

Java for Beginners

A Crash Course to Learn Java Programming in 1 Week

Brady Ellison
© Copyright 2022 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book, either directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaged in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, that are incurred as a result of the use of the information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1: Why Java?

Object-Oriented Programming

Execution in Multiple Operating Systems

Automatic Memory Management

Community Support

Great Application Programming Interfaces

The Documentation Support

Security

Multi-Thread

Key Concepts

Differences Between Classes and Objects

Main () Method

Comment

Class

Compiler

Java Install

On Windows

On Macintosh

Let’s Try It Out

Chapter 2: Variables

Declaring Variables

Displaying Variables

Data Types

Integer Types

Byte

Short

Ints

Long

Floating Point Types

Float

Doubles

Scientific Numbers

Booleans

Char

Non-Primitive Data Types

String

Static Checking

Naming

Type Casting

Manipulating Variables: Operators

Manipulating Variables: Addition and Subtraction

Manipulating Variables: Multiplication and Division

Manipulating Variables: Modulo

Manipulating Variables: Compound Assignment Operators

Manipulating Variables: Order of Operations

Manipulation Variables: Greater Than and Less Than

Manipulating Variables: Equals and Not Equals

Manipulating Variables: Greater/ Less Than or Equal To

Manipulating Variables: .equals() (very similar content to equals() in string methods)

Manipulating Variables: String Concatenation

Manipulating Variables: final Keyword

Types of Variables

Class Variables

Local Variables

Instance Variables

Chapter 3: String Methods

toString() method

length()

concat()

equals() & .compareTo()

indexOf()

charAt()

substring()

toUpperCase() & toLowerCase()

Chapter 4: Arrays

Creating an Array

Empty Arrays

String[] args

ArrayList

Chapter 5: Operators

Recap Methods

Conditional Operators

Conditional—And: &&

Logical Not: !

How Do We Combine Conditional Operators

Chapter 6: Statements

Conditional Statements

The If Statement

The Else Statement

The Else If Statement

The Switch Statements

Chapter 7: Classes

Creating a Class

Creating an Object

Multiple Classes

Syntax

Constructors

Instance Fields

Constructor Parameters

Assigning Values to Instance Fields

Multiple Fields

Methods

Parameters and Arguments

Multiple Parameters

Method Overloading

Java Math

Math.max()

Math.min()

Math.sqrt()

Math.abs()

Math.random()

Java Packages & API

Built-in Packages

User-Defined/Third-Party Packages

Abstract Classes and Methods

Java Enums

Java User Input

Java Dates

Java HashMap

Java HashSet

Java Wrapper Classes

Java Regular Expressions

Chapter 8: Static Methods and Static Variables

Recap Methods

Static Variables

Modifying Static Variables

Writing Your Static Methods

Chapter 9: Inheritance and Polymorphism

Chapter 10: Loops

While Loops

Do/ While Loops

Counter Variables

For Loops

Looping Over ArrayLists and Arrays

For-Each Loops

Chapter 11: Access and Scope

Access

public Keyword

private Keyword

Scope

this Keyword

Chapter 12: Debugging

Syntax Errors

Run-Time Errors

Logic Errors

Debugging Techniques

Print Statement Method

Dividing Your Program

Chapter 13: Java Files

File Management

Create a File

Writing a File

Reading a File

Deleting a File

Chapter 14: FAQ

Conclusion

References

	[image: image]
	 	[image: image]

[image: image]

Introduction

[image: image]

When Java programming started to come to light, it was first called “oak”, back in June of 1991. It was created by programmer James Gosling and some of his colleagues at Sun Microsystems with the goal of incorporating a language that had roots in C-like notations but was simpler than those types of programming languages. Java programming, in fact, has many of the same syntax programming languages like C/C++ have, but with a simpler way of processing and writing.

In 1995, Java 1.0 was released to the public with a peculiar promise that held to this day almost intact: “Write once, run anywhere”. It was such a success that soon the main web browsers at the time started to use them in their regular configurations. As it continued to expand in popularity, Java 2.0 was released and it was designed for both smaller and larger platforms. And so, with more versatility than its predecessor.

Even though Java might be seen as an easier programming language, it has tremendous depth and can be used in numerous applications in our society. In fact, there are more than three billion devices today running Java. It’s used for many applications, and many times we are interacting with Java programming and we don’t even know. Some of its more important applications are:

● Video Games

● Web Servers

● Web Applications

● Mobile and Desktop Applications

● And even connections between Databases, etc.

In this book, we will cover everything that is necessary for you to write Java code and become proficient in only one week. Although you might be able to get the basics covered, it is important that you continue to practice to become better at it and more fluent. Think of it as learning an actual language where you have many verbs, names, pronouns, and more. Practice is essential for you to expand your vocabulary and to speak the language properly. Continuous and rigorous training will certainly make a difference when you are learning Java.

Also, note that some of the concepts presented in this book might look daunting, but we can try to break it down into smaller bits of information to help you understand the different concepts. At the end of the day, everything comes down to logic and practice. The more you practice the better you will get.
	[image: image]
	 	[image: image]

[image: image]

Chapter 1: Why Java?

[image: image]

But why choose Java programming before any other programming languages? What makes Java so appealing for many programmers?

Java programming is one of the most versatile and popular programming languages there is. As we have seen, its applications range from large systems developments to mobile applications and other software. It is a general-purpose language, and as such, you are able to apply it almost anywhere.

One of the things that make Java programming so great is the fact that you can write Java code in one platform, or operating system and move it and run it in another without making any modifications. But here are some of the main reasons to choose Java programming:

● Object-oriented programming

● Open-source

● Excellent community support

● Versatile

● Usable in different operating systems

● Great documentation support

● Rich in APIs

● Contains built-in support, so it’s easier to use on other computer networks

	[image: image]
	 	[image: image]

[image: image]

● Able to run and execute codes remotely

[image: image]

Object-Oriented Programming

There are many ways to interpret an object-oriented programming language (OO), depending on the language itself. With Java, the main component for this affirmation is the ability to combine both code and data into entities called objects.

With this, Java separates the code from the data or separates things that change from things that do not change. This is to help stabilize large projects that might otherwise reduce in quality if this wasn’t implemented. Basically, it’s a way to simplify large and complicated projects.

Another great use for OO languages is that objects can become more generic and so be used in different projects even without writing them again. This helps build large projects faster by reusing objects that would otherwise take longer to write. Other features of Java’s OO are:

● Has a clear structure, easier for programmers to understand

● Aids in maintaining the code accessible by using DRY (don’t repeat yourself)

● Reuse of applications with less time to create them

	[image: image]
	 	[image: image]

[image: image]

Execution in Multiple Operating Systems

[image: image]

This is a great feature of Java programming as it allows any code written in Java to easily run on another operating system. This is done by compiling specific Java bytecode that can be considered “halfway” written and allow a smooth transition when run on other operating systems. There are certain implementations of compilers that compile to native object code, allowing the removal of a middle bytecode stage.

	[image: image]
	 	[image: image]

[image: image]

Automatic Memory Management

[image: image]

This feature allows programmers to avoid having to perform manual memory management, something that in some programming languages is quite common. The issue with this is that, if the programmer forgets or doesn’t do it on time, a memory leak can happen. When this happens the program will consume an unnecessary amount of memory. It can also happen that the memory is allocated twice and this can lead the program to crash.

	[image: image]
	 	[image: image]

[image: image]

Community Support

[image: image]

Because of its open-source feature, Java offers great community support that acts quickly when an issue arises. Usually, the community is very open and accepts anyone depending on their skill, plus they tend to bundle in groups to try and overcome a problem or teach other people how to write Java programming.

	[image: image]
	 	[image: image]

[image: image]

Great Application Programming Interfaces

[image: image]

These application programming interfaces, also known as API, help developers and programmers to create apps and other software using many different tools. The best thing about it, however, is that developers don’t necessarily need to be aware of these APIs when it comes to implementing internal coding structures. This means APIs have the right compatibility to perform well with a range of different codes.

With more than 4000 APIs, the developer can choose from many different requirements, which allows for great versatility of the programming language.

	[image: image]
	 	[image: image]

[image: image]

The Documentation Support

[image: image]

It is extremely easy when compared to other programming languages, to expand the knowledge of your Java programming with Javadoc. This piece of documentation makes coding with Java a lot easier for developers and programmers.

Java is without a doubt one of the most used programming languages out there and the reasons stated above prove it. With great community support and good programming documentation that allows you to expand your knowledge and understanding of any problem that you might face.

It also has many APIs that allow you to add many features to your applications and programs so you can do as you intended and get very creative.

	[image: image]
	 	[image: image]

[image: image]

Security

[image: image]

Java is a very secure programming language, mainly because it doesn't use explicit pointers. These explicit pointers, sometimes seen in other programming languages, mean that the programmer has to define explicitly cursors when certain statements are executed. By not using pointers, the memory area cannot be directly accessed.

Another great point is that Java runs on a virtual machine sandbox. The JRE (Java runtime environment), provides the ability to load classes, also known as classloaders, into JVM (Java Virtual Machine). This means that the class packages are separated from the network, reducing the risk of being accessible for someone else.

	[image: image]
	 	[image: image]

[image: image]

Multi-Thread

[image: image]

A multi-thread environment allows Java programs to divide a large task into smaller ones, and allows the program to not provide memory to every thread that is running.

	[image: image]
	 	[image: image]

[image: image]

Key Concepts

[image: image]

Before we dig into the world of Java programming there are a few concepts that you should be aware of, in order for you to understand the more basic concepts of Java.

As programmers, we write syntax, or code in order to create and run programs. These programs are then interpreted by computers executing the task written.

This exercise is many times the very first thing people learn in Java.

public class HelloWorld {

public static void main(String[] args) {

System.out.println(“Hello World!”);

}

}

Running the program would give you the infamous “Hello World!”

Keep this exercise in mind during this chapter, as we will refer to it.

	[image: image]
	 	[image: image]

[image: image]

Differences Between Classes and Objects

[image: image]

The main concept of Java programming is its definition of classes and objects. If we had to think about real-life examples, a class would dog and the objects breed. So the whole class would be dogs and inside that class, we would have different breeds of dogs. Another example could be class fruit and objects strawberry, orange, or kiwi.

The way they relate to each other is when we create a class, all the objects from that class will have inherited its variables. Say we create two objects: a poodle and a cocker from the class dog. Both of these objects would have, for example, four legs, one tail, and two ears, if those were our variables.

To go a little further, we have seen dog is a class, cocker is an object. These objects have certain attributes, just like a real cocker would have such as the color of the fur, or their weight. And then, we have methods that tell us behavior about the cocker such as barking or eating.

So when we use a class to build an object, we are using the class as a sort of blueprint with the right attributes and methods.

	[image: image]
	 	[image: image]

[image: image]

Main () Method

[image: image]

The main () method is essential in every application run on Java and indicates an entry point for the program and the application. Every other method branches out from the main () method. This main () method is inside the class listing the program and should be between curly braces.

As we have seen in the example above, in order to run the program you need to type public static void main(String[] args) {}.

Anything between the curly brackets is syntax and is part of the attributed class.

(String[] args)is any information we want to copy into the program. It’s classified as syntax and needed to run the program.

Let’s break the above code down. Main is the class of the code written above. Note that every class should start with an uppercase letter. You should remember this, as Java programming is case sensitive. When you are copying variables and calling classes, make sure you write the name as it is. As we have mentioned above as well, the class name should match the file name, though without the added “.java”.

For now, all you need to understand is that anything you write inside your main() is going to be executed by the compiler. We will get to the other words later. To recap this bit of information: Every Java program must have a main() and have the same filename as the class.

	[image: image]
	 	[image: image]

[image: image]

Comment

[image: image]

You can sometimes add comments to your code. This is so a programmer can give instructions to other programmers or other people while they read the code. These are sentences that the compiler does not read and so, not processed by the computer. These comments don’t need to use any syntax, and usually are pretty straightforward to write. For that to happen you will need to add double slashes before typing in the text. If we continue with the example above we can write it like this:

System.out.println(“Hello World!”);

//Output is: Hello World!

If you want to add a comment throughout multiple lines you will need to start with /* and finish with */.

To give you an example:

//This is a comment in a single line

/*

This is a comment

in multiple

lines

*/

There are other types of comments that can be done in your coding. By using /** and */ we are adding Javadoc comments that can be used to add new documentation for Application Programming Interfaces or APIs.

You should be a bit more careful using these comments because they will eventually be part of the documentation. You should also use them before you declare any methods, classes, or fields.

/**

*This is how a Javadoc comment would look like

if you need to add it to your code for instructions.

*/

The difference between comments and print is that the comments won’t come out on your editor or terminal.

To review this section, all you need to remember is // add single-line comments and by using /* and */, in this order, you will write multi-line comments.

	[image: image]
	 	[image: image]

[image: image]

Class

[image: image]

Although we will look at classes in more detail in the following chapters, we will roughly explain what it is, so you can make sense of the process done here. A class is a concept, in this case, a single concept (let’s just think of it as a single concept for now). Every program in Java has to have a class, and the name of that class has to be the name of the file program.

In our example the class is HelloWorld. This means the class has to be declared in a file program named HelloWorld.java.

	[image: image]
	 	[image: image]

[image: image]

Compiler

[image: image]

The basic and main function of a compiler is to translate human-friendly code into a language that computers can process.

Compiling means running the program. When you compile a program the class you use converts into a file that ends in .class, also known as byte code. Then, you can use a Java virtual machine, or JVM to run the code.

After you have installed a JVM, you can open a terminal or command prompt window and go to where you have saved the Java program. Type the name of the program that should end in .java and press enter to compile the code. After that you should be able to see the .class file appearing, assuming there are no errors in your code.

Usually, or at least while you are learning, a compiler might have run the program for you automatically, however, when you are working away from a platform development environment, the compiler might do it or not and you need to know what mistakes you have made. The Java compiler usually understands where the mistake might be on your code before the computer starts running it.

As an example, if you have a file named Compiling.java, we could compile it with a command on the terminal such as :

javac Compilling.java

If there were no mistakes, the compiler would have created a .class file. So this Compiling.class could be executed with a terminal command:

java Compiling

If there were errors in your code, no .class would have been created and you would have to fix your mistakes and run the command again to create a .class file.

If the compiler runs and there are no mistakes it will create a .class file that is executable. This basically means you can run the program from the terminal.

Here’s an example between .java and .class files. Assume we have this code:

public class Compileandexecutable.java {

public static void main(String[] args)

{

System.out.println(“These are the differences”);

}

}

We can compile this program by adding the command:

javac Compileandexecutable.java

If everything goes well and you haven’t made any mistakes, that means your compilation of the program was successful. This also means you should have two different files

Compileandexecutable.java This is our uncompiled code and,

Compileandexecutable.classThis is the compiled byte code file that can be executed by the JVM. This program can be executed just by using the command java Compileandexecutable

Whitespace and Semicolons

These are lines and spaces between the code that the program ignores. This is so other people such as friends or colleagues can easily interpret the code. By adding whitespaces you are making the code clear to understand. Such an example of that could be:

System.out.println(“You can write whatever you want here”);

System.out.println(“As you can see, there’s a space between line codes”);

This should be seen, after you run the program, like this:

You can write whatever you want here.

As you can see, there’s a space between the lines of code.

In the output, however, you would not see any lines or spaces between what you wrote as they are ignored by the program.

Semicolons are read by the program and it announces the end of a sentence or statement. However, you don’t add semicolons when you add curly braces.

Statements

Statements are lines of code that do one task. In order to have no errors, all statements should finish with a semicolon as we have mentioned above.

System.out.println(“Hello World”);

As you can see in our example, you need to use a semicolon to let the program know that the statement is finished.

Print Statements

System.out.println(“Hello World”);

This is the line of code that prints out the statement and outputs the information on the screen. Let’s break down what every single word means:

● System: It’s a class built in the Java program containing many things that a programmer can use with the program.

● out: It means “output”. So the result of the output.

● println: means “print line” and is when you want to print the line on the screen.

Using this line allows you to create a new line on the screen. You can add anywhere on the code and the program will read it, as long as you write it properly and close it using the semicolon.

You can create several printing outputs that will appear on one line using print instead of println.

System.out.print(“One sentence”);

System.out.print(“Second sentence”);

The output would read like this: One sentence Second sentence.

The main difference between these two methods of printing out a line is that with println() the cursor moves to the next line, while with print() would stay on the same line of code.

	[image: image]
	 	[image: image]

[image: image]

Java Install

[image: image]

Before you start your journey learning Java programming, you need to install Java on your computer. In this section, we will go through the necessary steps for you to install Java on your computer, both on Windows PCs and Macs.

	[image: image]
	 	[image: image]

[image: image]

On Windows

[image: image]

Some Windows PCs come with Java already installed. You can easily check that by using the search bar and typing “Java”, or by using Command Prompt (cmd.exe) and typing:

C:\Users\Your name on your computer>java - version

If you got Java already installed on your Windows computer, you would see something similar to this, depending on the Java version you would have installed:

Java version “11.0.1” 2018-10-16 LTS

Java(™) SE Runtime Environment 18.9

Java HotSpot(™) 64-bit Server VM 18.9

On the other hand, if Java is not installed on your Windows computer, you can download your copy at oracle.com.

These are the steps that you need to follow in order to install Java on your Windows computer:

	After you have downloaded the file, go to “Control Panel” > “System and Security” > “System” > “Advanced System Settings.

	Under the “Advanced” tab, click on “Environment variables”.

	Select “Path” and click on “Edit”.

	Click on “New”. Java is, by default, installed in C:\Program Files\Java\jdk-11.0.1. You will need to add a new path ending in “\bin”. So, it would look like this: C:\Program Files\Java\jdk-11.0.1\bin.

	The last thing you have to do is open Command Prompt (cmd.exe) and write “java -version”, just to check if it is actually running on your computer.

	[image: image]
	 	[image: image]

[image: image]

On Macintosh

[image: image]

On a Mac, the installation of Java is a bit more straightforward.

	The first thing you need to do is go to oracle.com and download the file “jre-8u65-macosx-x64.pkg”. You will need to agree to the terms and conditions before downloading the file. Once you have done that, double-click on the downloaded file.

	Another double-click on the package icon and you will launch the Wizard to proceed with the installation.

	Once the Wizard pops up, you need to click on “Next” to start the installation. At this point, the Wizard will ask if you want to install a few other programs with Java. This is entirely up to you, all you will need is Java.

	After that, the installation should be completed and all you need to do is to close the window.

	[image: image]
	 	[image: image]

[image: image]

Let’s Try It Out

[image: image]

Let’s see if everything is working properly before we dig into more complex information. Open any text editor, such as the Notepad, for instance, and type this:

public class Main {

public static void main(String[] args) {

System.out.println(“Hello World”);

}

}

It doesn’t matter if you don’t understand anything that is written above. We will get there, for now, you need to know how to run the code.

Every application, or code in Java starts out with the class name that it has to be the same as the filename. In this case, our class is Main, and so your file has to be named Main. After you have typed the code above into your text editor and saved it as Main.java, you will need to open your Command Prompt (cmd.exe), search for the directory you have saved the file on, and then type javac Main.java. So, it should look something like this:

C:\Users\Your computer name>javac Main.java

This serves as a code compiler. If you copied the code above correctly, the command prompt should move onto the next line. There you should write java Main. This will allow you to run the file. It should look something like this:

C:\Users\Your computer name>java Main

You should be able to read:

Hello World

If the output was this one, you have written your first Java program!

These are the key concepts that you need to know to understand the next chapter. To review what we have learned so far:

● The main differences between objects and classes in Java programming

● Why the Main() method is essential for all Java programs, and why do we need to use it as an entry point for the program

● We have also learned the basic definitions of comments, classes, compilers, whitespace, semicolons, statements and print statements, and how they can help us perform certain tasks in Java

● How to install Java on both Windows computers and Macintosh devices

	[image: image]
	 	[image: image]

[image: image]

Chapter 2: Variables

[image: image]

Not all types are objects, even though Java is object-oriented. Primitives are basic variables where the language is built on. Those primitives are:

● byte (number, 1 byte)

● short (number, 2 bytes)

● int (number, 4 bytes)

● long (number, 8 bytes)

● float (float number, 4 bytes)

● double (float number, 8 bytes)

● char (a character, 2 bytes)

● boolean (true or false, 1 byte)

In this chapter, we will go through the importance of variables in Java programming. How can variables help us achieve what we want in Java, as well as the different types and how we can manipulate variables and use them in our code to perform different tasks.

Java variables are containers of data that allow you to save values while you are running the code. Each data type has a variable assigned to it that illustrates the quantity and type of data value that can hold in it.

In other words, variables are the name given to any memory location while running the program and it is also the most basic unit of storage measurement in Java programming.

Variables are information in the program. Once we name that information, we can use the name we gave to access it later.

Before you use any variable as a memory location, you first need to declare them, and even during the execution of the program, you can change the variables.

	[image: image]
	 	[image: image]

[image: image]

Declaring Variables

[image: image]

But what does it mean to declare a variable? Declaring in programming jargon means to create something, in this case, variables.

When declaring a variable in Java programming, you need to pay attention to two different things:

● The name that was given to the variable, called Dataname.

● The type of data that can be stored in that particular variable, called Datatype.

In this example, we have a program that is trying to connect people through a dating app.

//Data type and Data Name

int age;

double placelocation;

boolean employed;

As we can see, we named the variables “age”, “placelocation”, and “employed”. However, we have not linked any values to them. In order to do that we need to use the “=” operator like this:

[image: image]int age = 30

Now we have linked the age variable to the value 30. These are also called literals because they have a fixed value.

public class datingApp {

public static main(String[] args)

{

int age = 30;

System.out.println(age);

}

}

Because we identified the variable int with 30, if we want to print the line we would just need to write “age” and the program would get that information.

As we’ve seen, the type of a variable can be any of the primitives that we have written above, for example, String, int, or double. While you can give the name you want to your variable, remember that it’s case sensitive, to assign values to these variables you need to use the equal sign operator “=”. To give you a few more examples:

Example 1

String name = “Anthony”;

//Remember to add the syntax with “”

System.out.println(name);

//This would printout Anthony

Example 2

int myNumber = 34;

System.out.println(myNumber);

Example 3

double myHeight = 1.70;

System.out.println(myHeight);

Example 4

int houseNumber = 4;

houseNumber = 7;

System.out.println(myNum);

//Here the printout would be 7

In this last example, we first declared an int housenumber to 4, but then we assigned it a new value. In this case, you have overwritten your initial value and so it will print out the last given value, in this case, 7. There’s a keyword that we can use to stop you, or other programmers, from overwriting a variable, in case you don't want that ever to happen. You can use the keyword final before assigning your variable, like this:

final int houseNumber = 55;

//then try to overwrite it

houseNumber = 76;

System.out.println(houseNumber);

An error would pop up on your screen if you try to do that on the editor, such as: Cannot assign a value to a final variable. We will go through other keywords later in the book.

Note that we don’t have to use the semicolon sign “;” to end comments.

	[image: image]
	 	[image: image]

[image: image]

Displaying Variables

[image: image]

As we have seen, to print out a statement we would use System.out.println(). But what if we wanted to print out text, as well as a variable? You can do that using the “+” operator. Like this:

String myCat = “Rufus”;

System.out.println(“Hi there” + myCat);

//The printout would be Hi there Rufus

You can also add two variables together using the same operator sign. For example:

String givenName = “Aaron”;

String familyName = “Salva”;

String wholeName = givenName + familyName;

System.out.println(wholeName);

//The printout would be “Aaron Salva”

We can also declare more than one variable at a time. For that, we need to use a comma sign “,”, but only if the variables are of the same type. For example:

double weight = 70.5, height = 1.70, width = 5.5;

System.out.println(weight + height + width);

	[image: image]
	 	[image: image]

[image: image]

Data Types

[image: image]

At the beginning of this chapter, we learned about the names of the different data types, known as primitives. But these are not the only data types there are. We also have non-primitive data types, and we already saw some in this book. For example, String, Classes, or Arrays are also different data types. We will learn about these later in the book, for now, we will focus on the primitives and their function within Java programming.

We can also divide primitives into two different groups:

● Integer types—These are assigned when we want to store whole numbers, both negative and positive, with no decimals in them. Examples of these types of primitives are int, long, short and byte. You would use different integer types of primitives depending on the situation you are in.

● Floating point types—These are types of primitives that are used when you don’t have whole numbers, but instead, fractions containing more than one decimal. These are double and float.

However, the most used primitives are double and int, for decimals and whole numbers respectively.

	[image: image]
	 	[image: image]

[image: image]

Integer Types

[image: image]

	[image: image]
	 	[image: image]

[image: image]

Byte

[image: image]

A byte can store whole numbers from -128 to 127 and are used if you need to save memory while running a program. However, you need to be sure that your variable number will be between those two numbers. For example:

byte houseNumber = 45;

System.out.println(houseNumber);

However,

byte houseNumber = 130;

System.out.println(houseNumber);

If you were to print out this last example, you would have an error because the number 130 is not within -128 and 127.

	[image: image]
	 	[image: image]

[image: image]

Short

[image: image]

This data type can store whole numbers between -32768 and 32767. So you would be using more memory to store this variable. For instance:

short houseNumber = 605;

System.out.println(houseNumber);

	[image: image]
	 	[image: image]

[image: image]

Ints

[image: image]

These primitives are the most used in Java programming for whole numbers. You can use this type of data to store age, weights, a number of times something happens, or any other numbers. These can also store negative, positive and zeros but not any number with decimals. It stores values between -2,147,483,648 and 2,147,483,647. Using this primitive would consume a lot more memory than using byte and short.

While declaring int, we can also assign it, or declare and assign. Here’s how it would look if you coded it:

Example 1

//int declaring it

int age:

//assigning it

age = 30;

//declaring it and assigning it;

int age = 30;

Example 2

int myPhoneNumber = 5000045;

System.out.println(myPhoneNumber);

	[image: image]
	 	[image: image]

[image: image]

Long

[image: image]

These integer data types are only used if you need to use a variable that is not within the scope of int, so between -2,147,483,648 and 2,147,483,647. long can store values between -9223372036854775808 and 9223372036854775807. This would take considerably more memory and int. Another thing that is important to know if you are using these data types is that you need to end the value in an “L”. For example:

long aNumber = 200000000000L;

System.out.println(aNumber);

	[image: image]
	 	[image: image]

[image: image]

Floating Point Types

[image: image]

When you want to use decimals such as 5.99, or even 78.9987, you will need to use floating point data types.

	[image: image]
	 	[image: image]

[image: image]

Float

[image: image]

These floating data types are able to store fractional numbers from 3.4e-038 to 3.4e+038. You will need, however, to end the value with an “f”. Remember these are all case sensitive. For instance:

Example 1

float myHeight = 170.56f;

System.out.println(myHeight);

Example 2

float highNumber = 3.4e+038f;

System.out.println(highNumber);

	[image: image]
	 	[image: image]

[image: image]

Doubles

[image: image]

Along with int, doubles are the other variables that are most used in Java programming, and the most used when it comes to assigning fractional numbers.

doubles can hold both extremely large, or extremely small numbers, as well as decimals. The maximum value doubles can hold is 1.707,693,134,862,315,7 E+308, as well as a minimum value of 4.9 E-324, and that includes 324 decimal numbers. Here’s how you can declare a double variable:

Example 1

//doubles with decimal places such as prices

double price = 7.99;

//can also hold very large numbers

double world’s population = 7900000000;

Example 2

public class WorldsPopulation {

public static void main(String[] args)

{

double worldspopulation = 7.9;

System.out.println(worldspopulation);

}

}

And the result would be 7.9.

The biggest difference between float and double primitives is that float can hold seven decimal digits, while double can hold around 15 decimal digits. So when you are doing calculations it is ‘safer’ to use doubles rather than float, because if the result is a number outside the range of the float variable it would have an error.

	[image: image]
	 	[image: image]

[image: image]

Scientific Numbers

[image: image]

We can use scientific numbers in our code if we use an ‘e’ to indicate the power of 10. For example:

float x = 25e5f;

double y = 13E4;

System.out.println(x);

System.out.println(y);

	[image: image]
	 	[image: image]

[image: image]

Booleans

[image: image]

Not everything is numbered, and sometimes the program has to answer with something else like ‘yes’ or ‘no.’

Did I go to the grocery shop? Did you water the plants? Did you clean the car? All of these questions can’t be answered with numbers, but with booleans data types that can hold one of two values, ‘true’ or ‘false.’

In order to declare these variables, we need to write the keyword boolean before the name of the variable:

Example 1

boolean didyoucleanthecar = false;

boolean didyouwatertheplants = true;

Example 2

boolean youHavingFun = true;

boolean goodWeatherOut = false;

System.out.println(youHavingFun);

System.out.println(goodWeatherOut);

//The outputs of these would respectively be “true” and “false”.

If we were to do an example with the whole code:

public class Booleans {

public static void main(String[] args)

{

boolean didyoucleanthecar = false;

System.out.println(didyoucleanthecar);

}

}

The result here would print out ‘false.’

These types of primitives are often used for conditional testing. We will go through them later in the book.

	[image: image]
	 	[image: image]

[image: image]

Char

[image: image]

Again, variables are not all numbers. How would you answer a question that is not a number, nor is true or false? Some questions need to be answered with characters, punctuation or even spaces. And that is exactly what the char, short for character, data type holds. However, unlike any variable that we have seen so far, you will need to add ‘’. Like this:

Example 1

char grade = ‘B’;

char firstlettername = ‘R’;

char punctuation = ‘?’;

Here’s a full example with a printout:

public class Char {

public static void main(String[] args)

{

char gradeYouHad = ‘A’;

System.out.println(gradeYouHad);

}

}

The expected result printed out would be ‘A.’

There’s an alternative to this, that is the use of ASCII values, to show characters. ASCII is an encoding standard that computers use between themselves. For instance, if you wanted to have the same printout as the last example: ‘A.’ You would have to write it like this:

char gradeYouHad = 65;

System.out.println(gradeYouHad);

The printout would also be ‘A’ because in ASCII the number 65 represents the uppercase A letter.

	[image: image]
	 	[image: image]

[image: image]

Non-Primitive Data Types

[image: image]

These are also called reference types because we use them to refer to objects. There are a few differences between these and primitive data types:

● Non-primitive data types are usually created by the developer or programmer and are not defined by Java programming, except for String, while primitive data types are defined by Java programming and we cannot alter them, such as int or boolean.

● If we want to perform operations, or call methods, we can use non-primitive data types, while with primitives we cannot do any of that.

● We use uppercase letters at the start of non-primitive data type, and lowercase letters for primitives.

● Non-primitive data types can have a null result, while primitive data types always have a certain value.

● Non-primitive data types have the same size, but primitive data types have varying sizes depending on the type of variable.

	[image: image]
	 	[image: image]

[image: image]

String

[image: image]

We have mentioned primitives that represent the most basic data types that have no built-in capacity. However, strings are objects that can be used instead of primitives. Unlike primitives, strings do have the capacity for built-in.

“Hello World,” for instance, is considered a string because it has a sequence of characters. Strings can be done in two different ways, by initializing or creating a new object or by using double quotes (“”) between characters, also called a string literal. Because Strings are variables, you can code them like this:

String greetings = “Hello World”;

We can also declare a string if we call the class string, like this:

String greetings = new String (“Hello World”);

There are differences when you do this, which we will talk about later in the book. Until then, string literal will be the most used method.

There are alternative symbols that we can use while typing strings that have different functionalities. For example, escape characters always begin with \. In fact, there are three escape sequences that you should know for now.

If you want to use quotation marks in a string, you could do it so by doing this:

System.out.println(“\”Hi World\””);

And this would print out like “Hi World”. If we hadn't used the escape, the program would think that we ended the string with a “.

We can add backslashes in the typed string by using \\ like this:

System.out.println(“Backslash symbols are written like this: \\”);

And printed out, you would have this: Backslash symbols are written like this: \.

The last of the three escape sequences is \n and this is how it would look when added to a compiler:

System.out.println(“Hello\nWorld”);

It would print out like this:

Hello

World

The \n is used as an escape sequence for a new line.

To recap what we have learned in this section. You can initialize String variables by using three different methods:

● Through the value, or the starting value in the variable.

● Through variable_name, which is the name given to the variable.

● Or through datatype, the kind of data stored in that particular variable.

There are five main escape sequences that you can use with String variables:

● If you want to use quotations: System.out.println(“\”Hello World\””);

● If you want to use backslashes: System.out.println(“Like this\\”); //print out Like this\.

● If you want your printout to come in different lines: System.out.println(“Like\nThis”);

//print out

//Like

//This

● A carriage return “\r” could work similarly to the “\n”, but is placed between words, like this: System.out.println(“Hello\rWorld”); //printout would be

Hello

World

● If you want to create a larger space between words, you can use”\t”, like this: System.out.println(“Hello \tWorld”); //would print out Hello World

● We can also use the “\b” called backspace to delete characters: System.out.println(“Hello Worl\bd”); //printout would be Hello Word

	[image: image]
	 	[image: image]

[image: image]

Static Checking

[image: image]

A compiler will not compile a program if a variable has an incorrect value, and that is called a type declaration bug because you are declaring a wrong value. If this happens your program will crash or give you wrong results.

Static typing aids programmers in recognizing the bug before the execution of the code. If the variable does not correspond to the type of the assigned value, the program will not compile. For instance, if we use an int variable for a string such as “Hello World”, there will be an error stating incompatible types, as we have seen the int type of variable is designed to hold certain numbers and not words.

Sometimes these bugs are not caught by the compiler, and so when running the code it will cause an error called runtime errors. Static typing aids programmers in avoiding runtime errors. We will learn more about the different types of bugs and how to debug your code later in this book.

	[image: image]
	 	[image: image]

[image: image]

Naming

[image: image]

Naming, also called identifiers, is a very important thing while programming Java. You need to name variables correctly if you want your program to work properly, for instance, variable names, as we have mentioned, are case-sensitive so in order for you to use the correct variable, you need to pay attention to that. Variable names are also unlimited in length, but for the purpose of clarity, you should keep them concise and use descriptive names so you can quickly understand what the variable represents.

When creating variables, you can only use letters or $, or a _ to start. If you start your variable with any other symbol, your naming will be invalid. Another important thing to remember is that if you only have one word, you should type it in lower-case, although if you have more than one you should start with lower-case and then use capital to start the new word in the sentence, like this:

//this is good

boolean isHeHuman;

//this is wrong

boolean ishehuman;

//this is also wrong

boolean IsHeHuman;

Let’s just recap some general rules on how we can name variables:

● Naming should start with a lowercase letter and not have any space in between

● Names can only contain letters, numbers, dollar signs, and underscores

● Names should start with a letter, but you can also use dollar signs or underscores, although, we will not talk about these for now

● Names are case sensitive, so, for example, MyName is different from myName

● Java keywords can’t be used to name variables, for example, char, boolean, or int

	[image: image]
	 	[image: image]

[image: image]

Type Casting

[image: image]

You can assign certain primitive data types to other types. There are two different ways of doing this:

● Widening Casting - This is done automatically if you write them in the code and it transforms smaller primitive types to larger primitive types. Let’s have another look at how these rank: byte > short > char > int > long > float > double

● Narrowing Casting is done manually, and is the opposite of widening: double > float > long > int > char >short > byte.

But would we represent this in our code? Widening casting can be done like this:

public class Main {

public static void main(String[] args) {

int myInteger = 5;

double transMyDouble = myInteger

//this would cast automatically

System.out.println(myInteger);

//print out 5

System.out.println(transMyDouble);

//print out 5.0

If we want to represent a narrowing casting in code, it would look like this:

public class Main {

public static void main(STring[] args) {

double transMyDouble = 8.65;

int myInteger = (int) transMyDouble

//we need to manually cast so doubling int

System.out.println(transMyDouble);

//printout would be 8.65

System.out.println(myInteger);

//printout would be 8

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Operators

[image: image]

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Addition and Subtraction

[image: image]

We can manipulate variables to allow us to control more decisions in our code. For instance, if we have the example of a bank account, we could easily add the balance by using a double primitive. But what if we want to withdraw or deposit from the bank account?

We would have to manipulate the value on the variable to correspond with the code we wrote. Because Java has the ability to do calculations with numbers, we can change those variables. Using the example of a bank account, here’s how it would look:

//first you’d have to declare the initial balance

double balance = 300.50;

//add the deposit

double depositAmount = 20.00;

//add the calculation

balance = balance + depositAmount;

As you have seen, we can use operation signs like ‘+’ to calculate variables. For now, we are going to only focus on double and booleans. When using operations, data types will express the result in the same data type, for example, two ‘int’ values will produce an ‘int’ value. The same for ‘double’ variables.

We can also use the operator ‘-’ to make these types of calculations. If we use the same example from above, it would look something like this:

double withdrawAmount = 50.00;

balance = balance - withdrawAmount;

//our balance would be 250.50

You can use both ‘+’ and ‘-’ with int variables too, and more, we can also use double ‘++’ and ‘—’ to add or subtract one number, like this:

int numpicturesOnPhone = 30 + 10;

//the number of pictures on the phone would be 40

numPicturesOnPhone ++

//the number of pictures on the phone would be 41

numPicturesOnPhone—

//in this case the number of pictures on the phone would be 39

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Multiplication and Division

[image: image]

You can also multiply and divide while programming Java. Let’s give an example of a paycheck where your employer is calculating the right amount given to you by calculating your hours worked with the rate per hour that you receive. Let’s say you worked 35 hours in a week at the rate of $20.50 per hour.

double paycheckAMount = 35 * 20.50;

//your paycheck should be 717.5

If you want to divide, let's say to know how many hours your overall balance represents, you would do it so like this:

double balance = 1000.50;

double hourlyRate = 20.50;

double hoursWorked = balance / hourlyRate;

//the result should be 48.80

If we were to use int variables with a decimal result, such as 10 divided by 4, we would get the result of 2, rather than 2.5 which should be the accurate number.

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Modulo

[image: image]

Modulo is represented by %, and its intent is to give us the remainder of two divided numbers. For instance, if you bake 13 muffins, and you give them in batches of 3, how many muffins would you have left before you ran out of batches? You could make out four batches and have one leftover muffin. This is how you can calculate that using Java code:

int muffinsMade = 13;

int muffinsLeft = 13%3;

//Your muffinsLeft would be 1

If you intend to know if a number can be divisible by two, or in other words even, you could use modulo. For example, if you use modulo to divide an even number you would get 0, if the opposite was to happen, you would have had a remainder of 1.

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Compound Assignment Operators

[image: image]

Compound assignment operators are used so we don’t have to repeat written syntax when we adjust a variable or in this case its value. By using ‘+=’ we can do an arithmetic operation and assign the value again. For example, you are working in a cookie shop and want to know how many cookies you have at any time. At a given moment we have:

int numCookies = 10;

//Now we make 5 more

numCookies = numCookies +5;

//we would have 15

As you can see, if we want to adjust the number of cookies, we need to write the variable ‘numCookies’ every time. However, if we use the ‘+=’ we could write the code like this:

numCookies += 5;

//we would have 20

This way, we only need to write ‘numCookies’ once and so making it easier to code. We are able to use compounds in with any operators, like this:

Subtraction (-=)

Multiplication (*=)

Division (/=)

Modulo (%=)

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Order of Operations

[image: image]

Java programming follows the same rules as any other mathematical operation. You probably remember when you were learning operations in school, that these had certain orders to be followed in order to come up with the right result. Let’s take this operation, for instance:

int num = 6*(12-2) + 6/2;

If we were to do this ourselves without the use of a calculator or the terminal, this would be the order of operations:

Parentheses; Exponents, Modulo/Multiplication/Division; Addition/ Subtraction.

And when operators are in the same order, then we would first do the operations on the left. So this is how we would calculate the ‘int num’:

The parentheses would be calculated first:

6 * 10 + 6/2;

Then, the next thing you would do would be the multiplication, and the equation would look like this:

60 + 6/2;

According to the order of operators, the next operation would be the division. So we would have this:

60 +3;

And the int num would be 63.

	[image: image]
	 	[image: image]

[image: image]

Manipulation Variables: Greater Than and Less Than

[image: image]

By using greater than ‘>’ and less than ‘<’, also called relational operators, we can make boolean comparisons. If we take an example of a bank account again and we want to figure out if when we withdraw cash, we were taking out less than we have in our account.

double balanceN=BankAccount = 1000.02;

double amountWithdraw = 500.02;

System.out.println(amountWithdraw < balanceBankAccount);

//the output would come up as true, as we are taking out less than we have on the account

We can use this to know if we can buy something, or if we have enough money in our bank account to purchase something. This is how you would use boolean variables with greater and less than signs:

double balanceBankAccount = 1000.02;

double costOfNewBike = 1500;

boolean canIBuyNewBike = balanceBankAccount > costOfNewBike;

//the result would come out as false because the price of the bike is higher than what you have on the bank account

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Equals and Not Equals

[image: image]

We can also know if two variables are the same by using ‘==’. This can be used for example to know if you got paid the right wage amount, for instance. Here is how it can be done:

double wageAmount = 700;

double calculatedWage = 17.50 * 40;

System.out.print(wageAmount == calculatedWage);

//this would be true, as the two variables are equal

Now, we can do the same to find out if two different variables are not the same:

double balance = 150.00;

double amountDeposited = 50;

double balanceAfterDeposit = balance + amountDeposited;

boolean changeBalance = balance! = balanceAfterDeposit;

//this would be true

The sign to check if two variables are not the same is ‘!=’.

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: Greater/ Less Than or Equal To

[image: image]

Turning again to the example of wage paid. How could we determine if we got paid at least the expected amount? In this case, we use less than or equal to ‘<=’, or greater than or equal to ‘>=’. This is how it would look if we code it:

double wageAMount = 700;

double calculatedWage = 17.50 * 40;

System.out.println(wageAmount >= calculatedWage);

//in this case, the output would be true, as the two variables are the same

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: .equals() (very similar content to equals() in string methods)

[image: image]

It makes sense that we only use operations with primitive types. You would think, using operations with strings wouldn’t work, as there are no numbers to make any operations. But we can still use arithmetics, in this case, equality, to know if two strings are the same. For that we use '.equals()’. This is a method to compare two objects so we don’t use the operation symbols that we have been using so far. Here’s an example:

String person1 = “Jack”

String person2 = “Rodri”;

String person3 = “Rodri”;

System.out.println(person1.equals(person3));

//this would come out as false because “Jack” is not “Rodri”

System.out.println(person2.equals(person3));

//this would be true, because “Rodri” is the same as “Rodri”

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: String Concatenation

[image: image]

So far, the operators we have been talking about only work with primitives. But it’s not always like that, some also work with strings. If for example, we want to add your name to an account, we can use ‘+’ to add two strings together:

String yourName = “Rodri Sanchez”;

System.out.println(“Your name is:” + yourName);

The printout would be: Your name is: Rodri Sanchez. This is called concatenating a string. But you can go one step further and use a primitive as a variable and the Java programming will understand it. Let’s give the example of a simple bank account report:

double bankAccountBalance = 250.50;

String message = “Your balance is:” + bankAccountbalance;

System.out.println(message);

The printout would be: Your balance is: 250.50. This way you are using both a string, as well as a primitive.

	[image: image]
	 	[image: image]

[image: image]

Manipulating Variables: final Keyword

[image: image]

We have talked about variables and how we can manipulate them. But the truth is, some variables should stay constant, such as our day of birth, or our wedding day. We are able to declare variables that cannot change by using the ‘final’ word in our code. Like this:

final int weddingDay = 20;

This way, we declare a variable that cannot be altered, and if we try it, the compiler would come up with an error.

	[image: image]
	 	[image: image]

[image: image]

Types of Variables

[image: image]

There are three different types of variables in Java that allow for different functions:

● Class Variables

● Local Variables

● Instance Variables

	[image: image]
	 	[image: image]

[image: image]

Class Variables

[image: image]

These types of variables are also known as static variables. They are similar to other types of variables like static variables but differ in the method of declaring. Class variables use a static keyword inside the class, but without the need, or outside any block or constructor. Regardless of how many objects you create, static variables can only have a single copy per class.

These are also created when the program starts running and erased automatically as soon as it finishes and because their default value is zero, their initialization is not mandatory. However, if we access the static variable through an object, a warning message will pop up from the compiler, but the program will not halt. Instead, the compiler will automatically change the object name with the class name.

	[image: image]
	 	[image: image]

[image: image]

Local Variables

[image: image]

If you can define a variable within a constructor, method, or block, then it is a local variable. These local variables only exist with the variable declared on that block, meaning that the local variable won’t exist within other blocks.

Unlike class variables, the initialization of local variables is mandatory before use and is created once the block is entered or when the call returns from the function.

	[image: image]
	 	[image: image]

[image: image]

Instance Variables

[image: image]

These variables are declared outside any block, method, or constructor; however, they are still declared in a class. These are non-static variables, but much like static variables, their default value is zero and so their initialization is not mandatory. And only by creating objects you can have access to the instance variable.

But what are the real differences between static variables and instance variables?

● We can only have one copy of a static variable per class, unlike with instance variables where each object has its own copy of the variable.

● The way we access these variables also differs. For instance, by directly using the class name we can have access to the static variables, however, to have access to instance variables we can have it through object reference.

In this chapter dedicated to variables, we have learned:

● How to identify variables and what are the different types

● How we can declare and display different variables

● How can we name variables and why is naming variables so important

● And the different ways we can manipulate variables to make the code work in our favor

	[image: image]
	 	[image: image]

[image: image]

Chapter 3: String Methods

[image: image]

We have mentioned Strings in the previous chapter, but there’s more to it than just being objects in Java. They are very important for Java programming, and that is why Java has a dedicated String class that has many methods that can help us while we code. Plus, you don’t have to import any class because these belong to java. lang package and so fundamental to the programming language. In this section, we will go through many String methods that are commonly used in Java programming and that will appear in the next chapters of this book.

	[image: image]
	 	[image: image]

[image: image]

toString() method

[image: image]

Have you tried to print out objects? You often get a random number, right? If, for example, we were to print out an object from our example above, we would have something like myCoolMotorcycle@5bc6d078, where myCoolMotorcycle is the object and [image: image] would be the position in memory. Well, that doesn’t tell us much about the Motorcycle. But we can alter that, and make it print some with more content and information. This is when [image: image]toString() method comes in handy. When we use this method, we are able to print the object because we are returning a String. Like this snippet:

class Motorcycle {

String color;

public Motorcycle(String motorcyclecolor) {

color=motorCycleColor;

}

public static void

main(String[] argos){

Motorcycle myCoolMotorcicle = new

Motorcycle(“black”);

System.out.println(myCoolMotorcycle);

}

public String toString(){

return “This is a” +

color + “motorcycle.”;

}

}

This will give us the printout: [image: image]Because we write System.out.println(myCoolMotorcycle), which in turn gives us information about the object myCoolMotorcycle.

	[image: image]
	 	[image: image]

[image: image]

length()

[image: image]

In Java programming, length() serves to return the number of characters, in this case, the length of a String. For example, if we have a String that we named “line” and we wanted to return the length of this String, we would write line. length(). To give you an example look at this snippet:

String line = “Hi there!”;

System.out.println(line.length());

What would you think would be printed? If you guessed nine, then you are right. If you guessed eight, remember that the space is considered a character too.

	[image: image]
	 	[image: image]

[image: image]

concat()

[image: image]

This String method connects one string to the other. This is called concatenation and joining the end of one string with another. Imagine if we have a String named line1 and line2. So for instance, we had coded this:

String word = new

String (“Alpha”);

word = word.concat(“Century”);

System.out.println(word);

The system would print “AlphaCentury”. What we are doing in this example is to take the String object “Alpha” that is stored in “word” and connected, or in this case concatenation with a new object, and link the two words. For instance, if we didn’t reassign the value on “word” and had written this instead:

String word = “Alpha”;

word.concat(“Century”);

System.out.println(word);

We would have printed only “Alpha” because Strings are immutable and so we can’t change their value.

If you remember, we use the method toString() to print an Objects’ name rather than its memory location. We use that with concat(), then we will be joining the Object of that toString() method to our first String. So in other words, instead of connecting, or concatenating our initial String with another String we will not connect its memory location, but instead the result of toString().

	[image: image]
	 	[image: image]

[image: image]

equals() & .compareTo()

[image: image]

In the variables chapter, we have already talked a little about the equals() method, but now we are going to develop the concept a little further. As you might remember, we cannot use any operators in Strings and so we need to use the method equals() to compare two Strings.

Now, if we want to compare two Strings lexicographically, we would use .compareTo(), what this does is to grab the two Strings and turn them to Unicode, which is the universal character encoding standard, meaning its the standard language of computers as they assign every character and symbol a number. So for instance:

String dog1 = “Rufus”;

String dog2 = “Ulisses”;

System.out.println(dog1.compareTo(dog2));

The printout would have been -3 because there are three letters separating the letter “R” with the letter “U”. If it comes out a zero, that would mean the Strings were the same. If it's less than zero then the String object would be less, in Unicode, than the String argument. If it was above zero then the String object argument would be greater than the String object.

	[image: image]
	 	[image: image]

[image: image]

indexOf()

[image: image]

As you will learn in the next chapter about Arrays, these have indexes, which means a sort of memory storage where we can lodge information, but all indexes start on zero rather than on one. If we want to know the first occurrence of a certain character, we would do it like this:

String name = “Giorgio”;

System.out.println(name.indexOf(“r”));

The printout would be three, because “r” is on index three. But we can also do that if we want to know an index of a substring and the indexOf() would give us where the substring started. Like this:

String name = “PEDRO”;

System.out.println(name.indexOf(“DRO”));

This would print out two because “DRO” begins on index two. If the method can’t find the index will give you a -1. If this all sounds a bit confusing, go through the next chapter and come back to this section. This is just a little introduction so you are aware of the different methods you might find throughout the book.

	[image: image]
	 	[image: image]

[image: image]

charAt()

[image: image]

When we use the method charAt() we get in return the specific index where the character of a given String is. For instance:

String line = “dog”;

System.out.println(line.charAt(1));

The printout would give us “o”, as that is the character on index one.

	[image: image]
	 	[image: image]

[image: image]

substring()

[image: image]

Remember above when we used indexOf() to print out the index of a substring? Well, if we use substring() we can print out a part of a string or its characters rather than the indexes. For instance:

String sentence = “To be, or not to be? That is the question.”;

System.out.println(sentence.substring(21));

The output would be “That is the question.” That’s because that substring starts at index 21. But if we don’t want the printout to run until the end of the sentence, we would need to define the end. Like this:

String sentence =“To be, or not to be? That is the question.”;

System.out.println(sentence.substring(21, 28));

This would read like this: “That is.” As you might have noticed, when we add two arguments, the first includes and the last excludes, but notice that index 28 is not included in the printout, so you need to add one more number if you want to cut the sentence shorter. So for example, if we want just one letter from the sentence we would have to do it like this:

String sentence =“To be, or not to be? That is the question.”;

System.out.println(sentence.substring(21, 22));

Our result would be “T”.

	[image: image]
	 	[image: image]

[image: image]

toUpperCase() & toLowerCase()

[image: image]

Sometimes we want to return a String value in a different case than what we have in the code, and for that, we can use toUpperCase() and toLowerCase(). As you might have already guessed, the first returns the value of a String in uppercase and the latter in lowercase. But how does this translate to code?

String word = “Oh my!”;

String uppercase =

word.toUpperCase();

//this would store the string “OH MY!”

String lowercase =

word.toLowerCase();

//this would store the string “oh my!”

This is great if you need to search through databases. But a little mistake such as storing your data in lowercase rather than an uppercase can make it really hard to search. So make sure you use this feature properly.

String methods are an essential feature of Java programming, in this chapter we’ve learned:

● About the different string methods, there is

● What are the different functions that each string method does

● Learned real-life applications if string methods

	[image: image]
	 	[image: image]

[image: image]

Chapter 4: Arrays

[image: image]

As we have seen before, we can hold single data points in variables, but we can also hold groups of data. For example, if we need to list the players of a football team. If we created a variable for every single player, we would have a lot of repeated and unnecessary code. When there are long lists, we can use arrays to store our data in a simpler manner.

With arrays, we can store a certain number of values, as long as they are the same type. So, for example, an array can store or doubles, or booleans, or [image: image], as well as Strings and object references.

Arrays are also divided into indexes, where the first index starts with a 0. This is important to know because later in this chapter we will need to attribute indexes through arrays. So the first index is 0, the second is 1, and so on.

	[image: image]
	 	[image: image]

[image: image]

Creating an Array

[image: image]

For example, we want to track the value of different paintings that you create using a program. For that, we would need a list of the paintings, as well as a list of the different prices linked to each painting. The first thing we need to do is to declare the type of data the array will store, like this:

double[] prices;

Then, we need to add the data, in this case, the prices, that we want the array to hold. Like this:

prices = [220.99, 360.00, 210.00, 500.00};

Much like other variables, we can use the same line:

double[] prices = {220.99, 360.00, 210.00, 500.99};

As we have said, you can also store [image: image]:

String[] paintings =

{“blue Sky”, “Scarlet Red”, “Pinks”, “Abandoned”};

As it happened with Strings at first, we weren’t able to print it out correctly. The same happens with arrays. For that, we need to use the same method we did with a slight alteration by using Array.toString(). Because this method is given to us through the arrays package, we need to import that package. In Java, when we import a package we are making every method in the package accessible in our code.

Arrays.toString() is part of the arrays package, but there are many other useful methods in the package. This is what happens when we use the Arrays.toString():

import java.util.Arrays;

// this is what we use to import, and it has to be at the top

public class Paintings(){

public static void main

(String[] args){

double[] paintingPrices =

{[image: image]

String betterPrintout =

Arrays.toString(paintingPrices);

System.out.println(betterPrintout);

}

}

Which when printed should be like:

[220.99, 360.00, 210.00, 500.99]

Now, we want to get values out of the arrays, so we need to access data from a certain index. Have a look at this example:

double[] prices = {220.99, 360.00, 210.00, 500.99};

System.out.println(prices[2]);

What number would it print? If you thought the number 210.00 you were right. Remember that indexes of arrays start at 0 and finish with the number of elements you have minus 1.

If instead, we had written: System.out.println(prices[6]), we would have got this as an output: java.lang.ArrayIndexOutOfBounds5 because even though we have five elements the last element in our code is four.

	[image: image]
	 	[image: image]

[image: image]

Empty Arrays

[image: image]

To be able to create empty arrays, we need to give them a fixed size, after that we can fill up the variables as we want. Like this:

String[] paintingItems = new String [6];

We cannot change this after, and so, the size of this array will always be 6. After that, we can set the different indexes to be different items one by one. Or we can assign everything at the same time. Like this:

String[] paintingItems = {“Blue Sky”, “Scarlet Red”, “Pinks”, “Abandoned”, “Ship”, “Garden”};

Or it can be done individually:

paintingItems[0] = “Blue Sky”;

paintingItems[1] = “Scarlet Red”;

paintingItems[2] = “Pinks”;

paintingItems[3] = “Abandoned”;

paintingItems[4] = “Ship”;

paintingItems[5] = “Garden”;

We are allowed to change the name of the item after it has been assigned just by altering the name.

The length of an array can be seen if we access the length of the array, like this:

String[] paintingItems = new String[6];

System.out.println(paintingItems.length);

In this case, it would print out 6, even if they are empty like in this case.

	[image: image]
	 	[image: image]

[image: image]

String[] args

[image: image]

You are familiar with [image: image], as we use it when we use the [image: image] method. Since we are learning about arrays, we can now get to the point where we can explain what this means.

As you might suppose now, when we use [image: image]we are using an array that is composed of strings, like the example above. [image: image]is a parameter used in [image: image] arrays. Which in this case are arguments. We pass these arguments from the terminal when we use the class file.

This is how you pass arguments to main:

public class Hi {

public static void

main(String[] args) {

System.out.println(“Hi there ” + args[1]);

}

}

Let’s assume that argument 1 is John. We would have: Hi there John.

This is how arrays work. Arrays provide us with easier execution of programs, especially those with many variables. Remember, if you want to create arrays, you need to use curly brackets like {}, if you want to know the size of an index then you will need to use brackets like [].

	[image: image]
	 	[image: image]

[image: image]

ArrayList

[image: image]

As we have seen so far, once we create an array, we are limited by its fixed size. But we can create flexible lists such as lists of books by using ArrayList, which allows us to add or remove elements from the array, hold elements of the same type, access by index or hold objects as references.

As we have seen above, we could import and access other array methods by using java.util.Arrays. In order for us to use the ArrayList, we need to take them from the same package by using import java.util.ArrayList.

Much like arrays, in order for us to create an ArrayList, we need to declare the type of objects we want to store:

ArrayList <String> puppyNames;

To define the type of objects we want, we need to use angle brackets. These are called generics and are a Java construct that helps us define both objects and classes as parameters. That is why we are not able to use primitives when using [image: image].

So we would need to use an integer, which holds positive or negative non-decimal numbers just like int:

ArrayList<int> books;

//The compiler would mark as error

ArrayList<Integer> books;

//The compiler would run this

If you want to use other primitives like double or char, you would have to use <double> or <char>.

Here’s how you can declare and initialize an ArrayList:

ArrayList<Integer> books;

//How you declare

books = new

ArrayList<Integer>();

//How you initialize

ArrayList<STring> books =

new ArrayList<String>();

//How you declare and initialize at once

So far we have used an empty [image: image], but how can we add an element? Because ArrayLists come with the method add(), we are able to add an element to the structure. There are two ways we can do this, by adding the element at the end, and so using only a single argument, the one indicating the value we want, or adding the element to a specific index. Here’s how you can do it:

ArrayLists<Motorcycle> motoShow =

new ArrayList<Motorcycle>();

motoShow.add(harley);

//motoShow stores [harley]

motoShow.add(triumph);

//motoShow stores [harley,triumph]

motoShow.add(suzuki);

//motoShow stores [harley, triumph, suzuki]

The second way of adding an element to an [image: image] is by specifying the index, like this:

motoShow.add(0, vespa);

In this case, and if we assume the above code belongs together and we specified Vespa on index 0, that means element after this we have to shift their index value by 1. The same basic rules of declaring the same type of methods and the same parameters hold here while you use ArrayList, this means that the declared elements need to be the same.

However, you can also hold different types of values in an [image: image]if you use [image: image] word:

ArrayList assortment =

new ArrayList<>();

assortment.add(“hi”);

//this is the String

assortment.add (3);

//this is the Integer

assortment.add(harley);

//it’s the reference to Motorcycle

//now the assortment stores [“hi”, 3, harley]

Even though you can use [image: image] like this, it is usually easier and more common to indicate the type.

Let’s go through how you can have an expandable ArrayList. This is useful, for instance, in online shopping. Let’s say you are doing online shopping, and you add items to your basket. This basket will get bigger, and so for us to keep track of it we would have to use a different method such as size().

ArrayList<String>

shoppingBasket = new

ArrayList<String>();

shoppingBasket.add(“Milk Box”);

System.out.println(shoppingBasket.size());

//this would print 1

shoppingBasket.add(“Ice Cream Tub”);

System.out.println(shoppingBasket.size());

//this would print 2

shoppingBasket.add(“Tomatoes”);

System.out.println(shoppingBasket.size());

//this would print 3

So how do we access indexes with [image: image]? We have seen with arrays we can access indexes by using brackets. For instance:

int[] numbers = {2, 4, 6};

System.out.println(numbers[2]);

This would print the number 6 because that is the number on index 2. When we use [image: image], we can’t use brackets, instead, we need to use a method. get() is the method we use to access an index using ArrayList. So, it would look something like this:

ArrayList<String>

shoppingBasket = new

ArrayList<String>();

shoppingBasket.add(“Milk Box”);

shoppingBasket.add(“Ice Cream Tub”);

shoppingBasket.add(“Tomatoes”);

System.out.println(shoppingBasket.get(2));

//this should print out tomatoes

As we have also seen when we use arrays, we can change the value if we use brackets:

String[] shoppingBasket =

{“Milk Box”, “Ice Cream Tub”, “Tomatoes”};

shoppingBasket[1] = “Spinach”;

//this means that shoppingBasket now holds

[“Milk Box”, “Spinach”, “Tomatoes”]

However, when we use the ArrayList, if we want to change a value, we need to do it in a different way by using set():

ArrayList<String>

shoppingBasket = new

ArrayList<String>();

shoppingBasket.add(“Milk Box”);

shoppingBasket.add(“Ice Cream Tub”);

shoppingBasket.add(“Tomatoes”);

shoppingBasket.set(1, “Spinach”);

//this means that shoppingBasket now holds

[“Milk Box”, “Spinach”, “Tomatoes”]

Remember how we removed an item from an array? We would have to create a new array without the value we wanted to take out. With ArrayList, we can remove a value if we indicate the exact index we want to remove:

ArrayList<String>

shoppingBasket = new

ArrayList<String>();

shoppingBasket.add(“Milk Box”);

shoppingBasket.add(“Ice Cream Tub”);

shoppingBasket.add(“Tomatoes”);

shoppingBasket.remove(0):

//shoppingBasket now has [“Ice Cream Tub”, “Tomatoes”]

We can also remove an element by indicating the value itself. Like this:

ArrayList<String>

shoppingBasket = new

ArrayList<String>();

shoppingBasket.add(“Milk Box”);

shoppingBasket.add(“Ice Cream Tub”);

shoppingBasket.add(“Tomatoes”);

shoppingBasket.remove(“Milk Box”);

//shoppingBasket now has [“Ice Cream Tub”, “Tomatoes”]

We can also find out an item’s index, or a position where a certain element might be, for example:

//shoppingBasket stores [“Milk Box”, “Ice Cream Tub”, “Tomatoes”]

System.out.println(shoppingBasket. indexOf(“Milk Box”));

//it would print out 0 because that is the index value of “Milk Box”

Now you know the basic functions of an ArrayList which allows you to create, add new items, access the size of it by using size(), change the value using set(), or remove an element by using remove(). You can also find out the number of an index in an ArrayList if you use indexOf().

Arrays are an important part of creating Java programs. And in this chapter, we have learned:

● What arrays do

● How we can create them

● What is ArrayList

● How we can apply array and ArrayList to our code

● What the String[] args does in our code

	[image: image]
	 	[image: image]

[image: image]

Chapter 5: Operators

[image: image]

In the chapter about variables, we talked about the basic operators and how you can use them to manipulate variables. In this chapter, we will do a recap of what we have learned in that chapter and deepen our knowledge about Java operators and find out many other things that we can do with them besides basic operations.

	[image: image]
	 	[image: image]

[image: image]

Recap Methods

[image: image]

As we have previously seen, operators allow us to perform operations between variables, for example, adding two variables together:

int oprt = 50 +200;

Although we can also add together variables and values, or even two variables as long as they are the same type:

int oprt = 50 + 200;

//printout would be 250

int oprt2 = oprt + 100;

//printout would be 350

int oprt 3 = oprt2 + oprt2;

//printout would be 700

In Java programming, we can divide the different operators into five different groups. We have looked at the arithmetic operators such as addition “+”, subtraction “-”,multiplication “*”, division “/”, modulus “%”, increment “++”, and decrement “—”.

We have assignment operators, which are often used to assign any values we might have to variables. The basic assignment operator is “=”, but you can also use “+=” and in this case, we would be adding a value to a variable.

Then we have comparison operators and we have talked about almost all of them in the chapter about variables, and the remaining will be talked about in this chapter. Examples of these are equal to “==”, greater than “>”, less than “<”, or greater than or equal to “>=”.

	[image: image]
	 	[image: image]

[image: image]

Conditional Operators

[image: image]

There are some operators in Java programming that use only boolean variables and values. This is so it becomes easier for us to understand and write complex boolean relationships. These conditional operators, also called logical operators, have the goal to bring down the choices of multiple boolean variables to simple values such as true or false.

There are instances where you would only want to run a certain code and program only if all the conditions are false, or all the conditions are true. Or if you have a program where all the conditions are false except one and that is the only way the program can be executed.

There is another instance where we need conditional operators. Sometimes you need to swap the values and so false becomes true and vice-versa. This might look a bit daunting, but once explained it should become easier. Let us go through all these types of conditional operators so you have a better understanding of what these do in the context of Java programming.

	[image: image]
	 	[image: image]

[image: image]

Conditional—And: &&

[image: image]

Let’s have a look at a junior football team recruiting new players. In order to be accepted in the team, a player needs to have an average of 2.7 GPA and to have scored at least 5 goals scored during the last season. Here’s how this would look if you write it in code:

if (enoughGpa && hasEnoughGoals) {

//player gets in the team

}

The && is called an And operator and you need to use it between two boolean variables. In this example, you needed to have these two booleans to be true in order for the player to get into the team. If both booleans were true, the end result would be true, if one of them or both were false, the end result would be false.

Conditional—Or: ||

Now imagine, another school accepts their players if they have at least one of two conditions. Here’s how you would write the code:

if (enoughGpa) {

//player gets in the team

}

if(hasEnoughGoals) {

//player gets in the team

}

This would be the code you would write if you didn’t know about the “||” operator. Here’s what it would look like:

if(enoughGpa || has EnoughGoals)

{

//player gets in the team

}

We can use the “||” operator between two boolean values, and that means that if at least one of the two values is true, then the condition would be true.

There is something called a short circuit evaluation and it only occurs when you use any of these two conditional operators. This means that sometimes the compiler will only need to run the first boolean to know the end result. For example, if the end value needs to be true and it has a || condition operator, the compiler understands that if the first condition is true then the end result will be true. On the other hand, if you run a && conditional operator and you need the end result to be true and the first conditional is false, the compiler won’t need to run the other conditional to know that it can’t execute the code.

	[image: image]
	 	[image: image]

[image: image]

Logical Not: !

[image: image]

You use this operator when you want opposite results, or express a clear intent in your code. For instance, if you need a code to be run only if a certain condition is false. This is how you could write it:

boolean hasEnoughGoals = false;

if(!hasEnoughGoals) {

	[image: image]
	 	[image: image]

[image: image]

How Do We Combine Conditional Operators

[image: image]

We can use more than one conditional operator to help us expand our expressions. If we look at this example:

boolean rap = true && !

(false || true)

This is how we break it down in order:

The expression will first solve the conditions inside the parentheses, then it will solve the NOT !, followed by AND && and will evaluate OR || last.

If the compiler first evaluate (false || !true) so true equals false and we have:

true && !(false || false)

Then, it will compile the remaining of the parentheses (false || false) which is false. So now we have this:

true && !false

The next operator the compiler will evaluate will be !false, and we will get:

true && true

And so rap value is true.

Conditional operators are valuable when you need to simplify boolean values in your coding. So to review what we have learned so far in this subject:

Conditional - AND is represented by && and it runs the code if both conditions are true.

Conditional - OR is represented by || and it's true if one of the two booleans is true.

Logical - NOT is represented by ! and it runs the code if the boolean value is the opposite.

Operators are a major feature that once we learn them, can help us to create more complex code. In this chapter, we have:

● Recapped basic operators and how to employ them in our code

● Described what conditional operators are, such as “AND”, “OR”, and the Logical Not: !

● Learned how we can combine operators and make them work in our code

	[image: image]
	 	[image: image]

[image: image]

Chapter 6: Statements

[image: image]

In order to have no errors, all statements should finish with a semicolon, as I have mentioned above. We have learned from chapter two what statements are and how they allow us to perform tasks within the code that we write.

We will go slightly deeper in understanding what statements are and what other things we can do with them in this chapter.

	[image: image]
	 	[image: image]

[image: image]

Conditional Statements

[image: image]

As we have seen, Java can also support logical, mathematical conditions such as greater than “>”, less than “<”, equal to “==”, and others. We use these conditional statements to perform different actions in different situations. For instance:

● if is used to specify a certain block of code if a certain condition is true

● else is used if the condition in the block of code, or if the same condition is false

● else if is used if a first condition is false and then to specify a new condition

● switch is used to indicate several alternatives to be executed

	[image: image]
	 	[image: image]

[image: image]

The If Statement

[image: image]

In this section, we will learn about control flow, and how statements can manage them. Let’s take the if statement, for instance, it challenges an expression and runs the code based on the answer. Like this:

if(flip == 1) {

System.out.println(“Tails”);

}

The [image: image] stores a boolean type of data. This means, if the conditions are met, the program will run the code. The expression we use between the parentheses is a block of code that if the boolean is true, the code will run. For example:

Example 1

boolean isValidCode = true;

if (isValidCode) {

System.out.println(“Code Accepted”);

}

//prints “Code Accepted” is boolean is true

Example 2

int numberOfCars = 10;

if (numberOfCars > 11) {

System.out.println(“Car Park Full”);

}

//nothing is printed because the number of cars is less than 11

	[image: image]
	 	[image: image]

[image: image]

The Else Statement

[image: image]

We have now seen how we can execute one block of code as a condition, but what if there are two? For example, if the milk bottle is at a discount, then Maria can afford it, else she will have to buy another brand of milk. Have a look at this snippet:

Example 1

if (hasPrerequisite) {

//Maria buy the milk she wants

} else {

//Maria will buy another brand of milk

}

Example 2

int hour = 12

if (hour < 13) {

System.out.println(“Good morning”);

} else {

System.out.println(“Good afternoon”);

}

}

//the printout would be “Good morning”, as the time is less than 13

//if the time was greater than 13, the printout would have been “Good afternoon”

Example 1, is a condition that makes sure that if the hasPrerequisite is false, the code will run the code after else. This way we have two different blocks of code, the first is executed if the condition is true, the other is executed if the condition is false. We can call this statement if-then-else.

	[image: image]
	 	[image: image]

[image: image]

The Else If Statement

[image: image]

We can continue with this conditional structure if we need to and use an if-then-else-if. So let’s use the same example, but now Maria hopes at least one of her two favorite brands of milk is at a discount. That makes our code have more than one condition. Have a look at this snippet:

if (milkOne > 3) {

} else if (milkTwo > 3) {

}else if (milkThree > 3) {

} else {

System.out.println(“Can't afford milk”);

}

In this case, we have two conditions that can be true, and the code will continue to run until one is true, or if it reaches else and prints out the line.

We can get even more complex conditions with our code if we use nested conditional statements. We can achieve that by using conditionals inside other conditionals. When we do that, the first, or outer conditional statement will run first, and then the one inside.

	[image: image]
	 	[image: image]

[image: image]

The Switch Statements

[image: image]

You can also switch statements, and this can be seen as another way to chaining if-then-else. What this conditional statement does is check the value given with every condition, and once there’s a match, the code will run. This is an example of a program that enrolls students by evaluating the value inside the parentheses.

String course = “Math”;

switch (course) {

case “Science”:

break;

case “Geology”:

break;

case “Math”:

break;

case “Gymnastics”:

break;

default:

System.out.println(“No course”);

}

When we break this down, here’s how it works. This program is supposed to enroll the student in Math when checking the value inside the parentheses—in this case, course—against each of the case.

Before we went through conditional statements, our code would run from the top to the bottom. But now we can branch out and have different paths and make more complex programs. Another example would be:

public class Main {

public static void main (String[]args) {

int fruit = 5;

switch (fruit) {

case 1:

System.out.println(“Banana”);

break;

case 2:

System.out.println(“Kiwi”);

break;

case 3:

System.out.println(“Apple”);

break;

case 4:

System.out.println(“Orange”);

break;

case 5:

System.out.println(“Pomegranate”);

}

}

//the output would be “pomegranate”

Now, let’s break the keywords down:

● Switch means the expression will be executed once

● This evaluation will be against the values of case

● Break means the program will break out, if or when a match is found. This is great because if there’s a match, the program won’t run the whole program

We can also use a default keyword, and this means that if there is no match, it will run a default printout. If we pick again the example above, would be like this:

public class Main {

public static void main (String[]args) {

int fruit = 5;

switch (fruit) {

case 1:

System.out.println(“Banana”);

break;

case 2:

System.out.println(“Kiwi”);

break;

default:

System.out.println(“Fruit salad”;

}

//In this case none of the blocks of code matched 5, and so the default statement was printed

In this chapter about statements, we have learned:

● What conditional statements are and how can we use them, such as the if, else, and the else if

● How switch statements allow us to chain together statements such as if-then-else

	[image: image]
	 	[image: image]

[image: image]

Chapter 7: Classes

[image: image]

As we have seen, Java is an object-oriented program, and we’ve talked about its functionalities and roughly how it works in the first chapter of this book. Now, we are going to learn about classes, but before, let us just go back and remind ourselves of what an object-oriented language is.

We have learned about the three types of information Java programming can hold: string, numbers, and boolean. But that is not enough if we want to create variables that are more complex. Let us set a real-life example and choose a school program that wants to track its students. They want to track each of their students through their name, GPA, grade year, and scholarship status. We could do that because we can use names as a string, GPA as numbers, their school year as strings too and if they have a scholarship as boolean.

Now, we have also learned about functions. So in this case, we want to know if their GPA is enough to give them honors, so we could set hasHonors(), or if they can be given a scholarship related to their GPA as giveScholarship(), and these would be functions. With all this information we can create our own data type and mold it according to a real-life situation.

So how do we create our own data type? First, we need to create a class and declare its variables. As we have seen before, class works as a sort of blueprint, and it’s a set of rules and data types to inform the program how the new data type or class would look like.

	[image: image]
	 	[image: image]

[image: image]

Creating a Class

[image: image]

Have a look at this snippet of a class creation:

public class Main {

int a = 10;

}

	[image: image]
	 	[image: image]

[image: image]

Creating an Object

[image: image]

Once we have created our class, we can go on and create our object:

public class Main {

int a = 10;

public static void main (String[] args) {

Main anObject = new Main ();

System.out.println(anObject.a);

}

}

Obviously, you can create more than one object in a single class:

public class Main {

int a = 10;

public static void main(String[] args) {

Main anObject1 = new Main();

Main anObject2 = new Main();

System.out.println(anObject1.a);

System.out.println(anObject2.a);

}

}

	[image: image]
	 	[image: image]

[image: image]

Multiple Classes

[image: image]

Objects are also interchangeable within classes. This means you can use objects that were created in other classes. The purpose of this is to have a better organization of your code. For instance, having methods and attributes in one class and the main() is in another class. In this case, you would have to have two different java files. The main and the other. Like this:

Example 1 (main)

public class Main {

int a = 10;

Example 2 (other)

class Other {

public static void main (String[] args) {

Main anObject1 = new Main();

System.out.println(anObject1.a);

}

}

We can compile both files in the command prompt:

C:\Users\Name of Your Computer>javac Main.java

C:\Users\Name of Your Computer>javac Other.java

Then run the Other.java:

C:\Users\Name of Your Computer>java Other

The printout would be 10.

This example will consist of a name, GPA, year, and whether or not the student has a scholarship.

So now we have given instructions on what the class is, but we haven't created an object, in this case, a student.

So we first need to declare what is inside the class, so we can create an object. In our example, an object would be a student like this:

Student name: Rex

GPA: 3.6

Year: 2005

Scholarship: Yes

That would be our object in the class that we have just created. Once we define the class, we can create as many objects as we want. This is one of the reasons why object-oriented programming languages are so popular and manageable.

We can create a class for anything modeled through our world, from cars to students, animals, or even days of the week. If we were to create a program to keep track of students and their test scores, we would create classes such as ‘students’, ‘grades’, or ‘courses’. Now every student inside the ‘student’ class would be an object also called an instance, the same as any different course, would be an object or instance in the class ‘course’.

As we have seen, we can further classify objects as having both state and behavior. In the case of a student, the state would be the different fields, such as name, GPA, etc., and the behavior would be the method.

	[image: image]
	 	[image: image]

[image: image]

Syntax

[image: image]

For instance, as we have seen Java has predefined classes, such as [image: image], which we often use to add text to the screen. When we use [image: image] To start our code, we are using an access level modifier, which allows other classes to interact with this class. That is why we can add other classes to the code. For the sake of understanding, all the classes we will work on for now will be [image: image].

As we have seen, when we write [image: image], it has a [image: image] method, which in turn is able to list the tasks performed by the program. This [image: image] runs every time we compile the .class file.

	[image: image]
	 	[image: image]

[image: image]

Constructors

[image: image]

To be able to create an object, or instance for a class, we need a constructor method. When you define a constructor, you have to do it inside the class. Let’s have a look at this example:

public class Chocolates {

//this is a constructor method

public Chocolate() {

//these are the instructions to create a chocolate object or instance

}

public static void main (String[] args) {

//body of main method

}

}

In order for us to create an object or instance, we need to call the constructor within main(). So if we wanted to assign a new chocolate object to a variable ferrero, it would look like this:

public class Chocolate {

public Chocolate() {

//how to create a Chocolate object

}

public static void main(String[]args) {

//calling the constructor

Chocolate ferrero = new Chocolate();

}

}

Unlike what we have seen so far, where we declare primitive data types such as boolean or int, we declare our variable Chocolate as a sort of reference type of data. This determines the value of the ferrero variable is a reference to an object’s memory. When we declare it, we use the name of the class as the type of variable, which in this example is Chocolate.

So we need to assign an operator which in this case is ‘=’, call the constructor method Chocolate(), and use ‘new’ to tell the program we are creating an object. We can also start a reference-type of variable even without assigning a reference if we use a value called ‘null’. This value means that there is no value, and if we assigned it to an object, their reference would be void.

	[image: image]
	 	[image: image]

[image: image]

Instance Fields

[image: image]

Objects should have characteristics, which so far we have added none. In order for us to do that we need to add instance variables, also called instance fields. This allows us to introduce data to the object.

For instance, we want to add different flavors to the Chocolate class, so we need to declare an instance field named String flavor. We can describe these instance variables as a “has-a”. So for example, Chocolate “has-a” flavor. This can also be seen as a quality of the class, for example, what other flavors can chocolate have?

public class Chocolates {

//To declare fields inside the class, specify the type and name

String flavor;

public Chocolate()

//here place the instance fields in the scope of constructor method

public static void main(String[] args) {

//here place body of main method

}

}

As you see, to declare you need to do it within the class, and once you do that the instance variable is available to be assigned within the constructor.

The type of state that instance has are the fields, and those can be “almond” as its flavor, others might have “hazelnut”, and so on.

	[image: image]
	 	[image: image]

[image: image]

Constructor Parameters

[image: image]

We have already seen parameters even though we didn’t explain it much, but for example String[]is a parameter in the main() method. Now we will use a parameter inside a method body.

public class Chocolate {

String flavor;

//this is a constructor method with a parameter

public Chocolate(String chocolateFlavor)

//here there’s a parameter assigned to a field

flavor = chocolateFlavor;

}

public static void main(String[] args) {

//task’s program

}

}

Here we can see that the String is inside Chocolate() and we assign it to the chocolateFlavor parameter. Inside the constructor, [image: image] can be assigned to the flavor which is an instance variable.

Chocolate(String chocolateFlavor) is called a signature and defines both the method and the name of the method.

To pass values into a method, we can divide parameters into two different types: formal and actual. The first declares the type and name of data to be passed into a method, which in the example above is String chocolateFlavor. This tells us that chocolateFlavor represents whatever String we pass into the constructor. We’ll get to actual parameters further down in this chapter.

A class can have more than one constructor because of something called constructor overloading, as long as they have different parameter values. A compiler will be able to tell the difference between the two methods because of the signature. Here’s an example of two constructors:

public class Chocolate {

String flavor;

boolean containNuts;

//constructor1

public Chocolate(String chocolateFlavor) {

flavor = chocolateFlavor;

}

//constructor 2

public Chocolate(boolean containNuts)

containNuts = nuttyChocolate;

}

}

It can happen that we do not assign a constructor, which in that case the compiler will make up a default constructor that has no arguments and has default values on the object. If you assign values to instance fields when you declare, the default values will be created. For example:

public class Chocolate {

String flavor = “fruity”;

boolean containNuts = false;

public static void main(String[] args) {

Chocolate myChocolate = new Chocolate();

[image: image]System.out.println(myChocolate.flavor);

//it would print fruity

}

}

	[image: image]
	 	[image: image]

[image: image]

Assigning Values to Instance Fields

[image: image]

We have mentioned arguments before, what these are is values that we can pass into the method. Once we do that, we can use them to give instance fields initial values. Look at this example:

public class Chocolate {

String flavor;

public Chocolate (String chocolateFlavor) {

//here we are able to assign a parameter value to an instance field

flavor = chocolateFlavor;

}

public static void main (String[] args) {

//here we call the constructor to supply the parameter value

Chocolate ferrero = new Chocolate(“fruity”);

}

}

As we can see in the example above, we created the instance [image: image] in the [image: image]method with “fruity” as its flavor. We manage to pass the value “fruity” to the constructor method new Chocolate(“fruity”);.

In order for this to work, the given type value has to be equal to the parameter type declared. When we look at the constructor, we see that the chocolateFlavor is referring to the value that we have passed, in this case, “fruity”. “Fruity” is then assigned to flavor, which is the instance field.

In this example, we have already declared flavor when we did flavor = chocolateFlavor, which we don’t have to assign anymore. The instance, ferrero, holds flavor which is an instance field that refers to the value “fruity”. For us to access the value of the field, in this case, flavor we would use the dot “.”. For example:

/*how to access a field:

objectName.fieldName

*/

//it would be “fruity”

Now, when a value is passed during a method call, this is called an actual parameter. When we call an argument through the process of calling a method, it’s called call by value. To give you an example, when in the exercise above we have declared the object ferrero, the String value “fruity” is passed as an argument. The chocolateFlavor, which is a formal parameter, is then assigned a copy of the value.

	[image: image]
	 	[image: image]

[image: image]

Multiple Fields

[image: image]

Instance fields can be added to objects without a limit, as long as our program needs them. In our example, we will add more instances so the program has multiple fields. Will place a boolean hasAllergens, that says if the chocolate has any allergens such as nuts, as well as an int grams indicating the grams in one chocolate. This is how it should look:

public class Chocolate {

String flavor;

//we will add new field here

boolean hasAllergen;

int gramsPerChocolate;

//now we will add the new parameters that link to new fields

public Chocolate(String flavor,

booleans allergens, int grams) {

flavor = ChocolateFlavor;

//new parameters

allergens = hasAllergens;

grams = gramsPerChocolate;

}

public static void main(String[]{

//passing the new values into method call

Chocolate ferrero = new Chocolate(“nutty”, true, 72);

Chocolate tony’s = new Chocolate(“fruity”, false, 64);

System.out.println(tony’s.allergens);

//this would be false

System.out.println(ferrero.grams);

//here would be 72 grams

}

}

As we can see the constructor has more than one parameter, and so is able to receive values for the newly created fields. One thing to take into consideration is that the order in which you present your parameters has to be the same when you pass the values.

These are the basic concepts that you need to know when we talk about classes and what they are able to do within the code. Programs are usually created from many classes and objects, and a program has to have at least one class in order to function.

As classes tell what behavior and states represent for their objects. For example, as you declare instance fields, you are defining a state. The same for behaviors when you define methods in the class.

As we have also seen, we can consider classes to be shaped out from real-world examples and they represent those things in our world, such as information about students in a school program.

	[image: image]
	 	[image: image]

[image: image]

Methods

[image: image]

As we have learned in this chapter, objects, or instances have both behavior and state. We have also looked into how to add instance fields to give state to objects. In this section, we will look into how we can add behavior while using methods.

We can look again at the bank account example we had. In this example, the state defines the balance on the account. The behavior indicates what we can do with that bank account, such as withdraw, deposit or even verify the balance.

Methods are used to repeat actions that we can perform, such as these. This is also the reason many large programs can be accomplished, as methods allow us to divide those large tasks into smaller ones. Because we can use methods, again and again, this simplifies our life. Imagine, you have a program that we use to assemble a bicycle, so in code could be something like assembleBike(). If we had to write the same code for every bicycle assembled we would lose a lot of time and be more prone to mistakes in the code. But because we have created an assembleBike(), we can just call the method every time we need it.

In this section, we will see how we create and bring methods into our codes. Because of the way Java programming is done, anyone could call assembleBike() onto their code and work with it, even if they didn’t understand how it was written. And because so many programmers use this technique, they gave it a name: procedural abstraction. It’s when you use a method, knowing what it can accomplish, but not knowing how it does it.

Look at this code snippet:

//balance

System.out.println(“Hi”);

System.out.println(“The balance in your account is:”

+account.balance);

//Deposit funds

int afterDeposit = account.balance + 50;

account.balance = afterDeposit;

System.out.println(“You’ve deposited” +50);

//balance after deposit

System.out.println(“Hi”);

System.out.println(“The balance in your account is:”

+ account.balance);

//Withdrawal

int afterWithdraw = account.balance - 50;

account.balance = afterWithdraw;

System.out.println(“You withdrew” + 50);

And this would continue every time you would deposit or withdraw money from your bank account. It’s too long!

We will see how to do this more efficiently using methods to define behaviors.

Now using the same example of the bank account, but using a method to check your account balance:

public void yourBalance(){

System.out.println(“Hi”);

system.out.println(“The balance in your account is:” + balance);

}

To declare this method we used public void yourBalance(). Here’s what everything means:

● yourBalance() is the name we gave to the methods

● public means that any other class in your program has access to the method

● void basically means that there’s no output in this method

You can use anything you have learned so far in the main() method in any other method that you create, such as operations or the use of operators. You might have noticed that we didn’t use the static word in our method, that is because it is a non-static method. We will dig into that later.

So, how do we call methods? Once we add a method, in this case, a non-static method to the class, we are able to use it on an instance of the class. For us to use the methods, we need to call them on the object. Let’s have a look at this example:

class Motorcycle {

String color;

public Motorcycle(String motorcycleColor) {

color = motorcycleColor;

}

public void turnEngine()

{

System.out.println(“Start motorcycle.”);

System.out.println(“Go!”);

}

public static void main

(String[] args) {

Motorcycle myCoolMotorcycle =

new Motorcycle(“black”);

//Here we are calling a method on the object

myCoolMotorcycle.turnEngine();

System.out.println(“Crazy fast motorcycle.”);

}

}

Did you see where we called the method? myCoolMotorcycle.turnEngine();

The first thing we need to do is to reference the object created, in this case, myCoolMotorcycle. After that, we need to use the dot operator so that we can call the turnEngine(), which is the method.

The outcome of the code, if we were to run it on the editor, would come as Start Motorcycle. Go! Crazy fast motorcycle.

As we can see, the compiler can ignore a method if this is not called, the same way the output comes in the order that we have placed the printouts.

By using “{” and “}” we are defining the scope of a method, as well as anything within the curly braces belonging to the task that we want the code to perform. Here’s an example of what belongs and what doesn’t belong in the scope:

class Motorcycle {

String color;

int speedMoto;

public Motorcycle(String motorcycleColor) {

color = motorcycleColor;

speedMoto = 0;

}

public void driving() {

String alert = “Speed driving:” + speedMoto;

System.out.println(alert);

}

public static void(String[] args) {

Motorcycle myCoolMotorcycle =

new Motorcycle(“black”);

myCoolMotorcycle. driving():

}

}

We have a variable alert that we declare inside driving. This variable can’t be used inside the main() method, because it is only in the scope of driving(). On the other hand, speedMoto can be used in all methods, as it was declared at the top.

So now we have learned that we can only use variables only if those were first declared inside the scope of the method. But there’s a way to add certain information in certain methods and pass it into another method. Remember how we added parameters to constructors? We can change methods so they allow certain parameters. Look at the snippet to see how it can be done:

public void

startingSpeed(int speedNum, String cheerUp) {

System.out.println(“As we reach the

speed of” + speedNum + “,” +

cheerUp + “!”);

System.out.println(“Hell yeah!”);

}

public static void main(String[] args) {

Motorcycle myCoolMotorcycle =

new Motorcycle(“black”);

myCoolMotorcycle.speedNum(70, “Wow!”);

}

}

Just like with constructors, the signature is made up of the name of the method, as well as the parameter types. The signature of this method is [image: image]

As you can see, in the main(), we called startingSpeed() on myCoolMotorcycle instance and gave an int argument of 70, as well as a String argument of “Wow.” This should be printed out as “As we reach the speed of 70, Wow! Hell yeah!”.

Again, the order is relevant here. So the argument types need to be in the same order as the parameter types.

We are also able to reassign instance fields. If we go back to our bank account example, we need two different methods in order for us to deposit, as well as withdraw money from it. Depending on how much you withdraw, how much you deposit, and the initial balance, the value of [image: image] would change. And as we have seen, by using the “=” operator, we can once again assign the balance to have a new value:

public void depositing(double valueToDeposit){

double updatedBalance = balance + valueToDeposit;

balance = updatedBalance;

}

If we call our depositing() method, the value of the instance field should change:

public static void main(String[] args){

bankAccount myAccount = new bankAccount(100);

System.out.println(myAccount.balance):

myAccount.depositing(50);

System.out.println(myAccount.balance);

}

If we run this code, it will first print 100, which is the initial value in the account, but it will then print 50, as this is left in the account after the deposit. By altering instance fields, we are able to alter the state of an object and make them more varied and flexible.

To be able for us to use variables outside the method they were created in by returning them from the method. The word is return. Like this:

public int numberOfMugs() {

int mugs = 6;

// here we return the statement

return mugs:

}

In this example, we have a method, numberOfMugs(), and it returns 6. After you return the statement, the compiler will ignore anything that comes after it.

As you might have noticed, we didn’t use the [image: image] keyword, and instead, we used [image: image], this is so we understand that the return type is [image: image]. In the past examples when we used [image: image], we were telling the program that no value was returned. With the non-void method we used numberOfMugs(), we are able to return a value once we call it.

What if we want to return an object? That is possible, however, not quite the same way we return primitives. To give you an example, we can create another class which we will call motoLot, and this class will have the parameter Motorcycle and will return the Motorcycle object.

class MotoLot {

Motorcycle motoInLot;

public MotoLot(MotorcyclegivenMotorcycle) {

motoInLot = givenMotorcycle;

}

public Motorcycle returnAMotorcycle()

{

// we are now returning Motorcycle object

return motoInLot;

}

public static void

main(String[] args) {

Motorcycle myCoolMotorcycle = new

Motorcycle(“black”, 70);

System.out.println(myCoolMotorcycle);

MotoLot myMotoLot =

new MotoLot(myCoolMotorcycle);

System.out.println(myMotoLot.returnAMotorcycle());

}

}

The output should give you the same memory address mainly because [image: image] and [image: image] have the same value.

Just a reminder of what we have learned so far while using methods. We are able to call methods by using the dot “.”, as well as the (). We can change the value of an instance field by using methods. Scopes are set variables that only exist inside the method they were created in and returns, that allow us to use variables outside a method.

	[image: image]
	 	[image: image]

[image: image]

Parameters and Arguments

[image: image]

You might already know by now what parameters and arguments are. We’ve shown many examples, especially in this chapter about what parameters and arguments might be. In this section, we will go a little deeper in understanding them, and how they can help us while we code.

We know that in order to pass information to methods, we can use parameters. You could say that parameters are similar to variables, but to be used inside a method. You specify parameters inside parentheses after you have declared the name of the method, and these don’t have a limit, so you can add as many parameters inside a method as you want, as long as they are separated by commas. Have a look at this example:

public Class Main {

static void aMethod(String firstName) {

System.out.println(firstName + “Martins”);

}

public static void main (String[] args) {

aMethod(“George”);

aMethod(“Sebastian”);

aMethod(“Gui”);

}

}

//the printout would be:

//George Martins

//Sebastian Martins

//Gui Martins

Once we execute the code, the parameters that we used become arguments. So looking at the example above, we have George, Sebastian, and Gui as arguments and firstName as a parameter.

	[image: image]
	 	[image: image]

[image: image]

Multiple Parameters

[image: image]

There are no limits to the parameters you want to have. The only thing you need to pay attention to when working with multiple parameters is that you need to have an equal amount of arguments as you have parameters, and they need to be passed in the same order. Here’s an example:

public class Main {

static void aMethod (String firstName, int years) {

System.out.println(firstName + “is” +years + “years old”));

}

public static void main (STring[] args) {

aMethod (“George”, 17);

aMethod (“Sebastian”, 20);

aMethod (“Gui”), 23);

}

}

//George is 17 years old

//Sebastian is 20 years old

//Gui is 23 years old

	[image: image]
	 	[image: image]

[image: image]

Method Overloading

[image: image]

This feature is used to have more than one method with an equal name but different parameters. Such as:

static int multiMethodInt (int a, int b) {

return a + b;

}

static double multiMethodDbl (double a, double b0 {

return a + b:

}

public static void main String[] args) {

int aNumb1 = multiMethodInt (10, 8):

double aNumb2 = multiMethodDbl (3.5, 4.4);

System.out.println(“int is” + aNumb1);

System.out.println(“double is” + aNumb2);

}

// int is 18

//double is 7.9

The issue here is that we are using two methods and both are doing the exact same thing. This is when overloading comes in. In the next example, we will “overload” and use only one method that will do both:

static int overMethod (int a, int y) {

return a + b;

}

static double overMethod (double a, double b) {

return a + b;

}

public static void main String (String[] args) {

int aNumb1 = overMethod (10, 8);

double aNumb2 = overMethod (3.5, 4.4);

System.out.println(“int is” + aNumb1);

System.out.println(“double is” + aNumb2);

}

//int is 18

//double is 7.9

As you can see, we have used the same method overMethod and we worked on both double and int.

	[image: image]
	 	[image: image]

[image: image]

Java Math

[image: image]

This is a special Java class that has many methods, allowing you to perform operations on numbers. There are numerous methods inside this class, but we will only give you a few examples of the most used. It’s important to note that every method inside the Math class is static, but we will learn more about static and non-static methods later in the book.

	[image: image]
	 	[image: image]

[image: image]

Math.max()

[image: image]

This method is often used to find out the maximum, or highest value of a variable. For instance:

public class Main {

public static void main(String[] args) {

System.out.println(Math.max(65, 98));

}

}

// the printout would be 98, because is the highest number

	[image: image]
	 	[image: image]

[image: image]

Math.min()

[image: image]

This method works in the same way as the previous, but instead of revealing the highest number, would give the lowest:

public class Main {

public static void main (String[] args) {

System.out.println(Math.min(65, 98));

}

}

// the printout would be 65

	[image: image]
	 	[image: image]

[image: image]

Math.sqrt()

[image: image]

We use this method to find out the square root of a given variable, for example:

public class Main {

public static void main(String[] args) {

System.out.println(Math.sqrt(25));

}

}

//the printout would be 5.0

	[image: image]
	 	[image: image]

[image: image]

Math.abs()

[image: image]

With this method we are able to find out the absolute positive value of a given variable:

public class Main {

public static void main(String[] args) {

System.out.println(Math.abs(-5.1));

}

}

// the printout would be 5.1

	[image: image]
	 	[image: image]

[image: image]

Math.random()

[image: image]

as the name suggests, this method returns a random number between 0.0 and 1.0, like this:

public class Main

public static void main(String[] args) {

System.out.println(Math.random());

}

}

// the outcome would be a random number between 0.0 and 1.0

However, you are able to alter the range of random numbers you might get. If you want to expand the length of random number to 50, you would write it like this:

public class Main {

public static void main(String[] args) {

int randomNumbr = (int)

(Math.random() * 51);

//note that it’s place 51 because it is not inclusive

System.out.println(randomNumbr);

}

}

// the printout would be a number between 0 and 50

	[image: image]
	 	[image: image]

[image: image]

Java Packages & API

[image: image]

When we talk about packages in Java, we are mentioning groups of classes. Just like a computer folder, for example. In order to create clear and more maintainable code, we use packages with unique names so we don’t get confused about which are which. We can divide these packages into two different categories:

● Built-in (from the Java API)

● Own Packages (created by users)

	[image: image]
	 	[image: image]

[image: image]

Built-in Packages

[image: image]

These are the Java API and they can be seen as an internal Java library with classes that are already written and ready to use. All of these packages are free to use. You can find many classes there that allow you to do many other things.

This internal Java library is then further divided into classes and packages. If you import a class, you will get a single class with its attributes and methods, but if you import a package, you will get several classes that are related to each other. So how do we import packages or classes from the Java internal library? Let's have a look:

import package. nameOfClass. Class;

//you would import a single class

import package. nameOfPackage. *;

//you would import a package

To give you a more specific example:

import java.time. LocalDateTime;

The package in the example above would be java.time, this package allows you to introduce dates, times, duration and instants. And then we would narrow it down to the class LocalDateTime, which allows access to the current date and time. For example:

import java.time. LocalDateTime;

public class TimeRightNow {

public static void main (String[] args) {

LocalDateTime timeNow = LocalDateTime.of (2022, 2, 3, 3, 45, 32, 6600);

System.out.println(“Hours =” + timeNow. getHour());

System.out.println(“Minutes =” + timeNow. getMinute());

System.out.println(“Seconds =”+ timeNow. getSecond());

System.out.println(“Nanos =”+ timeNow. getNano());

System.out.println(“Year =”+ timeNow. getYear());

System.out.println(“Month =”+ timeNow. getMonth());

System.out.println(“Day =”+ timeNow. getDayOfMonth());

}

}

The printout would look something like this:

Hours = 3

Minutes = 45

Seconds = 32

Nano = 6600

Year = 2022

Month = FEBRUARY

Day = 3

If you go to the official website of Oracle, you will have many packages to choose from and many other classes. Just remember, if you want to import a whole package, you need to write it like this:

import.java.time. *;

You will need to use the “*” in order to import the whole package.

	[image: image]
	 	[image: image]

[image: image]

User-Defined/Third-Party Packages

[image: image]

If you want to create your own package, you will need to store it in a specific Java directory. The keyword you will need to use is package, and it’s applied like this:

package myownpack;

class MyPackageClass {

public static void main(String[] args) {

System.out.println(“I created this package”);

}

}

You will need to save this as MyPackageClass.java in order to compile it:

C:\Users\Name of Your Computer>javac MyPackageClass.java

Then,

C:\Users\Name of Your Computer>javac -d . MyPackageClass.java

There are two keywords here: -d allows you to specify a certain destination to save the file, while “.” allows you to retain the package in the same directory.

Then, after we have compiled the package, a folder named “myownpack” was created. To run you will need to type:

C:\Users\Name of Your Computer>java myownpack.MyPackageClass

And you will get:

I created this package

	[image: image]
	 	[image: image]

[image: image]

Abstract Classes and Methods

[image: image]

When we mention abstraction, we are talking about hiding certain data from the user, and showing them only the necessary data. We can do this through abstract classes or interfaces. We’ll explain what interfaces are, but first, let us understand what abstract classes are all about.

We can use abstract classes, as well as methods. When we use abstract classes, we cannot create objects. Abstract methods can only be used if we are also using an abstract class, and the body is given by a subclass, so abstract methods do not have bodies. But you can use regular and abstract methods when using an abstract class. For instance:

abstract class Insect {

public abstract void insectNoise();

public void sleep() {

System.out.println(“Bzzz”);

}

}

If we want to create an object we would need to inherit from another class through polymorphism which we will learn in another chapter.

Interfaces

We can also achieve abstraction through the use of interfaces. We can use interfaces when we have methods with empty bodies and we want to group them together. In order to access interface methods, we have to use the keyword implement. Like this:

interface Insect {

public void insectNoise();

//this is the interface method

public void sleep();

//this is the interface method

}

class Bee implements Insect {

public void insectNoise() {

//here’s the body of insectNoise()

System.out.println (“The bee goes: bzzz”);

}

public void sleep() {

System.out.println(“Bzzz”);

//here’s the body of sleep()

}

}

class Main {

public static void main (String[] args) {

Bee aBee = new Bee();

//here’s where you create the Bee object

aBee. insectNoise();

aBee. sleep();

}

}

Let us go through the features of interfaces and what they can do in our code to sum up what we have explained so far:

● You can’t use interfaces to create objects

● In order to add a body to an interface method, the body has to be provided by another class

● abstract and public are the interface methods by default

● The attributes are final, public, and static

● Because you can’t create objects with an interface, you cannot have a constructor either

In order to add more than one interface to your code, you need to separate them with a comma:

interface oneInterface {

public void aMethod();

}

interface twoInterface {

public void bMethod();

}

class DemonstrationClass implements oneInterface, twoInterface {

public void aMethod() {

System.out.println(“print out outcome”);

}

public void bMethod() {

System.out.println(“second print out outcome”);

}

}

class Main {

public static void main(String[] args) {

DemonstrationClass aObject = new Demonstration Class();

aObject.aMethod();

aObject.bMethod();

}

}

	[image: image]
	 	[image: image]

[image: image]

Java Enums

[image: image]

Enums are a special type of class that are an agglomerate of unchangeable variables called constants. There are a few differences between a class and enum, but both of these have methods and attributes. However, enum constants cannot be overridden and are so unchangeable. These are public, final, and static.

You can’t use an enum for the creation of objects. So when would we use enum? You use enum when you know for sure the values won’t change. For instance, seasons, months, or colors.

enum LightTrafficSignal {

RED (“halt”), GREEN (“go”), ORANGE (“slower”);

private String move;

public String getMove() {

return this.move;

}

private LightTrafficSignal (String move) {

this.move = move;

}

}

LightTrafficSignal signal = LightTrafficSignal. valueOf (“RED”);

signal = LightTrafficSignal.valueOf (“GREEN”);

signal = LightTrafficSignal.valueOf (“ORANGE”);

	[image: image]
	 	[image: image]

[image: image]

Java User Input

[image: image]

This is a very useful class in Java. With the Scanner class, you can get user inputs. In order for you to import the Scanner class, you will need to use java.util package. There are many methods inside the Scanner class. For this example we will use one that allows us to read Strings, it’s called nextLine() method:

import java.util. Scanner;

class Main {

public static void main (String[] args) {

Scanner aObject = new Scanner (System.in);

//this is so we are able to create a scanner object

System.out.println(“Enter nickname”);

String userNickname = aObject. nextLine();

System.out.println(“Nickname is” + userNickname);

}

}

The printout should be something like:

Enter nickname

(here you would enter the nickname you have chosen)

Nickname is: (nickname you have chosen)

We used nextLine() so we could read Strings, but there are many other methods inside Scanner that allow you to read other values. For example:

nextDouble() allows you to read double. nextBoolean() allows you to read boolean values. nextInt() allows you to read int values, and so on.

	[image: image]
	 	[image: image]

[image: image]

Java Dates

[image: image]

We have given an example above relating to the java.time package by using the class LocalDateTime which represents both date and time. But there are other useful classes in this package such as LocalDate only representing date and LocalTime only representing time.

To give you another example of a current date:

import java.time.LocalDate;

public class Main {

public static void main(String[] args) {

LocalDate aObject = LocalDate.now();

System.out.println(aObject);

The output would be the current date on your computer. To do that with time, we would proceed in a similar way:

import java.time.LocalTime;

public class Main {

public static void main(String[] args) {

LocalTime aObject = LocalTime.now();

System.out.println(aObject);

And the output would be the current time on your computer.

There’s another class inside the java.time package and it’s called DateTimeFormatter using the method ofPattern(). This allows you to format date and time, as you wish. Here’s an example:

import java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

public class Main {

public static void main(String[] args) {

LocalDateTime aDateObject = LocalDateTime.now ();

System.out.println(“No formatting” + aDateObject);

DateTimeFormatter aFormatObject = DateTimeFormatter. ofPattern (“dd-MM-yyyy HH:mm:ss”);

String formattedDate = aDateObject.format (aFormatObject);

System.out.println(“With formatting:” + formattedDate);

}

}

The output would be as follows:

No formatting—yyyy-MM-dd : HH:mm:ss

With formatting—dd-MM-yyyy : HH:mm:ss

You don’t have to necessarily use this configuration; instead, you can use dd/MM/yyyy, or dd-MMM-yyyy and the program will adjust it accordingly.

	[image: image]
	 	[image: image]

[image: image]

Java HashMap

[image: image]

In the chapter about arrays and ArrayList, we have learned that you can hold different values orderly, and we are able to access them by calling the index number these values are in. These values, when we use ArrayList, are of int type. With a HashMap, you can hold other keys and values in pairs, as well as access them through an index by using other types such as Strings for instance.

In this case, then you would use an object key (or index) to a different object (or value). This way you can hold different types or even the same type. For example, have a look at this snippet:

import java.util.HashMap:

HashMap<String, String> countriesContinents = new HashMap<String, String>();

Above you have imported the HasMap and created an object named countriesContinents. Let’s have a look at a whole code block:

import java.util.HashMap;

public class Main {

public static void main (String[] args) {

HashMao<String, Strong> countriesContinents = new HashMap<String, String>;

countriesContinents.put (“Europe”, “England”);

countriesContinents.put (“North America”, “USA”);

countriesContinents.put (“Asia”, “Japan”);

System.out.println(countriesContinents);

}

}

If you want to access an item within the HashMap, you need to use get(), like this:

countriesContinents. get(“Asia”);

If you want to remove a value, then you would use remove(), or if you want to remove all the items, you would use clear(). If you want to figure out the size of your HashMap you would use size() method.

	[image: image]
	 	[image: image]

[image: image]

Java HashSet

[image: image]

Just like HashMap, you access HashSet by importing the java.util package. This allows you to create a mathematical set using a hash table data type. It’s a sort of collection of items. Here’s how you create it:

import java.util.HashSet;

HashSet<String> dogs = new HashSet<String>();

If you want to add items, you do it this way:

import java.util.HashSet;

public class Main {

public static void main(String[] args) {

HashSet<String> dogs = new HashSet<String>();

dogs. add(“Poodle”);

dogs. add(“German Shepherd”);

dogs. add(“Cocker Spaniel”);

dogs. add(“Dalmatian”);

System.out.println(dogs);

}

}

To remove an item, you can use remove(), to remove all items you can use clear(), or check the size(). Just like when we use HashMap.

	[image: image]
	 	[image: image]

[image: image]

Java Wrapper Classes

[image: image]

Even though we have previously said that primitives couldn’t be objects, if we use the wrapper classes, we are able to turn these primitives into objects. Every primitive type has an equal wrapper class. Here’s how they relate (on the left the primitive data type and on the right the correspondent wrapper class):

byte = Byte

short = Short

int = Integer

long = Long

float = Float

double= Double

boolean = Boolean

char = Character

Here’s how we would create a wrapper object, for example:

public class Main {

public static void main (String[] args) {

Integer aInt = 8;

Double aDouble = 4.89;

Character aChar = ‘R’;

System.out.println(aInt);

System.out.println(aDouble);

System.out.println(aChar);

Now, instead of primitives, you are now working with objects, you are allowed to use methods such as: byteValue(), shortValue(), longValue(), intValue(), doubleValue(), charValue(), or booleanValue(). toString() is a great method that you can also use to change these objects into strings.

	[image: image]
	 	[image: image]

[image: image]

Java Regular Expressions

[image: image]

Java uses this feature to search for data in text. What it's called a regular expression, is just a series of characters with the search term. You can use one character or more complex patterns to search for data. Although Java doesn’t have a dedicated class for regular expression, we can use the java.util.regex package. This includes Matcher class for searching for a pattern, Pattern class to define a pattern, and a PatternSyntaxException class that identifies a syntax error on a regular expression. If we are looking for any occurrences of the word ‘programming,’ here’s what it would look like:

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class Main {

public static void main (String[] args) {

Pattern pattern =

Pattern. compile (“programming”, Pattern.CASE_INSENSITIVE);

Matcher matcher =

pattern.matcher (“What is programming?”) ;

boolean matchFound = matcher.find();

if(matchFound) {

System.out.println(“Word Found”);

} else {

System.out.println(“Word not found”);

}

}

}

//the printout would have been “Word found” because there’s the word ‘programming’ in the code

Here’s an explanation of how the code ran. We are looking for the word ‘programming’ in the sentence. We use Pattern.compile() to create our pattern. We use the first parameter to declare the pattern being searched, and the second to declare the search as case-insensitive, so it doesn’t matter if we use capitals or lowercase letters. You don’t have to use the second parameter, but it might help you find the word you are looking for.

Then, we use the matcher() to search for a String and return an object. Finally, the find() method is used to output the experiment, if there’s a match it’s true, if there’s no match it is false and it wasn’t found.

The Pattern.CASE_INSENSITIVE is called a flag, and when used with the compile() method we can change the way the search is done. There are more flags, such as Pattern.LITERAL that allows any special characters in a pattern to be treated as regular characters, and Pattern.UNICODE_CASE that if you use with CASE_INSENSITIVE you can ignore characters that do not belong in the English alphabet.

Threads

In java, threads make a program work in an easier way when doing more than one thing at a time. By performing tasks in the background, threads allow the main program to run smoothly. You can create a thread in two different ways. You can extend the Thread class by overriding the run() like this:

public class Main extends Thread {

public void run() {

System.out.println(“This is how you create a thread”);

}

}

Or you can add a Runnable interface like this:

public class Main implements Runnable {

public void run() {

System.out.println(“This is how you create a thread”)

}

}

You can run the thread by making an instance of a class and bringing the start() method. Like this:

public class Main extends Thread {

public static void main(String[] args) {

Main thread = new Main();

thread.start();

System.out.println(“This is not in the thread”);

}

public void run() {

System.out.println(“This is in the thread”);

}

}

This is how you do it if the class implements the Runnable interface:

public class Main implements Runnable {

public static void main (String[] args) {

Main aObject = new Main();

Thread thread = new Thread (aObject);

thread.start();

System.out.println(“This is not in the thread”);

}

public void run() {

System.out.println(“This is in the thread”);

}

}

The difference between implementing and extending threads is that you can only extend once the class, while if you implement you extend and then implement a class.

Lambda Expressions

Lambda expressions were first introduced with Java 8, and they work in a similar way methods do, but instead, lambda expressions don’t need a name. These expressions have to return a value straight away and don't have any assignments like if or for. They can’t also contain variables, and because of that, they are deemed a lot more limited than methods. If you intend to do anything more complex, you will have to use a block of code. In this case, if the expression has to return a value, the block of code will return a statement. Normally these expressions are also passed as parameters. If, for instance, you would be using these expressions in an ArrayList with a forEach() to print out all the items on the list, it would look something like this:

import java.util.ArrayList;

public class Main {

public static void main(String[] args) {

ArrayList<Integer> items = new ArrayList<Integer>();

items.add(8);

items.add(2);

items.add(22);

items.add(9);

items.forEach((n) -> {System.out.println(n);});

}

}

//the printout would be 8, 2, 22, 9

With lambda expression, if the type of variable is an interface, it allows for it to be stored in variables. However, the expression has to have the same parameters and the same type as the method used. Let’s have a look at the consumer interface from the java.util package.

import java.util.ArrayList;

import java.util.function.Consumer;

public class Main {

public static void main(STring[] args) {

ArrayList<Integer> items = new ArrayList<Integer>();

items.add(8);

items.add(2);

items.add(22);

items.add(9);

Consumer<Integer> method = (n) ->

{System.out.println(n); };

numbers.forEach (method);

}

}

In order for you to use a lambda expression in a method, the type of the method has to have a parameter with a single method interface. Here’s how you run the expression when calling the method of the interface:

interface StringFunction {

String run (String aString);

}

public class Main {

public static void main (String[] args) {

StringFunction exclamation = (s) -> s + “!”;

StringFunction question = (s) -> s + “?”;

printFormatted(“Hi”, exclamation);

printFormatted(“Hi”, question);

}

public static void printFormatted*String aString, StringFunction format) {

String outcome = format.run(aString);

System.out.println(outcome);

}

}

Classes comprise a large number of subjects which makes them one of the most vital pieces of knowledge to understand. We have learned many things in this chapter that will be useful for you in the future, but the main things you need to carry with you to understand the following chapters are:

● How to create a class

● how to create an object

● How to use objects that were created in other classes

● What syntax is

● And what constructors are for

	[image: image]
	 	[image: image]

[image: image]

Chapter 8: Static Methods and Static Variables

[image: image]

	[image: image]
	 	[image: image]

[image: image]

Recap Methods

[image: image]

We have learned about methods and variables earlier in this book, but now we will dive into what static methods and static variables mean in the context of Java programming. We have also talked briefly about static methods before, here’s a reminder of what they do.

These methods don’t belong to any particular object of the class they are in, but to the whole class. If you remember, we call these static methods by using the “.” operator and the name of the class.

double aNumber

= Nmr.random();

Instead of making an Object like Nmr myNmrObject = new NMR(), we just used the name of the class. You might also recall this one:

double aNumber

= Double.valueOf(“3.6”);

We didn’t need to create an Object again, instead, we made the String turn into a double.

	[image: image]
	 	[image: image]

[image: image]

Static Variables

[image: image]

Before we dig into static methods and start creating our own, let’s have a look at static variables and what they can do. Static variables, much like static methods, are part of the class itself rather than being part of a certain Object in the class. We can use the “.” operator to access these variables. And we will have to use static to declare the variable. Have a look at this block of code:

public class Cat{

public static String genus = “Felis”;

public int years;

public String nickname;

public Cat(int inputYears, String inputNickname){

this.years = inputYears;

this.nickname = inputNickname;

}

}

If we assume all cats belong to the same animal class “Felis”, we can also use a static variable to hold that data for the whole class. But at the same time, every cat has a different nickname and years instance variables or non-static. If we wanted to use the main(), we could still access the static variables.

You can access these static variables from a certain Object in the class the same way you did with other variables, but you would always have the same value.

	[image: image]
	 	[image: image]

[image: image]

Modifying Static Variables

[image: image]

Just like regular variables, we can also modify static variables and it’s not that different. But why would we need to modify static variables in the first place? To start with, many of the uses of a static variable is to track information of objects in a class. If we are keeping track of a number of Cat through the variable numCats, once we create a Cat through a constructor, the variable goes up by one.

If we use the same example, and we are using the variable totalCats that tracks all the cats in all the shelters in a city. Every time a cat leaves the shelter using the givenCat() method we should change the cats variable for that specific shelter along with the numCats variable, so we have an accurate number of cats. As we do that, the system knows the number of cats in all the shelters.

	[image: image]
	 	[image: image]

[image: image]

Writing Your Static Methods

[image: image]

We use the keyword static to create static methods, just like we do with variables. Like this:

public static void

learnAboutStaticMethods(){

}

One thing that you will need to remember is that static methods don’t work with non-static instance variables. Let us go back to the Cat example to try to explain this concept. There’s the Cat class, and years is a non-static instance variable. Now, if we use the code this.years = 8, we would be saying that years of a certain Cat equals 8. However, if we assume that years is static, the variable doesn’t belong to a certain Object, but instead, to the whole class.

Because static methods are linked to whole classes and not certain Objects of the class, we can’t use static. In fact, if you try to use it, you will see an error.

Here’s a sum-up of the chapter we have just been through. When we talk about static variables and methods, these are often linked to the entire class rather than specific objects. In order for us to declare static methods and variables we use the keyword static. Static and non-static methods can link to static variables, but static methods can’t interact with non-static instance variables. We also learned how to:

● What static variables are and what we use them for

● How to modify static variables

● And how to write our own static methods and apply them

	[image: image]
	 	[image: image]

[image: image]

Chapter 9: Inheritance and Polymorphism

[image: image]

Inheritance and polymorphism are two extremely important features of Java programming and are one of the reasons why Java is an object-oriented language. Let us first focus on inheritance.

As you might have wondered, inheritance in Java should have something to do with the inheritance we have in our world. If you thought that, you are right. Like the traits you inherit from your parents like brown hair, blue eyes, or your height, in Java, you can also inherit class traits. You will have a parent class and a child class just like in real life.

Let’s say you have a class mammals and you give it some characteristics such as warm blood, four legs, or fur. But now you want to create a class cat, you don’t need to define and create the different methods all over again, you can use inheritance of classes to pass some of the traits in mammals to the class cat. Because cats are mammals, this can take some of the methods and fields. This is important so we don’t need to constantly redefine members of the same class all over again.

Even though the class cat will inherit all the traits the class mammals has, cat can also have their unique methods.

A parent class can also be called a superclass or a base class and is the class where you take methods and traits from, while the child class, subclass or sometimes also called derived class is a class that takes from the parent class, which in our example is the class cat.

So how do we apply inheritance? We need to know how to define a child class that can take from the parent class, and for that, we need to use the keyword extends. This is how it looks when used in code:

class Mammals {

//mammals class members

}

class Cat extends Mammals {

}

In this example, the class cat has inherited methods and fields from mammals. To give a deeper understanding you are extending the class mammals to cover the class cat, but mammals are not an object of cat.

Inheriting a Constructor

So if we can inherit fields and methods from classes, can we also do it with constructors? Yes, by using a super() constructor. If you think that the class mammals has numLegs as a field. If we are creating an object with cat we want the numLegs number to be always 4, and so we want the constructor to always assign numLegs to 4.

If we use a super() method we can make constructors act like parent and child constructors. Like this:

class Cat extends Mammals {

Cat() {

super(4);

}

}

If we pass 4 to super(), we can create a new object with cat with the numLegs 4. We also have the possibility to code a constructor without a super(). Like this:

class Cat extends Mammals {

Cat() {

this.numLegs = 4;

}

}

Polymorphism

Java with its object-oriented programming enables parent classes to share behavior and information with child classes but also allows the incorporation of their own characteristics. This is to simplify syntax while coding and make it easier for programmers to share their packages with other programmers. For example:

class Mammal {

public void salutation() {

System.out.println (“Animals salute you.”);

}

}

class Dog extends Mammal {

public void salutation() {

System.out.println(“The dog barks”);

}

}

class MainClass {

public static void main(String[] args) {

Mammal mammal1 = new Mammal();

Mammal dog1 = new dog();

mammal1.salutation();

dog1.salutation();

}

}

Method Overriding

We are able to override parent classes in child classes and we use that when we want the same name in our child class but we want it to behave differently. Before we can do that, however, we need to make sure that our child class has some attributes in common with the parent class, such as:

● Same number and type of parameters

● Same return type

● Same method name

In order for us to override the class, we need to write @Override just above the child class method. For example:

class Mammal {

public void salutation() {

System.out.println (“Animals salute you.”);

}

}

class Dog extends Mammal {

@Override

public void salutation() {

System.out.println(“The dog barks”);

}

}

As we have previously seen, we can use the keyword super to call a constructor, but we can also do that to call methods of a parent class. To do that we need to write super followed by a dot (.). But for this to work we need to write the correct method parameters.

We can also use a child class as its parent class, or a child class object when you should be expecting a parent class object.

One way to do it is like this:

savingsAccount RodrisAccount = new

checkAccount (400.50);

Here we are using RodrisAccount as an object of savingsAccount.

ArrayLists andArrays in Child Classes

Remember when we said that when we create an array or ArrayList we needed to have everything from the same type? Well, that is still true, but with polymorphism, things get a little different. We are allowed to place objects that have different classes but share the same parent class in an ArrayList or array.

Mammals poodle, siamese, chimpanzee;

poodle = new dog();

siamese = new cat();

chimpanzee = new primate();

Mammals[] mammals = {poodle, siamese, chimpanzee};

Child Classes and Method Parameters

As we have seen before, we need to match our parameters with the arguments when we call a method. With polymorphism, we have a bit more leeway when it comes to using the arguments.

In that case, we can use a superclass to reference a method parameter and call the method by using subclass reference arguments.

So to sum up this section on polymorphism in Java, we can inherit methods and fields from other classes. When we inherit from a parent class, the child class will inherit the constructor automatically, except if we modify it by using super() or if we override it. In an array or ArrayList, you can use objects of different classes if they share the same parent class. If you use the keyword @override, you can override parent class methods in child class. We have also covered in this chapter:

● What is inheritance and polymorphism in Java

● How to inheritance constructors

● And how can we override methods

	[image: image]
	 	[image: image]

[image: image]

Chapter 10: Loops

[image: image]

Because coding is, sometimes, the use of repetitive tasks, programmers often use loops as a tool to help them write code that needs to be rewritten several times. That not only saves us time, it also helps when we are looking for bugs. Usually, when we run loops, the compiler will execute a boolean condition and will continue to re-execute it until a condition is false, if it continues to be true, the compiler will continue to run the program.

There are three main types of loops in Java; for loops, while loops, and for-each loops. We will go through all of them and how to employ them in our code.

	[image: image]
	 	[image: image]

[image: image]

While Loops

[image: image]

Remember the if statements? While loops work in a similar way. Here’s how it looks if we code it:

while(funkiness > 5){

{

In this example, the code will run only if it's true and it will continue to run until it is false, in this case, until funkiness is less or equal to 5.

Let’s have a look at a password system where you only have three attempts to insert the right password.

int tries = 0;

while (password !=3398 && tries < 3) {

System.out.println(“Wrong, try again”);

password = getNewPassword():

tries += 1;

}

However, you need to be sure change might occur, or you might get stuck in an infinite loop that will cause the program to crash. For example, if you write a program of a die where the condition is false if the die number is 7 when the die has only up to the number 6. That would be an infinite loop.

	[image: image]
	 	[image: image]

[image: image]

Do/ While Loops

[image: image]

These are a slight variation of the while loops we just saw. Here the code will run, before knowing if the condition might or not be true. If it is, then it will continue running until the condition remains true. This is what an example would look like:

public class Main {

public static void main (String[] args) {

int x = 1;

do {

System.out.println(x);

x++;

}

while (x < 6);

}

}

//the printout would be 1, 2, 3, 4, 5

	[image: image]
	 	[image: image]

[image: image]

Counter Variables

[image: image]

Counter variables, sometimes called iterators, are variables that we use when we loop. This is so the program can exit the loop when it reaches that variable. For instance, let us look at the password example again, but slightly different:

int tries = 0;

while(tries < 3) {

System.out.println(“Try again.”);

tries++;

}

As we can see, we initialized the tries to the value of zero before we started the loop. The program will add 1 to tries until it has the value of 3. Once it reaches, it leaves the loop.

	[image: image]
	 	[image: image]

[image: image]

For Loops

[image: image]

For loops are great syntax tools to use incrementation/ decrement, or adding or subtracting to a variable, and are divided into three different parts. First, you have the control variable that starts the loop, a boolean equation and the decrement or increment part. For example:

for (int e = 0; e < 3; e++)

{

}

Translated is something like this: we have our starting point or initialization of the loop int e = 0. Then we give the loop a boolean that says that the loop will continue to be executed until the boolean expression is false, which means e < 3. The last bit of our equation says that e will increase by 1 every time we run the loop, so in this case, the loop will run three times before it exits. Here’s another example:

public class Main {

public static void Main(String[] args) {

for (int x = 5; x <+ 10; x = x + 2 {

System.out.println(x);

}

}

}

// the output would be 5, 7, 9. Because it will only put out odd numbers between 5 and 10

	[image: image]
	 	[image: image]

[image: image]

Looping Over ArrayLists and Arrays

[image: image]

When we loop through an array or ArrayList, such as lists of data, we are traversing. For us to loop through an array or ArrayList, we need to use the index to access each element, and for that, we can use the counter to keep track of the length of the array.

As you might remember, indexes in arrays and arrayLists start at 0, so you would use 0 for the value of the counter. This is how we can add 1 to int in an array:

for (int e = 0; e < aList.lenght; e++) {

aList[e] += 1;

}

We are using aList.length because, as we have seen, arrays, as well as ArrayList have their indices starting at 0. A loop should exit the code before the counter is the same as the length of the array. For instance, if an array length is 7, then the loop would run until the index 6. If the code tries to access 7, an error stating ArrayIndexOutOfBoundsException will come up. If you want to loop through an ArrayList then you would do it like this:

for (int e = 0; e < aList.size(); e++) {

int num = aList.get(e);

aList.set(e,num + 1):

}

When we are using while loops to traverse ArrayLists and arrays, we need to add our own counter, as well as set a condition until the counter matches the length of the array. For instance:

int e = 0

while (e < aList.length) {

aList[e] += 1;

e++;

}

If we want to do it with a while loop:

int e = 0;

while (e < aList.size()) {

int num = aList.get(e):

aList.set(e, num + 1);

e++;

}

We can also skip or exit a loop with keywords such as break and continue. You would use break if you wanted to leave or break a loop. For example:

for (int e = 0; e < 6; e++)

{

System.out.println(e);

if (e == 5);

}

}

Although we have set the loop to run until 6, we used break to make it stop at 5. If we just want to skip an iteration, we use the keyword continue inside the loop and the program will automatically jump it and start in the next iteration, for example:

int[] numbers = {1,2,3,4,5,6,7};

for (int e = 0; e <numbers.length; e++) {

if (numbers[e] % 2 == 0) {

continue;

}

System.out.println(numbers[e]);

}

The printout would skip all even numbers and would be “1,3,5,7”.

	[image: image]
	 	[image: image]

[image: image]

For-Each Loops

[image: image]

For-Each loops, also called enhanced loops, allow us to loop through each item in an array or ArrayList and execute an action on each element.

for (String aList ; allLists) {

System.out.println(aList);

}

As we can see, we have a loop variable and a list. The “:” can be identified as “in” and so we would have: for each aList, in this case, a String, in allLists, print aList.

We can also remove any element from an ArrayList when we are looping through it. When we do that, every variable in the index will change to minus one, or negative one, and so we need to pay attention when we do it or we might run in some errors.

If we are using a while loop and want to remove all the odd numbers, we can do it like this:

int e = 0

while (e < aList.size()) {

if (aList.get(e) % 2 != 0){

aList.remove(e);

} else {

e++

}

}

If we want to remove an element using for, and unlike with while loops, we need to add our loop control variable, and so we will need to decrease the loop control variable manually everytime we remove an element. Like this:

for (int e = 0;

e < aList.size(); e++) {

if (aList.get(e) == “removed value”) {

aList.remove(aList.get(e));

e—;

}

}

To summarize what we have been through in this section, we have while loops that allow us to repeat code until a condition is met. The for loops are great for when you use a counter variable and want to increment or decrement. A for-each loop allows us to go through each item on a list. We have also learned about:

● Looping with Arrays and ArrayList

● And what counter variables do

	[image: image]
	 	[image: image]

[image: image]

Chapter 11: Access and Scope

[image: image]

You will reach a point where your programs will get larger and larger and will begin to have various Classes, as well as Objects that will inevitably combine with each other. This is where these two concepts will help you. To put it simply, both access and scope have to do with the parts of your code that can combine with certain methods and variables from other bits of your program. Let’s first look at access and see how the concept works.

	[image: image]
	 	[image: image]

[image: image]

Access

[image: image]

	[image: image]
	 	[image: image]

[image: image]

public Keyword

[image: image]

You might have a slight idea of what the keywords public and private mean in the context of Java programming. This, in a basic way, defines if certain bits of your programming have access to others.

We can define this access in classes, methods, variables, and constructors. When we decide to make any of these concepts public we are allowing any part of our diverse code the ability to interact with others. You might already know how to declare something public or private, but we will refresh your memory.

public class Cat{

public String nickname;

public int years;

public cat(String inout_nickname, int input_years){

nickname = input_nickname;

years = input_years;

}

public void says() {

System.out.println(“Meow! Everyone calls me “ +

nickname + “and that’s who I am!”);

}

}

Did you see that we have used the keyword public in five different circumstances? As you can see in our code, everything is public and that means that other classes also have access to Cat. If we had any other class, we could use it to create a new Cat because we can use the public Cat constructor, as well as have access to any instance variables and methods.

Most constructors and classes are set to be public and only on rare occasions, we might set them to be private. Let’s have a look at some of those circumstances and understand what the keyword private means in the Java programming context.

	[image: image]
	 	[image: image]

[image: image]

private Keyword

[image: image]

If you understood the concept of public, you certainly understand what private might mean. When you have a private method or instance variable that means you can only access it if you are inside the class. Take the example above and look at the following snippet:

public class CatApprentice {

public void createACat(){

Cat bernard = new Cat (“Bernard”, 12);

System.out.println(bernard. years);

bernard.speak();

}

}

If we had set both the variable .years and the method .speak() to private when we first made the Cat class, the CatApprentice wouldn’t be able to access any of those. Even though setting everything always to public might be your first thought, there are instances where setting it to private makes more sense. We can organize our code into bits of logic if we set our variables and sometimes methods to private, this is also called encapsulation. Sometimes we need to keep things separated, for instance, an object might not need to know how other objects in the code work, or even how other methods work in order to perform its function. If it did have access to it, chances were that it could change some of the variables even without noticing it. By using the keyword private, we are limiting some of that access and stopping from changing part of our code, even if it happened by mistake. Here, you need to understand what you should set to private and what you should not.

Even though we might set our variables to private when we are coding, we would still need some classes to access these variables. Sometimes we need classes to access private variables and so we would use an accessor method, also called a getter.

public class Cat {

private String name;

public String getName() {

return name:

}

}

As you can see, the variable name is set to private, but if you use the getName() public method you could still return the value of the variable. This is because accessor methods are always going to be public and will always return the same type of variable.

There are also mutator methods that work in a similar way with private, these are also called settlers. What these do is reset the value of a given variable, and are often void methods. This means they don’t return any value.

	[image: image]
	 	[image: image]

[image: image]

Scope

[image: image]

We will need to set a scope when we use access modifiers. This is so we know what bits of your code are able to access the variable. Where the variable is at, is important to understand what we have access to. For instance, we declare variables inside a class, but these are outside constructors and methods, although every constructor and method is within the scope of the instance variable. Let’s give you an example to help you understand this concept:

class Cat {

public String nickname;

public int years;

public int kg;

public Cat() {

nickname = “Voodoo”;

years = 4;

kg = 15;

}

public void speak(){

System.out.println(“The name of the cat is ” + nickname);

}

}

As we can see, the methods of constructors of Cat use nickname and years as variables. On the other hand, if we declare a variable inside a given method, that variable cannot be used anywhere else but inside that method.

The same works for loops and conditionals within the scope. You can only use a variable inside a loop or conditional if you have declared it inside that conditional or loop.

	[image: image]
	 	[image: image]

[image: image]

this Keyword

[image: image]

Sometimes while adding classes, we create local variables that have an identical name to instance variables. Like this:

public class Cat{

public String nickname;

public Cat(StringinputNickname){

nickname = inputNickname;

}

public void

tellNewName(String nickname) {

System.out.println(“Hi, the new name is ” + nickname);

}

public static void

main(String[] args){

Cat myCat = new Cat(“Voodoo”);

myCat.tellNewName(“Simon”)

This will make the printout be ‘Simon’ rather than ‘Voodoo.’ As you can see, there’s an instance called nickname and a method tellNewName with a parameter nickname too. If we ask the output to print nickname it will automatically bring the local variable.

However, we can access the instance variable if we use this keyword instead. Like this:

public class Cat{

public String nickname;

public Cat(StringinputNickname){

nickname = inputNickname;

}

public void

tellNewName(String nickname) {

System.out.println(“Hi, the new name is ” + this.nickname);

}

public static void main

(String[] args) {

Cat a = new Cat(“Guille”);

Cat b = new Cat(“Filip”;

a.tellNewName(“Voodoo”);

a.tellNewName(“Simon”);

}

}

When we use this keyword we are indicated the Object we are working on. Because we used this.nickname while in the tellNewName() method, we print the variable or the value in the instance variable.

When using mutator methods we usually do it this way:

public void whatName(String nickname) {

this.nickname = nickname;

}

Here we are resetting the value of the variable passed into the parameter.

So how would we use this regarding methods? So far this have been the way we use methods:

public static void

main(String[] args) {

Cat myCat = new Cat(“Jackson”);

myCat. speak();

}

As we can see, we use Cat to call speak() method. Now let’s see it using this:

public class Cat{

public int age;

public int weight;

public void

setAge(intinputAge){

this.age = inputAge;

}

public void setWeight(intinputWeight){

this.weight = inputweight;

}

public void resetSettings(){

this.setAge(3);

this.setWeight(14);

}

}

When we use the method resetSettings() we are calling methods from the class. But as you might have noticed, an Object is necessary to call the methods, but instead of naming the Object as we did in previous examples, we use this instead of the Object. So when we call the Object with resetSettings() it will also be used to call setAge(3) and setWeight(14).

We can also use this for parameters. If we assume, following the example above, that Cat is a parameter of an existing method. When writing another method of Cat, while the signature might be something like public void combineWithOtherCat(Cat another), and we want to call combineWithOtherCat(), instead we could use this to be the parameter. So, in this case, it would look like this.combineWithOtherCat(this). As you can see, we use the Object to call the method, as well as passing that same object as the parameter of the method.

This is the main knowledge you need to know about Access and Scope. The use of the keywords private and public define certain parts of the code with access or no access to methods, constructors, variables and other classes. We use encapsulation to create a smaller agglomerate of logic to hide certain details from other classes. We use this to define differences between local and instance variables, as well as to call methods as we use classes.
	[image: image]
	 	[image: image]

[image: image]

Chapter 12: Debugging

[image: image]

A computer or software error in a program or in any other system that ends with a wrong result or a different than the expected result is called a bug. Debugging, on the other hand, is what we call when we solve a computer bug. There are many strategies and tactics that we can use to solve those types of issues, such as log file analysis, unit testing, profiling, control flow analysis, or memory dumps, and there are also many tools designed for specific computer languages that help programmers and developers to debug, called debuggers.

In Java programming, although there are numerous ways to address and classify bugs, we can divide them into three main sections:

● Logic errors: These are bugs that are usually found by programmers when searching for errors in the code.

● Syntax errors: These are bugs that the compiler identifies, such as grammar errors.

● Run-time errors: These errors happen once the program is running.

Usually, syntax errors and bugs are the easiest to find since the compiler does the job for you, followed by run-time bugs. And the hardest to look for and fix are logic errors since the programmer has to actively look for them in the lines of code. Let’s go through these three different types of errors:

	[image: image]
	 	[image: image]

[image: image]

Syntax Errors

[image: image]

The compiler is the first method we usually use to detect any syntax error in our code such as grammar mistakes that we sometimes make. These are very easy to spot and fix because the compiler tells you exactly where the error occurred, as sometimes will tell you what went wrong with your code. Some of the most common syntax errors are very simple things that we forget sometimes such as missing semicolons, the closing or opening of parenthesis, or brackets, or sometimes even misspelled methods or variables. The compiler usually gives you the exact line where the error occurs.

	[image: image]
	 	[image: image]

[image: image]

Run-Time Errors

[image: image]

Many times our code won’t have any syntax errors and so the compiler will run the program with no problem, however, if an error occurs after you have compiled a code properly, then it might be a run-time error. These are errors that the compiler can’t get and are related to things that the compiler can’t solve because the compiler only looks at the code at hand. Examples of run-time errors are missing files or division by zero.

If you do try to divide something by zero, you will likely find an error message with some similar to this:

Exception in thread “main”

java.lang.ArithmeticException: / by zero

at Debug.main(Debug.java:8)

Java identifies these bugs with the word Exception as you can see in the message. It also gives you the line where the error happened just like syntax errors and a backtrace, sometimes called stack backtrace. These are frames of the program from the method that was running until where the Exception occurred.

In the example above we have got an ArithmeticException which tells us that an error occurred when the program was doing an arithmetic calculation, such as dividing by zero. But there are three more common Exceptions; NullPointerException which tells us that the program ran a method on an object or tried to access a variable that was null. FileNotFoundException occurs when the program can’t find the file you chose to open, and lastly, another common Exception is ArrayIndexOutOfBoundsException, which we have already mentioned, is when you choose an index that is greater than the index in the array.

There is a way that we can quickly and easily spot Exceptions, by using two keywords together; try and catch. When you use try on a block of code, you are asking that bit of code to be tested for errors when you run it. When you use catch after the try, you are allowing that block of code to run if there’s a bug when you use try.

For example:

try {

int dimension = length / width;

} catch

(ArithmeticException e) {

System.err.println(“ArithmeticException: “ +e.getMessage());

}

Instead of the regular print line order, we used System.err.println(), as this allows us to print the error and make it easier to spot the mistake.

	[image: image]
	 	[image: image]

[image: image]

Logic Errors

[image: image]

Even when we get rid of both run-time and syntax errors, we still don’t seem to get the right output, even though there are no errors. This is called a logic error and is a frequent mistake among programmers, especially beginners.

This is usually because there’s a flaw in the way the programmer wrote the code. The compiler or program doesn't give you any errors because it’s a thinking problem. The way you have designed the code is not correct to have the output you desire. These can be really difficult bugs to fix. However, there are techniques and tools that can help you save a lot of time when searching for these mistakes, called test-driven development or TDD. This process aims to give errors to the code when there are logic errors in it.

	[image: image]
	 	[image: image]

[image: image]

Debugging Techniques

[image: image]

If you have been through your code over and over again but you still can't find the source of the problem, you can choose to perform some techniques to try and solve the issue.

	[image: image]
	 	[image: image]

[image: image]

Print Statement Method

[image: image]

You can use System.out.println() to verify your code at different points of your code. You can look for return or variable values by using the print statement at every block of code until something comes up.

	[image: image]
	 	[image: image]

[image: image]

Dividing Your Program

[image: image]

This might be a radical measure, but if you delete your code temporarily, or part of it, and compile it to see if the program was successful you can narrow down where the issue is. For instance, if you delete half of your code and run the program and there's no issue, you can add half of the half that you have deleted, or one fourth, and run it again until you know where the issue is.

Instead of deleting the code temporarily, you can keep it as a comment. In most editors, you can highlight and comment it out by pressing command + /.
	[image: image]
	 	[image: image]

[image: image]

Chapter 13: Java Files

[image: image]

The way you handle Java files is also relevant to understanding the basics of Java programming. In fact, there’s a dedicated class where you are able to manage files, from creating to altering or even deleting them. In this chapter we will go through the main functions you can do with the File class.

	[image: image]
	 	[image: image]

[image: image]

File Management

[image: image]

In order for you to import a File class, you need to import the java.io package. Here’s how you can make a new object for the class, and indicate a filename:

import java.io.File;

//here you are importing a File class

File aObject = new File (anyfilename.txt”);

//you need to add the filename

Here’s a list of methods that you can use with the File class:

● canWrite() - It’s a boolean type and checks if the file can be written

● createNewFile() - It’s a boolean type and allows the creation of a new empty file

● canRead() - It’s a boolean type and checks if the file can be read

● exists () - It’s a boolean type of method and checks if the file exists somewhere

● getName() - It’s a string type of method and returns the anime of the given file

● delete() - It’s a boolean type of method and it deletes a file

● length() - It’s a long type of method and it gets back the size of the file at hand

● getAbsolutePath() - Returns the pathname of the file

● mkdir() - It’s a boolean type of method and is able to create a directory

● list () - It’s a string type and is able to return arrays of the file

	[image: image]
	 	[image: image]

[image: image]

Create a File

[image: image]

As we have seen above, by using the createNewFile() method. If you have created it with success, a true boolean value will return. If there’s already a file with that name in the directory, the boolean value will return false. Here’s how it looks:

import java.io.File;

import java.io.IOException;

//this is for the class to manage errors if they occur

public class CreatingAFile {

public static void main (String[] args) {

try {

File aObject = new File (“insertfilename.txt”);

if (aObject.createNewFile()) {

System.out.println(“The file was successfully created:” + aObject.getName()):

}else {

System.out.println(“The file exists”);

}

}catch (IOException i) {

System.out.println(“There was an error”);

i.printStackTrace():

}

}

}

Here if the file was successfully created, you would have a printout like “The file was successfully created: insertfilename.txt”.

In order to create a path that requires permission on Windows, you will need to use double backlashes after you have indicated the path. For Mac and Linux, you just need to write the path as usual. For example: (for Windows)

File aObject = new File (“C:\\Users\\YourNameHere\\nameofthefile.txt”)

	[image: image]
	 	[image: image]

[image: image]

Writing a File

[image: image]

In order to write a new file, we will need to use both the FileWriter class, as well as the write() method. Once you are done writing, you will need to use close() method to close it. Here’s an example:

import java.io.FileWriter;

import java.io.IOException;

public class WritingAFile {

public static void main(String[] args) {

try {

FileWriter aFile = new FileWriter (“nameofthefile.txt”);

aFile.write (“Writing files is cool!”);

aFile.close();

System.out.println(“The file is written!”);

} catch (IOException i) {

System.out.println(“There’s an error.”);

i. printStackTrace():

}

}

}

If you have written the file properly, the printout should be: The file is written!

	[image: image]
	 	[image: image]

[image: image]

Reading a File

[image: image]

We have previously used the class that we are going to use now to read a file. By using Scanner class, you are able to read contents inside text files. Here’s an example of how to do it:

import java.io.File;

import java.io.FileNotFoundException;

//We are importing this class to figure out errors

import java.util.Scanner;

public class readingAFile {

public static void main (String[] args) {

try{

File aObject = new File (“insertfilename.txt”);

Scanner aTextReader = new Scanner(aObject);

while (aTextReader. hasNextLine()) {

String data = aTextReader. nextLine();

System.out.println(data);

}

aTextReader.close();

} catch (FileNotFoundException i) {

System.out.println(“There was an error”);

i.printStackTrace();

}

}

}

If we use the example above, the printout should be something like: Writing files is cool!

We can also return information about a file by using a File method. For example:

import java.io.File;

public class GettingInfo {

public static void main (String[] args) {

File aObject = new File (“insertfilename.txt”);

if (aObject.exists()) {

System.out.println(“Name of the file:” + aObject. getName());

System.out.println(“Get the Path:” + aObject. getAbsolutePath());

System.out.println(“Is it readable?” + aObject. canRead());

System.out.println(“Is it writable?” + aObject. canWrite());

System.out.println(“Size of the file:” + aObject. length());

} else {

System.out.println(“It doesn’t exist.”);

}

Your printout should look something like this:

Name of the file: insertfilename.txt

Get the path: C:\Users\Your Computer Name\insertfilename.txt

Is it readable? true

Is it Writeable? true

Size of the file: 0

	[image: image]
	 	[image: image]

[image: image]

Deleting a File

[image: image]

By using the delete() method, you can also delete a file in Java, as well as delete a whole folder too. Here’s how you can achieve that:

import java.io.File;

public class DeletingAFile {

public static void main(String[] args) {

File aObject = new File (“insertfilename.txt”);

if (aObject.delete()) {

System.out.println(“Deleting the file:” + aObject.getName());

} else {

System.out.println(“Couldn’t delete the file!”) ;

}

}

}

The printout would be “Deleting the file: insertfilename.txt”.

You can also delete a folder. Like this:

import java.io.File;

public class DeletingAFolder {

public static void main (String[] args) {

File aObject = new File (“C:\\Users\\Your Computer Name\\ Folder”);

if (aObject. delete()) {

System.out.println(“Deleted folder:” + aObject.getName());

} else {

System.out.println(“Couldn’t delete the folder.”);

}

}

The printout should be: “Deleted folder Folder”. Because that was the path we gave in the code.

It’s essential to know how to handle java files, from creating them to writing, reading and deleting them. This will make you proficient in understanding all the aspects of learning Java programming.
	[image: image]
	 	[image: image]

[image: image]

Chapter 14: FAQ

[image: image]

In this chapter, we will answer some of the most frequently asked questions about Java that we do not cover in the book, or were covered but not answered completely.

What is JDK?

JDK stands for Java Development Kit and is part of the core packages that the Java program uses. The JDK allows programmers and developers to make programs in Java, and these programs can be run by either the JVM (Java Virtual Machine) or the JRE (Java Runtime Environment), which we will explain in the next question. In its essence, JDK is composed of both JVM and JRE. The JDK includes the compiler that we need to compile code and the in-built Java class libraries. You need to download the JDK software if you want to create applications based on Java programming.

There are different types of JDK aimed at different types of applications. Which one you choose will depend on what you want to develop. There are three packages available: Java Standard Edition (Java SE), Java Enterprise Edition (Java EE) and Java Mobile Edition (JME). Here’s a little explanation about downloading and installing your JDK (we will use the SE version for this purpose).

First, you need to go to oracle.com and a list of JDK will pop up. Choose the Java SE JDK. You will have to select between three different tools: Public JRE, Source Code or Development Tools. You can install all of them, or just one or two. If you are starting out, you will only need the Development Tools.

Once you have installed, you can open your Command prompt and type the java command and the return should be the version of Java that you have just installed. You will also need the javac in order to compile your programs. You can install the javac that is inside the /jdk directory that you have just installed.

All you need now is to test it out!

What Is a JVM and JRE?

JVM (Java Virtual Machine) is used to execute Java programming. Its role is to transform bytecode into code that is understood by the JRE and the JDK. Besides that, it also has important roles in security and the management of the program's memory.

JVM has an execution engine that allows the compiling and understanding of code. A class loader, so you can import and initialize Java class files, and a runtime data area that has threads, stack areas and method areas.

JRE (Java Runtime Environment) are the tools that we use to execute Java programming. Its main function is to execute Java programs, if you need to compile or develop code, you don’t need JRE.

JRE has deployment solutions that allow the deployment of features such as Java Plugin and Java Web Start. It has development toolkits that allow developers to work on the interface of the user. Integration libraries, that allows you to use both integration and class libraries, as well as utility and language libraries.

What is a Java compiler?

A compiler is used to take the text file and compile it into a Java file. The standard Java compiler is Java Programming Language Compiler (javac), but there are others such as the GNU compiler, or the ECP (Eclipse Compiler for Java).

As we have seen, Java programs are written in statements and we need compilers to translate those into something that is executable by a computer, such as a Java file.

What is Java API?

Java API stands for application programming interface, which is prewritten classes, interfaces and packages. This helps developers and programmers to be faster when developing Java programs. There are three types of API:

● Official Java APIs

● Optional Java APIs, are official but not as necessary as the first group

● Third-party APIs, usually created by users and can be downloaded online

What is Java Web Start and how is it launched?

The main function of the Java Web Start is to allow you to run Java programs and applications on the web. It’s easy to use and it doesn’t need complex installation processes.

You have access to the Java Web Start once you install the JRE. The Web Start is installed automatically, so you should already have it on your computer once you install Java. It’s easy to launch the Web Start, and there are several ways to do it: You can just click on a web page link, create a shortcut and launch it from your desktop, or you can launch it through the control panel in your computer. Just go to Settings > Control Panel > click on the Java icon. Then go onto the General tab and click on View. Double click on the application and it will launch.

What is a Java Plug-in?

Java Plug-in allows you to use applets in your web browser. Like Java Web Start, the Java Plug-in is installed simultaneously when you install the JRE.

How do I get a Java certification?

A Java certification allows you to show that you are competent in using Java programming. Like many certifications, you will need to have classes. Take a final exam and pass it to acquire your certification.

The first thing you need to do is to choose the certification that you want to take. There are different levels and types of certification depending on what you want to do with your Java skills. Either way, if you are starting out, you should start with the basic certification and grow from there.

You will have to take classes, and depending on the certification you are taking, the number of classes might differ. Nowadays you can choose to have those lessons in person or online, whatever suits you better, these are both good options. Once you are done with the classes, and you feel ready to take the exam, all you need to do is book it. The institution you are having lessons from should provide you with a certified exam. You might need to get a voucher, that lasts for six months, and schedule the exam. The number of exams also depends on the level of certification you are taking. Some of the official Java certifications are:

● Oracle Certified Associate Java Programmer (OCAJP) - This is the basic certification, where you learn about the basics of Java. You need to take the OCAJP first if you want to continue your Java education.

● Oracle Certified Professional Java Programmer (OCPJP) - This shows that you have advanced Java skills.

● Oracle Certified Professional Java Application Developer (OCPJAD) - This shows that you can both program and develop apps with Java.

● Oracle Certified Master Java Enterprise Architect (OCMJEA) - It shows that you have mastered Java. It is one of the highest Java certifications you can get.

Does Java need a license?

Java is free for educational use if run on a browser. From January 2019, commercial users of Java SE will have to buy an annual subscription if they want to get future updates.

For reference, the desktop pricing per month is $2.50, while the processor pricing if you need to use it on Cloud or Servers is $25 a month.

What are keywords?

There are 67 keywords in Java. These are reserved keywords that are predefined and allow the program to execute something specific. Because these are reserved, you can’t use them to name classes, methods, or variables. Examples of such words are: boolean, byte, catch, double or else.
	[image: image]
	 	[image: image]

[image: image]

Conclusion

[image: image]

By now you should have a basic understanding of what Java programming is and what it is used for. You should also be able to program basic code and build your own programs.

Java can be a stepping stone for many other programming languages, such as Javascript, or C++. Now you have a basic understanding of how computer languages work and you just need to recall some of your knowledge to be able to adapt to different languages.

In this book, you start by learning the most basic of functions in Java and it becomes progressively more complex as you continue to read. This is so you can start building up your knowledge to more difficult concepts further in the book.

Upon going through the whole book, you should have the necessary knowledge to take a basic Java certification, but you will still need to enroll and have classes so you can take your exam. However, this book will prove to be a great resource if you want to take out a certification: because of the way this book is structured, you can easily find content and revise it.

Java, just like a real language, needs to be practiced in order for you to become fluent in it. There’s a lot more to it than just the contents in this book, and you should be able, from here, to expand your knowledge and continue your road to become an expert in Java programming. Knowing the language well, can open many doors for you professionally, as well as personally if you just want to create programs and apps.
	[image: image]
	 	[image: image]

[image: image]

References

[image: image]

Agarwal, H. (2019, July 8). Variables in java. GeeksforGeeks. https://www.geeksforgeeks.org/variables-in-java/

IBM Cloud Education. (2021, June 30). JVM vs. JRE vs. JDK: What’s the difference? Www.ibm.com. https://www.ibm.com/cloud/blog/jvm-vs-jre-vs-jdk

Java keywords. (n.d.). Www.w3schools.com. https://www.w3schools.com/java/java_ref_keywords.asp

Krishna, A., Baid, A., & Gandhi, N. (2017, March 29). Operators in java. GeeksforGeeks. https://www.geeksforgeeks.org/operators-in-java/

Learn Java: Access, encapsulation, and static methods cheatsheet. (n.d.). Codecademy. Retrieved February 10, 2022, from https://www.codecademy.com/learn/learn-java/modules/java-access-encapsulation-and-static-methods/cheatsheet

Romano, C. (2018, July 24). Thinking About errors in your code differently. Codecademy News. https://www.codecademy.com/resources/blog/errors-in-code-think-differently/

Tyson, M. (2020, January 17). What is the JDK? Introduction to the Java Development Kit. InfoWorld. https://www.infoworld.com/article/3296360/what-is-the-jdk-introduction-to-the-java-development-kit.html

Variables and types. (n.d.). Www.learnjavaonline.org. https://www.learnjavaonline.org/en/Variables_and_Types

d2d_images/cover.jpg
FOR
BEGINNERS

A Crash Course to Learn Java
Programming in 1 Week

BRADY ELLISON

d2d_images/image001.png
motolnLot

d2d_images/image002.png
main()

d2d_images/image000.png
public static void main(String[] aras)

d2d_images/image005.png
public

d2d_images/image006.png
220.99 360.00. 210.00 500,99

d2d_images/image003.png
Strinall

d2d_images/image004.png
void

d2d_images/image009.png
This is a black motorcycle.

d2d_images/image007.png
myCoolMotorcycle

d2d_images/image008.png
Arraylists

d2d_images/chapter_title_corner_decoration_left.png

d2d_images/chapter_title_below.png

d2d_images/chapter_title_corner_decoration_right.png

d2d_images/chapter_title_above.png

d2d_images/image012.png
ferrero

d2d_images/image013.png
main()

d2d_images/image010.png
chocolateFlavor

d2d_images/image011.png
Strina[] aras

d2d_images/image016.png
System

d2d_images/image017.png
assortment

d2d_images/image014.png
startingSpeed(int, String).

d2d_images/image015.png
String

d2d_images/image018.png
if()

d2d_images/image019.png
Strinas

d2d_images/image020.png
5bc6do78

d2d_images/image023.png
int

d2d_images/image024.png
toStrina()

d2d_images/image021.png
chars

d2d_images/image022.png
ArravList

d2d_images/image027.png
System.out.printin(myChocolate. flavor):

d2d_images/image025.png
balance

d2d_images/image026.png
aras

d2d_images/scene_break.png

