
[image: cover image]

Spatial Gems, Volume 2

ACM Books

Editors in Chief

Sanjiva Prasad, Indian Institute of Technology (IIT) Delhi, India

Marta Kwiatkowska, University of Oxford, UK

ACM Books is a new series of high-quality books for the computer science community, published by ACM. ACM Books publications are widely distributed in both print and digital formats through booksellers and to libraries (and library consortia) and individual ACM members via the ACM Digital Library platform.

From Algorithms to Thinking Machines: The New Digital Power

Domenico Talia, University of Calabria

2023

The Societal Impacts of Algorithmic Decision-Making

Manish Raghavan, Massachusetts Institute of Technology, Sloan School of Management and Department of Electrical Engineering and Computer Science

2023

Geospatial Data Science: A Hands-on Approach for Building Geospatial Applications Using Linked Data Technologies

Editor: Manolis Koubarakis, National and Kapodistrian University of Athens, Greece

2023

Linking the World’s Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web

Editors: Oshani Seneviratne, Rensselaer Polytechnic Institute

James Hendler, Rensselaer Polytechnic Institute

2023

Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook

Editor: Bruce M. Kapron, University of Victoria

2023

Effective Theories in Programming Practice

Jayadev Misra, The University of Texas at Austin, TX, US

2023

Prophets of Computing: Visions of Society Transformed by Computing

Editor: Dick van Lente, Erasmus University Rotterdam

2022

On Monotonicity Testing and the 2-to-2 Games Conjecture

Dor Minzer, Tel Aviv University

2022

The Handbook on Socially Interactive Agents: 20 years of Research on Embodied Conversational Agents, Intelligent Virtual Agents, and Social Robotics Volume 2: Interactivity, Platforms, Application

Editors: Birgit Lugrin, Julius-Maximilians-Universität of Würzburg

Catherine Pelachaud, CNRS-ISIR, Sorbonne Université

David Traum, University of Southern California

2022

Spatial Gems, Volume 1

Editors: John Krumm, Microsoft Research, Microsoft Corporation, Redmond, WA, USA

Andreas Züfle, Geography and Geoinformation Science Department, George Mason University, Fairfax, VA, USA

Cyrus Shahabi, Computer Science Department, University of Southern California, Los Angeles, CA, USA

2022

Edsger Wybe Dijkstra: His Life, Work, and Legacy

Editors: Krzysztof R. Apt, CWI, Amsterdam and University of Warsaw

Tony Hoare, University of Cambridge and Microsoft Research Ltd

2022

Weaving Fire into Form: Aspirations for Tangible and Embodied Interaction

Brygg Ullmer, Clemson University

Orit Shaer, Wellesley College

Ali Mazalek, Toronto Metropolitan University

Caroline Hummels, Eindhoven University of Technology

2022

Linking the World’s Information: A Collection of Essays on the Work of Sir Tim Berners-Lee

Oshani Seneviratne, Rensselaer Polytechnic Institute

James A. Hendler, Rensselaer Polytechnic Institute

2022

Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman

Editor: Rebecca Slayton, Cornell University

2022

Applied Affective Computing

Leimin Tian, Monash University

Sharon Oviatt, Monash University

Michal Muszynski, Carnegie Mellon University and University of Geneva

Brent C. Chamberlain, Utah State University

Jennifer Healey, Adobe Research, San Jose

Akane Sano, Rice University

2022

Circuits, Packets, and Protocols: Entrepreneurs and Computer Communications, 1968–1988

James L. Pelkey

Andrew L. Russell, SUNY Polytechnic Institute, New York

Loring G. Robbins

2022

Theories of Programming: The Life and Works of Tony Hoare

Editors: Cliff B. Jones, Newcastle University, UK

Jayadev Misra, The University of Texas at Austin, US

2021

Software: A Technical History

Kim W. Tracy, Rose-Hulman Institute of Technology, IN, USA

2021

The Handbook on Socially Interactive Agents: 20 years of Research on Embodied Conversational Agents, Intelligent Virtual Agents, and Social Robotics Volume 1: Methods, Behavior, Cognition

Editors: Birgit Lugrin, Julius-Maximilians-Universität of Würzburg

Catherine Pelachaud, CNRS-ISIR, Sorbonne Université

David Traum, University of Southern California

2021

Probabilistic and Causal Inference: The Works of Judea Pearl

Editors: Hector Geffner, ICREA and Universitat Pompeu Fabra

Rina Dechter, University of California, Irvine

Joseph Y. Halpern, Cornell University

2022

Event Mining for Explanatory Modeling

Laleh Jalali, University of California, Irvine (UCI), Hitachi America Ltd.

Ramesh Jain, University of California, Irvine (UCI)

2021

Intelligent Computing for Interactive System Design: Statistics, Digital Signal Processing, and Machine Learning in Practice

Editors: Parisa Eslambolchilar, Cardiff University, Wales, UK

Andreas Komninos, University of Patras, Greece

Mark Dunlop, Strathclyde University, Scotland, UK

2021

Semantic Web for the Working Ontologist: Effective Modeling for Linked Data, RDFS, and OWL, Third Edition

Dean Allemang, Working Ontologist LLC

Jim Hendler, Rensselaer Polytechnic Institute

Fabien Gandon, INRIA

2020

Code Nation: Personal Computing and the Learn to Program Movement in America

Michael J. Halvorson, Pacific Lutheran University

2020

Computing and the National Science Foundation, 1950–2016: Building a Foundation for Modern Computing

Peter A. Freeman, Georgia Institute of Technology

W. Richards Adrion, University of Massachusetts Amherst

William Aspray, University of Colorado Boulder

2019

Providing Sound Foundations for Cryptography: On the work of Shafi Goldwasser and Silvio Micali

Oded Goldreich, Weizmann Institute of Science

2019

Concurrency: The Works of Leslie Lamport

Dahlia Malkhi, VMware Research and Calibra

2019

The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!

Ivar Jacobson, Ivar Jacobson International

Harold “Bud” Lawson, Lawson Konsult AB (deceased)

Pan-Wei Ng, DBS Singapore

Paul E. McMahon, PEM Systems

Michael Goedicke, Universität Duisburg–Essen

2019

Data Cleaning

Ihab F. Ilyas, University of Waterloo

Xu Chu, Georgia Institute of Technology

2019

Conversational UX Design: A Practitioner’s Guide to the Natural Conversation Framework

Robert J. Moore, IBM Research–Almaden

Raphael Arar, IBM Research–Almaden

2019

Heterogeneous Computing: Hardware and Software Perspectives

Mohamed Zahran, New York University

2019

Hardness of Approximation Between P and NP

Aviad Rubinstein, Stanford University

2019

The Handbook of Multimodal-Multisensor Interfaces, Volume 3: Language Processing, Software, Commercialization, and Emerging Directions

Editors: Sharon Oviatt, Monash University

Björn Schuller, Imperial College London and University of Augsburg

Philip R. Cohen, Monash University

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Krug¨er, Saarland University and German Research Center for Artificial Intelligence (DFKI)

2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker

Editor: Michael L. Brodie, Massachusetts Institute of Technology

2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing, Architectures, and Detection of Emotion and Cognition

Editors: Sharon Oviatt, Monash University

Björn Schuller, University of Augsburg and Imperial College London

Philip R. Cohen, Monash University

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Krug¨er, Saarland University and German Research Center for Artificial Intelligence (DFKI)

2018

Declarative Logic Programming: Theory, Systems, and Applications

Editors: Michael Kifer, Stony Brook University

Yanhong Annie Liu, Stony Brook University

2018

The Sparse Fourier Transform: Theory and Practice

Haitham Hassanieh, University of Illinois at Urbana-Champaign

2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses

Editors: Per Larsen, Immunant, Inc.

Ahmad-Reza Sadeghi, Technische Universität Darmstadt

2018

Frontiers of Multimedia Research

Editor: Shih-Fu Chang, Columbia University

2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable

Julian Shun, University of California, Berkeley

2017

Computational Prediction of Protein Complexes from Protein Interaction Networks

Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience

Chern Han Yong, Duke-National University of Singapore Medical School

Limsoon Wong, National University of Singapore

2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1: Foundations, User Modeling, and Common Modality Combinations

Editors: Sharon Oviatt, Incaa Designs

Björn Schuller, University of Passau and Imperial College London

Philip R. Cohen, Voicebox Technologies

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Krug¨er, Saarland University and German Research Center for Artificial Intelligence (DFKI)

2017

Communities of Computing: Computer Science and Society in the ACM

Thomas J. Misa, Editor, University of Minnesota

2017

Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining

ChengXiang Zhai, University of Illinois at Urbana–Champaign

Sean Massung, University of Illinois at Urbana–Champaign

2016

An Architecture for Fast and General Data Processing on Large Clusters

Matei Zaharia, Stanford University

2016

Reactive Internet Programming: State Chart XML in Action

Franck Barbier, University of Pau, France

2016

Verified Functional Programming in Agda

Aaron Stump, The University of Iowa

2016

The VR Book: Human-Centered Design for Virtual Reality

Jason Jerald, NextGen Interactions

2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age

Robin Hammerman, Stevens Institute of Technology

Andrew L. Russell, Stevens Institute of Technology

2016

Edmund Berkeley and the Social Responsibility of Computer Professionals

Bernadette Longo, New Jersey Institute of Technology

2015

Candidate Multilinear Maps

Sanjam Garg, University of California, Berkeley

2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing

John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business and Government, John F. Kennedy School of Government, Harvard University

2015

A Framework for Scientific Discovery through Video Games

Seth Cooper, University of Washington

2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity Computers

Bryan Jeffrey Parno, Microsoft Research

2014

Embracing Interference in Wireless Systems

Shyamnath Gollakota, University of Washington

2014

Spatial Gems, Volume 2

John Krumm, editor

Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA

Andreas Züfle, editor

Emory University, Atlanta, GA, USA

Cyrus Shahabi,editor

Computer Science Department, University of Southern California, Los Angeles, CA, USA

ACM Books #55

[image: images]

Copyright © 2024 by Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews—without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which the Association of Computing Machinery is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Spatial Gems, Volume 2

John Krumm, Andreas Züfle, Cyrus Shahabi, Editors

books.acm.org

http://books.acm.org

ISBN: 979-8-4007-0936-4hardcover

ISBN: 979-8-4007-0934-0paperback

ISBN: 979-8-4007-0935-7EPUB

ISBN: 979-8-4007-0937-1eBook

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

	10.1145/3617291 Book
	10.1145/3617291.3617298 Chapter 6

	10.1145/3617291.3617292 Preface
	10.1145/3617291.3617299 Chapter 7

	10.1145/3617291.3617293 Chapter 1
	10.1145/3617291.3617300 Chapter 8

	10.1145/3617291.3617294 Chapter 2
	10.1145/3617291.3617301 Chapter 9

	10.1145/3617291.3617295 Chapter 3
	10.1145/3617291.3617302 Chapter 10

	10.1145/3617291.3617296 Chapter 4
	10.1145/3617291.3617303 Bios/Index

	10.1145/3617291.3617297 Chapter 5
	

A publication in the ACM Books series, #55

Editors in Chief: Sanjiva Prasad, Indian Institute of Technology (IIT) Delhi, India

Marta Kwiatkowska, University of Oxford, UK

Area Editor: Mohamed Mokbel, University of Minnesota, USA

This book was typeset in Arnhem Pro 10/14 and Flama using LuaTEX.

First Edition

10 9 8 7 6 5 4 3 2 1

Contents

Preface

Introduction

Acknowledgments

Chapter 1Graph Sampling for Map Comparison

Jordi Aguilar, Kevin Buchin, Maike Buchin, Erfan Hosseini Sereshgi, Rodrigo I. Silveira, and Carola Wenk

1.1Introduction

1.2Graph Sampling Methods

1.3Discussion/Conclusion

References

Chapter 2Fast 3D Euclidean Connected Components

W. Randolph Franklin, Salles Viana Gomes de Magalhães, and Eric N. Landis

2.1Introduction

2.2A Better Data Structure for the Euclidean Case

2.3Connected Component Algorithm

2.4Implementation

2.5Examples

2.6Comparison to Matlab

2.7Summary and Future

References

Chapter 3Multiscale Aggregation Over Sliding Windows

Anne M. Denton

3.1Introduction

3.2Concepts

3.3Evaluation

3.4Summary

Acknowledgments

References

Chapter 4Gaussian Process for Trajectories

Kien Nguyen, John Krumm, and Cyrus Shahabi

4.1Introduction

4.2Gaussian Process

4.3Gaussian Process Elements

4.4Gaussian Process Example

4.5Discussion

References

Chapter 5Mean Chord Length of a Square

John Krumm

5.1Introduction

5.2Derivation of Mean Chord Length

5.3Summary

Reference

Chapter 6Object Delineation in Satellite Images

Zhuocheng Shang and Ahmed Eldawy

6.1Introduction

6.2Extracting Objects

6.3Experimental Result

References

Chapter 7Implementing Simulation of Simplicity for Geometric Degeneracies

W. Randolph Franklin and Salles Viana Gomes de Magalhães

7.1Introduction

7.2Infinitesimals

7.3Simulation of Simplicity

7.4Examples of SoS in Use

7.5Summary and Acknowledgments

References

Chapter 8Probabilistic Counting in Uncertain Spatial Databases Using Generating Functions

Andreas Züfle

8.1Introduction

8.2Generating Functions for Probabilistic Counting

8.3Complexity Analysis

8.4Implementation

8.5Variants, Extensions, and Improvements

References

Chapter 9Statistics for All Walks on a Lattice Graph

John Krumm

9.1Introduction

9.2Computing All Walks

9.3Statistics

9.4Summary

References

Chapter 10Online Heatmap Generation with Both High and Low Weights

Yan Y. Liu and Melissa R. Allen-Dumas

10.1Introduction

10.2Algorithms

10.3Hilomap

10.4Discussion

Acknowledgments

Appendix: Hilomap Code Access

References

Authors’ Biographies

Index

Preface

 We developed this book as a way to share fundamental, new techniques for understanding and processing spatial data. Each of these techniques, which we call “spatial gems,” falls in the gap between something commonly found in textbooks and something that is the focus of a research paper. While a gem may have already been published as a small part of a paper, extracting it into a gem makes it much more likely to be found and used by others. We were inspired by the series of Graphics Gems books started in 1990 by Andrew Glassner.

 Where appropriate, a good gem will include numerical examples so programmers can verify their implementations, but it should not be a research result with multiple test cases. Rather, a spatial gem should teach how to do something useful. Spatial gems should be reproducible and usable. Thus, we encouraged chapter authors to provide implementation details and code whenever possible. Different from a research paper, a spatial gem should not focus on describing “Look at what I can do!” but rather should instead say: “Look at what you can do!”

 While this book is not a traditional research workshop proceedings, we developed an annual workshop to select and refine the chapters. The workshop is part of the Association of Computing Machines (ACM) conference International Conference on Advances in Geographic Information Systems, the world’s premiere research conference on geospatial data processing. For this book, potential chapter authors submitted their chapters to a review committee of senior researchers in the field. Authors of accepted chapters were invited to attend the workshop, where we worked to refine each chapter. Authors traded their chapters among each other and then exchanged ideas for improvements. This volume of the book represents chapters gathered over two years of the workshop. It is the second volume in the series.

Introduction

Here are short summaries of each spatial gem.

(1)Graph Sampling for Map Comparison—Comparing two road maps is a basic operation that arises in a variety of situations. A map comparison method that is commonly used, mainly in the context of comparing reconstructed maps to ground truth maps, is based on graph sampling. The essential idea is to first compute a set of point samples on each map, and then to match pairs of samples—one from each map—in a one-to-one fashion. For deciding whether two samples can be matched, different criteria can be used. The total number of matched pairs gives a measure of how similar the maps are.

Since the work of Biagioni and Eriksson in 2012, graph sampling methods have become widely used. However, there are different ways to implement each of the steps, which can lead to significant differences in the results. This means that conclusions drawn from different studies that seemingly use the same comparison method cannot necessarily be compared.

In this chapter, we present a unified approach to graph sampling for map comparison. In particular, we point out the importance of the sampling method (GEO vs. TOPO) and that of the matching definition, discussing the main options used precisely and proposing better alternatives for both key steps in detail. Furthermore, we provide a code base and an interactive visualization tool to set a standard for future evaluations in the field of map construction and map comparison.

(2)Fast 3D Euclidean Connected Components—We present an efficient algorithm and implementation for computing the connected components within a 3D cube of voxels, also known as the Euclidean union–find problem. There may be over 109 voxels. The components may be 8-connected or 26-connected. Computing connected components has applications ranging from material failure in concrete under increasing stress to electrical conductivity in complex metal objects to elasticity in 3D printed parts. One key to efficiency is representing voxels by 1D runs of adjacent voxels. We also compute each component’s surface area. As a special case, 2D connected components of images may easily be computed.

(3)Multi scale Aggregation Over Sliding Windows—Aggregates over sliding windows are an important part of many analyses over raster images, including computation of basic statistic quantities, regression analysis, fractal dimensions, and topographic analysis. For those analyses, the most appropriate window size is not always obvious a priori, and the window sizes may be very large. An algorithm is presented for aggregating windows iteratively with a performance that is logarithmic in the window size. The main limitations of the algorithm are that aggregation functions must be additive, in the sense that performing aggregations based on prior aggregates must be possible, and that window sizes are powers of two. When those assumptions can be met, the algorithm can be used in a variety of contexts that would otherwise either require a substantial reduction of resolution or take excessive computation time.

(4)Gaussian Process for Trajectories—The Gaussian process is a powerful and flexible technique for interpolating spatiotemporal data, especially with its ability to capture complex trends and uncertainty from the input signal. This chapter describes Gaussian processes as an interpolation technique for geospatial trajectories. A Gaussian process models measurements of a trajectory as coming from a multidimensional Gaussian, and it produces for each timestamp a Gaussian distribution as a prediction. We discuss elements that need to be considered when applying Gaussian processes to trajectories and the common choices for those elements, and provide a concrete example for implementing a Gaussian process.

(5)Mean Chord Length of a Square—This chapter derives the mean chord length of a square. For a circle, a chord is a straight-line segment connecting any two points on the perimeter. The same is true for a square. The chapter shows that for a square of dimensions l × l, the mean chord length is ρl, where ρ ≈ 0.7098, assuming a certain reasonable distribution of chords. The mean chord length is useful for choosing the dimensions of cells in a square grid for discretizing spatial trajectories.

(6)Object Delineation in Satellite Images—Machine learning is being widely applied to analyze satellite data with problems such as classification and feature detection. Unlike traditional image processing algorithms, geospatial applications need to convert the detected objects from a raster form to a geospatial vector form to further analyze it. This gem delivers a simple and lightweight algorithm for delineating the pixels that are marked by machine learning algorithms to extract geospatial objects from satellite images. The proposed algorithm is exact, and users can further apply simplification and approximation based on application needs.

(7)Implementing Simulation of Simplicity for Geometric Degeneracies—We describe how to implement Simulation of Simplicity (SoS). SoS removes geometric degeneracies in point-in-polygon queries, polyhedron intersection, map overlay, and other 2D and 3D geometric and spatial algorithms by determining the effect of adding non-Archimedean infinitesimals of different orders to the coordinates. It then modifies the geometric predicates to emulate that, and evaluates them in the usual arithmetic.

A geometric degeneracy is a coincidence, such as a vertex of one polygon on the edge of another polygon, that would have probability approaching zero if the objects were distributed i.i.d. uniformly. However, in real data, they can occur often. Especially in 3D, there are too many types of degeneracies to reliably enumerate. But, if they are not handled, then predicates evaluate incorrectly, and the output topology may be wrong.

We describe the theory of SoS and how several algorithms and programs were successfully modified, including volume of the union of many cubes, point location in a 3D mesh, and intersecting 3D meshes.

(8)Probabilistic Counting in Uncertain Spatial Databases Using Generating Functions—Many applications using spatial data require counting the number of spatial objects within a region. In cases where the locations of objects are uncertain, this count becomes a random variable. This spatial gem gives an efficient solution for computing the probability mass function of this random variable, that is, computing for each integer n the probability of having exactly n objects within the region.

(9)Statistics for All Walks on a Lattice Graph—Trajectory data from a moving entity may be handicapped by the temporal gaps between location measurements. We can make inferences about the locations visited during the gaps by postulating all possible paths between pairs of temporally adjacent measurements. These paths are modeled as walks on a spatially discrete grid, represented as a lattice graph. From the collection of possible walks, we can compute statistics about the possible location visits between the measurements, including the probabilities of visiting discrete grid cells and for how long. The chapter shows how to compute these statistics.

(10)Online Heatmap Generation with Both High and Low Weights—Heatmap is a common geovisualization method that interpolates and visualizes a set of point observations on a map surface. Most online web mapping libraries implement a one-pass heatmap algorithm using HTML5 canvas or WebGL for efficient heatmap generation. However, such an implementation applies additive operations that accumulate the rendering of point weights on the map surface grid, making it inappropriate for visualizations that require the highlighting of both low and high weights. We introduce hilomap, an online heatmap algorithm that highlights surface areas where points with both low and high trends are located. An HTML5 canvas-based reference implementation on OpenLayers is presented and evaluated.

Acknowledgments

We thank our expert reviewers for carefully reading and generously commenting on these chapters and others submitted for this book. In alphabetical order, they are

•Mohamed Ali—University of Washington, Tacoma

•Ahmed Eldawy—University of California, Riverside

•W. Randolph Franklin—Rensselaer Polytechnic Institute

•Kuldeep Kurte—Reliance Jio

•Carola Wenk—Tulane University

Thank you to Mohamed Mokbel of the University of Minnesota for advocating for our book in his role on the editorial board for ACM Books in the area of spatial and geographic information systems. We are also grateful to the numerous organizers of the ACM International Conference on Advances in Geographic Information Systems (ACM SIGSPTIAL) who helped host our workshops where these chapters were developed.

CHAPTER 1

Graph Sampling for Map Comparison

Jordi Aguilar, Kevin Buchin, Maike Buchin, Erfan Hosseini Sereshgi∗, Rodrigo I. Silveira†, Carola Wenk∗

1.1Introduction

Many situations ask us to compare different roadmaps, for example, roadmaps reconstructed with different algorithms from the same data, or simplifications or generalizations of a given map. When comparing two roadmaps, one wants to take into account both the geometry and topology. Graph sampling was first introduced by Biagioni and Eriksson [2012a, 2012b] and Liu et al. [2012] for comparing a reconstructed roadmap with a ground truth map. The basic idea is to first sample both roadmaps with points at a fixed distance, then match points on the two maps within a given distance threshold using a 1-to-1 matching, and finally use the number of matched and unmatched points to compute precision, recall, and F-scores.

 These graph sampling scores have been used in many papers to evaluate map construction results [Ahmed et al. 2015a, 2015b, Chen et al. 2016, Bastani et al. 2018, He et al. 2018, 2020, Stanojevic et al. 2018, Tang et al. 2019, Buchin et al. 2020, Van Etten 2020]. The method has proven useful as it makes little assumptions about the roadmaps, and thus allows comparison of a variety of immersed graphs, and is efficient to compute. However, the two key steps, sampling and matching, allow wide freedom in their implementation, and the resulting scores vary greatly based on these. Indeed, Table 1.1 shows how two implementations of the graph sampling method, with the same settings, produce different values for precision, recall, and F-score.1 In the literature, the presented F-scores vary widely, as can be seen in Table 1.4. Hence, we revisit the graph sampling method here.

Table 1.1Graph sampling scores computed by different implementations, with local sampling, 370 seeds, r = 300m, dmax = 15m and sampling interval 5m, on Biagioni’s reconstructed map vs. cropped Chicago (OSM)

	 Chicago
	 Precision
	 Recall
	 F

	 Sat2Graph’s TOPO [He et al. 2020]
	 0.947
	 0.353
	 0.514

	 Biagioni’s [Biagioni and Eriksson 2012a, 2012b]
	 0.971
	 0.523
	 0.679

1.1.1Related Work

There are several methods for comparing roadmaps. Many of them have been developed for determining the quality of map construction algorithms that construct maps from trajectory data or satellite imagery. And since roadmaps are immersed graphs, that is, all vertices have associated locations and edges have associated curves in 2D or 3D, methods for comparing shapes and graphs are also available for comparing maps. See Conte et al. [2004], Ahmed et al. [2015a, 2015b], Buchin et al. [2023] for surveys.

 The path-based [Ahmed et al. 2015c], shortest path-based [Karagiorgou and Pfoser 2012], and traversal [Alt et al. 2003] distances represent each graph with paths, compare them, and thus measure connectivity to some extent. The Hausdorff distance [Alt and Guibas 1999] considers nearest neighbor assignments of points only while the Fréchet distance requires establishing a homeomorphism between the graphs [Fang and Wenk 2021]; however roadmaps are generally not homeomorphic. Less strict requirements on a roadmap between the two graphs are imposed by the weak and strong graph distances [Akitaya et al. 2021] and the contour tree distance [Buchin et al. 2017, 2023], but many variants are NP-complete. The local homology-based distance [Ahmed et al. 2014] compares the topological features in local neighborhoods by comparing locally computed persistence diagrams of the distance filtrations of the graphs. Edit distances, see, for example, Cheong et al. [2009], can also be defined but are usually NP-complete. Methodology for locally evaluating map construction algorithms for hiking data trajectories has been provided in Duran et al. [2020]. Graph sampling [Biagioni and Eriksson 2012a, 2012b, Liu et al. 2012], the method discussed here, is, arguably, the most popular method for comparing two roadmaps.

1.2Graph Sampling Methods

Graph sampling methods for map comparison typically have a simple structure. First, point samples are computed from each map using some sampling method. Second, a matching between the point samples of each map is computed, according to a matching rule. Intuitively, the rule determines when two points should be identified as the same in both maps (as shown in Figure 1.1). Finally, the number of matched points is used to calculate one or more scores, typically precision and recall, which measure the proportion of points matched.

 Hence the implementation of a graph sampling method involves two key decisions: a sampling method and a matching rule. Since there are multiple options for each, and they can have an important effect on the final scores, this section discusses each of them in detail. In the following, the two graphs to be compared are always denoted G and H.

1.2.1Sampling Method

The sampling method determines which points are sampled from each map. It is important that the sampling is dense enough to include all roads in the map and that the number of samples along a road segment is proportional to its length. A simple way to achieve this is by sampling along each edge of the graph at a fixed distance between consecutive samples (as long as this distance is smaller than the minimum edge length). Some care must be taken at intersections to ensure that the distance between consecutive samples is maintained across them as much as possible. Typically, the sampling is implemented using a graph traversal. This ensures that consecutive samples on paths from the root to the leaves are spaced at the fixed distance.

[image: Two subfigures display pairs of road maps of a location, depicting one prior to graph sampling and one after graph sampling. In a one-to-one scenario, sample points on graph G are paired with corresponding samples on graph H if they are located within a specified proximity to each other.]

Figure 1.1A highway intersection and its matching. Blue represents G and red is H.

 There are two major approaches to graph sampling:

(1)In global sampling, the roadmap G is sampled in its entirety with points at a fixed distance (typically 5m), resulting in a point set PG sampled from G such that |PG| is proportional to len(G). Here, len(G) denotes the total length of all edges in G. The set PG is a deterministic discretization of G. For the second graph H, the point set PH is computed analogously.

(2)In local sampling, one proceeds in two phases. First, a set S ⊆ ℝ2 of seeds is computed. Typically, S is chosen at random on G. Second, for each s ∈ S, the graphs G ∩ Us and H ∩ Us are sampled deterministically. Here, Us is a neighborhood of s, usually a disk centered at s with a fixed radius r. Typically, the sampling is performed using a graph traversal in G ∩ Us starting at s ∈ G and a graph traversal in H ∩ Us starting at a nearest neighbor sH ∈ H to s, sampling points at a fixed distance.

 Another important aspect of sampling is the graph traversal. The graph G can be interpreted as an undirected graph or as a directed graph with edge directions and/or turn restrictions at vertices. (Not all roadmaps, in particular reconstructed ones, come equipped with edge directions or turn restrictions.) In addition, a traversal may traverse only a single connected component, or it may traverse every connected component. Actual roadmaps are of course (strongly) connected, but some reconstructed maps may not be connected. And in particular, local sampling may result in multiple connected components in smaller neighborhoods.

1.2.1.1Global versus Local Sampling

Global sampling is a deterministic sampling method, and for a fixed sampling distance and fixed graph traversal algorithm (in particular one that traverses all connected components), the sets PG and PH are uniquely determined. For a fixed matching rule (see Section 1.2.2), precision is k∕|PG| and recall is k∕|PH| (or vice versa), where k is the number of matched samples. The resulting graph comparison method, based on global sampling, has previously been termed GEO [Biagioni and Eriksson 2012a, Liu et al. 2012].

 Local sampling, on the other hand, introduces much more variability into the sampling process, and therefore the sample sets and the resulting scores are not well-defined. The choice and the number of the seeds pose the first problem. Table 1.22 shows an example where precision, recall, and F-scores vary widely for different numbers of random seeds. The precision values for the cropped ground truth, for example, vary between 0.702 and 0.938. If seeds are randomly chosen, some areas of the map may be oversampled and some undersampled; it is not clear how many random seeds to choose. One way to alleviate this problem may be to choose seeds in a systematic way such that G or H or both are covered in a well-defined way. He et al. [2018], for example, compute seeds by sampling the ground truth map at a fixed distance of 50m. One more caveat is how to tackle seeds in G that don’t have a close enough sample sH ∈ H. In this situation, seeds have been omitted from score calculation [Biagioni and Eriksson 2012a] or have been used for computing recall only [He et al. 2018]. Another source of variability in local sampling is the aggregation of the scores, see Section 1.2.3.

 Local sampling was initially introduced [Biagioni and Eriksson 2012b] with the intent to measure topological differences between two roadmaps; Biagioni and Eriksson [2012a] called this method TOPO. For each seed s ∈ S, this graph comparison method only traverses one connected component in G ∩ Us starting from s and one connected component in H ∩ Us starting from sH, and it uses edge directions and turn restrictions in G and H (as well as bearings and a greedy matching, see Section 1.2.2). So, the only topological feature this method captures is local connectivity. It is, however, extremely sensitive to the definition of locality, that is, the choice of the radius defining the local neighborhood Us. See Table 1.3 for an example where precision, recall, and F-scores vary widely for different choices of radii. The precision numbers for the cropped ground truth, for example, vary between 0.702 and 0.881. It is not clear how this radius should be chosen in order to provide a useful comparison of local connectivity information. Intuitively, the local neighborhood would need to be very small to even contain more than one connected component. In the literature, the choice of radii includes 100m [Chen et al. 2016], 300m [Biagioni and Eriksson 2012a, 2012b, Ahmed et al. 2015a, 2015b, He et al. 2018, Buchin et al. 2020, Van Etten 2020],3 and a quite large value of 2,000m [Stanojevic et al. 2018], which is 1/4 of the map diameter (for Chicago).

Table 1.2Local evaluation with different number of seeds with r = 300m and dmax = 15m on Biagioni’s reconstructed map vs. OSM ground truth on Chicago data

	 Biagioni [Biagioni and Eriksson 2012a]
	Chicago
	Cropped Chicago

	 # seeds
	 Precision
	 Recall
	 F
	 Precision
	 Recall
	 F

	 10,000
	 0.859
	 0.183
	 0.301
	 0.894
	 0.543
	 0.676

	 2,000
	 0.821
	 0.196
	 0.316
	 0.917
	 0.534
	 0.675

	 1,000
	 0.780
	 0.185
	 0.299
	 0.938
	 0.551
	 0.694

	 200
	 0.661
	 0.154
	 0.250
	 0.702
	 0.479
	 0.569

	 100
	 0.879
	 0.171
	 0.287
	 0.931
	 0.618
	 0.743

Table 1.3Local evaluation with different radii r (in m), dmax = 15m, and using 200 seeds on Biagioni vs. Chicago (OSM)

	 Biagioni
	 Chicago
	 Cropped Chicago

	 r
	 Precision
	 Recall
	 F
	 Precision
	 Recall
	 F

	 900
	 0.884
	 0.111
	 0.197
	 0.881
	 0.456
	 0.600

	 600
	 0.817
	 0.126
	 0.218
	 0.836
	 0.478
	 0.608

	 300
	 0.661
	 0.154
	 0.250
	 0.702
	 0.479
	 0.569

	 150
	 0.576
	 0.238
	 0.337
	 0.716
	 0.495
	 0.585

	 100
	 0.556
	 0.347
	 0.427
	 0.757
	 0.492
	 0.597

	 50
	 0.558
	 0.554
	 0.556
	 0.813
	 0.462
	 0.589

 Due to the variability introduced by local sampling, and the limited (and not well-specified) benefit of comparing local connectivity, global sampling may be more beneficial to use in practice since it is well-specified and reproducible.

1.2.1.2Graph Sampling Used in the Literature

Graph sampling scores have been widely used to evaluate map construction results [Ahmed et al. 2015a, 2015b, Chen et al. 2016, Bastani et al. 2018, He et al. 2018, 2020, Stanojevic et al. 2018, Tang et al. 2019, Van Etten 2020]. Most use a 5m sampling interval and variants of local sampling. However, often not all parameters (e.g., r, number of seeds) or other choices (e.g., traversal, matching rule, score aggregation, map cropping method) are specified, affecting reproducibility, in particular for local sampling. Biagioni and Eriksson [2012a] use both global sampling (GEO [Liu et al. 2012]) and local sampling (TOPO [Biagioni and Eriksson 2012b] with directed road traversal), and they use a cropped ground truth. While the locality radius r and the number of seeds are not specified, in the code that James Biagioni made available to us the default values were r = 300m and 100 random seeds, so we assume these parameter choices were made. Stanojevic et al. [2018] also use both global sampling and local sampling (with r = 2,000m and 200 seeds). Ahmed et al. [2015a, 2015b] use local sampling based on the code provided by James Biagioni (using r = 300) and do not crop the ground truth. They introduce the use of a fixed set of seeds for all comparisons in order to increase reproducibility; they use 1,000 seeds. He et al. [2018, 2020] and Van Etten [2020] use local sampling with r = 300m. Bastani et al. [2018] also use local sampling; they present F-scores averaged over multiple cities, and they introduce a new score based on matching intersections. Chen et al. [2016] use local sampling and take 1% of the GPS points of the input trajectories as seeds and r = 100m. Tang et al. [2019] use a global approach to compute F-scores and manually cropped ground truth maps.

Table 1.4Varying F-scores comparing the same reconstructed maps in different papers for dmax = 15

[image: image]

 Most values were visually transcribed from plots. All used r = 300m, except Stanojevic et al. [2018] used r = 2,000m. The number of seeds is 200 for Stanojevic et al. [2018] and ours, it is 100 for Biagioni and Eriksson [2012a], and 1,000 for Ahmed et al. [2015a, 2015b].

 Even though graph sampling has been widely adopted as a method for comparing roadmaps, there is a large variability in the precision, recall, and F-scores in the literature. In Table 1.4 we show F-scores from different papers [Biagioni and Eriksson 2012a, Ahmed et al. 2015a, 2015b, Stanojevic et al. 2018, Tang et al. 2019] including ours, that were computed on the same reconstructed maps4 and OSM ground truth for Chicago. Most values were visually transcribed from plots in the papers, and may therefore contain some noise. The table includes F-scores for local and global sampling methods using (full) and cropped OSM ground truths and dmax = 15. Our F-scores were computed using greedy matching and local sampling parameters r = 300m and 200 seeds. While all use OSM ground truth maps, only Ahmed et al. [2015a, 2015b] and Tang et al. [2019] and this article use the OSM maps from mapconstruction.org. The locality radius is r = 300m for all except for Stanojevic et al. [2018], which is r = 2,000m. The number of seeds is 200 for Stanojevic et al. [2018] and this paper, it is 100 for Biagioni and Eriksson [2012a], and 1,000 for Ahmed et al. [2015a, 2015b]. It can be seen that the F-scores vary widely in each row. For example, for Biagioni’s reconstructed map the local sampling scores vary between 0.25 and 0.58 for OSM, and between 0.57 and 0.78 for cropped OSM. The values for global sampling on cropped OSM are a bit more consistent—note that two approaches agree on 0.78 for Biagioni’s map and two agree on 0.61 for Ahmed’s map.

1.2.2Matching Rule

The matching rule defines when a pair of points, one from each map, should be considered the same. Recall that a matching is a 1-to-1 correspondence (i.e., no point can be matched to two points). All matching rules include a distance condition, establishing that only points that are closer than some maximum distance threshold dmax can be considered to match; this is the simplest possible rule. In principle, the more points that can be matched, the more similar the two maps will be considered.

Maximum Matching If the matching rule is only based on dmax, the simplest approach is to match as many pairs of points as possible, as long as they are within distance dmax. This is equivalent to finding a maximum matching in the bipartite graph whose vertices are the sampled points on each map and whose edges are all pairs of points (from different maps) at distance at most dmax.

Greedy Matching While a maximum matching guarantees to match as many points as possible, it involves finding a global solution, which may be costly in large graphs. Also, all pairs within distance dmax are considered equivalent. Instead, one can find a locally maximal matching that is as large as possible, albeit possibly suboptimal, and gives priority to matching pairs of points that are close to each other. A greedy matching can be computed by choosing one point from one map, and matching it to the nearest point in the other map, if possible. If not, the second nearest point is tried, and so on, until the kth one (for a parameter k).

 Unfortunately, greedy matching is not clearly defined—there are multiple ways to implement it, leading to different methods. In particular, the order in which points are matched can result in very different matchings.

 Algorithm 1.1 shows a greedy matching algorithm that follows the ideas in Biagioni’s implementation of graph sampling as used in Biagioni and Eriksson [2012a, 2012b]. It consists of two steps: First, assign a nearest neighbor to each point. This produces an assignment that is not 1-to-1. In a second step, a 1-to-1 matching is greedily computed from this initial matching. Note that a point is only matched to one of its k nearest neighbors (typically, k = 10).

 The greedy matching has two interesting properties: (i) it gives priority to matching points that are close to each other, as it tries to match closest pairs first. Moreover, (ii) it is more selective than the maximum matching: if none of the k nearest neighbors are available to match a point, the point is not matched. Thus, one can expect fewer matched pairs with this method, but possibly better matched pairs.

Weighted Maximum Matching We propose a new matching rule that combines the strongest points of the maximum and greedy matching. The idea is not only to try to match as many pairs as possible, but also to take the distance of each matched pair into account. We can formalize this as follows. We consider the same graph as in the maximum matching, but now each edge pq has a weight, defined as dmax −||p − q||, where ||p − q|| is the Euclidean distance between p and q. The goal is now to compute a matching of maximum total weight, where the total weight of a matching is the sum of the weights of all edges in the matching.

 The matching obtained may contain fewer edges than a maximum matching, but is expected to contain shorter edges. An important advantage of the weighted maximum matching is that it is unambiguously well-defined. Moreover, if no additional constraints are used, it produces matchings that are crossing-free (see Figure 1.2), which increases the accuracy. A disadvantage is that it requires a globally optimal solution; thus it can be computationally more expensive. Indeed, the best known methods to compute a weighted maximal matching have complexity O(nm + n2 log ⁡ n) [Gabow 1990], for n and m the number of vertices and edges, respectively. In our context, if dmax is small, one can expect m to be o(n), or even constant.

[image: image]

Bearing Conditions Matching rules can include other aspects in addition to distance. The most important one used in the literature is bearing. The idea is that two points should be matched only when they belong to edges with a similar orientation. The most common way to take it into account is to require that the angle between the two edges is at most 45∘. A canonical example to motivate including bearing is to avoid matching two points that are very close to each other but belong to edges that are perpendicular; in such a case, it is reasonable to argue that the points should not be considered the same since their edges have opposite orientations.

[image: Six panels illustrate six different configurations for aligning sample points on a hypothetical crossroad formed by two parallel roads intersecting with two additional parallel roads. In the initial panel, denoted as “MM (without bearing),” the sample pairings exhibit numerous intersections and appear disordered. Meanwhile, in the “MM (with bearing)” panel, the number of pairings remains the same, but they exhibit a discernible order. “Greedy (without bearing)” closely resembles “Greedy (with bearing)” in regions with sparse samples. However, matchings between samples from perpendicular roads might occur near the intersections. The last two panels display “WMM (without bearing)” and “WMM (with bearing),” where the resemblance between these two configurations is more apparent, and only a few samples near the intersections are mismatched.]

Figure 1.2Example illustrating three different matching rules, without and with bearing. Two maps are compared; map 1 with blue edges and map 2 with red edges. A pair of matched samples is shown with a magenta segment between a sample in map 1 (cyan) and a sample in map 2 (pink). Unmatched samples in map 1 are represented in orange; unmatched samples in map 2 are represented in green. Sampling distance has been set to 5m and dmax = 50m. (a) MM (no bearing). (b) Greedy (no bearing). (c) WMM (no bearing). (d) MM (with bearing). (e) Greedy (with bearing). (f) WMM (with bearing).

1.2.2.1Matching Rules Used in the Literature

All sampling-based methods use some type of matching, but very few papers specify exactly how the matching is computed. In most cases, the description of the matching part only states that two points are matched whenever they are within the distance threshold (see, e.g., Chen et al. [2016]; Stanojevic et al. [2018], and Tang et al. [2019]) without explaining what is done when the nearest neighbor is already taken, which is often the case.

 The exceptions that we are aware of are RoadRunner [He et al. 2018], which uses a maximum matching, and Biagioni and Eriksson [2012a, 2012b]—together with a few other papers that reused their code [Ahmed et al. 2015a, 2015b, Buchin et al. 2020]—that implement greedy matching rules. The weighted maximum matching is proposed in this work for the first time. As for bearing, it is included in several papers [Biagioni and Eriksson 2012a, 2012b, He et al. 2018, Stanojevic et al. 2018], although the exact bearing threshold used is not always mentioned (RoadRunner [He et al. 2018] uses 30∘).

Comparison of Matching Rules Figure 1.2 presents a simple situation where each map has only three edges, shown in blue and red, respectively. Both maps are sampled in the same way (globally, using sampling distance 5m). The resulting matchings are shown for the three matching rules (maximum matching [MM], weighted maximum matching [WMM], and Greedy) with two variations: with and without bearing.

 Already in the first row, we can observe striking differences between the three matching rules. Maximum matching, as expected, matches at least as many points as the other rules, but at the cost of including pairs that visually do not seem to correspond to each other. In contrast, the two rules that give priority to shorter edges (WMM, Greedy) produce correspondences that are much more aligned with intuition. Note that the greedy matching fails to match some points around the intersections of the map edges. This can be explained by the fact that it is limited to matching among the 10-nearest neighbors. Using such a hard constraint can lead to being too selective in situations like the one shown.

 The first row also shows that only taking distances into account can result in matching points that belong to clearly different edges. That is the case in the figure with matchings between horizontal and vertical edges. The second row, which restricts matching pairs to those with bearing differences of less than 45 ∘, solves this issue. This justifies the inclusion of bearing restrictions in the matching rules.

1.2.3Score Calculation

Precision and recall are the two scores typically used to quantify the results of graph sampling methods. In this context, precision is the number of matched samples divided by the total number of samples on H (typically the reconstructed map). Recall is the number of matched samples divided by the total number of samples on G (typically the ground truth map). They are useful for measuring the ratio of correct predictions and the ratio of covered ground truth, respectively. These two scores are often combined using the F-score, defined as the harmonic mean of precision and recall (i.e., F = 2 ∗ (precision ∗recall)∕(precision + recall)).

 As mentioned in Section 1.2.1, in global sampling precision, recall, and F-score are computed from matched samples taken over the entire graphs. In local sampling, however, there are different options for aggregation. The number of matched samples and total samples can be aggregated (summed) over all seeds, and precision, recall, and F-score are computed using those total number of samples. Or precision, recall, and F-score can be computed for each seed individually and then aggregated in some way, for example, by taking the mean. While it is reasonable to use such local aggregation in combination with local sampling, it does add extra variability to the computation, which should be clearly specified when presenting results. Moreover, unless exactly the same aggregation is used, results will not be comparable across different works.

Cropping the Ground Truth Map In the context of map reconstruction, the recall values can easily become distorted if the ground truth map used is not appropriate for the reconstructed map. Often, the ground truth map used is significantly larger than the reconstructed map, including roads that are not covered in the GPS dataset. This causes a dilution in the recall value, which also affects F-scores. One way to overcome this situation is to crop the ground truth such that it only contains the roads traversed by GPS trajectories. This can be done manually (see, e.g., Tang et al. [2019]) or using map-matching algorithms (e.g., as in Biagioni and Eriksson [2012a]). As can be seen in Tables 1.2 and 1.3, the difference in recall between cropping the ground truth or not is significant. However, the use of a cropped ground truth adds an extra level of variability to the experiments since there are various methods and settings to choose from, making the experiments unlikely to be reproducible if the method used is not specified in full detail (something that seldom occurs in the literature). It is also possible to overcome this problem by obtaining the number of matched samples. When working without a reliable ground truth, using the number of matched samples instead of the recall and the F-score avoids having to compare near-zero and unrealistic recalls.

1.2.4Graph Sampling Toolkit

The Graph Sampling Toolkit consists of three components: the core is the graph sampling evaluation program. Additionally, there are tools for cropping maps and an interactive visualization program. The toolkit is available on GitHub: https://github.com/Erfanh1995/GraphSampling Toolkit.

1.3Discussion/Conclusion

Local sampling does not preserve topology, introduces many choices and parameters, and thus the resulting scores are much less reproducible (see Table 1.4) than those computed with global sampling. Global distance on the other hand is uniform and reproducible; hence, it would be a suitable choice for future evaluations. However, as has been done in Ahmed et al. [2014, 2015c], local sampling can be used to visualize local differences by plotting the heatmaps of all computed scores.

 While graph sampling is an effective approach for map comparison, it is still a discrete method. A feasible continuous method might be the key to achieving more comprehensive results.

∗Partially supported by National Science Foundation grant CCF 1637576 and 2107434.

†Partially supported by projects PID2019-104129GB-I00/AEI/10.13039/501100011033 and Gen. Cat. 2017-SGR-1640.

1.Sat2Graph’s [He et al. 2020] TOPO code is available on GitHub and Biagioni’s code [Biagioni and Eriksson 2012a, 2012b] was made available to us by James Biagioni.

2.Using an adaptation of James Biagioni’s graph sampling code to implement local sampling in undirected graph traversal, we achieve the results in Tables 1.2–1.4.

3.This assumes Biagioni and Eriksson [2012a, 2012b] used r = 300m as in the code provided by James Biagioni.

4.The trajectory data and reconstruction code are publicly available, for example, at mapconstruction.org. However, reconstructed maps may still differ if parameters were set differently.

References

M. Ahmed and C. Wenk. 2012. Constructing street networks from GPS trajectories. In Proceedings of the 20th Annual European Conference on Algorithms (ESA ’12), Vol. 7501: Lecture Notes in Computer Science. Springer, 60–71. DOI: https://doi.org/10.1007/978-3-642-33090-2_7.

M. Ahmed, B. T. Fasy, and C. Wenk. November. 2014. Local persistent homology based distance between maps. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’14). ACM, 43–52. DOI: https://doi.org/10.1145/2666310.2666390.

M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. 2015a. Map Construction Algorithms. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-25166-0.

M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. 2015b. A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica, 19, 3, 601–632. DOI: https://doi.org/10.1007/s10707-014-0222-6.

M. Ahmed, B. T. Fasy, K. S. Hickmann, and C. Wenk. 2015c. A path-based distance for street map comparison. ACM Trans. Spat. Algorithms Syst. 1, 1, 1–28. DOI: https://doi.org/10.1145/2729977.

H. A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk. 2021. Distance measures for embedded graphs. Comput. Geom.: Theory Appl. 95, 101743. DOI: https://doi.org/10.1016/j.comgeo.2020.101743.

H. Alt and L. J. Guibas. 1999. Discrete geometric shapes: Matching, interpolation, and approximation—A survey. In Handbook of Computational Geometry. Elsevier, 121–154. DOI: https://doi.org/10.1016/B978-044482537-7/50004-8.

H. Alt, A. Efrat, G. Rote, and C. Wenk. 2003. Matching planar maps. J. Algorithms 49, 2, 262–283. DOI: https://doi.org/10.1016/S0196-6774(03)00085-3.

F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden, and D. J. DeWitt. 2018. RoadTracer: Automatic extraction of road networks from aerial images. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, June 18–22. IEEE, 4720–4728. DOI: https://doi.org/10.1109/CVPR.2018.00496.

J. Biagioni and J. Eriksson. 2012a. Map inference in the face of noise and disparity. In Proceedings of the 20th ACM SIGSPATIAL GIS. ACM, 79–88. DOI: https://doi.org/10.1145/2424321.2424333.

J. Biagioni and J. Eriksson. 2012b. Inferring road maps from global positioning system traces: Survey and comparative evaluation. Trans. Res. Rec. 2291, 61–71. DOI: https://doi.org/10.3141/2291-08.

K. Buchin, T. Ophelders, and B. Speckmann. 2017. Computing the Fréchet distance between real-valued surfaces. In Proceedings of the 28th Annual ACM–SIAM Symposium on Discrete Algorithms. SIAM, 2443–2455. DOI: https://doi.org/10.1137/1.9781611974782.162.

K. Buchin, M. Buchin, J. Gudmundsson, J. Hendriks, E. Hosseini Sereshgi, V. Sacristan, R. I. Silveira, F. Staals, and C. Wenk. 2020. Improved map construction using subtrajectory clustering. In Proceedings of the 4th ACM SIGSPATIAL Workshop on Location-Based Recommendations, Geosocial Networks, and Geoadvertising (LocalRec ’20). ACM, 1–4. DOI: https://doi.org/10.1145/3423334.3431451.

M. Buchin, E. Chambers, P. Fang, B. T. Fasy, E. Gasparovic, E. Munch, and C. Wenk. 2023. Distances between immersed graphs: Metric properties. La Matematica 2, 197–222. DOI: https://doi.org/10.1007/s44007-022-00037-8.

L. Cao and J. Krumm. 2009. From GPS traces to a routable road map. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS ’09). ACM, 3–12. DOI: https://doi.org/10.1145/1653771.1653776.

C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. Guibas. 2016. City-scale map creation and updating using GPS collections. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). ACM, 1465–1474. DOI: https://doi.org/10.1145/2939672.2939833.

O. Cheong, J. Gudmundsson, H. Kim, D. Schymura, and F. Stehn. 2009. Measuring the similarity of geometric graphs. In International Symposium on Experimental Algorithms, Vol. 5526: Lecture Notes in Computer Science. Springer, Berlin, 101–112. DOI: https://doi.org/10.1007/978-3-642-02011-7_11.

D. Conte, P. Foggia, C. Sansone, and M. Vento. 2004. Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18, 3, 265–298. DOI: https://doi.org/10.1142/S0218001404003228.

D. Duran, V. Sacristán, and R. I. Silveira. 2020. Map construction algorithms: A local evaluation through hiking data. GeoInformatica 24, 633–681. DOI: https://doi.org/10.1007/s10707-019-00386-7.

S. Edelkamp and S. Schrödl. 2003. Route planning and map inference with global positioning traces. In Computer Science in Perspective, Vol. 2598: Lecture Notes in Computer Science. Springer, Berlin, 128–151. DOI: https:// doi.org/10.1007/3-540-36477-3_10.

P. Fang and C. Wenk. 2021. The Fréchet distance for plane graphs. In 37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 62:1–62:5.

H. N. Gabow. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the First Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’90), CA. SIAM, 434–443.

S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Madden. 2018. Roadrunner: Improving the precision of road network inference from GPS trajectories. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’18). ACM, 3–12. DOI: https://doi.org/10.1145/3274895.3274974.

S. He, F. Bastani, S. Jagwani, M. Alizadeh, H. Balakrishnan, S. Chawla, M. M. Elshrif, S. Madden, and M. A. Sadeghi. 2020. Sat2Graph: Road graph extraction through graph-tensor encoding. In Proceedings of the 16th European Conference on Computer Vision, Vol. 12369: Lecture Notes in Computer Science. Springer, Cham, 51–67. DOI: https://doi.org/10.1007/978-3-030-58586-0_4.

S. Karagiorgou and D. Pfoser. 2012. On vehicle tracking data-based road network generation. In Proceedings of the 20th ACM SIGSPATIAL GIS. ACM, 89–98. DOI: https://doi.org/10.1145/2424321.2424334.

X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu. 2012. Mining large-scale, sparse GPS traces for map inference: Comparison of approaches. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM, 669–677. DOI: https://doi.org/10.1145/2339530.2339637.

R. Stanojevic, S. Abbar, S. Thirumuruganathan, S. Chawla, F. Filali, and A. Aleimat. 2018. Robust road map inference through network alignment of trajectories. In Proceedings of the 2018 SIAM International Conference on Data Mining. SIAM, 135–143. DOI: https://doi.org/10.1137/1.9781611975321.15.

J. Tang, M. Deng, J. Huang, H. Liu, and X. Chen. 2019. An automatic method for detection and update of additive changes in road network with GPS trajectory data. ISPRS Int. J. Geo-Inf. 8, 9, 411. DOI: https://doi.org/10.3390/ijgi8090411.

A. Van Etten. 2020. City-scale road extraction from satellite imagery v2: Road speeds and travel times. In IEEE Winter Conference on Applications of Computer Vision, WACV, Snowmass, CO, March 1–5. IEEE, 1775–1784. DOI: https://doi.org/10.1109/WACV45572.2020.9093593.

CHAPTER 2

Fast 3D Euclidean Connected Components

W. Randolph Franklin, Salles Viana Gomes de Magalhães, Eric N. Landis,

2.1Introduction

The general connected component problem takes a graph G=(V,E) as input. V is a set of vertices, and E is a set of undirected edges. Each edge connects a pair of vertices, thereby making them adjacent. A connected component contains vertices joined by the transitive completion of the adjacency relation.

 The 3D Euclidean case is a useful specialization that has been studied less. Here, the universe is a 3D grid of binary voxels. A 0 value for a voxel represents a solid voxel, that is, a vertex. An edge is implicit whenever two adjacent voxels are both solid. The adjacency relation may be either 6-adjacency or 26-adjacency. With 6-adjacency, two voxels are adjacent if exactly one of their coordinates differs by one, for example, (10,20,15) and (10,19,15). With 26-adjacency, one or more coordinates differs by one, for example, (10,20,15) and (11,19,16).

 Since 3D illustrations are difficult, Figure 2.1 shows 2D connectivity. The original image was a scanned 2D map from the USGS. The greyscale image was thresholded to produce a B&W image of size 18,573 × 19,110 bits or pixels. Then the black pixels were grouped into components using 8-connectivity. Each component was then randomly colored. The figure is a 2,000 × 2,000 detail of the full image, for which 32,858 components were computed.

 Note the complexity of some of the components such as the dark green one in the lower right that contains several letters and sections of roads. Its zigzag shape is assembled gradually as smaller subcomponents are combined. This 2D example was computed by treating it as a 18,573 × 19,110 × 1 3D problem. The components in a full 3D example can be much more complicated. Imagine a ball of yarn composed of several long strings of yarn all tangled together, with each string as one component.

[image: Scanned image where each connected component has been colored with a different color.]

Figure 2.12D connected components.

 Secondarily to computing the components’ voxels, we compute each component’s surface area. Also, we wish to process datasets with well over 109 vertices and edges. This paper presents various improvements to implement this efficiently.

 This algorithm builds on the classic union–find or merge–find algorithm, which computes the connected components for a general undirected graph. Initially, each vertex is its own component. Then, each edge is processed in turn. A find operation finds which components contain the edge’s endpoints. If those two components are different, then a union operation combines them into one component. The time is very slightly over linear [Tarjan 1975]. Specifically, the time to execute n union and m find operations on n elements is O(n + mα(m,n)), where α(m,n) is the functional inverse of Ackermann’s function.

 It uses the disjoint-set data structure, Galler and Fisher [1964] to arrange the vertices in a forest of trees, with each vertex having a pointer to another vertex. Each tree is one connected component. The union–find algorithm reads the data and rewrites vertex pointers several times. Various implementations exist in addition to Landis et al. [2007], Nagy et al. [2003], and Nagy et al. [2001], but they often build upon general union and find algorithms. Since they do not exploit the geometric coherency in the Euclidean case, they can be very slow, and take much more space, compared to what is described in this note.

 Applications include material failure in concrete under increasing stress, geological porosity and percolation, electrical conductivity in metal objects, elasticity in 3D printed objects, solving mazes, image processing, equivalence of finite state automata [Sedgewick and Wayne 2011], and compiling sets of equivalence statements in Fortran.

 Parallel connected component algorithms, although not necessary for the Euclidean case, include Zhang et al. [2020a, 2020b].

2.2A Better Data Structure for the Euclidean Case

The key to our efficiency in time and space is the careful choice of data structure that is specialized for the Euclidean nature of the data. The efficiency is enhanced by several small optimizations. The details follow.

(1)The universe is a 3D voxel grid or array of g × g × g bits, indexed with x, y, and z coordinates.

(2)Let n be the number of solid voxels. n ≤ g3, and typically, n ∼ g3∕2. Each solid voxel is considered a vertex of a graph.

(3)Each pair of adjacent voxels defines an edge of the graph. The edges are not stored explicitly since they can be enumerated by scanning the voxel grid for adjacent pairs of solid voxels.

(4)The major new data structure is a run. A run is a sequence of consecutive solid voxels with constant x and y coordinates, and sequentially increasing z coordinates. The runs in a connected component are formed into a tree; and each run contains the index r of its father. Runs are indexed from 1 up.

The root run is marked by making its parent’s index 0 or negative. A negative number is used to store some useful information about the whole component like its surface area. It is convenient to assemble the runs into trees to facilitate the operations. This assembly is done in such a way that each run’s father has a larger index than the run, and the root run has the highest index of any run in the tree.

The runs may be considered to be a forest of trees, with each tree representing one connected component. Initially, each run is in a separate tree, of which it is the root and only element. Trees will be merged and grow, as described later.

Possible alternatives to the run include storing the voxels separately or using 2D slabs. The run format is much more compact than the former, while simpler than the latter.

(5)Abstractly, a run is the tuple (x,y,zl,zh,r). However, for large datasets there may be several runs with the same (x,y), so all such runs are grouped together in a ragged array indexed on (x,y). Only (zl,zh,r) is stored explicitly for each separate run.

Ragged arrays:

(a)This solves the problem of implementing a read-only array whose elements have widely varying size, with many elements being empty and a few very large. Equivalently, there may be from 0 to many elements for each key.

(b)It is defined abstractly as follows.

There are m keys, assumed for this description to be integers from 0 to m − 1. The more complex case used in this note, where the key is an ordered pair, follows easily. There are l (key, value) pairs. The value retrieved with key i is an integer li and a list of li items of some fixed length type, say integer. Note that l = ∑ ⁡ ili.

(c)In our case, the explicit data stored for each run is the tuple (zl,zh,r).

(d)Our implementation of the ragged array goes as follows.

All the values for the whole ragged array are stored consecutively in one data array a, of size l, ordered by key. There is a dope vector d of size m + 1. li = di+1 − di. The j-th item with key i is adi+j. Random items can be read in constant time, which compares favorably to using a linked list for the items with the same key. If we assume that one integer has size 1 word, and one item has size s words, then the total space for the ragged array is m + 1 + ls. This again compares favorably to using a linked list or C++ vector to store the items with the same key. The space used when a key has no values is only one word (in the dope vector). This again compares favorably to C++ vectors.

Our algorithm inserts elements into the ragged array in order of increasing (x,y). So, new elements are always appended to the end, and the construction is efficient.

However, if that were not the case, we could construct the ragged array with a read twice, write once, algorithm. Using the dope vector temporarily to store counts, we would read the data once and count how many times each key is used. Then, we would partially sum those counts to create the actual dope vector, read the data again, and populate the data array. However, our algorithm is designed so that this is unnecessary.

(6)Finally, we can compute the total surface area of each component because we already compute the adjacencies of each new run to compute or update the adjacent run pointers. The component’s surface area is the sum of the surface area of each run minus double the area of overlap between every pair of adjacent runs. That adjacent area is computed as each run is formed and inserted into the ragged array. This ability to compute the areas is a unique advantage of this algorithm.

2.3Connected Component Algorithm

This section describes how many small components are gradually united into a few large ones.

(1)The input data is a sequential file of g3 bits, ordered with x varying slowest and z fastest. Each bit is considered to be a voxel to emphasize its geometric nature.

(2)The first part of the algorithm builds the ragged array of 1D runs and forms a preliminary forest of trees of connected runs.

(a)While reading the input data sequentially, each empty voxel or the end of a row delimits a new run (zl,zh) with known x and y.

(b)We search the ragged array for any runs that overlap in z and that are adjacent below or to the left, that is, with exactly one of x′ = x − 1 or y′ = y − 1.

The process involves first checking the runs with (x,y − 1) in the ragged array. Note that we can find the list of those runs in constant time. Searching down the list for runs with overlapping z takes time linear in the number of runs in the list. A binary search would be faster but is unnecessary.

We then check the runs with (x − 1,y) for overlaps in z. For 26-adjacency, the two runs may also be diagonally adjacent, so the (x − 1,y − 1) list must be checked. Here, two runs also overlap if their ending z-s are offset by one.

Various uninteresting but necessary boundary conditions must be handled.

(c)If the two runs are adjacent, then they are part of the same component (tree), so we record that fact as follows.

We trace the pointers of each run to the root of its tree. Remember that the id of the root is that largest id of any run in that tree, and that the root run will point to fictitious run 0. Of the two root runs of the two trees, pick the one with smaller id. Change its run pointer from 0 to the id of the higher numbered root run. Then repeat the trace from the two runs to the root, making all runs that we touch point to the new root. This flattens the tree.

(d)Finally, we optimize the trees and compute mass components, as follows. After all the runs have been processed, we pass through the run array from the maximum to minimum numbered run. We link each run directly to its component’s root. Simultaneously, we compute the volume of each component. It may be stored in any convenient data structure.

(3)We also thoroughly instrument the code with counters and timers in order to understand its performance in practice. It might be that a beautiful optimization offers no significant improvement, and so ought to be removed.

2.4Implementation

The research program written to demonstrate this technique is 600 lines of C++ code. It is freely available for nonprofit research and education. The data files are very compressible, so we use a file system (zfs) that does that automatically and quickly.

 If we wish to minimize the I/O time because the computation time is more interesting, we can put the current directory into an in-core filesystem that exists in the main memory (DRAM). In Linux, that location is /dev/shm. It can use up to 1∕2 of the physical main memory. The cost of reading and writing reduces to the cost of converting between the internal binary number format and the external character string, which is insignificant here.

 Earlier implementations of our algorithm, with application to analysis of tomographic images and cracking, damage, and fracture in concrete under stress, are described in Landis et al. [2007], Nagy et al. [2003], and Nagy et al. [2001]. That earlier code is available for nonprofit research and education at https://wrfranklin.org/ConnectedComponentsImplementation. The current code is being cleaned up and will be posted soon.

2.4.1Implementation Validation

Permuting the grid’s x, y, and z indexes or rotating it around any diagonal or even the grand diagonal completely changes the number, lengths, and connectivity of the runs. However, it does not change the number of components, or their sizes, or the total surface area. We made such changes to some large datasets, and compared the outputs. There was a complete match. This may not be completely definitive but is a good check.

2.5Examples

The testbed was a Lenovo P73 laptop with dual 6-core Intel Xeon E-2276M CPU @ 2.80GHz and 128GB of DRAM. The OS was Ubuntu Linux 21.04. The only important requirement there is that there be enough real memory because paging is too expensive. Because of the efficient data structures, much larger datasets are possible than if each voxel were stored separately. For extremely large datasets, we see how the algorithm could be designed to page nicely.

 We measured CPU time, which was within a few percent of wall clock elapsed time. When the program was rerun, the time changed by less than 5%.

2.5.1Random Voxels, 26-Connectivity

The first test dataset is a 1,000 × 1,000 × 1,000 universe of random uncorrelated voxels, with the probability of any particular voxel being solid as 0.5. We used 26-connectivity. Some output statistics are in Table 2.1.

 With 26-connectivity when half of the voxels are solid, the components are geometrically very complicated, zigzagging up and down. This algorithm handles that well. Ninety percent of the time was spent reading the data and building the forest of trees. That is why it would be difficult to design a parallel version of this algorithm. In contrast, all the subsequent steps were very fast.

Table 2.1Statistics for random dataset with 26-connectivity

	 Property
	 Value

	 Universe size
	 1,000 × 1,000 × 1,000

	 Number of voxels
	 1,000,000,000

	 Fraction of solid voxels
	 0.5

	 Number of runs
	 250,243,747

	 Number of components
	 35

	 Average number of runs per component
	 7.2 ⋅ 106

	 Time
	 47s

2.5.2Random Voxels, 6-Connectivity

The next test used the same dataset but processed it with 6-connectivity. That caused the components to be much smaller, simpler, and more numerous. That made the execution faster. Some output statistics are in Table 2.2.

2.5.3Concrete under Compression

The motivating application for this work was Landis’s study of how concrete fails under compression [Nagy et al. 2001, 2003, Landis et al. 2007]. Figure 2.2 shows three cross-sections in different directions from a smaller example of a concrete cylinder, perhaps a few centimeters long, being compressed to partial failure and scanned in the Brookhaven National synchrotron.

 The problem is that 2D sections do not capture the 3D nature of the fractures. Therefore, it was proposed that computing the connected components in 3D might be useful. Some output statistics are presented in Table 2.3.

Table 2.2Statistics for random dataset with 6-connectivity

	 Property
	 Value

	 Universe size
	 1,000 × 1,000 × 1,000

	 Number of voxels
	 1,000,000,000

	 Fraction of solid voxels
	 0.5

	 Number of runs
	 250,243,747

	 Number of components
	 8,963,541

	 Average number of runs per component
	 28

	 Time
	 33s

[image: Figure showing 2D cross-sections of a scanned concrete cylinder. These scans show fractures in the concrete being seen by different angles.]

Figure 2.22D cross-sections of 3D data from scanned concrete cylinder.

Table 2.3Statistics for concrete dataset

	 Property
	 Value

	 Universe size
	 1,024 × 1,088 × 1,088

	 Number of voxels
	 1,212,153,856

	 Fraction of solid voxels
	 0.5

	 Number of runs
	 20,216,828

	 Average run size
	 30

	 Number of components
	 4,539,562

	 Average number of runs per component
	 4.5

	 Maximum number of runs per component
	 2,993

	 Time
	 11.4s

2.5.4Random Dataset Properties

The program is efficient enough to perform repeated experiments to determine the properties of random datasets. So, we asked this question: How many components are generated for various universe sizes and fill factors or fractions (probability that a voxel is empty)? We did 10 runs each for many combos of universe sizes and fill fractions for 6-connectivity. Then, we did one run each for some combos of sizes and fill factors for 26-connectivity. Figures 2.3 and 2.4 show the results. The error bars for the 6-connectivity are 1 sigma to each side of the mean. The 26-connectivity cases are the curves scrunched to the left.

 We observe that the fill fraction giving the maximum number of components is independent of the universe size. For 6-connectivity, p=0.2 (approx.) gives the most components. For 26-connectivity, p=0.05 does. This independence is reasonable since connectivity is a local property.

 We then reanalyzed the above data to show how component size (volume) depended on universe size and fill factor. The lower group of lines is 6-connectivity, while the upper group, which does not extend all the way to the right, is 26-connectivity. The 26-connectivity lines are more irregular since we ran fewer cases.

 For component sizes much smaller than the universe size, the universe size was irrelevant, which is reasonable. The limiting case for a fill factor approaching 1 is one component whose size is the universe’s volume.

 It’s not clear what the functional relationship is. In one dimension, component sizes (lengths) would be exponentially randomly distributed, with mean length= 1 1−p. However, here in 3D, neither the component volumes nor their lengths appear to follow this. This suggests an area for theoretical work.

[image: Plot with the x axis showing the fraction of voxels which are empty and the y axis showing the mean number of connected components (for various universe sizes and connectivities).]

Figure 2.3Number of components vs. fill fraction.

2.6Comparison to Matlab

Matlab (R2021b) has two functions for computing 3D connected components. bwconncomp computes the components; its functionality is closest to ours. bwlabeln labels each voxel with its component id. Collecting the info for each component, if needed, would take extra time and programming. We tested two datasets of random voxels: 1,0243 and 2,0003. Matlab generally cannot process the large dataset. For the test cases it can run, it’s slower and uses more memory. We used 5GB for the little case and about 37GB for the big case. Matlab bwconncomp used 93GB and then crashed, probably because it needed more. Different data would perform differently but there’s no reason to think Matlab would be better. Random data is probably harder because it has so many components. Table 2.4 has the numbers.

[image: Plot with the x axis showing the fraction of voxels which are empty and the y axis showing the mean component volume (for various universe sizes and connectivities).]

Figure 2.4Component size vs. fill fraction.

Table 2.4Comparison to Matlab

	 N
	 Conn
	 Program
	 CPU Time

	 1,024
	 6
	 Matlab bwconncomp
	 117

	 1,024
	 6
	 Matlab bwlabeln
	 41

	 1,024
	 6
	 Ours
	 37

	 1,024
	 26
	 Matlab bwconncomp
	 103

	 1,024
	 26
	 Matlab bwlabeln
	 78

	 1,024
	 26
	 Ours
	 59

	 2,000
	 6
	 Matlab bwconncomp
	 crashed

	 2,000
	 6
	 Matlab bwlabeln
	 661

	 2,000
	 6
	 Ours
	 282

	 2,000
	 26
	 Matlab bwconncomp
	 crashed

	 2,000
	 26
	 Matlab bwlabeln
	 crashed

	 2,000
	 26
	 Ours
	 446

2.7Summary and Future

This note presented an algorithm that is efficient in space and time, with implementation, for computing the connected components of a 3D grid of over 109 bits or voxels. Although 2D datasets can also be processed as a special case, this algorithm operates in 3D.

 Future possibilities include parallelizing it, or modifying it to page efficiently in virtual memory.

References

B. A. Galler and M. J. Fisher. May. 1964. An improved equivalence algorithm. Commun. ACM 7, 5, 301–303. DOI: https://doi.org/10.1145/364099.364331.

E. N. Landis, T. Zhang, E. N. Nagy, G. Nagy, and W. R. Franklin. 2007. Cracking, damage and fracture in four dimensions. Mater. Struct. 40, 357–364. DOI: https://doi.org/10.1617/s11527-006-9145-5.

G. Nagy, T. Zhang, W. Franklin, E. Landis, E. Nagy, and D. Keane. May 28–30. 2001. Volume and surface area distributions of cracks in concrete. In C. Arcelli, L. Cordella, and G. S. di Baja (Eds.), Proceedings of the Visual Form 2001: 4th International Workshop on Visual Form IWVF4, Vol. 2059: Lecture Notes in Computer Science. Springer-Verlag, Berlin, 759–768. DOI: https://doi.org/10.1007/3-540-45129-3_70.

E. Nagy, T. Zhang, W. R. Franklin, G. Nagy, and E. Landis. July 16–18. 2003. 3D analysis of tomographic images. In Proceedings of the 16th ASCE Engineering Mechanics Conference. University of Washington, Seattle.

R. Sedgewick and K. Wayne. 2011. Algorithms (4th. ed.). Addison-Wesley Professional.

R. E. Tarjan. 1975. Efficiency of a good but not linear set union algorithm. J. ACM 22, 2, 215–225. DOI: https://doi.org/10.1145/321879.321884.

Y. Zhang, A. Azad, and A. Buluç. 2020a. Parallel algorithms for finding connected components using linear algebra. J. Parallel Distrib. Comput. 144, 14–27. DOI: https://doi.org/10.1016/j.jpdc.2020.04.009.

Y. Zhang, A. Azad, and Z. Hu. 2020b. FastSV: A distributed-memory connected component algorithm with fast convergence. In Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 46–57. DOI: https://doi.org/10.1137/1.9781611976137.5.

CHAPTER 3

Multiscale Aggregation Over Sliding Windows

Anne M. Denton

3.1Introduction

In geographic information systems (GIS), sliding or moving windows are used extensively for smoothing as a way of denoising and toward gathering focal statistics estimates [Stewart Fotheringham et al. 1997, Wu et al. 2006, Krivoruchko 2011]. Arguably, the need for sliding window based smoothing has increased substantially with the prevalence of high-resolution remotely sensed data that are collected by small satellites, drones, or airplanes. While such high-resolution sources offer resolutions that cannot be achieved with conventional satellites like Landsat, the individual pixel values are commonly noisy. Current GIS offer great flexibility in the selection of the shape of sliding windows with the goal of providing an appropriate and adaptable aggregate at the center of the window [ArcMap n.d.]. However, this level of generality means that the user has to select one size, and the appropriate size for aggregation may not be known beforehand. Increasing the window size can reduce noise, but eventually it may wash out features, and the most expressive size may only become clear after doing the analysis.

 With windows that are powers of two, aggregates from one iteration can be aggregated to create windows of twice the size. Note that while the presented approach is limited to windows that are a power of two, high-resolution images typically require processing over such large windows that even the limitation to powers of two creates ample processing choices. Conventional choices of window sizes for smoothing are odd numbers such as 3, 5, or 7 to ensure that there is one raster point at the center of the window that can be aligned with the derived features. The presented approach does not have that property, but, for high-resolution data, an offset by half a pixel is often not serious and can also be resolved by the GIS reraster operation if needed.

 The proposed technique is useful in a large number of applications besides denoising. It is applicable for any application for which the aggregation measure is additive, that is, the result of the aggregation can be computed by aggregating prior aggregates [Glick 1978]. Clearly, there are many types of processing, such as computing a median, for which this is not the case. However, even seemingly complicated quantities, such as fractal dimensions, often require nothing but sum and max functions, both of which are additive and allow use of the presented techniques [Denton and Goetze 2017]. The same is true for general linear regression, including polynomial regression, which exclusively relies on additive aggregates regardless of the basis function and can be computed as discussed here [Denton et al. 2016]. Some other processing objectives, such as slope and curvature computations, can be developed based on the same aggregation strategy [Denton et al. 2018, Gomes et al. 2019]. Other applications, such as sliding-window generalizations of wavelet transforms, are possible.

 Figure 3.1 shows the concept. In the first aggregation step, a sliding window aggregation is done over windows of size 2 × 2. When aggregates over 4 × 4 windows are computed in the second step, all the relevant 2 × 2 aggregates are already available without a need to go back to the original data. As a result, the aggregation of 4 × 4 windows only takes twice as long as the aggregation of 2 × 2 windows or, more generally, the aggregation of w × w for w = 2d with d ∈ ℕ takes d = log ⁡ 2(w) as long as the aggregation over 2 × 2 windows. The efficiency of the algorithm comes from the massive reuse of aggregates. In Figure 3.1, that reuse can be seen for the third window. Two of the 2×2 aggregates that are needed for this window are the same as were used for the first window. Any aggregate that is more than the window size away from the perimeter of the image will be used toward four higher-level aggregates at the next level. Since the algorithm leads to a doubling of window size in each iteration, the complexity per raster point is O (log2(w)). In a brute force implementation, each window would have to be scanned, corresponding to a per-raster-point complexity of O(w2).

[image: Three panels show the first three sliding windows of an image. The construction of 4 × 4 windows from their four constituent 2 × 2 windows is graphically illustrated. It can be seen that the third window reuses results from the first window.]

Figure 3.1Schematic depiction of the aggregation process. The top row shows the first aggregation to 2 × 2 windows; the bottom row shows the second aggregation from 2 × 2 to 4 × 4 windows. From left to write the first three windows are highlighted.

 In Figure 3.1, it appears as if the window aggregate is treated as representing the raster point located in its top left corner, although logically the aggregate represents the center of the sliding window. Note that any further analysis is correctly attributed to the central location by means of a shift in the Geo-TIFF meta-data by (w − 1)∕2 in each dimension. Note also that, as with any sliding window approach, the output raster of an image of width N and height M only has (N − w + 1)×(M − w + 1) aggregates that are derived from full windows of size w. Windows that are centered on points that are closer than (w − 1)∕2 to the border would extend beyond the extent of the raster. If there is a wish to let the output raster have the same dimensions as the original image, the frame can be padded with values from prior iterations.

3.2Concepts

The approach is possible because additive aggregate functions can be rewritten as aggregates of the previous iteration. For summation, the aggregation of yij over a window of size w ranging from i = i0 and j = j0 up to and including i = i0 + w − 1 and j = j0 + w − 1, respectively, can be rewritten as follows:

 yi0j0(w) = ∑
i=i0i0+w−1 ∑
j=j0j0+w−1y
ij (3.1)
 = ∑
i=i0i0+w∕2−1 ∑
j=j0j0+w∕2−1y
ij + ∑
i=i0+w∕2i0+w−1 ∑
j=j0j0+w∕2−1y
ij
 + ∑
i=i0i0+w∕2−1 ∑
j=j0+w∕2j0+w−1y
ij + ∑
i=i0+w∕2i0+w−1 ∑
j=j0+w∕2j0+w−1y
ij
 = yi0j0(w∕2) + y
(i0+w∕2)j0(w∕2) + y
i0(j0+w∕2)(w∕2) + y
(i0+w∕2)(j0+w∕2)(w∕2)

Note that in 3.1 the top left corner, (i0,j0), is used as designation for windows of all sizes, but for any further processing the window is considered to represent the center (i0 + (w − 1)∕2,j0 + (w − 1)∕2). A fully recursive specification of the aggregation can be written as follows:

	 yij(w) = { yij(w∕2) + y(i+w∕2)j(w∕2) + yi(j+w∕2)(w∕2) + y(i+w∕2)(j+w∕2)(w∕2) forw ≥ 2 yij for w = 1
	(3.2)

In the example of denoising, the summation of the raster values is the only aggregation needed since the window size is known. For polynomial regression among raster bands, some aggregates of squares and higher powers of raster values are needed, and so are some aggregates of products between different bands. This is possible since the raster value yij does not have to be an original value drawn from any raster map. It could instead be the original value taken to any power, the product between different bands, or any other function of one or more raster values. While this creates a need for multiple aggregations, there is no fundamental difference in the process other than initial element-wise multiplications over the arrays that hold the data.

 The computation of fractal dimensions using box counting relies on using the maximum function as well as summations to produce the multiple scales that are an inherent part of the computation of the measures. Conducting the aggregation for the maximum function is as straightforward as the summation since the maximum and minimum functions also have the property that aggregates can be computed from prior aggregates. Even an explicit representation of the geographic coordinates within the plane can be done, although it requires some additional mathematical derivations. For topographic attributes, these computations are needed and can be done with the same computational complexity as the aggregation described here.

 Although the recursive representation is concise, efficient implementations are iterative. When using Python with NumPy, it is moreover advantageous to use an array-based implementation in which four one-dimensional arrays are aggregated in a single step rather than iterating over array elements one at a time and aggregating four individual raster points. Algorithm 3.1 shows the pseudocode. The procedure Main initializes the raster from input and sets the current number of aggregations d to zero. For regression or other advanced processing goals, the imported raster values may have to be processed. The Aggregate procedure is called from the Main procedure as many times as the window size is intended to be doubled (d).

 One iteration, as shown in the function Aggregate, consists of flattening the array, which is assumed to hold the raster points using a row-wise storage organization, and then aggregating that array and three copies that have been shifted by delta = w∕2, by N ∗ delta, and by delta + N ∗ delta, respectively, corresponding to a left shift by delta, an upward shift by the same distance, and a left and upward shift. The three shifts correspond to the arrows in Figure 3.1. Once the aggregation is complete, the resulting array is shaped to be N − w + 1 wide and M − w + 1 high.

Algorithm 3.1: Iterative Aggregation

procedure Aggregate(d, yold)
 w ← 2d
 delta ← w/2
 N ← WIDTH(yold)
 yflat = FLATTEN(y)
 yagg ← yflat + SHIFT(yflat, delta) + SHIFT(yflat, N ∗ delta) + SHIFT(zflat, (N + 1) ∗ delta)
 znew ← SHAPE((N − w + 1, M − w + 1), zagg)
return d, znew
end procedure
procedure Main(file_name,max_d)
 z0 ← import_raster()
 d ← 0
 while d <= max_d do
 zd+1 ← Aggregate(d, zd)
 d = d + 1

 end while
return z0 ... zd
end procedure

3.3Evaluation

Figure 3.2 shows the comparison of a Python with NumPy implementation of the described algorithm with a default brute force algorithm that neither uses the iterative doubling of window size nor the array-based implementation. Since both implementations return the same result, no quality comparison is included for this simple experiment.

 In practice, most application domains of the algorithm use somewhat different algorithms: For statistics analyses, windows are used that approximate circular neighborhoods, which improve the statistical quality of the result somewhat but do not allow for the fast multiscalar analysis. Fractal and similar computations are normally either done over nonoverlapping squares or the result of using segmentation as preprocessing, which gives high-quality results but at a much lower resolution than the sliding window approach. Finally, topographic measures are typically done over windows of size 3 × 3. For high-resolution elevation models, such an approach requires smoothing as preprocessing step with a resulting loss of information.

[image: Two lines depict the computation times of the brute force and iterative algorithms on a logarithmic scale as the window size increases from 2 to 32. While the line corresponding to the brute force algorithm increases linearly from less than 1s to more than 100s, the one for the iterative algorithm shows a logarithmic increase that remains less than 0.01s for the entire range of window sizes.]

Figure 3.2Runtime comparison between the described iterative algorithm (blue) and a default brute force implementation that aggregates the points in the largest window (cyan). In addition to being faster, the iterative algorithm outputs results for all power of two window sizes up to the maximum.

 Figure 3.2 shows that the scaling of the iterative algorithm does indeed taper off in a double-logarithmic representation, as is expected for an algorithm with logarithmic performance, while a brute force implementation is quadratic, that is, slope 2 in a double-logarithmic plot. The array-based implementation also results in a substantial improvement in the prefactor when implemented in Python. Faster implementations of the comparison algorithm using conventional techniques are conceivable, for example, through incremental updating [Bhatotia et al. 2012]. Implementing it in a language without Python’s large overhead would reduce the prefactor. However, such an implementation would not return the full multiscalar results offered by the iterative algorithm discussed above.

 Returning results for a spectrum of window sizes make the iterative algorithm much more versatile. Instead of deciding on the desired window scale from the start, the user only has to provide an upper bound for the scales that are to be returned and can choose the best window size based on the output quality. While acceleration strategies for window-based approaches that use incremental updating can improve on the brute-force approach, they do not result in the multiscalar output. For high-resolution data, for which analyses can be done over a much larger spectrum of window sizes, the multiscalar output is particularly important. The logarithmic performance moreover allows exploring a large range of different window sizes.

3.4Summary

Multiscale aggregation over sliding windows in raster data that is useful in feature generation tasks for high-resolution raster imagery was presented. The approach has logarithmic scaling as a function of the window size and can be applied in many contexts, provided that all aggregation measures are additive, that is, can be computed as aggregates of prior aggregates. It furthermore produces all window sizes that are powers of two as byproduct of the computation. With the increases in resolution in raster data, this algorithm is expected to become increasingly more important.

Acknowledgments

Thank you to former and current students Rahul Gomes, David Schwartz, Jordan Goetze, Nick Dusek, Riley Conlin, Dawit Beshah, and Guy Hokanson. Thanks to Dave Franzen (NDSU Soil Science) for the agriculture perspective. This material is based upon work supported by the National Science Foundation through grant IIA-1355466.

References

ArcMap. n.d. How Focal Statistics Works. Retrieved September 28, 2021 from https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm.

P. Bhatotia, M. Dischinger, R. Rodrigues, and U. A. Acar. 2012. Slider: Incremental Sliding-Window Computations for Large-Scale Data Analysis. CMU Technical Report: MPI-SWS-2012-004 September. MPI-SWS, CITI/Universidade Nova de Lisboa.

A. M. Denton and J. Goetze. 2017. Window-based fractal dimension as geospatial data type. In Workshop on Data Science for Intelligent Food, Energy, and Water (DSIFER), ACM-KDD 2017. ACM.

A. M. Denton, M. Ahsan, D. Franzen, and J. Nowatzki. 2016. Multi-scalar analysis of geospatial agricultural data for sustainability. In 2nd International Workshop on Big Data for Sustainable Development, IEEE Big Data 2016. IEEE, 2139–2146. DOI: https://doi.org/10.1109/BigData.2016.7840843.

A. M. Denton, R. Gomes, and D. Franzen. 2018. Scaling up window-based slope computations for geographic information systems. In 18th Annual IEEE International Conference on Electro Information Technology (eit2018). IEEE, 0554–0559. DOI: https://doi.org/10.1109/EIT.2018.8500288.

N. Glick. 1978. Additive estimators for probabilities of correct classification. Pattern Recognit. 10, 3, 211–222. DOI: https://doi.org/10.1016/0031-3203(78)90029-8.

R. Gomes, A. Denton, and D. Franzen. 2019. Quantifying efficiency of sliding-window based aggregation technique by using predictive modeling on landform attributes derived from DEM and NDVI. ISPRS Int. J. Geo-Inf . 8, 4, 196. DOI: https://doi.org/10.3390/ijgi8040196.

K. Krivoruchko. 2011. Spatial Statistical Data Analysis for GIS Users. Esri Press, Redlands, CA.

A. Stewart Fotheringham, M. Charlton, and C. Brunsdon. 1997. Two techniques for exploring non-stationarity in geographical data. Geogr. Syst. 4, 1, 59–82.

Q. Wu, D. Hu, R. Wang, H. Li, Y. He, M. Wang, and B. Wang. 2006. A GIS-based moving window analysis of landscape pattern in the Beijing metropolitan area, China. Int. J. Sustain. Dev. World Ecol. 13, 5, 419–434. DOI: https://doi.org/10.1080/13504500609469691.

CHAPTER 4

Gaussian Process for Trajectories

Kien Nguyen, John Krumm, Cyrus Shahabi

4.1Introduction

The availability of devices with location tracking capability has helped generate a tremendous amount of trajectory data of humans, animals, vehicles, and drones, which is valuable in various applications [Zheng 2015]. However, trajectories may have missing locations between their measurements and uncertainty in the measurements depending on how they were captured. Interpolating missing locations between measurements, or making predictions about future locations, is often necessary in order to derive high utility from trajectories. This work presents Gaussian Process (GP) as a powerful and flexible technique for trajectory interpolation and prediction.

 A trajectory S is defined as a sequence of time-ordered noisy location measurements S = {x1,x2,…,x|S|}, where each measurement or data point x (bold symbol) includes x.lon and x.lat as the longitude and latitude, x.t as the timestamp, and x.σ as the accuracy or uncertainty. Previous work [van Diggelen 2007] showed that it is reasonable to assume Gaussian noise for location measurements such as GPS points. Therefore, x.σ can be considered as the standard deviation of independent Gaussian noise of longitude and latitude. Figure 4.1 shows an example of a trajectory with its measurements shown as black crosses, uncertainty as the blue area, and some predictions made by a GP, which is explained later.

 GP has been studied and applied extensively [Williams and Rasmussen 2006]. There have been several works that applied GP for different types of trajectories such as in robotics [Heravi and Khanmohammadi 2011, Cox et al. 2012, Barfoot et al. 2014, Cao et al. 2017, Hewing et al. 2020], video surveillance [Ellis et al. 2009, Kim et al. 2011], batch trajectories processing [Tiger and Heintz 2015], sensor trajectories in active sensing [Ny and Pappas 2009], travel-time prediction [Idé and Kato 2009], and human motion [Wang et al. 2007, Hong et al. 2019]. This work describes how to apply GP for trajectory interpolation and prediction, especially GPS-based trajectories.

[image: An illustration of a Gaussian process trained from data making predictions. The x axis shows a timestamp from 0 to 30 and the y axis shows latitude from − 100 to 100. Ten observed data points over time are shown in the middle from the timestamp around 10 to 20. The prediction mean is described as a line going through the observed data points and extended both to the past and future timestamps. Prediction uncertainty is described as the gray area extending equally from the mean line to both smaller and larger latitude values. On the line of prediction mean are three predictions for timestamp 26 to 29.]

Figure 4.1Illustration of a Gaussian process trained from data (black cross) making predictions (red cross).

4.2Gaussian Process

A Gaussian Process (GP) is a generalization of the Gaussian probability distribution. While a probability distribution describes scalar or vector random variables, a stochastic process describes properties of functions, that is, instead of describing the probability of generating a point as a Gaussian distribution, a GP describes the probability of generating a function. If one can loosely consider a function as a very long vector, where each entry in the vector indicates the function value f(t) at a specific input t (which is a timestamp in our case), then a GP implies that any subset of entries in that long vector is distributed according to a multidimensional Gaussian. We build a separate GP for latitude and another one for longitude, assuming that their values change independently. This assumption is reasonable when objects can move in free space such as animals, drones, or human movements. In some applications with specific constraints such as road networks, without that network data and working only with location measurements, we can assume that the movement is in free space. After training and making predictions, latitude and longitude predictions are combined together to derive the final location prediction.

 As an example, one wants to estimate locations of a user at a set of timestamps T = {t1,t2,…,t|T|}. Thus, the input of the function f(t) that a GP (for either latitude or longitude) describes is a timestamp t ∈T, and the output is the mean and variance of the Gaussian distribution that describes the distribution of f(t). A GP implies that the set {f(t)|t ∈T} is distributed according to a |T|-dimensional Gaussian. When T includes only one timestamp t, the longitude (or latitude) of the estimated location is distributed according to a univariate Gaussian distribution. Figure 4.1 shows an example of a GP trained from data points (represented as black crosses) and making predictions (represented as red crosses). The location axis can either be longitude, latitude, or their transformed values such as converted to another spatial coordinate system.

 A GP is specified by its mean function m(t) and covariance function k(t,t′). A deterministic mean function m(t) is used to specify the mean of the multidimensional Gaussian, defining the mean of the estimated locations. In the literature, GPs are often studied with a zero mean function, which means m(t) = 0 for all t, because a deterministic mean function can be incorporated after the kernel function is trained from training data.

 The covariance matrix of the multidimensional Gaussian defines how points at different values of the independent variable (time in our case) correlate with each other. In general, timestamps that are closer would correlate more and those that are further apart would correlate less, which means the correlation decreases to zero as |t −t′| becomes larger. A GP models such correlation using a scalar covariance kernel/function k(t,t′). A GP can be very flexible by using and combining different kernels, which will be discussed later. A kernel often has some parameters that need to be trained from data, such as pertaining to the uncertainty of the input data or how strong a correlation should be given the time difference |t −t′|.

 When using a GP for trajectory interpolation and prediction, one would need to specify its mean function m(t) and covariance function k(t,t′), train its parameters from data, then make predictions. We discuss each of these elements in the next section.

4.3Gaussian Process Elements

In this section, we describe the elements needed to implement a GP for trajectories, including data preparation, mean function, covariance function (or kernel), training, and inference. Our implementation uses the GPFlow library [van der Wilk et al. 2020], which is a package for building GP models in Python, but the concepts also apply to other libraries.

4.3.1Data Preparation

We first describe how to prepare data from a trajectory S = {x1,x2,…,x|S|} for GP training and inference. As mentioned, two separate GPs are created for longitude and latitude predictions. Input data for training each GP includes the sequence {(t1,v1),…,(t|S|,v|S|)}, where ti = xi.t and coordinate vi can be either xi.lon or xi.lat, and the measurement uncertainty σm = x.σ. From the training sequence, we create a feature vector X = [t1,…,t|S|]T and label vector y = [v1,…,v|S|]T. Similarly, for interpolating or predicting locations of the user at timestamps in a timestamp set T, a feature vector X∗ = [t|t ∈T]T is created.

 In addition to X,y,X∗, and σm, one may also use a prior uncertainty σ0, which represents the prior information of the uncertainty of locations of the users in terms of the standard deviation of a distribution. For example, σ0 can be the standard deviation of a large Gaussian distribution covering an entire city area, which would indicate a high degree of prior uncertainty.

4.3.2Mean Function

As mentioned, the mean function m(t) is a deterministic function defining the mean of the estimated locations. A GP makes predictions based mainly on parameters learned from training data. When a prediction timestamp is far from training timestamps, the prediction tends to return to the mean function.

 A GP is often assumed to have zero mean, that is, m(t) = 0,∀ ⁡t. However, when there is a clear pattern, it can be beneficial to provide a more realistic mean to the model. For example, a trajectory may have a linear trend or we may believe future locations are likely to follow a linear extrapolation of two most recent measurements.

 Using the GPFlow library, common mean functions can be specified using gpflow.mean_functions. For example, a constant mean function m(t) = c with gpflow.mean_functions.Constant, a linear mean function m(t) = At + b with gpflow.mean_functions.Linear, or a custom mean function can also be specified.

4.3.3Kernel/Covariance Function

The kernel or covariance function k(t,t′) is the core element that helps a GP capture trends in data and gives a GP flexibility and efficiency. Different kernels capture different kinds of trends, and kernels can also be combined together for more complex models. In this section, we describe some common kernels and some common types of combinations. Examples of these kernels are shown in Figure 4.2, and examples of these combinations are shown in Figure 4.3. More detail about kernels can be found in Williams and Rasmussen [2006] and Duvenaud [2021].

[image: Examples of functions drawn from GPs with different kernels with the mean described as the straight line in the middle of each subfigure. There are eight subfigures, each for a kernel. In each subfigure, the x axis shows timestamp from 0 to 5 and the y axis shows latitude from −5 to 5. From top left to bottom right are the following kernels: constant, white, linear, squared exponential, rational quadratic, matern12, matern23, matern52. For each kernel, three functions are drawn. Constant and linear kernels produced functions that look like straight lines while other kernels produced wavy functions.]

Figure 4.2Examples of functions drawn from GPs with different kernels (in red, green, and orange). Each figure shows three functions drawing from the same GP, with the blue line indicating the mean of the GP and the blue area indicating the variance of the GP. Predictions made from these kernels would have a similar shape.

[image: Examples of functions drawn from GPs with different types of kernel combination. The mean is described as the straight line in the middle of each subfigure. There are eight subfigures, each for a kernel. In each subfigure, the x axis shows timestamp from 0 to 5 and the y axis shows latitude from −5 to 5. From top left to bottom right are the following kernels: squared exponential, squared exponential plus white, linear, linear times linear. For each kernel, three functions are drawn. The linear kernel produced functions that looked like straight lines. The linear times linear kernel produced functions that look like half of a parabola. Other kernels produced wavy functions.]

Figure 4.3Examples of functions drawn from GPs with different types of kernel combination (in red, green, and orange). Each figure shows three functions drawing from the same GP, with the blue line indicating the mean of the GP and the blue area indicating the variance of the GP. Predictions made from these kernels would have a similar shape.

 Note that parameters of a kernel can be set to be trained from data or fixed. For example, if we know the measurement uncertainty σm, we can set it to be fixed; otherwise, it can be learned from the data. If using the GPFlow library, this can be set using the set_trainable method.

4.3.3.1Common Kernel Types

Constant Kernel The constant kernel outputs constant predictions, that is, f(t) = c with c ∼N(0,σ2). The formula is

	 kConstant(t,t′) = σ2.
	(4.1)

 The constant kernel is often used to modify the mean of a GP or to scale the magnitude of the other factor (kernel) of a kernel. The GPFlow library provides this kernel by gpflow.kernels.Constant with parameter variance.

White Kernel The white kernel explains/produces the noise-component of a measurement. The formula is

	 kWhite(t,t′) = σ2δ(t,t′).
	(4.2)

 where δ(t,t′) = 1 when t = t′; otherwise, δ(t,t′) = 0. GPFlow provides this kernel with gpflow.kernels.White with parameter variance. Since we know that the measurement uncertainty is σm, we can set the variance value of this kernel to σm2 (measurement noise) and set this parameter as nontrainable.

Linear Kernel The linear kernel outputs linear predictions, that is, f(t) = ct with c ∼N(0,σ2). The formula is

	 kLinear(t,t′) = σ2tt′.
	(4.3)

 The linear kernel is often used in combination with other kernels to capture linear trends in data. This kernel is a nonstationary kernel, which means it depends on the absolute locations of the two inputs. We will see later some stationary kernels, which only depend on the relative positions of its two inputs. The GPFlow library provides this kernel by gpflow.kernels.Linear with parameter variance.

Squared Exponential (SE)/Radial Basis Function (RBF) Kernel The SE/RBF kernel is often used as the default kernel for a GP. This is a stationary and smooth kernel with the formula

	 kSE(t,t′) = σ2 exp ⁡ (−(t −t′)2 2l2).
	(4.4)

 The length scale l indicates how much one data point affects another and is often trained from data. The variance σ2 is trained from data but one can set this variance to σ02 to provide prior information about the variance of predictions. GPFlow provides this kernel by gpflow.kernels.SquaredExponential with parameters variance and length_scale. Also, instead of providing scalar values, prior distributions can also be used as the prior for the length scale l and variance σ2.

Rational Quadratic Kernel Another common kernel that is often used as the default kernel for a GP is the rational quadratic (RQ) kernel with the formula

	 kRQ(t,t′) = σ2 (1 + (t −t′)2 2αl2)−α.
	(4.5)

 The RQ kernel is equivalent to adding together many SE kernels with different length scales l. It converges to the SE kernel when α →∞. Parameter α controls the relative weighting of large- and small-scale variations. The GPFlow library provides this kernel by gpflow.kernels.RationalQuadratic with parameters variance, length_scale, and alpha.

Matérn Kernel The Matérn kernel is another common kernel. It is a stationary kernel and a generalization of the SQ kernel with an additional parameter ν controlling the smoothness. It converges to the SE kernel when ν →∞. The formula for the Matérn kernel is rather complicated. However, there are three common values of ν, which are 1 2, 3 2, 5 2, that produce three common kernels called Matern12, Matern32, and Matern52. Their formulas are

	 kMatern12(t,t′) = σ2 exp ⁡ (−1 l |t −t′|).
	(4.6)

	 kMatern32(t,t′) = σ2 (1 + 3 l |t −t′|)exp ⁡ (−3 l |t −t′|).
	(4.7)

	 kMatern52(t,t′) = σ2 (1 + 5 l |t −t′| + 5 3l(t −t′)2) exp ⁡ (−5 l |t −t′|).
	(4.8)

 Using the GPFlow library, these kernels are provided by gpflow.kernels.Matern12, gpflow.kernels.Matern32, and gpflow.kernels.Matern52 with parameters variance and length_scale.

4.3.3.2Common Types of Kernel Combination

Kernels can be combined together to create more complex kernels, helping to capture more complex trends in the data. For example, we may want to capture both a wiggling movement with an SE kernel and measurement uncertainty with a white kernel. Two common types of combining kernels are summing and multiplying. Examples of these combinations are shown in Figure 4.3.

Summing Kernels Summing two kernels k1 and k2 means summing their output:

	 kSum(t,t′) = k 1(t,t′) + k 2(t,t′).
	(4.9)

 Roughly speaking, summing kernels is similar to an OR operation, which means the output of kSum would be higher if the output of either k1 or k2 is higher. An example of summing kernels is to capture both a wiggling movement with an SE kernel and measurement uncertainty with a white kernel:

	 k(t,t′) = k SE(t,t′) + k White(t,t′) = σ SE2 exp ⁡ (−(t −t′)2 2l2) + σWhite2δ(t,t′).
	(4.10)

 An illustration of this combination is shown in Figure 4.3.

Multiplying Kernels Multiplying two kernels k1 and k2 means multiplying their output:

	 kMul(t,t′) = k 1(t,t′) × k 2(t,t′).
	(4.11)

 Roughly speaking, multiplying kernels is similar to an AND operation, which means the output of kSum would be higher if the output of both k1 and k2 is higher. An example of multiplying kernels is multiplying two linear kernels to create a quadratic kernel or more to create higher-degree kernels. An illustration of this combination is shown in Figure 4.3.

4.3.4Training and Inference

After constructing a mean function and a kernel and setting trainable parameters appropriately, training and inference processes are often straightforward using provided methods in GP libraries. Using GPFlow, for training, one can use existing optimizers in the package gpflow.optimizers such as the Scipy optimizer with input X,y. Once trained, we can use the trained model to make predictions with predict_y, which returns the mean and variance of predictions for new data points X∗.

 Note that the training process minimizes the negative log marginal likelihood. Since likelihood specifies the probability density of the observations/measurements given the parameters, for trajectory data we can use Gaussian likelihood, which is the default in the GPFlow library. The likelihood variance indicates the uncertainty learned from data. For trajectory data, uncertainty in the movement of measurements can be captured by the model with likelihood variance, and the uncertainty of each measurement can be captured by a white kernel.

4.4Gaussian Process Example

In this section, we present an example of using GP for trajectories. In this example, we use given (training) timestamps X = [11,12,…,20]T, given locations y = [1,10,30,45,40,40,50,40,35,50]T, and seek computed values at timestamps X∗ = [21,22,…,24]T (illustrated in Figure 4.1). For reproducibility, we use the GPFlow library and set the TensorFlow random seed to 1. GPFlow also provides a utility method print_summary that prints values of the parameters of a model.

 The first model m0 has a zero mean function and a Matern32 kernel with default parameters, which is lengthscales l = 1 and variance σ2 = 1. Figure 4.4(a) shows the predictions of this model before we trained its parameters with X. We can see that the predictions do not appropriately capture measurements and give a quick return to 0.

[image: Example of GPs trained from the same training data with different configurations of kernel and mean function. There are six subfigures a, b, c, d, e, and f. In each subfigure, the x axis shows a timestamp from 0 to 30 and the y axis shows latitude from −100 to 100. (a) Shows results for default parameters. The result looks like a straight line with a small gray area around it indicating small variance. In the y axis, the line started at 0, bent slightly when it went through the timestamp that had training data, and returned to 0 after that. (b) Shows results for trained kernels on training data. The line was no longer straight but became wavy, capturing the trend in the data. The gray area is also much larger indicating a larger variance. In the y axis, the line also started at 0 and returned to 0 after there was no more training data. (c) Shows results for trained kernels on training data with white noise added and white noise parameters are also trained on the training data. The result looks very close to what is shown in (b). (d) Shows results from a similar kernel as (c), but with fixed white noise. The result also looks very close to what is shown in (b) but with a slightly smaller variance. (e) Shows results from a similar kernel as (d), but with a small likelihood of variance. The line now changed very sharply with every change of data over time. The variance around training data is very small but increased quickly when there is no more data. (f) Shows results from a similar kernel as (e), but with a linear mean function. When going through the training data, the line looks similar to what (e) showed, but instead of starting at 0 and returning to 0, the line started and returned to a linear line indicating the linear trend of the training data.]

Figure 4.4Example of GPs trained from the same training data (as black cross) with different configuration of kernel and mean function. (a) Default parameters. (b) Trained. (c) Trained with White noise. (d) Same as (c) but with fixed White noise. (e) Same as (d) but with small likelihood variance. (f) Same as (e) but with linear mean function.

 After we train the model with the data to get a trained model m1, we have l = 7.35, σ2 = 1346.36, and likelihood variance (which indicates model variance) σlikelihood2 = 36.4. Figure 4.4(b) shows the predictions of this model after we trained with X. It is clear that m1 can capture the data and trend in the data significantly better than m0.

 Next, we consider model m2 as a summed combination of a Matern32 kernel and a white kernel, all with default parameters indicating default priors (e.g., prior for measurement uncertainty captured by the white kernel is 1). This also means all parameters can be trained from data. After we train the model with the data, we have l = 7.35, σMatern322 = 1346.36, σWhite2 = 18.23, and σlikelihood2 = 18.23. Figure 4.4(c) shows that the model m2 makes similar predictions compared to model m1. However, the white kernel captured some of the measurement noise.

 Next, we consider model m3, which is similar to m2, but we fix the variance of the white kernel to variance σWhite2 = 4, which means we assume that each measurement has uncertainty σ2 = 4. Fixing the variance means the training process will not change this parameter. After we train the model with the data, we have l = 7.35, σMatern322 = 1346.36, σWhite2 = 4, and σlikelihood2 = 32.464. Since we fixed the variance of the white kernel, the likelihood variance was adjusted to capture more of the uncertainty. Figure 4.4(d) shows that the model m3 makes similar predictions compared to model m2.

 Next, we consider model m4 similar to m3 but in addition to fixing the variance of the white kernel to 4, we also set the likelihood variance to a very small initial value σlikelihood2 = 0.0001, which indicates that we are confident of our knowledge of measurement uncertainty. After we train the model with the data, we have l = 4.11, σMatern322 = 1328.03, σWhite2 = 4, and σlikelihood2 = 0.00015. Figure 4.4(e) shows that, compared to model m3, the model m4 makes predictions closer to the training measurements. Figure 4.1 shows predictions made by m4 for X∗.

 In the final example, we consider model m5 similar to m4 but using a linear mean function starting with a guess y = x + 1. After we train the model with the data, we have l = 1.37, σMatern322 = 107.24, σWhite2 = 4, σlikelihood2 = 0.0001, and a mean function y = 4.84x − 42.14. The training process learned the linear line going through the measurements and used that as the mean function. The model then made predictions closer to that mean function and with smaller variance, as shown in Figure 4.4(f).

4.5Discussion

Gaussian process is a powerful and flexible technique that is capable of capturing trends and uncertainty of location measurements. A GP can use a simple or complex mean function, or even use the output of other models, such as a deep neural network model [Fortuin and Rätsch 2019], as its mean function. A GP can use standard kernels, combined kernels, or other complex kernels. These capabilities help GP incorporate knowledge from other domains for better interpolation and prediction.

 There are some issues that need to be taken into account when one considers using GPs for trajectories. One issue is that the length scale of a kernel, which roughly indicates how far in time a measurement affects other predictions, tends to be determined by the non-smooth region in the data. For trajectories, these regions are often where we have dense measurements with many direction changes. These regions can make the length scale become too small, resulting in a very sharp change in variance. It can be beneficial to create different GPs when the trajectory sampling rate changes significantly. Another issue can be the assumption of independence between longitude and latitude changes. Other issues are choosing appropriate kernels or computational complexity. However, in general, GP is a useful technique for trajectory interpolation and prediction.

References

T. D. Barfoot, C. H. Tong, and S. Särkkä. 2014. Batch continuous-time trajectory estimation as exactly sparse gaussian process regression. In Robotics: Science and Systems, Vol. 10. Citeseer.

G. Cao, E. M.-K. Lai, and F. Alam. 2017. Gaussian process model predictive control of an unmanned quadrotor. J. Intell. Robot. Syst. 88, 1, 147–162. DOI: https://doi.org/10.1007/s10846-017-0549-y.

G. Cox, G. Kachergis, and R. Shiffrin. 2012. Gaussian process regression for trajectory analysis. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 34. Cognitive Science Society, 1440.

D. Duvenaud. 2021. The kernel cookbook: Advice on covariance functions. Retrieved September 22, 2021 from https://www.cs.toronto.edu/∼duvenaud/cookbook/.

D. Ellis, E. Sommerlade, and I. Reid. 2009. Modelling pedestrian trajectory patterns with gaussian processes. In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 1229–1234. DOI: https://doi.org/10.1109/ICCVW.2009.5457470.

V. Fortuin and G. Rätsch. 2019. Deep mean functions for meta-learning in gaussian processes. DOI: https://doi.org/10.48550/arXiv.1901.08098.

E. J. Heravi and S. Khanmohammadi. 2011. Long term trajectory prediction of moving objects using gaussian process. In 2011 First International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan. IEEE, 228–232. DOI: https://doi.org/10.1109/RVSP.2011.90.

L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger. 2020. On simulation and trajectory prediction with gaussian process dynamics. In Proceedings of the 2nd Conference on Learning for Dynamics and Control. PMLR, 424–434.

J. Hong, C. Chun, S.-J. Kim, and F. C. Park. 2019. Gaussian process trajectory learning and synthesis of individualized gait motions. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 6, 1236–1245. DOI: https://doi.org/10.1109/TNSRE.2019.2914095.

T. Idé and S. Kato. 2009. Travel-time prediction using gaussian process regression: A trajectory-based approach. In Proceedings of the 2009 SIAM International Conference on Data Mining. SIAM, 1185–1196. DOI: https://doi.org/10.1137/1.9781611972795.101.

K. Kim, D. Lee, and I. Essa. 2011. Gaussian process regression flow for analysis of motion trajectories. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain. IEEE, 1164–1171. DOI: https://doi.org/10.1109/ICCV.2011.6126365.

J. L. Ny and G. J. Pappas. 2009. On trajectory optimization for active sensing in gaussian process models. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference. IEEE, 6286–6292. DOI: https://doi.org/10.1109/CDC.2009.5399526.

M. Tiger and F. Heintz. 2015. Online sparse gaussian process regression for trajectory modeling. In 2015 18th International Conference on Information Fusion (Fusion), Washington, DC. IEEE, 782–791.

F. van Diggelen. 2007. GNSS accuracy: Lies, damn lies, and statistics. GPS World 18, 1, 26–33.

M. van der Wilk, V. Dutordoir, S. T. John, A. Artemev, V. Adam, and J. Hensman. 2020. A framework for interdomain and multioutput Gaussian processes. DOI: https://doi.org/10.48550/arXiv.2003.01115.

J. M. Wang, D. J. Fleet, and A. Hertzmann. 2007. Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2, 283–298. DOI: https://doi.org/10.1109/TPAMI.2007.1167.

C. K. Williams and C. E. Rasmussen. 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.

Y. Zheng. 2015. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 6, 3, 1–41. DOI: https://doi.org/10.1145/2743025.

CHAPTER 5

Mean Chord Length of a Square

John Krumm

5.1Introduction

In geometry, a chord is typically defined for a circle as a straight-line segment connecting any two points on the perimeter. A square can also have a chord, as shown in Figure 5.1. The subject of this paper is the mean length of this chord over all possible chords of a square.

 The mean length of the chord is important for processing spatiotemporal trajectory data. Such trajectories are usually represented by a sequence of timestamped locations, where the locations are given by (latitude, longitude) or (x,y). In many cases, the trajectory is discretized in both time and space for analysis. For instance, time may be discretized to the nearest whole multiple of a timespan T (e.g., 1 minute), and space may be discretized to a 2D grid of square cells of size l × l (e.g., 1km × 1km). The angled line slashing through the square in Figure 5.1 could be considered part of a trajectory, with the square representing a grid cell.

 The choice of the cell size l can be informed by its mean chord length. For discrete trajectories on a grid, it is often convenient if the sequence of discretized locations is approximately a sequence of nonrepeating adjacent cells, as shown in Figure 5.2. Here each point along the trajectory resides in its own cell, and the sequence of cells is adjacent.

 Figure 5.3(a) shows what happens when the same trajectory is discretized with cells that are too large. Multiple points are grouped into the same cells, which could ignore important distinctions between the original, measured points. Figure 5.3(b) shows cells that are too small, causing ambiguity in which cells were visited between the measured points. Figure 5.3(c) shows the same size cells as in Figure 5.2.

[image: A square with side length l, and a chord through the square parameterized by s, r, and 𝜗.]

Figure 5.1The goal is to compute the mean length of a chord on a square. The chord here has length r. The line segment containing the chord could be part of a spatiotemporal trajectory through a grid of square cells.

 While a single grid size l cannot guarantee an ideal arrangement for all trajectories, choosing a reasonable size is an advantage for:

•Routes—Sometimes we need to enumerate all possible discrete-time routes through a grid of cells without regard for roads. In this case, the cells should be small enough to convey the detail of the route without long dwells in the same cell. But cells that are too small will lead to an explosion in the number of possible routes. For instance, the number of possible lattice paths between two points in space is a strong function of the resolution of the lattice [Wikipedia Contributors 2019].

•Speed—Creating plausible discrete-time trajectories on a grid should account for the speed of the moving entity. Knowing the representative travel distance through a cell is important for assembling trajectories that adhere to speed constraints.

[image: A map of the Seattle area showing a trajectory going through square grid cells.]

Figure 5.2This discretized trajectory is represented by a sequence of adjacent, nonrepeating grid cells. (Microsoft product screen shot reprinted with permission from Microsoft Corporation.)

[image: The same trajectory as Figure 5.2 superimposed on grids of three different cell sizes.]

Figure 5.3(a) Grid cells too large, 5,000m. (b) Grid cells too small, 100m. (c) Grid cells reasonable size, 1,268m. Grids with cells of different sizes superimposed on the same trajectory as in Figure 5.2. (Microsoft product screen shots reprinted with permission from Microsoft Corporation.)

•Interpolation—While small cells lead to less spatial discretization error, they can also lead to large swaths of location ambiguity between the cells that contain a measurement. This in turn invites questions about how to represent the ambiguity in a fair, efficient, and principled way.

•Markov models—A Markov model represents motion from cell to cell with transition probabilities. If the cells are too large, the Markov model must account for dwell time in the same cell with self-transitions. However, this leads to a rigid probability distribution of dwell times that may not match reality. Conversely, cells that are too small lead to transitions that jump between pairs of cells that are relatively distant, leading to a more complicated transition structure.

 One simple approach to computing a reasonable cell size l is to consider how far a moving entity can travel in one time step T, and set the cell size accordingly. If the entity can generally move across one cell every time step, then it is more likely to produce a discrete trajectory of nonrepeated, adjacent cells. We assume the entity’s representative speed is q. It can then move a distance of qT in one discrete time step T. We could naively set l = qT, assuming that l is a representative distance across a cell. This is not a good approximation. Instead, this paper derives the mean distance across a square cell as ρl, where ρ ≈ 0.7098, leading to a preferred cell size of l = qT ρ . For T = 60s and q = 15m/s, this is how we computed the reasonable cell size in Figures 5.2 and 5.3(c) of approximately 1,268m.

 The remainder of this paper shows how we computed the value of ρ, something that appears missing from the literature. In fact, ρ is the mean chord length of a unit square. After deriving the closed form expression, we also verify the value numerically. In addition to the specific derivation of ρ, the approach can be a template for computing mean chord lengths of other shapes.

5.2Derivation of Mean Chord Length

The length of the chord is r (see Figure 5.1), and our goal is to compute 𝔼[r]. The expected value requires an assumption about the distribution of chords through the square. Referring to Figure 5.1, we will first assume, without loss of generality, that the chord touches the bottom edge of the square at a distance s from the left edge of the square. The value s is distributed uniformly over [0,l], where l is the dimension of the square, that is, S ∼ U(0,l). The angle of the chord is 𝜃 from the horizontal to the right. This angle is distributed uniformly over [0,π], that is, Θ ∼ U(0,π). Thus, the chord starts at a random location on the bottom edge of the square and heads through the square in a random direction. This simulates a trajectory passing through a square grid cell.

 Other parameterizations and distributions of chords are possible. For example, the two endpoints of the chord could each be uniformly distributed around the perimeter of the square. Or each chord could pass through a random point inside the square at a random angle. In all cases, the distributions of parameters could be changed to something other than uniform. We chose our parameterization because it intuitively seems to be a good match to mobile trajectories. This choice could be verified with actual trajectory data.

 Using our original approach of parameterizing chords by s and 𝜃 starting on the bottom edge, it is clear the other end of the chord can be on any of the four edges of the square. We can account for these various cases by dividing the square into four right triangles, numbered 1, 2, 3, and 4, as shown in Figure 5.4. Then the sweep of 𝜃 through [0,π] is replaced by separate sweeps through the angles B1, B2, B3, and B4.

 Given that the chord will be in a right triangle, we can begin by computing the expected length of a chord in a right triangle, as shown in Figure 5.5. In this generic right triangle, the lengths of the sides are a, b, and c, with c being the length of the hypotenuse. The angle of the vertex opposite side b is B. If the angle of the chord starting at this vertex is 𝜃, we have r = a cos ⁡ 𝜃.

[image: The same square as Figure 5.1 but split into four different right triangles to show the four different integration areas.]

Figure 5.4Given s, the chord will be in one of these four right triangles.

[image: A right triangle illustrating how the chord length changes with the sweep angle β.]

Figure 5.5We can compute the expected length of the chord, r, in a right triangle as a step toward computing its expected length in a square.

 We assume that β is uniformly distributed between 0 and B. Then the expected length of r over the range of β is

	 𝔼[r|a,b] = 1 B∫ 0B a cos ⁡ βdβ = a 2Bln ⁡ |1 + sin ⁡ β 1 − sin ⁡ β |0B = a 2Bln ⁡ |1 + sin ⁡ B 1 − sin ⁡ B | = a 2B [ln ⁡ (1 + sin ⁡ B) − ln ⁡ (1 − sin ⁡ B)] = a 2B [ln ⁡ (1 + b a2 + b2) − ln ⁡ (1 − b a2 + b2)]
	(5.1)

 Here the absolute value can be dropped because
0 ≤ B ≤ π
2 . We also used sin ⁡ B = b
a2 +b2 .

 Table 5.1 shows the mapping from the generic triangle in Figure 5.5 to the four triangles in Figure 5.4.

 From the four triangles, we can compute 𝔼[r|s] from the triangle mapping. We assume the angle 𝜃 is uniformly distributed within each of the four triangles.

	 𝔼[r|s] = 1 π (B1𝔼[r|s,l] + B2𝔼[r|l,s] + B3𝔼[r|l,l − s] + B4𝔼[r|l − s,l]).
	(5.2)

Table 5.1Mapping generic triangle in Figure 5.5 to the four triangles in Figure 5.4

	 Triangle
	 a
	 b

	 1
	 s
	 l

	 2
	 l
	 s

	 3
	 l
	 l − s

	 4
	 l − s
	 l

 Substituting from Equation (5.1) for the expected values in Equation (5.2) gives

	 2π𝔼[r|s] = B1 s B1 [ln ⁡ (1 + l s2 + l2) − ln ⁡ (1 − l s2 + l2)]+ B2 l B2 [ln ⁡ (1 + l s2 + l2) − ln ⁡ (1 − l s2 + l2)]+ B3 l B3 [ln ⁡ (1 + l − s (l − s)2 + l2) − ln ⁡ (1 − l − s (l − s)2 + l2)]+ B4l − s B4 [ln ⁡ (1 + l (l − s)2 + l2) − ln ⁡ (1 − l (l − s)2 + l2)]
	(5.3)

 We introduce these functions for convenience

	 f1(s,l) = s [ln ⁡ (1 + l s2 + l2) − ln ⁡ (1 − l s2 + l2)].
	(5.4)

	 f2(s,l) = l [ln ⁡ (1 + l s2 + l2) − ln ⁡ (1 − l s2 + l2)].
	(5.5)

	 f3(s,l) = l [ln ⁡ (1 + l − s (l − s)2 + l2) − ln ⁡ (1 − l − s (l − s)2 + l2)].
	(5.6)

	 f4(s,l) = (l − s) [ln ⁡ (1 + l (l − s)2 + l2) − ln ⁡ (1 − l (l − s)2 + l2)].
	(5.7)

 Thus

	 2π𝔼[r|s] = f1(s,l) + f2(s,l) + f3(s,l) + f4(s,l).
	(5.8)

 The expected value of the chord length is

	 𝔼[r] = 1 l ∫ 0l𝔼[r|s]ds
	(5.9)

	 = 1 2πl∫ 0l (f 1(s,l) + f2(s,l) + f3(s,l) + f4(s,l))ds
	(5.10)

 The integrals of the summands of the integrand of Equation (5.9) are

	 ∫ 0lf 1(s,l)ds = l2 (−1 + 2 + 1 2ln ⁡ (3 + 22)).
	(5.11)

	 ∫ 0lf 2(s,l)ds = l2 (2 − 22 + ln ⁡ (3 + 22)).
	(5.12)

	 ∫ 0lf 3(s,l)ds = l2 (2 − 22 + 2ln ⁡ (1 + 2)).
	(5.13)

	 ∫ 0lf 4(s,l)ds = l2 (−1 + 2 −1 2ln ⁡ (3 − 22)).
	(5.14)

 Finally, the mean value of the chord length is

	 𝔼[r] = l 2π (− 1 + 2 + 1 2ln ⁡ (3 + 22)+ 2 − 22 + ln ⁡ (3 + 22)+ 2 − 22 + 2ln ⁡ (1 + 2)− 1 + 2 −1 2ln ⁡ (3 − 22))
	(5.15)

	 = ρl
	(5.16)

 where ρ ≈ 0.7098. The mean chord length scales with the side length of the square l, and the mean length is significantly less than the side length.

 To verify the derivation, we used the Python SciPy numerical integration method integrate.dblquad() to approximate ρ as

	 ρ = 1 l 𝔼[r]
	(5.17)

	 = 1 l2π∫ 0l ∫ 0πr(s,𝜃)d𝜃ds
	(5.18)

 where r(s,𝜃) gives the length of the chord with one end on the square’s bottom edge at a distance s from the left edge, heading in direction 𝜃 as shown in Figure 5.1. The numerically approximated value was different from our derived value by about 0.0001%, giving us confidence in our derived value.

5.3Summary

This paper gives the mean length of a chord on a square. This quantity can be useful for processing trajectories on a discrete grid of cells, such as understanding how many cells can be traversed at a certain speed or choosing a good cell size for discretizing trajectories.

[image: A plot showing the fraction of chord lengths of different values.]

Figure 5.6Empirically, the distribution of chord lengths of a unit square has an unusual shape.

 Interesting future directions include computing the variance and probability distribution of the chord length on a square. Empirically, the distribution of chord lengths of a unit square has an unusual shape, as shown in Figure 5.6. As expected, it is zero outside of [0,2]. It should also be possible to compute the mean chord length of other polygons, including those that are used for tiling space, such as a hexagon, using a similar triangular breakdown as in this paper. Other future directions are looking at concave shapes and higher dimensional shapes.

 For trajectory analysis in particular, another extension is to consider the fact that trajectories normally span multiple cells in a grid. This paper has made an implicit assumption that the entry point s and angle 𝜃 are independent from cell to cell. However, a trajectory’s entry point into a cell is dependent on the exit point from the previous cell. This may affect the expected traversal distance through a sequence of cells.

Reference

Wikipedia Contributors. 2019. Lattice path. Wikipedia, the Free Encyclopedia. Retrieved September 25, 2021 from https://en.wikipedia.org/w/index.php?title= Lattice_path&oldid=916383786.

CHAPTER 6

Object Delineation in Satellite Images

Zhuocheng Shang, Ahmed Eldawy

6.1Introduction

There has been a recent increase in machine learning algorithms and applications that operate on high-resolution satellite data such as land use classification and object detection [Cheng and Han 2016, Asokan and Anitha 2019]. This increase has been driven by the public availability of satellite data and recent advancements in machine learning. Many of these algorithms, such as object detection, produce their output by marking pixels on the satellite data. This output can be enough for regular image processing such as land field classification. However, it is desirable to delineate pixels corresponding to one object for geospatial applications to form a geospatial polygon that can be further processed in GIS applications. GIS applications generally demand vectorization representations, not individual pixels with geospatial locations. Further, Vargas Munoz et al. [2021] mentions that machine learning model trained based on OSM data is not accurate due to the low quality of vectorial building footprints in the dataset. This drawback motivates the requirement of methods that can delineate pixels into exact rural buildings segments.

 Work has been done on a similar challenge that transforms pixels into vector representations [Tasar et al. 2018], but the drawback is with approximated boundaries. This gem introduces a lightweight algorithm that delineates marked pixels on a satellite image to produce a valid geospatial polygon, that is, closed and not self-intersecting. The proposed algorithm is exact in the sense that it exactly delineates all marked pixels with no approximation. Based on its needs, an application can further apply simplification algorithms to produce the desired output. This approach also provides more accurate labeled data in the form of training sets for machine learning models, reducing the misalignment issue [Vargas Munoz et al. 2021].

[image: A grid that represents pixels in an image and shows some occupied pixels in gray. The occupied pixels form three disjoint blocks. There are arrows that trace the boundaries of each block to represent the desired output of the object delineation algorithm. There is a 2 × 2 window at the top-left that represents how the input is scanned in blocks of four pixels.]

Figure 6.1Example of occupied pixels with orthogonal lines.

 In the graphics field, image tracing algorithms are widely used to vectorize raster images [Selinger 2003, Dominici et al. 2020]. These algorithms usually aim to produce basic geometric shapes, for example, circles and lines, which might entail simplification that is not always desirable for geospatial applications. Vectorized shapes in graphics lack geospatial information, such as latitude and longitude, required in GIS applications. The proposed algorithm is based on the idea of image tracing but is tailored for geospatial data.

 Figure 6.1 gives an overview of the object delineation problem. The gray pixels are the ones marked by the machine learning algorithm and our goal is to produce the polygon marked by the arrows. To provide an exact answer on satellite data, the output polygons must consist only of orthogonal lines. The key idea is to scan the image once with a 2 × 2 window to find all the polygon vertices and connect them in the correct order as shown on the figure. The sliding window scans row by row from the top-left corner until the bottom-right of the canvas.

6.2Extracting Objects

This section describes two steps in the proposed approach that delineates objects from satellite data, orthogonal lines detection and ring formation. The detection step locates all orthogonal lines from occupied pixels in a single scan over the image. The ring formation step combines orthogonal lines into geospatial linear rings.

 Figure 6.1 gives an overview of what the algorithm does. Given a raster image with marked pixels, it creates an orthogonal polygon that surrounds all marked pixels. The vertices that make polygons are all located at pixel corners, as shown in the figure. By convention, the vertices of a polygon is ordered in clockwise order (CW). In the case of a polygon with a hole, the vertices of the hole are ordered in counterclockwise order (CCW).

6.2.1Orthogonal Lines Detection

This step takes the marked raster as input and produces all the orthogonal lines that comprise all the polygons. The lines are grouped in rings, that is, a circular linked list of vertices, as shown in Figure 6.1. The key observation is that each vertex on the polygon connects a horizontal edge to a vertical edge. Thus, to find all vertices, we need to locate the parts of the image where a horizontal edge meets a vertical edge. Then, we should connect these vertices in the correct order to create a closed polygon. The problem becomes particularly challenging when dealing with many polygons and high-resolution satellite images where a group of a few pixels could form one ring. In such a situation, the naive image-tracing algorithm needs to track many small polygons, which complicates the algorithm. Therefore, this gem intends to deliver a lightweight algorithm that efficiently finds all polygon segments as orthogonal lines on the high-resolution image through a single scan.

 In order to overcome the issue of tracking all orthogonal lines, we observe that a vertex can be detected by checking the 2 × 2 window where the vertex is at the center. This is sufficient to detect that a horizontal and vertical edge meet. Figure 6.1 illustrates an example 2 × 2 window. This step simply runs a sliding window over the entire raster to create all the vertices and arrange them in the correct order, as further detailed below. The sliding window starts from the top-left and slides over each row from left to right.

 Since a 2 × 2 window contains only four pixels, and each pixel can either be marked or unmarked, there are a total of 16 possible cases that can happen. If we handle all of them correctly, then we know that we have all possible cases covered. Figure 6.2 illustrates all 16 cases. For formalization, we identify these cases by assigning a bit position to each of the four pixels, as shown in the figure. We can immediately see that cases 0, 3, 5, 10, 12, and 15 do not result in any detected vertices. Cases 1, 2, 4, 7, 8, 11, 13, and 14 each result in creating one vertex at the center of the window. Cases 6 and 9 are special cases that result in two coinciding vertices, both at the center. We chose to create these two vertices to ensure that we create nonintersecting and nonoverlapping polygons. If our goal is to only find the location of the vertices without caring about their connection and order, then it is enough to scan all 2 × 2 windows and emit a vertex for each of the above cases. However, we also want to connect them in the correct order, which we describe below.

[image: This figure contains total of 16 cases of 2 × 2 grids, each showing occupied pixels in gray. These occupied pixels are positioned based on all the possible arrangements of pixels within this scanning window. A dot is placed at the center to represent a vertex if occupied pixels edges are orthogonal, solid arrows represent known edges, and dashed arrows represent unknown edges along the scanning order.]

Figure 6.2Different pixel occupied cases within one 2 × 2 block.

 We notice that each vertex must connect a horizontal edge to a vertical edge. The horizontal edge must be at the same row, and the vertical edge must be at the same column. Following our convention, the direction of the created edges is shown in Figure 6.2. However, we notice that we cannot always create the edge when we create a vertex. For example, case 1 creates a vertex that connects another vertex to the top to a vertex to the left. This is an easy case because both vertices must have been already created following our sliding window order, that is, left-to-right and top-to-bottom. However, case 2 is harder since it connects a vertex to the right to a vertex to the top, and the right vertex is not yet created. Hence, while handling case 2, we can only create the vertical edge and not the horizontal edge because we do not know the position of its next vertex. In case 7, we cannot create any edge since the end points of both edges are not yet known. In Figure 6.2, solid arrows indicate the edges that can be created in each case while dotted arrows indicate edges that cannot be created at that point.

 To resolve the issue of incomplete edges, we define the notion of an open vertex. An open vertex is part of an edge that is not yet created, that is, the other end point is not yet detected. Since all edges are orthogonal, each open vertex can only be paired with another vertex at the same row or the same column. In addition, given the order at which the 2 × 2 window slides, a vertical edge can only have an open vertex at the bottom and a horizontal edge can only have an open vertex to the right. Therefore, as we scan, we keep at most one open vertex to the right and at most w + 1 open vertices at the bottom, one for each column, assuming the raster data has a width of w pixels.

 Given these open vertices, all edges can be created efficiently in one scan. If a vertex is the bottom vertex of a vertical edge or a right vertex of a horizontal edge, it is stored as an open vertex. On the other hand, if it is the top vertex of a vertical edge or a left vertex of a horizontal edge, it is paired with the corresponding open vertex. During this scanning, each vertex is stored in one circular linked list, and multiple such linked lists could exist on one raster image, as shown in Figure 6.1, which contains four circular linked lists. The following content gives more details about forming all circular linked lists connecting all vertices in the correct order.

 In Figure 6.2, case 1 creates a vertex that connects the top vertex to the left vertex. Both left and top vertices must be open vertices that have been created before reaching that case but without knowing the other end point. Thus, we will update the next link of the top open vertex to point to the newly created vertex and update the next link of the new vertex to point to the left vertex. On the other hand, case 2 connects the right vertex, that is not yet created, to a vertex to the top. Therefore, we updated the next link of the vertex at the right to point to the new vertex. Then, we keep this new vertex as an open vertex to the right to be paired later. In case 7, the newly created vertex is both an open left vertex and an open top vertex so it will be stored as that.

 Cases 6 and 9 are more interesting. It indicates two pixels meeting at a corner. To keep the created polygons valid, we create two coinciding vertices at the center. In other words, case 6 does the work of cases 2 and 4 together and case 9 combines cases 1 and 8 together.

 Algorithm 6.1 gives the pseudocode of detecting orthogonal lines. The input is a two-dimensional bit array of width w and height h. The output is a set of circular linked lists of vertices. Each vertex has an integer coordinate (x,y), a pointer to the next vertex, and Boolean visited flag that will be used in the next algorithm. The output is stored in a list of corners that contains at least one pointer for each linked list.

[image: image]

 We keep a list of open vertices at the top and a single pointer to the left open vertex. All these are initialized to null. We run a loop over all pixels that slides a window at the center of each intersection (x,y) on the raster grid. Then, it computes the pixel type [0,15] by inspecting the four pixels in the window. Any pixel that falls outside the raster grid is assumed to be nonmarked. After that, it runs a single switch statement that efficiently handles all the cases. To keep track of all linked lists, we need to store at least one pointer in each circular linked list, and we define this pointer as start corner. This preserved start corner list is used in the next phase to help with ring formation. We chose to record the top-left corner only, which is handled by cases 7, 8, and 9. There is no necessity to record all vertices because the top-left vertex is enough for pixel location representation. Further, all polygons contain one top-left vertex, and this gives the reason for selecting cases 8 and 9 as presentable. The necessity of storing case 7 is to correctly handle polygons with holes. For example, if we intend to output the polygon holds a hole in Figure 6.1 labeled 3, we also need to keep the top-left corner for the pixel illustrated as one hole. Therefore, one polygon requires multiple start corners such that it enables including the holes as part of geometry. This helps to ensures formating boundaries correctly.

 To analyze the time complexity of this algorithm, we note that the cost is mainly in the for loop that iterates over each pixel. The switch statement has a constant-time cost. Thus, the time complexity is O(w ⋅ h), which is linear in terms of number of pixels. For space complexity, we observe that, in addition to the input, we need to keep track of open vertices at the top, which requires O(w) space. Also, we need to keep track of all the vertices, which requires O(|V |). So, the space complexity is O(|V | + w), which is output sensitive.

6.2.2Ring Formation

This step takes as input the circular linked lists created by the first step and combines each one into a single ring through one start corner list generated in the previous step. Based on how the rings were formed, outer rings and inner holes are ordered in CW and CCW order, respectively. To complete merging in one round, the implemented algorithm activates by picking one start corner from a preserved list, shown as dots in Figure 6.1, and then goes over the entire list. Each vertex in the list is converted to a geospatial coordinate (longitude,latitude) and is combined to produce the geospatial ring. To convert integer raster coordinates (x,y) to geospatial coordinates (longitude,latitude), we use an affine transformation, termed grid-to-world, and this is a standard method to encode geospatial coordinates of raster datasets [Eldawy et al. 2017]. While iterating over the vertices, they are marked as visited by setting the flag in each vertex. This ensures that each ring is converted only once since one ring can contain multiple corners, for example, ring 1 in Figure 6.1. After one ring is formed, it is appended to a list of rings that are then returned by the algorithm.

 Algorithm 6.2 provides the pseudocode of the ring formation process. The input is the list of start corners created by the first step. It loops over all start corners that are not yet visited. For each start corner, it follows the linked list until it goes back to the start since it is a circular linked list. It converts each vertex to geospatial coordinates using the grid-to-world transformation. Finally, it appends the first point again to close the ring and appends it to the list of rings.

 To analyze the time complexity of this algorithm, we observe that the major part is going through all vertices stored in all the linked lists. The time complexity is linear in terms of number of vertices stored, which is O(|V |). Thus, the time complexity is output sensitive. Both the input and output sizes are equal to the number of vertices, so the space complexity is also O(|V |).

[image: image]

6.3Experimental Result

We run all experiments on a single machine with Intel Xeon E3-1220 v5 3.00GHz quadcore processor, 64GB RAM, and 2TB HDD on Ubuntu 16.04.2 applied Java 1.8.0_102.

 In this part, we run some basic experiments to confirm the scalability of the proposed algorithm. We generate random marked rasters of resolutions 1,000 × 1,000 up-to 4,000 × 4,000, as shown in Table 6.1. For each raster size, we mark each pixel with an independent Bernoulli distribution with parameter p. In other words, we scan over all the pixels and randomly mark each pixel with a probability p ∈ [0,1]. The higher the value of p, the more pixels will be marked in the raster. In this experiment, we vary p from 0.0 to 1.0 in increments of 0.1. For each value of p, we generate 100 random rasters and compute the average running time.

 Figure 6.3 shows the average running time of the proposed algorithm. In each figure, the running time shows a bitonic, bell-shaped behavior where it starts very small, peaks around the range [0.4,0.6], and then starts to fall down again. This can be explained by the output sensitivity of the algorithm. For both very small and very large values of p, there are only a very few vertices to be detected since the entropy is low. Thus, the ring formation step of the algorithm finishes very quickly since it will have few vertices to trace. When the entropy peaks at 0.5, the algorithm takes the longest running time since it will detect the largest number of vertices. This behavior confirms our analysis of output sensitivity. In reality, when there are real objects to be detected in an image, the entropy will be low and hence the algorithm will run much faster than the peak running time in the figure. The entropy is highest when the image is purely random, which is not expected in real scenarios.

Table 6.1Experimental test cases setup

	 Raster W×H
	 Probability of marked pixel (p)

	 1,000 × 1,000
	 [0.0, 1.0]

	 2,000 × 2,000
	 [0.0, 1.0]

	 4,000 × 4,000
	 [0.0, 1.0]

[image: This figure contains three sub-images, labeled as (a), (b), and (c) and each displaying results with raster sizes of 1000, 2000, and 4000, respectively. All three figures have a consistent layout. The x axis of the graph represents the probability of marked pixels (p), ranging from 0.0 to 1.0, while the y axis shows the normalized running time in seconds. All three figures show a bell-shaped curve with a peak around a probability of marked pixels equal to 0.5.]

Figure 6.3Running time with different raster and occupied pixels size. (a) Raster size 1,000 × 1,000, (b) Raster size 2,000 × 2,000, (c) Raster size 4,000 × 4,000.

[image: This figure illustrates the peak running time associated with varying occupied raster sizes. The x axis of the graph represents the different raster sizes. Meanwhile, the y axis represents the peak running time in seconds, ranging from 0 to 2.5 seconds. The plotted line on the graph increases quadratically.]

Figure 6.4Peak running time with different occupied raster size.

 To further evaluate the scalability of the algorithm, Figure 6.4 shows the maximum running time, that is, at p=0.5, as the raster size increases from 1,000 × 1,000 to 4,000 × 4,000. As expected, the largest running time on the y axis increases linearly with the resolution. For example, when the number of pixels increases from 1 million to 16 million, the running time increases from 0.14s to 2.28s, that is, 16 fold.

References

A. Asokan and J. Anitha. 2019. Machine learning based image processing techniques for satellite image analysis—A survey. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). IEEE, 119–124. DOI: https://doi.org/10.1109/COMITCon.2019.8862452.

G. Cheng and J. Han. 2016. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28. DOI: https://doi.org/10.1016/j.isprsjprs.2016.03.014.

E. A. Dominici, N. Schertler, J. Griffin, S. Hoshyari, L. Sigal, and A. Sheffer. July. 2020. PolyFit: Perception-aligned vectorization of raster clip-art via intermediate polygonal fitting. ACM Trans. Graph. 39, 4, 77:1–77:16. DOI: https://doi.org/10.1145/3386569.3392401.

A. Eldawy, L. Niu, D. Haynes, and Z. Su. 2017. Large scale analytics of vector+raster big spatial data. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’17). ACM, New York, NY, 1–4. DOI: https://doi.org/10.1145/3139958.3140042.

P. Selinger. 2003. Potrace: A polygon-based tracing algorithm. Potrace (online). Retrieved July 1, 2009 from https://potrace.sourceforge.net/potrace.pdf.

O. Tasar, E. Maggiori, P. Alliez, and Y. Tarabalka. 2018. Polygonization of binary classification maps using mesh approximation with right angle regularity. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 6404–6407. DOI: https://doi.org/10.1109/IGARSS.2018.8517751.

J. E. Vargas Munoz, D. Tuia, and A. X. Falcão. 2021. Deploying machine learning to assist digital humanitarians: Making image annotation in OpenStreetMap more efficient. Int. J. Geogr. Inf. Sci. 35, 9, 1725–1745. DOI: https://doi.org/10.1080/13658816.2020.1814303.

CHAPTER 7

Implementing Simulation of Simplicity for Geometric Degeneracies

W. Randolph Franklin and Salles Viana Gomes de Magalhães

7.1Introduction

Simulation of Simplicity (SoS) removes geometric degeneracies (special cases) by determining the effect of adding non-Archimedean infinitesimals of different orders to coordinates and then modifying geometric predicates to simulate that. The modified predicates will then be evaluated in the usual arithmetic. In other words, the effect of using infinitesimals on the value of a predicate is determined and then the predicate is recoded to compute, in the usual arithmetic, what its new result would be if the original predicate were executed using infinitesimals.

 Handling geometric special cases is a nasty part of transforming a beautiful algorithm into useful code. Example 2D degeneracies include an endpoint of one edge on another edge (Figure 7.1), a query point directly below a polyhedron vertex (see Section 7.4.2), two overlapping edges, two coincident points from different objects, two edges from different objects with a common vertex, and so on. If objects were randomly uniformly and independently and identically distributed, then the probability of any of these would be 0. However, they occur frequently in real data. When a CAD designer places one object tight against another, a geometric degeneracy is created. Two diplomats may agree that the common border between their adjacent countries will coincide with a river shoreline or center line. Two different digital maps created for the same region may have many (but not all) edges in common. We may want to conflate a dataset of contour lines with a dataset of hydrography features, including shorelines, where the shoreline might mostly align with a contour line.

[image: Figure with a segment touching the middle of another one.]

Figure 7.1Degeneracy: endpoint of blue edge on red edge.

 The approach described in this note is better than existing solutions because not handling degeneracies correctly causes erroneous output (examples are shown in some of the references), and allegedly, even can cause commercial CAD systems to crash. One quick fix is to perturb coordinates by a small amount. Heuristics like this work only up to a point, and fail for more complicated algorithms. Indeed, there are too many special cases to understand. Also, as input datasets get larger, the probability of an error grows.

 Why is this difficult? Consider the simple 2D problem of determining whether a point p is contained inside a polygon P (Figure 7.2) [Franklin 2009], also called ray casting. Here we introduce the problem; how to solve it with SoS is presented in Section 7.4.2. The classic Jordan-curve algorithm [Jordan 1887] extends a semi-infinite ray up from p, and counts how many edges ei of P it crosses. Point p is inside P iff that number is odd. (We will not here consider what is a legal polygon, and what is the answer if p is on an edge.)

 But what if the ray intersects an endpoint of ei? Is that an intersection or not? We may not care about one individual ei. We may not even care about the exact total number of intersections. However, we require that the total be odd or even correctly. This requires that for some rays and ei, there must be an intersection, and for others there must not. One heuristic that seems to work is to count an intersection iff the ray intersects the right endpoint of ei. If ei is vertical, then neither endpoint intersects the ray.

[image: Figure with some point location queries in a polygon.]

Figure 7.2Several cases for testing point in polygon.

 Perturbing p to give p′ will give the wrong answer when p is close to an edge of P and p′ is on the other side. However, the probability of that error is reduced by reducing how much p was translated. Importantly, the ray run up from p′ will never intersect any ei, so our difficult degeneracy will never occur.

 The above analysis illustrates the divide-and-conquer technique. We decomposed the problem of point location in a polygon into a set of smaller problems of testing the point (actually, its ray) separately against each edge. Then we combined the answers to the smaller problems to solve the original problem.

 Locating a point in a polygon is so simple that the time spent above on analyzing the special case may seem excessive. We (think that we) can easily make the algorithm work. However, the problem of using the Jordan curve algorithm to test whether a point p is contained in a 3D polyhedron P has enough special cases that confidently handling them all is problematic. The general algorithm is to run a ray r up from p and test which faces it intersects. p is inside iff the number of intersections is odd. Some special cases are as follows. (i) p might be on an edge, or on a vertex of P. (ii) r might intersect an edge, in any of several different ways. (iii) r might coincide with an edge, that is, run along the edge. (iv) r might intersect a vertex.

 Another example with enough special cases that an informal analysis is likely to be incomplete and thus wrong is the problem of intersecting two polylines l0 and l1 (see Figure 7.3). Polyline li is a sequence of ni vertices vij, 0 ≤ j < ni, each defining ni − 1 edges vijvi,j+1 for 0 ≤ j < ni − 1. The polyline is closed when the last vertex equals the first: vi0 = vi,n−1.

[image: Two figures: the first one has the general case of the intersection of two polylines and the second one shows one polyline crossing an endpoint of the other one.]

Figure 7.3A red polyline crossing a blue polyline: the general case and a degeneracy.

 Assume that each polyline has no two vertices in common: j≠k⟹vij≠vik. In general position, l0 has no vertices in common with l1 and no vertex of either polyline is in the interior of any edge of the other. That is, if an edge of l0 intersects (in a point set sense) an edge of l1, then the intersection is exactly one point.

 If a vertex of one polyline were on an edge of the other, that would be a degeneracy (see Figure 7.3). One application of polyline intersection would be computing a Boolean combination of two polygons, where their boundaries are closed polylines.

 Another way of looking at a degeneracy is that it occurs when evaluating a Boolean predicate that compares two numbers, for example, is a < b? In this note, assume computations are exact; we do not consider roundoff errors. This is not to say that roundoff errors are unimportant, merely that they are another topic, which we also treat in some our cited applications. SoS assumes exact computation, which can be achieved, for example, by computing with big rational numbers. Rational numbers represent each number as the ratio of two integers, for example, 1∕3, and compute exactly, for example, 1∕3 + 2∕5 = 11∕15.

 Geometric predicate evaluations can be considered as determinant sign evaluations. Consider three 2D points A,B,C. One possible predicate is whether ∠ABC < π? That, with the other information, controls whether the convex hull of OABC is OABC or OAC. ∠ABC < π is equivalent to | Ax Ay 1 Bx By 1 Cx Cy 1 | > 0 .

 The problem of evaluating whether a < b is that a = b is a third case.1 Every decision tree that branched out two ways at each decision now has to branch three ways to handle the degeneracies. After k decisions, 2k cases grows to 3k cases. One possible solution is to fold the degenerate case a = b into one of the two nondegenerate cases. That idea is an informal step toward SoS.

 In brief, the solution presented in this note is a technique for modifying a geometry algorithm (and so also its source code) so that it will handle degenerate geometric inputs with effectively no increase in execution time.

7.2Infinitesimals

Here we extend the set of real numbers ℜ into a non-Archimedean ordered field [Wikipedia contributors 2020] by adding infinitesimals.

 ℜ may be partitioned into negative finite numbers, zero, and positive finite numbers. A positive infinitesimal, 𝜖, is smaller than any positive real number. That is, ∀ ⁡r ∈ℜ,r > 0⟹0 < 𝜖 < r. This is logically possible. One way to approach this is to consider 𝜖 to be an indeterminate quantity that is defined only by its combining rules.

 Finite multiples of 𝜖, such as 2𝜖 and 𝜖∕5, are possible and obey the obvious ordering. 0 < 𝜖∕5 < 𝜖 < 2𝜖 < r. These multiples are called first order infinitesimals. 𝜖2 is a second order infinitesimal. 0 < 𝜖2 < 𝜖. Finite multiples of 𝜖2 operate similarly to first order infinitesimals. Infinitesimals of any positive integral order are possible. If 0 < i < j, then 𝜖j < 𝜖i. Knuth has a charming novelette on such numbers [Knuth 1974].

 How is the predicate (a < b), where a and b are finite reals, affected by adding infinitesimals to a and b? The test might become a + 𝜖i < b + 𝜖j. Assume, without loss of generality, that 0 < i < j. If a≠b, then if a < b is true, then also a + 𝜖i < b + 𝜖j is true. Adding the infinitesimals didn’t change the result. However, if a = b, then the infinitesimals break the tie. If a = b, then a + 𝜖i < b + 𝜖j reduces to 𝜖i < 𝜖j, which reduces to i > j.

 So, adding infinitesimals to a and b changes the predicate from (a < b) to (if (a≠b)then(a < b)else(i > j)). The execution time is increased by only the cost of one or two comparisons, which is probably insignificant in the context of the whole program.

7.3Simulation of Simplicity

This section describes how to break degeneracies with SoS [Edelsbrunner and Mücke 1990, Schorn 1993, Edelsbrunner and Guoy 2001, Edelsbrunner et al. 2002, Lévy 2016]. Note that the term simulation is used in these computational geometry papers with a quite different meaning than used in the modeling and simulation community.

 A degeneracy is, in a sense, a dimension reduction in the input, or a constraint between input parameters. SoS has been used for computing contour trees [Carr et al. 2000], triangulation [Beichl 2002], polyhedral modeling [Fortune 1995], molecular modeling [Halperin and Shelton 1997], computing line arrangements [Chazelle et al. 1991], exact boundary evaluation [Ouchi and Keyser 2004], and polygon overlay [Audet et al. 2013].

 These are the types of degeneracies that we wish to break (i.e., handle) with SoS: (i) two different points having the same value; (ii) a point, possibly the endpoint of an edge, being incident on a line, or extended edge, including the case of two edges being on the same infinite line; and (iii) two edges having the same slope. The last degeneracy might not be an immediate problem but is easy to handle.

 SoS is a technique to add infinitesimals of different orders to the points’ coordinates. The order cannot just be a function of a coordinate’s value but must depend on something unique to the point. Therefore, our SoS algorithm goes as follows.

(1)Index all the coordinates of all the input points, from 0 up.

(2)Let the i-th coordinate be xi. So, point # k will have coordinates (x2k,x2k+1).

(3)Modify the coordinates thus: xi → xi + 𝜖2i .

This will break all degeneracies. For instance, all possible edges between input points must have different slopes. The above algorithm is general; however, sometimes simpler SoS algorithms are adequate in special cases.

7.4Examples of SoS in Use

7.4.1Point on Edge in 1D

Testing whether a point is on an edge in 1D, while doing something useful when the point coincides with either endpoint, illustrates how this technique works.

 Consider the 1D case of a point with coordinate p on an edge with left and right coordinates l and r, respectively (see Figure 7.4). The point intersects the edge, in a set theoretic sense, if (l ≤ p)∧(p ≤ r). However, is this what we want when the point is one of the endpoints? We want an answer that makes this a useful subroutine of larger algorithms such as point in polygon. That is, we want to choose a definition of intersects here that makes the larger algorithm correct, for some useful definition of correct, such as not causing topological errors.

 In this simple case, it is sufficient to modify p thus: p′← p + 𝜖 and use p′ instead of p. The first version of the new predicate for testing point inclusion is now (l ≤ p′) ∧ (p′≤ r). However, if l = p, then l < p′, so l ≤ p′ is equivalent to l ≤ p. Similarly, if p = r, then p′ > r, so p′≤ r is equivalent to p < r.

[image: 1D line segment with a point in its interior.]

Figure 7.4Point on edge.

 So the final SoS version of the point inclusion predicate is (l ≤ p) ∧ (p < r). Although we derived this using infinitesimals, it does not contain any infinitesimals. It can be coded in any usual programming language using the usual arithmetic. It also does not take a noticeable amount of extra time to execute. The complexity associated with using SoS resides in the derivation of the new logic, not in the execution. The resulting code will be obscure in that a viewer may not understand the underlying motivation. That might be good or bad.

7.4.2Point in Polygon Test

Here we show how SoS solves the problem presented in Section 7.1 of testing whether a query point p is inside a polygon P. For simplicity, do not consider the case of p being on an edge of P. Also, do not treat complicated types of P, such as multiple components and nested holes, although this algorithm handles them fine.

 (There is another point testing algorithm that is more popular than good, which adds the angles subtended at p by each edge of P. If the sum is 0, p is outside, if 2π, then p is inside. The difficulty is that computing the subtended angle for an edge requires determining whether that edge crosses the positive x axis, so we’re back at the Jordan curve algorithm but complexified with an arctan evaluation.)

 Using the Jordan curve algorithm on polygon ABCD in Figure 7.2, we want to count intersections of rays running up from query points with the edges of ABCD. The ray from point r has 0 intersections; r is outside. The ray from s has 1; s is inside. t induces 2 intersections; it is outside. What about the ray from p? Since p is outside, the total number of intersections with the edges DA and AB must be even; either 0 or 2. However, also consider q, which is inside. Its ray must have exactly one intersection with the two edges AB and BC. Which edge should that be? In this case, the solution is to extend the algorithm in Section 7.4.1. The ray will intersect the edge iff its x-coordinate passes that test and also the point is beneath the edge.

 Here is the algorithm using SoS to test whether the ray from point p = (px,py) intersects the edge of P with endpoints vi = (vix,viy), vi+1 = (vi+1,x,vi+1,y). p is inside P iff the total number of intersections is even.

(1)If vix = vi+1,x, then there is no intersection here, so return 0.

(2)(Identify the left and right ends of the edge.) If xix < vi+1,x, then let l ← vi and r ← vi+1. Else, let r ← vi and l ← vi+1.

(3)If (lx > px) ∨ (px ≥ rx), then there is no intersection here, so return 0.

(4)Let D ← | lx ly 1 rx ry 1 px py 1 |.

(5)If D = 0, then p is on the edge, which we are not considering, so return an error.

(6)Else, p is below the edge iff D < 0, so return 1 iff D < 0 else return 0.

7.4.3Volume of Union of Cubes

This is another application of SoS to treat degeneracies. The problem is to compute the volume, area, and edge length of the polyhedron resulting from the union of tens of millions of identical isothetic cubes. The purpose is to test some fast, parallel, linear time formulae for geometric mass properties. The isothetic requirement removes any floating point roundoff issues. Our algorithm starts by finding intersections of faces with edges and intersections of three faces. It also frequently tests whether a vertex is inside another cube. Using several map-reduce operations, it computes the desired mass properties. Theoretical analysis and implementation on a multicore computer, with test results on up to 100M cubes, are presented in Franklin [2004, 2005, 2013]. Figure 7.5 shows the union of a few cubes. Note the complexity of the union, which is a difficult case for some algorithms.

[image: Illustration showing how the union of millions of cubes look.]

Figure 7.5Union of cubes.

 A degeneracy occurs when a vertex of one cube is incident on a face of another cube. This case subsumes all the other cases. If these were not handled correctly, the output would be completely wrong. This property helps to identify when the degeneracies are not being handled correctly.

 SoS is used to treat the degeneracies. The order of infinitesimals added is a function of the indexes of the edges and faces. This is used to modify conditional tests of coordinates by adding tests on the indices of the edges and faces. So, the execution time is not noticeably increased. If the input is independently and identically distributed uniform random, then there is an equation for the expected output volume, and it agrees with what is computed. This gives us confidence that SoS is working here.

7.4.4Point Location in 3D Mesh

This application, PinMesh, combines SoS with several other techniques to produce an implementation that is faster and more robust than other techniques. This demonstrates that SoS works well with other techniques. PinMesh preprocesses a polyhedral mesh, also known as a multimaterial mesh, to perform 3D point location queries [de Magalhães et al. 2016]. It combines several innovative components to efficiently handle the largest available meshes. These include a 2-level uniform grid, exact arithmetic with rational numbers to prevent roundoff errors, and symbolic perturbation with SoS to handle geometric degeneracies or special cases. PinMesh is intended to be a subroutine in more complex algorithms.

 Our implementation can preprocess a dataset and perform 1 million queries up to 27 times faster than Relative Closest Triangle (RCT), the current fastest algorithm. Preprocessing a sample dataset with 50 million triangles took only 14 elapsed seconds on a 16-core Xeon processor. The mean query time was 0.6 μs. In general, the preprocessing time was linear in the data size while the query time was almost constant. PinMesh also parallelized nicely on a multicore shared memory machine. Figure 7.6 illustrates infinitesimally perturbing a query point’s location when casting a ray through a 3D mesh. Figure 7.7 presents comparative execution times on large datasets. Our implementation won a Reproducibility Stamp because the reviewers could reproduce our results.

7.4.5Intersecting 3D Triangular Meshes

Our final application of SoS is 3D-EPUG-Overlay, a fast, exact, parallel, memory-efficient algorithm for computing the intersection between two large 3D triangular meshes with geometric degeneracies [de Magalhães et al. 2017, 2020, Franklin et al. 2017, de Matos Menezes et al. 2022a, 2022b] (Figure 7.8). Handling degeneracies correctly is important because some other programs use heuristics with a user-supplied tolerance, and so sometimes fail.

[image: Figure containing two tetrahedra with some points underneath them. Vertical rays are cast from these points.]

Figure 7.6Ray casting through a 3D mesh, showing infinitesimal perturbations.

[image: Plot with x axis showing the number of triangles in some meshes and the y axis showing the running time.]

Figure 7.7Point location preprocessing and query times on large 3D datasets compared to Relative Closest Triangle (RCT).

[image: Figure showing the union of two 3D objects.]

Figure 7.8Two polyhedra being intersected.

 Applications include CAD/CAM, CFD, GIS, and additive manufacturing. 3D-EPUG-Overlay combines five separate techniques: multiple precision rational numbers to eliminate roundoff errors during the computations; SoS to properly handle geometric degeneracies; simple data representations and only local topological information to simplify the correct processing of the data and make the algorithm more parallelizable; a uniform grid to efficiently index the data, and accelerate testing pairs of triangles for intersection or locating points in the mesh; and parallel programming to exploit current hardware. To simplify the symbolic perturbation, the algorithm employs only orientation predicates.

 There is a challenge in the mesh intersection problem: the predicates will not only have to handle input vertices (with real or rational coordinates) but also vertices generated from intersections. Since the coordinates of a vertex generated from an intersection are a function of five input points (two points defining an edge of one mesh and three points defining a triangle of the other mesh) and these points are perturbed, then the orientation has to be modified to handle these points. The 3D orientation will only be computed using, as arguments, three input vertices and another vertex that may either be an input vertex or a vertex from the intersection. Thus, at least two versions of the 3D orientation had to be implemented.

 We successfully stress-tested 3D-EPUG-Overlay by overlaying a polyhedron with translated or rotated versions of itself, in addition to overlaying pairs of different objects with up to 8M triangles.

7.5Summary and Acknowledgments

Simulation of Simplicity, adding infinitesimals of different orders from a non-Archimedean ordered field to geometric coordinates, is a powerful technique to remove geometric degeneracies. The infinitesimals are used to modify the program, which executes using the usual arithmetic. The modified program often has the same length, or only a slightly greater length, and has the same or only an insignificantly greater execution time. The main limitation is that computations must be exact; SoS relies on exact equality tests. The cost of this technique resides in the required analysis of the algorithm that this is being applied to.

 Our code, albeit only research-quality, is generally freely available for nonprofit research and education. We believe in our results and welcome stress tests and comparisons.

 This research was partially supported by FAPEMIG, CAPES (Ciencia sem Fronteiras, grant 9085/13-0), CNPq, and a gift from Dr Wenli Li.

1.The notations for equality and assignment are not standardized. We will use = for the equality predicate and ← for assignment.

References

S. Audet, C. Albertsson, M. Murase, and A. Asahara. 2013. Robust and efficient polygon overlay on parallel stream processors. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’13). ACM, New York, NY, 304–313. DOI: https://doi.org/10.1145/2525314.2525352.

I. Beichl. November. 2002. Dealing with degeneracy in triangulation. Comput. Sci. Eng. 4, 6, 70–74. DOI: https://doi.org/10.1109/MCISE.2002.1046599.

H. Carr, J. Snoeyink, and U. Axen. 2000. Computing contour trees in all dimensions. In Proceedings of the Eleventh Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’00). SIAM, Philadelphia, PA, 918–926.

B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink. 1991. Computing a face in an arrangement of line segments. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’91). SIAM, Philadelphia, PA, 441–448.

S. V. G. de Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li. August. 2016. PinMesh—Fast and exact 3D point location queries using a uniform grid. Comput. Graphs. 58, 1–11. DOI: https://doi.org/10.1016/j.cag.2016.05.017.

S. V. G. de Magalhães, W. R. Franklin, and M. V. A. Andrade. November. 2017. Fast exact parallel 3D mesh intersection algorithm using only orientation predicates. In 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017), Los Angeles Area, CA. ACM, 7–10. DOI: https://doi.org/10.1145/3139958.3140001.

S. V. G. de Magalhães, W. R. Franklin, and M. V. A. Andrade. March. 2020. An efficient and exact parallel algorithm for intersecting large 3-D triangular meshes using arithmetic filters. Comput. Aided Des. 120, 102801. DOI: https://doi.org/10.1016/j.cad.2019.102801.

M. de Matos Menezes, S. V. G. de Magalhães, M. Aguilar, W. R. Franklin, and B. Coelho. 2022a. Employing GPUs to accelerate exact geometric predicates for 3D geospatial processing. In J. Krumm, A. Züfle, and C. Shahabi (Eds.), Spatial Gems, Vol. 1, Chapter 11. ACM, 97–110. DOI: https://doi.org/10.1145/3548732.3548744.

M. de Matos Menezes, S. V. G. de Magalhães, M. A. de Oliveira, W. R. Franklin, and R. E. de Oliveira Bauer Chichorro. September. 2022b. Fast parallel evaluation of exact geometric predicates on GPUs. [Special Issue: 28th International Meshing Roundtable: Mesh Modeling for Simulations and Visualization]. Comput. Aided Des. 150, 103285. DOI: https://doi.org/10.1016/j.cad.2022.103285.

H. Edelsbrunner and E. P. Mücke. January. 1990. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1, 66–104. DOI: https://doi.org/10.1145/77635.77639.

H. Edelsbrunner and D. Guoy. 2001. Sink-insertion for mesh improvement. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry (SCG ’01). ACM, New York, NY, 115–123. DOI: https://doi.org/10.1145/378583.378644.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. November. 2002. Topological persistence and simplification. Discrete Comput. Geom. 28, 4, 511–533. DOI: https://doi.org/10.1007/s00454-002-2885-2.

S. Fortune. 1995. Polyhedral modelling with exact arithmetic. In Proceedings of the Third ACM Symposium on Solid Modeling and Applications (SMA ’95). ACM, New York, NY, 225–234. DOI: https://doi.org/10.1145/218013.218065.

W. R. Franklin. 2004. Analysis of mass properties of the union of millions of polyhedra. In M. L. Lucian and M. Neamtu (Eds.), Geometric Modeling and Computing: Seattle 2003. Nashboro Press, Brentwood TN, 189–202.

W. R. Franklin. 2005. Mass properties of the union of millions of identical cubes. In R. Janardan, D. Dutta, and M. Smid (Eds.), Geometric and Algorithmic Aspects of Computer Aided Design and Manufacturing, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 67. American Mathematical Society, 329–345.

W. R. Franklin. 2009. PNPOLY—Point Inclusion in Polygon Test. Retrieved December 31, 2009 from https://wrfranklin.org/Research/Short_Notes/pnpoly.html.

W. R. Franklin. October. 2013. Parallel volume computation of massive polyhedron union. In 23rd Fall Workshop on Computational Geometry. City College, New York City, 25–26 (extended abstract).

W. R. Franklin, S. V. G. de Magalhães, and M. V. A. Andrade. June. 2017. An exact and efficient 3D mesh intersection algorithm using only orientation predicates. In S3PM-2017: International Convention on Shape, Solid, Structure, & Physical Modeling, Shape Modeling International (SMI-2017) Symposium. Berkeley, California, 19–23 (poster).

D. Halperin and C. R. Shelton. 1997. A perturbation scheme for spherical arrangements with application to molecular modeling. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry (SCG ’97). ACM, New York, NY, 183–192. DOI: https://doi.org/10.1145/262839.262955.

M. C. Jordan. 1887. Cours d’analyse de l’École Polytechnic, Tome Troisième, Calcul Intégral, équations différentielles. Gauthier-Villars, Paris.

D. E. Knuth. 1974. Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total Happiness: A Mathematical Novelette. Addison-Wesley.

B. Lévy. March. 2016. Robustness and efficiency of geometric programs. Comput. Aided Des. 72, C, 3–12. DOI: https://doi.org/10.1016/j.cad.2015.10.004.

K. Ouchi and J. Keyser. 2004. Handling degeneracies in exact boundary evaluation. In Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications (SM ’04), Aire-la-Ville, Switzerland, Switzerland. Eurographics Association, 321–326.

P. Schorn. August. 1993. An axiomatic approach to robust geometric programs. J. Symb. Comput. 16, 2, 155–165. DOI: https://doi.org/10.1006/jsco.1993.1039.

Wikipedia contributors. 2020. Non-Archimedean ordered field. Wikipedia: the Free Encyclopedia. Retrieved September 9, 2022 from https://en.wikipedia.org/w/index.php?title=Non-Archimedean_ordered_field&oldid=972176701.

CHAPTER 8

Probabilistic Counting in Uncertain Spatial Databases Using Generating Functions

Andreas Züfle

8.1Introduction

Our ability to unearth valuable knowledge from large sets of spatial data is often impaired by the uncertainty of the data, which geography has named the “the Achilles heel of GIS” [Goodchild 1998]. The uncertainty is caused by several reasons: (1) imprecision caused by physical limitations of sensing devices and connection errors; (2) data records may be obsolete; (3) data can be obtained from unreliable sources, such as volunteered geographic information; and (4) data may be deliberately obfuscated to preserve the privacy of users. These issues introduce the notion of uncertainty in the context of spatiotemporal data management. Many algorithms have been proposed in the last decade to handle different spatial query predicates (such as distance range, kNN, and distance ranking) described in various tutorials [Renz et al. 2010, Cheng et al. 2014, Züfle et al. 2017, 2020] and surveys [Aggarwal and Philip 2009, Züfle 2021]. Many query predicates require counting the number of uncertain objects that satisfy a given query predicate, such as being located in a query region or being closer to a query object than another object. Computing the probability mass function of such a count requires computing for each integer n the probability of having exactly n objects satisfy the query predicate. A commonly used technique that allows many of these algorithms to run efficiently leverages the technique of generating functions to efficiently aggregate an exponential number of possible worlds in polynomial time. This technique is described, along with examples and implementation, in this spatial gem.

 An example of an uncertain (toy) database shown in Figure 8.1 has six uncertain objects {A,B,C,D,E,F}. Rather than having a single unique (crisp) location, an object in an uncertain database may have multiple alternatives, each associated with a corresponding probability of being the true location. For example, object B has five possible locations and object D has four possible locations. There exist multiple models for uncertain data, either describing uncertain objects by discrete (and finite) sets of alternatives or by describing uncertain objects by continuous distributions of (uncountably infinite) possible locations [Züfle 2021]. The most prominent systems for uncertain relational data management are MayBMS [Antova et al. 2008], MystiQ [Boulos et al. 2005], Trio [Agrawal et al. 2006], and BayesStore [Wang et al. 2008], which allow efficiently answering traditional queries that select subsets of data based on predicates or join different datasets based on conditions. While these existing systems efficiently support simple projection–selection–join queries, they offer no support for complex queries and data mining tasks. A likely reason for this gap is the theoretic result of Dalvi and Suciu [2007] that shows that the general problem of query processing in uncertain databases is #P-hard in the number of database objects.

 While this result implies that general query processing on uncertain data is hard, it does not rule out the possibility of efficient solutions for specific query types. And in fact, many important classes of spatial queries have efficient (polynomial time) solutions including range count queries [Follmann et al. 2011], nearest neighbor queries [Cheng et al. 2004, 2008; Iijima and Ishikawa 2009], k-nearest neighbor queries [Ljosa and Singh 2007, Beskales et al. 2008, Cheng et al. 2009] and, (similarity-) ranking queries [Hua et al. 2008, Yi et al. 2008, Cormode et al. 2009, Li et al. 2009, Soliman and Ilyas 2009, Li and Deshpande 2010].

[image: An example of an epsilon-range query with uncertain data. A query point is shown with a circular range. Six uncertain objects are shown having spatially extended ellipsoid uncertainty regions. The objects are called A, B, C, D, E, and F. Object A is contained completely in the range around the query. Objects B, C, and D overlap the query circle and are partially inside. Object B has a probability of 0.3 to be inside the range object C has a probability of 0.2 to be in the range, and object D has a probability of 0.9 to be in the range. Objects E and F are completely outside the query circle.]

Figure 8.1Example of an uncertain 𝜖-range query. Object A is a true hit; objects B, C, and D are possible hits.

 All these classes of spatial queries have in common is that they count the number of spatial objects that fall within a region. A range count query directly returns the distribution of the number of objects within a specified query region. To decide if an object A is a kNN of a query object Q, a kNN query computes the probability that less than k objects are closer to Q than A, thus counting a number of objects within a distance of less than the distance between Q and A; and for a distance ranking query, the probability that an object A has the k-th nearest objects of Q is the probability that exactly k − 1 objects (other than A) have a distance to Q less than the distance between Q and A.

 Example 8.1 As an example of counting the number of uncertain objects within a region, reconsider Figure 8.1, and assume a query that counts the number of uncertain objects within a distance of 𝜖 from a query object q. We first note that this query answer is a random variable, which depends on the locations of the uncertain objects (which are random variables, too). We observe that objects E and F are guaranteed to be outside the range, such that we can prune them from our computation. We also note that object A is guaranteed to be in the range, allowing us to increment the query result by one without having to further consider this object. For objects B, C, and D, the events of being located inside the query range are random variables with probabilities of 0.3, 0.2, and 0.9, respectively. Thus, the result of this query is a random variable having a sample space of {1,2,3,4}, and mapping each of these possible results to their probability. For example, the probability of having exactly one object in the range is 0.7 ⋅ 0.8 ⋅ 0.1 = 0.056. For the probability that exactly two objects are inside the range, we can add the probabilities on the three possible worlds where exactly one object out of {B,C,D} is inside the range.

 In the general case of computing the probability that exactly k out of n uncertain objects are inside the query range, we need to aggregate the probabilities of (n k) combinations of objects to be inside the query range. Straightforward approaches require to enumerate all the (n k) possible worlds the number of which is in O(nk).

 Yet, for this problem of counting the (distribution of the) number of uncertain objects within a query range two efficient solutions based on (1) the Poisson–binomial recurrence [Hua et al. 2008, Yi et al. 2008, Bernecker et al. 2010] and (2) based on generating functions [Li et al. 2009] have been proposed independently in the literature. These solutions allow aggregating the probabilities of an exponential number of possible combinations of objects in polynomial time, allowing us to answer many important spatial query types efficiently. This spatial gem describes how the generating function technique, which was first presented in the context of distance ranking by Li, Saha, and Deshpande in the best paper of VLDB 2009 [Li et al. 2009], can be used to efficiently answer spatial queries on uncertain data.

8.2Generating Functions for Probabilistic Counting

Let X = {X1,...,XN} denote the set of objects having a nonzero probability of being located in the query region, and let pi denote the probability of object Xi to be located inside the query region. We can model each Xi⊧B(pi) as a Bernoulli distributed random variable that has a probability of pi being 1 and a probability of (1 − pi) being 0. With this model, the count of objects inside the query region is the sum ∑ ⁡ i=1NB(pi). We note that since the probabilities pi are not identical, this random variable does not follow a binomial distribution but is instead known as a Poisson–binomial distribution having parameters {p1,...,pN} [Hua et al. 2008]. Our goal is to evaluate this random variable ∑ ⁡ i=1NB(pi) efficiently, that is, for each 0 ≤ k ≤ N we want to derive the probability P(∑ ⁡ i=1NB(pi) = k).

 For this purpose, represent each random variable Xi by a polynomial poly(Xi) = pi ⋅ x + (1 − pi). Consider the generating function

	 FN = ∏ i=1Npoly(X i) = ∑ i=0Nc ixi.
	(8.1)

 The coefficient ci of xi in the expansion of FN equals the probability P(∑ ⁡ n=1NXn = i) [Li et al. 2009]. For example, the monomial 0.25 ⋅ x4 implies that with a probability of 0.25 the sum of all Bernoulli random variables equals four.

 The expansion of N polynomials each containing two monomials leads to a total of 2N monomials, one monomial for each sequence of successful and unsuccessful Bernoulli trials, that is, one monomial for each possible world. To reduce this complexity, an iterative computation of FN can be used by exploiting that

	 Fk = Fk−1 ⋅ poly(X k).
	(8.2)

 This rewriting of Equation (8.1) allows inductively computing Fk from Fk−1. The induction is started by computing the polynomial F0, which is the empty product that equals 1, the neutral element of multiplication, that is, F0 = 1. To understand the semantics of this polynomial, the polynomial F0 = 1 can be rewritten as F0 = 1 ⋅ x0, which we can interpret as the following tautology: “with a probability of one, the sum of all zero Bernoulli trials equals zero.” After each iteration, we can unify monomials having the same exponent, leading to a total of at most k + 1 monomials after each iteration. This unification step allows the removal of the combinatorial aspect of the problem since any monomial xi corresponds to a class of equivalent worlds, such that this class contains only and all of the worlds where the sum ∑ ⁡ k=1NXk = 1. In each iteration, the number of these classes is at most k, and the probability of each class is given by the coefficient of xi.

 Example 8.2 As an example, consider again the running example of Figure 8.1. For each object, we first obtain the probability of being located inside the query region (which can be done in linear time using a range query and aggregating the probabilities of instances inside the query region). For the six objects A, B, C, D, E, and F, we obtain probabilities of being inside the query region of 1.0, p1 := 0.3, p2 := 0.2, p3 := 0.9, 0, and 0, respectively. We can safely prune objects E and F since they cannot affect the query result. We can also prune object A by increasing the result by 1 since we know A must be inside the query range. Given the probabilities p1 = 0.3, p2 = 0.2, and p3 = 0.9, we obtain the three generating polynomials poly(X1) = (0.3x + 0.7), poly(X2) = (0.2x + 0.8), and poly(X3) = (0.9x + 0.1). We trivially obtain F0 = 1. Using Equation (8.2), we get

	 F1 = F0 ⋅ poly(X 1) = 1 ⋅ (0.3x + 0.7) = 0.3x + 0.7.

 Semantically, this polynomial implies that out of the first one Bernoulli trials, the probability of having a sum of one is 0.3 (according to monomial 0.3x = 0.3x1), and the probability of having a sum of zero is 0.7 (according to monomial 0.7 = 0.7x0. Next, we compute F2, again using Equation (8.2):

	 F2 = F1 ⋅ poly(X 2) = (0.3x1 + 0.70) ⋅ (0.2x1 + 0.8x0) =

	 0.06x1x1 + 0.24x1x0 + 0.14x0x1 + 0.56x0x0.

 In this expansion, the monomials have deliberately not been unified to give an intuition of how the generating function technique is able to identify and unify equivalent worlds. In the above expansion, there is one monomial for each possible world. For example, the monomial 0.14x0x1 represents the world where the first trial was unsuccessful (represented by the 0 in the first exponent) and the second trial was successful (represented by the 1 in the second exponent). The above notation allows the identification of the sequence of successful and unsuccessful Bernoulli trials, clearly leading to a total of 2k possible worlds for Fk. However, we know that we only need to compute the total number of successful trials; we do not need to know the sequence of successful trials. Thus, we may treat worlds that have the same number of successful Bernoulli trials equivalently to avoid the enumeration of an exponential number of sequences. This is done implicitly by polynomial multiplication, exploiting that

	 0.06x1x1 +0.24x1x0 +0.14x0x1 +0.56x0x0 = 0.06x2 +0.24x1 +0.14x1 +0.56x0.

 This representation no longer allows us to distinguish the sequence of successful Bernoulli trials. This loss of information is beneficial as it allows the unification of possible worlds having the same sum of Bernoulli trials

	 0.06x2 + 0.24x1 + 0.14x1 + 0.56x0 = 0.06x2 + 0.38x1 + 0.56x0.

 The remaining monomials represent an equivalence class of possible worlds. For example, monomial 0.38x1 represents all worlds having a total of one successful Bernoulli trial out of the first two trials. This is evident since the coefficient of this monomial was derived from the sum of both worlds having a total of one successful Bernoulli trial. In the next iteration, we compute:

	 F3 = F2 ⋅ poly(X 3) = (0.06x2 + 0.38x1 + 0.56x0) ⋅ (0.9x + 0.1)

	 = 0.054x2x1 + 0.006x2x0 + 0.342x1x1 + 0.038x1x0 + 0.504x0x1 + 0.056x0x0.

 This polynomial represents the three classes of possible worlds in F2 combined with the two possible results of the third Bernoulli trial, yielding a total of 32. monomials. Unification yields

	 0.054x2x1 + 0.006x2x0 + 0.342x1x1 + 0.038x1x0 + 0.504x0x1 + 0.056x0x0 =

	 0.054x3 + 0.348x2 + 0.542x1 + 0.056x0.

 This polynomial describes the PDF of ∑ ⁡ i=13Xi (having X1 = B,X2 = C,X3 = D) since each monomial cixi implies that the probability, that out of all three Bernoulli trials the total number of successful events equals i, is ci. Thus, we get P(∑ ⁡ i=13Xi = 0) = 0.0056, P(∑ ⁡ i=13Xi = 1) = 0.542, P(∑ ⁡ i=13Xi = 2) = 0.348, and P(∑ ⁡ i=13Xi = 3) = 0.054.

8.3Complexity Analysis

The generating function technique requires a total of N iterations (as in the worst case all uncertain objects have a nonzero non-one probability of being in the query region). In each iteration 1 ≤ k ≤ N, a polynomial of degree k − 1, and thus of maximum length k, is multiplied with a polynomial of degree 1, thus having a length of 2. This requires computing a total of (k + 1) ⋅ 2 monomials in each iteration, each requiring a scalar multiplication. This leads to a total time complexity of ∑ ⁡ i=1N2k + 2 ∈ O(N2) for the polynomial expansions. Unification of a polynomial of length k can be done in O(k) time, exploiting that the polynomials are sorted by the exponent after expansion. Unification at each iteration leads to a O(n2) complexity for the unification step. This results in a total complexity of O(n2), similar to the Poisson–binomial recurrence approach.

 Many spatial query predicates do not require computing the full probability mass of the distribution of the number of objects within the query range but only require the probability of having less or equal than a specified parameter K of objects in the query range. For example, to find the probability that an object is among the K-nearest neighbors of a query object, it is sufficient to compute the probability that at most K − 1 objects are closer (within a shorter range). In this case, all monomials having an exponent greater or equal to K can be pruned from the computation. In this case, the length of the expanded polynomial in each iteration is bounded by K, thus yielding a run-time complexity of O(k ⋅ n). This efficient computation can also be leveraged for the case of distance ranking, where the challenge is to find the probability that exactly K − 1 other objects are closer to a query object for an object to be exactly the K-th nearest neighbor (i.e., having a distance rank of K). This task requires only finding the coefficient cK−1 of the expanded monomial cK−1xK−1 having an exponent of K − 1. Since in each iteration of multiplying and expanding monomials the coefficient cK−1 only depends on the coefficients cK−2 and cK−1 of previous iterations, we may also discard monomials with an exponent of K or greater to answer distance ranking queries.

 To summarize, using generating functions we can compute the distribution of the number of objects within a query range in O(n2), where n is the number of database objects. In cases such as KNN or distance ranking queries where we only need to know the probability of having at most or exactly K objects within the query range, we can reduce this complexity to O(K ⋅ n) by truncating intermediate polynomials.

8.4Implementation

A Python implementation can be found in the following GitHub repository https://github.com/azufle/generating_functions. This implementation, both as a Jupyter notebook and a classic .py script, defines a function that efficiently computes the probability mass function of a probabilistic count given a list of probabilities. Additional documentation can be found in the repository.

8.5Variants, Extensions, and Improvements

This section surveys a variety of extensions and improvements of the classic generating functions.

8.5.1Acceleration Using Discrete Fourier Transform

An advantage of the generating function approach is that this naive polynomial multiplication can be accelerated using Discrete Fourier Transform (DFT). This technique allows the reduction of the total complexity of computing the sum of N Bernoulli random variables to O(Nlog2N) [Li et al. 2011]. This acceleration is achieved by exploiting that DFT allows expanding two polynomials of size k in O(klogk) time. Equi-sized polynomials are obtained in the approach of Li et al. [2011] by using a divide and conquer approach that iteratively divides the set of N Bernoulli trials into two equi-sized sets. Their recursive algorithm then combines these results by performing a polynomial multiplication of the generating polynomials of each set. More details of this algorithm can be found in Li et al. [2011].

8.5.2Extension to Uncertain Counts

In many applications, a probabilistic event may not only have two possible outcomes (Yes/No, Success/Failure), but may have a third outcome that represents an unknown/undecided/uncertain state. For example, given incomplete trajectories of objects and their resulting uncertainty regions at a time (for example, described by a bounding box of possible locations), there may be possible worlds where (1) an object is within the query region, (2) an object is outside the query region, and (3) containment of the object within the query region cannot be decided due to uncertainty.

 For such cases, the addition of an unknown state has been proposed to be represented by generating function in Bernecker et al. [2011]. For each object Xi ∈X = {X1,...,XN} having a probability of pi to satisfy the query condition (such as being located within the query region), a probability of p¯i to not satisfy the query condition and a probability of 1 − pi −p¯i being in an unknown state, we can consider the generating function:

	 FN = ∏ i=1Np i ⋅ x + (1 − pi −p¯i) ⋅ y + p¯i.

 Intuitively, the anonymous variable x denotes an event of satisfying the query condition, and the anonymous variable y denotes the event of an undecided satisfaction of the query condition. In the expanded polynomial, a monomial such as ci,jxiyj corresponds to a possible world having a probability of ci,j having i objects guaranteed to satisfy the query condition and j additional objects possibly satisfying the query condition. For example, a monomial 0.13x3y2 corresponds to a possible world having a probability of 0.13 and having at least 3 but no more than 3 + 2 = 5 objects satisfy the query predicate.

8.5.3Dynamic Polynomials

In many applications, the probability of an object being inside a query range may change dynamically. For example, mobile objects may send update location information to change their uncertainty region. In this case, the probability distribution of the number of objects inside a query range changes as well. To update the probability distribution, we may recompute from scratch, using all objects having nonzero probability of being inside the query range. However, such an approach may be inefficient when there is a large number of such objects having frequent updates. To update the probability distribution of a probabilistic count, we can use polynomial division as described in Hubig et al. [2012]. Thus, having a database X = {X1,...,XN} of objects each with a probability of pi to be inside the query and given the polynomial FN that describes the probability distribution of the number of objects inside the query range, assume that an object Xj changes its probability from pj to pj′. We can update the FN by removing the old effect of the old probability pi through polynomial division of polynomial poly(Xj) = pi ⋅ x + 1 − pi and by including the effect of the new probability through multiplication with polynomial poly(Xj′) = pi′⋅ x + 1 − pi′. Combining both steps, we obtain the updated polynomial F′N:

	 F′N = FNpoly(Xj′) poly(Xj) = FNpi′⋅ x + 1 − p i′ pi ⋅ x + 1 − pi .

References

C. C. Aggarwal and S. Y. Philip. 2009. A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21, 5, 609–623. DOI: https://doi.org/10.1109/TKDE.2008.190.

P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom. 2006. Trio: A system for data, uncertainty, and lineage. In Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB 2006), demonstration description. VLDB Endowment, 1151–1154.

L. Antova, T. Jansen, C. Koch, and D. Olteanu. 2008. Fast and simple relational processing of uncertain data. In 2008 IEEE 24th International Conference on Data Engineering. IEEE, 983–992. DOI: https://doi.org/10.1109/ICDE.2008.4497507.

T. Bernecker, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zuefle. 2010. Scalable probabilistic similarity ranking in uncertain databases. IEEE Trans. Knowl. Data Eng. 22, 9, 1234–1246. DOI: https://doi.org/10.1109/TKDE.2010.78.

T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. 2011. A novel probabilistic pruning approach to speed up similarity queries in uncertain databases. In 2011 IEEE 27th International Conference on Data Engineering. IEEE, 339–350. DOI: https://doi.org/10.1109/ICDE.2011.5767908.

G. Beskales, M. A. Soliman, and I. F. IIyas. 2008. Efficient search for the top-k probable nearest neighbors in uncertain databases. Proc. VLDB Endow. 1, 1, 326–339. DOI: https://doi.org/10.14778/1453856.1453895.

J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. 2005. MYSTIQ: A system for finding more answers by using probabilities. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD ’05). ACM, 891–893. DOI: https://doi.org/10.1145/1066157.1066277.

R. Cheng, D. V. Kalashnikov, and S. Prabhakar. 2004. Querying imprecise data in moving object environments. IEEE Trans. Knowl. Data Eng. 16, 9, 1112–1127. DOI: https://doi.org/10.1109/TKDE.2004.46.

R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. 2008. Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data. In 2008 IEEE 24th International Conference on Data Engineering. IEEE, 973–982. DOI: https://doi.org/10.1109/ICDE.2008.4497506.

R. Cheng, L. Chen, J. Chen, and X. Xie. 2009. Evaluating probability threshold k-nearest-neighbor queries over uncertain data. In Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology (EDBT ’09). ACM, 672–683. DOI: https://doi.org/10.1145/1516360.1516438.

R. Cheng, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, G. Trajcevski, and A. Züfle. 2014. Managing uncertainty in spatial and spatio-temporal data. In 2014 IEEE 30th International Conference on Data Engineering. IEEE, 1302–1305. DOI: https://doi.org/10.1109/ICDE.2014.6816766.

G. Cormode, F. Li, and K. Yi. 2009. Semantics of ranking queries for probabilistic data and expected ranks. In 2009 IEEE 25th International Conference on Data Engineering. IEEE, 305–316. DOI: https://doi.org/10.1109/ICDE.2009.75.

N. Dalvi and D. Suciu. 2007. Efficient query evaluation on probabilistic databases. VLDB J. 16, 4, 523–544. DOI: https://doi.org/10.1007/s00778-006-0004-3.

A. Follmann, M. A. Nascimento, A. Züfle, M. Renz, P. Kröger, and H.-P. Kriegel. 2011. Continuous probabilistic count queries in wireless sensor networks. In International Symposium on Spatial and Temporal Databases, Vol. 6849: Lecture Notes in Computer Science. Springer, 279–296. DOI: https://doi.org/10.1007/978-3-642-22922-0_17.

M. F. Goodchild. 1998. Uncertainty: The Achilles heel of GIS. Geo. Info. Systems 8, 11, 50–52.

M. Hua, J. Pei, W. Zhang, and X. Lin. 2008. Ranking queries on uncertain data: A probabilistic threshold approach. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08). ACM, 673–686. DOI: https://doi.org/10.1145/1376616.1376685.

N. Hubig, A. Züfle, T. Emrich, M. A. Nascimento, M. Renz, and H.-P. Kriegel. 2012. Continuous probabilistic sum queries in wireless sensor networks with ranges. In Proceedings of the International Conference on Scientific and Statistical Database Management (SSDBM ’12), Vol. 7338: Lecture Notes in Computer Science. Springer, 96–105. DOI: https://doi.org/10.1007/978-3-642-31235-9_6.

Y. Iijima and Y. Ishikawa. 2009. Finding probabilistic nearest neighbors for query objects with imprecise locations. In 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware. IEEE, 52–61. DOI: https://doi.org/10.1109/MDM.2009.16.

J. Li and A. Deshpande. 2010. Ranking continuous probabilistic datasets. Proc. VLDB Endow. 3, 1–2, 638–649. DOI: https://doi.org/10.14778/1920841.1920923.

J. Li, B. Saha, and A. Deshpande. 2009. A unified approach to ranking in probabilistic databases. Proc. VLDB Endow. 2, 1, 502–513. DOI: https://doi.org/10.14778/1687627.1687685.

J. Li, B. Saha, and A. Deshpande. 2011. A unified approach to ranking in probabilistic databases. VLDB J. 20, 2, 249–275. DOI: https://doi.org/10.1007/s00778-011-0220-3.

V. Ljosa and A. K. Singh. 2007. APLA: Indexing arbitrary probability distributions. In IEEE 23rd International Conference on Data Engineering. IEEE, 946–955. DOI: https://doi.org/10.1109/ICDE.2007.367940.

M. Renz, R. Cheng, and H.-P. Kriegel. 2010. Similarity search and mining in uncertain databases. Proc. VLDB Endow. 3, 1–2, 1653–1654. DOI: https://doi.org/10.14778/1920841.1921066.

M. A. Soliman and I. F. Ilyas. 2009. Ranking with uncertain scores. In 2009 IEEE 25th International Conference on Data Engineering. IEEE, 317–328. DOI: https://doi.org/10.1109/ICDE.2009.102.

D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M Hellerstein. 2008. BayesStore: Managing large, uncertain data repositories with probabilistic graphical models. Proc. VLDB Endow. 1, 1, 340–351. DOI: https://doi.org/10.14778/1453856.1453896.

K. Yi, F. Li, G. Kollios, and D. Srivastava. 2008. Efficient processing of top-k queries in uncertain databases with x-relations. IEEE Trans. Knowl. Data Eng. 20, 12, 1669–1682. DOI: https://doi.org/10.1109/TKDE.2008.90.

A. Züfle. 2021. Uncertain spatial data management: An overview. In Handbook of Big Geospatial Data. Springer, 355–397. DOI: https://doi.org/10.1007/978-3-030-55462-0_14.

A. Züfle, G. Trajcevski, D. Pfoser, M. Renz, M. T. Rice, T. Leslie, P. Delamater, and T. Emrich. 2017. Handling uncertainty in geo-spatial data. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 1467–1470. DOI: https://doi.org/10.1109/ICDE.2017.212.

A. Züfle, G. Trajcevski, D. Pfoser, and J.-S. Kim. 2020. Managing uncertainty in evolving geo-spatial data. In Proceedings of the 2020 21st IEEE International Conference on Mobile Data Management (MDM). IEEE, 5–8. DOI: https://doi.org/10.1109/MDM48529.2020.00021.

CHAPTER 9

Statistics for All Walks on a Lattice Graph

John Krumm

9.1Introduction

There is value in hypothesizing where a moving entity goes between measurements. We imagine an entity moving through a grid of 1 × 1 squares, as shown in Figure 9.1. For any pair of temporally adjacent measurements, we know the corresponding pair of cells and the time it took to go from one to the other. We can hypothesize about the cells that were visited in between. This paper shows how to compute statistics on the in-between cells, assuming the moving entity could take any route on the grid. The statistics show the probability of visiting any cell and the distribution of dwell times in each reachable cell. For geospatial data, these statistics can be used to compute the probability that the moving entity visited a certain location between measurements and the probability distribution of the duration of the visit. This approach has been used for probabilistically interpolating location between measurements in Krumm [2022].

 A convenient way to describe movement through the grid is with a lattice graph. A lattice graph is a graph G = (V,E) whose vertices V are centered on cells in a grid that tile a part of 2D space, an example of which is shown in Figure 9.1. Since the cells and vertices are inexorably paired, we will use the terms interchangeably. The vertices are denoted as vi ∈ V , and the edges are ej,k ∈ E, where ej,k is an undirected edge connecting vertices vj and vk. In Figure 9.1 and the remainder of the chapter, we assume each cell is connected to its 4-connected neighbors, although we could assume 8-connected neighbors as well.

 Informally, a trajectory on a lattice graph is a sequence of connected vertices and their connecting edges, that is, v0e0,1v1e1,2v2...eT−1,TvT. Omitting the edges as implicit, the trajectory is denoted as v0v1v2...vT, with the start at v0, the end at vT, and positive integer length (or duration) T ∈ ℤ+ indicating the number of edges traversed. We will refer to T as the duration of the trajectory, assuming that the moving entity traverses one edge at every time unit, including possibly the self-loop.

[image: A 5 × 5 grid of squares. The center of each square has a line at the center of its neighboring squares. There is also a loop connecting each center back to itself.]

Figure 9.1A lattice graph is superimposed on a square grid. Each vertex is shown as a black dot with edges to itself and its 4-connected neighbors.

 In precisely defining trajectories on a graph, we can designate them as paths or walks [Diestel 2017]. A path consists of a sequence of vertices that are all distinct. Thus it does not cross itself. A walk is more general in that the vertices do not have to be distinct, thus it can cross itself. Because our lattice graph has loop edges on each vertex, the walk can also have an arbitrary number of adjacent, repeated vertices, representing an arbitrary length stay at a vertex.

 Because we are looking at trajectories in a spatiotemporal context, such as people traveling around, we introduce time to our walks. Specifically, each walk traverses an edge at every ΔT = 1 time interval. Thus, a walk of duration T consists of T + 1 vertices, some possibly repeated. We imagine the traversals are instantaneous, with the moving entity spending ΔT = 1 at the new vertex before its next transition. The exception is that the time spent at the first and last vertex is 0.5, which makes it convenient to splice walks together with time spent at interior vertices still 1 and a total duration of T.

 Without loss of generality, we assume each walk begins at the vertex at (x,y) = (0,0) and time t = 0. Recall that with grid cells of size 1 × 1, the coordinates of each cell are (x,y) ∈ (ℤ, ℤ) on an infinite grid. The last cell/vertex in the walk is at (x,y) = (X,Y). Discretized trajectory data normally gives the starting and ending cells as well as the elapsed time T. Thus we are interested in statistics (e.g., probability of visiting a cell and its dwell time distribution) of all the possible walks from (x,y,t) = (0,0,0) to (x,y,t) = (X,Y,T), where t represents discretized time in units of 1.

9.2Computing All Walks

The set of all possible walks from (x,y,t) = (0,0,0) to (x,y,t) = (X,Y,T) is denoted as WX,Y,T. We want to know statistics about this set of walks, specifically the probability of visiting a given cell and the distribution of dwell times in each cell. There appears to be no closed form formulae for these statistics, nor even a closed form giving the number of walks |WX,Y,T|. Perhaps the closest solutions are for lattice paths that are more restrictive about the motion from cell to cell and disallow certain regions of the grid [Wikipedia contributors 2022a]. A Mathematics Stack Exchange question by user DenDenDo suggests using convolutions or adjacency matrices as alternate approaches, but the discussion is not conclusive [Aggarwal 2016]. There is also a continuous approach called “path integral formulation” based on quantum mechanics that may apply [Wikipedia contributors 2022b].

 Given the lack of formulae, we resort to computation. We start with an explicit computation of all walks of a given duration T starting at (x,y,t) = (0,0,0). For example, if T = 2, we imagine the grid in Figure 9.2(a) and its associated 4-connected lattice graph. We denote this set of walks of duration T as WT. From each vertex on the grid, an entity can move along five different edges, which are the 4-connected neighbors and the self-loop. Thus, for a walk of duration T, which always traverses T edges, the number of distinct walks is |WT| = 5T. If we allowed 8-connected neighbors, the number would be 9T.

 For a given T, we do not need an infinite grid. It is adequate to use a grid of size (2T + 1) × (2T + 1) because the moving entity will only traverse T edges. For example, if T = 2, the grid in Figure 9.2(a) is adequate.

 Our approach is to compute all the walks WT for a given T and then group by the terminal vertices (X,Y) of each walk in WT to get the sets WX,Y,T. In order to compute WT (all the walks of length T), we first compute NT, which is the set of base-5 integers from 0 to 5T − 1, as shown in Table 9.1 for T = 2. Each of these 5T integers will be converted into a distinct walk. The first column in Table 9.1 shows the 52 two-digit integers from 0 to 44 in base five. For the walk represented by each row, the two (Δx,Δy) moves come from looking up the move corresponding to each of the two digits. Since each walk begins at (0,0), the location of the terminal vertex is the vector sum of the two moves. The digit-to-move lookup is given in Table 9.2.

[image: (a) Shows the (x,y) coordinates of each square in a 5 × 5 grid. (b) Shows a number associated with each square in the grid, from 0 to 24.]

Figure 9.2(a) Coordinates. (b) Vertex indices. These are the vertices of the lattice grid for T = 2.

 For a given T, we first build a table in a database of the 5T base 5 numbers, one number for each row, where each row represents a distinct walk on the lattice graph. We chose to explicitly build this table to take advantage of the database-like architecture of our available computing cluster. The table of digits for T = 1 is D1 = {0,1,2,3,4}. The digits for T = 2 are D2 = D1 × D1, where × denotes the Cartesian product. Thus D2 = {00,01,02,...42,43,44}, which is shown in the first column of Table 9.1. In general, DT = D1 × DT−1. In a database, the Cartesian product is often implemented as a cross join between two tables.

 From the digits tables, we compute vertex tables representing the visited vertices on each walk. There is one vertex table for each T, and each row of each vertex table represents one distinct walk on the lattice graph. Instead of storing the vertex coordinates, for example, (1,−1), we store an integer index for each visited vertex. For a given T, we have a lattice graph with dimensions (2T + 1) × (2T + 1), with the origin (0,0) represented as the center vertex. Figure 9.2(a) gives an example for T = 2. The vertices are numbered in row-major order, starting with 0 in the lower left. The index of the center vertex is 2T(T + 1). Figure 9.2(b) shows the vertex indices for T = 2. A lattice graph of this size covers every possible vertex that can be visited with T moves. These vertex indices are used purely for internal computations as an efficient way to represent the vertices. In the end, we convert from the indices back into (x,y) coordinates for reporting statistics. Table 9.2 shows how to quickly compute the vertex indices of a vertex’s 4-connected neighbors. That is, for any vertex index, we can compute the indices of its 4-connected neighbors by simply adding the amount given in the last column of Table 9.2.

Table 9.1Each row shows one of the 25 possible walks for T = 2. In each row, the two base-5 digits are used to look up the five possible moves for the first and second move (Δx,Δy), with the digit-to-move lookup table in Table 9.2

	 Base-5 Digits
	 First (Δx,Δy)
	 Second (Δx,Δy)
	 First Vertex
	 Second Vertex
	 Third (Terminal) Vertex
	 Walk Count with this Terminal Vertex

	 00
	 (0,0)
	 (0,0)
	 (0,0)
	 (0,0)
	 (0,0)
	 5

	 01
	 (0,0)
	 (0,1)
	 (0,0)
	 (0,0)
	 (0,1)
	 2

	 02
	 (0,0)
	 (0, −1)
	 (0,0)
	 (0,0)
	 (0, −1)
	 2

	 03
	 (0,0)
	 (1,0)
	 (0,0)
	 (0,0)
	 (1,0)
	 2

	 04
	 (0,0)
	 (−1,0)
	 (0,0)
	 (0,0)
	 (−1,0)
	 2

	 10
	 (0,1)
	 (0,0)
	 (0,0)
	 (0,1)
	 (0,1)
	 2

	 11
	 (0,1)
	 (0,1)
	 (0,0)
	 (0,1)
	 (0,2)
	 1

	 12
	 (0,1)
	 (0, −1)
	 (0,0)
	 (0,1)
	 (0,0)
	 5

	 13
	 (0,1)
	 (1,0)
	 (0,0)
	 (0,1)
	 (1,1)
	 2

	 14
	 (0,1)
	 (−1,0)
	 (0,0)
	 (0,1)
	 (−1,1)
	 2

	 20
	 (0, −1)
	 (0,0)
	 (0,0)
	 (0, −1)
	 (0, −1)
	 2

	 21
	 (0, −1)
	 (0,1)
	 (0,0)
	 (0, −1)
	 (0,0)
	 5

	 22
	 (0, −1)
	 (0, −1)
	 (0,0)
	 (0, −1)
	 (0, −2)
	 1

	 23
	 (0, −1)
	 (1,0)
	 (0,0)
	 (0, −1)
	 (1, −1)
	 2

	 24
	 (0, −1)
	 (−1,0)
	 (0,0)
	 (0, −1)
	 (−1, −1)
	 2

	 30
	 (1,0)
	 (0,0)
	 (0,0)
	 (1,0)
	 (1,0)
	 2

	 31
	 (1,0)
	 (0,1)
	 (0,0)
	 (1,0)
	 (1,1)
	 2

	 32
	 (1,0)
	 (0, −1)
	 (0,0)
	 (1,0)
	 (1, −1)
	 2

	 33
	 (1,0)
	 (1,0)
	 (0,0)
	 (1,0)
	 (2,0)
	 1

	 34
	 (1,0)
	 (−1,0)
	 (0,0)
	 (1,0)
	 (0,0)
	 5

	 40
	 (−1,0)
	 (0,0)
	 (0,0)
	 (−1,0)
	 (−1,0)
	 2

	 41
	 (−1,0)
	 (0,1)
	 (0,0)
	 (−1,0)
	 (−1,1)
	 2

	 42
	 (−1,0)
	 (0, −1)
	 (0,0)
	 (−1,0)
	 (−1, −1)
	 2

	 43
	 (−1,0)
	 (1,0)
	 (0,0)
	 (−1,0)
	 (0,0)
	 5

	 44
	 (−1,0)
	 (−1,0)
	 (0,0)
	 (−1,0)
	 (−2,0)
	 1

 We are ultimately interested in visit statistics given knowledge of the start point (always (0,0)), end point, and elapsed time T. Thus, we group each vertex table by its terminal vertex and compute statistics on each group.

Table 9.2Lookup table from a base-5 digit to a relative move on the four-connected lattice graph

	 Base-5 Digit
	 Direction
	 Δx
	 Δy
	 Δ Vertex Index

	 0
	 no move
	 0
	 0
	 0

	 1
	 north
	 0
	 1
	 2T + 1

	 2
	 south
	 0
	 −1
	 − (2T + 1)

	 3
	 east
	 1
	 0
	 1

	 4
	 west
	 −1
	 0
	 −1

 Before detailing the statistics, we comment on the size of the digit tables and vertex tables above. For a given T, both tables have 5T rows, one row for each walk, which grows quickly with T. We were able to compute these tables up to T = 15 before encountering storage and computation constraints. In our computation, the tables for T ∈ [1,15] took over 800 terabytes to store, which is why we only share the statistics, not the actual walks. It is interesting to compare the size of the tables for T = T to the accumulated size of the tables for T = 1...T − 1. For a finite geometric series, when b≠1, we have

	 ∑ i=0n−1bi = bn − 1 b − 1 .

 Thus the accumulated number of walks for T = 1...T − 1 is, for b = 5,

	 N(T − 1) = ∑ T=1T −15T
	(9.1)

	 = 5T − 1 5 − 1 − 1
	(9.2)

	 = 1 4(5T − 5)
	(9.3)

 The ratio of the number of rows for T (i.e., 5T) to the accumulated rows for T = 1...T − 1 is then

	 αT = 5T N(T − 1)
	(9.4)

	 = 4 ⋅ 5T 5T − 5
	(9.5)

	 ≈ 4
	(9.6)

where the approximation comes from saying 5T − 5 ≈ 5T , which becomes more accurate with larger T . As an example, α10 = 4.000002048. The conclusion is that the number of walks for T is about four times the number of accumulated walks for all smaller values of T. Thus, moving to the next larger value of T can represent a significant increase (about four times) in memory and computation.

 Because the computational burden grows quickly with T, small efficiencies are quickly overwhelmed. For instance, there are clearly spatial symmetries to exploit in the statistics, leading to a possible four or eight times computational savings. However, T + 1 has five times the number of walks of T and four times the number of walks of all the previous T values, as shown above. Thus, O(1) speedups are minimally helpful. Meaningful increases in computational efficiency constitute an interesting research problem.

9.3Statistics

The vertex tables give the list of vertices visited for each distinct walk, and these are grouped by their terminal vertices to compute WX,Y,T, where (X,Y) is the endpoint and T is the walk’s duration. The walks themselves are less useful than statistics from the walks. From the constituent walks in WX,Y,T, we compute two sets of probabilities. One is the visit probability for each vertex, that is,

	 P(v|WX,Y,T) = |WX,Y,T|v |WX,Y,T| .
	(9.7)

This is the probability of visiting vertex v if the entity went on a walk from the vertex at (0,0) to the vertex at (X,Y) in time T. The probability is computed in a straightforward way. The numerator |WX,Y,T|v is the number of walks that pass through vertex v. The denominator |WX,Y,T| is the total number of walks in WX,Y,T. The implicit assumption is that each walk in WX,Y,T has equal probability. An interesting extension to this work would be to adjust the probabilities of the individual walks to reflect more realistic behavior. For example, walks that cross themselves may be less probable than those that do not cross themselves, and more direct walks from X to Y may be more probable than those that wander.

 As an example, we show P(v|WX,Y,T) in Figure 9.3(a). Note that the start and end vertices have a visit probability of 1.0 and that some walks wander outside the bounding box that contains the start and end vertices.

 Another set of probabilities to compute from the raw walks concerns the dwell time in each vertex. Due to the lattice graph’s self-loops, a walk may dwell in a cell for multiple time steps. A walk can also revisit cells. Both these behaviors lead to varying dwell times among the visited cells. For dwell times, we can easily compute

	 P(v,d|WX,Y,T) = |WX,Y,T|v,d |WX,Y,T| .
	(9.8)

[image: (a) Shows a grid of cells, with each cell containing a number and the cells colored differently depending on the number, which represents the visit probability. (b) Shows the same grid, but this time the numbers represent the expected dwell times.]

Figure 9.3(a) Visit probabilities. (b) Expected dwells given visit. Visit probabilities and expected dwell times given a visit for walks of length T = 15 that start at the origin and end at (7,4).

The probability P(v,d|WX,Y,T) is the probability of visiting vertex v and spending time d there. The numerator |WX,Y,T|v,d is the number of walks passing through vertex v that spend time d there. The denominator is the same as in Equation (9.7).

 We can illustrate the dwell probabilities by computing expected dwell times given a visit to a vertex. We have

	 P(v,d|WX,Y,T) = P(d|v,WX,Y,T)P(v|WX,Y,T).

Here, P(v|WX,Y,T) is just the visit probability computed in Equation (9.7). From the above equation, we have

	 P(d|v,WX,Y,T) = P(v,d|WX,Y,T) P(v|WX,Y,T) .

Then the expected dwell time in vertex v, given a visit to vertex v, is

	 d¯|v,WX,Y,T = ∑ dd ⋅ P(d|v,WX,Y,T).

A plot of these expected dwell times for the same walks as in Figure 9.3(a) is shown in Figure 9.3(b). Recall that we assume each walk spends a time of 0.5 at the first vertex at the beginning of the walk and 0.5 at the last vertex at the end of the walk. In Figure 9.3(b), the expected dwell times at the first and last vertices are both larger than 0.5 (actually 0.73) because some of the walks in W7,4,15 loop through and/or stay for a while at the endpoints.

[image: This is similar to Figure 9.3, but the grids are larger.]

Figure 9.4(a) Visit probabilities. (b) Expected dwells given visit. Visit probabilities and expected dwell times given a visit for walks of length T = 15 that start and end at the origin.

 These expected dwell times given a visit are mostly for illustration to demonstrate how to manipulate the probabilities and to show that the resulting dwell times are reasonable. However, if we knew that a certain vertex were visited (i.e., “given a visit”), then we would construct a set of walks that terminate at that given vertex instead of speculating based on the next known vertex.

 Another illustration of visit probabilities and expected dwell times appears in Figure 9.4. All these walks start and end at the origin with T = 15. This shows how the walks account for the possibility of moving away from what appears to be a static position.

 Statistics for visits and dwells for T ∈ [1,15] are available at https://github.com/jckrumm-microsoft/WalksOnLatticeGraph.

9.4Summary

This paper shows how to compute all walks of a given duration on a lattice graph. This can be useful for speculating about how an entity has moved between location measurements. From the walks, we computed visit probabilities and dwell distributions for the vertices, sharing the results publicly. For longer walks, the computational burden becomes challenging, inviting research for more efficient approaches.

References

A. Aggarwal. 2016. Path density between two points. Retrieved from https://math.stackexchange.com/questions/1691507/path-density-between-two-points.

R. Diestel. 2017. Graph Theory (5th. ed.). Springer, Berlin.

J. Krumm. 2022. Maximum entropy bridgelets for trajectory completion. In Proceedings of the 30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA. ACM, 1–8. DOI: https://doi.org/10.1145/3557915.3561015.

Wikipedia contributors. 2022a. Lattice path. Wikipedia, the free encyclopedia. Retrieved September 2, 2022 from https://en.wikipedia.org/w/index.php?title=Lattice_path&oldid=1094660788.

Wikipedia contributors. 2022b. Path integral formulation. Wikipedia, the free encyclopedia. Retrieved October 25, 2022 from https://en.wikipedia.org/w/index.php?title=Path_integral_formulation&oldid=1102187594.

CHAPTER 10

Online Heatmap Generation with Both High and Low Weights

Yan Y. Liu∗ and Melissa R. Allen-Dumas

10.1Introduction

Spatial heat map, referred to as heatmap hereafter, is a common visualization method in geographic information systems. Given a set of point observations, a map surface is rendered to visualize the relative density of these points on each surface grid cell. The color representation of the density measure and its distribution on the map surface help readers understand how the density pattern embedded in the point observations is clustered or varied spatially. There are a wide range of methods available [Mitchell and Minami 1999] for determining the density of surface grid cells from nearby sample points, from simple point overlay methods, spatial interpolation methods (e.g., inverse distance weighting, IDW), kernel density estimation (KDE), to sophisticated geostatistical methods such as kriging.

 Heatmap is desirable for visualizing a large number of point observations that spatially overlap. Sparsely distributed observations can be visualized using clustering or other aggregation methods, instead. However, as the number of points increases, the computational cost increases, too. If computationally intensive interpolation algorithms are needed to provide statistically sound results (e.g., using kriging), a typical approach to online heatmap generation conducts costly interpolation computation at server side in cloud or using high-performance computing first. The interpolated map rasters are then rendered and published as an online image service (e.g., via the Open Geospatial Consortium Web Coverage Service and the Web Map Service). Users then load rendered map tiles into the map panel within a browser. This approach introduces long turnaround times that may be unacceptable for real-time online mapping. Most of the popular web mapping libraries, such as OpenLayers [2018] and LeafLet [2016, 2017], take a tradeoff and adopt simple but fast point overlay methods.

 In this paper, a new heatmap algorithm, hilomap, is developed to apply an indirect point overlay method to efficiently process a large number of weighted points and highlight both low and high trends on a map grid, a limitation that exists in current online heatmap libraries. The paper is organized as follows. We introduce the heatmap generation problem formulation and focus on the discussion of point overlay methods used in rendering heatmap as a vector layer in web mapping. Two point overlay methods that are implemented in OpenLayers and Leaflet are described to illustrate how to develop heatmap as a vector layer based on HTML5 canvas, a raster-based graphics framework within a browser. Specifically, necessary interactions between geospatial data points, the map surface, and graphics rendering in HTML5 canvas are presented to illustrate how point weights are transformed to surface weights and how such weights influence the final color rendering of surface cells under spatial overlapping. We will then show the limitations of existing heatmap libraries in visualizing data with low and high extremes, on which trends toward both low and high extremes need to be highlighted. A new heatmap algorithm, called hilomap, is proposed to address this issue. A reference implementation in OpenLayers is then illustrated and evaluated.

10.2Algorithms

10.2.1Problem Formulation

Given k point observations D = {(pi,wi)}, i = 1⋯k, where pi is the point location and wi is the point weight, a heatmap generation algorithm creates a map surface grid GM with m rows and n columns, on which each grid cell/pixel is rendered with a color and an opacity that reflect the relative density derived from point weights. Figure 10.1 illustrates an example heatmap layer in OpenLayers v5.3.3 (Figure 10.1(b)) derived from a global earthquake observation dataset (Figure 10.1(a)). While the point dataset shows the location and the weight (i.e., magnitude) of individual earthquake events, the heatmap presents a spatial pattern on the projected global map surface by considering the spatial distribution of points and the influence of weights.

[image: Figure 10.1 illustrates online heatmaps using an OpenLayers example data on global earthquakes. On the left, locations of earthquakes are plotted as points on a map. On the right, a heatmap generated from those points shows spatial patterns derived from both location and earthquake intensity.]

Figure 10.1The 2012 global earthquake data and its heatmap, used in OpenLayers examples. (a) Data points. (b) Heatmap. (c) The color gradient, low → high.

 To determine the value of each cell on the surface grid GM, an interpolation method may need to consider all the data points (illustrated in Algorithm 10.1). The function interpolate() computes a grid cell by scanning the entire point data. For example, IDW computes a cell as cij = ∑ ⁡ (p,w)∈Dw∕distance(cij,p) ∑ ⁡ (p,w)∈D1∕distance(cij,p) , such that it is inversely proportional to the distance between the cell and the points. The computational complexity of Algorithm 10.1 is O(mnk), which is high. Sophisticated spatial statistical methods such as kriging is even more computationally costly as it builds a semivariogram on input points first before interpolating grid cells.

10.2.2Point Overlay Methods

Web mapping libraries often employ point overlay methods, instead of IDW or kriging, to provide fast heatmap generation and acceptable user interaction performance requirements. As its name suggests, a point overlay method, f : D → S, scans the points in D one after another only once and creates a set of rendering shapes (often as circles) S. Since this is a one-pass algorithm, it greatly accelerates heatmap generation. There are two types of point overlay methods: direct or indirect. A direct point overlay method directly draws the points in D onto GM, therefore, |D| = |S|. An indirect point overlay method often assumes a heatmap grid GH that is coarser than the map surface grid GM. Each point falls into a cell on GH. If a cell contains multiple points, an aggregation strategy is applied to select a representative point for the cell. The number of cells on GH is often much smaller than the number of points in order to accelerate heatmap rendering.

[image: image]

 HTML5 canvas provides two features that make it possible for point overlay methods to work. First, it provides vector shape drawing methods with customized geometry, coloring, and opacity style configuration. Second, if a pixel on the canvas grid is part of the intersection of multiple shapes, the color and the opacity of the pixel are accumulated from all shape drawings. In an HTML5 canvas implementation, a direct point overlay method achieves the effect of spatial overlapping of weights by controlling the cumulative rendering of S. A single circle drawing is controlled by a parameter tuple <radius, blur, opacity> that can be configured by users. The radius parameter controls the range of spatial diffusion of a point. The blur parameter controls the final color smoothing from the circle center to the boundary of the circle by applying a Gaussian 2D blur operation. The opacity ranges from 0 (transparent) to 1 (opaque). Most point overlay methods leverage the opacity attribute to carry and accumulate point weights, which is critical for the final rendering of spatial overlapping. When circles do not overlap, the blur operation itself can show the effect of spatial weight decay in a single circle. Figure 10.2(a) shows two nonoverlapping circles with different weights. When blurred, as shown in Figure 10.2(b), since the weight within the circle is always nonnegative and the boundary has zero weight, the coloring transitions from high in the center to low on the boundary by following the color gradient in Figure 10.1(c).

[image: Figure 10.2 shows four point overlay rendering effects from the combination of radius (4 and 9) and blur (on and off).]

Figure 10.2Point overlay rendering. (a) radius=4, no blur. (b) radius=4, blurred. (c) radius=9, no blur. (d) radius=9, blurred.

 A direct point overlay rendering process has two steps. First, circles in S are drawn onto GM without color. GM is an HTML5 canvas of the map panel, which is a 2D image buffer with each pixel defined by four channels: R (red), G (green), B (blue), and A (alpha, i.e., opacity). Each channel is one byte with value range 0–255. Drawing a circle without color only transforms a point’s weight to an opacity value on the A channel of each pixel covered by the circle. Drawings of other overlapping circles will add new opacity values, achieving weight summation. Second, the actual color rendering occurs. The rendered image data of GM in the first step is fetched for each pixel’s alpha value, based on which the actual color is interpolated from a predefined color gradient and the pixel’s RGB value is assigned accordingly. In Figure 10.2(c), the cumulative effect on opacity in the overlapped area of the two circles renders a higher color than either of the points. The blur operation helps color blending similarly as in the nonoverlapping scenario, as shown in Figure 10.2(d).

 Direct point overlay is widely supported in web mapping libraries, such as Leaflet’s simpleheat [LeafLet 2017] and OpenLayers’ Heatmap layer in version 5.3.3 [OpenLayers 2018]. A JavaScript code snippet of simpleheat is shown in Figure 10.3.

[image: Figure 10.3 shows the direct point overlay code snippet in Leaflet’s SimpleHeat method. Lines 2–6 draws all the point circles, with circle opacity proportional to point weight. Each point p is an array of three elements: x, y, weight. Lines 9–19 fetches pixel-level opacity value accumulated from the previous step, then finds the corresponding color on the gradient table, and fills the actual color of each pixel on the map canvas ctx. The color gradient is a continuous byte array of size 256 multiplied by 3. It serves as a lookup table that maps an alpha channel value, or the opacity value, between 0 and 255 to a 3-byte RGB value.]

Figure 10.3The direct point overlay code snippet in Leaflet’s simpleheat (edited for formatting). Lines 2–6 draws all the point circles, with circle opacity proportional to point weight (a point p is an array of three elements: x, y, weight). Lines 9–19 fetches pixel-level opacity value accumulated from the previous step, finds the corresponding color on the gradient table, and fills the actual color of each pixel on the map canvas ctx. The color gradient is a continuous byte array of size 256 × 3. It serves as a lookup table that maps an alpha channel value (i.e., the opacity value) between 0 and 255 to a 3-byte RGB value.

 Direct point overlay is simple but has two limitations. First, the number of rendering operations depends on the number of points k, regardless of the resolution and dimensions of the map panel on user’s screen. Rendering a large number of points will cause huge energy costs on graphics card and long time delays. Second, the way that weights are accumulated is fixed, giving limited flexibility for other weight aggregation methods. To address these issues, indirect point overlay methods insert a heatmap surface grid GH of dimension m′× n′ between D and GM, where m′≤ m and n′≤ n, as shown in Algorithm 10.2. The one-pass point scan now fills the content of GH. Only cells on GH with meaningful content are sent for the drawing and rendering step, which calls a direct point overlay algorithm directly because a cell is represented as an aggregated point.

 In Algorithm 10.2, the computational complexity of the point scan (lines 1–3) is O(k). The complexity of the point rendering (lines 4–8) is O(m′n′), independent of k. When k ≫ m′n′, the complexity of rendering is still O(m′n′). Thus, the performance of rendering can be significantly improved. Furthermore, there are multiple choices for cell presentation. For example, in Figure 10.4, a cell is represented by a point whose coordinates, denoted as yellow triangles, are averaged along both x and y directions and the weight can be flexibly determined, for example, using iterative implementation of aggregation functions such as sum(),min(),max(),avg(). Other cell presentations include a representative point for a cell or the cell centroid. Therefore, GH is a logic surface grid that bridges D and GM.

 Leaflet.heat in Leaflet is such an implementation using the cell representation in Figure 10.4. Figure 10.5 is the relevant code snippet.

[image: image]

[image: Figure 10.4 illustrates how to conduct one-pass point scan onto a heatmap surface grid of a coarsened resolution. The HTML5 canvas grid for the map is a finer grid and is overlaid behind the heatmap surface grid. Points that fall into a cell on the heatmap surface are aggregated into a cell representation, which is a point with the circle shape. Each nonempty cell selects a representative point with an aggregated weight for actual drawing and rendering.]

Figure 10.4One-pass point scan onto a heatmap surface grid GH of a coarsened resolution (i.e., the blue grid). The HTML5 canvas grid for the map GM is a finer grid and is colored black. Points that fall into a blue cell are aggregated into a cell representation, which is also a point with the circle shape. Each nonempty cell selects a representative point with an aggregated weight for actual drawing and rendering.

10.3Hilomap

 The aforementioned point overlay algorithms are efficient for visualizing clustered points with a low-to-high trend on weights. An area on the map with clustered points of high weights is highlighted with high color on the color gradient and a sparse area with low weights is rendered with low color on the color gradient. However, when two circles overlap, one with a high weight and the other with a low weight, the overlapped area is rendered using a color gradient that is the sum of the two, which is greater than the weight of either circle, as shown in Figure 10.2(c). This creates a limitation that prevents its use in some common visualization scenarios. For example, when an analyst wants to study population change in major cities in the United States, population decreases may be as important as population increases, illustrated in a synthetic data in Figure 10.6. When we look at climate change measures, such as temperature, extremely low and extremely high observations need more attention than average ones. When a conventional heatmap is generated from such data, however, low extremes are overridden by high extremes due to the cumulative density effect. For visualizing such data with both low and high extremes, there are two requirements that a conventional heatmap does not satisfy: (1) on a color gradient that changes from low to neutral to high, areas with both low weights and high weights should be highlighted; and (2) when a circle with a high weight overlaps with another one with a low weight, the aggregated weight should neutralize and the coloring should stay around the middle of the color gradient, instead of toward the high end.

 Figure 10.7(a) and (c) illustrates the ill-suited heatmap effect. Both heatmaps are dominated by high extremes. The cumulative weight effect is worse with larger radius as spatial overlapping is more likely. The blur operation at the boundary of overlapping areas does not help to show low extremes because low weights are carried in the opacity channel of GM, making a low-extreme area more transparent. One may suggest creating two heatmap layers, one for high and the other for low (using an inverted color gradient from neutral to low), and loading them in a map. However, this option is ineffective because of the visual interference to the bottom layer from the opacity of the top layer.

[image: Figure 10.5 Leaflet.heat implements an indirect point overlay method. Lines 2–18 aggregates points onto a virtual heatmap grid. Each cell on this grid is represented as a point. The coordinates of the point are calculated as a weighted average of the coordinates of points that fall into this cell. The weight of the point takes the sum of those data points. Lines 20–30 pushes representative points of nonempty cells into a point array for direct point overlay rendering.]

Figure 10.5 Leaflet.heat implements an indirect point overlay method. Lines 2–18 aggregates points onto a virtual heatmap grid. Each cell on this grid is represented as a point. The coordinates of the point are calculated as a weighted average of the coordinates of points that fall into this cell, that is, x–coord(c) = ∑ ⁡ p within cpx×wp ∑ ⁡ p within cpx . The weight of the point takes the sum of those data points. Lines 20–30 pushes representative points of nonempty cells into a point array for direct point overlay rendering.

 This issue is addressed in hilomap, a point overlay method that shows both low and high trends as a single vector layer. The major challenge is in color rendering. In rendering, point weight is scaled between 0 and 1 to fit the value range of the opacity in shape drawing. After the shape is drawn, the opacity value is translated to the alpha channel value, which is one byte and ranges from 0 to 255. The weight–opacity–alpha translation is necessary because (1) point overlay methods leverage the fact that drawing overlapping shapes provides the sum operation on opacity values, and (2) correct image pixel coloring from a user-defined color gradient can only occur at the final stage by using the alpha channel value to look up the correct color mapping. In conventional heatmap rendering, the scaling to opacity and alpha channel is linearly proportional to the weight value. However, in hilomap, highlighting low extremes means two low opacity values on a pixel should lead to a lower opacity value, which is not possible using the default drawing method.

[image: Figure 10.6 shows a map of the synthetic data sample used to evaluate the hilomap method. This dataset includes 3,387 major U.S. cities. One third of the data points have low weights, following the Normal distribution with mean=0.1, var=0.03. Another one third of the data points have high weights, following the Normal distribution with mean=0.9, var=0.03. The rest of the one third data points follow the Normal distribution with mean=0.5, var=0.03. Weight values are scaled in range between zero and one.]

Figure 10.6A synthetic data sample on 3,387 major U.S. cities. 1/3 data points have low weights, following the Normal distribution with mean=0.1, var=0.03. 1/3 data points have high weights, following the Normal distribution with mean=0.9, var=0.03. The rest of the 1/3 data points follow the Normal distribution with mean=0.5, var=0.03. Weight values are scaled in range [0..1].

 Hilomap is an indirect point overlay algorithm that addresses the rendering challenge and satisfy the requirements on visualizing change data, as shown in Algorithm 10.3 and the detailed color rendering code snippet (Figure 10.8). For cell representation (lines 3–4 in Algorithm 10.3), a representative point is chosen as the point whose weight is furthest from the neutral value 0.5. This strategy prefers points on the two ends in the weight range. The weight value is directly copied. Other strategies such as weight averaging also work. If a user requires the color gradient to be consistent with the underlying weight distribution, the neutral value may be set as the statistical mean and the color gradient may be composed to reflect the distribution, for example, using quantile-based color buckets.

[image: image]

 After representative points are determined on GH, circles are drawn to highlight both low and high trends in two steps (lines 9–12 in Algorithm 10.3). The first step draws the lower set of points whose weight value is less than 0.5. This is done by turning the weight into negative and scaling back to [0..1] as the opacity value, that is, opacityL = (0.5 − w) × 2. This way, low–low point overlay increases the alpha channel value with the upper bound 255. The second step takes the upper set of points on GH, sets the opacity value, that is, opacityH = (w − 0.5) ∗ 2, and draws them onto canvas. The two steps create two image buffers, L and H, that accumulate low and high trends in each buffer’s alpha channel, respectively. The difference is that in L a higher alpha value means lower trend and in H it is the opposite. The point drawing details are described in the code snippet in Figure 10.8 (lines 2–20). An extra point drawing is applied to all points in order to set the correct global alpha channel value for each pixel (lines 22–27).

[image: Figure 10.7 compares the effect of hilomap and regular heatmap solutions in OpenLayers. Subfigure a and b compare OpenLayers and hilomap using radius=4 and blur=4. Subfigure c and d use radius=10 and blur=10. In both cases, hilomap produces better visualization results to highlight the two ends, while OpenLayers maps show the dominating effect on the high end.]

Figure 10.7Comparison of heatmap and hilomap. (a) OpenLayers v5.3.3 heatmap, radius=4, blur=4. (b) hilomap, radius=4, blur=4. (c) OpenLayers v5.3.3 heatmap, radius=10, blur=10. (d) hilomap, radius=10, blur=10. (e) The color gradient, low → neutral → high.

 The final coloring step takes the alpha channel data in L and H as input to interpolate the correct color for each pixel from the color gradient. The alpha value indicates the distance to the neutral color and ranges from 0 to 255. Using the formula wcolor = 128 + αH−αL 2 , a color at the lower end of the color gradient is assigned to pixels with dominant low trend and a color at the higher end is assigned to pixels with dominant high trend. In addition, a neutral color is assigned when the alpha values from L and H are similar. The implementation details are sketched in the code snippet in Figure 10.8 (lines 29–40).

 In summary, the hilomap algorithm uses three drawings and one color rendering. The computational complexity of point drawing and coloring is still O(m′n′) on GH of size m′× n′. The three drawings and the memory requirement for keeping two additional image buffers for L and H are more costly than a conventional indirect point overlay method, but in practice such visualization is fast on modern graphics cards and the major delay is from transferring data points to browser over Internet.

[image: Figure 10.8 shows the code snippet of the color rendering method in hilomap. The first step is to choose a representative point that prefers points on the two ends in the weight range. The second step draw circles to highlight both low and high trends. This is done by drawing two image buffers, one for the lower set of points and the other for the higher set of points. The final step combines the two image buffers into a new image buffer in which color is actually rendered.]

Figure 10.8The color rendering code of hilomap.

 Figure 10.7(b) and (d) demonstrate the visualization of population increases and decreases in the synthetic data using hilomap. They clearly show both low and high trends, as well as neutral areas, compared with the OpenLayers v5.3.3 heatmap implementation.

10.4Discussion

We present algorithmic and technical details of three different point overlay methods for online heatmap generation. The hilomap algorithm aims to address the limitations in the previous two methods in visualizing data where highlighting both low and high trends is important, such as change data where both negative and positive changes need attention. The first two algorithms are demonstrated using Leaflet and OpenLayers, two popular open source web mapping libraries. The reference implementation of the hilomap [Liu 2022] is based on OpenLayers v5.3.3.

 HTML5 canvas is assumed to be the map rendering framework. However, WebGL-based heatmaps can also be implemented. In WebGL [webgl2fundamentals.org 2022], vertex shader is provided to define the positions of points and fragment shader is to draw shape and color. Hilomap implementation in Leaflet and OpenLayers using WebGL will be our future work.

 In our illustrations, color gradients transit from low to high in a linear fashion with equal intervals. Given a particular weight distribution, a color gradient may be created using other methods such as quantile-based.

Acknowledgments

This work is in part supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725.

Appendix: Hilomap Code Access

Hilomap has as an open source JavaScript implementation and can be downloaded at https://github.com/hohe12ly/hilomap. The following are OpenLayers and hilomap installation steps for testing the library.

 Install nodejs in conda:

conda create -yn nodejs python=2.7.18 nodejs
conda activate nodejs

 Download OpenLayers v5.3.3 from https://github.com/openlayers/openlayers/releases/tag/v5.3.3.

 On Mac OS, do the following to make npm work:

export PATH=/usr/bin:$PATH
export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH

 Go to OpenLayers directory, and:

npm install

 Now install hilomap. Suppose HILODIR is where you download hilomap:

copy source files and examples
cp HILODIR/src/ol/layer.js src/ol/ # add hilomap to layer list
cp HILODIR/src/ol/layer/Hilomap.js src/ol/layer/
cp HILODIR/examples/hilomap.* examples/
cp HILODIR/examples/data/kml/uscities_sample.kml examples/
compile
npm run build-package && npm run build-examples

 The hilomap example can then be loaded in browser: https://HOST/OLPATH/build/examples/hilomap.html, where HOST is the web server host name (e.g., localhost) and OLPATH is the web path to OpenLayers deployment on the web server.

∗This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

S. Fulton and J. Fulton. 2013. HTML5 Canvas: Native Interactivity and Animation for the Web. O’Reilly Media.

LeafLet. 2016. The Heatmap Layer in Leaflet. Retrieved September 8, 2022 from https://github.com/Leaflet/Leaflet.heat/blob/gh-pages/src/HeatLayer.js.

LeafLet. 2017. The SimpleHeat Layer in Leaflet. Retrieved September 8, 2022 from https://github.com/mourner/simpleheat/blob/gh-pages/simpleheat.js.

Y. Y. Liu. 2022. Hilomap: Online Heatmap Generation with both Low and High Weights. Retrieved September 8, 2022 from https://github.com/hohe12ly/hilomap.

A. Mitchell and M. Minami. 1999. The Esri Guide to GIS Analysis, Vol. 1: Geographic Patterns and Relationships. Esri Press.

OpenLayers. 2018. The OpenLayers Heatmap Layer, Version 5.3.3. Retrieved September 8, 2022 from https://github.com/openlayers/openlayers/blob/272a3c6b11804f2721a0f3fef545d91d6ddf90b1/src/ol/layer/Heatmap.js.

webgl2fundamentals.org. 2022. WebGL Shaders and GLSL. Accessed September 8, 2022 from https://webgl2fundamentals.org/webgl/lessons/webgl-shaders-and-glsl.html.

Authors’ Biographies

Editors

John Krumm

[image: PIC]

 John Krumm graduated from the School of Computer Science at Carnegie Mellon University in 1993 with a Ph.D. in robotics and a thesis on texture analysis in images. He worked at the Robotics Center of Sandia National Laboratories in Albuquerque, NM, for the next four years. His main projects there were computer vision for object recognition for use in robots and vehicles. He was at Microsoft Research in Redmond, WA, USA, for 25 years, starting in 1997. He now works at the University of Southern California. His research focuses on understanding peoples’ location and personal data privacy. In 2017, he received a 10-year impact award for a paper on location privacy from the ACM UbiComp conference, and another from the same conference in 2021. He received the best paper award at the ACM SIGSPATIAL conference in 2022 and at the Mobile Data Management conference in the same year. His h-index on Google Scholar is 74. He is an inventor on 82 U.S. patents. He is a past coeditor-in-chief of the Journal of Location Based Services and past associate editor for ACM Transactions on Spatial Algorithms and Systems. He is on the editorial board of IEEE Pervasive Computing Magazine. He serves as the chair of ACM SIGSPATIAL and as part of the Science Advisory Committee of the Geospatial Science and Human Security Division at Oak Ridge National Laboratory.

Andreas Züfle

[image: PIC]

 Andreas Züfle is an associate professor at the Department of Computer Science at Emory University. He received his Ph.D. in Computer Science at Ludwig Maximilan University of Munich, Germany (LMU), in 2013. Dr. Züfle’s research focuses on data management and machine learning. In these areas, he has made contributions in several subareas, notably uncertain data management, spatial indexing, clustering, and geosimulation. His interdisciplinary work has applications in geoscience, transportation, epidemiology, and social science.

Cyrus Shahabi

[image: PIC]

 Cyrus Shahabi received his B.S. in Computer Engineering from Sharif University of Technology and his M.S. and Ph.D. degrees in Computer Science from the University of Southern California (USC). He is a professor of Computer Science, Electrical & Computer Engineering, and Spatial Sciences; Helen N. and Emmett H. Jones Professor of Engineering; and the director of the Integrated Media Systems Center (IMSC) at USC.

 He was also the chair of the Computer Science Department at USC from 2017 to 2022. He was co-founder of two USC spin-offs, Geosemble Technologies and Tallygo. He authored two books and more than three hundred research papers in databases, GIS, and multimedia with 14 US Patents. He chaired the founding nomination committee of ACM SIGSPATIAL for its first term (2007–2011 term) and served as the chair of ACM SIGSPATIAL for the 2017–2020 term. He was an associate editor of IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Knowledge and Data Engineering, and VLDB Journal. He is currently on the editorial board of ACM Transactions on Spatial Algorithms and Systems and ACM Computers in Entertainment. Dr. Shahabi is a recipient of the ACM Distinguished Scientist award, the US Presidential Early Career Awards for Scientists and Engineers (PECASE), and the NSF CAREER award. He is a fellow of the National Academy of Inventors (NAI) and IEEE.

01 - Graph Sampling for Map Comparison

Jordi Aguilar

[image: PIC]

 Jordi Aguilar graduated from Universitat Politècnica de Catalunya in 2021 with a degree in Data Science and Engineering. His primary research focused on map construction and comparison algorithms, and he has also explored the use of deep learning techniques in this field. Currently, he is working as a controls software engineer at the ALBA Synchrotron research facility.

Kevin Buchin

[image: PIC]

 Kevin Buchin is a professor at the Technical University of Dortmund, Germany. He received his Ph.D. in Computer Science at the Free University of Berlin, Germany, in 2007. He previously worked as a postdoctoral researcher at the University of Utrecht and as an assistant and then associate professor at the Eindhoven University of Technology and the Jheronimus Academy of Data Science. His research focuses on the design of algorithms that work well in theory and practice. He is mainly known for his contributions to computational geometry and algorithms for geospatial data.

Maike Buchin

[image: PIC]

 Maike Buchin is a professor of Computer Science at the Ruhr-University Bochum, Germany. She received her Ph.D. from the Free University Berlin in 2007 and was a postdoctoral researcher at Utrecht University and TU Eindhoven before becoming a professor in Bochum. Her work focuses on geometric algorithms, in particular for geographic applications, and she has been working on algorithms for trajectory analysis since 2008.

Erfan Hosseini Sereshgi

[image: PIC]

 Erfan Hosseini Sereshgi was born in Tehran, Iran, and obtained his bachelor’s degree from Amirkabir University of Technology (Tehran Polytechnic) in 2018. He is currently a Ph.D. candidate at Tulane University, conducting research on topics related to computational geometry, graph comparison, map construction, and geospatial algorithms. During his graduate studies, he also collaborated with researchers at the Tulane School of Public Health and Tulane School of Liberal Arts and was a member of the Louisiana Community Engagement Alliance Against Covid-19 Disparities (LA-CEAL).

Rodrigo I. Silveira

[image: PIC]

 Rodrigo I. Silveira is associate professor at the Department of Mathematics of Universitat Politècnica de Catalunya in Barcelona. He holds computer science degrees from Universidad de Buenos Aires and a Ph.D. from Utrecht University on the topic of optimization of polyhedral terrains. His current research interests lie in different aspects of computational geometry, with a special interest in algorithmic problems related to geographic information, robotics, and geometric graphs.

Carola Wenk

[image: PIC]

 Carola Wenk is a professor of Computer Science at Tulane University and the Chair of the Department of Computer Science. She also holds an adjunct appointment in the Mathematics Department. Her research area is in computational geometry, with a focus on shape matching algorithms.

 Her work encompasses theoretical aspects including algorithms and topological data analysis as well as interdisciplinary applications ranging from geospatial to biomedical data analysis. She is an expert on the Fréchet distance for curves, and her work on map-matching GPS trajectories and road map construction and comparison has laid theoretical foundations for practitioners in the field. Dr. Wenk has won research, teaching, and service awards, including an NSF CAREER award. Her research interests span a wide range of application areas including geospatial data analysis, intelligent transportation systems, geographic information science, biomedical imaging, and computational biology.

02 - Fast 3D Euclidean Connected Components

W. Randolph Franklin

[image: PIC]

 W. Randolph Franklin graduated from Toronto, and from Harvard in 1978 with a Ph.D. in Mathematica Accommodata and a thesis titled “Combinatorics of Hidden Surface Algorithms.” He has since been on the faculty of Rensselaer Polytechnic Institute, currently as professor of Electrical, Computer, and Systems Engineering. He has visited Georgia Tech, UC Berkeley, US Army Topographic Engineering Center, CSIRO (Canberra, Australia), National University of Singapore, Universit‘a degli Studi di Genova, and Universidade Federal de Viçosa, MG, Brasil. He spent three years at NSF as Director of the Numeric, Symbolic, and Geometric Computation Program, including two joint solicitations, Computational Algorithms and Representations for Geometric Objects, with DARPA.

 His research spans computer graphics, computational geometry, computational cartography, and GIS. He designs and implements simple fast algorithms to parallel process large geometric datasets on CPUs and GPUs, noting that efficiency becomes more important as machines get faster.

 One DARPA project studied the mathematics of terrain for compression, hydrography, and visibility.

 A long-term goal is to formalize terrain modeling while respecting its physical properties. He believes that terrain has to be observed to be understood.

 He has graduated 18 Ph.D. students, several of whom have become academic department chairs or deans. His papers include three SIGGRAPH publications. He is an associate editor for ACM Transactions on Spatial Algorithms. His homepage is https://wrfranklin.org.

Salles Viana Gomes de Magalhães

[image: PIC]

 Salles Magalhães is a Computer Science professor at Universidade Federal de Viçosa, Brazil. Dr. Magalhães received his Ph.D. from the Rensselaer Polytechnic Institute (NY) and his M.Sc. and B.Sc. degrees from Universidade Federal de Viçosa, all in Computer Science. Since his undergraduate studies, his research has focused on the development of efficient algorithms for the fields of geographic information science and computational geometry. He has been awarded in contests in these fields, such as the ACM SIGSPATIAL GIS Cup.

Eric N. Landis

[image: PIC]

 Eric Landis is the Frank M. Taylor Distinguished Professor of Civil Engineering at the University of Maine. His research interests are in experimental mechanics and fracture, with particular focus on innovative laboratory techniques to solve problems of damage in cement- and wood-based composite materials. He also dabbles in computational modeling, biomimetics, burrowing marine invertebrates, and other things he should probably keep his nose out of. He has particular expertise in X-ray computed tomography and its associated 3D image processing as well as expertise in quantitative acoustic emission techniques. He has B.S. and Ph.D. degrees in civil engineering from the University of Wisconsin and Northwestern University, respectively, and he is a licensed Professional Engineer in Maine.

03 - Multiscale Aggregation Over Sliding Windows

Anne M. Denton

[image: PIC]

 Anne M. Denton is a professor in the Computer Science Department at North Dakota State University (NDSU). She received her Ph.D. in Physics from the Johannes Gutenberg University, Mainz, Germany, in 1996, and an M.S. in Computer Science from NDSU in 2003. Her research interests are in data mining of diverse scientific datasets that are too complex to be analyzed using classical statistics techniques. Denton has been involved in several interdisciplinary research projects including multi-university, multidisciplinary efforts for mapping the wheat genome and for understanding climate impacts on agriculture. Currently, her work is focused on geospatial and ethics-related questions. Denton has published more than 70 peer-reviewed journal and conference publications and has led projects funded at a total of more than one million dollars.

04 - Gaussian Process for Trajectories

Kien Nguyen

[image: PIC]

 Kien Nguyen currently works as a research scientist in the Applied Privacy Tech team at Meta Platforms, Inc., developing large-scale privacy-preserving systems in Meta. He finished his Ph.D. program in Computer Science at the University of Southern California (USC) under the supervision of Prof. Cyrus Shahabi. He also worked closely with Prof. Peter Kuhn at USC CSI-Cancer for several cancer-related projects. He received his degree of Engineer from Hanoi University of Science and Technology in Vietnam in 2013. Upon graduation, he worked at the Research and Development Department of VNG Corporation in Hanoi. He is interested in privacy technologies, spatial-temporal data mining, location privacy, marketplaces, and their applications.

John Krumm

See Editors section.

Cyrus Shahabi

See Editors section.

05 - Mean Chord Length of a Square

John Krumm

See Editors section.

06 - Object Delineation in Satellite Images

Zhuocheng Shang

[image: PIC]

 Zhuocheng Shang is a Ph.D. student in Computer Science and Engineering at the University of California, Riverside. Her research interests concentrate on big spatial data and interactive data exploration. During her Ph.D., she is focusing on the interactive exploration of big raster and vector data. She is also focusing on expanding the ability of raster operations to handle scaled data.

Ahmed Eldawy

[image: PIC]

 Ahmed Eldawy is an associate professor in Computer Science at the University of California, Riverside. His research interests lie in the broad area of databases with a focus on big data management and spatial data processing. Ahmed led research and development in many open source projects for big spatial data exploration and visualization including UCR-Star, an interactive repository for geospatial data with nearly four terabytes of publicly available data. Ahmed has many collaborators in industrial research labs including Microsoft Research and IBM Watson. He is a recipient of the highly prestigious NSF CAREER award as well as the best demo award in SIGSPATIAL, the Quality Metrics Fellowship in 2016, Doctoral Dissertation Fellowship in 2015, and Best Poster Runner-up award in ICDE 2014. His work is supported by the National Science Foundation (NSF) and the US Department of Agriculture (USDA).

07 - Implementing Simulation of Simplicity for Geometric Degeneracies

W. Randolph Franklin

See Chapter 2.

Salles Viana Gomes de Magalhães

See Chapter 2.

08 - Probabilistic Counting in Uncertain Spatial Databases Using Generating Functions

Andreas Züfle

See Editors section.

09 - Statistics for All Walks on a Lattice Graph

John Krumm

See Editors section.

10 - Online Heatmap Generation with Both High and Low Weights

Yan Y. Liu

[image: PIC]

 Yan Y. Liu is a computational scientist at the Computational Urban Sciences Group (CUSG) in the Computational Science and Engineering Division (CSED) at Oak Ridge National Laboratory (ORNL). He joined ORNL in 2019 to pursue R&D interests in high-performance geocomputation, spatial optimization and machine learning, and scalable geospatial applications. He obtained his Ph.D. in Informatics from the University of Illinois at Urbana-Champaign (UIUC), M.CS from the University of Iowa, and B.S. and M.E. from Wuhan University. He was Senior Research Programmer at the National Center for Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign from 2014 to 2019. He was a scientific computing scientist for the National Science Foundation (NSF) Extreme Science & Engineering Discovery Environment (XSEDE) and its predecessor TeraGrid from 2007–2018.

Melissa R. Allen-Dumas

[image: PIC]

 Melissa R. Allen-Dumas is a research scientist in the Computational Sciences and Engineering Division of Oak Ridge National Laboratory. She holds a Ph.D. in Energy Science and Engineering and an M.S. in Environmental Engineering from the University of Tennessee. Her expertise includes global and regional modeling and analysis of atmospheric species transport, statistical and dynamical downscaling of various climate model output, and analysis of direct and indirect effects of climate change on electricity demand and on other national and civic critical infrastructures.

Index

3D

comparison to matlab, citation 1–citation 2

concrete under compression, citation 1–citation 2

connected component algorithm, citation 1–citation 2

data structure for Euclidean case, citation 1–citation 2

EPUG-Overlay, citation 1

Euclidean case, citation 1

examples, citation 1

implementation validation, citation 1–citation 2

intersecting 3D triangular meshes, citation 1–citation 2

methods, citation 1

point location in 3D mesh, citation 1

random dataset properties, citation 1–citation 2

random voxels, 26-connectivity, citation 1

random voxels, 6-connectivity, citation 1

Acceleration using discrete Fourier transform, citation 1

Ackermann’s function, citation 1

Additive aggregate functions, citation 1

AGGREGATE procedure, citation 1

Aggregation

functions, citation 1

methods, citation 1

Alpha channel value, citation 1

Array-based implementation, citation 1, citation 2

BayesStore, citation 1

Bearing conditions, citation 1

Bernoulli distributed random variable, citation 1

Bernoulli distribution, citation 1

Bernoulli random variables, citation 1

Bernoulli trials, citation 1–citation 2

Biagioni, James, citation 1, citation 2–citation 3

Boolean combination, citation 1

Boolean visited flag, citation 1

Brute-force approach, citation 1

CCW. See Counterclockwise order (CCW)

Cells, citation 1

Climate change measures, citation 1

Clockwise order (CW), citation 1

Complexity analysis, citation 1–citation 2

Component’s surface area, citation 1

Connected component algorithm, citation 1, citation 2–citation 3

Constant kernel, citation 1

Counterclockwise order (CCW), citation 1

Covariance function, citation 1–citation 2

common kernel types, citation 1–citation 2

Covariance kernel/function, citation 1

Covariance matrix, citation 1

Cubes, volume of union of, citation 1–citation 2

Cumulative weight effect, citation 1

Data

files, citation 1

preparation, citation 1

structure for Euclidean case, citation 1–citation 2

Deep neural network model, citation 1

Density, citation 1

Deshpande, A., citation 1

DFT. See Discrete Fourier Transform (DFT)

Digits tables, citation 1

Direct point overlay rendering process, citation 1–citation 2

Discrete Fourier Transform (DFT), citation 1

Disjoint-set data structure, citation 1

Dope vector, citation 1

Double-logarithmic representation, citation 1

Dynamic polynomials, citation 1

Entropy, citation 1

Equi-sized polynomials, citation 1

Euclidean case, better data structure for, citation 1–citation 2

Finite geometric series, citation 1

First order infinitesimals, citation 1

For loop, citation 1

Fractal dimensions, citation 1

Fragment shader, citation 1

Gaussian distribution, citation 1–citation 2

Gaussian likelihood, citation 1

Gaussian noise, citation 1

Gaussian process (GP), citation 1–citation 2, citation 3

data preparation, citation 1

elements, citation 1

example, citation 1–citation 2

kernel/covariance function, citation 1–citation 2

mean function, citation 1

training and inference, citation 1

Generating functions, citation 1

for probabilistic counting, citation 1–citation 2

technique, citation 1–citation 2

Geographic information systems (GIS), citation 1, citation 2, citation 3

Geography, citation 1

Geometric special cases, citation 1

Geospatial coordinate, citation 1

Geospatial data, citation 1

GIS. See Geographic information systems (GIS)

Global sampling, citation 1–citation 2

precision, citation 1

GP. See Gaussian process (GP)

Graph sampling, citation 1–citation 2

matching rule, citation 1–citation 2

methods, citation 1

related work, citation 1

sampling method, citation 1–citation 2

score calculation, citation 1–citation 2

toolkit, citation 1–citation 2

used in literature, citation 1–citation 2

Gray pixels, citation 1

Greedy matching, citation 1

Ground truth map, cropping, citation 1

Heatmap, citation 1

algorithm, citation 1

High-resolution data, citation 1, citation 2

High-resolution elevation models, citation 1

Hilomap, citation 1, citation 2

code access, citation 1–citation 2

HTML5 canvas, citation 1

Hydrography features, citation 1

IDW. See Inverse distance weighting (IDW)

Image tracing algorithms, citation 1

Indeterminate quantity, citation 1

Infinitesimals, citation 1

Input data, citation 1, citation 2

Interpolation, citation 1

Inverse distance weighting (IDW), citation 1

JavaScript code, citation 1

Jordan-curve algorithm, citation 1–citation 2

on polygon, citation 1

KDE. See Kernel density estimation (KDE)

Kernel density estimation (KDE), citation 1

Kernel function, citation 1–citation 2

common kernel types, citation 1–citation 2

common types of kernel combination, citation 1–citation 2

Knuth, D. E., citation 1

Landis, E. N., citation 1

Lattice graph, citation 1

Leaflet, citation 1, citation 2

Li, J., citation 1

Lightweight algorithm, citation 1

Linear kernel, citation 1

LLC, citation 1

Local sampling, citation 1–citation 2, citation 3–citation 4. See also Global sampling

Machine learning algorithms, citation 1–citation 2

MAIN procedure, citation 1

Markov models, citation 1

Matching rules, citation 1, citation 2–citation 3

comparison of, citation 1

used in literature, citation 1–citation 2

Matérn kernel, citation 1

Matern12 kernel, citation 1

Matern32 kernel, citation 1, citation 2

Matern52 kernel, citation 1

Matlab comparison, citation 1–citation 2

Maximum matching (MM), citation 1–citation 2, citation 3

MayBMS, citation 1

Mean chord length, citation 1

derivation of, citation 1–citation 2

scales, citation 1

Mean function, citation 1–citation 2

Merge–find algorithm, citation 1

MM. See Maximum matching (MM)

Multimaterial mesh, citation 1

Multiplying kernels, citation 1

MystiQ, citation 1

Next vertex, citation 1

Nonstationary kernel, citation 1

NumPy, citation 1–citation 2

One-dimension (1D)

arrays, citation 1

point on edge in, citation 1–citation 2

One-pass algorithm, citation 1

One-pass point scan, citation 1

Online heatmap generation, citation 1

algorithms, citation 1

hilomap, citation 1–citation 2

hilomap code access, citation 1–citation 2

point overlay methods, citation 1–citation 2

problem formulation, citation 1–citation 2

Opacity value, citation 1–citation 2

Open left vertex, citation 1

Open vertex, citation 1, citation 2

OpenLayers, citation 1

Orthogonal lines detection, citation 1–citation 2

OSM ground truth maps, citation 1

Paths, citation 1

integral formulation, citation 1

PinMesh preprocess, citation 1

Point overlay methods, citation 1–citation 2

Poisson–binomial distribution, citation 1

Poisson–binomial recurrence, citation 1

Polygon test, point in, citation 1–citation 2

Polyhedral mesh, citation 1

Polynomial regression, citation 1, citation 2

Positive infinitesimal, citation 1

Probabilistic counting

acceleration using DFT, citation 1

complexity analysis, citation 1–citation 2

dynamic polynomials, citation 1

extension to uncertain counts, citation 1–citation 2

generating functions for, citation 1–citation 2

implementation, citation 1

variants, extensions, and improvements, citation 1

Probability, citation 1

distribution, citation 1, citation 2

mass function, citation 1

Python, citation 1–citation 2, citation 3

implementation, citation 1

SciPy numerical integration method, citation 1

Radial basis function (RBF kernel), citation 1

Random data, citation 1

Random dataset properties, citation 1–citation 2

Random variable, citation 1

Random voxels

6-connectivity, citation 1

26-connectivity, citation 1

Rational quadratic kernel (RQ kernel), citation 1

Ray casting, citation 1

RBF kernel. See Radial basis function (RBF kernel)

RCT. See Relative Closest Triangle (RCT)

Relative Closest Triangle (RCT), citation 1

Right vertex, citation 1

Ring formation, citation 1

Road networks, citation 1

Routes, citation 1

RQ kernel. See Rational quadratic kernel (RQ kernel)

Saha, B., citation 1

Sampling method, citation 1–citation 2, citation 3

global vs. local sampling, citation 1–citation 2

graph sampling used in literature, citation 1–citation 2

Satellite data, citation 1–citation 2

Satellite images

experimental result, citation 1–citation 2

extracting objects, citation 1–citation 2

object delineation in, citation 1

orthogonal lines detection, citation 1–citation 2

ring formation, citation 1–citation 2

Scalar random variables, citation 1

SE. See Squared exponential (SE)

Second order infinitesimal, citation 1

Simpleheat, citation 1

Simulation of Simplicity (SoS), citation 1, citation 2–citation 3

examples of SoS in use, citation 1

infinitesimals, citation 1

intersecting 3D triangular meshes, citation 1–citation 2

point in polygon test, citation 1–citation 2

point location in 3D mesh, citation 1

point on edge in 1D, citation 1–citation 2

simulation of simplicity, citation 1–citation 2

volume of union of cubes, citation 1–citation 2

Sliding window, citation 1

concepts, citation 1–citation 2

evaluation, citation 1–citation 2

scans, citation 1

SoS. See Simulation of Simplicity (SoS)

Space complexity, citation 1–citation 2

Spatial data, citation 1

Spatial heat map, citation 1

Spatial statistical methods, citation 1

Speed, citation 1

Squared exponential (SE), citation 1

Start corner, citation 1

Stationary kernels, citation 1

Statistics, citation 1, citation 2–citation 3

computing all walks, citation 1

Summing kernels, citation 1

Terminal vertex, citation 1

TOPO method, citation 1

Trajectory data, citation 1

Trio, citation 1

Two-dimension (2D)

bit array, citation 1

datasets, citation 1

degeneracies, citation 1

image, citation 1

methods, citation 1

space, citation 1

Union–find algorithm, citation 1–citation 2

UT-Battelle, citation 1

Vector random variables, citation 1

Vertex index, citation 1

Vertex shader, citation 1

Vertex tables, citation 1

Walks, citation 1

Wavelet transforms, citation 1

WebGL, citation 1

WebGL-based heatmaps, citation 1

Weighted maximum matching (WMM), citation 1–citation 2, citation 3

Weight–opacity–alpha translation, citation 1

White kernel, citation 1, citation 2

Window aggregate, citation 1

WMM. See Weighted maximum matching (WMM)

OEBPS/images/auth-1.jpg

OEBPS/images/ch05-fig6.jpg
Nord Lengins of Ut Squere

3
8

e
8

I Y,
?

e
B

°
8

00

02

04

06 08 10 12 14
"chord length

OEBPS/images/ch09-fig3.jpg

OEBPS/images/ch06-1.jpg
Algorithm 6.1: Orthogonal Lines Detection

Input : R: Two-dimensional bit array [w][A] for marked pixels
Output: Linked List of vertices (x : Int, : Int, next : Vertex, visited = false)
List of start Corners (vertices)
1 topVertices: Array of open vertices at each column of size w + 1
2 leftVertex: The open vertex to the left or null
3 Corners: List of start comners
1 fory € [0, 4], x & [0,w] do

s | block 0« 1if Rjx-1][y-1] not empty, otherwise 0
o | block 1< 2if R[x][y-1] not empty, otherwise 0
| block2 « 4if Rix-1][y] not empty, otherwise 0
« | block 3« 8if Rix][y] not empty, otherwise 0
s | pixelType « (block 0+ block 1+ block 2 + block 3)
10 | switch pixelType do
u case 0,3,5,10,12,15 do nothing
2 case 1 do topVertices(x).next — V(x,y, leftVertex)
n case 2 do leftVertex — V{x,y, topVertices(x))
1 case 4 do topVertices(x) « leftVertex.next « V(x,y, null)
15 case 6 do
1o V1 Vix, , topVertices(x))
1 leftVertex next « topvertices(x) < V(x,y, null)
w leftVertex —v1
» end
» case 7,8 do Corners < leftVertex « topVertices(x) « V{x,y, null)
2 case 9 do
2 topVertices(x).next — V(x,y, leftVertex)
= leftVertex « topVertices(x) «— V{x,y, null)
2 end
= case 11 do topVertices(x) « V(x, , lfiVertex)
% case 13 do leftvertex — topVertices(x).next — V(x,y, null)
= case 14 do leftvertices(x).next — V(x,, topVertices)
u | end

OEBPS/images/auth-15.jpg

OEBPS/images/ch09-fig1.jpg

OEBPS/images/ch04-fig1.jpg
Time

OEBPS/images/auth-3.jpg

OEBPS/images/ch06-fig4.jpg
25

L
“ &

ot Surmm yeag

05|

4,000

2000

1000

P———

OEBPS/images/ch10-fig2.jpg

OEBPS/xhtml/nav.xhtml

Contents

		Cover

		Halftitle

		Title Page

		Copyright Page

		Contents

		Preface

		Introduction

		Acknowledgments

		Chapter 1 Graph Sampling for Map Comparison

		1.1 Introduction

		1.2 Graph Sampling Methods

		1.3 Discussion/Conclusion

		References

		Chapter 2 Fast 3D Euclidean Connected Components

		2.1 Introduction

		2.2 A Better Data Structure for the Euclidean Case

		2.3 Connected Component Algorithm

		2.4 Implementation

		2.5 Examples

		2.6 Comparison to Matlab

		2.7 Summary and Future

		References

		Chapter 3 Multiscale Aggregation Over Sliding Windows

		3.1 Introduction

		3.2 Concepts

		3.3 Evaluation

		3.4 Summary

		Acknowledgments

		References

		Chapter 4 Gaussian Process for Trajectories

		4.1 Introduction

		4.2 Gaussian Process

		4.3 Gaussian Process Elements

		4.4 Gaussian Process Example

		4.5 Discussion

		References

		Chapter 5 Mean Chord Length of a Square

		5.1 Introduction

		5.2 Derivation of Mean Chord Length

		5.3 Summary

		Reference

		Chapter 6 Object Delineation in Satellite Images

		6.1 Introduction

		6.2 Extracting Objects

		6.3 Experimental Result

		References

		Chapter 7 Implementing Simulation of Simplicity for Geometric Degeneracies

		7.1 Introduction

		7.2 Infinitesimals

		7.3 Simulation of Simplicity

		7.4 Examples of SoS in Use

		7.5 Summary and Acknowledgments

		References

		Chapter 8 Probabilistic Counting in Uncertain Spatial Databases Using Generating Functions

		8.1 Introduction

		8.2 Generating Functions for Probabilistic Counting

		8.3 Complexity Analysis

		8.4 Implementation

		8.5 Variants, Extensions, and Improvements

		References

		Chapter 9 Statistics for All Walks on a Lattice Graph

		9.1 Introduction

		9.2 Computing All Walks

		9.3 Statistics

		9.4 Summary

		References

		Chapter 10 Online Heatmap Generation with Both High and Low Weights

		10.1 Introduction

		10.2 Algorithms

		10.3 Hilomap

		10.4 Discussion

		Acknowledgments

		Appendix: Hilomap Code Access

		References

		Authors’ Biographies

		Index

		Cover

		Title Page

		Contents

		Start of Content

		i

		iii

		iv

		v

		vi

		vii

		viii

		ix

		xi

		xii

		xiii

		xiv

		xv

		xvii

		xviii

		xix

		xx

		xxi

		xxii

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

OEBPS/images/ch07-fig7.jpg
Preprocessing time (s)

Query time (us)

IS
8

©
8

»
8

g

> PinMesh = RCT

0 10 2 30 4 50
Size of the mesh (millions of triangles)

* PinMesh = RCT

Size of the mesh (millions of riangles)

OEBPS/images/ch01-1.jpg
Algorithm 1.1: Greedy Matching

nput_: Set of samples 5 C G, and 5y, C H, parameter k
Output: A 1-to-1 matching M € 5 x 5y
1 Miie = 0 // Priority queue, sorted by matched distance
// Create initial 1-to-many “matching”
2 foralls € Sg ¢
3 | sy = closest among k-nearest neighbors of s that are within distance
(and bearing) threshold
4 | Add (s, 5i) 0 M
// Gonvert to 1-to-1 matching, prioritizing shortest distances
5 while Min =0 :
& | (56:5m) = Minit-0p() // Pop closest pair
2 | ifsy not used
| Add (s, s5) to M; mark sy, as used

o | else

10 ‘new_sy; = closest unused sample among k-nearest neighbors of s
that are within distance (and bearing) threshold

n if new,_sy; found // If ot found, s is discarded

» L Add pair (s, new_sy) to Mini¢

13 retumn M

OEBPS/images/auth-5.jpg

OEBPS/images/auth-17.jpg

OEBPS/images/ch03-fig1.jpg
T AN e

« [ETREETE. 5]
Aga (el U !‘P‘

EoRn

ol £
Agg

7

OEBPS/images/ch05-fig4.jpg
||
]

R

OEBPS/images/ch04-fig3.jpg
mewee Lo ARERKY. L eat

OEBPS/images/auth-6.jpg

OEBPS/images/ch04-fig4.jpg
H
@

(d)y (e) (f)

OEBPS/images/ch08-fig1.jpg

OEBPS/images/ch10-2.jpg
Algorithm 10.2: Pseudo algorithm for indirect point overlay.

/+ input: D - points; Gy - map surface; m’,n’ - Gy dimension */
/+ Step 1: aggregate points onto Gy +/

1 for (p,w) e Ddo

2 | (cx,q9) = coordTransform(p,Gy) // convert point coordinates to

cell coordinates

3 | adjust cell representation ¢ : (p,, w,) with (p, w)

iD'=0

s forc: (pe,w,) € Gy do

. \» ifw, > 0 then

| p=puig

/% Step 2: call direct point overlay to generate the heatmap +/
s directPointOverlay(D)', Gyy)

OEBPS/images/ch07-fig4.jpg

OEBPS/images/ch10-fig4.jpg

OEBPS/images/auth-11.jpg

OEBPS/images/ch05-fig2.jpg
ton Park

OEBPS/images/ch07-fig6.jpg

OEBPS/images/ch02-fig2.jpg

OEBPS/images/ch07-fig2.jpg

OEBPS/images/auth-8.jpg

OEBPS/images/ch01-fig1.jpg

OEBPS/images/auth-13.jpg

OEBPS/images/ch10-fig6.jpg

OEBPS/images/ch06-fig1.jpg
2by 2 scan block.

OEBPS/images/ch10-fig8.jpg
e dresl EpuURd LY Tow poin e ne g Lo graiant
for (let i =0, len = pointset.length; i < len; is+) {
const p = pointset[il;
if (pl2) <= 0.5) {
context. globalalpha = (.5 - p[2]) * 2;
context. drawInage(circlelnage_.canvas, plo] - radius, pl1] - radius);
} else {
hipotnts.push(p);

}

3

11 get pixel weights of low gradient points

Let 1A = structuredClonecontext.getTaageData(d, 0, canvas.width, canvas.height).data);

/1 draw round 2: high points using high gradient

for (let 1 =0, len = hipoints. length; 1 < len; i++) {
const p = hipointslil;
context.globalalpha = (p(2] -
context. drannage(circleInage_.canvas, plo] - radius, pl1] ~ radivs);

¥
71 get pixel weights of high gradient points
Let hiA = structuredClonecontext.getImageData(d, 8, canvas.width, canvas.height).data);
7/ final rendering: draw cell points
context. clearRect (0, @, canvas.width, canvas.height);
for (let 1 = 0, len = pointset.length; 1 < len; iss) {
const p = potntset[il;
context.globalalpha = (p[2] <= 0.5) 7 ((8.5 = pl2]) % 2) : ((p[2] - 0.5) * 2);
context. drawInage(circlelnage._.canvas, p[8] - radius, pl1] - radius)

»
71 coloring tovard both high and low extrenes
inage = context.getInageData(d, 8, canvas.width, canvas.height);
const ing = isage.data;
Tt wiin = 255, whax
for (let 1 =0, len = isg.length; 1 < len; 1 += &) {
const w = clam(Math. round(128 + (hIAL1 + 31 — ToAL4 + 31) / 2), 8, 255);
const posonGradient = w * 4;
if (posonGradient) {
ing[i] = this.gradient_[posOnGradient];
ing[4 + 1] = this.gradient_[posonGradient + 11;
ing[4 + 2] = this.gradient_[posonGradient + 21;

OEBPS/images/ch01-fig3.jpg
&
jm

(b)
(e)

]
:

OEBPS/images/ch02-fig4.jpg
‘Component size ve. W factor
for various universe sizes, with 6- and 26-connectvty
10407

T00:100:100, 26 0 —o—
505050 250
202020 3¢ e

tous [1000:10 20

2002002066 ——

150.150:150,6¢ —a—

100:100:100/6¢ —o—
50505060

100000 b neneo —a

10:040,6¢.

10,000

1,000

Mean component volume

0 o1 o0z 03 o0& 05 06 07 08 o8 1
oo O vomsls St e ey (comecSbie

OEBPS/images/auth-16.jpg
€.l

OEBPS/images/ch03-fig2.jpg
Runtime [s]

< Iterative
2 Brute Force

2 a 5 16
TN R e e

2

OEBPS/images/ch06-fig3.jpg
Nommalized mumning time (s)

o1s

o

s10°

Nomalized ranning time ()

o

o]

Nomnaized rnving e 5

=

0001020304050607050910
5

@

00.102030.4050607 080910

»
®

0001 0203040.506 07080910
"

©

OEBPS/images/auth-2.jpg
G

OEBPS/images/ch10-fig1.jpg

OEBPS/images/ch09-fig4.jpg

OEBPS/images/ch07-fig1.jpg

OEBPS/images/ch06-2.jpg
Algorithm 6.2: Ring Formation

mput : Corners: List of start Corners;
Output: Rings: List of Geometry Linear Rings

1 for coner — Corners do

2

3

.

if not cornervisited then
P « comer;
Coordinates« (): List of geospatial coordinates
do
(longitude, latitude) « grid_to_world(p.x,p.y)
Goordinates « (longitude, latitude)
pwisited « true
P« pnext
while p
(longitude latitude) « grid_to_world(p.x,py)
Coordinates < (Iongitude, latitude)
Rings « Coordinates

I= corner;

end
return Rings

16 end

OEBPS/images/ch05-fig3.jpg
,, ,
T \—_
it i
1
=~ L -
iRSaieT. Sie
amm; L

OEBPS/images/auth-18.jpg

OEBPS/images/auth-4.jpg

OEBPS/images/ch04-fig2.jpg
Lonytamt

e

Materm12

Materm32

Materns2

OEBPS/images/ch10-fig3.jpg
07 NN RUGTRES LN IS iy ISSERTS B HD ST 62t G MEARNET SN P ENE
for (var 1= 0, len = this. data.length, p; 1 < len; 1s4) {
b = this._datal)
ctx.qlobalALpha = Math.min(Math.max(p(2] / this._nax, mindpacity
ctx.dravTnage(this. _circle, plo] - this._r, plil ~ this._r);

indefined 7 0.05 ¢ minopacity), 1);

3

/1 colarize the heatnap, using opacity value of each pixel to get the right color from our gradient
Var colored = ctx.getInageData(s, 9, this. width, this._height);
pixels = colored. data;
for (ver 1= 0, len = pixels.length, §i i < len; 1 4= 4) {
§ = pixelsld + 3] » 4; // get gradient color fros opacity value

it (
pixels(i] = gragientif);
pixels(i + 1] = gragiently + 11;
pixelsli + 2] = gradient(] + 21;
)
)
ChpatTngeNta coloreds 9, 81

OEBPS/images/ch07-fig8.jpg

OEBPS/images/ch05-fig5.jpg

OEBPS/images/ch09-fig2.jpg
(2.2) | (1,2) | (02)

20

21

22

23

2

(-22) | (1,1)

15

16

17

18

19

(-20) | (-1,0) | (0,0) | (1,0) | (20) 0 | 11 12 | 13| 14
(2-1) | (-1,-1)| (0-1) | (1-1) | (2-1) 5 6 7 8 9
(2-2)|(-1,2)| (02) | (1-2) | (2,-2) 0 1 2 3 a

(a)

OEBPS/images/ch05-fig1.jpg

OEBPS/images/cover.jpg
Spatial Gems

VOLUME 2

Ve

John Krumm
Andreas Ziifle
Cyrus Shahabi
(Editors)

. ASSOCIATION FOR COMPUTING MACHINERY

OEBPS/images/ch02-fig1.jpg

OEBPS/images/ch10-1.jpg
Algorithm 10.1: Pseudo algorithm for general interpolation-based
heatmap generation.

1 fori =0;i < m;i++do
2 | forj =0y <mj++do

/* interpolate() scans D
a ¢ = interpolate(D)
N Gylillj] = render(cy)

*/

OEBPS/images/auth-10.jpg

OEBPS/images/ch07-fig5.jpg

OEBPS/images/logo.jpg

OEBPS/images/auth-7.jpg

OEBPS/images/ch10-fig5.jpg
// aggregate points onto heatmap surface grid
for (i =0, len = this._latlngs. length; 1 < len; ir+) {
P = this._nap. latLngToContainerpoint(tnis._latlngs[il);
if (bounds..contains (p))
tath. floor((p.x ~ offsetX) / cellsize) + 2;
tath. floor((p.y - offsetY) / cellsize) + 2;
his. latlngs[1] (2];

gridlyl = gridlyl || U3
cell = gridlyl (x];

if (rcell) {
gridlylIx] = [p.x, p-y, Wi

}etse {
cell[o] = (cell[0] * cell[2] + p.x * W) / (celll2] +w); // x
celli1] = (celll1) * celli2] + py * W) / (celll2] + w); // y
cell[2] += w; // cunulated intensity value

Yooy
1/ extract non-empty cell points
for (1 =0, len = grid.length; 1 < len; i+s) {
if (grid(il) ¢
for (3 =0, len2 = grid[il.length; § < len2; j++) {
cell = gridlil(j];
if (cell)
data.push([
Math. round(cel1[0]),
Math. round(cell[1]),
Math.nin(cell(2], max)

OEBPS/images/auth-14.jpg

OEBPS/images/ch01-fig2.jpg
Global sampling Local sampling

Cropped 0sM osmM Cropped 0SM
Tang Biagioniand Stanojevic Ahmedetal. Ours Biagioniand Ours
etal. Eriksson etal. [2015a, Eriksson
[2019] [2012a] [2018] 2015b] [2012a]
Ahmed and
Wenk [2012]
Biagioni and 024 007 078 0.78 064 058 035 0.25 078 0.57
Eriksson
[2012a]
Caoand 020 0.10 0.68 049 053 024 0.27 0.68 0.41
Krumm
[2009]
Edelkamp 036 012 053 060 047 032 0.31 064 0.50
and schrodl
[2003]
Karagiorgou 008 0.82 0.70 027 0.28 027 0.71

and Pfoser
[2012]

OEBPS/images/auth-9.jpg

OEBPS/images/ch02-fig3.jpg
Mean number of components

16406,

100,000

10,000

1,000

100|

10|

(NG TR NS S COTRINN V. . W
for various universe sizes and connectivites

T T T T 200720200, 6% o
150180150, 6-c 1+t
| 100ci00n100, ¢ et
50,60,50, 60 1t
20002060

1040410, 6-¢ et
10010100, 26-¢ s
i i sosos0 280
2020.20, 26 et

1040410, 560

02

03 04 05 06 07 08 09 1
T N VORI S——.0) g

OEBPS/images/ch07-fig3.jpg

OEBPS/images/auth-12.jpg

OEBPS/images/ch10-3.jpg
Algorithm 10.3: Pseudo algorithm for hilomap.

/+ input: D - points; Gy - map surface; m',n’ - Gy dimension +/
/+ Step 1: aggregate points onto Gy */

1 for (p,w) € Ddo

2 | (ex,q) = coordTransform(p,G) // convert potnt coordinates to cell

coordinates
3 | ifpw—0.5)> jw, - 0.5 then
N Lr, =PxiCy =PyiWe =W; // select the point w/ weight furthest to
0.5, the neutral weight

sD=0

& forc: (pe,w,) € Gy do
2 | ifc=othen

5 L D =Duicd

/+ Step 2: render cell points and get low and high pixel weights */
5 draw circles for cell points with w, < 0.5

10 lowImg = Gpg // record pixel opacity
11 draw circles for cell points with w, > 0.5
12 highmg = Gy // record pixel opacity
13 draw all cell points

/+ Step 3: coloring /

14 for pirel € Gy do
15 | reconstruct opacity from lowlmg and hightmg
16 | fetch color gradient and set RGB values

OEBPS/images/ch06-fig2.jpg
@ Detect vertex

known vertex direction

0 1 2 &
unknown vertex direction
block
4 5 6 7 0|1
2|3
8 9 10 1 [
28| 24 | 22 | 21
It A Location as bit
| Pixel Type

OEBPS/images/ch10-fig7.jpg

