

[image: image]

PYTHON TOOLS
FOR
DATA SCIENTISTS

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.

PYTHON TOOLS
FOR
DATA SCIENTISTS

Pocket Primer

Oswald Campesato

[image:]

Copyright ©2023 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Python Tools for Data Scientists Pocket Primer.
ISBN: 978-1-68392-823-2

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022943452
222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to Python

Tools for Python

easy_install and pip

virtualenv

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentations, and Multi-Lines

Quotation and Comments in Python

Saving Your Code in a Module

Some Standard Modules in Python

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types in Python

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function in Python

Formatting Numbers in Python

Unicode and UTF-8

Working with Unicode

Listing 1.1: Unicode1.py

Working with Strings

Comparing Strings

Listing 1.2: Compare.py

Formatting Strings in Python

Uninitialized Variables and the Value None in Python

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Listing 1.3: CharTypes.py

Search and Replace a String in Other Strings

Listing 1.4: FindPos1.py

Listing 1.5: Replace1.py

Remove Leading and Trailing Characters

Listing 1.6: Remove1.py

Printing Text without NewLine Characters

Text Alignment

Working with Dates

Listing 1.7: Datetime2.py

Listing 1.8: datetime2.out

Converting Strings to Dates

Listing 1.9: String2Date.py

Exception Handling in Python

Listing 1.10: Exception1.py

Handling User Input

Listing 1.11: UserInput1.py

Listing 1.12: UserInput2.py

Listing 1.13: UserInput3.py

Command-Line Arguments

Listing 1.14: Hello.py

Summary

Chapter 2: Introduction to NumPy

What is NumPy?

Useful NumPy Features

What are NumPy Arrays?

Listing 2.1: nparray1.py

Working with Loops

Listing 2.2: loop1.py

Appending Elements to Arrays (1)

Listing 2.3: append1.py

Appending Elements to Arrays (2)

Listing 2.4: append2.py

Multiplying Lists and Arrays

Listing 2.5: multiply1.py

Doubling the Elements in a List

Listing 2.6: double_list1.py

Lists and Exponents

Listing 2.7: exponent_list1.py

Arrays and Exponents

Listing 2.8: exponent_array1.py

Math Operations and Arrays

Listing 2.9: mathops_array1.py

Working with “−1” Sub-ranges With Vectors

Listing 2.10: npsubarray2.py

Working with “−1” Sub-ranges with Arrays

Listing 2.11: np2darray2.py

Other Useful NumPy Methods

Arrays and Vector Operations

Listing 2.12: array_vector.py

NumPy and Dot Products (1)

Listing 2.13: dotproduct1.py

NumPy and Dot Products (2)

Listing 2.14: dotproduct2.py

NumPy and the Length of Vectors

Listing 2.15: array_norm.py

NumPy and Other Operations

Listing 2.16: otherops.py

NumPy and the reshape() Method

Listing 2.17: numpy_reshape.py

Calculating the Mean and Standard Deviation

Listing 2.18: sample_mean_std.py

Code Sample with Mean and Standard Deviation

Listing 2.19: stat_values.py

Trimmed Mean and Weighted Mean

Working with Lines in the Plane (Optional)

Plotting Randomized Points with NumPy and Matplotlib

Listing 2.20: np_plot.py

Plotting a Quadratic with NumPy and Matplotlib

Listing 2.21: np_plot_quadratic.py

What is Linear Regression?

What is Multivariate Analysis?

What about Non-Linear Datasets?

The MSE (Mean Squared Error) Formula

Other Error Types

Non-Linear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line in NumPy

Listing 2.22: find_best_fit.py

Calculating MSE by Successive Approximation (1)

Listing 2.23: plain_linreg1.py

Calculating MSE by Successive Approximation (2)

Listing 2.24: plain_linreg2.py

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Listing 2.25: upload_csv_file.ipynb

Summary

Chapter 3: Introduction to Pandas

What is Pandas?

Pandas Options and Settings

Pandas Data Frames

Data Frames and Data Cleaning Tasks

Alternatives to Pandas

A Pandas Data Frame with a NumPy Example

Listing 3.1: pandas_df.py

Describing a Pandas Data Frame

Listing 3.2: pandas_df_describe.py

Pandas Boolean Data Frames

Listing 3.3: pandas_boolean_df.py

Transposing a Pandas Data Frame

Pandas Data Frames and Random Numbers

Listing 3.4: pandas_random_df.py

Listing 3.5: pandas_combine_df.py

Reading CSV Files in Pandas

Listing 3.6: sometext.txt

Listing 3.7: read_csv_file.py

The loc() and iloc() Methods in Pandas

Converting Categorical Data to Numeric Data

Listing 3.8: cat2numeric.py

Listing 3.9: shirts.csv

Listing 3.10: shirts.py

Matching and Splitting Strings in Pandas

Listing 3.11: shirts_str.py

Converting Strings to Dates in Pandas

Listing 3.12: string2date.py

Merging and Splitting Columns in Pandas

Listing 3.13: employees.csv

Listing 3.14: emp_merge_split.py

Combining Pandas Data Frames

Listing 3.15: concat_frames.py

Data Manipulation with Pandas Data Frames (1)

Listing 3.16: pandas_quarterly_df1.py

Data Manipulation with Pandas Data Frames (2)

Listing 3.17: pandas_quarterly_df2.py

Data Manipulation with Pandas Data Frames (3)

Listing 3.18: pandas_quarterly_df3.py

Pandas Data Frames and CSV Files

Listing 3.19: weather_data.py

Listing 3.20: people.csv

Listing 3.21: people_pandas.py

Managing Columns in Data Frames

Switching Columns

Appending Columns

Deleting Columns

Inserting Columns

Scaling Numeric Columns

Listing 3.22: numbers.csv

Listing 3.23: scale_columns.py

Managing Rows in Pandas

Selecting a Range of Rows in Pandas

Listing 3.24: duplicates.csv

Listing 3.25: row_range.py

Finding Duplicate Rows in Pandas

Listing 3.26: duplicates.py

Listing 3.27: drop_duplicates.py

Inserting New Rows in Pandas

Listing 3.28: emp_ages.csv

Listing 3.29: insert_row.py

Handling Missing Data in Pandas

Listing 3.30: employees2.csv

Listing 3.31: missing_values.py

Multiple Types of Missing Values

Listing 3.32: employees3.csv

Listing 3.33: missing_multiple_types.py

Test for Numeric Values in a Column

Listing 3.34: test_for_numeric.py

Replacing NaN Values in Pandas

Listing 3.35: missing_fill_drop.py

Sorting Data Frames in Pandas

Listing 3.36: sort_df.py

Working with groupby() in Pandas

Listing 3.37: groupby1.py

Working with apply() and mapapply() in Pandas

Listing 3.38: apply1.py

Listing 3.39: apply2.py

Listing 3.40: mapapply1.py

Listing 3.41: mapapply2.py

Handling Outliers in Pandas

Listing 3.42: outliers_zscores.py

Pandas Data Frames and Scatterplots

Listing 3.43: pandas_scatter_df.py

Pandas Data Frames and Simple Statistics

Listing 3.44: housing.csv

Listing 3.45: housing_stats.py

Aggregate Operations in Pandas Data Frames

Listing 3.46: aggregate1.py

Aggregate Operations with the titanic.csv Dataset

Listing 3.47: aggregate2.py

Save Data Frames as CSV Files and Zip Files

Listing 3.48: save2csv.py

Pandas Data Frames and Excel Spreadsheets

Listing 3.49: write_people_xlsx.py

Listing 3.50: read_people_xslx.py

Working with JSON-based Data

Python Dictionary and JSON

Listing 3.51: dict2json.py

Python, Pandas, and JSON

Listing 3.52: pd_python_json.py

Useful One-line Commands in Pandas

What is Method Chaining?

Pandas and Method Chaining

Pandas Profiling

Listing 3.53: titanic.csv

Listing 3.54: profile_titanic.py

Summary

Chapter 4: Working with Sklearn and Scipy

What is Sklearn?

Sklearn Features

The Digits Dataset in Sklearn

Listing 4.1: load_digits1.py

Listing 4.2: load_digits2.py

Listing 4.3: sklearn_digits.py

The train_test_split() Class in Sklearn

Selecting Columns for X and y

What is Feature Engineering?

The Iris Dataset in Sklearn (1)

Listing 4.4: sklearn_iris1.py

Sklearn, Pandas, and the Iris Dataset

Listing 4.5: pandas_iris.py

The Iris Dataset in Sklearn (2)

Listing 4.6: sklearn_iris2.py

The Faces Dataset in Sklearn (Optional)

Listing 4.7: sklearn_faces.py

What is SciPy?

Installing SciPy

Permutations and Combinations in SciPy

Listing 4.8: scipy_perms.py

Listing 4.9: scipy_combinatorics.py

Calculating Log Sums

Listing 4.10: scipy_matrix_inv.py

Calculating Polynomial Values

Listing 4.11: scipy_poly.py

Calculating the Determinant of a Square Matrix

Listing 4.12: scipy_determinant.py

Calculating the Inverse of a Matrix

Listing 4.13: scipy_matrix_inv.py

Calculating Eigenvalues and Eigenvectors

Listing 4.14: scipy_eigen.py

Calculating Integrals (Calculus)

Listing 4.15: scipy_integrate.py

Calculating Fourier Transforms

Listing 4.16: scipy_fourier.py

Flipping Images in SciPy

Listing 4.17: scipy_flip_image.py

Rotating Images in SciPy

Listing 4.18: scipy_rotate_image.py

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Listing 4.19: upload_csv_file.ipynb

Summary

Chapter 5: Data Cleaning Tasks

What is Data Cleaning?

Data Cleaning for Personal Titles

Data Cleaning in SQL

Replace NULL with 0

Replace NULL Values with the Average Value

Listing 5.1: replace_null_values.sql

Replace Multiple Values with a Single Value

Listing 5.2: reduce_values.sql

Handle Mismatched Attribute Values

Listing 5.3: type_mismatch.sql

Convert Strings to Date Values

Listing 5.4: str_to_date.sql

Data Cleaning from the Command Line (optional)

Working with the sed Utility

Listing 5.5: delimiter1.txt

Listing 5.6: delimiter1.sh

Working with Variable Column Counts

Listing 5.7: variable_columns.csv

Listing 5.8: variable_columns.sh

Listing 5.9: variable_columns2.sh

Truncating Rows in CSV Files

Listing 5.10: variable_columns3.sh

Generating Rows with Fixed Columns with the awk Utility

Listing 5.11: FixedFieldCount1.sh

Listing 5.12: employees.txt

Listing 5.13: FixedFieldCount2.sh

Converting Phone Numbers

Listing 5.14: phone_numbers.txt

Listing 5.15: phone_numbers.sh

Converting Numeric Date Formats

Listing 5.16: dates.txt

Listing 5.17: dates.sh

Listing 5.18: dates2.sh

Converting Alphabetic Date Formats

Listing 5.19: dates2.txt

Listing 5.20: dates3.sh

Working with Date and Time Date Formats

Listing 5.21: date-times.txt

Listing 5.22: date-times-padded.sh

Working with Codes, Countries, and Cities

Listing 5.23: country_codes.csv

Listing 5.24: add_country_codes.sh

Listing 5.25: countries_cities.csv

Listing 5.26: split_countries_codes.sh

Listing 5.27: countries_cities2.csv

Listing 5.28: split_countries_codes2.sh

Data Cleaning on a Kaggle Dataset

Listing 5.29: convert_marketing.sh

Summary

Chapter 6: Data Visualization

What is Data Visualization?

Types of Data Visualization

What is Matplotlib?

Diagonal Lines in Matplotlib

Listing 6.1: diagonallines.py

A Colored Grid in Matplotlib

Listing 6.2: plotgrid2.py

Randomized Data Points in Matplotlib

Listing 6.3: lin_plot_reg.py

A Histogram in Matplotlib

Listing 6.4: histogram1.py

A Set of Line Segments in Matplotlib

Listing 6.5: line_segments.py

Plotting Multiple Lines in Matplotlib

Listing 6.6: plt_array2.py

Trigonometric Functions in Matplotlib

Listing 6.7: sincos.py

Display IQ Scores in Matplotlib

Listing 6.8: iq_scores.py

Plot a Best-Fitting Line in Matplotlib

Listing 6.9: plot_best_fit.py

The Iris Dataset in SkLearn

Listing 6.10: sklearn_iris1.py

SkLearn, Pandas, and the Iris Dataset

Listing 6.11: pandas_iris.py

Working with Seaborn

Features of Seaborn

Seaborn Built-in Datasets

Listing 6.12: seaborn_tips.py

The Iris Dataset in Seaborn

Listing 6.13: seaborn_iris.py

The Titanic Dataset in Seaborn

Listing 6.14: seaborn_titanic_plot.py

Extracting Data from the Titanic Dataset in Seaborn (1)

Listing 6.15: seaborn_titanic.py

Extracting Data from the Titanic Dataset in Seaborn (2)

Listing 6.16: seaborn_titanic2.py

Visualizing a Pandas Dataset in Seaborn

Listing 6.17: pandas_seaborn.py

Data Visualization in Pandas

Listing 6.18: pandas_viz1.py

What is Bokeh?

Listing 6.19: bokeh_trig.py

Summary

Appendix A: Working with Data

What are Datasets?

Data Preprocessing

Data Types

Preparing Datasets

Discrete Data vs. Continuous Data

“Binning” Continuous Data

Scaling Numeric Data via Normalization

Scaling Numeric Data via Standardization

What to Look for in Categorical Data

Mapping Categorical Data to Numeric Values

Working with Dates

Working with Currency

Missing Data, Anomalies, and Outliers

Missing Data

Anomalies and Outliers

Outlier Detection

What is Data Drift?

What is Imbalanced Classification?

What is SMOTE?

SMOTE Extensions

Analyzing Classifiers (Optional)

What is LIME?

What is ANOVA?

The Bias-Variance Trade-Off

Types of Bias in Data

Summary

Appendix B: Working with awk

The awk Command

Built-in Variables that Control awk

How Does the awk Command Work?

Aligning Text with the printf Statement

Listing B.1: columns2.txt

Listing B.2: AlignColumns1.sh

Conditional Logic and Control Statements

The while Statement

A for loop in awk

Listing B.3: Loop.sh

A for loop with a break Statement

The next and continue Statements

Deleting Alternate Lines in Datasets

Listing B.4: linepairs.csv

Listing B.5: deletelines.sh

Merging Lines in Datasets

Listing B.6: columns.txt

Listing B.7: ColumnCount1.sh

Printing File Contents as a Single Line

Joining Groups of Lines in a Text File

Listing B.8: digits.txt

Listing B.9: digits.sh

Joining Alternate Lines in a Text File

Listing B.10: columns2.txt

Listing B.11: JoinLines.sh

Listing B.12: JoinLines2.sh

Listing B.13: JoinLines2.sh

Matching with Meta Characters and Character Sets

Listing B.14: Patterns1.sh

Listing B.15: columns3.txt

Listing B.16: MatchAlpha1.sh

Printing Lines Using Conditional Logic

Listing B.17: products.txt

Splitting Filenames with awk

Listing B.18: SplitFilename2.sh

Working with Postfix Arithmetic Operators

Listing B.19: mixednumbers.txt

Listing B.20: AddSubtract1.sh

Numeric Functions in awk

One Line awk Commands

Useful Short awk Scripts

Listing B.21: data.txt

Printing the Words in a Text String in awk

Listing B.22: Fields2.sh

Count Occurrences of a String in Specific Rows

Listing B.23: data1.csv

Listing B.24: data2.csv

Listing B.25: checkrows.sh

Printing a String in a Fixed Number of Columns

Listing B.26: FixedFieldCount1.sh

Printing a Dataset in a Fixed Number of Columns

Listing B.27: VariableColumns.txt

Listing B.28: Fields3.sh

Aligning Columns in Datasets

Listing B.29: mixed-data.csv

Listing B.30: mixed-data.sh

Aligning Columns and Multiple Rows in Datasets

Listing B.31: mixed-data2.csv

Listing B.32: aligned-data2.csv

Listing B.33: mixed-data2.sh

Removing a Column from a Text File

Listing B.34: VariableColumns.txt

Listing B.35: RemoveColumn.sh

Subsets of Column-aligned Rows in Datasets

Listing B.36: sub-rows-cols.txt

Listing B.37: sub-rows-cols.sh

Counting Word Frequency in Datasets

Listing B.38: WordCounts1.sh

Listing B.39: WordCounts2.sh

Listing B.40: columns4.txt

Displaying Only “Pure” Words in a Dataset

Listing B.41: onlywords.sh

Working with Multi-line Records in awk

Listing B.42: employees.txt

Listing B.43: employees.sh

A Simple Use Case

Listing B.44: quotes3.csv

Listing B.45 delim1.sh

Another Use Case

Listing B.46: dates2.csv

Listing B.47: string2date2.sh

Summary

Index

PREFACE

What is the Primary Value Proposition for this Book?

This book contains a fast-paced introduction to as much relevant information about Python tools for data scientists as possible that can be reasonably included in a book of this size. If you are a novice, this book will give you a starting point from which you can decide which Python technologies that you want to explore in greater detail.

You will be exposed to features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. Some topics are presented in a cursory manner, which is for two main reasons. First, it’s important that you be exposed to these concepts. In some cases, you will find topics that might pique your interest, and hence motivate you to learn more about them through self-study; in other cases, you will probably be satisfied with a brief introduction. In other words, you decide whether to delve deeply into each of the topics in this book.

Second, a full treatment of all the topics that are covered in this book would significantly increase its size, and few people are interested in reading technical tomes with 500 or more pages.

However, it’s important for you to decide if this approach is suitable for your needs and learning style. If not, you can select one or more of the plethora of data analytics books that are available.

The Target Audience

This book is intended primarily for people who have worked with Python and are interested in learning about several important Python libraries. Moreover, this book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration to provide a comfortable and meaningful learning experience for the intended readers.

What Will I Learn from This Book?

The first chapter contains a quick tour of basic Python, followed by a chapter that introduces you to Python data structures. Next, Chapter 3 introduces you to NumPy, followed by a chapter for Pandas. Chapter 5 provides a high-level view of Sklearn, which is an extremely powerful Python library that is central to many machine learning tasks.

Chapter 6 contains an assortment of data cleaning tasks that are solved via Python as well as the awk programming language. Chapter 6 delves into data visualization with Matplotlib, Seaborn, and Bokeh. Next, one appendix explores issues that can arise with data, followed by an appendix for awk.

Why is an Appendix for awk Included in This Book?

While many data cleaning tasks can be performed via Python, sometimes it’s much easier to perform data cleaning via awk. If you have not worked with awk, it’s a venerable Unix utility that was developed almost 50 years ago by Aho, Weinberger, and Kernighan (the latter is a coauthor of the famous K&R book for C).

Incidentally, most of the Python code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (as explained in Chapter 1) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.

Do I Need to Learn the Theory Portions of this Book?

Once again, the answer depends on the extent to which you plan to become involved in data analytics. For example, if you plan to study machine learning, then you will probably learn how to create and train a model, which is a task that is performed after data cleaning tasks. In general, you will probably need to learn everything that you encounter in this book if you are planning to become a machine learning engineer.

Why Does This Book Include Sklearn Material?

The amount of Sklearn material in this book is minimal because this book is not about machine learning. The Sklearn material is located in Chapter 6, where you will learn about some of the Sklearn built-in datasets. If you decide to delve into machine learning, you will have already been introduced to some aspects of Sklearn.

Getting the Most from This Book

Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.

What Do I Need to Know for This Book?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.

Do the Companion Files Obviate the Need for This Book?

The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to the companion files. Furthermore, the code samples in the book provide explanations that are not available on the companion files.

Does This Book Contain Production-level Code Samples?

The primary purpose of the code samples in this book is to show you Python-based libraries for solving a variety of data-related tasks in conjunction with acquiring a rudimentary understanding of statistical concepts. Clarity has a higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.

What are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s very important to have strong desire to learn about data analytics, along with the motivation and discipline to read and understand the code samples.

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your MacBook will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

Companion Files

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

What are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can start by learning the fundamentals of NLP and then proceed to more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are. The needs of a machine learning engineer, data scientist, manager, student or software developer are all different.

CHAPTER 1

INTRODUCTION TO PYTHON

This chapter contains an introduction to Python, with information about useful tools for installing its modules, working with its basic constructs, and managing some data types.

The first part of this chapter covers a Python installation, some environment variables, and usage of the interpreter. We include code samples and how to save code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The third part of this chapter discusses exceptions and how to use them in scripts.

NOTE

The scripts in this book are for Python 3.x.

Tools for Python

The Anaconda Python distribution available for Windows, Linux, and Mac, and is downloadable: http://continuum.io/downloads.

Anaconda is well-suited for modules such as NumPy and scipy, and if you are a Windows user, Anaconda appears to be a better alternative.

easy_install and pip

Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a Python module, use either easy_install or pip with the following syntax:

easy_install <module-name>

pip install <module-name>

NOTE

Python-based modules are easy to install. Modules with code written in C are usually faster, but more difficult in terms of installation.

virtualenv

The virtualenv tool enables you to create isolated Python environments:

http://www.virtualenv.org/en/latest/virtualenv.html

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly permissions) for different applications. (If you are a Python novice, you might not need virtualenv right now). The next section shows you how to check whether Python is installed on your machine, and also where you can download Python.

Python Installation

Before you download anything, check if you have Python already installed on your machine (which is likely if you have a Macbook or a Linux machine) by typing the following command in a command shell:

python -V

The output for the Macbook used in this book is

Python 3.9.1

NOTE

Install Python 3.9.1 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the scripts in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is online:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts and save them as plain text files (don’t use Microsoft Word).

After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.

Setting the PATH Environment Variable (Windows Only)

The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. A very good guide to setting up your environment so that the executable is always available in every command shell is to follow the instructions found online:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/

Launching Python on Your Machine

There are three different ways to launch Python:

[image:]Use the Python Interactive Interpreter.

[image:]Launch Python scripts from the command line.

[image:]Use an IDE.

The next section shows you how to launch the interpreter from the command line. Later in this chapter, we show how to launch scripts from the command line and discuss IDEs.

NOTE

The emphasis in this book is to launch scripts from the command line or to enter code in the interpreter.

The Python Interactive Interpreter

Launch the interactive interpreter from the command line by opening a command shell and typing the following command:

python

You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)

[Clang 12.0.0 (clang-1200.0.32.27)] on darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>>

Now type the expression 2 + 7 at the prompt:

>>> 2 + 7

Python displays the following result:

9

>>>

Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have the script myscript.py that contains Python statements, launch the script as follows:

python myscript.py

As a simple illustration, suppose that the script myscript.py contains the following code:

print('Hello World from Python')

print('2 + 7 = ', 2+7)

When you launch the preceding script, you will see the following output:

Hello World from Python

2 + 7 =  9

Python Identifiers

A Python identifier is the name of a variable, function, class, module, or other object, and a valid identifier conforms to the following rules:

[image:]starts with a letter A to Z, or a to z, or an underscore (_)

[image:]zero or more letters, underscores, and digits (0 to 9)

NOTE

Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so “Abc” and “abc” are different identifiers.

In addition, Python has the following naming conventions:

[image:]Class names start with an uppercase letter and all other identifiers with a lowercase letter.

[image:]An initial underscore is used for private identifiers.

[image:]Two initial underscores are used for strongly private identifiers.

An identifier with two initial underscores and two trailing underscores indicates a language-defined special name.

Lines, Indentations, and Multi-Lines

Unlike other programming languages (such as Java or Objective-C), Python uses indentations instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:

print("ABC")

print("DEF")

else:

print("ABC")

print("DEF")

Multi-line statements can terminate with a new line or the backslash (\) character, as shown here:

total = x1 + \

x2 + \

x3

You can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon (;) to separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)

The output of the preceding code snippet is as follows:

10

15

NOTE

The use of semi-colons and the continuation character are discouraged in Python.

Quotation and Comments in Python

Python allows single (‘), double (“) and triple (‘’’ or “””) quotes for string literals, provided that they match at the beginning and the end of the string. You can use triple quotes for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'

line = "This is a sentence."

para = """This is a paragraph. This paragraph contains

more than one sentence."""

A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters:

a1 = r'\n'

a2 = r'\r'

a3 = r'\t'

print('a1:',a1,'a2:',a2,'a3:',a3)

The output of the preceding code block is as follows:

a1: \n a2: \r a3: \t

You can embed a single quote in a pair of double quotes (and vice versa) to display a single quote or a double quote. Another way to accomplish the same result is to precede a single or double quote with a backslash (\) character. The following code block illustrates these techniques:

b1 = "'"

b2 = '"'

b3 = '\''

b4 = "\""

print('b1:',b1,'b2:',b2)

print('b3:',b3,'b4:',b4)

The output of the preceding code block is as follows:

b1: ' b2: "

b3: ' b4: "

A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the interpreter). Consider the following code block:

#!/usr/bin/python

First comment

print("Hello, Python!")  # second comment

This code produces the following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also a comment

You can comment multiple lines as follows:

This is comment one

This is comment two

This is comment three

A blank line in Python is a line containing only whitespace, a comment, or both.

Saving Your Code in a Module

Earlier, you saw how to launch the interpreter from the command line and then enter commands. However, everything you type into the interpreter is only valid for the current session. If you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file.

A module is a text file that contains Python statements. In the previous section, you saw how the interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the interpreter.

The outermost statements are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A module can be run directly from the command line, as shown here:

python First.py

As an illustration, place the following two statements in a text file called First.py:

x = 3

print(x)

Type the following command:

python First.py

The output from the preceding command is 3, which is the same as executing the preceding code from the interpreter.

When a module is run directly, the special variable __name__ is set to __main__. You will often see the following type of code in a module:

if __name__ == '__main__':

do something here

print('Running directly')

The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.

Some Standard Modules in Python

The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is available online:

http://www.python.org/doc/

Some of the most important modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import standard modules:

import re

import sys

import time

The code samples in this book import one or more of the preceding modules, as well as other Python modules.

The help() and dir() Functions

An Internet search for Python-related topics usually returns a number of links with useful information. Alternatively, you can check the official documentation site: docs.python.org.

In addition, the help() and dir() functions are accessible from the interpreter. The help() function displays documentation strings, whereas the dir() function displays defined symbols. For example, if you type help(sys,) you see documentation for the sys module, whereas dir(sys) displays a list of the defined symbols.

Type the following command in the interpreter to display the string-related methods:

>>> dir(str)

The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

The preceding list gives you a consolidated list of built-in functions. Although it is clear that the max() function returns the maximum value of its arguments, the purpose of other functions, such as filter() or map(), is not immediately apparent (unless you have used them in other programming languages). The preceding list provides a starting point for finding out more about various built-in functions that are not discussed in this chapter.

Note that while dir() does not list the names of built-in functions and variables, you can obtain this information from the standard module __builtin__ that is automatically imported under the name __builtins__:

>>> dir(__builtins__)

The following command shows you how to get more information about a function:

help(str.lower)

The output from the preceding command is

Help on method_descriptor:

lower(...)

S.lower() -> string

Return a copy of the string S converted to lowercase.

(END)

Check the online documentation and also experiment with help() and dir() when you need additional information about a particular function or module.

Compile Time and Runtime Code Checking

Python performs some compile-time checking, but most checks (including type and name) are deferred until code execution. Consequently, if your code references a user-defined function that that does not exist, the code will compile successfully. In fact, the code will fail with an exception only when the code execution path references the non-existent function.

As a simple example, consider the following function myFunc that references the non-existent function called DoesNotExist:

def myFunc(x):

if x == 3:

print(DoesNotExist(x))

else:

print('x: ',x)

The preceding code only fails when the myFunc function is passed the value 3, after which Python raises an error. Later, we discuss how to define and invoke user-defined functions, along with an explanation of the difference between local versus global variables.

Now that you understand some basic concepts and how to launch your custom modules, the next section discusses primitive data types.

Simple Data Types in Python

Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. It also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed later in this chapter. The next several sections discuss some of the primitive data types, along with code snippets that show you how to perform operations on those data types.

Working with Numbers

Python provides arithmetic operations for manipulating numbers in a manner similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2

4

>>> 4/3

1

>>> 3*8

24

The following example assigns numbers to two variables and computes their product:

>>> x = 4

>>> y = 7

>>> x * y

28

The following examples demonstrate arithmetic operations involving integers:

>>> 2+2

4

>>> 4/3

1

>>> 3*8

24

Notice that division (/) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007

>>> "%.14e"%fnum

'1.23456890000070e-04'

You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"

word2 = "456.78"

var1 = int(word1)

var2 = float(word2)

print("var1: ",var1," var2: ",var2)

The output from the preceding code block is here:

var1:  123  var2:  456.78

Alternatively, you can use the eval() function:

word1 = "123"

word2 = "456.78"

var1 = eval(word1)

var2 = eval(word2)

print("var1: ",var1," var2: ",var2)

Attempting to convert a string that is not a valid integer or a floating point number raises an exception, so it’s advisable to place your code in a try/except block.

Working with Other Bases

Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16:

>>> x = 1234

>>> bin(x) '0b10011010010'

>>> oct(x) '0o2322'

>>> hex(x) '0x4d2'

Use the format() function to suppress the 0b, 0o, or 0x prefixes:

>>> format(x, 'b') '10011010010'

>>> format(x, 'o') '2322'

>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234

>>> format(x, 'b') '-10011010010'

>>> format(x, 'x') '-4d2'

The chr() Function

The chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representations of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representations of 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print an uppercase A:

>>> x=chr(65)

>>> x

'A'

The following code block prints the ASCII values for a range of integers:

result = ""

for x in range(65,91):

print(x, chr(x))

result = result+chr(x)+' '

print("result: ",result)

NOTE

Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,90):

However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the preceding range from (65,90) to either of the following statements:

for x in range(65,90):

for x in range(ord('a'), ord('z')):

The round() Function in Python

The round() function enables you to round decimal values:

>>> round(1.23, 1)

1.2

>>> round(-3.42,1)

-3.4

Formatting Numbers in Python

You can specify the number of decimal places of precision to use when printing decimal numbers:

>>> x = 1.23456

>>> format(x, '0.2f')

'1.23'

>>> format(x, '0.3f')

'1.235'

>>> 'value is {:0.3f}'.format(x) 'value is 1.235'

>>> from decimal import Decimal

>>> a = Decimal('4.2')

>>> b = Decimal('2.1')

>>> a + b

Decimal('6.3')

>>> print(a + b)

6.3

>>> (a + b) == Decimal('6.3')

True

>>> x = 1234.56789

>>> # Two decimal places of accuracy

>>> format(x, '0.2f')

'1234.57'

>>> # Right justified in 10 chars, one-digit accuracy

>>> format(x, '>10.1f')

' 1234.6'

>>> # Left justified

>>> format(x, '<10.1f') '1234.6 '

>>> # Centered

>>> format(x, '^10.1f') ' 1234.6 '

>>> # Inclusion of thousands separator

>>> format(x, ',')

'1,234.56789'

>>> format(x, '0,.1f')

'1,234.6'

Before delving into code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.

Unicode and UTF-8

A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (Unicode Transformation Format) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.

Working with Unicode

Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter “u,” as shown here:

>>> u'Hello from Python!'

u'Hello from Python!'

Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'

u'Hello from Python!'

Listing 1.1 displays the content of Unicode1.py, which illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

Listing 1.1: Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'

hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)

print('Hiragana:',hiragana)

The output of Listing 1.2 is

Chinese: 將探討 HTML5 及其他

Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice and dice” text strings with built-in functions.

Working with Strings

Literal strings in Python 3 are Unicode by default. You can concatenate two strings using the + operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'

'abc'

>>> 'a' + 'b'

'ab'

You can use + or * to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'

'aaa'

>>> 'a' * 3

'aaa'

You can assign strings to variables and print them using the print command:

>>> print('abc')

abc

>>> x = 'abc'

>>> print(x)

abc

>>> y = 'def'

>>> print(x + y)

Abcdef

You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"

>>> x1,x2,x3,x4,x5 = str

>>> x1

'W'

>>> x2

'o'

>>> x3

'r'

>>> x4

'l'

>>> x5

'd'

The preceding code snippets shows you how easy it is to extract the letters in a text string. You can also extract substrings of a string as shown in the following examples:

>>> x = "abcdef"

>>> x[0]

'a'

>>> x[-1]

'f'

>>> x[1:3]

'bc'

>>> x[0:2] + x[5:]

'abf'

However, you will cause an error if you attempt to subtract two strings, as you probably expect:

>>> 'a' - 'b'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct enables you to handle the preceding type of exception.

Comparing Strings

You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively:

>>> 'Python'.lower()

'python'

>>> 'Python'.upper()

'PYTHON'

>>>

The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 shows the content of Compare.py that uses the lower() function to compare two ASCII strings.

Listing 1.2: Compare.py

x = 'Abc'

y = 'abc'

if(x == y):

print('x and y: identical')

elif (x.lower() == y.lower()):

print('x and y: case insensitive match')

else:

print('x and y: different')

Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 gives the following output:

x and y: different

Formatting Strings in Python

Python provides the functions string.lstring(), string.rstring(), and string.center() for positioning a text string so that it is left-justified, right-justified, and centered, respectively. As you saw in a previous section, the format() method exists for advanced interpolation features.

Enter the following commands in the interpreter:

import string

str1 = 'this is a string'

print(string.ljust(str1, 10))

print(string.rjust(str1, 40))

print(string.center(str1,40))

The output is as follows:

this is a string

             this is a string

   this is a string

Uninitialized Variables and the Value None in Python

Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic.

The next portion of this chapter shows you how to manipulate text strings with built-in functions.

Slicing and Splicing Strings

Python enables you to extract substrings of a string (called slicing) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and increment value, respectively. The interesting part about slicing is that you can use the value −1, which operates from the right side instead of the left side of a string. Some examples of slicing a string are here:

text1 = "this is a string"

print('First 7 characters:',text1[0:7])

print('Characters 2-4:',text1[2:4])

print('Right-most character:',text1[-1])

print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is as follows:

First 7 characters: this is

Characters 2-4: is

Right-most character: g

Right-most 2 characters: in

Later in this chapter, we show how to insert a string in the middle of another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then test whether that character is a digit or an alphabetic character.

Listing 1.3 shows the content of CharTypes.py, which illustrates how to determine if a string contains digits or characters. If you are unfamiliar with the conditional “if” statement in Listing 1.3, more detailed information is available later in this chapter.

Listing 1.3: CharTypes.py

str1 = "4"

str2 = "4234"

str3 = "b"

str4 = "abc"

str5 = "a1b2c3"

if(str1.isdigit()):

print("this is a digit:",str1)

if(str2.isdigit()):

print("this is a digit:",str2)

if(str3.isalpha()):

print("this is alphabetic:",str3)

if(str4.isalpha()):

print("this is alphabetic:",str4)

if(not str5.isalpha()):

print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by two conditional tests that check whether str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is as follows:

this is a digit: 4

this is a digit: 4234

this is alphabetic: b

this is alphabetic: abc

this is not pure alphabetic: a1b2c3

capitalized first letter: A1B2C3

Search and Replace a String in Other Strings

Python provides methods for searching and replacing a string in a second text string. Listing 1.4 shows the content of FindPos1.py, which shows how to use the find() function to search for the occurrence of one string in another string.

Listing 1.4: FindPos1.py

item1 = 'abc'

item2 = 'Abc'

text = 'This is a text string with abc'

pos1 = text.find(item1)

pos2 = text.find(item2)

print('pos1=',pos1)

print('pos2=',pos2)

Listing 1.4 initializes the variables item1, item2, and text, and then searches for the index of the contents of item1 and item2 in the string text. The find() function returns the column number where the first successful match occurs; otherwise, the find() function returns a −1 if a match is unsuccessful. The output from launching Listing 1.4 is here:

pos1= 27

pos2= -1

In addition to the find() method, you can use the in operator when you want to test for the presence of an element:

>>> lst = [1,2,3]

>>> 1 in lst

True

Listing 1.5 displays the content of Replace1.py, which shows how to replace one string with another string.

Listing 1.5: Replace1.py

text = 'This is a text string with abc'

print('text:',text)

text = text.replace('is a', 'was a')

print('text:',text)

Listing 1.5 starts by initializing the variable text and then printing its contents. The next portion of Listing 1.5 replaces the occurrence of “is a” with “was a” in the string text, and then prints the modified string. The output from launching Listing 1.5 is as follows:

text: This is a text string with abc

text: This was a text string with abc

Remove Leading and Trailing Characters

Python provides the functions strip(), lstrip(), and rstrip() to remove characters in a text string. Listing 1.6 shows the content of Remove1.py, which gives the code for how to search for a string.

Listing 1.6: Remove1.py

text = '   leading and trailing white space   '

print('text1:','x',text,'y')

text = text.lstrip()

print('text2:','x',text,'y')

text = text.rstrip()

print('text3:','x',text,'y')

Listing 1.6 starts by concatenating the letter x and the contents of the variable text, and then printing the result. The second part of Listing 1.6 removes the leading white spaces in the string text and then appends the result to the letter x. The third part of Listing 1.6 removes the trailing white spaces in the string text (note that the leading white spaces have already been removed) and then appends the result to the letter x.

The output from launching Listing 1.6 is here:

text1: x    leading and trailing white space    y

text2: x leading and trailing white space    y

text3: x leading and trailing white space y

If you want to remove extra white spaces inside a text string, use the replace() function as discussed in the previous section. The following example illustrates how this can be accomplished:

import re

text = 'a    b'

a = text.replace(' ', '')

b = re.sub('\s+', ' ', text)

print(a)

print(b)

The result is

ab

a b

Later you will see how to use the join() function to remove extra white spaces in a text string.

Printing Text without NewLine Characters

If you need to suppress white space and a newline between objects output with multiple print statements, you can use concatenation or the write() function.

The first technique is to concatenate the string representations of each object using the str() function prior to printing the result. For example, run the following statement:

x = str(9)+str(0xff)+str(-3.1)

print('x: ',x)

The output is shown here:

x:  9255-3.1

The preceding line contains the concatenation of the numbers 9 and 255 (which is the decimal value of the hexadecimal number 0xff) and -3.1. Incidentally, you can use the str() function with modules and user-defined classes. An example involving the built-in module sys is as follows:

>>> import sys

>>> print(str(sys))

<module 'sys' (built-in)>

The following code snippet illustrates how to use the write() function to display a string:

import sys

write = sys.stdout.write

write('123')

write('123456789')

The output is here:

1233

1234567899

Text Alignment

Python provides the methods ljust(), rjust(), and center() for aligning text. The ljust() and rjust() functions left justify and right justify a text string, respectively, whereas the center() function centers a string. An example is shown in the following code block:

text = 'Hello World'

text.ljust(20)

'Hello World '

>>> text.rjust(20)

' Hello World'

>>> text.center(20)

' Hello World '

You can use the format() function to align text. Use the <, >, or ^ characters, along with a desired width, to right justify, left justify, and center the text, respectively. The following examples illustrate how you can specify text justification:

>>> format(text, '>20')

'         Hello World'

>>>

>>> format(text, '<20')

'Hello World         '

>>>

>>> format(text, '^20')

'    Hello World     '

>>>

Working with Dates

Python provides a rich set of date-related functions, and this section provides one such example. Listing 1.7 shows the content of the script Datetime2.py, which displays various date-related values, such as the current date and time; the day of the week, month, and year; and the time in seconds since the beginning of the epoch.

Listing 1.7: Datetime2.py

import time

import datetime

print("Time in seconds since the epoch: %s" %time.time())

print("Current date and time: " , datetime.datetime.now())

print("Or like this: " ,datetime.datetime.now().strftime("%y-%m-%d-%H-%M"))

print("Current year: ", datetime.date.today().strftime("%Y"))

print("Month of year: ", datetime.date.today().strftime("%B"))

print("Week number of the year: ", datetime.date.today().strftime("%W"))

print("Weekday of the week: ", datetime.date.today().strftime("%w"))

print("Day of year: ", datetime.date.today().strftime("%j"))

print("Day of the month : ", datetime.date.today().strftime("%d"))

print("Day of week: ", datetime.date.today().strftime("%A"))

Listing 1.8 displays the output generated by running the code in Listing 1.7.

Listing 1.8: datetime2.out

Time in seconds since the epoch: 1375144195.66

Current date and time:  2013-07-29 17:29:55.664164

Or like this:  13-07-29-17-29

Current year:  2013

Month of year:  July

Week number of the year:  30

Weekday of the week:  1

Day of year:  210

Day of the month :  29

Day of week:  Monday

Python also enables you to perform arithmetic calculates with date-related values, as shown in the following code block:

>>> from datetime import timedelta

>>> a = timedelta(days=2, hours=6)

>>> b = timedelta(hours=4.5)

>>> c = a + b

>>> c.days

2  

>>> c.seconds

37800

>>> c.seconds / 3600

10.5

>>> c.total_seconds() / 3600

58.5

Converting Strings to Dates

Listing 1.9 shows the content of String2Date.py, which illustrates how to convert a string to a date and how to calculate the difference between two dates.

Listing 1.9: String2Date.py

from datetime import datetime

text = '2014-08-13'

y = datetime.strptime(text, '%Y-%m-%d')

z = datetime.now()

diff = z - y

print('Date difference:',diff)

The output from Listing 1.9 is shown here:

Date difference: -210 days, 18:58:40.197130

Exception Handling in Python

Unlike JavaScript, you cannot add a number and a string in Python. However, you can detect an illegal operation using the try/except construct, which is similar to the try/catch construct in languages such as JavaScript and Java.

An example of a try/except block is here:

try:

x = 4

y = 'abc'

z = x + y

except:

  print 'cannot add incompatible types:', x, y

When you run the preceding code in Python, the print statement in the except code block is executed because the variables x and y have incompatible types.

Earlier in the chapter, you also saw that subtracting two strings throws an exception:

>>> 'a' - 'b'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

A simple way to handle this situation is to use a try/except block:

>>> try:

...  print('a' - 'b')

... except TypeError:

...  print('TypeError exception while trying to subtract two strings')

... except:

...  print('Exception while trying to subtract two strings')

...

The output from the preceding code block is as follows:

TypeError exception while trying to subtract two strings

The preceding code block specifies the finer-grained exception called TypeError, followed by a “generic” except code block to handle all other exceptions that might occur during the execution of your Python code. This style is similar to the exception handling in Java code.

Listing 1.10 shows the content of Exception1.py, which illustrates how to handle various types of exceptions.

Listing 1.10: Exception1.py

import sys

try:

    f = open('myfile.txt')

    s = f.readline()

    i = int(s.strip())

except IOError as err:

    print("I/O error: {0}".format(err))

except ValueError:

    print("Could not convert data to an integer.")

except:

    print("Unexpected error:", sys.exc_info()[0])

    raise

Listing 1.10 contains a try block followed by three except statements. If an error occurs in the try block, the first except statement is compared with the type of exception that occurred. If there is a match, then the subsequent print statement is executed, and the program terminates. If not, a similar test is performed with the second except statement. If neither except statement matches the exception, the third except statement handles the exception, which involves printing a message and then “raising” an exception.

Note that you can also specify multiple exception types in a single statement, as shown here:

except (NameError, RuntimeError, TypeError):

    print('One of three error types occurred')

The preceding code block is more compact, but you do not know which of the three error types occurred. Python allows you to define custom exceptions, but this topic is beyond the scope of this book.

Handling User Input

Python enables you to read user input from the command line via the input() function or the raw_input() function. Typically, you assign user input to a variable that contains all the characters that users enter from the keyboard. User input terminates when users press the <return> key (which is included with the input characters). Listing 1.11 displays the content of UserInput1.py that prompts users for their name and then uses interpolation to display a response.

Listing 1.11: UserInput1.py

userInput = input("Enter your name: ")

print ("Hello %s, my name is Python" % userInput)

The output of Listing 1.11 is as follows (assume that the user entered the word Dave):

Hello Dave, my name is Python

The print() statement in Listing 1.11 uses string interpolation via %s, which substitutes the value of the variable after the % symbol. This functionality is obviously useful when you want to specify something that is determined at run-time. User input can cause exceptions (depending on the operations that your code performs), so it’s important to include exception-handling code.

Listing 1.12 shows the content of UserInput2.py, which prompts users for a string and attempts to convert the string to a number in a try/except block.

Listing 1.12: UserInput2.py

userInput = input("Enter something: ")

try:

  x = 0 + eval(userInput)

  print('you entered the number:',userInput)

except:

  print(userInput,'is a string')

Listing 1.12 adds the number 0 to the result of converting a user’s input to a number. If the conversion was successful, a message with the user’s input is displayed. If the conversion failed, the except code block consists of a print statement that displays a message.

NOTE

This code sample uses the eval() function, which should be avoided so that your code does not evaluate arbitrary (and possibly destructive) commands.

Listing 1.13 shows the content of UserInput3.py, which prompts users for two numbers and attempts to compute their sum in a pair of try/except blocks.

Listing 1.13: UserInput3.py

sum = 0

msg = 'Enter a number:'

val1 = input(msg)

try:

  sum = sum + eval(val1)

except:

  print(val1,'is a string')

msg = 'Enter a number:'

val2 = input(msg)

try:

  sum = sum + eval(val2)

except:

  print(val2,'is a string')

print('The sum of',val1,'and',val2,'is',sum)

Listing 1.13 contains two try blocks, each of which is followed by an except statement. The first try block attempts to add the first user-supplied number to the variable sum, and the second try block attempts to add the second user-supplied number to the previously entered number. An error message occurs if either input string is not a valid number; if both are valid numbers, a message is displayed containing the input numbers and their sum. Be sure to read the caveat regarding the eval() function that is mentioned earlier in this chapter.

Command-Line Arguments

Python provides a getopt module to parse command-line options and arguments, and the sys module provides access to any command-line arguments via the sys.argv. This serves two purposes:

[image:]sys.argv is the list of command-line arguments

[image:]len(sys.argv) is the number of command-line arguments

Here, sys.argv[0] is the program name, so if the program is called test.py, it matches the value of sys.argv[0].

Now you can provide input values for a program on the command line instead of providing input values by prompting users for their input. As an example, consider the script test.py shown here:

#!/usr/bin/python

import sys

print('Number of arguments:',len(sys.argv),'arguments')

print('Argument List:', str(sys.argv))

Run above script as follows:

python test.py arg1 arg2 arg3

This will produce following result:

Number of arguments: 4 arguments.

Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

The ability to specify input values from the command line provides useful functionality. For example, suppose that you have a custom class that contains the methods add and subtract to add and subtract a pair of numbers.

You can use command-line arguments to specify which method to execute on a pair of numbers:

python MyClass add 3 5

python MyClass subtract 3 5

This functionality is very useful because you can programmatically execute different methods in a class, which means that you can write unit tests for your code, as well.

Listing 1.14 shows the content of Hello.py, which illustrates how to use sys.argv to check the number of command line parameters.

Listing 1.14: Hello.py

import sys

def main():

  if len(sys.argv) >= 2:

    name = sys.argv[1]

  else:

    name = 'World'

  print('Hello', name)

Standard boilerplate to invoke the main() function

if __name__ == '__main__':

  main()

Listing 1.14 defines the main() function that checks the number of command-line parameters. If this value is at least 2, then the variable name is assigned the value of the second parameter (the first parameter is Hello.py); otherwise, name is assigned the value Hello. The print() statement then prints the value of the variable name.

The final portion of Listing 1.14 uses conditional logic to determine whether to execute the main() function.

Summary

This chapter showed you how to work with numbers and perform arithmetic operations on numbers, and then you learned how to work with strings and use string operations. The next chapter shows you how to work with conditional statements, loops, and user-defined functions.

Next, you learned about conditional logic, such as if/elif statements. You also learned how to work with loops, including for loops and while loops. In addition, you saw how to compute various values, such as the factorial value of a positive integer and a set of Fibonacci values.

This chapter started with Python installation, some environment variables, and usage of the interpreter. Then you learned how to work with simple data types, such as numbers, fractions, and strings. In addition, you learned about exceptions and how to use them in scripts. You learned how to process user input, which requires handling exceptions, and how to process command-line arguments for Python files.

CHAPTER 2

INTRODUCTION TO NUMPY

This chapter provides a quick introduction to the Python NumPy library, which provides a useful functionality, not only for “regular” Python scripts, but also for Python-based scripts with TensorFlow. For instance, this chapter contains NumPy code samples containing loops, arrays, and lists. We also discuss dot products, the reshape() method, how to plot with Matplotlib (discussed in more detail in Chapter 6), and examples of linear regression.

The first part of this chapter briefly discusses NumPy and some of its useful features. The second part contains examples of working arrays in NumPy, and contrasts some of the APIs for lists with the same APIs for arrays. In addition, we show how to compute the exponent-related values (such as the square or cube) of elements in an array.

The second part of the chapter introduces sub-ranges, which are useful (and frequently used) for extracting portions of datasets in machine learning tasks. Some of the code samples handle negative (−1) sub-ranges for vectors as well as for arrays because they are interpreted one way for vectors and a different way for arrays.

The third part of this chapter delves into other NumPy methods, including the reshape() method, which useful when working with image files: some TensorFlow APIs require converting a 2D array of (R,G,B) color values into a corresponding one-dimensional vector.

The fourth part of this chapter encompasses linear regression, the mean squared error (MSE), and how to calculate MSE with the linspace() API.

What is NumPy?

NumPy is a Python library that contains many convenient methods and aids with program performance. NumPy provides a core library for scientific computing in Python, with performant multi-dimensional arrays and vectorized math functions, along with support for linear algebra and random numbers.

NumPy is modeled after MATLAB, with support for lists, arrays, and so forth. NumPy is easier to use than MATLAB, and it’s very common in TensorFlow code as well as Python code.

Useful NumPy Features

The NumPy package provides the ndarray object that encapsulates multi-dimensional arrays of homogeneous data types. Many ndarray operations are performed in compiled code to improve performance.

There are important differences between NumPy arrays and the standard Python sequences. First, NumPy arrays have a fixed size, whereas Python lists can expand dynamically. Second, NumPy arrays are homogeneous, which means that the elements in a NumPy array must have the same data type. Third, NumPy arrays support more efficient execution (and require less code) of various types of operations on large numbers of data

What are NumPy Arrays?

An array is a set of consecutive memory locations used to store data. Each item in the array is called an element. The number of elements in an array is called the dimension of the array. A typical array declaration is as follows:

arr1 = np.array([1,2,3,4,5])

The preceding code snippet declares arr1 as an array of five elements, which you can access via arr1[0] through arr1[4]. Notice that the first element has an index value of 0, and the second element has an index value of 1. Thus, if you declare an array of 100 elements, then the 100th element has index value of 99.

NOTE

The first position in a NumPy array has an index value of 0.

NumPy treats arrays as vectors. Mathematical operations are performed element-by-element. Remember the following difference: “doubling” an array multiplies each element by 2, whereas “doubling” a list appends a list to itself.

Listing 2.1 shows the content of nparray1.py that illustrate some operations on a NumPy array.

Listing 2.1: nparray1.py

import numpy as np

list1 = [1,2,3,4,5]

print(list1)

arr1  = np.array([1,2,3,4,5])

print(arr1)

list2 = [(1,2,3),(4,5,6)]

print(list2)

arr2  = np.array([(1,2,3),(4,5,6)])

print(arr2)

Listing 2.1 defines the variables list1 and list2 (which are Python lists), as well as the variables arr1 and arr2 (which are arrays), and prints their values. The output from launching Listing 2.1 is shown here:

[1, 2, 3, 4, 5]

[1 2 3 4 5]

[(1, 2, 3), (4, 5, 6)]

[[1 2 3]

 [4 5 6]]

Working with Loops

Listing 2.2 shows the content of loop1.py, which illustrates how to iterate through the elements of a NumPy array and a Python list.

Listing 2.2: loop1.py

import numpy as np

list = [1,2,3]

arr1 = np.array([1,2,3])

for e in list:

  print(e)

for e in arr1:

  print(e)

list1 = [1,2,3,4,5]

Listing 2.2 initializes the variable list, which is a list, and also the variable arr1, which is an array. The next portion of Listing 2.2 contains two loops, each of which iterates through the elements in list and arr1. The syntax is identical in both loops. The output from launching Listing 2.2 is here:

1

2

3

1

2

3

Appending Elements to Arrays (1)

Listing 2.3 shows the content of append1.py that illustrate how to append elements to a NumPy array and a Python list.

Listing 2.3: append1.py

import numpy as np

arr1 = np.array([1,2,3])

these do not work:

#arr1.append(4)

#arr1 = arr1 + [5]

arr1 = np.append(arr1,4)

arr1 = np.append(arr1,[5])

for e in arr1:

  print(e)

arr2 = arr1 + arr1

for e in arr2:

print(e)

Listing 2.3 initializes the variable list, which is a Python list, and also the variable arr1, which is a NumPy array. The output from launching Listing 2.3 is as follows:

1

2

3

4

5

2

4

6

8

10

Appending Elements to Arrays (2)

Listing 2.4 shows the content of append2.py, which illustrates how to append elements to a NumPy array and a Python list.

Listing 2.4: append2.py

import numpy as np

arr1 = np.array([1,2,3])

arr1 = np.append(arr1,4)

for e in arr1:

  print(e)

arr1 = np.array([1,2,3])

arr1 = np.append(arr1,4)

arr2 = arr1 + arr1

for e in arr2:

  print(e)

Listing 2.4 initializes the variable arr1, which is a NumPy array. Notice that NumPy arrays do not have an “append” method: this method is available through NumPy itself. Another important difference between Python lists and NumPy arrays is that the “+” operator concatenates Python lists, whereas this operator doubles the elements in a NumPy array. The output from launching Listing 2.4 is as follows:

1

2

3

4

2

4

6

8

Multiplying Lists and Arrays

Listing 2.5 shows the content of multiply1.py that illustrates how to multiply elements in a Python list and a NumPy array.

Listing 2.5: multiply1.py

import numpy as np

list1 = [1,2,3]

arr1  = np.array([1,2,3])

print('list:  ',list1)

print('arr1:  ',arr1)

print('2*list:',2*list)

print('2*arr1:',2*arr1)

Listing 2.5 contains a Python list called list and a NumPy array called arr1. The print() statements display the contents of list and arr1, as well as the result of doubling list1 and arr1. Recall that “doubling” a Python list is different from doubling a Python array, which you can see in the output from launching Listing 2.5:

('list:  ', [1, 2, 3])

('arr1:  ', array([1, 2, 3]))

('2*list:', [1, 2, 3, 1, 2, 3])

('2*arr1:', array([2, 4, 6]))

Doubling the Elements in a List

Listing 2.6 shows the content of double_list1.py, which illustrates how to double the elements in a Python list.

Listing 2.6: double_list1.py

import numpy as np

list1 = [1,2,3]

list2 = []

for e in list1:

  list2.append(2*e)

print('list1:',list1)

print('list2:',list2)

Listing 2.6 contains a Python list called list1 and an empty NumPy list called list2. The next code snippet iterates through the elements of list1 and appends them to the variable list2. The pair of print() statements display the contents of list1 and list2 to show you that they are the same. The output from launching Listing 2.6 is here:

('list: ', [1, 2, 3])

('list2:', [2, 4, 6])

Lists and Exponents

Listing 2.7 shows the content of exponent_list1.py, which illustrates how to compute exponents of the elements in a Python list.

Listing 2.7: exponent_list1.py

import numpy as np

list1 = [1,2,3]

list2 = []

for e in list1:

  list2.append(e*e) # e*e = squared

print('list1:',list1)

print('list2:',list2)

Listing 2.7 contains a Python list called list1 and an empty NumPy list called list2. The next code snippet iterates through the elements of list1 and appends the square of each element to the variable list2. The pair of print() statements display the contents of list1 and list2. The output from launching Listing 2.7 is here:

('list1:', [1, 2, 3])

('list2:', [1, 4, 9])

Arrays and Exponents

Listing 2.8 shows the content of exponent_array1.py, which illustrates how to compute exponents of the elements in a NumPy array.

Listing 2.8: exponent_array1.py

import numpy as np

arr1 = np.array([1,2,3])

arr2 = arr1**2

arr3 = arr1**3

print('arr1:',arr1)

print('arr2:',arr2)

print('arr3:',arr3)

Listing 2.8 contains a NumPy array called arr1 followed by two NumPy arrays called arr2 and arr3. Notice the compact manner in which arr2 is initialized with the square of the elements in arr1, followed by the initialization of arr3 with the cube of the elements in arr1. The three print() statements display the contents of arr1, arr2, and arr3. The output from launching Listing 2.8 is shown here:

('arr1:', array([1, 2, 3]))

('arr2:', array([1, 4, 9]))

('arr3:', array([1,  8, 27]))

Math Operations and Arrays

Listing 2.9 shows the content of mathops_array1.py that illustrates how to compute exponents of the elements in a NumPy array.

Listing 2.9: mathops_array1.py

import numpy as np

arr1 = np.array([1,2,3])

sqrt = np.sqrt(arr1)

log1 = np.log(arr1)

exp1 = np.exp(arr1)

print('sqrt:',sqrt)

print('log1:',log1)

print('exp1:',exp1)

Listing 2.9 contains a NumPy array called arr1 followed by three arrays called sqrt, log1, and exp1 that are initialized with the square root, the log, and the exponential value of the elements in arr1, respectively. The three print() statements display the contents of sqrt, log1, and exp1. The output from launching Listing 2.9 is here:

('sqrt:', array([1.        , 1.41421356, 1.73205081]))

('log1:', array([0.        , 0.69314718, 1.09861229]))

('exp1:', array([2.71828183, 7.3890561,  20.08553692]))

Working with “−1” Sub-ranges With Vectors

Listing 2.10 shows the content of npsubarray2.py, which illustrates how to compute exponents of the elements in a NumPy array.

Listing 2.10: npsubarray2.py

import numpy as np

-1 => "all except the last element in …" (row or col)

arr1  = np.array([1,2,3,4,5])

print('arr1:',arr1)

print('arr1[0:-1]:',arr1[0:-1])

print('arr1[1:-1]:',arr1[1:-1])

print('arr1[::-1]:', arr1[::-1]) # reverse!

Listing 2.10 contains a NumPy array called arr1 followed by four print statements, each of which displays a different sub-range of values in arr1. The output from launching Listing 2.10 is as follows:

('arr1:',       array([1, 2, 3, 4, 5]))

('arr1[0:-1]:', array([1, 2, 3, 4]))

('arr1[1:-1]:', array([2, 3, 4]))

('arr1[::-1]:', array([5, 4, 3, 2, 1]))

Working with “−1” Sub-ranges with Arrays

Listing 2.11 shows the content of np2darray2.py, which illustrates how to compute exponents of the elements in a NumPy array.

Listing 2.11: np2darray2.py

import numpy as np

-1 => "the last element in …" (row or col)

arr1  = np.array([(1,2,3),(4,5,6),(7,8,9),(10,11,12)])

print('arr1:',        arr1)

print('arr1[-1,:]:',  arr1[-1,:])

print('arr1[:,-1]:',  arr1[:,-1])

print('arr1[-1:,-1]:',arr1[-1:,-1])

Listing 2.11 contains a NumPy array called arr1 followed by four print statements, each of which displays a different sub-range of values in arr1. The output from launching Listing 2.11 is shown here:

(arr1:', array([[1,  2,  3],

                [4,  5,  6],

                [7,  8,  9],

                [10, 11, 12]]))

(arr1[-1,:]]',   array([10, 11, 12]))

(arr1[:,-1]:',   array([3,  6,  9, 12]))

(arr1[-1:,-1]]', array([12]))

Other Useful NumPy Methods

The following methods are useful.

[image:]The method np.zeros() initializes an array with 0 values.

[image:]The method np.ones() initializes an array with 1 values.

[image:]The method np.empty() initializes an array with 0 values.

[image:]The method np.arange() provides a range of numbers.

[image:]The method np.shape() displays the shape of an object.

[image:]The method np.reshape()

[image:]The method np.linspace() (Useful in regression!)

[image:]The method np.mean() computes the mean of a set of numbers.

[image:]The method np.std() computes the standard deviation of a set of numbers.

Although the np.zeros() and np.empty() both initialize a 2D array with 0, np.zeros() requires less execution time. You could also use np.full(size, 0), but this method is the slowest of all three methods.

The reshape() method and the linspace() method are useful for changing the dimensions of an array and generating a list of numeric values, respectively. The reshape() method often appears in TensorFlow code, and the linspace() method is useful for generating a set of numbers in linear regression (discussed in Chapter 4). The mean() and std() methods are useful for calculating the mean and the standard deviation of a set of numbers. For example, you can use these two methods to resize the values in a Gaussian distribution so that their mean is 0 and the standard deviation is 1. This process is called standardizing a Gaussian distribution.

Arrays and Vector Operations

Listing 2.12 shows the content of array_vector.py that illustrates how to perform vector operations on the elements in a NumPy array.

Listing 2.12: array_vector.py

import numpy as np

a = np.array([[1,2], [3, 4]])

b = np.array([[5,6], [7,8]])

print('a:       ', a)

print('b:       ', b)

print('a + b:   ', a+b)

print('a - b:   ', a-b)

print('a * b:   ', a*b)

print('a / b:   ', a/b)

print('b / a:   ', b/a)

print('a.dot(b):',a.dot(b))

Listing 2.12 contains two NumPy arrays called a and b followed by eight print statements, each of which displays the result of applying a different arithmetic operation to the arrays a and b. The output from launching Listing 2.12 is here:

('a    :   ', array([[1, 2], [3, 4]]))

('b    :   ', array([[5, 6], [7, 8]]))

('a + b:   ', array([[6,  8], [10, 12]]))

('a - b:   ', array([[-4, -4], [-4, -4]]))

('a * b:   ', array([[5, 12], [21, 32]]))

('a / b:   ', array([[0, 0], [0, 0]]))

('b / a:   ', array([[5, 3], [2, 2]]))

('a.dot(b):', array([[19, 22], [43, 50]]))

NumPy and Dot Products (1)

Listing 2.13 shows the content of dotproduct1.py, which illustrates how to perform the dot product on the elements in a NumPy array.

Listing 2.13: dotproduct1.py

import numpy as np

a = np.array([1,2])

b = np.array([2,3])

dot2 = 0

for e,f in zip(a,b):

  dot2 += e*f

print('a:   ',a)

print('b:   ',b)

print('a*b: ',a*b)

print('dot1:',a.dot(b))

print('dot2:',dot2)

Listing 2.13 contains two NumPy arrays called a and b followed by a simple loop that computes the dot product of a and b. The next section contains five print statements that display the contents of a and b, their inner product that’s calculated in three different ways. The output from launching Listing 2.13 is as follows:

('a:   ', array([1, 2]))

('b:   ', array([2, 3]))

('a*b: ', array([2, 6]))

('dot1:', 8)

('dot2:', 8)

NumPy and Dot Products (2)

NumPy arrays support a “dot” method for calculating the inner product of an array of numbers, which uses the same formula that you use for calculating the inner product of a pair of vectors. Listing 2.14 shows the content of dotproduct2.py that illustrates how to calculate the dot product of two NumPy arrays.

Listing 2.14: dotproduct2.py

import numpy as np

a = np.array([1,2])

b = np.array([2,3])

print('a:          ',a)

print('b:          ',b)

print('a.dot(b):   ',a.dot(b))

print('b.dot(a):   ',b.dot(a))

print('np.dot(a,b):',np.dot(a,b))

print('np.dot(b,a):',np.dot(b,a))

Listing 2.14 contains two NumPy arrays called a and b followed by six print statements that display the contents of a and b, as well as their inner product that is calculated in three different ways. The output from launching Listing 2.14 is as follows:

('a:          ', array([1, 2]))

('b:          ', array([2, 3]))

('a.dot(b):   ', 8)

('b.dot(a):   ', 8)

('np.dot(a,b):', 8)

('np.dot(b,a):', 8)

NumPy and the Length of Vectors

The norm of a vector (or an array of numbers) is the length of a vector, which is the square root of the dot product of a vector with itself. NumPy also provides the sum and square functions that you can use to calculate the norm of a vector.

Listing 2.15 shows the content of array_norm.py, which illustrates how to calculate the magnitude (“norm”) of a NumPy array of numbers.

Listing 2.15: array_norm.py

import numpy as np

a = np.array([2,3])

asquare = np.square(a)

asqsum  = np.sum(np.square(a))

anorm1  = np.sqrt(np.sum(a*a))

anorm2  = np.sqrt(np.sum(np.square(a)))

anorm3  = np.linalg.norm(a)

print('a:      ',a)

print('asquare:',asquare)

print('asqsum: ',asqsum)

print('anorm1: ',anorm1)

print('anorm2: ',anorm2)

print('anorm3: ',anorm3)

Listing 2.15 contains an initial NumPy array called a, followed by the array asquare and the numeric values asqsum, anorm1, anorm2, and anorm3. The array asquare contains the square of the elements in the array a, and the numeric value asqsum contains the sum of the elements in the array asquare. Next, the numeric value anorm1 equals the square root of the sum of the square of the elements in a. The numeric value anorm2 is the same as anorm1, computed in a slightly different fashion. Finally, the numeric value anorm3 is equal to anorm2, but as you can see, anorm3 is calculated via a single method, whereas anorm2 requires a succession of methods.

The last portion of Listing 2.15 consists of six print statements, each of which displays the computed values. The output from launching Listing 2.15 is shown here:

('a:      ', array([2, 3]))

('asquare:', array([4, 9]))

('asqsum: ', 13)

('anorm1: ', 3.605551275463989)

('anorm2: ', 3.605551275463989)

('anorm3: ', 3.605551275463989)

NumPy and Other Operations

NumPy provides the * operator to multiply the components of two vectors to produce a third vector whose components are the products of the corresponding components of the initial pair of vectors. This operation is called a Hadamard product, named after a famous mathematician. If you then add the components of the third vector, the sum is equal to the inner product of the initial pair of vectors.

Listing 2.16 shows the content of otherops.py, which illustrates how to perform other operations on a NumPy array.

Listing 2.16: otherops.py

import numpy as np

a = np.array([1,2])

b = np.array([3,4])

print('a:           ',a)

print('b:           ',b)

print('a*b:         ',a*b)

print('np.sum(a*b): ',np.sum(a*b))

print('(a*b.sum()): ',(a*b).sum())

Listing 2.16 contains two NumPy arrays called a and b, followed by five print statements that display the contents of a and b, their Hadamard product, and their inner product that’s calculated in two different ways. The output from launching Listing 2.16 is as follows:

('a:           ', array([1, 2]))

('b:           ', array([3, 4]))

('a*b:         ', array([3, 8]))

('np.sum(a*b): ', 11)

('(a*b.sum()): ', 11)

NumPy and the reshape() Method

NumPy arrays support the reshape method, which enables you to restructure the dimensions of an array of numbers. In general, if an array contains m elements, where m is a positive integer, then that array can be restructured as an m1 x m2 array, where m1 and m2 are positive integers such that m1*m2 = m.

Listing 2.17 shows the content of numpy_reshape.py that illustrates how to use the reshape() method on a NumPy array.

Listing 2.17: numpy_reshape.py

import numpy as np

x = np.array([[2, 3], [4, 5], [6, 7]])

print(x.shape) # (3, 2)

x = x.reshape((2, 3))

print(x.shape) # (2, 3)

print('x1:',x)

x = x.reshape((-1))

print(x.shape) # (6,)

print('x2:',x)

x = x.reshape((6, -1))

print(x.shape) # (6, 1)

print('x3:',x)

x = x.reshape((-1, 6))

print(x.shape) # (1, 6)

print('x4:',x)

Listing 2.17 contains a NumPy array called x whose dimensions are 3x2, followed by a set of invocations of the reshape() method that reshapes the contents of x. The first invocation of the reshape() method changes the shape of x from 3x2 to 2x3. The second invocation changes the shape of x from 2x3 to 6x1. The third invocation changes the shape of x from 1x6 to 6x1. The final invocation changes the shape of x from 6x1 to 1x6 again.

Each invocation of the reshape() method is followed by a print() statement so that you can see the effect of the invocation. The output from launching Listing 2.17 is as follows:

(3, 2)

(2, 3)

('x1:', array([[2, 3, 4],

       [5, 6, 7]]))

(6,)

('x2:', array([2, 3, 4, 5, 6, 7]))

(6, 1)

('x3:', array([[2],

       [3],

       [4],

       [5],

       [6],

       [7]]))

(1, 6)

Calculating the Mean and Standard Deviation

If you need to review these concepts from statistics (and perhaps also the mean, median, and mode, as well), please read the appropriate on-line tutorials.

NumPy provides various built-in functions that perform statistical calculations, such as the following:

[image:]np.linspace() <= useful for regression

[image:]np.mean()

[image:]np.std()

The np.linspace()method generates a set of equally spaced numbers between a lower bound and an upper bound. The np.mean() and np.std() methods calculate the mean and standard deviation, respectively, of a set of numbers. Listing 2.18 shows the content of sample_mean_std.py that illustrates how to calculate statistical values from a NumPy array.

Listing 2.18: sample_mean_std.py

import numpy as np

x2 = np.arange(8)

print('mean = ',x2.mean())

print('std  = ',x2.std())

x3 = (x2 - x2.mean())/x2.std()

print('x3 mean = ',x3.mean())

print('x3 std  = ',x3.std())

Listing 2.18 contains a NumPy array x2 that consists of the first eight integers. Next, the mean() and std() that are associated with x2 are invoked to calculate the mean and standard deviation, respectively, of the elements of x2. The output from launching Listing 2.18 is here:

('a:           ', array([1, 2]))

('b:           ', array([3, 4]))

Code Sample with Mean and Standard Deviation

The code sample in this section extends the code sample in the previous section with additional statistical values, and the code in Listing 2.19 can be used for any data distribution. The code sample uses random numbers simply for the purposes of illustration. After you have launched the code sample, replace those numbers with values from a CSV file or some other dataset containing meaningful values.

This section does not provide details regarding the meaning of quartiles, but you can learn about quartiles online:

https://en.wikipedia.org/wiki/Quartile

Listing 2.19 shows the content of stat_values.py that illustrates how to display various statistical values from a NumPy array of random numbers.

Listing 2.19: stat_values.py

import numpy as np

from numpy import percentile

from numpy.random import rand

generate data sample

data = np.random.rand(1000)

calculate quartiles, min, and max

quartiles = percentile(data, [25, 50, 75])

data_min, data_max = data.min(), data.max()

print summary information

print('Minimum:  %.3f' % data_min)

print('Q1 value: %.3f' % quartiles[0])

print('Median:   %.3f' % quartiles[1])

print('Mean Val: %.3f' % data.mean())

print('Std Dev:  %.3f' % data.std())

print('Q3 value: %.3f' % quartiles[2])

print('Maximum:  %.3f' % data_max)

The data sample (shown in bold) in Listing 2.19 is from a uniform distribution between 0 and 1. The percentile() function calculates a linear interpolation (average) between observations, which is needed to calculate the median of a sample with an even number of values. The functions min() and max() calculate the smallest and largest values in the data sample. The output from launching Listing 2.19 is here:

Minimum:  0.000

Q1 value: 0.237

Median:   0.500

Mean Val: 0.495

Std Dev:  0.295

Q3 value: 0.747

Maximum:  0.999

Trimmed Mean and Weighted Mean

In addition to the arithmetic mean, there are variants that are known as the weighted mean and a trimmed mean (also called a truncated mean).

A trimmed mean is a robust estimate (i.e., a metric that is not sensitive to outliers). As a simple example of a trimmed mean, suppose that you have five scores for the evaluation of a product. Exclude the highest and lowest scores and then compute the average of the remaining three scores. If you have multiple sets of five scores, repeat the preceding process and then compute the average of the set of trimmed mean values.

A weighted mean is useful when sample data does not represent different groups in a dataset. Assigning a larger weight to groups that are under-represented yields a weighted mean that more accurately represents the various groups in the dataset. However, outliers can affect the mean as well as the weighted mean.

The weighted mean is the same as the expected value. In case you are unfamiliar with the notion of an expected value, suppose that the set P = {p1,p2,...,pn} is a probability distribution, which means that the numeric values in the set P must be non-negative and have a sum equal to 1. In addition, suppose that V = {v1,v2,...,vn} is a set of numeric scores that are assigned to n features of a product M. The values in the set V are probably positive integers in some range (e.g., between 1 and 10).

Then the expected value E for that product is computed as follows:

E = p1*v1 + p2*v2 + ... + pn*vn

The final chapter contains more information about Matplotlib in order to plot various charts and graphs. However, the code samples in the next several sections contain some rudimentary APIs from Matplotlib. The code samples start with simple examples of line segments, followed by an introduction to linear regression.

Working with Lines in the Plane (Optional)

This section contains a short review of lines in the Euclidean plane, so you can skip this section if you are comfortable with this topic. A minor point that’s often overlooked is that lines in the Euclidean plane have infinite length. If you select two distinct points of a line, then all the points between those two selected points is a line segment. A ray is a “half infinite” line: When you select one point as an endpoint, then all the points on one side of the line constitute a ray.

For example, the points in the plane whose y-coordinate is 0 make a line, as is the x-axis, whereas the points between (0,0) and (1,0) on the x-axis form a line segment. In addition, the points on the x-axis that are to the right of (0,0) form a ray, and the points on the x-axis that are to the left of (0,0) also form a ray.

For simplicity and convenience, in this book we’ll use the terms “line” and “line segment” interchangeably, and now let’s delve into the details of lines in the Euclidean plane. Here is the equation of a (non-vertical) line in the Euclidean plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept (i.e., the place where the non-vertical line intersects the y-axis). The following form for a line in the plane is a more general equation that includes vertical lines:

a*x + b*y + c = 0

[image:]

FIGURE 2.1 A graph of three horizontal lines whose equations (from top to bottom) are y = 3, y = 0, and y = −3.

[image:]

FIGURE 2.2 A graph of two slanted lines whose equations are y = x and y = −x.

[image:]

FIGURE 2.3 A graph of two slanted parallel lines whose equations are y = 2*x and y = 2*x+3.

[image:]

FIGURE 2.4 A piece-wise linear graph consisting of connected line segments.

Plotting Randomized Points with NumPy and Matplotlib

The previous section contains simple examples of line segments, but the code is deferred until Chapter 7. This section and the next section contain code samples with Matplotlib APIs that are not discussed; however, the code is straightforward, so you can infer its purpose. In addition, you can learn more about Matplotlib in Chapter 7 (which focuses on data visualization) or read a short online tutorial for more details.

Listing 2.20 shows the content of np_plot.py that illustrates how to plot multiple points on a line in the plane.

Listing 2.20: np_plot.py

import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(15,1)

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

plt.scatter(x,y)

plt.show()

Listing 2.20 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor.

[image:]

FIGURE 2.5 The output generated by the code in Listing 2.20.

Plotting a Quadratic with NumPy and Matplotlib

Listing 2.21 shows the content of np_plot_quadratic.py that illustrates how to plot a quadratic function in a plane.

Listing 2.21: np_plot_quadratic.py

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5,5,num=100)[:,None]

y = -0.5 + 2.2*x +0.3*x**3+ 2*np.random.randn(100,1)

plt.plot(x,y)

plt.show()

Listing 2.21 starts with two import statements, followed by the initialization of x as a range of values via the NumPy linspace() API. Next, y is assigned a range of values that fit a quadratic equation, which are based on the values for the variable x.

[image:]

FIGURE 2.6 The output generated by the code in Listing 2.21.

What is Linear Regression?

Linear regression was created in 1805 (more than two hundred years ago), and it’s an important algorithm in statistical analysis and machine learning. Any decent statistical package supports linear regression and invariably supports polynomial regression. Linear regression involves lines, which are polynomials with one degree, whereas polynomial regression involves fitting polynomials of degrees greater than one to a dataset.

In general terms, linear regression finds the equation of the best fitting hyperplane that approximates a dataset, where a hyperplane has a degree one less than the dimensionality of the dataset. In particular, if the dataset is in the Euclidean plane, the hyperplane is simply a line; if the dataset is in 3D, the hyperplane is a “regular” plane.

Linear regression is suitable when the points in a dataset are distributed in such a way that they can reasonably be approximated by a hyperplane. If not, you can try to fit other types of multi-variable polynomial surfaces to the points in the dataset.

Keep in mind two other details. First, the best fitting hyperplane does not necessarily intersect all (or even most of) the points in the dataset. In fact, the best fitting hyperplane might not intersect any points in the dataset. The purpose of a best fitting hyperplane is to approximate the points in dataset as closely as possible. Second, linear regression is not the same as curve fitting, which attempts to find a polynomial that passes through a set of points.

Here are some details about curve fitting. Given n points in the plane (no two of which have the same x value), there is a polynomial of a degree less than or equal to n-1 that passes through those points. Thus, a line (which has degree one) passes through any pair of non-vertical points in the plane. For any triple of points in the plane, there is a quadratic equation or a line that passes through those points.

In some cases, a lower degree polynomial is available. For instance, consider the set of 100 points in which the x value equals the y value. The line y = x (a polynomial of degree one) passes through all of those points.

However, the extent to which a line “represents” a set of points in the plane depends on how closely those points can be approximated by a line.

What is Multivariate Analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean plane, and it has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

As you can see, the preceding equation contains a linear combination of the variables x1, x2, . . ., xn. In this book, we usually work with datasets that involve lines in the Euclidean plane.

What about Non-Linear Datasets?

Simple linear regression finds the best fitting line that fits a dataset, but what happens if the dataset does not fit a line in the plane? This is an excellent point! In such a scenario, we look for other curves to approximate the dataset, such a quadratic, cubic, or higher-degree polynomials. However, these alternatives involve trade-offs, as we’ll discuss later.

Another possibility is to use a continuous piece-wise linear function, which is a function that comprises a set of line segments, where the adjacent line segments are connected. If one or more pairs of adjacent line segments are not connected, then it’s a piece-wise linear function (i.e., the function is discontinuous). In either case, line segments have one degree, which involves a lower computational complexity than higher-order polynomials.

Thus, given a set of points in the plane, try to find the best fitting line that fits those points, after addressing the following questions:

1)How do we know that a line fits the data?

2)What if a different type of curve is a better fit?

3)What does “best fit” mean?

One way to check if a line fits the data well is through a simple visual check: display the data in a graph and if the data conforms to the shape of a line reasonably well, then a line might be a good fit. However, this is a subjective decision, and a sample dataset that does not fit a line is shown in Figure 2.7.

Figure 2.7 shows a dataset containing four points that do not fit a line.

[image:]

FIGURE 2.7 A non-linear dataset.

If a line does not appear to be a good fit for the data, then perhaps a quadratic or cubic (or even higher degree) polynomial has the potential of being a better fit. Let’s defer the non-linear scenario and make the assumption that a line would be a good fit for the data. There is a well-known technique for finding the best fitting line for such a dataset, and it’s called Mean Squared Error (MSE).

The MSE (Mean Squared Error) Formula

Figure 2.8 shows the formula for the MSE (Mean Squared Error). The MSE is the sum of the squares of the difference between an actual y value and the predicted y value, divided by the number of points. Note that the predicted y value is the y value that each data point would have if that data point were actually on the best-fitting line.

In general, the goal is to minimize the error, which determines the best fitting line in the case of linear regression. However, you might be satisfied with a “good enough” value when the time and/or cost for any additional reduction in the error is deemed prohibitive, which means that this decision is not a purely programmatic decision.

Figure 2.8 shows the formula for MSE for calculating the best-fitting line for a set of points in the plane.

[image:]

FIGURE 2.8 The MSE formula.

Other Error Types

Although we only discuss the MSE for linear regression in this book, there are other types of formulas for errors that you can use for linear regression, some of which are listed here:

[image:]MSE

[image:]RMSE

[image:]RMSPROP

[image:]MAE

The MSE is the basis for the preceding error types. For example, RMSE is the Root Mean Squared Error, which is the square root of the MSE.

The MAE is the Mean Absolute Error, which is the sum of the absolute value of the differences of the y terms (not the square of the differences of the y terms).

The RMSProp optimizer utilizes the magnitude of recent gradients to normalize the gradients. Maintain a moving average over the Root Mean Squared (RMS, which is the square root of the MSE) gradients, and then divide that term by the current gradient.

Although it’s easier to compute the derivative of MSE (because it’s a differentiable function), it’s also true that MSE is more susceptible to outliers, more so than MAE. The reason is simple. A squared term can be significantly larger than adding the absolute value of a term. For example, if a difference term is 10, then the squared term 100 is added to MSE, whereas only 10 is added to MAE. Similarly, if a difference term is −20, then the squared term 400 is added to MSE, whereas only 20 (which is the absolute value of −20) is added to MAE.

Non-Linear Least Squares

When predicting housing prices, where the dataset contains a wide range of values, techniques such as linear regression or random forests can cause the model to overfit the samples with the highest values to reduce quantities such as the mean absolute error.

In this scenario, you probably want an error metric, such as the relative error, that reduces the importance of fitting the samples with the largest values. This technique is called non-linear least squares, which may use a log-based transformation of labels and predicted values.

Calculating the MSE Manually

Let’s look at two simple graphs, each of which contains a line that approximates a set of points in a scatter plot. Notice that the line segment is the same for both sets of points, but the datasets are slightly different. We manually calculate the MSE for both datasets and determine which value of MSE is smaller.

Figure 2.9 shows a set of points and a line that is a potential candidate for the best-fitting line for the data.

[image:]

FIGURE 2.9 A line graph that approximates the points of a scatter plot.

The MSE for the line in Figure 2.9 is computed as follows:

MSE = [1*1 + (-1)*(-1) + (-1)*(-1) + 1*1]/7 = 4/7

Figure 2.10 also shows a set of points and a line that is a potential candidate for the best-fitting line for the data.

[image:]

FIGURE 2.10 A line graph that approximates points of a scatter plot.

The MSE for the line in Figure 2.10 is computed as follows:

MSE = [(-2)*(-2) + 2*2]/7 = 8/7

Thus, the line in Figure 2.10 has a smaller MSE than the line in Figure 2.9.

In these two figures, we calculated the MSE easily and quickly, but in general, it’s significantly more difficult. For instance, if we plot 10 points in the Euclidean plane that do not closely fit a line, with individual terms that involve non-integer values, we would probably need a calculator. A better solution involves NumPy functions, as discussed in the next section.

Find the Best-Fitting Line in NumPy

Earlier in this chapter, you saw examples of lines in the plane, including horizontal, slanted, and parallel lines. Most of those lines have a positive slope and a non-zero value for their y-intercept. Although there are scatterplots of data points in the plane where the best-fitting line has a negative slope, the examples in this book involve scatterplots whose best-fitting line has a positive slope.

Listing 2.22 shows the content of find_best_fit.py that illustrates how to determine the best fitting line for a set of points in the Euclidean plane. The solution is based on closed form formulas (from statistics).

Listing 2.22: find_best_fit.py

import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)

ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):

  m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /

       ((np.mean(xs)**2) - np.mean(xs**2)))

  b = np.mean(ys) - m * np.mean(xs)

  return m, b

m,b = best_fit_slope(xs,ys)

print('m:',m,'b:',b)

Listing 2.22 starts with two arrays, xs and ys, that are initialized with the first five positive integers. The Python function best_fit_slope() calculates the optimal values of m (the slope) and b (the y-intercept) of a set of numbers. The output from Listing 2.22 is as follows:

m: 1.0 b: 0.0

Notice that the arrays xs and ys are identical, which means that these points lie on the identity function whose slope is 1. By simple extrapolation, the point (0,0) is also a point on the same line. Hence, the y-intercept of this line must equal 0.

If you are interested, you can search online to find the derivation for the values of m and b. In this chapter, we’re going to skip the derivation, and proceed with examples of calculating the MSE. The first example involves calculating the MSE manually, followed by an example that uses NumPy formulas to perform the calculations.

Calculating MSE by Successive Approximation (1)

This section contains a code sample that uses a simple technique for successively determining better approximations for the slope and y-intercept of a best-fitting line. Recall that an approximation of a derivative is the ratio of “delta y” divided by “delta x.” The “delta” values calculate the difference of the y values and the difference of the x values, respectively, of two nearby points (x1,y1) and (x2,y2) on a function. Hence, the delta-based approximation ratio is (y2-y1)/(x2-x1).

The technique in this section involves a simplified approximation for the delta values: We assume that the denominators are equal to 1. As a result, we need only calculate the numerators of the delta values: in this code sample, those numerators are the variables dw and db.

Listing 2.23 shows the content of plain_linreg1.py that illustrates how to compute the MSE with simulated data.

Listing 2.23: plain_linreg1.py

import numpy as np

import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51,0.34,0.1, 0.19,0.53,1.0,0.58]

losses = []

#Step 1: Parameter initialization

W = 0.45 # the initial slope

b = 0.75 # the initial y-intercept

for i in range(1, 100):

  #Step 2: Calculate Cost

  Y_pred = np.multiply(W, X) + b

  loss_error = 0.5 * (Y_pred - Y)**2

  loss = np.sum(loss_error)/10

  #Step 3: Calculate dw and db

  db = np.sum((Y_pred - Y))

  dw = np.dot((Y_pred - Y), X)

  losses.append(loss)

  #Step 4: Update parameters:

  W = W - 0.01*dw

  b = b - 0.01*db

  if i%10 == 0:

    print("Loss at", i,"iteration = ", loss)

#Step 5: Repeat via a for loop with 1000 iterations

#Plot cost versus # of iterations

print("W = ", W,"& b = ",  b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()

Listing 2.23 defines the variables X and Y that are simple arrays of numbers (this is our dataset). Next, the losses array is initialized as an empty array, and we append successive loss approximations to this array. The variables W and b correspond to the slope and y-intercept, and they are initialized with the values 0.45 and 0.75, respectively (feel free to experiment with these values).

The next portion of Listing 2.23 is a for loop that executes 100 times. During each iteration, the variables Y_pred, loss_error, and cost are computed, and they correspond to the predicted value, the error, and the cost, respectively (remember that we are performing linear regression). The value of loss (which is the error for the current iteration) is then appended to the losses array.

Next, the variables dw and db are calculated. These correspond to the “delta w” and “delta b” that we’ll use to update the values of W and b, respectively. The code is reproduced here:

#Step 4: Update parameters:

W = W - 0.01*dw

b = b - 0.01*db

Notice that dw and db are both multiplied by the value 0.01, which is the value of our “learning rate” (experiment with this value as well).

The next code snippet displays the current loss, which is performed every tenth iteration through the loop. When the loop finishes execution, the values of W and b are displayed, and a plot is displayed that shows the cost values on the vertical axis and the loop iterations on the horizontal axis. The output from Listing 2.23 is as follows:

Loss at 10 iteration =  0.04114630674619491

Loss at 20 iteration =  0.026706242729839395

Loss at 30 iteration =  0.024738889446900423

Loss at 40 iteration =  0.023850565034634254

Loss at 50 iteration =  0.0231499048706651

Loss at 60 iteration =  0.02255361434242207

Loss at 70 iteration =  0.0220425055291673

Loss at 80 iteration =  0.021604128492245713

Loss at 90 iteration =  0.021228111750568435

W =  0.47256473531193927 & b =  0.19578262688662174

[image:]

FIGURE 2.11 A plot of the cost-versus-iterations for Listing 2.23.

Calculating MSE by Successive Approximation (2)

In the previous section, you saw how to calculate the delta approximations to determine the equation of a best-fitting line for a set of points in a 2D plane. The example in this section generalizes the code in the previous section by adding an outer loop that represents the number of epochs. The number of epochs specifies the number of times that an inner loop is executed.

Listing 2.24 shows the content of plain_linreg2.py that illustrates how to compute the MSE with simulated data.

Listing 2.24: plain_linreg2.py

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

#uncomment to see a plot of X versus Y values

#plt.plot(X,Y)

#plt.show()

losses = []

#Step 1: Parameter initialization

W = 0.45

b = 0.75

epochs = 100

lr = 0.001

for j in range(1, epochs):

  for i in range(1, 100):

    #Step 2: Calculate Cost

    Y_pred = np.multiply(W, X) + b

    loss_error = 0.5 * (Y_pred - Y)**2

    Loss = np.sum(loss_error)/10

    #Step 3: Calculate dW and db

    db = np.sum((Y_pred - Y))

    dw = np.dot((Y_pred - Y), X)

    costs.append(cost)

    #Step 4: Update parameters:

    W = W - lr*dw

    b = b - lr*db

    if i%50 == 0:

      print("Loss at epoch", j,"= ", loss)

#Plot cost versus # of iterations

print("W = ", W,"& b = ",  b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()

Compare the new contents of Listing 2.24 (shown in bold) with the contents of Listing 2.23. The changes are minimal, and the main difference is to execute the inner loop 100 times for each iteration of the outer loop, which also executes 100 times. The output from Listing 2.24 is here:

('Loss at epoch', 1, '= ', 0.07161762489862147)

('Loss at epoch', 2, '= ', 0.030073922512586938)

('Loss at epoch', 3, '= ', 0.025415528992988472)

('Loss at epoch', 4, '= ', 0.024227826373677794)

('Loss at epoch', 5, '= ', 0.02346241967071181)

('Loss at epoch', 6, '= ', 0.022827707922883803)

('Loss at epoch', 7, '= ', 0.022284262669854064)

('Loss at epoch', 8, '= ', 0.02181735173716673)

('Loss at epoch', 9, '= ', 0.021416050179776294)

('Loss at epoch', 10, '= ', 0.02107112540934384)

// details omitted for brevity

('Loss at epoch', 90, '= ', 0.018960749188638278)

('Loss at epoch', 91, '= ', 0.01896074755776306)

('Loss at epoch', 92, '= ', 0.018960746155994725)

('Loss at epoch', 93, '= ', 0.018960744951148113)

('Loss at epoch', 94, '= ', 0.018960743915559485)

('Loss at epoch', 95, '= ', 0.018960743025451313)

('Loss at epoch', 96, '= ', 0.018960742260386375)

('Loss at epoch', 97, '= ', 0.018960741602798474)

('Loss at epoch', 98, '= ', 0.018960741037589136)

('Loss at epoch', 99, '= ', 0.018960740551780944)

('W = ', 0.6764145874436108, '& b = ', 0.09976839618922698)

Figure 2.12 shows a plot of the loss-versus-iterations for the output from Listing 2.12.

[image:]

FIGURE 2.12 The plot of loss-versus-iterations for Listing 2.24.

Notice that Figure 2.12 has 10,000 iterations on the horizontal axis, whereas Figure 2.11 has only 100 iterations on the horizontal axis.

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code is typically at least 15 times faster than CPU-based TF 2 code. However, the cost of a good GPU can be a significant factor. Although NVIDIA provides GPUs, those consumer-based GPUs are not optimized for multi-GPU support (which is supported by TF 2).

Fortunately, Google Colaboratory is an affordable alternative that provides free GPU support, and also runs as a Jupyter notebook environment. In addition, Google Colaboratory executes your code in the cloud and involves zero configuration, and it’s available online:

https://colab.research.google.com/notebooks/welcome.ipynb

The Jupyter notebook is suitable for training simple models and testing ideas quickly. Google Colaboratory makes it easy to upload local files, install software in Jupyter notebooks, and even connect Google Colaboratory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution with GPUs, visualization using Matplotlib, and the ability to save a copy of your Google Colaboratory notebook to Github by using the following steps:

File > Save a copy to GitHub.

Moreover, you can load any .ipynb on GitHub by just adding the path to the URL colab.research.google.com/github/ (see the Colaboratory website for details).

Google Colaboratory has support for other technologies, such as HTML and SVG, enabling you to render SVG-based graphics in notebooks that are in Google Colaboratory. One point to keep in mind: any software that you install in a Google Colaboratory notebook is only available on a per-session basis. If you log out and log in again, you need to perform the same installation steps that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other nice feature of Google Colaboratory. You can execute code on a GPU or a TPU for up to twelve hours per day for free. This free support is extremely useful for people who don’t have a suitable GPU on their local machine (which might be the majority of users). You can launch TF 2 code to train neural networks in less than 20 or 30 minutes that would otherwise require multiple hours of CPU-based execution time.

You can also launch Tensorboard inside a Google Colaboratory notebook with the following command (replace the specified directory with your own location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First, whenever you connect to a server in Google Colaboratory, you start what’s known as a session. You can execute the code in a session with a CPU (the default), a GPU, or a TPU (which is available for free), and you can execute your code without any time limit for your session. However, if you select the GPU or TPU option for your session, only the first 12 hours of GPU execution time are free.

Any software that you install in a Jupyter notebook during a given session will not be saved when you exit that session. For example, the following code snippet installs TFLearn in a Jupyter notebook:

!pip install tflearn

When you exit the current session and later start a new session, you need to re-install all the libraries (i.e., via !pip install), such as Github repositories, that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google Colaboratory. Navigate to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks

Uploading CSV Files in Google Colaboratory

Listing 2.25 shows the content of upload_csv_file.ipynb that illustrates how to upload a CSV file in a Google Colaboratory notebook.

Listing 2.25: upload_csv_file.ipynb

import pandas as pd

from google.colab import files

uploaded = files.upload()

df = pd.read_csv("weather_data.csv")

print("dataframe df:")

df

Listing 2.25 uploads the CSV file weather_data.csv, whose contents are not shown because they are not important for this example. The code shown in bold is the Colaboratory-specific code that is required to upload the CSV file. When you launch this code, you will see a small button labeled “Browse,” which you must click and then select the CSV file that is listed in the code snippet. After doing so, the rest of the code is executed and you will see the contents of the CSV file displayed in your browser session.

NOTE

You must supply the CSV file weather_data.csv if you want to launch this Jupyter notebook successfully in Google Colaboratory.

Summary

This chapter introduced you to the NumPy library for Python. You learned how to write Python scripts containing loops, arrays, and lists. You also saw how to work with dot products, the reshape() method, plotting with Matplotlib, and examples of linear regression.

Then you learned how to work with sub-ranges of arrays, and also negative sub-ranges of vectors and arrays, both of which are useful for extracting portions of datasets in machine learning tasks. You also saw other NumPy operations, such as the reshape() method, which is extremely useful (and very common) when working with image files.

Next, you learned how to use NumPy for linear regression, the mean squared error (MSE), and how to calculate MSE with the linspace() method. Finally, you had an introduction to Google Colaboratory, where you can take advantage of the free GPU time when you launch Jupyter notebooks.

CHAPTER 3

INTRODUCTION TO PANDAS

This chapter introduces you to Pandas and provides code samples that illustrate some of its useful features. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain some new information.

The first part of this chapter contains a brief introduction to Pandas. This section contains code samples that illustrate some features of data frames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, we discuss examples of creating data frames with NumPy functions and random numbers. We also examine examples of converting between Python dictionaries and JSON-based data, and how to create a Pandas data frame from JSON-based data.

What is Pandas?

Pandas is a Python library that is compatible with other Python packages, such as NumPy and Matplotlib. Install Pandas by opening a command shell and invoking this command for Python 3.x:

pip3 install pandas

In many ways, the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for XSL, XML, HTML, and CSV file types. Pandas provides a data type called a data frame (similar to a Python dictionary) with an extremely powerful functionality.

Pandas data frames support a variety of input types, such as ndarray, list, dict, or Series.

The data type Series is another mechanism for managing data. In addition to performing an online search for more details regarding series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324

Pandas Options and Settings

You can change the default values of environment variables:

import pandas as pd

display_settings = {

    'max_columns': 8,

    'expand_frame_repr': True,  # Wrap to multiple pages

    'max_rows': 20,

    'precision': 3,

    'show_dimensions': True

}

for op, value in display_settings.items():

 pd.set_option("display.{}".format(op), value)

Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:

print(pd.describe_option())

There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Pandas Data Frames

In simplified terms, a Pandas data frame is a two-dimensional data structure, and it’s convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, and a Web service. The data frame features include

[image:]Data frame methods

[image:]Data frame statistics

[image:]Grouping, pivoting, and reshaping

[image:]Handling missing data

[image:]Joining data frames

The code samples in this chapter show you almost all the features in the preceding list.

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and contents of a dataset. In general, you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:

[image:]Read data into a data frame

[image:]Display top of data frame

[image:]Display column data types

[image:]Display non_missing values

[image:]Replace NA with a value

[image:]Iterate through the columns

[image:]Statistics for each column

[image:]Find missing values

[image:]Total missing values

[image:]Percentage of missing values

[image:]Sort table values

[image:]Print summary information

[image:]Columns with > 50% missing

[image:]Rename columns

This chapter contains sections that illustrate how to perform many of the steps in the preceding list.

Alternatives to Pandas

Before delving into the code samples, there are alternatives to Pandas that offer useful features, some of which are in the following list:

[image:]PySpark (for large datasets)

[image:]Dask (for distributed processing)

[image:]Modin (faster performance)

[image:]Datatable (R data.table for Python)

The inclusion of these alternatives is not intended to diminish Pandas. Indeed, you might not need any of the functionality in the preceding list. However, you might need such functionality in the future, so it’s worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at some point in the future).

A Pandas Data Frame with a NumPy Example

Listing 3.1 shows the content of pandas_df.py that illustrates how to define several data frames and display their contents.

Listing 3.1: pandas_df.py

import pandas as pd

import numpy as np

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

mydf1 = pd.DataFrame(myvector1)

print("mydf1:")

print(mydf1)

print()

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

mydf2 = pd.DataFrame(myvector2)

print("mydf2:")

print(mydf2)

print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

mydf3 = pd.DataFrame(myarray)

print("mydf3:")

print(mydf3)

print()

Listing 3.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. Each NumPy variable is followed by a corresponding Pandas data frame (mydf1, mydf2, and mydf3). Now launch the code in Listing 3.1 to see the following output, and you can compare the NumPy arrays with the Pandas data frames.

myvector1:

[1 2 3 4 5]

mydf1:

   0

0  1

1  2

2  3

3  4

4  5

myvector2:

[1 2 3 4 5]

mydf2:

   0

0  1

1  2

2  3

3  4

4  5

myarray:

[[  10   30   20]

 [  50   40   60]

 [1000 2000 3000]]

mydf3:

      0     1     2

0    10    30    20

1    50    40    60

2  1000  2000  3000

By contrast, the following code block illustrates how to define a Pandas Series:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })

print(df)

Create a Python file with the preceding code (along with the required import statement), and when you launch that code, you will see the following output:

    City name    sizes

0          SF   852469

1    San Jose  1015785

2  Sacramento   485199

Describing a Pandas Data Frame

Listing 3.2 shows the content of pandas_df_describe.py, which illustrates how to define a Pandas data frame that contains a 3x3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Other aspects of the data frame are also displayed.

Listing 3.2: pandas_df_describe.py

import numpy as np

import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

print("contents of January:")

print(mydf['January'])

print()

print("Number of Rows:")

print(mydf.shape[0])

print()

print("Number of Columns:")

print(mydf.shape[1])

print()

print("Number of Rows and Columns:")

print(mydf.shape)

print()

print("Column Names:")

print(mydf.columns)

print()

print("Column types:")

print(mydf.dtypes)

print()

print("Description:")

print(mydf.describe())

print()

Listing 3.2 starts with two standard import statements followed by the variable myarray, which is a 3x3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified data source (i.e., myarray).

The first portion of the output below requires a single print statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 3.2 is here:

contents of df:

         January  February  March

apples        10        30     20

oranges       50        40     60

beer        1000      2000   3000

contents of January:

apples       10

oranges      50

beer       1000

Name: January, dtype: int64

Number of Rows:

3

Number of Columns:

3

Number of Rows and Columns:

(3, 3)

Column Names:

Index(['January', 'February', 'March'], dtype='object')

Column types:

January     int64

February    int64

March       int64

dtype: object

Description:

           January     February        March

count     3.000000     3.000000     3.000000

mean    353.333333   690.000000  1026.666667

std     560.386771  1134.504297  1709.073823

min      10.000000    30.000000    20.000000

25%      30.000000    35.000000    40.000000

50%      50.000000    40.000000    60.000000

75%     525.000000  1020.000000  1530.000000

max    1000.000000  2000.000000  3000.000000

Pandas Boolean Data Frames

Pandas supports Boolean operations on data frames, such as the logical OR, the logical AND, and the logical negation of a pair of Data frames. Listing 3.3 shows the content of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.

Listing 3.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.DataFrame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")

print(df1 & df2)

print("df1 | df2:")

print(df1 | df2)

print("df1 ^ df2:")

print(df1 ^ df2)

Listing 3.3 initializes the data frames df1 and df2, and then computes df1 & df2, df1 | df2, and df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 3.3 is as follows:

df1 & df2:

       a      b

0  False  False

1  False   True

2   True  False

df1 | df2:

      a     b

0  True  True

1  True  True

2  True  True

df1 ^ df2:

       a      b

0   True   True

1   True  False

2  False   True

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to the NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")

print(df1.T)

The output is here:

df1.T:

   0  1  2

a  1  0  1

b  0  1  1

The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")

print(df1 + df2)

The output is here:

df1 + df2:

   a  b

0  4  5

1  3  6

2  4  6

Pandas Data Frames and Random Numbers

Listing 3.4 shows the content of pandas_random_df.py that illustrates how to create a Pandas data frame with random numbers.

Listing 3.4: pandas_random_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)),
columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")

print(df)

Listing 3.4 defines the Pandas data frame df that consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 3.4 is here:

a    b

0      1.0  2.0

1      1.0  1.0

2      4.0  3.0

3      3.0  1.0

4      1.0  2.0

sum   10.0  9.0

mean   2.0  1.8

Listing 3.5 shows the content of pandas_combine_df.py that illustrates how to combine Pandas data frames.

Listing 3.5: pandas_combine_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),

                   'foo2' : np.random.randn(5)})

print("contents of df:")

print(df)

print("contents of foo1:")

print(df.foo1)

print("contents of foo2:")

print(df.foo2)

Listing 3.5 defines the Pandas data frame df that consists of 5 rows and 2 columns (labeled foo1 and foo2) of random real numbers between 0 and 5. The next portion of Listing 3.5 shows the content of df and foo1. The output of Listing 3.5 is as follows:

contents of df:

       foo1      foo2

0  0.274680 _0.848669

1 _0.399771 _0.814679

2  0.454443 _0.363392

3  0.473753  0.550849

4 _0.211783 _0.015014

contents of foo1:

0    0.256773

1    1.204322

2    1.040515

3   _0.518414

4    0.634141

Name: foo1, dtype: float64

contents of foo2:

0   _2.506550

1   _0.896516

2   _0.222923

3    0.934574

4    0.527033

Name: foo2, dtype: float64

Reading CSV Files in Pandas

Pandas provides the read_csv() method for reading the contents of CSV files. For example, Listing 3.6 shows the content of sometext.txt that contains labeled data (spam or ham), and Listing 3.7 shows the content of read_csv_file.py that illustrates how to read the contents of a CSV file.

Listing 3.6: sometext.txt

type    text

ham     I'm telling the truth

spam    What a deal such a deal!

spam    Free vacation for your family

ham     Thank you for your help

spam    Spring break next week!

ham     I received the documents

spam    One million dollars for you

ham     My wife got covid19

spam    You might have won the prize

ham     Everyone is in good health

Listing 3.7: read_csv_file.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows:")

print(df.head(5))

Listing 3.7 reads the content of sometext.csv, whose columns are separated by a tab (\t) delimiter. Launch the code in Listing 3.7 to see the following output:

=> First five rows:

   type                          text

0   ham          I'm telling the truth

1  spam      What a deal such a deal!

2  spam  Free vacation for your family

3   ham        Thank you for your help

4  spam        Spring break next week!

The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).

You can also use the sep parameter specifies a different separator, and the names parameter specifies the column names in the data that you want to read, an example of which is here:

df2 = pd.read_csv("data.csv",sep="|",

                  names=["Name","Surname","Height","Weight"])

Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.

The loc() and iloc() Methods in Pandas

If you want to display the contents of a record in a data frame, specify the index of the row in the loc() method. For example, the following code snippet displays the data by feature name in a data frame df:

df.loc[feature_name]

Select the first row of the “height” column in the data frame:

df.loc([0], ['height'])

The following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:

df.iloc[0:8]['name']

Converting Categorical Data to Numeric Data

One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 3.8 shows the content of cat2numeric.py that illustrates how to replace a text field with a corresponding numeric field.

Listing 3.8: cat2numeric.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

print()

map ham/spam to 0/1 values:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")

Listing 3.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 3.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

The last portion of Listing 3.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 3.8 to see the following output:

=> First five rows (before):

   type                          text

0   ham          I'm telling the truth

1  spam      What a deal such a deal!

2  spam  Free vacation for your family

3   ham        Thank you for your help

4  spam        Spring break next week!

=> First five rows (after):

   type                          text

0     0          I'm telling the truth

1     1      What a deal such a deal!

2     1  Free vacation for your family

3     0        Thank you for your help

4     1        Spring break next week!

As another example, Listing 3.9 shows the content of shirts.csv and Listing 3.10 shows the content of shirts.py; these examples illustrate four techniques for converting categorical data into numeric data.

Listing 3.9: shirts.csv

type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall

Listing 3.10: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large',  'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small',  'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge',  4, inplace=True)

#shirts['ssize'].replace('large',   3, inplace=True)

#shirts['ssize'].replace('medium',  2, inplace=True)

#shirts['ssize'].replace('small',   1, inplace=True)

#shirts['ssize'].replace('xsmall',  1, inplace=True)

TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large',  value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small',  value=1)

print("shirts after:")

print(shirts)

Listing 3.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that uses the apply() method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. (If you are unfamiliar with regular expressions, you can read the relevant appendix.) Now launch the code in Listing 3.10 to see the following output:

shirts before

     type     size

0   shirt  xxlarge

1   shirt  xxlarge

2   shirt   xlarge

3   shirt   xlarge

4   shirt   xlarge

5   shirt    large

6   shirt   medium

7   shirt    small

8   shirt    small

9   shirt   xsmall

10  shirt   xsmall

11  shirt   xsmall

shirts after:

     type  size

0   shirt     4

1   shirt     4

2   shirt     4

3   shirt     4

4   shirt     4

5   shirt     3

6   shirt     2

7   shirt     1

8   shirt     1

9   shirt     1

10  shirt     1

11  shirt     1

Matching and Splitting Strings in Pandas

Listing 3.11 shows the content of shirts_str.py that illustrates how to match a column value with an initial string and how to split a column value based on a letter.

Listing 3.11: shirts_str.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts:")

print(shirts)

print()

print("shirts starting with xl:")

print(shirts[shirts.ssize.str.startswith('xl')])

print()

print("Exclude 'xlarge' shirts:")

print(shirts[shirts['ssize'] != 'xlarge'])

print()

print("first three letters:")

shirts['sub1'] = shirts['ssize'].str[:3]

print(shirts)

print()

print("split ssize on letter 'a':")

shirts['sub2'] = shirts['ssize'].str.split('a')

print(shirts)

print()

print("Rows 3 through 5 and column 2:")

print(shirts.iloc[2:5, 2])

print()

Listing 3.11 initializes the data frame df with the contents of the CSV file shirts.csv, and then displays the contents of df. The next code snippet in Listing 3.11 uses the startswith() method to match the shirt types that start with the letters xl, followed by a code snippet that displays the shorts whose size does not equal the string xlarge.

The next code snippet uses the construct str[:3] to display the first three letters of the shirt types, followed by a code snippet that uses the split() method to split the shirt types based on the letter “a.”

The final code snippet invokes iloc[2:5,2] to display the contents of rows 3 through 5 inclusive, and only the second column. The output of Listing 3.11 is as follows:

shirts:

     type    ssize

0   shirt  xxlarge

1   shirt  xxlarge

2   shirt   xlarge

3   shirt   xlarge

4   shirt   xlarge

5   shirt    large

6   shirt   medium

7   shirt    small

8   shirt    small

9   shirt   xsmall

10  shirt   xsmall

11  shirt   xsmall

shirts starting with xl:

    type   ssize

2  shirt  xlarge

3  shirt  xlarge

4  shirt  xlarge

Exclude 'xlarge' shirts:

     type    ssize

0   shirt  xxlarge

1   shirt  xxlarge

5   shirt    large

6   shirt   medium

7   shirt    small

8   shirt    small

9   shirt   xsmall

10  shirt   xsmall

11  shirt   xsmall

first three letters:

     type    ssize sub1

0   shirt  xxlarge  xxl

1   shirt  xxlarge  xxl

2   shirt   xlarge  xla

3   shirt   xlarge  xla

4   shirt   xlarge  xla

5   shirt    large  lar

6   shirt   medium  med

7   shirt    small  sma

8   shirt    small  sma

9   shirt   xsmall  xsm

10  shirt   xsmall  xsm

11  shirt   xsmall  xsm

split ssize on letter 'a':

     type    ssize sub1        sub2

0   shirt  xxlarge  xxl  [xxl, rge]

1   shirt  xxlarge  xxl  [xxl, rge]

2   shirt   xlarge  xla   [xl, rge]

3   shirt   xlarge  xla   [xl, rge]

4   shirt   xlarge  xla   [xl, rge]

5   shirt    large  lar    [l, rge]

6   shirt   medium  med    [medium]

7   shirt    small  sma    [sm, ll]

8   shirt    small  sma    [sm, ll]

9   shirt   xsmall  xsm   [xsm, ll]

10  shirt   xsmall  xsm   [xsm, ll]

11  shirt   xsmall  xsm   [xsm, ll]

Rows 3 through 5 and column 2:

2    xlarge

3    xlarge

4    xlarge

Name: ssize, dtype: object

Converting Strings to Dates in Pandas

Listing 3.12 shows the content of string2date.py, which illustrates how to convert strings to date formats.

Listing 3.12: string2date.py

import pandas as pd

bdates1 = {'strdates':  ['20210413','20210813','20211225'],

           'people': ['Sally','Steve','Sarah']

          }

df1 = pd.DataFrame(bdates1, columns = ['strdates','people'])

df1['dates'] = pd.to_datetime(df1['strdates'], format='%Y%m%d')

print("=> Contents of data frame df1:")

print(df1)

print()

print(df1.dtypes)

print()

bdates2 = {'strdates':  ['13Apr2021','08Aug2021','25Dec2021'],

           'people': ['Sally','Steve','Sarah']

          }

df2 = pd.DataFrame(bdates2, columns = ['strdates','people'])

df2['dates'] = pd.to_datetime(df2['strdates'], format='%d%b%Y')

print("=> Contents of data frame df2:")

print(df2)

print()

print(df2.dtypes)

print()

Listing 3.12 initializes the data frame df1 with the contents of bdates1, and then converts the strdates column to dates using the %Y%m%d format. The next portion of Listing 3.12 initializes the data frame df2 with the contents of bdates2, and then converts the strdates column to dates using the %d%b%Y format. Now launch the code in Listing 3.12 to see the following output:

=> Contents of data frame df1:

   strdates people      dates

0  20210413  Sally 2021-04-13

1  20210813  Steve 2021-08-13

2  20211225  Sarah 2021-12-25

strdates            object

people              object

dates       datetime64[ns]

dtype: object

=> Contents of data frame df2:

    strdates people      dates

0  13Apr2021  Sally 2021-04-13

1  08Aug2021  Steve 2021-08-08

2  25Dec2021  Sarah 2021-12-25

strdates            object

people              object

dates       datetime64[ns]

dtype: object

Merging and Splitting Columns in Pandas

Listing 3.13 shows the content of employees.csv and Listing 3.14 shows the content of emp_merge_split.py; these examples illustrate how to merge columns and split columns of a CSV file.

Listing 3.13: employees.csv

name,year,month

Jane-Smith,2015,Aug

Dave-Smith,2020,Jan

Jane-Jones,2018,Dec

Jane-Stone,2017,Feb

Dave-Stone,2014,Apr

Mark-Aster,,Oct

Jane-Jones,NaN,Jun

Listing 3.14: emp_merge_split.py

import pandas as pd

emps = pd.read_csv("employees.csv")

print("emps:")

print(emps)

print()

emps['year']  = emps['year'].astype(str)

emps['month'] = emps['month'].astype(str)

separate column for first name and for last name:

emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

concatenate year and month with a "#" symbol:

emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

concatenate year and month with a "-" symbol:

emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

print(emps)

print()

Listing 3.14 initializes the data frame df with the contents of the CSV file employees.csv, and then displays the contents of df. The next pair of code snippets invoke the astype() method to convert the contents of the year and month columns to strings.

The next code snippet in Listing 3.14 uses the split() method to split the name column into the columns fname and lname that contain the first name and last name, respectively, of each employee’s name:

emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The next code snippet concatenates the contents of the year and month string with a “#” character to create a new column called hdate1:

emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

The final code snippet concatenates the contents of the year and month string with a “-” to create a new column called hdate2, as shown here:

emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

Launch the code in Listing 3.14 to see the following output:

emps:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Dave-Smith  2020.0   Jan

2  Jane-Jones  2018.0   Dec

3  Jane-Stone  2017.0   Feb

4  Dave-Stone  2014.0   Apr

5  Mark-Aster     NaN   Oct

6  Jane-Jones     NaN   Jun

         name    year month fname  lname      hdate1      hdate2

0  Jane-Smith  2015.0   Aug  Jane  Smith  2015.0#Aug  2015.0-Aug

1  Dave-Smith  2020.0   Jan  Dave  Smith  2020.0#Jan  2020.0-Jan

2  Jane-Jones  2018.0   Dec  Jane  Jones  2018.0#Dec  2018.0-Dec

3  Jane-Stone  2017.0   Feb  Jane  Stone  2017.0#Feb  2017.0-Feb

4  Dave-Stone  2014.0   Apr  Dave  Stone  2014.0#Apr  2014.0-Apr

5  Mark-Aster     nan   Oct  Mark  Aster     nan#Oct     nan-Oct

6  Jane-Jones     nan   Jun  Jane  Jones     nan#Jun     nan-Jun

There is one other detail regarding the following commented-out code snippet:

#emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The following deprecation message is displayed if you uncomment the preceding code snippet:

#FutureWarning: Columnar iteration over characters

#will be deprecated in future releases.

Combining Pandas Data Frames

Pandas supports the concat() method to concatenate data frames. Listing 3.15 shows the content of concat_frames.py that illustrates how to combine two data frames.

Listing 3.15: concat_frames.py

import pandas as pd

can_weather = pd.DataFrame({

    "city": ["Vancouver","Toronto","Montreal"],

    "temperature": [72,65,50],

    "humidity": [40, 20, 25]

})

us_weather = pd.DataFrame({

    "city": ["SF","Chicago","LA"],

    "temperature": [60,40,85],

    "humidity": [30, 15, 55]

})

df = pd.concat([can_weather, us_weather])

print(df)

The first line in Listing 3.15 is an import statement, followed by the definition of the data frames can_weather and us_weather that contain weather-related information for cities in Canada and the USA, respectively. The data frame df is the vertical concatenation of  can_weather and us_weather. The output from Listing 3.15 is here:

0  Vancouver        40           72

1    Toronto        20           65

2   Montreal        25           50

0         SF        30           60

1    Chicago        15           40

2         LA        55           85

Data Manipulation with Pandas Data Frames (1)

As an example, suppose that we have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, as well as the overall profit/loss.

Listing 3.16 shows the content of pandas_quarterly_df1.py that illustrates how to define a Pandas data frame consisting of income-related values.

Listing 3.16: pandas_quarterly_df1.py

import pandas as pd

summary = {

    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],

    'Cost':    [23500, 34000, 57000, 32000],

    'Revenue': [40000, 40000, 40000, 40000]

}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)

print("Quarter:\n",df.Quarter)

print("Cost:\n",df.Cost)

print("Revenue:\n",df.Revenue)

Listing 3.16 defines the variable summary that contains hard-coded quarterly information about cost and revenue for our two-person company. In general, these hard-coded values would be replaced by data from another source (such as a CSV file), so think of this code sample as a simple way to illustrate some of the functionality that is available in Pandas data frames.

The variable df is a data frame based on the data in the summary variable. The three print statements display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 3.16 is as follows:

Entire Dataset:

     Cost Quarter  Revenue

0  23500      Q1    40000

1  34000      Q2    60000

2  57000      Q3    50000

3  32000      Q4    30000

Quarter:

0    Q1

1    Q2

2    Q3

3    Q4

Name: Quarter, dtype: object

Cost:

0    23500

1    34000

2    57000

3    32000

Name: Cost, dtype: int64

Revenue:

0    40000

1    60000

2    50000

3    30000

Name: Revenue, dtype: int64

Data Manipulation with Pandas Data Frames (2)

Let’s suppose that we have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, as well as the overall profit/loss.

Listing 3.17 shows the content of pandas_quarterly_df2.py that illustrates how to define a Pandas data frame consisting of income-related values.

Listing 3.17: pandas_quarterly_df2.py

import pandas as pd

summary = {

    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],

    'Cost':    [-23500, -34000, -57000, -32000],

    'Revenue': [40000, 40000, 40000, 40000]

}

df = pd.DataFrame(summary)

print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)

print("Second Dataset:\n",df)

Listing 3.17 defines the variable summary that contains quarterly information about cost and revenue for our two-person company. The variable df is a data frame based on the data in the summary variable. The three print() statements display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 3.17 is as follows:

First Dataset:

     Cost Quarter  Revenue

0 -23500      Q1    40000

1 -34000      Q2    60000

2 -57000      Q3    50000

3 -32000      Q4    30000

Second Dataset:

     Cost Quarter  Revenue  Total

0 -23500      Q1    40000  16500

1 -34000      Q2    60000  26000

2 -57000      Q3    50000  -7000

3 -32000      Q4    30000  -2000

Data Manipulation with Pandas Data Frames (3)

Let’s start with the same assumption as the previous section. We have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, and also the overall profit/loss. In addition, we want to compute column totals and row totals.

Listing 3.18 shows the content of pandas_quarterly_df3.py that illustrates how to define a Pandas data frame consisting of income-related values.

Listing 3.18: pandas_quarterly_df3.py

import pandas as pd

summary = {

    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],

    'Cost':    [-23500, -34000, -57000, -32000],

    'Revenue': [40000, 40000, 40000, 40000]

}

df = pd.DataFrame(summary)

print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)

df.loc['Sum'] = df.sum()

print("Second Dataset:\n",df)

or df.loc['avg'] / 3

#df.loc['avg'] = df[:3].mean()

#print("Third Dataset:\n",df)

Listing 3.18 defines the variable summary that contains quarterly information about cost and revenue for our two-person company. The variable df is a data frame based on the data in the summary variable. The three print() statements display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 3.18 is shown here:

First Dataset:

     Cost Quarter  Revenue

0 -23500      Q1    40000

1 -34000      Q2    60000

2 -57000      Q3    50000

3 -32000      Q4    30000

Second Dataset:

        Cost   Quarter  Revenue  Total

0    -23500        Q1    40000  16500

1    -34000        Q2    60000  26000

2    -57000        Q3    50000  -7000

3    -32000        Q4    30000  -2000

Sum -146500  Q1Q2Q3Q4   180000  33500

Pandas Data Frames and CSV Files

The code samples in several earlier sections contain hard-coded data inside the Python scripts. However, it’s also common to read data from a CSV file. You can use the Python csv.reader() function, the NumPy loadtxt() function, or the Pandas function read_csv() function (shown in this section) to read the contents of CSV files.

Listing 3.19 shows the content of weather_data.py that illustrates how to read a CSV file, initialize a Pandas data frame with the contents of that CSV file, and display various subsets of the data in the data frames.

Listing 3.19: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)

print(df.shape)  # rows, columns

print(df.head()) # df.head(3)

print(df.tail())

print(df[1:3])

print(df.columns)

print(type(df['day']))

print(df[['day','temperature']])

print(df['temperature'].max())

Listing 3.19 invokes the read_csv() function to read the contents of the CSV file weather_data.csv, followed by a set of print() statements that displays various portions of the CSV file. The output from Listing 3.19 is as follows:

day,temperature,windspeed,event

7/1/2018,42,16,Rain

7/2/2018,45,3,Sunny

7/3/2018,78,12,Snow

7/4/2018,74,9,Snow

7/5/2018,42,24,Rain

7/6/2018,51,32,Sunny

In some situations, you might need to apply Boolean conditional logic to filter out some rows of data, based on a condition that’s applied to a column value. Listing 3.20 shows the content of the CSV file people.csv and Listing 3.21 shows the content of people_pandas.py; these code snippets illustrate how to define a Pandas data frame that reads the CSV file and manipulates the data.

Listing 3.20: people.csv

fname,lname,age,gender,country

john,smith,30,m,usa

jane,smith,31,f,france

jack,jones,32,m,france

dave,stone,33,m,italy

sara,stein,34,f,germany

eddy,bower,35,m,spain

Listing 3.21: people_pandas.py

import pandas as pd

df = pd.read_csv('people.csv')

df.info()

print('fname:')

print(df['fname'])

print('____________')

print('age over 33:')

print(df['age'] > 33)

print('____________')

print('age over 33:')

myfilter = df['age'] >  33

print(df[myfilter])

Listing 3.21 populates the data frame df with the contents of the CSV file people.csv. The next portion of Listing 3.21 displays the structure of df, followed by the first names of all the people.

Next, Listing 3.21 displays a tabular list of six rows containing either True or False, depending on whether a person is over 33 or at most 33, respectively. The final portion of Listing 3.21 displays a tabular list of two rows containing all the details of the people who are over 33. The output from Listing 3.21 is shown here:

myfilter = df['age'] >  33

<class 'pandas.core.frame.Data frame'>

RangeIndex: 6 entries, 0 to 5

Data columns (total 5 columns):

fname      6 non_null object

lname      6 non_null object

age        6 non_null int64

gender     6 non_null object

country    6 non_null object

dtypes: int64(1), object(4)

memory usage: 320.0+ bytes

fname:

0    john

1    jane

2    jack

3    dave

4    sara

5    eddy

Name: fname, dtype: object

age over 33:

0    False

1    False

2    False

3    False

4     True

5     True

Name: age, dtype: bool

age over 33:

  fname  lname  age gender country

4  sara  stein   34      f  france

5  eddy  bower   35      m  France

Managing Columns in Data Frames

This section contains various subsections with short code blocks that illustrate how to perform column-based operations on a data frame, which resemble the operations in a Python dictionary.

For example, the following code snippet illustrates how to define a Pandas data frame whose data values are from a Python dictionary:

df = pd.DataFrame.
from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),

                orient='index', columns=['one', 'two',
'three'])

print(df)

The output from the preceding code snippet is here:

   one  two  three

A    1    2      3    

B    4    5      6

Switching Columns

The following code snippet defines a Pandas data frame and then switches the order of the columns:

df = pd.DataFrame.
from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),

                orient='index', columns=['one', 'two', 'three'])

print("initial data frame:")

print(df)

print()

switched = ['three','one','two']

df=df.reindex(columns=switched)

print("switched columns:")

print(df)

print()

The output from the preceding code block is shown here:

initial data frame:

   one  two  three

A    1    2      3

B    4    5      6

switched columns:

   three  one  two

A      3    1    2

B      6    4    5

Appending Columns

The following code snippet computes the product of two columns and appends the result as a new column to the contents of the data frame df:

df['four'] = df['one'] * df['two']

print(df)

The output from the preceding code block is as follows:

   one  two  three  four

A    1    2      3     2

B    4    5      6    20

The following operation squares the contents of a column in the data frame df:

df['three'] = df['two'] * df['two']

print(df)

The output from the preceding code block is here (notice the numbers shown in bold):

   one  two  three  four

A    1    2      4     2

B    4    5     25    20

The following operation appends a new column called flag that contains True or False, based on whether the numeric value in the “one” column is greater than 2:

import numpy as np

rand = np.random.randn(2)

df.insert(1, 'random', rand)

print(df)

The output from the preceding code block is here:

   one    random  two  three  four   flag

A    1 -1.703111    2      4     2  False

B    4  1.139189    5     25    20   True

Deleting Columns

Columns can be deleted, as shown in following code snippet that deletes the “two” column:

del df['two']

print(df)

The output from the preceding code block is shown here:

one    random  three  four   flag

A    1 -0.460401      4     2  False

B    4  1.211468     25    20   True

Columns can be removed, as shown in following code snippet that deletes the “three” column:

three = df.pop('three')

print(df)

   one    random  four   flag

A    1 -0.544829     2  False

B    4  0.581476    20   True

Inserting Columns

When inserting a scalar value, it will be propagated to fill the column:

df['foo'] = 'bar'

print(df)

The output from the preceding code snippet is shown here:

   one    random  four   flag  foo

A    1 -0.187331     2  False   bar

B    4 -0.169672    20   True   bar

When inserting a series that does not have the same index as the data frame, it will be “conformed” to the index of the data frame:

df['one_trunc'] = df['one'][:1]

print(df)

The output from the preceding code snippet is here:

   one    random  four   flag  foo  one_trunc

A    1  0.616572     2  False   bar        1.0

B    4 -0.802656    20   True   bar        NaN

You can insert raw ndarrays, but their length must match the length of the index of the data frame.

The following operation inserts a column of random numbers in index position 1 (which is the second column) in the data frame df:

import numpy as np

rand = np.random.randn(2)

df.insert(1, 'random', rand)    

print(df)

The output from the preceding code block is shown here:

   one    random  two  three  four

A    1 -1.703111    2      4     2

B    4  1.139189    5     25    20

Scaling Numeric Columns

Pandas makes it easy to scale the values in numeric columns. The value in every numeric column of the first row is assigned the value of 1, and the remaining column values are scaled accordingly. Note that values are scaled on a column-by-column basis, which is to say, the columns are treated independently of each other.

Listing 3.22 shows the content of numbers.csv and Listing 3.23 shows the content of scale_columns.py; these examples illustrate how to scale the values in numeric columns.

Listing 3.22: numbers.csv

tr1,qtr2,qtr3,qtr4

100,330,445,8000

200,530,145,3000

2000,1530,4145,5200

900,100,280,2000

Listing 3.23: scale_columns.py

import pandas as pd

filename="numbers.csv"

read CSV file and display its contents:

df = pd.read_table(filename,delimiter=',')

print("=> contents of df:")

print(df)

print()

print("=> df.iloc[0]:")

print(df.iloc[0])

print()

df2 = df # save the data frame

df/df.iloc[0] scales the columns:

df = df/df.iloc[0]

print("=> contents of df:")

print(df)

print()

df2/df2['qtr1'].iloc[0] scales column qtr1:

df2['qtr1'] = df2['qtr1']/(df2['qtr1']).iloc[0]

print("=> contents of df2:")

print(df2)

print()

Listing 3.23 initializes the variable df as a data frame with the contents of the CSV file numbers.csv. Next, a print() statement displays the contents of df, followed by the contents of the column whose index is 0.

Next, the data frame df2 is initialized as a copy of df, followed by a division operation in df whereby the elements of every row are divided by their counterparts in df.iloc[0]. The final code block in Listing 3.23 updates the first column of df2 (which is a copy of the original contents of df) by an operation that effectively involves division by 100. Launch the code in Listing 3.23 to see the following output:

=> contents of df:

   qtr1  qtr2  qtr3  qtr4

0   100   330   445  8000

1   200   530   145  3000

2  2000  1530  4145  5200

3   900   100   280  2000

=> df.iloc[0]:

qtr1     100

qtr2     330

qtr3     445

qtr4    8000

Name: 0, dtype: int64

=> contents of df:

   qtr1      qtr2      qtr3   qtr4

0   1.0  1.000000  1.000000  1.000

1   2.0  1.606061  0.325843  0.375

2  20.0  4.636364  9.314607  0.650

3   9.0  0.303030  0.629213  0.250

=> contents of df2:

   qtr1  qtr2  qtr3  qtr4

0   1.0   330   445  8000

1   2.0   530   145  3000

2  20.0  1530  4145  5200

3   9.0   100   280  2000

The preceding code will result in an error if the CSV file contains any non-numeric columns. However, in the latter case, you can specify the list of numeric columns whose values are to be scaled, an example of which is shown in the final code block in Listing 3.23.

Managing Rows in Pandas

Pandas supports various row-related operations, such as finding duplicate rows, selecting a range of rows, deleting rows, and inserting new rows. The following subsections contain code sample that illustrate how to perform these operations.

Selecting a Range of Rows in Pandas

Listing 3.24 shows the content of duplicates.csv and Listing 3.25 shows the content of row_range.py; these examples illustrate how to select a range of rows in a Pandas data frame.

Listing 3.24: duplicates.csv

fname,lname,level,dept,state

Jane,Smith,Senior,Sales,California

Dave,Smith,Senior,Devel,California

Jane,Jones,Year1,Mrktg,Illinois

Jane,Jones,Year1,Mrktg,Illinois

Jane,Stone,Senior,Mrktg,Arizona

Dave,Stone,Year2,Devel,Arizona

Mark,Aster,Year3,BizDev,Florida

Jane,Jones,Year1,Mrktg,Illinois

Listing 3.25: row_range.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("=> contents of CSV file:")

print(df)

print()

print("=> Rows 4 through 7 (loc):")

print(df.loc[4:7,:])

print()

print("=> Rows 4 through 6 (iloc):")

print(df.iloc[4:7,:])

print()

Listing 3.25 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 3.25 displays the contents of rows 4 through 7, followed by the contents of rows 4 through 6. Launch the code in Listing 3.25 to see the following output:

=> contents of CSV file:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

5  Dave  Stone   Year2   Devel     Arizona

6  Mark  Aster   Year3  BizDev     Florida

7  Jane  Jones   Year1   Mrktg    Illinois

=> Rows 4 through 7 (loc):

  fname  lname   level    dept     state

4  Jane  Stone  Senior   Mrktg   Arizona

5  Dave  Stone   Year2   Devel   Arizona

6  Mark  Aster   Year3  BizDev   Florida

7  Jane  Jones   Year1   Mrktg  Illinois

=> Rows 4 through 6 (iloc):

  fname  lname   level    dept    state

4  Jane  Stone  Senior   Mrktg  Arizona

5  Dave  Stone   Year2   Devel  Arizona

6  Mark  Aster   Year3  BizDev  Florida

Finding Duplicate Rows in Pandas

Listing 3.26 shows the content of duplicates.py that illustrates how to find duplicate rows in a Pandas data frame.

Listing 3.26: duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

print("Duplicate rows:")

#df2 = df.duplicated(subset=None)

df2 = df.duplicated(subset=None, keep='first')

print(df2)

print()

print("Duplicate first names:")

df3 = df[df.duplicated(['fname'])]

print(df3)

print()

print("Duplicate first name and level:")

df3 = df[df.duplicated(['fname','level'])]

print(df3)

print()

Listing 3.26 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 3.26 displays the duplicate rows by invoking the duplicated() method, whereas the next portion of Listing 3.26 displays only the first name fname of the duplicate rows.

The final portion of Listing 3.26 displays the first name fname as well as the level of the duplicate rows. Launch the code in Listing 3.26 to see the following output:

Contents of data frame:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

5  Dave  Stone   Year2   Devel     Arizona

6  Mark  Aster   Year3  BizDev     Florida

7  Jane  Jones   Year1   Mrktg    Illinois

Duplicate rows:

0    False

1    False

2    False

3     True

4    False

5    False

6    False

7     True

dtype: bool

Duplicate first names:

  fname  lname   level   dept     state

2  Jane  Jones   Year1  Mrktg  Illinois

3  Jane  Jones   Year1  Mrktg  Illinois

4  Jane  Stone  Senior  Mrktg   Arizona

5  Dave  Stone   Year2  Devel   Arizona

7  Jane  Jones   Year1  Mrktg  Illinois

Duplicate first name and level:

  fname  lname   level   dept     state

3  Jane  Jones   Year1  Mrktg  Illinois

4  Jane  Stone  Senior  Mrktg   Arizona

7  Jane  Jones   Year1  Mrktg  Illinois

Listing 3.27 shows the content of drop_duplicates.py that illustrates how to remove duplicate rows in a Pandas data frame.

Listing 3.27: drop_duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

print("=> number of duplicate rows:", df.duplicated().sum())

print()

print("=> row number(s) of duplicate rows:")

print(np.where(df.duplicated() == True)[0])

print()

fname_filtered = df.drop_duplicates(['fname'])

print("Drop duplicate first names:")

print(fname_filtered)

print()

fname_lname_filtered = df.drop_duplicates(['fname','lname'])

print("Drop duplicate first and last names:")

print(fname_lname_filtered)

print()

Listing 3.27 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 3.27 deletes the rows that have duplicate fname values, followed by a code block that eliminates rows with duplicate fname and lname values. Launch the code in Listing 3.27 to see the following output:

Contents of data frame:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

5  Dave  Stone   Year2   Devel     Arizona

6  Mark  Aster   Year3  BizDev     Florida

7  Jane  Jones   Year1   Mrktg    Illinois

=> number of duplicate rows: 2

=> row number(s) of duplicate rows:

[3 7]

Drop duplicate first names:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

6  Mark  Aster   Year3  BizDev     Florida

Drop duplicate first and last names:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

2  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

5  Dave  Stone   Year2   Devel     Arizona

6  Mark  Aster   Year3  BizDev     Florida

Inserting New Rows in Pandas

Listing 3.28 shows the content of emp_ages.csv and Listing 3.29 shows the content of insert_row.py that illustrates how to insert a new row in a Pandas data frame.

Listing 3.28: emp_ages.csv

fname,lname,age

Jane,Smith,32

Dave,Smith,10

Jane,Jones,65

Jane,Jones,65

Jane,Stone,25

Dave,Stone,45

Mark,Aster,53

Jane,Jones,58

Listing 3.29: insert_row.py

import pandas as pd

filename="emp_ages.csv"

df = pd.read_table(filename,delimiter=',')

new_row = pd.DataFrame({'fname':'New','lname':'Person','age':777}, index=[0])

df = pd.concat([new_row, df]).reset_index(drop = True)

print("insert new first row in df:")

print(df.head(3))

print()

Listing 3.29 contains an import statement and then initializes the variable df with the contents of the CSV file emp_ages.csv. The next code snippet defines the variable new_row, whose contents are compatible with the structure of df, and then appends the contents of new_row to the data frame df. Launch the code in Listing 3.29 to see the following output:

  fname   lname  age

0   New  Person  777

1  Jane   Smith   32

2  Dave   Smith   10

Handling Missing Data in Pandas

Listing 3.30 shows the content of employees2.csv and Listing 3.31 shows the content of dup_missing.py; these code samples illustrate how to find duplicate rows and missing values in a Pandas data frame.

Listing 3.30: employees2.csv

name,year,month

Jane-Smith,2015,Aug

Jane-Smith,2015,Aug

Dave-Smith,2020,

Dave-Stone,,Apr

Jane-Jones,2018,Dec

Jane-Stone,2017,Feb

Jane-Stone,2017,Feb

Mark-Aster,,Oct

Jane-Jones,NaN,Jun

Listing 3.31: missing_values.py

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

the meaning of two strings:

#NA:  Not Available (Pandas)

#NaN: Not a Number (Pandas)

#NB:  NumPy uses np.nan() to check for NaN values

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")

print(df)

print()

print("=> any NULL values per column?")

print(df.isnull().any())

print()

print("=> count of NAN/MISSING values in each column:")

print(df.isnull().sum())

print()

print("=> count of NAN/MISSING values in each column:")

print(pd.isna(df).sum())

print()

print("=> count of NAN/MISSING values in each column (sorted):")

print(df.isnull().sum().sort_values(ascending=False))

print()

nan_null = df.isnull().sum().sum()

miss_values = df.isnull().any().sum()

print("=> count of NaN/MISSING values:",nan_null)

print("=> count of MISSING values:",miss_values)

print("=> count of NaN values:",nan_null-miss_values)

Listing 3.31 initializes the data frame df with the contents of the CSV file employees2.csv, and then displays the contents of df. The next portion of Listing 3.31 displays the number of null values that appear in any row or column. The next portion of Listing 3.31 displays the fields and the names of the fields that have null values, which are the year and month columns of the CSV file.

The next two code blocks of Listing 3.31 display the number of NaN values in the data frame using the method df.isnull().sum() and pd.isna(df).sum(), respectively (the result is the same).

The final portion of Listing 3.31 initializes the variables nan_null and miss_values to 4 and 2, respectively, and then displays their values as well as the differences of their values. Launch the code in Listing 3.31 to see the following output:

=> contents of CSV file:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Jane-Smith  2015.0   Aug

2  Dave-Smith  2020.0   NaN

3  Dave-Stone     NaN   Apr

4  Jane-Jones  2018.0   Dec

5  Jane-Stone  2017.0   Feb

6  Jane-Stone  2017.0   Feb

7  Mark-Aster     NaN   Oct

8  Jane-Jones     NaN   Jun

=> any NULL values per column?

name     False

year      True

month     True

dtype: bool

=> count of NAN/MISSING values in each column:

name     0

year     3

month    1

dtype: int64

=> count of NAN/MISSING values in each column:

name     0

year     3

month    1

dtype: int64

=> count of NAN/MISSING values in each column (sorted):

year     3

month    1

name     0

dtype: int64

=> count of NaN/MISSING values: 4

=> count of MISSING values: 2

=> count of NaN values: 2

Multiple Types of Missing Values

Listing 3.32 shows the content of employees3.csv that contains multiple types of missing values. Listing 3.33 shows the content of the Python file missing_multiple_types.py that illustrates how to specify multiple missing value types when reading employees3.csv into a Pandas data frame.

Listing 3.32: employees3.csv

name,year,month

Jane-Smith,2015,Aug

Dave-Smith,2020,NaN

Dave-Stone,?,Apr

Jane-Jones,2018,Dec

Jane-Stone,2017,Feb

Jane-Stone,2017,Feb

Mark-Aster,na,Oct

Jane-Jones,!,Jun

Listing 3.33: missing_multiple_types.py

import pandas as pd

missing_values = ["na", "?", "!", "NaN"]

df = pd.read_csv("employees3.csv", na_values = missing_values)

print("=> contents of CSV file:")

print(df)

print()

Listing 3.33 is almost the same as previous examples. The only difference is shown in the pair of code snippets (in bold) that illustrates how to specify multiple missing value types.

Test for Numeric Values in a Column

Listing 3.34 displays the content of test_for_numeric.py that illustrates how to check if a value in a row is numeric.

Listing 3.34: test_for_numeric.py

import pandas as pd

import numpy as np

missing_values = ["na", "?", "!", "NaN"]

df = pd.read_csv("employees3.csv", na_values = missing_values)

print("=> contents of CSV file:")

print(df)

print()

count = 0

for row in df['year']:

  try:

    int(row)

    df.loc[count," "] = np.nan

  except ValueError:

    count += 1

print("non-numeric count:",count)

Launch the code in Listing 3.34 to see the following output:

=> contents of CSV file:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Jane-Smith  2015.0   Aug

2  Dave-Smith  2020.0   NaN

3  Dave-Stone     NaN   Apr

4  Jane-Jones  2018.0   Dec

5  Jane-Stone  2017.0   Feb

6  Jane-Stone  2017.0   Feb

7  Mark-Aster     NaN   Oct

8  Jane-Jones     NaN   Jun

non-numeric count: 3

Replacing NaN Values in Pandas

Listing 3.35 shows the content of missing_fill_drop.py that illustrates how to replace missing values in a Pandas data frame.

Listing 3.35: missing_fill_drop.py

import pandas as pd

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")

print(df)

print()

print("Check for NANs:")

print(pd.isna(df))

print()

print("Drop missing data:")

df2 = df.dropna(axis=0, how='any')

print(df2)

print()

print("Replace missing data:")

print(df.fillna(7777))

print()

Listing 3.35 initializes the data frame df with the contents of the CSV file employees2.csv, and then displays the contents of df. The next portion of Listing 3.35 checks for NaN values and displays a tabular result in which each cell is either False or True, depending on whether the respective entry is NaN or not NaN, respectively.

The next code snippet initializes the data frame df2 with the contents of df, and then drops all rows in df2 that contain a NaN value. The final code snippet in Listing 3.35 replaces all occurrences of NaN with the value 7777 (there is nothing special about this value. It’s simply for the purpose of demonstration). Launch the code in Listing 3.35 to see the following output:

=> contents of CSV file:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Jane-Smith  2015.0   Aug

2  Dave-Smith  2020.0   NaN

3  Dave-Stone     NaN   Apr

4  Jane-Jones  2018.0   Dec

5  Jane-Stone  2017.0   Feb

6  Jane-Stone  2017.0   Feb

7  Mark-Aster     NaN   Oct

8  Jane-Jones     NaN   Jun

=> Check for NANs:

    name   year  month

0  False  False  False

1  False  False  False

2  False  False   True

3  False   True  False

4  False  False  False

5  False  False  False

6  False  False  False

7  False   True  False

8  False   True  False

=> Drop missing data:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Jane-Smith  2015.0   Aug

4  Jane-Jones  2018.0   Dec

5  Jane-Stone  2017.0   Feb

6  Jane-Stone  2017.0   Feb

=> Replace missing data:

         name    year month

0  Jane-Smith  2015.0   Aug

1  Jane-Smith  2015.0   Aug

2  Dave-Smith  2020.0  7777

3  Dave-Stone  7777.0   Apr

4  Jane-Jones  2018.0   Dec

5  Jane-Stone  2017.0   Feb

6  Jane-Stone  2017.0   Feb

7  Mark-Aster  7777.0   Oct

8  Jane-Jones  7777.0   Jun

Sorting Data Frames in Pandas

Listing 3.36 shows the content of sort_df.py that illustrates how to sort the rows in a Pandas data frame.

Listing 3.36: sort_df.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

df.sort_values(by=['fname'], inplace=True)

print("Sorted (ascending) by first name:")

print(df)

print()

df.sort_values(by=['fname'], inplace=True,ascending=False)

print("Sorted (descending) by first name:")

print(df)

print()

df.sort_values(by=['fname','lname'], inplace=True)

print("Sorted (ascending) by first name and last name:")

print(df)

print()

Listing 3.36 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 3.36 displays the rows in ascending order based on the first name, and the next code block displays the rows in descending order based on the first name.

The final code block in Listing 3.36 displays the rows in ascending order based on the first name as well as the last name. Launch the code in Listing 3.36 to see the following output:

Contents of data frame:

  fname  lname   level    dept       state

0  Jane  Smith  Senior   Sales  California

1  Dave  Smith  Senior   Devel  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

5  Dave  Stone   Year2   Devel     Arizona

6  Mark  Aster   Year3  BizDev     Florida

7  Jane  Jones   Year1   Mrktg    Illinois

Sorted (ascending) by first name:

  fname  lname   level    dept       state

1  Dave  Smith  Senior   Devel  California

5  Dave  Stone   Year2   Devel     Arizona

0  Jane  Smith  Senior   Sales  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

7  Jane  Jones   Year1   Mrktg    Illinois

6  Mark  Aster   Year3  BizDev     Florida

Sorted (descending) by first name:

  fname  lname   level    dept       state

6  Mark  Aster   Year3  BizDev     Florida

0  Jane  Smith  Senior   Sales  California

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

4  Jane  Stone  Senior   Mrktg     Arizona

7  Jane  Jones   Year1   Mrktg    Illinois

1  Dave  Smith  Senior   Devel  California

5  Dave  Stone   Year2   Devel     Arizona

Sorted (ascending) by first name and last name:

  fname  lname   level    dept       state

1  Dave  Smith  Senior   Devel  California

5  Dave  Stone   Year2   Devel     Arizona

2  Jane  Jones   Year1   Mrktg    Illinois

3  Jane  Jones   Year1   Mrktg    Illinois

7  Jane  Jones   Year1   Mrktg    Illinois

0  Jane  Smith  Senior   Sales  California

4  Jane  Stone  Senior   Mrktg     Arizona

6  Mark  Aster   Year3  BizDev     Florida

Working with groupby() in Pandas

Listing 3.37 shows the content of groupby1.py that illustrates how to invoke the groupby() method to compute the subtotals of the feature values.

Listing 3.37: groupby1.py

import pandas as pd

colors and weights of balls:

data = {'color':['red','blue','blue','red','blue'],

        'weight':[40,50,20,30,90]}

df1 = pd.DataFrame(data)

print("df1:")

print(df1)

print()

print(df1.groupby('color').mean())

print()

red_filter = df1['color']=='red'

print(df1[red_filter])

print()

blue_filter = df1['color']=='blue'

print(df1[blue_filter])

print()

red_avg = df1[red_filter]['weight'].mean()

blue_avg = df1[blue_filter]['weight'].mean()

print("red_avg,blue_avg:")

print(red_avg,blue_avg)

print()

df2 = pd.DataFrame({'color':['blue','red'],'weight':[red_avg,blue_avg]})

print("df2:")

print(df2)

print()

Listing 3.37 defines the variable data containing the color and weight values, and then initializes the data frame df with the contents of the variable data. The next two code blocks define red_filter and blue_filter that match the rows whose colors are red and blue, respectively, and then prints the matching rows.

The next portion of Listing 3.37 defines the two filters red_avg and blue_avg that calculate the average weight of the red value and the blue values, respectively. The last code block in Listing 3.37 defines the data frame df2 with a color color and a weight column, where the latter contains the average weight of the red values and the blue values. Launch the code in Listing 3.37 to see the following output:

initial data frame:

df1:

  color  weight

0   red      40

1  blue      50

2  blue      20

3   red      30

4  blue      90

          weight

color        

blue   53.333333

red    35.000000

  color  weight

0   red      40

3   red      30

  color  weight

1  blue      50

2  blue      20

4  blue      90

red_avg,blue_avg:

35.0 53.333333333333336

df2:

  color     weight

0  blue  35.000000

1   red  53.333333

Working with apply() and mapapply() in Pandas

Earlier in this chapter, you saw an example of the apply() method for modifying the categorical values of a feature in the CSV file shirts.csv. This section contains more examples of the apply() method.

Listing 3.38 shows the content of apply1.py that illustrates how to invoke the Pandas apply() method to compute the cube of a column of numbers.

Listing 3.38: apply1.py

import pandas as pd

df = pd.DataFrame({'X1': [1,2,3], 'X2': [10,20,30]})

def cube(x):

  return x * x * x

df1 = df.apply(cube)

same result:

df1 = df.apply(lambda x: x * x * x)

print("initial data frame:")

print(df)

print("cubed values:")

print(df1)

Listing 3.38 initializes the data frame df with columns X1 and X2, where the values for X2 are 10 times the corresponding values in X1. Next, the Python function cube() returns the cube of its argument. Listing 3.38 then defines the variable df1 by invoking the apply() function, which specifies the user-defined Python function cube(), and then prints the values of df as well as df1. Launch the code in Listing 3.38 to see the following output:

initial data frame:

   X1  X2

0   1  10

1   2  20

2   3  30

cubed values:

   X1     X2

0   1   1000

1   8   8000

2  27  27000

Apply a function to a data frame that multiplies all values in the “height” column of the data frame by 3:

df["height"].apply(lambda height: 3 * height)

OR

def multiply(x):

    return x * 3

df["height"].apply(multiply)

Listing 3.39 shows the content of apply2.py that illustrates how to invoke the apply() method to compute the sum of a set of values.

Listing 3.39: apply2.py

import pandas as pd

import numpy as np

df = pd.DataFrame({'X1': [10,20,30], 'X2': [50,60,70]})

df1 = df.apply(np.sum, axis=0)

df2 = df.apply(np.sum, axis=1)

print("initial data frame:")

print(df)

print("add values (axis=0):")

print(df1)

print("add values (axis=1):")

print(df2)

Listing 3.39 is a variation of Listing 3.38. The variables df1 and df2 contain the column-wise sum and the row-wise sum, respectively, of the data frame df. Launch the code in Listing 3.39 to see the following output:

   X1  X2

0  10  50

1  20  60

2  30  70

add values (axis=0):

X1     60

X2    180

dtype: int64

add values (axis=1):

0     60

1     80

2    100

dtype: int64

Listing 3.40 shows the content of mapapply1.py that illustrates how to invoke the mapapply() method to compute the square of a column of numbers.

Listing 3.40: mapapply1.py

import pandas as pd

import math

df = pd.DataFrame({'X1': [1,2,3], 'X2': [10,20,30]})

df1 = df.applymap(math.sqrt)

print("initial data frame:")

print(df)

print("square root values:")

print(df1)

Listing 3.40 is another variant of Listing 3.38. In this case, the variable df1 is defined by invoking the mapapply() function on the variable df, which in turn references (but does not execute) the math.sqrt() function.

Next, a print() statement displays the contents of df, followed by a print() statement that displays the contents of df1. It is at this point that the built-in math.sqrt() function is invoked to calculate the square root of the numeric values in df. Launch the code in Listing 3.40 to see the following output:

initial data frame:

   X1  X2

0   1  10

1   2  20

2   3  30

square root values:

         X1        X2

0  1.000000  3.162278

1  1.414214  4.472136

2  1.732051  5.477226

Listing 3.41 shows the content of mapapply2.py that illustrates how to invoke the mapapply2() method to convert strings to lowercase and uppercase.

Listing 3.41: mapapply2.py

import pandas as pd

df = pd.DataFrame({'fname': ['Jane'], 'lname': ['Smith']},

                  {'fname': ['Dave'], 'lname': ['Jones']})

df1 = df.applymap(str.lower)

df2 = df.applymap(str.upper)

print("initial data frame:")

print(df)

print()

print("lowercase:")

print(df1)

print()

print("uppercase:")

print(df2)

print()

Listing 3.41 initializes the variable df with two first and last name pairs, and then defines the variables df1 and df2 by invoking the applymap() method to the strings in the data frame df. The data frame df1 converts its input values to lowercase, whereas the data frame df2 converts its input values to uppercase. Launch the code in Listing 3.41 to see the following output:

initial data frame:

      fname  lname

fname  Jane  Smith

lname  Jane  Smith

lowercase:

      fname  lname

fname  jane  smith

lname  jane  smith

uppercase:

      fname  lname

fname  JANE  SMITH

lname  JANE  SMITH

Handling Outliers in Pandas

The key idea involves finding the “z score” of the values in the dataset, which involves calculating the mean sigma and standard deviation std, and then mapping each value x in the dataset to the value (x-sigma)/std.

Next, specify a value of z (such as 3) and find the rows whose z score is greater than 3. These are the rows that contain values that are considered outliers. Note that a suitable value for the z score is your decision (not some other external factor).

Listing 3.42 shows the content of outliers_zscores.py that illustrates how to find rows of a dataset whose z-score greater than (or less than) a specified value.

Listing 3.42: outliers_zscores.py

import numpy as np

import pandas as pd

from scipy import stats

from sklearn import datasets

df = datasets.load_iris()

columns = df.feature_names

iris_df = pd.DataFrame(df.data)

iris_df.columns = columns

print("=> iris_df.shape:",iris_df.shape)

print(iris_df.head())

print()

z = np.abs(stats.zscore(iris_df))

print("z scores for iris:")

print("z.shape:",z.shape)

upper = 2.5

lower = 0.01

print("=> upper outliers:")

print(z[np.where(z > upper)])

print()

outliers = iris_df[z < lower]

print("=> lower outliers:")

print(outliers)

print()

Listing 3.42 initializes the variable df with the contents of the built-in Iris dataset (see Chapter 6 for an introduction to Sklearn). Next, the variable columns is initialized with the column names, and the data frame iris_df is initialized from the content of df.data that contains the actual data for the Iris dataset. In addition, iris_df.columns is initialized with the contents of the variable columns.

The next portion of Listing 3.42 displays the shape of the data frame iris_df, followed by the zscore of the iris_df data frame, which is computed by subtracting the mean and then dividing by the standard deviation (performed for each row).

The last two portions of Listing 3.42 display the outliers (if any) whose zscore is outside the interval [0.01, 2.5]. Launch the code in Listing 3.42 to see the following output:

=> iris_df.shape: (150, 4)

   sepal        sepal        petal        petal
   length (cm)  width (cm)   length (cm)   width (cm)

0          5.1          3.5          1.4          0.2

1          4.9          3.0          1.4          0.2

2          4.7          3.2          1.3          0.2

3          4.6          3.1          1.5          0.2

4          5.0          3.6          1.4          0.2

z scores for iris:

z.shape: (150, 4)

=> upper outliers:

[3.09077525 2.63038172]

=> lower outliers:

   sepal        sepal        petal        petal
   length (cm)  width (cm)   length (cm)  width (cm)

73         6.1         2.8           4.7         1.2

82         5.8         2.7           3.9         1.2

90         5.5         2.6           4.4         1.2

92         5.8         2.6           4.0         1.2

95         5.7         3.0           4.2         1.2

Pandas Data Frames and Scatterplots

Listing 3.43 shows the content of pandas_scatter_df.py that illustrates how to generate a scatterplot from a data frame.

Listing 3.43: pandas_scatter_df.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pandas import read_csv

from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)

print(mydf)

print(mydf.describe())

scatter_matrix(mydf)

plt.show()

Listing 3.43 starts with various import statements, followed by the definition of the NumPy array myarray. Next, the variables myarray and colnames are initialized with values for the rows and columns, respectively. The next portion of Listing 3.43 initializes the data frame mydf so that the rows and columns are labeled in the output, as shown here:

January  February  March

apples        10        30     20

oranges       50        40     60

beer        1000      2000   3000

           January     February        March

count     3.000000     3.000000     3.000000

mean    353.333333   690.000000  1026.666667

std     560.386771  1134.504297  1709.073823

min      10.000000    30.000000    20.000000

25%      30.000000    35.000000    40.000000

50%      50.000000    40.000000    60.000000

75%     525.000000  1020.000000  1530.000000

max    1000.000000  2000.000000  3000.0000000

Pandas Data Frames and Simple Statistics

Listing 3.44 shows a portion of the CSV file housing.csv and Listing 3.45 shows the content of housing_stats.py; these samples illustrate how to gather basic statistics from housing.csv in a Pandas data frame.

Listing 3.44: housing.csv

price,bedrooms,bathrooms,sqft_living

221900,3,1,1180

538000,3,2.25,2570

180000,2,1,770

604000,4,3,1960

510000,3,2,1680

// details omitted for brevity

785000,4,2.5,2290

450000,3,1.75,1250

228000,3,1,1190

345000,5,2.5,3150

600000,3,1.75,1410

Listing 3.45: housing_stats.py

import pandas as pd

df = pd.read_csv("housing.csv")

minimum_bdrms = df["bedrooms"].min()

median_bdrms  = df["bedrooms"].median()

maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)

print("median  # of bedrooms:",median_bdrms)

print("maximum # of bedrooms:",maximum_bdrms)

print("")

print("median values:",df.median().values)

print("")

prices = df["price"]

print("first 5 prices:")

print(prices.head())

print("")

median_price = df["price"].median()

print("median price:",median_price)

print("")

corr_matrix = df.corr()

print("correlation matrix:")

print(corr_matrix["price"].sort_values(ascending=False))

Listing 3.45 initializes the data frame df with the contents of the CSV file housing.csv. The next three variables are initialized with the minimum, median, and maximum number of bedrooms, and then these values are displayed.

The next portion of Listing 3.45 initializes the variable prices with the contents of the prices column of the data frame df. Next, the first five rows are printed via the prices.head() statement, followed by the median value of the prices.

The final portion of Listing 3.45 initializes the variable corr_matrix with the contents of the correlation matrix for the data frame df, and then displays its contents. The output from Listing 3.45 is shown here:

minimum # of bedrooms: 2

median  # of bedrooms: 3.0

maximum # of bedrooms: 5

median values: [4.5900e+05 3.0000e+00 1.7500e+00 1.7125e+03]

first 5 prices:

0    221900

1    538000

2    180000

3    604000

4    510000

Name: price, dtype: int64

median price: 459000.0

correlation matrix:

price          1.000000

sqft_living    0.620634

bathrooms      0.440047

bedrooms       0.379300

Name: price, dtype: float64

Aggregate Operations in Pandas Data Frames

The agg() function is an alias for aggregate, which performs aggregate (multiple) operations on columns.

Listing 3.46 shows the content of aggregate1.py that illustrates how to perform aggregate operations with the data in a data frame.

Listing 3.46: aggregate1.py

import pandas as pd

df = pd.DataFrame([[4, 2, 3, 1],

                   [8, 1, 5, -4],

                   [6, 9, 8, -8]],

                  columns=['X1', 'X2', 'X3', 'X4'])

print("=> data frame:")

print(df)

print()

print("=> Aggregate sum and min over the rows:")

print(df.agg(['sum', 'min', 'max']))

print()

print("=> Aggregate mean over the columns:")

print(df.agg("mean", axis="columns"))

print()

Listing 3.46 initializes the data frame df with the contents of a 3x4 array of numeric values, and then displays the contents of df. The next code snippet invokes the agg() method to append the methods sum(), min(), and max() to df. The result is a new 3x4 array of values where the rows contain the sum, minimum, and maximum of the values in each column of df. The final code snippet displays a row of data that contains the mean of each column of df. Launch the code in Listing 3.46 to see the following output:

=> data frame:

   X1  X2  X3  X4

0   4   2   3   1

1   8   1   5  -4

2   6   9   8  -8

=> Aggregate sum and min over the rows:

     X1  X2  X3  X4

sum  18  12  16 -11

min   4   1   3  -8

max   8   9   8   1

=> Aggregate mean over the columns:

0    2.50

1    2.50

2    3.75

dtype: float64

Aggregate Operations with the titanic.csv Dataset

Listing 3.47 shows the content of aggregate2.py that illustrates how to perform aggregate operations with columns in the CSV file titanic.csv.

Listing 3.47: aggregate2.py

import pandas as pd

#Loading titanic.csv in Seaborn:

#df = sns.load_dataset('titanic')

df = pd.read_csv("titanic.csv")

convert floating point values to integers:

df['survived'] = df['survived'].astype(int)

specify column and aggregate functions:

aggregates1 = {'embark_town': ['count', 'nunique', 'size']}

group by 'deck' value and apply aggregate functions:

result = df.groupby(['deck']).agg(aggregates1)

print("=> Grouped by deck:")

print(result)

print()

some details regarding count() and nunique():

count() excludes NaN values whereas size() includes them

nunique() excludes NaN values in the unique counts

group by 'age' value and apply aggregate functions:

result2 = df.groupby(['age']).agg(aggregates1)

print("=> Grouped by age (before):")

print(result2)

print()

some "age" values are missing (so drop them):

df = df.dropna()

convert floating point values to integers:

df['age'] = df['age'].astype(int)

group by 'age' value and apply aggregate functions:

result3 = df.groupby(['age']).agg(aggregates1)

print("=> Grouped by age (after):")

print(result3)

print()

Listing 3.47 initializes the data frame df with the contents of the CSV file titanic.csv. The next code snippet converts floating point values to integers, followed by defining the variable aggregates1, which specifies the functions count(), nunique(), and size() that will be invoked on the embark_town field.

The next code snippet initializes the variable result after invoking the groupby() method on the deck field, followed by invoking the agg() method.

The next code block performs the same computation to initialize the variable result2, except that the groupby() function is invoked on the age field instead of the embark_town field. Notice the comment section regarding the count() and nunique() functions. Let’s eliminate the rows with missing values via df.dropna() and investigate how that affects the calculations.

After removing the rows with missing values, the final code block initializes the variable result3 in exactly the same way that result2 was initialized. Launch the code in Listing 3.47 to see the following output:

=> Grouped by deck:

     embark_town

           count nunique size

deck    

A             15       2   15  

B             45       2   47  

C             59       3   59  

D             33       2   33  

E             32       3   32  

F             13       3   13  

G              4       1    4

=> Grouped by age (before):

        age    

      count nunique size

age    

0.42      1       1    1

0.67      1       1    1

0.75      2       1    2

0.83      2       1    2

0.92      1       1    1

...     ...     ...  ...

70.00     2       1    2

70.50     1       1    1

71.00     2       1    2

74.00     1       1    1

80.00     1       1    1

[88 rows x 3 columns]

=> Grouped by age (after):

      age

    count nunique size

age

0       1       1    1

1       1       1    1

2       3       1    3

3       1       1    1

4       3       1    3

6       1       1    1

11      1       1    1

14      1       1    1

15      1       1    1

// details omitted for brevity

60      2       1    2

61      2       1    2

62      1       1    1

63      1       1    1

64      1       1    1

65      2       1    2

70      1       1    1

71      1       1    1

80      1       1    1

Save Data Frames as CSV Files and Zip Files

Listing 3.48 shows the content of save2csv.py that illustrates how to save a Pandas data frame as a CSV file and as a zip file that contains both the CSV file and the contents of the data frame.

Listing 3.48: save2csv.py

import pandas as pd

df = pd.DataFrame({'fname':'Jane','lname':'Smith','age':25},

                  {'fname':'Dave','lname':'Jones','age':35},

                  {'fname':'Sara','lname':'Stone','age':45})

save data frame to CSV file:

print("Saving data to save.csv:")

print(df.to_csv("save.csv",index=False))

save data frame as CSV file in a zip file:

compression_opts = dict(method='zip',archive_name='save2.csv')

df.to_csv('save2.zip', index=False,
compression=compression_opts)

Listing 3.48 defines the data frame df that contains three rows of data, with values for the first name, last name, and age of three people. The next code snippet invokes the to_csv() method to save the contents of df to the CSV file save2.csv. The final code snippet also invokes the to_csv() method, this time to save the contents of save2.csv in the zip file save2.zip. Launch the code in Listing 3.48, and after the code has executed, you will see two new files in the directory where you launched this Python script:

save.csv

save2.zip

Pandas Data Frames and Excel Spreadsheets

Listing 3.49 shows the content of write_people_xlsx.py that illustrates how to read data from a CSV file and then create an Excel spreadsheet with that data.

Listing 3.49: write_people_xlsx.py

import pandas as pd

df1 = pd.read_csv("people.csv")

df1.to_excel("people.xlsx")

#optionally specify the sheet name:

#df1.to_excel("people.xlsx", sheet_name='Sheet_name_1')

Listing 3.49 contains the usual import statement, after which the variable df1 is initialized with the contents of the CSV file people.csv. The final code snippet then creates the Excel spreadsheet people.xlsx with the contents of the data frame df1, which contains the contents of the CSV file people.csv.

Launch write_people_xlsx.py from the command line and then open the newly-created Excel spreadsheet people.xlsx to confirm its contents.

Listing 3.50 shows the content of read_people_xslx.py that illustrates how to read data from an Excel spreadsheet and create a Pandas data frame with that data.

Listing 3.50: read_people_xslx.py

import pandas as pd

df = pd.read_excel("people.xlsx")

print("Contents of Excel spreadsheet:")

print(df)

Listing 3.50 shows that the Pandas data frame df is initialized with the contents of the spreadsheet people.xlsx (the contents are the same as people.csv) via the function read_excel(). The output from Listing 3.50 is shown here:

df1:

   Unnamed: 0 fname  lname  age gender  country

0           0  john  smith   30      m      usa

1           1  jane  smith   31      f   france

2           2  jack  jones   32      m   france

3           3  dave  stone   33      m    italy

4           4  sara  stein   34      f  germany

5           5  eddy  bower   35      m    spain

Working with JSON-based Data

A JSON object consists of data represented as colon-separated name/value pairs, and data objects are separated by commas. An object is specified inside curly braces {}, and an array of objects is indicated by square brackets []. Note that character-valued data elements are inside quotes “” (no quotes for numeric data).

Here is a simple example of a JSON object:

{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" }

Here is a simple example of an array of JSON objects:

[

{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" },

{ "fname":"John", "lname":"Jones", "age":34, "city":"LA" },

{ "fname":"Dave", "lname":"Stone", "age":35, "city":"NY" },

]

Python Dictionary and JSON

The Python JSON library enables you to work with JSON-based data in Python.

Listing 3.51 shows the content of dict2json.py that illustrates how to convert a Python dictionary to a JSON string.

Listing 3.51: dict2json.py

import json

dict1 = {}

dict1["fname"] = "Jane"

dict1["lname"] = "Smith"

dict1["age"]   = 33

dict1["city"]  = "SF"

print("Python dictionary to JSON data:")

print("dict1:",dict1)

json1 = json.dumps(dict1, ensure_ascii=False)

print("json1:",json1)

print("")

convert JSON string to Python dictionary:

json2 = '{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}'

dict2 = json.loads(json2)

print("JSON data to Python dictionary:")

print("json2:",json2)

print("dict2:",dict2)

Listing 3.51 invokes the json.dumps() function to perform the conversion from a Python dictionary to a JSON string. Launch the code in Listing 3.51 to see the following output:

Python dictionary to JSON data:

dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}

json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

JSON data to Python dictionary:

json2: {"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}

dict2: {'fname': 'Dave', 'lname': 'Stone', 'age': 35, 'city': 'NY'}

Python, Pandas, and JSON

Listing 3.52 shows the content of pd_python_json.py that illustrates how to convert a Python dictionary to a Pandas data frame and then convert the data frame to a JSON string.

Listing 3.52: pd_python_json.py

import json

import pandas as pd

dict1 = {}

dict1["fname"] = "Jane"

dict1["lname"] = "Smith"

dict1["age"]   = 33

dict1["city"]  = "SF"

df1 = pd.DataFrame.from_dict(dict1, orient='index')

print("Pandas df1:")

print(df1)

print()

json1 = json.dumps(dict1, ensure_ascii=False)

print("Serialized to JSON1:")

print(json1)

print()

print("Data frame to JSON2:")

json2 = df1.to_json(orient='split')

print(json2)

Listing 3.52 initializes a Python dictionary dict1 with multiple attributes for a user (first name, last name, and so forth). Next, the data frame df1 is created from the Python dictionary dict2json.py and its contents are displayed.

The next portion of Listing 3.52 initializes the variable json1 by serializing the contents of dict2json.py, and its contents are displayed. The last code block in Listing 3.52 initializes the variable json2 to the result of converting the data frame df1 to a JSON string. Launch the code in Listing 3.52 to see the following output:

dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}

Pandas df1:

           0

fname   Jane

lname  Smith

age       33

city      SF

Serialized to JSON1:

{"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

Data frame to JSON2:

{"columns":[0],"index":["fname","lname","age","city"],"data":
[["Jane"],["Smith"],[33],["SF"]]}

json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

Useful One-line Commands in Pandas

This section contains an eclectic mix of one-line commands in Pandas (some of which you have already seen in this chapter) that are useful to know:

Drop a feature in a data frame:

df.drop('feature_variable_name', axis=1)

Convert object type to float in a data frame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a Pandas data frame to NumPy array:

df.as_matrix()

Rename the fourth column of the data frame as “height:”

df.rename(columns = {df.columns[3]:'height'}, inplace=True)

Get the unique entries of the column “first” in a data frame:

df["first"].unique()

Display the number of different values in the first column:

df["first"].nunique()

Create a data frame with columns ‘first” and “last” from an existing data frame:

new_df = df[["name", "size"]]

Sort the data in a data frame:

df.sort_values(ascending = False)

Filter the data column named “size” to display only values equal to 7:

df[df["size"] == 7]

Display, at most, 1000 characters in each cell:

pd.set_option('max_colwidth', 1000)

Display, at most, 20 data frame rows:

pd.set_option('max_rows', 20)

Display, at most, 1000 columns:

pd.set_option('max_columns', 1000)

Display a random set of n rows:

df.sample(n)

What is Method Chaining?

Method chaining refers to combining method invocations without intermediate code. Method chaining is available in many languages, including Java, Scala, and JavaScript. Code that uses method chaining tends to be more compact, more performant, and easier to understand than other types of code. However, debugging such code can be difficult, especially in long method chains.

As a general rule, start by invoking a sequence of methods, and after ensuring that the code is correct, construct method chains with, at most, five or six methods. However, if a method inside a method chain also invokes other functions, then split the chain into two parts to increase readability. Since there is no “best” way to determine the number of methods in a method chain, experiment with method chains of different sizes (and differing complexity) until you determine a style that works best for you.

Pandas and Method Chaining

Recently, Pandas improved its support for method chaining, which includes the methods assign(), pivot_table(), and query(). Moreover, the pipe() method supports method chaining that contains user-defined methods. The following code snippet illustrates show to use method chaining to invoke several Pandas methods:

import pandas as pd

(pd.read_csv('data.csv')

   .fillna(...)

   .query('...')

   .assign(...)

   .pivot_table(...)

   .rename(...)

)

Consult the online documentation for more details regarding method chaining in Pandas.

Pandas Profiling

Pandas profiling is a useful Python library that performs an analysis on a dataset, which can be exported as a JSON-based file or an HTML page. Launch the following command in a command shell to install Pandas profiling:

pip3 install pandas_profiling

Listing 3.53 shows a small portion of the CSV file titanic.csv that is analyzed in Listing 3.54.

Listing 3.53: titanic.csv

PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,
Fare,Cabin,Embarked

1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S

2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",
female,38,1,0,PC 17599,71.2833,C85,C

3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2.
3101282,7.925,,S

4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,
35,1,0,113803,53.1,C123,S

[details omitted for brevity]

Listing 3.54 shows the content of profile_titanic.py that illustrates how to invoke Pandas profiling to generate an HTML Web page that contains an analysis of the titanic.csv dataset.

Listing 3.54: profile_titanic.py

import pandas as pd

import numpy as np

from pandas_profiling import ProfileReport

df = pd.read_csv("titanic.csv")

#generate the report:

profile = ProfileReport(df, title='Pandas Profiling Report',
explorative=True)

profile.to_file("profile_titanic.html")

Listing 3.54 contains several import statements, followed by the initialization of the variable df as a Pandas data frame that contains the contents of the CSV file titanic.csv. The next code snippet initializes the variable profile as an instance of the ProfileReport class, followed by an invocation of the to_file() method that generates an HTML file with the contents of the CSV file titanic.csv.

Launch the code in Listing 3.54, after which you will see the HTML page profile_titanic.html, whose contents you can view in a browser.

Summary

This chapter introduced you to Pandas for creating labeled data frames and displaying the metadata of data frames. Then you learned how to create data frames from various sources of data, such as random numbers and hard-coded data values. In addition, you saw how to perform column-based and row-based operations in Pandas data frames.

You also learned how to read Excel spreadsheets and perform numeric calculations on the data in those spreadsheets, such as the minimum, mean, and maximum values in numeric columns. Then, you saw how to create Pandas data frames from data stored in CSV files.

We briefly introduced JSON, along with an example of converting a Python dictionary to JSON-based data (and vice versa).

CHAPTER 4

WORKING WITH SKLEARN AND SCIPY

This chapter introduces you to the Python library Sklearn, which provides support for a vast number of machine learning algorithms. Subsequent sections contain Python code samples that combine Pandas, Matplotlib, and Sklearn built-in datasets.

The first part of this chapter introduces Sklearn, which is one of the premier Python libraries for machine learning. Sklearn contains many well-known classification algorithms, such as Logistic Regression, Naive Bayes, decision trees, random forests, and SVMs (support vector machines). Sklearn also supports linear regression and clustering algorithms (such as kMeans and meanShift).

The second portion of this chapter provides a quick introduction to the Python SciPy package, which is well-suited for scientific tasks.

What is Sklearn?

Scikit-learn (which is installed as sklearn) is Python’s premier general-purpose machine learning library:

https://scikit-learn.org/stable/

Sklearn is an immensely useful Python library that supports a number of machine learning algorithms. In particular, Sklearn supports many classification algorithms, such as logistic regression, naive Bayes, decision trees, random forests, and SVMs. Although entire books are available that are dedicated to Sklearn, this chapter contains only a few pages of Sklearn material. If you have “how to” questions involving Sklearn, you can almost always find suitable answers on Stack Overflow (https://stackoverflow.com/).

Sklearn is well-suited for classification tasks as well as regression and clustering tasks in machine learning. Sklearn supports a vast collection of machine learning algorithms including linear regression, logistic regression, kNN (k Nearest Neighbor), kMeans, decision trees, random forests, MLPs (multilayer perceptrons), and SVMs.

Moreover, Sklearn supports dimensionality reduction techniques such as PCA, “hyper parameter” tuning, and methods for scaling data; it is suitable for preprocessing data and cross-validation.

Sklearn Features

Sklearn is a go-to Python-based open source library that supports many machine learning algorithms, some of which are listed below:

[image:]Linear Regression

[image:]Decision Trees

[image:]Logistic Regression

[image:]Random Forests

[image:]SVM

[image:]kMeans and DBScan (for clustering)

In addition, Sklearn provides support for bagging, boosting, XGBoost, and PCA (for dimensionality reduction). You can also generate a confusion matrix to calculate the accuracy, precision, recall, and F1 score. Consult the online documentation regarding these algorithms and other functionality that is available in Sklearn.

Machine learning code samples often contain a combination of Sklearn, NumPy, Pandas, and Matplotlib. In addition, Sklearn provides various built-in datasets that we can display visually. One of those datasets is the Digits dataset, which is the topic of the next section.

The next section of this chapter provides several Python code samples that contain a combination of Pandas, Matplotlib, and the Sklearn built-in Digits dataset.

The Digits Dataset in Sklearn

The Digits dataset in Sklearn comprises 1,797 small 8x8 images. Each image is a handwritten digit, which is also the case for the MNIST dataset. Listing 4.1 shows the content of load_digits1.py, which illustrates how to plot the Digits dataset.

Listing 4.1: load_digits1.py

from sklearn import datasets

Load in the 'digits' data

digits = datasets.load_digits()

Print the 'digits' data

print(digits)

In Listing 4.1, after importing the datasets module, the variable digits is initialized with the contents of the Digits dataset. The print() statement displays the contents of the digits variable, which is displayed here:

{images': array(

     [[[0.,   0.,   5., ...,       1.,    0.,   0.],

       [0.,   0.,  13., ...,  15.,   5.,   0.],

       [0.,   3.,  15., ...,  11.,   8.,   0.],

       ...,

       [0.,   4.,  11., ...,  12.,   7.,   0.],

       [0.,   2.,  14., ...,  12.,   0.,   0.],

       [0.,   0.,   6., ...,   0.,   0.,   0.]]),

'target': array([0, 1, 2, ..., 8, 9, 8]), 'frame': None,
'feature_names': ['pixel_0_0', 'pixel_0_1', 'pixel_0_2',
'pixel_0_3', 'pixel_0_4', 'pixel_0_5', 'pixel_0_6',
'pixel_0_7', 'pixel_1_0', 'pixel_1_1', 'pixel_1_2',
'pixel_1_3', 'pixel_1_4', 'pixel_1_5', 'pixel_1_6',
'pixel_1_7', 'pixel_2_0', 'pixel_2_1', 'pixel_2_2',
'pixel_2_3', 'pixel_2_4', 'pixel_2_5', 'pixel_2_6',
'pixel_2_7', 'pixel_3_0', 'pixel_3_1', 'pixel_3_2',
'pixel_3_3', 'pixel_3_4', 'pixel_3_5', 'pixel_3_6',
'pixel_3_7', 'pixel_4_0', 'pixel_4_1', 'pixel_4_2',
'pixel_4_3', 'pixel_4_4', 'pixel_4_5', 'pixel_4_6',
'pixel_4_7', 'pixel_5_0', 'pixel_5_1', 'pixel_5_2',
'pixel_5_3', 'pixel_5_4', 'pixel_5_5', 'pixel_5_6',
'pixel_5_7', 'pixel_6_0', 'pixel_6_1', 'pixel_6_2',
'pixel_6_3', 'pixel_6_4', 'pixel_6_5', 'pixel_6_6',
'pixel_6_7', 'pixel_7_0', 'pixel_7_1', 'pixel_7_2',
'pixel_7_3', 'pixel_7_4', 'pixel_7_5', 'pixel_7_6',
'pixel_7_7'], 'target_names': array([0, 1, 2, 3, 4, 5, 6, 7,
8, 9]), 'images': array([[[0.,  0.,  5., ...,  1.,  0.,  0.],

        [0.,  0., 13., ..., 15.,  5.,  0.],

        [0.,  3., 15., ..., 11.,  8.,  0.],

// data omitted for brevity

])}

Listing 4.2 shows the content of load_digits2.py that illustrates how to plot one of the Digits datasets (which you can change to display a different digit).

Listing 4.2: load_digits2.py

from sklearn.datasets import load_digits

from matplotlib import pyplot as plt

digits = load_digits()

#set interpolation='none'

fig = plt.figure(figsize=(3, 3))

plt.imshow(digits['images'][66], cmap="gray", interpolation='none')

plt.show()

Listing 4.2 imports the load_digits class from Sklearn to initialize the variable digits with the contents of the Digits dataset. The next portion of Listing 4.2 initializes the variable fig and invokes the method imshow() of the plt class to display a number in the Digits dataset. Figure 4.1 displays a plot of a digit (whose value you can change) in the Digits dataset.

[image:]

FIGURE 4.1 A plot of one of the digits in the Digits dataset based on the code in Listing 4.1.

Listing 4.3 shows the content of sklearn_digits.py that illustrates how to access the Digits dataset in Sklearn.

Listing 4.3: sklearn_digits.py

from sklearn import datasets

digits = datasets.load_digits()

print("digits shape:",digits.images.shape)

print("data   shape:",digits.data.shape)

n_samples, n_features = digits.data.shape

print("(samples,features):", (n_samples, n_features))

import matplotlib.pyplot as plt

#plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)

#plt.show()

plt.imshow(digits.images[0], cmap=plt.cm.binary, interpolation='nearest')                

plt.show()

Listing 4.3 starts with one import statement followed by the variable digits that contains the Digits dataset. The output from Listing 4.3 is here:

digits shape: (1797, 8, 8)

data   shape: (1797, 64)

(samples,features): (1797, 64)

[image:]

FIGURE 4.2 The images in the Digits dataset based on the code in Listing 4.3.

The preceding code samples showed you how easy it is to display the contents of Sklearn built-in datasets. Moreover, Sklearn provides a straightforward mechanism for splitting a dataset into subsets that are used for training a model in machine learning, which you will see in the next section.

The train_test_split() Class in Sklearn

This Sklearn class is an extremely useful class for machine learning because you can create a four-way split of a dataset with a single line code. The four subsets of a dataset are typically named as the following variables:

[image:]X_train

[image:]y_train

[image:]X_test

[image:]y_test

Figure 4.3 displays the relationship among the preceding four subsets of data when you need to split a dataset for linear regression or for classification tasks.

[image:]

FIGURE 4.3 A Four-Way Split of a Dataset.

A few details to keep in mind regarding the preceding diagram:

1)usually a 70/30, 75/25, or 80/20 split for train/test data

2)X: usually a subset of the columns in a dataset

3)y: column can be located anywhere

4)labeled X and y (sometimes X and Y)

5)X = X_train + X_test

6)y = y_train + y_test

The code sample sklearn_iris_train.py (later in this chapter) contains the two lines of code that create the four required subsets of data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

Selecting Columns for X and y

Selecting the correct set of columns for X and y can be difficult for datasets that contain many columns.

You must decide which subset of columns of the dataset will belong to X and which column is designated as the y column (i.e., the target or label column).

If you have a dataset with only four or five columns, it’s probably simple to determine which columns will be assigned to X and which column is designated as y. However, if you select a set of columns from a dataset that contains a large number of columns, how can you be certain that

[image:]important categorical columns are included

[image:]all of the included columns are required

[image:]the chosen columns are the best columns

The answer to the first bullet item was discussed in Chapter 3, where you learned how to use the Pandas map() function to convert a categorical column into a numeric column, as shown here:

map ham/spam to 0/1 values:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

If you have a gender column with the values M and F, you can modify the preceding code snippet, as shown here:

map male/female to 0/1 values:

df['gender'] = df['gender'].map({'male':0, 'female':1})

The second and third bullet items are partially addressed in the following section that discusses feature selection and feature extraction, which are two facets of feature engineering.

What is Feature Engineering?

Feature engineering is an umbrella term that includes several techniques for determining the columns for populating the set X.

Feature selection involves selecting a subset of columns from a dataset, which is the technique that was discussed earlier in this chapter.

Feature extraction involves finding a linear combination of the columns in a dataset. For example, PCA (Principal Component Analysis) is one such technique: PCA calculates eigenvalues and eigenvectors (topics that part of linear algebra), where the latter are linear combinations of existing columns in a dataset.

PCA is a subset of SVD (Singular Value Decomposition), which refers to techniques that determine a subset of the most important columns (or linear combinations thereof) of a dataset. While PCA and SVD are beyond the scope of this book, you can find many online articles and code samples that illustrate how to perform PCA, as well as algorithms that belong to SVD.

The Iris Dataset in Sklearn (1)

In addition to support for machine learning algorithms, Sklearn provides various built-in datasets that you can access with one line of code. Listing 4.4 shows the contents of sklearn_iris1.py that illustrate how you can easily load the Iris dataset and display its contents.

Listing 4.4: sklearn_iris1.py

import numpy as np

from sklearn.datasets import load_iris

iris = load_iris()

print("=> iris keys:")

for key in iris.keys():

  print(key)

print()

#print("iris dimensions:")

#print(iris.shape)

#print()

print("=> iris feature names:")

for feature in iris.feature_names:

  print(feature)

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

print()

print("=> target:")

print(iris.target)

print()

print("=> all data:")

print(iris.data)

Listing 4.4 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a loop displays the keys in the dataset, followed by another for loop that displays the feature names.

The next portion of Listing 4.4 initializes the variable X with the feature values in columns 2 and 3, and then initializes the variable y with the values of the target column. Launch the code in Listing 4.4 to see the following output (truncated for brevity):

=> iris keys:

data

target

target_names

DESCR

feature_names

filename

=> iris feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> Class labels: [0 1 2]

=> x_min: 0.5 x_max: 7.4

=> y_min: -0.4 y_max: 3.0

=> target:

[0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 1 2 2 2 2 2 2 2 2 2 2 2

 2 2

 2 2]

=> all data:

[[5.1 3.5 1.4 0.2]

 [4.9 3.  1.4 0.2]

 [4.7 3.2 1.3 0.2]

 // details omitted for brevity

 [6.5 3.  5.2 2.0]

 [6.2 3.4 5.4 2.3]

 [5.9 3.  5.1 1.8]]

Sklearn, Pandas, and the Iris Dataset

Listing 4.5 shows the content of pandas_iris.py that illustrates how to load the contents of the Iris dataset (from Sklearn) into a Pandas data frame.

Listing 4.5: pandas_iris.py

import numpy as np

import pandas as pd

from sklearn.datasets import load_iris

iris = load_iris()

print("=> IRIS feature names:")

for feature in iris.feature_names:

  print(feature)

print()

Create a dataframe with the feature variables

df = pd.DataFrame(iris.data, columns=iris.feature_names)

print("=> number of rows:")

print(len(df))

print()

print("=> number of columns:")

print(len(df.columns))

print()

print("=> number of rows and columns:")

print(df.shape)

print()

print("=> number of elements:")

print(df.size)

print()

print("=> IRIS details:")

print(df.info())

print()

print("=> top five rows:")

print(df.head())

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

Listing 4.5 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a loop displays the feature names. The next code snippet initializes the variable df as a Pandas data frame that contains data from the Iris dataset.

The next block of code invokes some attributes and methods of a Pandas dataframe to display the number of rows, columns, and elements in the dataframe, as well as the details of the Iris dataset, the first five rows, and the unique labels in the Iris dataset. Launch the code in Listing 4.5 to see the following output:

=> IRIS feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> number of rows:

150

=> number of columns:

4

=> number of rows and columns:

(150, 4)

=> number of elements:

600

=> IRIS details:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 4 columns):

sepal length (cm)    150 non-null float64

sepal width (cm)     150 non-null float64

petal length (cm)    150 non-null float64

petal width (cm)     150 non-null float64

dtypes: float64(4)

memory usage: 4.8 KB

None

=> top five rows:

   sepal        sepal        petal        petal
   length (cm)  width (cm)   length (cm)  width (cm)

0          5.1         3.5           1.4         0.2

1          4.9         3.0           1.4         0.2

2          4.7         3.2           1.3         0.2

3          4.6         3.1           1.5         0.2

4          5.0         3.6           1.4         0.2

=> Class labels: [0 1 2]

The Iris Dataset in Sklearn (2)

The Iris dataset in Sklearn consists of the lengths of three different types of Iris-based petals and sepals: Setosa, Versicolor, and Virginica. These numeric values are stored in a 150x4 NumPy.ndarray.

Note that the rows in the Iris dataset are the sample images, and the columns consist of the values for the Sepal Length, Sepal Width, Petal Length, and Petal Width of each image. Listing 4.6 shows the content of sklearn_iris2.py that illustrates how to display detailed information about the Iris dataset and a chart that displays the distributions of the four features.

Listing 4.6: sklearn_iris2.py

from sklearn import datasets

from sklearn.model_selection import train_test_split

iris = datasets.load_iris()

data = iris.data

print("iris data shape:  ",data.shape)

print("iris target shape:",iris.target.shape)

print("first 5 rows iris:")

print(data[0:5])

print("keys:",iris.keys())

print("")

n_samples, n_features = iris.data.shape

print('Number of samples: ', n_samples)

print('Number of features:', n_features)

print("")

print("sepal length/width and petal length/width:")

print(iris.data[0])

import numpy as np

np.bincount(iris.target)

print("target names:",iris.target_names)

print("mean: %s " % data.mean(axis=0))

print("std:  %s " % data.std(axis=0))

#print("mean: %s " % data.mean(axis=1))

#print("std:  %s " % data.std(axis=1))

load the data into train and test datasets:

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

rescale the train datasest:

X_train_scaled = scaler.transform(X_train)

print("X_train_scaled shape:",X_train_scaled.shape)

print("mean : %s " % X_train_scaled.mean(axis=0))

print("standard deviation : %s " % X_train_scaled.std(axis=0))

import matplotlib.pyplot as plt

x_index = 3

colors = ['blue', 'red', 'green']

for label, color in zip(range(len(iris.target_names)), colors):

  plt.hist(iris.data[iris.target==label, x_index],

           label=iris.target_names[label],

           color=color)

plt.xlabel(iris.feature_names[x_index])

plt.legend(loc='upper right')

plt.show()

Listing 4.6 starts with an import statement followed by the variables iris and data, where the latter contains the Iris dataset. The first half of Listing 4.6 consists of self-explanatory code, such as displaying the number of images and the number of features in the Iris dataset.

The second portion of Listing 4.6 imports the StandardScaler class in Sklearn, which rescales each value in X_train by subtracting the mean and then dividing by the standard deviation. The final block of code in Listing 4.6 generates a histogram that displays some of the images in the Iris dataset. The output from Listing 4.6 is as follows:

iris data shape:   (150, 4)

iris target shape: (150,)

first 5 rows iris:

[[5.1 3.5 1.4 0.2]

 [4.9 31.4 0.2]

 [4.7 3.2 1.3 0.2]

 [4.6 3.1 1.5 0.2]

 [53.6 1.4 0.2]]

keys: dict_keys(['target', 'target_names', 'data', 'feature_names', 'DESCR'])

Number of samples:  150

Number of features: 4

sepal length/width and petal length/width:

[5.1 3.5 1.4 0.2]

target names: ['setosa' 'versicolor' 'virginica']

mean: [5.84333333 3.054      3.75866667 1.19866667]

std:  [0.82530129 0.43214658 1.75852918 0.76061262]

X_train_scaled shape: (112, 4)

mean : [1.21331516e-15 -4.41115398e-17  7.13714802e-17  
2.57730345e-17]

standard deviation : [1. 1. 1. 1.]

Figure 4.4 displays images that are generated by the code in Listing 4.6.

[image:]

FIGURE 4.4 The images in the Iris dataset based on the code in Listing 4.6.

The Faces Dataset in Sklearn (Optional)

The Olivetti Faces dataset contains a set of face images that were taken between April 1992 and April 1994 at AT&T Laboratories Cambridge. As you will see in Listing 4.7, the Sklearn.datasets.fetch_olivetti_faces function is the data fetching and caching function that downloads the data archive from AT&T.

Listing 4.7 shows the code from sklearn_faces.py that displays the contents of the Faces dataset in Sklearn.

Listing 4.7: sklearn_faces.py

import Sklearn

from sklearn.datasets import fetch_olivetti_faces

faces = fetch_olivetti_faces()

import matplotlib.pyplot as plt

display figures in inches

fig = plt.figure(figsize=(6, 6))

fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

plot the faces:

for i in range(64):

  ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])

  ax.imshow(faces.images[i], cmap=plt.cm.bone,
interpolation='nearest')

plt.show()

Listing 4.7 starts with import statements and then initializes the variable faces with the contents of the Faces dataset. The next portion of Listing 4.7 contains some plot-related code, followed by a for loop that displays 64 images in an 8x8 grid pattern (similar to an earlier code sample). Launch Listing 4.7 to see the image in Figure 4.5.

[image:]

FIGURE 4.5 The plotted image from the Olivetti Faces dataset using the code from Listing 4.7.

This concludes our very brief introduction to Sklearn. Keep in mind that Sklearn supports a plethora of algorithms for machine learning tasks, which includes code for linear regression, classification, and clustering.

The next portion of this chapter introduces SciPy, which is a Python-based library that is well-suited to scientific computing tasks.

What is SciPy?

SciPy is a scientifically oriented Python library that provides many APIs that perform operations and calculations, some of which are listed here:

[image:]Combinatorial values

[image:]Permutation values

[image:]Matrix inversion

[image:]Image transformations

[image:]Integration (calculus)

[image:]Fourier transforms

[image:]Eigenvalues and eigenvectors

The following list shows you some of the components of SciPy and where they are located:

[image:]File input/output         (scipy.io)

[image:]Special functions         (scipy.special)

[image:]Linear algebra            (scipy.linalg)

[image:]Interpolation             (scipy.interpolate)

[image:]Statistics/Random Numbers (scipy.stats)

[image:]Numerical integration     (scipy.integrate)

[image:]Fast Fourier Transforms   (scipy.fftpack)

[image:]Signal processing         (scipy.signal)

[image:]Image manipulation        (scipy.ndimage)

Keep in mind that SciPy is designed as a collection of submodules, most of which rely on NumPy.

Installing SciPy

Make sure that you have Python 3.x installed on your laptop, and then perform the following step to install SciPy:

pip3 install scipy

Let’s delve into some of the functionality in SciPy, starting with some combinatorial calculations that are discussed in the next section.

Permutations and Combinations in SciPy

As a reminder, the term n! represents the factorial value of non-negative integer, which is calculated as follows:

n!  = n*(n-1)*(n-2)* . . . 3*2*1 (and 0! = 1)

Next, let’s use term P(n) to designate the number of ways to select n objects from a set of n objects, where n is a non-negative integer. The formula for P(n) is as follows:

P(n) = n!

The term C(n,k) represents the number of ways to select k objects from a set of n objects, where n and k are non-negative integers and k<=n. The formula for C(n,k) is as follows:

C(n,k) = n! / [(n-k)! * k!]

Listing 4.8 displays the content of scipy_perms.py that illustrates how to calculate the value of C(n,k) in SciPy.

Listing 4.8: scipy_perms.py

from scipy.special import perm

#find permutation of 5, 2 using perm (N, k) function

per = perm(5, 2, exact = True)

print("Perm(5,2):",per)

Listing 4.8 starts with an import statement, followed by the initialization of the variable per via the SciPy function comb() that calculates the permutation value P(n,k) for a specified value of n and k. The next portion of Listing 4.8 displays the value of P(5,2), which is as follows:

Perm(5,2): 20

Listing 4.9 displays the content of scipy_combinatorics.py that illustrates how to calculate the value of P(n) in SciPy.

Listing 4.9: scipy_combinatorics.py

from scipy.special import comb

#find combinations of 5, 2 values using comb(N, k)

com = comb(5, 2, exact = False, repetition=True)

print("C(5,2):",com)

Listing 4.9 starts with an import statement, followed by the initialization of the variable com via the SciPy function comb() that calculates the combinatorial value C(n,k) for a specified value of n and k. The next portion of Listing 4.9 displays the value of C(5,2), which is as follows:

C(5,2): 15.0

Calculating Log Sums

Listing 4.10 displays the content of scipy_matrix_inv.py that illustrates how to calculate the inverse of an invertible nxnx matrix.

Listing 4.10: scipy_matrix_inv.py

import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(15,1)

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

plt.scatter(x,y)

plt.show()

Listing 4.10 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a multiple of x plus a randomized value.

Calculating Polynomial Values

Listing 4.11 displays the content of scipy_poly.py that illustrates how to perform various polynomial operations in SciPy.

Listing 4.11: scipy_poly.py

import numpy as np

import scipy

p = np.poly1d([3,4,5])

print("p:",p)

print("p*p:",p*p)

print("p.integ(k=6):")

print(p.integ(k=6))

print("p.deriv():")

print(p.deriv())

print("p([4,5]):")

print(p([4,5]))

Listing 4.11 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor. Launch the code in Listing 4.11 and you will see the following output:

p:    2

3 x + 4 x + 5

p*p:    4      3      2

9 x + 24 x + 46 x + 40 x + 25

p.integ(k=6):

   3     2

1 x + 2 x + 5 x + 6

p.deriv():

6 x + 4

p([4,5]):

[69 100]

The next several sections contain examples of performing operations in linear algebra using SciPy APIs.

Calculating the Determinant of a Square Matrix

Listing 4.12 displays the content of scipy_determinant.py that illustrates how to calculate the inverse of an invertible nxn matrix.

Listing 4.12: scipy_determinant.py

from scipy import linalg

import numpy as np

#define square matrix

two_d_array = np.array([[4,5], [3,2]])

result = linalg.det(two_d_array)

print("determinant:",result)

Listing 4.12 starts with two import statements, followed by the initialization of the variable two_d_array as a two-dimensional Numpy array of integers. The next portion of Listing 4.12 invokes the linalg.det() method to calculate and print the value of the determinant of two_d_array. Launch the code in Listing 4.12 and you will see the following output:

determinant: -7.0

Calculating the Inverse of a Matrix

Listing 4.13 displays the content of scipy_matrix_inv.py that illustrates how to calculate the inverse of an invertible nxn matrix.

Listing 4.13: scipy_matrix_inv.py

from scipy import linalg

import numpy as np

define square matrix

two_d_array = np.array([[4,5], [3,2]])

print("matrix: ")

print(two_d_array)

print("inverse:")

print(linalg.inv(two_d_array))

Listing 4.13 starts with two import statements, followed by the initialization of the variable two_d_array as a two-dimensional Numpy array of integers. The next portion of Listing 4.13 invokes the linalg.inv() method to calculate and print the inverse of two_d_array. Launch the code in Listing 4.13 and you will see the following output:

matrix:

[[4 5]

 [3 2]]

inverse:

[[-0.28571429  0.71428571]

 [0.42857143 -0.57142857]]

Calculating Eigenvalues and Eigenvectors

Listing 4.14 displays the content of scipy_eigen.py that illustrates how to calculate eigenvalues and eigenvectors in SciPy.

Listing 4.14: scipy_eigen.py

from scipy import linalg

import numpy as np

#define two dimensional array

arr = np.array([[5,4],[6,3]])

#pass value into function

eg_val, eg_vect = linalg.eig(arr)

#get eigenvalues

print("eigenvalues:")

print(eg_val)

#get eigenvectors

print("eigenvectors:")

print(eg_vect)

Listing 4.14 starts with two import statements, followed by the initialization of the variable arr as a two-dimensional Numpy array of integers. The next portion of Listing 4.14 initializes the variables eg_val and eg_vect that are returned by the invocation of the linalg.eig() method.

The final portion of Listing 4.14 prints the values of the variables eg_val and eg_vect. Launch the code in Listing 4.14 and you will see the following output:

eigenvalues:

[9.+0.j -1.+0.j]

eigenvectors:

[[0.70710678 -0.5547002]

 [0.70710678  0.83205029]]

Calculating Integrals (Calculus)

Listing 4.15 displays the content of scipy_integrate.py that illustrates how to calculate the integral of a differentiable function.

Listing 4.15: scipy_integrate.py

from scipy import integrate

take f(x) function as f

f = lambda x : x**2

#single integration with a = 0 & b = 1

integration = integrate.quad(f, 0 , 1)

print(integration)

Listing 4.15 starts with two import statements, followed by the initialization of f as a lambda function that returns the square of its input value. Next, the variable integration is initialized with the result of invoking the integrate.quad() method, after which its value is displayed. Launch the code in Listing 4.15 and you will see the following output:

(0.33333333333333337, 3.700743415417189e-15)

Calculating Fourier Transforms

Listing 4.16 displays the content of scipy_fourier.py that illustrates how to calculate the inverse of an invertible nxnx matrix.

Listing 4.16: scipy_fourier.py

import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(15,1)

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

plt.scatter(x,y)

plt.show()

Listing 4.16 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a set of values based on a combination of the values of x and randomly calculated numbers, as shown here (and you can experiment with the hard-coded values):

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

The last portion of Listing 4.16 generates and displays a scatter plot based on the values of x and y. Launch the code in Listing 4.16 and you will see the image that is displayed in Figure 4.6.

[image:]

FIGURE 4.6 Datasets with potential linear regression.

The next several sections contain examples of performing transformations of images using SciPy APIs.

Flipping Images in SciPy

Listing 4.17 displays the content of scipy_flip_image.py that illustrates how to calculate the inverse of an invertible nxn matrix.

Listing 4.17: scipy_flip_image.py

import numpy as np

import matplotlib.pyplot as plt

from scipy import ndimage, misc

#Flip Down using scipy misc.face image

flip_down = np.flipud(misc.face())

plt.imshow(flip_down)

plt.show()

Listing 4.17 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor. Figure 4.7 displays the output generated by the code in Listing 4.17.

[image:]

FIGURE 4.7 Datasets with potential linear regression.

Rotating Images in SciPy

Listing 4.18 displays the content of scipy_rotate_image.py that illustrates how to rotate an image in SciPy.

Listing 4.18: scipy_rotate_image.py

from scipy import ndimage, misc

from matplotlib import pyplot as plt

panda = misc.face()

#rotatation function of scipy for image – image rotated 135 degree

panda_rotate = ndimage.rotate(panda, 135)

plt.imshow(panda_rotate)

plt.show()

Listing 4.18 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor. Figure 4.8 displays the output generated by the code in Listing 4.18.

[image:]

FIGURE 4.8 A rotated image in SciPy.

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code can be up to 15 times faster than CPU-based TF 2 code. However, the cost of a good GPU can be a significant factor. Although NVIDIA provides GPUs, those consumer-based GPUs are not optimized for multi-GPU support (which is supported by TF 2).

Fortunately, Google Colaboratory is an affordable alternative that provides free GPU support, and also runs as a Jupyter notebook environment. In addition, Google Colaboratory executes your code in the cloud and involves zero configuration, and it’s available online:

https://colab.research.google.com/notebooks/welcome.ipynb

The Jupyter notebook is suitable for training simple models and testing ideas quickly. Google Colaboratory makes it easy to upload local files, install software in Jupyter notebooks, and even connect Google Colaboratory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution with GPUs, visualization using Matplotlib, and the ability to save a copy of your Google Colaboratory notebook to Github by using the following steps from the main menu: File > Save a copy to GitHub.

Moreover, you can load any .ipynb on GitHub by just adding the path to the URL colab.research.google.com/github/ (see the Colaboratory website for details).

Google Colaboratory has support for other technologies, such as HTML and SVG, enabling you to render SVG-based graphics in notebooks that are in Google Colaboratory. One point to keep in mind: any software that you install in a Google Colaboratory notebook is only available on a per-session basis. If you log out and log in again, you need to perform the same installation steps that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google Colaboratory: you can execute code on a GPU for up to twelve hours per day for free. This free GPU support is extremely useful for people who don’t have a suitable GPU on their local machine (which is probably the majority of users), and now they launch TF 2 code to train neural networks in less than 20 or 30 minutes that would otherwise require multiple hours of CPU-based execution time.

You can also launch Tensorboard inside a Google Colaboratory notebook with the following command (replace the specified directory with your own location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First, whenever you connect to a server in Google Colaboratory, you start what’s known as a session. You can execute the code in a session with a CPU (the default), a GPU, or a TPU (which is available for free), and you can execute your code without any time limit for your session. However, if you select the GPU option for your session, only the first 12 hours of GPU execution time are free. Any additional GPU time during that same session incurs a small charge (see the website for those details). Any software that you install in a Jupyter notebook during a given session will not be saved when you exit that session. Incidentally, you can also run TF 2 code and Tensorboard in Google Colaboratory. Navigate to this site for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks

Uploading CSV Files in Google Colaboratory

Listing 4.19 displays the content upload_csv_file.ipynb that illustrates how to upload a CSV file to a Google Colaboratory notebook.

Listing 4.19: upload_csv_file.ipynb

import pandas as pd

from google.colab import files

uploaded = files.upload()

df = pd.read_csv("weather_data.csv")

print("dataframe df:")

df

Listing 4.19 uploads the CSV file weather_data.csv whose contents are not shown because they are not important for this example. The code shown in bold is the Colaboratory-specific code that is required to upload the CSV file. When you launch this code, you will see a small button labeled “Browse,” which you must click and then select the CSV file that is listed in the code snippet. After doing so, the rest of the code is executed and you will see the contents of the CSV file displayed in your browser session.

NOTE

You must supply the CSV file weather_data.csv if you want to launch this Jupyter notebook successfully in Google Colaboratory.

Summary

This chapter started with an introduction to Sklearn, which is an extremely versatile Python library for machine learning tasks.

Next you learned about SciPy, which is a Python library that is well-suited for scientific computing tasks. You saw simple code samples that show how to flip and rotate images in SciPy.

Finally, you learned about Google Colaboratory (also called “Colab”), which is a freely available online tool for creating and launching Jupyter notebooks. Colab supports many useful features, such as downloading notebooks in various formats, importing Github repositories directly into a notebook, and free support for GPU and TPU when you execute notebooks in Google Colaboratory.

CHAPTER 5

DATA CLEANING TASKS

This chapter discusses data cleaning tasks involving datasets that contain various types of data, such as date formats, telephone numbers, and currency, all of which can have different formats. In addition, many of the code samples in this chapter reference techniques that are discussed in previous chapters of this book.

The first part of this chapter briefly describes data cleaning, followed by examples of data cleaning tasks for data in MySQL database table. Specifically, you will see how to replace NULL values with 0, how to replace NULL values with an average value, how to replace multiple values with a single value, how to handle mismatched attribute values, and how to convert strings to date values.

The second part of this chapter shows you how to use the sed command line utility to replace multiple delimiters in a CSV file with a single delimiter. You will also see how to use the awk command line utility to restructure a CSV file to create a file whose rows have the same number of fields.

The third part of this chapter shows you how to use the awk command line utility to process CSV files that have a variable number of columns. The awk command is a self-contained programming language, with a truly impressive capability for processing text files. If you are unfamiliar with the awk command, please read the appendix that contains an assortment of code samples that use the awk utility.

The fourth part of this chapter contains awk-based shell scripts that show you how to convert a list of phone numbers so that the phone numbers have the same format as well as a list of date formats that can be converted to a different format.

This chapter assumes that you have read the data cleaning examples that are in previous chapters. Moreover, Chapter 7 contains a section with additional code samples involving data cleaning tasks.

What is Data Cleaning?

Data cleaning, also called data cleansing, is the task of ensuring that the contents of a dataset are complete, correct, and typically without duplicates. Hence, the focus of data cleaning is on individual files instead of combining or transforming data from two or more files. Data cleaning is often performed before any data transformation is performed. In some cases, data cleaning must also be performed after a data transformation.

For example, suppose that a CSV file contains employee-related data and a MySQL table also contains employee-related data, both of which have been cleansed of inconsistencies and duplicates have been removed. However, after exporting the table data to a CSV file that is merged with the first CSV file, it’s possible that there are duplicates that must then be removed.

Incidentally, there are several techniques for determining the values to replace empty fields, and the choice of techniques can range from obvious choices to more subtle factors. Sometimes you can specify the mean or the median for missing values, but in other cases, you need a more sophisticated technique. For example, suppose that a dataset with 1,000 rows consists of two types of patients: those who are healthy (the majority) and patients who have cancer. Obviously, you want the number of sick patients to be as low as possible (ideally zero); realistically, there will be some patients who will be sick and probably the majority of patients will be healthy, which means that the dataset is fundamentally imbalanced.

Unfortunately, machine learning algorithms can produce inaccurate results with imbalanced datasets. Moreover, generating synthetic data whose feature values are based on the mean or the median is probably risky. A better technique is called SMOTE, which generates data values that are close to values that appear in rows of the original dataset.

As another example, the format for dates, currency, and decimal numbers varies among different countries. Examples of date formats include YYYY/MM/DD, MM/DD/YYYY, and DD/MM/YYYY (as well as other possible date formats). Incidentally, YYYY/MM/DD is an ISO standard for numeric dates.

Number formats involve a comma “,” for the thousands position and decimal “.” for decimal values in the US (ex: $1,234.56), whereas Europe uses the opposite order for numbers (ex: 1.234,56). Depending on the dataset in question, data cleaning can also involve working with an assortment of dates, currencies, and decimal numbers to ensure that all values have the same format.

If two CSV files contain different date formats and you need to create a single CSV file that is based on the date columns, then there will be some type of conversion process that could be one of the following:

[image:]convert the first date format to the second date format

[image:]convert the second date format to the first date format

[image:]convert both date formats to a third date format

In the case of financial data, you are likely to also encounter different currencies, which involves a conversion rate between a pair of currencies. Since currency conversion rates fluctuate, you need to decide the exchange rate to use for the data, which can be

[image:]the exchange rate during the date that the CSV files were generated

[image:]the current currency exchange rate

[image:]some other mechanism

Data Cleaning for Personal Titles

Sometimes a “brute force” solution is also the simplest solution, particularly when strings are involved. For example, a person’s title can be misspelled in myriad ways that involves many pesky little variations, so it’s good to know how to perform this task in a manner that’s simple, intuitive, and easy to extend with additional cases. Consider how you would replace each string in the following list with “Mr,” “Ms,” or "Mrs” before you look at the following solution:

titles = ['mr.','MR','MR.','mister','Mister','Ms','Ms.', 'Mr',
'Mr.','mr','MS','MS.','ms','ms.','Mis','miss','miss.','Mrs',
'Mrs.','mrs','mrs.','Madam','madam','ma"am']

While it’s possible to solve this task with conditional logic that uses if/else code blocks, such an approach involves a lengthy code block. A simpler and easier solution involves the in keyword, as shown here:

mr_dict={}

ms_dict={}

mrs_dict={}

titles = ['mr.','MR','MR.','mister','Mister','Ms','Ms.', 'Mr',
'Mr.','mr','MS','MS.','ms','ms.','Mis','miss','miss.','Mrs',
'Mrs.','mrs','mrs.','Madam','madam','ma"am']

for title in ['Mr','Mr.','mr','mr.','MR','MR.','mister','Mister']:

mr_dict[title] = "Mr"

for title in ['Ms','Ms.','MS','MS.','ms','ms.','Mis','miss','miss.']:

ms_dict[title] = "Ms"

for title in ['Mrs','Mrs.','mrs','mrs.','Madam','madam','ma"am']:

mrs_dict[title] = "Mrs"

print("Mr dictionary: ",mr_dict)

print()

print("Ms dictionary: ",ms_dict)

print()

print("Mrs dictionary:",mrs_dict)

Launch the preceding code block and you will see the following output:

Mr dictionary:  {'Mr': 'Mr', 'Mr.': 'Mr', 'mr': 'Mr', 'mr.':
'Mr', 'MR': 'Mr', 'MR.': 'Mr', 'mister': 'Mr', 'Mister': 'Mr'}

Ms dictionary:  {'Ms': 'Ms', 'Ms.': 'Ms', 'MS': 'Ms', 'MS.': 'Ms',
'ms': 'Ms', 'ms.': 'Ms', 'Mis': 'Ms', 'miss': 'Ms', 'miss.': 'Ms'}

Mrs dictionary: {'Mrs': 'Mrs', 'Mrs.': 'Mrs', 'mrs': 'Mrs', 'mrs.':
'Mrs', 'Madam': 'Mrs', 'madam': 'Mrs', 'ma"am': 'Mrs'}

The solution given above makes it very easy to maintain, debug, and extend because the only change that’s required is adding a new string in the appropriate location. Moreover, the given solution does not require any additional loops or regular expressions. In the event that you need a new category, such as “Sir,” define the Python dictionary sir_dict and then add a new code snippet, as shown here:

if title in ['Sir','sir','Sire','sire','Yessir','yessir']:

sir_dict[title] = "Sir"

Data Cleaning in SQL

This section contains several subsections that perform data cleaning tasks in SQL. Note that it’s not mandatory to perform these tasks in SQL. Another option is to read the contents of a database table into a Pandas data frame and then use Pandas methods to achieve the same result.

However, this section illustrates how to perform the following data cleaning tasks that affect an attribute of a database table:

[image:]replace NULL with 0

[image:]replace NULL with the average value

[image:]replace multiple values into a single value

[image:]handle data type mismatch

[image:]convert a string date to a date format

Replace NULL with 0

This task is straightforward, and you can perform it with either of the following SQL statements in a MySQL database:

SELECT ISNULL(column_name, 0) FROM table_name

OR

SELECT COALESCE(column_name, 0) FROM table_name

Replace NULL Values with the Average Value

This task involves two steps: first find the average of the non-NULL values of a column in a database table, and then update the NULL values in that column with the value that you found in the first step.

Listing 5.1 displays the content of replace_null_values.sql that performs this pair of steps.

Listing 5.1: replace_null_values.sql

USE mytools;

DROP TABLE IF EXISTS temperatures;

CREATE TABLE temperatures (temper INT, city CHAR(20));

INSERT INTO temperatures VALUES(78,'sf');

INSERT INTO temperatures VALUES(NULL,'sf');

INSERT INTO temperatures VALUES(42,NULL);

INSERT INTO temperatures VALUES(NULL,'ny');

SELECT * FROM temperatures;

SELECT @avg1 := AVG(temper) FROM temperatures;

update temperatures

set temper = @avg1

where ISNULL(temper);

SELECT * FROM temperatures;

-- initialize city1 with the most frequent city value:

SELECT @city1 := (SELECT city FROM temperatures GROUP BY city ORDER BY COUNT(*) DESC LIMIT 1);

-- update NULL city values with the value of city1:

update temperatures

set city = @city1

where ISNULL(city);

SELECT * FROM temperatures;

Listing 5.1 creates and populates the table temperatures with several rows, and then initializes the variable avg1 with the average temperature in the temper attribute of the temperatures table. Launch the code in Listing 5.1 and you will see the following output:

+--------+------+

| temper | city |

+--------+------+

|     78 | sf   |

|   NULL | sf   |

|     42 | NULL |

|   NULL | ny   |

+--------+------+

4 rows in set (0.000 sec)

+----------------------+

| @avg1 := AVG(temper) |

+----------------------+

|         60.000000000 |

+----------------------+

1 row in set, 1 warning (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2  Changed: 2  Warnings: 0

+--------+------+

| temper | city |

+--------+------+

|     78 | sf   |

|     60 | sf   |

|     42 | NULL |

|     60 | ny   |

+--------+------+

4 rows in set (0.000 sec)

[image:]

Query OK, 1 row affected (0.000 sec)

Rows matched: 1  Changed: 1  Warnings: 0

+--------+------+

| temper | city |

+--------+------+

|     78 | sf   |

|     60 | sf   |

|     42 | sf   |

|     60 | ny   |

+--------+------+

4 rows in set (0.000 sec)

Replace Multiple Values with a Single Value

An example of coalescing multiple values in an attribute involves replacing multiple strings for the state of New York (such as new_york, NewYork, NY, and New_York) with NY. Listing 5.2 displays the content of reduce_values.sql that performs this pair of steps.

Listing 5.2: reduce_values.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), reply
CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');

INSERT INTO mytable VALUES('20211016','New York','no');

INSERT INTO mytable VALUES('20220117','Illinois','yes');

INSERT INTO mytable VALUES('20220218','New York','No');

SELECT * FROM mytable;

-- replace yes, Yes, y, Ys with Y:

update mytable

set reply = 'Y'

where upper(substr(reply,1,1)) = 'Y';

SELECT * FROM mytable;

-- replace all other values with

update mytable

set reply = 'N' where substr(reply,1,1) != 'Y';

SELECT * FROM mytable;

Listing 5.2 creates and populates the table mytable, and then replaces the variants of the word yes with the letter Y in the reply attribute. The final portion of Listing 5.2 replaces any string that does not start with the letter Y with the letter N. Launch the code in Listing 5.2 and you will see the following output:

+----------+----------+-------+

| str_date | state    | reply |

+----------+----------+-------+

| 20210915 | New York | Yes   |

| 20211016 | New York | no    |

| 20220117 | Illinois | yes   |

| 20220218 | New York | No    |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2  Changed: 2  Warnings: 0

+----------+----------+-------+

| str_date | state    | reply |

+----------+----------+-------+

| 20210915 | New York | Y     |

| 20211016 | New York | no    |

| 20220117 | Illinois | Y     |

| 20220218 | New York | No    |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2  Changed: 2  Warnings: 0

+----------+----------+-------+

| str_date | state    | reply |

+----------+----------+-------+

| 20210915 | New York | Y     |

| 20211016 | New York | N     |

| 20220117 | Illinois | Y     |

| 20220218 | New York | N     |

+----------+----------+-------+

4 rows in set (0.001 sec)

Handle Mismatched Attribute Values

This task involves two steps: first find the average of the non-NULL values of a column in a database table, and then update the NULL values in that column with the value that you found in the first step.

Listing 5.3 displays the content of type_mismatch.sql that performs this pair of steps.

Listing 5.3: type_mismatch.sql

USE mytools;

DROP TABLE IF EXISTS emp_details;

CREATE TABLE emp_details (emp_id CHAR(15), city CHAR(20),
state CHAR(20));

INSERT INTO emp_details VALUES('1000','Chicago','Illinois');

INSERT INTO emp_details VALUES('2000','Seattle','Washington');

INSERT INTO emp_details VALUES('3000','Santa
Cruz','California');

INSERT INTO emp_details
VALUES('4000','Boston','Massachusetts');

SELECT * FROM emp_details;

select emp.emp_id, emp.title, det.city, det.state

from employees emp join emp_details det

WHERE emp.emp_id = det.emp_id;

--required for earlier versions of MySQL:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Listing 5.3 creates and populates the table emp_details, followed by a SQL JOIN statement involving the tables emp and emp_details. Although the emp_id table is defined as an INT type and a CHAR type, respectively, in the tables emp and emp_details, the code works as desired. However, in earlier versions of MySQL, you need to use the built-in CAST() function to convert a CHAR value to an INT value (or vice versa), as shown in the commented out code snippet:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Launch the code in Listing 5.3 and you will see the following output:

+--------+------------+---------------+

| emp_id | city       | state         |

+--------+------------+---------------+

| 1000   | Chicago    | Illinois      |

| 2000   | Seattle    | Washington    |

| 3000   | Santa Cruz | California    |

| 4000   | Boston     | Massachusetts |

+--------+------------+---------------+

4 rows in set (0.000 sec)

+--------+--------------------+------------+---------------+

| emp_id | title              | city       | state         |

+--------+--------------------+------------+---------------+

|   1000 | Developer          | Chicago    | Illinois      |

|   2000 | Project Lead       | Seattle    | Washington    |

|   3000 | Dev Manager        | Santa Cruz | California    |

|   4000 | Senior Dev Manager | Boston     | Massachusetts |

+--------+--------------------+------------+---------------+

4 rows in set (0.002 sec)

Convert Strings to Date Values

Listing 5.4 displays the content of str_to_date.sql that illustrates how to populate a date attribute with date values that are determined from another string-based attribute that contains strings for dates.

Listing 5.4: str_to_date.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), reply
CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');

INSERT INTO mytable VALUES('20211016','New York','no'););

INSERT INTO mytable VALUES('20220117','Illinois','yes'););

INSERT INTO mytable VALUES('20220218','New York','No'););

SELECT * FROM mytable;

-- 1) insert date-based feature:

ALTER TABLE mytable

ADD COLUMN (real_date DATE);

SELECT * FROM mytable;

-- 2) populate real_date from str_date:

UPDATE mytable t1

        INNER JOIN mytable t2

             ON t1.str_date = t2.str_date

SET t1.real_date = DATE(t2.str_date);

SELECT * FROM mytable;

-- 3) Remove unwanted features:

ALTER TABLE mytable

DROP COLUMN str_date;

SELECT * FROM mytable;

Listing 5.4 creates and populates the table mytable and displays the contents of this table. The remainder of Listing 5.4 consists of three SQL statements, each of which starts with a comment statement that explains its purpose.

The first SQL statement inserts a new column real_date of type DATE. The second SQL statement populates the real_date column with the values in the str_date column that have been converted to a date value via the DATE() function. The third SQL statement is optional: it drops the str_date column if you wish to do so. Launch the code in Listing 5.4 and you will see the following output:

+----------+----------+-------+

| str_date | state    | reply |

+----------+----------+-------+

| 20210915 | New York | Yes   |

| 20211016 | New York | no    |

| 20220117 | Illinois | yes   |

| 20220218 | New York | No    |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.007 sec)

Records: 0  Duplicates: 0  Warnings: 0

+----------+----------+-------+-----------+

| str_date | state    | reply | real_date |

+----------+----------+-------+-----------+

| 20210915 | New York | Yes   | NULL      |

| 20211016 | New York | no    | NULL      |

| 20220117 | Illinois | yes   | NULL      |

| 20220218 | New York | No    | NULL      |

+----------+----------+-------+-----------+

4 rows in set (0.002 sec)

Query OK, 4 rows affected (0.002 sec)

Rows matched: 4  Changed: 4  Warnings: 0

+----------+----------+-------+------------+

| str_date | state    | reply | real_date  |

+----------+----------+-------+------------+

| 20210915 | New York | Yes   | 2021-09-15 |

| 20211016 | New York | no    | 2021-10-16 |

| 20220117 | Illinois | yes   | 2022-01-17 |

| 20220218 | New York | No    | 2022-02-18 |

+----------+----------+-------+------------+

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.018 sec)

Records: 0  Duplicates: 0  Warnings: 0

+----------+-------+------------+

| state    | reply | real_date  |

+----------+-------+------------+

| New York | Yes   | 2021-09-15 |

| New York | no    | 2021-10-16 |

| Illinois | yes   | 2022-01-17 |

| New York | No    | 2022-02-18 |

+----------+-------+------------+

4 rows in set (0.000 sec)

Data Cleaning from the Command Line (optional)

This section is marked “optional” because the solutions to tasks involve an understanding of some Unix-based utilities. Although this book does not contain details about those utilities, you can find online tutorials with examples regarding these utilities.

This section contains several subsections that perform data cleaning tasks that involve the sed and awk utilities:

[image:]replace multiple delimiters with a single delimiter (sed)

[image:]restructure a dataset so all rows have the same column count (awk)

Keep in mind the following point about these examples: they must be performed from the command line before they can be processed in a Pandas data frame.

Working with the sed Utility

This section contains an example of how to use the sed command line utility to replace different delimiters with a single delimiter for the fields in a text file. You can use the same code for other file formats, such as CSV files and TSV files.

This section does not provide any details about sed beyond the code sample. However, after you read the code (it’s only one line), you will understand how to adapt that code snippet to your own requirements (i.e., how to specify different delimiters).

Listing 5.5 displays the content of delimiter1.txt and Listing 5.6 displays the content of delimiter1.sh that replaces all delimiters with a comma (“,”).

Listing 5.5: delimiter1.txt

1000|Jane:Edwards^Sales

2000|Tom:Smith^Development

3000|Dave:Del Ray^Marketing

Listing 5.6: delimiter1.sh

cat delimiter1.txt | sed -e 's/:/,/' -e 's/|/,/' -e 's/\^/,/'

Listing 5.6 starts with the cat command line utility, which sends the contents of the file delimiter1.txt to “standard output.”  However, in this example, the output of this command becomes the input to the sed command because of the pipe (“|”) symbol.

The sed command consists of three parts, all of which are connected by the -e switch. You can think of -e as indicating “there is more processing to be done” by the sed command. In this example, there are three occurrences of -e, which means that the sed command will execute three snippets.

The first code snippet is 's/:/,/', which translates into “replace each semi-colon with a comma.” The result of this operation is passed to the next code snippet, which is 's/|/,/'. This code snippet translates into “replace each pipe symbol with a comma.” The result of this operation is passed to the next code snippet, which is 's/\^/,/'. This code snippet translates into “replace each caret symbol (^) with a comma.” The result of this operation is sent to the standard output, which can be redirected to another text file. Launch the code in Listing 5.6 and you will see the following output:

1000,Jane,Edwards,Sales

2000,Tom,Smith,Development

3000,Dave,Del Ray,Marketing

There are three comments to keep in mind. First, the snippet contains a backslash because the caret symbol (^) is a meta character, so we need to “escape” this character. The same is true for other meta characters (such as “$” and “.”).

Second, you can easily extend the sed command for each new delimiter that you encounter as a field separator in a text file: simply follow the pattern that you see in Listing 5.6 for each new delimiter.

Third, redirect the output of delimiter1.sh to the text file delimiter2.txt by launching the following command:

./delimiter1.sh > delimiter2.txt

If an error occurs in the preceding code snippet, make sure that delimiter1.sh is executable by invoking the following command:

chmod 755 delimiter1.sh

This concludes the example involving the sed command line utility, which is a very powerful utility for processing text files. Check online for articles and blog posts if you want to learn more about the sed utility.

Working with Variable Column Counts

This section shows you how to use the awk command line utility in order to “pad” rows in a CSV file with NaN values so that all records have the same number of columns.

Listing 5.7 displays the content variable_columns.csv and Listing 5.8 displays the content of variable_columns.sh that uses the awk utility to pad the number of columns in a CSV file.

Listing 5.7: variable_columns.csv

10,20,30

10,20,30,40

10,20,30,40,50,60

Listing 5.8: variable_columns.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN { colCount = 6 }

{

  printf("%s", $0)

  for(i=NF; i<colCount; i++) {

     printf(",NaN")

  }

  print ""

}

'

Listing 5.8 initializes the variable filename with the name of the CSV file for this code sample. The next snippet is an awk script that initializes colCount with the value 6 in the BEGIN block: this value is the largest number of columns in any row of the CSV file.

The next block of code displays the contents of the current line, followed by a loop that prints a comma-separated list of NaN values to ensure that the output line contains 6 columns. For instance, if a row has 4 columns, then NaN will be printed twice. The print statement after the loop ensures that the next line from the input file starts on a new line instead of the current output line. Launch the code in Listing 5.8 and you will see the following output:

10,20,30,NaN,NaN,NaN

10,20,30,40,NaN,NaN

10,20,30,40,50,60

10,20,NaN,NaN,NaN,NaN

10,20,30,40,NaN,NaN

One limitation of Listing 5.8 is that the maximum number of columns must be specified in the BEGIN block. Listing 5.9 removes this constraint by scanning the entire file to determine the maximum number of columns in the CSV file.

Listing 5.9: variable_columns2.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN {

  maxColCount = 0;

  ##

  # maxColCount = # of fields in the longest row

  ##

  while(getline line < ARGV[1]) {

    colCount = split(line,data)

    if(maxColCount < length(data)) {

       maxColCount = length(data)

    }

  }

}

{

  # print current input line:

  printf("%s", $0)

  # pad with NaN (if necessary):

  for(j=NF; j<maxColCount; j++) {

     printf(",NaN")

  }

  print ""

}

' $filename

Listing 5.9 initializes the variable filename with the name of the CSV file for this code sample. The next portion of Listing 5.9 is an awk script that contains a while loop to process the input lines from the CSV file. The variable maxColCount is initialized with 0 in the BEGIN block, and when this loop has completed, its value will be the maximum number of columns of the lines in the input file.

The next portion of Listing 5.9 is the same as the loop in Listing 5.8, which prints the lines of text and pads them with NaN whenever it’s necessary to do so.

Launch the code in Listing 5.9 and you will see the following output:

10,20,30,NaN,NaN,NaN

10,20,30,40,NaN,NaN

10,20,30,40,50,60

10,20,NaN,NaN,NaN,NaN

10,20,30,40,NaN,NaN

Truncating Rows in CSV Files

The previous section showed you how to use the awk command line utility to “pad” rows from a CSV file with the string NaN so that all records have the same number of columns, whereas this section shows you how to truncate the rows in a CSV file to display only the number of columns that are in the shortest row.

Listing 5.10 displays the content of variable_columns3.sh that uses the awk utility to display a subset of columns in a CSV file.

Listing 5.10: variable_columns3.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN {

  colCount = 0; minColCount = 9999

  ###

  # minColCount = # of fields in the shortest row

  ###

  while(getline line < ARGV[1]) {

    colCount = split(line,data)

    if(minColCount > length(data)) {

       minColCount = length(data)

    }

  }

}

{

  # perform for each input line:

  for(j=1; j<=minColCount; j++) {

     printf("%s,",$j)

  }

  print ""

}

' $filename

Listing 5.10 is very similar to Listing 5.9: after initializes the variable filename with the name of the CSV file for this code sample, the awk script finds the number of columns in the row with the fewest columns from the CSV file.

The variable minColCount is initialized with 9999 in the BEGIN block, and when this loop has completed, its value will be the minimum number of columns of the lines in the input file.

The next portion of Listing 5.10 is a loop that prints the first minColCount columns in each line of the input file. Launch the code in Listing 5.10 and you will see the following output:

10,20,

10,20,

10,20,

10,20,

10,20,

Generating Rows with Fixed Columns with the awk Utility

The code sample in this section contains an awk script that processes a space-delimited input string CSV file and generates output in which all rows have the same number of columns (with the possible exception of the final output row). Listing 5.11 displays the content FixedFieldCount1.sh that illustrates how to use the awk utility to split a string into rows that contain three strings.

Listing 5.11: FixedFieldCount1.sh

echo "=> pairs of letters:"

echo "aa bb cc dd ee ff gg hh"

echo

echo "=> split on multiple lines:"

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

  for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % colCount == 0) { print "" }

  }

  print ""

}

'

Listing 5.11 displays the contents of a string, and then provides this string as input to the awk command. The main body of Listing 5.11 is a loop that iterates from 1 to NF, where NF is the number of fields in the input line, which in this example equals 8. The value of each field is represented by $i: $1 is the first field, $2 is the second field, and so forth. Note that $0 is the content of the entire input line (which is used in the next code sample).

Next, if the value of i (which is the field position, not the contents of the field) is a multiple of 3, then the code prints a linefeed. Launch the code in Listing 5.11 and you will see the following output:

=> pairs of letters:

aa bb cc dd ee ff gg hh

=> split on multiple lines:

aa bb cc

dd ee ff

gg hh

Listing 5.12 displays the content of employees.txt and Listing 5.13 displays the content of FixedFieldCount2.sh that illustrates how to use the awk utility to ensure that all the rows have the same number of columns.

Listing 5.12: employees.txt

jane:jones:SF:

john:smith:LA:

dave:smith:NY:

sara:white:CHI:

>>>none:none:none<<<:

jane:jones:SF:john:

smith:LA:

dave:smith:NY:sara:white:

CHI:

Listing 5.13: FixedFieldCount2.sh

cat employees.txt | awk -F":" '{printf("%s", $0)}' | awk -F':' '

BEGIN { colCount = 3 }

{

  for(i=1; i<=NF; i++) {

     printf("%s#", $i)

     if(i % colCount == 0) { print "" }

  }

}

'

Notice that the code in Listing 5.13 is almost identical to the code in Listing 5.11: the code snippet that is shown in bold removes the “\n” character from its input (which is the contents of employees.txt).

In case you need to be convinced, launch the following code snippet from the command line:

cat employees.txt | awk -F":" '{printf("%s", $0)}'

The output of the preceding code snippet is shown here:

jane:jones:SF:john:smith:LA:dave:smith:NY:sara:white:CHI:>>>
none:none:none<<<:jane:jones:SF:john:smith:LA:dave:smith:
NY:sara:white:CHI:

The reason that the “\n” has been removed in the preceding output is because of this code snippet:

printf("%s", $0)

If you want to retain the “\n” linefeed character after each input line, then replace the preceding code snippet with this snippet:

printf("%s\n", $0)

We have now reduced the task in Listing 5.13 to the same task as Listing 5.11, which is why we have the same awk-based code block.

Launch the code in Listing 5.13 and you will see the following output:

1000,Jane,Edwards,Sales

jane#jones#SF#

john#smith#LA#

dave#smith#NY#

sara#white#CHI#

>>>none#none#none<<<#

jane#jones#SF#

john#smith#LA#

dave#smith#NY#

Sara#white#CHI#

Converting Phone Numbers

Listing 5.14 displays the content of phone_numbers.txt that contains (mostly fictitious) phone numbers with different formats.

Listing 5.14: phone_numbers.txt

1234567890

234 4560987

234 456 0987

212 555-1212

212-555-1212

(123)5551212

(456)555-1212

(789)555 1212

1-1234567890

1 234 4560987

1-234 456 0987

1 212 555-1212

1-212-555-1212

1 (123)5551212

1-(456)555-1212

1 (789)555 1212

011-1234567890

033 234 4560987

039-234 456 0987

034 212 555-1212

081-212-555-1212

044 (123)5551212

049-(456)555-1212

052 (789)555 1212

Listing 5.15 displays the content of phone_numbers.sh that illustrates how to remove non-digit characters from the phone numbers in Listing 5.14 so that they have the same format.

Listing 5.15: phone_numbers.sh

FILE="country_codes.csv"

#cat phone_numbers.txt |tr -d '()' | sed -e
's/ //g' -e 's/-//g' | awk -F" " '

cat phone_numbers.txt |sed -e 's/[()]//g' -e
's/ //g' -e 's/-//g'| awk -F" " '

{

   line_len = length($0)

   if(line_len == 10) {

     inter = ""

     area  = substr($0,0,3)

     xchng = substr($0,3,3)

     subsc = substr($0,7,4)

     printf("%s,%s,%s\n",area,xchng,subsc)

   } else if(line_len == 11) {

     inter = substr($0,0,1)

     area  = substr($0,1,3)

     xchng = substr($0,4,3)

     subsc = substr($0,8,4)

     printf("%s,%s,%s,%s\n",inter, area,xchng,subsc)

   } else if(line_len == 13) {

     inter = substr($0,0,3)

     area  = substr($0,3,3)

     xchng = substr($0,6,3)

     subsc = substr($0,10,4)

     printf("%s,%s,%s,%s\n",inter, area,xchng,subsc)

   } else {

     print "invalid format: ",$0

   }

}

'

Listing 5.15 initializes the variable FILE with the name of the CSV file that contains the three-digit international codes for a set of countries. The next code snippet is a pipe-delimited sequence of commands that starts by redirecting the contents of the file phone_numbers.txt to the sed command that removes all left parentheses, right parentheses, hyphens (-), and multiple occurrences of a white space.

The output from the sed command is redirected to an awk script that processes input lines of length 10, 11, and 13 that contain phone numbers that lack an international code, contain a single digit international code, and a three-digit international code, respectively. Any input line that has a different length is considered invalid. Launch the code in Listing 5.15 and you will see the following output:

123,345,7890

234,445,0987

234,445,0987

212,255,1212

212,255,1212

123,355,1212

456,655,1212

789,955,1212

1,112,345,7890

1,123,445,0987

1,123,445,0987

1,121,255,1212

1,121,255,1212

1,112,355,1212

1,145,655,1212

1,178,955,1212

011,112,345,7890

033,323,445,0987

039,923,445,0987

034,421,255,1212

081,121,255,1212

044,412,355,1212

049,945,655,1212

052,278,955,1212

Converting Numeric Date Formats

This section shows you how to convert date formats to a common format of the form MM-DD-YYYY. Before delving into the code, the following list contains sample formats for the month, day, and year of a date:

[image:]yy:   two-digit year             (ex: 22)

[image:]yyyy: four-digit year            (ex: 2022)

[image:]m:    one-digit month            (ex: 4)

[image:]mm:   two-digit month            (ex: 04)

[image:]mmm:  three letters for month    (ex: Apr)

[image:]mmmm: month spelled in full      (ex: April)

[image:]d:    one-digit day of the month (ex: 2)

[image:]dd:   two-digit day of the month (ex: 02)

[image:]ddd:  three letter day of week   (ex: Sat)

[image:]dddd: day spelled in full        (ex: Saturday)

Listing 5.16 displays the content of dates.txt that contains fictitious dates in various formats, and the strings in bold have invalid formats.

Listing 5.16: dates.txt

03/15/2021

3/15/2021

3/15/21

03/5/2021

3/5/2021

3/5/21

3/5/212

3/5/21Z

Listing 5.17 displays the content of dates.sh that shows how to remove non-digit characters from the dates in Listing 5.16 so that they have the same format.

Listing 5.17: dates.sh

cat dates.txt | awk -F"/" '

{

   DATE_FORMAT="valid"

   # step 1: extract the month

   if($0 ~ /^[0-9]{2}/) {

     month = substr($0,1,2)

     #print "normal month: ",month

   } else if($0 ~ /^[0-9]\//) {

     month = "0" substr($0,1,1)

     #print "short month: ",month

   } else {

     DATE_FORMAT="invalid"

   }

   if(DATE_FORMAT="valid") {

     # step 2: extract the day

     if($0 ~ /^[0-9][0-9]\/[0-9][0-9]/) {

       day = substr($0,4,2)

       #print "normal day: ",day

     } else if ($0 ~ /^[0-9][0-9]\/[0-9]\//) {

       day = "0" substr($0,4,1)

       #print "short day: ",day

     } else {

       DATE_FORMAT="invalid"

     }

   }

   if(DATE_FORMAT="valid") {

     # step 3: extract the year

     if($0 ~ /^[0-9][0-9]\/[0-9][0-9]\/[0-9][0-9][0-9][0-9]$/
) {

       year = substr($0,7,4)

       #print "normal year: ",year

     } else if ($0 ~ /^[0-9][0-9]\/[0-9]\/[0-9][0-9]\/$/) {

       year = "20" substr($0,7,2)

       #print "short year: ",year

     }

   } else {

     DATE_FORMAT="invalid"

   }

   if(DATE_FORMAT="valid") {

     printf("=> $0: %s MM/DD/YYYY:
%s-%s-%s\n",$0,month,day,year)

   } else {

     print "invalid format: ",$0

   }

}

'

Listing 5.17 contains code that might seem daunting if you are unfamiliar with regular expressions. Let’s try to demystify the code by starting with the regular expression [0-9] that represents any single digit. The initial caret symbol in ^[0-9]\/ indicates that a digit must appear in the left-most (i.e., first) position. Finally, the regular expression ^[0-9]\/ indicates that a “/” must follow the single digit. Thus, the string 3/ matches the regular expression, but the strings 03/, B3/, and AB/ do not match the regular expression.

Now let’s examine the regular expression ^[0-9][0-9]\/, which represents any string that starts with two digits and then a “/” character. Thus, the string 03/ matches the regular expression but the strings 3/, B3/, and AB/ do not match the regular expression.

Next, the regular expression ^[0-9][0-9]\/[0-9][0-9] represents any string that starts with two digits, followed by a “/” character, and then two more digits. Thus, the string 03/15 matches the regular expression, but the strings 3/5, 03/5, and 3/15 do not match the regular expression.

Finally, the regular expression ^[0-9][0-9]\/[0-9][0-9]\/[0-9][0-9][0-9][0-9]$ matches a string that

[image:]starts with two digits

[image:]is followed by a “/”

[image:]has another two digits

[image:]followed by “/”

[image:]has another four more digits

[image:]no additional characters

Listing 5.17 contains regular expressions that match strings containing “short” months, days, and years. Launch the code in Listing 5.17 and you will see the following output:

=> $0: 03/15/2021 MM/DD/YYYY: 03-15-2021

=> $0: 3/15/2021 MM/DD/YYYY: 03-15-2021

=> $0: 3/15/21 MM/DD/YYYY: 03-15-2021

=> $0: 03/5/2021 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/2021 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/21 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/212 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/21Z MM/DD/YYYY: 03-05-2021

Why are the preceding pair of lines (that are shown in bold) displayed as valid dates, even though the anchor meta character “$” appears in the two regular expressions for extracting the year? Unfortunately, the latter two regular expressions appear after the initial regular expressions that extract the day value, and those two regular expressions do not check for invalid year formats.

Listing 5.18 displays the content of dates2.sh that detects invalid dates, uses a short-hand notation for multiple digits, and removes extraneous print-related statements.

Listing 5.18: dates2.sh

cat dates.txt | awk -F"/" '

{

   DATE_FORMAT="valid"

   # step 1: check for invalid formats

   if($0 ~ /[A-Za-z]/) {

     print "invalid characters: ",$0

     DATE_FORMAT="invalid"

   } else if($0 ~ /\/[0-9]{3}$/) {

     print "invalid format: ",$0

     DATE_FORMAT="invalid"

   }

   if(DATE_FORMAT="valid") {

     # step 2: extract the month

     if($0 ~ /^[0-9][0-9]/) {

       month = substr($0,1,2)

     } else if($0 ~ /^[0-9]\//) {

       month = "0" substr($0,1,1)

     } else {

       DATE_FORMAT="invalid"

     }

   }

   if(DATE_FORMAT="valid") {

     # step 3: extract the day

     if($0 ~ /^[0-9]{2}\/[0-9]{2}/) {

       day = substr($0,4,2)

     } else if ($0 ~ /^[0-9]{2}\/[0-9]{2}\//) {

       day = "0" substr($0,4,1)

     } else {

       DATE_FORMAT="invalid"

     }

   }

   if(DATE_FORMAT="valid") {

     # step 4: extract the year

     if($0 ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{4}$/) {

       year = substr($0,7,4)

     } else if ($0 ~ /^[0-9]{2}\/[0-9]\/[0-9]{2}\/$/) {

       year = "20" substr($0,7,2)

     }

   }

   if(DATE_FORMAT="valid") {

     printf("$0: %10s => %s-%s-%s\n",$0,month,day,year)

   } else {

     print "Date format invalid:",$0

   }

}

'

Although Listing 5.18 is very similar to Listing 5.17, there are some differences. The first difference is that Listing 5.18 checks for phone numbers that have alphabetic characters and reports them as having an invalid format. The second difference is the conditional code block that identifies any phone numbers that have three digits in the right-most position.

The third difference is a short-hand way to specify multiple consecutive digits: [0-9]{2} matches any pair of consecutive digits, [0-9]{3} matches any occurrence of three consecutive digits, and so forth. Launch the code in Listing 5.18 and you will see the following output:

$0: 03/15/2021 => 03-15-2021

$0:  3/15/2021 => 03-15-2021

$0:    3/15/21 => 03-15-2021

$0:  03/5/2021 => 03-15-2021

$0:   3/5/2021 => 03-15-2021

$0:     3/5/21 => 03-15-2021

invalid format:  3/5/212

$0:    3/5/212 => 03-15-2021

invalid characters:  3/5/21Z

$0:    3/5/21Z => 03-15-2021

Converting Alphabetic Date Formats

This section shows you how to convert date formats to a common format of the form DD-MON-YYYY. Listing 5.19 displays the content of dates2.txt that contains dates in various formats, and the strings in bold have invalid formats.

Listing 5.19: dates2.txt

03/15/2021

04-SEP-2022

04-sep-  2022

04-sep-  22

05-OCT   2022

05-oct 2022

05-oct 22

06 JAN 2022

06 jan 2022

06 jnn 22

Listing 5.20 displays the content of dates3.sh illustrates how to remove non-digit characters from the dates in Listing 5.19 so that they have the same format.

Listing 5.20: dates3.sh

cat dates2.txt  | tr -s ' ' |sed -e 's/- /-/g' -e 's/ /-/g' |awk -F"-" '

BEGIN {

   months["JAN"] = "JAN"

   months["FEB"] = "FEB"

   months["MAR"] = "MAR"

   months["APR"] = "APR"

   months["MAY"] = "MAY"

   months["JUN"] = "JUN"

   months["JUL"] = "JUL"

   months["AUG"] = "AUG"

   months["SEP"] = "SEP"

   months["OCT"] = "OCT"

   months["NOV"] = "NOV"

   months["DEC"] = "DEC"

}

{

   #Valid date formats (Oracle):

   #DD-MON-YY:   04-SEP-2022

   #DD-MON-YYYY: 05-OCT-22

   $0 = toupper($0)

   DATE_FORMAT="valid"

   # step 1: extract the day:

   if($0 ~ /^[0-9]\-/) {

     day = "0" substr($0,1,1)

   } else if($0 ~ /^[0-9][0-9]\-/) {

     day = substr($0,1,2)

   } else {

     DATE_FORMAT="invalid"

   }

   if(DATE_FORMAT="valid") {

     # step 2: extract the month:

     if($0 ~ /^[0-9]{2}\-[A-Z]{3}/) {

       month = substr($0,4,3)

     } else {

       DATE_FORMAT="invalid"

     }

   }

   if(DATE_FORMAT="valid") {

     # step 3: extract the year:

     if($0 ~ /^[0-9]{2}\-[A-Z]{3}\-[0-9]{2}/) {

       year = "20" substr($0,8,2)

     } else if($0 ~ /^[0-9]{2}\-[A-Z]{3}\-[0-9]{4}/) {

       year = substr($0,8,4)

     } else {

       DATE_FORMAT="invalid"

     }

   }

   if(DATE_FORMAT="valid") {

   if(months[month] == month) {

      printf("%12s => %s-%s-%s\n",$0,month,day,year)

   } else {

      printf("Invalid month:  %s-%s-%s\n",month,day,year)

   }

   } else {

     print "Date format invalid:",$0

   }

}

'

Listing 5.20 starts with a pipe-delimited sequence of commands that redirects the contents of the file dates2.txt to the tr command that removes multiple consecutive occurrences of white spaces.

Next, the output from the tr command is redirected to the sed command that removes any white spaces that follow the hyphen (-) character, and then replaces any remaining white spaces with a hyphen (-).

The output from the sed command is redirected to an awk script that initializes an array with the three letter abbreviations of the months of the year. This array is referenced later in the code to detect any invalid month formats.

The main portion of the awk script is similar to the contents of Listing 5.18 for detecting various date formats to initialize the day, month (as a three-letter value), and year for each input line. Launch the code in Listing 5.20 and you will see the following output:

04-SEP-2022 => SEP-04-2020

04-SEP-2022 => SEP-04-2020

   04-SEP-22 => SEP-04-2022

05-OCT-2022 => OCT-05-2020

05-OCT-2022 => OCT-05-2020

   05-OCT-22 => OCT-05-2022

06-JAN-2022 => JAN-06-2020

06-JAN-2022 => JAN-06-2020

Invalid month:  JNN-06-2022

Working with Date and Time Date Formats

Now that you have seen code samples with dates of the form MM:DD:YYYY, this section handles dates of the form YYYY:MM:DD:HH:MM:SS. Although the awk-based code sample in this section is much longer than all other code samples in this book, it’s based on techniques that you have already seen in previous date-related code samples. If you do not need to delve into the details of this code sample at this time, feel free to skip this section with no loss of continuity.

Single digit values for all fields (except the year) are considered valid, and handling all the possible combinations becomes quite tedious. However, the code sample in this section shows you a shortcut that involves dynamically modify the input line so that it’s progressively padded as the input string is processed in a left-to-right fashion.

To make sure this is clear, the string 3/15/22 5:5:44 is a valid date, and as the code checks for the validity of the individual date-related fields, the preceding string is successively modified as follows:

3/15/22 5:5:44

03/15/22 5:5:44

03/15/2022 5:5:44

03/15/2022 5:5:44

03/15/2022 05:5:44

03/15/2022 05:05:44

The final row in the preceding list of dates is a “fully padded” date. This approach significantly reduces the number of patterns that need to be checked to determine whether a date has a valid format.

Listing 5.21 displays the content of dates-times.txt that contains dates, and Listing 5.22 shows you the content of date-times-padded.sh, which is an awk-based shell script that processes the dates in Listing 5.21.

Listing 5.21: date-times.txt

2/30/2020 15:05:44

3/15/22 15:5:44

4/29/23 15:5:4

5/16/24 5:05:44

6/17/25 5:5:44

7/18/26 5:5:4

8/19/24 115:05:44

Notice that the first and last lines in Listing 5.21 are invalid: the first row contains a value of 30 for February, which is invalid for any year, and the last row contains an invalid value for the hour.

Listing 5.22 displays the content of date-times-padded.sh that determines which dates in Listing 5.21 have the format YYYY:MM:DD:HH:MM:SS.

Listing 5.22: date-times-padded.sh

cat date-times.txt | awk -F"/" '

function check_leap_year(year) {

  ###

  # A year is a leap year if the following:

  # 1) it is a multiple of 4 AND

  # 2) a century must be a multiple of 400

  # => 2000 is a leap year but 1900 is not.

  ###

  result = 0 # 0: non-leap year 1: leap year

  if((year % 4) == 0) {

    if((year % 100) == 0) {

      if((year % 400) == 0) {

        return 1 # leap year

      } else {

        return 0 # non-leap year

      }

    } else {

      return 1 # leap year

    }

  } else {

    return 0 # non-leap year

  }

}

BEGIN {

  count = 1

  for(i=0;i<12;i++) {

    months[i] = 31

  }

  # 30 days: april,june,september,november

  months[1]  = 28;

  months[3]  = 30;

  months[5]  = 30;

  months[8]  = 30;

  months[10] = 30;

  #for(i=0;i<12;i++) {

  #  print "months[",i,"]:",months[i]

  #}

}

{

   ####################################

   # valid month format:

   # [0-9], [1][0-2]

   #

   # valid day format:

   # [0-9], [1][0-9], [3][0-1]

   #

   # valid year format:

   # [0-9]{2}, [2][0-9][0-9][0-9]

   #

   # Additional comments:

   # 1) 30 versus 31 days in a month

   # 2) check february:  28 vs 29 days

   ####################################

   # sample format:

   # MM/DD/YYYY HH:MM:SS

   print "=> #" count " PROCESSING:",$0

   VALID_DATE="true"

   split($0,day_time," ")

   date_part = day_time[1]

   time_part = day_time[2]

   # step 1: extract the month

   if(date_part ~ /^[0-9]\//) {

     month = "0" substr(date_part,1,1)

     #print "short month: ",month

     # insert a "0" in the date part:

     date_part = "0" substr(date_part,1,1) substr(date_part,2)

     #print "*** new date_part:",date_part

   } else if(date_part ~ /^[0-9]{2}/) {

     month = substr(date_part,1,2)

     #print "normal month: ",month

   } else {

     print "Cannot find month"

     VALID_DATE="false"

   }

   if(VALID_DATE == "true") {

     # step 2: extract the day: #03/15/2021 15:05:44

     #print "checking for day:",date_part

     if(date_part ~ /^[0-9]{2}\/[0-9]{2}/) {

       day = substr(date_part,4,2)

       #print "1normal day: ",day

     } else if (date_part ~ /^[0-9]{2}\/[0-9]/) {

       day = "0" substr(date_part,4,1)

       #print "1short day: ",day

       date_part = substr(date_part,1,3) "0"
substr(date_part,4)

       #print "*** 2new date_part:",date_part

     } else if (date_part ~ /^[0-9]{1}\/[0-9]{2}/) {

       day = substr(date_part,3,2)

       #print "2normal day: ",day

     } else if (date_part ~ /^[0-9]{1}\/[0-9]/) {

       day = "0" substr(date_part,2,1)

       #print "2short day: ",day

     } else {

       print "Cannot find day"

       VALID_DATE="false"

     }

   }

   if(VALID_DATE == "true") {

     # step 3: extract the year: #03/15/2021 15:05:44

     #print "date part:",date_part  # 03/15/2021

     #print "time part:",time_part  # 15:05:44

     if(date_part ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{4}/) {

       year = substr(date_part,7,4)

       #print "normal year: ",year

     } else if (date_part ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{2}/) {

       year = "20" substr(date_part,7,2)

       #print "1short year: ",year

       date_part = substr(date_part,1,6) "20"
substr(date_part,7)

       #print "*** 3new date_part:",date_part

     } else {

       print "Cannot find year"

       VALID_DATE="false"

     }

   }

   if(VALID_DATE == "true") {

     #print "step 4 time_part:",time_part

     # step 4: extract the hours: #15:05:44

     if(time_part ~ /^[0-9]{2}:/) {

       hours = substr(time_part,1,2)

       #print "normal hours: ",hours

     } else if(time_part ~ /^[0-9]:/) {

       hours = "0" substr(time_part,1,1)

       #print "short hours: ",hours

       time_part = "0" substr(time_part,1)

       #print "*** 3new time_part:",time_part

     } else {

       print "no matching hours"

       VALID_DATE = "false"

     }

   }

   if(VALID_DATE == "true") {

     # step 5: extract the minutes: #15:5:44

     if(time_part ~ /^[0-9]{2}:[0-9]{2}/) {

       minutes = substr(time_part,4,2)

       #print "normal minutes: ",minutes

     } else if (time_part ~ /^[0-9]{2}:[0-9]:/) {

       minutes = "0" substr(time_part,4,1)

       #print "short minutes: ",minutes

       time_part = substr(time_part,1,3) "0"
substr(time_part,4)

       #print "*** 4new time_part:",time_part

     } else {

       print "no matching minutes"

       VALID_DATE = "false"

     }

   }

   if(VALID_DATE == "true") {

     # step 6: extract the seconds: #15:05:44

     if(time_part ~ /^[0-9]{2}:[0-9]{2}:[0-9]{2}/) {

       seconds = substr(time_part,7,2)

       #print "normal seconds: ",seconds

     } else if(time_part ~ /^[0-9]{2}:[0-9]{2}:[0-9]{1}/) {

       seconds = "0" substr($0,7,1)

       #print "short seconds: ",seconds

       time_part = substr(time_part,1,6) "0"
substr(time_part,7)

       #print "*** 5new time_part:",time_part

     } else {

       print "no matching seconds"

       VALID_DATE = "false"

     }

   }

   if(VALID_DATE == "true") {

     result = check_leap_year(year)

     if(result == 1) {

        #print "found leap year:",year

        # is day <= 29?

        if(day <= 29) {

          print "=> VALID DAY/TIME FORMAT: ",$0

        } else {

          print "*** Leap year day out of bounds:",$0

        }

     } else {

        #print "found non-leap year:",year

        # is day <= 28?

        if(day <= 28) {

          print "=> VALID DAY/TIME FORMAT: ",$0

        } else {

          print "*** Non-leap year day out of bounds:",$0

        }

     }

   } else {

     print "invalid day/time format: ",$0

   }

   print "----------------\n"

   count += 1

}

'

Launch the code in Listing 5.22 and you will see the following output:

=> #1 PROCESSING: 2/30/2020 15:05:44

*** Leap year day out of bounds: 2/30/2020 15:05:44

=> #2 PROCESSING: 3/15/22 15:5:44

=> VALID DAY/TIME FORMAT:  3/15/22 15:5:44

=> #3 PROCESSING: 4/29/23 15:5:4

*** Non-leap year day out of bounds: 4/29/23 15:5:4

=> #4 PROCESSING: 5/16/24 5:05:44

=> VALID DAY/TIME FORMAT:  5/16/24 5:05:44

=> #5 PROCESSING: 6/17/25 5:5:44

=> VALID DAY/TIME FORMAT:  6/17/25 5:5:44

=> #6 PROCESSING: 7/18/26 5:5:4

=> VALID DAY/TIME FORMAT:  7/18/26 5:5:4

=> #7 PROCESSING: 8/19/24 115:05:44

no matching hours

invalid day/time format:  8/19/24 115:05:44

The companion files contain date-times-padded2.sh, which enhances date-times-padded.sh to provide addition information, as shown here:

INVALID DATES:

8/19/24 115:05:44

2/30/2020 15:05:44

4/29/23 15:5:4

VALID DATES:

6/17/25 5:5:44

5/16/24 5:05:44

7/18/26 5:5:4

3/15/22 15:5:44

YEARS IN VALID DATES:

2022

2024

2025

2026

MONTHS IN VALID DATES:

03

05

06

07

DAYS IN VALID DATES:

15

16

17

18

Working with Codes, Countries, and Cities

This section shows you how to use the awk utility to manage CSV files that contain information about countries, cities, and telephone codes. The international telephone codes are available online:

https://www.internationalcitizens.com/international-calling-codes/

Listing 5.23 displays the content of country_codes.csv that contains the international prefix for several countries. For simplicity, the three-digit prefix has been left-padded with 0, because some countries have a two-digit prefix and other countries have a three-digit prefix.

Listing 5.23: country_codes.csv

001,usa

033,france

034,spain

039,italy

044,uk

049,germany

052,mexico

081,Japan

Listing 5.24 displays the content of add_country_codes.sh that illustrates how to increment the three-digit international prefix for a set of countries. Note that you won’t need this code sample beyond this section: it’s included here to show you how easily you can manipulate the numeric values in a CSV file with the awk utility. If need be, you can easily adapt this code to work with other CSV files.

Listing 5.24: add_country_codes.sh

FILE="country_codes.csv"

echo "=> display code and country:"

awk -F"," '

BEGIN { code = 10000; incr = 10000 }

{

   printf("%s,%s,%d\n", $1, $2, code)

   code += incr

}

' < $FILE

echo "-----------------"

echo

echo "=> increment country code:"

awk -F"," '

BEGIN { code = 1000; incr = 1000 }

{

   printf("%d,%s\n", $1 + code, $2)

   code += incr

}

' < $FILE

Listing 5.24 initializes the variable FILE with the name of the CSV file that contains country codes and abbreviations for several countries. Next, an awk script contains a BEGIN section with a loop that adds 10000 to each country code. For example, the following two code snippets display the “before” and “after” contents of an input line:

001,usa,10000

1001,usa

Launch the code in Listing 5.24 and you will see the following output:

=> display code and country:

001,usa,10000

033,france,20000

034,spain,30000

039,italy,40000

044,uk,50000

049,germany,60000

052,mexico,70000

081,japan,80000

=> increment country code:

1001,usa

2033,france

3034,spain

4039,italy

5044,uk

6049,germany

7052,mexico

8081,Japan

Listing 5.25 displays the content of countries_cities.csv in which each row consists of a country and a list of cities in that country.

Listing 5.25: countries_cities.csv

italy,firenze,milano,roma,venezia

france,antibe,nice,paris,st_jeannet

germany,berlin,frankfurt

spain,barcelona,madrid

england,liverpool,london,manchester

mexico,mexico_city,tijuana

Listing 5.26 displays the content of split_countries_cities.sh that illustrates how to display a list of cities that belong to each country in countries_cities.csv.

Listing 5.26: split_countries_codes.sh

FILE="countries_cities.csv"

awk -F"," '

{

   printf("=> CITIES in %s:\n",$1)

   for(i=2; i<=NF; i++) {

        printf("%s\n", $i)

   }

}

' < $FILE

Listing 5.26 initializes the variable FILE with the name of the CSV file that contains country codes and abbreviations for several countries. Next, an awk script contains a loop that adds displays the abbreviation of each city that is listed in the CSV file countries_cities.csv. Launch the code in Listing 5.26 and you will see the following output:

=> display code and country:

=> CITIES in italy:

firenze

milano

roma

venezia

=> CITIES in france:

antibe

nice

paris

st_jeannet

=> CITIES in germany:

berlin

frankfurt

=> CITIES in spain:

barcelona

madrid

=> CITIES in england:

liverpool

london

manchester

=> CITIES in mexico:

mexico_city

tijuana

Zzzz

Listing 5.7 displays the content of countries_cities2.csv in which each row consists of a country and a list of cities in that country.

Listing 5.27: countries_cities2.csv

italy,firenze,milano,roma,venezia

france,antibe,nice,paris,st_jeannet

germany,berlin,frankfurt

spain,barcelona,madrid

england,liverpool,london,manchester

mexico,mexico_city,tijuana

usa,chicago,illinois,denver,colorado,seattle,washington,

  vancouver,washington

can,vancouver,bc,edmonton,calgary,hamilton,Ontario

Listing 5.28 displays the content of split_countries_cities2.sh that illustrates how to display a list of cities that belong to each country in countries_cities2.csv.

Listing 5.28: split_countries_codes2.sh

FILE="countries_cities2.csv"

awk -F"," '

BEGIN { incr = 1000 }

{

   if($1 !~ /#/) {

     printf("=> CITIES in %s:\n",$1)

     for(i=2; i<=NF; i++) {

          printf("%s\n", $i)

     }

     print("------------\n")

   } else {

     #printf("=> CITIES in %s:\n",$1)

     printf("=> CITIES in %s:\n",substr($1,2))

     for(i=2; i<=NF; i+=2) {

          printf("%s,%s\n", $i,$(i+1))

     }

     print("------------\n")

   }

}

' < $FILE

Listing 5.28 initializes the variable FILE with the name of the CSV file that contains country codes and abbreviations for several countries. Note that this CSV file differs from a similar CSV file with countries and country codes. Specifically, this CSV file contains rows that have either city/province pairs (Canada) or city/state pairs (USA).

Next, an awk script contains a BEGIN section with conditional logic and two blocks of code. The first block of code is for rows that start with a “#” symbol, which indicates that the row contains either city/province pairs (Canada) or city/state pairs (USA). An example of such a row is here:

#usa,chicago,illinois,denver,colorado,seattle,washington,
vancouver,washington

Note that the use of a “#” symbol is simply a convenient way to differentiate these rows from the rows in the second code block. One alternative is to specify one CSV file for the rows that are processed in this code block and a different CSV file for the rows that are processed in the second code block.

Listing 5.28 shows that the first field $1 of such rows contains the abbreviation of a country, and subsequent pairs contain the location of a city in the associated country. For example, $2 and $3 consist of a city/province pair or a city/state pair, and this is similar for $4 and $5, for $6 and $7, and so forth.

The second block of code processes rows whose countries do not have a province or state designation for each city. An example of such a row is here:

italy,firenze,milano,roma,Venezia

The code in this block processes each column sequentially and displays all of them on separate output lines. Launch the code in Listing 5.28 and you will see the following output:

=> CITIES in italy:

firenze

milano

roma

venezia

=> CITIES in france:

antibe

nice

paris

st_jeannet

=> CITIES in germany:

berlin

frankfurt

=> CITIES in spain:

barcelona

madrid

=> CITIES in england:

liverpool

london

manchester

=> CITIES in mexico:

mexico_city

tijuana

=> CITIES in usa:

chicago,illinois

denver,colorado

seattle,washington

vancouver,washington

=> CITIES in canada:

vancouver,bc

edmonton,calgary

hamilton,ontario

At this point, let’s summarize the files that we have examined thus far and what we have accomplished:

[image:]country_codes.csv

[image:]add_country_codes.sh

[image:]countries_cities.csv

[image:]split_country_cities.sh

[image:]countries_cities2.csv

[image:]split_country_cities2.sh

We have a CSV file whose rows are country code + country name combinations. We have CSV files with countries and cities that belong to those countries, one of which contains a list of cities for each country. The other CSV file contains three types of rows:

[image:]country and list of cities

[image:]country and a list of city/province pairs

[image:]country and a list of city/state pairs

Data Cleaning on a Kaggle Dataset

In this section, we perform data cleaning on a “real” dataset using an awk script that performs data cleaning on the following dataset:

https://www.kaggle.com/fehmifratpolat/marketing-report

The awk script follows most of the data cleaning steps that are performed in R that are discussed in the following online article:

https://towardsdatascience.com/cleaning-and-preparing-marketing-data-in-r-prior-to-machine-learning-or-analysis-ec1a12079f1

Listing 5.29 displays the content of convert_marketing.sh that shows you how to perform various data cleaning steps, as indicated in the comments in the code.

Listing 5.29: convert_marketing.sh

Kaggle dataset: https://www.kaggle.com/fehmifratpolat/marketing-report

step 1: extract the 1st, 3rd, 4th, and 7th fields:

cat mark1.csv |awk -F";" '{print $1 ":" $3 ":" $4 ":" $7}' >mark2.csv

step 2: replace "Not tracked" with "direct":

peri-Co-od;salesChannel;platformcode;marketingInvestment

date;channel;platformcode;;spend

cat mark2.csv |awk -F":" '

{

   $3 = tolower($3)

   if($3 ~ /Not tracked/) {

      $3 = "direct"

   } else if($3 ~ /unpaid/) {

      $3 = "organic"

   } else if($3 ~ /Silverpop/) {

      $3 = "email"

   }

   if($4 ~ /,/) {

      split($4,arr1,",")

      $4 = arr1[1] "." arr1[2]

   }

   print $1 ":" $2 ":" $3 ":" $4

}

' >mark3.csv

step 3: replace YYYYDDMM with YYYY-MM-YY format:

cat mark3.csv |awk -F":" '

{

   year  = substr($1,1,4)

   day   = substr($1,5,2)

   month = substr($1,7,2)

   printf("%s-%s-%s:%s:%s:%s\n",year,month,day,$2,$3,$4)

}

' >mark4.csv

step 4: calculate subtotals based on $1+$2+$3:

cat mark4.csv |awk -F":" '

{

   fields=$1FS$2FS$3;subtotals[fields] += $4

}

step 5: display values of subtotals:

END{

   total = 0

   for (i in subtotals) {

     printf("Subtotal for %44s => %-8d\n", i, subtotals[i])

     total += subtotals[i]

   }

   printf("TOTAL REVENUE: => %44d\n",total)

}

' >mark5.csv

Although it’s not necessary to split the code into five awk scripts, it’s easier to follow the code, and you will have access to the intermediate files that you can inspect to see their contents.

Listing 5.29 starts with step 1 that extracts the 1st, 3rd, 4th, and 7th fields from the CSV file mark1.csv and redirects the output to the CSV file mark2.csv, as shown here:

cat mark1.csv |awk -F";" '{print $1 ":" $3 ":" $4 ":" $7}'
>mark2.csv

Step 2 in Listing 5.29 replaces occurrences of the string “Not tracked” with “direct,” the string “unpaid” with “organic,” and the string “Silverpop” with the email in $3. In addition, the “,” that appears in $4 is replaced by a “.”  after which a new string is printed that contains the modifications to $3 and $4. Each output line is redirected to the CSV file mark3.csv.

Step 3 in Listing 5.27 replaces YYYYDDMM dates with a YYYY-MM-YY format, as shown here, after which the output is redirected to the CSV file mark4.csv:

year  = substr($1,1,4)

day   = substr($1,5,2)

month = substr($1,7,2)

printf("%s-%s-%s:%s:%s:%s\n",year,month,day,$2,$3,$4)

Step 4 in Listing 5.29 is probably the most interesting code snippet in this code sample. The concatenation of the first three fields, separated by the default field separator, form an index for the array subtotals. Each time this combination appears in mark4.csv, the corresponding entry in the subtotals array is incremented with the value in $4, as shown here:

fields=$1FS$2FS$3;subtotals[fields] += $4

After the body of this awk script has completed execution, an END block (which is labeled step 5) displays the values in the subtotals array, along with the grand total, as shown here:

total = 0

for (i in subtotals) {

  printf("Subtotal for %44s => %-8d\n", i, subtotals[i])

  total += subtotals[i]

}

After the preceding code has completed execution, the output is redirected to the CSV file mark5.csv.

Launch the code in Listing 5.27 that generates a set of intermediate CSV files and a final CSV file named mark5.csv. If you want to see the first five lines from each of the intermediate files mark1.csv . . . mark5.csv that are generated in Listing 5.27, execute a shell script that contains the following code:

for f in `ls mark*csv`

do

  echo "file: $f"

  head -5 $f

done

The output of the preceding code block is shown here:

file: mark1.csv

periodCode;reportGranularity;salesChannel;platformCode;channelCode;
tagCodes;marketingInvestment;impressions;clicks;visits;conversions;
deliveries;currencyCode;appliedAttributionModel;periodStartDate

20200102;Daily;online;Not tracked;
notset;;0;0;0;0;16;14;CZK;lastTouch;2020-01-02T00:00:00.0000000

20200103;Daily;online;Not tracked;
notset;;0;0;0;0;13;13;CZK;lastTouch;2020-01-03T00:00:00.0000000

20200104;Daily;online;Not tracked;
notset;;0;0;0;0;6;6;CZK;lastTouch;2020-01-04T00:00:00.0000000

20200105;Daily;online;Not tracked;
notset;;0;0;0;0;1;1;CZK;lastTouch;2020-01-05T00:00:00.0000000

file: mark2.csv

periodCode:salesChannel:platformCode:marketingInvestment

20200102:online:Not tracked:0

20200103:online:Not tracked:0

20200104:online:Not tracked:0

20200105:online:Not tracked:0

file: mark3.csv

periodCode:salesChannel:platformcode:marketingInvestment

20200102:online:not tracked:0

20200103:online:not tracked:0

20200104:online:not tracked:0

20200105:online:not tracked:0

file: mark4.csv

peri-Co-od:salesChannel:platformcode:marketingInvestment

2020-02-01:online:not tracked:0

2020-03-01:online:not tracked:0

2020-04-01:online:not tracked:0

2020-05-01:online:not tracked:0

file: mark5.csv

Subtotal for                    2020-12-02:online:organic => 0

Subtotal for                2020-31-01:online:not tracked => 0

Subtotal for 2020-10-01:online:facebookbusinessadsmanager => 130

Subtotal for                      2020-06-01:online:sklik => 914

Subtotal for                   2020-24-03:online:rtbhouse => 0

TOTAL REVENUE: =>                                      1227857

Summary

This chapter started with a brief description of data cleaning, followed by examples of replacing NULL values with numeric values, replacing multiple values with a single value, and converting strings to date values.

Next, you saw how to use the sed command line utility to replace multiple delimiters in a CSV file with a single delimiter. You will also see how to use the awk command line utility to restructure a CSV file to create a file whose rows have the same number of fields.

In addition, you saw how to perform various tasks in SQL, and then how to perform these tasks in a Pandas data frame.

CHAPTER 6

DATA VISUALIZATION

This chapter introduces data visualization, along with a wide-ranging collection of Python-based code samples that use various visualization tools (including Matplotlib and Seaborn) to render charts and graphs. In addition, this chapter contains Python code samples that combine Pandas, Matplotlib, and built-in datasets.

The first part of this chapter briefly discusses data visualization, with a short list of some data visualization tools, and a list of various types of visualization (such as bar graphs and pie charts).

The second part of this chapter introduces you to Matplotlib, which is an open source Python library modeled after MatLab. This section also provides the Python code samples for the line graphs (horizontal, vertical, and diagonal) in the Euclidean plane that you saw in a previous chapter.

The third part of the chapter introduces you to Seaborn for data visualization, which is a layer above Matplotlib. Although Seaborn does not have all of the features that are available in Matplotlib, Seaborn provides an easier set of APIs for rendering charts and graphs.

The final portion of this chapter contains a very short introduction to Bokeh, along with a code sample that illustrates how to create a more artistic graphics effect with relative ease in Bokeh.

What is Data Visualization?

Data visualization refers to presenting data in a graphical manner, such as bar charts, line graphs, heat maps, and many other specialized representations. As you probably know, big data comprises massive amounts of data, which leverages data visualization tools to assist in making better decisions.

A key role for good data visualization is to tell a meaningful story, which in turn focuses on useful information that resides in datasets that can contain many data points (i.e., billions of rows of data). Another aspect of data visualization is its effectiveness: how well does it convey the trends that might exist in the dataset?

There are many open source data visualization tools available, some of which are listed here (many others are available):

[image:]Matplotlib

[image:]Seaborn

[image:]Bokeh

[image:]YellowBrick

[image:]Tableau

[image:]D3.js (JavaScript and SVG)

Incidentally, in case you have not already done so, it would be helpful to install the following Python libraries (using pip3) on your computer so that you can launch the code samples in this chapter:

pip3 install matplotlib

pip3 install seaborn

pip3 install bokeh

Types of Data Visualization

Bar graphs, line graphs, and pie charts are common ways to present data, and yet many other types exist, some of which are listed here:

[image:]2D/3D Area Chart

[image:]Bar Chart

[image:]Gantt Chart

[image:]Heat Map

[image:]Histogram

[image:]Polar Area

[image:]Scatter Plot (2D or 3D)

[image:]Timeline

The Python code samples in the next several sections illustrate how to perform visualization via rudimentary APIs from Matplotlib.

What is Matplotlib?

Matplotlib is a plotting library that supports NumPy, SciPy, and toolkits such as wxPython (among others). Matplotlib supports only version 3 of Python: support for version 2 of Python was available only through 2020. Matplotlib is a multi-platform library that is built on NumPy arrays.

The plotting-related code samples in this chapter use pyplot, which is a Matplotlib module that provides a MATLAB-like interface. The Python code samples for visualization in this chapter use primarily Matplotlib, along with some code samples that use Seaborn. The code samples that plot line segments assume that you are familiar with the equation of a (non-vertical) line in the plane: y = m*x + b, where m is the slope and b is the y-intercept.

Furthermore, some code samples use NumPy APIs such as np.linspace(), np.array(),  np.random.rand(), and np.ones() that are discussed in Chapter 3, so you can refresh your memory regarding these APIs.

Diagonal Lines in Matplotlib

Listing 6.1 displays the content of diagonallines.py that illustrates how to plot lines in a grid.

Listing 6.1: diagonallines.py

import matplotlib.pyplot as plt

import numpy as np

x1 = np.linspace(-5,5,num=200)

y1 = x1

x2 = np.linspace(-5,5,num=200)

y2 = -x2

plt.axis([-5, 5, -5, 5])

plt.plot(x1,y1)

plt.plot(x2,y2)

plt.show()

Listing 6.1 contains some import statements and then initializes the variables x1 and y1 as an array of 200 equally space points, where the points in y1 equal the values in x1.

Similarly, the variables x2 and y2 are defined, except that the values in y2 are the negative of the values in x2. The Pyplot API plot() uses the points variable to display a pair of diagonal line segments.

Figure 6.1 displays a set of “dashed” line segment whose equations are contained in Listing 6.1.

[image:]

FIGURE 6.1 A pair of diagonal line segments.

A Colored Grid in Matplotlib

Listing 6.2 displays the content of plotgrid2.py that illustrates how to display a colored grid.

Listing 6.2: plotgrid2.py

import matplotlib.pyplot as plt

from matplotlib import colors

import numpy as np

data = np.random.rand(10, 10) * 20

create discrete colormap

cmap = colors.ListedColormap(['red', 'blue'])

bounds = [0,10,20]

norm = colors.BoundaryNorm(bounds, cmap.N)

fig, ax = plt.subplots()

ax.imshow(data, cmap=cmap, norm=norm)

draw gridlines

ax.grid(which='major', axis='both', linestyle='-', color='k', linewidth=2)

ax.set_xticks(np.arange(-.5, 10, 1));

ax.set_yticks(np.arange(-.5, 10, 1));

plt.show()

Listing 6.2 defines the NumPy variable data that defines a 2D set of points with ten rows and ten columns. The Pyplot API plot() uses the data variable to display a colored grid-like pattern.

Figure 6.2 displays a colored grid whose equations are contained in Listing 6.2.

[image:]

FIGURE 6.2 A colored grid of line segments.

Randomized Data Points in Matplotlib

Listing 6.3 displays the content of lin_reg_plot.py that illustrates how to plot a graph of random points.

Listing 6.3: lin_plot_reg.py

import numpy as np

import matplotlib.pyplot as plt

trX = np.linspace(-1, 1, 101) # Linear space of 101 and [-1,1]

#Create the y function based on the x axis

trY = 2*trX + np.random.randn(*trX.shape)*0.4+0.2

#create figure and scatter plot of the random points

plt.figure()

plt.scatter(trX,trY)

Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

Listing 6.3 defines the NumPy variable trX that contains 101 equally spaced numbers that are between −1 and 1 (inclusive). The variable trY is defined in two parts: the first part is 2*trX and the second part is a random value that is partially based on the length of the one-dimensional array trX. The variable trY is the sum of these two “parts”, which creates a “fuzzy” line segment. The next portion of Listing 6.3 creates a scatterplot based on the values in trX and trY, followed by the Pyplot API plot() that renders a line segment.

Figure 6.3 displays a random set of points based on the code in Listing 6.3.

[image:]

FIGURE 6.3 A random set of points.

A Histogram in Matplotlib

Listing 6.4 displays the content of histogram1.py that illustrates how to plot a histogram using Matplotlib.

Listing 6.4: histogram1.py

import numpy as np

import Matplotlib.pyplot as plt

max1 = 500

max2 = 500

appl_count = 28 + 4 * np.random.randn(max1)

bana_count = 24 + 4 * np.random.randn(max2)

plt.hist([appl_count,
appl_count],stacked=True,color=['r','b'])

plt.show()

Listing 6.4 is straightforward: the NumPy variables appl_count and bana_count contain a random set of values whose upper bound is max1 and max2, respectively. The Pyplot API hist() uses the points appl_count and bana_count to display a histogram. Figure 6.4 displays a histogram whose shape is based on the code in Listing 6.4.

[image:]

FIGURE 6.4 A histogram based on random values.

A Set of Line Segments in Matplotlib

Listing 6.5 displays the content of line_segments.py that illustrates how to plot a set of connected line segments in Matplotlib.

Listing 6.5: line_segments.py

import numpy as np

import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

plt.plot(x) # OR: plt.plot(x, 'ro-') or bo

plt.ylabel('Height')

plt.xlabel('Weight')

plt.show()

Listing 6.5 defines the array x that contains a hard-coded set of values. The Pyplot API plot() uses the variable x to display a set of connected line segments. Figure 6.5 displays the result of launching the code in Listing 6.5.

[image:]

FIGURE 6.5 A set of connected line segments.

Plotting Multiple Lines in Matplotlib

Listing 6.6 displays the content of plt_array2.py that illustrates the ease with which you can plot multiple lines in Matplotlib.

Listing 6.6: plt_array2.py

import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

data = [[8, 4, 1], [5, 3, 3], [6, 0, 2], [1, 7, 9]]

plt.plot(data, 'd-')

plt.show()

Listing 6.6 defines the array data that contains a hard-coded set of values. The Pyplot API plot() uses the variable data to display a line segment. Figure 6.6 displays multiple lines based on the code in Listing 6.6.

[image:]

FIGURE 6.6 Multiple lines in Matplotlib.

Trigonometric Functions in Matplotlib

You can display the graph of trigonometric functions as easily as you can render “regular” graphs using Matplotlib. Listing 6.7 displays the content of sincos.py that illustrates how to plot a sine function and a cosine function in Matplotlib.

Listing 6.7: sincos.py

import numpy as np

import math

x = np.linspace(0, 2*math.pi, 101)

s = np.sin(x)

c = np.cos(x)

import matplotlib.pyplot as plt

plt.plot (s)

plt.plot (c)

plt.show()

Listing 6.7 defines the NumPy variables x, s, and c using the NumPy APIs linspace(), sin(), and cos(), respectively. Next, the Pyplot API plot() uses these variables to display a sine function and a cosine function.

Figure 6.7 displays a graph of two trigonometric functions based on the code in Listing 6.7.

[image:]

FIGURE 6.7 Sine and cosine functions.

Now let’s look at a simple dataset consisting of discrete data points, which is the topic of the next section.

Display IQ Scores in Matplotlib

Listing 6.8 displays the content of iq_scores.py that illustrates how to plot a histogram that displays IQ scores (based on a normal distribution).

Listing 6.8: iq_scores.py

import numpy as npf

import matplotlib.pyplot as plt

mu, sigma = 100, 15

x = mu + sigma * np.random.randn(10000)

the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Intelligence')

plt.ylabel('Probability')

plt.title('Histogram of IQ')

plt.text(60, .025, r'$\mu=100,\ \sigma=15$')

plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

Listing 6.8 defines the scalar variables mu and sigma, followed by the NumPy variable x that contains a random set of points. Next, the variables n, bins, and patches are initialized via the return values of the NumPy hist() API. Finally, these points are plotted via the usual plot() API to display a histogram.

Figure 6.8 displays a histogram whose shape is based on the code in Listing 6.8.

[image:]

FIGURE 6.8 A histogram to display IQ scores.

Plot a Best-Fitting Line in Matplotlib

Listing 6.9 displays the content of plot_best_fit.py that illustrates how to plot a best-fitting line in Matplotlib.

Listing 6.9: plot_best_fit.py

import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)

ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):

  m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /

       ((np.mean(xs)**2) - np.mean(xs**2)))

  b = np.mean(ys) - m * np.mean(xs)

  return m, b

m,b = best_fit_slope(xs,ys)

print('m:',m,'b:',b)

regression_line = [(m*x)+b for x in xs]

import matplotlib.pyplot as plt

from matplotlib import style

style.use('ggplot')

plt.scatter(xs,ys,color='#0000FF')

plt.plot(xs, regression_line)

plt.show()

Listing 6.9 defines the NumPy array variables xs and ys that are “fed” into the Python function best_fit_slope() that calculates the slope m and the y-intercept b for the best-fitting line. The Pyplot API scatter() displays a scatter plot of the points xs and ys, followed by the plot() API that displays the best-fitting line. Figure 6.9 displays a simple line based on the code in Listing 6.9.

[image:]

FIGURE 6.9 A best-fitting line for a 2D dataset.

This concludes the portion of the chapter regarding NumPy and Matplotlib. The next section introduces you to Sklearn, which is a powerful Python-based library that supports many algorithms for machine learning. After you have read the short introduction, subsequent sections contain Python code samples that combine Pandas, Matplotlib, and Sklearn built-in datasets.

The Iris Dataset in SkLearn

Listing 6.10 displays the content of sklearn_iris.py that illustrates how to access the Iris dataset in Sklearn.

In addition to support for machine learning algorithms, Sklearn provides various built-in datasets that you can access with literally one line of code. In fact, Listing 6.10 displays the content of sklearn_iris1.py that illustrates how you can easily load the Iris dataset into a Pandas data frame.

Listing 6.10: sklearn_iris1.py

import numpy as np

import pandas as pd

from sklearn.datasets import load_iris

iris = load_iris()

print("=> iris keys:")

for key in iris.keys():

  print(key)

print()

#print("iris dimensions:")

#print(iris.shape)

#print()

print("=> iris feature names:")

for feature in iris.feature_names:

  print(feature)

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

print()

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

print("=> target:")

print(iris.target)

print()

print("=> all data:")

print(iris.data)

Listing 6.10 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a loop displays the keys in dataset, followed by another loop that displays the feature names.

The next portion of Listing 6.10 initializes the variable X with the feature values in columns 2 and 3, and then initializes the variable y with the values of the target column.

The variable x_min is initialized as the minimum value of column 0 and then an additional 0.5 is subtracted from x_min. Similarly, the variable x_max is initialized as the maximum value of column 0 and then an additional 0.5 is added to x_max. The variables y_min and y_max are the counterparts to x_min and x_max, and they are applied to column 1 instead of column 0.

Launch the code in Listing 6.10 and you will see the following output (truncated for brevity):

Pandas df1:

    

=> iris keys:

data

target

target_names

DESCR

feature_names

filename

=> iris feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> Class labels: [0 1 2]

=> x_min: 0.5 x_max: 7.4

=> y_min: -0.4 y_max: 3.0

=> target:

[0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 1 2 2 2 2 2 2 2 2 2 2 2

 2 2

 2 2]

=> all data:

[[5.1 3.5 1.4 0.2]

 [4.9 3.  1.4 0.2]

 [4.7 3.2 1.3 0.2]

 // details omitted for brevity

 [6.5 3.  5.2 2.]

 [6.2 3.4 5.4 2.3]

 [5.9 3.  5.1 1.8]]

SkLearn, Pandas, and the Iris Dataset

Listing 6.11 displays the content of pandas_iris.py that illustrates how to load the contents of the Iris dataset (from Sklearn) into a Pandas data frame.

Listing 6.11: pandas_iris.py

import numpy as np

import pandas as pd

from sklearn.datasets import load_iris

iris = load_iris()

print("=> IRIS feature names:")

for feature in iris.feature_names:

  print(feature)

print()

Create a data frame with the feature variables

df = pd.Data frame(iris.data, columns=iris.feature_names)

print("=> number of rows:")

print(len(df))

print()

print("=> number of columns:")

print(len(df.columns))

print()

print("=> number of rows and columns:")

print(df.shape)

print()

print("=> number of elements:")

print(df.size)

print()

print("=> IRIS details:")

print(df.info())

print()

print("=> top five rows:")

print(df.head())

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

Listing 6.11 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a for loop displays the feature names. The next code snippet initializes the variable df as a Pandas data frame that contains the data from the Iris dataset.

The next block of code invokes some attributes and methods of a Pandas data frame to display the number of rows, columns, and elements in the data frame, as well as the details of the Iris dataset, the first five rows, and the unique labels in the Iris dataset. Launch the code in Listing 6.11 and you will see the following output:

=> IRIS feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> number of rows:

150

=> number of columns:

4

=> number of rows and columns:

(150, 4)

=> number of elements:

600

=> IRIS details:

<class 'pandas.core.frame.Data frame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 4 columns):

sepal length (cm)    150 non-null float64

sepal width (cm)     150 non-null float64

petal length (cm)    150 non-null float64

petal width (cm)     150 non-null float64

dtypes: float64(4)

memory usage: 4.8 KB

None

=> top five rows:

   sepal          sepal        petal        petal
   length (cm)    width (cm)   length (cm)  width (cm)

0          5.1          3.5           1.4          0.2

1          4.9          3.0           1.4          0.2

2          4.7          3.2           1.3          0.2

3          4.6          3.1           1.5          0.2

4          5.0          3.6           1.4          0.2

=> Class labels: [0 1 2]

Now let’s turn our attention to Seaborn, which is a very nice data visualization package for Python.

Working with Seaborn

Seaborn is a Python library for data visualization that also provides a high-level interface to Matplotlib. Seaborn is easier to work with than Matplotlib, and actually extends Matplotlib, but Seaborn is not as powerful as Matplotlib.

Seaborn addresses two challenges of Matplotlib. The first involves the default Matplotlib parameters. Seaborn works with different parameters, which provides greater flexibility than the default rendering of Matplotlib plots. Seaborn addresses the limitations of the Matplotlib default values for features such as colors, tick marks on the upper and right axes, and the style (among others).

In addition, Seaborn makes it easier to plot entire data frames (somewhat like pandas) than doing so in Matplotlib. Nevertheless, since Seaborn extends Matplotlib, knowledge of the latter is advantageous and will simplify your learning curve.

Features of Seaborn

Some of the features of Seaborn include the following:

[image:]scale seaborn plots

[image:]set the plot style

[image:]set the figure size

[image:]rotate label text

[image:]set xlim or ylim

[image:]set log scale

[image:]add titles

Some useful methods:

[image:]plt.xlabel()

[image:]plt.ylabel()

[image:]plt.annotate()

[image:]plt.legend()

[image:]plt.ylim()

[image:]plt.savefig()

Seaborn supports various built-in datasets, just like NumPy and Pandas, including the Iris dataset and the Titanic dataset, both of which you will see in subsequent sections. As a starting point, the three-line code sample in the next section shows you how to display the rows in the built-in “tips” dataset.

Seaborn Built-in Datasets

Listing 6.12 displays the content of seaborn_tips.py that illustrates how to read the tips dataset into a data frame and display the first five rows of the dataset.

Listing 6.12: seaborn_tips.py

import seaborn as sns

df = sns.load_dataset("tips")

print(df.head())

Listing 6.12 is very simple: after importing seaborn, the variable df is initialized with the data in the built-in dataset tips, and the print() statement displays the first five rows of df. Note that the load_dataset() API searches for online or built-in datasets. The output from Listing 6.12 is here:

   total_bill   tip     sex smoker  day    time  size

0       16.99  1.01  Female     No  Sun  Dinner     2

1       10.34  1.66    Male     No  Sun  Dinner     3

2       21.01  3.50    Male     No  Sun  Dinner     3

3       23.68  3.31    Male     No  Sun  Dinner     2

4       24.59  3.61  Female     No  Sun  Dinner     4

The Iris Dataset in Seaborn

Listing 6.13 displays the content of seaborn_iris.py that illustrates how to plot the Iris dataset.

Listing 6.13: seaborn_iris.py

import seaborn as sns

import Matplotlib.pyplot as plt

Load iris data

iris = sns.load_dataset("iris")

Construct iris plot

sns.swarmplot(x="species", y="petal_length", data=iris)

Show plot

plt.show()

Listing 6.13 imports seaborn and Matplotlib.pyplot and then initializes the variable iris with the contents of the built-in Iris dataset. Next, the swamplot() API displays a graph with the horizontal axis labeled species, the vertical axis labeled petal_length, and the displayed points are from the Iris dataset. Figure 6.10 displays the images in the Iris dataset based on the code in Listing 6.13.

[image:]

FIGURE 6.10 The Iris dataset.

The Titanic Dataset in Seaborn

Listing 6.14 displays the content of seaborn_titanic_plot.py that illustrates how to plot the Titanic dataset.

Listing 6.14: seaborn_titanic_plot.py

import matplotlib.pyplot as plt

import seaborn as sns

titanic = sns.load_dataset("titanic")

g = sns.factorplot("class", "survived", "sex", data=titanic, kind="bar", palette="muted", legend=False)

plt.show()

Listing 6.14 contains the same import statements as Listing 6.13, and then initializes the variable titanic with the contents of the built-in Titanic dataset. Next, the factorplot() API displays a graph with dataset attributes that are listed in the API invocation. Figure 6.11 displays a plot of the data in the Titanic dataset based on the code in Listing 6.14.

[image:]

FIGURE 6.11 A histogram of the Titanic dataset.

Extracting Data from the Titanic Dataset in Seaborn (1)

Listing 6.15 displays the content of seaborn_titanic.py that illustrates how to extract subsets of data from the Titanic dataset.

Listing 6.15: seaborn_titanic.py

import matplotlib.pyplot as plt

import seaborn as sns

titanic = sns.load_dataset("titanic")

print("titanic info:")

titanic.info()

print("first five rows of titanic:")

print(titanic.head())

print("first four ages:")

print(titanic.loc[0:3,'age'])

print("fifth passenger:")

print(titanic.iloc[4])

#print("first five ages:")

#print(titanic['age'].head())

#print("first five ages and gender:")

#print(titanic[['age','sex']].head())

#print("descending ages:")

#print(titanic.sort_values('age', ascending = False).head())

#print("older than 50:")

#print(titanic[titanic['age'] > 50])

#print("embarked (unique):")

#print(titanic['embarked'].unique())

#print("survivor counts:")

#print(titanic['survived'].value_counts())

#print("counts per class:")

#print(titanic['pclass'].value_counts())

#print("max/min/mean/median ages:")

#print(titanic['age'].max())

#print(titanic['age'].min())

#print(titanic['age'].mean())

#print(titanic['age'].median())

Listing 6.15 contains the same import statements as Listing 6.13, and then initializes the variable titanic with the contents of the built-in Titanic dataset. The next portion of Listing 6.15 displays various aspects of the Titanic dataset, such as its structure, the first five rows, the first four ages, and the details of the fifth passenger.

As you can see, there is a large block of “commented out” code that you can uncomment to see the associated output, such as age, gender, persons over 50, and unique rows. The output from Listing 6.15 is here:

titanic info:

<class 'pandas.core.frame.Data frame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 15 columns):

survived       891 non-null int64

pclass         891 non-null int64

sex            891 non-null object

age            714 non-null float64

sibsp          891 non-null int64

parch          891 non-null int64

fare           891 non-null float64

embarked       889 non-null object

class          891 non-null category

who            891 non-null object

adult_male     891 non-null bool

deck           203 non-null category

embark_town    889 non-null object

alive          891 non-null object

alone          891 non-null bool

dtypes: bool(2), category(2), float64(2), int64(4), object(5)

memory usage: 80.6+ KB

first five rows of titanic:

   survived  pclass     sex   age  sibsp  parch     fare

   embarked  class  \

0         0       3    male  22.0      1      0   7.2500        
S  Third

1         1       1  female  38.0      1      0  71.2833        
C  First

2         1       3  female  26.0      0      0   7.9250        
S  Third

3         1       1  female  35.0      1      0  53.1000        
S  First

4         0       3    male  35.0      0      0   8.0500        
S  Third

     who  adult_male deck  embark_town alive  alone

0    man        True  NaN  Southampton    no  False

1  woman       False    C    Cherbourg   yes  False

2  woman       False  NaN  Southampton   yes   True

3  woman       False    C  Southampton   yes  False

4    man        True  NaN  Southampton    no   True

first four ages:

0    22.0

1    38.0

2    26.0

3    35.0

Name: age, dtype: float64

fifth passenger:

survived                 0

pclass                   3

sex                   male

age                     35

sibsp                    0

parch                    0

fare                  8.05

embarked                 S

class                Third

who                    man

adult_male            True

deck                   NaN

embark_town    Southampton

alive                   no

alone                 True

Name: 4, dtype: object

counts per class:

3    491

1    216

2    184

Name: pclass, dtype: int64

max/min/mean/median ages:

80.0

0.42

29.69911764705882

28.0

Extracting Data from the Titanic Dataset in Seaborn (2)

Listing 6.16 displays the content of seaborn_titanic2.py that illustrates how to extract subsets of data from the Titanic dataset.

Listing 6.16: seaborn_titanic2.py

import matplotlib.pyplot as plt

import seaborn as sns

titanic = sns.load_dataset("titanic")

Returns a scalar

titanic.ix[4, 'age']

print("age:",titanic.at[4, 'age'])

Returns a Series of name 'age', and the age values associated

to the index labels 4 and 5

titanic.ix[[4, 5], 'age']

print("series:",titanic.loc[[4, 5], 'age'])

Returns a Series of name '4', and the age and fare values

associated to that row.

titanic.ix[4, ['age', 'fare']]

print("series:",titanic.loc[4, ['age', 'fare']])

Returns a Data frame with rows 4 and 5, and columns 'age' and 'fare'

titanic.ix[[4, 5], ['age', 'fare']]

print("data frame:",titanic.loc[[4, 5], ['age', 'fare']])

query = titanic[

    (titanic.sex == 'female')

    & (titanic['class'].isin(['First', 'Third']))

    & (titanic.age > 30)

    & (titanic.survived == 0)

]

print("query:",query)

Listing 6.16 contains the same import statements as Listing 6.15, and then initializes the variable titanic with the contents of the built-in Titanic dataset. The next code snippet displays the age of the passenger with index 4 in the dataset (which equals 35).

The following code snippet displays the ages of passengers with index values 4 and 5 in the dataset:

print("series:",titanic.loc[[4, 5], 'age'])

The next snippet displays the age and fare of the passenger with index 4 in the dataset, followed by another code snippet displays the age and fare of the passengers with index 4 and index 5 in the dataset.

The final portion of Listing 6.16 is the most interesting part: it defines a variable query, as shown here:

query = titanic[

    (titanic.sex == 'female')

    & (titanic['class'].isin(['First', 'Third']))

    & (titanic.age > 30)

    & (titanic.survived == 0)

]

The preceding code block will retrieve the female passengers who are in either first class or third class, are also over 30, and did not survive the accident. The entire output from Listing 6.16 is here:

age: 35.0

series: 4    35.0

5     NaN

Name: age, dtype: float64

series: age       35

fare    8.05

Name: 4, dtype: object

data frame:     age    fare

4  35.0  8.0500

5   NaN  8.4583

[image:]

Visualizing a Pandas Dataset in Seaborn

Listing 6.17 displays the content of pandas_seaborn.py that illustrates how to display a Pandas dataset in Seaborn.

Listing 6.17: pandas_seaborn.py

import pandas as pd

import random

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.Data frame()

df['x'] = random.sample(range(1, 100), 25)

df['y'] = random.sample(range(1, 100), 25)

print("top five elements:")

print(df.head())

display a density plot

#sns.kdeplot(df.y)

display a density plot

#sns.kdeplot(df.y, df.x)

#sns.distplot(df.x)

display a histogram

#plt.hist(df.x, alpha=.3)

#sns.rugplot(df.x)

display a boxplot

#sns.boxplot([df.y, df.x])

display a violin plot

#sns.violinplot([df.y, df.x])

display a heatmap

#sns.heatmap([df.y, df.x], annot=True, fmt="d")

display a cluster map

#sns.clustermap(df)

display a scatterplot of the data points

sns.lmplot('x', 'y', data=df, fit_reg=False)

plt.show()

Listing 6.17 contains several familiar import statements, followed by the initialization of the Pandas variable df as a Pandas data frame. The next two code snippets initialize the columns and rows of the data frame, and the print() statement displays the first five rows.

For your convenience, Listing 6.17 contains an assortment of “commented out” code snippets that use Seaborn to render a density plot, a histogram, a boxplot, a violin plot, a heatmap, and a cluster. Uncomment the portions that interest you to see the associated plot. The output from Listing 6.17 is here:

top five elements:

    x   y

0  52  34

1  31  47

2  23  18

3  34  70

4  71   1

Figure 6.12 displays a plot of the data in the Titanic dataset based on the code in Listing 6.17.

[image:]

FIGURE 6.12 A Pandas data frame displayed via Seaborn.

Data Visualization in Pandas

Although Matplotlib and Seaborn are often the “go to” Python libraries for data visualization, you can also use Pandas for such tasks.

Listing 6.18 displays the content pandas_viz1.py that illustrates how to render various types of charts and graphs using Pandas and Matplotlib.

Listing 6.18: pandas_viz1.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

df = pd.Data frame(np.random.rand(16,3),
columns=['X1','X2','X3'])

print("First 5 rows:")

print(df.head())

print()

print("Diff of first 5 rows:")

print(df.diff().head())

print()

bar chart:

#ax = df.plot.bar()

horizontal stacked bar chart:

#ax = df.plot.barh(stacked=True)

vertical stacked bar chart:

ax = df.plot.bar(stacked=True)

stacked area graph:

#ax = df.plot.area()

non-stacked area graph:

#ax = df.plot.area(stacked=False)

#plt.show(ax)

Listing 6.18 initializes the data frame df with a 16x3 matrix of random numbers, followed by the contents of df. The bulk of Listing 6.18 contains code snippets for generating a bar chart, a horizontal stacked bar chart, a vertical stacked bar chart, a stacked area graph, and a non-stacked area graph. You can uncomment the individual code snippet that displays the graph of your choice with the contents of df. Launch the code in Listing 6.18 and you will see the following output:

First 5 rows:

         X1        X2        X3

0  0.051089  0.357183  0.344414

1  0.800890  0.468372  0.800668

2  0.492981  0.505133  0.228399

3  0.461996  0.977895  0.471315

4  0.033209  0.411852  0.347165

Diff of first 5 rows:

         X1        X2        X3

0       NaN       NaN       NaN

1  0.749801  0.111189  0.456255

2 -0.307909  0.036760 -0.572269

3 -0.030984  0.472762  0.242916

4 -0.428787 -0.566043 -0.124150

What is Bokeh?

Bokeh is an open source project that depends on Matplotlib and Sklearn. As you will see in the subsequent code sample, Bokeh generates an HTML Web page that is based on Python code and then launches that Web page in a browser. Bokeh and D3.js (which is a JavaScript layer of abstraction over SVG) both provide elegant visualization effects that support animation effects and user interaction.

Bokeh enables the rapid creation statistical visualization, and it works with other tools such as Python Flask and Django. In addition to Python, Bokeh supports Julia, Lua, and R (JSON files are generated instead of HTML Web pages).

Listing 6.19 displays the content bokeh_trig.py that illustrates how to create a graphics effect using various Bokeh APIs.

Listing 6.19: bokeh_trig.py

pip3 install bokeh

from bokeh.plotting import figure, output_file, show

from bokeh.layouts import column

import bokeh.colors as colors

import numpy as np

import math

deltaY = 0.01

maxCount = 150

width  = 800

height = 400

band_width = maxCount/3

x = np.arange(0, math.pi*3, 0.05)

y1 = np.sin(x)

y2 = np.cos(x)

white = colors.RGB(255,255,255)

fig1 = figure(plot_width = width, plot_height = height)

for i in range(0,maxCount):

  rgb1 = colors.RGB(i*255/maxCount, 0, 0)

  rgb2 = colors.RGB(i*255/maxCount, i*255/maxCount, 0)

  fig1.line(x, y1-i*deltaY,line_width = 2, line_color = rgb1)

  fig1.line(x, y2-i*deltaY,line_width = 2, line_color = rgb2)

for i in range(0,maxCount):

  rgb1 = colors.RGB(0, 0, i*255/maxCount)

  rgb2 = colors.RGB(0, i*255/maxCount, 0)

  fig1.line(x, y1+i*deltaY,line_width = 2, line_color = rgb1)

  fig1.line(x, y2+i*deltaY,line_width = 2, line_color = rgb2)

  if (i % band_width == 0):

    fig1.line(x, y1+i*deltaY,line_width = 5, line_color = white)

show(fig1)

Listing 6.19 starts with a commented out pip3 code snippet that you can launch from the command line to install Bokeh (in case you haven’t done so already).

The next code block contains several Bokeh-related statements, as well as NumPy and Math.

Notice that the variable white is defined as an (R,G,B) triple of integers, which represents the red, green, and blue components of a color. For example, (255,255,255) represents the color white (check online if you are unfamiliar with RGB). The next portion of Listing 6.19 initializes some scalar variables that are used in the two for loops that are in the second half of Listing 6.19.

Next, the NumPy variable x is a range of values from 0 to math.PI/3, with an increment of 0.05 between successive values. Then the NumPy variables y1 and y2 are defined as the sine and cosine values, respectively, of the values in x. The next code snippet initializes the variable fig1 that represents a context in which the graphics effects will be rendered. This completes the initialization of the variables that are used in the two loops.

The next portion of Listing 6.19 contains the first for loop that creates a gradient-like effect by defining (R,G,B) triples whose values are based partially on the value of the loop variable i. For example, the variable rgb1 ranges in a linear fashion from (0,0,0) to (255,0,0), which represent the colors black and red, respectively. The variable rgb2 ranges in a linear fashion from (0,0,0) to (255,255,0), which represent the colors black and yellow, respectively. The next portion of the for loop contains two invocations of the fig1.line() API that renders a sine wave and a cosine wave in the context variable fig1.

The second for loop is similar to the first for loop: the main difference is that the variable rgb1 varies from black to blue, and the variable rgb2 variables from black to green. The final code snippet in Listing 6.19 invokes the show() method that generates an HTML Web page (with the same prefix as the Python file) and then launches the Web page in a browser.

Figure 6.13 displays the graphics effect based on the code in Listing 6.19. If this image is displayed as black and white, launch the code from the command line and you will see the gradient-like effects in the image.

[image:]

FIGURE 6.13 A Bokeh graphics sample.

Summary

This chapter started with a brief introduction of a short list of data visualization tools, and a list of various types of visualization (such as bar graphs and pie charts).

Then you learned about Matplotlib, which is an open source Python library that is modeled after MatLab. You saw some examples of plotting histograms and simple trigonometric functions.

In addition, you were introduced to Seaborn, which is an extension of Matplotlib, and saw examples of plotting lines and histograms. You also learned how to plot a Pandas data frame using Seaborn.

Finally, you got a very short introduction to Bokeh, along with a code sample that illustrates how to create a more artistic graphics effect with relative ease in Bokeh.

APPENDIX A

WORKING WITH DATA

This appendix introduces you to data types, how to scale data values, and various techniques for handling missing data values. If most of the material in this appendix is new to you, be assured that it’s not necessary to understand everything here. Read as much material as you can absorb, and perhaps return to this appendix again after you have completed some of the other chapters in this book.

The first part of this appendix contains an overview of different types of data and an explanation of how to normalize and standardize a set of numeric values by calculating the mean and standard deviation of a set of numbers. You will see how to map categorical data to a set of integers and how to perform one-hot encoding.

The second part of this appendix discusses missing data, outliers, and anomalies, as well as some techniques for handling these scenarios. The third section discusses imbalanced data and the use of SMOTE (Synthetic Minority Oversampling Technique) to deal with imbalanced classes in a dataset.

The fourth section discusses ways to evaluate classifiers such as LIME and ANOVA. This section also contains details regarding the bias-variance trade-off and various types of statistical bias.

What are Datasets?

In simple terms, a dataset is a source of data (such as a text file) that contains rows and columns of data. Each row is typically called a data point, and each column is called a feature. A dataset can be in a range of formats: CSV (comma separated values), TSV (tab separated values), Excel spreadsheet, a table in an RDMBS (Relational Database Management System), a document in a NoSQL database, or the output from a Web service. Someone needs to analyze the dataset to determine which features are the most important and which features can be safely ignored to train a model with the given dataset.

A dataset can vary from very small (a couple of features and 100 rows) to very large (more than 1,000 features and more than one million rows). If you are unfamiliar with the problem domain, then you might struggle to determine the most important features in a large dataset. In this situation, you might need a domain expert who understands the importance of the features, their interdependencies (if any), and whether the data values for the features are valid. In addition, there are algorithms (called dimensionality reduction algorithms) that can help you determine the most important features. For example, PCA (Principal Component Analysis) is one such algorithm, which is discussed in more detail later in this appendix.

Data Preprocessing

Data preprocessing is the initial step that involves validating the contents of a dataset, which involves making decisions about missing and incorrect data values:

[image:]dealing with missing data values

[image:]cleaning “noisy” text-based data

[image:]removing HTML tags

[image:]removing emoticons

[image:]dealing with emojis/emoticons

[image:]filtering data

[image:]grouping data

[image:]handling currency and date formats (i18n)

Cleaning data is a subset of data wrangling that involves removing unwanted data as well as handling missing data. In the case of text-based data, you might need to remove HTML tags and punctuation. In the case of numeric data, it’s less likely (though still possible) that alphabetic characters are mixed together with numeric data. However, a dataset with numeric features might have incorrect values or missing values (discussed later). In addition, calculating the minimum, maximum, mean, median, and standard deviation of the values of a feature obviously pertain only to numeric values.

After the preprocessing step is completed, data wrangling is performed, which refers to transforming data into a new format. You might have to combine data from multiple sources into a single dataset. For example, you might need to convert between different units of measurement (such as date formats or currency values) so that the data values can be represented in a consistent manner in a dataset.

Currency and date values are part of i18n (internationalization), whereas l10n (localization) targets a specific nationality, language, or region. Hard-coded values (such as text strings) can be stored as resource strings in a file called a resource bundle, where each string is referenced via a code. Each language has its own resource bundle.

Data Types

Explicit data types exist in many programming languages, such as C, C++, Java, and TypeScript. Some programming languages, such as JavaScript and awk, do not require initializing variables with an explicit type: The type of a variable is inferred dynamically via an implicit type system (i.e., one that is not directly exposed to a developer).

In machine learning, datasets can contain features that have different types of data, such as a combination of one or more of the following:

[image:]numeric data (integer/floating point and discrete/continuous)

[image:]character/categorical data (different languages)

[image:]date-related data (different formats)

[image:]currency data (different formats)

[image:]binary data (yes/no, 0/1, and so forth)

[image:]nominal data (multiple unrelated values)

[image:]ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which can have as many as thirty columns (or even more), often with the following features:

[image:]the number of bedrooms in a house: a numeric value and a discrete value

[image:]the number of square feet: a numeric value and (probably) a continuous value

[image:]the name of the city: character data

[image:]the construction date: a date value

[image:]the selling price: a currency value and probably a continuous value

[image:]the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year. Although many (most?) countries have four distinct seasons, some countries have two distinct seasons. However, keep in mind that seasons can be associated with different temperature ranges (summer versus winter). An example of ordinal data is an employee’s pay grade: 1=entry level, 2=one year of experience, and so forth. Another example of nominal data is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female}, and some datasets contain a feature with these two values. If such a feature is required for training a model, first convert {Male, Female} to a numeric counterpart, such as {0,1}. Similarly, if you need to include a feature whose values are the previous set of colors, you can replace {Red, Green, Blue} with the values {0,1,2}. Categorical data is discussed in more detail later in this appendix.

Preparing Datasets

If you have the good fortune to inherit a dataset that is in pristine condition, then data cleaning tasks (discussed later) are vastly simplified: in fact, it might not be necessary to perform any data cleaning for the dataset. However, if you need to create a dataset that combines data from multiple datasets that contain different formats for dates and currency, then you need to perform a conversion to a common format.

If you need to train a model that includes features that have categorical data, then you need to convert that categorical data to numeric data. For instance, the Titanic dataset contains a feature called “gender,” which is either male or female. As you will see later in this appendix, Pandas makes it extremely simple to “map” male to 0 and female to 1.

Discrete Data vs. Continuous Data

Discrete data is a set of values that can be counted, whereas continuous data must be measured. Discrete data can “reasonably” fit in a drop-down list of values, but there is no exact value for making such a determination. One person might think that a list of 500 values is discrete, whereas another person might think it’s continuous.

For example, the list of provinces of Canada and the list of states of the United States are discrete data values, but is the same true for the number of countries in the world (roughly 200) or for the number of languages in the world (more than 7,000)?

Values for temperature, humidity, and barometric pressure are considered continuous. Currency is also treated as continuous, even though there is a measurable difference between two consecutive values. The smallest unit of currency for U.S. currency is one penny, which is 1/100th of a dollar (accounting-based measurements use the “mil,” which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For example, someone who is 200 centimeters tall is twice as tall as someone who is 100 centimeters tall; the same relationship holds for 100 kilograms versus 50 kilograms. However, temperature is different: 80 degrees Fahrenheit is not twice as hot as 40 degrees Fahrenheit.

Furthermore, the meaning of the word “continuous” in mathematics is not necessarily the same as “continuous” in machine learning. Using the mathematical definition, a continuous variable (let’s say in the 2D Euclidean plane) can have an uncountably infinite number of values. However, a feature in a dataset that can have more values than can be “reasonably” displayed in a drop-down list is treated as though it’s a continuous variable.

For instance, values for stock prices are discrete: They must differ by at least a penny (or some other minimal unit of currency), which is to say, it’s meaningless to assert that the stock price changes by one-millionth of a penny. However, since there are so many possible stock values, it’s treated as a continuous variable. The same comments apply to car mileage, ambient temperature, and barometric pressure.

“Binning” Continuous Data

The concept of binning refers to subdividing a set of values into multiple intervals, and then treating all the numbers in the same interval as though they had the same value.

As a simple example, suppose that a feature in a dataset contains the age of people in a dataset. The range of values is approximately between 0 and 120, and we could bin them into 12 equal intervals, where each consists of 10 values: 0 through 9, 10 through 19, 20 through 29, and so forth.

However, partitioning the values of people’s ages as described in the preceding paragraph can be problematic. Suppose that person A, person B, and person C are 29, 30, and 39, respectively. Then person A and person B are probably more similar to each other than person B and person C, but because of the way in which the ages are partitioned, B is classified as closer to C than to A. In fact, binning can increase Type I errors (false positive) and Type II errors (false negative), as discussed in the following blog post (along with some alternatives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f.

As another example, using quartiles is even more coarse-grained than the earlier age-related binning example. The issue with binning pertains to the consequences of classifying people in different bins, even though they are in close proximity to each other. For instance, some people struggle financially because they earn a meager wage, and they are disqualified from financial assistance because their salary is higher than the cutoff point for receiving any assistance.

Scaling Numeric Data via Normalization

A range of values can vary significantly, and it’s important to note that they often need to be scaled to a smaller range, such as values in the range [−1,1] or [0,1], which you can do via the tanh() function or the sigmoid() function, respectively.

For example, measuring a person’s height in terms of meters involves a range of values between 0.50 meters and 2.5 meters (in the vast majority of cases), whereas measuring height in terms of centimeters ranges between 50 centimeters and 250 centimeters: these two units differ by a factor of 100. A person’s weight in kilograms generally varies between 5 kilograms and 200 kilograms, whereas measuring weight in grams differs by a factor of 1,000. Distances between objects can be measured in meters or in kilometers, which also differ by a factor of 1,000.

In general, use units of measure so that the data values in multiple features belong to a similar range of values. In fact, some machine learning algorithms require scaled data that is often in the range of [0,1] or [−1,1]. In addition to the tanh() and sigmoid() functions, there are other techniques for scaling data, such as standardizing data (such as the Gaussian distribution) and normalizing data (linearly scaled so that the new range of values is in [0,1]).

The following examples involve a floating point variable X with different ranges of values that will be scaled so that the new values are in the interval [0,1].

[image:]Example 1: If the values of X are in the range [0,2], then X/2 is in the range [0,1].

[image:]Example 2: If the values of X are in the range [3,6], then X−3 is in the range [0,3], and (X−3)/3 is in the range [0,1].

[image:]Example 3: If the values of X are in the range [−10,20], then X+10 is in the range [0,30], and (X+10)/30 is in the range of [0,1].

In general, suppose that X is a random variable whose values are in the range [a,b], where a < b. You can scale the data values by performing two steps:

Step 1: X-a is in the range [0,b-a]

Step 2: (X-a)/(b-a) is in the range [0,1]

If X is a random variable that has the values {x1, x2, x3, . . ., xn}, then the formula for normalization involves mapping each xi value to (xi – min)/(max – min), where min is the minimum value of X and max is the maximum value of X.

As a simple example, suppose that the random variable X has the values {-1, 0, 1}. Then min and max are 1 and −1, respectively, and the normalization of {-1, 0, 1} is the set of values {(-1-(-1))/2, (0-(-1))/2, (1-(-1))/2}, which equals {0, 1/2, 1}.

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean mu and the standard deviation sigma, and then mapping each xi value to (xi – mu)/sigma. Recall the following formulas:

mu = [SUM (x)]/n

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

sigma = sqrt(variance)

As a simple illustration of standardization, suppose that the random variable X can have values in the set {−1, 0, 1}. Then mu and sigma are calculated as follows:

mu       = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n

         = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3

         = 2/3

sigma    = sqrt(2/3) = 0.816 (approximate value)

Hence, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816, 1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values {-6, 0, 6}. Then mu and sigma are calculated as follows:

mu       = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n

         = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3

         = 72/3

         = 24

sigma    = sqrt(24) = 4.899 (approximate value)

Hence, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899, 6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases, but the variance and standard deviation are significantly different. The normalization of a set of values always produces a set of numbers between 0 and 1.

However, the standardization of a set of values can generate numbers that are less than −1 and greater than 1: this will occur when sigma is less than the minimum value of every term |mu – xi|, where the latter is the absolute value of the difference between mu and each xi value. In the preceding example, the minimum difference equals 1, whereas sigma is 0.816, and therefore the largest standardized value is greater than 1.

What to Look for in Categorical Data

This section contains suggestions for handling inconsistent data values, and you can determine which ones to adopt based on any additional factors that are relevant to your particular task. For example, consider not using columns that have very low cardinality (equal to or close to 1), as well as numeric columns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings or errors. A good example pertains to the gender category, which can consist of a combination of the following values:

male

Male

female

Female

m

f

M

F

The preceding categorical values for gender can be replaced with two categorical values (unless you have a valid reason to retain some of the other values). Moreover, if you are training a model whose analysis involves a single gender, then you need to determine which rows (if any) of a dataset must be excluded. Also check categorical data columns for redundant or missing white spaces.

Check for data values that have multiple data types, such as a numerical column with numbers as numerals and some numbers as strings or objects. Ensure there are consistent data formats: numbers as integers or floating numbers. Ensure that dates have the same format (for example, do not mix mm/dd/yyyy date formats with another date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples of which include people’s names, home or work addresses, and email addresses. Many types of categorical data involve short lists of values. For example, the days of the week and the months in a year involve seven and twelve distinct values, respectively. Notice that the days of the week have a relationship: each day has a previous day and a next day, and similarly for the months of a year.

However, the colors of an automobile are independent of each other. The color red is not “better” or “worse” than the color blue. Cars of a certain color can have a statistically higher number of accidents, but we won’t address that issue here.

There are several well-known techniques for mapping categorical values to a set of numeric values. A simple example where you need to perform this conversion involves the gender feature in the Titanic dataset. This feature is one of the relevant features for training a machine learning model. The gender feature has {M, F} as its set of possible values. As you will see later in this appendix, Pandas makes it very easy to convert the set of values {M,F} to the set of values {0,1}.

Another mapping technique involves mapping a set of categorical values to a set of consecutive integer values. For example, the set {Red, Green, Blue} can be mapped to the set of integers {0,1,2}. The set {Male, Female} can be mapped to the set of integers {0,1}. The days of the week can be mapped to {0,1,2,3,4,5,6}. Note that the first day of the week depends on the country (in some cases it’s Sunday, and in other cases it’s Monday).

Another technique is called one-hot encoding, which converts each value to a vector. Thus, {Male, Female} can be represented by the vectors [1,0] and [0,1], and the colors {Red, Green, Blue} can be represented by the vectors [1,0,0], [0,1,0], and [0,0,1]. If you vertically “line up” the two vectors for gender, they form a 2x2 identity matrix, and doing the same for the colors will form a 3x3 identity matrix, as shown here:

[1,0,0]

[0,1,0]

[0,0,1]

If you are familiar with matrices, you probably noticed that the preceding set of vectors looks like the 3x3 identity matrix. In fact, this technique generalizes in a straightforward manner. Specifically, if you have n distinct categorical values, you can map each of those values to one of the vectors in an nxn identity matrix.

As another example, the set of titles {"Intern," "Junior," "Mid-Range," "Senior," "Project Leader," "Dev Manager"} has a hierarchical relationship in terms of their salaries (which can also overlap, but we won’t address that now).

Another set of categorical data involves the season of the year: {"Spring," "Summer," "Autumn," "Winter"}, and while these values are generally independent of each other, there are cases in which the season is significant. For example, the values for the monthly rainfall, average temperature, crime rate, or foreclosure rate can depend on the season, month, week, or day of the year.

If a feature has a large number of categorical values, then one-hot encoding will produce many additional columns for each data point. Since the majority of the values in the new columns equal 0, this can increase the sparsity of the dataset, which in turn can result in more overfitting and hence adversely affect the accuracy of machine learning algorithms that you adopt during the training process.

One solution is to use a sequence-based solution in which N categories are mapped to the integers 1, 2, . . . , N. Another solution involves examining the row frequency of each categorical value. For example, suppose that N equals 20, and there are three categorical values that occur in 95% of the values for a given feature. You can try the following:

1)Assign the values 1, 2, and 3 to those three categorical values.

2)Assign numeric values that reflect the relative frequency of those categorical values.

3)Assign the category “OTHER” to the remaining categorical values.

4)Delete the rows whose categorical values belong to the 5%.

Working with Dates

The format for a calendar date varies among different countries, and this belongs to something called the localization of data (not to be confused with i18n, which is data internationalization). Some examples of date formats are shown as follows (and the first four are probably the most common):

MM/DD/YY

MM/DD/YYYY

DD/MM/YY

DD/MM/YYYY

YY/MM/DD

M/D/YY

D/M/YY

YY/M/D

MMDDYY

DDMMYY

YYMMDD

If you need to combine data from datasets that contain different date formats, then converting the disparate date formats to a single common date format will ensure consistency.

Working with Currency

The format for currency depends on the country, which includes different interpretations for a “,” and “.” in the currency (and decimal values in general). For example, 1,124.78 equals “one thousand one hundred twenty-four point seven eight” in the United States, whereas 1.124,78 has the same meaning in Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency formats, then you probably need to convert all the disparate currency formats to a single common currency format. There is another detail to consider: Currency exchange rates can fluctuate on a daily basis, which in turn can affect the calculation of taxes and late fees. Although you might be fortunate enough where you won’t have to deal with these issues, it’s still worth being aware of them.

Missing Data, Anomalies, and Outliers

Although missing data is not directly related to checking for anomalies and outliers, in general, you will perform all three of these tasks. Each task involves a set of techniques to help you perform an analysis of the data in a dataset, and the following subsections describe some of those techniques.

Missing Data

How you decide to handle missing data depends on the specific dataset. Here are some ways to handle missing data (the first three techniques are manual techniques, and the other techniques are algorithms):

1)Replace missing data with the mean/median/mode value.

2)Infer (“impute”) the value for missing data.

3)Delete rows with missing data.

4)Use the Isolation Forest algorithm (a tree-based algorithm).

5)Use the minimum covariance determinant.

6)Use the local outlier factor.

7)Use the one-class SVM (Support Vector Machine).

In general, replacing a missing numeric value with zero is a risky choice: this value is obviously incorrect if the values of a feature are between 1,000 and 5,000. For a feature that has numeric values, replacing a missing value with the average value is better than the value zero (unless the average equals zero); also consider using the median value. For categorical data, consider using the mode to replace a missing value.

If you are not confident that you can impute a “reasonable” value, consider excluding the row with a missing value, and then train a model with the imputed value and the deleted row.

One problem that can arise after removing rows with missing values is that the resulting dataset is too small. In this case, consider using SMOTE, which is discussed later in this appendix, to generate synthetic data.

Anomalies and Outliers

In simplified terms, an outlier is an abnormal data value that is outside the range of “normal” values. For example, a person’s height in centimeters is typically between 30 centimeters and 250 centimeters. Hence, a data point (e.g., a row of data in a spreadsheet) with a height of 5 centimeters or a height of 500 centimeters is an outlier. The consequences of these outlier values are unlikely to involve a significant financial or physical loss (though they could adversely affect the accuracy of a trained model).

Anomalies are also outside the “normal” range of values (just like outliers), and they are typically more problematic than outliers: anomalies can have more “severe” consequences than outliers. For example, consider the scenario in which someone who lives in California suddenly makes a credit card purchase in New York. If the person is on vacation (or a business trip), then the purchase is an outlier (it’s “outside” the typical purchasing pattern), but it’s not an issue. However, if that person was in California when the credit card purchase was made, then it’s most likely to be credit card fraud, as well as an anomaly.

Unfortunately, there is no simple way to decide how to deal with anomalies and outliers in a dataset. Although you can exclude rows that contain outliers, doing so might deprive the dataset—and therefore the trained model—of valuable information. You can try modifying the data values (described as follows), but again, this might lead to erroneous inferences in the trained model. Another possibility is to train a model with the dataset that contains anomalies and outliers, and then train a model with a dataset from which the anomalies and outliers have been removed. Compare the two results and see if you can infer anything meaningful regarding the anomalies and outliers.

Outlier Detection

Although the decision to keep or drop outliers is your decision to make, there are some techniques available that help you detect outliers in a dataset. This section contains a short list of some techniques, along with a very brief description and links for additional information.

Perhaps trimming is the simplest technique (apart from dropping outliers), which involves removing rows whose feature value is in the upper 5% range or the lower 5% range. Winsorizing the data is an improvement over trimming. Set the values in the top 5% range equal to the maximum value in the 95th percentile, and set the values in the bottom 5% range equal to the minimum in the 5th percentile.

The Minimum Covariance Determinant is a covariance-based technique, and a Python-based code sample that uses this technique can be found online:

https://scikit-learn.org/stable/modules/outlier_detection.html.

The Local Outlier Factor (LOF) technique is an unsupervised technique that calculates a local anomaly score via the kNN (k Nearest Neighbor) algorithm. Documentation and short code samples that use LOF can be found online:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html.

Two other techniques involve the Huber and the Ridge classes, both of which are included as part of Sklearn. The Huber error is less sensitive to outliers because it’s calculated via linear loss, similar to the MAE (Mean Absolute Error). A code sample that compares Huber and Ridge can be found online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html.

You can also explore the Theil-Sen estimator and RANSAC, which are “robust” against outliers, and additional information can be found online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html and

https://en.wikipedia.org/wiki/Random_sample_consensus.

Four algorithms for outlier detection are discussed at the following site:

https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html.

One other scenario involves “local” outliers. For example, suppose that you use kMeans (or some other clustering algorithm) and determine that a value is an outlier with respect to one of the clusters. While this value is not necessarily an “absolute” outlier, detecting such a value might be important for your use case.

What is Data Drift?

The value of data is based on its accuracy, its relevance, and its age. Data drift refers to data that has become less relevant over time. For example, online purchasing patterns in 2010 are probably not as relevant as data from 2020 because of various factors (such as the profile of different types of customers). There might be multiple factors that can influence data drift in a specific dataset.

Two techniques are the domain classifier and the black-box shift detector, both of which can be found online:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors.

What is Imbalanced Classification?

Imbalanced classification involves datasets with imbalanced classes. For example, suppose that class A has 99% of the data and class B has 1%. Which classification algorithm would you use? Unfortunately, classification algorithms don’t work well with this type of imbalanced dataset. Here is a list of several well-known techniques for handling imbalanced datasets:

[image:]Random resampling rebalances the class distribution.

[image:]Random oversampling duplicates data in the minority class.

[image:]Random undersampling deletes examples from the majority class.

[image:]SMOTE

Random resampling transforms the training dataset into a new dataset, which is effective for imbalanced classification problems.

The random undersampling technique removes samples from the dataset, and involves the following:

[image:]randomly remove samples from the majority class

[image:]can be performed with or without replacement

[image:]alleviates imbalance in the dataset

[image:]may increase the variance of the classifier

[image:]may discard useful or important samples

However, random undersampling does not work well with a dataset that has a 99%/1% split into two classes. Moreover, undersampling can result in losing information that is useful for a model.

Instead of random undersampling, another approach involves generating new samples from a minority class. The first technique involves oversampling examples in the minority class and duplicate examples from the minority class.

There is another technique that is better than the preceding technique, which involves the following:

[image:]synthesizing new examples from a minority class

[image:]a type of data augmentation for tabular data

[image:]generating new samples from a minority class

Another well-known technique is called SMOTE, which involves data augmentation (i.e., synthesizing new data samples) well before you use a classification algorithm. SMOTE was initially developed by means of the kNN algorithm (other options are available), and it can be an effective technique for handling imbalanced classes.

Yet another option to consider is the Python package imbalanced-learn in the scikit-learn-contrib project. This project provides various re-sampling techniques for datasets that exhibit class imbalance. More details are available online:

https://github.com/scikit-learn-contrib/imbalanced-learn.

What is SMOTE?

SMOTE is a technique for synthesizing new samples for a dataset. This technique is based on linear interpolation:

[image:]Step 1: Select samples that are close in the feature space.

[image:]Step 2: Draw a line between the samples in the feature space.

[image:]Step 3: Draw a new sample at a point along that line.

A more detailed explanation of the SMOTE algorithm is here:

[image:]Select a random sample “a” from the minority class.

[image:]Find k nearest neighbors for that example.

[image:]Select a random neighbor “b” from the nearest neighbors.

[image:]Create a line L that connects “a” and “b.”

[image:]Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k−1) nearest neighbors to distribute the synthetic values more evenly among the nearest neighbors.

SMOTE Extensions

The initial SMOTE algorithm is based on the kNN classification algorithm, which has been extended in various ways, such as replacing kNN with SVM. A list of SMOTE extensions is shown as follows:

[image:]selective synthetic sample generation

[image:]Borderline-SMOTE (kNN)

[image:]Borderline-SMOTE (SVM)

[image:]Adaptive Synthetic Sampling (ADASYN)

More information can be found online:

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis.

Analyzing Classifiers (Optional)

This section is marked optional because its contents pertain to machine learning classifiers, which are not the focus of this book. However, it’s still worthwhile to glance through the material, or perhaps return to this section after you have a basic understanding of machine learning classifiers.

Several well-known techniques are available for analyzing the quality of machine learning classifiers. Two techniques are LIME and ANOVA, both of which are discussed in the following subsections.

What is LIME?

LIME is an acronym for Local Interpretable Model-Agnostic Explanations. LIME is a model-agnostic technique that can be used with machine learning models. The methodology of this technique is straightforward: make small random changes to data samples and then observe the manner in which predictions change (or not). The approach involves changing the output (slightly) and then observing what happens to the output.

By way of analogy, consider food inspectors who test for bacteria in truckloads of perishable food. Clearly, it’s infeasible to test every food item in a truck (or a train car), so inspectors perform “spot checks” that involve testing randomly selected items. In an analogous fashion, LIME makes small changes to input data in random locations and then analyzes the changes in the associated output values.

However, there are two caveats to keep in mind when you use LIME with input data for a given model:

1)The actual changes to input values are model-specific.

2)This technique works on input that is interpretable.

Examples of interpretable input include machine learning classifiers (such as trees and random forests) and NLP techniques such as BoW (Bag of Words). Non-interpretable input involves “dense” data, such as a word embedding (which is a vector of floating point numbers).

You could also substitute your model with another model that involves interpretable data, but then you need to evaluate how accurate the approximation is to the original model.

What is ANOVA?

ANOVA is an acronym for analysis of variance, which attempts to analyze the differences among the mean values of a sample that’s taken from a population. ANOVA enables you to test if multiple mean values are equal. More importantly, ANOVA can assist in reducing Type I (false positive) errors and Type II errors (false negative) errors. For example, suppose that person A is diagnosed with cancer and person B is diagnosed as healthy, and that both diagnoses are incorrect. Then the result for person A is a false positive whereas the result for person B is a false negative. In general, a test result of false positive is much preferable to a test result of false negative.

ANOVA pertains to the design of experiments and hypothesis testing, which can produce meaningful results in various situations. For example, suppose that a dataset contains a feature that can be partitioned into several “reasonably” homogenous groups. Next, analyze the variance in each group and perform comparisons with the goal of determining different sources of variance for the values of a given feature. More information about ANOVA is available online:

https://en.wikipedia.org/wiki/Analysis_of_variance.

The Bias-Variance Trade-Off

This section is presented from the viewpoint of machine learning, but the concepts of bias and variance are highly relevant outside of machine learning, so it’s probably still worthwhile to read this section as well as the previous section.

Bias in machine learning can be due to an error from wrong assumptions in a learning algorithm. High bias might cause an algorithm to miss relevant relations between features and target outputs (underfitting). Prediction bias can occur because of “noisy” data, an incomplete feature set, or a biased training sample.

Error due to bias is the difference between the expected (or average) prediction of your model and the correct value that you want to predict. Repeat the model building process multiple times, gather new data each time, and perform an analysis to produce a new model. The resulting models have a range of predictions because the underlying datasets have a degree of randomness. Bias measures the extent to which the predictions for these models deviate from the correct value.

Variance in machine learning is the expected value of the squared deviation from the mean. High variance can/might cause an algorithm to model the random noise in the training data, rather than the intended outputs (known as overfitting). Moreover, adding parameters to a model increases its complexity, increases the variance, and decreases the bias.

The point to remember is that dealing with bias and variance involves dealing with underfitting and overfitting.

Error due to variance is the variability of a model prediction for a given data point. As before, repeat the entire model building process, and the variance is the extent to which predictions for a given point vary among different “instances” of the model.

If you have worked with datasets and performed data analysis, you already know that finding well-balanced samples can be difficult or highly impractical. Moreover, performing an analysis of the data in a dataset is vitally important, yet there is no guarantee that you can produce a dataset that is 100% “clean.”

A biased statistic is a statistic that is systematically different from the entity in the population that is being estimated. In more casual terminology, if a data sample “favors” or “leans” toward one aspect of the population, then the sample has bias. For example, if you prefer movies that are comedies more so than any other type of movie, then clearly you are more likely to select a comedy instead of a dramatic movie or a science fiction movie. Thus, a frequency graph of the movie types in a sample of your movie selections will be more closely clustered around comedies.

However, if you have a wide-ranging set of preferences for movies, then the corresponding frequency graph will be more varied, and therefore have a larger spread of values.

As a simple example, suppose that you are given an assignment that involves writing a term paper on a controversial subject that has many opposing viewpoints. Since you want a bibliography that supports your well-balanced term paper that takes into account multiple viewpoints, your bibliography will contain a wide variety of sources. In other words, your bibliography will have a larger variance and a smaller bias. If most (or all) the references in your bibliography espouse the same point of view, then you will have a smaller variance and a larger bias (it’s just an analogy, so it’s not a perfect counterpart to bias vs. variance).

The bias-variance trade-off can be stated in simple terms. In general, reducing the bias in samples can increase the variance, whereas reducing the variance tends to increase the bias.

Types of Bias in Data

In addition to the bias-variance trade-off that is discussed in the previous section, there are several types of bias, some of which are listed as follows:

[image:]availability bias

[image:]confirmation bias

[image:]false causality

[image:]sunk cost fallacy

[image:]survivorship bias

Availability bias is akin to making a “rule” based on an exception. For example, there is a known link between smoking cigarettes and cancer, but there are exceptions. If you find someone who has smoked three packs of cigarettes on a daily basis for four decades and is still healthy, can you assert that smoking does not lead to cancer?

Confirmation bias refers to the tendency to focus on data that confirms one’s beliefs and simultaneously ignore data that contradicts a belief.

False causality occurs when you incorrectly assert that the occurrence of a particular event causes another event to occur as well. One of the most well-known examples involves ice cream consumption and violent crime in New York during the summer. Since more people eat ice cream in the summer, that “causes” more violent crime, which is a false causality. Other factors, such as the increase in temperature, may be linked to the increase in crime. However, it’s important to distinguish between correlation and causality. The latter is a much stronger link than the former, and it’s also more difficult to establish causality instead of correlation.

Sunk cost refers to something (often money) that has been spent or incurred that cannot be recouped. A common example pertains to gambling at a casino. People fall into the pattern of spending more money to recoup a substantial amount of money that has already been lost. While there are cases in which people do recover their money, in many (most?) cases, people simply incur an even greater loss because they continue to spend their money. This idea is related to the expression “it’s time to cut your losses and walk away.”

Survivorship bias refers to analyzing a particular subset of “positive” data while ignoring the “negative” data. This bias occurs in various situations, such as being influenced by individuals who recount their rags-to-riches success story (“positive” data) while ignoring the fate of the people (which is often a very high percentage) who did not succeed (the “negative” data) in a similar quest. So, while it’s certainly possible for an individual to overcome many difficult obstacles to succeed, is the success rate one in one thousand (or even lower)?

Summary

This appendix started with an explanation of datasets, a description of data wrangling, and details regarding various types of data. Then you learned about techniques for scaling numeric data, such as normalization and standardization. You saw how to convert categorical data to numeric values, and how to handle dates and currency.

Then you learned some of the nuances of missing data, anomalies, and outliers, and techniques for handling these scenarios. You also learned about imbalanced data and evaluating the use of SMOTE to deal with imbalanced classes in a dataset. In addition, you learned about classifiers using two techniques, LIME and ANOVA. Finally, you learned about the bias-variance trade-off and various types of statistical bias.

APPENDIX B

WORKING WITH AWK

This chapter introduces you to the awk command, which is a highly versatile utility for manipulating data and restructuring datasets. In fact, this utility is so versatile that entire books have been written about the awk utility. Awk is essentially an entire programming language in a single command, which accepts standard input, gives standard output and uses regular expressions and metacharacters in the same way other Unix commands do. This lets you plug it into other expressions and do almost anything, at the cost of adding complexity to a command string that may already be doing quite a lot already. It is almost always worthwhile to add a comment when using awk because it is so versatile that it won’t be clear which of the many features you are using at a glance.

The first part of this chapter provides a very brief introduction of the awk command. You will learn about some built-in variables for awk, and also how to manipulate string variables using awk. Note that some of these string-related examples can also be handled using other bash commands.

The second part of this chapter shows you conditional logic, while loops, and for loops in awk to manipulate the rows and columns in datasets. This section shows you how to delete lines and merge lines in datasets, as well as how to print the contents of a file as a single line of text. You will see how to “join” lines and groups of lines in datasets.

The third section contains code samples that involve metacharacters (introduced in Chapter 1) and character sets in awk commands. You will also see how to use conditional logic in awk commands to determine whether to print a line of text.

The fourth section illustrates how to “split” a text string that contains multiple “.” characters as a delimiter, followed by examples of awk to perform numeric calculations (such as addition, subtraction, multiplication, and division) in files containing numeric data. This section also shows you various numeric functions that are available in awk, and also how to print text in a fixed set of columns.

The fifth section explains how to align columns in a dataset and how to align and merge columns in a dataset. You will see how to delete columns, how to select a subset of columns from a dataset, and how to work with multi-line records in datasets. This section contains some one-line awk commands that can be useful for manipulating the contents of datasets.

The final section of this chapter has a pair of use cases involving nested quotes and date formats in structured data sets.

The awk Command

The awk (Aho, Weinberger, and Kernighan) command has a C-like syntax and you can use this utility to perform very complex operations on numbers and text strings.

As a side comment, there is also the gawk command that is GNU awk, as well as the nawk command, which is “new” awk (neither command is discussed in this book). One advantage of nawk is that it allows you to externally set the value of an internal variable.

Built-in Variables that Control awk

The awk command provides variables that you can change from their default values to control how awk performs operations. Examples of such variables (and their default values) include FS (" "), RS ("\n"), OFS (" "), ORS ("\n") , SUBSEP, and IGNORECASE. The variables FS and RS specify the field separator and record separator, respectively, whereas the variables OFS and ORS specify the output field separator and the output record separator, respectively.

Field separators serve the same purpose as as delimiters in CSV or TSV files. The record separators behave in a way similar to how sed treats individual lines; for example, sed can match or delete a range of lines instead of matching or deleting something that matches a regular expression. (The default awk record separator is the newline character, so by default, awk and sed have a similar ability to manipulate and reference lines in a text file.)

As a simple example, you can print a blank line after each line of a file by changing the ORS, from the default of one newline to two newlines, as shown here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ; { print $0 }'

Other built-in variables include FILENAME (the name of the file that awk is currently reading), FNR (the current record number in the current file), NF (the number of fields in the current input record), and NR (the number of input records awk has processed since the beginning of the program’s execution).

Consult the online documentation for additional information regarding these (and other) arguments for the awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time (by default, one record is one line). If a record matches a pattern, then an action is performed (otherwise, no action is performed). If the search pattern is not given, then awk performs the given actions for each record of the input. The default behavior if no action is given is to print all the records that match the given pattern. Finally, empty braces without any action does nothing; i.e., it will not perform the default printing operation. Note that each statement in actions should be delimited by a semicolon.

To make the preceding paragraph more understandable, here are some simple examples involving text strings and the awk command (the results are displayed after each code snippet). The -F switch sets the field separator to whatever follows it (in this case, a space). Switches will often provide a shortcut to an action that normally needs a command inside a BEGIN{} block (shown later):

x="a b c d e"

echo $x |awk -F" " '{print $1}'

a

echo $x |awk -F" " '{print NF}'

5

echo $x |awk -F" " '{print $0}'

a b c d e

echo $x |awk -F" " '{print $3, $1}'

c a

Now let’s change the FS (record separator) to an empty string to calculate the length of a string, and let’s do so inside a BEGIN{} block:

echo "abc" | awk 'BEGIN { FS = "" } ; { print NF }'

3

The following code snippets illustrate several equivalent ways to specify test.txt as the input file for an awk command:

awk < test.txt '{ print $1 }'

awk '{ print $1 }' < test.txt

awk '{ print $1 }' test.txt

Yet another way is shown here (but as we’ve discussed earlier, it can be inefficient, so only do it if cat is adding value in some way):

cat test.txt | awk '{ print $1 }'

This simple example of four ways to do the same task should illustrate why commenting awk calls of any complexity is almost always a good idea. The next person to look at your code may not know/remember the syntax you are using.

Aligning Text with the printf Statement

Since awk is a programming language inside a single command, it also has its own way of producing formatted output via the printf command.

Listing B.1 displays the content of columns2.txt and Listing B.2 displays the content of the shell script AlignColumns1.sh that shows you how to align the columns in a text file.

Listing B.1: columns2.txt

one two

three four

one two three four

five six

one two three

four five

Listing B.2: AlignColumns1.sh

awk '

{

   # left-align  $1 on a 10-char column

   # right-align $2 on a 10-char column

   # right-align $3 on a 10-char column

   # right-align $4 on a 10-char column

   printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3, $4)

}

' columns2.txt

Listing B.2 contains a printf() statement that displays the first four fields of each row in the file columns2.txt, where each field is 10 characters wide.

The output from launching the code in Listing B.2 is here:

one         *          two*              *             *

three       *         four*              *             *

one         *          two*         three*         four*

five        *          six*              *             *

one         *          two*         three*             *

four        *          five*             *             *

The printf command is reasonably powerful, and as such, it has its own syntax, which is beyond the scope of this chapter. A search online can find the manual pages and discussions of “how to do X with printf().”

Conditional Logic and Control Statements

Like other programming languages, awk provides support for conditional logic (if/else) and control statements (for/while loops). awk is the only way to put conditional logic inside a piped command stream without creating, installing and adding to the path a custom executable shell script. The following code block shows you how to use if/else logic:

echo "" | awk '

BEGIN { x = 10 }

{

  if (x % 2 == 0) }

      print "x is even"

  }

  else }

      print "x is odd"

  }

}

'

The preceding code block initializes the variable x with the value 10 and prints “x is even” if x is divisible by 2; otherwise, it prints “x is odd.”

The while Statement

The following code block illustrates how to use a while loop in awk:

echo "" | awk '

{

  x = 0

  while(x < 4) {

    print "x:",x

    x = x + 1

  }

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

The following code block illustrates how to use a do while loop in awk:

echo "" | awk '

{

  x = 0

  do {

    print "x:",x

    x = x + 1

  } while(x < 4)

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

A for loop in awk

Listing B.3 displays the content of Loop.sh that illustrates how to print a list of numbers in a loop. Note that i++ is another way of writing i=i+1 in awk (and most C-derived languages).

Listing B.3: Loop.sh

awk '

BEGIN {}

{

  for(i=0; i<5; i++) {

    printf("%3d", i)

  }

}

END { print "\n" }

'

Listing B.3 contains a for loop that prints numbers on the same line via the printf() statement. Notice that a newline is printed only in the END block of the code. The output from Listing B.3 is here:

0 1 2 3 4

A for loop with a break Statement

The following code block illustrates how to use a break statement in a for loop in awk:

echo "" | awk '

{

  for(x=1; x<4; x++) {

     print "x:",x

     if(x == 2) {

        break;

     }

  }

}

'

The preceding code block prints output only until the variable x has the value 2, after which the loop exits (because of the break inside the conditional logic). The following output is displayed:

x:1

The next and continue Statements

The following code snippet illustrates how to use next and continue in a for loop in awk:

awk '

{

   /expression1/ { var1 = 5; next }

   /expression2/ { var2 = 7; next }

   /expression3/ { continue }

   // some other code block here

' somefile

When the current line matches expression1, then var1 is assigned the value 5 and awk reads the next input line: hence, expression2 and expression3 will not be tested. If expression1 does not match and expression2 does match, then var2 is assigned the value 7 and then awk will read the next input line. If only expression3 results in a positive match, then awk skips the remaining block of code and processes the next input line.

Deleting Alternate Lines in Datasets

Listing B.4 displays the content of linepairs.csv and Listing B.5 displays the content of deletelines.sh that illustrates how to print alternating lines from the dataset linepairs.csv that have exactly two columns.

Listing B.4: linepairs.csv

a,b,c,d

e,f,g,h

1,2,3,4

5,6,7,8

Listing B.5: deletelines.sh

inputfile="linepairs.csv"

outputfile="linepairsdeleted.csv"

awk ' NR%2 {printf "%s", $0; print ""; next}' < $inputfile >
$outputfile

Listing B.5 checks if the current record number NR is divisible by 2, in which case it prints the current line and skips the next line in the dataset. The output is redirected to the specified output file, the contents of which are here:

a,b,c,d

1,2,3,4

A slightly more common task involves merging consecutive lines, which is the topic of the next section.

Merging Lines in Datasets

Listing B.6 displays the content of columns.txt and Listing B.7 displays the content of ColumnCount1.sh that illustrates how to print the lines from the text file columns.txt that have exactly two columns.

Listing B.6: columns.txt

one two three

one two

one two three four

one

one three

one four

Listing B.7: ColumnCount1.sh

awk '

{

   if(NF == 2) { print $0 }

}

' columns.txt

Listing B.7 is straightforward: if the current record number is even, then the current line is printed (i.e., odd-numbered rows are skipped). The output from launching the code in Listing B.7 is here:

one two

one three

one four

If you want to display the lines that do not contain 2 columns, use the following code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):

abc

def

abc

abc

The following code snippet illustrates how to print the contents of test4.txt as a single line:

awk '{printf("%s", $0)}' test4.txt

The output of the preceding code snippet is here. See if you can determine what is happening before reading the explanation in the next paragraph:

Abcdefabcabc

Explanation: %s here is the record separator syntax for printf; with the end quote after it, it means the record separator is the empty field “”. Our default record separator for awk is /n (newline), what the printf statement is doing is stripping out all the new lines. The blank rows will vanish entirely, as all they have is the new line, so the result is that any actual text will be merged together with nothing between them. Had we added a space between the %s and the ending quote, there would be a space between each character block, plus an extra space for each newline.

Notice how the following comment helps the comprehension of the code snippet:

Merging all text into a single line by removing the newlines

awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing B.8 displays the content of digits.txt and Listing B.9 displays the content of digits.sh that “joins” three consecutive lines of text in the file digits.txt.

Listing B.8: digits.txt

1

2

3

4

5

6

7

8

9

Listing B.9: digits.sh

awk -F" " '{

  printf("%d",$0)

  if(NR % 3 == 0) { printf("\n") }

}' digits.txt

Listing B.9 prints three consecutive lines of text on the same line, after which a linefeed is printed. This has the effect of “joining” every three consecutive lines of text. The output from launching digits.sh is here:

123

456

789

Joining Alternate Lines in a Text File

Listing B.10 displays the content of columns2.txt and Listing B.11 displays the content of JoinLines.sh that “joins” two consecutive lines of text in the file columns2.txt.

Listing B.10: columns2.txt

one two

three four

one two three four

five six

one two three

four five

Listing B.11: JoinLines.sh

awk '

{

   printf("%s",$0)

   if($1 !~ /one/) { print " " }

}

' columns2.txt

The output from launching Listing B.11 is here:

one two three four

one two three four five six

one two three four five

Notice that the code in Listing B.11 depends on the presence of the string “one” as the first field in alternating lines of text; we are merging based on matching a simple pattern, instead of tying it to record combinations.

To merge each pair of lines instead of merging based on matching a pattern, use the modified code in Listing B.12.

Listing B.12: JoinLines2.sh

awk '

BEGIN { count = 0 }

{

   printf("%s",$0)

   if(++count % 2 == 0) { print " " }

} columns2.txt

Yet another way to “join” consecutive lines is shown in Listing B.13, where the input file and output file refer to files that you can populate with data. This is another example of an awk command that might be a puzzle if encountered in a program without a comment. It is doing exactly the same thing as Listing B.12, but its purpose is less obvious because of the more compact syntax.

Listing B.13: JoinLines2.sh

inputfile="linepairs.csv"

outputfile="linepairsjoined.csv"

awk ' NR%2 {printf "%s,", $0; next;}1' < $inputfile >
$outputfile

Matching with Meta Characters and Character Sets

If we can match a simple pattern, you probably expect that you can also match a regular expression, just as we did in grep and sed. Listing B.14 displays the content of Patterns1.sh that uses metacharacters to match the beginning and the end of a line of text in the file columns2.txt.

Listing B.14: Patterns1.sh

awk '

   /^f/    { print $1 }

   /two $/ { print $1 }

' columns2.txt

The output from launching Listing B.14 is here:

one

five

four

Listing B.15 displays the content of RemoveColumns.txt with lines that contain a different number of columns.

Listing B.15: columns3.txt

123  one two

456  three four

one  two three four

five 123 six

one  two three

four five

Listing B.16 displays the content of MatchAlpha1.sh that matches text lines that start with alphabetic characters as well as lines that contain numeric strings in the second column.

Listing B.16: MatchAlpha1.sh

awk '

{

   if($0 ~ /^[0-9]/) { print $0 }

   if($0 ~ /^[a-z]+ [0-9]/) { print $0 }

}

' columns3.txt

The output from Listing B.16 is here:

123  one two

456  three four

five 123 six

Printing Lines Using Conditional Logic

Listing B.17 displays the content of products.txt that contains three columns of information.

Listing B.17: products.txt

MobilePhone 400  new

Tablet      300  new

Tablet      300  used

MobilePhone 200  used

MobilePhone 100  used

The following code snippet prints the lines of text in products.txt whose second column is greater than 300:

awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400  new

The following code snippet prints the lines of text in products.txt whose product is new:

awk '($3 == "new")' products.txt

The output of the preceding code snippet is here:

MobilePhone 400  new

Tablet      300  new

The following code snippet prints the first and third columns of the lines of text in products.txt whose cost equals 300:

awk ' $2 == 300 { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

The following code snippet prints the first and third columns of the lines of text in products.txt that start with the string Tablet:

awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

Splitting Filenames with awk

Listing B.18 displays the content of SplitFilename2.sh that illustrates how to split a filename containing the “.” character to increment the numeric value of one of the components of the filename. Note that this code only works for a file name with exactly the expected syntax. It is possible to write more complex code to count the number of segments, or alternately to just say “change the field right before the .zip,” which would only require the filename had a format matching the final two sections (<anystructure>.number.zip).

Listing B.18: SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '

{

  f5=$5 + 1

  printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)

}'

The output from Listing B.18 is here:

05.20.144q.az.2.zip

Working with Postfix Arithmetic Operators

Listing B.19 displays the content of mixednumbers.txt that contains postfix operators, which means numbers where the negative (and/or positive) sign appears at the end of a column value instead of the beginning of the number.

Listing B.19: mixednumbers.txt

324.000-|10|983.000-

453.000-|30|298.000-

783.000-|20|347.000-

Listing B.20 displays the content of AddSubtract1.sh that illustrates how to add the rows of numbers in Listing B.19.

Listing B.20: AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '

BEGIN { line = 0; total = 0 }

{

   split($1, arr, "-")

   f1 = arr[1]

   if($1 ~ /-/) { f1 = -f1 }

   line += f1

   split($2, arr, "-")

   f2 = arr[1]

   if($2 ~ /-/) { f2 = -f2 }

   line += f2

   split($3, arr, "-")

   f3 = arr[1]

   if($3 ~ /-/) { f3 = -f3 }

   line += f3

   printf("f1: %d f2: %d f3: %d line: %d\n",f1,f2,f3, line)

   total += line

   line = 0

}

END { print "Total: ",total }

' $myfile

The output from Listing B.20 is here. See if you can determine what the code is doing before reading the explanation that follows:

f1: -324 f2: 10 f3: -983 line: -1297

f1: -453 f2: 30 f3: -298 line: -721

f1: -783 f2: 20 f3: -347 line: -1110

Total:  -3128

The code assumes we know the format of the file. The split function turns each field record into a length two vector (first position = number, second position either an empty value or a dash), and then captures the first position number in a variable. The if statement just sees if the original field has a dash in it. If the field has a dash, then the numeric variable is made negative, otherwise it is left alone. Then, it adds up the values in the line.

Numeric Functions in awk

The int(x) function returns the integer portion of a number. If the number is not already an integer, it falls between two integers. Of the two possible integers, the function will return the one closest to zero. This is different from a rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(−3.9) is −3, and int(-3) is −3, as well. An example of the int(x) function in an awk command is here:

awk 'BEGIN {

   print int(3.534);

   print int(4);

   print int(-5.223);

   print int(-5);

}'

The output is here:

3

4

-5

-5

The exp(x) function gives you the exponential of x, or reports an error if x is out of range. The range of values x can have depends on your machine’s floating point representation.

awk 'BEGIN{

   print exp(123434346);

   print exp(0);

   print exp(-12);

}'

The output is here:

inf

1

6.14421e-06

The log(x) function gives you the natural logarithm of x, if x is positive; otherwise, it reports an error (inf means “infinity” and nan in the output means “not a number”).

awk 'BEGIN{

  print log(12);

  print log(0);

  print log(1);

  print log(-1);

}'

The output is here:

2.48491

-inf

0

nan

The sin(x) function gives you the sine of x and cos(x) gives you the cosine of x, with x in radians:

awk 'BEGIN {

   print cos(90);

   print cos(45);

}'

The output is here:

-0.448074

0.525322

The rand() function gives you a random number. The values of rand() are uniformly-distributed between 0 and 1: the value is never 0 and never 1.

Often, you want random integers instead. Here is a user-defined function you can use to obtain a random nonnegative integer less than n:

function randint(n) {

     return int(n * rand())

}

The product produces a random real number greater than 0 and less than n. We then make it an integer (using int) between 0 and n – 1.

Here is an example where a similar function is used to produce random integers between 1 and n:

awk '

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of points.

{

      printf("%d points\n", roll(6)+roll(6)+roll(6))

}'

Note that rand starts generating numbers from the same point (or “seed”) each time awk is invoked. Hence, a program will produce the same results each time it is launched. If you want a program to do different things each time it is used, you must change the seed to a value that will be different in each run.

Use the srand(x) function to set the starting point, or seed, for generating random numbers to the value x. Each seed value leads to a particular sequence of “random” numbers. Thus, if you set the seed to the same value a second time, you will get the same sequence of “random” numbers again. If you omit the argument x, as in srand(), then the current date and time of day are used for a seed. This is how to obtain random numbers that are truly unpredictable. The return value of srand()is the previous seed. This makes it easy to keep track of the seeds for use in consistently reproducing sequences of random numbers.

The time() function (not in all versions of awk) returns the current time in seconds since January 1, 1970. The function ctime (not in all versions of awk) takes a numeric argument in seconds and returns a string representing the corresponding date, suitable for printing or further processing.

The sqrt(x) function gives you the positive square root of x. It reports an error if x is negative. Thus, sqrt(4) is 2.

awk 'BEGIN{

   print sqrt(16);

   print sqrt(0);

   print sqrt(-12);

}'

The output is here:

4

0

nan

One Line awk Commands

The code snippets in this section reference the text file short1.txt, which you can populate with any data of your choice.

The following code snippet prints each line preceded by the number of fields in each line:

awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

awk '{print $NF}' short1.txt

Print the lines that contain more than 2 fields:

awk '{if(NF > 2) print }' short1.txt

Print the value of the right-most field if the current line contains more than 2 fields:

awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

echo " a b c " | awk '{gsub(/^[\t]+|[\t]+$/,"");print}'

Print the first and third fields in reverse order for the lines that contain at least 3 fields:

awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string one:

awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it’s easy to extract information or subsets of rows and columns from text files using simple conditional logic and built-in variables in the awk command.

Useful Short awk Scripts

This section contains a set of short awk -based scripts for performing various operations. Some of these scripts can also be used in other shell scripts to perform more complex operations. Listing B.21 displays the content of the file data.txt that is used in various code samples in this section.

Listing B.21: data.txt

this is line one that contains more than 40 characters

this is line two

this is line three that also contains more than 40 characters

four

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer than 40 characters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }' < data.txt

The input is processed by the expand utility to change tabs into spaces, so the widths compared are actually the right-margin columns.

Print every line that has at least one field:

awk 'NF > 0' data.txt

The preceding code snippet illustrates an easy way to delete blank lines from a file (or rather, to create a new file similar to the old file but from which the blank lines have been removed).

Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }'

Count the lines in a file:

awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous code snippet, the program would print the odd-numbered lines.

Insert a duplicate of every line in a text file:

awk '{print $0, '\n', $0}' < data.txt

Insert a duplicate of every line in a text file and remove blank lines:

awk '{print $0, "\n", $0}' < data.txt | awk 'NF > 0'

Insert a blank line after every line in a text file:

awk '{print $0, "\n"}' < data.txt

Printing the Words in a Text String in awk

Listing B.22 displays the content of Fields2.sh that illustrates how to print the words in a text string using the awk command.

Listing B.22: Fields2.sh

echo "a b c d e"| awk '

{

  for(i=1; i<=NF; i++) {

     print "Field ",i,":",$i

  }

}

'

The output from Listing B.22 is here:

Field  1 : a

Field  2 : b

Field  3 : c

Field  4 : d

Field  5 : e

Count Occurrences of a String in Specific Rows

Listing B.23 and Listing B.24 display the content data1.csv and data2.csv, respectively, and Listing B.25 displays the content of checkrows.sh that illustrates how to count the number of occurrences of the string “past” in column 3 in rows 2, 5, and 7.

Listing B.23: data1.csv

in,the,past,or,the,present

for,the,past,or,the,present

in,the,past,or,the,present

for,the,paste,or,the,future

in,the,past,or,the,present

completely,unrelated,line1

in,the,past,or,the,present

completely,unrelated,line2

Listing B.24: data2.csv

in,the,past,or,the,present

completely,unrelated,line1

for,the,past,or,the,present

completely,unrelated,line2

for,the,paste,or,the,future

in,the,past,or,the,present

in,the,past,or,the,present

completely,unrelated,line3

Listing B.25: checkrows.sh

files="`ls data*.csv| tr '\n' ' '`"

echo "List of files: $files"

awk -F"," '

(FNR==2 || FNR==5 || FNR==7) {

    if ($3 ~ "past") { count++ }

}

END {

    printf "past: matched %d times (INEXACT) ", count

    printf "in field 3 in lines 2/5/7\n"

}' data*.csv

Listing B.25 looks for occurrences in the string past in columns 2, 5, and 7 because of the following code snippet:

(FNR==2 || FNR==5 || FNR==7) {

    if ($3 ~ "past") { count++ }

}

If a match occurs, then the value of count is incremented. The END block reports the number of times that the string past was found in columns 2, 5, and 7. Note that strings such as paste and pasted will match the string past. The output from Listing B.25 is here:

List of files: data1.csv data2.csv

past: matched 5 times (INEXACT) in field 3 in lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~ "past" with the term $3 == "past" in checkrows.sh to check for exact matches, which produces the following output:

List of files: data1.csv data2.csv

past: matched 4 times (EXACT) in field 3 in lines 2/5/7

Printing a String in a Fixed Number of Columns

Listing B.26 displays the content of FixedFieldCount1.sh that illustrates how to print the words in a text string using the awk command.

Listing B.26: FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

  for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % colCount == 0) {

        print " "

     }

  }

}

'

The output from Listing B.26 is here:

aa bb cc

dd ee ff

gg hh

Printing a Dataset in a Fixed Number of Columns

Listing B.27 displays the content of VariableColumns.txt with lines of text that contain a different number of columns.

Listing B.27: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing B.28 displays the content of Fields3.sh that illustrates how to print the words in a text string using the awk command.

Listing B.28: Fields3.sh

awk '{printf("%s ", $0)}' | awk '

BEGIN { columnCount = 3 }

{

  for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % columnCount == 0)

       print " "

  }

}

' VariableColumns.txt

The output from Listing B.28 is here:

this is line

one this is

line number one

this is the

third and final

line

Aligning Columns in Datasets

If you have read the preceding two examples, the code sample in this section is easy to understand. You will see how to realign columns of data that are correct in terms of their content, but have been placed in different rows (and therefore are misaligned). Listing B.29 displays the content of mixed-data.csv with misaligned data values. In addition, the first line and final line in Listing B.28 are empty lines, which will be removed by the shell script in this section.

Listing B.29: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

Listing B.30 displays the content of mixed-data.sh that illustrates how to realign the dataset in Listing B.29.

Listing B.30: mixed-data.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

   for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % columnCount  == 0) { print "" }

   }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing B.30 starts with a grep command that removes blank lines, followed by an awk command that prints the rows of the dataset as a single line of text. The second awk command initializes the columnCount variable with the value 4 in the BEGIN block, followed by a for loop that iterates through the input fields. After four fields are printed on the same output line, a linefeed is printed, which has the effect of realigning the input dataset as an output dataset consisting of rows that have four fields. The output from Listing B.30 is here:

Sara, Jones, 1000, CA

Sally, Smith, 2000, IL

Dave, Jones, 3000, FL

John, Jones, 4000, CA

Dave, Jones, 5000, NY

Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Aligning Columns and Multiple Rows in Datasets

The preceding section showed you how to re-align a dataset so that each row contains the same number of columns and also represents a single data record. The code sample in this section illustrates how to realign columns of data that are correct in terms of their content and place two records in each line of the new dataset. Listing B.31 displays the content of mixed-data2.csv with misaligned data values, followed by Listing B.32 that displays the content of aligned-data2.csv with the correctly formatted dataset.

Listing B.31: mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

Listing B.32: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Listing B.33 displays the content of mixed-data2.sh that illustrates how to realign the dataset in Listing B.31.

Listing B.33: mixed-data2.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every 8 fields

4) remove trailing ',' from each row

#---

inputfile="mixed-data2.txt"

outputfile="aligned-data2.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }

{

   for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % columnCount == 0) { ++currRow }

     if(currRow > 0 && currRow % rowCount == 0) {currRow = 0; print ""}

   }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing B.33 is very similar to Listing B.30. The key idea is to print a linefeed character after a pair of “normal” records have been processed, which is implemented via the code that is shown in bold in Listing B.33.

Now you can generalize Listing B.33 very easily by changing the initial value of the rowCount variable to any other positive integer, and the code will work correctly without any further modification. For example, if you initialize rowCount to the value 5, then every row in the new dataset (with the possible exception of the final output row) will contain 5 “normal” data records.

Removing a Column from a Text File

Listing B.34 displays the content of VariableColumns.txt with lines of text that contain a different number of columns.

Listing B.34: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing B.35 displays the content of RemoveColumn.sh that suppressed the first column from the output.

Listing B.35: RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i; printf "\n"; }' products.txt

The loop is between 2 and NF, which iterates over all the fields except for the first field. In addition, printf explicitly adds newlines. The output of the preceding code snippet is here:

400 new

300 new

300 used

200 used

100 used

Subsets of Column-aligned Rows in Datasets

Listing B.35 showed you how to align the rows of a dataset, and the code sample in this section illustrates how to extract a subset of the existing columns and a subset of the rows. Listing B.36 displays the content of sub-rows-cols.txt of the desired dataset that contains two columns from every even row of the file aligned-data.txt.

Listing B.36: sub-rows-cols.txt

Sara, 1000

Dave, 3000

Dave, 5000

Tony, 7000

Listing B.37 displays the content of sub-rows-cols.sh that illustrates how to generate the dataset in Listing B.36. Most of the code is the same as Listing B.33, with the new code shown in bold.

Listing B.37: sub-rows-cols.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

   for(i=1; i<=NF; i++) {

     printf("%s ", $i)

     if(i % columnCount  == 0) { print "" }

   }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/$//' > temp-columns2

cat temp-columns2 | awk '

BEGIN { rowCount = 2; currRow = 0 }

{

   if(currRow % rowCount == 0) { print $1, $3 }

   ++currRow

}' > temp-columns3

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

Listing B.37 contains a new block of code that redirects the output of Step #4 to a temporary file temp-columns2 whose contents are processed by another awk command in the last section of Listing B.37. Notice that that awk command contains a BEGIN block that initializes the variables rowCount and currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line if the current row number is even, and then the value of currRow is then incremented. The output of this awk command is redirected to yet another temporary file that is the input to the final code snippet, which uses the cat command and two occurrences of the sed command to remove a trailing “,” and a trailing space, as shown here:

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

There are other ways to perform the functionality in Listing B.37, and the main purpose is to show you different techniques for combining various bash commands.

Counting Word Frequency in Datasets

Listing B.38 displays the content of WordCounts1.sh that illustrates how to count the frequency of words in a file.

Listing B.38: WordCounts1.sh

awk '

Print list of word frequencies

{

    for (i = 1; i <= NF; i++)

        freq[$i]++

}

END {

    for (word in freq)

        printf "%s\t%d\n", word, freq[word]

}

' columns2.txt

Listing B.38 contains a block of code that processes the lines in columns2.txt. Each time that a word (of a line) is encountered, the code increments the number of occurrences of that word in the hash table freq. The END block contains a for loop that displays the number of occurrences of each word in columns2.txt.

The output from Listing B.38 is here:

two    3

one    3

three  3

six    1

four   3

five   2

Listing B.39 displays the content of WordCounts2.sh that performs a case insensitive word count.

Listing B.39: WordCounts2.sh

awk '

{

    # convert everything to lower case

    $0 = tolower($0)

    # remove punctuation

   #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

    for(i=1; i<=NF; i++) {

       freq[$i]++

    }

}

END {

    for(word in freq) {

       printf "%s\t%d\n", word, freq[word]

    }

}

' columns4.txt

Listing B.39 contains almost identical content to Listing B.38, with the addition of the following code snippet that converts the text in each input line to lowercase letters, as shown here:

$0 = tolower($0)

Listing B.40 displays the content of columns4.txt.

Listing B.40: columns4.txt

123  ONE TWO

456  three four

ONE  TWO THREE FOUR

five 123 six

one  two three

four five

The output from launching Listing B.39 with columns4.txt is here:

456   1

two   3

one   3

three 3

six   1

123   2

four  3

five  2

Displaying Only “Pure” Words in a Dataset

For simplicity, let’s work with a text string and that way we can see the intermediate results as we work toward the solution. This example will be familiar from prior chapters, but now we see how awk does it.

Listing B.41 displays the content of onlywords.sh that contains three awk commands for displaying the words, integers, and alphanumeric strings in a text string.

Listing B.41: onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

  if($0 ~ /^[a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only integers:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

  if($0 ~ /^[0-9]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only alphanumeric words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

  if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

Listing B.41 starts by initializing the variable x:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi

123

#def5

123z

The third step is to invoke awk and check for words that match the regular expression ^[a-zA-Z]+, which matches any string consisting of one or more uppercase and/or lowercase letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:

ghi

abc

Ghi

Finally, if you also want to sort the output and print only the unique words, redirect the output from the awk command to the sort command and the uniq command.

The second awk command uses the regular expression ^[0-9]+ to check for integers and the third awk command uses the regular expression ^[0-9a-zA-Z]+ to check for alphanumeric words. The output from launching Listing B.37 is here:

Only words:

Ghi

abc

ghi

Only integers:

123

Only alphanumeric words:

123

123z

Ghi

abc

ghi

You can replace the variable x with a dataset in order to retrieve only alphabetic strings from that dataset.

Working with Multi-line Records in awk

Listing B.42 displays the content of employee.txt and Listing B.43 displays the content of Employees.sh that illustrates how to concatenate text lines in a file.

Listing B.42: employees.txt

Name:  Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name:  John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

Listing B.43: employees.sh

inputfile="employees.txt"

outputfile="employees2.txt"

awk '

{

  if($0 ~ /^Name:/) {

    x = substr($0,8) ","

    next

  }

  if($0 ~ /^Empid:/) {

   #skip the Empid data row

   #x = x substr($0,7) ","

    next

  }

  if($0 ~ /^Address:/) {

    x = x substr($0,9)

    print x

  }

}

' < $inputfile > $outputfile

The output from launching the code in Listing B.43 is here:

Jane Edwards, 123 Main Street Chicago Illinois

John Smith, 432 Lombard Avenue SF California

Now that you have seen a plethora of awk code snippets and shell scripts containing the awk command that illustrate various type of tasks that you can perform on files and datasets, you are ready for some uses cases. The next section (which is the first use case) shows you how to replace multiple field delimiters with a single delimiter, and the second use case shows you how to manipulate date strings.

A Simple Use Case

The code sample in this section shows you how to use the awk command to split the comma-separated fields in the rows of a dataset, where fields can contain nested quotes of arbitrary depth.

Listing B.44 displays the content of the file quotes3.csv that contains a “,” delimiter and multiple quoted fields.

Listing B.44: quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fieldZ"

fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5

"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",lname5

Listing B.45 displays the content of the file delim1.sh that illustrates how to replace the delimiters in delim1.csv with a “,” character.

Listing B.45 delim1.sh

#inputfile="quotes1.csv"

#inputfile="quotes2.csv"

inputfile="quotes3.csv"

grep -v "^$" $inputfile |  awk '

{

   print "LINE #" NR ": " $0

   printf ("-------------------------\n")

   for (i = 0; ++i <= NF;)

     printf "field #%d : %s\n", i, $i

   printf ("\n")

}' FPAT='([^,]+)|("[^"]+")' < $inputfile

The output from launching the shell script in Listing B.44 is here:

LINE  #1 :
field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fieldZ"

field #1 : field5

field #2 : field4

field #3 : field3

field #4 : "field2,foo,bar"

field #5 : field1

field #6 : field6

field #7 : field7

field #8 : "fieldZ"

LINE  #2 :
fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5

field #1 : fname1

field #2 : "fname2,other,stuff"

field #3 : fname3

field #4 : "fname4,foo,bar"

field #5 : fname5

LINE  #3 :
"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",lname5

field #1 : "lname1,a,b"

field #2 : "lname2,c,d"

field #3 : "lname3,e,f"

field #4 : "lname4,foo,bar"

field #5 : lname5

LINE  #4 :"Outer1 "Inner "Inner "Inner C" B" A"
Outer1","XYZ1,c,d","XYZ2lname3,e,f"

field #1 : "Outer1 "Inner "Inner "Inner C" B" A" Outer1"

field #2 : "XYZ1,c,d"

field #3 : "XYZ2lname3,e,f"

LINE  #5 :

As you can see, the task in this section is very easily solved via the awk command.

Another Use Case

The code sample in this section shows you how to use the awk command to reformat the date field in a dataset and change the order of the fields in the new dataset. For example, say we are given the following input line in the original dataset:

Jane,Smith,20140805234658

The reformatted line in the output dataset has this format:

2014-08-05 23:46:58,Jane,Smith

Listing B.46 displays the content of the file dates2.csv that contains a “,” delimiter and three fields.

Listing B.46: dates2.csv

Jane,Smith,20140805234658

Jack,Jones,20170805234652

Dave,Stone,20160805234655

John,Smith,20130805234646

Jean,Davis,20140805234649

Thad,Smith,20150805234637

Jack,Pruit,20160805234638

Listing B.47 displays the content of string2date2.sh that converts the date field to a new format and shifts the new date to the first field.

Listing B.47: string2date2.sh

inputfile="dates2.csv"

outputfile="formatteddates2.csv"

rm -f $outputfile; touch $outputfile

for line in `cat $inputfile`

do

  fname=`echo $line |cut -d"," -f1`

  lname=`echo $line |cut -d"," -f2`

  date1=`echo $line |cut -d"," -f3`

  # convert to new date format

  newdate=`echo $date1 | awk '{ print
substr($0,1,4)"-"substr($0,5,2)"-"substr($0,7,2)" "substr($0,9,2)":"substr($0,11,2)":"substr($0,13,2)}'`

  # append newly formatted row to output file

  echo "${newdate},${fname},${lname}" >> $outputfile

done

The content of the new dataset is here:

2014-08-05 23:46:58,Jane,Smith

2017-08-05 23:46:52,Jack,Jones

2016-08-05 23:46:55,Dave,Stone

2013-08-05 23:46:46,John,Smith

2014-08-05 23:46:49,Jean,Davis

2015-08-05 23:46:37,Thad,Smith

2016-08-05 23:46:38,Jack,Pruit

Summary

This chapter introduced the awk command, which is essentially an entire programming language packaged into a single Unix command.

We explored some of its built-in variables as well as conditional logic, while loops, and for loops in awk in order to manipulate the rows and columns in datasets. You then saw how to delete lines and merge lines in datasets, and how to print the contents of a file as a single line of text. Next you learned how to use meta characters and character sets in awk commands. You learned how to perform numeric calculations (such as addition, subtraction, multiplication, and division) in files containing numeric data, and how to use some numeric functions that are available in awk.

In addition, you saw how to align columns, delete columns, select a subset of columns, and work with multi-line records in datasets. Finally, you saw some simple use cases involving nested quotes and date formats in a structured dataset.

At this point, you have all the tools necessary to do sophisticated data cleansing and processing, and it is strongly encouraged that you try to apply them to some task or problem of interest. The final step of the learning process is doing something real.

“I saw something similar once, I wonder if there is a way to….” or the even more common “How do I do XXX in language YYY” will help you in the learning process. You can’t consider those issues if you don’t have a sense of what is possible.

At this point there is one more thing to say: congratulations! You have completed a fast-paced yet dense book, and if you are a neophyte, the material will probably keep you busy for many hours. The examples in the chapters provide a solid foundation, and the Appendix contains additional examples and use cases to further illustrate how the Unix commands work together. The combined effect demonstrates that the universe of possibilities is larger than the examples in this book, and ultimately, they will spark your own ideas. Good luck!

INDEX

A

Aho, Weinberger, and Kernighan (awk) command

built-in variables, 258–259

conditional logic and control statements, 261–263

count occurrences of a string, 276–278

data cleaning tasks, 174–176

countries, cities, and telephone codes, 195–200

row generation with fixed columns, 177–179

datasets

aligning columns, 279–280

aligning columns and multiple rows, 280–281

column-aligned rows, subsets of, 282–283

delete alternate lines, 264

display pure words, 285–287

in a fixed number of columns, 278–279

merge lines, 264–267

word count, 283–285

meta characters and character sets, 268

multi-line records, 287–288

numeric functions in, 271–274

one line commands, 274–275

postfix operators, 270–271

printf command, align text, 260–261

printing lines using conditional logic, 269

print words in a text string, 276, 278

remove columns from text file, 281–282

short awk scripts, 275–276

split filenames, 270

use case, 288–291

working principle, 259–260

Analysis of variance (ANOVA), 252

Availability bias, 254

B

Black-box shift detector, 249

Bokeh, 232–234

C

Confirmation bias, 254

Continuous data types, 239–240

D

Data cleaning tasks, 162–163

awk command line utility, 174–176

countries, cities, and telephone codes, 195–200

row generation with fixed columns, 177–179

convert date formats

alphabetic, 186–188

numeric, 181–186

convert phone numbers, 179–181

date and time date formats, 188–194

on Kaggle dataset, 201–204

for personal titles, 163–164

sed command line utility, 172–173

in SQL

convert strings to date values, 170–171

handle mismatched attribute values, 168–169

replace multiple values with a single value, 167–168

replace NULL with 0, 165

replace NULL with average value, 165–167

truncate the rows in CSV files, 176–177

Datasets

anomalies and outliers, 246–247

ANOVA, 252

awk command

aligning columns, 279–280

aligning columns and multiple rows, 280–281

column-aligned rows, subsets of, 282–283

delete alternate lines, 264

display pure words, 285–287

in a fixed number of columns, 278–279

merge lines, 264–267

word count, 283–285

bias-variance trade-off, 252–255

categorical data

for inconsistent spellings, 242–243

mapping technique, 243

one-hot encoding, 244

data drift, 248–249

data preprocessing, 236–237

data types, 237–238

continuous data types, 239–240

discrete data types, 238

dates and currency, 245–246

description, 235–236

Huber and Ridge classes, 248

imbalanced classification, 249–250

LIME, 251–252

LOF technique, 248

Minimum Covariance Determinant, 247

missing data, 246

scaling numeric data

via normalization, 240–241

via standardization technique, 241–242

SMOTE, 250–251

trimming technique, 247

Data visualization

Bokeh, 232–234

description, 205–206

Iris dataset in Sklearn, 216–220

Matplotlib

colored grid in, 208–209

diagonal lines in, 207–208

displays IQ scores, 214

histogram, 210–211

line segments in, 211–212

plot a best-fitting line, 215–216

plot multiple lines in, 212

randomized data points in, 209–210

trigonometric functions, 213

in Pandas, 230–231

Seaborn

built-in datasets, 221–222

features, 221

Iris dataset, 222

Pandas dataset, 228–230

Titanic dataset, 223–228

tools, 206

types, 206

Data wrangling, 237

Discrete data types, 238

Domain classifier, 249

F

False causality, 254

Feature engineering, 139–140

G

gawk command, 258

Google Colaboratory, 63–66, 157–159

H

Hadamard product, 43–44

I

Imbalanced classification, 249–250

L

Local Interpretable Model-Agnostic Explanations (LIME), 251–252

Localization, 245

Local Outlier Factor (LOF) technique, 248

M

Matplotlib

data visualization

colored grid in, 208–209

diagonal lines in, 207–208

displays IQ scores, 214

histogram, 210–211

line segments in, 211–212

plot a best-fitting line, 215–216

plot multiple lines in, 212

randomized data points in, 209–210

trigonometric functions, 213

NumPy

plot a quadratic function, 51–52

plot multiple points, 50–51

Method chaining, 130–131

Minimum Covariance Determinant, 247

N

nawk command, 258

Non-linear least squares, 56

Normalization, 240–241

NumPy

arrays

append elements, 34–35

declaration of, 32

dot product, 41–42

and exponents, 37–38

math operations, 38

multiply elements, 35–36

reshape() method, 44–45

vector operations, 40–41

description, 32

features, 32

Google Colaboratory, 63–66

Hadamard product, 43–44

length of vectors, 42–43

linear regression

best fitting hyperplane, 53

curve fitting, 53

history, 52

multivariate analysis, 53

non-linear datasets, 53–54

lines in the Euclidean plane, 48–50

loops, 33–34

Matplotlib APIs

plot a quadratic function, 51–52

plot multiple points, 50–51

mean and standard deviation

code sample, 46–47

statistical calculations, 45–46

trimmed mean and weighted mean, 47–48

Mean Squared Error (MSE) formula

best-fitting line, 57–58

goals, 55

manual calculation, 56–57

non-linear least squares, 56

by successive approximation, 58–63

types, 55–56

methods, 39–40

Python list

double the elements, 36–37

exponents of elements, 37

“-1” sub-ranges

with arrays, 39

with vectors, 38–39

O

One-hot encoding technique, 244

P

Pandas

alternatives, 69–70

apply() and mapapply() method, 113–117

categorical to numeric data, 79–82

convert strings to date formats, 85–86

data frames

aggregate operations, 121–125

Boolean operations, 74–75

column-based operations, 94–99

concat() method, 88

and CSV file, 92–94

data cleaning tasks, 69

data manipulation, 88–92

describe() method, 72–74

and Excel spreadsheet, 126–127

features, 69

handling missing values, 104–110

NumPy arrays, 70–72

with random numbers, 76–77

save as CSV and Zip files, 125–126

scatterplot, 119–120

sorting, 110–112

statistics from housing.csv, 120–121

transpose operation, 75

groupby() method, 112–113

handling outliers, 117–119

installation, 67

JSON-based data, 127–129

loc() and iloc() method, 78

matching and splitting strings, 82–84

merge and split columns, 86–88

method chaining, 130–131

one-line commands, 129–130

options and settings, 68

Pandas profiling, 131–132

read_csv() method, 77–78

row-related operations, 99–104

Pandas profiling, 131–132

Python

with bases, 12

chr() function, 12–13

command-line arguments, 28–29

compile-time checking, 9–10

data types, 10

date-related functions, 23–24

easy_install and pip, 1–2

exception handling, 24–26

format numbers, 13–14

handling user input, 26–28

help() and dir() functions, 8–9

identifiers, 4

indentations, 5

installation, 2

launch, 3–4

lines and multi-lines, 5

naming conventions, 4

with numbers, 10–11

PATH environment variable, 3

quotation and comments, 5–7

round() function, 13

runtime code checking, 9–10

Standard Library modules, 8

store code in a text file, 7

strings

concatenation, 15

format() method, 17

ljust(), rjust(), and center(), 22

lower() and upper() method, 16–17

search and replace, 19–20

slicing and splicing, 18–19

strip(), lstrip(), and rstrip(), 20–21

write() function, 21–22

Unicode and UTF-8, 14–15

uninitialized variable and value None, 17–18

virtualenv tool, 2

R

Resource bundle, 237

S

SciPy

components, 148

determinant of square matrix, 151

eigenvalues and eigenvectors, 152–153

flipping images, 155

Fourier transforms, 154–155

installation, 148

integral calculation, 153

inverse of a matrix, 152

log sums calculation, 150

permutations and combinations, 149–150

polynomial operations, 150–151

rotating images, 156

Seaborn

built-in datasets, 221–222

features, 221

Iris dataset, 222

Pandas dataset, 228–230

Titanic dataset, 223–228

Sklearn

description, 133

Digits dataset, 135–138

Faces dataset, 146–148

feature engineering, 139–140

features, 134

Iris dataset, 140–146

train_test_split() class, 138–139

SMOTE, 162

Standardization technique, 241–242

Sunk cost, 254

Survivorship bias, 255

OEBPS/image/ML-LOGO.jpg
[V

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

OEBPS/image/Figure6-9.jpg
50-

45~

40-

35-

30-

25-

20-

15-

10-

10

15

20

25

30

35

20

a5

50

OEBPS/image/pg_252.jpg
b D i i A o i s T

o 3 female 31.0 1 0 16.0000 S Thizd
o 3 female 0.0 1 0 s.4750 s nird
o 3 female 7.0 1 0 14.5000 S Thizd
o 3 female 5.0 1 4 27, s Thiza
o 1 female 50.0 0 o C Firsc
o 3 female 1.0 0 2 s Thiza
o 3 female 5.0 0 0 s Thiza
o 3 female 5.0 0 1 c nird
o 3 female 31.0 0 o s Thiza
o 3 female 37.0 0 o s Thiza
o 3 female 33.0 1 s s nird
o 3 female 1.0 0 s s Thiza
o 3 female 32.0 1 1 Q@ Thira
o 3 female 3.0 1 s s nird
o 3 female 5.0 1 B s Thiza
o 3 female 30.5 0 o Q@ Thira
a 3 female 39.0 0 5 o hird

OEBPS/image/pg_190.jpg
tures GROUP BY city ORDER
BY COUNT (*) DESC LIMIT 1)

ecity (SELECT city FROM temp

1 row in set, 1 warning (0.000 sec)

OEBPS/image/Figure6-6.jpg
e

e

P

]

7

P,

.

OEBPS/image/Figure6-5.jpg
2

WH

15

10

Weight

OEBPS/image/Figure6-8.jpg
Histogram of 1Q
0030

100
Intelligence

OEBPS/image/Figure6-7.jpg
100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

20

60

80

100

OEBPS/image/Figure6-3.jpg
-100 -0.75 -0.50 -025 000 025 050 075 100

OEBPS/image/Figure6-2.jpg
0.5

os

15

25

35

as

55

65

75

85

a5
20505 15 25 35 45 55 65 7.5 85 95

OEBPS/image/Figure6-4.jpg
250

200

150

OEBPS/image/Figure6-11.jpg
survived

1.0

08

0.6

0.4

0.2

0.0

OEBPS/image/Figure6-10.jpg
petal_length

v
Ry
setosa versicolor virginica

s,

OEBPS/image/Figure6-13.jpg

OEBPS/image/Figure6-12.jpg
100

40

20 .

0 20 40 60 80 100

OEBPS/image/Figure4-7.jpg

OEBPS/image/Figure6-1.jpg

OEBPS/image/Figure4-8.jpg
800 1000 1200

OEBPS/image/cover.jpg
PYTHON ToOOLS
FOR DATA SCIENTISTS

6 2 OSWALD CAMPESATO

OEBPS/image/Figure4-4.jpg
25

20

10

0.0 X 10 15
petal width (cm)

. setosa
= versicolor
= virginica

OEBPS/image/Figure4-3.jpg
X (one or more columns) y (= 1 column)
+
| Il
| I
| !
758 | X_train | I<= y_train
| (model training) 11
| !
| !
| 11
258 | X_test | I<= y_test
I (model predictions) 11
| ||
+

OEBPS/image/Figure4-6.jpg
.
o
.
.
.
L)
.
°®
)
.
=20 =15 ~1h =05 oD 0.5 1.0 15 2.0

OEBPS/image/Figure4-5.jpg
3
i

3

| 9

OGaE

QYRR

RS

4
=

i e

St

=
=

OEBPS/image/Figure2-9.jpg

OEBPS/image/Figure2-8.jpg
1& "
MSE = 13 (% ~ ¥

OEBPS/image/Figure4-2.jpg
ik A3 08 01 46

Ak I8 AR 0K (A

AL R kA 0

LRE IV IE]

4 IET TR

OEBPS/image/Figure4-1.jpg

OEBPS/image/Figure2-7.jpg
35

30

25

20

o original data
— Fitted line:

o

OEBPS/image/Figure2-6.jpg

OEBPS/image/Figure2-12.jpg
0.18
016
014
012

5010
0.08
0.06

004

0.02

0 2000 4000 6000 8000 10000
iterations (per tens)

OEBPS/image/Figure2-2.jpg

OEBPS/image/Figure2-10.jpg

OEBPS/image/Figure2-11.jpg
cost

018

016

014

012

010

0.08

0.06

0.04

002

20

40 60
iterations (per tens)

80

100

OEBPS/image/Figure2-5.jpg

OEBPS/image/Figure2-3.jpg
100

75

50

OEBPS/image/Figure2-4.jpg
25

yBIaH

15

10

Weight

OEBPS/image/bull.jpg

OEBPS/image/Figure2-1.jpg

