

		
			[image: image]
		

	
		Python for Data Analysis

		A Beginners Guide to Master the Fundamentals of Data Science and Data Analysis by Using Pandas, Numpy and Ipython

		

		––––––––

		

		Brady Ellison

		

		© Copyright 2021 - All rights reserved.

		The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

		Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book, either directly or indirectly.

		Legal Notice:

		This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

		Disclaimer Notice:

		Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaged in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

		By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, that are incurred as a result of the use of the information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

		

		

		Table of Contents

		

		
			Introduction
		

		

		
			What You Should Keep in Mind
		

		
			All Tech Work Has A Creative Element
		

		
			Some Things Will Be Harder at First
		

		
			You Don’t Know Everything
		

		
			You Won’t Work Alone
		

		
			Some Rules
		

		
			To Python Beginners
		

		

		
			Chapter 1: What is Data Science/Analysis?
		

		

		
			Data Science vs. Data Analysis
		

		
			An Example
		

		
			Data Life Cycle
		

		
			Data Collection
		

		
			Data Cleaning
		

		
			Data Wrangling
		

		
			Analysis
		

		
			Application
		

		
			Why Python?
		

		

		
			Chapter 2: Setting Up Your Environment
		

		

		
			Anaconda
		

		
			Windows Anaconda Installation
		

		
			macOS Anaconda Installation
		

		
			Using the Installer
		

		
			Using the Command-line
		

		
			Linux Anaconda Installation
		

		

		
			Chapter 3: iPython & Jupyter
		

		

		
			iPython
		

		
			iPython Installation & Getting Started
		

		
			iPython Special Features
		

		
			Getting Information About the Object
		

		
			Magic Functions
		

		
			List of Magic Functions
		

		
			Running and Editing a Python Script
		

		
			Running System Commands
		

		
			Jupyter
		

		
			What Does it Do?
		

		
			A Quick Overview
		

		
			Understanding Modality
		

		
			Jupyter Cell Magic Functions
		

		
			IPyWidgets
		

		
			Interactives
		

		
			Types of Widgets
		

		
			Numeric Widgets
		

		
			Boolean Widgets
		

		
			Selection Widgets
		

		

		
			Chapter 4: Pandas
		

		

		
			Setting Up Your Environment
		

		

		
			Pandas Data Structures
		

		

		
			DataFrames & Series
		

		

		
			Labelling Indexes In A Series
		

		

		
			Converting Tuples & Dictionaries Into A Series
		

		

		
			Accessing Data In A DataFrame
		

		

		
			Deleting Columns
		

		

		
			How to Read and Write Data in Pandas
		

		

		
			Learning More About the Data
		

		

		
			Writing A DataFrame to A File
		

		

		
			Selecting Data
		

		

		
			Creating Plots
		

		

		
			Creating New Columns
		

		

		
			Adding and Removing Columns
		

		

		
			Doing Statistics
		

		

		
			Combining Tables
		

		

		
			Dealing With Textual Data
		

		

		
			Find length
		

		

		
			Resources
		

		

		
			Table A : Reading and Writing data table
		

		

		
			Table B:2019 Weekly Data
		

		

		
			Table C: The second set of 2019 data for DataFrame combining exercises and others
		

		

		
			Chapter 5: NumPy
		

		

		
			Installation
		

		
			The Importance of NumPy Arrays
		

		
			What is a NumPy Array?
		

		
			Creating Arrays
		

		
			Learning About An Array
		

		
			Basic Array Operations
		

		
			Accessing Elements, Slicing and Iterating Arrays
		

		
			Manipulating Shapes
		

		
			Stacking Arrays
		

		
			Splitting An Array
		

		

		
			Final Words & FAQ
		

		

		
			When Do I Know I Have Enough Projects in My Portfolio?
		

		
			What Type of PC Do I Need for Data Science?
		

		
			What Are Some of the Skills I Will Need?
		

		
			Is There a Future in Data Science/Analytics?
		

		
			What Will it Take for Me to Become a Data Analyst?
		

		

		
			Other Books from the Author
		

		
			References
		

		

	
		Introduction

		

		This book is designed to offer working knowledge of Python and data science and some of the tools required to apply that knowledge. It’s possible that you have little experience with or knowledge of data analysis and are interested in it. You might have some experience in coding. You may have worked with data before and want to use Python. We have made this book in a way that will be helpful to all these groups and more besides in varying ways. This can serve as an introduction to the most current tools and functions of those tools used by data scientists.

		We will cover the following topics:

		

		● Data Science/Analysis and its applications

		

		● IPython and Jupyter - an introduction to the basic tools and how to navigate and use them. You will also learn about its importance in a data scientist’s ecosystem.

		

		● Pandas - a powerful data management Python library that lets you do interesting things with data. You will learn all the basics you need to get started.

		

		● NumPy - a powerful numerical library for Python. You will learn more about its advantages.

		

		If you have no idea what any of these mean, don’t worry. This book will explain them in detail and get you started. Before we begin, there are a few things you should keep in mind.

		

	
		What You Should Keep in Mind

		

		It is important when learning something new to have a goal-oriented mindset as opposed to a limiting one. It makes things easier, giving you the grit you need to deal with difficult problems. Without a focused and goal-oriented mindset, you are prone to be demotivated and eventually giving up. Below are some of the principles that will enable you to thrive.

		

	
		All Tech Work Has A Creative Element

		

		Learning anything in tech or anything that involves tech has room for creativity or requires it. You will be learning the fundamentals in this book, but it is helpful not to think of these things as laws or rules. Rules and laws are like protocol. They tell us how things should be done, in what circumstances, and how. Tech is not like that. We are not teaching you rules and laws. We are giving you tools, techniques, and tricks to use how you see fit. Some ways will be a better fit for the individual than others, some ways will not be as productive for some tasks, some will be new, and some will be old, some will work instantly, and some won’t work for everyone. I am not saying there is no etiquette in tech, there is and you will learn it, but the tech itself does not work that way. So, when you study this book, remember this.

		Rote learning and similar methods might help, but they won’t make you a better tech practitioner than your peers. It is helpful to know this because students worry when they don’t remember precisely how to perform a specific task or fix a particular problem. You don’t have to know the syntax off the top of your head (with practice, this will come). All you need to remember are the tools you have and how you can use them to accomplish a task. The concepts and logic are essential. If you need to remember the syntax, you can always look it up or the tools you use will help you with that.

		

	
		Some Things Will Be Harder at First

		

		As it is with learning anything, you will find some things about Python challenging. This is normal. It does not mean you are not equipped with the intelligence you need to succeed. Sometimes, tech makes sense the more you use it and the more you encounter it. Sometimes what you are learning is a smaller part of a bigger puzzle. Remember, when you encounter these feelings, they don’t mean anything about your ability to understand the subject. These feelings are a sign that your brain is working on a problem, meaning it will connect things once they come into view.

		

	
		You Don’t Know Everything

		

		When you are done with this book, you will not know everything about the subject, and that is fine. You will not know everything because no one knows everything about all tech. You will find that you always have to learn some things. Most discursive fields [if not all] require us to adapt and expand our skills constantly. Sometimes, we may find ourselves in roles that don’t require us to this at all; in such fields, you might be sufficiently competent to perform your duties and advance your career. Your aim shouldn’t be to know all there is to know. It is to be capable enough to solve problems for those who will hire you or yourself. If you keep thinking there is a certain avalanche of information you need to master to start working, you will never begin. You need to be confident in your ability to learn new things when performing new tasks. As you gain more experience through this book and in life, you will do this more easily.

		

	
		You Won’t Work Alone

		

		In real life, you don’t do all the work alone. You will have other people to work with. You will balance each other's weaknesses and strengths. You don’t have to be rid of weaknesses. Prepare yourself to work with others. While you expand your skills and build on your work ethic, you should also work on your soft skills. Soft skills are about your ability to interact well with others. They are not necessarily social skills, although they can include social skills like good communication. Soft skills can be things like the ability to compromise, communicate ideas, listen, be reliable, sensitive, respect other people's roles, and others.

		

	
		Some Rules

		

		When reading this book, try to do the exercises yourself and follow along. Don’t just try to do them in your head. When you write the code yourself rather than copying and pasting it, you will be better able to practice and apply what you have learned. You will find that you make certain assumptions when you code, things you take for granted. These will show themselves when you make mistakes while writing code. As the console spits errors, you will learn to shed those misguided assumptions and adopt new ones. This means as you go ahead, you will find it easy to do more complex things. Don’t sit back even when the code in question looks like a very simple one-liner that you can recall later when dealing with real multi-liners.

		

	
		To Python Beginners

		

		If you don't know Python, you should read the first chapter to find out if data science/analysis is something that you want to get into. If you think it is, you should then turn your attention to learning Python. We will not go over the Python basics in this book. This shouldn't discourage you. Python is easy to understand and there are plenty of places offline that offer interactive classes on Python. Through them, you will learn the basics you need to start with this book. If you have some coding experience, especially with languages like C++ and Javascript, Python's syntax will look a lot more straightforward and easy to work with. You won't have much trouble learning as you follow along.

		A useful resource you can use to learn the Python basics is SoloLearn. SoloLearn is a site and mobile app that hosts different interactive programming language courses for free. While learning, you will be tested with fun quizzes. We recommend it because it is something you can do anywhere at any time, it is very mobile friendly and it is a lot of fun to do. On the site, you find an active community, challenges, and other tasks to help you get comfortable with the language. It won't take you more than a week or two to learn. It will take you a lot less if you come from another programming language.

		After you have learned more about Python, you can continue from chapter two.

		

	
		Chapter 1: What is Data Science/Analysis?

		

		
			[image: image]
		

		This chapter will consist of a basic overview of data analysis. Having a broader understanding of what you are doing and the role it plays makes learning easier.

		

	
		Data Science vs. Data Analysis

		

		Data analysts are a subset of data scientists whose roles are focused on providing insights that help in the decision-making processes of institutions or business. Data scientists can perform data analyst duties, but they also build tools and products (Liberty, 2019).

		Data scientists are behind powerful search engine algorithms that help find the best search results. They help with recommendation algorithms such as ones you might find on YouTube or Amazon (Data Science vs. Big Data vs. Data Analytics, 2016). They are also involved in things like machine learning, building statistical models, AI, and more. Their work is product-focused.

		Data analysts use tools and techniques to arrive at conclusions and insights that can help in the decision-making of institutions or businesses. Data analysts are found in diverse fields like health care, business, gaming, travel, power management systems, and logistics (Data Science vs. Big Data vs. Data Analytics, 2016). They make reports, making the data tell a story and suggest actions based on findings.

		Doing these things will require slightly different knowledge or specializations, but there is still a lot in common between them, both in the tools and the techniques used in handling data. There are technologies and subjects you don’t have to learn when you become a data analyst and the same applies to data scientists interested in a particular field. You will find there is a lot that data scientists and data analysts do that is similar in their day-to-day work.

		

	
		An Example

		

		Imagine Ray’s Coffee Shop which has suddenly moved a part of its operation online, offering home delivery and so on. Like any company of its size, Ray’s collects a lot of data, mostly for its operations. They keep track of what is selling, what is not, and so forth. For the sake of the example, a data analyst can work in two ways: to help with a specific goal or to mine data for insights that will help the business in its endeavors. In mining for insights, they might collect data from various sources: sales data, data from their web app, or even buy data they think might be helpful. Then, they clean the data and proceed to other stages. When done, they make certain observations about the data, using various tools to tease out helpful information. For instance, they might notice that certain drinks are popular among certain demographics or that certain drinks sell well during certain seasons.

		They can then present these findings to the company and advice on what they should do. They can tell them to make more Ray’s Hot Cocoa in the winter or advertise more to Generation Z. Ray’s might choose to exploit this or they might decide otherwise. Ray’s might also wonder if they should expand into a certain neighborhood. The data analysts would then use data from multiple sources to produce the best projections for the business so Ray’s knows whether to expand.

		In other roles, they can test marketing strategy assumptions, so Ray’s can decide on the best strategy. They can help build new products, so Ray’s captures a new market. They can forecast trends so that Ray’s knows which products to discontinue and which ones to start making. They can engineer dashboards and live reporting tools so that other people in the business can get real-time information on how various aspects of the business are performing. They can even build machine learning models so Ray’s knows which customers are likely to be long-time customers instead of those who are just passing. They can help with logistics to make Ray’s more efficient at delivering its product and improving customer satisfaction. They can help Ray’s set the best prices for their products. They can help Ray’s with their production schedule so that they can cut waste. In a nutshell, they help the business stay healthy and competent.

		You will notice that people who do these things have always been around in businesses, even before data analysts became relevant. So, what has changed? In the past, the people who would make these decisions would often have to use premade tools to look at their data and manipulate it. These tools are still useful today, and they are still used by people who perform these tasks. However, these kinds of tools often involve looking at the data and inspecting it. Since these tools are pre-made, they have some limits. In the age we live in now, we can capture more data and usually have to work with a lot of more data because storing data has become very cheap. Inspecting data very closely in person is becoming impractical. This means we have to use new creative tools to look at our data and mine it. That is where Python, in conjunction with other tools, comes in.

		

	
		Data Life Cycle

		

		The data life cycle refers to the steps and procedures that data analysts are involved in when they work. These don’t have to happen step by step. They sometimes happen simultaneously or in various stages of a project, back and forth. The data life cycle is more of a presentational model that explains what happens or breaks down the job into distinguishable chunks. When you work, it is something you will experience, it is not really something that has to be taught. It makes sense when dealing with data to take these steps.

		

	
		Data Collection

		

		In the first stage, data analysts collect the data they need. Usually, this data comes from various sources and in multiple formats. They can get the data in file formats like CSV, JSON, and XML. Sometimes they scrape the internet, collect data from APIs, buy it from data brokers, or collect it from databases. If the data is useful and they need it, they will find ways to get it. It might also be important for them to determine what data they might need for a goal they are trying to achieve. So, ultimately, they are guided by their goals and interests in the data they collect.

		

	
		Data Cleaning

		

		In this stage, the data analysts prepare the data so that they can process it later. Data is cleaned by removing missing data, fixing incomplete data, removing irrelevant data, removing duplicates, and fixing poorly formatted data. Other things that are done are making sure that all the data is in the format that the analytical tools can work with. They also make sure there are no errors in it. The purpose of this is to make sure that the data does not provide false or misleading results. The cleaner the data, the more accurate and insightful it can be.

		

	
		Data Wrangling

		

		The purpose of this stage is to shape data and to put it together in a way that is more useful to us. The data will be given a structure, merged, and properly indexed. This will make more sense when we talk about data tables.

		

	
		Analysis

		

		In this stage, the analysis takes place. The data is explored. Statistical models are built. Correlations are investigated to find causations and meaningful correlations are added together. Various statistical analyses are run and hypotheses are tested. Then, visualizations are built, reports are written, and presentations are put together.

		

	
		Application

		

		In the last stage, all this knowledge is put together to make real life changes. This is where an intervention is suggested, models are built, and real-life tests are done. Think of this stage as the execution stage; it includes all the things we have discussed in our Ray’s Coffee Shop example.

		

	
		Why Python?

		

		You can bully any coding language into doing whatever you want. You can use JavaScript - primarily a web programming language - to do data analysis. Furthermore, there are other languages that are used in data science: C, C++, Julia, and R. However, Python is the most widely used and the most used by data science courses to teach their students.

		Unlike any other language I mentioned, Python is the easiest language to learn. You can almost read it in English and its math is intuitive. It is not that alien to the eye and it looks clean. This makes it the perfect language for beginners to learn. When you think of all the things a data analyst has to know and understand to do their job, a language like Python is appropriate because of its intuitive nature and easy to read syntax. Python is also a powerful language with many applications in many areas. Its ease does not make it any less powerful or useful. In any area in tech, you will find Python. It is a versatile tool and a good one to learn no matter what your ambitions are.

		Another thing that Python has going for it is that it is free. It has many libraries and it is widely supported. This means you can always count on it to be popular and when you get stuck, you will find answers to your problems easily. Every tool we are going to use is Python-based and they all work with each 0ther. As we learn, you will see how they relate to each other.

		

	
		Chapter 2: Setting Up Your Environment

		

		
			[image: image]
		

		In this chapter, we are going to take you through setting up your environment for data science. Since data analysis is a subset of data science, this shouldn’t surprise you.

		

	
		Anaconda

		

		Anaconda is a distribution platform that will download all the packages and tools you need to do data science. Anaconda simplifies the installation of tools we will use in his book. It will also install Python on your system.

		Before you attempt to install Anaconda, make sure that your machine meets the following system requirements:

		Operating System

		

		● Windows 8 or newer

		● 64-bit macOS 10.13+

		● Linux - Ubuntu, RedHat, CentOS 6+, and others

		

		If you don’t have the operating systems above, you can still install the older version of Anaconda, but you might run into some problems because, in this book, we will use the new version.

		System Architecture:

		

		● Windows- 64-bit x86, 32-bit x86

		● macOS- 64-bit x86

		● Linux- 64-bit x86, 64-bit Power8/Power9

		

		Storage

		

		● Minimum of 5 gigs of space

		

	
		Windows Anaconda Installation

		

		Before you install Anaconda, you need to verify that your system architecture is x86. Follow these instructions to do so:

		

		Open Windows Explorer.

		Double click on Drive C: It should take you to the root. In there, you should have a folder titled “Programs (x86).” If you find it, you can proceed.

		

		Note: It doesn't matter if you have a 64-bit or 32-bit operating system.

		

		Below are instructions on how to install Anaconda for Windows operating systems.

		

		Go to this page: Anaconda | Individual Edition

		Scroll down and click the “Download” button. The page will take you to installers at the bottom of the page.

		Click on the appropriate installer to download. Make sure you download the file into the “Download” folder on your computer. There have been instances where downloading the installer in other file directories causes problems with the installation process.

		

		If you don’t know if you should pick the 64-bit or 32-bit version:

		

		● Right-click on the Start button.

		

		● A menu will appear. Select “System.”

		

		● A window will appear, and under “System type,” it will tell you if it is 64-bit or 32-bit.

		

		Open the Anaconda installer as soon as it has loaded. If you run into problems, disable antivirus temporarily; you can start it again when the installation is complete.

		A Licensing Agreement page will appear. Read it and click, “I Agree.”

		By default, the next page has picked the “Just Me” radio button. Click “Next.”

		If the directory path selected by default has spaces or Unicode characters, you should go to your root and make a new directory with no spaces or Unicode characters. For instance, a directory like this can cause errors because it has space: “C:\Users\Mike Wendling\.” Between the words “Mike” and “Wendling,” there is space. You can take the following steps to fix this.

		

		● Click on “Browse.”

		

		● Go to C: drive root.

		

		● Click “Make Folder.”

		

		● Give it a name without space or Unicode characters. Like this: “awesomestudent.” The directory will be: “C:\awesomestudent\.”

		

		● Select the folder and click “Next.”

		

		The next page will show you advanced options. Select the “Register Anaconda3 as my default for Python 3.8.” By default, this option will be selected for you already.

		Click “Install” and wait. In some machines, it might appear stuck in some stages. Don’t start it over, just wait. To see all the progress that is made, click on the “Show Details” button.

		After installation is complete, click “Next.”

		Anaconda will ask you to install PyCharm. Click “Next.” This is optional.

		You will see a “Thanks for installing Anaconda” dialog box. You can uncheck the checkboxes and click “Finish” or you could leave them as is and click “Finish.”

		

		Anaconda is installed.

		

	
		macOS Anaconda Installation

		

		There are two ways to install Anaconda on macOS: using an installer or the command line. We recommend using the installer, but we will cover both methods here.

		Follow these steps:

		

	
		Using the Installer

		

		Go to the following link: Anaconda | Individual Edition

		Scroll down and click the “Download” button.

		You will find two installers under the macOS installers section. Pick the “Graphical Installer” option and download.

		Verify the installer file’s content by typing the following command in the terminal: shasum -a 256 filename

		

		Note: You can skip this step if you prefer, but it is not recommended.

		

		Open the file and click “Continue” to begin the installation.

		Answer all the prompts in the Introduction and License pages.

		You will be asked to choose a directory. Make sure that the installation directory is the “~/opt” directory. You can install it anywhere, but this is recommended.

		On the next screen, select the “Install for me only” option.

		Click continue.

		A screen will appear asking you to click on a link if you want to install Pycharm. Click continue.

		After installation is complete. You will see a screen that says “The installation was completed successfully.”

		

		Congratulations, you have installed Anaconda.

		

	
		Using the Command-line

		

		To install Anaconda using the command-line, follow these steps.

		

		Go to this page and click on the “Download” button: Anaconda | Individual Edition.

		Download the Command Line Installer under the macOS section.

		Verify the files by typing the following in the terminal:

		

		shasum -a 256 /path/filename

		

		Note: /path/filename/ should be replaced by the installation path and filename.

		

		Install Anaconda for Python 3.7 by typing the following command in the terminal.

		

		bash ~/Downloads/Anaconda3-2020.02-MacOSX-x86_64.sh

		Note: You should use “bash” whether or not you are using the Bash shell.

		You can replace the ~/Downloads with a directory you prefer.

		

		You will get a prompt that says: “In order to continue the installation process, please review the license agreement.” Press Enter to see the license agreements.

		Scroll the bottom and enter “yes” to agree.

		You will be prompted to press Enter to confirm the chosen location. You can type CTRL-C to change to another location or cancel. It will display the following line when you accept the default setting: PREFIX=/home/<user>/anaconda<2 or 3>. Continue the installation.

		

		Note: The installation might take a little while. That is normal.

		

		You get a prompt that says: “Do you wish the installer to initialize Anaconda3 by running conda init?” Yes is the recommended response, so enter yes.

		The installer will say: “Thank you for installing Anaconda!”

		A link to install PyCharm will appear. Ignore it.

		Close and open the terminal window for the Anaconda installation to take effect.

		

		Congratulations, you have installed Anaconda.

		

	
		Linux Anaconda Installation

		

		In order to be able to use GUI features, which is what is required for Anaconda and many of it’s other offerings, you will need the following packages installed. This table is taken from Anaconda documentation (Installing on Linux — Anaconda documentation, n.d.):

		
			
				
				
			
			
					Debian
					apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6
			

			
					RedHat
					yum install libXcomposite libXcursor libXi libXtst libXrandr alsa-lib mesa-libEGL libXdamage mesa-libGL libXScrnSaver
			

			
					ArchLinux
					pacman -Sy libxau libxi libxss libxtst libxcursor libxcomposite libxdamage libxfixes libxrandr libxrender mesa-libgl alsa-lib libglvnd
			

			
					OpenSuse/SLES
					zypper install libXcomposite1 libXi6 libXext6 libXau6 libX11-6 libXrandr2 libXrender1 libXss1 libXtst6 libXdamage1 libXcursor1 libxcb1 libasound2 libX11-xcb1 Mesa-libGL1 Mesa-libEGL1
			

			
					Gentoo
					emerge x11-libs/libXau x11-libs/libxcb x11-libs/libX11 x11-libs/libXext x11-libs/libXfixes x11-libs/libXrender x11-libs/libXi x11-libs/libXcomposite x11-libs/libXrandr x11-libs/libXcursor x11-libs/libXdamage x11-libs/libXScrnSaver x11-libs/libXtst media-libs/alsa-lib media-libs/mesa
			

		

		

		Then, all you need to do is follow the instructions below. Do this if you have an x86 system.

		

		Go to this link: Anaconda | Individual Edition

		Scroll down and click the Download button. It will take you down the page.

		Under the Linux section, you will see two versions of Anaconda presented. Select the x86 one.

		

		Note: For the sake of these instructions, we will assume that is your system architecture.

		

		Once the installer has downloaded, open your terminal and run the command below:

		

		sha256sum /path/filename

		

		Note: This is to check the data integrity of the installation package. It is important to do this before proceeding. Where there is “path,” enter the file’s path. Where there is “filename,” enter the package’s file name.

		

		To install Anaconda for Python 3.7, enter the following command in the terminal.

		

		bash ~/Downloads/Anaconda3-2020.02-Linux-x86_64.sh

		

		You should use the bash command even when you are not using the Bash shell. You have to also replace the /Downloads/ directory with the directory you downloaded the installation file.

		

		You will get a prompt that says: “In order to continue the installation process, please review the license agreement.” Click Enter to see the license agreements.

		Scroll the bottom and enter yes to agree.

		You will be prompted to press Enter to conform to the chosen location. You can type CTRL-C to change to another location or cancel. When you accept the default setting, it will display the following line: PREFIX=/home/<user>/anaconda<2 or 3>. Continue the installation.

		

		It is recommended you install in the default location that the installer suggests.

		

		You will get a prompt that says: “Do you wish the installer to initialize Anaconda3 by running conda init?” Yes is the recommended response, so enter yes.

		The installer will say: “Thank you for installing Anaconda!”

		A link to install PyCharm will appear. Ignore it.

		Close and open the terminal window for the Anaconda installation to take effect. Alternatively, you can enter the following command:

		

		source ~/.bashrc

		

		Congratulations, Anaconda is installed.

		

	
		Chapter 3: iPython & Jupyter

		

		
			[image: image]
		

		In this chapter, we are going to look at iPython and then jump to Jupyter. The two are related because iPython works as the kernel for Jupyter. A lot of what we are going to do in this book will happen in Jupyter. This explains why the two share this chapter.

		

	
		iPython

		

		It is helpful to think of iPython as a more advanced Python REPL, if you happen to be familiar. Python is interactive and has many exciting features you would expect to get in an IDE. For instance, when an expression is not complete, iPython senses this and doesn’t run your code right then, just like hitting Enter in an IDE would work.

		Here are some features you can expect from iPython (iPython Documentation — iPython 7.19.0 documentation, n.d.):

		

		● Penetrative object introspection

		

		● History across different sessions

		

		● Caching outputs with references

		

		● Comprehensive tab completion that supports variables, keywords, filenames, and functions

		

		● Magic commands for controlling the iPython environment and the operating system

		

		● Easy watching between different setups.

		

		● Logging and reloading of sessions

		

		● Comprehsenves syntax processing for special purposes

		

		● Access system shell with an alias system

		

		● Easy integration into other tools and programs

		

		● Include access to PDB debugger and Python profile.

		

		If these don’t make sense, don't be intimidated. We will get to them soon.

		

	
		iPython Installation & Getting Started

		

		When we installed Anaconda in the last chapter, iPython was automatically installed. To make sure that this happened, you can follow these simple steps:

		

		Open Anaconda Powershell Prompt. You can find this by searching for it.

		Once it is open, type the following command and hit enter:

		

		ipython

		If you get a message like below, it means you have iPython:

		iPython 7.19.0—An enhanced Interactive Python. Type '?' for help.

		Look carefully because the message should be three lines down or so.

		

		If you don’t get this, you will have to type the following command to install iPython on your system:

		

		conda install -c anaconda ipython

		

		If you typed in the command and it appears iPython is already installed, you are ready to use it. To start using iPython, you don’t need to know a whole lot. As we said, it functions just like a Python REPL with extra features.

		Let’s do a few exercises to illustrate this.

		If you haven’t yet, open your Anaconda Prompt. Type: ipython.

		In iPython In[1] appears before an expression and this number increments automatically as you type more lines. In regular Python REPL, all we have is the >>> before an expression. Entering the code below should be able to illustrate this point:

		

		x = 20

		y = 26

		Print (x + y)

		

		When you press enter, the result will be 46.

		

		
			[image: image]
		

		As you can see, the In[1] are incremented with every line of code. The Out[1], which functions similarly, gives us the In[x] line output. To see this, run the following code:

		

		66 * 100

		34 / 2

		

		You will see that Out[x] lines have a number corresponding to the line of the executed code. This is shown below:

		

		
			[image: image]
		

		Another difference between iPython and regular REPL is the syntax highlighting. Syntax highlighting, as you will know, is valuable for a variety of reasons. It improves readability and disambiguates code, especially when dealing with more lines of code.

		

	
		iPython Special Features

		

		We are going to go over iPython’s special features briefly.

		Tat completion

		Like in most IDEs, iPython allows code completion to access the methods we want quickly. A feature likes this stops us from having to look at syntax all the time.

		As we know, every data type has its methods in Python. We are going to take a look at an example of Tab completion. To do this, type the following code in your iPython REPL:

		

		Str = “love is everything”

		

		On the next line, type:

		

		Str.

		

		Press the Tab button. Methods will appear.

		

		
			[image: image]
		

		You can navigate these with your arrow keys. Navigate to the upper() method using your arrow keys and select it by pressing enter. You will have this:

		

		Str.upper

		

		Finish the code with parentheses, like this:

		

		Str.upper()

		

		Press Enter. You will see in the output that the sentence is all uppercase now.

		

		
			[image: image]
		

		

	
		Getting Information About the Object

		

		In iPython, you can get information about an object (any element) by using this syntax:

		

		Object?

		

		The ? is the operator that tells iPython to give you information about the element.

		Test this with the following code:

		

		People = [“Amy”, “James”, “Kamil”]

		People?

		

		After the last line, press Enter, and you should get this as your output:

		

		Type: list

		String form: ['Amy', 'James', 'Kamil']

		Length: 3

		Docstring:

		Built-in mutable sequence.

		If no argument is given, the constructor creates a new empty list.

		The argument must be an iterable if specified.

		

		For extra details about the object, you can use double question marks, like this:

		

		Str = “life is good”

		Str??

		

		Output:

		

		Type: str

		String form: life is good

		Length: 12

		Docstring:

		str(object='') -> str

		str(bytes_or_buffer[, encoding[, errors]]) -> str

		Create a new string object from the given object. If encoding or

		errors is specified, then the object must expose a data buffer

		that will be decoded using the given encoding and error handler.

		Otherwise, returns the result of object.__str__() (if defined)

		or repr(object).

		encoding defaults to sys.getdefaultencoding().

		errors defaults to 'strict'.

		

	
		Magic Functions

		

		iPython has a range of built-in “magic” functions. There are two kinds of them: line-orientated functions and cell-orientated functions. Magic functions solve the problem of awkward Python syntax on the console. Line magics are always preceded by % and they work like command line calls. Line magics get, as an argument, the entire line. Arguments are passed without any delimiters. They can return results that can be used on the right-hand side of an assignment. Cell-magics are always preceded by “%%” and they get the line as the argument and the line below as another argument (iPython - Magic Commands - Tutorialspoint, n.d.).

		Let’s look at the %timeit magic functions in both modes. This function s tells us how long it takes for a piece of code to do what it needs to do.

		Type in the following code in the iPython prompt to see it for yourself:

		

		%timeit range(1000000)

		

		You should get an output like this:

		

		555 ns ± 3.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

		

		Notice that results may vary according to your system.

		Now let us see how the same functions work as cell magic. Type in this code:

		

		%%timeit x= range(200000)

		max(x)

		

		Press Enter a couple of times, and you will get a result like this one:

		

		13.6 ms ± 72.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

		

		There are many other magic functions that will come in handy as you grow.

		

	
		List of Magic Functions

		

		%autocall [mode]

		Autocall allows you to call functions, without using the parentheses. It comes in three modes:

		

		● 0 - which means off

		● 1 - which is the default

		● 2 - which is means it is always on

		

		To illustrate, a simple multiplication function like the one below could be called in different ways under the three settings:

		

		def multi(x , y) :

		z = x * y

		print (z)

		

		Under OFF or setting 1, you would need to call it this way:

		

		multi(3, 9)

		

		The output will be: 27

		Without the parentheses, you would get the following error:

		

		File "<ipython-input-24-3ed107be4e98>", line 1

		multi 3,9

		^

		SyntaxError: invalid syntax

		

		When autocall is on default, you would be able to call the function without parentheses. In the always-on scenarios, you can call any function without parentheses all the time.

		Return autocall to default by typing: %autocall 1. The output will be: Automatic calling is: Smart.

		To turn on autocall all the time, type: %autocall 2. The output will be: Automatic calling is: Full

		%automagic

		Automagic allows us to use magic functions without the % that comes before them. By default, this feature is turned on. For instance, if you type in pwd in your iPython prompt, you will get the present working directory as your output. The function is helpful because if we know where we are, we can navigate to where we want to be.

		If you type in %automagic 0 you will turn the automagic function off. This means when you type pwd, the system will throw an error like the one below.

		

		NameError Traceback (most recent call last)

		<ipython-input-30-86938b1e80ee> in <module>

		——> 1 pwd

		

		NameError: name 'pwd' is not defined

		

		To get the current directory, you will have to enter pwd with the % prefix, like this:

		%pwd

		It’s a bit cumbersome to do, so turn automagic on by typing: %automagic 1. You will get this message: Automagic is ON, % prefix IS NOT needed for line magics.

		%cd

		This one works the same way as your machine works. It allows you to do change directories. We are going to be using it in the next section. Officially, the syntax is like this: %cd <directory>. Because automagic is on, you can drop the % sign.

		%dhist

		This magic command will print all the directories you have visited. It is useful when you are in a flurry of work and you want to get back to a specific directory and can’t remember where it is. It is a quick way of looking it up and going there. Every time you use cd command, the list is updated in the _dh variable. Below is an example of dhist command output:

		

		Directory history (kept in _dh)

		0: C:\Users\awesmestudent

		1: C:\Users\awesmestudent\python script

		2: C:\Users\awesmestudent\run

		3: C:\Users\awesomestudent\python script\assets

		

		%edit

		This prompts the text editor and allows you to edit a Python script. We are going to see how it works in the next section.

		%matplotlib

		This will activate matplotlib support. It won’t import a library. TkAgg is the default GUI toolkit for matplotlib. It is possible to request a different GUI backend. To see the list of those available, enter :

		%matplotlib—list

		Just a reminder: If you don’t understand any of this or you find it confusing, it will become clear as we use these tools.

		

	
		Running and Editing a Python Script

		

		We are going to use iPython to run a script and edit that script. Open your text editor and write the following code, and save it under with the py. Extension:

		

		journey = ["Don't", "Stop", "Beleiving"]

		for x in journey:

		print(x + "\n")

		

		You can copy and paste it into the file, and don’t fix the spelling error. We will do that later.

		Open iPython and cd to the directory where the file is stored.

		The syntax is like this:

		

		cd <directory>

		

		Here’s an example:

		

		cd C:\Users\acer\python script

		

		Once you have done that, type “run” followed by the filename. Like this:

		

		Run believe.py

		

		Our output from the code should be:

		

		Don’t

		Stop

		Beleiving

		

		Immediately we see the lyric is not right. The last word is misspelled, and maybe it could also use an exclamation point. To edit the file, we don’t need to navigate back to the text editor. We can open it through the iPython Prompt.

		On the next like type: edit filename, like this:

		

		edit believe.py

		

		iPython will open the file and you can then edit it. Remember to fix the spelling error and add an exclamation point:

		

		journey = ["Don't", "Stop", "Believing!"]

		for x in journey:

		print(x + "\n")

		

		When you are done editing, save the file and close the editor. iPython will execute the following result:

		

		Don't

		Stop

		Believing!

		

		Here’s how it all looks:

		

		
			[image: image]
		

		If you want to check the command you have run, you can type, “history” in the next line and press Enter. The console would display the commands you have run in this session in their order.

		In this example it would be:

		

		cd C:\Users\awesomestudent\python script

		run believe.py

		edit believe.py

		history

		

		If you look at the code, these are all the commands you have run unless you have been doing your exercises in one window and building on all the others in this chapter. In that case, you would have something a little bit more verbose.

		

	
		Running System Commands

		

		You will be able to run system commands from the iPython prompt. Any statement that starts with an exclamation point will be treated as a system command for your operating system. Here are some examples of system commands you can run to test this.

		!dir = This will give you information on the directory you are in.

		!date – This will give you the date according to your system.

		What is also interesting about system commands is that you can assign some of them to Python variables. For instance, you can have code like this:

		

		var = !date

		print(var)

		

		The output will be:

		

		[‘The current date is: Thu 12/10/2020 ‘, ‘Enter the new date: (mm-dd-yy) ‘]

		

		As you can see, the output is split where a new line forms, making a list. If you type: var?, this is what it would show you:

		

		Type: Slist

		

		String form: [‘The current date is: Thu 12/10/2020 ‘, ‘Enter the new date: (mm-dd-yy) ‘]

		

		Length: 2

		

		File: c:\awesomestudent\lib\site-packages\ipython\utils\text.py

		

		Docstring:

		

		List derivative with a special access attributes.

		

		These are normal lists, but with the special attributes:

		

		* .l (or .list) : value as list (the list itself).

		

		* .n (or .nlstr): value as a string, joined on newlines.

		

		* .s (or .spstr): value as a string, joined on spaces.

		

		* .p (or .paths): list of path objects (requires path.py package)

		

		Any values which require transformations are computed only once and

		

		cached.

		

		Another exciting thing you can do is work with both Python expressions and systems expressions at the same time.

		

		myVar = “friends are all you need”

		!echo = “She said {myVar}”

		

		The result of this code will be:

		

		= “She said friends are all you need”

		

		That is very handy. You can do calculations with it too. Run the following code to see:

		

		x = 2

		: y = 20

		z = y / x

		!echo “{y} divided by {x} equals to {z}”

		

		The output will be:

		

		“20 divided by 2 equals to 10.0”

		

		When you lose the quotation marks at !echo “{y} divided by {x} equals to {z}”, the output won’t have any quotations, but it will work

		

	
		Jupyter

		

		Now, we will start working with Jupyter.

		

	
		What Does it Do?

		

		Jupyter is an important data science tool that has the unique ability to accommodate code, human language, and a variety of other technologies. A data scientist can make calculations in several languages and display graphs and construct reports in the same space. This data can also be exported in popular formats like HTML, pdf, and Excel files. Jupyter’s integrative nature, ease of use, and intuitive design make it a popular choice. Jupyter is also a server side program that opens up in the browser. There is also a cloud version that can be run online. We are going to use the local one.

		

	
		A Quick Overview

		

		The purpose of this section is to get you familiar with working with Jupyter. One of the best ways to teach people is to show them how something works. So this section, we will be doing this most of the time. Please follow along.

		The Jupyter interface is divided into two parts: the header and the body. It is web-based and runs in a browser, so these terms carry the same meaning as those associated with websites.

		The body is composed of cells. Cells are one of the most critical concepts in Jupyter. Each cell can house different content, one can house code and run it and another can host markdown (a language similar to HTML) that can serve as an explainer or other purposes. You can add as many cells as you want and a cell can have as much code as is necessary. The markdown allows you to add text, images and make documents appealing to the eye. You can see how it can become a tool for crunching numbers and putting together beautiful reports. It shrinks down the number of tools one has to use by integrating them in one place.

		When you installed Anaconda, Jupyter Notebooks should be installed too. You can access it the long way or the quick way.

		The long way is going to your OS search and finding the Anaconda Navigator. The window will open a suite of apps that came with Anaconda, some already installed and some to be installed. Launch Jupyter Notebooks by clicking on the launch button. Do not open JupyterLabs.

		The short way is to open the Anaconda Prompt and type: jupyter notebook or to click on the program icon from the Start menu.

		When you have done this, your default browser will open to a page like this.

		

		
			[image: image]
		

		You will notice that some of your folders and files are listed. You can navigate your computer from the browser to open the files you want in Jupyter. On the top left corner, there are three tabs: files, running, and clusters. The file tab is the one we are currently under. It is rooted in the directory the server is started in.

		The running tab will display all the notebooks that are running at any given moment. As you open more notebooks and work, you can come here to keep track of everything or shut down some of the notebooks you no longer need. This is because closing the page/tabs of a notebook is not the same as closing its kernel. To shut it down completely, you have to shut down the kernel. Under this tab, you will also find running terminals if the notebook server is running locally.

		The “clusters” tab will give you a summary of iPython Parallel clusters, but you will need to install the iPython Parallel extension for this feature to work.

		To create and open a new notebook, you will need to navigate to the top right corner. Click on “new” and select “Python 3.” You will be taken to another page with an interface like this:

		

		
			[image: image]
		

		The horizontal block with In[] next to it is an example of a cell. Cells change their behavior according to their settings. Click on the cell and write the following code in it:

		

		8 + 9

		

		When you press Enter, the code will not execute. You can execute it by pressing CTRL + Enter or clicking on the play/run button in the header’s menu section.

		The output of the code will be: 17

		You will also notice that both the input cell and the output now share the same number. We need to run more code to show the significance of that.

		To add another cell, press the + button on the menu in the header.

		Now, add another cell below the new one by pressing B on your keyboard (for this to work, click elsewhere on the page or press ESC). Click on the cell above and write this code:

		

		print(“I am first”)

		

		Run the code and press A on your keyboard. Run the following code in the new cell you just created:

		

		print(“I am first”)

		

		As you will see, the code puts out the same message. If it were in any other situation, we would not know which of these two code blocks executed first. We would assume that the one that comes before the other fired first, but that would be false. This is where the numbers in the In and Out bracket help. They help tell which of the cells’ code was executed before which: 2 came before 3 but the way cells are arranged would not tell us this.

		

		
			[image: image]
		

		If we have multiple blocks running different kinds of codes, it might be tedious to click on one cell,execute, and then click another, and so on. The notebook solves this by allowing us to press Shift + Enter so we can execute the code easily by pressing Enter again when it focuses on the next one.

		Write the following code in the empty cell:

		

		if 10 > 2:

		print(“Hello Jupyter” * 3)

		

		Unfocus (don’t run the code), press B and write this code in the new cell:

		

		20 * 20

		

		Unfocus and add another cell. In it, write the following code:

		

		print(“I am getting the hang of this”)

		

		Warning: Do not copy and paste any of the code above. This may lead to errors.

		

		Go back to the first cell. Hold Shift and press Enter. You will see the code execute, then the next cell will be highlighted. When you press Enter again, that code will run. You can imagine doing this multiple times so you can quickly run code instead of selecting a cell and pressing Enter or navigating to the run button multiple times.

		Now, select or make a new cell. Go to the drop-down menu and select Markdown. You will see that the iPython like In[] expression disappears. This is because we have told Jupyter that we will not be running Python in that cell. Type the following in the cell:

		

		# Below I Am Going To Show You A Graph

		## Remember I Am Just A Learner

		Still an awesome student though

		

		Now, run the code and see that these three lines are the equivalent of the following HTML tags: <H1>, <H2>, and , respectively.

		Add a cell below and type this code in it:

		

		import matplotlib.pyplot as plt

		import numpy as np

		fig, ax = plt.subplots()

		ax.plot([1, 2, 3, 4], [5, 8, 2, 3])

		

		Now, the markdown above makes sense. We have displayed a graph in the notebook, and coupled with that is the data we ran. You can see how one can build a compelling document with all these tools. You can do a lot with markdown to customize your document and add multimedia to it. Combining that with all the other Python tools takes it further.

		

		
			[image: image]
		

		If you want to download the document, you can go to File and select Download. You can also explore some of the options there like “Save as” options.

		Markdown is a fairly easy language to learn. Here is a quick cheat sheet below to get you started (Lee, 2018):

		
			
				
				
			
			
					H1 to H6 Headings
					# Heading Text ## Heading Text ### Heading Text #### Heading Text ##### Heading Text ###### Heading Text
			

			
					Italics
					This text is italicized
			

			
					Bold
					This text is bold
			

			
					Blockquote
					> Blockquote paragraphs must have > a right-arrow bracket at the start > of every single line. > > Use a blank line for multiple paragraphs.
			

			
					Unordered List
					- Bullet item - Bullet item - Bullet item - Use a two-spaces to indent the next line
			

			
					Ordered List
					1. Numbered list item 2. Numbered list item 3. Numbered list item 1. Ordered lists can also be nested
			

			
					Mixed List
					1. Look as I mix list types! - Awesome right
			

			
					Horizontal Line
					–––––––– Note: You choose between three hyphens, asterisks and underscores. They will all work.
			

			
					Hyperlink
					This is an [example link](https://www.example.com)
			

			
					Image
					![Alt Text](http://example.com/image/path.jpg)
			

			
					Ignore markdown
					When you prefix markdown with *backslashes* formatting will be ignored
			

			
					Code Inline
					`Some code inline`
			

			
					Code Block
					``` This will support a block of code Several lines of code Good for illustration purposes ```
			

			
					Strikethrough
					~~The text in between will be crossed out~~
			

			
					Hard Line Break
					Some text\ A new line but not a new paragraph
			

			
					Table
					| First Header | Second Header | |——————|—————-—| | cell 1 content | cell 2 content | | column 1 content | column 2 content| Note: The blank line above is important
			

			
					Task Lists 
					- [x] Completed task - [ ] Something I am yet to do - [ ] \(Optional) Parenthese to be ignored
			

			
					Emoji 
					:emojicode:
			

		

		

		

	
		Understanding Modality

		

		The Jupyter notebook has modality, which means the behavior of the keyboard changes according to working mode. In the last section, although it might have appeared so, we were always careful about when you should use keyboard shortcuts and when you shouldn’t. This was because of modality..

		Two modes determine how the notebook will act. There is editing mode and command mode. You know you are in command mode when the margins on the left side of a cell are blue. You are in edit mode when a cell is highlighted green instead.

		Let’s illustrate modality. Click on a cell. Type d and then press Tab. This functions as code completion such as we learned in the iPython section. You will get suggestions that you can navigate. Because the cell has a green border, you are in editing mode. Now press Esc. Pressing Esc activates the command mode. You will notice when you press Tab in this mode, the notebook highlights the next cell in green instead of offering code completion.

		Below is a table of commands according to what mode is activated. It is important to learn commands because commands give us a quick, simple way of working through notebooks. It might not be a big issue in small projects to navigate back and forth using your cursor, but this can slow you down if you are working on a large document.

		The following tables are taken from Tutorialspoint (Jupyter Notebook - Editing - Tutorialspoint, n.d.).

		

		Command Mode (press Esc to enable)

		
			
				
				
				
				
			
			
					F
					find and replace
					1
					change cell to heading 1
			

			
					Ctrl-Shift-F
					open the command palette
					2
					change cell to heading 2
			

			
					Ctrl-Shift-P
					open the command palette
					3
					change cell to heading 3
			

			
					Enter
					enter edit mode
					4
					change cell to heading 4
			

			
					P
					open the command palette
					5
					change cell to heading 5
			

			
					Shift-Enter
					run cell, select below
					6
					change cell to heading 6
			

			
					Ctrl-Enter
					run selected cells
					A
					insert cell above
			

			
					Alt-Enter
					run the cell and insert below
					B
					insert cell below
			

			
					Y
					change cell to code
					X
					cut selected cells
			

			
					M
					change cell to markdown
					C
					copy selected cells
			

			
					R
					change cell to raw
					V
					paste cells below
			

			
					K
					select cell above
					Z
					undo cell deletion
			

			
					Up
					select cell above
					D,D
					delete selected cells
			

			
					Down
					select cell below
					Shift-M
					merge selected cells, or current cell with cell below if only one cell is selected
			

			
					J
					select cell below
					Shift-V
					paste cells above
			

			
					Shift-K
					extend selected cells above
					L
					toggle line numbers
			

			
					Shift-Up
					extend selected cells above
					O
					toggle output of selected cells
			

			
					Shift-Down
					extend selected cells below
					Shift-O
					toggle output scrolling of selected cells
			

			
					Shift-J
					extend selected cells below
					I,I
					interrupt the kernel
			

			
					Ctrl-S
					Save and Checkpoint
					0,0
					restart the kernel (with dialog)
			

			
					S
					Save and Checkpoint
					Esc
					close the page
			

			
					Shift-L
					toggles line numbers in all cells, and persist the setting
					Q
					close the page
			

			
					Shift-Space
					scroll notebook up
					Space
					scroll notebook down
			

		

		

		Edit Mode (press Enter to enable)

		
			
				
				
				
				
			
			
					Tab
					code completion or indent
					Ctrl-Home
					go to cell start
			

			
					Shift-Tab
					tooltip
					Ctrl-Up
					go to cell start
			

			
					Ctrl-]
					indent
					Ctrl-End
					go to cell end
			

			
					Ctrl-[
					dedent
					Ctrl-Down
					go to cell end
			

			
					Ctrl-A
					select all
					Ctrl-Left
					go one word left
			

			
					Ctrl-Z
					undo
					Ctrl-Right
					go one word right
			

			
					Ctrl-/
					comment
					Ctrl-M
					enter command mode
			

			
					Ctrl-D
					delete the whole line
					Ctrl-Shift-F
					open the command palette
			

			
					Ctrl-U
					undo selection
					Ctrl-Shift-P
					open the command palette
			

			
					Insert
					toggle overwrite flag
					Esc
					enter command mode
			

			
					Ctrl-Backspace
					delete word before
					Ctrl-Y
					redo
			

			
					Ctrl-Delete
					delete word after
					Alt-U
					redo selection
			

			
					Shift-Enter
					run cell, select below
					Ctrl-Shift-Minus
					split cell at cursor
			

			
					Ctrl-Enter
					run selected cells
					Down
					move cursor down
			

			
					Alt-Enter
					run cell and insert below
					Up
					move cursor up
			

			
					Ctrl-S
					Save and Checkpoint
					
					
			

		

		

		

	
		Jupyter Cell Magic Functions

		

		We will briefly look at some of the most helpful magic functions you can use in Jupyter.

		%%js/javascript

		This magic function allows you to work with Javascript code in a cell. This can be handy when you want to use other tools available to JS to improve your work. Some prefer using JavaScript for certain tasks. Let’s illustrate how this works.

		In a cell, type the following code:

		

		%%js

		let x = [2, 22, 9, 10, 50, 100]

		function containsOdd(x){

		console.log(x)

		x.forEach(item => {

		let be = item % 2

		console.log(item)

		if(be != 0){

		alert("We found an odd number")

		console.log("inner")

		}

		} )

		}

		containsOdd(x);

		

		You should get an alert that says: We found an odd number. We have intentionally illustrated this with multiple code lines involving loops, arrays, and functions to show that functionality is not limited. You can make a mini-app or add js visualizations in the cell and run it.

		%%html

		If markdown is not your strong suit and you are more comfortable with HTML, you can use the magic function above to use HTML. Just make sure that your cell is set to Code not markdown. This is because Python needs to run and render your HTML.

		Write the following in a code cell:

		%%html

		<h1> This is H1 Tag </h1>

		<p> This is a paragraph about how interesting it is that I have managed to do this in a notebook that essentially runs on Python. </br> Look, I have added a new line</p>

		Press run and you will see HTML is rendered for the page.

		%who_Is

		This magic command will list all the variables in the cell. You can also specify the type of information you want to see like functions, lists, or strings.

		The following tables list some of the most important magic functions you can use (Mueller, n.d.):

		
			
				
				
				
			
			
					Magic Function
					Type Alone Provides Status?
					Description
			

			
					%alias
					Yes
					Assigns or displays an alias for a system command.
			

			
					%autosave
					Yes
					Displays or modifies the intervals between automatic Notebook saves. The default setting is every 120 seconds.
			

			
					%cls
					No
					Clears the screen.
			

			
					%colors
					No
					Specifies the colors used to display text associated with prompts, information system, and exception handlers. You can choose between NoColor (black and white), Linux (default), and LightBG.
			

			
					%config
					Yes
					Enables you to configure IPython.
			

			
					%file
					No
					Outputs the name of the file that contains the source code for the object.
			

			
					%hist
					Yes
					Displays a list of magic function commands issued during the current session.
			

			
					%install_ext
					No
					Installs the specified extension.
			

			
					%load
					No
					Loads application code from another source, such as an online example.
			

			
					%load_ext
					No
					Loads a Python extension using its module name.
			

			
					%lsmagic
					Yes
					Displays a list of the currently available magic functions.
			

			
					%magic
					Yes
					Displays a help screen showing information about the magic functions.
			

			
					%matplotlib
					Yes
					Sets the backend processor used for plots. Using the inline value displays the plot within the cell for an IPython Notebook file. The possible values are gtk’; ‘gtk3’; ‘inline’; ‘nbagg’; ‘osx’; ‘qt’; ‘qt4’; ‘qt5’; ‘tk’; and ‘wx’.
			

			
					%paste
					No
					Pastes the content of the Clipboard into the IPython environment.
			

			
					%pdef
					No
					Shows how to call the object (assuming that the object is callable).
			

			
					%pdoc
					No
					Displays the docstring for an object.
			

			
					%pinfo
					No
					Displays detailed information about the object (often more than is provided by help alone).
			

			
					%pinfo2
					No
					Displays extra detailed information about the object (when available).
			

			
					%reload_ext
					No
					Reloads a previously installed extension.
			

			
					%source
					No
					Displays the source code for the object (assuming that the source is available).
			

			
					%unalias
					No
					Removes a previously created alias from the list.
			

			
					%unload_ext
					No
					Unloads the specified extension.
			

			
					%%writefile
					No
					Writes the contents of a cell to the specified file.
			

		

		

		

	
		IPyWidgets

		

		IPyWidgets are a Python library that allows you to create interactive HTML GUIs, which are called widgets. There is a wide variety of them. You can make sliders, textboxes, buttons and more. You can use them to explore data in creative ways and synchronize information across two different languages like Python and Javascript. The widgets will be rendered through Python, but the result on the user’s end (the front end) will be HTML and JavaScript. This means you can use Javascript to communicate data.

		Widget Basics

		To use iPyWidgets, you need to import them first. You will need to use the following code to do so:

		

		import ipywidgets as widgets

		

		Widgets have a display mechanism which allows them to be displayed. Widgets are always displayed in the output area below the cell. You can also use the display() function to display widgets.

		This means you can display a widget in one of two ways:

		

		widgets.IntSlider()

		

		Or

		

		a = widgets.IntSlider()

		

		display(a)

		

		Try it. The output will be like this:

		

		
			[image: image]
		

		Depending on your situation, one will be more appropriate than the other. You can close a widget by using the close() method. Usually, you would call this method in the next cell below the widget.

		You can learn more about a widget’s properties by using the value property. It works because widgets are objects. Here is an example of it below:

		

		widgets .value

		

		You can also use the dot notation to change the value of the widget. Like this:

		

		widgets.value = 50

		

		Widgets all also have keys, descriptions, and disabled properties. You can view the entire lists of a widgets stateful properties by using:

		

		widgets.keys

		

		You set a widget’s properties like this:

		

		widgets.Text(value=”I believe in life”, disabled=False)

		

		
			[image: image]
		

		We can give the widget properties as we are declaring it in the cell. We can also use link or jslink method to link values of two widgets so when the value of one gets updated, the other gets updated too.

		Like this:

		

		s = widgets.IntText()

		b = widgets.IntSlider()

		display(s, b)

		

		link = widgets.jslink((s, 'value'),(b, 'value'))

		

		Warning: do not copy and paste. This might give you errors. Type manually.

		

		
			[image: image]
		

		When you replace the ‘Int’ with ‘Float,’ the slider will display and work with float numbers using widgets keyword to instantiate widgets. In reality, we have to do so because we imported them under the name(widgets) here:

		

		import ipywidgets as widgets

		

		We could have done this, for instance:

		

		import ipywidgets as wids

		

		And we would be using the keyword, “wids,” for our work. like this:

		

		wids.Text(value=”life is peachy”, disabled=True)

		

		Once you have linked widgets, you can unlink them with the following code:

		

		#link.unlink()

		

		Interact

		This widget lets you explore data and code interactively. This is one of the most exciting features that widgets have to offer, so let’s go through some of its features and usefulness below.

		Interact generates UI controls for arguments of functions. When you manipulate the controls, the function is called. Before you can explore a function, you will need to define that function first. As you work with the UI and change the argument’s value, the function executes and gives out answers, which are then displayed in real-time. However, it will act differently based on the arguments you pass through it. Take the following function for an example:

		

		def h(x):

		return x

		

		If you pass x=10, a slider will appear which will keep passing whatever figure is indicated by the slider, and the answer will be returned on the right-hand side. You would pass the function like this:

		

		interact(h, x=10);

		

		Depending on other arguments types you pass, interact will display something different. If you pass a string, interact will give you a text box instead of a slider. If you pass a boolean, it will give you a checkbox. Here is an example of both:

		

		interact(h, x=“Chocolate rocks!”)

		interact(h, x=“True”)

		

		Interact can work with functions that have many arguments. You just have to make sure that the “x” in this case matches the argument you want to bind UI to.

		So if you have a function like this:

		

		def f(o, l):

		return (o, l)

		

		You can create a different interact UI for each argument like this:

		

		interact(o=”Life is summer”, l = 10)

		

		O will produce a textbox with the words “Life is summer” and l will give us a slider at ten.

		In some cases, you might want to create a UI with a fixed value. This will prevent that value from being changed as you explore the function of the data. When you do this, interact will not produce UI for the arguments with the fixed value. Here is some example code:

		

		def wix(a, b):

		return (a, b)

		interact(wix, a=fixed(50), b= 15)

		

		As we saw, when you pass an integer, you will get an integer slider. This also happens when you pass a float. In some cases, you might want to define some of the features of the slider. You might want the slider to have limits or to increment by ten or three instead of one. “Interact” gives you the ability to do so with these properties: min, max, step, and value.

		“Min” allows you to set the minimum number for the slider. This is the bottom limit of your slider which sits on the left side. You can set this number to zero, a negative number, or a positive number. “Max” sets the highest number that the slider can reach. “Step” sets the value by which the slider will increment or decrement as you move it. “Value” is the number that the slider gets instantiated at.

		Here is an example of one below:

		

		interact(f, x=widgets.FloatSlider(min=-50.0, max=75.0, step=2, value=5)

		

		This can be simplified by using the following syntax:

		

		def f(a):

		return (a)

		interact(f, a=(10.0, 90.0, 1.0)

		

		The code above sets a float slider with a minimum of 10.0, a maximum of 90.0 that increments of decrements by 1.0. If you provide only the first two arguments, you will only set the min and the max value. You might wonder from the code above how you will set a default value. To do so, you have to pass the initial value when you define the function, like this:

		

		@interact(a=(-10,50, 0.5))

		def f(a=10):

		

		return a

		The code above will give you a slider with a default value of ten.

		Another thing we haven’t discussed is how you can use interact to build dropdown menus. To do this, you have to pass a list instead of strings. Like this:

		

		interact(f, a=[‘Pop’,’Rock’, ‘Classic’, ‘R&B’, ‘Hip Hop’])

		

		The code above will produce a dropdown menu of music genres contained in the list. In some cases, you want a drop-down menu that can pass non-string values. To this, you must pass label/value pairs. When a person pics a label, the value that is paired with that label will be passed. Here’s an example below:

		interact(f, a=[('option one', 30), ('option two', 28),(‘option three’, 75),(‘option four’, 99)]);

		In this case, when you choose “option tw0,” you will get twenty-eight and so on.

		

	
		Interactives

		

		Interactive is another function that works much like interact except it allows you to reuse widgets and access data that is bound to the UI. Interactives do not display data automatically like interact does. So, you have to define a display method in the function. Here is how the syntax of the function has to look for interactives to display the data:

		from IPython.display import display

		def f(x, y):

		display(x + y)

		return x+y

		Interactives return widget instances when you run:

		

		widget = interactive(f, x =20, y= 70)

		

	
		Types of Widgets

		

		Below, we are going to look at types of widgets and their properties. You will be able to use the syntax contained to make your own widgets. This section will show you how to control the different characteristics of widgets. We are going to start with widgets we are already familiar with and build to new ones.

		

	
		Numeric Widgets

		

		The first types of widgets are numerics. They are made to display numbers. Integers and floats, bounded and unbounded, share the same kind of structure whether they are dealing with floats or integers.

		Below is an example of a float slider with the properties you can manipulate:

		

		widgets.FloatSlider(

		value=90.0,

		min=0.0,

		max=100.0,

		step=5.0,

		description='This is a Float slider:',

		disabled=False,

		continuous_update=False,

		orientation='horizontal',

		readout=True,

		readout_format='.1f',

		)

		

		The first four values in the list will be familiar. We have already talked about those. The description variable allows you to set the label that will be displayed next to the slider. In this case, it will say, “This is a Float slider.” Orientation tells us how the slider should be displayed. The structure will be similar with an Int slider too.

		

		widgets.IntSlider(

		value=7,

		min=0,

		max=100,

		step=1,

		description='This is an Int slider',

		disabled=False,

		continuous_update=False,

		orientation='horizontal',

		readout=True,

		readout_format='d'

		)

		

		If you want either of the sliders to be displayed vertically, you will need to change orientation to vertical. This way, it looks more like a fader. It might be nice if you labeled it “volume” by changing the description. Perhaps give the volume the value of thirty because it is not too quiet or too loud. Like this:

		

		widgets.IntSlider(

		value=30,

		min=0,

		max=100,

		step=1,

		description='Volume',

		disabled=False,

		continuous_update=False,

		orientation='vertical',

		readout=True,

		readout_format='d'

		)

		

		Range sliders

		Range sliders produce a UI which allows you to define a range by controlling two points on one the slider. There are Int range sliders and Float range sliders. Here is the syntax for both:

		

		widgets.IntRangeSlider(

		value=[10, 50],

		min=0,

		max=100,

		step=1,

		description='Range Test:',

		disabled=False,

		continuous_update=False,

		orientation='horizontal',

		readout=True,

		readout_format='d',

		)

		widgets.FloatRangeSlider(

		value=[2.3, 8.0],

		min=0,

		max=10.0,

		step=0.1,

		description='Float Range Test:',

		disabled=False,

		continuous_update=False,

		orientation='horizontal',

		readout=True,

		readout_format='.1f',

		)

		

		You will notice that the value argument now passes a list with two values. The values inside define the default points where the control button will be on the slider. By default we will have a range of 2.3 to 8.0 for the Float range slider(2.3 - 8.0) and a range of ten to fifty for the Int range slider (10-50). By moving the button in either direction, we can widen and shrink the range or increase or decrease it in volume.

		Progress

		IntProgress allows the user to visualize progress of different functions. You can give these bars Bootstrap-like themes - success, info, warning, or nothing under the bar_style attribute. You can use FloatProgress or IntProgress to do this. Here is examples of both:

		

		widgets.IntProgress(

		value=50,

		min=0,

		max=100,

		step=1,

		description='Loading:',

		bar_style=''info”,

		orientation='horizontal'

		)

		

		This will display a bar that is at the halfway mark.

		

		widgets.FloatProgress(

		value=9.0,

		min=0,

		max=10.0,

		step=0.1,

		description='Loading:',

		bar_style='warning',

		orientation='horizontal'

		)

		

		This will display a bar that is 90% filled with red color.

		Bounded Text Widgets

		These allow you to display text box-looking widgets that accept numbers within a specified range. When they are focused on, users may choose to use the arrows on their right or arrow keys to go increments or decrements. Alternatively, they can type the number they want in the field, but if the number they type is out of bounds, the text box will be outlined red and will reject the value entered.

		Below is the syntax for the BoundedInText widget. This means it will only accept integers between the specified range.

		

		widgets.BoundedIntText(

		value=5,

		min=0,

		max= 18,

		step=1,

		description='Bounded Int Text:',

		disabled=False

		)

		

		Below is an example of BoundedFloatText configured to accept values ranging from 1.0 to 20.0:

		

		widgets.BoundedFloatText(

		value=10.0,

		min=1.0,

		max=20.0,

		step=0.5,

		description='Bounded Float Text:',

		disabled=False

		)

		

		An alternative to BoundedText widgets are those that are not bounded. These widgets can take any value as long as that value fits the formats specified. For instance, an IntText will only take integers and a FloatText will only take float numbers. When the number does not fit the format, the text box will be lined red.

		Below are are examples of both:

		

		widgets.IntText(

		value=200,

		description='Put in any integer:',

		disabled=False

		)

		

		The default value in the IntText will be 200.

		

		widgets.FloatText(

		value=11.5,

		description='Put in any float number:',

		disabled=False

		)

		

		The default in the text box will be 11.5

		

	
		Boolean Widgets

		

		As the name suggests, Boolean widgets are on or off widgets that can be either a or b, True or False. In this category, we have only three widgets.

		The first widget is the toggle button. Depending on the use case, you will want to set its value to either True or False. They have a tooltip feature that displays an explanation when a user hovers over the button with the cursor. The tooltip is defined under the tooltip attribute. They also are given Bootstrap-like styles or no styles at all.

		Here is an example of one:

		

		widgets.ToggleButton(

		value=False,

		description='Click me',

		disabled=False,

		button_style='',

		tooltip='You will see magic',

		icon='check'

		)

		

		The next Boolean widget is the checkbox. You can label it under the “description” argument. Below is an example of one:

		

		widgets.Checkbox(

		value=False,

		description='Check to show',

		disabled=False

		

		The last one is a read-only widget which indicates if something is valid or not. The widgets display two values, Valid and Invalid. The description attribute specifies which one is the case. Here is how it looks:

		

		widgets.Valid(

		value=False,

		description='Valid',

		)

		

	
		Selection Widgets

		

		Selection widgets are widgets that allow one to choose from a variety of options. These include dropdown lists, radio buttons, and so on. To pass options, use lists or value pairs. We looked at dropdown widgets in our discussion of Numerical widgets, so we will not go over them here. However, I will show another syntax you can use for dropdown widgets:

		

		widgets.Dropdown(

		options=['1', '2', '3'],

		value='2',

		description='Number:',

		disabled=False,

		)

		

		Next on the list are radio buttons which are optimal when you want only one option to be selected at a time. Here is an example of one:

		

		widgets.RadioButtons(

		options=['The Matrix', 'Matrix: Reloaded', 'Matrix: Revolutions'],

		value='The Matrix’,

		description='Which is the best Matrix movie?:',

		disabled=False

		)

		

		The widgets will present the Matrix movies and a user will have to choose which one they think is better. They cannot pick one or two because that would defeat the purpose of the question.

		Another type similar to radio buttons is selection widgets because they allow users only to pick one option. They are able to use a variety of UIs to do this. We look at one example of differing UIs.

		The following selection widget will display what looks like a text box with rows. When a user selects a value, that value gets highlighted. It also has the rows attribute which specifies the number of rows in the box.

		

		widgets.Select(

		

		options=['The Matrix', 'Matrix: Reloaded', 'Matrix: Revolutions', Matrix 4’],

		

		value='Matrix: Revolutions',

		

		description=’Choose a Matrix movie:',

		

		disabled=False

		

		)

		

		You can also present the same options in a slider. As the user moves the slider, the values will change to the movie they want. Here is the example of that:

		

		widgets.SelectionSlider(

		

		options=['The Matrix', 'Matrix: Reloaded', 'Matrix: Revolutions', 'Matrix 4'],

		

		value='sunny side up',

		

		description='Slide to pick a Matrix movie',

		

		disabled=False,

		

		continuous_update=False,

		

		orientation='horizontal',

		

		readout=True

		

		)

		

		SelectMultiple lets you select more than one option when you hold Shift or Ctrl and click on an option using arrow keys.

		

		widgets.SelectMultiple(

		

		options=['The Matrix', 'Matrix: Reloaded', 'Matrix: Revolutions',’Matrix 4’],

		

		value=['Matrix 4'],

		

		description=’Add the Matrix movies you want',

		

		disabled=False

		

		)

		

		The last select widget we will discuss is the ToggleButtons select widget. This one works by presenting a set of buttons. Only one can be selected at a time. In our example, let's imagine that when you press a button with a movie name, that movie plays. The button will be highlighted to show the film that is now playing. You will also be able to add tooltips in Bootstrap-like styles.

		

		widgets.ToggleButtons(

		

		options=['The Matrix', 'Matrix: Reloaded', 'Matrix: Revolutions',’Matrix 4’],

		

		description='Play a movie by clicking:',

		

		disabled=False,

		

		button_style='success',

		

		tooltips=['Neo has to choose', 'Neo Meets the Architect', 'Machines rain fire', ‘No one knows’],

		

		)

		

		There are many more widgets out there that can add to your document to bring interactivity to them.

		

	
		Chapter 4: Pandas

		

		
			[image: image]
		

		Pandas is an open-source Python library that provides easy to use data structures and other data analysis tools. It has a wide range of applications in a wide range of fields. In this chapter, we will introduce you to pandas. As we go on, you will see how these various tools we are talking about create the data analytics toolkit.

		Here the benefits of pandas as listed in the documentation (Package overview — pandas 1.1.5 documentation, n.d.):

		

		●  Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

		

		●  Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

		

		●  Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

		

		●  Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

		

		●  Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

		

		●  Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

		

		●  Intuitive merging and joining data sets

		

		●  Flexible reshaping and pivoting of data sets

		

		●  Hierarchical labeling of axes (possible to have multiple labels per tick)

		

		●  Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format

		

		●  Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting, and lagging

		

	
		Setting Up Your Environment

		

		When you installed Anaconda, pandas should have also been installed. To make sure that was the case, open your Anaconda Prompt and run the following command:

		

		conda install pandas

		

		If pandas is installed, it will tell you. If it isn’t, pandas will install.

		

	
		Pandas Data Structures

		

		pandas has two data structures: DataFrame and Series. These are best construed as containers for lower dimensional data types. This means that more complex data structures hold those with few dimensions inside. In our case, DataFrames contain Series and Series contain scalar. Scalars are data structures that only have a single value. They can be a character, number, or Boolean.

		The data inside DataFrames or Series can be changed. Series length cannot be changed, but columns can be added to a DataFrame. This shouldn’t worry you because most of the methods used in pandas make new objects and do not alter the original data. pandas offers immutability where it is appropriate. DataFrames are two-dimensional, size-mutable, and often contain differently labeled columns. Series are one-dimensional, their size cannot be changed, and they have homogeneously labeled columns (Package overview — pandas 1.1.5 documentation, n.d.) .

		To start working with panda, import it using the following code:

		

		import pandas as pd

		

		pd is the agreed-upon alias for pandas.

		We will work with pandas in Jupyter. Write that code and any that follow after in Jupyter notebook. Make a new notebook and start working.

		

	
		DataFrames & Series

		

		We will make a Dataframe structure to illustrate how data is stored and displayed by pandas DataFrame. If you know JSON or are familiar with JavaScript objects, the syntax will be easy to understand. For instance, columns and their labels are properties and rows are indexes.

		The following DataFrame Structure captures South Park’s main characters, their names, ages, and sexess. Go to Jupyter Notebooks and type in this code after you import pandas:

		

		df = pd.DataFrame({

		"Name": ["Eric Cartman",

		"Stan Marsh",

		"Kyle Broflovlski",

		“Kenny McCormick”],

		"Age": [10, 10, 10,10],

		"Sex": ["male", "male", "male",”male”]}

		)

		

		When you type df in the next line and run, it should give you a table like this one:

		

		Name     Age  Sex

		0  Eric Cartman  10  male

		1  Stan Marsh  10  male

		2  Kyle Broflovlski  10  `male

		3  Kenny McCormick  10  `male

		

		You will notice that this looks more like a table you would use in a program like Excel to store that. That is the concept behind DataFrames, but this data can be presented in Series data types. We have chosen this example to show that pandas is capable of storing different kinds of data. For instance, in the example above, there is textual and numerical data stored.

		If you wanted to access names on the table alone, you would type:

		

		df[“name”]

		

		When you do this, pandas will retrieve a Series which is a column. The numbers on the left are row numbers or indexes. It will output something like this:

		

		0 Eric Cartman

		1 Stan Marsh

		2 Kyle Broflovlski

		3 Kenny McCormick

		

		In some circumstances, it might be best to work with a Series. The syntax for creating one is like this:

		

		shoppingList = pd.Series([‘eggs’,’bread’,’milk’,’butter’])

		

		If you call shoppingList, you will get an output like this:

		

		0 eggs

		1 bread

		2 milk

		3 butter

		

		This is why we say that columns in DataFrames are Series because they have the same structure. Series are one-dimensional structures and you can access their data by their index. Series indexes can be customized so that you don’t have to use numbers to access them.

		

	
		Labelling Indexes In A Series

		

		So if we had to log how many push-ups you did in a day, we could present that in one of two ways.

		We could write the following code:

		

		pushups = p.Series([200, 100, 20, 50, 12, 20, 34])

		

		This will give us a series like this:

		

		0 200

		1 100

		2 20

		3 50

		4 12

		5 20

		6 34

		

		So, if you wanted to know how many pushups you did on Wednesday you would type: pushups[2]. Wouldn’t it be better if you could just access the data by the name of the day instead of a number that might as well be arbitrary? It turns out you can do this in pandas. Here is how:

		

		pushups = [200, 100, 20, 50, 12, 20, 34]

		

		#first, build an array/list.

		

		pushups = pd.Series(pushups, index=[‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Sunday’])

		

		#then, you pass the array index argument with the  labels for your indexes

		

		The output of the Series will look like this

		

		Monday 200

		Tuesday 100

		Wednesday 20

		Thursday 50

		Friday  12

		Saturday 20

		Sunday 34

		

		To find out how many pushups you did on Wednesday, you will type: pushups[‘Wednesday’].

		You can still access data with index numbers. If you want to access Wednesday, you can still use pushups[2].

		

	
		Converting Tuples & Dictionaries Into A Series

		

		In pandas, you can convert tuples into Series too. So, if you have a tuple like this one:

		

		tups = (‘Mind Freeze’, 2020, ‘May, ‘15’)

		

		To convert it into a Series, you would use the following syntax:

		

		s = pd.Series(tups)

		

		The print(s) function will give you this output:

		

		0 Mind Freeze

		1 2020

		2 May

		3 15

		

		You can also convert dictionaries into Series. So let’s assume you have a dictionary like this one:

		

		dict = {‘Album’ : ‘Fires Within Fires’, ‘Artist’ : ‘Neurosis’, ‘Tracks’ : 5, ‘Year’ : 2020, ‘Rating’: 85 }

		

		#conversion below

		

		Ds = pd.Series(dict)

		

		You can retrieve specific elements this way:

		

		Ds[[‘Album’,’Artist’]

		

		Your output will be:

		

		Album  Fires Within Fires

		Artist  Neurosis

		

	
		Accessing Data In A DataFrame

		

		DataFrames are two-dimensional unlike Series. This means there are two ways that one can access their data. They can access it by using the row index or the column index. Earlier, we illustrated how data in a DataFrame can be accessed using a column index in our South Park characters example. You can access a data row in a DataFrame with the following syntax.

		

		df.ix[0]

		

		This will give us the following output, working with our South Park example:

		

		Name  Eric Cartman

		Age 10

		Sex male

		

		This way, we have accessed Cartman’s profile.

		As you can see, all of our rows are still numbers. If we wanted to change them, we would use the following syntax:

		

		df.index[‘first one’, ‘second one’, ‘third one’, ‘forth one’]

		

		Our output of the South Park DataFrame would look this:

		
			
				
				
				
				
			
			
					
					Name
					Age
					Sex
			

			
					first one
					Eric Cartman
					10
					male
			

			
					second one
					Stan Marsh
					10
					male
			

			
					third one
					Kyle Broflovlski
					10
					male
			

			
					fourth one
					Kenny McCormick
					10
					male
			

		

		

		As you can see, our table’s row column does not have a name and is left empty. We can fix that with the following syntax.

		

		df = df.set_index([‘Order’])

		

		The output will then be:

		
			
				
				
				
				
			
			
					Order
					Name
					Age
					Sex
			

			
					first one
					Eric Cartman
					10
					male
			

			
					second one
					Stan Marsh
					10
					male
			

			
					third one
					Kyle Broflovlski
					10
					male
			

			
					fourth one
					Kenny McCormick
					10
					male
			

		

		

		Now, the index row has a column attribute so we can access it’s content. Like this:

		

		df.ix[:, ‘Order’]

		

		If you wanted to access a particular value in a table, you would have to use the following syntax:

		

		df.ix[row , column]

		

		Here is an example:

		

		df.ix[‘third one’, ‘Name’]

		

		Output: Kyle Broflovlski

		

	
		Deleting Columns

		

		Let’s say you have data in DataFrame and you find some of the data in it not relevant to your interest. You can delete that column in the following ways:

		

		del df[‘sex’]

		

		It will return a table without the sex column.

		
			
				
				
				
			
			
					Order
					Name
					Age
			

			
					first one
					Eric Cartman
					10
			

			
					second one
					Stan Marsh
					10
			

			
					third one
					Kyle Broflovlski
					10
			

			
					forth one
					Kenny McCormick
					10
			

		

		

		df.drop(‘age’, axis=1), will return:

		
			
				
				
			
			
					Order
					Name
			

			
					first one
					Eric Cartman
			

			
					second one
					Stan Marsh
			

			
					third one
					Kyle Broflovlski
			

			
					forth one
					Kenny McCormick
			

		

		

		

	
		How to Read and Write Data in Pandas

		

		You can use the pandas read function to read data from various formats — Excel, SQL, JSON, HTML, gbq, CSV, and more. Prefix every file format with the read keyword like this:

		

		computerUsage= pd.read_csv(‘data/computerUsage.csv’)

		

		An underscore follows the read method, and then the file format that is to be read is entered. This time, that file format is CSV. In parenthesis is the directory on the computer where the file is saved so pandas can access it.

		When you call the DataFrame, entering the name of it and pressing Enter, you will be shown the first five and the last five rows of the data. 

		Note: A version of this table is available at the end of the chapter you can use it to follow along. That version is used extensively later, so it is optional if you participate now.

		
			
				
				
				
				
				
				
				
			
			
					
					From
					To
					Code
					Hearthstone
					Passive
					Reading
			

			
					1
					1/1/2019
					1/6/2019
					0.09 h
					20.60 h
					2.13 h
					9.88 h
			

			
					2
					1/7/2019
					1/13/2019
					0.00 h
					42.71 h
					1.60 h
					11.05 h
			

			
					3
					1/14/2019
					1/20/2019
					0.09 h
					14.95 h
					0.00 h
					21.78 h
			

			
					4
					1/21/2019
					1/27/2019
					0.00 h
					12.61 h
					0.09 h
					22.91 h
			

			
					5
					1/28/2019
					2/3/2019
					0.00 h
					26.97 h
					5.83 h
					22.91 h
			

			
					26
					7/1/2019
					7/7/2019
					11.44 h
					0.70 h
					9.64 h
					1.51 h
			

			
					27
					7/8/2019
					7/14/2019
					11.80 h
					4.87 h
					3.74 h
					7.32 h
			

			
					28
					7/15/2019
					7/21/2019
					0.74 h
					4.09 h
					4.15 h
					17.29 h
			

			
					29
					7/22/2019
					7/28/2019
					4.37 h
					2.52 h
					8.77 h
					24.42 h
			

			
					30
					7/29/2019
					7/31/2019
					5.01 h
					1.07 h
					3.89 h
					12.18 h
			

		

		

		[32 rows x 6 columns]

		Above is an example that shows a CSV of computer usage from a single user spanning weeks. We have the first five entries and the last five. On the bottom, pandas gives us the dimension of the DataFrame.

		If you want to access a specified number of the first rows of the DataFrame, you will do this:

		

		computerUsage.head(10)

		

		Note: Head is the method used to extract rows from the front, tails is the method used to get the last. So computerUsage.tail(10) would return the last ten in the DataFrame.

		

		Head extracts the first ten rows, so your output will be:

		
			
				
				
				
				
				
				
				
			
			
					
					From
					To
					Code
					Hearthstone
					Passive
					Reading
			

			
					0
					1/1/2019
					1/6/2019
					0.09 h
					20.60 h
					2.13 h
					9.88 h
			

			
					1
					1/7/2019
					1/13/2019
					0.00 h
					42.71 h
					1.60 h
					11.05 h
			

			
					2
					1/14/2019
					1/20/2019
					0.09 h
					14.95 h
					0.00 h
					21.78 h
			

			
					3
					1/21/2019
					1/27/2019
					0.00 h
					12.61 h
					0.09 h
					22.91 h
			

			
					4
					1/28/2019
					2/3/2019
					0.00 h
					26.97 h
					5.83 h
					22.91 h
			

			
					6
					2/4/2019
					2/10/2019
					0.22 h
					33.45 h
					3.49 h
					10.72 h
			

			
					7
					2/11/2019
					2/17/2019
					0.01 h
					39.99 h
					9.52 h
					7.54 h
			

			
					8
					2/18/2019
					2/24/2019
					0.00 h
					43.20 h
					10.99 h
					5.54 h
			

			
					9
					2/25/2019
					3/3/2019
					0.00 h
					10.63 h
					19.78 h
					6.71 h
			

		

		

		[ 10 rows x 6 columns]

		When you get data, it is always good to have a basic overview of the data. The described method helps with that. Here is an illustration of it below:

		

		
			[image: image]
		

		The data had to be cleaned so that the ‘h’ values that were in the table did not change numerical values into strings. The CSV file was copied into the directory of Jupyter that was being run, that is why the directory(this part “(“Weekly stats.csv”)”) only includes the file name.

		

	
		Learning More About the Data

		

		We can learn more about the data types that we have by using:

		

		computerUsage.dtypes

		

		The output will be:

		

		From  object

		

		To   object

		

		Code   float64

		

		Hearthstone  float64

		

		Passive   float64

		

		Reading   float64

		

		dtype: object

		

		Notice: We didn't need to use parentheses to call this function because dtypes is an attribute of the DataFrame.

		

		The results tell us there are no integers, only floats and strings. Strings are referred to as objects in the output. If the DataFrame had integers, they would be indicated like this: int64.

		To get a technical summary of the data, use the following method:

		

		computerUsage.info()

		

		The output will be:

		

		<class 'pandas.core.frame.DataFrame'>

		RangeIndex: 31 entries, 0 to 30

		Data columns (total 6 columns):

		#  Column  Non-Null Count  Dtype 

		

		—- ———         ———————   ——- 

		

		0  From    31 non-null   object

		1  To    31 non-null   object

		2  Code    31 non-null   float64

		3  Hearthstone   31 non-null   float64

		4  Passive   31 non-null   float64

		5  Reading   31 non-null   float64

		dtypes: float64(4), object(2)

		memory usage: 1.6+ KB

		

		The method above starts by telling us that this is a DataFrame. It also, tells us how many entries are in the DataFrame and gives us the names of the columns. These are now indexed at the far left side. Then, it tells us what sorts of data types are held in each row in the far right column. It then tells us how many data instances of those data types appear by row. At the bottom, we have the amount of RAM occupied by the data.

		

	
		Writing A DataFrame to A File

		

		When working on a project, your colleagues might want you to send a file in a particular format. To read any files containing data you use the read method. To convert that data into a required format, we use the t0_ method.

		Here is an example of it:

		

		computerUsage.to_excel('computerUsage.xlsx', sheet_name='computer usage', index=False)

		

		The data on your DataFrame will be stored as an excel file if we follow the syntax above. Because we don’t need to log indexes, we have said “False.” If we do that, the index values will be saved as part of the data in Excel. Let’s have a look:

		The file is stored in the directory with the “xlsx” extension.

		When opened, you can see it contains all the data:

		

		
			[image: image]
		

		It might look strange, but the data is still accessible and usable. To read, you will only need to type:

		

		comp = pd.read_excel('computerUsage.xlsx', sheet_name='computer usage')

		comp.head()

		

		The data we are using here is available at the end of this chapter as Table A. You can follow the instructions there and begin following along. It is important you do so.

		As you can see, the output is similar to the first five rows we showed at the beginning with “h” (hours) missing:

		
			
				
				
				
				
				
				
				
			
			
					
					From
					To
					Code
					Hearthstone
					Passive
					Reading
			

			
					0
					1/1/2019
					1/6/2019
					0.09
					20.60
					2.13
					9.88
			

			
					1
					1/7/2019
					1/13/2019
					0.00
					42.71
					1.60
					11.05
			

			
					2
					1/14/2019
					1/20/2019
					0.09
					14.95
					0.00
					21.78
			

			
					3
					1/21/2019
					1/27/2019
					0.00
					12.61
					0.09
					22.91
			

			
					4
					1/28/2019
					2/3/2019
					0.00
					26.97
					5.83
					22.91
			

		

		

		We have seen earlier how we can access specific data in a DataFrame, but the data we used was converted from another format which made it display differently. For instance, columns became row indexes. Let’s see what happens when we try the same thing with this data.

		We will use the following code to access the first five Heartstone and Code entries, to see if the student was coding more or playing a video games during the first five weeks of classes:

		

		firstweek = comp[['Code','Hearthstone']]

		firstweek.head()

		

		The output is:

		
			
				
				
				
			
			
					
					Code
					Hearthstone
			

			
					0
					0.09
					20.60
			

			
					1
					0.00
					42.71
			

			
					2
					0.09
					14.95
			

			
					3
					0.00
					12.61
			

			
					4
					0.00
					26.97
			

		

		

		If you wanted to see the last five entries of the data you would type:

		

		firstweek.tail()

		

		As we can see, the student was doing a whole lot of gaming instead of coding in the first five weeks.

		Look at how both columns still occupy the same positions they did at the top as well.

		To get the dimensions of the DataFrame, you would type the following:

		

		comp[['Hearthstone','Code']].shape

		

		Your output will be:

		

		(31, 2)

		

		This tells you how many columns and rows are in the extracted data. It says thirty-one rows and two columns.

		According to the demands of the project you're working on, you might want to filter data that meets a certain criteria. You might want to count the weeks the student spent thirty hours playing Hearthstone and comparing that with how much time they spent on other activities. The example below does that:

		

		comp = pd.read_excel('computerUsage.xlsx', sheet_name='computer usage')

		hearthstone_hours = comp[comp["Hearthstone"] > 30]

		hearthstone_hours.head()

		

		In the square brackets, we have pulled the Hearthstone column which gives us a set of numbers. Then, we use a conditional operator (>) to test if each number is greater than thirty. If it is, we will pull rows where that is true. This gives us the table below.

		

		
			[image: image]
		

		As we can see, whenever the student games a lot, they struggle to keep up with other activities except maybe reading.

		Let’s say you want to find out if, in all this time, the student has exceeded a certain number of hours in coding. You can use the following code that checks every row to see if that condition is met.

		

		comp = pd.read_excel('computerUsage.xlsx', sheet_name='computer usage')

		comp["Code"] > 3.00

		

		The code will check if there was a week when the student coded for more than three hours. It returns a Series as opposed to a DataFrame, shown below:

		

		0  False

		1  False

		2  False

		3  False

		4  False

		5  False

		6  False

		7  False

		8  False

		9  False

		10  False

		11  False

		12  False

		13  True

		14  True

		15  True

		16  True

		17  True

		18  True

		19  True

		20  True

		21  True

		22  True

		23  True

		24  True

		25  True

		26  True

		27  True

		28  False

		29  True

		30  True

		Name: Code, dtype: bool

		

		In real-world scenarios, the Series returned will be thousands of lines long or hundreds. It would be impractical to count each one by hand. If we wanted to show how many of these met our criteria, we can do so with the following code:

		

		import pandas as pd

		computerUsage = pd.read_excel('op.xlsx')

		code_hours = computerUsage[computerUsage['Code'] > 3.00]

		code_hours.shape

		

		The output will be: (17, 6)

		The output tells us that there are seventeen weeks that the student spent more than three hours coding. We can try to run the same operation with all Python conditional operators like the ones below. They allow us to write code that can comb through the data for more complex characteristics than we can ever do ourselves. Even if the data files were thousands of lines long, it would still have taken our code time to retrieve the information we want.

		
			
				
				
			
			
					Operator
					Function
			

			
					==
					Equal to
			

			
					!=
					Not Equal
			

			
					<
					Lesser than
			

			
					>
					Greater than
			

			
					>=
					Equal to or greater than
			

			
					<=
					Less than or equal to
			

		

		

		To illustrate this, we took data on computer usage spanning more than three years tracking different kinds of activities. Here are the first five and the last ten rows of the data.

		Note: You do not have access to this data, but you can try to use what is available at the end of the chapter to follow along in your own capacity.

		
			
				
				
				
				
				
				
				
				
				
				
			
			
					From
					To
					Active Energy
					Code
					Hearthstone
					Noise/Admin/Random
					Passive
					Production
					Reading
					Work
			

			
					7/24/2017
					7/24/2017
					1.92
					0.00
					0.00
					0.00
					0.00
					0.97
					0.00
					0.96
			

			
					7/25/2017
					7/25/2017
					6.84
					1.83
					0.25
					0.71
					0.00
					4.02
					0.02
					0.92
			

			
					7/26/2017
					7/26/2017
					7.68
					0.94
					0.00
					0.07
					0.00
					2.83
					0.58
					0.04
			

			
					7/27/2017
					7/27/2017
					6.55
					0.00
					0.00
					0.00
					0.00
					1.25
					0.00
					0.60
			

			
					12/11/2020
					12/11/2020
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
			

			
					12/12/2020
					12/12/2020
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
			

			
					12/13/2020
					12/13/2020
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
			

			
					12/14/2020
					12/14/2020
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
			

			
					12/15/2020
					12/15/2020
					0.10
					0.00
					0.00
					0.00
					0.00
					0.02
					0.00
					0.00
			

		

		

		In the last five days, we see that there was no activity at all. Let us count the days that the user read more than one hour a day using the code from earlier and let us see how long it takes the code to complete the task.

		

		
			[image: image]
		

		The code tells us that in all that time, the user read for more than an hour in 225 days. Look at how long it took for the code to complete the task. You can not imagine gleaning that information as quickly as we did with Python. Interestingly, Python can do this with even larger sets of data with even more complex logic. You can also factor in that this code was run on a much slower machine.

		Let’s say you want to find out how much energy a student has on days they read for three hours or more. You will use the following code to find out. This code matches the column data with the row that matches our criteria. For instance, if this was a data set of students at a university and we wanted the names of the students who are twenty, we would use code like this.

		

		students_20 = students.loc[students["Age"] == 20, "Name"]

		

		So, in our reading example, the code will be like this:

		

		read_hours = Usage.loc[Usage['Reading'] > 3.00 ,'Active Energy']

		

		The output from the data was fifty-three, showing us that there are fifty-three rows in the DataFRame.

		Here were the first five results of the data:

		

		427  6.268611

		428  4.928056

		429  5.991111

		433  5.494167

		436  4.469167

		Name: Active Energy, dtype: float64

		

		The data so far suggests that the student needs at least 4.5 hours of active energy to read for more than three hours.

		

	
		Selecting Data

		

		In some cases, you want to select data from point A to B, whether it be columns or rows of data. Our years old data has more than 1200 days in it. We may be interested in the days between 500 to 600 for columns two to four.

		Here’s the code for that:

		

		five_six = Usage.iloc[500:601, 2:5]

		five_six

		

		Below are the first five and the last five in the section, showing only the three columns we wanted.

		

		Active Energy Code Hearthstone

		500 2.167500 0.0 0.0

		501 0.731944 0.0 0.0

		502 4.881667 0.0 0.0

		503 0.155556 0.0 0.0

		504 0.000000 0.0 0.0

		

		Active Energy Code Hearthstone

		596 10.151389 1.642222 1.481944

		597 6.120278 0.640556 0.412222

		598 8.585556 1.075278 1.415833

		599 6.008333 1.128333 0.000000

		600 5.645556 0.218611 0.000000

		

		When you look at the syntax of both these selections, you will notice the loc/iloc operators before the square brackets. These are required. Square brackets alone will not select a subset of data using our expressions. In both examples, before the comma, we selected a row we wanted, and in the part after the comma, we selected a column we wanted. The loc operator is best used in instances where you will use a condition expression like in our reading-hours example. The iloc operator, which we used to select the days between 500 and 600, has taken no conditional operators. Instead, we have just used numbers and colon to select the parts of the data we are interested in. Both always go before the square brackets.

		They also have another function. They can assign values to the selected data if we desire. Take the hundred days we selected above. If we wanted to assign the number ten to the first ten elements of the code column, we would write the following code.

		

		Usage.iloc[0:10, 3] = 10

		Usage.head()

		Note: Assigning the code to a variable will not work.

		

		The output for the first five rows of this code is:

		
			
				
				
				
				
				
				
				
				
				
				
				
			
			
					
					From
					To
					Active Energy
					Code
					Hearthstone
					Noise/Admin/Random
					Passive
					Production
					Reading
					Work
			

			
					0
					7/24/2017
					7/24/2017
					1.924444
					10
					0
					0
					0
					0.965556
					0
					0.960556
			

			
					1
					7/25/2017
					7/25/2017
					6.836111
					10
					0.248889
					0.707222
					0
					4.024722
					0.016389
					0.921111
			

			
					2
					7/26/2017
					7/26/2017
					7.682222
					10
					0
					0.068333
					0
					2.834167
					0.578056
					0.040556
			

			
					3
					7/27/2017
					7/27/2017
					6.554444
					10
					0
					0.003333
					0
					1.247778
					0
					0.603889
			

			
					4
					7/28/2017
					7/28/2017
					3.916111
					10
					0
					0
					0
					0.053889
					0
					0.041111
			

		

		

		Suddenly, the student has spent the first ten days coding for ten hours.

		Earlier, we looked at how the square bracket in conjunction with conditional operators can filter out certain kinds of data from the table. The isin() method works the same way, but it is more sophisticated in what it allows you to do. For instance, you may be interested in rows when the student either didn’t read or spend an hour reading. To do that, you would need to use the following code.

		

		reading_01 = Usage[Usage["Reading"].isin([0, 1.0])]

		

		The output of the first five rows would be as follows:

		
			
				
				
				
				
				
				
				
				
				
				
			
			
					From
					To
					Active Energy
					Code
					Hearthstone
					Noise/Admin/Random
					Passive
					Production
					Reading
					Work
			

			
					7/24/2017
					7/24/2017
					1.924444444
					10
					0
					0
					0
					0.9655555556
					0
					0.9605555556
			

			
					7/27/2017
					7/27/2017
					6.554444444
					10
					0
					0.003333333333
					0
					1.247777778
					0
					0.6038888889
			

			
					7/28/2017
					7/28/2017
					3.916111111
					10
					0
					0
					0
					0.05388888889
					0
					0.04111111111
			

			
					7/30/2017
					7/30/2017
					6.076666667
					10
					0
					0
					0
					2.275833333
					0
					1.373055556
			

			
					8/2/2017
					8/2/2017
					0
					10
					0
					0
					0
					0
					0
					0.001666666667
			

		

		

		You can tell from the date columns on the left that the dates do not follow chronologically. The function has only retrieved dates the student didn’t read or read for an hour. In our first five dates, it only shows dates he did not read.

		Isin() is the equivalent of the following code:

		

		reading_01 = Usage[(Usage["Reading"] == 0) | (Usage["Reading"] == 1.0)]

		

		When you chain multiple conditional statements like this, each condition must be put inside parentheses. Also, pandas won’t accept the or/and operators, to use them, you will need to use the | for the or and the & for the and.

		

	
		Creating Plots

		

		It would be nice to display all this data from computer usage as a graph or plot so that we can glean more insights. pandas can work with Matplotlib to do this. We are going to discuss ways you can do this in this section. We will need to import pandas and Matplotlib together before we can start using it.

		

		import pandas as pd

		import matplotlib.pyplot as plt

		

		If we were investigating if gaming has any impact on the student’s productivity, it might do us well to focus on three items in our data: Hearthstone, Reading, and Coding. Now, the data we will be working on within this section has been edited to look like this:

		Tip: To make yours look like this edit it in a spreadsheet program like Google sheets or Excel, you don’t have access to this data, but you can practice with the one provided. Table A at the end of the chapter would be a good choice.

		
			
				
				
				
				
			
			
					Days
					Code
					Hearthstone
					Reading
			

			
					7/24/2017
					0
					0
					0
			

			
					7/25/2017
					1.83
					0.25
					0.02
			

			
					7/26/2017
					0.94
					0
					0.58
			

			
					7/27/2017
					0
					0
					0
			

			
					7/28/2017
					0.01
					0
					0
			

		

		

		We need to use set_index to convert the first column into an index or when we plot the data, we will not have a presentation of time on the x-axis as shown below.

		

		
			[image: image]
		

		All we get are numbers, not dates.

		We convert the days column like this:

		

		Usage = pd.read_excel('UsageOverYrs.xlsx')

		dataUsage = Usage.set_index('Days')

		dataUsage.head()

		

		We pull the data first, then convert it and show the result to see if we were successful. Now the data has dates as the index.

		To make a quick plot of the data, all we have to type:

		

		dataUsage.plot()

		

		We get the following graph:

		

		
			[image: image]
		

		If you wanted to plot one column on the table, you would use the following syntax.

		

		dataUsage[‘Code’].plot()

		

		That would give you the following result:

		

		
			[image: image]
		

		This is a combination of the selection methods we learned earlier and the plot() method.

		You want to use a scatterplot to compare two columns in the table. Take Reading and Hearthstone for an example. You would use the following code:

		

		dataUsage.plot.scatter(x="Reading",

		y= "Hearthstone",

		alpha=0.5)

		

		We can choose from many plot types that are available to us. In the example above, we have used scatter. There are area, bar, barh, box, density, hist, kde, and pie. In some circumstances, you might be required to make some adjustments to present some data. For instance, if I wanted to display the usage data in a pie chart, I would need the total hours of each activity in the given time and plot it like this:

		

		df = pd.DataFrame({'hours': [603.41, 995.68 , 594.07]},

		index=['Code', 'Hearthstone', 'Reading'])

		plot = df.plot.pie(y='hours', figsize=(5, 5), autopct='%1.1f%%')

		

		These are the results:

		

		
			[image: image]
		

		As shown in the line graph, we can see that gaming had taken the most time while reading and coding shared close to equal time.

		We might want to look at the data on separate plots to gain more insights from the timeline. We do that using subplots, like this:

		

		
			[image: image]
		

		All of these tasks are enabled by Matplotlib which is a Python library that allows us to visualize and customize data. This means anything you would do in Matplotlib, you would be able to do together with pandas.

		

	
		Creating New Columns

		

		We can make new columns from existing columns. For instance, we might decide to have a “Productive” column that combines values of Coding and Reading columns since the two can be thought of as productive activities. We would use the following code.

		

		Usage = pd.read_excel('UsageOverYrs.xlsx')

		dataUsage = Usage.set_index('Days')

		dataUsage["Productive"] = dataUsage["Reading"] + dataUsage["Code"]

		dataUsage.head(10)

		

		The third line is where the magic happens. We start by giving our new column a name in the square bracket on the left, and then we assign to it the values of the two columns on the right after the assignment operator. The code will go between Code and Reading columns, adding each row together. If we had used a multiplication operator, it would have multiplied the values together. The sum of each added to the new “Productive” column.

		Note: User Table A data for this exercise.

		Here is the output of this code:

		
			
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Productive
			

			
					0
					0
					0
					0
			

			
					1.831389
					0.248889
					0.016389
					1.847778
			

			
					0.942778
					0
					0.578056
					1.520833
			

			
					0
					0
					0
					0
			

			
					0.012778
					0
					0
					0.012778
			

			
					0.091389
					0
					0.034167
					0.125556
			

			
					0.904722
					0
					0
					0.904722
			

			
					3.3375
					0
					0.0125
					3.35
			

			
					0.140556
					0
					0.080278
					0.220833
			

			
					0
					0
					0
					0
			

		

		

		We can also create a new column that gives us the multiplied values of another column. Making a column where the values or the reading column are double would be as easy as this:

		

		dataUsage["Doubled Reading"] = dataUsage["Reading"] * 2

		

		The output is:

		
			
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Doubled Reading
			

			
					0
					0
					0
					0
			

			
					1.831389
					0.248889
					0.016389
					0.032778
			

			
					0.942778
					0
					0.578056
					1.156111
			

			
					0
					0
					0
					0
			

			
					0.012778
					0
					0
					0
			

		

		

		You can use other numerical and logical operators to work with the data and save the results of those calculations into another column.

		We can also rename the column names. Here is an example of that:

		

		computerUsageNew = dataUsage.rename(

		columns={"Code": "Programming",

		"Hearthstone": "Gaming",

		"Reading": "Books/Research"})

		computerUsageNew.head()

		

		
			
				
				
				
			
			
					Programming
					Gaming
					Books/Research
			

			
					0
					0
					0
			

			
					1.831389
					0.248889
					0.016389
			

			
					0.942778
					0
					0.578056
			

			
					0
					0
					0
			

			
					0.012778
					0
					0
			

		

		

		As you can see, the columns in this DataFrame make more sense. If someone doesn't know what Hearthstone is, they will not understand what the column is measuring, and Code is also a vague label.

		You can also manipulate the column names in other ways, like changing them to all caps or lowercase. Like this:

		

		computerUsageNew = dataUsage.rename(

		columns={"Code": "Programming",

		"Hearthstone": "Gaming",

		"Reading": "Books/Research"})

		columnsUp = computerUsageNew.rename(columns=str.upper)

		

		This will give us the new column names in uppercase. Of course, you can decide to enter upper case labels manually. In a situation where you are dealing with many columns, it might take more time. So functions like these help make things easier.

		
			
				
				
				
			
			
					PROGRAMMING
					GAMING
					BOOKS/RESEARCH
			

			
					0
					0
					0
			

			
					1.831389
					0.248889
					0.016389
			

			
					0.942778
					0
					0.578056
			

			
					0
					0
					0
			

			
					0.012778
					0
					0
			

		

		

		

	
		Adding and Removing Columns

		

		If you think of DataFrames as a dict, adding and removing columns will come naturally to you because the syntax is the same.

		Take our computer usage DataFrame (the slimmed-down version). We may want to add an “Away” column for tracking when the student is sleeping or busy with other activities. We may get our Away data from subtracting the values of all the other columns from hours in a day. It is not a perfect measure, but it will give us a healthy estimate. Our code for that will look like this:

		

		dataUsage['Away'] = 24 - dataUsage['Code'] + dataUsage['Reading'] + dataUsage['Hearthstone']

		

		Here are the first ten rows of that code:

		
			
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Away
			

			
					0
					0
					0
					24
			

			
					1.831389
					0.248889
					0.016389
					22.43389
			

			
					0.942778
					0
					0.578056
					23.63528
			

			
					0
					0
					0
					24
			

			
					0.012778
					0
					0
					23.98722
			

			
					0.091389
					0
					0.034167
					23.94278
			

			
					0.904722
					0
					0
					23.09528
			

			
					3.3375
					0
					0.0125
					20.675
			

			
					0.140556
					0
					0.080278
					23.93972
			

			
					0
					0
					0
					24
			

		

		

		When we add a new column, we have to fill it. And this shows us how we can do that.

		So when I give a column a scalar value like below, that value will fill the entire column:

		

		usage[‘Away’] = ‘Unreliable’

		

		The output will

		
			
				
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Away
					
			

			
					0
					0
					0
					Unreliable
			

			
					1.831389
					0.248889
					0.016389
					Unreliable
			

			
					0.942778
					0
					0.578056
					Unreliable
			

			
					0
					0
					0
					Unreliable
			

			
					0.012778
					0
					0
					Unreliable
			

		

		

		You remove columns using del or popped just like you would with a dict. Like:

		

		del dataUsage[‘Away]

		

		Or

		

		reverseChange = dataUsage.pop(‘Away’)

		

		Both will give you a table without the Away column.

		

	
		Doing Statistics

		

		We will discuss how to do some simple statistics in this section using pandas. Earlier, I showed how you can get a general summary of the DataFrame statistics using the describe method. We will show you how you would make other calculations of the data.

		If you want to find the mean of a particular column, you will do this:

		

		dataUsage[‘Reading’].mean()

		

		The output is: 0.4786995254722894

		You might want to find the median for Code and Reading columns. This is how you would go about it:

		

		dataUsage[['Code', 'Reading']].median()

		

		The output from our data sample is:

		

		Code   0.0

		Reading   0.0

		dtype: float64

		

		When you look closely, you can see that what is returned is a DataFrame.

		You can use describe on columns of your own interest, like this:

		

		dataUsage[['Code', 'Reading', 'Hearthstone']].describe()

		

		The output on our data is:

		
			
				
				
				
				
			
			
					
					Code
					Reading
					Hearthstone
			

			
					count
					1241
					1241
					1241
			

			
					mean
					0.486232
					0.4787
					0.80232
			

			
					std
					0.962752
					0.960654
					1.597422
			

			
					min
					0
					0
					0
			

			
					25%
					0
					0
					0
			

			
					50%
					0
					0
					0
			

			
					75%
					0.475
					0.462222
					1.015278
			

			
					max
					6.713611
					5.389722
					11.208333
			

		

		

		In some cases, you may not want to use the describe method. You might want to define the information you want from each column. You can use the agg method for that. Here is the agg method in action:

		

		dataUsage.agg({'Hearthstone': ['min', 'max', 'skew'],

		'Reading': ['min', 'max', 'mean']})

		

		This is the output of the calculations:

		
			
				
				
				
			
			
					
					Hearthstone
					Reading
			

			
					max
					11.208333
					5.3897223
			

			
					mean
					NaN
					0.478700
			

			
					min
					0.0000002
					0.000000
			

			
					skew
					2.637625
					NaN
			

		

		

		For our next examples, we are going to look at computer usage data from the year 2019. To participate, use Table B in the resources section at the end of this chapter. The data is on a weekly basis instead of days.

		It looks like this:

		Note: Table Bs Month’s column is in numbers instead of strings. It is intentional, we are trying to illustrate something.

		
			
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Month
			

			
					0
					20.6
					9.88
					Jan
			

			
					0
					42.71
					11.05
					Jan
			

			
					0.09
					14.95
					21.78
					Jan
			

			
					0
					12.61
					22.91
					Jan
			

			
					0
					26.97
					4.81
					Jan
			

			
					0.22
					33.45
					10.72
					Feb
			

			
					0.01
					39.99
					7.54
					Feb
			

			
					0
					43.2
					5.54
					Feb
			

			
					0
					10.63
					6.71
					Feb
			

		

		

		Our rows cover 53 weeks instead of 52 to fully cover the dates between 1 Jan 2019 and 31 Dec. So the last week in the table starts the year 2020.

		Faced with a DataFrame like this, we might want to find the mean of all these activities by month. That is where the groupyby method comes in.

		Here is an example:

		

		weeklyData = pd.read_excel('weekly.xlsx')

		weeklyData.groupby('Month').mean()

		

		Our output will be:

		
			
				
				
				
				
			
			
					Month
					Code
					Hearthstone
					Reading
			

			
					Apr
					11.24939
					15.76844
					0.672833
			

			
					Aug
					6.303056
					5.132153
					10.03028
			

			
					Dec
					1.502056
					8.988222
					5.132333
			

			
					Feb
					0.055833
					31.81813
					7.626875
			

			
					Jan
					0.017833
					23.56694
					14.08711
			

			
					Jul
					6.37
					3.027556
					13.16456
			

			
					Jun
					13.77431
					6.486389
					2.040347
			

			
					Mar
					4.258958
					4.176181
					10.61986
			

			
					May
					12.10278
					23.16799
					2.194167
			

			
					Nov
					0.526111
					7.864167
					3.972083
			

			
					Oct
					4.618889
					7.696389
					1.974028
			

			
					Sep
					5.839222
					0.871
					10.44817
			

		

		

		The indexes are not presented chronologically, but we have the information we want. They are sorted alphabetically. If we must have the DataFrame sorted chronologically, we can do so by using numbers to present months like this:

		
			
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Month
			

			
					0
					20.6
					9.88
					1
			

			
					0
					42.71
					11.05
					1
			

			
					0.09
					14.95
					21.78
					1
			

			
					0
					12.61
					22.91
					1
			

			
					0
					26.97
					4.81
					1
			

			
					0.22
					33.45
					10.72
					2
			

			
					0.01
					39.99
					7.54
					2
			

			
					0
					43.2
					5.54
					2
			

			
					0
					10.63
					6.71
					2
			

		

		

		Our results will be ordered chronologically like this:

		
			
				
				
				
				
			
			
					Month
					Code
					Hearthstone
					Reading
			

			
					1
					0.017833
					23.56694
					14.08711
			

			
					2
					0.055833
					31.81813
					7.626875
			

			
					3
					4.258958
					4.176181
					10.61986
			

			
					4
					11.24939
					15.76844
					0.672833
			

			
					5
					12.10278
					23.16799
					2.194167
			

			
					6
					13.77431
					6.486389
					2.040347
			

			
					7
					6.37
					3.027556
					13.16456
			

			
					8
					6.303056
					5.132153
					10.03028
			

			
					9
					5.839222
					0.871
					10.44817
			

			
					10
					4.618889
					7.696389
					1.974028
			

			
					11
					0.526111
					7.864167
					3.972083
			

			
					12
					1.502056
					8.988222
					5.132333
			

		

		

		In some cases, you might want to pull only one activity instead of the entire DataFrame. Here is how you would do that:

		

		weeklyData.groupby('Month')['Reading'].mean()

		

		In the code above, I retrieved the mean of reading data alone, grouping it by months. I have selected it using the square bracket while I grouped the elements using parenthesis.

		The output is:

		
			
				
				
			
			
					Month
					Reading
			

			
					1
					14.08711
			

			
					2
					7.626875
			

			
					3
					10.61986
			

			
					4
					0.672833
			

			
					5
					2.194167
			

			
					6
					2.040347
			

			
					7
					13.16456
			

			
					8
					10.03028
			

			
					9
					10.44817
			

			
					10
					1.974028
			

			
					11
					3.972083
			

			
					12
					5.132333
			

		

		

		We can group elements by more than one trait. So far, we have used months. We can also try seasons to see if there are seasonal differences we should be aware of. Let us label the seasons A for Winter up to D for Autumn. The reason for this is that we saw our data gets arranged alphabetically when strings are involved. Our Dataframe would look like this:

		Note: Table B looks like this already.

		
			
				
				
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Month
					Seasons
					
			

			
					0
					20.6
					9.88
					1
					A-WINTER
			

			
					0
					42.71
					11.05
					1
					A-WINTER
			

			
					0.09
					14.95
					21.78
					1
					A-WINTER
			

			
					0
					12.61
					22.91
					1
					A-WINTER
			

			
					0
					26.97
					4.81
					1
					A-WINTER
			

			
					0.22
					33.45
					10.72
					2
					A-WINTER
			

			
					0.01
					39.99
					7.54
					2
					A-WINTER
			

			
					0
					43.2
					5.54
					2
					A-WINTER
			

			
					0
					10.63
					6.71
					2
					A-WINTER
			

		

		

		Now, let us group Reading by Seasons and Months respectively like this:

		

		weeklyData.groupby(['Seasons','Month'])['Reading'].mean()

		

		Our results should look like this:

		
			
				
				
				
			
			
					Seasons
					Month
					Reading
			

			
					A-WINTER
					1
					14.08711
			

			
					2
					7.626875
			

			
					12
					5.132333
			

			
					B-SPRING
					3
					10.61986
			

			
					4
					0.672833
			

			
					5
					2.194167
			

			
					C-SUMMER
					6
					2.040347
			

			
					7
					13.16456
			

			
					8
					10.03028
			

			
					D-AUTUMN
					9
					10.44817
			

			
					10
					1.974028
			

			
					11
					3.972083
			

		

		

		If you get something different, check the order you have entered Seasons and Month in the square brackets.

		To get all of the DataFrame values, you need to omit the selecting square bracket. Like this:

		

		weeklyData.groupby(['Seasons','Month']).mean()

		

		The output will be:

		
			
				
				
				
				
				
			
			
					Seasons
					Month
					Code
					Hearthstone
					Reading
			

			
					A-WINTER
					1
					0.017833
					23.56694
					14.08711
			

			
					2
					0.055833
					31.81813
					7.626875
			

			
					12
					1.502056
					8.988222
					5.132333
			

			
					B-SPRING
					3
					4.258958
					4.176181
					10.61986
			

			
					4
					11.24939
					15.76844
					0.672833
			

			
					5
					12.10278
					23.16799
					2.194167
			

			
					C-SUMMER
					6
					13.77431
					6.486389
					2.040347
			

			
					7
					6.37
					3.027556
					13.16456
			

			
					8
					6.303056
					5.132153
					10.03028
			

			
					D-AUTUMN
					9
					5.839222
					0.871
					10.44817
			

			
					10
					4.618889
					7.696389
					1.974028
			

			
					11
					0.526111
					7.864167
					3.972083
			

		

		

		The count-value method can be used to find the number of entries by category. You may want to find it if all the seasons have the same number of entries or if some have more weeks than others, and that could explain some of the differences in the data. Before we get to that, let’s get a sense of what this function does.

		We will use it in the Reading category and see what happens. Here is the code we ran below:

		

		#To get a clear idea, we had to convert values in the reading column into integers.

		

		weeklyData['Reading'] = weeklyData['Reading'].astype(int)

		

		#The we ran the value_counts method on the column

		

		weeklyData['Reading'].value_counts()

		

		This was the output we got:

		

		0  10

		1  7

		7  5

		9  5

		10  4

		11  3

		6  3

		3  3

		15  2

		5  2

		2  2

		14  1

		12  1

		22  1

		17  1

		4  1

		21  1

		24  1

		Name: Reading, dtype: int64

		

		The data tells you how many times values in the left appear in the data. So there are ten weeks that the student did not read or read less than an hour. For seven weeks, he read for an hour or more until we got to the end where it tells us the student has one week where he spent twenty four hours or more reading.

		Now, let’s group the reading data by seasons and see what comes up:

		

		#we convert from floats to integers again

		weeklyData['Reading'] = weeklyData['Reading'].astype(int)

		#we apply the count here

		results = weeklyData.groupby('Seasons')['Reading'].count()

		

		Remember, we are trying to find out how many weeks or entries belonged to what seasons. We should get seasons in the index, and the number of entries in the right like our output shows:

		
			
				
				
			
			
					Seasons
					Reading
			

			
					A-WINTER
					14
			

			
					B-SPRING
					13
			

			
					C-SUMMER
					13
			

			
					D-AUTUMN
					13
			

		

		

		You can imagine doing this to find out all sorts of traits like how many people bought different types of tickets to a particular concert. You can replace the season column with ticket tiers like regular, gold, platinum, diamond, and VIP. You just have to be creative.

		

	
		Combining Tables

		

		In the real world, you might find yourself working with multiple data sources that you would need to combine. We will show how we can do that. We will introduce another data table that can help us get a better understanding of the student’s computer usage in the year 2019. The table will represent weekly data but focusing on another set of activities that will give us a wider appreciation of the student’s activities. This is Table C in the Resources section.

		It looks like this:

		
			
				
				
				
			
			
					Away
					Random/Admin
					Work
			

			
					24.8
					11.59
					0
			

			
					24.09
					22.25
					0.05
			

			
					18.65
					31.92
					1.61
			

			
					20.9
					18.03
					15.23
			

			
					23
					20.31
					7.01
			

			
					27.75
					25.13
					11.71
			

			
					18.35
					17.14
					8.72
			

			
					20.85
					19.02
					7.7
			

			
					34.13
					22.91
					8.79
			

		

		

		The hours spent working on assignments and other school-related things and the hours spent doing random things like watching YouTube videos or answering emails are logged into this table.

		To remind you, our original data looks like this:

		
			
				
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Month
					Seasons
			

			
					0
					20.6
					9.88
					1
					A-WINTER
			

			
					0
					42.71
					11.05
					1
					A-WINTER
			

			
					0.09
					14.95
					21.78
					1
					A-WINTER
			

			
					0
					12.61
					22.91
					1
					A-WINTER
			

			
					0
					26.97
					4.81
					1
					A-WINTER
			

			
					0.22
					33.45
					10.72
					2
					A-WINTER
			

			
					0.01
					39.99
					7.54
					2
					A-WINTER
			

			
					0
					43.2
					5.54
					2
					A-WINTER
			

			
					0
					10.63
					6.71
					2
					A-WINTER
			

		

		

		Now let’s explore how we can combine the data to create a complete picture.

		The concatenate method is the one way we can combine these tables. By default, it will add the second table at the last row first, but you can choose if you want the table to be added row-wise or column-wise.

		Since we will not show the whole DataFrame here, we will use the shape method to find out if the new DataFrame is larger.

		Here is the code for declaring tables and checking their lengths.

		

		table1 = pd.read_excel('weeklyR.xlsx')

		table2 = pd.read_excel('weeklyT2.xlsx')

		print('First DataFrame is' ,table1.shape)

		print('Second DataFrame is', table2.shape)

		

		The output was:

		

		First DataFrame is (53, 5)

		Second DataFrame is (53, 3)

		

		The code correctly tells us they have fifty-three rows each, but the first table has five columns and the second has three.

		Now, to concatenate:

		

		table1 = pd.read_excel('weeklyR.xlsx')

		table2 = pd.read_excel('weeklyT2.xlsx')

		newTable = pd.concat([table1, table2], axis=0)

		newTable.head()

		

		We will get the following output:

		
			
				
				
				
				
				
				
				
				
				
			
			
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					0
					0
					20.598333
					9.8775
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					1
					0
					42.7075
					11.048889
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					2
					0.089167
					14.953333
					21.784167
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					3
					0
					12.609167
					22.914167
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					4
					0
					26.966389
					4.810833
					1
					A-WINTER
					NaN
					NaN
					NaN
			

		

		

		We can see the new columns are added, but they have no values in them. This is because their values are added after the last row of the last table, as we discussed.

		Now let’s check the size of the new DataFrame:

		

		newTable.shape()

		

		The output gives us double the rows we had:

		

		(106, 8)

		

		Rows forty-nine to fifty-seven look like this:

		
			
				
				
				
				
				
				
				
				
				
			
			
					49
					0.009722
					7.311667
					7.174444
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					50
					1.243056
					9.056667
					2.830556
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					51
					3.204444
					5.182778
					0.401944
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					52
					0
					16.67278
					0
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					0
					NaN
					NaN
					NaN
					NaN
					NaN
					24.79667
					11.58806
					0
			

			
					1
					NaN
					NaN
					NaN
					NaN
					NaN
					24.08917
					22.24861
					0.049722
			

			
					2
					NaN
					NaN
					NaN
					NaN
					NaN
					18.64694
					31.91833
					1.611944
			

			
					3
					NaN
					NaN
					NaN
					NaN
					NaN
					20.90222
					18.03278
					15.22861
			

		

		

		When concatenating the tables, we used the default axis=0 setting. If we want to add the new table column-wise so that the rows remain the same size, we can change it to 1. The axis describes two directions that are inherent in the DataFrames. The 0 axis runs vertically, downward, and the 1 axis runs horizontally from left to right. Let's have a look at it:

		

		newTable = pd.concat([table1, table2], axis=1)

		newTable.head()

		

		The output is:

		
			
				
				
				
				
				
				
				
				
				
			
			
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					0
					0
					20.59833
					9.8775
					1
					A-WINTER
					24.79667
					11.58806
					0
			

			
					1
					0
					42.7075
					11.04889
					1
					A-WINTER
					24.08917
					22.24861
					0.049722
			

			
					2
					0.089167
					14.95333
					21.78417
					1
					A-WINTER
					18.64694
					31.91833
					1.611944
			

			
					3
					0
					12.60917
					22.91417
					1
					A-WINTER
					20.90222
					18.03278
					15.22861
			

			
					4
					0
					26.96639
					4.810833
					1
					A-WINTER
					22.99833
					20.30917
					7.011944
			

		

		

		As you can see, the new table is added to the right, and we can confirm that the new rows were added with the following code:

		

		newTable.shape

		

		Output is:

		

		(53, 8)

		

		In some instances, it is helpful to know where particular data in the new DataFrame comes from. To have this information, we will need to use the keys argument in the concat method. The keys arguments allow us to mark the index where values in a table come from.

		Let’s combine and our tables again, this time we will use the argument:

		

		table1 = pd.read_excel('weeklyR.xlsx')

		table2 = pd.read_excel('weeklyT2.xlsx')

		newTable = pd.concat([table1, table2], axis=1

		keys=['tab1', 'tab2'])

		newTable.head()

		

		Our output is this:

		
			
				
				
				
			
			
					
					tab1
					tab2
			

			
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					0
					0
					20.598333
					9.8775
					1
					A-WINTER
					24.796667
					11.588056
					0
			

			
					1
					0
					42.7075
					11.048889
					1
					A-WINTER
					24.089167
					22.248611
					0.049722
			

			
					2
					0.089167
					14.953333
					21.784167
					1
					A-WINTER
					18.646944
					31.918333
					1.611944
			

			
					3
					0
					12.609167
					22.914167
					1
					A-WINTER
					20.902222
					18.032778
					15.228611
			

			
					4
					0
					26.966389
					4.810833
					1
					A-WINTER
					22.998333
					20.309167
					7.011944
			

		

		

		As you can see, data from the first table is labeled tab1, and data from the second is labeled tab2 adding more clarity to the DataFrame.

		Earlier, when we combined the new table, we saw some missing values that gave us NaN. If this were a larger data set, it would have been very difficult to know if this were the case. It is important to be able to know if there are any missing data in our DataFrame, and if there is, how many elements are missing:

		When we combined the tables using the default (axis=0), we got this:

		
			
				
				
				
				
				
				
				
				
				
			
			
					49
					0.009722
					7.311667
					7.174444
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					50
					1.243056
					9.056667
					2.830556
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					51
					3.204444
					5.182778
					0.401944
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					52
					0
					16.67278
					0
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					0
					NaN
					NaN
					NaN
					NaN
					NaN
					24.79667
					11.58806
					0
			

			
					1
					NaN
					NaN
					NaN
					NaN
					NaN
					24.08917
					22.24861
					0.049722
			

			
					2
					NaN
					NaN
					NaN
					NaN
					NaN
					18.64694
					31.91833
					1.611944
			

			
					3
					NaN
					NaN
					NaN
					NaN
					NaN
					20.90222
					18.03278
					15.22861
			

		

		

		To find out how many values are missing in the table would take quite a long time. Luckily, the following function does that perfectly:

		

		newTable = pd.concat([table1, table2], axis=0)

		newTable.isna().sum()

		

		The output is detailed:

		

		Code    53

		Hearthstone   53

		Reading    53

		Month    53

		Seasons    53

		Away    53

		Random/Admin   53

		Work    53

		dtype: int64

		

		NaN values may get in the way of doing some calculations. In that case, we may want to fill them with predetermined values. In this case, we may want the value to be 0. Fillna is a pandas method that allows us to fill NA values with data. Here is how we would do that:

		

		newTable.fillna(0)

		

		The output from this would be:

		
			
				
				
				
				
				
				
				
				
				
			
			
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					0
					0
					20.598333
					9.8775
					1
					A-WINTER
					0
					0
					0
			

			
					1
					0
					42.7075
					11.048889
					1
					A-WINTER
					0
					0
					0
			

			
					2
					0.089167
					14.953333
					21.784167
					1
					A-WINTER
					0
					0
					0
			

			
					3
					0
					12.609167
					22.914167
					1
					A-WINTER
					0
					0
					0
			

			
					4
					0
					26.966389
					4.810833
					1
					A-WINTER
					0
					0
					0
			

			
					...
					...
					...
					...
					...
					...
					...
					...
					...
			

			
					48
					0
					0
					0
					0
					0
					8.023889
					18.531667
					35.808333
			

			
					49
					0
					0
					0
					0
					0
					12.909167
					32.3575
					17.559722
			

			
					50
					0
					0
					0
					0
					0
					11.698611
					26.2175
					29.279444
			

			
					51
					0
					0
					0
					0
					0
					15.596389
					23.173056
					20.033333
			

			
					52
					0
					0
					0
					0
					0
					1.918889
					3.990556
					0.289722
			

			
					
					
					
					
					
					
					
					
					
			

		

		

		As you can see, all of our NaN values have been replaced with the value specified in the parentheses of our fillna method.

		We may not want to fill the DataFrame with a predetermined value. We want the box below or above to be filled with the last recorded value. The fill method allows you to do this.

		Here’s an example:

		

		newTable.fillna(method='ffill')

		

		Our output is:

		
			
				
				
				
				
				
				
				
				
				
				
			
			
					
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					tab1
					0
					0
					20.598333
					9.8775
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					1
					0
					42.7075
					11.048889
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					2
					0.089167
					14.953333
					21.784167
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					3
					0
					12.609167
					22.914167
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					4
					0
					26.966389
					4.810833
					1
					A-WINTER
					NaN
					NaN
					NaN
			

			
					...
					...
					...
					...
					...
					...
					...
					...
					...
					...
			

			
					tab2
					48
					0
					16.672778
					0
					12
					A-WINTER
					8.023889
					18.531667
					35.808333
			

			
					49
					0
					16.672778
					0
					12
					A-WINTER
					12.909167
					32.3575
					17.559722
			

			
					50
					0
					16.672778
					0
					12
					A-WINTER
					11.698611
					26.2175
					29.279444
			

			
					51
					0
					16.672778
					0
					12
					A-WINTER
					15.596389
					23.173056
					20.033333
			

			
					52
					0
					16.672778
					0
					12
					A-WINTER
					1.918889
					3.990556
					0.289722
			

			
					
					
					
					
					
					
					
					
					
					
			

		

		

		The area with red numbers should be NaN, like the area that is in purple. The area in red, down to the last row, is filled with the last value of the first table at row fifty three. Because the columns on the top right have no value above them, they cannot be assigned a value although they are empty. The direction of the method is forward. That is what the ‘ffill’ arguments passed mean: forward fill. If we wanted areas in the purples to be filled with the values of the first row of the tab2, we would do this:

		

		newTable.fillna(method='bfill')

		

		Our first five rows will look like this:

		
			
				
				
				
				
				
				
				
				
				
				
			
			
					
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					tab1
					0
					0
					20.598333
					9.8775
					1
					A-WINTER
					24.796667
					11.588056
					0
			

			
					1
					0
					42.7075
					11.048889
					1
					A-WINTER
					24.796667
					11.588056
					0
			

			
					2
					0.089167
					14.953333
					21.784167
					1
					A-WINTER
					24.796667
					11.588056
					0
			

			
					3
					0
					12.609167
					22.914167
					1
					A-WINTER
					24.796667
					11.588056
					0
			

			
					4
					0
					26.966389
					4.810833
					1
					A-WINTER
					24.796667
					11.588056
					0
			

		

		

		See how the area in purple has been filled, but the area that was in red will not be filled because we used bfill.

		You can limit the number of rows you want to be filled at a time by adding a limit argument as illustrated with the code:

		

		newTable.fillna(method='bfill', limit=3)

		

		Looking at row forty-nine to fifty-five created by this function, we see this:

		
			
				
				
				
				
				
				
				
				
				
				
			
			
					
					
					Code
					Hearthstone
					Reading
					Month
					Seasons
					Away
					Random/Admin
					Work
			

			
					tab1
					49
					0.009722
					7.311667
					7.174444
					12
					A-WINTER
					NaN
					NaN
					NaN
			

			
					50
					1.243056
					9.056667
					2.830556
					12
					A-WINTER
					24.796667
					11.588056
					0
			

			
					51
					3.204444
					5.182778
					0.401944
					12
					A-WINTER
					24.796667
					11.588056
					0
			

			
					52
					0
					16.672778
					0
					12
					A-WINTER
					24.796667
					11.588056
					0
			

			
					tab2
					0
					NaN
					NaN
					NaN
					NaN
					NaN
					24.796667
					11.588056
					0
			

			
					1
					NaN
					NaN
					NaN
					NaN
					NaN
					24.089167
					22.248611
					0.049722
			

		

		

		This is not a complete list of the methods that can be used to add or remove data, but these are some of the most common.

		

	
		Dealing With Textual Data

		

		This section will illustrate how you can use pandas methods to manipulate textual data. The table we will be using looks like this:

		
			
				
				
				
				
			
			
					Names
					Genre
					Age
					Followers
			

			
					Hughes, Doretha
					Pop
					34
					50000000
			

			
					Crissman, Cornell
					Alternative
					23
					1000000
			

			
					Cerny, Matthew
					Dance
					19
					20000000
			

			
					Chase, Gladys
					Metal
					45
					30000000
			

			
					Piasecki, Danika
					Jazz
					50
					400000
			

			
					Sosa, Eustolia
					Indie
					26
					7000000
			

			
					Critchlow, Effie
					Progressive
					36
					800000
			

			
					Urich, Arthur
					Classical
					50
					3000000
			

			
					Mcgeorge, Babara
					Rap
					17
					1000000
			

			
					Steve, Abraham
					Instrumental
					30
					10000000
			

		

		

		This is a list of fictional artists, their genres, age, and how many followers they have on Twitter.

		The first thing we will learn is how to change the case. So, let us write code to change the genre column value into uppercase.

		We used code to export this table from Excel so we can work with it. You can copy this table into a spreadsheet program and import it with pandas.

		Here’s the code we used to change the case of Genre column:

		

		artists['Genre'].str.upper()

		

		We used the square bracket to select the column. Then, we used the str accessor which helped us gain access to string methods. Then, we applied our uppercase method.

		Here was the output:

		

		0   POP

		1   ALTERNATIVE

		2   DANCE

		3   METAL

		4    JAZZ

		5   INDIE

		6   PROGRESSIVE

		7   CLASSICAL

		8   RAP

		9  INSTRUMENTAL

		Name: Genre, dtype: object

		

		The code went through each element and changed it to uppercase. It is important to remember this.

		We can create a surname column from the names column.

		When we use the following code, we split the string at the comma turning it into a list:

		

		artists['Names'].str.split(",")

		

		The code will return:

		

		0   [Hughes,  Doretha]

		1   [Crissman,  Cornell ]

		2   [Cerny,  Matthew ]

		3   [Chase,  Gladys ]

		4   [Piasecki,  Danika]

		5   [Sosa,  Eustolia ]

		6   [Critchlow,  Effie]

		7    [Urich,  Arthur]

		8   [Mcgeorge,  Babara]

		9   [Steve,  Abraham]

		Name: Names, dtype: object

		

		To turn these two item lists into another column, we would need to do this:

		

		artists['Surname'] = artists['Names'].str.split(",").str.get(0)

		artists['Surname']

		

		The outcome of this code is a column of surnames:

		

		0   Hughes

		1   Crissman

		2   Cerny

		3   Chase

		4   Piasecki

		5   Sosa

		6   Critchlow

		7   Urich

		8   Mcgeorge

		9   Steve

		Name: Surname, dtype: object

		

		Our DataFrame looks like this:

		
			
				
				
				
				
				
				
			
			
					
					Names
					Genre
					Age
					Followers
					Surname
			

			
					0
					Hughes, Doretha
					Pop
					34
					50000000
					Hughes
			

			
					1
					Crissman, Cornell
					Alternative
					23
					1000000
					Crissman
			

			
					2
					Cerny, Matthew
					Dance
					19
					20000000
					Cerny
			

			
					3
					Chase, Gladys
					Metal
					45
					30000000
					Chase
			

			
					4
					Piasecki, Danika
					Jazz
					50
					400000
					Piasecki
			

		

		

		You will have to find a way of removing the surnames from the “Names” column and maybe the “Surnames” column next to the “Names” column. You can figure it out.

		You can use the contain method to find out if a string is matched. The contains method will return boolean values.

		Here’s an example:

		

		artists['Names'].str.contains('Crissman')

		

		The output for the code is:

		

		0  False

		1  True

		2  False

		3  False

		4  False

		5  False

		6  False

		7  False

		8  False

		9  False

		Name: Names, dtype: bool

		

		The code checks the conditional on every element. It does not stop once it has found the string that matches it. In a very long list, you want to know which row your name appears and have it pulled so you can access all the other information about them.

		The following code helps us achieve that:

		

		artists[artists['Names'].str.contains('Crissman')]

		

		It returns us the profile of the artists instead of booleans.

		
			
				
				
				
				
				
			
			
					
					Names
					Genre
					Age
					Followers
			

			
					1
					Crissman, Cornell
					Alternative
					23
					1000000
			

		

		

		If the list contained many similar names, this code would return a DataFrame that contains the information we request. In our example, there is only one person whose surname is Crissman.

		Other ways of extracting names DataFrames or Series are supported, but these are common examples.

		

	
		Find length

		

		Then the len method allows us to extract the length of strings. You can use it in a DataFrame. In our example, we would use the code below to access a column and  return a string length for each element:

		

		artists['Names'].str.len()

		

		The output will be:

		

		0  15

		1  18

		2  15

		3  14

		4  16

		5  15

		6  16

		7  13

		8  16

		9  14

		Name: Names, dtype: int64

		

		If you are only interested in learning where the longest name in the DataFrame is, you must first find out all the lengths of all names in the table and get the index of the largest number.

		

		artists['Names'].str.len().idxmax()

		

		The output is:

		

		1

		Index 1.

		

		To discover what the name at that index is, we must use the code below:

		

		artists.loc[artists['Names'].str.len().idxmax(), 'Names']

		

		The output will be:

		

		'Crissman, Cornell '

		

		To reiterate, these functions might seem not that useful, but as soon as you start dealing with large data sets, their importance becomes apparent. If this were a list with a hundred thousand names, we would be better off using them than counting ourselves. The idxmax method does not work on strings. It works on the numbers returned by the len method, picking the biggest one. Idxmin does the opposite.

		We hope our hands-on approach has helped you get started with pandas. 

		

	
		Resources

		

		This is a list of tables you can use to practice or follow along with the exercises as promised.

		Copy and paste them into Excel or Google Sheets and download them to your computer in a format you are comfortable with (we have used the Excel format here: xlsx). Add them to the same directory as your notebook instance and then import them into Jupyter with the read function to follow along.

		

	
		Table A : Reading and Writing data table

		

		
			
				
				
				
				
				
				
			
			
					From
					To
					Code
					Hearthstone
					Passive
					Reading
			

			
					1/1/2019
					1/6/2019
					0.09
					20.6
					2.13
					9.88
			

			
					1/7/2019
					1/13/2019
					0
					42.71
					1.6
					11.05
			

			
					1/14/2019
					1/20/2019
					0.09
					14.95
					0
					21.78
			

			
					1/21/2019
					1/27/2019
					0
					12.61
					0.09
					22.91
			

			
					1/28/2019
					2/3/2019
					0
					26.97
					5.83
					4.81
			

			
					2/4/2019
					2/10/2019
					0.22
					33.45
					3.49
					10.72
			

			
					2/11/2019
					2/17/2019
					0.01
					39.99
					9.52
					7.54
			

			
					2/18/2019
					2/24/2019
					0
					43.2
					10.99
					5.54
			

			
					2/25/2019
					3/3/2019
					0
					10.63
					19.78
					6.71
			

			
					3/4/2019
					3/10/2019
					2.47
					8.82
					15.2
					9.28
			

			
					3/11/2019
					3/17/2019
					0.63
					7.88
					12.96
					10.79
			

			
					3/18/2019
					3/24/2019
					0
					0
					18.91
					10.11
			

			
					3/25/2019
					3/31/2019
					0.54
					0
					23.82
					12.29
			

			
					4/1/2019
					4/7/2019
					18.14
					12.78
					9.76
					1
			

			
					4/8/2019
					4/14/2019
					14.2
					19.79
					9.14
					1.35
			

			
					4/15/2019
					4/21/2019
					9.53
					20.62
					9.08
					0.86
			

			
					4/22/2019
					4/28/2019
					4.6
					18.71
					15.81
					0.16
			

			
					4/29/2019
					5/5/2019
					8
					6.95
					13.62
					0
			

			
					5/6/2019
					5/12/2019
					13.47
					24.88
					10.48
					0
			

			
					5/13/2019
					5/19/2019
					6.91
					33.38
					9.54
					6.34
			

			
					5/20/2019
					5/26/2019
					19.3
					21.03
					10.98
					1.18
			

			
					5/27/2019
					6/2/2019
					8.67
					13.39
					10.25
					1.26
			

			
					6/3/2019
					6/9/2019
					15.79
					5.14
					12.48
					0.26
			

			
					6/10/2019
					6/16/2019
					13.17
					12.53
					10.68
					0.72
			

			
					6/17/2019
					6/23/2019
					10.43
					6.45
					14.68
					1.46
			

			
					6/24/2019
					6/30/2019
					15.72
					1.83
					13.33
					5.73
			

			
					7/1/2019
					7/7/2019
					11.44
					0.7
					9.64
					1.51
			

			
					7/8/2019
					7/14/2019
					11.8
					4.87
					3.74
					7.32
			

			
					7/15/2019
					7/21/2019
					0.74
					4.09
					4.15
					17.29
			

			
					7/22/2019
					7/28/2019
					4.37
					2.52
					8.77
					24.42
			

			
					7/29/2019
					7/31/2019
					5.01
					1.07
					3.89
					12.18
			

		

		

		

	
		Table B:2019 Weekly Data

		

		Note: To do exercises where you only need Months without the seasons, remove the Seasons column before importing.

		
			
				
				
				
				
				
			
			
					Code
					Hearthstone
					Reading
					Month
					Seasons
			

			
					0
					20.6
					9.88
					1
					A-WINTER
			

			
					0
					42.71
					11.05
					1
					A-WINTER
			

			
					0.09
					14.95
					21.78
					1
					A-WINTER
			

			
					0
					12.61
					22.91
					1
					A-WINTER
			

			
					0
					26.97
					4.81
					1
					A-WINTER
			

			
					0.22
					33.45
					10.72
					2
					A-WINTER
			

			
					0.01
					39.99
					7.54
					2
					A-WINTER
			

			
					0
					43.2
					5.54
					2
					A-WINTER
			

			
					0
					10.63
					6.71
					2
					A-WINTER
			

			
					2.47
					8.82
					9.28
					3
					B-SPRING
			

			
					5.2
					7.88
					10.79
					3
					B-SPRING
			

			
					0
					0
					10.11
					3
					B-SPRING
			

			
					9.36
					0
					12.29
					3
					B-SPRING
			

			
					18.28
					12.78
					1
					4
					B-SPRING
			

			
					14.2
					19.79
					1.35
					4
					B-SPRING
			

			
					10.77
					20.62
					0.86
					4
					B-SPRING
			

			
					5
					18.71
					0.16
					4
					B-SPRING
			

			
					8
					6.95
					0
					4
					B-SPRING
			

			
					13.47
					24.88
					0
					5
					B-SPRING
			

			
					6.98
					33.38
					6.34
					5
					B-SPRING
			

			
					19.3
					21.03
					1.18
					5
					B-SPRING
			

			
					8.67
					13.39
					1.26
					5
					B-SPRING
			

			
					15.79
					5.14
					0.26
					6
					C-SUMMER
			

			
					13.17
					12.53
					0.72
					6
					C-SUMMER
			

			
					10.43
					6.45
					1.46
					6
					C-SUMMER
			

			
					15.71
					1.83
					5.73
					6
					C-SUMMER
			

			
					11.44
					0.7
					1.51
					7
					C-SUMMER
			

			
					11.13
					4.87
					7.32
					7
					C-SUMMER
			

			
					0.72
					4.09
					17.29
					7
					C-SUMMER
			

			
					3.21
					2.52
					24.42
					7
					C-SUMMER
			

			
					5.34
					2.96
					15.27
					7
					C-SUMMER
			

			
					9.14
					15.44
					11.5
					8
					C-SUMMER
			

			
					6.47
					2.71
					6.77
					8
					C-SUMMER
			

			
					6.89
					1.34
					11.97
					8
					C-SUMMER
			

			
					2.72
					1.04
					9.88
					8
					C-SUMMER
			

			
					2.52
					0
					14.41
					9
					D-AUTUMN
			

			
					4.2
					0.75
					7.78
					9
					D-AUTUMN
			

			
					9.11
					0.62
					9.3
					9
					D-AUTUMN
			

			
					5.49
					1.83
					10.96
					9
					D-AUTUMN
			

			
					7.87
					1.15
					9.79
					9
					D-AUTUMN
			

			
					10.91
					7.8
					3.76
					10
					D-AUTUMN
			

			
					6.26
					3.35
					2.81
					10
					D-AUTUMN
			

			
					1
					9.62
					0.21
					10
					D-AUTUMN
			

			
					0.32
					10.02
					1.12
					10
					D-AUTUMN
			

			
					0.59
					1.07
					3.02
					11
					D-AUTUMN
			

			
					0.12
					5.13
					1.98
					11
					D-AUTUMN
			

			
					0.63
					16.38
					3.06
					11
					D-AUTUMN
			

			
					0.77
					8.88
					7.84
					11
					D-AUTUMN
			

			
					3.05
					6.72
					15.25
					12
					A-WINTER
			

			
					0.01
					7.31
					7.17
					12
					A-WINTER
			

			
					1.24
					9.06
					2.83
					12
					A-WINTER
			

			
					3.2
					5.18
					0.4
					12
					A-WINTER
			

			
					0
					16.67
					0
					12
					A-WINTER
			

		

		

		

	
		Table C: The second set of 2019 data for DataFrame combining exercises and others

		

		
			
				
				
				
			
			
					Away
					Random/Admin
					Work
			

			
					24.8
					11.59
					0
			

			
					24.09
					22.25
					0.05
			

			
					18.65
					31.92
					1.61
			

			
					20.9
					18.03
					15.23
			

			
					23
					20.31
					7.01
			

			
					27.75
					25.13
					11.71
			

			
					18.35
					17.14
					8.72
			

			
					20.85
					19.02
					7.7
			

			
					34.13
					22.91
					8.79
			

			
					29.05
					30.62
					9.79
			

			
					18.55
					25.06
					4.85
			

			
					23.86
					6.57
					3.46
			

			
					32.68
					3.3
					8.08
			

			
					22.61
					24.05
					0.38
			

			
					17.56
					16.61
					0.43
			

			
					29.92
					16.05
					0.9
			

			
					20.29
					5.64
					0.17
			

			
					26.12
					18.62
					0.02
			

			
					23.07
					12.91
					0.02
			

			
					17.8
					18.31
					0.54
			

			
					21.18
					14.22
					0.1
			

			
					38.21
					13.5
					0.01
			

			
					28.59
					26.15
					0.68
			

			
					23.43
					15.65
					0.01
			

			
					25.25
					17.2
					0.01
			

			
					30.54
					18.8
					0.07
			

			
					24.93
					18.08
					0.13
			

			
					46.76
					18.44
					0.02
			

			
					39.41
					28.07
					0.14
			

			
					36.44
					5.45
					3.81
			

			
					28.65
					20.47
					5.46
			

			
					20.41
					18.85
					1.94
			

			
					17.49
					34.24
					0.55
			

			
					15.01
					25.49
					1.93
			

			
					28.39
					19.22
					5.53
			

			
					22.24
					27.33
					4.64
			

			
					23.02
					29.68
					6.01
			

			
					14.74
					21.93
					4.42
			

			
					20.07
					28.38
					3.77
			

			
					24.1
					31.73
					0.61
			

			
					20.06
					24.44
					4.87
			

			
					11.87
					25.59
					9.64
			

			
					24.94
					21.58
					17.92
			

			
					21.42
					18.77
					19.34
			

			
					22.14
					31.97
					14.09
			

			
					15.99
					41.38
					6.96
			

			
					16.48
					16.37
					22.41
			

			
					16.29
					13.6
					27.28
			

			
					8.02
					18.53
					35.81
			

			
					12.91
					32.36
					17.56
			

			
					11.7
					26.22
					29.28
			

			
					15.6
					23.17
					20.03
			

			
					1.92
					3.99
					0.29
			

		

		

		

	
		Chapter 5: NumPy

		

		
			[image: image]
		

		NumPy stands for Numerical Python. It is an open-source library used in a wide variety of fields, and it is the universal standard for working with numerical data using Python. Anyone can use NumPy, whether working on a small personal project or doing in-depth research. It integrates well with other data science tools.

		NumPy can work with multidimensional arrays, ndarrays, and matrix data structures. It also provides a variety of high-level mathematical functions you can use to operate on the data. It gives Python the ability to work with powerful data structures that are naturally unavailable to it.

		

	
		Installation

		

		When you installed Anaconda, NumPy should have also been installed, but just to check, open your Anaconda Prompt and enter the following command:

		conda install numpy

		If it is installed, it will say: “All requested packages already installed.”

		

	
		The Importance of NumPy Arrays

		

		We already suggested that NumPy arrays are an important feature of NumPy. That might have led to you wondering why we can’t just use Python to do our work. The simple answer is that it is inefficient.

		Python lists contain different kinds of data in one list. NumPy arrays require the data entered within them to be homogenous. This means mathematical operations can be carried a lot quicker than they would be in a list where data types differ. This is because the language interpreter doesn’t have to go back and forth checking if the data type fits an operation. It doesn’t happen in NumPy because NumPy arrays data types are specified. Another advantage of using NumPy is that it requires less memory.

		

	
		What is a NumPy Array?

		

		A NumPy array, simply referred to as an array, is a grid of values that contains data that is indexed and has information about how it should be interpreted. All the elements in the array are of the same data type.

		Arrays can be indexed by a tuple of integers, booleans, or another array. The array’s rank is its dimensions and the shape is the tuple of integers that give it size along its dimensions. NumPy array dimensions are referred to as axes. Arrays can be accessed using square brackets just like you would with Python lists (NumPy: the absolute basics for beginners — NumPy v1.19.dev0 Manual, n.d.).

		

	
		Creating Arrays

		

		To work with NumPy arrays, you have to first import NumPy like this:

		

		import numpy as np

		

		You create an array by passing a Python list in it. Like this:

		

		arr = np.array([1, 2, 3, 4, 5])

		

		NumPy gives you the ability to create an array filled with zeros. You pass how long you want the array to be in the parenthesis, like this:

		

		np.zeros(8)

		

		The output will be:

		

		array([0., 0., 0., 0., 0., 0., 0., 0., 0.])

		

		With NumPy, you can also create an empty array that is filled with random numbers.

		Here is how:

		np.empty(10)

		Just like above, the parentheses tells NumPy how many values should be in the array. The output on our system was:

		

		array([2.78151378e-307, 1.24610994e-306, 3.44900369e-307, 4.22792214e-307,

		3.11526468e-307, 3.11522054e-307, 3.56011818e-307, 2.33644129e-307,

		4.00540117e-307, 4.89539676e-307])

		

		It will differ for you. Each time you run it, it will. People use np.empty because it is faster. The numbers are entered based on the state of your memory. It's all good to create an array this way, but you need to remember to fill it with the value you want later.

		You can also quickly create a range with a range of elements, like this:

		

		np.arange(5)

		

		It will give you:

		

		array([0, 1, 2, 3, 4])

		

		You can make an array with evenly spaced values. This type of NumPy takes three arguments: the starting point, the finishing point, and the step or interval. Below, we make an array that starts from nine and ends at twenty-one and increases in increments of three.

		

		np.arange(9, 21, 3)

		

		The output should be:

		

		array([ 9, 12, 15, 18])

		

		We can also make arrays that are spaced in a linear fashion in a specified interval (NumPy: the absolute basics for beginners — NumPy v1.19.dev0 Manual, n.d.). The following array will have five values from 0 to 30. In other words, we split the range according to the value given in the num argument.

		

		np.linspace(0, 30, num=5)

		

		The output will be:

		

		array([ 0. , 7.5, 15. , 22.5, 30. ])

		

		The default datatype of arrays is np.float64. We may not want to work with that data type. So, we use the following method to specify a data type in the array:

		

		np.ones(5 , dtype=np.int64)

		

		Our output will be:

		

		array([1, 1, 1, 1, 1], dtype=int64)

		

		If we hadn’t had specified, the data type output would be:

		

		array([1., 1., 1., 1., 1.])

		

		To make two-dimensional arrays, you have to pass multiple sequences like this:

		

		arr2D = np.array([(1, 2, 4 , 6), (34, 23, 45, 23)])

		arr2D

		

		Our output will be like this:

		

		array([[ 1, 2, 4, 6],

		[34, 23, 45, 23]])

		

		Arrays have formats or shapes just like pandas’ DataFrames. This array has two rows and four columns. We can use this knowledge to make empty, zeros, and ones arrays that are two dimensional a lot quickly. We must first give the value for the rows and the value for the column.

		Below we make an array that is filled with zeros and has five rows and four columns.

		

		ze = np.zeros((5, 4))

		ze

		

		Our output is:

		

		array([[0., 0., 0., 0.],

		[0., 0., 0., 0.],

		[0., 0., 0., 0.],

		[0., 0., 0., 0.],

		[0., 0., 0., 0.]])

		

		We can specify what data type we want the array to be filled with like this:

		

		np.zeros((5, 4), dtype=np.int16)

		

		Our output will be:

		

		array([[0, 0, 0, 0],

		[0, 0, 0, 0],

		[0, 0, 0, 0],

		[0, 0, 0, 0],

		[0, 0, 0, 0]], dtype=int16)

		

		The reshape method allows you to shape an array.

		Take the following array:

		

		arr = np.arange(10)

		arr

		

		This is how this array looks now:

		

		array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

		

		If you want the array to be two-dimensional and have rows and columns, you would use reshape like this:

		

		arr.reshape(2, 5)

		

		The reshape method above turns the array into two rows of five numbers. So, our output is this:

		

		array([[0, 1, 2, 3, 4],

		[5, 6, 7, 8, 9]])

		

		If you wanted to make the array into a three-dimensional array, you would have to include another argument in the reshape method that specifies how many two-dimensional arrays you want to be held in the three-dimensional array.

		Take the following two-dimensional array.

		

		arr = np.arange(30).reshape(6, 5)

		print(arr)

		[[ 0  1 2 3 4]

		[ 5  6  7  8  9]

		[10 11 12 13 14]

		[15 16 17 18 19]

		[20 21 22 23 24]

		[25 26 27 28 29]]

		

		It has six rows and five columns. We may want to have two two-dimensional arrays out of this in a three-dimensional array. This is how we would do it:

		

		arr = np.arange(30)

		arr.reshape(2, 3, 5)

		

		The first argument tells NumPy how I would like to divide the created array. The second gives how many rows each array should have and the third specifies columns.

		Our array looks like this now:

		

		array([[[ 0,  1,  2,  3,  4],

		[ 5,  6,  7,  8,  9],

		[10, 11, 12, 13, 14]],

		

		[[15, 16, 17, 18, 19],

		[20, 21, 22, 23, 24],

		[25, 26, 27, 28, 29]]])

		

		Printed, it looks like this:

		

		[[[ 0  1  2  3  4]

		[ 5  6  7  8  9]

		[10 11 12 13 14]]

		

		[[15 16 17 18 19]

		[20 21 22 23 24]

		[25 26 27 28 29]]]

		

		To print an array, you have to assign it to a variable and pass the variable in Python’s print method or declare the array in the print method.

		To change an array into a two-dimensional or three-dimensional array, you have to get your dimensions right. If your array cannot be shaped into three rows and four columns, NumPy will throw an error. You need to be sure that your array can give you the dimensions you want it to have.

		NumPy’s print method is clever. If the array you want to print is too large, it will not print the whole array. It will only print the corner of that array.

		Let’s take a look:

		

		print(np.arange(2000))

		

		The output of the code is:

		

		[  0  1  2 ... 1997 1998 1999]

		

		If the array was a two-dimensional array:

		

		print(np.arange(2000).reshape(100,20))

		

		The output is:

		

		[[  0  1  2 ...  17  18  19]

		[  20  21  22 ...  37  38  39]

		[  40  41  42 ...  57  58  59]

		...

		[1940 1941 1942 ... 1957 1958 1959]

		[1960 1961 1962 ... 1977 1978 1979]

		[1980 1981 1982 ... 1997 1998 1999]]

		

	
		Learning About An Array

		

		To find out information about an array, you have the following methods to choose from:

		ndim: gives information about the dimensions of the array.

		size: size will give you the total number of elements in an array.

		shape: will tell you how many rows and rolums your array has.

		Let’s use them on the previously printed array.

		

		arr.ndim

		

		Output is: 2

		It gives us two because it is a two-dimensional array.

		arr.size

		Output is: 2000

		We made an array with two thousand elements.

		

		arr.shape

		

		Output is: (100,20)

		We made a two-dimensional array with a hundred rows and twenty columns.

		

	
		Basic Array Operations

		

		Arithmetic operations in NumPy are executed element wise. Let’s illustrate this.

		

		arr1 = np.array([2, 4, 6, 8, 10])

		arr2 = np.array([1, 2, 3, 4, 5])

		ans = arr1 + arr2

		ans

		

		The outcome is:

		

		array([ 3,  6,  9, 12, 15])

		

		As you can see, every value was added to a value that sits in the same position as itself in the other array. Index 0 added to index 0, 1 to 1 and so on.

		In other languages, you can multiply a matrix with another by using the * operator, but in NumPy, that does not happen. Let’s is illustrate:

		

		matrix1 = np.array([[0, 1, 2],

		[3, 4, 6],

		[7, 8, 9]])

		matrix2 = np.array([[2, 4, 6],

		[8, 10, 12],

		[14, 16, 18]])

		matrix1 * matrix2

		

		Our output will be:

		

		array([[  0,  4,  12],

		[ 24,  40,  72],

		[ 98, 128, 162]])

		

		As you can see, each number got multiplied by another just like we saw in the last example. If this were another language, it would have given us a matrix product. To do that in NumPy we need to use @ or dot.

		Here’s how:

		

		matrix1 @ matrix2

		

		The output is:

		

		array([[ 36,  42,  48],

		[122, 148, 174],

		[204, 252, 300]])

		

		The alternative is:

		

		matrix1.dot(matrix2)

		

		The output is the same:

		

		array([[ 36,  42,  48],

		[122, 148, 174],

		[204, 252, 300]])

		

		The methods we have used so far output another array as the answer instead of just changing the elements in the original array. If you are interesting in changing the elements in an array, you have to use *= or += operators.

		Let’s illustrate this:

		

		arr = np.zeros((2, 5), dtype=int)

		arr += 4

		arr

		

		Output is:

		array([[4, 4, 4, 4, 4],

		[4, 4, 4, 4, 4]])

		We have added four to all the zeros that occupied our array. If the array had been filled with twos we would have had an array of sixes. If we had used *=, we would have multiplied each number by four, so our array would be filled with eights.

		

		arr = np.array([[2, 2, 2, 2, 2],

		[2, 2, 2, 2, 2]])

		arr *= 4

		arr

		

		Output:

		

		array([[8, 8, 8, 8, 8],

		[8, 8, 8, 8, 8]]

		

		Many of the unary operations we perform on an array are available as methods in NumPy. If we need to add the sum of all elements in an array we use the sum method. If we want to find the biggest number, we use the max method, and if we want to find the smallest, we use the min method.

		Below is an example of those operations:

		

		arr22 = np.array([[0, 1, 2, 3, 4],

		[5, 6, 7, 8, 9]])

		arr22.min()

		

		Output: 0

		

		arr22.max()

		

		Output: 10

		

		arr22.sum()

		

		Output: 45

		You can run methods like these and others on axis 0 or 1. For instance, we may want to find the sum of each row.

		

		arr = np.array([[ 36,  42,  48],

		[122, 148, 174],

		[204, 252, 300]])

		arr.sum(axis=0)

		

		It will give us:

		

		array([362, 442, 522])

		

		To find the sum of each row, we use:

		

		arr.sum(axis=1)

		

		Which gives us:

		

		array([126, 444, 756])

		

		We can use other operators in this manner. In some cases, you want the cumulative sum along every row.

		

		arr.cumsum(axis=1)

		

		Our output is:

		

		array([[ 36,  78, 126],

		[122, 270, 444],

		[204, 456, 756]], dtype=int32)

		

	
		Accessing Elements, Slicing and Iterating Arrays

		

		One-dimensional arrays in NumPy function similarly to Python lists. They are accessed, integrated, and sliced the same way. What should interest you is how you perform similar functions on a multidimensional array. The best way to think of a multidimensional array is to think of it as a chessboard where each square or index can be located by row number and column number. Each axis can only have one value, but that is not limiting in any way.

		Let's say we have a multidimensional array like this one:

		

		#this array represents squares on a chessboard

		arr =  np.arange(64).reshape(8, 8)

		arr

		array([[ 0,  1,  2,  3,  4,  5,  6,  7],

		[ 8,  9, 10, 11, 12, 13, 14, 15],

		[16, 17, 18, 19, 20, 21, 22, 23],

		[24, 25, 26, 27, 28, 29, 30, 31],

		[32, 33, 34, 35, 36, 37, 38, 39],

		[40, 41, 42, 43, 44, 45, 46, 47],

		[48, 49, 50, 51, 52, 53, 54, 55],

		[56, 57, 58, 59, 60, 61, 62, 63]])

		

		If we wanted to print fifty from the board, we would need to use the following syntax that takes two arguments. The first is the row and the second indicates the column.

		Fifty is on the seventh row and the third column. To access it, we need to type:

		

		arr[6, 2]

		

		Remember that array indexes start at zero. That is why we have six and two instead of seven and three in the square brackets.

		We can slice entire rows or columns if we like. We just have to pass the slice as one of the arguments and pick a row or column.

		Below, we are slicing at all rows in the fourth column:

		

		arr[0:7, 3]

		

		Our output is the entire fourth column:

		

		array([ 3, 11, 19, 27, 35, 43, 51])

		

		This can also be achieved with his code:

		

		arr[:, 3]

		

		Iteration of multidimensional arrays goes along the first axis. Let’s try an example so you can see:

		

		for row in arr:

		print(row)

		

		Our output is:

		

		[0 1 2 3 4 5 6 7]

		[ 8  9 10 11 12 13 14 15]

		[16 17 18 19 20 21 22 23]

		[24 25 26 27 28 29 30 31]

		[32 33 34 35 36 37 38 39]

		[40 41 42 43 44 45 46 47]

		[48 49 50 51 52 53 54 55]

		[56 57 58 59 60 61 62 63]

		

		The output is identical to our array. The code does not iterate over each element, it iterates rows. If you need it to iterate over each element, you will use the flat method. Let’s use the flat method:

		

		for row in arr.flat:

		print(row)

		

		This will be the output:

		

		0

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		

		As you can see, the code printed each element in the array, not every row.

		

	
		Manipulating Shapes

		

		We discussed reshape, but there are other methods that let you manipulate the shape of an array. We will continue working with our chessboard array from the last section.

		The shape of our array is (8, 8).

		We can use the ravel method to flatten the array, like this:

		

		arr.ravel()

		

		The output will be:

		

		array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

		17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

		34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

		51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63])

		

		If you check the shape with arr.shape you will get: (64,)

		To check the shape, you will have to assign the ravel array to a variable first.

		The next method is one you can use to transpose the array:

		

		arr.T

		

		The output is:

		

		array([[ 0,  8, 16, 24, 32, 40, 48, 56],

		[ 1,  9, 17, 25, 33, 41, 49, 57],

		[ 2, 10, 18, 26, 34, 42, 50, 58],

		[ 3, 11, 19, 27, 35, 43, 51, 59],

		[ 4, 12, 20, 28, 36, 44, 52, 60],

		[ 5, 13, 21, 29, 37, 45, 53, 61],

		[ 6, 14, 22, 30, 38, 46, 54, 62],

		[ 7, 15, 23, 31, 39, 47, 55, 63]])

		

		The array still has the same shape but the elements have changed places. If the array’s shape was (5, 6), the transpose method would change the shape to (6, 5). The method changes rows into columns and columns into rows.

		The methods we have looked at to manipulate the shape of the array don’t change the original array but produce a new array from the original. If you want to change the original array, you have to use resize. Here’s an example below

		

		arr.resize(4, 16)

		arr

		

		Our output is:

		

		array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15],

		[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],

		[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],

		[48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]])

		

		If we had used reshape, we would not get the same result as when we called the variable holding the array. It would have given us the original array.

		

	
		Stacking Arrays

		

		You can stack arrays horizontally or vertically. Stacking is exactly what it sounds like.

		Say you have two arrays, like these:

		

		arrA = ([[9, 7, 5, 8],

		[5, 2, 19, 12]])

		arrB = ([[20, 23, 55, 18],

		[50, 42, 55, 89]])

		

		You can stack them vertically, like this:

		

		np.vstack((arrA, arrB))

		

		Our output will be:

		

		array([[ 9,  7,  5,  8],

		[ 5,  2, 19, 12],

		[20, 23, 55, 18],

		[50, 42, 55, 89]])

		

		You can stack them horizontally like this:

		

		np.hstack((arrA, arrB))

		

		Our output will be:

		

		array([[ 9,  7,  5,  8, 20, 23, 55, 18],

		[ 5,  2, 19, 12, 50, 42, 55, 89]])

		

		column_stack is another method that returns a two-dimensional array. Here is how it works.

		

		arrA = ([ 9,  7,  5,  8, 20, 23, 55, 18])

		arrB = ([ 5,  2, 19, 12, 50, 42, 55, 89])

		np.column_stack((arrA, arrB))

		

		Our output will be:

		

		array([[ 9,  5],

		[ 7,  2],

		[ 5, 19],

		[ 8, 12],

		[20, 50],

		[23, 42],

		[55, 55],

		[18, 89]])

		

		Look closely, this isn’t vstack. The column_stack method has paired the same indexed elements together in each row. That does not happen with vstack.

		

	
		Splitting An Array

		

		You can split an array into other, smaller arrays. One possible reason why you might want to do this is because it’s possible that numbers in a certain row are relevant to calculations being made. In this section, we will work with the chessboard array. Here is how you would go about it:

		np.hsplit(arr, 4)

		The code tells NumPy to split the array into four separate arrays. Here’s our output:

		

		[array([[ 0,  1],

		[ 8,  9],

		[16, 17],

		[24, 25],

		[32, 33],

		[40, 41],

		[48, 49],

		[56, 57]]),

		array([[ 2,  3],

		[10, 11],

		[18, 19],

		[26, 27],

		[34, 35],

		[42, 43],

		[50, 51],

		[58, 59]]),

		array([[ 4,  5],

		[12, 13],

		[20, 21],

		[28, 29],

		[36, 37],

		[44, 45],

		[52, 53],

		[60, 61]]),

		array([[ 6,  7],

		[14, 15],

		[22, 23],

		[30, 31],

		[38, 39],

		[46, 47],

		[54, 55],

		[62, 63]])]

		

		We can tell NumPy to begin cutting in a certain place. Below, we tell it to split the array at the second and fifth column.

		

		np.hsplit(arr, (2, 5))

		

		This is the output we get:

		

		[array([[ 0,  1],

		[ 8,  9],

		[16, 17],

		[24, 25],

		[32, 33],

		[40, 41],

		[48, 49],

		[56, 57]]),

		array([[ 2,  3,  4],

		[10, 11, 12],

		[18, 19, 20],

		[26, 27, 28],

		[34, 35, 36],

		[42, 43, 44],

		[50, 51, 52],

		[58, 59, 60]]),

		array([[ 5,  6,  7],

		[13, 14, 15],

		[21, 22, 23],

		[29, 30, 31],

		[37, 38, 39],

		[45, 46, 47],

		[53, 54, 55],

		[61, 62, 63]])]

		

	
		Final Words & FAQ

		

		
			[image: image]
		

		We have introduced you to three data science topics that are relevant to the field of data analysis. You have always worked with us through some examples that will help you familiarize yourself with the functions of these tools. Your next step should be to test your skills and sharpen your tools by using them in other contexts to fix problems that you encounter. It is the only way you will grow.

		If you are someone with some tech experience, you already know how to research things when you get stuck and find solutions. If you are entirely new, you might have started doing this as you were learning with this book. We expected you to do this because it will be important in your role as a data analysis.The easiest way to determine what you don’t know is by thinking about what you want to do and asking yourself if you can use your skills to achieve that. Another way is to find freely available data and ask yourself how you can get an insight you are curious about in the data.

		For instance, we haven't discussed in detail about data visualizations using matplotlib. Maybe you could focus on learning how to use it more proficiently to meet your needs. You can also find free public datasets to work with and practice. When practicing, you learn all sorts of skills, like how to clean the data for the country that is relevant to you. Some of this data is available to download, and some are available via an API. Do not be intimidated to go and try. My message is this: you have basics that will enable you to do interesting things with data even when it might require some research. Data analysts do this all the time, and it is an effective way to build your portfolio.

		Here are some places you can find data to practice with:

		

		IMF Data

		

		The IMF publishes data on a wide range of economic sectors. Its data is available from various world regions, on gender, trade, and many other subjects. The data is free to download. You can use this for data cleaning exercises, data visualizations, and investigating interesting statistical phenomena. Visit the site here.

		

		Enron Email

		

		To practice your textual data analysis skills, you can use the Enron emails. When Enron collapsed, these emails became public. They are available to download here.

		

		British Government Data

		

		The UK has data that is open to the public on a wide range of topics like government spending, health, education, defense, crime, business, the economy, and more—this is the best place to learn how to clean data and do data visualizations or reports. Visit the site here.

		

		UNICEF

		

		UNICEF can be a wonderful place to find new projects to do. They provide all kinds of data about the lives of children internationally. They have data sets on education, nutrition, child mortality, HIV/AIDS, education, poverty, and more. You can use this data to practice visualizations, data cleaning, and more. The data UNICEF provides is free and comes from all over the globe. Visit the site here.

		

		Walmart’s Sales data

		

		For something more commercial, you can try Walmart’s sales data of over forty-five stores in the US. If you are a curious person, you have a lot of questions to ask the data. This data allows freedom. It is best for data processing projects. Visit the site here.

		

		Many of the data cycle concepts we have discussed in chapter one will make more sense and present themselves to you as you work. They will train your research skills, the ability to determine what data is relevant and which it isn't, and the ability to mine the data for the information that is of value to you. You might find yourself in a situation where more data sources are needed, getting it and converting it into the same format so your results may be more accurate. Data analysts have to do this all the time.

		You can also try a site like Kaggle which has many exercises you can do to expand your skills and keep them sharp. It also offers thousands of data sets and code samples that you can use in almost any domain. It is free and easy to use.

		We have given you enough skills to take the next steps. Data science is all about using the fundamentals to crack novel problems and learn new things when required, adaptability is a must.

		To get the job you want, you need to choose a field you are interested in and do exercises and projects based on those fields. Find a data set for that field and do the sorts of things that would be required of you in that field. When you do this, you are building the skills your employer will want and showing that you have the ability to perform as required. Your portfolio is likely to stand out because it would be tailored for the industry. For instance, if you are looking to get into finance, focus on financial data. Find out what sorts of things are important for financial institutions to know and to do and what data scientists do for them and practice those things. When done, put it in your portfolio.

		

	
		When Do I Know I Have Enough Projects in My Portfolio?

		

		When thinking of a portfolio, you should think in terms of numbers. One great project can be enough to make you hireable. You need to focus on what a given project will help you develop as a data analyst. Find out what companies are looking for in a data scientist and focus on expanding to those skills in projects you pick. Companies post for the perfect candidate, but perfect candidates either don’t exist, are working somewhere else, or are in the making..

		

	
		What Type of PC Do I Need for Data Science?

		

		At the bare minimum, you want a computer with an Intel core i3 processor and eight gigabytes of RAM. You will also need space on your computer. For learning alone, you can do with any computer, and many datasets you can use for practice won't require these specs. Many people prefer a computer with an Intel core i5 or better, with sixteen gigabytes of RAM and 1TB HDD. An SSD will also help, but they can be expensive. In reality, you can buy a computer with a weaker processor and four gigabytes of RAM to do the work you need, but it won’t be a good experience. There are cloud-based platforms that allow you to run more powerful collections and other tasks on the cloud instead on your own system. This means your computer doesn’t have to do the hard work all the time. You can use it for tests and run your actual work online.

		

	
		What Are Some of the Skills I Will Need?

		

		You need to have a basic analytics mindset. You also need to understand statistics. So, it will not hurt to learn basic statistics if you don’t know any. You will practice working with APIs and pulling data from databases. SQL is worth learning.

		

	
		Is There a Future in Data Science/Analytics?

		

		There is increasing automation in many fields, and data science is one of them. Certain tasks are being automated. However, data science will be around for a very long time because no one can predict the sorts of problems businesses might face. A lot of critical work goes into data science, and much of it is hard to automate. Automation tools only serve to make the jobs of data scientists easier, not to take them away.

		

	
		What Will it Take for Me to Become a Data Analyst?

		

		This will largely depend on you. There isn’t a strict limit or timeline. If you are committed, a year is reasonable, assuming you have other commitments. Time should not be what you are focusing on. You should focus on getting the skills you need and honing the ones you have. It will be your work that speaks for you not how long you have been doing data science.

		

	
		Other Books from the Author

		

		Python For Beginners: A crash course to learn Python Programming in 1 Week

		Python Machine Learning:  A Step by Step Beginner’s Guide to Learn Machine Learning Using Python

		Python Data Analysis: A Beginners Guide to Master the Fundamentals of Data Science and Data  Analysis by Using Pandas, Numpy and Ipython

		

	
		References

		

		Data Science vs. Big Data vs. Data Analytics. (2016, April 5). Simplilearn.com. https://www.simplilearn.com/data-science-vs-big-data-vs-data-analytics-article#:~:text=Data%20Analytics%20the%20science%20of%20examining%20raw%20data

		

		Installing on Linux — Anaconda documentation. (n.d.). Docs.Anaconda.com. Retrieved December 22, 2020, from https://docs.anaconda.com/anaconda/install/linux/

		

		IPython - Magic Commands - Tutorialspoint. (n.d.). Www.Tutorialspoint.com. Retrieved December 22, 2020, from https://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

		

		IPython Documentation — IPython 7.19.0 documentation. (n.d.). Ipython.Readthedocs.Io. Retrieved December 22, 2020, from https://ipython.readthedocs.io/en/stable/

		

		Jupyter Notebook - Editing - Tutorialspoint. (n.d.). Www.Tutorialspoint.com. Retrieved December 22, 2020, from https://www.tutorialspoint.com/jupyter/jupyter_notebook_editing.htm

		

		Lee, J. (2018, July 18). The Printable Markdown Cheat Sheet for Beginners and Experts. MakeUseOf. https://www.makeuseof.com/tag/printable-markdown-cheat-sheet/

		

		Liberty, D. (2019, January 2). Data Science vs. Data Analytics - What’s the Difference? l Sisense. Sisense; Sisense. https://www.sisense.com/blog/data-science-vs-data-analytics/

		

		Mueller, J. P. (n.d.). Common Jupyter Notebook Magic Functions. Dummies. Retrieved December 22, 2020, from https://www.dummies.com/programming/python/common-jupyter-notebook-magic-functions/

		

		NumPy: the absolute basics for beginners — NumPy v1.19.dev0 Manual. (n.d.). Numpy.org. https://numpy.org/devdocs/user/absolute_beginners.html

		

		Package overview — pandas 1.1.5 documentation. (n.d.). Pandas.Pydata.org. Retrieved December 22, 2020, from https://pandas.pydata.org/docs/getting_started/overview.html

		

	OEBPS/Images/image-10J7IOOB.png





OEBPS/Images/image-8TBNGKZQ.png
In [1]: import ipyuidgets as widgets

In [3]: widgets.Intslider()

In [6]: | a = widgets.Intslider()
display(s)






OEBPS/Images/image-WK3P2ZMQ.png
In [11]: widgets.IntSlider()

In [10

a - widgets.Intslider()
a.value - 57

display(a)

57

In [7]: widgets.Text(value='I believe in life’, disabled-False)





OEBPS/Images/image-NJHBU6BX.png
In [13]: s = widgets.IntText()
b = uidgets. Intslider()
display(s, b)

link - widgets.jslink((s, 'value'),(b, "value’))






OEBPS/Images/image-CSNH2103.png
n [341; dmport pandas as pd.
Cpnariage P s (el st )
N ——

ougas)
Cooe o

pis¥eal





OEBPS/Images/image-G80HDZVP.png
o1 liix v A

Name B
S [ <

1 [Fromtocodetearthstonepassix
2 11/1/20191/6/20190.0920.62.139.88
3 1/7/20191/13/2019042.711.611.05
4 1/14/20191/20/20190.0914.95021.78
5 1/21/20191/27/2019012.610.0922.91
6 1/28/20192/3/2019026.975.834.81
7 2/4/20192/10/20190.2233.453.4910.72
8 2/11/20192/17/20190.0139.999.527.54
9 2/18/20192/24/2019043.210.995.54.

10 2/25/20193/3/2019010.6319.786.71
113/4/20193/10/20192.478.8215.29.28
2 31/ 20193/17/20150.637 81236107
13 3/18/20193/24/20150018.9110.11

14 3/25/20193/31/20190.54023.8212.29
15 4/1/20194/7/201918.1412.789.761

16 4/8/20154/14/201914.219.799.141.35.
17 4/15/20194/21/20199.5320.629.080.86
18 4/22/20194/28/20194.618.7115.810.16
19 4/29/20195/5/201986.9513.620

20 5/6/20195/12/201313.4724.8810.480
21 5/13/20195/19/20196.9133.389.546.34
22 5/20/20195/26/201919.321.0310.981.18.






OEBPS/Images/image-5R1RV88Q.png
52 3415 comp - pl-resdncel(computerissge o', sheet - comutar ')
et Comtcom et
et s bt

s






OEBPS/Images/image-4RZMJ6NH.png
In [32]: Usage - pd.read_excel('UsageOvervrs.xlsx')
read_hours - Usage[Usage[*Reading’] > 1.08]
Xtimeit read_hours. shape
read_hours. shape

1.97 s+ 75.6 ns per loop (mean = std. dev. of 7 runs, 1000600 loops each)
out[32]: (225, 10)





OEBPS/Images/image-V720JCF2.png
20

0

&0

0

1000

1200





OEBPS/Images/image-6SRN5CBR.png
In [13]: Usage - pd.read_excel( UsageOveryrs.xlsx')
dataUsage - Usage.set_index('Days’)
dataUsage.plot()

out[12]: <AxesSubplot:xlabel='Days’>

— ot
10— Hearthstone
— Reading

712472017 2/3/2018828/20183/16/201910/2/2019419/202011/5/2020
Days





OEBPS/Images/image-7U5K1Z2P.png
1

0

7124/2017 2972018 828/20183/16/201910/2/2019419/202011/5/2020
Days






OEBPS/Images/image-8QPRN0KU.png
= o C






OEBPS/Images/image-S5NNGSL7.png
(buse) 75 Covmar + ipynn
Fytnon 5100t (Gerait, Sep 3 Joiky $3129:00) (A v.1016 68 bit (o
Tope “capyrigh. . -cradics: or- ticense” for more information !
(Fytnon 13558 - an anarced ntersceive sython. Typa 3" for hel.






OEBPS/Images/image-6UFVCOLL.png
e L L e s e e
(55 7.15%  an smhanceq Interacvive Python. Type 7 for help.






OEBPS/Images/image-YK2WAYWL.png
woea) |






OEBPS/Images/image-M16OYBN7.png
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMDG4)]
Type "copyright", "credits’ or "license’ for more information

(Pychon 7.19.6 - An enhanced Interaceive Python. Type '3 for help.
0 111 ca cosensy \python script
users\ L \python serdpt
2] run belteve.py
pon't
stop
beleiving

o 31 et belteve.py
* done. Executing edited code...

scop

belseving!

0 4] o






OEBPS/Images/image-MCYIMQ29.png
= Jupyter ot | [ Lot

St s s =
0 oo g
0 S =y
0 o e
0 oo e
0 S g
0 5 cowemarie Smenasns

0 o preny





OEBPS/Images/image-T3GZ4NIV.png
T JUPYLer Uniilod achcpse i g s g L
e v ca e e ] I3
BT

[ o





OEBPS/Images/image-BT23F5BZ.png
s ]






OEBPS/Images/image-XMV1J81K.png
Below | Am Going To Show You A Graph

Remember | Am Just A Learner
[rrre—
15 et mtsoei gt a5 it
i R
iy koo
[ Y
LS Comtienia e st 3¢ esmeriner]

i





OEBPS/Images/image-4EDSKBLA.png
- Code
- Hearthstone
- Reading

e
Hearrfgone

Reading






OEBPS/Images/image-B0QIYWP6.png
Usage = pd.read_excel (*UsageOveryrs.xlsx')
dataUsage - Usage.set_index('Days’)
area - dataUsage.plot.area(figsize=(12, 4), subplots-True)






OEBPS/Images/B09DMP86NY.01.S001.LXXXXXXX.jpg
" PYTHON

for Data Analysis

A Beginners Guide to Master
the Fundamentals of Data Science
and Data Analysis by
Using Pandas, Numpy and Ipython

BRADY ELLISON

Copyrighted Material






