

 [image: cover]

 Tanjimul Islam Tareq
Python programming for beginners
Python programming for beginners by Tanjimul Islam Tareq

Dedicated to Ownself

BookRix GmbH & Co. KG
81371 Munich

Getting Started with Python
Python is an open-source programming language that is popular among developers, data scientists, and machine learning engineers. Python has a simple and easy-to-learn syntax, which makes it an excellent choice for beginners who are just starting out in programming.
1.1 Introduction to Python
Python was first released in 1991 by Guido van Rossum, a Dutch programmer. He named it after Monty Python, the famous British comedy group. Python is an interpreted language, which means that the code is executed line by line. Python is a high-level language, which means that it has a simple syntax that is easy to read and write.
1.2 Installing Python
To get started with Python, you need to install it on your computer. Python can be downloaded from the official website, python.org. Python is available for Windows, Mac, and Linux operating systems. Once you have downloaded and installed Python, you can start writing Python code using any text editor or integrated development environment (IDE).
1.3 Python Development Environments
There are many Python development environments available, ranging from simple text editors to fully-featured IDEs. Some of the popular Python IDEs are PyCharm, Spyder, Visual Studio Code, and IDLE. These IDEs provide features such as code highlighting, code completion, debugging, and profiling.
1.4 Writing Your First Python Program
Let's write a simple Python program to print "Hello, World!" to the console. Open a text editor and type the following code:
print("Hello, World!")

Save the file with a .py extension, such as helloworld.py. Open a terminal or command prompt and navigate to the directory where you saved the file. Run the program using the following command:

python helloworld.py

You should see "Hello, World!" printed to the console.
1.5 Basic Programming Concepts
Python supports many programming concepts such as variables, data types, and control structures. Let's take a brief look at each of these concepts:
1.5.1 Variables
Variables are used to store data in Python. A variable is created by assigning a value to a name. For example:

x = 10

In this example, we are assigning the value 10 to the variable x.
1.5.2 Data Types
Python supports various data types, such as integers, floating-point numbers, strings, and booleans. Let's take a brief look at each of these data types:
Integers: Integers are whole numbers, such as 1, 2, 3, etc.
Floating-Point Numbers: Floating-point numbers are numbers with a decimal point, such as 1.2, 3.4, etc.
Strings: Strings are sequences of characters, such as "hello", "world", etc.
Booleans: Booleans are either True or False.
1.5.3 Control Structures
Python supports various control structures, such as if-else statements, loops, and functions. Let's take a brief look at each of these control structures:
If-else statements: If-else statements are used to make decisions based on conditions. For example:
x = 10
if x > 5:
 print("x is greater than 5")
else:
 print("x is less than or equal to 5")
In this example, we are checking if x is greater than 5. If it is, we print "x is greater than 5". Otherwise, we print "x is less than or equal to 5".
Loops: Loops are used to repeat a set of instructions multiple times.
types of loops: for loops and while loops. Let's take a brief look at each of these loops:

For loop example
for i in range(5):
 print(i)
While loop example
i = 0
while i < 5:
 print(i)
 i += 1

In this example, we are using a for loop to print the numbers 0 to 4, and a while loop to do the same thing. The for loop iterates over a range of numbers, while the while loop repeats as long as a condition is true.
Functions: Functions are used to encapsulate a set of instructions into a reusable block of code. For example:

def add_numbers(x, y):
 return x + y
result = add_numbers(2, 3)
print(result)

In this example, we are defining a function called add_numbers that takes two parameters x and y and returns their sum. We then call this function with the values 2 and 3 and print the result, which is 5.
1.6 Python Libraries
Python has a large number of libraries and modules that extend its functionality. Let's take a brief look at some of the popular libraries:
NumPy: NumPy is a library for numerical computing in Python. It provides support for arrays, matrices, and mathematical functions.
Pandas: Pandas is a library for data manipulation and analysis in Python. It provides support for reading and writing data in various formats, such as CSV and Excel, and provides powerful data manipulation functions.
Matplotlib: Matplotlib is a library for creating visualizations in Python. It provides support for creating line charts, bar charts, histograms, and many other types of visualizations.
Scikit-learn: Scikit-learn is a library for machine learning in Python. It provides support for various machine learning algorithms, such as regression, classification, and clustering.
1.7 Python Best Practices
As you start writing more complex Python programs, it's important to follow some best practices to make your code more readable, maintainable, and efficient. Let's take a brief look at some of the best practices:
Use meaningful variable names: Use descriptive variable names that convey the purpose of the variable.
Write comments: Write comments to explain the purpose of your code and how it works.
Use whitespace: Use whitespace to make your code more readable. Use blank lines to separate sections of your code, and indent your code consistently.
Use functions: Use functions to encapsulate a set of instructions into a reusable block of code.
Write tests: Write tests to ensure that your code works as expected and to catch bugs before they cause problems in production.

Basic Python Concepts

Before diving into advanced topics in Python, it's important to have a good understanding of the basic concepts. Let's take a closer look at some of the basic concepts:
2.1.1 Variables and Data Types
Variables are used to store data in Python. Python supports various data types, such as integers, floating-point numbers, strings, and booleans. Let's take a closer look at each of these data types:
Integers: Integers are whole numbers, such as 1, 2, 3, etc.
Floating-Point Numbers: Floating-point numbers are numbers with a decimal point, such as 1.2, 3.4, etc.
Strings: Strings are sequences of characters, such as "hello", "world", etc.
Booleans: Booleans are either True or False.
2.1.2 Control Structures:
Python supports various control structures, such as if-else statements, loops, and conditional statements. These structures allow you to control the flow of your program based on certain conditions.
If-else statements: If-else statements are used to execute certain code based on a certain condition. For example:

age = 20
if age >= 18:
 print("You are an adult")
else:
 print("You are not an adult")
In this example, we are using an if-else statement to check if the age variable is greater than or equal to 18. If it is, we print "You are an adult". If it's not, we print "You are not an adult".
Loops: Loops are used to execute a block of code repeatedly. Python supports two types of loops: for loops and while loops. For example:
For loop example
for i in range(5):
 print(i)
While loop example
i = 0
while i < 5:
 print(i)
 i += 1
In this example, we are using a for loop to print the numbers 0 to 4, and a while loop to do the same thing. The for loop iterates over a range of numbers, while the while loop repeats as long as a condition is true.
Conditional statements: Conditional statements are used to execute a block of code based on certain conditions. Python supports several types of conditional statements, such as if-elif-else statements and switch statements. For example:
x = 2
if x == 1:
 print("One")
elif x == 2:
 print("Two")
else:
 print("Other")

In this example, we are using an if-elif-else statement to print "Two" if the x variable is equal to 2, and "Other" if it's anything else.
2.1.3 Functions
Functions are used to encapsulate a set of instructions into a reusable block of code. They can take zero or more arguments and return zero or more values. For example:
def add_numbers(x, y):
 return x + y
result = add_numbers(2, 3)
print(result)

In this example, we are defining a function called add_numbers that takes two parameters x and y and returns their sum. We then call this function with the values 2 and 3 and print the result, which is 5.
2.2 Advanced Python Concepts
Once you have a good understanding of the basic concepts in Python, it's time to move on to more advanced topics. Let's take a closer look at some of these topics:
2.2.1 Object-Oriented Programming
Python is an object-oriented programming language, which means that it supports object-oriented concepts such as classes, objects, and inheritance. Let's take a closer look at each of these concepts:
Classes: Classes are used to define objects in Python. A class defines the attributes and methods of an object. For example:
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age
def say_hello(self):
 print(f"Hello, my name is {self.name} and I'm {self.age} years old")
person = Person("John", 30)
person.say_hello()

In this example, we are defining a class called Person that has two attributes: name and age, and one method: say_hello. We then create an object of the Person class and call the say_hello method.
Objects: Objects are instances of a class. They have their own set of attributes and methods. For example:
class Person:
def init(self, name, age):
self.name = name
self.age = age
def say_hello(self):
 print(f"Hello, my name is {self.name} and I'm {self.age} years old")

Output:
person1 = Person("John", 30)
person2 = Person("Jane", 25)
person1.say_hello()
person2.say_hello()

In this example, we are creating two objects of the Person class: person1 and person2. Each object has its own set of attributes (name and age) and methods (say_hello). We then call the say_hello method on each object, which will print out their name and age.
- Inheritance: Inheritance is a way to create a new class based on an existing class. The new class inherits all the attributes and methods of the existing class, and can also add its own attributes and methods. For example:

class Student(Person):
def init(self, name, age, student_id):
super().init(name, age)
self.student_id = student_id
def say_hello(self):
 print(f"Hello, my name is {self.name}, I'm {self.age} years old and my student ID is {self.student_id}")
Output:
student = Student("Mike", 20, 12345)
student.say_hello()

In this example, we are creating a new class called Student that inherits from the Person class. The Student class adds a new attribute called student_id, and overrides the say_hello method to include the student_id in the output. We then create an object of the Student class and call the say_hello method.
2.2.2 Functional Programming
Python also supports functional programming concepts, such as higher-order functions, lambda functions, and map/reduce/filter functions.
- Higher-order functions: A higher-order function is a function that takes another function as an argument or returns a function as its result. For example:
def apply_function(f, x):
return f(x)
def square(x):
return x * x
result = apply_function(square, 2)
print(result)

In this example, we are defining a function called apply_function that takes a function f and a value x, and applies the function to the value. We then define a function called square, which returns the square of its input. We call the apply_function function with the square function and the value 2, which will return 4.
- Lambda functions: Lambda functions are anonymous functions that can be used as expressions. They are typically used when you need a small function for a short period of time. For example:
numbers = [1, 2, 3, 4, 5]
squares = map(lambda x: x * x, numbers)
print(list(squares))

In this example, we are using the map function to apply a lambda function to each element of the numbers list. The lambda function squares its input. We then convert the result to a list and print it.
- Map/reduce/filter functions: Map, reduce, and filter are higher-order functions that are commonly used in functional programming. Map applies a function to each element of a sequence and returns a new sequence with the results. Reduce applies a function to a sequence and returns a single value. Filter applies a function to each element of a sequence and returns a new sequence with only the elements for which the function returns True. For example:
numbers = [1, 2, 3, 4, 5]
squares = map(lambda x: x * x, numbers)
even_squares = filter(lambda x: x % 2 == 0, squares)
In this example, we are using map and filter to generate a sequence of even squares of numbers. We first use map to generate a sequence of squares of numbers, and then use filter to keep only the even squares.
2.3 Libraries
One of the main strengths of Python is its extensive library of pre-built modules and packages. These libraries provide a wide range of functionality, from scientific computing to web development. Here are a few commonly used libraries in Python:
NumPy: NumPy is a library for scientific computing in Python. It provides support for multi-dimensional arrays, mathematical functions, and linear algebra operations. It is widely used in fields such as data science and machine learning.
Pandas: Pandas is a library for data manipulation and analysis in Python. It provides data structures for handling tabular data, as well as functions for data cleaning, merging, and reshaping. It is commonly used in data science and finance.
Matplotlib: Matplotlib is a library for creating visualizations in Python. It provides a wide range of functions for creating line plots, scatter plots, bar plots, and other types of charts. It is commonly used in data science and scientific computing.
Flask: Flask is a web framework for Python. It provides a simple and lightweight way to build web applications in Python. It is commonly used for building small to medium-sized web applications.
Django: Django is a more feature-rich web framework for Python. It provides a comprehensive set of tools for building web applications, including a powerful ORM, an admin interface, and support for user authentication and authorization. It is commonly used for building larger web applications.
There are many other libraries available for Python, and new ones are being developed all the time. To use a library in your Python code, you typically need to import it using the import statement:
import numpy as np
arr = np.array([1, 2, 3])

In this example, we are importing the NumPy library and giving it the alias np. We then use the np.array function to create a NumPy array.

Now that we have covered the basics of Python, let's talk about how to become a Python programmer. Here are some steps you can follow:

Learn the Fundamentals

Before you can become a proficient Python programmer, you need to learn the fundamentals of the language. This includes understanding the syntax, data types, control structures, and functions. There are many resources available for learning Python, including online courses, books, and tutorials.
3.2 Practice Coding
Once you have a solid understanding of the fundamentals, the next step is to practice coding. The more you practice, the more comfortable you will become with the language, and the better you will get at solving problems. You can find coding challenges and exercises online, or you can come up with your own projects to work on.
3.3 Build Real-World Projects
Building real-world projects is a great way to apply your Python skills and gain experience. This can include building web applications, data analysis tools, or automation scripts. Not only will this help you improve your Python skills, but it will also give you something to showcase to potential employers or clients.
3.4 Collaborate with Others
Collaborating with other programmers is a great way to learn from others and get feedback on your code. This can include working on open-source projects, participating in coding communities, or attending programming events. Collaborating with others can also help you build a professional network, which can be valuable when looking for job opportunities.

3.5 Keep Learning

Keep Learning is important. This can include reading documentation, following blogs and forums, attending conferences, and taking courses. It is also important to practice using new features and libraries, so you can become comfortable with them and incorporate them into your projects.
3.6 Build a Portfolio
Building a portfolio is a great way to showcase your skills and experience as a Python programmer. This can include your personal projects, contributions to open-source projects, and any relevant work experience or certifications you have. A strong portfolio can help you stand out to potential employers or clients.
3.7 Look for Job Opportunities
Once you have built up your skills and experience as a Python programmer, the next step is to start looking for job opportunities. There are many job opportunities available for Python programmers, including software development, data analysis, machine learning, and web development. You can find job opportunities through job boards, networking, and by reaching out to companies directly.

Conclusion

Python is a powerful and versatile programming language that is widely used in many different fields. Whether you are interested in software development, data analysis, machine learning, or web development, learning Python can help you achieve your goals. By following the steps outlined above, you can become a proficient Python programmer and build a successful career in the field.
Remember that becoming a skilled Python programmer takes time and effort. It is important to practice consistently and to keep up with the latest developments in the language and its ecosystem. With dedication and hard work, you can become a proficient Python programmer and unlock a world of exciting career opportunities.
In addition to the steps outlined above, there are also many resources available to help you learn Python. These include books, online courses, video tutorials, and coding challenges. Some popular resources for learning Python include:
Python documentation: The official documentation for Python is a great resource for learning the language and its built-in libraries.
Codecademy: Codecademy offers a free interactive Python course that covers the basics of the language.
Coursera: Coursera offers a variety of Python courses from top universities and institutions.
Udacity: Udacity offers a range of Python courses, including a free intro course and more advanced courses on data analysis, machine learning, and web development.
Python.org: Python.org is the official website for the Python community and offers a variety of resources, including tutorials, documentation, and community forums.
Stack Overflow: Stack Overflow is a popular question-and-answer site for programmers, and can be a valuable resource for troubleshooting and learning.
In conclusion, learning Python can open up a world of exciting career opportunities and allow you to create powerful and versatile applications. By following the steps outlined in this book and using the many available resources for learning, you can become a skilled Python programmer and achieve your goals in the field.

Publisher:
BookRix GmbH & Co. KG
Implerstraße 24
81371 Munich
Germany

Text: Tanjimul Islam Tareq
Images: Tanjimul Islam Tareq
Cover: Tanjimul Islam Tareq
Editing: Tanjimul Islam Tareq
Proofreading: Tanjimul Islam Tareq
Layout: Tanjimul Islam Tareq
Translation: Tanjimul Islam Tareq

All rights reserved.

Publication Date: March 23rd 2023

https://www.bookrix.com/-idfe42b34b68146

ISBN: 978-3-7554-3655-3

BookRix-Edition, publishing information
We thank you for choosing to purchase this book from BookRix.com. We want to invite you back to BookRix.com in order to evaluate the book. Here you can discuss with other readers, discover more books and even become an author yourself.

Thank you again for supporting our BookRix-community.

OEBPS/images/cover.jpeg
TTTTTTTTTTTTTTTTTTTTTTTTTT

~ PYTHON
PROGRAMMING
FOR
BEGINNERS

& python

