what 2>&1 |")
 or $np->nagios_die("can't start /usr/bin/du");
while (<OUT>) {
 print "$_" if ($verbose);
 chomp $_;
 $denied++ if (/Permission denied/i);
 if (/^(\d+)\s+total$/i) {
 $size = $1;
 last;
 }
}
close (OUT);
open calls the program du and handles the output as if this came from an opened file. If the call fails, nagios_die from the module Nagios::Plugin terminates execution of the plugin and issues an error message. Before the du program is called, LANG=C explicitly sets the language to the English default, so that the texts displayed by du do not depend on the specific environment.
The while loop reads the output line for line and checks whether all directories can be evaluated. If Permission denied appears in the text of the output, the plugin makes a note of this in the variable $denied, which at the end contains the number of nonreadable directories. If $verbose does not equal zero, the plugin sends all lines received by du to STDOUT for debugging purposes. chomp removes the end of line from the just-processed line called in $_.
From the line reporting the total size—identified by the text total at the end of the line of output—the plugin extracts the displayed number using the regular expression in the parentheses. This amount is what $1 now contains. If there is a match, last terminates the while loop, and then the close function closes the file handle correctly.
25.1 Splitting up the Command Line With Getopt::Long
The module Getopt::Long provides a function, GetOptions, that simplifies the fragmentation of the command line in the style of many GNU programs:
use Getopt::Long qw(:config no_ignore_case bundling);

GetOptions(
 "P|path=s" ⇒ \$what,
 "w|warning=s" ⇒ \$warn threshold,
 "c|critical=s" ⇒ \$crit threshold,
 "t|timeout=s" ⇒ \$timeout,
 "h|help" ⇒ \$help,
 "V|version" ⇒ \$printversion,
 "v|verbose+" ⇒ \$verbose,
 "d|debug:+" ⇒ \$debug,
) or die_with_help;
The instruction qw(:conf ig no_ignore_case) configures the behavior of GetOptions so that a distinction is made between upper and lower case.qw(:config bundling) allows short options to be combined, as is normal for older Unix and GNU programs; instead of -a -b -c, the user can write -abc.
In the GetOptions option, you enumerate all the options of the plugin and pass a reference to a variable for each option. The variables used in the call of GetOptions had to be pre-declared because of the use strict parameter (e. g., with my $what = ";). This stores the arguments that have been passed on the command line with the corresponding option. The string on the left side defines under what name the option can be called. An option listed as
"P|path|directory=s"
can be called as -P
path, --path
path, --path=path, and also as --directory=path. All long forms can also be abbreviated, as long as the abbreviation is unambiguous. Examples of this are --pf
path, --pa
path, or --dir=path.
The instruction =s at the end states that the argument, which in this case is of the type string (s), must follow the option. Alternatives are i(integer), o (Perl integer, i.e., including octal and hexadecimal numbers), and f (floating-point decimal). If a colon is used instead of the equals sign, the argument is optional.
A plus sign following the option name, as in v |verbose+, allows the option to be specified multiple times on the command line. Each time it is used, the variable is incremented. If the user selects the option --verbose, $verbose will contain the value 1, but if he selects --verbose --verbose (or --verbose
-v), it will contain 2, and so on. If you include the plus sign in combination with the colon (e. g., d|debug:+), the user can assign an integer to the variable when running the command: --debug=5 sets the variable $debug to 5. If he calls just --debug, $debug will only have the value 1.
When calling GetOptions you should always check to see whether an error occurs, for instance through an error condition. In Perl this is written as follows:
GetOptions(...) or die_with_help;
In case of error, the Developer Guidelines demand that the reason for termination must be specified, along with a short online help. For this, we need to use the Perl Online Documentation and the module Pod::Usage.

[296] The plugin is available on the author's homepage at http://linux.swobspace.net/projects/nagios/perl-nagios-plugins.html.
[297] Other parameters are required for the online help functions of the module, which we will not use here. We will use the module Pod::Usage instead.

25.2 The Perl Online Documentation
The Perl Online Documentation (POD) is a simple markup language, which is based on conventional man pages. It enables you to include the documentation for a Perl script in the script itself. The command perldoc
script provides this ready-formatted:[298]
#!/usr/bin/perl -w
=head1 NAME

check_du.pl - Nagios plugin for checking size of directories and files

=head1 SYNOPSIS

check_du.pl -P path/pattern [-v] [-w warning_threshold] [-c critical_threshold]
check_du.pl [-h|-V]

=head1 OPTIONS

=over 4

=item -P|--path=expression

Path expression for calculating size. May be a shell expression like /var/log/*.log

=item -w|--warning=threshold

threshold can be max (warn if < 0 or > max), min:max (warn if < min or > max), min:
 (warn if < min), or @min:max (warn if >= min and <= max). All values must be integer.

=item -c|--critical=threshold

see --warning for explanation of threshold format

...
=cut

... perlcode ...

=head1 AUTHOR

...

=cut
Each instruction begins with an equals sign as the first character in the line, as can be seen in the headings =head1 to =head4. The lines before and after an instruction are kept empty.
The instruction =over 4 starts a listing with an indentation of four characters, in which only =item may be used as a POD instruction. =cut ends the inserted documentation, after which you can continue with normal Perlcode.
A Perl script may contain as many POD sections as you wish. Usually the important ones are set at the beginning of the script, and less important ones, such as the details for SEE ALSO-, AUTHOR- or BUGS for the man pages, are placed at the end.
Apart from perldoc there are programs such as pod2html, pod2latex, pod2man, pod2text, and pod2usage, which display the inline documentation in other formats. It should be pointed out, however, that POD basically displays an inline man page, and a man page converted to HTML will still have the appearance of a man page.
The individual sections of a man page are described by man man; important ones are NAME, SYNOPSIS, DESCRIPTION, OPTIONS, FILES, SEE ALSO, BUGS, and AUTHOR. If the plugin requires more extensive documentation, you can add your own sections. Syntax and construction of the POD format are described in detail by man perlpod, while man perldoc explains how the embedded help can be extracted.
25.2.1 The module Pod::Usage
Pod::Usage as a component of the Perl core distribution displays the inline documentation either in full or in extracts, and ends the script with a predefined exit code:
pod2usage(
 -msg ⇒ $message_text,
 -exitval ⇒ $exit_status,
 -verbose ⇒ $verbose,
 -output ⇒ $filehandle,
);
You can specify an additional text, such as a note on the incorrect use of the plugin, with the switch -msg, which is displayed before the inline documentation.
-exitval determines the return code with which the script ends. For a Nagios plugin, the constant UNKNOWN, which is imported with Nagios:: Plugin, should always be used here.
-verbose defines the amount of documentation displayed. With the value 0, pod2usage generates a short usage message. For -verbose ⇒ 1 the output includes the sections SYNOPSIS, OPTIONS, and ARGUMENTS, and for -verbose ⇒ 2 it includes the entire documentation. A special role is played by the value 99. This is used, together with the -sections switch, to specify which sections will be shown:
-verbose ⇒ 99,
-sections ⇒ "NAME|SYNOPSIS|OPTIONS|AUTHOR",
Individual sections are separated with a | sign. The switch -output finally defines where the information should end up—to STDOUT for verbose values of 0 or 1 and to STDERR for for 2 and higher. For the output of the complete online help you should therefore set this explicitly (otherwise the user would first have to redirect STDERR to STDOUT in order to be able to see the help):
-output ⇒ *STDOUT,
In the plugin you first check whether the GetOptions fails, for example because an invalid option has been specified. In case of an error, the instruction following or—in this case pod2usage—is executed:
GetOptions(...
) or pod2usage(
 -exitval ⇒ UNKNOWN,
 -verbose ⇒ 0,
 -msg ⇒ "*** unknown option or argument found ***",
);
The return value is then UNKNOWN, since the plugin is used incorrectly. -verbose is set to 0, since a brief usage message is sufficient in this case. -msg explains more precisely to the user what he has done wrong; this message is placed before the usage message.
If the user requests the online help, the entire help text contained in the plugin is displayed:
pod2usage(
 -verbose ⇒ 2,
 -exitval ⇒ UNKNOWN,
 -output ⇒ *STDOUT,
) if ($help);
Because pod2usage normally uses STDERR here, -output explicitly ensures that the output goes to STDOUT.
To display the version number, pod2usage can also be used. Many GNU programs include copyright information along with the version number. To do this, you create a POD section =head1 LICENSE and output this with verbose ⇒ 99:
=head1 LICENSE
This program is free software; you can redistribute it and/or modify it under the
 terms of the GNU General Public License as published by the Free Software Foundation;
 either version 2 of the License, or (at your option) any later version.

...

You should have received a copy of the GNU General Public License along with this
 program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
 Fifth Floor, Boston, MA 02110-1301, USA.

=cut
...
pod2usage(
 -msg ⇒ "\n$0 -- version: $version\n",
 -verbose ⇒ 99,
 -sections ⇒ "NAME|LICENSE",
 -output ⇒ STDOUT,
 -exitval ⇒ UNKNOWN,
) if ($printversion);
Since the output for this verbose level goes to STDERR, you also use -output here to ensure that the output goes to STDOUT. The NAME and LICENSE sections may be located in the plugin file either before or after the pod.2-usage call.
If the plugin expects mandatory details—in our case, the path to the directory subtree whose total size should be determined—the parameter is checked for existing values:
pod2usage(
 -msg ⇒ "*** no path/pattern specified ***",
 -verbose ⇒ 0,
 -exitval ⇒ UNKNOWN,
) unless $what;
If the user calls the plugin without the --path option, the variable $what will remain empty and pod2usage will issue a corresponding message.

[298] The complete text is contained in the plugin check_du.pl at http://linux.swobspace.net/projects/nagios/perl-nagios-plugins.html.

25.3 Determining Thresholds
The format of the thresholds, which was discussed in 24.1.5 Specifying thresholds, page 557, is not easy to parse, which is why the functions from the module Nagios::Plugin are a welcome help:
$np->set_thresholds(
 warning ⇒ $warn_threshold,
 critical ⇒ $crit_threshold,
);

$result = $np->check_threshold($size);

$np->nagios_exit($result, "check size: $size kByte");
The method set_thresholds has the task of setting the thresholds for the Nagios::Plugin instance $np.$warn_threshold and $crit_threshold contain the details that the user passed on to the options --warning and --critical on the command line.
check_threshold compares the thresholds with the total size of the directory in $size and stores the return code in the variable $result (either OK, WARNING, or CRITICAL). This can be used right away in the function nagios_exit.Nagios::Plugin does all the work of parsing and checking.

25.4 Implementing Timeouts
To implement a hard timeout, the function alarm() is available in C, Perl, and other programming languages, which normally calls the system functon of the same name (see man 2 alarm). For the Perl alarm() function, the timeout is specified in seconds:
... GetOptions ...
alarm($timeout);
... core code ...
alarm(0);
... end
The alarm($timeout) call starts the alarm function, the argument 0 for the second call stops it again. The first call should be used before time-intensive processing steps, in network-based plugins before opening sockets, and similar situations where a long delay may occur. A good place is after the command line has been processed via GetOptions.
At the end of the plugin it is recommended that you reset the alarm. This may not be necessary for standalone programs, but if the Perl plugin is running in the Embedded Perl interpreter, some undesired side effects could result if this step is not taken. By explicitly stopping the alarm, you are certainly on the safe side.
What happens if the alarm is set off, which means that the timeout has expired? Perl checks whether an accompanying signal handler is installed, and executes it if this is the case. It is recommended that you make use of this possibility and install your own signal handler, so that the plugin behaves in compliance with the Developer Guidelines:
$SIG{ALRM} = sub {
 $np->nagios_die("Timeout reached");
}
The signal handler—an anonymous subroutine—is assigned the variable $SIG{ALRM}. The subroutine calls the function nagios_die from the Na-gios::Plugin module. In case of a timeout, the plugin will terminate and send back the return code UNKNOWN with a suitable error message.

25.5 Displaying Performance Data
Displaying performance data with Nagios::Plugin is just as simple as processing thresholds. All you need to do is run the function add_perfdata with a few parameters, and the rest is handled by nagios_exit automatically:
$np->add_perfdata(
 label ⇒ "size",
 value ⇒ $size,
 uom ⇒ "kB",
 threshold ⇒ $np->threshold(),
);
The parameter label defines the name of the variable. value contains the measured value, uom defines the unit of measurements, in this case KB. threshold expects a threshold object, which is generated with the function threshold(). The thresholds must already have been set, with set_thresholds.
The output is shown automatically when nagios_exit is run, provided that the performance data were defined before the first nagios_exit call.
The Nagios::Plugin package also contains the module Nagios::Plugin::Performance, which provides a parser for performance data in parse_perf string(), which splits up a performance data string. If you are programming addons in Perl that process performance data, you can save yourself a lot of work with this function.

25.6 Configuration Files for Plugins
A simple plugin can always be configured entirely on the command line. But if you need to incorporate more complex defaults, or if parameters should not appear as arguments in the process list, a configuration file may be of use. The module Nagios::Plugin enables you to access configuration files in a simple manner—one reason certainly being to encourage plugin programmers to use a uniform format, since this would considerably simplify configuration work for the Nagios admin, who no longer has to get used to different formats for every plugin.
Nagios::Plugin provides an interface for the module Config::Tiny. The file format corresponds to that of the INI files:
rootproperty=10.0

[math]
pi=3.1415
euler=2.78
A section begins with an entry in square brackets, in this example [math]. Everything written before this (in the example here, the variable root-property) is referred to as root property. Instructions are given according to the pattern parameter=value. Lines beginning with # and ; are comments; spaces before and after the equals sign are allowed and are simply ignored. More information is provided by the man page man Config::Tiny.
Access to the configuration file is made through a Config object from the module Nagios::Plugin::Config, which is generated using the read() method:
$Config = Nagios::Plugin::Config->read('/etc/nagios/myplugin.ini');

my $rootproperty = $Config->{_}->{rootproperty};
my $pi = $Config->{math}->{pi};
my $euler = $Config->{math}->{euler};
At the same time, read() reads in the configuration file specified. If you omit the path details and call read() without parameters, the module will search for various configuration files. The exact listing of the search paths is contained in the man page man Nagios::Plugin::Config.
Although it is conceivable that a single configuration file might be used for all plugins, for reasons of maintenance it is recommended that you set up a separate configuration file for each plugin, each containing an example.
Configuration parameters in the [math] section are now addressed via the construct
$Config->{math}->{pi};
and for the root properties, _ is used as a section delimiter:
$Config->{_}->{rootproperty};

Chapter 26. Monitoring Oracle with the Instant Client
If a specific task requires you to manipulate the STDIN and read the STD-OUT of the external program at the same time, another tool is needed, in the form of the module IPC::0pen2.
The following chapter will not introduce any finished plugins, but illustrate how you can build your own Oracle plugin, using an example that monitors Oracle. Some plugins do already exist for this DBMS, such as check_oracle, one of the standard Nagios plugins, or check_oracle_writeaccess[299] by Mathias Kettner. But both of them require the normal Oracle client, and most non-Oracle administrators will be out of their depth attempting to install it.
Luckily there is an easier solution: For some time now, Oracle has been offering an instant client, which drastically reduces the installation work: unpack the zip files, set the variables, and the installation is finished—the command-line tool sqlplus can be used immediately. The latter can be used in a plugin—just like the Perl script introduced in this chapter does, which sends a request to the Oracle database using sqlplus and evaluates the response.
26.1 Installing the Oracle Instant Client
Even though the instant client has been available only since Oracle version 10g, it can be used just as well with older Oracle databases such as 8i or 9i. The software is available in the form of zip files at the Oracle homepage,[300] provided you have previously registered on the Web site of the company. When downloading, you are asked some additional questions on export conditions.
Although the software costs nothing, you must observe Oracle's license terms. If your Oracle database is licensed on a CPU basis, you do not need to worry about additional access by another user (Nagios).
For sqlplus you require two zip files,[301]
instantclient-basic-linux32-10.1.0.3.zip and instantclient-sqlplus-linux32-10.1.0.3.zip.
The instantclient-basic package, some 31 MB in size, contains all the necessary libraries, and the instantclient-sqlplus included, only 320 KB in size, contains a short documentation (READFR0M_IC.htm) as well as the client itself with a further library. It does not matter for the installation where the files are unpacked; in this case we will use /usr/local/oracle:
linux:~ # mkdir /usr/local/oracle
linux:~ # cd /usr/local/oracle
linux:local/oracle # unzip instantclient-basic-linux32-10.1.0.3.zip
Archive: instantclient-basic-linux32-10.1.0.3.zip
 inflating: instantclient10_1/classes12.jar

...
linux:local/oracle # unzip instantclient-sqlplus-linux32-10.1.0.3.zip
Archive: instantclient-sqlplus-linux32-10.1.0.3.zip
 inflating: instantclient10_1/READFROM_IC.htm
 inflating: instantclient10_1/glogin.sql
 inflating: instantclient10_1/libsqlplus.so
 inflating: instantclient10_1/sqlplus
This creates a subdirectory instantclient 10_1, containing all the required files. After setting two environment variables, the instant client is ready for use:
LD_LIBRARY_PATH=/usr/local/oracle/instantclient10_1
SQLPATH=/usr/local/oracle/instantclient10_1
LD_LIBRARY_PATH ensures first that all shared libraries from the instant client directory are taken into account when programs are run, before the libraries installed system-wide are loaded. SQLPATH reveals to sqlplus where it needs to look for the file glogin.sql. This file makes a number of default settings for accessing the Oracle database, and no adjustments are necessary for our purposes.

[299] http://mathias-kettner.de/nagios_plugins.html.
[300] http://www.oracle.com/technology/software/tech/oci/instantclient
[301] Apart from the Linux version introduced here on Intel x86-32 systems, the client is also available for Linux x86-64, Linux Itanium, MAC OS-X, HP-UX (32- and 64-bit, for both PA-RISC and Itanium), Solaris SPARC (32- and 64-bit), Solaris x86-32, AIX 5L (32- and 64-bit), and HP Tru64 UNIX.

26.2 Establishing a Connection to the Oracle Database
sqlplus requires the following details to make contact with the database:
sqlplus user/password@//host/database
The placeholder user is replaced by a user who exists in the database, and the password is followed by a forward slash. After the @// sign comes the host name or IP address, followed by the name of the database to which sqlplus should make a connection. In the following example we will use the database DEMO:
user@linux:~$ sqlplus wob/password@//192.168.1.9/DEMO

SQL*Plus: Release 10.1.0.3.0 - Production on Sat Aug 13 14:12:52 2005
...
SQL> quit
Disconnected from Oracle8i Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production
On the connect you are shown the version of the instant client used (here: 10.1.0.3.0) as well as a note on the version of the Oracle database used, in this case 8.1.7.0.0. The quit command terminates the connection. If the password is wrong, or if the user does not exist, Oracle explicitly requests the user to enter both again.

26.3 A Wrapper Plugin for sqlplus
To query an Oracle database, sqlplus is given the appropriate SQL statement via standard input and receives a reply via the standard output:
user@linux:~$ echo "select trash from nothing" |\
 sqlplus -i wob/password@//192.168.1.9/DEMO
select trash from nothing
 *

ERROR at line 1:
ORA-00942: table or view does not exist
The switch -s (silent) prevents the output of things like version and copyright, and restricts the reply to the really interesting part. If the query fails, as above, the text merely points out the error that has occurred. sqlplus itself only returns an error status as a return value if the error occurred when using the client itself, otherwise it just returns OK (command executed). This is why sqlplus cannot be used directly by Nagios. Instead, a wrapper must be written around the actual query which evaluates the reply of the database, which in the above example generates a CRITICAL return value appropriate for Nagios from the ERROR reply, and adds a short one-line reply.
sqlplus can in principle be run with any scripting language that enables the text response to be interpreted. Since this is one of the strengths of Perl, we shall use this language for the wrapper plugin—but it could also be written in a shell like Bash; the basic principle is always the same.
26.3.1 How the wrapper works
The wrapper plugin is constructed on the following lines:
sql-statement | sqplus arguments | output_processing
sqlplus receives an SQL statement on the standard input, and the plugin retrieves the result from the standard output. Wrappers can be built around (almost) any program which does not provide sensible return values, but "hides" the result in text.
Perl itself does not provide a direct way of checking standard input and output at the same time. But Perl would not be Perl if there were not a module created specifically for this purpose. ICP:: Open2[302] fullfils exactly this purpose:
use IPC::Open2;

open2(*READFROM, *WRITETO, program, list_of_arguments);
print WRITETO "instruction_via_standard_input\n";

while (<READFROM>) {
processed_standard_output;
}

close(READFROM);
close(WRITETO);
The routine open2 requires two file handles. Their names, WRITETO and READFROM, describe the interaction from the point of view of the wrapper, and seen from open2 its behavior is exactly the opposite: open2 reads from its standard input (WRITETO) and writes to its output (READFROM), where no distinction is made between standard output and error output. The third argument is a program with its complete path, followed by any number of arguments for the program, each separated from the next by a comma.
With the WRITETO file handle, the desired commands are sent with print. Each line for sqlplus should end here with a correct end-of-line (Perl: '\n'). With the while (<READFR0M>) construction, Perl reads line by line from the standard (or error) output until there are no more lines. Then close () closes the two file handles.
Using IPC::Open2 can cause problems, however: it is conceivable that the program used (in our case, sqlplus) gets blocked, because it continues processing a part of the input only after it has written something. If the plugin only processes the output once all the input is completed, you have the classic situation of a deadlock. For this reason you must make sure there are no blocks when reading and writing. Luckily the danger of this happening in our simple application is minimal.
26.3.2 The Perl plugin in detail
A good Perl script starts with the instructions use strict and use warnings. Then all variables must be declared, and in other ways Perl is very particular with syntax.[303]
#!/usr/bin/perl -w
use strict;
use warnings;
use IPC::Open2;

my $ipath = "/usr/local/oracle/instantclient10_1";
my $sqlplus = "$ipath/sqlplus";
my $connectstring = "wob/password@//192.168.1.9/DEMO";

-- Set environment variables
$ENV{'LD_LIBRARY_PATH'} = $ipath;
$ENV{'SQLPATH'} = $ipath;
$ipath contains the path to the directory in which the instant client is located, and $sqlplus has the absolute path to the program sqlplus. The connect string was already explained above. With the hash %ENV, the script sets the two required environment variables. Hash entries are referenced by Perl with $ENV{'variable name'}.
The database query statement is defined for this example in a variable:
-- SQL-Statement
my $select = "SELECT table_name FROM all_tables ";
 $select .= " where table_name = 'VERSION';";
The instruction .= appends the following text to that already existing in $select. The SQL statement therefore selects, from the Oracle system table all_tables, which contains all the names of existing tables, the column table_name, in this case with an additional restriction to the table name VERSION.
In the next step the plugin opens the standard input and output with the routine open2:
-- open2 with error processing
eval {
 open2(*READFROM, *WRITETO, $sqlplus, "-s", $connectstring);
};
if ($@) {
 die "Error in open2: $!\n$@\n";
}
The sqlplus switch -s prevents unnecessary connect output. For adequate error processing, we embed the open2 command in an eval environment: since open2 aborts directly if there is an error, the programmer would otherwise have no chance to display a sensible error message. If it is needed, the error output is obtained in the eval environment through $@. The die function outputs this and aborts the execution of the Perl script.
The only thing remaining now is to send the SQL statement, with print WRITETO, to sqlplus (afterwards we close down the standard input WRITETO, to be on the safe side) and evaluate the output:
-- Write instruction
print WRITETO $select;
close(WRITETO);

-- Process reply
while (<READFR0M>) {
 print $_;
}
while <READFR0M> reads the output line by line. The contents of the current line are contained in $_. With your first attempts, we recommend that you have the output of all lines displayed with print $_; so that you can determine whether everything is working.
If this is the case, the actual logic can be expanded: if the table name sought exists in the database, Oracle first displays the column header, then (separated by hyphens) the actual contents, that is, the name of the table being sought:
TABLE NAME

VERSION
If such a table does not exist in the database, the response is:
no rows selected
If an error occurs in the query, perhaps because the column sought, table_name, is missing or the table all_tables does not exist, sqlplus returns a message containing the keyword ERROR, as in the initial example in 26.3 A Wrapper Plugin for sqlplus.
The while loop now looks like this:
-- Process response
while (<READFR0M>) {
 if (/^VERSION/i) {
 print "OK - Table VERSION found\n";
 exit 0;
 } elsif (/no rows selected/i) {
 print "WARNING - Table VERSION not found\n";
 exit 1;
 } elsif (/ERROR/i) {
 print "CRITICAL - SQL-Statement failed\n";
 exit 2;
 }
}
close(READFROM);
print "UNKNOWN - unknown response\n";
exit 3;
The search instruction /^VERSION/i contains two special features: the i at the end ensures that the comparison ignores upper or lower case. The ^ at the beginning ensures that the text VERSION must stand at the beginning of the line. If the SQL statement sent by Oracle was incorrect, the error message repeats this first—but then the text VERSION is not at the beginning of the line.
If the plugin finds the sought table name VERSION in the response sent, an OK text message is displayed and it terminates with the return value 0.
If the database issues no rows selected or even an ERROR, however, the script feeds Nagios a corresponding reply and terminates with exit and the corresponding return value. If none of the three search patterns match, a return value must also be accounted for; otherwise the script will end with the status 0, and Nagios will announce: "Everything in order." Here we take advantage of the UNKNOWN status, which is actually reserved for error processing for the plugin.
Armed with this background knowledge, it should not be too difficult to write your own Oracle plugin. Its use here is not restricted to read access: provided you have write permissions for the user in question, you can just as well formulate SQL statements with UPDATE, INSERT, or DELETE, and evaluate the answer.

[302] The module is included in the standard package of Perl 5.8.
[303] Some programmers get very irritated, especially at the start, because Perl reacts very pettily with use strict. Without this instruction, variables do not need to be declared. One single typing error in a variable name is sometimes sufficient to keep you searching for hours to find out why the value at a certain position is always 0.

Part VI. Part VI Appendixes

Appendix A. An Overview of the Nagios Configuration Parameters
Nagios contains two independent main configuration files: nagios.cfg controls operation of the Nagios daemon, cgi.cfg configures the Web interface. Both files should be located in the Nagios configuration directory, which is normally /etc/nagios.
nagios.cfg specifies a series of further configuration database and log files, and their functions for the respective parameter will be briefly described in the following reference. The notation ⇒parameter refers to the description of the parameter in the configuration file currently being discussed.
Unless specified otherwise, parameters may have either the value 0 (disabled) or 1 (enabled). If a parameter has a default value, this is specified accordingly. For some path details, the standard value is defined by options during compiling. The values listed in this case correspond to the paths used in the book (see Table 1-1, page 40).
For some parameters there are no defaults. If these are missing from the configuration, Nagios does not provide the corresponding function (so, for example, without the cfg_dir parameter, Nagios ignores the object definitions stored in separate directories).
Depending on the version of Nagios you're using, not all parameters will always be available. (Nagios 2.x) denotes those limited to Nagios 2.x, while (Nagios 3.0) denotes those that have been added in Nagios 3.0.
A.1 The Main Configuration File nagios.cfg
accept_passive_host_checks
Global switch for passive host checks; the value 0 suppresses them. Even though passive host checks are allowed according to nagios.cfg, this feature must be explicitly enabled when defining the host object. Default value:

accept_passive_host_checks=1

accept_passive_service_checks
Global switch for passive service checks. Even though the value 1 allows corresponding tests, this feature must be explicitly enabled when defining the service object. Default value:

accept_passive_service_checks=1

additional_freshness_latency (Nagios 3.0)
Adds the latency, specified in seconds, to the fixed freshness interval. An upcoming freshness check (see 13.4 Reacting to Out-of-Date Information of Passive Checks from page 295) is delayed by this time before it is run. Example:

additional_freshness_latency=15

The default is 0 (no additional delay).

admin_email
The e-mail address of the administrator responsible for the Nagios server, to which you have access through the macro $ADMINEMAIL$. If there is no explicit configuration of a contact object, Nagios will not send an e-mail to this address. Example (no default value):

admin_email=nagios

admin_pager
Pager number, SMS number, or e-mail address for a pager gateway/ SMS gateway through which the administrator of the Nagios server can be reached. Accessible through the macro $ADMINPAGER$. Example (no default value):

admin_pager=pagenagios

aggregate_status_updates
Specifies whether Nagios writes status information from hosts, services, and its own programs for the time interval ⇒status_update_interval in a block to the ⇒status_file. The value 0 means Nagios updates this file immediately after every event. Default value:

aggregate_status_updates=1

Nagios 3.0 works fundamentally according to the first method, which is why the parameter is omitted.

auto_reschedule_checks
With this experimental feature, Nagios spreads tests equally over the time period, to avoid peaks. This can considerably reduce performance and in particular is of no use if Nagios is already struggling to keep on schedule because of poor performance. Normally this option should be switched off. Default value:

auto_reschedule_checks=0

auto_rescheduling_interval
In the intervals specified here, Nagios distributes tests which are to be executed in the next auto_rescheduling_window seconds, so that there is an equal load. Default value:

auto_rescheduling_interval=30

auto_rescheduling_window
All tests that are to take place in the next number of seconds specified here are rescheduled by Nagios so that they are spread equally over this time period. Checks specified for a future time that lie outside this interval are not (yet) taken into account. Experimental feature; use only in exceptional cases! Default value:

auto_rescheduling_window=180

broker_module (Nagios 3.0)
This parameter integrates the specified event broker module (see 17.1 The Event Broker from page 376) during the system start. Apart from the full path, you can also specify the module-specific arguments. The following example integrates the NDO event broker module (see also 17.4.4 Loading the Event Broker module in Nagios, page 386):

broker_module=/usr/local/nagios/bin/ndomod-3x.o config_file=/etc/ nagios/ndomod.cfg

The module-specific argument config_file provides the path for its configuration file. To integrate several modules, just specify the parameter broker_module for each module separately.

cached_host_check_horizon(Nagios 3.0)
Specifies the time in seconds in which Nagios recycles the result of a host check. Nagios does not repeat the test within this time frame but considers the cached result of the last check to still be up to date. This saves time and resources. Example:

cached_host_check_liorizon=30

The value 0 switches off caching; the default is 15. How large this value should be depends on circumstances. Large values take considerable strain off Nagios, but then there is a danger that the values may become obsolete and will no longer be valid.

cached_service_check_horizon(Nagios 3.0)
Like ⇒cached_host_check_horizon, but Nagios uses cached service check results only for dependencies. This parameter therefore only has an effect on performance if there is a very large number of service dependency checks. Example:

cached_service_check_horizon=30

The value 0 switches off caching; the default is 15.

cfg_dir
The directory in which the configuration files containing object definitions are located. Nagios searches through it recursively for configuration files with the extension .cfg. Files with other names are ignored, so that you can place help files in this directory, such as a CSV file from which host definitions are generated automatically by a script. To integrate individual files ⇒cfg_file. The directive may be specified as often as you want (see also 2.1 The Main Configuration File nagios.cfg, page 55). Example (no default value set):

cfg_dir=/etc/nagios/servers

cfg_file
Integrates a single file with object definitions. More on this in 2.1 The Main Configuration File nagios.cfg, page 55. The directive can be specified as often as you want. Example (no default value set):

cfg_file=/etc/nagios/checkcommands.cfg

Nagios 3.0 allows relative paths to be set, starting from the directory in which the file nagios.cfg is located.

check_external_commands
Enables the interface for external commands. Necessary for passive checks or if commands are to be executed through the Web interface. More on this in 13.1 The Interface for External Commands, page 292. Default value:

check_external_commands=0

check_for_orphaned_hosts (Nagios 3.0)
Starting with Nagios 3.0, this parameter adds the host pendant to the ⇒ check_for_orphaned_services that already existed in Nagios 2.x.

check_for_orphaned_services
If the results of a service check are not received after a certain time, this is referred to as an orphaned service. Since Nagios only reschedules service checks if a result exists, it could be the case that a service is never again tested. Normally this only happens if a running service check is terminated manually from outside.

If there is a suspicion that such orphaned services have occurred, you should set check_for_orphaned_services to 1 for debugging purposes. This is then confirmed if Nagios writes a corresponding error entry to the log file. Whether this is justified or not can easily be seen in the Web interface: you can have all services displayed independently of their status, and sorted by the last test time, in ascending order. Normally the execution of an active check should not be longer ago than specified in normal_check_interval. Default value:

check_for_orphaned_services=0

check_host_freshness
Allows a passive host check to be tested actively if no check result has arrived for a long time. If Nagios considers the test result to be too old, ⇒host_freshness_check_interval steps in. More on freshness checking in 13.4 Reacting to Out-of-Date Information of Passive Checks, page 295. Default value:

check_host_freshness=1

check_result_path (Nagios 3.0)
The path in which check results are cached in file form from Nagios 3.0. There should be no other files in this directory, since Nagios regularly empties it. Each Nagios instance requires a separate directory. Example:

check_result_path=/var/nagios/checkresults

check_result_reaper_frequency (Nagios 3.0)
Reaper processes gather in check results and process these for Nagios. check_result_reaper_frequency defines in seconds the interval at which these processes are started. A short interval increases the system load; a long interval could lead to delays in the Nagios scheduling. Example:

check_result_reaper_frequency=5

The parameter replaces ⇒service_reaper_frequency from Nagios 2.x.

check_service_freslmess
The service equivalent to check_host_freshness. The time after which Nagios considers the test result to be too old is defined by the parameter ⇒service_freshness_check_interval. Default value:

check_service_freslmess=1

child_process_fork_twice (Nagios 3.0)
Nagios normally starts two sub-processes when service or host checks are performed. This is not necessary but is intended to make the system more robust against plugin calls that crash. Default:

child_process_fork_twice=1

The parameter use_large_installation_tweaks (A.1 The Main Configuration File nagios.cfg) sets the value 0 (just one sub-process); child_process_fork_twice=1 activates this, despite the fact that use_large_installation_tweaks is set.

command_check_interval
Defines the time interval in which Nagios tests the External Command File (see 13.1 The Interface for External Commands, page 292) for new entries. For this to happen at all, ⇒check_external_coramands must be enabled.

A simple number as the value refers to the time unit specified by ⇒interval_leiigth (normally 60 seconds, so that 1 stands for one minute). The value −1 means that Nagios tests the interface as often as possible. If the number is supplemented (without a space) with the unit s, seconds can also be explicitly specified.

The interval dependent on passive checks may not be too large, since the operating system in the External Command File, a named pipe, can normally only save 4 KB. Default value:

command_check_interval=-1

command_file
The named pipe that serves as an External Command File. It should only be writable for the user nagios and the group nagcmd (see also 13.1 The Interface for External Commands, page 292). Default value:

command_file=/var/nagios/rw/nagios.cmd

comment_file (Nagios 2.x)
File in which Nagios stores the comments, which can be specified through the Web interface. Default value:

comment_file=/var/nagios/comments.dat

This parameter has been removed in Nagios 3.0; comments are now stored in the file status.dat.

date_format
The date format that Nagios displays in the Web interface or uses in the date and time macro. Possible values are us (mm/dd/yyyy hh:mm:ss), euro (dd/mm/yyyy hh:mm:ss), iso8601 (yyyy-mm-dd hh:mm:ss), and strict-iso8601 (yyyy-mm-ddThh:mm:ss). Default value:

date_format=us

downtime_file (Nagios 2.x)
File in which the downtime details are saved, which can be specified through the Nagios Web interface for hosts and/or services (see 16.3 Planning Downtimes, page 359). Default value:

downtime_file=/var/nagios/downtime.dat

This parameter has been removed in Nagios 3.0; comments are now stored in the file status.dat.

debug_file (Nagios 3.0)
For Nagios 2.x, debugging still had to be activated when compiling (for instance, with ./configure --enable-DEBUGALL; see configure --help). In Nagios 3.0 this can normally be configured in nagios.cfg. debug_file defines the file to which the debugging output is written. Example:

debug_file=/var/nagios/debug.log

debug_level (Nagios 3.0)
This defines what information is logged. The parameter has the following values, which can also be combined:

	−1 all information
	0 switches off debugging
	1 Start/end of function calls
	2 Information on the configuration
	4 Information on processes
	8 Scheduling details
	16 Host and service checks
	32 Messages
	64 Event broker

Example:

debug_level=−1

debug_verbosity (Nagios 3.0)
Defines the level of verbosity when debugging: The value 0 provides only basic information, while 1 information is slightly more detailed. The value 2 provides much more detailed information that is generally only of interest to developers. Default:

debug_verbos ity=1

enable_embedded_perl (Nagios 3.0)
Switches on the Embedded Perl Interpreter (Appendix G from page 669), provided it has been built in. In Nagios 2.x a built-in Interpreter is always active, whereas Nagios 3.0 allows this to be set with this parameter. Example:

enable_embedded_perl=1

switches on the Interpreter, the value 0 switches it off. The default is 1 if the Interpreter has been built in, otherwise 0.

enable_environment_macros (Nagios 3.0)
Nagios standard macros, such as $HOSTADDRESS$ (see D.1.8 Using standard macros about the environment, page 631) can (even in Nagios 2.x) be accessed as environment variables. In Nagios 3.0 the number of available macros has increased so drastically that to process them in large environments would lead to performance problems. Default:

enable_environment_macros=1

The value 0 switches off this mechanism.

enable_event_handlers
Globally switches the option on (or off) to work with event handlers for service and host checks. More on this in Appendix C, page 619. Default value:

enable_event_handlers=l

enable_flap_detection
Defines whether Nagios is generally able to detect continually changing states (flap detection, more on this in Appendix B, page 611). Default value:

enable_flap_detection=0

enable_notifications
Defines whether Nagios can send notifications. Switching off this feature normally only makes sense on the central hosts of a distributed installation, which themselves cannot generate notifications, and instead forward their test results to a central Nagios instance (see Chapter 15 from page 317). Default value:

enable_notifications=l

enable_predictive_host_dependency_checks (Nagios 3.0)
Nagios 3.x caches host check results if a corresponding time frame is given with ⇒cached_host_check_horizon. The parameter enable_predictive_host_dependency_checks uses caching not only to decide between DOWN and UNREACHABLE for unreachable hosts, but also for host dependency checks, provided some have been defined (see 12.6.2 Only in exceptional cases: host dependencies, page 289).

enable_predictive_service_dependency_checks (Nagios 3.0)
If this parameter is enabled (value 1), service checks will use cached results to resolve dependencies instead of peforming the checks again. There is more on service dependency checks in 12.6.1 The standard case: service dependencies, page 285.

event_broker_options
The event broker as a new interface in Nagios 2.0 allows third parties to add some features to Nagios in the form of loadable modules, for example to save test results to a database instead of to a file. One application that uses the event broker interface is the NDOutils (Chapter 17 from page 375). Possible values are 0 (switched off) and −1 (accept all broker modules). Default value:

event_broker_options=0

event_handler_timeout
The time after which Nagios terminates the event handlers which have not yet finished. Default value:

event_handler_timeout=30

execute_host_checks
Enables/disables active host checks globally. This is only worth switching off in distributed environments with a central Nagios instance that only accepts passive results from other Nagios servers (see Chapter 15, page 317). Default value:

execute_host_checks=1

execute_service_checks
Like execute_host_checks, but for service checks. Default value:

execute_service_checks=1

external_command_buffer_slots (Nagios 3.0)
Specifies the maximum number of external commands that the external command file interface (13.1 The Interface for External Commands from page 292) can store temporarily. If the buffer is not large enough, some results might be lost. Default:

external_command_buffer_slots=4096

free_child_process_memory (Nagios 3.0)
Nagios normally clears up sub-processes from the memory, but the parameter use_large_installation_tweaks=1 (see A.1 The Main Configuration File nagios.cfg) switches off this behavior by default. With

free_child_process_memory=1

you can reactivate the cleaning up process, despite use_large_installation_tweaks=1 being set.

global_host_event_handler
Defines a global host event handler, in addition to the host-specific event handlers defined with event_handler. For this, both the global parameter ⇒enable_event_handlers as well as the parameter event_handler_enabled must be enabled in the host definition. Nagios executes the global event handler, a normal command object, before the host-specific one. Example (no default value set):

global_host_event_handler=name_of_the_command-object

global_service_event_handler
The service-specific equivalent to global_host_event_handler. Apart from ⇒enable_event_handlers, the parameter event_handler_enabled in the service definition must also be enabled. Example (no default value set):

global_service_event_handler=name_of_command_object

high_host_flap_threshold
Upper limit of flap detection for host checks. Details are given in Appendix B, page 611. Default value:

high_host_flap_threshold=30.0

high_service_flap_threshold
Upper limit of flap detection for service checks (see Appendix B). Default value:

high_service_flap_threshold=30.0

host_check_timeout
Time in seconds after which Nagios aborts a host check if this has not yet returned a result. Default value:

host_check_timeout=30

host_freshness_check_interval
Interval between two freshness checks in seconds. Default value:

host_freshness_check_interval=60

host_inter_check_delay_method
Controls how Nagios processes host checks after a restart. A sophisticated procedure aims to prevent Nagios in this situation from executing all tests simultaneously, and thus overloading the server. Possible values are: s (smart, intelligent, automatic distribution of the host checks), n (no, all checks start simultaneously), d (dumb, Nagios processes the tests at intervals of seconds), and an interval specified in seconds, in the format x.xx. Default value:

host_inter_check_delay_method=s

host_perfdata_command
A Nagios command object that should check the performance data after every host check. Requires the ⇒process_performance_data parameter to be set.

This parameter only makes sense in a few cases, since Nagios executes host checks only if necessary, and therefore at very irregular intervals. It is used if performance data are to be processed without a template (19.1 Processing Plugin Performance Data with Nagios, page 404). Example (no default value set):

host_perfdata_command=process-host-perfdata

host_perfdata_file
Specifies a file or named pipe through which Nagios forwards performance data from host checks via a template mechanism to an external program (see Chapter 19, page 403). ⇒process_performance_data must be set. Example (no default value set):

host_perfdata_file=/tmp/host-perfdata

host_perfdata_file_mode
Defines how data is passed on to the file ⇒host_perf data_file. Possible values are a (append to a normal file) or w (write to a new file), and for Nagios 3.0 also p (non blocking write), which is particularly useful for pipes. Example (no default value set):

host_perfdata_file_mode=a

host_perfdata_file_processing_command
Nagios command object that is called after host performance data is passed on to the ⇒host_perf data_file interface. The parameter is only used with the template mechanism and is optional. Programs such as perf2rrd (19.3 Preparing Performance Data for Evaluation with Perf2rrd, page 415) have their own daemon that permanently reads data from the interface. Example (no default value set):

host_perfdata_file_processing_command=process-host-perfdata-file

host_perfdata_file_processing_interval
If this interval—specified in seconds—is larger than 0, the command belonging to it (⇒host_perfdata_file_processing_command) is run periodically at these intervals. 0 ensures that it is not used. Example (no default value set):

host_perfdata_file_processing_interval=0

host_perfdata_file_template
Describes the output format of the performance data. The Nagios macros and format details in it, such as \t (tabulator) or \n (linefeed) are replaced in the output. More on the use of templates in 19.1 Processing Plugin Performance Data with Nagios, page 404. Example (no default value set):

host_perfdata_file_template=$TIMET$\t$HOSTNAME$\t$HOST-EXECUTIONTIME$\t\$HOSTOUTPUT$\t$HOSTPERFDATA$

illegal_macro_output_chars
Lists characters that are discarded when macros are substituted for notifications, to avoid problems such as interpretation by the shell. The parameter has no influence on the substitution of macros in host or service definitions. Example (no default value set):

illegal_macro_output_chars=' ˜$&|'"<>

illegal_object_name_chars
Specifies impermissible characters in the names of Nagios objects. It is recommended that at least the characters listed in the following example be specified (no default value set):

illegal_object_name_chars='˜ !$%^&*|'"<>?, () =

interval_length
Defines the time unit in seconds to which time details in object definitions (such as with normal_check_interval or retry_check_interval) refer. If interval_length is 60 seconds, the time specification is 5 five minutes. You should only change the default of 60 seconds if there is good reason to do so. interval_length has no influence on time parameters in nagios.cfg, however. Default value:

interval_length=60

lock_file
Specifies a lock file for the Nagios daemon containing the process ID (PID) of the daemon running. Is required for start/stop purposes. Default value:

lock_file=/var/nagios/nagios.lock

log_archive_path
The archive directory for rotating Nagios log files. Evaluations are based on the archive files copied there. If one of the files is deleted, the information contained in it is lost. Nagios uses the directory only if log rotation is enabled with the ⇒log_rotation_method parameter. Default value:

log_archive_path=/var/nagios/archives

log_event_handlers
Should event handler actions appear in the log file? The parameter is used primarily to search for errors. Default value:

log_event_handlers=1

log_external_commands
Should Nagios log external commands (see 13.1 The Interface for External Commands, page 292) in the log file? Default value:

log_external_commands=1

log_file
The central log file. Apart from errors and problems, it also retains all events. All history evaluations use this file. For log rotation, Nagios provides a separate mechanism, with ⇒log_rotation_method, and you should not use external programs here. Default value:

log_file=/var/nagios/nagios.log

log_host_retries
Specifies whether Nagios should log host check repeats because of an error state. This is absolutely essential if event handlers (see Appendix C, page 619) are used which are to react to soft states. Default value:

log_host_retries=0

log_initial_states
Specifies whether the start state of services and hosts should appear in the log file when the Nagios system is started. Default value:

log_initial_states=0

log_notifications
Defines whether Nagios should also log notifications in the log file. Default value:

log_notifications=1

log_passive_checks
Specifies whether Nagios should log passive checks in the log file. Default value:

log_passive_checks=1

log_rotation_method
Defines whether the log file ⇒log_file should be saved periodically to the archive ⇒log_archive_path. Log rotating should always be left to Nagios itself, rather than any external programs, or otherwise the software will have difficulties in evaluating history data. Possible values are n (none, no archiving), h (hourly, at the beginning of each hour), d (daily, each day at 00:00 hours), w (weekly, at midnight from Saturday to Sunday), and m (monthly, the first day of each month at 00:00 hours). Default:

log_rotation_method=n

log_service_retries
Should Nagios log the repeat of a service check because of a soft state error? This is useful for debugging when developing event handlers, but otherwise it is best to leave this out. Default value:

log_service_retries=0

low_host_flap_threshold
Lower limit for flap detection for hosts checks. Details are described in Appendix B, page 611. Default value:

low_host_flap_threshold=20.0

low_service_flap_threshold
Like low_host_flap_threshold, but for service checks. Default value:

low_service_flap_threshold=20.0

max_check_result_file_age (Nagios 3.0)
Defines the maximum age of a check result file in seconds, which the Reaper process from the directory check_result_path still processes. Older files are discarded. Example:

max_check_result_file_age=1800

Check results are only processed here if the accompanying file is not older than 30 minutes. A value of 0 ignores the age of the result files.

max_check_result_reaper_time (Nagios 3.0)
Restricts the runtime of an individual Reaper process to the time in seconds specified. Example:

max_check_result_reaper_time=10

Here the Reaper process is canceled after 10 seconds. Check results left over are processed by the next reaper process.

max_concurrent_checks
Specifies how many checks Nagios may execute simultaneously. The value 0 allows an unlimited number. A restriction through a value larger than zero may, under unfavorable circumstances, lead to the test not being executed in time. Default value:

max_concurrent_cnecks=0

max_debug_file_size (Nagios 3.0)
Limits the size of the debugging file to the value specified in bytes. Example:

max_debug_file_size=2048000
If the size exceeds the given value, Nagios adds the ending .old to the file. If a file already exists with the same name, it will be deleted. You must therefore make provision for twice the size specified here, since there could be two files (with and without the suffix .old) with the maximum size at the same time.

max_host_check_spread
At what time interval (in minutes) should Nagios have started all host checks after a restart? Prevents all tests from being executed simultaneously, which would overload the Nagios server. Default value:

max_host_check_spread=30

max_service_check_spread
Like max_host_check_spread, but for service checks. Default value:

max_service_check_spread=30

nagios_group
The group with whose permissions the Nagios daemon runs. Default value (is defined during compilation):

nagios_group=nagios

nagios_user
The user with whose permissions the Nagios daemon runs. Default value (is defined during compilation):

nagios_user=nagios

notification_timeout
After how many seconds should Nagios abort the attempt to deliver a notification? Some actions, such as sending an SMS message, require a certain amount of time, since the system first waits for confirmation from the recipient. The value should therefore not be too low. Default value:

notification_timeout=30

object_cache_file
The file in which Nagios stores all objects after it starts. Since the Web interface uses this file, the normal configuration files with the object definitions can be edited while Nagios is running, without jeopardizing the functionality of the Web interface. Default value:

object_cache_file=/var/nagios/objects.cache

obsess_over_hosts
Defines in general whether host check results are forwarded to a central Nagios instance. If the parameter is enabled, the command defined in ⇒ocsp_commandis run. This is used in distributed environments; a description can be found in Chapter 15, page 317. Default value:

obsess_over_hosts=0

obsess_over_services
Defines in general whether service check results should be forwarded to a central Nagios instance. If the parameter is enabled, the command defined in ⇒ohcp_command is used. This feature is used in distributed environments (see Chapter 15, page 317). Default value:

obsess_over_services=0

ochp_command
Defines the obsessive compulsive host processor, a Nagios command object that forwards all host check results in a distributed environment to a central instance (see Chapter 15, page 317). Example (no default value set):

ochp_command=name_of_the_command_object

ochp_timeout
Defines the timeout for the ⇒ochp_command. After this time has expired, Nagios aborts the execution of the command. Default value:

ochp_timeout=15

ocsp_command
Specifies the command object that, as the obsessive compulsive service processor, should forward all service check results in a distributed environment to a central instance (see Chapter 15, page 317). Example (no default value set):

ochp_command=name_of_the_command_object

ocsp_timeout
The timeout for the ⇒ocsp_command. After the time specified here has expired, Nagios aborts the execution of the command. Default value:

ocsp_timeout=15

passive_host_checks_are_soft (Nagios 3.0)
Normally, the results of passive host checks are always regarded as hard states. With

passive_host_checks_are_soft=1

the same behavior can be set for active host checks. Assigning soft or hard states can now be regulated by the parameter max_check_attempts from the host definition.

perfdata_timeout
Defines after how many seconds a performance command (⇒host_perfdata_command,⇒service_perfdata_command,⇒host_perf-data_file_processing_command, or ⇒service_perfdata_file_processing_command) should be aborted. Default value:

perfdata_timeout=5

precached_object_file (Nagios 3.0)
Starting with Nagios 3.0, it is possible to carry out reading and checking the configuration even before a Nagios restart and to cache the result in the file specified with precached_object_file (see H.8 Restart from page 690). Example:

precached_object_file=/var/nagios/objects.precache

process_performance_data
Switches on processing of performance data. This parameter should be enabled only if performance data really is evaluated. Otherwise it only uses up resources on the Nagios server. Default value:

process_performance_data=0

resource_file
The configuration file containing the definitions of the (maximum of 32) $USERχ$ macros. $USER1$ normally specifies the path to the Nagios plugins. Otherwise you could save passwords here, for example, which should not be readable in the normal Nagios configuration files. The file must then be protected from all external access, and only the user nagios should be able to read it. Example (no default value set):

resource_file=/etc/nagios/resource.cfg

retain_state_information
Determines whether Nagios will save current states to a file on shutdown (⇒state_retention_file) and read these again when it starts. Default value:

retain_state_information=0

retention_update_interval
Every how many minutes should Nagios store current state information in the ⇒state_retention_file? With a value of 0, the system only saves information if Nagios is shut down. The parameter ⇒retain_state_information must be enabled for this. Default value:

retention_update_interval=60

service_check_timeout
Number of seconds after which Nagios aborts a service check if this has not returned a result by then. Default value:

service_check_timeout=60

service_freshness_check_interval
Interval between two freshness checks in seconds. Default value:

service_freshness_check_interval=60

service_inter_check_delay_method
Controls how Nagios processes service checks after a restart. An "intelligent" procedure should prevent them from all starting at the same time, to avoid putting an unnecessary load on the server. Possible values are s (smart, automatic distribution), n (no, start all tests simultaneously!), d (dumb, one second interval between checks), as well as an explicitly specified interval in seconds, in the form x. xx. Default value:

service_inter_check_delay_method=s

service_interleave_factor
Prevents the checks accumulating for a specific host from being executed at the same time (⇒max_concurrent_checks, 598), through Nagios distributing the planned checks for all hosts "intelligently" over a period of time. Possible values are s (smart, automatic distribution) or an integer larger than 0. With a value of 1, Nagios does not carry out any distribution, with a value of 4, Nagios initially plans every fourth service check (that is, from the amount of intended checks, the 1st, 5th, 9th, etc.), then the following number (that is, the 2nd, 6th, 10th, etc.), and so on. The test sequence is shown by the Service Detail item in the Web interface. In case of doubt, the default value can be left as it is:

service_interleave_factor=s

service_perfdata_command
The Nagios command object that is run after each service check to process performance data. A requirement for this is that ⇒process_performance_data must be set.

The parameter is used if the performance data is to be processed without a template (19.1 Processing Plugin Performance Data with Nagios, page 404). Example (no default value set):

service_perfdata_command=process-service-perfdata

service_perfdata_file
Path to the file or named pipe through which Nagios forwards performance data from service checks via a template mechanism to an external program. This only works if ⇒process_performance_data is set. More on processing performance data in Chapter 19, page 403. Example (no default value set):

service_perfdata_file=/tmp/service-perfdata

service_perfdata_file_mode
Defines the mode in which data is passed on to ⇒service_perfdata_file. Possible values are a (append to a normal file), w (write to a new file) and in Nagios 3.0 p as well (non-blocking write), which is useful for pipes. Example (no default value):

service_perfdata_file_mode=a

service_perfdata_file_processing_command
A command object that is executed after Nagios has passed on service performance data to the ⇒service_perfdata_file. The parameter is optional and is only used together with the template mechanism. As long as programs that further process the data, such as perf2rrd (19.3 Preparing Performance Data for Evaluation with Perf2rrd, page 415), include their own service that permanently reads out the service_perfdata_file, you can manage without defining a command for reading out. See also Chapter 19, page 403. Example (no default value set):

service_perfdata_file_processing_command=process-service-perfdata-file

service_perfdata_file_processing_interval
Interval in seconds in which the command defined in ⇒service_perfdata_file_processing_command is periodically run. Setting the value 0 ensures that it is never used. Example (no default value set):

service_perfdata_file_processing_interval=0

service_perfdata_file_template
The output format for performance data; Nagios macros and format details such as \t (tabulator) or \n (linefeed) are substituted in the output. See also 19.1 Processing Plugin Performance Data with Nagios, page 404. Example (no default value set):

service_perfdata_file_template=$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

service_reaper_frequency (Nagios 2.x)
Every how many seconds should Nagios process accumulated service test results? Default value:

service_reaper_frequency=10

In Nagios 3.0 the corresponding parameter is called ⇒check_result_reaper_frequency and influences not only service checks but also host checks.

sleep_time
Pause in seconds for which Nagios waits before searching again in the scheduling queue for checks to be performed. Default value:

sleep_time=0.5

state_retention_file
The file in which Nagios stores status information on shutdown, and from which the information is read in again when Nagios is started. This is used only if the ⇒retain_state_information parameter is set. Default value:

state_retention_file=/var/nagios/retention.dat

status_file
Path to the file in which Nagios saves all current status values and from which the Web interface retrieves them. Default value:

status_file=/var/nagios/status.dat

status_update_interval
At what interval should Nagios store status values in the file⇒status_file? If ⇒aggregate_status_updates is not set, the system ignores this parameter and immediately writes the status values to this file (not recommended). Default value:

status_update_interval=60

temp_file
Path to a temporary file that Nagios uses if necessary, and deletes each time when it no longer requires it. Default value:

temp_file=/var/nagios/tempfile

temp_path (Nagios 3.0)
A directory in which Nagios may store temporary files. The directory should be emptied regularly. Example:

temp_path=/tmp

translate_passive_host_checks(Nagios 3.0)
Determines whether Nagios should translate the result of a passive host check from a topological perspective to DOWN or UNREACHABLE. The default is "no":

translate_passive_host_checks=0

Passive host checks are often used in distributed environments, and Nagios does not have all the information concerning the topological structure of these environments. In that case, the default makes sense. The value 1 switches the translation to DOWN or UNREACHABLE.

use_aggressive_host_checking
Nagios makes a number of assumptions in deciding whether unreachable hosts are DOWN or UNREACHABLE. If this parameter is set to the value 1, Nagios is very particular in the host check and in some circumstances may perform considerably more individual checks. Although the result will be more precise, this puts quite a strain on the system. This parameter should only be set if there are problems in detecting failed hosts. Default:

use_aggressive_host_checking=0

use_embedded_perl_implicitly (Nagios 3.0)
Automatically runs all Perl scripts in the Embedded Perl Interpreter, provided the script itself does not contain an explicit instruction to avoid the Interpreter. More on this in G.2 Using ePN, page 672.

use_large_installation_tweaks(Nagios 3.0)
This parameter covers a number of settings intended to improve the performance of Nagios in large environments. The following entry switches it on:

use_large_installation_tweaks=1

There is more on this in F.2.7 Optimizing large Nagios environments, page 667.

use_regexp_matching
Defines whether the wildcards * (any character) and ? (a single character) are allowed in object definitions. If you want to work with regular expressions, ⇒use_true_regexp_matching must be used. Default value:

use_regexp_matching=0

use_retained_program_state
Should changes to the parameters ⇒enable_notifications, ⇒en-able_flap_detection, ⇒enable_event_handlers, ⇒execute_service_checks and ⇒accept_passive_service_checks on the Web interface survive a Nagios restart? Only works if ⇒retain_status_informationis enabled. Default value:

use_retained_program_state=1

use_retained_scheduling_info
Should Nagios save current scheduling information on shutdown so it can read it in again when it restarts? You can temporarily disable the parameter if you are adding a large number of tests; otherwise it is sensible to keep it enabled. Default value:

use_retained_scheduling_info=1

use_syslog
Ensures logging of all Nagios activities in the syslog. Default value:

use_syslog=1

use_timezone (Nagios 3.0)
Explicitly sets a time zone for Nagios. Normally, Nagios uses the time zone of the system on which it is running. This parameter is only required if several instances for different time zones are being run on one host. Example:

use_timezone=Europe/Berlin

The relative path for the desired zone information file is specified, usually in /usr/lib/zoneinfo or /usr/share/zoneinfo.

use_true_regexp_matching
In contrast to ⇒use_regexp_matching, allows the use of real regular expressions in accordance with the POSIX standard.[304] Default value:

use_true_regexp_matching=0

[304] See man 7 regex.

A.2 CGI Configuration in cgi.cfg
A.2.1 Authentication parameters
Through the contact and the contact group, Nagios allocates responsibilities to users from which permissions for the Web interface can likewise be inferred: each contact may normally only see those hosts and services for which he is also responsible. This is why the name of the Web login must match the contact name.
The parameters listed below work around this concept to some extent. They are not intended to solve problems, however, caused by contact and Web user names not matching.
cmduse_authentication
Determines whether you normally need to log in to the Web interface. Like the user name, the contact name is always used; how you store passwords is described in 1.5 Configuration of the Web Interface, page 47.

In general you should never permit this authentication, but if you do, you should make sure that the interface for external commands (13.1 The Interface for External Commands, page 292) is switched off completely. Default:

use_authentication=1

authorized_for_all_host_commands
Allows the users specified here to run commands through the Web interface for all hosts, without them belonging to the appropriate contact group. Example (no default value set):

authorized_for_all_host_commands=nagiosadmin

authorized_for_all_hosts
Allows the users specified here to look at all host information, irrespective of their actual responsibility Example (no default value set):

authorized_for_all_hosts=nagiosadmin.guest

authorized_for_all_service_commands
Allows the users defined here to run commands for all services via the Web interface, independently of membership of contact groups. Example (no default value set):

authorized_for_all_service_commands=nagiosadmin

authorized_for_all_services
Allows the users specified to view all service information, irrespective of their own permissions. Example (no default value set):

authorized_for_all_services=nagiosadmin,guest

authorized_for_configuration_information
Enables the users specified to view all configuration data via the Web interface. This should be reserved for the Nagios administrators. Example (no default value set):

authorized_for_configuration_information=nagiosadmin,jdoe

authorized_for_system_commands
Allows the specified users to shut down or restart Nagios via the Web interface. Normally, nobody has this authorization. Example (no default value set):

authorized_for_system_commands=nagiosadmin

authorized_for_system_information
Allows the specified users to view Nagios process information. Normally, nobody may do this. Example (no default value set):

authorized_for_system_information=nagiosadmin,theboss,jdoe

A.2.2 Other Parameters
action_url_target (Nagios 3.0)
Sets the HTML tag target for an action URL (see 16.4.1 Extended host information). The default is blank, which opens a new window:

action_url_target=blank

default_statusmap_layout
Defines the layout for the status map. Possible values are 0 (coordinates defined through a hostextinfo object), 1 (the user must move by mouse click from one layer to the next one), 2 (compressed tree—somewhat confusing, because branches cut across each other in the picture), 3 (balanced tree, the branches are displayed so that there are no crossovers in the graphic—clearer, but requires much space), 4 (circular representation, with Nagios at the center: hosts that can be reached directly[305] are shown in the inner circle, while on other circles are located those hosts that can be reached from hosts already entered in the graphic), 5 (circular, like 4; the area around the host is marked in color—gray for OK, red for DOWN or UNREACHABLE; Figure A.27 in 16.2.4 The most important things at a glance: tac.cgi shows an example), and 6 (circular; the hosts are shown as balloons). The settings can also be changed in the Web interface without the need to adjust the configuration file each time, which makes it easier to try things out. Example:

default_statusmap_layout=5

default_statuswrl_layout
Determines the layout for the VRML representation of the status page through statuswrl.cgi. Possible values are 0, 2, 3, and 4; the corresponding appearance is based on the values of the same name for ⇒default_statusmap_layout. Example:

default_statuswrl_layout=4

default_user_name
Name of a guest user who may use the Web pages without authentication. You should only use this parameter if the Web server is protected from unauthorized access, and you should look closely at what permissions this user is allocated through the contact groups. Example (no default value set):

default_user_name=guest

enable_splunk_integration (Nagios 3.0)
Activates integration of the Splunk tool, a search engine for log files.[306]

escape_html_tags (Nagios 3.0)
The value 1 disables HTML formatting in the plugin output:

escape_html_tags=1

Corresponding formatting thus has no effect. The default is 0, which causes HTML formatting to be passed on.

lock_author_name (Nagios 3.0)
For various CGI actions, such as setting acknowledgements, an author name is specified. With the setting

lock_author_names=1

this can no longer be changed (the default is the user logged in).

main_config_file
The Nagios main configuration file. Default value:

main_config_file=/etc/nagios/nagios.cfg

notes_url_target (Nagios 3.0)
Sets the HTML tag target for Notes URLs (see 16.4.1 Extended host information). The default is blank, which opens a new window:

notes_url_target=blank

physical_html_path
Path in the file system that leads to the Nagios directory for documentation and images. See also ⇒url_html_path. Default value:

physical_html_path=/usr/local/nagios/share

refresh_rate
Specifies at what intervals the Web page is automatically updated. Default value:

refresh_rate=60

splunk_url (Nagios 3.0)
Defines the URL for the Splunk search engine. Example:

splunk_url=http://127.0.0.1:8000/

The parameter ⇒enable_splunk_integration (A.2.2 Other Parameters) must also be enabled for this.

statusmap_background_image
The background image for the status map display. Example (no default value set):

statusmap_background_image=smbackground.gd2

statuswrl_include
A file with its own VRML objects used in the VRML representation. The path is specified relative to ⇒html_physical_path. Example (no default value set):

statuswrl_include=myworld.wrl

url_html_path
The logical path to the Nagios documents and images from the point of view of the browser, starting from the document root of the Web server. If you use this path in a URL, you will be taken to the Nagios start page. Default value:

url_html_path=/nagios

use_pending_states (Nagios 3.0)
How should hosts and services be displayed in the Web interface if no check has yet taken place for this?

use_pending_states=1

shows unchecked hosts and services with the state PENDING; the value 0 can be left as it is.

[305] That is, without the "diversion" via parents.
[306] http://www.splunk.com/

Appendix B. Rapidly Alternating States: Flapping
If the state of a host or service keeps on changing over and over, Nagios inundates the administrator with a flood of problem and recovery messages, which can not only be very irritating but also distract the administrator's attention from other, perhaps more urgent problems.
With a special mechanism, Nagios quickly recognizes alternating states and can inform the administrator of these selectively. The Nagios documentation refers to such alternating states as state flapping and to their detection as flap detection.
Whether these alternating states involve hosts or services has no influence on the detection mechanism itself. The differences are more to be found in the nature of host and service checks: Nagios carries out service checks periodically, and therefore regularly. In this way the system continuously receives new information on the current status. Regular host checks only make sense from Nagios 3.0 onward (see H.7 A New Logic for Host Checks from page 689). In Nagios 2.x, host checks generally take place only if needed, so Nagios has to obtain the appropriate information in other ways.
B.1 Flap Detection with Services
To detect alternating states you need a complete list of all states that occurred during the last service checks. For this purpose Nagios stores the last 21 test results for each service and then overwrites the oldest value in each case in the memory. In these 21 states, a maximum of 20 changes can occur.
Figure B-1 shows an example. The x-axis numbers the possible alternating states in each case from 1 to 20, and the heads of the arrow indicate alternating states that have actually occurred.

Figure B-1. Nagios saves the last 21 states to detect frequently alternating states. This service changed its state twelve times
In the period specified, the state of the system shown changed 12 times out of a possible 20, which as a percentage is 60 percent. At 0 percent, not one alternation state has taken place, and 100% means that the service really was in a different state every time it was recorded.
When determining the percentage value, Nagios assigns less significance to older changes of state than to more recent ones. Accordingly it weights the oldest change in state at 1 in Figure B-1 with 0.8, and the most recent at 20 with 1.2. From left to right, the factor increases each time by approx. 0.02,[307] resulting in a linear progression.
This weighting does not have any major effects on the end result in this example: for Figure B-1, this results in 62.21 percent (instead of 60), a slight shift, since the state in the second half changed more often. If there was only a single change of state at 20, the weighting would have the most effect: instead of 5% (that is, one change out of a possible 20) this would result in 5 * 1.2 = 6 percent.
Using threshold values which can be defined—two for services, two for hosts—Nagios defines whether a service or host is "flapping". Both the upper and lower limits are specified as percentages. If the detected change state exceeds the upper threshold, Nagios categorizes the service as flapping. This has consequences: Nagios logs the event in the log file, adds a nonpermanent comment,[308] and stops any notifications concerning this from being sent.
If the percentage value falls below the lower limit, the system undoes this step; that is, the comment disappears, notifications are sent again, and the result also appears in the log file.
B.1.1 Nagios configuration
Flap detection is configured at two locations: in the central configuration file and in the definition of the service object. In nagios.cfg the feature is switched on generally with the parameter enable_flap_detection, and global limit values are also defined here, which will always apply if nothing else is defined for the service in question:
/etc/nagios/nagios.cfg
...
enable_flap_detection=1
low_service_flap_threshold=5.0
high_service_flap_threshold=20.0
...
The value 1 set here for enable_flap_detection enables flap detection, and 0 switches it off.
The lower limit low_service_flap_threshold lies at 5 percent in this case, the upper high_service_flap_threshold limit at 20. This means that Nagios categorizes a service as flapping if the history saved detects at least five changes in state (more than four out of a possible 20).[309] The lower five percent limit corresponds to one change in state. To drop below this, all 21 states must be identical.[310]
In the definition of a service object, you have another chance to decide whether flap detection is desired in this case. You also have an option to specify threshold values for this service that differ from the global settings:
define service{
 host_name linux01
 service_description NTP
 ...
 flap_detection_enabled 1
 low_flap_threshold 5.0
 high_flap_threshold 20.0
 ...
}
The value 1 in flap_detection_enabled switches on the feature for this service, and 0 (the default) switches it off. The two limit values low_flap_threshold and high_flap_threshold define the limit values that override the globally defined values. If they are set to 0, or are omitted, the global thresholds will apply.
Starting with Nagios 3.0, the parameter flap_detection_options enables only specified states to be taken into account when detecting changes in states. Possible values are o (OK), w (WARNING), c (CRITICAL), and u (UNKNOWN). The default is
flap_detection_options u,w,c,u
If the values are restricted to w, c, only WARNING and CRITICAL play a role in detection; the other states are ignored. Nagios 3.0 also saves states when flap detection is switched off globally and introduces a corresponding new message type. More on this in H.4 Rapidly Changing States from page 687.
B.1.2 The history memory and the chronological progression of the changes in state
Since the history only saves hard states and soft recovery, the sections on the x-axis cannot be allocated so easily on a chronological basis, because the intervals between possible changes of state are not equal. Assuming that the service object has the following definitions:
max_check_attempts 3
normal_check_interval 5
retry_check_interval 1
Nagios checks the service two more times after a change in state from OK to WARNING has taken place, before the service changes to the hard state WARNING (state 1 in Figure B-1 in page 612). Since the last check, which returned OK, a total of seven minutes[311] has elapsed, since the two soft states after five and six minutes are not included in the history.
If the next service check, as in Figure B-1, again detects a WARNING (i.e., the state does not change this time), then only five minutes elapse this time between states 1 and 2. The x-axis therefore only illustrates time in a linear form in exceptional circumstances—if no change of state occurs, for example.
B.1.3 Representation in the Web interface
Services that Nagios categorizes as flapping are visible in the Web interface at three points: in the summaries generated by tac.cgi (16.2.4 The most important things at a glance: tac.cgi, page 345) and status.cgi (16.2.1 Variations in status display: status.cgi, page 334), as well as on the information page created by extinfo.cgi (16.2.2 Additional information and control center: extinfo.cgi, page 339).
The quickest way to get there is through tac.cgi (Figure B-2): a link in the Monitoring Features section marked by x Services Flapping takes you to the status overview of services which continually change their state. The status overview shown in Figure B-3 can also be opened directly with status.cgi?host=all&style=detail&serviceprops=1024.
serviceprops=1024 describes all services that Nagios categorizes as flapping. style=detail provides a detailed view (in contrast to overview, as can be seen in Figure B.10 in 16.2 An Overview of the Individual CGI Programs), and host=all includes all hosts.

Figure B-2. tac.cgi notes changing states in section Monitoring Features
In the status view in Figure B-3, a white field with several horizontal gray bars moving to and fro reveal that a flapping service is involved. At the same time a white speech bubble denotes the existence of a comment on this (generated automatically by Nagios).

Figure B-3. Animated horizontal bars denote flapping states
If you click in the status view on the flapping icon next to the service in question, extinfo.cgi generates additional information on the service (Figure B-4), showing the changes in state in percent next to the flapping category, depicted by a red bar labeled with YES.

Figure B-4. Percent State Change: reveals how often the hard state changed, as a percentage
The page also contains the nonpermanent comment generated by Nagios (Figure B-5), which points out that the sending of messages has been stopped until the status of the service becomes stable again. It disappears, therefore, when Nagios is restarted.

Figure B-5. With this comment, Nagios categorizes a service as flapping

[307] (1.2–0.8)/19=0.0211
[308] Nonpermanent comments disappear after the monitoring system is restarted, but permanent ones remain.
[309] If the changes in state took place recently, the weighting would ensure that four changes in state would already be enough to exceed the 20 percent limit.
[310] If a single change of state takes place in the first half, the weighting results in a value of less than 5 percent.
[311] 5 5+2*1=7

B.2 Flap Detection for Hosts
Nagios tries to detect changing states of a host in two ways: in the host check itself (either in the context of the active check from Nagios 3.0 or in on-demand checks), and also if a service check for a host was performed, the last flap detection of which took place some time ago. When Nagios next performs a service check to detect a changing state is determined by the average value for all service check intervals.
Regular host checks are also not necessary from Nagios 3.0 onward, and recent versions of Nagios manage perfectly well without them. For reasons of performance, they really should be avoided in Nagios 2.x (4.2 On-Demand Host Checks vs. Periodic Reachability Tests, page 95). By making use of a trick to perform service checks only when required, Nagios compensates for the fact that regular host check results are missing. If at least one service check returns an OK, Nagios concludes from this that the host is also reachable and is in an OK state. The results of flap detection are stored by Nagios in the history.
The same flap detection mechanism is used for hosts as for services. So the difference is only in how Nagios determines the corresponding data basis.
Whether flap detection is desired for hosts is revealed by the central configuration file nagios.cfg and the definition of the host objects. The global parameter enable_flap_detection, which applies equally to hosts and services, must be set to 1:
/etc/nagios/nagios.cfg
enable_flap_detection=1
low_host_flap_threshold=5.0
high_host_flap_threshold=20.0
The threshold parameters for hosts include host in their names, but they have the same effect as their service equivalents.[312]
For the host object itself, detection is switched on with flap_detection_enabled
1 and off with 0:
define host{
 host_name linux01
 ...
 flap_detection_enabled 1
 low_flap_threshold 5.0
 high_flap_threshold 20.0
}
The optional parameters low_flap_threshold and high_flap_threshold allow for host-specific thresholds. If these are omitted, the global threshold values are used.
As for service checks, Nagios from 3.0 onward also has the additional flap_detection_options parameter here. Possible values in the host definition are o (OK), d (DOWN), and u (UNREACHABLE). Only the states specified for the parameter are used in flap detection, and if this parameter is not given, then all possible states are used.

[312] See B.1 Flap Detection with Services.

Appendix C. Event Handlers
If the state of a host or service alternates between OK and error states, you can use an event handler to run any programs you want. You can make use of this if a service fails, for example, and you want Nagios to try and restart it. This provides an opportunity to solve minor problems without the administrator needing to intervene.
Use of the event handlers is not just restricted to self-healing, however: with an appropriate script you can just as easily log current values or the event itself in a database. But there are more suitable methods for doing this, described in 19.1 Processing Plugin Performance Data with Nagios, page 404. A failed printer service serves as an example here of using an event handler for self-healing. In this example the printer service lpd is used, but this method can be applied in general to any service for which a start-stop script is available.
C.1 Execution Times for the Event Handler
The following parameters in the service definition ensure that Nagios tests the service under normal circumstances every five minutes, but in cases of error, every two minutes:
normal_check_interval 5
retry_check_interval 2
max_check_attempts 4
An error state becomes hard after four tests leading to the same result.

Figure C-1. When does Nagios run the event handler?
Figure C-1 shows an example of the change of the lpd service from an OK state to CRITICAL, and back again. After 10 minutes test No. 2 detects that the service is no longer available. The soft state that results causes Nagios to examine lpd more closely at two-minute intervals (checks No. 3, 4, and 5). Test No. 5 returns a CRITICAL for the fourth time, causing Nagios to categorize this as a hard state and to go back to the normal, five-minute test interval. In check No. 7 the service is functioning again, and the state changes from CRITICAL to OK (for hard state, see 4.3 States of Hosts and Services, page 96.).
Event handlers are carried out by Nagios for soft error states (in checks No. 2, 3, 4), the first time a hard error state occurs (in check No. 5), and in the resetting of the OK state after an error (irrespective of whether this is a hard or soft recovery).
Since hard error states lead to the administrator being notified, it is recommended that the repair attempt is moved to the time of the soft error states. If it succeeds at this point in time, the administrator is spared these minor details. Ideally the service will be running again before a user even notices that it has failed.
The fact that Nagios only executes the event handler when a hard error state first occurs prevents periodic attempts at repair that do not lead to the desired result after all (if the attempt had succeeded, no further hard error states would have occurred).

C.2 Defining the Event Handler in the Service Definition
Although Nagios executes the event handler for every event, it does not have to carry out an action each time. In our example the handler should attempt to reset the printer service on the third soft error state (check No. 4) and on the first hard error state (check No. 5), and do nothing at all the other execution times.
For this purpose, the service definition is modified as follows:
define service{
 host_name printserver
 service_description LPD
 ...
 event_handler restart-lpd
 ...
}
The event_handler parameter expects a Nagios command object that will run the handler script:
define command{
 command_name restart-lpd
 command_line $USER1$/eventhandler/restart-lpd.sh $SERVICESTATE$ $SER
VICESTATETYPE$ $SERVICEATTEMPT$
}
In this example it is called restart-lpd.sh and is not located directly in the Nagios plugin directory /usr/local/nagios/libexec, but in a subdirectory called /usr/local/nagios/libexec/eventhandler, as suggested in the Nagios documentation. The script receives three macros as parameters: the current state $SERVICESTATE$ (OK, WARNING, CRITICAL, or UNKNOWN), the state type $SERVICESTATETYPE$ (SOFT, or HARD), and the number of the current (possibly repeated) attempt $SERVICE ATTEMPT$ (e.g., 3 if the test is being performed for the third time). If the event handler is to be used for host checks, then the macros $HOSTSTATE$, $HOSTSTATE-TYPE$, and $HOSTATTEMPT$ are used instead.

C.3 The Handler Script
The actual treatment of the error—depending on the current event—is dealt with by the script defined in the command definition. So that we can concentrate on the essential aspects in this context, we shall assume that lpd is installed on the Nagios server itself. This enables the service to be restarted locally, without the need for a remote shell such as the Secure Shell.
The script restart-lpd.sh checks to see exactly what event is involved, using the macros passed on to it, and either does nothing at all or tries to restart lpd:
#!/bin/bash
/usr/local/nagios/libexec/eventhandlers/restart-lpd.sh
$1 = Status, $2 = status type, $3 = attempt

case $1 in
 OK)
 ;;
 WARNING)
 ;;
 CRITICAL)
 if [$2 == "HARD"] || [[$2 == "SOFT" && $3 -eq 3]]; then
 echo "Restarting lpd service"
 /usr/bin/sudo /etc/init.d/lpd restart
 fi
 ;;
 UNKNOWN)
 ;;
esac
exit 0
The case statement first checks to see what state exists. Only if it is CRITICAL will the script do anything; it does not carry out any action for other states. If the service is in a critical state, either the state type must be HARD or (||) a corresponding soft state must occur for the third time in succession, so that restart-lpd.sh can execute the lpd init script with the argument restart.[313]
The script is executed with the permissions of the user nagios, who may neither stop nor restart system services. This is why sudo is used, which provides temporary root permissions exclusively for the start-up script /etc/init.d/lpd, just for this user. The corresponding configuration can be found in the file /etc/sudoers, but if it is edited then you must use the program visudo rather than a standard editor (this checks the configuration file for syntax errors when it is saved):
linux:~ # visudo
Then you add the following line to the configuration file:
nagios nagsrv=(root) NOPASSWD: /etc/init.d/lpd
In plain language this means: the user nagios may run the command /etc/init.d/lpd on the host nagsrv. The command is run as the user root, but no password is required for this.

[313] If you want to get to know Bash programming more closely, we can recommend the excellent Advanced Bash-Scripting Guide (http://www.tldp.org/LDP/abs/html) by Mendel Cooper.

C.4 Things to Note When Using Event Handlers
If you restart a service that is already in a soft error state as described here, the administrator will not receive any notification as long as the action was successful. Although the log file records the restart, it will scarcely be noticed unless you search the log file explicitly for such events. This means that the administrator will seldom investigate the cause of the service failure.
You should therefore bear in mind that eliminating the problem is the best solution, and that a restart is only second best. Like air bags in automobiles, the event handler should just be regarded as an additional security measure, and should certainly not represent the primary method of handling errors. If you carry out the restart only when a hard error state occurs, the administrator is confronted with the problem through the notification mechanism.
In addition, not every service is suitable for an automatic restart. With OpenLDAP in versions before 2.1.17, a problem occurred sporadically in the replication through slurpd, which left behind a corrupted replication file. Although the replication service could be restarted, it died again after a short time. To really get the replication up and running again, you would have to repair the replication file manually.
You should always remember this example and never have complete faith in self-healing. In the worst case, restarting a service repeatedly and without thought could lead to loss of data, which might be rectified only by retrieving data from the backups.

Appendix D. Macros
Macros are the salt in the Nagios soup, for without them each service would have to be defined individually for each host and each command defined separately for each host and each service. They are identified by the dollar signs surrounding them: $macro$. We will look at the definition of a command with the plugin check_http (see 6.4.2 Web server control via HTTP, page 119):
define command{
 command_name check_http
 command_line $USER1$/check_http -H $HOSTADDRESS$ $ARG1$
}
The definition contains three different macros: the user macro $USER1$, defined in the file resource.cfg (see 2.14 The Resources File resource.cfg, page 79), as well as $HOSTADDRESS$ and $ARG1$. The 32 possible user macros $USER1$ to $USER32$ are like constants that you use to record information, such as the path to the plugin directory (normally in $USER1$) or even passwords that should not appear in the normal configuration. The file resource.cfg may then be readable only for the user nagios.
The second macro, $HOSTADDRESS$, is a so-called standard macro, which is replaced by the host address of the host definition before the command is run:
define host{
 host_name linux01
 address 192.0.2.1
 ...
}

define service{
 host_name linux01

 service_description HTTP
 check_command check_http!-u test.html
 ...
}
If the service linux0l;HTTP calls the command check_http, the command will obtain the host address from the parameter address. However, standard macros can provide not only the contents of a parameter from an object definition, as in this case, but also dynamic values that can change. Examples include the state of a host (e.g., $HOSTSTATE$), the output of a plugin (e.g., $SERVICEOUTPUT$), and system information, such as the start time of Nagios or the current time, or information on the configuration or static values.
The $ARGx$ macros contain the command line arguments in sequence. These appear in the service definition after the exclamation mark following the command check_http. The exclamation mark is also used as a separator between the individual arguments. In this way, spaces can be used within an argument, as in the example here (-u test.html), without any problem whatsoever.
Nagios can handle two other groups of macros: on-demand and custom macros. On-demand macros (see D.2 On-Demand Macros in page 632) are extended standard macros that are used to access values belonging to an external object: for example, $H0STADDRESS:linux02$ returns the IP address of linux02, irrespective of whether we are in the host or service definition of linuxOl or linux04.
Custom macros, also referred to as user-defined variables, were only introduced in Nagios 3.0. The definition of host, service, and contact objects is now supplemented with definitions you can make yourself, in whatever manner you like. D.3 Macros for User-defined Variables from page 633 deals with these custom macros in more detail.
D.1 Standard Macros
It would go beyond the scope of this book to describe all the available macros. The description below concentrates on the most important ones. A complete list is given in a tabular overview in the online documentation.[314]
Not all macros can be used everywhere. For this reason the tables provide information on the contexts in which each one is applicable. Normally this can be deduced with a bit of common sense. A service macro does not belong in a host check or a host notification, and likewise, a notification macro has no place in a host or service check. A value (such as a host state) which first has to be found is of course not yet available while it is being identified (that is, during the host check).
Macros can basically be used in the following actions: for host and service checks, for host and service notifications, when running event handlers (Appendix C, page 619) or the OCSP/OHCP commands (Chapter 15, page 317), and also when processing performance data with the accompanying commands (19.1.1 The template mechanism, page 405 and 19.1.2 Using external commands to process performance data, page 407).
D.1.1 Host macros
Table D-1. Selected host macros

	Macro
	Description

	$HOSTNAME$
	Host name from the host_name parameter for the host definition

	$HOSTALIAS$
	Alias from the alias parameter for the host definition

	$HOSTADDRESS$
	IP address or FQDN from the host definition parameter

	$HOSTSTATE$
	State as text: UP, DOWN, UNREACHABLE

	$HOSTSTATEID$
	State in numerical form: 0 (UP), 1 (DOWN), 2 (UNREACHABLE)

	$HOSTSTATETYPE$
	HARD, SOFT

	$HOSTOUTPUT$
	The first line of the text output of the host check

	$HOSTLONGOUTPUT$(Nagios 3.0)
	Long text of the host check, if this provides multiple-line information

	$HOSTPERFDATA$
	Performance data from the host check

Table D-1 documents the most important macros in connection with hosts. The macros $HOSTNAME$, $HOSTALIAS$, and $HOSTADDRESS$ provide information from the host definition itself, so they are static. $HOSTSTATEID$ and $HOSTSTATE$ do not give the return value of the plugin—1 (OK) or 2 (CRITICAL)—but the result after the topological evaluation by Nagios. $HOSTSTATETYPE$ defines whether Nagios really has completed the check (hard state) or whether the check is to be repeated (soft state).
D.1.2 Service macros
Table D-2 presents selected service macros.
Table D-2. Selected macros for services

	Macro
	Description

	$SERVICEDESC$
	Name of the service, taken from the parameter service_description from the service definition

	$SERVICESTATE$
	The state in text form: OK, WARNING, CRITICAL, UNKNOWN

	$SERVICESTATEID$
	The state numerically: 0 (OK), 1 (WARNING), 2 (CRITICAL), 3 (UNKNOWN)

	$SERVICESTATETYPE$
	HARD, SOFT

	$SERVICEOUTPUT$
	The first line of the text output of the plugin during the service check

	$SERVICELONGOUTPUT$ (Nagios 3.0)
	The long text of the service check, if this provides multiple-line output

	$SERVICEPERFDATA$
	Performance data of the service check

D.1.3 Group macros
The host group macros described in Table D-3 are provided by Nagios for service and contact groups as well. The string HOST in the macro name is replaced accordingly by ysSERVICE or CONTACT.
The macros $HOSTGROUPNAME$ and $HOSTGROUPNAMES$ are always connected to the host. The same applies for the equivalent SERVICEGROUP (connected to a service) and CONTACTGR0UP macros (connected to a contact). Whereas $HOSTGROUPNAME$ always returns the first host group of the associated host, $HOSTGROUPNAMES$ displays a complete, comma-separated list of all host groups of which the host is a member.
Table D-3. Selected group macros

	Macro
	Description

	$HOSTGROUPNAME$
	Name of the first host group

	$HOSTGROUPNAMES$
	Comma-separated list of all host groups to which the associated host belongs

	$HOSTGROUPALIAS$
	Alias of the host group

	$HOSTGROUPMEMBERS$
	Members of the host group

In contrast, the macros $HOSTGROUPALIAS$ and $HOSTGROUPMEMBERS$ refer to a host group. However, now there are no activities using a host group as a reference point.[315] So what is the purpose of these macros? They can be implemented as on-demand macros (see D.2 On-Demand Macros from page 632). For example, $HOSTGROUPMEMBERS:Linux$ displays a list of all members of the Linux host group.
On the other hand, if the macro is run in a "normal" context, Nagios identifies the first host group specified in the host definition and assesses the accompanying value. The same applies for service and contact groups.
D.1.4 Contact macros
The macros listed in Table D-4 reference all the parameters in the respective contact definition.
Table D-4. Selected contact macros

	Macro
	Parameter to be read out

	$CONTACTNAME$
	contact_name

	$CONTACTALIAS$
	alias

	$CONTACTEMAIL$
	email

	$CONTACTPAGER$
	Parameter pager of the contact

	$CONTACTADDRESSn$
	One of six possible contact addresses, where n is a digit between 1 and 6[a]

	[a] The exact contents of $CONTACTADDRESSn$ are specified by the Nagios administrator. Anything goes: other telephone numbers, e-mail addresses, or even Granny's phone number.

D.1.5 Notification macros
Table D-5 shows a selection of macros for notifications.
Table D-5. Selected macros for notifications

	Macro
	Description

	$NOTIFICATIONTYPE$
	Notification type (for values, see text)

	$NOTIFICATIONRECIPIENTS$ (Nagios 3.0)
	Comma-separated list of all recipients

	$HOSTNOTIFICATIONNUMBER$
	Notification counter

	$SERVICENOTIFICATIONNUMBER$ (Nagios 3.0)
	Notification counter

$NOTIFICATI0NTYPE$ describes the type of notification. For Nagios 2.x the notification types are PROBLEM, RECOVERY, ACKNOWLEDGEMENT, FLAPPING-START, and FLAPPINGSTOP. Nagios 3.0 also has FLAPPINGDISABLED, as well as DOWNTIMESTART, DOWNTIMEEND, and DOWNTIMECANCELLED.
The macro $NOTIFICATIONRECIPIENTS$ is only available from Nagios 3.0; it contains a comma-separated list of all recipients of the notification that has just been sent. Also new in this version are the two macros $HOSTNOTIFICATIONNUMBER$ and $SERVICENOTIFICATIONNUMBER$. These contain the incremented number of the last sent message, which is important for escalation management. Acknowledge messages are ignored in this case, as are flapping messages or messages on planned maintenance periods. As soon as the state of the host or service is again OK, this counter is reset to 0, and in the event of an error, counting starts again from the beginning.
D.1.6 Macros to specify time and date
The output of the date macro from Table D-6 depends on the date form specified in the parameter date_format (A.1 The Main Configuration File nagios.cfg).
Table D-6. Selected macros for details of the date

	Macro
	Example

	$LONGDATETIME$
	Sa 29 Dec 17:23:22 CET 2007

	$SHORTDATETIME$
	2007-12-29 17:23:22

	$DATE$
	2007-12-29

	$TIME$
	17:23:22

	$TIMET$
	1198945589

$LONGDATETIME$ outputs a format also provided by the date program without any parameters. The examples for $SHORTDATETIME$ and $DATE$ correspond to the date_format=iso8601 setting. With the value date_format=us, the date would be written here as 12/29/2007. $TIME$ contains only the time, whereas $TIMET$ shows the epoch time (seconds elapsed since 01.01.1970).
D.1.7 Statistics macros
If you use the macros shown in Table D-7 in notifications, the macro in each case will show the number of hosts or services for which the contact to whom the notification is sent is responsible. This means that different recipients may receive different figures for the same notification.
Table D-7. Selected macros for statistical purposes

	Macro
	Description

	$TOTALHOSTSUP$
	Number of hosts in UP state

	$TOTALHOSTSDOWN$
	Number of hosts in DOWN state

	$TOTALHOSTSUNREACHABLE$
	Number of hosts in UNREACHABLE state

	$TOTALSERVICESOK$
	Number of services in OK state

	$TOTALSERVICESCRITICAL$
	Number of services in CRITICAL state

	$TOTALSERVICESWARNING$
	Number of services in WARNING state

	$TOTALSERVICESUNKNOWN$
	Number of services in UNKNOWN state

	$TOTALSERVICEPROBLEMS$
	Total number of services with problems

D.1.8 Using standard macros about the environment
All standard macros can be provided by Nagios as environment variables, if required. The variable name here is derived from the name of the macro without the dollar sign, to which the prefix NAGIOS_ is added. The macro $HOSTADDRESS$ thus converts to the environment variable NAGIOS_HOST-ADDRESS. Among the on-demand macros (see next section), the host and service macros are not available as environment variables for reasons of security, and the same goes for the $USERx$ macros, since these could contain sensitive information such as passwords.
Providing these environment variables takes a great deal of time. You should therefore consider whether you can do without them altogether in Nagios 3.0 (see the parameters use_large_installation_tweaks, A.1 The Main Configuration File nagios.cfg, and enable_environment_macros, A.1 The Main Configuration File nagios.cfg). In Nagios 2.x the environment variable cannot be switched off.
Instead of accessing the Nagios environment variable directly from an external script, as in the following example,
#!/bin/bash
badscript

HOST=$NAGIOS_HOSTADDRESS
...
which is called as follows,
define command{
command_line $USER1$/badscript
...
}
as an alternative, you could pass on the contents of the macro to the script explicitly as an argument:
define command{
 command_line $USER1$/goodscript $HOSTADDRESS$
...
}
Then you can manage without the Nagios environment variable in the script itself:
#!/bin/bash
goodscript

HOST=$1
...
goodscript retrieves the relevant value from the command line, with $1.

[314] Nagios 2.x: http://nagios.sourceforge.net/docs/2_0/macros.html;
Nagios 3.0: http://nagios.sourceforge.net/docs/3_0/macrolist.html
[315] It is possible to run commands for a host group from the Web interface, but Nagios always resolves these into single actions for each host.

D.2 On-Demand Macros
On-demand macros—which have existed since Nagios 2.0—reference the same contents as standard macros do. The subtle difference between them lies in the context of what they reference. Whereas standard macros refer exclusively to the host, service, or contact object currently being used, on-demand macros enable access to values from any external objects you please:
$HOSTADDRESS:linux01$
$HOSTSTATE:switch05$
The macros are the same as standard macros, but their names include the name of the host to which the reference is made. The colon is used as a separator. For services, the service name also needs to be specified, again separated with another colon:
$SERVICESTATE:switch05:PING$
$SERVICESTATE::NRPE$
If the host field is left empty, the macro refers to the host in whose context the macro is called. If, for instance, you are checking the disk usage via NRPE on the host linux01 with the service Disks NRPE, then the standard macro $SERVICESTATE$ will return the state of the service linux01;Disks, whereas the on-demand macro $SERVICESTATE::NRPE$ will display the state of the service linux01;NRPE. An appropriate script can take into account the dependency here between the service NRPE and an NRPE-based check such as Disks.
For contact objects, the external reference point is a contact in each case:
$CONTACTNAME:gregor$
$CONTACTEMAIL:smith$
In addition to this, there are also on-demand macros for host, service, and contact groups, and in each case the reference point is the group concerned.

D.3 Macros for User-defined Variables
Starting from Nagios 3.0, you can specify your own macros in host, service, and contact definitions. These macros, called custom macros in Nagios jargon, are treated like normal standard macros, and their names begin with an underscore to make them more easily identifiable:
define host {
 host_name linux01
 ...
 _NSCLIENT_PORT 12489
 _ASSETID 734287
}
define service {
 host_name linux01
 service_description HTTP
 ...
 _HTTP_PORT 8080
}
define contact {
 contact_name wob
 ...
 _DEPARTMENT 41ZBV
}
They are addressed with a prefixed object type:
$_HOSTNSCLIENT_PORT$
$_HOSTASSETID$
$_SERVICEHTTP_PORT$
$_CONTACTDEPARTMENT$
The macro again starts with an underscore, but the underscore supplied in the definition is omitted. This is difficult to read. If you want to use the underscore as a separator, for instance between HOST and NSCLIENT_PORT, the custom macro must begin with a double underscore. Thus,
define host {
 host_name linux01
 ...
 __NSCLIENT_PORT 12489
 __ASSETID 734287
}
turns into
$_HOST_NSCLIENT_PORT$
$_HOST_ASSETID$
In the definition of a custom macro, upper and lower case are not distinguished, but when the macro is called it is always written in capitals. Besides providing abbreviations for content used mainly for documentation purposes, such as ASSETID or DEPARTMENT, such user-defined macros can also be used to neatly define commands.
For example, if you are monitoring a Windows environment with the NS-Client mechanism, a service is installed on the host being monitored that listens to a specific port (20.2.1 NSClient, page 464). Under certain circumstances you will be forced to change the standard port. If you now have several servers with different ports, you must tell the plugin on which port it is to run the query.
One method would be to also include the port as an argument for each service definition, or to define a second command with a permanently stored, alternative port. However, if the port on the target system is now changed, the entire service definition of the target system must be modified.
A more elegant solution is to store the port, as above, as a custom macro in the host definition and to evaluate the custom macro in the command.
This solution, which unfortunately works only in Nagios 3.0, is described for the NSClient service in 20.2.5 Rectifying problems with port 1248 from page 471, and an equivalent example for NRPE can be found in H.2 Variable and Macros from page 685.

D.4 Macro Contents: Not Everything Is Allowed
A number of macros contain values that were not defined within the Nagios configuration or defined by Nagios itself, but which originate from external programs. These include macros that record the plugin output ($HOSTOUTPUT$, $LONGHOSTOUTPUT$, $HOSTPERFDATA$), and the corresponding macros for services. Via the Web interface, the administrator can pass on values to Nagios through acknowledgments, which can be read out from the macros $HOSTACKAUTHOR$, $HOSTACKCOMMENT$, and the equivalent service macros.
To guard against the possibility that these macros might contain damaging code, which might trigger a buffer overflow or enable other mischievous things, Nagios removes "dangerous" lines. What these are is defined by the parameter illegal_object_name_chars (A.1 The Main Configuration File nagios.cfg):
illegal_object_name_chars='~$^&'<>
The Nagios administrator can change these, but he must be aware that fewer characters means a higher potential of risk.

Appendix E. Single Sign-On for the Nagios Web Interface
For the login to the Web interface, Nagios takes the user who has authenticated himself to the Web server, usually Apache. In principle it makes no difference how this authentication comes about, but the name of the contact must match the user name passed on to the CGI programs from the Web server. Nagios is quite tolerant in terms of its name conventions here. Even user names such as wob@EXAMPLE.NET or EXAMPLE/wob are possible. This is enabled by single sign-on (SSO), which means that users only need to log on a single time. Ideally, all applications should accept the authentication that has already been performed, and the user will not be asked for a password every time.
Security experts have been busy discussing the pros and cons[316] of single sign-on, but it is very popular with users. We will therefore not go into the disscussion on security.
Single sign-on, in combination with the Nagios Web interface, means that the user is automatically authenticated from the browser when the Nagios CGI programs are called, and a password is no longer required. Of course, what is described here can also be used for other Web pages—this could be the NagVis, PNP, or a Wiki. There are hardly any limits to the opportunities for using single sign-on.
This chapter describes the use of two alternative Apache modules for Apache 2 that enable a single sign-on scenario. As the authentication server, a running Active Directory in Windows 2003 is required.[317] On the client side, the browser used must support the selected HTTP authentication procedure. Microsoft Internet Explorer and Firefox are both suitable for this.
The Apache module mod_auth_kerb uses Kerberos directly, and could therefore be used in an exclusively Linux environment (without Active Directory). Since the author himself does not have a production Kerberos environment with Linux clients available, we will not deal with this topic here. If you are running a fully functional Kerberos environment in Linux/Unix, you should find it easy to modify the mod_auth_kerb section to your environment.
The Apache module mod_auth_ntlm_winbind makes use of ntlm_auth, a program that is a component of Samba 3.0. It therefore requires a complete Samba installation, and the server must be a member of an Active Directory domain.
E.1 HTTP Authentication for Single Sign-On
Microsoft has supported single sign-on via Web browser for some time now. The original procedure was based on (NT LAN Manager (NTLM), a protocol that is also used in networks, for example when logging in to a domain or when accessing network drives. Here the client sends a so-called type 1 message containing the host and domain names of the client. The server replies with an NTLM challenge (an NTLM type 2 message), and the client completes authentication with a type 3 message, which in turn sends back to the server not only the client name and domain, but also the challenge, which has been encrypted with the client's password. The procedure is Microsoft-specific and was never published as a standard. Nevertheless,
Firefox is able to use it. The HTTP authentication-related descriptions of the NTLM protocol can also be found on the Internet.[318]
Microsoft will soon replace the NTLM-based authentication with a newer, Kerberos-based authentication. With Windows Server 2008, NTLM will no longer be available for HTTP authentication, at least on the server side.
The successor to this has already been in practical use for some time. It uses a generic interface called Generic Security Services Application Program Interface (GSSAPI). For HTTP authentication, as well as GSSAPI, a mechanism called SPNEGO (Simple and Protected Negotiate) is used, through which concrete authentication is negotiated. Microsoft describes the HTTP authentication in an informal Request for Comment, RFC 4559.[319] This also discusses the NTLM procedure. The SPNEGO, used for the newer variation, is described in RFC 4178.[320]
The SPNEGO procedure is somewhat shorter than the NTLM authentication and is closer to the HTTP authentication methods Basic and Digest. First, the client requests a protected page with the command GET. The server replies with the status code 401 (Unauthorized) and includes the possible authentication procedures:
HTTP/1.1 401 Authorization Required
...
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="Nagios Monitoring"
...
The server in this example provides a choice of three procedures: Negotiate stands for the Kerberos-based SPNEGO procedure, NTLM stands for the older NTLM authentication, and Basic refers to the classic user password method in which the authentication data are transmitted in plain text. It is now up to the client to decide on one of the three procedures. The client—here an instance of Microsoft Internet Explorer 6.0—selects the secure Kerberos-based procedure:
GET /nagios/index.html HTTP/1.1
...
Authorization: Negotiate YIIIlwYGKwYBBQUCoIIIizCCCIegJDA...
After the HTTP header field Authorization comes the keyword Negotiate, followed by the Base64-encoded authentication data. If this is successful,
the server replies in turn with the HTTP code 200 (OK), and the HTTP header also contains authentication data,[321] which the client processes:
HTTP/1.1 200 OK
...
WWW-Authenticate: Negotiate oYGeMIGbo...
If successful, the browser will display the HTTP page it has received. The negotiate procedure is shown in a somewhat simplified form here, and it is possible that the server sends back a 401 code (Unauthorized) with the WWW-Authenticate field after it receives the Authorization packet of the client, because further authentication data is required. The client then sends another Authorization header entry, as requested. This is repeated until the server answers with 200 OK.

[316] http://en.wikipedia.org/wiki/Single_sign_on
[317] The scenario described may also work with Windows 2000, but the author was not able to test this. Nevertheless, there are certainly differences in the Kerberos implementation between Windows 2000 and Windows 2003, which probably require adjustments to the procedure descrbed here.
[318] http://www.innovation.ch/personal/ronald/ntlm.html, in more detail at http://davenport.sourceforge.net/ntlm.html
[319] http://rfc.sunsite.dk/rfc/rfc4559.html
[320] http://rfc.sunsite.dk/rfc/rfc4178.html
[321] In general, Kerberos provides authentication on both sides, so the server must also authenticate itself with the client.

E.2 Kerberos Authentication with mod_auth_kerb
The module mod_auth_kerb integrates Apache into an existing Kerberos environment and allows authentication through two procedures: simple authentication with the Basic method or the negotiation procedure SP-NEGO, described in RFC 4559.
Both procedures are shown in Figure E-1. For an authentication via negotiate (only Kerberos v5), the client fetches a ticket from the Kerberos server (1), which it forwards to the Web server (2). The Web server in turn sends the ticket via the Kerberos protocol to the Kerberos server for inspection (3). What is not shown is the response of the Web server to the client if authentication is successful (or if it fails).

Figure E-1. mod_auth_kerb allows full authentication via Kerberos, via SPNEGO. With the Basic procedure, communication between Web server and Kerberos server also runs via the Kerberos protocol.
With the Basic authentication the client sends a user/password pair in plain text to the Web server (4). The server for its part, however, transmits the authentication data via the Kerberos protocol to the Kerberos server (5)—which doen't alter the fact that the authentication between the Web server and client takes place without protection. It is essential that SSL encryption is used here. The Web server itself has a permanent ticket for the HTTP service so that it can communicate with the Kerberos server in the first place.
E.2.1 Installation
The module is available at SourceForge,[322] where you can also find some notes on the installation and a little documentation. Modern distributions include the module as a package, which has the advantage that you don't need to worry about the dependencies of other packages—the installer automatically installs the required software. In Debian "Etch" the module is called libapache2-mod-auth-kerb. You should have at least version 5.3, since earlier versions have some minor bugs, especially when working with Microsoft Internet Explorer 6.0.[323]
To carry out the configuration, the programs klist and kinit are also required, and in Debian "Etch" these can be found in the package krb5-user (and not in krb5-clients!). One more note on Kerberos itself: The description in this book is based on the Kerberos implementation of the Massachusetts Institute of Technology (MIT), which is also used in Microsoft Windows.
E.2.2 Creating a service ticket for Apache
To participate in the Kerberos procedure, Apache requires a service ticket with a quite specific realm:
HTTP/fqdn@EXAMPLE.NET
This consists of the protocol, in this case HTTP, the fully qualified domain name (FQDN), and the realm of the domain. The protocol and the domain realm must be written in capitals, and the FQDN must exactly match the name with which the Web server is addressed later on. Otherwise, the client will refuse to work during the negotiate procedure. Below, nagios.example.net will be used as the FQDN, and the domain controller has the name dc01.example.net.
The Kerberos implementation in Windows 2003 requires that the service ticket is bound to one user. To do this, a user is set up (in the example, webnagios) who does not need to have any special permissions. To create a ticket manually, you need the support tools in an Active Directory environment, which are best installed on a domain controller. After the installation, you change to the directory where the support tools are located and create the service ticket with the program ktpass:
C:\> cd \Programs\Support Tools
C:\Programs\Support Tools> ktpass -princ HTTP/nagios.example.net@EXAMP
LE.NET -mapuser webnagios@example.net -pass ***** -out c:\temp\webnagios
http.keytab

Targeting domain controller: dc01.example.net
Successfully mapped HTTP/nagios.example.net
to webnagios. Key created. Output keytab to
c:\temp\webnagioshttp.keytab: Keytab version:
0x502 keysize 81 HTTP/nagios.example.net@EXAMPLE.NET
ptype 1 (KRB5_NT_PRINCIPAL) vno 3 etype 0x3 (DES-CBC-MD5)
keylength 8 (0x7fc42302a7342952) Account webnagios has
been set for DES-only encryption.
The ticket is then copied to a directory, preferably in the Apache installation, for example to /etc/apache2/keytabs.
E.2.3 Kerberos configuration
/etc/krb5.conf is used as the configuration file for Kerberos:
/etc/krb5.conf
[libdefaults]
 default_realm = EXAMPLE.NET

[realms]
 EXAMPLE.NET = {
 kdc = dc01.example.net:88
 kdc = dc02.example.net:88
 admin_server = dc01.example.net
}
The [libdefaults] section basically defines the defaults. It is important here that the domain realm is written in upper case. In the [realms] section, the individual realms are defined with their respective servers. The parameter kdc describes Kerberos servers that act as a key service (all domain controllers in the Active Directory), and admin_server is the Kerberos master (normally the first domain controller in the Active Directory). It must be possible to resolve the name specified here into an IP address, which can be tested with a ping to the FQDN given here.
To see if Kerberos is working, it is best to use the program kinit, which—if successful—will obtain a valid ticket from the Kerberos server:
linux:~ # kinit administrator@EXAMPLE.NET
Password for administrator@EXAMPLE.NET: ******
kinit requires a valid account as an argument, and it is important that the domain after the user name is written in upper case. If the password is correct and everything works, kinit will have no output. The ticket obtained can now be shown, with klist:
linux:~ # klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: administrator@EXAMPLE.NET

Valid starting Expires Service principal
08/26/07 14:31:47 08/27/07 00:31:49 krbtgt/EXAMPLE.NET@EXAMPLE.NET
 renew until 08/27/07 14:31:47

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached
E.2.4 Apache configuration
You must make sure that Apache really does load the module mod_auth_kerb when it starts. When installing through a distribution, the module is already preconfigured. In Debian "Etch" the accompanying LoadModule directive can be found in the file /etc/apache2/mods-available/auth_ kerb.load:
LoadModule auth_kerb_module /usr/lib/apache2/modules/mod_auth_kerb.so
For activation, Debian uses the command a2enmod, which basically does nothing more than place a symlink in the directory /etc/apache2/mods-enabled/, pointing to the configuration file:
linux:~ # a2enmod auth_kerb
Module auth_kerb installed; run /etc/init.d/apache2 force-reload to enable.
To be able to use Kerberos for authentication, you need to modify the Apache configuration file /etc/apache2/conf.d/nagios.conf, which was described in 1.5.3 User authentication (1.5.2 SELinux):
<Directory "/usr/local/nagios">
 AllowOverride None
 Order allow,deny
 Allow from all

 # -- Authentification
 AuthType Kerberos
 AuthName "Nagios Monitoring"
 KrbAuthRealms EXAMPLE.NET
 Krb5Keytab /etc/apache2/keytabs/webnagioshttp.keytab
 KrbMethodK5Passwd on
 KrbMethodNegotiate on
 KrbSaveCredentials off

 require valid-user
</Directory>
AuthType specifies that Kerberos should be used. With AuthName the authentication is given a name, which is displayed in the Basic authentication. KrbAuthRealms describes one or more domain realms, and if there are several, they are separated by spaces.
The service ticket generated on the domain controller is specified under Krb5Keytab. KrbMethodK5Passwd on, apart from the negotiate procedure, allows simple authentication using a password, in which the browser sends the password via Basic authentication to the Web server. With KrbMethodNegotiate on the negotiate procedure is switched on, and a completely closed Kerberos circuit is established. Then KrbSaveCredentials determines whether received authentication data are to be cached, in case other CGI applications should use these automatically. This is not necessary for our purposes, which is why we switch it off with the off option. Finally, require valid-user ensures that only valid users can gain access. A more detailed configuration, such as specifying a group or individual users, is not necessary, because Nagios manages its users itself and needs only the name of the authenticated user.
E.2.5 Definition of a Nagios contact
To be able to use single sign-on in Nagios, you now just need to adapt the name of the contact to the new, authenticated Web user user@REALM:
define contact{
 use template-contact-webuser
 contact_name wob@EXAMPLE.NET
 alias wob@EXAMPLE
 contactgroups admins
 email w.barth@example.net
}
The contact definition (see 2.7 Defining Addressees for Error Messages: contact in page 70) assumes that a template (see 2.11 Templates in page 75) exists with the name template-contact-webuser.
When modifying the authentication and the name change connected with this, you must also modify the CGI configuration file cgi.cfg (see A.2 CGI Configuration in cgi.cfg from page 606), if this is to explicitly contain entered users in the authorized_* parameters.

[322] http://modauthkerb.sourceforge.net/
[323] Even if the negotiation procedure was being used at browser startup, a password window pops up after a while and the IE switches back to Basic authentication.

E.3 Single Sign-On with mod_auth_ntlm_winbind
The Apache module mod_auth_ntlm_winbind uses the program originally developed for Squid, ntlm_auth, for authentication, and so one of its requirements is a Samba server installation in which the server itself is a member of an Active Directory domain. ntlm_auth uses winbind and therefore offers smooth integration into an existing Active Directory.
The module has three methods available for authentication: NTLM, Negotiate (SPNEGO), and the Basic authentication. In Summer 2007 there were still problems with Negotiate. Developed originally for a proxy, the method did not quite fit the needs of a Web server and therefore was not used. At the time of writing, NTLM and Basic authentication remain, but this may change after this book is published. NTLM works very well, whereby ntlm_auth also allows the selection of a specific group. But you should also bear in mind that Microsoft is discontinuing NTLM for HTTP authentication with Windows Server 2008.
E.3.1 Installation
The module is still very new. It has the version number 0.0.0 and can only be obtained in the source code from Subversion[324] or from corresponding unpacked directories.[325] Some documentation, in addition to the included README, can be found at SourceForge.[326]
For the installation you change to the directory where the source code has been unpacked:
linux:~ # cd /usr/local/src/mod_auth_ntlm_winbind
linux:src/mod_auth_ntlm_winbind # autoconf
...
linux:src/mod_auth_ntlm_winbind # ./configure
...
linux:src/mod_auth_ntlm_winbind # apxs2 -DAPACHE2 -c -i mod_auth_ntlm_ \
winbind.c
...
autoconf generates a configure file, which is then run to query the specific system parameters. The classic make ; make install usually doesn't work; luckily, there is no more work involved in running the Apache extension tool apxs2 directly, which knows the precise settings of the installed Apache environment. The option -c compiles the C file specified, and -i installs the result to the directory where the other dynamically loadable modules are located.
For Debian there is an Apache configuration file in the form of the file auth_ntlm_winbind.load in the subdirectory debian, which automatically loads the module when Apache is started:
LoadModule auth_ntlm_winbind_module /usr/lib/apache2/modules/mod_auth_nt
lm_winbind.so
This file is copied to the directory /etc/apache2/mods-available, and it is activated with a2enmod auth_ntlm_winbind.
For other distributions the entry shown is entered in the file in which the dynamic modules are loaded, and the path to the module directory is adjusted accordingly. Then Apache is started again:
linux: # /etc/init.d/apache2 stop; /etc/init.d/apache2 start
A simple restart will not be sufficient in most cases.
E.3.2 Preparing Samba
So that mod_auth_ntlm_winbind can perform its services, the server on which Apache is running must be included in the Active Directory domain as the Samba server. To do this, you need a current Samba-3 server package. The installation is best performed using the on-board resources of the distribution.
For the domain membership, Kerberos (as described in E.2.3 Kerberos configuration from page 642) must be completely configured, and in addition you need a valid administrator ticket for access to the domain, obtained using kinit. If Samba is used only for the Apache module, a very simple Samba configuration is sufficient:
/etc/samba/smb.conf (Minimalkonfiguration)
[global]
workgroup =EXAMPLE
realm =EXAMPLE.NET
security =ads
password server =dc01.example.net dc02.example.net
encrypt passwords =yes
idmap uid =10000-20000
idmap gid = 10000-20000
winbind enum users =yes
winbind enum groups =yes
winbind separator = /
winbind use default domain = yes
hosts allow =127.0.0.1
workgroup and realm correspond to the NetBIOS domain names and the fully written-out domain name of the Active Directory domain. For realm, it is again important that you write the name in capitals. security=ads describes the membership in an Active Directory domain. For the password server you must give at least one, and preferably two, domain controllers; encrypt passwords = yes is mandatory.
The parameters idmap* and winbind enum* map Windows users and groups to Unix users and groups. For the winbind separator you should select a Unix-compatible character, normally /, to separate the domain from the user name, as in EXAMPLE/wob. If this results in problems with applications, however, you can replace this character with another one, provided that Nagios can handle it. Here hosts allow allows access only from the local host.
The parameter winbind use default domain defines whether a missing domain should be replaced automatically by the default domain from workgroup. Then the domain can be omitted in the Basic authentication. At the same time, mod_auth_ntlm_winbind removes the domain name in the HTTP user. Users are treated differently, depending on the domain membership: Users from external domains are assigned to the HTTP user FOREIGN/user, whereas users from the same domain are assigned only to user (without a domain in front). If you are just using a single domain, you can set the parameter to yes, and you will no longer need to worry about a possible prefixed domain.
Access to the domain is achieved with the Samba command net ads join:
linux:~ # net ads join -U administrator@EXAMPLE.NET
administrator's password: ******
Using short domain name - EXAMPLE
Joined 'NAGIOS' to realm 'EXAMPLE.NET'
After successfully joining, it is essential that you restart both Samba and Winbind:
linux:~ # /etc/init.d/samba restart
linux:~ # /etc/init.d/winbind restart
You can test whether everything is working properly with wbinfo -t. The command runs an encrypted RPC call, which is only possible if the server really is a member in the domain:
linux:~ # wbinfo -t
checking the trust secret via RPC calls succeeded
If you still want to play around a bit with Winbind, you can display all users displayed with wbinfo -u and all groups with wbinfo -g. When run for the first time after being started, it will take a while until the two programs display anything.
For authentication, Apache calls the program ntlm_auth with the permissions under which the Web server is running. In Debian this is the user www-data from the group www-data. With his permissions, ntlm_auth tries to access the directory /var/lib/samba/winbindd_privileged/. This must belong to the user root and be readable for the user under which Apache is running, and otherwise nobody else may access the directory:
user@linux:~$ chgrp www-data /var/lib/samba/winbindd_privileged
user@linux:~$ chmod 750 /var/lib/samba/winbindd_privileged
user@linux:~$ ls -ld /var/lib/samba/winbindd_privileged
drwxr-x— 2 root www-data 4096 Aug 26 17:51 /var/lib/samba/winbindd_pri
vileged/
If the access permissions are incorrectly set, ntlm_auth will refuse its services.
E.3.3 Apache configuration
The module mod_auth_ntlm_winbind requires only a few entries in the Apache configuration file /etc/apache2/conf.d/nagios.conf, since the overwhelming part of the configuration takes place in Kerberos and Samba. The file nagios.conf, described in 1.5.3 User authentication (page 49), is changed as follows:
<Directory "/usr/local/nagios">
 AllowOverride None
 Order allow,deny
 Allow from all

 AuthName "Nagios Monitoring"
 # -- NTLM
 AuthType NTLM
 NTLMAuth on
 NTLMAuthHelper "/usr/bin/ntlm_auth --helper-protocol=squid-2.5-ntlmssp"

 # -- Basic
 NTLMBasicAuth on
 NTLMBasicAuthoritative on
 PlaintextAuthHelper "/usr/bin/ntlm_auth --helper-protocol=squid-2.5-bas
ic"
 NTLMBasicRealm "Nagios Monitoring (Basic)"

 # -- Negotiate
 # AuthType Negotiate
 # NegotiateAuth on
 # NegotiateAuthHelper "/usr/bin/ntlm_auth --helper-protocol=gss-spnego"

 require valid-user
</Directory>
Only three parameters are needed for NTLM authentication: AuthType selects the authentication module, NTLMAuth on activates the NTLM procedure, and NTLMAuthHelper defines the specific call of ntlm_auth. Here the protocol squid-2.5-ntlmssp is used, which was originally intended for Squid.
The Basic authentication, in which the browser sends user and password in plain text to the Web server, also requires a Basic Realm to be specified in the form of the parameter NTLMBasicRealm. The value of the parameter NTLMBasic Authoritative controls whether a failed attempt (User not found) can then be answered (on) or whether further authentication modules—if they exist—should be queried (off).
If it does not really functon properly, the negotiation procedure should not be configured under any circumstances. If the Web server offers negotiation along with the other procedures, the browser will always choose to negotiate. The authentication is then bound to fail.
By the way, with the ntlm_auth parameter --require-membership-of, membership in a particular group can be forced. /usr/bin/ntlm_auth--require-membership-of =EXAMPLE/admins returns OK only if the user who is authenticating himself is a member of the group admins. The separator/corresponds to the value of winbind separator given in smb.conf.
E.3.4 Defining a Nagios contact
In the definition of the contact, the setting winbind use default domain in the Samba configuration file smb.conf must be taken into account. If the value no is given there (or if the parameter is not given at all), the contact name will always consist of the domain, written in capitals, the winbind separator, and the user name:
define contact{
 use template-contact-webuser
 contact_name EXAMPLE/wob
 ...
}
On the other hand, if winbind use default domain is set to yes, the domain is omitted for users in the domain to which the Nagios server belongs. For users in external domains, the naming convention with the prefixed domain is retained.

[324] svn co svn://svnanon.samba.org/lorikeet/trunk/mod_auth_ntlm_winbind_mod_auth_ntlm_winbind
[325] http://samba.org/ftp/unpacked/lorikeet/mod_auth_ntlm_winbind/
[326] http://adldap.sourceforge.net/mod_auth_ntlm_winbind.php

E.4 Mozilla Firefox as a Web Client
Configuring the Mozilla Web browser in Windows XP is very simple, provided that the workstation is a member in the Active Directory domain. With the address about:config you can call up the current configuration in Firefox and enter negotiate as the filter (see Figure E-2). In the network.negotiate-auth.trusted-uris parameter you enter all hosts or domains for which an automatic login should take place. Multiple entries are separated by spaces or commas. If a target host or its domain is not in the list, Firefox will certainly ask for the user name and password. These are transmitted in plain text, however, which is why you should prefer automatic login in all cases.

Figure E-2. Single sign-on via SPNEGO/Kerberos is enabled in the Firefox settings under network.negotiate
In Linux you can also authenticate yourself with Firefox automatically via the negotiation procedure. You need only a valid user ticket to do this.
As long as the Linux workstation logins are not already actively processed via Kerberos, it is enough just to obtain the ticket manually with kinit. In addition the file /etc/krb5.conf must be configured as described in E.2.3 Kerberos configuration from page 642. As a normal user, you fetch the ticket with the realm of the corresponding Windows user:
user@linux:~$ kinit myuser@EXAMPLE.NET
Password for myuser@EXAMPLE.NET: ******
Afterward, you can check with klist to see whether you really have received a ticket. This is usually only valid for eight hours. After the time has expired, you must fetch a new ticket, because without a valid ticket Firefox will announce itself again with the user/password query.
E.4.1 Firefox and NTLM
Along with the SPNEGO/Kerberos procedure, Firefox is also capable of performing authentication via NTLM. To do this, you enter the desired domains or hosts in the parameter network.automatic-ntlm-auth.trusted-uris. In Windows XP, everything else runs automatically.
In Linux, NTLM authentication is normally not available, since a Linux client cannot authenticate itself via NTLM to a Windows domain in the Active Directory. But there is also a solution here: the NTLM Authorization Proxy Server
ntlmaps[327] allows even Linux clients to take part in an NTLM-based Web authentication. A description of this would go beyond the scope of this book, however.

[327] http://ntlmaps.sourceforge.net/

E.5 Microsoft Internet Explorer as a Web Client
Microsoft Internet Explorer can handle both the SPNEGO/Kerberos and the NTLM authentication procedures. For reasons of security, however, Internet Explorer does not always immediately provide information on account data. You should therefore enter the Nagios host in the security settings under Trusted Sites, using exactly the same URL that it will be called with later on (Figure E-3).

Figure E-3. How to add hosts for trusted sites in Internet Explorer
In addition you should check, in Custom Level, whether the user name and password really need to be transmitted for the level selected (Figure E-4). After the changes, it does not do any harm to restart Internet Explorer.

Figure E-4. When updating the trustworthy sites, Automatic logon with current user name and password must be checked

Appendix F. Tips on Optimizing Performance
It is very difficult to describe, in general terms, a Nagios installation that performs well. Nagios should perform checks immediately, that is, it should have a small latency time for host and service checks. This is the difference between the planned and actual execution times of the check. If this is an hour or more, you can certainly talk about disastrous performance. On the other hand, latency of less than a second represents very good performance. In between these extremes, the borders between acceptable and unacceptable are somewhat hazy.
The latency time of host and service checks can be measured objectively. Other, more subjective impressions are more difficult to evaluate. Doggedly working on the command line of the host, a really high system load, or a long time lag for a page to be displayed when the Nagios Web interface is called: whether such things are regarded as performance problems or can be tolerated, depends on what your specific requirements are. If the Web interface always needs more than ten seconds to display even just a few services, this is certainly not acceptable for interactive use. A load of 40 on a powerful 4-CPU machine may not be a problem, while a load of 10 on a less powerful system may already be catastrophic.
Of course, the capacity of the host system on which Nagios is installed also heavily influences the overall performance. A very slow RAID system, for instance, could slow down Nagios considerably if Nagios wants to write a large number of check results to the RAID within a short period of time, and the NDOUtils simultaneously want to save all events to a database. If the latency values of Nagios are within tolerance, there is no reason from the perspective of Nagios to change the configuration of the RAID system.
So that we can better distinguish between individual qualities, we will introduce two concepts here. A performance indicator is a measure of the objective performance of Nagios. The latency time of service and host checks is by far the best choice for a performance indicator. As soon as anything at all starts creating problems for Nagios, this nearly always manifests itself directly in the latency.
Problem indicators, on the other hand, are parameters which may point to a possible problem, but whose absolute values alone does not allow a judgment to be made about the actual performance. These may be system measurements, such as a high CPU load or permanent swapping of the host on which Nagios is running, or they may be internal Nagios measurements, such as a permanently full queue for the results of external commands (see F.2.6 Preferring passive checks in page 666).
F.1 Internal Statistics of Nagios
Nagios displays a short version of the performance indicators in the so-called tactical overview of the Web interface, at the top right, (see Figure in 16.2.4 The most important things at a glance: tac.cgi), and a slightly more detailed version via extinfo.cgi (see Figure in 16.2.2 Additional information and control center: extinfo.cgi). In addition, the command-line program nagiostats shows individual performance values or a summary of all data.
F.1.1 The command-line tool nagiostats
nagiostats is installed automatically during the Nagios installation and is located in the same directory as the main nagios program itself (in our case: /usr/local/nagios/bin). It requires, as a parameter, the main configuration file nagios.cfg, along with the path to it, in order to display all values in Nagios 2.x. (For Nagios 3.0 this is not necessary.)
user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg
Nagios Stats 3.0b3
Copyright (c) 2003-2007 Ethan Galstad (www.nagios.org)
Last Modified: 08-30-2007
License: GPL

CURRENT STATUS DATA

Status File: /var/nagios/status.dat
Status File Age: 0d 0h 0m 5s
Status File Version: 3.0b3

Program Running Time: 1d 23h 26m 57s
Nagios PID: 8184
Used/High/Total Command Buffers: 0 / 1 / 4096

Total Services: 1997
Services Checked: 1997
Services Scheduled: 1995
Services Actively Checked: 1995
Services Passively Checked: 2
Total Service State Change: 0.000 / 30.260 / 0.040 %
Active Service Latency: 0.000 / 2.233 / 0.361 sec
Active Service Execution Time: 0.063 / 20.081 / 0.518 sec
Active Service State Change: 0.000 / 7.630 / 0.011 %
Active Services Last 1/5/15/60 min: 308 / 1417 / 1922 / 1944
Passive Service State Change: 26.250 / 30.260 / 28.255 %
Passive Services Last 1/5/15/60 min: 0 / 0 / 0 / 0
Services Ok/Warn/Unk/Crit: 1904 / 61 / 5 / 27
Services Flapping: 2
Services In Downtime: 0

Total Hosts: 166
Hosts Checked: 166
Hosts Scheduled: 166
Hosts Actively Checked: 166
Host Passively Checked: 0
Total Host State Change: 0.000 / 0.000 / 0.000 %
Active Host Latency: 0.000 / 1.527 / 0.638 sec
Active Host Execution Time: 0.066 / 0.537 / 0.155 sec
Active Host State Change: 0.000 / 0.000 / 0.000 %
Active Hosts Last 1/5/15/60 min: 52 / 148 / 166 / 166
Passive Host State Change: 0.000 / 0.000 / 0.000 %
Passive Hosts Last 1/5/15/60 min: 0 / 0 / 0 / 0
Hosts Up/Down/Unreach: 166 / 0 / 0
Hosts Flapping: 0
Hosts In Downtime: 0

Active Host Checks Last 1/5/15 min: 59 / 209 / 622
 Scheduled: 54 / 154 / 475
 On-demand: 5 / 43 / 108
 Parallel: 59 / 198 / 584
 Serial: 0 / 0 / 0
 Cached: 0 / 12 / 39
Passive Host Checks Last 1/5/15 min: 0 / 0 / 0
Active Service Checks Last 1/5/15 min: 345 / 2148 / 6342
 Scheduled: 345 / 2148 / 6342
 On-demand: 0 / 0 / 0
 Cached: 0 / 0 / 0
Passive Service Checks Last 1/5/15 min: 0 / 0 / 0

External Commands Last 1/5/15 min: 0 / 0 / 0
The program first provides information on the evaluated status file and the Nagios version. The details of the Command Buffers in the second paragraph are of more interest. If the command buffer becomes full, Nagios will have problems processing commands via the interface for external commands. All passive checks will suffer from this (see F.2.6 Preferring passive checks).
The next two blocks provide values on host and service checks. Many of them are of a purely informative nature. If the right column contains several values, as for the two performance indicators Active Service Latency and Active Host Latency (shown here in bold type), without the page on left offering any explanation of this, then these are the minimum and maximum values and a mean value.
You should keep an eye on the two problem indicators Active Host Execution Time and Active Service Execution Time. Long execution times for host checks due to failed hosts certainly have a negative influence on Nagios's performance. With a standard timeout of 10 seconds for plug-ins, average values of more than 30 seconds are rather ominous, assuming that long timeouts were not configured explicitly. Although long execution times for service checks usually have no significant effect on performance, they nevertheless reveal that something is not right.
The details for Active/Passive Host/Service Checks Last 1/5/15 min in the final information block provide statistics that describe how the current check results were determined. The details under Scheduled deal with the checks planned regularly by Nagios, and the On-demand lines deal with tests executed while taking account of current circumstances. For hosts, these include checks made due to failed hosts, and, for services, tests triggered by dependencies. If a test can be avoided because of an already existing and relatively up-to-date value, this is listed in the Cached line.
For host checks, the statistic in the line Serial also reveals how many tests were executed in series in accordance with the inefficient old host check logic. The line Parallel deals with host checks executed in parallel and also shows the values for regularly planned and executed host checks. Active host checks can contribute in Nagios 3.0 to an improvement in performance. In Nagios 2.x you should leave them out if possible. The improvements in the host check logic are described in H.7 A New Logic for Host Checks in page 689.
The 5-minute average resource of Active Service Checks Last gives information on the activities of Nagios rather than on the absolute number of service checks: 10,000 service checks with a check interval of 20 minutes result in just 2,500 checks in the 5-minute average, but 1,000 checks with a check interval of just 1 minute lead to 5,000 in the 5-minute average.
The absolute number of all checks therefore does not mean a lot. The crucial issue is how many checks Nagios carries out per time unit: 2,500 service checks in 5 minutes results in an average of 8.33 checks per second. This means that Nagios starts 8.33 checks every second and at the same time has to gather and process the results of 8.33 other checks, forward any performance data to an external program, and then it might even have to wait for each check to be handed over. If the NDOUtils are used in addition (see Chapter 17, page 375), the system also passes on results to the event broker.
Determining single values
nagiostats also displays selected values, with the options --mrtg and --data=variables. What values are available here can be seen by running nagiostats -h:
user@linux:~$ /usr/local/nagios/bin/nagiostats -h
 ...
 NUMACTSVCCHECKSxM number of total active service checks
 occuring in last 1/5/15 minute
 ...
 xxxACTSVCLAT MIN/MAX/AVG active service check latency (ms).
 ...
Here, the x in NUMACTSVCCHECKSxM is replaced with the desired time period in minutes: 1, 5, 15, or 60:
user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg\
 --mrtg --data=NUMACTSVCCHECKS5M
2195
With xxxACTSVCLAT, nagiostats behaves in a similar manner; now xxx is replaced by MIN (Minimum), MAX (Maximum), or AVG (mean value). Multiple target values are separated by commas:
user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg\
 --mrtg --data=MINACTSVCLAT,MAXACTSVCLAT,AVGCTSVCLAT
0
934
203
The output here is given in milliseconds, and each value has its own line. The average latency time for service checks is therefore 0.203 seconds, and the maximum, 0.934 seconds. The switch --mrtg indicates that this output is intended primarily for processing by MRTG, as will be seen in the next section. Individual output of performance indicators is also very useful when you are writing your own plugins. We will look at this in F.1.3 A plugin to monitor latency from page 660.
F.1.2 Showing Nagios performance graphically
The Multi Router Traffic Grapher (MRTG)[328] was originally developed to represent the bandwidth of active network components in graphical form. MRTG always displays two measured values in a graphic, one as a green area, the other as a blue line. When representing network bandwidths, these are normally for incoming and outgoing traffic. Nagios uses MRTG to display the values delivered by nagiostats.
Usually the best way to install MRTG is from the package of the same name provided by the distribution you are using. The sources can be found on the homepage.[329]
MRTG is run by cron every five minutes. Debian includes the ready-made cron table /etc/cron.d/mrtg; the tool expects its configuration to be in /etc/mrtg.cfg. The file provided by Debian contains just two global settings:
Global configuration
WorkDir: /var/www/mrtg
WriteExpires: Yes
WorkDir specifies the directory in which MRTG should save the current graphics, and WriteExpires creates additional Expire files for Apache. This parameter can be omitted, however.
To these two lines you simply append the configuration file mrtg.cfg included by Nagios in the ./sample-config directory of the source code.
Finally, you use the program indexmaker, which is also part of the MRTG package, to generate the overview page shown in Figure F-1:
linux:~ # indexmaker /etc/mrtg.cfg > /var/www/mrtg/index.html

Figure F-1. MRTG overview page for the Nagios performance indicators
If you click on one of the graphics on this page, a detailed view will appear that displays the graphs in different time resolutions, as shown in Figure F-2 (daily, weekly, monthly, and annually).

Figure F-2. Detail view for the latency time for service checks
The graphical display of the check latencies over the course of time allows you to see at a glance whether a high latency is a isolated event, part of a trend, or a permanent problem. The view in Figure F-2 clearly shows that the measures taken on Saturday afternoon[330] have had a positive effect (see weekly graphic). Instead of 20–80 seconds, the service check latency now lies at values below one second.
The accompanying online documentation[331] contains more detailed links for each individual graphic, with links to the documentation of various parameters that can be used to influence the indicators shown in each graphic.
F.1.3 A plugin to monitor latency
What could be more appropriate than to have Nagios monitor its own performance and, if necessary, use the notification system? To do this, you can query the latency values with nagiostats or use the plugin check_mrtg to query the performance data already collected through MRTG.
We will choose the first method here and provide the latency time for service checks as a passive check result for Nagios. The shell script intended for this purpose is run via cron independently of the Nagios scheduling. A plugin actively run by Nagios may in some circumstances return no results, or only irregular ones, if the Nagios schedule has become totally messed up because of performance problems. The script looks like this:
#!/bin/bash
Attention: thresholds in milliseconds

WARN=20000
CRIT=60000
TIMESTAMP='date +%s'
CMDFILE='/var/nagios/rw/nagios.cmd'

LATENCY='/usr/local/nagios/bin/nagiostats \
 --config=/etc/nagios/nagios.cfg \
 --mrtg --data=AVGACTSVCLAT'

if [$LATENCY < $WARN]; then
 STATUS=0; INFO="OK"
elif [$LATENCY < $CRIT]; then
 STATUS=1; INFO="WARNING"
else
 STATUS=2; INFO="CRITICAL"
fi

CMD="PROCESS_SERVICE_CHECK_RESULT"
OUTCMD="[%lu] $CMD;nagios-server;Service Latency;$STATUS;"
OUTINFO="$INFO Service Latency = ${LATENCY}ms "
OUTPERF="svclat=$LATENCY;$WARN;$CRIT;\n"

printf "${OUTCMD}${OUTINFO}|${OUTPERF}" $TIMESTAMP > $CMDFILE
First nagiostats determines the current value for average service latencies (AVGACTSVCLAT). The script saves the result in the variable LATENCY and decides, using the thresholds in WARN and CRIT, whether it should return OK, WARNING, or CRITICAL.
OUTCMD, OUTINFO, and OUTPERF compose the command that is passed on to the interface for external commands (see also 13.1 The Interface for External Commands, page 292). It begins with the timestamp in square brackets. The command PROCESS_SERVICE_CHECK_RESULT is followed by the host name and the service name Service Latency, the status, and the actual output, including performance data. In Nagios 3.0 it is better to omit the detail of the configuration file, with --config, because nagiostats will otherwise begin its output with an additional info line that only interferes with the script:
NEW VALUE: /etc/nagios/nagios.cfg
In Nagios 2.x, however, you need to specify the configuration file. So that the cron daemon runs the script at regular intervals, a nagios file is created in the directory /etc/cron.d containing the following line:
*/3 * * * * nagios /usr/local/nagios/libexec/passive/check_svc_latency.sh
> /dev/null
All that is missing now is an appropriately defined service:
-- service latency check
define service{
 host_name nagios-server
 service_description Service-Latenz
 active_checks_enabled 0
 passive_checks_enabled 1
 check_freshness 0
 check_command check_dummy!3!active check, should not happen!
 max_check_attempts 3
 flap_detection_enabled 0

 use template-service
}
host_name and service_description must match the corresponding detals in the script. Active checks are switched off, passive ones enabled. So that Nagios doesn't perform a check itself at some point, check_freshness must be set to 0 (see also 13.4 Reacting to Out-of-Date Information of Passive Checks, page 295). The definition here uses a service template defined somewhere else (see also 2.11 Templates, page 75).
After a reload, Nagios accepts the information from the script and processes it. If you use PNP to process the performance data (19.6 Smooth Plotting with PNP, page 446), you should make sure that Nagios includes the name of the check command (in this case, check_dummy). If you want to use a different name, you need to specify the performance label svclat in the script:
OUTPERF="check_svc_latency::check_svc_latency::svclat=$LATENCY;$WARN; $CRIT;"
PNP accepts labels in the form wrapper :: check_command :: label, from which the tool extracts the name between the double colons (in this case, check_svc_latency), so that it can use it as the plugin name. This trick normally works for all passive checks.

[328] http://www.mrtg.org/
[329] http://www.mrtg.org/
[330] Namely, enlarging the free memory that Linux uses for file system caching, in order to improve I/O performance for the MySQL database used by the NDOUtils and the overall file system accesses.
[331] http://nagios.sourceforge.net/docs/3_0/mrtggraphs.html

F.2 Measures for Improving Performance
If performance is subjectively poor and the latency of the service check lies permanently in the red zone, then you need to act. But where do you start? Trying things out is preferable to studying the problem, and there are no patent recipes. Normally you will lose sight of the overall picture very quickly if you try making small adjustments here and there. You should therefore always change just one parameter at a time and give Nagios time to adjust to the new state of affairs. Depending on the system, the number of checks to be performed in the five-minute average, and other indicators, sometimes a few minutes is enough to notice changes using nagiostats or MRTG, but at other times even half an hour may not be long enough if the latency has built up over a longer period of time.
The following sections deal with various problem zones in Nagios that could be the cause of poor performance.
F.2.1 Service checks: as often as necessary, as few as possible
Would you use a cannon to shoot at sparrows? Surely not. Apart from the fact that you would ordinarily never shoot at sparrows, even if you had to, you would never use such an oversized weapon as a cannon. Likewise, what is the proper choice for the intervals for your service checks? Why check the usage of a hard drive every 60 seconds, unless you or a colleague will react within a few minutes to a warning threshold being overstepped? Maybe an interval of five to ten minutes will do the job just as well. And if the typical growth rate of the data stored in the file system lies at five percent per week, then a check interval of 15 minutes is certainly enough.
If you install security patches only once per day and non-critical security updates just once per week, it is of little use to check the relevant version status every five minutes. And why check virus signatures every fifteen minutes if you only download them every two hours? Do you react immediately after the first alarm, or only if no update has been performed for several hours?
These are not just academic questions—they are intended to make you think. There are certainly situations in which a service needs to be checked once per minute, for instance when compliance with Service Level Agreements is concerned, and the contract penalties for outages are calculated on a per-minute basis. But this is no reason to test other services every minute if a fifteen-minute check would be sufficient. The bottom line is check as often as necessary, but as little as possible.
Start with an average check interval of 5 minutes. For less critical or static services, you can extend the interval to 10, 15, 30, or 60 minutes, or perhaps even more. Only if it is absolutely essential should you lower the interval below the 5-minute limit—and do it selectively for individual checks. 2,000 service checks, performed on average every two minutes, generate about the same load as 5,000 service checks with an average interval of 5 minutes. This small difference of 3 minutes can be a real problem for Nagios.
F.2.2 Processing performance data intelligently
Processing performance data can, under unfavorable conditions, be a real performance killer.
For the template mechanism, in which Nagios first has to format performance data and then write them to a file, and have these files processed at regular intervals by an external command (19.1.1 The template mechanism, page 405), the internal Nagios logic stops when the command is called. Nagios expects a confirmation when the program called has finished its work. If the external program requires some time to do its task, it is easy to work out that calling an external command directly for each individual check result (19.1.2 Using external commands to process performance data, page 407) can put a considerable strain on Nagios. The template mechanism can provide relief here. If 400 check results are waiting each minute (2,000 checks in the 5-minute average) and Nagios calls the external command for the template mechanism every 30 seconds, this will process some 200 results in one go. Although this will take somewhat longer than an external program that processes just one single result, 199 program starts are no longer needed.
With a large number of check results, this may still not be enough, because Nagios also waits here every 30 seconds for the external program and waits until it has terminated.
To keep this pause as brief as possible, you can make use of the bulk mode in PNP (19.6 Smooth Plotting with PNP, page 446): then Nagios just moves the file with the cached results to a special directory every 30 seconds. This happens without any time loss. Full responsibility for processing the external data is given to a daemon that Nagios does not have to control. Details of this are described in 19.6.4 Bulk processing of performance data from page 452.
Another aspect of intelligent processing is to record performance data only where they are evaluated and required. An example of the opposite would be to send performance data for all checks to a tool such as NagiosGrapher (19.5 Automated to a Large Extent: NagiosGrapher, page 426) and then discard the data not required on the side of the collector daemon collect2.pl. Processing performance data for required services is switched on with process_perf_data=1 in the service definition.
F.2.3 Avoiding plugins in interpreted languages
The standard plugins for Nagios were written predominantly in C and C++, and there are good reasons for this. Admittedly, it is usually easier to write a plugin in a script language; however, a plugin in an interpreted language is checked for correct syntax each time it is run, then interpreted at runtime, and finally executed.
Not only that, every time such a plugin is called, the relevant interpreter is started. With a compiled plugin, one does not have to put up with all of this. Syntax checking and the compiling process only take place once, and the result can be executed directly, without the additional support of another program, such as an interpreter, which is not exactly small. Considering the many hundreds of thousands of calls that are made during the lifetime of an interpreted plugin, you are looking at resource commitments that could really be used for more sensible purposes.
This is not to fundamentally question the use of interpreted languages in general. For certain purposes, it is simply easier to implement a plugin into a script language. But you should not be surprised at the resources that will be needed if you perform 5,000 service checks in the 5-minute average exclusively with interpreted plugins. Then simple PC hardware will certainly not suffice for the Nagios server.
There is an almost perfect solution if you want to use Perl plugins: Nagios's built-in Perl interpreter (see Appendix G from page 669). Although not all Perl plugins will run under this, the majority do, which considerably reduces strain on the Nagios server.
F.2.4 Optimizing host checks
One performance factor that should not be underestimated is the way in which Nagios executes a host check. Sometimes considerable time can be lost here, regardless of the Nagios version.
For host checks, a check_ping or check_icmp is normally used (see 6.2 Reachability Test with Ping). Older check_ping versions wait for an ICMP echo reply or wait for the timeout. It does not evaluate "ICMP Host Unreachable" messages, so that time is lost unnecessarily. check_icmp uses a special host detection mode if it is run under the name check_host (see 6.2 Reachability Test with Ping). This causes the check to be interrupted immediately if an ICMP Host Unreachable message arrives.
Newer versions of check_icmp and check_ping take the ICMP error message into account, even without a special prompt. Version 1.4.11 of the Nagios plugins does have a faulty check_icmp, however. If you run it as check_host, it will not detect the ICMP error message immediately and requires more time than necessary. Nagios 2.x calls all host checks in series, or one after the other. If a central network node should fail, it checks several hundred hosts in many setups. If the host check for unreachable hosts is only interrupted after ten seconds, it will take a huge amount of time until Nagios has checked all hosts. The length of a host check in case of error is of considerable significance here. You could, if need be, use a shorter timeout, but then you run the risk of false alarms, if a network connection with narrow bandwidth is overloaded at that moment, for instance, and the response times are longer than the reduced timeout. The evaluation of ICMP error messages is much safer here. The catastrophic performance, with hundreds of failed hosts due to the serial checks, will still remain, however—an important reason to change to Nagios 3.0 in large environments.
Whereas it is usually better in Nagios 2.x to do without active host checks, in Nagios 3.0 these may help in certain circumstances to improve performance, if you can have the check results cached with the parameters cached_host_check_horizon and cached_service_check_horizon (see A.1 The Main Configuration File nagios.cfg) for the interval specified. If an on-demand check occurs, this will not even be run if the existing result is sufficiently up to date.
Whether active host checks really do improve performance must be tested in individual cases by means of nagiostats. If the number of cached host checks is relatively small in comparison to the number of on-demand checks, caching will not be of much use. You could increase the cached_host_check_horizon—the interval for caching—but then you run the risk of using old results that are no longer relevant. It is best to try out different time horizons and observe the latency. As a comparison, you should try turning off caching altogether, with cached_host_check_horizon=0.
In connection with host checks, Nagios 3.0 also has the parameter aggressive_host_checks. If this is set to the value 1 (and therefore active), Nagios will be very exact in its checking, but it needs time to do this. In normal operation you should therefore always make sure that the system makes more sensible assumptions for host checks with aggressive_host_ checks=0 and so does not test hosts with scrupulous precision.
F.2.5 The matter of the Reaper
Nagios 3.0 stores the check results in a directory intended for just this purpose, specified by the parameter check_result_path (see A.1 The Main Configuration File nagios.cfg). The Reaper (this is the "harvesting machine" of the Nagios core) retrieves these regularly.
Two parameters control the procedure: check_result_reaper_frequen-cy[332] specifies the interval, in seconds, at which the Reaper searches the directory for new results (see A.1 The Main Configuration File nagios.cfg). If the interval is increased, it is possible that latency times may also increase. You should only change the default of 5 seconds to a lower value, and only do this if a large number of checks are waiting and Nagios never really empties the directory for the check results.
The second parameter, max_check_result_reaper_time, interrupts activities after the time specified, so that Nagios is not held up for ages by the Reaper. The default here is 30 seconds (see A.1 The Main Configuration File nagios.cfg).
In Nagios 2.x only the parameter service_reaper_frequency (A.1 The Main Configuration File nagios.cfg) is available, and moreover Nagios does not store check results in file form, but in a message queue.
At this point we ought to mention that the Reaper has only a limited influence on performance. Provided that you keep the defaults of the two parameters unchanged, changing the parameter check_result_reaper_frequency will not solve any problems that have arisen elsewhere. Nevertheless, if you are running out of ideas as to what else you can try, it is certainly worthwhile to change this setting. In any case, you should monitor the check latency times graphically. If there are no changes, you should go back to the defaults.

[332] In Nagios 2.x the parameter is called service_reaper_frequency, see A.1 The Main Configuration File nagios.cfg.

F.2.6 Preferring passive checks
Instead of getting Nagios to actively start each check individually, you can also use external applications and forward check results as passive checks to Nagios. The external application—even if this is just a cron job—relieves strain on Nagios in several areas, including scheduling. Nagios needs only to accept the result and sort it accordingly.
In a number of cases you can even go a step further and do without a regular check, for instance if a UPS sends an SNMP trap when there is a power failure, which Nagios processes as a passive check (see 14.6 Application Example II: Processing SNMP Traps, page 312).
Passive check results are cached by Nagios. By default there are 4096 so-called Command Buffer Slots available for this. Each buffer slot accepts just one external command. If this maximum has almost been reached, you should certainly enlarge the value with the parameter external_command_buffer_slots (see A.1 The Main Configuration File nagios.cfg), whether or not you have concrete performance problems. One report on the buffer slots used is provided by nagio-stats; its values are best displayed by MRTG on the time axis (see F.1.2 Showing Nagios performance graphically). Too few buffer slots will certainly lead to a loss in performance.
F.2.7 Optimizing large Nagios environments
For very large environments, Nagios has available the parameter use_large_installation_tweaks (A.1 The Main Configuration File nagios.cfg). If this is set to 1, Nagios optimizes a number of processes that can be very time-intensive, especially in large environments. Thus the system does without explicit memory release for child processes. leaving this task entirely to the operating system.
Normally Nagios starts checks via a two-pronged fork so that it can defend itself against crashes and other abnormalities when the plugin is run. Checks are then performed not as child processes, but as grandchild processes. The two-pronged fork leaves cleaning up after grandchild processes to the operating system. If, instead of this, Nagios is happy with a simple fork (with use_large_installation_tweaks=1), it will have to look after all the cleaning up work for all check processes, because these are now running directly as child processes. But in return the system load is reduced, because only half as many processes need to be started. This generally improves performance.
As a third measure, Nagios switches off the envivronment variables for summary macros (D.1.7 Statistics macros, page 631). It takes up a great deal of time to make these available.
The parameter enable_environment_macros (A.1 The Main Configuration File nagios.cfg) goes even further—with the value 0, Nagios in general no longer makes available the content of macros as environment variables (see D.1.8 Using standard macros about the environment from page 631).
The macros can be used as normal within the Nagios configuration, but now external scripts can no longer access them implicitly. Switching this off saves considerable resources, especially in large environments, and in many cases the environment variables are not needed at all.
F.2.8 Optimizing the NDOUtils database
The NDOUtils take advantage of the possibility of writing all information which is at the disposal of Nagios to an external database, via the event broker (Chapter 17 from page 375). The parameter event_broker_options controls which data Nagios passes on here. The default is −1, which means that any information available is passed on.
From a performance point of view, this is quite a bad choice. If you just require selected data—such as the results of host and service checks—you should pass on only this information. Everything else consumes unnecessary resources and influences performance without providing any benefits in return. Further information, including possible values for the parameter event_broker_options, is given in 17.1 The Event Broker from page 376.

Appendix G. The Embedded Perl Interpreter
Perl is an interpreted scripting language. When a Perl script is started, it is read by the Perl interpreter, checked for errors, transformed into executable code only at runtime, and finally executed. Programs in languages such as C or C++ are checked for errors, compiled only once, and saved as binary code that can be run directly. Here the checking and compilation process takes place just once—before the program is run for the first time—whereas a Perl script is checked and compiled each time it is run. This takes place at an astounding speed, but it still takes time.
But things get worse—for each script, no matter how small it is, the heavyweight Perl interpreter is loaded every time. It's as if, in order to add two numbers together, you needed to switch on your PC, wait until you can log in, then run a spreadsheet program in which you can finally enter the two numbers.
What if you want to continue using the spreadsheet? Well, then the computer must be turned on and the spreadsheet program must be installed and running so you can enter your numbers. Transferring the analogy to Nagios scripts, this means that an instance of the Perl interpreter must already be running on the Nagios server—and preferably this instance should be used for all plugins, so that each plugin can be executed immediately when it is called. This is precisely what the Embedded Perl interpreter, which is embedded into Nagios, does. The technique is not new; the Apache module mod_perl works in the same way.
However, the Embedded Perl interpreter does have one slight drawback: It makes more demands of a Perl script than the normal Perl interpreter does. Not every plugin that runs on the command line without problems will work under the embedded interpreter. It is often a matter of small details. Debugging is very difficult with this interpreter, and even with simple errors, it is not easy to localize them and adjust the plugin accordingly. But you should not be put off by this, because in Nagios 3.x the interpreter can be selectively switched off, and in Nagios 2.x a trick can be used to bypass it.
A quick note on terminology: In the official Nagios documentation, ePN stands for Embedded Perl Nagios, that is, Nagios with a Perl interpreter compiled into it. In general usage, the term means the integrated Perl interpreter itself. This is how we use the term in this book as well. Either way, Nagios is needed in order to use it.
G.1 Requirements of an ePN-capable Plugin
Many primitive errors can be avoided from the beginning if you use the pragmas use strict and use warnings:
#!/usr/bin/perl
use strict;
use warnings;
...
use strict treats the code very precisely and forces the predefinition of all variables (e. g., my $var;). use warnings displays extended error information, which greatly simplifies the search for the line or statement causing the error. For Perl versions prior to 5.6, use warnings does not exist, and you must use the -w switch, for example in the first line of the script:
#!/usr/bin/perl -w
...
Detailed information on pragmas can be found in man 3perl strict and man 3perl warnings, as well as the corresponding Perldoc pages on the Internet.[333]
To obtain a better understanding of the following notes, you must be aware of two things. On one hand, the plugin is loaded just once into the interpreter, so initialization sequences are performed explicitly only the very fist time it is run. On the other hand, the interpreter embeds the Perl code into other Perl code. Thus the end of the plugin code itself is not the end of the complete Perl code executed for this plugin. Actions that refer implicitly to the end of the respective script therefore sometimes generate undesired side effects, and you should take notice of the following tips:
If possible, make do without BEGIN!
In a BEGIN statement you normally include statements that initialize values or should, for one reason or another, be executed before the rest of the code. ePN runs this section only the very first time the plugin is executed. Statements that must be executed every time a plugin is called will come to nothing. It is therefore better to leave out the BEGIN section altogether.

Define an explicit exit code!
A normal Perl script always ends (provided you do not explicitly specify an exit code) with the exit code 0. This does not work with the ePN, since other code is run after the script code. Although such plugins return an OK when run on the command line (without ePN), they return UNKNOWN under ePN.

Make do without __DATA__ or __END__ sections!
Both instructions explicitly terminate the execution of the Perl code. In ePN this is not the case, however. For this reason you must leave out such instructions. For example, instead of the __DATA__, section you could use a Here instruction:

my $data = <<DATA;
a 1 30
b 2 40
c 7 80
...
DATA

Do not misuse lexical variables as global variables!
Lexical variables such as my $value define values required locally. You should therefore not access these directly from subroutines. Store the corresponding values as global values instead:

use vars qw($value);

It is better still to pass on the variable as a reference:

$result = &mysub(\$value);

Terminate all actions and functions!
The Embedded Perl Interpreter also stumbles over small details. To cite an example, consider POD documentation integrated into the script (see 25.2 The Perl Online Documentation, page 566): Normally the documentation section is completed with =cut. At the end of the Perl script, Perl ensures an implicit end, so that a documentation section not finished with =cut at the end of the script will not cause a problem on the command line. But ePN appends Perl code to this, so that omitting =cut always leads to an error.

This error pattern also recurs in other contexts, so that you should make a habit of always explicitly cleaning up. If the plugin opens a file, it must also explicitly close it.

More information is provided by the Nagios online documentation[334] and the mod_perl Users Guide.[335] For errors that occur exclusively with the ePN, the included mini-version is of help, and is described in G.3 The Testing Tool new_mini_epn in page 674.

[333] http://perldoc.perl.org/strict.html and http://perldoc.perl.org/warnings.html
[334] http://nagios.sourceforge.net/docs/3_0/epnplugins.html
[335] http://perl.apache.org/docs/1.0/guide/

G.2 Using ePN
In order to use the Embedded Perl interpreter, this feature must be compiled into Nagios. This suffices for Nagios 2.x, but for Nagios 3.0 you must also set parameters in the main configuration file nagios.cfg. In addition, Nagios 3.0 allows each individual Perl plugin to activate or to switch off the Embedded Perl interpreter.
G.2.1 Compiling ePN
The interpreter is integrated during the configure call, with the switch --enable-embedded-perl. In Nagios 2.x you should also use the option --with-perlcache, which ensures that the interpreter caches scripts that have already been loaded, thus speeding them up if they are run again. Nagios 3.0 sets this implicitly if --enable-embedded-perl is specified.
Caching in Nagios 2.x has one drawback: In some circumstances Nagios will not recognize changes made later on to a Perl script. The only remedy here is a reload or a restart of Nagios. On a development system, which is only used to develop or test plugins, it certainly makes sense to do without caching. On production Nagios systems, however, the benefits of caching cannot be overlooked. In Nagios 3.0, the Perl interpreter takes account of changes to the script and reloads these if required.
G.2.2 Interpreter-specific parameters in nagios.cfg
Starting from Nagios 3.0, parameters in the main configuration file nagios.cfg determine whether the Embedded Perl interpreter is used or not:
/etc/nagios.cfg
...
enable_embedded_perl=1
use_embedded_perl_implicitly=1
...
enable_embedded_perl=1 enables the general use of the interpreter, and the value 0 switches it off. The second parameter is used for fine-tuning. use_embedded_perl_implicitly=1 automatically switches on the interpreter for each plugin, provided the plugin itself does not contain any further instructions (see next section). The value 0 switches ePN off for the time being, and then each plugin must decide for itself whether to use it or not.
G.2.3 Disabling ePN on a per-plugin basis
In Nagios 3.0, the parameter use_embedded_perl_implicitly is supplemented with an instruction that can be set within every plugin:
#!/usr/bin/perl -w
nagios: -epn
...
The text # nagios: +epn or -epn must appear within the first ten lines. With +epn the plugin is executed in the ePN environment, and with -epn it is not. This explicit detail in the plugin has the highest priority Only if the instruction is missing does Nagios 3.0 use the parameter use_embedded_ perl_implicitly.
In many cases, existing Perl plugins will work in ePN. We therefore recommend that you use the setting use_embedded_perl_implicitly=1. For plugins that cause problems, you can explicitly switch off the use of the interpreter with -epn.
In Nagios 2.x there is no option to switch the Embedded Interpreter on or off at runtime or in the plugin. Once it has been compiled into Nagios, it is always active. But there is a workaround that you can use when defining a command, by prefixing /usr/bin/perl to the actual command line:
define command{
 command_name check_disk
 command_line /usr/bin/perl $USER1$/check_disk.pl $ARG1$
}
Thus, for the plugin check_disk.pl, the normal Perl interpreter is started each time the plugin is run, and ePN is sidestepped.

G.3 The Testing Tool new_mini_epn
In its source code, Nagios includes two utilities that simulate an ePN environment, which considerably simplifies searching for errors: mini_epn and the more recent new_mini_epn. They are not absolutely identical in behavior to ePN, but this involves only a small number of exotic scenarios. In general the following applies: If a Nagios plugin does not run in the mini-interpreter, it won't run in the ePN either.
The two programs are located in the subdirectory ./contrib of the source code and are not installed automatically. If you want to use them, run
linux:nagios/contrib # make mini_epn
...
linux:nagios/contrib # make new_mini_epn
...
but under no circumstances should you run make install! The Makefile in this directory does not take into account the defaults for paths and may change the access permissions for directories such as /bin and /var. The programs must be executed in the directory in which the file p1.pl is located. During the basic installation of Nagios, this is copied to /usr/local/nagios/bin, and so these two programs are also copied there:
linux:nagios/contrib # cp mini_epn new_mini_epn /usr/local/nagios/bin/.
In the ./contrib directory itself there is an obsolete p1.pl, which should not be used. The up-to-date p1.pl installed by Nagios is located in the main directory of the source code.
In order to run the mini-interpreter, you change, as the user nagios, to the directory /usr/local/nagios/bin and run the program without parameters:
user@linux:nagios$ ~cd /usr/local/nagios/bin
user@linux:nagios$ nagios/bin./new_mini_epn
plugin command line:
You are taken to a simple comand line from which you can run plugins. You should always include the full path to the plugin:
plugin command line: /usr/local/nagios/libexec/check_file_age -f /etc/hosts
embedded perl plugin return code and output was: 2 & FILE_AGE CRITICAL:
/etc/hosts is 3718127 seconds old and 2671 bytes
The mini-interpreter displays the return code, along with the actual output of the plugin after the & character.
If one mini-interpreter does not find an error, you should try the other one out, as it is possible that it may react differently in this special case. In addition, you should always run the interpreter with the permissions of the user under which Nagios is running (in this book, this is nagios), to rule out problems with access permissions from the start.
The mini-interpreter caches the executed plugin just like its big brother does and is not aware at runtime of any changes made to the plugin. If you have made changes to the plugin, you should restart the mini-interpreter, otherwise you may be searching in vain for an error at the wrong spot.

Appendix H. What's New in Nagios 3.0?
Nagios 3.0 presents a series of improvements and innovations compared to the 2.x versions.[336]. Much of this is not noticeable from the outside, and the configuration is also nearly identical; normally Nagios 3.0 will also start with a functioning Nagios-2.x configuration. None of the new configuration parameters are absolutely essential.
Some parameters were renamed, and Nagios 3.0 complains on startup that a parameter contained in the configuration has been removed, then sets the new variable to a sensible value. The objects hostextinfo and service-extinfo are considered to be obsolete, but can still be used, at least in version 3.0.
Apart from the configuration, the internal logic has been improved in many places. For instance the changed way of running host checks has led to significantly higher performance, especially for very large installations.
H.1 Changes in Object Definitions
Nagios 3.0 now allows floating point decimals when specifying check and notification intervals. The new parameter check_interval =2.5, which replaces the normal_check_interval, determines that Nagios will perform a check every two-and-a-half time units. The time unit itself is defined by interval_length in the main configuration file nagios.cfg (see A.1 The Main Configuration File nagios.cfg). With the default of 60 seconds, a check_interval of 2.5 corresponds to 150 seconds.
H.1.1 The host object
Aliases are no longer absolutely essential in Nagios 3.0. If this detail is missing in the host definition, the host name is used automatically. host objects can make use of the following options from version 3.0:
define host {

 ...
 display_name display_name
 contacts contacts
 first_notification_delay number
 flap_detection_options o,d,u
 notification_options d,u,r,f,s
 initial_state o,d,u
 retry_interval number

 ...
}
display_name
Defines an alternative name that should appear later in the Web interface and other future user interfaces. The CGI programs of Nagios 3.0 do not yet use this parameter. The default is host_name.

contacts
Nagios 3.0 now allows individual contacts to be specified directly in the host definition. Until now you could only enter contact groups here, so you always had to first define a specific contact group for each individual contact. You can still use contact groups and specify them together with individual contacts.

first_notification_delay
Delay the sending of the first notification (in Nagios time units, defined by the new parameter interval_length; see A.1 The Main Configuration File nagios.cfg). Normally Nagios sends a notification immediately after a error turns into a hard state. In order for the first notification to be sent only after a certain time has elapsed, you previously had to use the escalation mechanism (see 12.5 Escalation Management, page 282). With the parameter first_notification_delay this can now be done more easily.

flap_detection_options
With flap_detection_options, certain states of flap detection (Appendix B, page 611) can be ruled out.

Possible values are o (OK), u(UNREACHABLE), and d (DOWN). If you exclude the OK states with flap_detection_options o, Nagios will only take into account the change between UNREACHABLE and DOWN.

notification_options
If the new value s is specified, Nagios will send a notification if a maintenance interval (see 16.3 Planning Downtimes from page 359) is started, finished, or canceled.

initial_state
Sets the initial state of the host. Normally Nagios assumes that this is UP (initial_state o). d sets the initial state to DOWN, u to UNREACHABLE.

retry_interval
After how many time units will an active host check be repeated if max_check_attempts is larger than 1? There is more on the new features for host checks in H.7 A New Logic for Host Checks.

Extended host information
The objects hostextinfo and serviceextinfo are considered obsolete, but are still evaluated by Nagios 3.0. When checking the configuration, as well as on restarting, Nagios issues a corresponding warning. Later Nagios versions will no longer support this object type.
Additional information for the Web interfaces (see 16.4.1 Extended host information from page 363) are now defined directly in the host (or service):
define host {
 ...
 # -- extended host information
 notes free text
 notes_url url
 action_url url
 icon_image image file
 icon_image_alt free text
 vrml_image image file
 statusmap_image image file
 2d_coords x,y
 3d_coords x,y,z
}
H.1.2 The service object
The innovations for the service object are essentially the same as those for the host object. The parameters flap_detection_options, notification_options, and initial_state are now assigned the values w (WARNING) and c (CRITICAL) instead of the host states DOWN and UNREACHABLE:
define service {
 ...
 display_name display_name
 contacts contacts
 first_notification_delay number
 flap_detection_options o,c,w,u
 notification_options w,u,c,r,f,s
 initial_state o,d,u
 check_interval number
 retry_interval number
 ...
 # -- extended service information
 Notes free text
 notes_url url
 action_url url
 icon_image image file
 icon_image_alt free text
 vrml_image image file
 statusmap_image image file
 2d_coords x,y
 3d_coords x,y,z
}
The three parameters contact_groups, notification_interval, and notification_period are no longer mandatory in Nagios 3.0. If they are omitted, they are taken from the host object. The parameter alias is also optional, and if it is not set, the name is taken from service_description.
The parameter parallelize_check, which in Nagios 2.0 is set by default to 1 and can be altered to prevent parallel service checks, is dropped entirely in Nagios 3.0; service checks here are always performed in parallel.
The parameters normal_check_interval and retry_check_interval were renamed to check_interval and retry_interval, in order to use the same identifier as for the host definition. The old name remains valid so that Nagios does not show an error message.
H.1.3 Group objects
With the parameters hostgroup_members, servicegroup_members, and contactgroup_members you can now also define groups of the same type as members of a group, and thus form hierarchies:
define hostgroup {
 hostgroup_members host groups
 ...
 notes free text
 notes_url url
 action_url url
}
define servicegroup {
 servicegroup_members service groups
 ...
 notes free text
 notes_url url
 action_url url
}
define contactgroup {
 contactgroup_members contact groups
 ...
}
Extended group information for the group types hostgroup and service-group allows additional information to be stored, in a similar way as for host and service definitions. notes here is a simple text which is displayed on the page with the extended status information (see 16.2.2 Additional information and control center: extinfo.cgi in page 339). The two URLs point to external Web pages, for instance so that a Wiki can be integrated for the purpose of online documentation.
H.1.4 The contact object
The value n (none) for the parameters host_notifications_options and service_notifications_options switches off notifications completely. This can also be achieved with a separate on/off function via the interface for external commands (13.1 The Interface for External Commands, page 292), which requires the new parameters host_notifications_enabled and service_notifications_enabled:
define contact {
 host_notifications_enabled value
 service_notifications_enabled value
 can_submit_commands value
 ...
}
They can be set to 1 (on) or 0 (off). can_submit_commands controls whether a contact may only view his hosts and services, or whether he can run commands for them via the Web interface. In Nagios 2.0 every user who has access to hosts and services may do this. The default is 1 (commands are allowed), 0 allows only viewing.
H.1.5 Time definitions
Periods of time can be defined much more flexibly in Nagios 3.0 than was previously the case:
define timeperiod {
 timeperiod_name veryspecial
 2007-12-23 00:00-24:00
 april 1 00:00-24:00
 day 1 00:00-24:00
 monday 2 may 00:00-24:00
 monday 3 00:00-24:00
 monday 00:00-24:00
 2007-12-01 - 2009-04-01 / 3 00:00-24:00
 ...
 exclude timeperiod_name1, timeperiod_name2,...
}
Whereas Nagios 2.x allows only single weekdays to be defined, you can now also specify an ISO date (2007-12-23), the first day of a specific month (april 1), the first day of each month (day 1), the second Monday in May (monday 2 may), or every third Monday in the month (monday 3). Intervals are also allowed here, consisting of two time specifications separated by a - sign. In addition, time periods independent of the month or day of the week are possible: 2007-12-01 - 2009-04-01 / 3 describes evey third day from 01. 12. 2007 to 01. 04. 2009.
The parameter exclude rules out the time periods that follow (themselves also timeperiod objects).
More information on defining times can be found in 2.10 Defining a Time Period with timeperiod from page 74.
H.1.6 Dependency descriptions
There is a new parameter for the objects hostdependency and servicedependency called dependency_period, which defines how long dependencies are valid. An object of the type timeperiod is specified as the value. If this parameter is missing, dependencies are unrestricted in time:
define hostdependency {
 dependency_period timeperiod_name
 ...
}

define servicedependency {
 dependency_period timeperiod_name
 ...
}
So-called Same-Host Dependencies are also new; these are servicedependencies that refer to the same host. In this case the parameter dependend_host_name is simply omitted:
define servicedependency {
 host_name linux
 service_description Disk_Usage
 dependent_service_description NRPE
 ...
}
The Disk_Usage service therefore depends on the NRPE service on the same host.
If the parameter host_name is replaced with hostgroup_name, the same dependency can be defined for an entire host group. In Nagios 2.x this is not possible. If you defined dependent_hostgroup_name, the Disk_Usage services for all hosts of the group would be dependent on all the NRPE services for these hosts, which would be counterproductive in many cases.
H.1.7 Escalation objects
As with the host and service definition, it is also possible starting with Nagios 3.0 to specify individual contacts instead of a whole contact group for host and service escalations, by means of contacts:
define hostescalation {
 contacts contact
 ...
}
define serviceescalation {
 contacts contact
 ...
}
H.1.8 Inheritance
It was already possible in Nagios 2.x to define templates for objects and for the actual object to inherit the properties of the template. Multiple inheritance is now possible in Nagios 3.0, and an inheritance can also be selectively suppressed. In the following example, the two templates host_generic_t and host_site_t are inherited by the host linux01:
define host {
 name host_generic_t
 register 0
 #
 check_period 24×7
 max_check_attempts 3
 check_interval 10
 retry_interval 2
 ...
 hostgroups ALL_HOSTS
}
define host {
 name host_site_t
 register 0
 #
 check_interval 5
 retry_interval 1
 ...
 parents switch01
 hostgroups HAMBURG
}
define host {
 host_name linux01
 use host_site_t,host_generic_t
 ...
 parents null
 hostgroups +LINUX
}
The parameters check_interval and retry_interval are defined in both templates. In this case the first template to be defined (host_site_t) is used, and the result appears as follows:
define host {
 host_name linux01
 check_period 24×7
 max_check_attempts 3
 check_interval 5
 retry_interval 1
 ...
 hostgroups HAMBURG,LINUX
}
Both check intervals originate from the template host_site_t. The value zero for parents suppresses the inheritance; a value defined in the templates is not carried over, and the parameter is not set.
Equally new is the option of combining a specified value with the value from the template. The plus sign in hostgroups carries over the value from the template and adds the specified value to this. Until now, inherited values were completely overwritten by an object. The defaults from the templates, however, can only be combined with the values specified in the object for standard parameters containing a list in text form (for example, hostgroups, servicegroups, contact_groups).
For contact_groups within escalations, there is an additional variation of the plus sign. If the enclosing escalation object does not define a contact group whose properties can be inherited, the accompanying host (for host escalations) or service definition (for service escalations) is used. The three parameters contact_groups, notification_interval, and notification_period are inherited from the host object automatically by the service object, so that their definition there is no longer mandatory.
The online documentation included in Nagios uses a more complex example to describe multiple inheritance.[337]

[336] See also http://nagios.sourceforge.net/docs/3_0/whatsnew.html.
[337] http://localhost/nagios/docs/objectinheritance.html

H.2 Variable and Macros
You can define your own variables in the objects host, service, and contact. The names of these always begin with an underscore and are inherited like normal variables:
define host {
 host_name linux01
 use host_site_t,host_generic_t
 ...
 _NRPE_PORT 5666
}
The variable _NRPE_PORT is accessed with $_HOSTNRPE_PORT$, which means that the object type (HOST, SERVICE, or CONTACT) is added after the underscore. This is slightly unfortunate, as it is more difficult to read. The macro created can be used elsewhere, for example in the definition of a command:
define command {
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -p $_HOSTNRPE_PORT$
-c $ARG1$
}
Macros allow access to configuration data, states, and check results. In Nagios 3.0 the macro $NOTIFICATIONNUMBER$, which contains the number of notifications sent for the current state, has been removed. It has been replaced by the host- and service-specific macros $HOSTNOTIFICATIONNUM-BER$ and $SERVICENOTIFICATIONNUMBER$.
The list of available macros has grown considerably. Some new ones are $L0NGH0ST0UTPUT$ and $LONGSERVICEOUTPUT$, for example, which contain the extended plugin output of multiple-line plugin results (see H.10 Extended Plugin Output and 8.5.1 Multiple-line plugin output, page 193).
The macros $H0STN0TIFICATI0NID$, $SERVICENOTIFICATIONID$, $H0ST-EVENTID$, $SERVICEEVENTID$, $LASTHOSTEVENTID$, and $LASTSERVICE-EVENTID$ assign to each event a unique identification number that has been added in Nagios 3.0.
$HOSTDISPLAYNAME$ and $SERVICEDISPLAYNAME$ return the display_name set in the host and service definition.
Also of interest are the new macros that enable the last state to be accessed: $LASTHOSTSTATE$ and $LASTHOSTSTATEID$ give the previous host state, and $LASTSERVICESTATE$ and $LASTSERVICESTATEID$ are used for the previous service state. The *ID macros provide the numerical value (e. g., 2 for the critical state of services), and the other two provide the corresponding text (e. g., WARNING for services and DOWN for hosts).
Macros can usually also be read out via the environment, but the increased number of macros has an effect on performance. If you don't access Nagios macros through environment variables, it is therefore better to switch this feature off entirely in Nagios 3.0:
enable_environment_macros=0
How you can use macros is described in Appendix D in page 625. The complete list of all macros can be found in the online documentation.[338] The change log for Nagios 3.0[339] will tell you which of these are new.

[338] http://nagios.sourceforge.net/docs/3_0/macrolist.html
[339] http://nagios.sourceforge.net/docs/3_0/whatsnew.html

H.3 Downtime, Comments, and Acknowledgments
Comments and maintenance intervals are now saved together with other information in the status and retention file. These special files and the accompanying parameters downtime_file and comment_file have been removed from Nagios 3.0. With an upgrade from Nagios 2.x to this version you can keep any existing comments and maintenance intervals—how to do this is described in H.13 Upgrade from Nagios 2.x to 3.0.
A further change involves the commenting of acknowledgments. Until now, non-persistent acknowledgments were deleted with every restart. In Nagios 3.0 they now survive; the system deletes the comment for an acknowledgment only when the problem has been rectified, so that the service or host status is OK.

H.4 Rapidly Changing States
Nagios 3.0 now records the state history even when flap detection is switched off. If you switch this on globally, with enable_flap_detection (see A.1 The Main Configuration File nagios.cfg), Nagios will test all hosts and services immediately for flapping.
For globally switched off flap detection, Nagios logs flapping states to the log file and sends messages of the notification type FLAPPINGDISABLED, if you have specified f (flapping) in the notification_options in the host or service definition.
Whereas Nagios 2.x still recorded every change in state, in Nagios 3.0 the parameter flap_detection_options (see H.1.1 The host object, page 679) allows this to be restricted to certain states. Only the states specified are then included in the calculation of the change in state.

H.5 External Commands
The list of external commands has grown larger in Nagios 3.0, so that considerably more things can be set through the relevant interface (see 13.1 The Interface for External Commands, page 292.).
Of special interest here is the command PROCESS_FILE, which is passed a file that itself contains external commands. This allows for the bulk processing of passive checks:
PROCESS_FILE; path/to/file; number
PROCESS_FILE requires the full path to the file that is to be processed. The second argument determines whether the file is kept after processing (0) or deleted (a value not equal to 0).
Two other new commands allow you to make your own notifications. Notifications actually have a fixed type (PROBLEM, RECOVERY, ACKNOWLEDGE, etc.; see Table 12-1 in page 277), which is queried via the macro $N0TIFI-CATI0NTYPE$. The so-called Custom Notifications, in contrast, are of the type CUSTOM and allow notifications outside the otherwise strict rules. This means that broadcasts—messages to all—are also possible:
SEND_CUSTOM_SVC_NOTIFICATION;host; service; options; author; comment
SEND_CUSTOM_HOST_NOTIFICATION;host; options; author; comment
Instead of the options placeholder, you specify a bitmask, which controls the behavior of the two commands. The value 0 means "no option set." 1 ensures a broadcast message to all normal contacts and to those who are added during an escalation. 2 forces the message to be sent, regardless of whether notifications are switched on or off for the host, service, or contact, and ignores any time window that may be set. Finally, the value 4 increments the notification counter, and the message is then counted in the escalation procedure. Normally a Custom Notification is not counted.
A complete description of all external commands is provided on the developer pages of the Nagios homepage.[340] The Web interface there enables a selective search to be made for commands that are allowed in a specific Nagios version or deal with a certain topic (for example, services, hosts, scheduled downtime (maintenance window), notifications).

[340] http://www.nagios.org/developerinfo/externalconunands/conunandlist.php

H.6 Embedded Perl
Handling the Embedded Perl Interpreter (see Appendix G from page 669) is also easier in Nagios 3.0. It can be switched on or off with the parameter enable_embeded_perl in the main configuration file nagios.cfg. The parameter use_embedded_perl_implicitly controls whether a plugin should implicitly use the activated interpreter if there are no instructions to the contrary (see also G.2 Using ePN from page 672). In Nagios 2.x there was only the option of switching the interpreter on or off when compiling the Nagios system.
If the switch --with-embedded-perl is enabled, the configure script of Nagios 3.0 automatically uses the switch --with-perlcache as well. If Nagios detects that something has changed in the script to be executed, it will reload the script. In version 2.x you had to restart Nagios with the Perl cache switched on.

H.7 A New Logic for Host Checks
Nagios 2.x performs host checks serially, so it waits for the results of the individual check before checking other hosts in the direct vicinity to find out if the first host is DOWN or UNREACHABLE (see the figure in 4.1 Taking into Account the Network Topology). In contrast, Nagios 3.0 works in parallel here, provided that the parameter max_check_attempts for the host to be checked is larger than 1. For max_check_attempts=l the system behaves as in version 2.x.
In some cases this strongly influence performance, so you should always set a value larger than 1 in Nagios 3.0. Running host checks in parallel also means that a check result will sometimes get lost, since Nagios no longer waits until the result for every single check is available. The parameter check_for_orphaned_hosts now ensures that Nagios will deal with orphaned checks.
Active host checks can even improve performance in certain environments, if the equally new feature of check caching is used. Here Nagios accesses the result of a recently performed check, provided that this can be considered to be up to date. This means that the system saves a considerable amount of time in host checks for failed services, in resolving the topology for failed hosts, and for forward-looking dependency checks (see last section). For service checks, caching only plays a role for service dependencies.
How large the time horizon for caching should be is defined for host checks by the parameter cached_host_check_horizon (see also A.1 The Main Configuration File nagios.cfg) and for service checks by the parameter cached_service_check_horizon (A.1 The Main Configuration File nagios.cfg). The default is 15 seconds in each case, and the value 0 switches caching off entirely.
The larger the time interval in which Nagios caches results, the more often Nagios accesses the cache without actually performing the check itself. However, this does have a crucial disadvantage: The cached result may be obsolete. Therefore, you always need to compromise between obsolete results and taking the strain off Nagios. You will have to decide for yourself how large the time interval for caching should be. Again, the preferred method is to measure the latency times of service checks, which are a good indication of the performance of Nagios. If there is no visible difference over a long period of time between a caching time of 30 seconds and one of 60 seconds, it is better to select the shorter period, since you will be working with more up-to-date results in this case. How you measure the latency times of checks is described in F.1.3 A plugin to monitor latency from page 660.
Whether or not active host checks in combination with check caching lead to an improvement in performance can also be tested with nagiostats (F.1.1 The command-line tool nagiostats, page 654). The program displays the number of cached host checks whose results have been reused by Nagios in the last minute, in the last five minutes, and in the last fifteen minutes.
In distributed environments, or for redundant Nagios installations, the perspective is sometimes altered: Nagios server A has a different topological view of the network than Nagios server B. The result of a host check that server A sends to server B as a passive check result may in some cases no longer match. What is categorized by server A as UNREACHABLE may be a failed host in the DOWN state from the perspective of server B. The parameter translate_passive_host_checks (A.1 The Main Configuration File nagios.cfg) enables Nagios to reclassify passive host checks that it has been sent.
To achieve greater fine-tuning, passive host checks may now also accept a soft state if you set the parameter max_check_attempts in the host definition to a value larger than 1 and enable the parameter passive_host_checks_are_soft (page 600) in the main configuration file. Until now, passive host checks were always "hard."

H.8 Restart
When you start Nagios, it rechecks the configuration each time for errors and dependencies. Depending on the specific environment, this can be very quick, or it may last a long time, during which Nagios will not operate. In Nagios 3.0 there is an option to disconnect this test from the restart and instead save the result in a separate temporary file. When Nagios starts, it will read this file, and the otherwise usual processing of objects is left out at this point. Whether this is worthwhile or not is revealed by nagios -s:
nagios@linux:~$ /usr/local/nagios/bin/nagios -s /etc/nagios/nagios.cfg
OBJECT CONFIG PROCESSING TIMES
(* = Potential for precache savings with -u option)

Read: 0.019277 sec
Resolve: 0.001001 sec *
Recomb Contactgroups: 0.000737 sec *
Recomb Hostgroups: 0.003890 sec *
Dup Services: 0.005938 sec *
Recomb Servicegroups: 0.048659 sec *
Duplicate: 0.001527 sec *
Inherit: 0.005602 sec *
Recomb Contacts: 0.000001 sec *
Sort: 0.030277 sec *
Register: 0.010132 sec
Free: 0.001831 sec
 ============
TOTAL: 0.128874 sec * = 0.097634 sec (75.76%)
 estimated savings

CONFIG VERIFICATION TIMES
(* = Potential for speedup with -x option)

Object Relationships: 0.013131 sec
Circular Paths: 0.002341 sec *
Misc: 0.001032 sec
 ============
TOTAL: 0.016504 sec * = 0.002341 sec (14.2%)
 estimated savings
The times marked with * are saved with this precaching procedure. In this example, 75 percent of the startup time is occupied with processing the defined objects, but in absolute terms, this is just a tenth of a second and so is hardly worth mentioning.
If there is real potential for savings, precaching is turned on with the following steps:
nagios@linux:~$ /usr/local/nagios/bin/nagios -vp /etc/nagios/nagios.cfg
nagios@linux:~$ /etc/init.d/nagios stop
nagios@linux:~$ /usr/local/nagios/bin/nagios -udx /etc/nagios/nagios.cfg
The first call uses the options -v to check the configuration and -p to cache the processed objects in a separate file. The file is defined in nagios.cfg with the parameter precached_object_file (A.1 The Main Configuration File nagios.cfg). Then Nagios is stopped in the second step.
The third step is to start the system with the options -udx. The option -u reads the contents of the precaching file, and -d starts Nagios as a daemon, as normal. -x prevents the test for circular dependencies, but assumes that this call is always based on a tested configuration, like the one generated in step 1. Whether the option -x really saves time or not can be seen in the example above from the line Circular Paths in the CONFIG VERIFICATION TIMES section.

H.9 Performance Optimization
Besides performance optimizations that are not externally visible, Nagios 3.0 includes a number of parameters intended to improve performance in large installations. The most important of these is large_installation_tweaks (F.2.6 Preferring passive checks).
The improvement of performance in an existing environment is dealt with in Appendix F from page 653.

H.10 Extended Plugin Output
Nagios 3.0 is finally capable of processing multi-line plugin output. The total length of the output must not exceed 8 KB—but you must also make sure that all the transmission paths are compatible for such an amount of data. NRPE currently still needs to be adjusted in the source code (8.5.2 Installation requirements); the plugin check_by_ssh from the standard plugins inversion 1.4.10 (Chapter 9) can deal with the 8 KB.
The format of the extended and muti-line outputs are described in 8.5.1 Multiple-line plugin output (page 193), and an example of the use of the extended format is provided by the plugin check_multi (8.5 Summarizing Checks with check_multi from page 191).

H.11 CGI
The Nagios Web interface has also undergone some interesting changes. Some new parameters have been added to the configuration file cgi.cfg (A.2 CGI Configuration in cgi.cfg, page 606). lock_author_names prevents the user name, which is included if you set an acknowledgement or a comment on a host or service, from being changed. Instead the user name specified by the user when authenticating himself to the Web server is used. Each registered user is thus an authenticated user.
escape_html_tags determines whether HTML formatting in the plugin output is used (value 0) or whether Nagios removes it (value 1). In order to link it with action_url (16.4.1 Extended host information) and notes_url (16.4.1 Extended host information), there is now an additional option to specify a target window, with action_url_target and notes_url_target.
With the CGI program status.cgi (16.2.1 Variations in status display: status.cgi, page 334) you can now select hard and soft states via hostprops and serviceprops as well. This is particularly useful when using NagVis (Chapter 18, page 389), since NagVis by default only displays hard error states.

H.12 Miscellaneous
One of the improvements that does not fit into any of the above sections is the parameter use_timezone (page 606), with which you can set the time zone independently of the time zone set on the Nagios server. This is only necessary if several Nagios instances are running on a single machine.
The parameter additional_freslmess_latency (see Appendix A) delays freshness checks (see 13.4 Reacting to Out-of-Date Information of Passive Checks, page 295), normally using a time period specified in seconds, in case Nagios has to wait too long for a result for passive checks.
The directives cfg_file and cfg_dir (A.1 The Main Configuration File nagios.cfg) can now also handle relative paths. The base directory is the directory containing the file nagios.cfg.
The parameter temp_path allows a temporary directory to be specified explicitly (in Nagios 2.x the temporary space consists of only a single file, defined in the parameter temp_file).
Nagios 3.0 now allows multiple-line instructions in all configuration files. An instruction that is continued on the following line must end with a backslash \.

H.13 Upgrade from Nagios 2.x to 3.0
If you already have a running Nagios-2.x environment, you can change over to Nagios 3.0 with little effort. The existing configuration will usually run unchanged.
Nagios 3.0 is very particular when testing, however. It is quite possible that a so far undiscovered error—one tolerated or ignored by Nagios 2.0—will prevent Nagios 3.0 from starting. It is therefore a good idea to test your configuration before upgrading. To do this, you run the installation as described in 1.2 Compiling Source Code in page 39 with configure and make all, but without running make install. You will obtain an executable Nagios-3.0 binary in the base subdirectory, which you can use to test the existing configuration from the source code directory:
linux:src/nagios-3.0 # ./base/nagios -v /etc/nagios/nagios.cfg
...
If Nagios finds an error here, this error will prevent the start of the new Nagios version if it is not eliminated. At some points Nagios 3.0 will give warnings and information about the new features, but these do not stand in the way of a restart.
Nevertheless, there are a few small details that you should attend to before Nagios 3.0 goes into operation. The parameter service_reaper_frequency is now called check_result_reaper_frequency (A.1 The Main Configuration File nagios.cfg); it is simply renamed in nagios.cfg.aggregate_status_updates is removed altogether, so it is commented out in nagios.cfg.
The macro $NOTIFICATIONNUMBER$ was sensibly split up into a host- and a service-specific macro ($HOSTNOTIFICATIONNUMBER$ and $SERVICEN0TI-FICATI0NNUMBER$). Commands and scripts that use the macro must be adjusted to ensure that they work correctly.
In order to retain the maintenance intervals and comments from the no longer used files specified in downtime_file and comment_file (in this book, comments.dat and downtime.dat), you must stop Nagios, save them, and then remove the Info block at the beginning from them, since this may occur only once in the new file, specified in retention_file:
info {
 created=1144429286
 version=2.0
}
Then the contents of the two files are copied to the end of the retention file, which here in this book is the file /var/nagios/retention.dat:
linux:~ # /etc/init.d/nagios stop
linux:~ # cd /var/nagios
linux:var/nagios # cat comments.dat downtime.dat >> retention.dat
Now the three remaining installation steps are performed (see 1.2 Compiling Source Code):
linux:src/nagios-3.0 # make install
...
linux:src/nagios-3.0 # make install-init
...
linux:src/nagios-3.0 # make install-commandmode
...

images/calibre_cover.jpg
“This book is incredibly defailed...I don't think I
could have gone info that much detail if | wrofe

a book myself. Kudos!”

—Ethan Galstad, main developer, Nagios

NAGIOS

2ND EDITION

SYSTEM AND NETWORK MONITORING

WOLFGANG BARTH

images/00009.jpg
External Command Interface |
T e o
e S

Commana Options Command Desciption

e o commani st e i st ot e

Comit | _sesst

Ploase oater all reguired iformation befors oommitting the command.
B e S e

images/00008.jpg
VNS RIIRLY DUl S W
Group 'SAP!

images/00011.jpg

images/00010.png

images/00013.jpg
13611 13612 13613 13614 L3615 L3616 .
directory mgmt experimental private securty SNMPvZ

13
m

21
2

mib21 mib22 mib24 Mb2Smb26 mb-27 mb225
system Inteffaces Ip kmp &p udp host

Intorfaces.1 Intarfaces.2
INumber fTable

HTable.1
WEntry

WEntry tindext1).1 = 1
HEntry findext1).2 = 2
HENtry. fMDescr(2).1 = stho
IfEntry.ifDescr(2).2 = Io

WEntry.Type(3).i = ethemetCamaci(s)
HEntry.HType(3}.2 = softwareLoopback{24)

images/00012.jpg

images/00002.jpg
Rolfe anzeigen: Berechtigungen

D cre) st) e cenn [rten

asas
T — e
sperens "
it o sicn s, s
s i fon
e ot st o g o

E iRl ey &8

images/00001.jpg
e T

- Ut o 911

images/00004.jpg
Nogics
coralaglc

images/00003.jpg
T —|)|
o | e | e |
N |

'® 9 o

..:‘,;"m“':.m.m’:‘..."y.‘f.m,

P =

I 2ot o s,

st

images/00006.jpg
Hraw Hound Robin Archives on the Web

) croate s now oreph
oefne new dashbonrd
7 a1 raphs (21
Vol [Edi/clene) [Delete] SAP-12Ping
Vi Edione) [02lete] $A0-12 Ping
230 Templates (2)
20 0 Dashbearcs o)

images/00005.jpg
oo ymedeacid s e ho T
2000507 Nagies ot et St 2410 chnge = 0% 3 T
ey g et i e
P

£

images/00007.jpg
Precsesi

images/00029.jpg
Truna;
dsks

Tirkocd;
load

images/00028.jpg
Datel_Bearbeiten

sicht_Cvonlk_Lesezeichen _ScrapBook Extras _Hife.

"% @0 o0 ey =I5 (G
[T aboutconnia o

Fiker, [regorare Aves neigen
| [Enstenungsname Starus v wert =)
networcnegatate-authallowprosies _ Sandard e

etk negotete vt deegsbomurs Siandard

henwork negonate i g5t Snaora

network.negotiato-auth trusted-urie

netwrk.negotiate-auth.using native gzsiib Standard

om Banutzar..

[

images/00030.jpg
14

16

18

images/00033.jpg

images/00032.jpg
Display Filters:

Host Status

Types:

Host Properties
Service Status
Types:

Service
Properties:

All

Any
Unknown | Critical

Not In Scheduled Downtime & Has Not
Been Acknowledged

images/00035.jpg
fadnembinme]
Frimay 6 1019350 2005
Reteshing n m 105

SAP-12 Ping

Fast & Hours
B i inc
Fast 28 Hours

YTy

images/00034.jpg
Service Status Details For

images/00026.jpg
‘Standard Reports:
Seport ype, (25 vort et A 3]

croate summary neports
Custom Report Options:

St e [1Hest Racart Aere E

Repor rerod [T =

+ Custom ReportPeied.
strtDate toctoswe. [T SIF
i Dt s [0y 517 oo

it o Hostgroup. [+ AL HOSTGROUPS o 3]
o o seeveegrvp: [Eeees K

Lt To oy [0S 31
Alert Types, [t and Sarvce Arts =]
s ypen [and R s 5
s s, [ATTo e K
Service States: [AlService States 3]
st [

——

images/00025.jpg
Nagios’

Version 3.0rc1

images/00027.jpg
hitp:feww.swobspace.de

images/00128.jpg
Praceden: o of Fiiters

host

eotteicationn_soabled=1

£1ap_datestion sansledml

ot fiontion, opticnse E
8w,

B
sarvice_sotitication pariod
)

* avallable from Naglos version 3.0

Global notifcation
enabled?

Hastfservice based
natification enabled?

‘Current downtime
ntervai?
Detecting flapping
states?
hould the detected stata
ba notiied?

sotticntion pariotaem | Moty immediyor e
i

aotitication_{atervale1zo i
siree anticnsin ey~ mnﬂ:lﬁ“)
costast_groupmadatze Inform which
graup?
contactgroup
merbaranagice, vob,mel
contact = mwi
contact = nagios
Bant_pociEication
Snanled=r O which hostsssenvice
sarviGe potitisationt Stotes should the contace
sanbled-s” be noked?
bowt,_nofifioation_opticasn| I
14,
wscvioe notificationy
opticarm Natty contact atths time
“hosk_antitioution pariod ‘ordrop message?

notification

external programm

images/00018.jpg
g—_—, e Servicogroup ‘SAP-Services' Pird scmmedioa

et [l

e e S
2 o s e
g o
L s oo s
e fny

B —
N — T STy

o e o sttt 3500 3300 DI | o
i s & 3 2 W0 Lo
ey e s 50073 s 82000 e

i . I oo o0 QA RGBS 51
fremmr———) o
Frey e o 007 oo s

s 8l Kt oS
e

images/00020.jpg
T
BRSNS BN 5112006 3 CAMSAL V211117 e e 8

@ retchny et Eeries pared

images/00019.jpg
Frocess Intormation Frocess Lommands

g B Tne soncia ot [Sidomati ek o
Temimenoa T e IV et s

ot copei o |
e s | ——
oo s e s secinaius i
‘Sersion Checks Betng Fxecrted? yES. O NENGEIG JA M ks
Fasatrs Semace Clhecks Bemg Acceptai? YES. e ek

FHom Checks Being Exscited? vES. o e s
e e g gt R e ————

e s sl - et

images/00022.jpg
SEFVICE LIVErVIEW TOr DIOsL
Group 'SAP*

images/00021.jpg
Service Status Detalls For
Host ‘mrelay’

o 1 [Sorvion | [status 1 [unt Chack 1 [ouration 1 [attom st nformation |

m Bz B soser 93057 Wb Emdte 1n. Sz!.?w"‘““‘"'
e SIBIN cososer 31 sk vz 1 o T 07k e e

Zossonr 1231 s 1

010807 181507 00010 e 18

e S S it

images/00024.jpg
i P T Tr——
Seribios o T O
S iy N i O BAR He

images/00023.jpg
‘Service Ovarview
v 020007 821020007 1227

" O Load for oTi201 / Tx-Losd i

g

A T T
=P ORE HE B

2 ours (010007 1227 020007 1227)

G Load for elason / Leetaas [l
yf 8

3 7

B o
ST et D Gewie ke Gemw e

Wsie ixime Ziws TE e

b e S

BRNT ek NN IR

TAY

i

images/00015.jpg
EUH 00 SHEB dnan BE
CCMS Monitorsammiungen - Pfiegefunitionen ausgeschaitet
BD=8

GENS-on Loreammlungen { S1eho auch REtp:fsorvice. sap. confsystamanagensit. |

S1° COS Adin Workplsce

$1P Busingse Comunication @
£l
S4P CONS Honitor Tenpates 4

hailability Selected Systens

Sackground Frocessing

Burfers

——Dhanse & Transport Systen
Bomui cations

Data Arcniving

Datshase

Dralon Uverviss

Entire Systen

Dperating Systen

Security

Spoon systen

sys100

Syston Conriguration

547 CONS Honitors Tor Dtions Comporonts B
S4P COHS Techmical Export Horicors @
S4P COS nonitors for ostions] comorents @
$4° solction artaring Ed

images/00014.jpg
Stpttn ot ecent o373 st o s

e e
[

images/00017.jpg
TG Sunin SRS FUETIoss:
“linusol’

Lo e S edised.

images/00016.jpg

images/00119.jpg
el ot pomme

- e
e

et
w2

(RS RN RS RN RN RN

images/00118.jpg
o i ez, ERGTEELGIGE L mm e o

v e R Com e 9

o g e BROESESGSLESES . W gm e o

iR pop SSRTTISUISIUSTSNY o o Mo

I R SRmSCEESeR 0 2 R e
T s e e

e

images/00121.jpg
command
ADD_HOST_COMMENT
DEL_HOST_COMMENT

DEL_ALL_ HOST_COMMENT
ABD_SVC. COMMENT
DEL_SVC_COMMENT
DEL ALL SVC_COMMENT
ENABLE_ACTIVE_SVC_CHECK
DISABLE ACTVE SVC_CHECK.
SCHEDULE_SVC_CHECK
ENABLE ACTVE HOST CHECK
DISABLE_ACTVE_HOST_CHECK.
SCHEDULE_HOST CHECK
ENABLE_HOST_NOTIFICATIONS
DISABLE_HOST_NOTIICATIONS
DELAY_HOST_NOTIFICATIONS
ENABLE _SVC_NCTIFICATIONS
DISABLE_SVC_NOTIFICATIONS
DELAY_SVC_NOTIRCATIONS
ACKNOWLEDGE_PROBLEM
REMOVE_ACKNOWLEDGE
ENABLE_PASSIVE_HOST_CHECKS
DISABLE_PASSIVE_HOST CHECKS.
ENABLE_PASSIVE_SVC_CHECKS
DISABLE_PASSIVE_SVC_CHECKS.
SCHEDULE_HOST_DOWNTIME
DEL_HOST_DOWNTIME
SCHEDULE_SVC_DOVWTIME
DEL_SVC_DOWNTIME
ENABLE_EVENT HANDLER
DISABLE_EVENT_HANDLER
ENABLE_FLAP_DETECTION
DISABLE FLAP DETECTION

¥~ e host

55
7

F9ES

sarvice

R BEeBR

88&aETE

hostgroup

67
68

103
104

65
66

63
64

107
108
105
106
B

85

servicaproup

3
14

1us
16

m
12

109
10

s
120
ur
18
121

122

images/00120.jpg
[Extermal Gommarnd Ikerfice

vl

Command options command peseription

wouira vabes il esul i an ervor

Faiare to mppiy

images/00049.jpg
E T —TS

images/00048.jpg
BNETWAYSH

peiaread

i [waming | e | L]
| a

L — [Ra—

images/00051.jpg
nagiosgraph

Performance data for Host: Tinuxel - Service: fs_a

Daily
w0
10 4
Sk oo oe | mo 100
Horie 6.0 Mint 18405 Cur: 18,108
B 2,005 Min: 2,105 G 12,106
e 4.2 i 12,640 G 15,720
Weekly

20 + = =

e

images/00127.jpg
peos fewttehz) own 3

UNREACHABLE 2

X NS cRmCAL 1

amta | unreacHraLE 5

LA | | ACHABLE

[———

images/00050.jpg
o i e
ety

‘Em-ru.\imnu Interface

Yo are roquesting o submi & passive cheol Fesut fo & particular service

conmand opins —
W Ce— e
P G TS
ik

D
comm | sacet |

Please entor il required iformatios befors comittag the conmand.
Reuired fckis are marke o ro
e S I L Rt S o Tl Pl e s

images/00126.jpg

images/00053.jpg
Host T

abus T

[Last Chook

[Duration T

[Status mformation

images/00052.jpg

images/00055.jpg
‘You are requesting to acknowledge a host problem

Command Options

Command Description

ewname ooy

sy =

ackoomladgomets

Send Nestcation

Persat 5

Conmert.

o (Yo

jireons i

E S e r—

Commt | passt

T o s e kel s e,
iy

SR tamte ot SHoky Ao gt
ot Cntocs o Ut Wl e 8
o shet e kvl goment sy o

(avet i et g

g e o et Comen o Tt
g St o

Pllase entar all required information before committing the conmand.
‘Required fiekds are marked in red.
o e S ool S

images/00123.jpg
iy s ‘Service Status Detals For All Hosts
P e n iRk
=

e A o

I

T e S 7 L

ey [e T

et e BRI s0ice sn R0 U PRS0GOS e PeRTn

e e I

B @ i sonon s s 33 SN O T2 0L 200
A v s SITEAL 3 ot v
G v w2 e 11 AL b ey 207375 e o
A sonovsowisn s v S G e ety

e e i S

BRI st somis snsmsewacmacminve v SIS s 20 0

images/00054.jpg
Draw Hound Robin Archives on the Web

sl ea[(o)

e

images/00122.jpg
4Hours. i, S |

slivot / Leesd i~ [EE
& i e e

e ansn

[Eeaaal]

reck cmeatd e s

T

images/00057.jpg
Host

[~
arsge Servosgions

images/00125.jpg
L6 eV

BEZ
ot Hou Headquarters
sapioon 42 oo Remote Offices.
Fotomares
r

Headquarters.

TormialSorvr Bxcharga Oomain Consoler Print S =k
o st et ipsor -
- e Pt

Fie Sanar it sy
a5 e
D Erowsl
s gy G
AWA oL HEK KAl NES NWS vou
Frowa Frouan Frowal Frouan Frowan Frower Frevan
P Fro Pt Fro Pin P Pt
B8G HAU Hop MOR NKV. TRR wam
e Frowal Frowet Froual Frowet Froval Frowst
Pt Pt Pt Pt Pron Pt

oot

images/00056.jpg
Host Overview

Ay
atisor /v
i He
Dot 3 e e e meE
servee: PG,
24 Houe (010007 1229 02007 1228)
ol / 1 &
- -
e Vo S e 44 400
Betot Tuslate
Check coprd shetions

images/00124.jpg
El

Service (s a’ On Host ‘eli02"

images/00047.png
Trundt;
dsks

o0t
Toad

images/00108.jpg

images/00110.jpg
Host Narte foranast Rea Cammuniy [pule Wwits Communiy [
it Igenor [155 141202110
et | i Tree |Bitals | Ssarch | Spins I
1 Cm—
e e
B prvate
I EEEEE
Sk
Bt
i || # 8 ucdsrpigert
B [EE
instanca Vaiia [Jas

150,015 doc eI, Ao Sniefprises Lodaus 4T abe BEnoylalndex 2
IS5.0. Aot NS AT aniaM s e (T tle GENTy fardes 3
Iso.org dod nemet pvare.enterprises Lodauis AT abe.aEnoy laNlames. |
150,01 otk e it snfelprs=s LCoas i 2 51y laNames 2
Is0.0r3 doc Nemat ovats sntefprisos Uodau IaT atle BENTY lahames. - STRING: Loadt 15
150,010 doc eI e SMieMpies L AT atle BENTY L 03d | = STRING: 050
Iso.0rg doc emat ovata antarprisos Ucdav laT able GEnDy laL0ad 2 - STRING: 002
| 50,010 o e pvae enverprises v T2l BENTY AL 0203 - STRING: 0.00

fVaraties foma 20

I 5 Ao e VA AT Uo i 4 i BEnty ey |

STRING: Loactt
STRING: Loads

images/00109.jpg

images/00038.jpg
coript o

check e Athegmapt | WMl
Windows-
Nagios WMLProxy Server

images/00040.jpg
check nrpe
(plugin)

Nagios server

firewall

checl
(pluginy

NRPE server

linux01
smip

) () (e

(

linux0d
postgresql

] (

linuxos
ssh

images/00116.jpg
e

AT RAARAARAAR "

images/00039.jpg
METREE - SEAG AL O AL

Er

o et
ey

Curmt e

E—

e e yem

ot oo e

v Dt 0

‘Next Scheduled Active Chisck:

b

che pursin

Last State Changes

e

e sero st

Cuere et tcmon

i sari et

[————

i ehmiind v

R

ox

s
HARD.
PASSIVE
20065-08.07 10:4252
odohon 723
2006.0007 10:4524
Na
0000 seconds
2008.0007 10:42652
¢ om0 225
Na
o
vEs
2500%

No
20060607 10:43:13

images/00115.png

images/00042.jpg
Ty i TR

images/00041.jpg
v

sy 20, 2008 1000
(1534103 s s s ot vty

oy 20 onen
e ——ry

im.w 3 ALERT i XA O e TS

e R e

sty 202005 om0

s i e i s W %

images/00117.jpg
backend_td |

nostgroup_name o =
5
v
e | ——]

only_hard_states e H

images/00044.jpg
Host

Host linuxol
Qlinuxon)
Sember of
No hostgroups H
17217.0202 s

ey °

Host State Information Host Commands

images/00112.jpg
Service State Information

Current Status: K (for 0d 0n om 475)

Status Information: P10 p10ap013_P10_01 Dialog ResponseTime 151 msec
P10 p10ap014_P10_02 Dialog ResponseTime 233 msec
P10 p10ap039_P10_03 Dialog ResponseTime 59 msec
P10 p10ap057_P10_04 Dialog ResponseTime 4 msec
P10 p10db012_P10_00 Dialog ResponseTime 138 msec

images/00111.jpg
s eiban > s St it

articaiar hest

Command options commant pesrpton
e T— b
cmmctfiosoruparad dorch T=yeirrs gagen 18| e e

[End Timefo7 (252005 19:00:00 |
e []

g‘:‘;;h == e ey vt e

N e T

Commt | naset |

Reqaired fieds ars markod n rod
T e B T PRk i i

images/00043.png
erdcz or
It ek

images/00046.jpg
e

Naglos server

=

EN

sshd npe
(dacmon) Ginets)

send_nsca
(cient)

cllent | 1]

cllent | 5

rasult of
chack

images/00045.jpg
@ ci8 000 DHB DnLD 0N R

SAP CCMS Wonitor Templates (Diakog Overview) - Pflegefunktionen aus
B0 oresn B Epe FH%SWAGE

RGO T 050z 200 12)
8 kmoteranzetce aus
Cpstos warvies @

& Llorstos fesponse Tee @

SapEIE_PI0.01 5 230 e, g 0592 2005 12 15 67
TiCHeC02 5 267 e g 06 07 200k | 12 14
BIERATEA I B ¢ reac | g o4 0z e | 175 30

[Clptsapans_io.or 57 106 nsse aron o8 022005 , 12115109

Bt aapata ioon 5 670 msee | aran 08 0o 200s | 121400
i 1ZFIEC00 B 540 noce | oron 04 02 2088 | 171300
& [Jstindordizas Rasgonse T ©
ey
1Eaais
124330

PRS00 57 1, o 03 02 2005 | 12187
P02 5 22, oron 08 02 200 | 1213 22
12000 20, oron 03 02 2008 | 1211 53

images/00113.jpg
e i L WA
Group SAP'

BB s 11837 Sasmoensie ok 112 2545 et skt 138 3
——_

R

images/00037.jpg

images/00036.jpg
Nagloa kemel

NDOMOD (s FILE2SOCK -~ J&)‘-
TP or 0P o
Unixocket, Urixsocket,
] I i
NDOZDB- | NDOZDB- | NDO2DB- NDOZDB-

process.
directly through TCP fie based
‘oder Unkx sooket NEB export

images/00099.png

images/00098.jpg
unbx- ‘Windows- SNMP- Sonstige
Sysiog Eventiog Traps

sysiog-ng pipe

images/00069.jpg
{Taop 11 Current graph

Bytes.

u used space

swobspace(fs_var) - 1 Gurrent Graph

frae cpace
[10:29/ 25051 o8]

170 up120ay gaph

5 we

B used space

swobspace(fs_var] - 2 Daily Graph

tree o
110129/ 2505-c1 o8]

170 10013 Weenly grapn

Brtes,

swobspacel(fs_var) - 3 ueckly Grach

B usedd space

L I

free spsce
1201292008 61 G6]

images/00068.jpg
a1k ity
SAP

spriome

images/00071.jpg
e [C—
[—
B —

s

ot

—

e ane —

[emame]
£
5

[

images/00070.jpg
AR P i £1h 880)
[Repaan ok opoe ks e & e s o 20
B et 7208 0 proma S

15 e et on o a3 et AT

B o o PR O ot it e

18 s e o povoes a8 e A
ot WA o ke, o (47,609 v, a8 K.

ppes s ———

5t Ton o 0 ecmmgon o 238

1 s Yo .0 et et 20

kT oo e e o on e 0

1515t 7 oo e g e p 30

18 i T o0 0 e mpis o 238

Il 507 Connacion rafased

= a——
v s g e oo s e .
T e s o
e o - s et s s s
o T S S

e e S oo ot e et e 0o

images/00073.jpg
e i D e B

images/00105.jpg
global parameters.
NOTIFICATIONS

SVC_CHECKS

ACCEPTING PASSIVE_SVC_CHECKS,
HOST_CHECKS

ACCEPTING PASSIVE HOST CHECKS
EVENT_HANDLER

FLAP DETECTION

PERFORMANCE DATA

o STOP/
DISABLE

LR

EgLEg

images/00072.jpg

images/00104.jpg

images/00075.jpg

images/00107.jpg

images/00074.jpg
SEA

[—

e

SR —
S s ——

images/00106.jpg

images/00077.jpg
Menaos ot AN

images/00101.jpg
Hostgroup Information
[Last Updatod Sun Jal 24 16.17.07 CES7 20|
Updated every 30 seconds

i Bagios 5 Hostgroup
wob. SAP P-10
{3202 Status Detail For This Eostgroup (sap)

Vi Status Opervient For This Eostaraun
(Vi Status G For Thus Eostareun
WiserAvalabiliy For This Hestaraue

Hostgroup Commands

|]Disable net:ficarions for all hests n this hostqroup

| xnahla nonficarions for sl sarvices n this hostgroup
$4]isable notifications for all servicos in this hostqroup
\/Eneble active checks of el services s this hostaroup
X Lisable active checks of all services in tus hosigroup

images/00076.jpg

images/00100.jpg
ontare_sores_|

images/00103.jpg
NETWAYS Nagios Grapher v1.6.1-rc3 (Logged in as nagios)

[1 Current] [2Daiy] [3Weekly] [4 Monthly] [5 Yearly]
we: oo wemnt[120 st [3 minutes <]

Type: | Average values =l

start;

End:

‘Only values defined by the AT-STYLE TIME SPECIFICATION

Host: [elix01 =l

Service: | PING =l

[RROInfo] [Templatelnfo] Change

images/00102.jpg
- BN w1720 2000 s e 2 DR e
[e

images/00058.jpg

images/00060.jpg
‘You are requestiag to schedule downtime for all services in & particalar hostgroap

comasad ptons comman Decipion
eosortamy o e e e
o s e B i Lt et
T — e S T e
B, = s

?:.»EE%:?:TT;‘-; e

ey o e
s o | e | bt ﬁﬁ‘“m‘““’l&'ﬁfﬁ&ﬂ?i‘i‘fﬁ&“ﬁ"‘

Roquirod flds aro marked i red.

e e i i

images/00059.jpg
et e s

BB R

images/00062.jpg

images/00061.jpg
Average Service Check Latency and Execution Time

The siatstcs were st updated Sunday, 9 Septomber 2007 at 14115,
STUhIch Tme ‘Naglos 3.063 (pid=22167) 12 neen U for 1d O 26m 455

"Dally’ Graph (5 Minute Average)

i

"Weekly' Graph (30 Minute Average)

images/00064.jpg
Nagios

M wKO wo@ rwl eaild e

images/00063.jpg
Welcome to NagVis WUI ooty
g o AT oo g e

T e mos. | S |

R ——

images/00066.jpg
oK
WARNING
CRITICAL

16 21 26 time (min)

overthandierd A A 4 4

images/00065.jpg
Actis ssrvice Chacks

passive Srvice Chcks.

Active ot Checks:

Passive tont Checks:

PIOMRMSRINe DRrTormance- sunraaton

images/00067.jpg
= B Whether or not to add @ Ine break in the legend areal ster this slement:

vt colors

V0 A S P T i LR) e L v i D i e 22 R
Upaaie

ar ‘(m:n:wwvr‘ -

B el losf

[———

A

ats souren ¢ st B E e B

rrre e

rrreor

images/00089.jpg
Host Comments
£ 2d 2 cow commene
57 Delate al comnanes

20050717 o Austell der DSL-Letung, Stbrang
10828 g

images/00088.jpg
[Draw Round Robin Archives on the Web

Tt st 1 cresting raph o choosa woch i s, T e dora by
Selcing D S o 372 a01s e asas 2nd ank 5, Oy ona type of
Dt Source (eiher datobose or cventfe) may be added o the same tme.

T T e T

(FFOLase) perardog 1.2+ 520 33061 ime
(0kase) porzrrng 1 2. 53300, e
(ROkase) perzrdiog 12 53600 e

e st

images/00091.jpg
Internet

OpanvPN

OpenVPN

5014508

i)

images/00090.jpg

images/00093.jpg
'Y F 44
[4 4444

5 4 3 8 7T 8 B 18 3L 19 334 15 16 317 38 18 W

images/00092.jpg

images/00095.jpg
‘service status Letalis For
Service Group ‘Syslog'

Hoot 1 lSorvice T [otatus 1 [Last Chook *_ouration * [Attomyt T status Information

— o o e
I [, e I e o
Ix- Need ActicleiD

images/00094.jpg
st exoekrrenandiny divriahe
Hast Group "SAP"

k1030300 12 3 264 ket on
iyt o oD

i1y 550 4 s 1

e B semvss s oSt o

v RN om0 e rmmn
[roeiie B A
I ——
g
[roia e — oy iswor 05 e pesenan
e s TS e
e N s e oot

i O ——

images/00097.jpg
el Db e e womn 3

images/00096.jpg
‘Service Status Detaits Fo Host slbot"

B o a3
e e [
= | ety
¢ BRI 20080100 183027 20 03 180 93
S B o o v
o= it
B s ar 0 e 3
B MSINIINIILG
¢ B vk o s 3
sonain s i 3
B ot v 12
= e
Pl e
g v BRI 20000100 a2 e M Ty 93
e v ORI 2000106 18.42 132304 0. 270 42
et
H—

-1 e
i N e Vo0l S 1 S o 9

e

e
P
Pt
T ——
e
TR -
e

il
et
T
b
R
e e s
T

Fet e iitg

images/00078.jpg
Buratay Buals Batslis For.
A osts

images/00080.jpg
oK
WARNING
CRITICAL

HARD

images/00079.jpg
RS SLITRE TIRATITER TR AN N O Ee——=
T e | {ee—————— A TR

images/00082.jpg
Nagios kemel

NEB module

extemnal
application

images/00081.jpg
third-level
admins, second-level
admins admins (default)

"t
2 & 8 100 12 notifications

images/00084.jpg
w BHEEE v © e T
wisn QOO0 Wi © Remowotics @ 8
o © @ © @ © (<]
oadaarers | h / &n
Teeminal Server. Excharge. Domain Contoler Print Sarver . [Eeehy
o @ wuosor [wwoco [wwrsor) R e
™ laseser o ~8

) cow
ws @ o @ Bl
™ @ -

o @ somes o @

ol b el ab b b N

=1 =l e e e e

el =B =B (=B (=8 (=@ -a
R, BV, S RO S, TR [, |
- W W= e e B Ne=-

wocd
@ MO @ m@ mO @ @

images/00083.jpg
MRTG Index Page

e i< e s e
T e G| P e —
e e r—
ponll 1
L
i e o et s
b W Lol T

images/00086.jpg
Hostgroup.

Hostgroup Name. Headauarters

Alas

Summary State CRITICAL (Acknowledged)

Summary Output There are 1 CRITICAL, 1 WARNING, 8 UP Hosts.

Host Name State Output

eligate3 CRITICAL (Acknowledged) The Host is UP. There are 1 CRITICAL, 13 OK Services.
ELIFS01 WARNING (Acknowledged) The Host is UP. There are 1 WARNING, 8 OK Services.
ELITSOS U The Host is UP. There are 11 OK Services.

ELITS06 U The Host is UP. There are 11 OK Services.

LS04 U The Host is UP. There are 11 OK Services.

ELSO7 UP The Host is UP. There are 11 OK Services.

ELIS03 UP The Host is UP. There are 11 OK Services.

AHpSOL UP The Host is UP. There are 37 OK Services.

AHDCOI UP The Host is UP. There are 23 OK Services.

AHDSO1 UP The Host is UP. There are 30 OK Services.

images/00085.jpg
[service iformation Service
s P 1350

o syslog-ng
e e an e On Host
o " sl eliongellst-elisabeth.de

el elics)
e et e et
L Mombar of
Gt e Svalog
i e e g
T 172170301

Service State Information Service

e srerrrrrr e — e

T wi T et e oy
o e AR -~ -
it)
e s e
oo = @it
Current .
Actampt: o xmmm
s i =
[P

Type:

images/00087.jpg
e
Doy S ent
e

PR ——————

e e =

0050754142250 00807 241475 BB K
Sn0m0728162704 10050724148 0 EEREED. | XRIEE
00072412502 2008724142005 RS K
anomon28 162708 10050724140 09 RS X

0050724 142504 20050724 14284 BNRIED' | XK
2005072414210 2050724142930 SRGHESI X X
e I
Zoosanas tecnay soosaras s [N 36 O%

