

Table of Contents

Introduction
The Problem of Scaling
The Problems with Scaling
Answering the Key Questions
The Structure of This Book

Section I - Setting up our System
Chapter 1 - Ford's Folly in Brazil
A Giant Of The Industry...With A Proven Framework
Results of The Lift and Shift
Our Own Fordlandia
Big in Japan
The Principles of Lean

Chapter 2 - Lean, Kanban, and Scaling
The Principles of Lean
Definition of Workflow (DoW) in Kanban
Dimensions of Scaling
One Team Working on One Product
Conclusion

Chapter 3 - Identifying Value
Work Breakdown Structure
Which Level Delivers Value?
"Potential" Value

Chapter 4 - Mapping the Value Stream
Idea to Feedback
Starting With Activities
Do not 'Seek Perfection' Yet

Chapter 5 - Creating Flow
Start and Finish Points
Exit/Entrance Criteria
Blocker Policies
Flow Metrics
Service Level Expectation

Chapter 6 - Establish Pull
Pull at Every Stage
Controlling WIP

Interlude

Section II - Operating and Improving our System
Chapter 7 - Planes, Trains, and Automobiles
A Thanksgiving Classic
A Tale of Delays
Structures, Priorities, and Dependencies
Lead with Flow

Chapter 8 - Strategic Alignment
Defining Strategy
Strategic Business Objectives
Objectives and Key Results (OKRs)
Strategic Horizons

Aligning Strategy and Operation
Handling Mismatches

Chapter 9 - Operating The Board
Flow Metrics Revisited
Portfolio Standups
Leveraging WIP
Leveraging SLE

Chapter 10 - Blockers and Dependencies
Blockers
Internal Blockers
External Blockers

Dependencies

Chapter 11 - Prioritization
Three Levels of Prioritization
Prioritizing Active Work
Prioritizing 'What's Next?'
Prioritizing the 'Next 10 Things' or Next Quarter or 'Next 4 Weeks'
Common Methods of Prioritization
Single Queue
Cost of Delay/CD3 (Weighted Shortest Job First)
Stack Ranking by Perceived Value
Shortest Job First
Random Selection

Multiple Queues
Cost of Delay/CD3 (Weighted Shortest Job First)
Based on Investment Strategy
Based on Available Skillset
Random (or Round-Robin)

The Waste of Prioritization
The Key Decision

Chapter 12 - Forecasting
Principles of Forecasting
Monte Carlo
One Team Working on One Product
Impact of Feature WIP
Multiple Teams Working on Multiple Products
Multiple Teams Working on the Same Product (Impact of Dependencies)
Planning

Chapter 13 - Predictability
Shewhart's Stability
Cycle Time Scatterplot
Little's Law
Right-Sizing
"Doing" Predictability

Chapter 14 - Effectiveness
Everybody Lies
Monitoring
Success Metrics

Chapter 15 - Efficiency
Continuously Managing Flow
Refining The Workflow
Removing Sources of Inefficiency

Section III - Getting Started and Assorted Essays
Chapter 16 - The Sheep of North Ronaldsay
History of North Ronaldsay
The Sheep That Eat Kelp
The Decision Makers

Chapter 17 - Getting Started
Patterns to Watch Out For
Stagnation
Executive Privilege
Prioritization Horse Trading
Hidden Work
Lack of Education
Churn and Baggage

(R)Evolution

Chapter 18 - Conway is Killing You and Little is Helping
Conway’s Law
Conway’s Effect on Products
Conway’s Effect on Process
Little’s Law
Conway And Little Are Your Friends
This Is Hard

Chapter 19 - The Shapes of Backlogs and Teams
Chapter 20 - Don’t Be a Ditka
Prioritization in Product Development
Cost of Delay
Cost of Delay Divided by Duration
Problems with CD3
The Saints Come Marching In
Uncertain Value
Uncertain Duration
New Items Show Up
CD3 is Bollocks
Output Over Outcomes (Simulation Results)
Case I: CD3 Assumptions Are Met
Case II: CD3 Assumptions Not Met
Case III: Right Sizing of Items
A Final Important Simulation Result

Right Sizing Wins
Ravings of a Madman
Only Have to be Better Than the Next Best Thing
The CD3 Numerator Is Most Important

Where’s the Beef?
CoD is Easy to Quantify
It’s the Conversation that Matters Most
Conclusion
Epilogue
Simulation Set Up

Chapter 21 - Ultimate Software Case Study
Background
Results with Kanban
The Aces Team
Payroll Team
Organization Wide Impact

Monte Carlo Simulation and Probabilistic Release Planning and Tracking
Release Planning
The Daily Product Review

Moving Beyond Development
Conclusion
Acknowledgments

Endnotes
Bibliography
Acknowledgments
About the Author

To my girls

Yvette, Miranda, and Nisha
Introduction

In December of 2022, Daniel Vacanti and I were teaching a scaling Kanban class in Central London. During one of the breaks, we stepped outside for a cup of coffee. We started discussing what made our approach different from the big scaling frameworks. It boiled down to one single thing - Instead of trying to scale the organization or teams, we were trying to scale flow. We were trying to teach people to do the opposite - Descale in order to scale flow. That conversation was the spark for putting down in this book the techniques that we have been successful with. So yes, it is Dan's fault.

This book is an attempt to simplify the approach to solving the problem of scaling Agile. We will break this problem down to its basic tenet - Optimizing the flow of value to customers. We will try to solve this problem by using the strategy of Kanban. In doing so, we will often discard the practices of some Agile frameworks and go to the root of what we are trying to accomplish - To make organizations more Effective, Efficient, and Predictable. For a lot of folks, the approach and solutions proposed here might seem anti-Agile. For others, these will feel much closer to the core of what agility is about. This book looks to help you scale, even if you are not scaling Agile. Regardless of your current process, most of the ideas presented here will be applicable in your context. This book is for the practitioners, the ones doing the work on a day-to-day basis to help their organizations improve. This is also for those who are not looking for a recipe. This book is for the folks who are interested in understanding, measuring, and improving their system by actively participating in it.

The Problem of Scaling

Agile has been a victim of its own success. In its early stages, many developers, teams, and organizations discovered Agile practices as a way to successfully solve customer problems. As these pioneers solved problems, three things happened -

	The organizations employing Agile, as a consequence of their success, grew larger.

	The Agile practitioners were recruited to work with larger organizations that wanted to take advantage of this new way of working.
	Bigger organizations that saw smaller ones eat into their market share saw 'Agile' as the way to maintain or regain ground.

In all three of these cases the core problem to be solved was the same. How do we make Agile work across larger organizations?

Agile was quickly proving itself to be successful on smaller teams. The most successful forms of Agile even recommended small teams. Could a set of principles and the corresponding processes that were designed around the concept of small groups working together work in a larger context? How do we get groups of teams that have multiple dependencies across each other to work as effectively as a single Agile team? This in a nutshell is the problem of scaling - How can we get the 'sum of the parts' to work as optimally as the parts themselves?

Being too close to the problem warps our point of view. It leads us to believe that our problems are more complex than they actually are. We also tend to believe that complex problems need complex solutions. Usually these are both incorrect assumptions. Simple solutions solve both complex and simple problems. Scaling is neither a complex problem nor does it require complex solutions. Even if your current context has created a situation where scaling is complex, the solution still is, usually, simple. The currently popular approaches are very complex and add extra overhead to solve the problem of scaling. When we focus on scaling flow, we are often talking about eliminating the wasteful overhead. We are trying to get everything out of the way of scaling the flow of value to our customers.

The Problems with Scaling

The attempts at solving the problem of scaling have, for the most part, backfired. There are multiple reasons for that which we will cover in this book. They fall into three broad categories -

	We have a dearth of innovative solutions to scaling problems.

	We are copy-pasting frameworks instead of scaling using principles.
	We are scaling the wrong thing.

These reasons form the central themes for the book. We do not just discuss the issues, but also the solutions. To that end, we will work towards creating a scaling solution using Kanban. We explore the minimal considerations to keep in mind in order to say that we have scaled with Kanban. We also explore certain aspects that are likely to make scaling using Kanban a success. It is important to note that Kanban here, is referring to Kanban as a strategy, not as a method or a framework. The principles represented as Kanban, mostly borrowed from Lean, are ways to improve the flow of value through your system, not a recipe to follow. We will also cover the operation and improvement of the Kanban system. Here we are going to cover how scaling with Kanban attempts to solve the common problems organizations face at scale.

We are looking to descale, in order to scale. That is why you will find nothing in the form of prescribed roles or events in this book. There is an apocryphal story about the artist Michelangelo. When asked about the difficulties he encountered while creating the sculpture of David, he replied - "I just removed everything that was not David". We are going to take a similar approach. Your organization currently has a lot of extra marble, we are going to strip this down to only what is needed for the masterpiece to emerge. As opposed to bulky frameworks that add a lot of overhead, we are going to make progress via negativa. We are going to remove everything except that which is needed to understand, operate, and improve the flow of value.

In our discussion, we will lay out a very generic strategy for scaling. There will be some guidance on specific aspects of implementation, but most of the aspects of scaling are left to the implementers themselves. Agile should always be beyond following recipes, whether at a team level or at scale. Scaling Agile has seen an infliction of recipes that answer all your questions and leave little room for adjustment. We need to figure out ways to go back to the first principles of Lean and Agile to enable agility at scale. Principles and Mindset over Practices and Frameworks. That is why our focus here is scaling flow and agility, not necessarily scaling Agile.

Answering the Key Questions

Growth for an organization comes with both advantages and disadvantages. The organization is most likely in a more stable place now and can hence afford to grow and take on bigger challenges. On the other hand, the simplicity and transparency of the earlier stages is lost. Some questions that were easy to answer in the past can no longer be answered easily:

	What are our teams working on?
	Does the work map to our organization's strategy?
	What is blocking the flow of value to customers?
	When will things get done?
	How do we improve efficiency, effectiveness, and predictability of the organization?

The fact that these important questions are almost impossible to answer is the reason organizations turn to scaling frameworks. The answer we propose here is to simplify things by descaling your process and scaling your flow.

The Structure of This Book

The book is organized in three distinct sections:

	Section I - This part of the book deals with setting up a Kanban system at scale. If you are an experienced Kanban practitioner, this might be very familiar to you. There are some aspects where we depart from the implementation at team level. For the most part though, this section helps you create the definition of workflow at scale.
	Section II - This section helps you operate the Kanban system on a daily basis. We look at how we can understand the information that the board presents and use it to make the right decisions. We also discuss how to improve this system over time.
	Section III - This is mostly a collection of essays. These essays dive into things you need to consider while getting started, common pitfalls of organization structures, and a deep discussion on some simulations and their results. This section is included for completeness. It gives the reader both context and hard numbers to back up the contents of the book.

Each section of this book starts with an anecdote. These stories form the basis for our discussions in each section. We start discussions by taking a journey from the United States Midwest to the heart of the rainforest in Brazil along with a quick visit to Japan. We start section II by following a (semi) fictional journey from New York to Chicago. The last section leads us to an island in Northern Scotland.

I expect that our trips across the world will help the reader see the common pitfalls of scaling and how to avoid them. In the process, hopefully we learn how simple scaling can actually be. Not necessarily easy, but simple.

Section I - Setting up our System

Chapter 1 - Ford's Folly in Brazil

A Giant Of The Industry...With A Proven Framework

Henry Ford 1 is famous for a lot of reasons, a lot of very good reasons. Not least of which is the fact that he built and established a great working culture in mid-western America. He built a major automobile company that was a primary employer for thousands of workers. Ford made the automobile affordable, taking it out of the realm of being a curiosity. Ford was a major sponsor and implementer of the assembly line system. This helped Ford, as a company, to be able to mass produce cheap goods while keeping wages for their workers high. It was, in essence, the best of both worlds — Consumers were getting inexpensive, cheap goods and workers were getting gainful employment that did not require them to work extraneous hours.

[image: Fordlandia Figure 1]

Henry Ford.
Image Credit: National Photo Company Collection

Ford was a big proponent of “Welfare Capitalism”. He instituted multiple workplace policies that were not only to the benefit of the workers but also helped establish the new norms for the Auto industry in the American Midwest. Below are some examples of policies that Ford enacted in order to usher in the era of “Welfare Capitalism” for the auto industry.

	Offered a daily wage of $5.00 when other automakers were offering half of that.
	Implemented a forty-hour work week (or eight-hour workdays).
	Introduced savings and loans programs for workers.
	Built an infirmary, a cafeteria, and a Social Welfare department for the workers.
	Initiated profit sharing (Based on the social welfare program).

Ford was also a bit of a control freak. One basic element of car production that was out of his control was rubber. In the early 1900s rubber was mostly produced in the Amazon Basin in Brazil. Ford wanted his own stronghold and negotiated the purchase of land from the Brazilian government, in the Amazon basin, in order to build a rubber production city — Fordlandia 2.

The Brazilian rubber economy had recently seen a major decline. The Dutch, French, and British had exported the rubber trees to colonies in Southeast Asia and severely undermined the rubber monopoly of Brazil. Ford did not just see this as an opportunity to control his own destiny, in terms of rubber products for cars, but also as an opportunity to prove that his methods can work anywhere in the world. Ford wanted to recreate the successful midwestern, assembly line, and welfare capitalism 3. There were going to be no half-measures, he was going to bring over all his policies and create a slice of Americana in the heart of the Brazilian rainforest.

[image: Fordlandia figure 2]

Ariel Photograph of Fordlandia.
Image Credit: Wkimedia Commons

Ford wanted a big bang transition of how folks in the Brazilian rainforest worked because he “knew” he had a better model, a better framework. A framework that had yielded results somewhere else and was deemed foolproof. If applied, as close as possible to the original model, using similar rules and structures, Ford’s method will create the Midwestern American utopia in the heart of the Amazon basin. In Ford’s mind, this was a SAFe bet. After all, everyone else was copying his methods. His model had been copied by many in attempts to be successful. It had worked wonderfully at Dearborn, Michigan in the American Midwest. There was no reason that this model would not work in Brazil.

Results of The Lift and Shift

So, what happened with Fordlandia? Ford sent over managers who had successfully implemented his methods in America, to repeat the pattern and implement the same model in Brazil. Local workers were hired and given a pay rate that was twice what was being paid in the region. The eight-hour work day was implemented. Large areas of the jungle were cleared, so that rubber trees could be planted. They were planted close together, just as machines would be in an assembly line on the factory floor. There were timeclocks, ID badges, and cafeteria-style meals 4.

Ford knew that running the plantation in the manner of a production line would not be enough. If he did not provide the benefits of “Welfare Capitalism”, and replicate the experiment properly, all this might be for naught. So, Fordlandia was planned as a Midwestern American town. There were residences for workers and for managers. There was an infirmary, a school, a golf course, a swimming pool, and anything else that was deemed to be a necessity for Fordlandia to resemble a Midwestern American town. American food was made a staple to add to the American style living quarters. Social norms for Fordlandia were strict as well. The same social norms that Ford tried to enforce with his “Social Welfare” programs back home were made compulsory. There was a ban on alcohol, tobacco, and women. These rules were strictly enforced. There were square dances, poetry readings, and everything else that would help enforce a healthy, clean American lifestyle.

The mass production line, combined with welfare capitalism, was the best system the world had seen. There was to be no stone left unturned to make sure that the system and the ideal conditions for its success were replicated. Once that was done, success was a guarantee. As long as the blueprint existed (production line), the conditions for its success created (“clean” American lifestyle) and experts trained in running such systems (Ford’s managers from Michigan) added to the equation, the production gains that had been made in America would be repeated in Brazil.

Things did not quite pan out that way 5. The workers hated the eight-hour workday. The nature of tapping rubber trees for sap is such that the workers had to clock in at 5:00 am and then work through the hot midday sun in a humid tropical climate. They were unhappy about being served only American food. The food was also served in the unfamiliar cafeteria style, which the workers were not used to. The implementation of strict social rules drew special ire from the workers. The no-alcohol rule was particularly derided among the workers. The workers became so agitated with the work conditions that they ended up revolting multiple times. One of those revolts was extreme enough that the managers had to escape on boats. Timeclocks were smashed, town’s structures were vandalized. Things got so bad that the Brazilian military had to be brought in to restore order.

Following that revolt, under the leadership of a very capable manager, Archibald Johnston, things started taking a positive turn. While the workers’ strife had been quietened by Johnston, there was a major problem that still remained. The plantation had never become successful at producing rubber at any decent scale. With or without riots, the plantation had been an abject failure in terms of production. In Southeast Asia, it had been proven that rubber trees can be planted close to each other and successfully yield rubber. This fit in perfectly with Ford’s manufacturing philosophies. This meant very little wasted space and the enablement of production line-type techniques. In the Amazon basin though, this did not work. Blight and pests spread from tree to tree very quickly due to their proximity. Before any such spread could be detected and controlled, it had already infected large areas as the trees' leaves often touched each other allowing the ailments to spread. In fact, to make up for the lack of production, Ford resorted to planting more trees, which further exacerbated the problem.

After consultation with a botanist, Ford tried building another settlement nearby, a town called Belterra 6. The same problems with production continued even in Belterra. The plant in Belterra started producing rubber in 1941, but by 1945, both Belterra and Fordlandia were abandoned by Ford. The land was sold back to the Brazilian government as the project had been unprofitable for almost two decades.

[image: Fordlandia Figure 3]

Dilapidated Main Warehouse at Fordlandia.
Image Credit: Wikimedia Commons

Our Own Fordlandia

For anyone who is currently going through, has been through, or is planning on adopting a big-bang agile transformation, this should sound familiar. Anyone trying to adopt a big framework, making a wholesale change to micro-services, a new JavaScript framework, Spotify model, SAFe etc. would be able to see the similarities with Ford’s big Brazilian experiment. The promise of "if we just adopt that big framework that worked somewhere else, it will solve our problems" is universal and timeless. Most of us believe in it, and even almost a century after Fordlandia, it has not lost its appeal. The central problem with these approaches is that they start from the framework and not from your context. A successful approach to scaling has to depend on mapping the current context, exposing the issues with it and improving the flow of value through it. This approach helps us come up with solutions to the problems we face. Starting with a framework means starting with the solution, and then retrofitting our problems to it.

Let us draw some explicit parallels between Ford's experiment and most large framework-based transformations -

	Ford had a roadmap laid out for exactly how he would proceed setting up the new plantation. Scaling frameworks usually have a long step by step guided roadmap.
	When Fordlandia started faltering, a new manager (Archibald Johnston) was brought in, even this could not stop failure. We often bring in experienced framework consultants to solve faltering transformations.
	Ford did not pay attention to the local culture and geography. Big frameworks often prioritize the implementation of the framework over adapting to the context.
	The implementation of Fordlandia was a big-bang, large investment one. We often make this large bet with implementing a framework as well.

Big bang, major efforts are very appealing on the surface. Conventional wisdom says that in order to achieve big results, you have to put in big efforts. Unfortunately, this is misguided wisdom, at least in the context of complex knowledge work. For many though, this wisdom is part of the environment they have adapted to. You would rarely find an Agile Coach who would be a proponent of trying Big Bang approaches when it comes to product development, then why do it with process improvement? The more money you plan on investing in an approach, the greater the risk. Agile is all about reducing risk by working in small batches and making small investments to evaluate returns. Same should apply to how we implement or scale Agile. The best way to implement or scale Agile, is Agile. Let us level set on what we are going to improve and then incrementally, make improvements through experiments. If your product has a pre-determined multi-year roadmap, you will, most likely, end up solving the wrong problems. If your agile implementation or scaling approach has a pre-determined, multi-year roadmap, it is probably the wrong approach as well. The same flexibility and constant reality check that you need in your product roadmap, is needed to your scaling approach.

It is always considered to be a safer option to copy the efforts of broadly prescribed models, frameworks and techniques. From an executive and/or decision maker’s perspective, this is a pretty secure option. “If everyone else is doing it, my decision cannot be wrong. If it fails, the people did not execute it well enough”. It helps offload the responsibility on to either the consultants helping implement the approach or the teams working within the approach. Enlightened executives are often able to see beyond this. They are able to to see how the structures, rigidity and copy/paste nature of the approach are the real problems. These are often old artifacts, roles and structures with new names, rather than real changes in the way we operate and produce value for customers. The copy/paste approaches often require all elements of the approach to be implemented. The framework can often fall apart if one of the components is not implemented. This is usually a sign of a Fragile, not an Agile approach.

Big in Japan

As Ford was wrapping up his failed large-scale experiment in Brazil, a much smaller scale technique was being developed in Japan. The Toyota Production System (TPS), whose practices later came to be known as "Lean" was taking shape. Taichi Ohno, the mastermind behind TPS, visited Ford's plants in Michigan. He saw the production lines producing thousands of cars per day. In the context of a war-ravaged Japan, Ohno knew he could not simply copy Ford. He started work on developing a much leaner operation. He developed a principle-based system that could be applied starting with context it was being used in.

We have talked a lot about what not to do. Which examples not to follow. Toyota and Lean are our first forays in the direction we want to follow. Starting next chapter, we are going to move more into the realm of the things we should do. How can you take a more Lean and a more principled Agile approach to scaling in your organization? We are going to apply what we have learned from Ford, Toyota, and Lean to our context. Before that though, let us take a closer look at the principles of Lean.

The Principles of Lean

This is where we turn toward the principles of lean. Womack, Jones, and Roos, in their landmark book "The Machine That Changed The World" 7 lay these principles out. These Lean principles 8 can be summarized as the following five repeating steps -

	Define Value: The first principle of Lean is to focus on creating value for the customer. This means understanding what the customer needs and creating products or services that meet those needs.
	Map the Value stream: The second principle of Lean is to identify and map the value stream, which is the series of steps and processes required to create and deliver a product or service to the customer.
	Create Flow: The third principle of Lean is to create a smooth and continuous flow of work through the value stream. This means eliminating delays, bottlenecks, and other obstacles that can slow down the process and lead to waste.
	Establish Pull: The fourth principle of Lean is to create a "pull" system that responds to customer demand. This means producing only what the customer wants, when they want it, and in the quantity that they want.
	Seek Perfection: The fifth and final principle of Lean is to continuously improve the process. This means using data and feedback from customers and employees to identify areas of improvement and implement changes that make the process more efficient and effective.

We can apply all these principles to the typical journey of a customer request through an organization. That is what the next few chapters of this book describe. How these principles can be applied at scale in order to come up with a context-specific way of scaling. A way that not just fits your context but leads to better results for your customers. Results that keep getting better as the members of this system reflect and continuously improve the system by both creating new rules and breaking existing ones.

Chapter 2 - Lean, Kanban, and Scaling

In the last chapter we talked about the five principles 1 of Lean. These bear repeating, especially in the context of the 'Definition of Workflow' in Kanban 2. There are similarities in the two approaches, and those are intentional. Below is the list of Lean principles once again and the 'Definition of Workflow' taken directly from The Kanban Guide.

The Principles of Lean

	Define Value: The first principle of Lean is to focus on creating value for the customer. This means understanding what the customer needs and creating products or services that meet those needs.
	Map the Value stream: The second principle of Lean is to identify and map the value stream, which is the series of steps and processes required to create and deliver a product or service to the customer.
	Create Flow: The third principle of Lean is to create a smooth and continuous flow of work through the value stream. This means eliminating delays, bottlenecks, and other obstacles that can slow down the process and lead to waste.
	Establish Pull: The fourth principle of Lean is to create a "pull" system that responds to customer demand. This means producing only what the customer wants, when they want it, and in the quantity that they want.
	Seek Perfection: The fifth and final principle of Lean is to continuously improve the process. This means using data and feedback from customers and employees to identify areas of improvement and implement changes that make the process more efficient and effective.

Definition of Workflow (DoW) in Kanban

At minimum, members must create their DoW using all of the following elements:

	A definition of the individual units of value that are moving through the workflow. These units of value are referred to as work items (or items).
	A definition for when work items are started and finished within the workflow. Your workflow may have more than one started or finished points depending on the work item.
	One or more defined states that the work items flow through from started to finished. Any work items between a started point and a finished point are considered work in progress (WIP).
	A definition of how WIP will be controlled from started to finished.
	Explicit policies about how work items can flow through each state from started to finished.
	A service level expectation (SLE), which is a forecast of how long it should take a work item to flow from started to finished.

The Kanban Guide 2 also states the following about Kanban:

Kanban comprises the following three practices working in tandem:

	Defining and visualizing a workflow
	Actively managing items in a workflow
	Improving a workflow

The excerpts from the Kanban Guide 2 show how at its core, Kanban is one implementation of Lean principles. Each principle of lean can map to one or more of the Practices of Kanban or Elements of DoW in Kanban. These in concert help us create a Lean system. The remainder of this book is about how we use Kanban to create this Lean system at scale.

Before we get into the discussion of how to scale Agile (flow) using Kanban and a Lean approach, we first need to level set on what scaling even means. The following text is directly borrowed from The Kanban Pocket Guide 3. This text is a major part of Chapter 7 - Unleashing the True Power of Kanban. This chapter from the Kanban Pocket Guide lays out the various dimensions of scaling.

Dimensions of Scaling

There are multiple dimensions of scaling along which we can apply the practices of Kanban. Here are some ways that Kanban can be applied to achieve great results beyond the confines of lowest level work items on a single development team.

One Team Working on One Product

This is the base condition. We have a single team that can deliver higher-level work items for a product. They can do this with no dependencies or need for interaction with other teams. In this case scaling flow would refer to looking at the higher-level items for this single team and establishing a Definition of Workflow for those items. Monitoring the flow of these items on their own Kanban board can help the team increase focus and be more effective with what they deliver. It will make sure that good flow of lower-level work items will translate to good flow for higher-level work items.

Multiple Teams Working on the Same Product

Products are often too large for a single team to develop and maintain. Teams would often pick up features of the product to develop by themselves. Soon, we realize that there are multiple dependencies across these teams as they are contributing to the same product. This leads to blocked work and often more features getting started. We end up in a case where the individual teams might be able to maintain their work item WIPs, but the overall Feature WIP for this set of teams keeps growing. A very common pattern that leads to this problem is teams that are split by specialization, for example teams focused on Front End Development, Back End Development, Database, QA, etc. This problem can also exist with a set of cross functional teams working on the same product.
The observant reader would probably already have guessed the authors’ answer to this problem, based on earlier chapters. This is the perfect opportunity to look at these teams as a single system. We can do this by having a single representative model for the work on the product, probably a Kanban board with the features for the product laid out. The Kanban board forces two very important practices in this context – The limiting of WIP, at the feature level across these teams and the establishment of an SLE for these features.

If we actively manage the work on this board, we can ensure that none of the features age too long. We can also facilitate teams helping each other by unblocking work or even working on some features together. This usually leads to a single product backlog, instead of a backlog for each team. As a result, new work and collaboration patterns might start to emerge. Teams might start picking up work that was initially slated for another team, allowing for greater degrees of flexibility and knowledge transfer. The boundaries between the teams might start to blur. We might even realize that it might benefit the overall flow, to combine some teams and create larger teams that can better harness the newfound flexibility. Having a Feature or Epic level Kanban board across teams working on the same product can ensure the success of all teams and as a consequence, the product.

Multiple Teams and Multiple Products

It is easy to see the benefits of a single board for teams working on the same product. Their work is probably related, and they have the ability to help each other finish work items. What if we have multiple teams but sets of them are focused on multiple products? Should we still attempt to implement Kanban at a higher level? The answer is still ‘Yes’.

A portfolio level Kanban board can ensure that our execution is in line with our current strategy. If we lay out all the initiatives/features/epics (whichever level makes sense here) that the organization is currently working on, what information might we gain? We will very quickly find out what is our current WIP on these high-level items across the board. We will also find out if the focus for the teams matches the strategy for the organization. When each product has its own backlog, it is very likely that the highest priority item in one product’s backlog is not only a lower priority for the organization but also runs counter to the overall strategy. Furthermore, if the team working on this product is very efficient, the organization will produce more of what it does not want than what it does consider strategically important.

Having a portfolio-wide Kanban implementation helps us become both efficient and effective at the org level. We are able to make the flow of work efficient by monitoring flow metrics and improving them over time. We are also able to produce more of the right things, by making sure that the distribution of the active and upcoming work aligns with our overall strategy. The frequency at which a board at this level is managed might not be the same as a team level board. It might be less often, but often enough so we can make adjustments in time.

Higher Levels of The Organization

Similar to how multiple teams can get out of sync with the overall strategic direction, entire departments can fall into the same trap. The strategic goals and priorities of the organization can often be mismatched from the priorities of individual departments. scaling with Kanban to the organization level where high-level objectives are represented on a board can help avoid this. A board at every level can help tie the high-level organization objectives to department level work items, which can in turn be tied to product and team level features and consequently to work items on the team boards. The first and immediate result of this is the understanding of whether our current activities align with our organizational strategy and goals.

A Kanban board is not complete without a Service Level Expectation (SLE) and explicit policies. This is where the true benefits of having boards at higher levels start coming in. The consistent problem with organizational objectives is how long running and vague they can be. Applying explicit exit criteria and identifying a ‘finished’ stage can help make sure that the overall objectives are not vague. An SLE can also ensure that we do not have long running objectives that are outdated, yet still active. Actively managing items on a board at any level of the organization requires the same discipline as team level boards. The higher the level of the board, the greater impact it would have on efficiency, effectiveness, and predictability of the organization.

Active management of work items on higher levels can extend the benefits of Kanban across the board. Aging of the work items on these boards can reveal WIP, sizing or dependency issues. At higher levels of the organization, we often have the right people involved to solve these issues. We are able to bring teams and departments together to work on our collective priorities and ensure delivery of value to customers.

Extending Upstream and Downstream

So far, we have talked about scaling up to include more teams, products and departments in our Kanban system. Another dimension is scaling out to include more activities. Many teams would often start implementation of Kanban from the point someone starts implementing a solution to the point at which the solution is ready to be delivered. This is a great place to start, but if left alone, this system might end up being suboptimal. We are likely to create a highly optimized sub-system which produces output faster than we can deliver it to customers. It might also encourage upstream processes to try and front load the system and create waste.

When we have stabilized Kanban between the lines, it is time to scale the system out to include upstream and downstream activities. We need to redefine the start and finish points within which our system runs. Once the process of creating the solution for customer problems is optimized, we should include the processes of understanding the problem (upstream) and delivering the solution (downstream) as well as getting feedback on the delivered solution (downstream which informs upstream). As we move the start and finish lines out, we apply the same practices as described in this book – identifying work items, defining stages, limiting WIP, explicit policies and having an SLE. Over time we are able to extend our Kanban practice from the point anyone in the organization starts to understand the problem to the point we get feedback from customers that the problem has or has not been solved.

Other Departments in the Organization

Very often within an organization only one department will start with Kanban. Another mode of scaling with Kanban is to cross pollinate the learnings to other departments. If the IT department has seen great benefits from the implementation of Kanban systems, some of the departments they regularly interact with are great places to spread the benefits of Kanban. We have seen firsthand departments like customer support, client activations and product strategy utilize the methods that were first adopted by development teams. These adoptions have led to greater efficiency, effectiveness, and predictability for these departments.

Scaling in this manner often coincides with the other scaling dimensions already mentioned. Having an organization level Kanban system can act as a vehicle for spreading the benefits of Kanban to the various departments.

Conclusion

When it comes to scaling with Kanban, there are multiple dimensions to consider. We have described a few of these here. We can unleash the true power of Kanban by scaling along these dimensions. Often one of these dimensions leads to the need to work along a different one. We recommend that the organization pick the one that seems easiest to make progress with and observe some success before embarking down a different dimension. Kanban is a strategy that is applicable across multiple types of teams and levels of an organization. Do not be afraid to play outside the lines.

Chapter 3 - Identifying Value

The first principle of Lean and the first element of the Definition of Workflow1 in Kanban are remarkably similar. Lean asks us to ‘Identify Value’, Kanban asks us to identify ‘A definition of the individual units of value that are moving through the workflow’. This is where we will start as well. There is good reason to start with this principle. Not only because it is the first principle of Lean, but because the rest of our scaling discussions depends on this.

Kanban is a strategy to optimize the flow of value to customers. We need to figure out what these items of value are. What is something that a consumer can evaluate and give us feedback on? Is 'create a database table' valuable, probably not. Is 'allow users to report on data valuable', probably yes. If we do not come to an agreement on what represents value, we cannot apply Kanban to it. This becomes even more critical when we are talking about scaling. Scaling is represented and understood often as one of the following.

	Replicating practices across more teams.
	Adding people to an organization and having them work in a similar manner.
	Having a framework that can handle a growing number of people and teams.

We are not directly going to talk about any of these as our base definition of scaling. If that is not what we mean by scaling, and we are not scaling people, teams, or organizations, what are we scaling? Since Kanban is all about flow, when we are scaling using Kanban, what we are scaling is ‘Flow’. The first step in figuring out ‘how’ we are going to scale is to figure out ‘what’ we are going to scale.

Work Breakdown Structure

Most organizations have an expressed or implicit strategy. The hope in most organizations is that the lowest level work items somehow connect to this overall strategy. If this is the case, the day-to-day activity that is performed by the teams will help make progress towards the overall strategy. For a lot of folks, this is a blind spot. We often have to talk to multiple people before we can understand how the work being performed on a team has any bearing on the stated objectives of the organization.

Furthermore, we also do not know how these work items are providing value to the customers. Usually, the value that customers are waiting for is neither expressed by the items at the highest level (strategy) or those at the lowest level (team level work items). Somewhere in the middle of the two, often referred to as Features or Epics or Capabilities, are the actual valuable items that customers have been waiting for. The need for scaling arises if in the current setup, these valuable items are not independently deliverable by a single team. If in your current setup, teams can independently deliver items of value to customers independently with efficiency, effectiveness, and predictability, the rest of this book might not have much to offer you. Scaling of any form might only make things worse rather than better.

On the other hand, if you, like most setups, have teams that cannot independently deliver items of value at the level that customers are interested in, read on.

The first step for us is to map what our work breakdown structure looks like. Below are a couple of examples of work breakdown structures.

[image: Identifying Value Figure 1] [image: Identifying Value Figure 2]

Examples of Work Breakdown Structures

These show how a strategic vision can be broken down into initiatives, which can be made up of lower-level items like features, which in turn could be made up of stories that individual teams flow through their systems. A breakdown structure like this helps connect strategy to execution. It helps us evaluate, on a daily basis, whether we are executing on our strategy or not. It can also help us understand the impacts of executing a strategic shift on current work.

Which Level Delivers Value?

Most importantly this structure can help inform us about what is the most important level to focus on when Scaling flow. Once we have identified out work breakdown structure, we have two important questions we need to ask –

	At which level do we make commitments to customers?

	At which level do we deliver value to customers?

Hopefully the answers to both questions are the same. If it is not, this might be the next step for alignment. It is not necessarily wrong for the answer for the two questions in the list above to be different. If they are different though, we should understand why that is the case. Why are we making commitments at one level and delivering value at another? What internal forces are at play that are forcing us to do this? If we were to scale Agile using Kanban, which level would we like to concentrate on?

It often happens that when we ask about work breakdown structures and which level should we focus on we get varying answers from the same organization. Driving consensus here could be beneficial. Getting to a similar way of breaking down work and managing the flow of work at the level which customers care about can help optimize the whole system. A word of caution here - if we already have teams that are independently able to work end to end and deliver value to customers, regardless of the level at which they deliver value, they might not need to be a part of our scaling effort. For the majority of cases though, getting the organization to follow the same work breakdown pattern can help us identify what are the individual units of value that we need to flow to our customers. This is not a necessary condition, but it is one that helps simplify our practice. At the onset, the words we use might not be the same. Different teams might refer to the same work breakdown level as Features, Epics or Capabilities. Keeping different words that apply to the same level is an OK starting point, as long as we are clear that we are talking about the same level. Over time, we can consolidate the language if we find a need for it. Our main objective here is to find the level at which we want to establish flow.

For the practitioner going through the process of scaling with Kanban, this usually requires a change in the mental models we have carried concerning Kanban and agility. We have traditionally thought of these ideas to be about work on a team. Scaling takes these ideas and applies them to items at other levels of the hierarchy. This is without regard to whether they flow through a single team or many. Scaling from caring about stories to caring about features might mean a few things. It is possible that the team has the ability to deliver features by itself. We can scale flow, while staying within the context of a single team. If it requires multiple teams or even multiple organizations, we are still scaling flow. While figuring out 'Which Level Delivers Value', our focus is the hierarchy in the work breakdown structure, not the organization.

"Potential" Value

So far, we have referred to these items as units of value, we are going to make one small but significant change. These are 'Units of Potential Value'2. We do not know if these items are valuable or not until the customer has started using them and providing feedback. Until that point, these work items are investments that have not (and potentially will not) provided any return. In most cases, the return is uncertain, but we can be a lot more rigorous about the investment part. There are two measures that can help us understand how much investment we have made in "potential" value items.

	The number of items active in the system a/k/a Work In Progress - This is the unfinished inventory that has not yet been turned into something that could potentially provide a return.
	The amount of time we have spent working on each item a/k/a Work Item Age - This is the investment in terms of people's time and opportunity cost that we have spent on each item without seeing any return.

An even better way of thinking about this would be to consider every work item as an item that is potential waste. Every item that we work on has the potential of being not valuable to our customer and being potential waste. Till we have delivered this item though, we are making investment in this thing that could be potential waste. Minimizing this investment before we see a return is a central piece of our discussion when it comes to implementing or scaling with Kanban. This same central piece is what enables us to achieve flow. As stated before, the first step is identifying the units of potential value. Once we have identified the work item level at which we communicate to customers, we can start to understand how these items are currently flowing. Our next step will be to map the system through which these items of value flow.

Chapter 4 - Mapping the Value Stream

Now that we have an idea of the level of work items we are dealing with, we need to understand the process that they move through. We need to map out how the idea of something that is potentially valuable gets started and how it reaches the hands of the customer. If we are to improve the flow of value, we first need to understand the flow of value. We will probably only have control over a limited part of this value stream. We need to identify that part with the understanding that over time we can expand our area of influence. This step has some major consequences for the organization. Just the understanding of the process our work items flow through might reveal obvious inefficiencies. When faced with these obvious inefficiencies, it is not just a good idea, but our responsibility to tackle them.

Idea to Feedback

A great place to start this exercise is to figure out where our potential work items come from. There are probably multiple sources - Customer discovery sessions, production defects, feedback on delivered items, ideas from senior executives, and many others. Ideas from all these sources, in some form, end up in some sort of collection. This collection could be called a backlog, an options pool or future consideration items. While this stage does not need to be visualized in order to operate a Kanban system, it is good for everyone involved to know where these items live. This is where we would go when we have capacity available to pull a new idea (more on that in the next chapter). Following this, is probably a stage which denotes that an idea (work item) has been prioritized and pulled forward for execution. This can be a queue stage which reflects that the idea has been selected. This can also be the first stage where actual execution starts. As execution on an idea begins, it goes through multiple stages - understanding the problem, creating the solution, verifying the solution, delivering the solution, validating with customers, along with other stages in between. The figure below shows one such workflow. The value items in this workflow are features which break down into stories.

[image: Mapping The Value Stream Figure 1]

Example of a Higher-Level Workflow

We need to create a workflow that shows us the process which our ideas go through to become value. This workflow will also help us gain transparency into the current status of our work items. The approach in this first step is to map the flow of the work item from Idea to Feedback. This could be customer feedback or internal stakeholder feedback. At the team level it is important to avoid the stages reflecting titles or roles on the team. We want to focus on the work, not the worker 1. Similarly, we do not want an organization wide board to have columns that reflect teams or departments. This is about modeling the stages that a work item moves through, not the teams or departments that it is handed off to. Not all the stages or steps would be part of our Kanban system. Some might lie outside the control of the organization. Right now, we are all trying to get to the same page on what does this workflow looks like.

Starting With Activities

Another approach to figure out our workflow and map our value stream is to start with all the actions that happen to a work item. We perform a certain set of actions on an idea to turn it into something of value that is delivered. We can start by listing out all the actions. For example, a feature going through our system would have the following actions performed -

	Customer interviews
	Listing out of requirements
	Analysis and Sizing
	Architectural Design
	User Experience Design
	Prioritization
	Definition of Success Criteria
	Development
	Functional Testing
	Regression Testing
	Performance, Scalability and Reliability Testing
	Security Analysis
	User Acceptance Testing
	Release to Production
	Initial Customer Usage
	Feedback Collection
	Application Monitoring
	Fixing Reported Incidents

These actions can potentially be performed in any order, depending on the feasibility at different points of time. Usually though, they can be placed into some broad buckets that can become the stages of our workflow. The steps detailed here have been placed into stages shown in the figure below.

[image: Mapping The Value Stream Figure 2]

Example Workflow with Activities

As we map this workflow, we will hopefully start asking questions:

	Why do we do that?

	Do all items really flow like that?
	Is this step in our workflow really necessary?
	What about loops in this system, how often do items bounce back and forth?
	What happens in that stage?
	Why do we have so many queuing stages?
	Those stages next to each other are performed by the same team, should they be combined?

Do not 'Seek Perfection' Yet

The discussions here start getting very interesting. We will most likely discover that different types of items follow different workflows. We have multiple options at this point and our context will dictate how to solve this problem. We can separate the workflows, have the same stage mean different things for different items, or choose the preferred option - Generalize the name of the stages to accommodate the different types within the same workflow. There are not a lot of restrictions on how we define our workflow. As long as progress through the steps represents the progress of an idea towards something tangible and potentially valuable, we are fine. Complicated workflows with multiple steps are fine. A workflow of "To Do", "Doing", "Done" is also completely valid. These might not be very useful at times but are completely valid workflows to use.

Regardless of the questions that come up and the decisions we make, realize that this is just the initial model of the workflow. We should expect it to evolve and change as time goes on. Do not get hung up on minute details. Let us create this first iteration with the best of our understanding. We will come back and refine this as we start operating our system. Section II of this book is a deep dive into operating and improving the system. Before we get to that though, just mapping out the value stream is not enough. We have a few more steps to go.

Chapter 5 - Creating Flow

Most probably, unless this is a new system, 'flow' already exists in the system that we are talking about. The designed value stream is probably already delivering value. If items are entering the system and exiting it, there is flow. It might not be great flow, might be very clunky, but it is there. Here, when we say, 'Create Flow', we are talking about 'Creating' clarity around how items 'Flow' through our system. Understanding the various policies that govern the flow of value. What are the "Rules of the game" 1?

Start and Finish Points

As we try to clarify the rules that enable flow across our system, we need some guardrails. We do not want to define these rules for areas that are out of our control. By definition, if they are out of our control, we cannot control the rules that govern them. We want to first identify the start and finish points of our influence. If our scope of influence is so wide that these happen to start and end with the customer, great. Most likely though, they would be somewhere further in from the customer idea to customer feedback points. The figure below shows where this system's start and finish points are.

[image: Creating Flow Figure 1]

Start and Finish Points

For the process shown above, items are considered to have started with the Kanban system when they enter the Up Next column. They are considered finished with the Kanban system when they exit the Creating column. There probably are some upstream stages and as we can see some downstream stages. These might currently be out of the system's control. The Validating stage, in this case has been visualized, but is not a part of the system that is going to be actively managed.

One of the reasons for identifying these start and finish points is to understand our area of focus when 'Creating Flow'. We said earlier that flow exists if there are items entering and exiting the system. We need to know where the entry and exit points for our system are so we can create and/or understand flow in the system.

Exit/Entrance Criteria

Now that we know the start and finish points and all the stages in between, we can start setting up our operating conditions. These are the rules, guidelines, team member responsibilities, and procedures for handling work items 2. There are multiple ways to set these up. The suggested method here makes use of what are called Exit and Entrance criteria. You do not need both of these, as usually the Exit Criteria for one stage is the Entrance Criteria for the next stage. For the rest of the discussion, we will focus only on the Exit Criteria, but we can easily work through these "rules" in the form of Entrance Criteria. This will look very similar to the listing of activities we did in the last chapter. A starting point for Exit Criteria could simply be - Have the activities that are a part of this stage been completed?

Exit Criteria, as the name suggests, are the list of things that need to happen in a stage before the item can move on to the next stage. This might be more than just a list of activities. Especially for systems operating at scale. For these systems, the Exit Criteria might look very different from the ones being used for lower-level items. We need to lay these rules out for all the stages that exist between our start and finish points. Doing this at scale can bring forth a lot of the commonly known and previously unwritten rules. We should see signoffs and approvals show up in the list of Exit Criteria, along with requirements for actual completion of work. Already we can start asking the questions of -

	Is this sign-off necessary?
	Do we really need three different approvals for this?
	Is this activity currently happening way too late?
	Do we need to split this stage into two?
	This stage does not have any Exit Criteria, should we eliminate it?

It is very important to note that we have been talking about Exit Criteria - things that need to have taken place before an item can move forward. This does not mean that activities usually performed in later stages cannot already start being performed now. If there is a separate stage for Performance and Security testing which is after the initial development is finished, there is no reason why parts of those activities cannot be performed while the item is still in the 'Development' stage. Exit Criteria determine how far the item has progressed, not the activities that have been performed.

Another idiosyncrasy of work items at Scale is their dependence on the items at lower levels. This should be reflected in the Exit Criteria for this board. Below are some examples of Exit Criteria and how they can apply to scaled Kanban boards -

	The item has been right-sized to make sure it can flow through the system before exiting the Up Next stage.
	Every acceptance criteria for the higher level work item has at least one corresponding lower-level work item created before exiting the Analyzing stage.
	All lower-level work items need to be completed before an Item can move out of Creating stage.

	Integration testing after combining all lower-level work items must be performed before exiting the Creating stage.

The relationship between a scaled board that would have these 'rules of the game' and lower-level (usually team level) boards is shown in the figure below.

[image: Creating Flow Figure 2]

Kanban Boards at Multiple Levels

The figure above shows a system where the lower-level items all belong to a single team. This is not always the case. In your system, the items could be dispersed across teams, or even departments. While this will not necessarily have an effect on the Exit Criteria higher level workflow, it will affect the way it evolves over time. We are going to explore the impact of the structure shown in the figure below and some options to reduce the negative effects of this in Section II of this book. At this point, it is important for us to understand the rules of the game and how our system is set up.

[image: Creating Flow Figure 3]

Multiple Teams Contributing to a Single Higher-Level Item

Blocker Policies

An item being Blocked is the exact opposite of that item flowing. We cannot create flow without understanding how to deal with Blocked items. This requires us to come up with some time related policies around blockers. There are three 'levels' of blocked that we need to define -

	Level 1: At what point do we consider an item to be blocked, i.e. how much time has to pass for an item that is not making progress to be considered stuck?

	Level 2: At what point do we start ignoring a blocked item in order to pick up other work, i.e. how much time has to pass before we can move our focus to something else?

	Level 3: At what point has the item been blocked long enough to be removed from the system, i.e. how much time has to pass before we move this item out of the system and pick it up if it ever becomes important again?

These policies become a part of our daily management of flow. We look to these to understand which items are demanding action and are by definition not flowing.

Flow Metrics

How do we know that we have created flow? More importantly, how do we understand what flow in our system looks like? The definitive way of doing this is the use of Flow Metrics. These four basic metrics of flow will help us understand the flow of value through our system. They will help us become more effective, efficient, and predictable with the system that we have created. Over time, these will be our guideposts in looking for improvement in our processes. The four metrics of flow, as described in the Kanban Guide 3 are -

	Work In Progress: The number of work items started but not finished.

	Throughput: The number of work items finished per unit of time. Note the measurement of throughput is the exact count of work items.

	Work Item Age: The amount of elapsed time between when a work item started and the current time.

	Cycle Time: The amount of elapsed time between when a work item started and when a work item finished.

Usually, these metrics are managed at the lowest level items. We are going to start managing these metrics for the level that we have chosen for our Portfolio board. This is how we will understand the flow we have created, manage that flow, and improve that flow over time.

Service Level Expectation

An important and required element for every Kanban board is the Service Level Expectation. The Service Level Expectation communicates the expected performance of the system. We observe the flow metric of Cycle Time and use that to come up with our Service Level Expectation. It usually takes the form of a confidence level and a time interval. For example - 75 percent of our features are done in 45 days or less. This communicates to the Kanban System Members that when we pull new work on to the board, we should size it and work it in a way that it has a good chance of getting done within 45 days. It also communicates to the stakeholders what performance they can expect from the system. It is a communication of how well (or not) items are flowing through the system. The SLE is an expression of 'the voice of the process' - what the process tells us it is capable of. On the other hand, what the customer wants from the system is known as the 'voice of the customer'. Dr. Wheeler in his book 'Understanding Chaos' 4 states that "The ‘voice of the customer’ defines what you want from a system. The ‘voice of the process’ defines what you will get from a system.". If the expected performance of the system does not match the expectation that customers have from it, we might need to take some steps. Either to improve performance or to set better expectations.

The service level expectation at scale can also include a statement in terms of lower-level work items - '80 percent of our features contain 20 stories or less'. While this statement helps with understanding how lower-level items affect higher level flow, is not sufficient by itself to communicate the performance of the system. It is a great help though in creating flow by encouraging right-sizing conversations.

If Cycle Time data is not available, our Service Level Expectation can be a good first guess. After we finish 8 to 10 work items, we will have enough data to understand if this was a good guess and how it needs to be adjusted. After all, this is a 'Service Level Expectation', not a 'Service Level Agreement'. There are no penalties for being wrong, especially if it was just an initial guess. This is how we expect our system to perform, based on the data we have observed. This is a tool for us to help create a consistent and predictable flow across our process.

Chapter 6 - Establish Pull

Kanban is a pull-based system. One that operates based on the assumption that the most efficient and predictable results come from processes that are working at their optimal operating capacity. This means the system can be in one of three states, which would require different interventions.

	At Optimal Operating Capacity - The system is performing as expected. It is neither starved nor overloaded. We should expect efficiency and predictability from this system.
	Under Optimal Operating Capacity - the system is starved and ready to take on new work. This is the appropriate time to 'pull' new work into the system.
	Over Optimal Operating Capacity - The system is overloaded. We need to remove work from the system by completing it or in some cases, canceling it. This system is most likely inefficient and not predictable.

It is important to note that both being under and over the optimal operating capacity for extended periods of time has negative effects. Both those conditions can be equally bad.

Pull systems 1 are very different from push systems. In push systems, work is requested from the system and forced to start whether the system has capacity for it or not. In pull systems we wait for the system to signal capacity, by being under the stated optimal capacity in order to start new work. Cars getting on a highway during rush hour is an example of a push system. The highway most likely, at this point, is over its optimal operating capacity. There are more cars on the pavement than can be handled efficiently, leading to backups and a traffic jam. Even though this is the case, more cars push on to the highway. Cars, representation of work, in this case, arrive whether the highway has capacity to handle them or not. As a consequence, the highway that is over capacity is very inefficient and has very little predictability. We have very little idea when a car getting on to the highway will make it to its destination.

On the other hand, your favourite restaurant probably operates as a pull system. There are a set number of tables at the restaurant. People are seated for service only when a table becomes available. Sure, people can arrive at whatever rate, but they will not be served unless there is space to seat them. Because of this mode of operation, efficient, effective, and predictable service can be offered to patrons. The restaurant running this pull system can also give waiting customers a pretty good idea of when they can expect to be seated. This benefits the customers already seated, as they are not rushed. It benefits the customers waiting as they can make a decision to wait or find an alternative based on the prediction.

[image: Establish Pull Figure 1] [image: Establish Pull Figure 2]

Traffic, Restaurant.
Left Image Credit: Wikimedia Commons
Right Image Credit: Tom Mascardo on Fickr

Pull at Every Stage

Whether through explicit policies or implicit understanding, we want to operate every part of our workflow as a pull system. Every stage should only pull work from a prior stage when it has capacity to do so. For optimal performance, the overall number of pushes in the system should be kept to a minimum. This allows the humans in the system to pull only to a level that they are not overwhelmed. It allows people to focus on the task at hand, get that done and only when that is done, pull the next work item. In push systems, people often get overloaded and overwhelmed as work shows up whether they have the capacity available or not. Pull systems are much more humane than push systems. We want to operate these at every stage in our process. The figure below demonstrates a pull system using a Kanban Board.

[image: Establish Pull Figure 3]

A Kanban board showing the operation of a pull system

In this figure the validating stage has a WIP Limit of 4 but has only three items in it. This is a signal that the validating column has capacity to pull one piece of work. All the other columns are at their stated WIP Limits. This means none of those columns can pull any work till work is pulled from them and they are under their stated WIP Limit.

Buffer columns are often introduced between two stages. These are columns where work that is completed in an upstream stage sits waiting to be pulled into a later stage. These will often have names like 'Waiting for...', '...Done', or '...Finished'. This is done to ensure that the downstream stage has a place to pull from when it has capacity available to pull. While this is a completely valid technique, we must realize that this is having two distinct but related effects on the workflow -

	It is increasing the number of pushes in the system. Every item that is moved to the buffer column, it is almost always a 'Push' from an upstream column.
	Any time spent in a buffer column is by default not active time. There is work in our workflow that is just sitting and actively being ignored.

Both of these effects should be minimized as much as possible. It is not a bad idea to have a buffer column (or a 'Done' column or a 'Waiting for...' column), but it is a bad idea to ignore the effects of having these columns.

Controlling WIP

The most common way of creating a pull system is controlling WIP 2. In fact, an argument can be made that this is the only way to establish a pull system. There are multiple ways of controlling WIP. Depending on our context any of these could be applicable. Some approaches for controlling WIP at scale are listed below -

	A WIP Limit on every stage in the workflow - We want X number of things in stage A, Y in Stage B and so on.
	A WIP Limit for the entire workflow - We want X number of things between the start and end points of our workflow.
	A WIP Limit based on number of teams involved - We don't want teams to work on more than one feature at a time.
	Controlling WIP via aging - We will not start new work if we have more than X number of items above our Service Level Expectation.

There are other ways of controlling WIP that are not listed here. All these methods are geared towards helping systems (and sub-systems) function at their Optimal Operating Capacity 3. These techniques often use the word 'Limit'. This gives the impression that this is some kind of an upper bound. That is incorrect. The 'WIP Limit' is supposed to represent the Optimal Operating Capacity. Being too far below that limit is as much of a problem as being too far above that limit.

The initial setting of WIP at scale could be a contentious task. Everyone involved is going to have an opinion. Any of the approaches mentioned above would create a great starting point. There will probably be multiple disagreements on the number. If we have never looked at our system through the lens of pull, all conjectures on WIP controls are just that, conjectures. We are all likely to be wrong about what number facilitates flow the best. The main idea to keep in mind is that this is just the first stab at our WIP. This will probably change over time as we watch our pull system operate. The other flow metrics will guide the setup of our system. We will change the stages, the exit criteria, the WIP controls, Service Level Expectation and other policies as we learn more about how our designed system works.

Interlude

The previous section of the book focused on setting up the Kanban system at scale. The steps detailed in Section I help us get to the point that we have understood, defined, and visualized our system. This in itself is a big step. Most organizations do not have an explicit shared understanding of the workflow that helps their ideas become value. Mapping out this system and placing our current items up on this board is eye opening for the entire organization.

Now comes that hard part. The actual operation of the system. Section II dives deep into this. For most practitioners familiar with Kanban, Section I probably felt familiar. Those are the steps we usually take to set up Kanban systems regardless of the level. There were some nuances though, some curve balls that get thrown in when we are operating at a higher level. Section II will be similar. All the common ways that we operate Kanban systems at the team level are included. Now though, these are turned up to 11 (with due respect to Nigel Tufnel). The conversations become trickier. We are faced with a set of questions that point toward some radical changes. We will have to answer questions like -

	Team A's board says they have capacity to start new work, but the higher-level board is at the WIP Limit, do they start new work?
	The Security team is overloaded, can other teams help them, even though they have no experience in Security?
	The CTO really wants us to start this new project, but we are at capacity. Do we break WIP to do this?
	Items keep getting blocked due to dependencies across teams. Does this mean we need to re-organize our teams?

We have mapped out the journey of work items between point A and point B. Now it is time to see how long the journey actually takes for our work items. What does that tell us? Do we need to change the map?

We will deal with things like prioritization and its impacts. We will talk about how this system can help validate or shape our strategy. We will also talk about using the data gathered to create some dependable forecasts. We will go deeper into ensuring that our scaled Kanban system gives us the three things that Kanban Promises - Efficiency, Effectiveness, and Predictability 1.

Let us get to it right after a quick look back at a John Hughes classic!

Section II - Operating and Improving our System

Chapter 7 - Planes, Trains, and Automobiles

A Thanksgiving Classic

There are very few movies centered around the American holiday of Thanksgiving. The one that stands out amongst them is "Planes, Trains and Automobiles" 1. It is a classic 1987 comedy film directed by John Hughes, starring Steve Martin and John Candy. Here's a brief summary of the plot:

The story begins with Neal Page (played by Steve Martin), a high-strung marketing executive who is trying to get from New York City to his home in Chicago in time for Thanksgiving with his family. However, his flight is canceled due to bad weather, and he's forced to find alternate means of transportation. That's when he meets Del Griffith (played by John Candy), a lovable but somewhat annoying shower curtain ring salesman who seems to be everywhere Neal goes. Despite their initial clashes, they end up traveling together in a series of mishaps and misadventures involving planes, trains, and automobiles as they try to make it to Chicago before the holiday.

Along the way, they face various obstacles and setbacks, such as losing their rental car and getting robbed, but they also form a bond as they share personal stories and experiences. Eventually, they make it to Chicago just in time for Thanksgiving dinner, and Neal realizes that Del is actually a kind-hearted person who has been trying to help him all along.

A Tale of Delays

The plot of the movie is actually based on a real incident in the life of John Hughes. "This movie is based on an incident that actually happened to me. When I was an advertising copywriter I set out from New York to Chicago on Thanksgiving weekend and after a five-day delay, ended up in Phoenix, Arizona, via Wichita, Kansas," - John Hughes 2. As much as this is a buddy comedy centered around Thanksgiving, this is a tale of delays. The multiple delays that happen on what should have been a short flight from New York to Chicago. That two-and-a-half-hour journey turns into a 4-day ordeal detailed below -

Day 1:

	Neal Page, a marketing executive, is trying to catch a flight from New York City to Chicago in time for Thanksgiving.
	He meets Del Griffith, a shower curtain ring salesman, at the airport.
	Their flight gets delayed due to bad weather, and they end up stuck in the airport overnight.

Day 2:

	Neal and Del finally board a plane to Chicago, but it gets diverted to Wichita due to the weather.
	They spend the night in a cheap motel.

Day 3:

	Neal and Del take a bus to a train station, but they miss their train and end up on the wrong train.
	The train gets delayed due to a fire on the tracks, and they don't arrive in St. Louis until late at night.
	They rent a car to drive the rest of the way to Chicago, but it gets destroyed in a highway accident.
	They spend the night in another motel.

Day 4:

	Neal and Del wake up to find that their money and credit cards have been stolen, and they're stranded in a small town.
	They hitch a ride on the back of a refrigerated truck.
	The truck drops them off in the middle of nowhere, and they have to walk through the snow for several miles.
	They finally make it to Chicago in the early hours of the morning, just in time for Thanksgiving.

The movie is a great illustration of how a simple task can become a convoluted mess. This often means that the task takes 25 times longer to get done than initially anticipated.

Structures, Priorities, and Dependencies

Neal Page and Del Griffith's journey is a perfect analogy to how work usually flows through an organization. There is a good-faith expectation that something can be done and delivered to the customer quickly. Meanwhile, due to the organizational structures, competing priorities, and dependencies (amongst other things) that work item takes 25 times longer than expected. This is a common story in an organization that reaches a large enough size. This is, whether we acknowledge it or not, the main driver for scaling Agility. The desire to increase effectiveness, efficiency, and predictability for our customers.

Let us pretend Neal and Del are representations of a typical customer request. You can follow the steps to fulfill this request in the figure below.

[image: Planes, Trains, and Automobiles Figure 2]

Journey of a customer request estimated at 3 weeks

From the point we begin work on this request, the convoluted journey starts. The request goes to the overall prioritization committee which determines it is the next highest priority for Team X. Team X will start with this when they are done with the current work, which is within a day or two. Team X believes this should be about 2 to 3 weeks of work. Before Team X can get started on this request, an emergency, ultra-high priority, must do because we promised our largest customer, work item shows up. This delays the start of the already selected item by 2 weeks. Meanwhile, Team Y has been making steady progress on their priority list, even though this particular request sits in a backlog. The flight was delayed, other flights were available, but this one is finally taking off.

A week into working through the customer request Team X realizes it needs help from the Data team and cannot make any progress till they are available. The Data team is in the middle of a Sprint, and this does not match their sprint goal, so Team X will have to wait a week for the Data team to free up. The Data team frees up and looks at the request. It looks like something they can accomplish within their 2-week sprint. As promised, they get the work done and 2 weeks later Team X is back on track. A couple of days later, the Team realizes they missed a Data element and one of the ones being brought back is of an unexpected data type. This ensues another 3-week cycle with the Data team. Now though, Team X has everything and is able to finish its work after 2 more weeks. They had to import a new external module to deal with the unexpected data type, but they were able to complete the work. They are ready to hand this over to the delivery team for deployment. This is just in time, for the product deployment window, which occurs every 2 months. Looks like Neal and Del are finally on the train to Chicago.

Before the delivery team can start, the Security team scans the new module and raises a red flag - This module has major security flaws and leaves us vulnerable. This needs to go for an architecture review before we can approve the deployment. The architecture council meets in a week, and this would be one of the agenda items. The council, after meeting decides that the Internal Framework team will write a module that adheres to the security standards and provide it to Team X. Unfortunately, the Internal Framework team is already overloaded, but they are doing their best to fit this new module in. It takes them 4 weeks due to competing priorities, but they are able to provide the new module. Team X integrates this, and runs into a couple of issues, but in all, it takes another week to get this ready. Due to the new framework element, the work item requires 2 weeks of performance testing from the PSR (Performance, Stability, and Reliability) team and another week of security testing. Now we are finally ready to deploy.

As a result of these delays, we missed the bi-monthly product deployment window, and this requested item will have to wait for another 7 weeks before it can be available to the customer. In all the expected 2 to 3 weeks of work took around 27 weeks from the point we selected the work to when it was with the customer. Neal and Del made it to Chicago, but it took a lot longer than they expected.

This fictional account is not exceptional, but actually common for most organizations. The organization structure, conflicting priorities, and cross-team dependencies make delays a normal day-to-day occurrence. At no point is this the fault of the individual parts of the system. This is an issue with the system as a whole. Even if the sub-systems have been optimized, the overall system has been sub-optimized.

Lead with Flow

These problems are usually caused because we have allowed our organizational structures to dictate flow. The way the org is set up, and the corresponding rules, end up dictating how value flows across the system. We need to reverse that arrow of causality. We need to keep modifying the setup of the organization and the rules we follow to optimize flow. Let flow determine your rules because the rules will determine your flow. The following section of the book focuses on exactly this. How do we use the Kanban system we have set up to get aligned and continuously improve the flow of value through the system? How do we lead with flow?

Chapter 8 - Strategic Alignment

During our first few steps of building our Kanban board we understood the items of value that matter to our customers. We also mapped the process out of how these items make progress. We now have a visualization that tells us which value items we are currently working on and also, which ones we have delivered in the past. This information can help us understand how our efforts are aligned with our strategy. If we annotate these items with the broader strategic initiatives that they belong to, we can get an idea of how much investment we are making (and have made) in each initiative.

Our Kanban board, at scale, is not just a way to ensure the smooth operation of our process. It is also a reflection of how well our work is aligned with our stated strategy. The stated strategy could be expressed in many ways. The Kanban board, via annotation of the work items on it, is an information radiator. It tells us the distribution of our work amongst the different strategic elements and can help us make decisions about which type of work to pick up next and whether to re-frame our strategy.

Defining Strategy

Strategy is not the focus of this book. It is important to understand thought that scaled Kanban can work with any form of strategy definition. This is true, as long as the strategy definition has discrete elements that can be used as attributes for the items on the Kanban board. Below are three examples of strategy approaches that can be used to annotate work items. Any approach not listed here, but one that has discrete elements, is just as valid.

Strategic Business Objectives

In this approach the organization lays out a limited number of objectives that their work would be aligned towards. These are usually outcomes that the organization wants to achieve. They can range from small customer-facing outcomes to steps towards a long-term technology overhaul. Whatever the current business objectives are, they are laid out as discrete elements. Annotating the work items with these discrete elements can help us understand how much effort we are expending towards each of these objectives. The figure below shows a company deciding to spend equal efforts towards these three objectives:

	Market Expansion - Increase Market Share by 10%
	Revenue Growth - Increase Top Line Revenue by 25%
	Customer Retention - Ensure 90% Renewal Rate

[image: Strategic Alignment Figure 1]

Strategic Business Objectives with Equal Allocation of Efforts

Objectives and Key Results (OKRs)

OKRs 1 have become a common way to represent strategy. The Objective is a short, action-oriented statement of what the organization hopes to achieve. Key Results are the success criteria to monitor progress toward completion of the objective. Each Objective is usually limited to a handful of Key Results. The objectives themselves can be used as annotations for the work items.

The very interesting thing about Key Results in our context is that they can themselves be managed on a Kanban board. We can set up a To Do - Doing - Done board. Set up WIP Limits, SLE, and Exit Criteria to flow Key Results through them. As one of the KRs is achieved, the next one can be put into progress. This can help make the more nebulous concepts around achieving KRs, operational. Each work item can be mapped to which KR's needle it is supposed to move.

Strategic Horizons

Another common method of expressing strategy is by using Strategic Horizons as described by McKinsey 2. These horizons refer to how far we are looking out in terms of competitive advantage. There are usually three horizons that are employed:

	Horizon 1 - Familiar strategic choices and capabilities that help consolidate the current competitive advantage.
	Horizon 2 - Unfamiliar strategic choices and capabilities that help develop the next competitive advantage.
	Horizon 3 - Uncertain strategic choices and capabilities that help explore options for future competitive advantage.

One we have the horizons set up, we can determine how much of our efforts we want to dedicate towards each of them. This can help ensure that we are not forgetting about the present by being too focused on the next advantage. We can decide that our allocation towards these strategic horizons would look like:

	Horizon 1 - 70% of our efforts.
	Horizon 2 - 20% of our efforts.
	Horizon 3 - 10% of our efforts.

Aligning Strategy and Operation

Once we have understood how we are expressing our strategy, we can start to annotate our active work items. This will allow us to, at a glance, tell how much of our active work is dedicated towards each strategic objective. It will also help us figure out which work items do not align with any of our strategic initiatives. The picture will start becoming much clearer. We should be able to see the direct alignment of Strategy and Operation. These work items that deliver value to customers are the ones that can help us understand if the value that we are working towards is actually aligned with our stated strategy. For a lot of organizations, this is the missing step. We have annual meetings where we declare strategic objectives. We make sure they are known to everyone. Unfortunately, when it comes to day-to-day work, these objectives play less of a role. Our scaled Kanban board is the place which will tell us if the organization's efforts are aligned with the strategy or not.

Creating good strategic objectives is hard work. It takes an understanding of where the market is headed, what our customers need, and what our technological constraints are. Usually, very smart people, from the upper echelons of the organization spend time analyzing trends to come up with what the focus of the organization should be for the coming months. Once this strategy has been formulated and stated, the assumption is that it will be executed. That is a major assumption. If experience tells us anything, it is that strategy and operation more often than not end up misaligned. This is a great advantage of visualizing our work on a Kanban board. We can get early signals on whether the work we are pulling on to our board aligns with our strategy or not.

By annotating our work items with the strategic elements, we can evaluate the percentage of active items that belong to each element. This has an interesting side effect - We start to understand our Strategic Element WIP. We now know how many Strategic Elements our efforts are distributed across. Or, in other words, how much we lack focus. By lowering the Strategic Element WIP, we can actually ensure that we meet the objectives described by these elements. As items reach their finish points, we can also, in retrospect, look at how many items of each type have we finished. We can understand if the effort that we have put in lines up with what we thought our strategy should be.

Handling Mismatches

Once we start keeping track of the strategic elements our work items belong to, the percentage distribution across the strategic elements starts to become evident. The figure below is an example of what this might look like. Six months after stating our Strategic Business Objectives (the same example from earlier in this chapter), we are evaluating the actual work that has been completed. At the beginning of this time period, we thought that we would divide our organizations' focus amongst these three objectives equally and they would be the only objectives taking up our time. Turns out we were wrong in all of these assumptions. Only 40% of our work completed belonged to these objectives. The other work went towards activities around a new architecture, compliance, and fixing defects.

[image: Strategic Alignment Figure 1]

Expected vs Actual work completed for each objective

Clearly there is a mismatch between what we expected to focus on and what we ended up doing. This mismatch though is not necessarily a bad thing. This is information that we need to use in order to decide what our course of action should be. The mismatch points towards at least one of two things:

	We have been pulling work on to the board without considering our stated strategy. We might need to re-evaluate our pull policies.
	The assumptions behind our stated strategy were flawed. We need to revisit and change the strategy based on how we have been proceeding.

The truth is usually somewhere between the two. Our strategy might have been both ignored and incorrect. The earlier we realize that our strategy and operations are misaligned, the earlier we can take action. The action very often is reformulating and stating a new strategy based on the ground realities that we have encountered. The 'Architecture Shift' in the figure above might have been completely necessary even if it was not aligned to the stated strategy. The emergence of new technology or competitors could have forced us to take this 'Architecture Shift' to maintain our position in the market, even if this was not explicitly related to one of the three stated Strategic Objectives.

Strategy informs day-to-day realities on the ground as much as the day-to-day ground realities inform strategy. That is the key point. The arrow of causality points both ways. Our strategy can determine what we pick up to work on. What we work on can influence how we adjust our strategy. Our Kanban board will provide us all the information around the mismatch on strategy and operations on a daily basis. It can give us a very early indication that these two are diverging. It is not only OK, but recommended to use the information from the scaled Kanban board to adjust our stated strategy.

Chapter 9 - Operating The Board

As we have started to discuss in the previous chapter, a scaled Kanban board helps us operationalize our strategy. The fact that the board is both a representation of our current day-to-day process as well as our strategy, makes properly Operating the Board doubly important. In section II we mapped the value stream as well as set up the 'rules of the game'. Now we are in the thick of applying these rules. How do we ensure the proper operation of the board and its rules in the face of the pressures we face day-to-day. How do we leverage both the visualizations and the metrics to be efficient, effective, and predictable?

Flow Metrics Revisited

Before we dive deeper into the operations of the board it is important for us to take another look at the metrics of flow. These metrics will play a central role in our discussion around the operation of the board. As a quick review the metrics that we are tracking 1 for our Kanban system are:

	Work In Progress: The number of work items started but not finished.

	Throughput: The number of work items finished per unit of time. Note the measurement of throughput is the exact count of work items.

	Work Item Age: The amount of elapsed time between when a work item started and the current time.

	Cycle Time: The amount of elapsed time between when a work item started and when a work item finished.

We are tracking these with respect to the start and finish points we decided upon when we designed our scaled Kanban board. As we collect these metrics, we are able to ask better questions about the health of our work items on a daily basis. The entire idea around Operating the Kanban Board is to manage these work items using Flow Metrics.

Portfolio Standups

Scaled Kanban boards should be operated in a fashion similar to the board tracking lower-level work items. This means we have to actively manage work that is on the scaled Kanban board. The preferred way to do this is to get the Kanban System Members involved at this level together to talk about the flow of work items on a regular basis. This is known as a Portfolio Standup. There are some questions that we will need to answer about the Portfolio Standup. What is the frequency? Who are the participants? How is the information discussed shared? These along with a few other questions would need to be answered as we set up our Portfolio Standups.

	Frequency - The frequency of the Portfolio standup can vary from daily to monthly. In general, more frequent standups are better than less frequent. Not to the point though, that people believe that the portfolio standup is taking up more time than actually doing the work. A few data points that can help us determine the adequate frequency:
	How often do work items on the scaled Kanban board show movement?
	How long are we OK with things being blocked without discussing our next course of action?

	Audience - The Portfolio Standup should include all the Kanban System Members. Some participants could include:
	Anyone who can address the flow (or the lack thereof) of the work items.
	Anyone who would be a participant in the evolution of this board.
	Anyone who is a stakeholder and can help us determine 'What's Next?'
	Folks who can help remove blockers.
	At least one representative from each stage of the Definition of Workflow.

	Communication - It is also important to note that as we go to higher levels of work items, the people we need involved have less time available. In this case we need to come up with backup communication plans
	Where will the updates from the meeting be captured? Preferably our work item tracking tool can do this.
	How will the decisions taken at this operational meeting be communicated?
	How will feedback to adjust the workflow, the format of the meeting, and improving communication be gathered?

The standups themselves will need some structure. What are the things we going to talk about? Which items will be taken offline? Is there a follow-up and who needs to be involved in it? The human element of Portfolio Standups makes them trickier than lower-level item standups. The Kanban System Members at this level have pressures and strategic commitments that are often not represented on the board. They also have C-level titles and belong to senior management groups who exert greater influence than others. They are often short on time and are looking to get quick resolutions to the priorities they are faced with. Special requests and urgent issues are always going to come up in these standups. They are going to come from people whose titles are hard to ignore for most people in the room. There will be requests to increase WIP, at the same time as others are working to optimize WIP by lowering the limits. You will hear things like "My people can handle more work than this" or "That type of work does not need to be on this board, that is just business as usual stuff on the side". We need to keep our Kanban System Members concentrated on what matters the most - 'The flow of value'. This is why Portfolio Standups need to be focused on the flow of work.

Kanban is all about flow. The most important question for the standup is flow related - What are the items on our board that are not flowing the way we expect them to?

A scaled Kanban board contains two elements that can help us during our standups - A way of controlling WIP and a Service Level Expectation. These two can be used very effectively for the daily management of work. They can help us figure out what are the appropriate items that need our attention. We can leverage these two to optimize the flow of value across our process.

Leveraging WIP

The mode of controlling WIP helps us operate a pull system. When we establish these WIP controls, we are explicitly stating our system’s Optimal Operating Capacity. Parts of our board might be over the WIP limits we have set for them, while others might be under. Our entire board might be below or above this Optimal Capacity. All of these are signals that we need to act upon. If we are currently under our agreed WIP on the board (or a part of the board) it is an indication that the system is ready to pick up the next work item. In ideal scenarios, this is the only time we would pick up a new work item, when our board tells us that the system is ready for it. This is how a pull system is supposed to operate. If the board, or a stage on the board, is way below the established WIP, this is an indication that the system is being starved. We would want to find out what is happening with the processes upstream and downstream of the system that is causing us to have fewer work items than we consider optimal. Is an upstream process not able to produce inputs to our process as often as we need them?

Most systems though suffer from the opposite issue - being above the agreed WIP. This means that the system has taken on more work that is optimal for it to handle. We need to find out how this happened. More importantly, we need to ascertain how do we get the system back to its optimal condition. Is there a downstream process that is running too slow, and items are beginning to pile up in our system. How do we get some items finished so that the system is back at ideal WIP? In rare cases there might be items that need to be canceled or removed from the system because they are too old, and no longer valuable. If we are over ideal WIP, it probably means one or more teams are overloaded. How do we get those teams help so that we can finish some work items.

Being too far below or too far above our ideal WIP are both bad for the flow of value. They both indicate that the system is not operating as optimally as we would like it to. In both conditions, we need to understand what our immediate plan of action is. How do we get the system back in to balance. One option, which is very likely, is that our previous understanding of our 'ideal WIP' was incorrect. It is possible that we keep below our ideal WIP because that lower number is a lot more ideal and represents our true Optimal Operating Capacity. If that is the case, we should adjust our ideal WIP. The same could be true for having too much WIP - maybe our established ideal WIP is incorrect. The general rules of thumb are:

	If there is work sitting idle, our WIP is too high

	If there are people/teams sitting idle, our WIP is too low

We should always be questioning the 'ideal WIP'. As we operate the board, we will discover more about the capacity of the system to handle concurrent work. The system itself will change due to arrivals and departures of people. It will change due to the improvement (hopefully) of processes. We should adjust this number (or set of numbers) regularly to ensure that we can operate the Kanban board in a manner that achieves optimal results.

There are some very interesting questions that get raised when we have multiple levels of Kanban systems. When both these systems have WIP controls, their interaction could produce some curious results. In the figure below, there are three teams managing work on lower-level work items on their boards. There is a board tracking higher level work items that the team's items roll up to. The higher-level board indicates that a new item can be pulled into the 'Creating' step. For the lower-level boards, the white 'Dev/QA', blue 'Developing', and red 'Doing' columns correspond to the higher-level 'Creating' stage. When an item moves into one of these columns at a lower-level board, it means that item is in 'Creating' at the higher level. The boards at the lower level do not have any capacity to start new 'Creating' work. Meanwhile the higher-level board indicates that we can. What should we do?

[image: Operating the Board Figure 1]

Connected Scaled and Team Level Boards

This scenario, without more context is hard to resolve. The ideal flow-based answer is - We move the next higher-level item in to 'Creating' and immediately mark it as 'Blocked' (more on blocked items in the next part of this chapter). This is a signal to the world that we are at stated capacity and still one of our work items cannot make progress. The context to consider is, does this happen all the time? Is this a very regular occurrence for us? In that case, our stated ideal WIPs are incorrect. It is possible our teams can truly handle more work and we need to increase the stated ideal WIP somewhere at the lower level. More likely, we had set the higher level ideal WIP too high and need to lower that number to ensure smooth operation of the system. WIP at both levels are knobs that we can adjust to find the optimal balance for overall flow.

Leveraging SLE

The Service Level Expectation 2 or SLE is an expression of the expected performance of the system. It is the commitment (with a small c) that the Kanban System Members are making when starting a new item. The commitment is that everyone involved will do whatever they can to maintain the performance of the system as stated by the Service Level Expectation. The SLE is always stated as a range and a probability. For example - '80 percent of our work will get done in 30 days or less'. In other words, when an item enters the system, we are going to do whatever we can to get it done in 30 days or less, we expect to be successful at this 80 percent of the time. Once the SLE has been stated, we expect the Kanban System Members to rally around every work item to make sure the SLE is met.

Even though the SLE is formulated using the language of Cycle Time, that is not the key metric to use here. The Flow Metric which will help us leverage the SLE while operating the board is Work Item Age. As we measure the ages of all the items on the board, we can compare them to the SLE. If the work item is getting close to the SLE and has not made much progress towards completion, we would start asking questions about how this item can get completed in time. We would like to see how everyone involved can rally together to get the item through our process. We have multiple options here; some are listed below:

	Do we need to swarm on this item?

	Is another team ahead on their work and can help in moving this item forward instead of picking up something new?

	Do we need to pause progress on another item to prioritize the one that has aged close to the SLE?

	Can we break the aging item up into multiple items?

The last question in the list above about breaking up an active item brings up many other questions. These are questions, answers to which over time will become additional policies for our Kanban system:

	Along what lines should this be broken up?

	What happens to the new pieces?

	Do they go back in the backlog?

	Do they stay where the original item was?

	Most importantly - What are we learning that we can apply to future work items?

The breaking up of items along logical lines, into deliverable pieces of potential value, is known as right-sizing. The act of right-sizing, which we will cover in greater detail, is not a one and done. We right-size early and often. The SLE also becomes a feedback loop for right-sizing. You use your SLE to right-size items, which might result in your SLE changing, which would change the "right-size" for future items.

The board shown in the figure below has a stated SLE - '85% of items are done in 120 days or less'. Let us assume the colours here signify which team is working on the item. The Red team says they have capacity to pull something new into the Creating column. What are some of our options here?

[image: Operating the Board Figure 2]

Red Team has Capacity to Pull, What are our Options?

Currently, we are up against at least two issues:

	There is no space under the stated WIP Limit available to pull work into 'Creating'.

	There are at least two items that have already breached the SLE.

The flow answer to 'What should we do?' is obvious. The members of the Red team should figure out how they can help the Gray team move one of those aging items forward. They can also help items in the 'Validating' column move forward, if that is what is causing the back up in 'Creating'. What makes this tricky is the fact that in most organizations, teams are focused on their own systems. They almost never are exposed to the broader system and expected to help beyond the set team boundaries. This is a major change for most teams. As items on the scaled board age, one of the common methods for finishing them with the SLE is cross-team collaboration. However, there are many impediments to this:

	The teams may not be familiar with the domain or the technology.
	The teams might be too heads down in their own work to help.

	It might take longer to bring the members from another team up to speed.
	The development and testing environments are not set up for multiple teams to use.

All these are barriers to flow. They usually exist because we have not tried to optimize flow at a higher level. They also exist because we have, as an industry, been under the impression that a myopic focus on the work of small teams leads to best results. If the level at which we have created our scaled Kanban board is truly the one that delivers value to customers, we need to make everything else subservient to flow at this level. It is OK to get creative and change the rules of our system to ensure flow. If our items keep unnecessarily aging because small teams have trouble finishing work within the SLE, maybe we form larger teams. Small teams, large teams, rotating team members, dynamic reteaming, and having no teams are all valid options for org structure. If the current structure does not help us to get work flowing, and the operation of our board repeatedly suggests a new one, we should absolutely try to restructure the organization. Let the operations of the board and the metrics we are gathering be a guide to what might be a better setup.

Chapter 10 - Blockers and Dependencies

A scaled Kanban board starts revealing problems with the flow of value almost immediately. A lot of these problems come from having too much WIP in the system or items being too large. These are problems the teams involved can solve by adjusting WIP and, as we will learn in a few chapters, right-sizing. There are some issues that might require interventions beyond these two. Blockers and dependencies plague a vast majority of systems, especially at scale. Dealing with these often requires some simple, but radical solutions.

Blockers

An item that is not flowing is considered to be 'Blocked' 1. On physical Kanban boards, Blocked items are often identified by placing a bright coloured post it, with information about the blocking item, on top of the item being blocked. Most virtual boards seem to follow this pattern as well. There is an anti-pattern often repeated on Kanban boards where a separate 'Blocked' or 'On Hold' column is added. There are multiple problems with this approach. The biggest of which is that we have no idea what the blockers are doing to the state of the system. Where is WIP being exceeded, and which stage do things usually get blocked in are both no longer explicit. Often the 'Blocked' column eventually becomes the 'Ignored' column. Out of sight, out of mind. We need to have these items be explicitly in the workflow. Randomly moving them back and forth to a column that sits outside (or in an arbitrary position within) the workflow also wreaks havoc with your flow metrics. These items need to take up space in the column where they were when the blocker happened. A great solution for the visualization of these items is to have a swimlane at the top of the board that shows these items as top priority items in the column where they were blocked. This will ensure we have the visualization that prompts action as well as help us collect the appropriate metrics correctly.

While 'Creating Flow', we had come up with a set of policies that determined how blocked items would be handled in the system. These are worth repeating here.

	Level 1: At what point do we consider an item to be blocked, i.e., how much time has to pass for an item that is not making progress to be considered stuck?

	Level 2: At what point do we start ignoring a blocked item in order to pick up other work, i.e., how much time has to pass before we can move our focus to something else?

	Level 3: At what point has the item been blocked long enough to remove from the system, i.e., how much time has to pass before we move this item out of the system and pick it up if it ever becomes important again?

Understanding the reasons why items on our board are marked as blocked can help us determine the action we need to take. Items are often blocked due to two types of reasons - Internal and External.

Internal Blockers

Internal Blockers are caused due to policies within the system. This often means that this kind of blocker can be removed by the Kanban System Members themselves. Sometimes this is just a matter of bringing the item up for discussion. Other times, this can be a change to the rules of the system itself. If the same type of internal blockers keep resurfacing, it might mean that we have some sub-optimal policies in the system that need adjustment.

Some examples of these blockers are -

	"Person A is on vacation so we cannot make progress on this item" - We should inspect the policies at the work item level. Do we need to pair more often? Should someone about to go on vacation pick up a new item alone? Is there a knowledge silo in the system that needs to be broken up?

	"Team X is busy with other work, so Team Y cannot make progress on this work item" - For some reason we are not able to align efforts across teams. Is the WIP at this level too high? Do we have too many strategic priorities in progress? Are teams more focused on their own priorities rather than those of the broader organization?

Internal blockers are a great source for re-evaluating the policies of the system. What are some rules that we have explicitly or implicitly set up that can be modified to improve flow across our process?

External Blockers

External Blockers are caused by interactions of the scaled Kanban system with the outside world. These are blockages to flow that the Kanban System Members and the policies of the system have no control over. This would often require changes to the relationship that the system has with other systems that it works with. There might be some re-evaluation of the terms of these working arrangements or a reduction of reliance on external systems.

Some examples of these blockers are -

	"We are waiting on the vendor to provide a fix before we move forward" - How often does this happen and how much has it caused our items to age? Do we need to switch vendors? What is the cost of switching vendors versus the cost of important items aging or worse, getting canceled?
	"These items are waiting for the deployment team in order to move to production" - Does this add age to every item? How can we reduce our dependence on the Deployment team? Can the Deployment team become a part of our Kanban system? Can we work with them to transfer knowledge so that we can make 'deploy your own work' a policy of the system?

Dependencies

Blockers are usually just a specialized form of dependencies. Dependencies are when two parts of a system have a relationship that prevents an item from starting, making progress or finishing. An item that has a dependency is not necessarily in a blocked state but can get to a blocked state if the dependency is not resolved in time. Dependencies are often visualized by tying the two items together. The dependencies can be bidirectional or unidirectional. The figure below shows unidirectional dependencies amongst the work items.

[image: Blockers and Dependencies Figure 1]

Dependency Map - How would you manage this?

If here, the colours represent teams. Work items A, E, F and G have dependencies on other work items. These items cannot finish until the items they are dependent on have been finished. How can we ensure that these items can get done? What order should these be worked in?

Having a dependency map as shown above can lead to thinking that we need to identify all dependencies ahead of time. That is not the purpose of the Kanban System. The purpose is to understand what causes the dependencies and remove the causes over time. We should not spend a lot of time looking for dependencies up front before starting work on the items. From a Lean perspective, that time spent is waste. There are multiple reasons for this -

	The priority of items that we are evaluating might change. New items may come in that are higher priority and we might never work on these items.
	As these items move through the system, they might get sized, and the dependent parts can get cut out as a result of this sizing.
	We will never be able to discover all the dependencies up front.
	Due to the non-deterministic nature of how long it takes to get work done, we will never be able to line these up in a reliable, cost-effective way.

We know that knowing these dependencies can help in sequencing items. This is why organizations are often attracted to mapping these out, especially at scale. This is inefficient and will, in most cases, lead to sub-optimal results. This is one place where Scaling using Kanban will differ radically from other scaling approaches. Other scaling approaches will recommend understanding, mapping, and managing dependencies. Scaling with Kanban focuses more on eliminating dependencies. Instead of looking for dependencies up front, we should figure out how to resolve these as they happen. The scaled Kanban board will help us identify these dependencies and act on them just in time. There are both short-term and long-term resolutions to dependencies that surface while we are operating our board.

Short term resolutions are more focused on the item that is being held up because of the dependency. What are some actions we can take here?

	Can we break this item up in a way that the non-dependent parts can move forward and get delivered to the customer?
	Can we get someone from the group that we are dependent on to help move this item forward?
	Can we focus on a smaller, more independent piece of value within this item?

	Is this item a much lower priority than the other items that are causing this to be dependent for a long time? Should we remove this item from the board itself?

Longer term resolutions are more radical in nature and can change the way the organization looks. Repeated dependencies are signs that we are not organized correctly to enable optimal flow. Our organization structure will always determine how value will flow through our system. The corollary to this is that in order to optimize value delivery, we have to let flow determine the org structure. Dependencies are the primary way to reveal the problems with how the org is structured.

Organization structures are often dominated by expertise silos. These can be functional like engineers, analysts, and quality assurance. The silos can also be by domain like payments, processing and shipping. From the customer's perspective though, these do not matter. What matters for the customer is how their needs are met via value delivery. Aligning our organization by value streams where a unit of value can flow through to customers without dependencies is a superior approach to aligning by expertise. Aligning by expertise is attractive as it makes individuals and teams easier to manage. As a side effect though, it often makes value harder to deliver.

If you are on a Data Team or an Architecture Team or a Security Team, you have seen these problems. The entire organization looks to you for expertise and also looks at you as a bottleneck. Everything gets held up because it is dependent on your team and your team is not able to move through work fast enough. Looking at this on a Kanban board will show a pile up in the column that includes your work. Yet, no team is able to jump in and help. If instead the members of these Data, Architecture or Security teams were spread across the other teams, this would be much less of an issue. Each team would be able to make progress without having to be dependent on a team of experts. This leads us to a problem that common Agile methods have created.

A disservice that methods under the umbrella of Agile have done to systems is promotion of the idea of 'small teams'. Small teams can be very efficient, but treating a size limit as holy scripture is blindly following dogma that might not be the best option in your context. As you see dependencies prop up at higher levels and try to resolve them, you will see a recurring pattern. The dependencies, often, would not exist if we just had larger teams. Delivering value to customers often requires expertise in multiple functional areas. It is possible that a handful of folks have enough expertise to deliver value end to end, as well as provide backup and redundancies that avoid single points of failure on the team. In most cases though, this is not possible. Many approaches recommend an ideal size of no more than seven to nine folks on a team. This arbitrary limit creates innumerable dependencies in the organization. While the team itself functions well, as long as their scope is limited to only a part of the value stream, the entire value stream suffers. As demonstrated in the Ultimate Software Case Study later on in the book, larger teams (20-30 people) can solve a lot of these problems. If there are two or three teams that are constantly dependent on each other, lowering the number of teams by combining them is a completely valid strategy.

Another strategy that can help shape your organization based on flow is to not have any fixed teams at all. Have a large collection of individuals that dynamically re-team based on the work item they pick up. As a couple of groups finish an item, they can exchange members or find teammates that are best suited to work on the next item. This flexibility creates a loosely coupled structure where everyone can focus on working with the right people at the right time to build the right thing.

Dependencies come with usually come with two types of cost - Cycle Time cost and Management cost. They are expensive because things take a long time to get done. They are also expensive because they take a lot of effort to manage. The second expense is usually an attempt to lower the first one. Unfortunately, the attempt is usually futile. No matter how much we try to manage dependencies, we are not able to manage them well and still end up incurring the Cycle Time costs. The solution is not to manage dependencies better, but to eliminate them as much as possible. Eliminating dependencies comes at a cost as well. There is the effort that goes into convincing managers and senior leaders to reduce their team size. The cost of re-forming teams and structures. These are though, usually one-time costs and are very soon paid for by reduction in Cycle Times. Managing dependencies though, is a repeating cost, that usually does not get paid for. The cost of managing dependencies will almost always outweigh the cost of eliminating them.

Chapter 11 - Prioritization

Whenever we talk about scaling approaches, one of the first questions that we deal with is - How do we prioritize our work? Answering this question has a great impact on predictability of the system. How long it takes us to get things done has everything to do with how we prioritize. Instead of looking at prioritization as a one and done event for a set time period, we need to treat it as a continuous activity. We are constantly receiving new information. Ignoring this information because we prioritized something a few weeks, months or years ago is irresponsible. Every time we make a pull transaction, it is an opportunity to re-prioritize based on what we have learned.

Three Levels of Prioritization

There are three levels of prioritization.

	Prioritization for active work (Pull Policies)

	Prioritization for the next piece of work to pull (Just in time prioritization)

	Prioritization of the backlog (What are the next 3-20 items)

The problem usually is that we spend a lot more time on the wrong levels than on the one that matters the most for predictability. The levels are shown here in the order of importance. The way we prioritize work that is active in the system is much more important than figuring out the next thing which, in turn, is a lot more important than figuring out the order of work items in the backlog. Prioritizing the order of the backlog sets us up either to ignore new signals that come in or change the priority order that we have communicated.

Prioritizing Active Work

Once work has crossed the 'Start' point in our system, it is considered active. How we prioritize this work as it competes for our focus with other active work has a huge impact on our predictability. If there are two items in our system, both of them in a wait state, ready to be pulled, how we decide amongst the two, in other words our 'pull policies' will determine how predictable our system actually is. How we divert the team's focus towards items that need our attention and pair/swarm on items are all ways we prioritize active work. This is the most important kind of prioritization. This determines where our most important resource - the time of the Kanban System Members, is invested. Once an item is active in our system, we have made a commitment that it will work its way to the finish point of our system. The pull policies we employ to ensure this are much more important than the priority order of items in the backlog.

There are at least three options for figuring out how to prioritize active work.

	Portfolio SLE - Is there an item that might exceed our SLE? We should swarm on/break up/reject this item rather than pulling a new one.

	Portfolio Work Item Age - How are the current items doing vs historical data? Give preference to older, aged items over newer ones.

	Skill Specialization - Based on current distribution of skills what makes sense to pull forward? This is always a balance between optimizing short term cycle time and up-skilling teams to improve cycle time in the long term.

The figure below is an example of the Work Item Age chart at the Portfolio level.

[image: Prioritization Figure 1]

Work Item Aging Chart

In this figure there are at least three items whose Age has exceeded the Service Level Expectation set for this process. If we are looking to optimize for predictability, these three would be the priority for the system. There are a couple of items inching closer to the Service Level Expectation, those would be our next priority. We might not want to spend too much time talking about the other items on the board. Instead, let us ascertain how we can come together to help the items that have aged more than we expected them to move forward. Once these have been taken care of, we can focus on the other items on the board or even pull new items in if our WIP allows us to.

Items that are active in the system, that have aged, have already taken up our time. These are investments that we have made but haven’t yet seen results from. We should not be spending time prioritizing future investments. We should be spending time figuring out which of these current investments can get us some returns soon. For knowledge work, in the return-on-investment equation, returns are indeterminable, but investment is controllable. This investment is Cycle Time for finished items and Work Item Age for active ones.

Prioritizing 'What's Next?'

The second and third levels of prioritization have the same objective - to determine what we are going to work on in the future. The only difference is 'how far out do we go?'. When WIP becomes available and we can pull the next work item on to the board, we need to figure out what that item should be. This is the second level of prioritization. We will refer to this as 'Just in Time' prioritization. As we have discussed before, prioritizing 'What's Next' is less important than our rules for prioritization of active work. With that in mind, we want to make this as easy and quick as possible. Just in time prioritization might seem very alien to most organizations, especially at scale. From a purely Lean perspective, this is the ideal way to pick up new items. As soon as we receive the signal from the system that we are ready to pull the next thing, we can apply any of the multiple prioritization methods discussed later in this chapter, and select the item to be pulled in. This Just in time prioritization method helps avoid wasting a lot of time prioritizing ahead. It also gives us the flexibility to adjust as new work items emerge from customer feedback.

Prioritizing the 'Next 10 Things' or Next Quarter or 'Next 4 Weeks'

The least important level of prioritization is figuring out the order of things in the Backlog. These are work items that have not yet been started and are not likely to be started any time soon. It is possible that many of these prioritized items would never even get started, despite our best intentions. A backlog is usually a collection of ideas. The efforts to prioritize it are often a well-intended exercise that tries to get some sense of the timing and sequence of attempting to act on these ideas. There are multiple issues here. The primary of which is that paying attention to ideas that have not started yet, is almost always taking time away from work items that are in progress. This diverting of focus only increases the amount of time it takes to get items that have started finished. This increase in Cycle Time makes things take longer. This in turn increases the likelihood that market conditions or customer feedback would prop up new, more important ideas in the meantime. This then makes it less likely that the things we prioritized in the backlog will actually get picked up. In other words, the prioritization of the backlog makes it more likely that the prioritized items never get worked on.

A midway point here is to minimize how far ahead we look while prioritizing. If we do not want to set up false expectations for our stakeholders or distract the Kanban System Members from active work, we need to minimize our 'look-ahead' period. Taking this idea to its logical conclusion, we would return to level two of prioritization.

Common Methods of Prioritization

Despite all the warnings of the ills of prioritization, especially prioritizing the backlog, most organizations will tend to gravitate towards spending time on it. Prioritization is essentially the act of figuring out in what order items should be pulled. The assumption is there is a set of ideas that can form one or multiple queues. We then have to find out what is the order in which we pull from these queues. The usual set up at organizations is to have a queue at the lower work item levels that is specific to each team. This gets ordered by someone directly working on or with the team. For an organization, regardless of the level at which we are talking about flow, this might look like the figure below. In the example shown above, each team has its own queue of features. It is ordered however the team's internal or external stakeholder prefers.

[image: Prioritization Figure 2]

Each Team With its own Prioritized Queue of Features

When the team has capacity to pull new work they go to their queue (or backlog) and pull the next item. Team 1 pulls from its own assigned queue, Team 2, 3 and 4 do the same. There is a major flaw here when taking a higher-level view and looking at these queues together. If all these items were in an overall priority order, the Orange item A might be a much lower priority than the Purple items B through E. What this would mean is that Team 4 is working on a lower priority item than the items waiting in Team 1's queue. In fact, all teams, except Team 1 can easily be working on lower priority items while higher priority items wait in other backlogs. This is clearly an inefficient allocation of our financial resources.

A way to get around this is to introduce the concept of a 'Unified Backlog'. A single place where ideas live. When space becomes available for any team to pull work, they go to this unified backlog. They make a decision on the most important work item using the techniques mentioned later in this chapter and start working. unified backlog, along with just in time prioritization, can help make sure that our teams are working on the thing that is deemed the most important at that time. This is definitely not simple or easy to achieve. We have to start by lowering the number of Queues in Progress (QiP). Take similar teams that can share work and create combined backlogs for them. This will bring down our QiP number. As we get better at sharing work, we can bring down the QiP for the entire organization further. We can repeat this process till we get to the QiP of 1 - a unified backlog. If your organization has the desire and the courage to jump straight to this stage, more power to you. Institute the unified backlog and use flow metrics to guide better usage of it. An illustration of this is shown below. Here, the entire system, comprised of multiple teams, is pulling from the same queue of features.

[image: Prioritization Figure 3]

Single Prioritized Queue of Features for the Entire System

A deeper dive into the effects of a unified backlog (and of specialist, generalist, and large teams) can be found in Section III in the chapter 'The Shapes of Backlogs and Teams'.

In the queue above, the various work items from different sources are a part of the same backlog. This could be prioritized or unordered. When a space becomes available on the board, the Kanban System Members pick from the top of the queue (if ordered) or prioritize just in time (if unordered). In either case, they will need to employ some prioritization technique to determine the next work item to pull in. Both “What is next?” and “What is the order of the backlog?” are answered using similar techniques. We will cover some of these, but not necessarily recommend any of these. Our context and appetite for risk will determine which ones we should use for our system. What is important is that all the Kanban System Members agree on a standard way that work coming on to the scaled Kanban Board is prioritized and that they are willing to iterate on it.

Single Queue

When looking at work in a single queue, regardless of which level of flow we are targeting, we can employ any of the following techniques.

Cost of Delay/CD3 (Weighted Shortest Job First)

This technique requires at least two estimates: Lifetime profit of the work items and duration of work items. The definitive authority on this technique is Don Rienertsen 1. Many people seem to think that they understand CD3, but very few actually do. SAFe's WSJF formula is not CD3 as Don Reinertsen himself points out. When we understand the curve of how Lifetime Profits of a work item change with time, we can calculate the slope of this curve at any point or, in other words, the rate of change of lifetime profits. This is known as the Cost of Delay. Dividing this by the duration that we expect the work item to take gives us Cost of Delay Divided by Duration or CD3. This can then be used to order our queue in descending order of CD3 values. CD3 provides a great economic framework for conversations but falls short when both Lifetime Profit and Duration are highly variable. There are a few other issues when using CD3 for Knowledge Work. These are detailed in the 'Don't Be a Ditka' chapter later in the book.

Stack Ranking by Perceived Value

One way to simplify CD3 is by getting rid of one of the estimates that are a part of the formula. The concept of right-sizing has been introduced earlier (and will be expanded upon later). Right-sizing is looking to reduce the size of the items so that they can flow through the system in a reasonable amount of time. This is usually represented by our Service Level Expectation. Right-Sizing is often practiced by teams with lower-level work items. We are expecting to right-size at the level that our Kanban Board is operating. Right-Sizing items can help us make the safe assumption that the duration component of CD3 is similar (not same) for our work items. Now, we still have to make the assumption of estimating value. We don’t have to be exact about this. We simply need to be able to say if our perception of X's value is greater than that of Y. At that point we can simply stack rank our items by value. This will be the order of the queue.

Shortest Job First

The other estimate that is a part of the CD3 formula is Lifetime Profits or what we have been assigning the shorthand of 'Value'. Unless we have pre-signed contractual obligations, the value of most knowledge work is indeterminable. Similar to how we cannot be exact about how long something will take; we cannot be exact about how much money something will make. Every organization has examples of features/initiatives/objectives that they considered to be extremely valuable but actually ended in creating a loss instead of bringing profits. With this in mind, we could do the exact opposite of what we discussed in the previous example. Assume that of a bunch of good ideas, we are unable to determine which ones are the best and we would let customer feedback determine that for us. In this case we can sequence our queue by our perception of work item duration. We can order the queue in ascending order of size.

Random Selection

This is exactly how it sounds. We have a set of ideas that align with our current strategy. We believe these are all good ideas to work on. At this point, we do not need to spend too much time figuring out other attributes. Let us pull in any of these and start working on it to get it to a customer. This method leans into accepting that we cannot determine value and that we can right-size a majority of items that come into our system. Since we cannot determine return and right sizing helps us limit investment, any of these items could have the highest return on investment for us. Once we understand this, it is easy to understand that any time spent on prioritizing or refining the backlog is waste.

Multiple Queues

We are likely to have multiple queues. It is strongly suggested to have the queues be fewer in number than the number of teams. The number of queues should have no relationship to the number of teams. They should have a much closer relationship to our strategic objectives. We can successfully operate a scaled Kanban system with one queue per team, but the probability of collaboration increases as we have fewer queues (or backlogs) than teams. As shown below, these queues can be used to feed the scaled Kanban board. Each queue in this example is made up of features to be pulled.

[image: Prioritization Figure 4]

Multiple Queues of Features by Strategic Objectives

Regardless of the number of queues, our prioritization methods would be the same. We will first use single queue techniques to prioritize within queues. Then, we will prioritize across, using the following.

Cost of Delay/CD3 (Weighted Shortest Job First)

We covered Cost of Delay and CD3 in the section under Single Queues. The 'Don't Be a Ditka' chapter covers this in much greater detail. When we are ready to pull from one of the queues in our system, we can re-apply the CD3 formula. In the case shown in the figure above, we can compare the CD3 values for work item A in each queue. The one with the highest CD3 value gets pulled in. We repeat this exercise every time we have WIP available to pull new work.

Based on Investment Strategy

Let us say we have organized the multiple queues by strategy element. Each queue is a list of items related to a single element of our stated strategy. We can take a look at distribution of current work compared by strategy elements (KRs/Initiatives/Business Objectives). This will give us an idea of how invested we currently are in each of these. This distribution can be compared to our initial intent of how much we wanted to invest in each of these objectives. If we realize that one of these objectives is being under-invested in, we can use that knowledge to decide which queue to pull from next. We can pull the next work item based on how the distribution of our current investment needs to be adjusted.

Let us say we have three Business Objectives and three queues representing them. Our initial intention was to invest equally across these objectives. Our current state of the board tells us that 50% of the work is for Business Objective 1, 30% for Business Objecting 2, and remaining 20% came from the queue for Business Objective 3. Clearly, based on our initial intention, we are currently under-investing in Business Objective 3. Following this prioritization strategy, our next work item should be pulled from Business Objective 3's queue.

Based on Available Skillset

The multiple queues can also be organized based on the skillset of the teams. For example, there could be work items related to Data Analysis that could have its own queue, Infrastructure its own, and Marketing with its own queue in the same system. There might be a set of teams or groups of people that are experts in each of these fields. Based on the people who just became available, we can pick from the queue that they are experts in.

This prioritization scheme comes with a warning: With this strategy, we are sacrificing Cycle Time in the short-term for Cycle Time in the long-term. Sure, the selected item might flow through well, but other groups are never going to be exposed to work that requires this type of specialization. This means, if we are flooded with requests for a particular specialization of work, we will have only one group to rely upon. The rest of the system will not be able to help. Queues based on specialization can be used in the exact opposite way as well. We can form cross-functional groups that are capable of pulling from all queues. The group then pulls work from one of the queues that they did not pull from the last time. This will ensure that everyone gets exposure to all kinds of work, optimizing for Cycle Time in the long-term.

Random (or Round-Robin)

Similar to the final strategy for Single Queue prioritization, our final strategy here is to randomly select the queue to pull from. This might seem very arbitrary but solves many of the problems we have discussed so far.

Since the selection is purely random, it balances all the strategic elements. The parameters of randomness can be set to balance these in the long run. For example, randomly select between queues 1,2, and 3, but give queue double the weight during selection. This will make the overall distribution tend towards Queue 1 - 50%, Queue 2 - 25%, and Queue 3 - 25%. We can balance our investment without even thinking about it. If we want to keep these completely balanced, we can simply do a Round-Robin selection. Pick from the queue that has not been picked from for the longest time.

Random selection also means, the group picking up the next item has no idea what is the expertise required. The way to get past this would be to have expertise of every kind available for every group. How ever we solve this problem, it makes the entire organization less reliant on a few people with a certain type of expertise. It also optimizes for the long term as the organization becomes more capable of handling increased demand for one kind of expertise.

The Waste of Prioritization

We have spent a good number of words talking about prioritization strategies. All this, just to tell you that prioritization in itself can also be a very wasteful activity. We are specifically talking about levels two and three of prioritization. The waste in prioritization comes from focusing in the wrong places. Kanban tries to narrow our focus so we can effectively manage the items that are a part of our workflow. Prioritization (level 2 and 3 kind) is about items before our workflow. This is a deliberate shift in focus from getting things done. Every moment spent on items before the start point is a moment not spent on active items. This is prolonging the Work Item Age and Cycle Times of our items. Anything that does that, especially when it is under our control, is in pure lean terms, waste.

There are at least four reasons why prioritization is wasteful -

	Most prioritization relies on how valuable something is, and we cannot, in advance, know the value of the item.
	The second aspect of prioritization often is the size or duration or the item. This also cannot be determined ahead of time, despite our best efforts.
	New items and requests will always show up after the prioritization activity. Ignoring these is irresponsible, especially if these came from customer feedback.
	Active items might split into multiple items and those might be higher priority than the items in the backlog.

The value of an item or how long an item will take or what new items will show up are all predictions. Humans are notoriously bad at predicting the future. We have biases that will in a vast majority of cases make these predictions incorrect. Think about it in your own context - When was the last time your organization was able to plan for a quarter and finish (or even start) all the items in the priority order that was decided during planning?

The reason we are drawn to prioritization is because we are always looking to the future. Not just us, but our stakeholders and customers are as well. If we do not take care of the present though, all of our efforts figuring out the future, will be unsuccessful and hence wasteful. The best way we can serve our customers is to keep our focus on the active work in the system. Only worry about the next thing when we have WIP available to pull the next item in. Activities that claim to improve the health of a backlog, like prioritization, and scheduled refinement are inherently wasteful. This is time spent on items that, due to the fact that new priorities come up all the time, might never get worked on. There are two ways to make a backlog healthy - ignore it or delete it.

The Key Decision

We can use all the fancy prioritization techniques we want, but the key decision is – When a spot opens up on the portfolio board, what gets pulled in? The answer to that question is all that matters from the perspective of Flow. If we can make this as inexpensive as possible, we can make sure we will not interrupt the flow of work. You can prioritize or order the backlog (s), but conditions usually change fast enough for that to be wasteful. Instead, optimize for answering 'What's Next?' Just in Time, as quickly as possible.

Chapter 12 - Forecasting

The great benefit of seeing all our higher-level work items in one place is that we can also see the risks in our system all in one place. Remember that we are talking about work items at the level at which we communicate with stakeholders. This means the forecasts and the risks at this level have real dollars and cents implications. The word forecast is a deliberate choice here. We are not using the word 'Estimate' since that has assumed a very specific meaning - A person or group's guess on how long it will take them to do thing. We are talking about Forecasting. An activity that tries to remove guess work and also gives us an understanding of the risk associated with our prediction. We want to answer the question of 'When will it be done?' with as little guesswork as possible.

Principles of Forecasting

Before we get to figuring out how to answer the question of 'When will it be done?' 1 we need to acknowledge the probabilistic nature of our world. No prediction for the future can be made with 100% certainty. We might have a desire to know exactly what would happen but the best we can do is come up with a range of possibilities and an idea of the risk associated with them. That is the first principle of forecasting - Think probabilistically not deterministically.

The greatest problem we run into, especially at scale, is that we treat forecasting as a one and done activity. We get people into a room. Have them spend multiple hours (sometimes days) coming up with a forecast. Then, two days later new information arrives that invalidates our forecasts. We still stick to the initial decisions and try to make the conditions change in such a way that the forecast can stay the same. Meanwhile it is a lot more responsible and easier for us to update the forecast. That is the second principle of forecasting - Update your forecasts as you get more information.

The other issue we run up against while forecasting is how far out our forecasts are. The further out we are forecasting the more 'things' can happen. The more the variability within the system gets amplified in results. This is the reason why we should always prefer shorter term forecasts over longer term forecasts. Near term predictions have much fewer assumptions built into them. Predictions of what will happen in the next couple of weeks are more likely to work out than predictions for an entire quarter. That is the third principle of forecasting - Shorter term forecasts are better than longer term forecasts.

To review, the three principles of forecasting are-

	Think probabilistically not deterministically.

	Update your forecasts as you get more information.

	Shorter term forecasts are better than longer term forecasts.

Monte Carlo

The basic principles of forecasting might seem straightforward to understand, but daunting to implement. We need a tool that makes this easy. This is where the technique of Monte Carlo comes in. Monte Carlo Methods were first implemented almost a century ago and continue to be valid techniques for making probabilistic forecasts. The simplest form of Monte Carlo simulations run the future over and over again. It uses the team's own throughput (the rate at which they get work done) to run simulations. We then interpret the results of these repeated simulations of the future to generate our forecasts. The detailed inner workings of Monte Carlo are out of scope for us. For a better understanding of this, please refer to Dan Vacanti's work in his books 'Actionable Agile Metrics for Predictability' 2 and 'When Will it be Done?' 1. For our purposes, we need to understand how to interpret the results generated by Monte Carlo simulations.

The forecasts generated by Monte Carlo simulations take the form of a range, and a likelihood associated with that range. Based on the likelihood that best represents the risk we are willing to take, we can find a corresponding range. With Monte Carlo simulations we can use throughput for lower-level work items finished in the past by a team to help us answer two related but different planning questions -

	When will a system (usually a team) finish a given number of items in the future - 'Monte Carlo When'.
	How many items can a system finish in a given time frame - 'Monte Carlo How Many'.

The second question (Monte Carlo How Many) is a very easy way to navigate the discussion around capacity. By using Monte Carlo to answer this question, we can do capacity planning for a planning period, like a release, in seconds. Let us say we have a release coming up in two months. We can run Monte Carlo, using our own data, to figure out How Many items we can get done in that time frame. It takes a few seconds to do this...and we are done. No need to sit around and estimate every item. As long as our future is expected to resemble the past to some extent, we are done with our forecast. Once again, refer to Dan Vacanti's work for details on how this works.

Let us focus on the first form of the Monte Carlo question (Monte Carlo When) for the rest of our discussion around forecasting. The figure below is a screenshot from the tool Actionable Agile. It shows results of Monte Carlo simulations for a team that is looking to figure out when they can complete the next 30 work items.

[image: Forecasting Figure 1]

Monte Carlo When

According to these results, this team has -

	50% chance of getting 30 items done by 30th of August.
	70% chance of getting 30 items done by 1st of September.
	85% chance of getting 30 items done by 4th of September.

	95% chance of getting 30 items done by 7th of September.

Now the conversation has shifted. Instead of figuring out which date to commit to, we are asking a different question. We are now talking about how much risk we are willing to take. If we are willing to take a 30% risk, we can shoot for September 1st as our date. If we are only comfortable with 5% risk, let us pick the 95% confidence result and say 7th of September. We have predictions of dates as well as an understanding of the risk associated with those dates. We can manage both expectations and probably more importantly - Risk. Now we have a way to determine when a team can finish a certain number of lower-level work items. What about the higher-level work items that these roll up to? The different dimensions of scaling can help us understand how to answer these questions better.

One Team Working on One Product

Let us imagine we have a system where we deliver to our customers in features. These features are broken down into stories. A team picks up a feature, works on it by completing the stories under that feature and then delivers it. The team is fully capable of delivering features for this product by itself, no interaction with any other teams is required. In this case scaling refers to looking at the board for higher-level work items. For the team in question, this would be a board of features.

Using the results, we have shown in the section above, we can say things like - Based on this team's past data, Feature C, which has 30 stories remaining, will be done by September 1st with 70% confidence. We can do this for all features being worked on by the team. Each feature can give us a simulated, projected date based on the confidence level we choose. This team's scaled Kanban board can then give us information about all of their features as shown below.

[image: Forecasting Figure 2]

Monte Carlo Results on Scaled Kanban Board

So far, we have made three major assumptions when talking about Monte Carlo -

	The selected past used for simulations looks roughly like the future.
	The teams are working on only one feature at a time.
	There are no dependencies across teams.

The first assumption is a general assumption of Monte Carlo and not something we can avoid. What we can do, is find data that is a better representation of what we expect to happen in the future. The second and third assumptions though, need to be understood better. Understanding these can help us make decisions that can make us more efficient, effective, and predictable.

Impact of Feature WIP

Let us go back to the example Monte Carlo shown above in figure 1. We had used the simulations to conclude that - Feature C, which has 30 stories remaining, will be done by September 1st with a 70% confidence. We did this, by using the team's throughput, to understand when they will get 30 stories done and then assuming that these 30 stories will all belong to Feature C. There is another assumption that Feature C will stay at 30 stories, but more on that in a later chapter. What if, this team was not working on just one feature at a time? What if Feature B was active with the team at the same time? How would that change Monte Carlo results?

Monte Carlo simulations are using the team's past throughput and simulating the future with them. If our future contains a Feature WIP of 2, this throughput will be split between these two features. Another way to say this is each feature gets only half the future throughput for the team. Actionable Agile allows us to set this up. We can ask the question - How long will it take us to get 30 stories done, if only half the team's throughput was applied towards them? The figure below shows these results.

[image: Forecasting Figure 4]

Monte Carlo When with a Feature WIP of 2

Our prior prediction of September 1st or earlier with a 70% confidence, has now changed to September 13th or earlier with a 70% confidence. Our forecast has moved almost two weeks out by having the team focus on two features instead of one. For reference, these forecasts were run on August 20th.

Things can be even worse though. This same team might need to work on maintenance and support items. It is possible that 20% of the team's throughput goes towards maintenance and support, while the rest gets divided between the two features that the team is working on. Now the team can dedicate less than half their throughput to any feature. About 40% to be more precise, if we assume that the team spends similar efforts on the features in progress. What does this do to our forecast? Once again, simulating this scenario using Actionable Agile we get the results shown below.

[image: Forecasting Figure 5]

Monte Carlo When with a Feature WIP of 2 and 20% Non-Feature Work

Our 70% confidence prediction for getting Feature C done has now moved out to September 18th. We have added another 5 days, just by acknowledging that the team has other responsibilities than this feature. The forecasts at other confidence levels have shifted out as well. The 95% confidence prediction has shifted as follows:

	September 7th in Scenario 1: Feature WIP = 1
	September 20th in Scenario 2: Feature WIP = 2
	September 28th in Scenario 3: Feature WIP = 2 + 20% allotted to maintenance and support work.

Compare the forecast with 95% confidence in Scenario 1 to any of the other forecasts shown in Scenarios 2 and 3. A lower confidence forecast in Scenario 2, 50% for example (September 10th), is further out than the 95% confidence forecast in Scenario 1 (September 7th). The raising of WIP at the higher level has, as expected, a dramatic effect on how long it will take us to get those work items done. The reason this result is surprising is that this has absolutely nothing to do with the team's efficiency in getting lower-level items done. The team in this example could be very good at getting stories done, but if they have a high feature WIP, they cannot guarantee that those stories will result in completing a deliverable feature any time soon. We are not going to get these delivery dates to move in by making the teams churn out lower-level work items faster. We will move these dates in by reducing higher-level WIP. Daniel Vacanti in his book, 'Actionable Agile Metrics Volume II: Advanced Topics in Predictability' 3 takes a deeper dive on the effects of raising Feature WIP on forecasts.

These results help us see how important it is to lower WIP at the level at which we deliver value to customers from a predictability perspective. The more features we work on at the same time, the further out we have to forecast their delivery. This breaks the third principle of forecasting - Shorter term forecasts are better than longer term forecasts.

Multiple Teams Working on Multiple Products

We can even do these Monte Carlo simulations for the entire organization. Assuming that all our teams follow a work breakdown structure where Features break down into stories, we can have teams use their own story throughput. Every team can use their own data to project when they can be done with their features. Similar to what we did above, they can run Monte Carlo and come up with a projected date based on the level of risk they are willing to take on. They can use their own throughput and feature WiP numbers to understand the risk and projected dates for their features. Teams can project to different confidence levels based on the amount of risk their customers or stakeholders are willing to take. These forecasts can be collected and displayed together on a higher-level board. We can see this in the figure below.

[image: Forecasting Figure 3]

Monte Carlo Results on Scaled Kanban Board

We can, at a glance, see the status of all our features that customers are waiting for. Furthermore, since Monte Carlo simulations can be run in seconds, we can update these as soon as new information becomes available. As the teams close stories or add new stories, we can re-forecast and update the scaled Kanban board with the new information. Remember, this is the second principle of forecasting - Update your forecasts as you get more information. Doing this regularly (or continuously) can help us get up to date information on where risk is increasing. It can help us take action to help out features that might be in trouble. The figure below shows a continuous forecasting board for teams that have committed release dates.

[image: Forecasting Figure 7]

Continuous Forecasting Monte Carlo Results

In this figure, the column labeled 'Completion Likelihood' communicates the risk associated with the team finishing the 'Stories Remaining' and 'Features Remaining' by the 'Code Freeze Date'. The information here is updated every 20 minutes by pulling the latest data from the work item tracking system and running Monte Carlo simulations using the team's own data. Any team's release with a greater than 85% chance of success is highlighted as green, between 85% and 70% as yellow, below 70% as red. This display can very quickly tell us which teams might need help cutting scope, moving the date, or increasing throughput to meet their current goals. The risk in the current plans is very evident to the team and the organization. Making this risk visible can help us ask all the questions that Work Item Age was helping us ask:

	Do we need to break this up?

	Can we swarm on this?

	If this will take longer than expected, is it even worth investing more time in?

Multiple Teams Working on the Same Product (Impact of Dependencies)

Earlier in this chapter, when we were discussing the results of the first Monte Carlo results, we had mentioned the three big assumption we made:

	The selected past used for simulations looks roughly like the future.
	The teams are working on only one feature at a time.
	There are no dependencies across teams.

The impact of the last big assumption (No Dependencies) of Monte Carlo for higher-level items (features), might be even greater than the impact of the assumption about having a Feature WIP of 1. We have discussed dependencies and their downsides before. These downsides become almost insurmountable when it comes to forecasting. Let us take a look at this via example. Let us assume we are working in a system where three teams need to get work done in order to release a higher-level work item, let us say this is an Epic. They have no dependencies and are able to work and deliver without any need for interaction. They are all working on their own stories that are a part of the larger Epic. When the last team delivers the last lower-level work item (Story), the Epic is considered finished. The teams have given us the following forecasts:

	Team 1 - 70% probability of getting their stories done by September 10th.
	Team 2 - 70% probability of getting their stories done by August 30th.
	Team 3 - 70% probability of getting their stories done by September 17th.

With these forecasts in mind, we can communicate to the customer a date for when this item will be done. We can say that we have 70% confidence that we will be done by September 17th, as that is the furthest out date in our forecasts. Seems easy enough. Now let us add in some dependencies. Let us assume that we still have 3 teams working on this Epic. This time though, there are some strong dependencies. Team 3 cannot start work till Team 1 and Team 2 are done with their work. Once Team 3 starts work, they have to finish 15 items in order for the epic to be considered complete. Team 1 and Team 2 have provided us with their forecasts for dates. The summary of the situation is as follows:

	Team 3 needs to complete 15 items to deliver the Epic

	Team 3 cannot start until Team 1 and Team 2 finish

	Team 1 Forecast

	50% Confidence Date - September 6th.
	85% Confidence Date - September 25th.

	Team 2 Forecast

	50% Confidence Date - August 25th.
	85% Confidence Date - September 20th.

	Team 3 Forecast to get 15 items done
	50% Confidence - 20 days.
	85% Confidence - 30 days.

Given this information, what date would you communicate to the customer? What level of confidence would you have in that date? Now that we understand a little bit about probabilistic forecasting, we can apply what we have learned. The latest date that we have is September 25th, from Team 1. Let us say Team 3 starts on September 25th. Further, their highest confidence duration that they have provided is 30 days. With that information at hand, we can tell the customer that the Epic will be delivered on October 25th. What confidence should we have in this date? This is where things become really interesting.

In answering the question above we used both Team 1 and Team 3's 85% confidence forecasts. It might be tempting to think that October 25th is a prediction we can make with 85% certainty. That would be wrong. Probabilities, when they are lined up sequentially, compound. We actually have an 0.85 * 0.85 = 0.725 or a 72.5% chance based on those numbers. That is the chance that both these predictions will hold. It is worse than that. We do not know that probability of Team 2 finishing by September 25th, which is Team 1's forecast. If we knew that probability, that would have to be factored into the calculation as well. We would probably end up somewhere in the 66-68% range. The difference between 85% confidence and 66% is huge. We have gone from having less than a 1 in 6 chance of being wrong to about a 1 in 3 chance of being wrong. In other words, the dependencies have more than doubled the risk in our forecasts. We have gone from 15% to over 30% risk. That is also a best-case scenario, assuming nothing changes for any of these teams and forecasts do not move further out. This is a rough calculation of the probabilities of both events (Team 1 and Team 3's predictions) coming true. The actual probabilities here are very hard to calculate. The easiest way to calculate these would be to set up a Monte Carlo simulation that simulates the dependencies.

What if we were not even paying attention to these high confidence forecasts. Instead, we were using something like an average of our throughput (or story points) to come up with a velocity. Using those, alongside dependencies can lead to disastrously wrong predictions, as you might have already seen. Please refer to Dr. Sam Savage's book 'The Flaw of Averages' to get a better understanding of why averages are terrible. 'Plans based on average, fail on average'. Your average has been wrong an average number of times in the past and will continue to do so in the future. We will simplify our discussion here by assuming that the average corresponds to 50% confidence. This assumption is almost always not true. The actual confidence number could be 30%, 60% or 70%. We cannot say for sure. For this discussion though let us assume 50%.

[image: Forecasting Figure 6]

Forecast for Three Sequenced Features

What happens if we have projects A, B, and C all sequenced to start one after the other due to dependencies? If we derived the duration forecasts based on averages - We have 0.5 * 0.5 * 0.5 = 12.5% chance of finishing feature C on the forecasted date.

The likelihood of a system being predictable is inversely proportional to the number of dependencies in it.

Planning

Over the last few chapters, we drilled deep into some of the elements that are usually covered during planning. We covered alignment, dependencies, prioritization, and forecasting capacity. We did all of these without encouraging or establishing a planning event. This is on purpose. Most of the information in our work is emergent, not known before the work begins. A big planning meeting before the work begins is wasteful due to multiple reasons. Some of these are mentioned below:

	We are having the conversations when we know the least about the work.
	We do not know what other work (higher or lower priority) might come up.
	We are taking the entire team (or department) offline for an extended period of time when they could be working.
	We are using information with the highest amount of uncertainty built in and communicating to stakeholders.
	We are expecting the currently anticipated conditions are going to hold in the future.

All the topics discussed so far in this section of the book are things to monitor and plan on a daily basis. We need to review our strategic alignment, new blockers and dependencies, priorities, and updated forecasts regularly. Think of it as taking the time we were spending doing up-front planning and spreading it out through the time we do work. We plan and execute continuously. We know more, our models become better as we get more work done. So do our plans and forecasts. Instead of spending a lot of time up front, planning out a sprint or a program increment, let us get started with the most important things and do small plannings every day as we make progress. Many people call these small plannings 'Stand-ups' or 'Daily Scrums'.

Chapter 13 - Predictability

Predictability refers to our ability to forecast the state of a system at a future point of time, within an acceptable degree of uncertainty. It is about how accurate we can be with that forecast. Predictability at the level at which we communicate to our customers and stakeholders is more important than other levels. Teams can be very predictable at delivering lower-level work items. If though, the flow of work at the level which stakeholders care about is unpredictable, we have failed from our customer and stakeholder's perspective. We have discussed in the previous chapter how we cannot sit in an up-front planning meeting and achieve reliable forecasts. This is an activity we have to perform continuously. We are going to continue to take the same approach towards predictability - We are going to "do" predictability. Our scaled Kanban system and the metrics we derive from it are going to help us "do" predictability better.

For our understanding and discussion of predictability, we are going to stand on the shoulders of two giants - Dr. John Little and Walter A Shewhart. Both these gentlemen laid the foundation for understanding what is meant by a stable system. They both have given us different but related definitions of stability. A system that follows both of these can be considered stable, and thereby predictable.

Shewhart's Stability

Shewhart's most well-known contribution to management is the invention of Control Charts or Shewhart Charts 1. These charts can be used to separate signals from noise. Shewhart calls noise "chance cause", and signal "assignable cause". Common cause refers to the variation that naturally exists in a process. This is just noise within the data. All our systems have variability. Shewhart helps us make sense of this variability. Every item that finishes in our system will take some random amount of time. This randomness can be within statistical limits for our system, or the variation could be way outside these limits. When the variation is outside the limits set up in a Shewhart chart, it is considered "assignable cause". We are not going to go deep into Shewhart Charts, Control Charts or Process Behaviour Charts here. Dr. Donald Wheeler has written extensively on understanding predictability through Process Behaviour Charts. His writings are a great source for understanding predictability as Shewhart described. What is important to understand for our context is what Shewhart defines as a stable system.

Dr. Wheeler defines a stable system or process as one in which only chance causes of variation are present 2. In such a system, the variation is predictable within statistical limits. This is in contrast to an unstable system, where assignable causes are a part of the system. A simpler way to think about this is to say - We do not have any major outliers in our data.

Cycle Time Scatterplot

A common method for visualizing Cycle Time data for Kanban systems is the use of a Cycle Time Scatterplot. It is important to note that this is not a Control Chart or a Process Behaviour Chart. For an understanding of those charts and how they more rigorously identify process is stable please refer to Daniel Vacanti in his book, 'Actionable Agile Metrics Volume II: Advanced Topics in Predictability' 3.

We can, in a less rigorous manner, see outliers and trends on a Scatterplot. These can give us an indication, not a confirmation, of whether our process is stable or not. The figure below shows a Cycle Time Scatterplot.

[image: Predictability Figure 1]

Cycle Time Scatterplot

The x-axis of the scatterplot is Calendar Time. The y-axis is Cycle Time. Every dot here represents one or more items that have been completed. The height of the dot corresponds to the Cycle Time of that item, which is how long it took for that item to move through the process. The horizontal positioning of the item corresponds to when the item was finished. As work items in our system finish, we can add dots to the scatterplot based on the finish date and Cycle Time. If we keep doing this, we will get a scatterplot that shows the distribution of our Cycle Time data over the selected period of time.

The graph shown in the figure above is for work items completed by a real team. The left-hand side of the graph shows a process that has multiple outliers. There is an item that took over 100 days, a few that took between 60 and 80 days as well. These are most likely (but not definitely) signals or "assignable cause". As long as these are present in the process, we cannot say that the system is stable. The right-hand side of the Scatterplot above shows the opposite picture. There are no wild outliers after midway past the timeline. Sure, there is still variation, but it all looks like "chance cause" variation. This process is most likely stable.

The one useful piece of information we get from the Scatterplot that is not available in the more rigorous Process Behaviour Chart is our Service Level Expectation. We can draw percentile lines on the Scatterplot which can tell us how long it takes for items to get done. For example, in the graph above, looking at the entire data set - 70% of the work items were done in 15 days or less. How these percentile lines change as we redraw them over time, can tell us if the process itself is changing. Minor shifting of the percentile lines by a day or two might not be a big deal. On the other hand, if the lines shift in a significant manner, the stability of the process might be in question.

A stable process is essentially a predictable process. It is one where the data generated by the process can be used to make reliable forecasts about the process. Unstable processes have unstable forecasts. Our first step towards predictability is to understand how to create a stable process. This is where we turn to the work of Dr. Little.

Little's Law

Little's Law 4 has been the underpinning of queuing theory and flow management since Dr Little proved it in the 1960s. Little's Law is stated as follows -

[image: Predictability Figure 2]

Little's Law

The very, very simplified summary of Little's Law is - the more items we work on at any given time, the longer it takes us to get them done. We will only touch the surface of Little's Law here, but it is highly recommended that anyone trying to get work done effectively, efficiently, and predictably gain a deeper understanding of Little's Law. Daniel Vacanti's book 'Actionable Agile Metrics for Predictability' covers Little's Law in much greater detail.

If Shewhart helps us understand what a stable process is, Dr. Little gives us the keys to running a stable process. If we do not want Cycle Times to wildly fluctuate in our system, Little's Law tells us to keep WIP as consistent as possible. This is the main reason Limiting WIP, which we have addressed in earlier chapters, is so important. Without having control over WIP in the system, we have very little chance of actually running a stable system. Without running a stable system there is no chance of running a predictable system. Hence, in order to achieve predictability, we have to control WIP.

Right-Sizing

Turns out, having an explicit number controlling WIP on our Kanban board is not enough. WIP hides from us. Let us say we set up our board with a WIP constraint that says we currently have 10 initiatives on our scaled Kanban board. We realize that this is too much and want to lower this to 3. We could do something similar to what is shown below -

[image: Predictability Figure 3]

Limiting Wip by Hiding WIP

The figure above shows the 10 separate items being absorbed into 3 larger items. We have created a new large item by combining the five yellow items. Another large item has been created from the three blue ones and another from the remaining two orange ones. In the process of doing this we have explicitly stated that we have reduced our WIP from 10 to 3. In this case, we have limited WIP, but we should not expect drastic changes in Cycle Times. We have just hidden our WIP, not actually controlled it. While the WIP on the board shows 3 and technically, it is 3, in reality, we are still dealing with 10 items. The system really has not changed that much. We should not expect any major improvements from this change. We think we are taking advantage of Little's Law, but in reality, things are still the same as they were before.

The problem is even more severe than the one illustrated in the figure above. It is not that Kanban System Members usually look to combine items to create large items. The problem usually is that the existing items in the system are large items and we do not realize this. This is a common problem for most processes. The higher-level items are not well defined and too large to flow through the system in an efficient or predictable manner. These items should have been broken up a long time ago but were not. We think we are carrying a WIP of just 3, but we are actually carrying a WIP of 10. Limiting WIP, by itself is not enough, we also need to reveal our true WIP. The way we reveal our true WIP is through the process of right-sizing.

There is a prevalent myth about Kanban that 'all items need to be the same size'. If you have made it so far into this book, you must be very aware that this truly is a myth. What most proponents of flow would have you do is try to right-size your work items, instead of same-sizing them. The Service Level Expectation that is set for our Kanban board is a great tool to help do this. Let us say our SLE states that 80% of our items should be done in 60 days or less. The first question we should ask when we start any new work item is - Do we believe we can get this done in 60 days or less? If the answer is yes, we start the work. If it is no, we break this item up into smaller items - we right-size it. In fact, we should ask this same question repeatedly as the item ages within our system. As we discover that the item is much larger than we initially thought - let us figure out a way to break the item up.

There are two issues we run into when talking about right-sizing higher-level work items.

	It is very hard to judge size due to longer SLEs. For example: Everything seems achievable in 60 days or less.

	We do not know how to break these items up. This has often not even been attempted before at this level.

The first concern is very valid. In the context of software development: ask a developer if something can be done in 60 days or less (as an example). The answer will almost always be 'Yes'. Most folks doing the work are often very optimistic about the flow of the work. The longer timespans at this level encourage this optimism to a great degree. An antidote to this is to consider the size of higher-level items based on the number of lower-level items that are a part of them. Below is a scatter plot of feature size in number of stories vs feature end date -

[image: Predictability Figure 4]

Feature Size by Story Count Scatterplot

This scatterplot is for a system where Features break down into stories. Here, each dot is a feature that has been completed in this system. The height of the dot is the number of stories that were a part of that feature when it was completed. The horizontal positioning indicates the date that feature was completed. Based on this plot, we can say that 85% of our features in the past had 17 stories or less. We can use this as a yardstick for upcoming features. When we are about to start a feature, we can ask the question - Can we accomplish this work in 15-17 stories or less? If the answer is yes, great, this is one feature, let us get it started. If the answer is no, this is probably multiple features, let us break this thing up. Similar to our approach with Work Item Age, as the number of stories in the feature grows over time, we can ask the question repeatedly - Can we accomplish this work in 15-17 stories or less? If at any point the answer is no, we attempt to break the item up. Of course, the sizing discussions should not be triggered just by the SLE. We want to make these items as small as possible. Remember that the SLE shows a range. We are not trying to make every item hit the SLE. We are trying to make them as small as possible so that our system can maintain an SLE. The sizes of 85% of the features in the scatterplot above ranged between 1 and 17 stories.

The second point of contention is about figuring out how to break up these large items. The Kanban Pocket Guide, in its chapter on 'Actively Managing Items in a Workflow', gives a rundown of multiple sizing techniques and how to apply them. The summary sheet for these techniques, created by Becky McNeeley is below.

[image: Predictability Figure 5]

Right-Sizing Cheat Sheet

"Doing" Predictability

The strategies for predictability that we have outlined in this chapter are all 'active'. We have to actively manage our WIP on a daily basis. We have to repeatedly examine our items and right-size them. These are not one and done. Just because our WIP was set and everything looked good initially, does not mean that it will stay consistent. Just because we right-sized an item up front, does not mean it will not age or grow larger. A lot of folks believe that you can achieve predictability by spending hours mapping out work and getting estimates and sizes of all work up front. Those activities, while well intentioned, only give the illusion of predictability. Predictability comes from actively working every day to create and operate a stable system. Establishing a stable system and maintaining a stable system are both a matter of actively managing the system and the items within it. Without "Doing" predictability by controlling WIP and right-sizing our items, we have no shot at having a predictable system.

Chapter 14 - Effectiveness

Is our process effective in delivering value to our customers? Another way to ask that question is - Are we delivering what our customers want, when they want it? When we were first discussing the step of 'Identifying Value', we very specifically called out the fact that the work items flowing through our systems have 'Potential Value'. We cannot assume that these are the items that our customers will consider valuable. We cannot know that till the items are in the hands of the customer. An even better way of thinking of this would be to think of every item not as "Potential Value" but as "Potential Waste". The customer is the only one who can tell us whether we have delivered value or wasted our efforts. We want to find out as quickly as possible how wrong we are. The reason we have been talking about metrics like Cycle Time and Work Item Age is so that we can enable faster customer feedback. Our aim is not to get things delivered, but to get feedback from things that have been delivered.

Everybody Lies

It might be a mistake to ask the customer if they believe what we have delivered is valuable. Human biases lead people to answer survey or interview questions in ways that are not consistent with how they actually act. Seth Stephen-Davidowitz explores this phenomenon in detail in his book 'Everybody Lies' 1. He presents multiple examples where folks respond to survey questions one way, but then act in the exact opposite manner. The most well-known example of this is Coca Cola's roll out of New Coke. Malcolm Gladwell covers this in his book 'Blink' 2. In the early 1980s Pepsi was gaining market share. Coca Cola had been the dominant force in the soft drinks market and did not want to lose their position. They built a new product - 'New Coke' and as any responsible organization would, they had customers try it out before releasing it. The 'sip tests' were blind studies where a consumer would try a sip of New Coke and Pepsi, not necessarily in that order. They would then be asked to state which one they liked better. The folks at Coca Cola saw that people consistently preferred the taste of New Coke to Pepsi. This was a clear indication that needed to move forward with a huge roll-out of New Coke. The results of the roll-out though, were disastrous for Coca Cola. The company has never disclosed (at least till 2023), the total losses from New Coke, but estimates run into multiple millions of dollars.

Coca Cola's product failed because of one single reason - Everybody lies. It is not that our customers are looking to lie to us. They, most of the time, truly believe in what they are saying. When they are in the middle of actually using the product, in the environment in which they need to use it, their behaviour changes. The bias of 'What I ideally want' drops off and is replaced by 'What I actually do'. Asking customers what they want is not enough, we need to go further.

Monitoring

The way to truly learn if our process is being effective is monitoring. We need to monitor the interactions of the recipient with the units of value we produce. This recipient could be the following step in the process that is just beyond our Finish Point or could be the end user. The closer this monitoring is to the interaction of the customer with the product being produced, the better. Monitoring here refers to observing customer behaviour. Instrumenting our products so they can record actual usage information. We can analyze this information to find out answers to questions like -

	How often is the feature used?

	Does the product reduce the time customer spends on a task?
	Are we delivering the right information to our users?
	What is the failure rate of our feature?
	How long does the product take to produce an output?
	How long is the user actively engaged with the product?
	What is the demand for the various modules of the product?

A great example of this is a pub in the heart of Berlin - The Berliner Republik. I visited this bar in the summer of 2023 and saw one of the most fascinating uses of product monitoring. The Berliner Republik carries a large assortment of beer. Of course, this comes with inventory and maintenance costs. They do not want to carry too much of a beer that no one wants. They want to sell it off as quickly as possible. Also on the other hand, if people really like a particular beer, they know they can potentially charge more for that beer. They do not want to miss out on the profits from a possibly higher sale price. They could ask the patrons to rate every beer that is purchased. They could then use those ratings to decide which beer to reduce price on, so they can get rid of it, or which beer to raise prices on, so they can make more profit. They do not have customers fill surveys. Instead of surveying the patrons, they observe customer behaviour. Shown below are two photos of the 'Beer Board' that you would find on multiple TV screens at The Berliner Republik.

[image: Effectiveness Figure 1] [image: Effectiveness Figure 2]

Beer Board at The Berliner Republik

These photos were taken about 10 minutes apart. The second photograph was taken later. What do you notice here? The prices of the beers have changed. You can see the new price, the delta between the previous and current price as well as the percentage change. The Berliner Republik bases the prices on the consumption during the previous period. Based on actual customer behaviour, which is how many of a particular type of beer has been ordered of late, the prices are changed. This leads to the desired results. The more popular beers are priced higher and the less popular beers keep dropping in prices, till customers start buying them. There is an interesting side-effect of this in the first image. The 0.3-liter Koenig Pilsner is the same price as the 0.5-liter version. This obviously led to more people ordering the 0.5-liter version, since you get more for the same price. Consequently, along with the demand, the price of the 0.5-liter version went up. The updated price can be seen in the second photograph. Whether knowingly or unknowingly, the folks at Berliner Republik have avoided the 'Everybody Lies' trap. They are not relying on ratings, they are relying on actual consumption. They are not trying to figure out the Net Promoter Score (NPS) of each beer. They are instead monitoring the metrics and adjusting their prices accordingly.

Success Metrics

As we monitor usage, how do we know a work item has made the difference it was supposed to make? How do we even know the right metrics to monitor for a work item. Especially at scale, when we are putting a decent amount of time into doing the work, we need to know the right metrics to follow up on. At scale, when starting a higher-level work item, we should define the success metrics that this item is expected to achieve. It might even be beneficial to state the work item in terms of the success metric - 'Update the look of the menu to improve click through rate by 20%'. Now as we deliver functionality related to this item, we can monitor the click through rate to see if it is moving in the right direction. It is very likely that this item will not meet its success metric target. We might decide to cut our losses and close this item. We might, on the other hand, decide that we still have more time to invest in this item in order to reach the target. We can only make an informed decision here if we are watching both the Work Item Age and monitoring the success metric. Work Item Age and the success metric are our proxies for investment and return. As we keep doing this, we might end up scaling our board further by extending it downstream to include monitoring as a stage in our process.

There are some interesting consequences of continuously monitoring success metrics. Especially if we make a monitoring stage part of our Kanban Board.

	Slow down picking up the next set of items - Since 'Monitoring' is now a part of our board, we might not be able to pick up new items till the monitoring phase is complete.

	Potentially reworking delivered items - The organization thinks that we are done with an item at delivery, but monitoring might reveal issues that require teams to come over to make changes.

	WIP limits on monitoring to optimize for feedback - As we control WIP in monitoring, we are no longer optimizing just for delivery, but also for feedback. This could be challenging for folks looking to move on to the next work item.

	Changing strategic objectives - As we get feedback on the delivered item, we might discover that our strategic objective is at best already achieved or at worst, unachievable. This might mean changing stated objectives early.

All this discussion is centered around feedback from the downstream consumer. The right kind of feedback. This feedback also helps us to start shaping our work items. They become more opportunities for feedback, rather than just items of potential value. This feedback can tell us if our strategy is paying off or not. It can tell us that we need to pursue one strategic element more than another. It could also tell us that what we presumed to be valuable was actually wasted effort. In order to be effective, we need to understand that feedback trumps presumed value. We need to optimize our system to receive feedback and to respond to feedback. An effective system monitors usage to get feedback. As we have mentioned in some of the past chapters, an effective system also does not plan too far ahead so it can react to feedback. A system is only effective if it can respond to the customer in such a way that it delivers to the market what it needs when it needs it. Planning too far ahead can never be effective, as it gets in the way of responding to customer feedback. We do not become effective via simply creating success metrics and planning. Similar to predictability, we "do" effectiveness by continuously monitoring for feedback and adjusting our direction accordingly.

Chapter 15 - Efficiency

The Kanban Guide 1 defines an efficient workflow as one that 'allocates available economic resources as optimally as possible to deliver value'. In the first section of this book, we worked through setting up a Kanban Board at scale. This board is a representation of the process through which items of potential value flow. We added multiple policies like Exit Criteria, Service Level Expectation, and WIP Limits to these in order to ensure that this system was an efficient one. It is almost impossible to get all these right during the first attempt. Even if we do get them right, the conditions around us change all the time. We need to observe the flow of value across this system and make adjustments repeatedly in order to ensure that the system works as efficiently as possible. There are at least three ways of doing this - Continuously managing flow, refining the workflow, and removing sources of inefficiency in the process.

Continuously Managing Flow

The easiest way to both create and maintain efficiency is to actively manage the items on the board. The items that have crossed our start point and not yet crossed the finish point should be treated as our main priority. Ensuring that we are making progress on these on a daily basis is that same as ensuring that our economic resources are optimally allocated. Only in very rare cases should we allow items outside of the workflow to be treated as a priority. The two metrics that can help us with actively managing these items are - Work Item Age and Work In Progress.

High Work Item Age is an early indication that an item is not flowing as efficiently as we would expect it to. Since Work Item Age is a precursor to Cycle Time, this means an item that has aged more than expected will eventually result in a higher than expected Cycle Time. If we notice this happening for a good number of our work items, we need to intervene to find out what is causing this inappropriate aging. This is a direct indication of inefficiency. What are some actions we can take here? Do we need to stop picking up new work for a bit? Do we split these items to right-size them? Do we swarm on some of these items? Are some of these obsolete and just need to be canceled? Watching Work Item Age on a regular basis can make us ask these questions much earlier and as a result run an efficient system.

A direct consequence of watching age is also a change in our understanding of the optimal operating capacity of the system. We might realize that the WIP we are operating at is not the ideal for the system. If there are items sitting in queuing states on the board or are not making progress at the expected rate, it is likely that the system has taken on too much work. This would be an indication that the WIP needs to be lowered. If on the other hand, items are flowing just as expected, but there are folks or teams sitting idle, it is likely that the system does not have enough work to be efficient. This would be an indication that WIP needs to be increased. Actively managing WIP as a consequence of Age is a great way to ensure the efficiency of the system.

As we discussed in the chapter on blockers and dependencies, those two are common root causes of work items aging. An item that is blocked is by definition not flowing. This means we are not as efficient as we can be with the flow of this item. We need to attack these blockers as they show up in order to regain efficiency. We need to continuously be on the lookout for blockers and dependencies that show up and focus our efforts on eliminating them. We might not be successful at this immediately, but as we keep managing these work items, we will make progress towards a system that does not have these unnecessary sources of delay.

Some readers might have expected to read things about Flow Efficiency and Blocker Clustering. A quick review of these:

	Flow Efficiency 2: Ratio of total elapsed time that an item was actively worked on to the total elapsed time that it took for an item to complete.

	Blocker Clustering 3: Tallying the total days blocked for each cluster of blockers grouped by some commonality.

Sure, these are techniques you can try, but beware of the one major flaw (amongst others) in these - You can only calculate flow efficiency or do blocker clustering after the events are in the past and you have collected the data. The things that we are trying to influence are already done by this time. It is too late, we have already disappointed the stakeholders. Every technique we have discussed so far in this chapter is about the items that are active right now. If we get the flow for these items right, things like Flow Efficiency will take care of themselves. We would not even need to do Blocker Clustering, because we have already resolved the blockers and come up with strategies to avoid them just in time. The other major flaw with Flow Efficiency is 'The Flaw of Averages' 4. Because we are creating an average from a set of finished work items, it can drown out a lot of individual items that need our attention. Averages are very often a terrible way to do any analysis. Flow Efficiency, as an average, is highly susceptible to outliers and errant data collection.

Refining The Workflow

If our workflow looks the same after operating the system for a few weeks, something has gone wrong. In fact, for a newly created definition of workflow, we should start seeing changes being made to it within days. As soon as we start operating the board, we will start seeing policies that need to change. We do not need to wait for a scheduled event to make these changes. Every portfolio standup is supposed to be a place where we discuss the problems with flow. This means that every time we are meeting around the board, we are potentially uncovering things that need to change. Let us change them as soon as we, as Kanban System Members, agree that the change is a worthwhile experiment. This change could mean any of the following:

	Changing the policies of the workflow, including adding/removing/moving Exit Criteria and Blocker Policies.
	Adjusting the stated WIP numbers for the system.
	Changing the manner in which we control WIP in the system.
	Using the latest data to make changes to the Service Level Expectation.

Or any other change that is likely to improve the flow of potential value through the system.

Some groups find it easier to discuss these improvements at a scheduled retrospective. There is no direct harm in this. We should probably have a few retrospectives scheduled at a cadence that makes sense in our context. It is recommended to start the retrospective by reviewing the Flow Metrics for the scaled Kanban board. These would hopefully lead to multiple conversations about whether the system is working as efficiently as possible. We should ensure that in such a retrospective, there is representation from all stages of the workflow. A potential drawback of scheduled retrospectives could be delayed improvements. We should not wait for the retrospective, even if one is scheduled, to make the improvements. The retrospectives can then be used to collectively evaluate how these continuous improvement experiments have been working. Another option is the just in time retrospective. This is where the Kanban System Members come together as soon as a problem arises that requires some inspection and adaptation. We discuss the issue at hand, come up with a policy change or a resolution and apply it immediately, just-in-time. We should try out all of these methods - Scheduled, continuous during standups, or just in time. Whatever method of discovering refinements for our workflow is suitable in our context. The important part is to make sure that we keep evolving our workflow as we learn new information.

Removing Sources of Inefficiency

There are a few common sources of inefficiency. The list is much longer, but some of them are listed below:

	Blockers.
	Dependencies.
	Knowledge silos.
	Work accumulating in queuing columns.
	Lack of backups for crucial roles.

In general, anything that can contribute to unnecessary aging of work items is a source of inefficiency.

It might sound obvious, but the way to become more efficient is to remove the sources of inefficiency. That tautological statement is a lot more interesting when looked at through the lens of most common scaling frameworks. They will advise us to manage these sources. The common advice is to discover, understand, and come up with a plan to manage these even before they have happened. Unfortunately, that advice is misguided. We can try to manage, hope to avoid, or coordinate across to minimize the inefficiency caused by these sources. Most of the time, those attempts will not bear the results we expect. We are going to take a much more aggressive stance here. We are going to look to remove these sources of inefficiencies. This could mean a lot of things. Changing the organization structure or size of teams to remove dependencies. Changing vendors in order to remove blockers. Having people or teams that are knowledge silos pair with others to remove these silos. Putting tight WIP limits on queuing columns to reduce work piling up there. We want to attack these sources, not just plan around them. There is too much variability in our system to coordinate ahead of time. There are too many new problems that show up to anticipate all of them in planning.

Just as we pointed out with predictability and effectiveness - We do not become efficient, we "do" efficiency.

Section III - Getting Started and Assorted Essays

Chapter 16 - The Sheep of North Ronaldsay

History of North Ronaldsay

Just north of Great Britain, lie the Orkney Islands. These islands, a part of Scotland, have a human population of about 20,000 according to the 2011 census 1. Our interest is not so much in the humans residing here. We are interested in a particular breed of sheep that is found on one of the islands in this archipelago. The northernmost island in the archipelago of the Orkney Islands is North Ronaldsay. On the map, it is a tiny speck of an island, easily written off as ordinary. Over the years though, a very extraordinary consequence of natural evolution has played out on North Ronaldsay.

In the mid-19th century, North Ronaldsay was home to about 500 humans 2. Today, that population is down to about 50. These humans were living under the effects of an economic shift. For a while, the main business on the island, which was exporting kelp, had been in decline. The kelp (or seaweed) was a source of iodine and had consequently found multiple uses. With easier ways of producing iodine becoming available, kelp farming and shipping was no longer profitable. The population on the island had to switch to farming. They started raising cows. The fertile soil provided grass for grazing. Being a small island though, there wasn’t a lot of grass available for consumption. Not enough to sustain both the cattle that were being raised and the particular breed of sheep that were native to North Ronaldsay. In order to keep the sheep away from the farmlands, in 1832, the residents decided to build a dyke around the island 2. This dyke was intended to keep the sheep off toward the coast. While this ensured that the cattle’s grazing supply was secure, it led to some interesting consequences for the sheep.

[image: Sheep of North Ronaldsay Figure 1]

The Sheep Dyke
Image Credit: Anne Burgess

The Sheep That Eat Kelp

The sheep were now constrained to the outskirts of the island. This was an entirely new environment for them. They were away from their regular food source - grass and needed something to replace it in their diet. Among the rocks and sand of the Island coast, there was one food source that was abundant - kelp. The sheep turned to eating the same seaweed that had been at the center of the island's economy in the past. There was one problem with this change of diet. One of the nutrients that sheep need from their food is copper. Seaweed only has trace amounts of the mineral. Much less than the sheep's more natural food source, grass. As a consequence of this, over the years, the sheep of North Ronaldsay have adapted their digestive systems to extract as much copper as possible from their food source. They are able to extract the trace amounts of the nutrient from the seaweed very efficiently. This evolutionary change though has come with a rather surprising consequence.

The small population of the island is not able to keep up with wear and tear of the dyke. The wear and tear is a result of a rough climate and the age of the dyke itself. This has caused portions of it to occasionally break down. As a result, every so often, the sheep are able to get through the almost two-hundred-year-old dyke. Upon reaching the greener inland pastures, the sheep start grazing on the grass they now have access to. As we discussed earlier, grass has quite a bit more copper than seaweed. The highly efficient digestive system of the sheep extracts as much copper as possible from the grass that they now have access to. In fact, they extract so much copper that they end up with an excess, causing them to get poisoned. In other words, these sheep get poisoned by grass. The same grass that should be a natural part of their diet, gives them copper poisoning. Having lived in their new environment for a long time they have developed a completely different system of diet and digestion. They have become so used to this unnatural manner of existence, that the most natural food source for sheep around the world, is poisonous to them.

[image: Sheep of North Ronaldsay Figure 2]

The Sheep That Eat Kelp
Image Credit: Lis Burke

The Decision Makers

The decision to scale Agile across the organization is often made by executives or senior managers. There are certain things usually true about these decision makers:

	They have seen Agile succeed on teams and want to take advantage of the same benefits across the organization.
	These are also folks who have either never worked on agile teams or worked on them a long time ago.

	They have been involved in attempts at scaling agile in other organizations.
	They have a history of success in the industry that has allowed them to get higher in organizational hierarchies.

Not all of the points mentioned above are true for every leader at this level, but the last one is almost always true. These experienced leaders have been successful at producing good results for organizations, resulting in successful careers. They have developed patterns of thinking that have worked in the past. When it comes to deciding how to scale Agile, they should be able to simply rely on these same patterns. Unfortunately, it is the second point on the list above that makes the situation a bit more complicated. Having little or outdated experience in an ever-evolving discipline will make decision-making about that discipline hard. When most of your success has come in traditional organizations, your natural inclination is to apply the same mindset when evolving organizations toward agility. But applying traditional mental models to Agile ways of working can often result in sub-optimal outcomes. This is not to say that executives are always going to make the wrong call. The point here is that when we are talking about a modern way of working, we need to make decisions using modern parameters. Traditional mindsets need to be discarded. Leaders, who continue to be successful, will often discard these in order to seek the best way forward for their organization.

Anyone who has had success with Agile will recognize that a great part of this success is the mindset. There are many outcomes of an Agile mindset that run counter to what got folks promoted in traditional environments. There also are many traditional management methods that Agile actively discourages:

	People often get rewarded and/or promoted because they are the ones who put in heroic efforts to get projects done. Agile actively discourages heroic efforts.
	Traditional methods promote well-defined roles and responsibilities. Agile promotes blurring these lines.
	Organizations often rely on top-down decision making. Agile moves the decision-making closer to the people doing the work.
	Deepening the level of skill in one's specialization is key to moving forward in traditional setups. Agile setups require learning new skills to help the team move forward.
	Managers often look to protect their teams by limiting outside contact. Agile asks teams to constantly get external feedback.
	Dependencies are traditionally things to be managed. In Agile environments, they are things to be eliminated.
	Planning is upfront and detailed in traditional organizations. Plans are emergent and flexible in Agile organizations.
	Delivering large batches of work is often lauded in traditional setups. Agile setups discourage the delivery of large projects and encourage smaller batches.

If we are to succeed in scaling agility and flow across the organization, we need to adopt an agile mindset. This means explicitly discarding the traditional mindset. Discarding the mindset that has made someone successful in their career is not easy. We are all a product of our environment. Just like the sheep of North Ronaldsay. If the decision makers have for years, been on a diet of kelp, switching to grass can be a very tough proposition. Even if the Agile mindset is the more natural way to solve the problem, it may be rejected in favour of a scaling "recipe". This is not the fault of the sheep. It is multiple years of living, adapting, and thriving in an environment that promotes an outdated manner of thinking. Those leaders that can overcome the effects of the environment will thrive and continue to make the right decisions in the new environment.

There are Agile scaling frameworks out there that will allow for the traditional mindset to persist. These prescriptive frameworks (eg. SAFe or Scaled Agile Framework) supports large scale up-front planning, top-down decision making, big batch delivery, setting up elaborate structures to support existing hierarchies, and a heavy investment in dependency management 3. These might be easier for the traditionalist to adopt, but harder to see true agility with, despite a large investment. One major reason is that these heavy, prescriptive frameworks are popular is that they are a recipe. Importing and implementing recipes might feel easier, especially at scale. There are though, multiple pitfalls when taking that route as evidenced in the story of Fordlandia in Chapter 1.

Chapter 17 - Getting Started

Scaling using Kanban is a simple but not an easy process. The hardest part might just be getting the efforts off the ground. This is where we would refer you all the way back to the first section of the book. We need to take the simple steps that we had outlined in Section I to understand how potential value flows through our system. We do not need to get this perfect, but we do need to get to a starting point that has general agreement amongst the Kanban System Members. We have some questions to ask as we start this process. Below are not the only questions to ask, but these are a great place to get started:

	Which level of flow are we interested in starting with?

	How are we going to limit WIP at this level?

	What are the start and end points of this board?

	Is the designed board a good enough starting point?

It is very hard to get consensus on the answers to these questions. The primary reason is that everyone involved sees a different part of the puzzle. Everyone has a different perspective, probably because we have never looked at flow at a higher level like this before. As we operate our board, we will all collectively make progress in understanding the entire puzzle. Currently, we are just looking for a good enough start point. We are not looking for perfection. We are looking for our minimal viable process. In fact, what might seem perfect right now, could no longer be perfect as conditions change. We just need a starting point for our system. We will continuously improve the system as we move forward. For right now, good enough is good enough. Let us get some general consensus and start moving. Often, one person coming up with an initial design and others jumping in to edit it works well too. It both breaks the inertia of things staying still and instead, creates one of people moving forward. As Sir Isaac Newton's first law states - "An object at rest remains at rest, and an object in motion remains in motion". Newton was talking about inanimate objects. We are talking about humans and Kanban boards. Same concept applies. Humans seem to be more inclined to edit than create.

Patterns to Watch Out For

The universe will conspire to regress you towards old ways of working. Change is hard and even if it is the right kind of change. We, like the sheep of North Ronaldsay, might have evolved to the point that we are allergic to grass. There are multiple anti-patterns that are likely to set in. Below is a set of anti-patterns to watch out for as you look to scale using Kanban.

Stagnation

Processes that have influence across organizations are usually harder to change. These processes have been created and existed over long periods of time. You will often hear the common refrain - “This is the way we have always done it”. When these require a coordinated effort from departments who have not worked together in the past, things get tricky. The repeating theme in this book has been to 'actively manage' things. That is what we need to focus on here. Let us make progress in getting folks to collaborate using the process we have set up. As a consequence, coordination will become easier as people learn to work together.

What makes these old processes even harder to break, is that the people who created these processes have a lot of pride in these. Often these same folks have moved up through the ranks and have great influence in the organization. We need to make sure the motivations behind the old processes are understood. This will allow us to model those motivations, if they are still relevant, into the new process. Modeling these into our process can show that we are trying to improve upon the great work we did in the past, not simply replace it.

Executive Privilege

Executives and leaders carry a lot of both implicit and explicit power in their words. These words can often unintentionally throw the entire process off. It is going to be hard to tell the CEO that we are not picking up the item she just promised to a customer. What might be easier is to show the leader, the consequences of doing so. If we have a system in place that is running in a stable manner, we can express the cost of introducing instability a lot better. We can show how our forecasts will shift if we start a new work item. We can show the risk to all the other items in progress. It will help our leaders make a much more informed decision. They might still want to go forward with the new item, but they will know all the risks associated with doing so. One of the major advantages of using Kanban to scale is the transparency of risks that it brings forward.

The other advantage we have, if we are running an efficient system, is that we will tend to progress towards lower Cycle Times. As efficiency increases, Cycle Times will come down and Throughput will increase. This means there will be people freeing up a lot more often to pick up new work. Which again means, if there is a new work item that a leader wants to have picked up soon, they do not have to wait too long. Usually, the desire to subvert the system comes from the knowledge that without applying extra pressure, things will take too long to get done. Running an efficient system helps make this no longer be true. It makes sure every item that we pick up is treated with the same level of focus and urgency that a high-level item would be. It ensures that things get done with lower Cycle Times and people free up frequently. If we have a set of folks freeing up every two to three days, new, high priority items will not have to wait to be picked up any longer than that.

Executive privilege can create other issues as well. There might be a desire to hold on to old structures and fiefdoms because breaking those makes people in positions of power uncomfortable. There might be requests for particular people to work on particular items. All these need to be looked at through the lens of flow and risk. What do these decisions mean in terms of flow of value to customers? What do they mean in terms of the risk that exists in the system? We need to make sure the process we have designed makes the answers to these questions obvious. This will help keep our leaders informed and enable them to make the appropriate decisions.

Prioritization Horse Trading

Limiting WIP and sizing items means lower cycle times, which in turn means more frequent prioritization. Every time we get something done, the pull system activates, and we have the ability to pull something new in. This means there are more opportunities for us to figure out what is the next highest priority. This could become increasingly contentious if folks work against, rather than with each other. Sales, Customer Support, Engineering, all have their own problems they want solved. The closer you are to a problem the more important it seems. This can lead to some contentious prioritization discussions. In order to avoid these need to have our prioritization scheme clear to everyone. Both in the sense of how it operates and how it will evolve if it does not work. We need to minimize the horse trading and discussions during each pull transaction by being clear about how we decide what gets worked on next. We also need to get feedback from the system and evolve this if our prioritization scheme does not seem to be working as expected.

Hidden Work

Folks are likely to try to get “off the board” work done to avoid prioritization conversations if they repeatedly are not able to get their items into the queue. This can come in many forms:

	Simply not putting the work on the board because it will not pass our prioritization filter.

	The formation of 'tiger teams' whose work will not be on the board so that a pet project can be done.

	Using 'reserved' capacity for special projects.

All of these are ways to introduce instability in the system. When folks get involved in work that is off the Kanban board, they are either no longer contributing to the work on the board or are dividing their attention. In either case, we have increased our WIP without showing that we increased our WIP on the board. If these items really are that important, let us put them on the board and make the hard decisions on where to focus our efforts. If we believe certain things are more important than others, let us make sure they get all the support and focus that the organization can provide, explicitly.

Lack of Education

Not everyone is going to immediately understand the implications of Limiting WIP. Working on fewer things to get more done is counter-intuitive to most people. Ideas like cross department collaboration, changing organization structure to improve flow, large teams, and probabilistic forecasting are very hard to grasp without spending some time learning about them. Whether it is classroom training, learning by doing, or books like this, people are going to need some help in order to see why we are taking this approach. Just because the approach is simple, does not mean its elements are simply understood. There is often a lot of unlearning that needs to happen.

The Kanban approach at scale is straightforward, to the point of seeming too simple. It asks people to observe the system and think for themselves to determine the best way forward. We are predisposed to thinking that large problems like scaling need to have large and complex solutions. Not only is this untrue, but often the large, complex solutions do more harm than good. Their restricted flexibility does not lend itself to adapting to the complex realities every organization faces. A flexible strategy like Kanban, if not well understood, can easily be taken as inadequate since it lacks the rigid structures people expect when scaling.

Churn and Baggage

When new folks join the organization, especially in senior leadership roles, they bring with them their prior experience. If you are one of the organizations that is evolving its own scaling approach using Kanban, that might be a surprise to them. They might have been trained in and might have lived in systems like SAFe. Those systems come with numerous rules and requirements. For a new senior leader, walking into a scaled Kanban system is akin to one of the sheep of North Ronaldsay crossing the dyke inwards to the farmlands. The reaction could very well be - 'This does not make sense, when do we do PI Planning?'.

The scaled Kanban system is usually answering all the questions that a senior leader is looking to ask - How efficient are we in getting work done? Are we working on the right things? Do we know when things will be done? Efficiency, effectiveness, predictability. It answers these questions by making the current state evident and asking you to take action on it. What it does not do is give you feel-good answers that you get from up front planning, strategy mission statements, resource utilization, and say-do ratio type fake predictability metrics. Scaled Kanban is going to make the problems with the process very evident and ask you to do something about it. It will not pretend to give you a crystal ball to see the future but will give you one to see the present more clearly.

(R)Evolution

Kanban is often touted as an evolutionary approach. This is true to some extent. As we discussed throughout this book though, a lot of these simple concepts are revolutionary. Having explicit policies for each stage, probabilistic forecasting, reorganizing around flow, and WIP limits in themselves are revolutionary concepts. We might even do things like get rid of planning and move to a continuous forecasting and risk management approach. For a vast majority of organizations, eliminating up-front planning is absolutely revolutionary. There will be a lot of decisions we will make that will help evolve the process. Some of these are going to be revolutionary as well. We are going to lean on the flow metrics for our boards to help make decisions. Observe flow and decide the direction to go.

Some evolutionary decisions based on flow metrics are:

	Changing WIP Limits

	Adjusting SLEs

	Adjusting other board policies

Some revolutionary changes, that might need to be de-risked by running small experiments, are:

	Scaling the board upstream or downstream

	Changing the organizational structure and team sizes

	Removing co-ordination focused roles

The most important thing to note once you have gotten started is that we need to expect changes. We cannot be satisfied with having set up a system, we need to operate and improve it. If our workflow looks that same after a couple of months, we are most likely not improving. We have described very few "rules" in this book. If in the path of your evolution, you find that certain rules in this book hinder the optimal flow of value to customers - break them!

Chapter 18 - Conway is Killing You and Little is Helping

This is definitely not the first or the last book about setting up organizations to enable success. Dr. Melvin Conway wrote about this in the 1960s. Just a few years before Conway's work. Dr. Little had published his paper 1 proving Little's Law. These two interplay really well to explain a lot of dysfunction that exists in organizations that are not adequately designed to enable flow.

Conway’s Law

In 1968, Dr. Melvin Conway wrote the paper “How Do Committees Invent” 2. One of his observations in that paper (among numerous interesting ones) was declared Conway’s Law. Conway’s Law states — "Any organization that designs a system (defined more broadly here than just information systems) will inevitably produce a design whose structure is a copy of the organization’s communication structure" 2.

Dr. Conway talks as much about the software that is produced as he does about the organizational structure producing it. Much has been written in support of micro-services architectures, using Conway’s Law as a base premise and justification. These articles focus on Organizational design at the team level. They propose small teams that work on independent small services. I do not have any qualms about these recommendations. They do, often, ignore the impact the larger org structure can have on the software being produced. If team structure determines the design of the software and interfaces, the broader org structure determines the quality of customer outcomes achieved.

Conway’s Effect on Products

Consider the structure of an organization as shown below.

[image: Conway is Killing you and Little is Helping Figure 1]

Traditional Organization Structure

The first thing to notice is that the customer (on the left-hand side of the figure) has no direct line to the development team. The vice versa is true as well. Customer must go through Product or Support to get to development. Development teams themselves have to go through either Product, Project Management (PMO), Operations or Support to get feedback from customers. Conway’s Law, when applied to this setup would mean that since developers are one or two layers removed from the customers, the features and products they produced are likely to be one or two steps removed from the real needs of the user.

Each group has multiple masters. Product is directly responsible for satisfying feature and enhancement requests from Customers, Sales, and Support. Product is also responsible for providing structured requirements and priority updates to the Development teams as well as PMO. This forces the Product department to create a mixed set of priorities which most likely is not directly representative of the priorities of the customers. Development teams, already one step removed, receive this mixed list of priorities. For the development teams though, this is just one “customer”. They also have to satisfy directly received tickets from Support, provide timelines to PMO, deployment requirements to Operations all while satisfying the overriding directives from Architecture.

Each group also has its own objectives and incentives. Sales wants flashy items to sell, Customer Support wants low time to resolution on calls, Product wants maximum number of complete features, Development wants new technology and maintainable code, and Operations wants easily deployable, portable, and stable products. Everyone is pulling in slightly different directions, with customer satisfaction, delivery of customer value and fulfillment of customer outcomes lost somewhere in the middle of the tug-of-war. All this is happening, while each member of each department is doing their best and working hard to achieve the department’s objectives.

The lack of alignment sets Conway’s Law into motion. The result of this is usually a confused (or an increasingly confusing) product. The separate departments push their separate agendas onto the end product. The product, as a consequence, has lots of features, but most of them are incongruent and rarely used. With the teams developing the product being a couple of layers removed from the customers, this feedback rarely makes it back to them. Even if it does, they are already on to the next thing on some other department’s priority list. The competing and misaligned priorities for each department lead to the actual customer priority being lost in the shuffle. Each department firmly believes they are doing the best thing for the customer and the misaligned priorities result in the customer’s best interests being only half-fulfilled at best.

Conway’s Effect on Process

It is not just the priorities that are mismatched, the departments have different capacities and speed of production as well. This would mean finished work sitting between departments in queues waiting to be picked up. It could also mean departments being starved for work as they are waiting for deliverables from other parts of the system. Instead of the process enabling a lean flow of value to the customer, the value generated sits in queues despite everyone doing their best to achieve their department’s goals. The structure and mismatched capabilities make flow very hard to attain. If we restate Conway’s Law in terms of process, it will fit perfectly — Any organization that follows a process will inevitably produce a process whose structure is a copy of the organization’s communication structure.

We can try to solve this by moving folks from the product and operations teams onto the development teams. This can at times work, but as long as the individuals serve separate masters and have varied incentives, bad, inefficient processes will emerge. If BAs and PMs are made a part of the development team, but still serve a separate product department, they are receiving mixed signals. Many times, not always, they tend to act as teams within the larger team. Due to this, there is a “not my job” and “over the wall” mentality that develops on the team. High-level requirements are the PM’s job, writing stories is the BA’s job, writing and testing code is the developer’s job and deploying the code to production is the OPS person’s job. Even within what is supposed to be a cohesive team, the separation of concerns persists. This is usually because the departments themselves are not aligned on objectives, priorities, or incentives.

One quick note on DevOps. If you put a person from the operations team onto the dev team and all that person does is OPS work with no interaction with the developers, it does not mean that you are “doing” DevOps. For DevOps, developers take on operations responsibilities and operations folks help out with development.

With separate objectives and incentives, the queues will still exist. Value will still sit in these queues and becomes stale. Stories and features would be coded and tested weeks or months after they are written. The same will happen for deployment activities. Finished work will not make it to customers months after it was done. This would cause disappointment for any customers of this process as their wait times keep increasing. An increase in inter-department wait times leads to increased mistrust among already segregated departments. Departments do not believe that their partners are moving fast enough and push more and more work downstream. Sales does it to Product, Product to Development and Development to Operations. The overriding belief becomes — “in order to get more done, we need to push more work onto them”. This is where Little starts helping Conway.

Little’s Law

In 1961, John Little provided mathematical proof of the queuing formula that has come to be known as Little’s Law 1. It is commonly expressed as shown below.

[image: Predictability Figure 2]

Little's Law

Here Cycle Time is the amount of time it takes for a work item (task, story feature, initiative etc.) to get done. Work In Progress (WIP) is the total number of items in progress. Throughput is the number of items getting done per unit of time (per day, per week, per month etc.). Little’s Law is a truth of nature. It is a mathematical fact and is inescapable.

The simple conclusion from Little’s Law is that if we have a consistent speed of getting things done, the amount of time it takes to do each thing is directly proportional to the number of things we are working on. In other words, if we want to get things done faster, we need to work on fewer things. One important thing to remember is that this applies at every level of granularity. It applies at the story level, the feature level, and the initiative level.

As we have already discussed, one of the consequences of an organization splintered along specialization departments is sibling departments pushing more and more work onto each other. Unfortunately, according to Little’s Law this only makes things worse. The more things we take on, the longer each individual thing takes. As opposed to delivering individual bits of value to the customer, we work on everything and deliver nothing. Since everything takes a long time, we try to subvert the process by having “fire lanes” and high priority expedites. Unfortunately, these are not exempt from Little’s Law. They only increase the WIP. Also, because we have done nothing to increase our throughput, all this does is increase our Cycle Times for each deliverable. Increased Cycle Times fuel more frustration, greater mistrust, and increased friction between departments. Once again, the customer and consequently, the company comes out as the loser in the struggle.

Conway And Little Are Your Friends

So far, we have only explored the negative effects of Conway’s Law and Little’s Law. The fact is that these two are our friends. They can help us design our organizations for success and then execute on the design. First let us define what success means, then design the organization around that definition of success and finally establish flow to become successful. Conway will help us design the organization and Little will help us establish flow.

What if we took a very simple definition of success — Achieve positive outcomes for the customers. This would require creating alignment between all the moving parts of the organization. The figure below is how I would propose we create an organization to achieve success.

[image: Conway is Killing you and Little is Helping Figure 2]

Proposed Organization Structure

In this organization every team is actually cross-functional. Every team member can be involved in every activity. Product owners can bring developers along for customer interviews. Devs can break down stories, BAs can test, and we are doing DevOps where developers are taking care of operational needs as well. Each team has every capability needed to get requirements, create functionality, deliver code to production, receive feedback and support the product. A team is responsible for the entire life cycle of that particular piece of functionality. Everyone on the team is able to get user feedback and help in reacting to that feedback.

Each team is a fully cross-functional startup. They are able to move fast and support each other when things start to back up. There is no segregation of responsibilities. Sure, there are “roles” that signify expertise, but people are encouraged to help in every part of the process. There is a singular objective for the entire team — Help customers achieve positive outcomes. The team can be as large or as small as needed to achieve this objective. They report into the same department. They are all incentivized to do the same thing — deliver customer value. We get rid of hand-offs and work with continuous customer validation of the artifacts produced. There are no competing masters, just a team being able to take care of customer needs all by itself.

Unlike Little’s Law, which is mathematical fact, Conway’s Law can be (temporarily) escaped. You can keep the traditional structure and drive alignment across departments. Since that is the root of the problem, once cross-department alignment is achieved everyone will naturally act as a single team. The problem is the energy required to maintain the cross-department alignment. As soon as these departments start having their “all team” meetings, department objectives, execution standards and their own bonus plans, Conway will again take over. The decision to make is — Do we go through the pain of formalizing a cross functional org structure, or do we continuously spend the energy to maintain alignment across departments?

Conway just helped us set up an organization and establish a process (at a very high level). We can still run into problems if we do not pay attention to Little. In order for us to establish flow and quickly deliver value for validation, we need to go back to Little’s Law. We need to continuously observe the amount of work flowing through these teams. The teams should take on only as much work as can flow through their process. As Little’s Law tells us, with stable throughput, the more things we work on, the longer things will take to get done.

It is likely that in the organization proposed here, there would be large teams. Also, teams would not consider something done until the customer has validated it. These two things combined will create a tendency for teams to take on more work than they should. In order to achieve regular validation and delivery of functionality, Little tells us that we have to resist this urge. Work on as few things as possible, so that each individual work item gets delivered as quickly as possible. This will get the energies of the entire team focused on getting those few work items delivered. As soon as one item is delivered, the team can determine the next highest priority and start working on that one. Thus, creating a stable, predictable system that delivers functionality regularly and is not derailed easily by external pressures and changes. Little’s Law makes us focus on being productive as opposed to being busy.

When things do change in terms of priority, very few items are put at risk. In fact, if the team is delivering things regularly (hourly, daily, weekly…), nothing might be put at risk. This is because the new highest priority can be picked up for work as soon as the next (currently active) item is delivered. Thus, we can use Little’s Law to eliminate a lot of waste due to changing priorities.

When we work on very few items, they do not wait in queues between departments or individuals. As we are working on these together, these queues either do not exist or are minimal. Conway and Little have together helped us eliminate the waste that accumulates due to valuable work sitting in inter-department queues.

This Is Hard

Yes, this is hard, primarily because this type of thinking requires people to give up power. It simplifies the structure where the “product design, development and delivery” team has all the power, and most hierarchies are dead. If the folks in the organization are attached to wielding control and personal authority, this would be such a hard change that people might not even attempt it. Just as listening to Conway would be hard for power addicted managers, listening to Little will be hard for the individual contributor superstars. There is no individual glory anymore. There are no martyrs and heroes. The teams work together, across erstwhile functional boundaries, to do the best for our customers.

Here is the other hard thing. If you notice, I have eliminated PMO and Architecture from the figure above with the proposed organization structure. It is possible the entire departments would be eliminated and re-purposed to be a part of the value delivering teams. It might just turn out that Little will eliminate the need for PMO and Conway would encourage us to turn Architects into developers that work towards customer outcomes. There is a good amount of giving up of personal egos that has to happen here. Everyone must accept a flatter organization where we are all working together to achieve our most important goal — Positive Customer Outcomes.

Conway and Little can be lethal for traditional power structures and individual glory. But, on the other hand, they can save your organization as opposed to killing it.

Chapter 19 - The Shapes of Backlogs and Teams

Let us say our organization has three products or specialties. There are 10 features that need to get done across these three specialties. We have about 30 developers. How should we organize our teams — Three teams that specialize in one product each? Three T-Shaped teams? One large team?

During a very interesting conversation in the ProKanban.Org slack community (which you all should consider joining), Steve Tendon expressed his preference for specialized teams. To quote Steve “Better to have multiple, highly specialized, small teams — and coordinate them properly — than a large bunch of T-Shape “jacks-of-all-trade.”. As someone who believes that we should all be able to help with everything, this caused some cognitive dissonance. We need to prove or disprove this theory somehow.

The obvious way to do this is to find two sets of teams. A set of specialized teams and another set of generalized (T-Shaped) teams that would work on the exact same set of features and observe the resulting performance. Further, nothing else can be different between the two setups. Both sets must have the same capabilities, same people, same cultural norms, and the exact same holiday/vacation/sickness schedule. There are too many variables that can interfere with our results. In other words, this is an almost impossible experiment to set up in real life.

[image: Shapes of Teams and Backlogs Figure 1]

Image Credit: Riho Kroll on Unsplash

We need a way to run these two separate scenarios multiple times without changing anything other than the organization set up. This is where we turn to our old friend Monte Carlo. We can set the conditions, change one variable at a time, and observe how much of a difference that variable makes. We can run these simulations thousands of times and get an idea of how likely are we to be successful with the two sets of teams.

Setting Up the Simulations

The basic elements we need for Monte Carlo are some past data to use for simulations and an understanding of the future conditions we are simulating. For the first part, since these are fictional teams, we will use a static set of past throughput that was randomly generated. This will serve as the past 20 days of throughput from which we will sample in order to simulate the future. All teams in our simulation will use this same throughput.

The second requirement is the future conditions to simulate. We will simulate 30 days into the future. The organization we are running these simulations for knows the next 10 features in priority order. We are going to see which of these features are likely to get done if we are using specialized teams and which are likely to get done if we use generalized teams. Below are the randomly generated features that we will be using for simulations.

[image: Shapes of Teams and Backlogs Figure 2]

Feature List for Simulations

The features above are listed in priority order. F1 is a higher priority than F2, which is a higher priority than F3, and so on. The middle column shows the specialty or product of each feature. The last column is the size of the feature in stories. Those familiar with Monte Carlo Simulations using throughput will recognize this as a key component in determining when a feature will get done. The specialties and story counts for the features were randomly generated. The story counts range between 1 and 20 stories.

Scenarios

We are going to try to run Monte Carlo simulations assuming a few different scenarios. These scenarios are variations of team setups and prioritization setups. Below are the four scenarios we will be running simulations for —

	Three Generalized Teams, Central Prioritization— These are three teams that are T-shaped. They are not specialists in any of the products. They work off of a Central Priority which means when they get done with a feature, they pull the next highest-priority feature regardless of specialty.
	Three Specialized Teams, Specialized Prioritization— These are specialized teams. They will get a 20% boost in throughput in our simulations. That will mean that they will run through features faster than the generalized teams. These teams work off of specialized team backlogs. They pull the highest priority feature in their specialty, not in overall priority order.
	Three Specialized Teams, Central Prioritization— Similar to the previous setup, these are specialized teams. The difference now though, is they pull from a unified backlog in overall priority order. They do not just pull their own specialty, but when they do work on their own specialty, they get a 20% bonus in throughput.
	One Large Team, Central Prioritization— In this case, the entire org acts as a single team. They pick up work in overall priority order. They work on 3 features at a time. If the three features are of different types, they are able to assign the specialists to them and get a 20% throughput boost. In case two features of the same type are in progress, they get a 10% boost. There is no boost when all three features are the same type.

Another slight tweak, if a team (except in the One Large Team case) completes two features that they are not specialists in, they gain specialty in that area and get a boost the next time they work on that type of feature. This accounts for people learning new areas as they get work done.

Results

So, what do our Monte Carlo results tell us? First let us remind ourselves of the features we were trying to get done.

[image: Shapes of Teams and Backlogs Figure 2]

Feature List for Simulations

The table below shows these results. We can see the probability of each feature getting done in the scenarios listed above.

[image: Shapes of Teams and Backlogs Figure 4]

Monte Carol Results for Feature Set 1

These are some curious results. In general, the most common scenario you see at organizations — Specialized Teams with Specialized Backlogs (Scenario 2) seems to have the worst performance. Generalized Teams (Scenario 1) do better. But neither of these seems to perform as well as Scenarios 3 and 4. There is very little to choose between the last two scenarios. Scenario 4 gives greater confidence for lower priority features, but priority number three seems to have a greater chance of completion in Scenario 3. The results point towards either having a single large team or having smaller specialized teams that pull in overall priority order, not just using their own specialties.

Another Set of Features

The feature set we used in the previous simulations is just one of many possibilities. It might have biased our results. What if we used a different set of features and ran Monte Carlo? Here is another randomly generated feature set -

[image: Shapes of Teams and Backlogs Figure 5]

Feature Set 2

We use the same rules as before and run Monte Carlo simulations for the four scenarios. Now, our risk profile for the scenarios is shown in the table below.

[image: Shapes of Teams and Backlogs Figure 6]

Monte Carol Results for Feature Set 2

The results follow a similar pattern as before. Specialized Teams with Centralized Prioritization (Scenario 3) gives us the best chance of finishing the top two features. Large Team (Scenario 4) is the best option for the top three features. Scenarios 3 and 4 seem to outperform Scenarios 1 once again and 2. The Specialized Teams with Specialized Backlogs (Scenario 2) has some very positive results for priorities five and six. This comes at the cost of priorities three and four.

Taking it to Eleven

We can see that the setup of the feature set has some effect on the overall results. This is where our amps can go to 11. We can randomly generate a new feature set every time we run the simulation. Each scenario works on the same feature set and we record the result. Then we generate a completely new feature set and run every scenario. We do a Monte Carlo of Monte Carlo.

In doing this, we tend to lessen the impact of any particular feature set and get a much more generalized picture. This will give us a very decent idea of which scenario is the best way to set our organization up, regardless of the type of features that show up. The results of these simulations are shown below.

[image: Shapes of Teams and Backlogs Figure 8]

Monte Carlo Results for All Feature Sets

In general Scenario 4 performs the best. Combining the three smaller teams into one large team provides the most robust set of results. This is not proof, but confirmation, that the common small-team advice in Agile is mostly dogma. We should not constrain ourselves to "typically 10 or fewer people" 1. Scenario 3 is pretty robust as well. It seems Specialized teams that pull in overall (not team) priority order perform pretty well. It is important to remember that in the first three scenarios, the teams are working on one feature at a time, so there is no context switching, except after a feature is done. Generalized Teams with Unified Backlog do decently as well. The lack of the 20% speed bonus definitely shows.

With all other things being equal, it does seem that the most commonly used pattern is the worst performer. Especially if we are concerned about having a greater degree of confidence past our top 2 priorities. Specialized teams that have their own backlog and do not pay attention to the overall priority seem to lower the chance of getting the higher-priority features done. This is despite giving these teams a 20% throughput advantage. The speed increase optimizes the subsystem but sub-optimizes the whole.

Caveats and Conclusions

This simulation is simplistic and assumes all other things are equal. That is the only way to compare changing one variable at a time. Sure, there might be other factors that can have an effect on performance. Systems not well equipped to handle large teams will have a hard time with scenario 4. Product Owners and managers, wanting to optimize for speed in the short term will always push for scenario 2 regardless of the evidence.

This simulation removes all these variables to skinny the discussion down. We also haven't simulated the impact of absences due to people being on leave. Those will have a greater impact on smaller teams. We have also ignored dependencies. All these can be added in. The point here is to do a basic comparison of systems.

We also should not look at the feature sets as a pre-set backlog. These could be just-in-time pulled features that are right-sized without knowing the exact story count in advance. These are just the next 10 features that show up. They are listed for context. Monte Carlo of Monte Carlo is hard enough to explain without giving context about the data we are simulating against.

Overall, though, it seems there are some pieces of traditional Agile guidance that are undermined by the results of the simulation.

	Small teams are not better than large teams.

	Having centralized organization-wide prioritization is vastly superior to team-specific prioritization.

	The most commonly seen case — Small Specialized Teams with Team Specific Backlogs is the worst-performing case.

	Having generalized T-shaped teams does not make things that much better.

Chapter 20 - Don’t Be a Ditka

Author's Note: The article below was first written and published by Daniel Vacanti. Everything before the discussion of the simulation results in Simulation Set Up, is in Daniel Vacanti words. I am indebted to Daniel Vacanti for the use of this article in this book.

How good are you at estimating value? How good do you think an organization that is worth more than $1 billion is at estimating value? Do you think such an organization is better at estimating value than you? Do you think it should be?

The billion-dollar organization that we will use to test this theory is a professional American football team called the New Orleans Saints. The Saints themselves play in an organization of other teams known as the National Football League (NFL). As you can imagine, much of an NFL team’s ability to compete is dependent on its ability to attract the very best players possible—the Saints being no exception. The main mechanism by which each team in the NFL selects new players to add to its roster is called the NFL Draft. The draft is held once a year in the Spring just before training for the new season commences. Draft candidates are players that typically have been playing football at an American college or university for several years, thus giving each NFL team’s professional scouts, coaches, and management an opportunity to see how the prospects play.

During the draft, there are multiple rounds of picks, with each team getting exactly one pick per round (to start out, at least). In each round, the teams take turns using their one pick to select a single player, with the order of picks progressing in descending order of their previous year’s record. That is, the team with the worst record picks first and the team that had won the last year’s Super Bowl (the NFL championship game) picks last. This same order is used for every round. As the draft proceeds, teams are allowed to “trade” pick order with each other. For example, a team with the 28th pick in the first round may choose to “trade up” with another team to get an earlier pick (the 7th pick, perhaps). That trade offer may include later draft picks, other players, money, or some combination thereof. Once a player has been selected for a given team, that team then has the sole right to offer that player a contract (or release the player and allow him to be pursued by other teams). For the initial contract period a selected player can only play for the team that drafted him (yes it is only male players that are drafted at this time—my hope is that will change in the future).

Returning to the New Orleans Saints, in 1999, then head coach Mike Ditka staked his whole draft on the acquisition of a single player – a running back by the name of Ricky Williams. According to Richard Thaler in his book Misbehaving, “Ditka decided that the only thing stopping the Saints from winning a championship was the acquisition of one player…That year, the Saints owned the number twelve pick [in the first round], and Ditka was worried that Williams would be snapped up before their turn came, so he announced publicly that he would be willing to trade away all of his picks if he could get Williams (not the smartest negotiation strategy). When it was the Washington Redskins’ turn at the fifth pick and Ricky Williams was still available, the Saints were able to complete the trade Ditka wanted, although at a very steep price. Specifically, to move from the twelfth pick to the fifth pick, the Saints gave up all the picks they had in the current draft plus their first- and third-round picks the following year.” To be clear: Ditka valued the right to select one and only one player, Ricky Williams, as equivalent to nine other picks over two years.

Another nuance of the draft is that all teams in the NFL have to operate under what’s known as a “salary cap”. The salary cap is a monetary limit set by the league that the aggregate sum of the salaries of all the players of a given team is not allowed to exceed. For example, the 2018 salary cap was $177 million. That means if you sum up all the salaries of all the players of a given team, that sum is not allow to be larger than $177 million. The constraint of the salary cap also influences draft picks because, as you can imagine, players that are picked earlier in the draft are considered “premium” players and thus usually demand a higher starting salary than players picked later. This puts pressure on teams to value their picks properly to either avoid paying too much for a new team member or to avoid missing a player who could have a significant impact on the team’s performance (thus increasing the team’s overall value). Not only do teams have to estimate player values, but they also have to prioritize their best candidates as they only get to pick once per round a total of seven times. In other words, a team would not want to leave a player that they value highly as their seventh-round pick because chances are that the player would have been drafted by another team in an earlier round.

Thaler sums both these points up as follows: “So high picks end up being expensive in two ways. First, teams have to give up a lot of picks to use one (either by paying to trade up, or in opportunity cost, by declining to trade down). And second, high-round picks get paid a lot of money.” At the time of the 1999 draft, coach Ditka had been around professional football for almost 40 years. The argument could be made that his four decades of experience would make him an excellent judge of value. Did it? Did he and the billion-dollar franchise known as the New Orleans Saints make the right value decision when it came to selecting Ricky Williams?

You’ll have to read on to find out, but I’m hoping all of this sounds familiar.

Prioritization in Product Development

Most of my work in the past (especially the very recent past) has been focused on answering the extremely important customer-centric question, “When Will It Be Done?” (WWIBD). In giving guidance to answer that question, the implicit assumption I have been making is that people/teams/organizations/etc. are actually currently working on (or starting to work on) the right things. This is admittedly a very dangerous assumption as more often than not I see teams killing themselves to deliver items of dubious value against unrealistic delivery timelines. It turns out that for WWIBD to have any kind of relevance, we first need to answer a potentially much more important question, “When Should It Begin?” (WSIB). The “When” word in WSIB implies that WSIB is simply a matter of timing. While that is true, it is only partially true. The bigger component of WSIB is actually priority. What I mean is that is if a team has 1,000 items in its backlog, it would be ridiculous to think that they could start all of those items all at the same time (despite most product managers’ desire to do so)^. After all, if we had unlimited resources, then there would be no need to prioritize or to ask WSIB—the answer would always be “right now”. In the real world, however, the best answer to WSIB for the great majority of items is “not now”. Thus, the answer to WSIB is really a function of priority.

According to Klaus Leopold, “Prioritizing things is, in principle, a wonderful activity. You bring order to chaos and have the satisfactory feeling of direction. You know which assignment comes next on the list and the level of satisfaction increases as more work on the list is completed.” So, if prioritizing is so great, then there must be an easy way to do it, right? I’m assuming, of course, that you want to prioritize such that you are optimizing the delivery of customer value. If not, then you might as well stop reading now. The wonderfully good news is that we are spoiled for choice when it comes to techniques on how to prioritize. I’m sure you’ve heard of at least one more of the following:

	Stack ranking based on value – this is a fairly standard approach where items are ranked 1..n based on some value assessment (usually some type of fictitious business case—ROI—where strangely enough no idea ever loses money).

	HiPPO (Highest Paid Person’s Opinion) – this is where whomever makes the most money (or has the highest title) gets to decide what is worked on.

	Eurovision Song Contest / American Idol Voting – this is where consensus is attempted to be reached by voting on all possible candidates with order determined by the top vote getters.

	CD3 (Cost of Delay Divided by Duration, which is a specific implementation of the Weighted Shortest Job First [WSJF] algorithm) – where items are ranked in descending order according their CD3 calculation (more on this later).

	Throwing darts, Crying, Curling up in the corner in the fetal position—need I say more?

(Before we continue, I’d like you to make a mental note of which one you think is best at optimizing the delivery customer value.)

For a more detailed discussion on prioritization schemes, please see Chapter 5 of Klaus Leopold’s excellent book, “Practical Kanban”.

Cost of Delay

Of all the prioritization methods mentioned above, the one that seems to have curried the most favour amongst the Agile intelligentsia is CD3. The reason for CD3’s popularity is quite sensible: CD3 gives the best economic framework upon which to base prioritization decisions (or so the argument goes). To demonstrate this, let’s take a closer look at how CD3 actually works. Any discussion of CD3 must first, of course, begin with a discussion about Cost of Delay (CoD). My favourite way of explaining just what CoD is, is to borrow (steal) from the Don himself, Don Reinertsen. Don’s explanation of CoD goes something like this (for more information on this topic, please see the YouTube video - https://www.youtube.com/watch?v=OmU5yIu7vRw)

Let’s start with the assertion that time is money. Mathematically, that can be expressed as:

t = m

A corollary to this is that a change in time equals a change in money:

∆t = ∆m

The problem with this equation as currently stated is that the units on either side of the equivalence do not match. On the left side of the equation, time is in units of seconds, days, weeks, etc. and on the right side of the equation, money is units of dollar, pounds, euros, etc. In its current form, this equation will not be valid until we get the dimensions to match. The way we achieve that is to insert a partial derivative:

∆t (∂m / ∂t) = ∆m

(Don’t get too hung up on the math itself here, it’s not really that important.)

It is that partial derivative term that is the CoD. In more layperson’s terms, CoD is the change in the total lifecycle profit for an item with respect to a change in the availability date of that item—where the units of CoD are always in terms of money per unit time (e.g., $/week). The core idea here is that the total amount of lifecycle profit that an item will generate is a function of when that product becomes available. CoD, therefore, is the amount of decrease in cumulative profit if we delay the introduction of that item. Put another way, lifetime profit of an item is dependent on its availability date, and CoD is a measure of the rate of that dependency. That’s a bit abstract and hand-wavy, so let’s see if we can demonstrate that concept a little better with a chart.

Assume we have a graph with time across the bottom (the x-axis) and total lifecycle profit for an item up the side (the y-axis). Now what we are going to do is—for a single item—determine what is the absolute earliest date that this particular item can be delivered, and, if it is delivered on this earliest date, what is the total lifecycle profit we will get (in most cases, that earliest theoretical delivery date is today—whether that is realistic or not is another matter). For example, let’s say the earliest date we could deliver a particular feature is on January 1, 2019 and let’s say if it is delivered on January 1, 2019 that we can expect to make $1 million in total profit over the life of the feature. What we do, then, is on our graph we would go across the bottom and find January 1, 2019 and at that point on the x-axis we would plot a point on the y-axis that corresponds to $1 million—as shown in Figure 1 below.

[image: Dont be a Ditka Figure 1]

Figure 1

We would then do this same exercise for every successive relevant time interval until we get to a date that it would no longer be feasible to deliver the product. Again, for example, let’s say the time interval we are interested in is weeks, so the next point on our graph that we would plot is the total lifetime profit if the feature is delivered on January 8, 2019. If that profit is $900,000, then we would plot a dot for $900,000 at January 8th. We would do the same thing for January 15th, January 22nd, and so on and so on until we reached a date that no longer made sense (let’s say January 1, 2020). If we followed that procedure, we would come up with a graph that might look something like Figure 2 below:

[image: Dont be a Ditka Figure 2]

Figure 2

The way we would figure out the CoD for any given point (date) along this curve would be to calculate the slope of the tangent line at that point. To get an average CoD between any two points (dates) we could calculate the slope of the line between those two dates. Both approaches are shown in Figure 3 below:

[image: Dont be a Ditka Figure 3]

Figure 3

Note, again that CoD is always communicated in terms of money per time. If you hear anyone talk about CoD in any other units then you can be sure they are not talking about CoD. Also note that the above curve is a Lifetime Profit curve. It is NOT a Cost of Delay curve. In your studies, you may have come across something like Figure X that was labeled as a CoD curve. To be honest, I’m really not sure what those things are, but what I can say is that what I’m talking about here is definitely not that. Got that?

The reason that CoD is important is because it now gives us an economic framework upon which to base prioritization decisions. Let’s say that that we are on a team that is ready to start work on a new feature and we are trying to decide between two competing feature options. For the sake of simplicity at this point, let’s assume both features will take the exact same amount of time to complete (we’ll handle the case of differing duration shortly) and that we won’t be able to steal resources, work overtime, etc. to get either feature done faster. One way we can make a decision about which feature to work on is to calculate CoD for each and chose to work on the one with the higher CoD. It’s slightly counterintuitive because it is often the case where Feature A will have a higher lifecycle profit than Feature B, but on the date delivered, Feature B may have a higher CoD. In that case, it would be more economically feasible to prioritize Feature B over Feature A (a more detailed discussion about this is beyond the scope of this article so I invite you to look up all the great resources of Don Reinertsen in this regard).

In the immortal words of Klaus Leopold, “When discussing Cost of Delay, the economic perspective is automatically integrated into the decision-making process. It does not deal with fictional units multiplied by imaginary measurement figures. It deals with values which can be quantified in monetary units and can be compared within the entire company, or even across enterprises.”

A quick word on Cost of Delay vs. Delay Cost. This can seem like a pedantic distinction, but it is an important one as most literature gets this wrong. As defined earlier, CoD is the rate at which lifetime profit changes with a change to the availability date of the item. So, let’s say that a particular item has a CoD of $5,000/week. If that item is delayed by 6 weeks, then the company loses $30,000 of potential lifetime profit. That $30,000 is known as the “Delay Cost”. Unlike CoD, Delay Cost is expressed in units of money only. I mention this here only in an attempt to clear up some confusion around the two terms. For the rest of this article;8, CoD and Delay Cost will defined in terms of what I have explained here.

Cost of Delay Divided by Duration

Again, stealing from Klaus:

“Let’s do a thought experiment. We are in a prioritization meeting and there are three different features - A, B and C - before us and we should put them into a sequence. For all three features, we have calculated the Cost of Delay and the Cost of Delay begins immediately. When considering how to do the sequence, we must take into account how long it takes to complete the individual features, because time is an economic component. Let’s assume we know the completion time for the three features:

	Feature A has a low Cost of Delay at €5,000 per week but has a long completion time of ten weeks.

	Feature B has a low Cost of Delay at €5,000 per week and has a fairly short completion time of five weeks.

	Feature C is finished fairly quickly in five weeks but has a very high Cost of Delay at €10,000 per week.

These three features can be illustrated in a diagram as blocks (see Figure 4). Regardless of which order the features would be worked, the total Cost of Delay at the beginning is always CoD (A) + CoD (B) + CoD (C) = €20,000 and must be amortized. The same applies for the duration, as the completion time for all three features is always t (A) + t (B) + t (C) = 20 Weeks. We would like to know which sequence is best to reduce the total Delay Cost as quickly as possible.

[image: Dont be a Ditka Figure 4]

Figure: Reducing Cost of Delay

“To begin with, let’s choose the sequence ABC. When we start with Feature A, the €20,000 Cost of Delay from A, B, and C, remains until the work on Feature A is completed, i.e. ten weeks. The Cost of Delay for Feature A is removed once completed. The Cost of Delay for B and C remain, €15,000 per week, as long as Feature B is being worked on, which is five weeks. After a total of 15 weeks, the Cost of Delay for B can also be removed and remaining is only the Cost of Delay for C, €5,000 per week, which needs five weeks to be completed. Figure 5.11 illustrates this cost-reduction process. The area created gives us the total Delay Cost, which can be quantified using an area formula for the three rectangles that are formed:

Total Delay Cost = (10 × 20) + (5 × 15) + (5 × 10) = 200 + 75 + 50 = €325,000

[image: Dont be a Ditka Figure 5]

Figure: Poor Sequencing with High Cost of Delay

“Let’s try to minimize the area. It makes the most sense to reduce the highest Cost of Delay as quickly as possible, so we choose sequence CBA. While we are working on C, the total Cost of Delay of €20,000 are present. However, as soon as Feature C is completed, five weeks later, its high Cost of Delay of €10,000 is removed. The remaining Cost of Delay from B and A is relatively low in comparison. Next, we work on Feature B and after five weeks another €5,000 in Cost of Delay is removed. Finally, we dedicate ourselves to Feature A, and after ten weeks, the remaining €5,000 Cost of Delay is removed. As can easily be seen in Figure 4, the area is much smaller than it was for Sequence ABC. Here, too, we can quantify the area:

Total Delay Cost = (5 × 20) + (10 × 10) + (10 × 5) = €250,000

“Sequence CBA saves a total of €75,000 over 20 weeks when compared to Sequence ABC. This is because we thought out the sequencing before starting the work and decided wisely as to the order of the work. Take a moment to really consider this. Saving €75,000 was achieved simply by changing the order of work - not a single person had to work harder or faster. This is the strength of Cost of Delay!”

The good news is that you don’t always have to draw these rectangles and calculate resultant areas to get proper items sequencing. Like everything in math, you have to learn the absurdly hard way to do a calculation before learning the easy, shortcut way (anyone remember how to “complete the square” to solve a quadratic equation? Why the f*ck didn’t we just learn the quadradic formula to begin with? And don’t even get me started on derivatives…) The mathematical shortcut to the above graphical analysis is to calculate a “Cost of Delay Divided by Duration” (CD3) for each feature. Optimal sequencing is therefore obtained by sorting the CD3 numbers for each item from highest to lowest and then working on items in that order. For example, in Klaus’ thought experiment above, the CD3 for each feature is:

	Feature A CD3 = (€5,000/week) ÷ 10 weeks = €500/week2

	Feature B CD3 = (€5,000/week) ÷ 5 weeks = €1,00/week2

	Feature C CD3 = (€10,000/week) ÷ 5 weeks = €2,000/week2

(For what it is worth, I have no idea what the units money/time2 mean—this is a detail that all writeups on CD3 that I have seen have failed to address).

In this example, Feature C’s CD3 is highest, then Feature B, then Feature A. The correct sequencing given by CD3, therefore, is CBA, which, you will recall, is the exact same sequencing that Klaus came up with in his example.

This discussion has provided a rough proof that CD3 produces an overall item sequencing that minimizes total delay cost and thus maximizes value delivered (Figure 7-11 of Don Reinertsen’s book “The Principles of Product Development Flow” shows this pictorially as well). The theory is sound and seems to be backed up by rigorous quantitative analysis.

So, what’s the problem? Is there even a problem?

Problems with CD3

Let’s look at the deficiencies of the inputs to CD3 first. These initial deficiencies aren’t fatal, but they are necessary to understand before our more detailed exploration of the flaws of CD3 in certain contexts later.

What’s called “Duration” in CD3 is what I have referred to as “Cycle Time” in my previous books (see https://leanpub.com/actionableagilemetrics and https://leanpub.com/whenwillitbedone). Cycle Time is simply a measure of the total amount of elapsed time it takes for an item to complete—exactly the data we need for the denominator of the CD3 calculation. However, you will also know from my previous work that Cycle Time itself is stochastic. That is, the Cycle Time for a given process is not a single number but rather it is a probability distribution. What that means is that it is impossible to know before an item is started precisely how long it will take to complete (i.e., in the form of a single number).

In many contexts, the exact same argument can be made for value (or its proxy, CoD). To be sure, there are contexts where value can be deterministically calculated beforehand (contractual obligations and regulatory compliance, to name but two) but I believe that for the vast majority of scenarios in the domain of complex work, it is impossible to precisely determine value upfront. We could, however, as in the case of Cycle Time, reasonably come up with a probability distribution that describes value in a given context.

All of this means that we are most likely operating in a world where both CoD and Duration are stochastic, yet the inputs that I showed in the previous example (and, shamefully, the inputs you will see in many other writeups of CD3) assume single, deterministic, precise numbers. That practice is just silly.

Most CD3 examples show single numbers as inputs when really those inputs should be probability distributions

However, as I just mentioned, the fact that both CoD and Duration are themselves probabilistic is not fatal—thankfully we have statistical tools at our disposal to handle such a case. The solution to this problem would be to use something like Monte Carlo Simulation (MCS) that took in probability distributions for both CoD and Duration and calculate CD3 for a particular feature as a range of possible outcomes. The resultant CD3 distributions for all features could be compared and sequenced according an acceptable level of risk (do I want to show an example of this here along with the Singh simplification?). This is exactly approach that Klaus Leopold, Prateek Singh, Todd Conley, and myself took several months ago as we ran multiple simulations to better understand the stochastic nature of CD3. In short, our results confirmed that even in a probabilistic world, CD3 gave the best value-maximizing answer when it comes to the prioritizing/sequencing of work to be done (again, within an acceptable degree of risk).

No, the weakness of CD3 is not one of stochastic inputs--again, it is one of timing.

The Saints Come Marching In

Which brings us back to the 1999 New Orleans Saints. Recall that the ’99 Saints traded all their picks in that year’s draft plus the first and third round picks in the next year’s draft to get the player they wanted, Ricky Williams. Also remember that the Saints had to make their pick and sign the player’s contract all before that player played even one second of professional football. That meant that the Saints were not only placing a very high estimated value on Williams in that they traded up to get him (thus almost ensuring they would have to pay him more money) but they also highly prioritized his pick as they gave up 8 subsequent picks over two years to get him.

Any thoughts on how this turned out for New Orleans and Mike Ditka? As I’m sure you can guess, not very well. “Williams played four years for the Saints and was a very good but not transformative player, and the team could have used the help of all the players they might have acquired with the draft picks they traded away.” To say that New Orleans did not do well that year is a bit of an understatement. They ended up as the second-worst team in the league. Again, according to Thaler, “Clearly, snagging Williams was not enough to turn the team around, and Ditka was fired.”

Uncertain Value

The estimation and prioritization problems faced by the Saints when making their draft picks are the same problems that face most every product development team. That is, teams have to make decisions about estimation and sequencing usually before work is ever started. However, as we all know, value is determined by the customer, and therefore any exact value determination can only be made after work is delivered—not before! A better way of saying that is that organizations are prioritizing work when they have the least amount of information and the greatest amount of uncertainty.

Product Development teams prioritize work when they have the least amount of information and the greatest amount of uncertainty.

That statement is the fundamental reason why CD3 does not work as well in the complex domain as most proponents think it does.

It’s even a little trickier than that. If you think it is hard to make a value determination BEFORE work has started (and it is), it isn’t much easier to calculate value delivered even after it has been delivered. Take Google’s G Suite bundle of SaaS-based business applications, for example. At the time of this writing, Google charges $5/user/month for bundle of online office tools. The G suite bundle itself has dozens if not hundreds if not thousands of included features. What is the value of any single one of those? The lazy answer would be to say that we calculate a baseline of revenue, then release a feature, then calculate how much revenue went up and, voila, we have our value determined. Problem is, that’s not quite how it works. If Google adds spell check to its document editing application, and revenue goes up, then it is reasonable to assert that the revenue didn’t increase just because of that one feature. A person made the decision to buy because of the cumulative effect of spell check plus all other features. The thought experiment to prove this is would you by a document editor that only had spell check and no other features like bold, paragraphs, or even a way to enter text? Probably not. That means then that the value of the spell check feature has to be amortized across the $5/user/month along with the thousands of other features that already exist. So, is spell check worth $0.01/user/month? $0.10/user/month? Or $0.000001/user/month? I don’t know, and I bet Google doesn’t know, either.

And we still haven’t even discussed the very real possibility that the delivered feature could actually turn out to have a negative value. How many times has Google or Apple or whomever released a “UI update” that caused users to leave in droves? Even if the delivered feature resulted in a 0 change to net subscribers (that is, on balance, none were added and none left), the feature would have had a negative impact on lifetime profit because of the cost to develop it was not offset by new revenue from new users (not to mention the opportunity cost of the other things we could have done with the resources spent in building the feature).

So, we are left with the fact that value is uncertain going into development and it is also likely uncertain (and quite conceivably negative) coming out. But remember, our CD3 sequencing calculation is made BEFORE work is started and value validated—if it can be validated. What happens if we prioritize/sequence our work based on certain value assumptions but then find out our that actual realized value is dramatically different? In Klaus’ example, we assumed Feature C had a CoD of €10,000/week. What if when we delivered it we find that the real CoD was actually €1,000/week?

No problem, CoD proponents would say, because we just acknowledged that value is stochastic and so we just need to come up with a probability distribution that covers all likely outcomes as input to CD3. That’s true, but, again, what if the actual, realized distribution is much different than what we assumed^^? Going back to Klaus’ experiment, what if we assumed a probability distribution of CoD for Feature C that ranged between €1,000/week and €15,000/week. But what if when we deliver Feature C, the real CoD distribution is -€5,000/week to -€1,000/week? That is, what if the realized value is in a range that we never even considered to begin with? In short, what if we were just plain wrong about our initial assessment of value?

This is exactly the case of Mike Ditka, Ricky Williams, and the ’99 New Orleans Saints. It is the fundamental reason why CD3 does not work--and it happens all the time. How did the Saints (and how do we) get it so wrong? This is a team was worth hundreds of millions of dollars--they had an almost unlimited stream of capital from which to work to get this value decisioning right. They employed dozens of experts who collectively had centuries’ worth of experience. Yet they still made this glaring error. And as I alluded to earlier, they are not alone in the NFL when it comes to their inability to estimate. In his book, Misbehaving, Thaler gives several other examples of how teams consistently overvalue picks and make the wrong economic tradeoffs when it comes to the draft.

	People are overconfident. They are likely to think their ability to discriminate between the ability of two players is greater than it is. (stack ranking fallacy)

	People make forecasts that are too extreme. In this case, the people whose job it is to assess the quality of prospective players—scouts—are too willing to say that a particular player is likely to be a superstar, when by definition superstars do not come along very often. (e.g., inflated business cases)

	Present bias. Team owners, coaches, and general managers all want to win now. For the players selected at the top of the draft, there is always the possibility, often illusory, as in the case of Ricky Williams, that the player will immediately turn a losing team into a winner or a winning team into a Super Bowl champion. Teams want to win now! (Too much WIP fallacy)

In the above, replace the word “team” with “feature” or “project” or “initiative” and you will understand why we routinely get this stuff wrong. The problem of overconfidence, extremism, and bias in our ability to determine value upfront, coupled with the fact that value is going to change over time anyway, is so prevalent, in fact, that I would argue it is necessary to assume that we don’t know anything about value initially (probabilistically or otherwise) and that any sequencing decision we make based on upfront value assumptions will necessarily lead to suboptimal economic outcomes.

Uncertain Duration

The same arguments can be made about duration. How many times have you “estimated” duration of an item before you started working on it, and then actual time spent on development was drastically different once delivered—either much shorter, or more likely, much, much longer? Yet again, that initial CD3 calculation and sequencing is made on our very wrong idea of duration BEFORE works starts. So, if you are working on something and you find it is taking too long to complete and thus the economics of CD3 have changed, do you immediately stop working on that item and start something else with a higher CD3? Or do you try to break the item up into smaller pieces and deliver those? But what if those smaller pieces also change the economics of CD3—especially when measured against all of the other items that we are waiting to work on? More on this in just a bit.

New Items Show Up

Speaking of other items that we are waiting to work on, we still need to discuss the problem of sequencing as pertains to CD3. In the Klaus thought experiment and CD3 example calculation above, you’ll remember that we came up with a supposedly economical sequencing of CBA. But what happens in the very real case where Feature D shows up while we are working on (i.e., not finished with) Feature C and Feature D actually has a higher CD3 number than C? As you are probably aware, this happens all the time! There are some CD3 proponents who would say that the second we have information about a higher CD3 item, we should immediately stop work on the lower one in favour of working on the higher one. This is a very slippery slope because what if we start working on Feature D and Feature E shows up with a higher CD3 than Feature D? Would we stop D to work on E? If we followed this logic to its extreme conclusion, nothing would ever get done. While a bit reductio ad absurdum, I hope you can appreciate the point that things aren’t as straightforward as they might first appear.

The more mature solution to the problem of new items showing up (and the one that I would hope most CD3 proponents would argue for though they never mention it) would be to finish Feature C in the first place and then recalculate and re-sequence having included any and all valid items that may have shown up since the last sequencing. But does that answer even lead to optimal value realization over the long term? Or is there yet another option that requires less work and yields an even better result (otherwise known as nirvana)? It turns out there is, but before we go there let’s first quickly review where we’ve been thus far.

Inputs to CD3

	Value is stochastic—in real world modeling, value input into CD3 must be a probability distribution and not a single, precise number.

	Duration is stochastic—in real world modeling, value input into CD3 must be a probability distribution and not a single, precise number.

Assumptions for CD3 to work:

	Value In = Value Out - Value at time of prioritization/sequencing (distributional or otherwise) must equal realized value at time of customer delivery

	Duration In zx= Duration Out - Duration at time of prioritization/sequencing (distributional or otherwise) must equal total elapsed time for customer delivery

	No New Items – optimal sequencing requires no new items arrive that have an economic impact on items already in progress and/or already sequenced.

It should be obvious from the previous discussion that if realized value is dramatically different than estimated value, if items take longer or shorter than originally assumed, or if new items show up that change economic considerations, then CD3 will by definition provide the wrong sequencing answer.

Any one of the above assumptions actually occurring in the real world is extremely rare. The chances of all them occurring simultaneously to make the right prioritization decision is infinitesimal.

The fatal flaw of CD3 is that you are trying to solve an economic optimization problem at the time when you have the least amount of information and the greatest amount of uncertainty—before work starts. In other words, using CD3 as your prioritization scheme is a risk management nightmare. Worst of all, you’ve masked these deficiencies in a mathematical model that provides a false sense of security. My favourite quote on risk management sums up the problem of CD3 quite nicely: “The biggest risk is that you have a losing strategy when you think you have a winning one.” [Jeff Yass, founder Susquehanna International Group]

CD3 is Bollocks

So, what would happen if you built a simulation that more closely modeled what happens in the real world? Would CD3 still give the best prioritization answer to maximize economic outcomes? (spoiler alert: it doesn’t) Or is there a better option? (spoiler alert: there is).

Those are exactly the questions that Prateek Singh from Ultimate Software and I set out to answer. Remember, of course, we are answering this question from the perspective of product development contexts where the three CD3 assumptions don’t hold. If you live in a world where value is known upfront (and validated to be exactly what you thought it was after delivery), where duration is known upfront (and validated to be exactly what you thought it was after delivery), and where the arrival of new items does not affect the economics or delivery of existing items, then congratulations. You’ve hit the jackpot. You should never, ever leave your job. Ever. And CD3 will work perfectly for you in your context, so use it. If, however, you are like the rest of us poor slobs where those assumptions are almost never true, then please read on.

To model what happens in the real world, you need to set up a simulation where you have variable value inputs, variable value outputs, variable duration inputs, and variable duration outputs. Further, you need to extend that simulation to include new items that arrive at variable times thus forcing a reprioritization. For a more detailed discussion around how such a model might be set up and how the results of the simulation might be interpreted, please see Appendix A.

Once you have this simulation modeled properly, it then becomes a case of trying different prioritization schemes to determine which algorithms maximize delivered value over the long term. Some schemes that Prateek and I considered: CD3, CoD (highest value first), Duration (shortest time first), pure random selection, etc. Once we had our model in place, it was time to put it to the test.

Output Over Outcomes (Simulation Results)

The simulations we ran presented some very interesting results. When we compare the results of testing our model at varying degrees of confidence, we observe the following.

Case I: CD3 Assumptions Are Met

Let us first look at the case where Value estimates are precise and the original estimated value is what we get after the feature (or project) is released. (It should be noted here that in this case we are also not resizing items—a point that will become very important a little later). The base case (CD3, Value = Original, Size = Original) is represented as final value delivered after 40 weeks and the other prioritization methods are displayed as percentage deltas.

		CD3 (Value = Original, Size = Original)	Duration Ascending (Value = Original, Size = Original))	Random (Value = Original, Size = Original))
	10th Percentile	76701	-13%	-75%
	20th Percentile	83280	-12%	-73%
	30th Percentile	88242	-12%	-71%
	40th Percentile	91937	-11%	-69%
	50th Percentile	95824	-10%	-68%
	60th Percentile	99507	-10%	-66%
	70th Percentile	104380	-9%	-65%
	80th Percentile	108700	-8%	-63%
	90th Percentile	115820	-8%	-61%

The above results show that CD3 is clearly superior to random prioritization. This is exactly what we would expect from our previous discussion. In this case, all CD3 assumptions are valid and therefore it should be no surprise that CD3 yields the best results. In most cases it delivers 70% or more value than the random prioritization scheme (on average 68% more value).

What is surprising here, however, is how close the The Duration Ascending prioritization method is to CD3. All results with that scheme are within 10% of those of the CD3 and on average 10% worse than CD3. In other words, if we were very good at precisely estimating value, and did not right size our items, prioritization using CD3 would be only about 10% superior to simply ordering by shortest Duration! The question of whether the exercise of collecting detailed value estimates for each project is worth the 10% gain is very context specific. If the effort for getting to these accurate estimates is minimal (it rarely is), then pursuing CD3 is a good option, otherwise prioritizing purely by duration would be as effective.

Case II: CD3 Assumptions Not Met

If we reassess both value and duration after the feature is delivered (such that value and duration at the time of prioritization may not necessarily equal the actual value and duration once the item is delivered), the results change quite a bit. In the chart below, CD3 is again used as the base case. Items are still not being right sized and value is being reassessed after delivery.

		CD3 (Value = Reassessed, Size = Original)	Duration Ascending (Value = Reassessed, Size = Original)	Random (Value = Reassessed, Size = Original)
	10th Percentile	52475	22%	-65%
	20th Percentile	58926	19%	-62%
	30th Percentile	63308	19%	-60%
	40th Percentile	67167	19%	-58%
	50th Percentile	71188	17%	-57%
	60th Percentile	75227	16%	-55%
	70th Percentile	79490	16%	-54%
	80th Percentile	85068	14%	-52%
	90th Percentile	91294	15%	-50%

In this case of value being reassessed (or in other words, estimates of value being inaccurate), prioritization in ascending order of duration (shortest job first) on average produces 18% more value than CD3. From these results, we can conclude that if getting accurate estimates of value is close to impossible, purely ordering by duration will produce optimal results without incurring the extra cost of time spent estimating value.

The main reason for Duration beating out CD3 in these simulations is that by only concentrating on duration, we are putting out a greater number of features. We can fit more of the short duration items into the 40-week simulation length that we have chosen. If we are willing to accept that we are not good at forecasting value (and not be a Ditka), the more items we do the greater our chances become of delivering a high amount of value. In other words, because value cannot be determined ahead of time, we increase our chances of releasing a highly valuable feature by releasing more features. Without stressing the system, the best way to deliver more features is by prioritizing the backlog by duration so that more features can fit into the given timeframe (we’ll explore this conclusion after the rest of the simulation discussion).

Case III: Right Sizing of Items

What happens if we introduce right sizing into the picture? Now we examine the cases where we are not good estimators of value and we actively break features down for delivery whenever they are above a certain threshold. In these cases, whenever a new project is pulled to be worked on, we evaluate its size and if the project is larger than a given size (5 weeks in this case) we randomly break down the project into 4 pieces and redistribute the value between the 4 pieces as well. These smaller pieces are added back to the backlog and we then re-run the prioritization algorithm (CD3, Duration Ascending or Random) to pick the next project.

		Cd3 (Value = Reassessed, Size = Resized)	Duration Ascending (Value = Reassessed, Size = Resized)	Random (Value = Reassessed, Size = Resized)
	10th Percentile	205580	54%	-23%
	20th Percentile	216802	54%	-21%
	30th Percentile	226036	53%	-19%
	40th Percentile	234863	52%	-18%
	50th Percentile	242481	51%	-17%
	60th Percentile	250638	50%	-17%
	70th Percentile	258132	49%	-15%
	80th Percentile	266853	49%	-15%
	90th Percentile	279346	48%	-13%

Random now performs much better than it has in our previous comparisons. It is, on average, only 18% behind the CD3 prioritization. Prioritization by duration though is, on average, 51% more effective than the pure CD3 prioritization. This is a major difference, and, we are not even accounting for the time spent in acquiring value estimates in order to do prioritization via CD3. Similar to the last set of results, if we are not good at estimating value (which none of us really are), prioritizing by duration is a superior strategy. If we add to that the active sizing of the items, where we break items up into smaller deliverable, valuable pieces, prioritization by duration delivers over 50% more value.

Resizing features into smaller chunks helps us increase the number of short duration features that are in our backlog. This, in turn, increases the number of features we can deliver if we are sorting by duration. As we deliver more, smaller features, we are able to place multiple bets which all have the possibility of being high value. The combined effect having more small options to choose from and choosing purely by using “shortest duration first” gives us a major advantage over all other prioritization methods.

A Final Important Simulation Result

The positive effects of “Right-Sizing” are not limited to just the Duration prioritization scheme. Right sizing increases the pool of available (small) options and this benefits every prioritization scheme tested. Honestly, this is probably the most important result. Even if you have no control over the prioritization scheme, you will almost always be better off making items as small as possible. The wonder of small batches never ceases to amaze.

Right Sizing Wins

Yes, you read the preceding section right: in the contexts where assumptions are not met, CD3 is not the winner. Shortest duration (and right sizing) is.

This actually makes sense upon reflection. In contexts where value is extremely uncertain, it is best to place as many bets as you can in order to maximize your chances of one of those bets paying off. Venture Capital firms do this all the time. There expectation in terms of managing their portfolio is that only about 10% of their investments will actually pan out but it is impossible for them to tell you at the time they make those investments exactly which ones will pay off. Poker players face this all the time, too. In Texas Hold ‘Em, a player would never go all in on the first bet just because she got dealt two aces as her hole cards even though two aces is of rather high value. In fact, most poker players will tell you that “bankroll management” is one of the most important aspects of a long-term winning strategy. The idea is to get out of pots as quickly as possible (i.e., short duration!) and live to fight another day. The way to win a poker tournament is to survive (still have chips in front of you) and one way to do that is to be in as many hands as possible for as cheap as possible because you don’t know which one is going to win big. See Annie Duke’s excellent book “Thinking in Bets” for more context around how to make multiple decisions under extreme uncertainty.

These results confirm the whole point of this paper. In most complex product development contexts that are dominated by uncertainty, the best prioritization/sequencing scheme is work on as many “short” items as possible.

In complex product development contexts that are dominated by uncertainty, the best prioritization/sequencing scheme is work on as many “short” items as possible.

Ravings of a Madman

If you will humor me for a bit, I have to spend a couple of paragraphs ranting about certain arguments I hear when others try to justify the inadequacy of CoD and CD3. Please forgive me for indulging in this venting. Some of this section is reactionary, some of it is petty on my part, all of it makes me angry. You can certainly skip this section in its entirety with no loss of continuity. But if you read on, maybe you will find a nugget or two worth retaining.

Only Have to be Better Than the Next Best Thing

You’ve probably heard this joke before:

“Steve and Mark are camping when a bear suddenly comes out and growls. Steve starts putting on his tennis shoes.

Mark says, ‘What are you doing? You can’t outrun a bear!’

Steve says, ‘I don’t have to outrun the bear—I just have to outrun you!’”

Whenever objections are raised about the deficiencies of a given approach, idea, or whatever, this joke is dragged out as a justification for mediocrity. The point of the joke is that we need not strive to be the best, we only need to strive to be better than the previous “best” thing. While that is technically true, I think this line of reasoning is a wholesale cop-out. Anyone who uses it should be ashamed of themselves. Why not always strive for process excellence and the best we can possibly be in everything we do? Why not continually look for better options that give more accurate answers with less effort? Come on, community. We can do better. Much better.

The worst part about this argument as it pertains to CD3 is that it is not necessarily accurate. As this paper has shown, CD3 may not—and probably doesn’t—give any better answer than the prioritization scheme that you are using right now. Don’t buy the snake oil!

The CD3 Numerator Is Most Important

Ugh. I see these types of CD3 comments all the time:

	“It’s the numerator that matters far more” [Joshua Arnold discussing CD3 in his blog, http://blackswanfarming.com/cost-of-delay-divided-by-duration/]

	“Lesson: Our assessment of VALUE is probably a good deal more important than our forecasting of duration in many cases.” [John Cutler, https://hackernoon.com/better-decisions-by-forecasting-cycle-time-as-a-team-6d36690f511f]

From a pure mathematical perspective, these types of arguments make no sense whatsoever (with fractions, the numerator and the denominator matter equally—otherwise you don’t have a fraction). Worse than that, this advice is extremely misleading (if not potentially wrong). We just proved that if anything, when maximizing economic value, making duration as short as possible matters much more than any notion of estimated value. Need I point out that in CD3, duration is the denominator—not the numerator?

Now, I’m not saying that Joshua or John don’t know what they are talking about, but these statements in particular don’t stand up to scrutiny.

Where’s the Beef?

I have asked several times for real-world evidence that CD3 actually works. Apart from Joshua’s excellent case study [http://blackswanfarming.com/experience-report-maersk-line/] (which, unfortunately, in my opinion comes to an incorrect conclusion after taking all the right actions) there is a dearth of actual, empirical, verifiable evidence that CD3 yields optimal economic outcomes. If CD3 works so well in complex product development domains, why are people so shy about sharing their experiences? “Absence of evidence does not mean evidence of absence” is the retort I get whenever I ask for proof. Again, that is technically true. But they said the same thing about the earth being the center of the universe.

CoD is Easy to Quantify

The reality is that in complex product development contexts, it is difficult if not impossible to gather the data needed to both quantify and validate CoD. I’ve already alluded to this fallacy with the G Suite example above, but please don’t take my word for it. Watch this video from Don Reinertsen on CoD: https://www.youtube.com/watch?v=OmU5yIu7vRw Around about the 24-minute mark in this video, Don starts to talk about how to calculate CoD. Don actually uses the words “it’s not that hard” when describing how to quantify CoD. However, as you watch the video, I would say what he’s describing is anything but “not that hard” (to get the calculation right, that is). Further, it’s quite obvious from Don’s example that he is speaking from the perspective of a large organization with a well-staffed finance department. If you are a small-to-medium business (which, by the way, represents about 99% of all businesses in the United States) with no dedicated finance department or if you are a startup where your finance officer is also your IT support specialist is also your office admin, well, then, good luck trying to quantify CoD.

It’s the Conversation that Matters Most

I am trying to decide which of the arguments in the section make me the angriest. This one is very close to the top of the list. Yet another justification for CoD/CD3 is that it is not the actual number that matters, but the conversation around getting the number. First, this is the same line of reasoning employed to justify the use of story points as an estimation technique. As far as I am concerned, it has been soundly proven that using story points does not materially improve the quality of estimates (in fact, in many cases, story points make estimations worse). Secondly, though, what this paper has proven that most upfront conversations around CoD are waste. There is simply too much uncertainty to wade through to make accurate decisions. You don’t drive out uncertainty by talking, you drive out uncertainty by doing. Therefore, the better strategy by far is to short circuit any initial conversation, start work as quickly as possible, and break up items into the smallest pieces possible in a just-in-time manner as more information is gained.

Conclusion

It would be easy to say that the 1999 NFL draft was an aberration and that the rest of the league actually does much better at drafting players. But it turns out that 1999 is simply an entertaining example of endemic valuation problems in the NFL that is very well documented. For more information on this, I’d point you to Richard Thaler’s book, “Misbehaving”, as well as his published paper on the topic, “Overconfidence vs. Market Efficiency in the National Football League”. Take a look at those resources and every place you see “NFL team” substitute in your mind “Product Development Organization” and you will start to understand why CD3 is flawed.

Let’s bring this back to the complex product development domain, however. As with most things concerning flow, Don Reinertsen is way ahead of me and everyone else in the community. In his book “Flow” book he actually discusses the contexts where decision algorithms like CD3 are most applicable. Specifically, he states that CD3 only works “when we have reliable estimates of delay cost and task duration.” I would highlight the words “reliable” and “and” in that sentence. Most domains have neither reliable estimates of delay cost nor duration. Far fewer have both. What this paper has shown is that in those situations, you are far better off to control for duration and simply choose value at random.

Allow me to also reiterate that if you are lucky enough to live in a context where value and duration are well known upfront (and easily verified to be accurate after delivery) then by all means use CD3--it really is a good value optimization algorithm in those settings. Some examples of those domains might be a highly regulated industry where compliance demands implementation of some features; or a contractual environment where you are legally bound to deliver certain functionality; etc. However, I believe most companies in the complex product development domain don’t fit this categorization.

Further, I would hope I would never say to not use relevant information when making a decision. If you have any reliable information around CoD, then you should definitely use it. Even then, however, you will get tremendous benefit from breaking your items up into the smallest possible pieces. Just remember that in contexts where uncertainty dominates less time should be spent in upfront planning and estimation, and more time should be spent in actually doing the work (driving out uncertainty). The ideal is to validate that you have either a winning or losing strategy as quickly as possible and move on to the next thing. Your optimal strategy over the long term is to place as many bets as possible because you don’t know which ones will hit.

So, to sum up, in order to maximize economic value over the long term:

1. If you focus on one thing, focus on duration (break items up if it looks like they are taking too long to finish).

2. Prioritization and sequencing order doesn’t matter. Choosing at random is as good a method as any (assuming #1).

3. Pay attention to Ageing—you’ll need an objective measure of “how long is too long” for an item to complete.See my two books listed below for more information.

4. Limit WIP

Epilogue

Most teams (and organizations) make suboptimal prioritization/value decisions every day because they are forced to make those decisions under:

	Conditions of scarcity (not enough time, money, or people)
	Conditions of stress (customers want their requests handled right now and delivered yesterday)
	Conditions of uncertainty (imperfect information about their current state and future state)

These poor decisions adversely affect their ability to effectively, efficiently, and predictably deliver value to their customers. While teams will not be able to change these conditions, they can learn to make better decisions by embracing them.

And remember, CD3 is bollocks! Good luck!

It is still possible to start too many things at once, but that is where the principles of flow and pull systems come in. If you aren’t paying attention to those, then it doesn’t matter what prioritization scheme you use—they will all be equally bad.

From a mathematical perspective, another option here is that the chosen input value probability distribution itself is *not* stationary—that is, the value probability distribution changes over time. This change could result from changing customer needs, changes in business climate, etc. A non-stationary input value distribution is a very likely possibility thus emphasizing the point that it would be extremely dangerous to assume that the value distribution going into the CD3 calculation is the same as the real value distribution that exists at the time when the item is delivered.

Simulation Set Up

Let us consider a fictional company MakeMoney Inc. This is a for profit company that releases a subscription product and can create value with each feature delivered. As features are delivered, the company makes money and we keep a running tally of how much money the company has made over a period of time (100 weeks). MakeMoney Inc. works with a strict WIP limit of working on one feature at a time. The company only picks up the next feature when the previous one has been completed and is delivering value to customers. While MakeMoney Inc. is very good about limiting WIP, it does not do the following things –

	There is no specified prioritization scheme for which project to pick up next.
	Projects are not right-sized and can range anywhere from 1 to 20 weeks.

We can setup these parameters in order to simulate the results of the company to find out how much money they would make. We will assume that MakeMoney is working in this fashion for a 100 weeks. There are 10 initial features available to be worked on in the backlog and every 2 weeks a new feature idea is added to the backlog. Each feature delivered can produce value anywhere in the range of 0 to 10,000 points of value. These values are randomly assigned once the feature is delivered. Listed below are the results at the various percentiles after running Monte Carlo simulations with the above parameters.

[image: Dont be a Ditka Figure 6]

We can interpret these results as – after 100 weeks of delivering features, MakeMoney Inc. has a 90% chance of delivering 18,601 points of value and a 10% chance of delivering 45,831 points of value. We will be using these results as our base case in order to make comparisons with other results as we change some parameters.

These results by themselves don’t tell us much. What would be interesting would be to find out what happens if play with the parameters of prioritization schemes and right-sizing of projects. Let us change these one at a time.

What happens if we start asking the team to estimate duration and value of projects before they have been started and use these estimates to do CD3 (Cost of Delay Divided by Duration) prioritization. Important to note that these are purely estimates. The actual value delivered will still be random for each project and duration is still random and not precisely determinable. What do the simulations tell us in this case.

[image: Dont be a Ditka Figure 7]

The results show major improvements in the amount of value produced. MakeMoney Inc. now has a 90% chance of delivering 52,475 points or more and 10% chance of delivering 91,294 points or more. Comparing these to the random prioritization results we can see that across the percentiles just introducing CD3 prioritization drives up the value delivered results on average by 135%.

What happens though if we don’t spend any time estimating value, but estimate just duration. We will now pull these projects purely in the ascending order of duration. The same conditions as before apply, our duration estimates are still not precise and the actual duration might vary from initial estimate.

[image: Dont be a Ditka Figure 8]

Comparing these to the original random prioritization we once again see major improvements. In fact, the improvements in this case are even more pronounced. While CD3 prioritization improved the results on average by 135%, Duration Prioritization (Shortest Job First) improves results on average by 178%. In other words, we gained value by spending time estimating duration and value, but estimating only duration using that for prioritization delivered even more value.

The next set of simulations we want to run are to explore the effect of introducing right-sizing of projects. We are going to go back to the initial configuration of randomly picking projects for MakeMoney Inc. This time though, instead of working on projects regardless of project duration, we will right-size these projects. We will break a feature up into 4 random smaller deliverables if the feature is deemed to be too big (>5 weeks). We will pick the first of these pieces to work immediately and put the others in the backlog for later selection. After each project is finished, the next selection will be made from the backlog at random.

[image: Dont be a Ditka Figure 9]

The results of introducing right sizing are even more outstanding than changing prioritization schemes. While CD3 and Duration prioritizations produced 135% and 178% improvement respectively, the average improvement produced by introducing right sizing is an outstanding 567%. We are almost guaranteed to produce 4 times the value and likely to produce 5-6 times the value when compared to our base case. Also, right-sizing requires less reliance on use of up-front estimated value and duration, which we know to be highly inaccurate.

The immediate result from the above results is that right sizing (ie making smaller bets) has a more powerful impact on value delivered than changing prioritization schemes. The primary reason this works is because we are releasing more features, more often and have the potential of collecting value for each feature delivered. CD3 and Duration based prioritizations also improve value delivery due to the same reason. They, by their nature prioritize shorter projects and hence encourage more frequent delivery. In the absence of right-sizing though, these approached start to suffer when estimates are wildly inaccurate (which is very often the case in the real world). This is not to say that these techniques are inefficient. The bigger point we have made so far is that, if you are to make one intervention to increase the value being delivered, between changing prioritization schemes and right-sizing projects, right-sizing is a vastly superior intervention.

What happens if we treat our prioritization schemes results as the base cases and add right sizing to them. We are going to start with CD3 first, where developers at MakeMoney Inc estimate value and duration, then apply CD3 to prioritize projects. When a project is pulled to start it is right sized in the same manner as described above. The estimated value is randomly redistributed among the 4 pieces of the original project. The first of these pieces is worked and the other 3 are added to the backlog for future prioritization. The results are shown below –

[image: Dont be a Ditka Figure 10]

The results are as should be expected. The two techniques combine to produce an average improvement of 714% over the base case. The addition of right-sizing to CD3 makes it 214% more effective on average when compared to base CD3 itself. Clearly, CD3 works, but it works miracles when combined with right sizing. A more accurate way to say this would be – Right sizing works miracles, but the miracles become even more pronounced when CD3 is added to the mix.

What happens when we do the same with the Duration based prioritization (Shortest Job First)? Again, all the same right-sizing rules apply. Below are the results of the simulations where we use right-sizing with duration based prioritization –

[image: Dont be a Ditka Figure 11]

Not surprisingly these perform better, but somewhat surprisingly, these simulations, on average perform 1580% better than the base case. The combination of right-sizing and duration based prioritization also on average performs 498% better than just pure duration based prioritization. Right sizing creates multiple small options to pick from. Each of these options can potentially deliver large amounts of value. Working in duration order allows for more and more of these individual features being released to production. The combination of these two results in the most value being delivered.

We can summarize the broad findings from these sets of Monte Carlo simulations as the following two points –

	Regardless of prioritization schemes, right-sizing will outperform systems where projects are not being broken up.

	When we are right-sizing our projects, the prioritization scheme that out-performs the three schemes tested is ascending order of duration or Shortest Job First.

Chapter 21 - Ultimate Software Case Study

Author's Note: This Case Study was first published in InfoQ written by Stephen Reid, Daniel Vacanti, and Prateek Singh. This is a like-for-like reproduction of that article. The study is from the year 2016 and the methods described here were evolved even further for 5 years after the publication by the authors of the study. In 2019, Ultimate Software was acquired in a private equity deal of 11 billion dollars at a premium of 20%. The authors of the Case Study are no longer affiliated with the company.

Ultimate Software is a leading provider of Global HR and Payroll software. The company has been ranked on "Fortune's 25 Best Companies to Work For" list for the past 5 years and was named "#1 Best Company to Work For in Tech" for 2016. Ultimate Software has a vibrant "People First" culture. Every layer of management from the CEO to the Team Leads encourages and empowers employees to be innovative and creative when approaching their daily tasks. The company takes great care of their employees, and the motto "People First" applies not only to the users of their products but also to the environment provided to Ultimate's employees.

The development organization at Ultimate is made up of 900 people spread across 25 teams-all 25 of which follow Agile principles. Agile practices are a necessity at Ultimate for two reasons:

	A hyper competitive marketplace
	The need to immediately react to the enactment of federal, state and local laws concerning payroll, taxation and human resources (e.g., The Affordable Care Act)

After failed attempts to do Scrum at scale, Ultimate finally settled on Kanban as its scaled methodology of choice. Kanban provided a framework that went hand in hand with the company’s culture of autonomy. Teams were able to define its own process and apply policies that were specific to their own context. The results of this autonomy of process, which was an extension of the cultural values of Ultimate Software, as you are about to see, speak for themselves.

Background

Ultimate started experimenting with Agile principles (namely, Scrum) in 2005. This initial transition to Scrum provided Ultimate with better visibility into the progress of teams towards wider business goals. However, there were some common sources of interruption that the Scrum did not handle very well. Regulatory changes that required immediate attention often forced teams to throw out plans for their sprints and start work for the new requirements. The ideal small Scrum team size (7-9 members) led to arbitrarily small teams with a very high cross-team coordination costs. Most importantly, though, after trying our hand at Scrum for a while, we did not see any major improvement in productivity.

After struggling with Scrum for a while, Ultimate attempted a "reboot" by retraining the leads of the teams in Scrum principles. This time, however, the training was supplemented with practices from Lean and XP. To our dismay, this reboot still did not provide the hyper-productivity that the company was seeking.

At this point, the leadership in Product Development started to experiment with Kanban. As our first shot with Kanban, we selected the infrastructure team as that team was particularly problematic. Without explicitly changing methodologies from Scrum to Kanban, we started visualizing their work on a board. We also started limiting the number of work items that each member of the team had in progress. The team still performed the scrum ceremonies for a while before eventually deciding to abandon sprint planning and sprint reviews. Limiting WIP and visualizing work had an almost immediate effect on the team. The team was able to keep up with the tickets that were coming their way and were able to stay on track. As the team achieved more by working on less, they fully adopted the principles of flow. Given our success, we repeated this approach with another core Product Development team. This again, turned out to be a success. It wasn’t long before all teams were moved to a Kanban system.

The impact of this move was felt immediately. As Kanban has no explicit limit on team size, it allowed us to collapse business lines into large teams to allow for lower transaction costs. During the initial period of formation of these larger teams, the larger group behaved more like a team of teams. The smaller teams had formed strong bonds and sub-cultures that took some time to become integral parts of a larger team culture. Once the teams started rowing in the same direction, the transitions to the large teams started to bear fruit. The adoption of Kanban also marked the first time that we started to see the hyper-productivity that Agile promised. Kanban principles and flow metrics helped the teams begin to achieve the productivity results that we had been looking for since the start of our Agile journey. These results are discussed in detail in Section 3.

Results with Kanban

It was late 2014 when we renewed our focus on Kanban. We retrained every team in the organization on the importance of Kanban principles in combination with flow metrics. Every team in development attended a 2 day course where the principles of flow and Kanban were laid out. The teams left the training having created the map of their processes together. We focused on the benefits of explicitly mapping out and visualizing process, limiting WIP and managing for flow. This fell in line with our theme of autonomy for teams and individuals. Every member of the team was involved in the exercise of defining the process, deciding the WIP limits and laying out the policies that the team would adhere to. The teams started paying attention to basic flow metrics: Work In Progress (WIP), Cycle Time, and Throughput. If you are not familiar with these concepts, then we highly recommend reading the book "Actionable Agile Metrics for Predictability" by Daniel Vacanti (see references below). The results were far better than we expected and are detailed in the individual team cases outlined below.

The Aces Team

	Team responsible for greenfield development of new Pay Calculation Engine
	60% reduction in Cycle Time for stories from 35 days @ the 85th percentile (using Scrum) to 14 days @ the 85th percentile (using Kanban)
	Lost half the team due to the decision to refocus some resources on other projects, yet recorded a 10% increase in story Throughput

The ACES team started in 2013 as a 16-member Scrum team whose sole responsibility was the development of a new Pay Calculation Engine. In early days of Scrum, the team was widely considered successful because it delivered a consistent velocity. Upon examining the team’s data in the light of flow metrics, however, we discovered that there were extreme inefficiencies in its development process. When remedied, the gained efficiencies resulted in higher productivity and greater predictability.

One of the best charts to demonstrate the predictability of a team is a Cycle Time Scatterplot. The Scatterplots below contrast the performance of the team before and after adjusting their processes based on Kanban principles:

[image: Ultimate Software Case Study Figure 1]

Figure 1: ACES Team Cycle Time Scatterplot Before Kanban (left) and After Kanban (right)

The left chart in Figure 1 above shows that when the team was using Scrum practices, 85% of its stories took 30 days or less to complete. A 35-day Cycle Time in and of itself is not necessarily bad unless you put it in the context of the fact that the team was running 14-day sprints. Further, 50% of the stories completed in that same time frame took 15 days or less to complete. What that means is that stories that started at the beginning of a sprint only had about a 50% chance of completing within that same sprint. This is not the picture of predictability that the Scrum velocity metrics would lead us to believe.

After taking note of the Scatterplot, the team began to dive into the reasons why stories were taking so long to complete. What they discovered was that most long-lived stories were sitting in the "Ready for QA" column for extended periods of time. That was a problem because "Ready for QA" is a queuing column where stories just sit and are not actively worked on. These "waiting" columns are the low hanging fruit of process improvement and so it was "Ready for QA" that the team decided to attack first by putting a WIP limit of 5 on that column. The team also chose to prioritize concentrating on work that has been in progress the longest to achieve a consistent rate of finishing work rather than allowing stories to age indefinitely. This decision meant that developers could not pull in new work if there were 5 or more things waiting for QA. They would instead have to go help with the testing of the product. This implication was discussed and accepted by the team as the appropriate behavior to ensure the flow of work.

The result of these policy changes were almost immediate. From that point forward (see the right chart in Figure 2) the team was able to get 85% of their stories done in 14 days or less. Throughput for ACES also increased from 1.07 stories per day to 1.41 stories per day. This was achieved in the same time period when the team size was reduced to half of the original size. These modifications did not include changing the size of stories or working overtime. The team continued to hone their flow-focused process by further lowering the WIP limit on the Ready for QA column and encouraging the various disciplines on the team to help each other out in order to make sure none of the items on the board age beyond their 85th percentile. This meant more testing was being done by developers and at times more development work was being done by testers. Eventually the lines between the roles became very blurred. This helped the team became a very well-functioning and close knit group. They understood the demands of different roles better and solved problems as a collective.

Payroll Team

	Responsible for core payroll functionality in a context characterized by frequent interrupts of urgent customer requests.
	79% reduction in average queuing time for stories from 8.84 days to 1.88 days
	69% reduction in story Cycle Time from 36 days @ the 85th percentile to 11 days @ the 85th percentile

The Payroll team maintains and develops the core payroll capabilities for Ultimate Software’s flagship product, Ultipro. This is a 30-person team formed in 2009 by combining three separate smaller Scrum teams. It should be noted that this team had a consistent history of being interrupted by urgent customer issues (think about how upset you might be if your paycheck was not calculated correctly or distributed on time).

After Kanban re-training in 2015, the Payroll team immediately changed the way they worked. One dramatic change they made was to lower their WIP limits on their board below the total number of people on the team. The idea behind this change was to promote pairing and remove knowledge silos. This also left slack in the system to allow for the team to deal with emergency customer issues when they came up. The adoption of such a strict WIP limit meant more pairing on the less commonly understood areas of the system. Some of the individuals on the team reluctantly agreed to the change and tried it out for themselves. This forced them to adopt practices like test first, pairing and cross discipline collaboration. The result of embracing these policies and practices was immediately visible in how long it was taking the team to complete their stories. The amount of time stories spent in queuing states decreased dramatically over time and as a result the Cycle Times for the team went through a dramatic decrease as well. The table below shows the faster Cycle Times since the team’s training at the end of March 2015.

[image: Ultimate Software Case Study Figure 2]

Figure 2: Payroll Cycle Times vs. Queuing Times

Notice from Figure 2 that the net active time that the team was spending on stories did not change. By limiting their WIP, the team was able to cut down the time the story was just sitting on the board. As the team got more efficient in the use of a Kanban system and started tweaking their process policies, they were able to gain greater consistency in story completion times (at the 85th percentile-again, see Figure 2). The teams taking control of their own processes was a test of one of the main underpinnings of the cultural norms of Ultimate Software - Autonomy. In the case of Payroll and almost every other team in development, the managers took a step back to act as coaches, so that the team can have the autonomy to adjust the way they work. The teams, for the most part, did not see this as an extra burden, but instead relished the increased flexibility.

The greater predictability of Cycle Times had two immediate effects. First, the team was able to deliver value to the customers faster and more regularly. Second, when an emergency issue did come up, the team could ask the question of "Can this wait until we finish one of the items we are currently working on?". As work items were getting done faster, there was a regular stream of people freeing up to pick up the next item. With a team member freeing up on a daily basis, the team could ask the requesting party to hold off for a couple of hours or till the next morning. In case of absolute emergencies though, the paired team members could break the pairs in order to deal with the escalations. The same question could not be asked if the team was taking upwards of 20 days on average to finish work items.

The manager of the team had this to say about their experience with Kanban principles:

"At first we laughed at the thought of intentionally limiting our Work In Progress and simplifying our Kanban board. We truly believed that this approach would "never work for our team". That was before April’s Kanban training. We transformed our board, changed the format of our Standup and implemented sensible WIP limits and the way we work changed forever.

Before Kanban 2.0, we thought we must be "slacking" if we had fewer than 40 stories on the board. Today we rarely break 20. Much to our surprise we discovered that the ideas from our training really do work for us! …This lets us adjust our feature work more rapidly and deliver higher quality features. As a manager, it’s now possible for me see to all of the team’s work at a glance and pinpoint areas of concern before catastrophe strikes! Finally, having stable cycle-time and Throughput data allows us to truly predict our capabilities for future release planning and emergency requests from Production.

Today we laugh, or cry, when we think about the way we worked before!"

-Leighton Gill
Manager of Software Engineering"

Organization Wide Impact

The improvements outlined above were not limited to just these two teams. In fact, the advances shown here were largely exhibited by all teams across the entire development organization. There was a marked increase in both the number of stories completed and the number of features completed between 2014 and 2015. The shorter story Cycle Times translated into faster completion of features. Faster completion of features translated into a dramatic increase in the total number of features delivered to customers: from 176 in 2014 to 411 in 2015. Looking at the month over month comparisons, every month in 2015 was more productive than the same month in 2014.

[image: Ultimate Software Case Study Figure 3]

Figure 3: Month Over Month Comparisons of Features Completed

Ultimate Software’s culture played a great part in aiding these transformations. The autonomy provided to employees and management trusting that employees will do the right thing for the business was a catalyst in the adoption of these practices. The team members rarely displayed a "not my job" attitude and responded to management’s trust by donning different hats to ensure flow of value through the development pipeline.

These organization wide improvements had the ultimate effect of streamlining our release planning process. That Cycle Times were so predictable and Throughput was so stable that it allowed us to experiment with more sophisticated planning techniques-the most important of which was Monte Carlo Simulation.

Monte Carlo Simulation and Probabilistic Release Planning and Tracking

Monte Carlo Simulation (MCS) is a forecasting technique where a process’s past data is used to simulate a system’s future performance. The simulation technique produces a summary of risk levels that the business can use to determine how much risk it is willing to accept. We don’t have space to go into too much detail about what MCS is and how to use it, so we invite you to explore the method on your own.

Release Planning

MCS is particularly useful to figure out the probability of meeting a certain delivery date given the number of stories needed to be done by that date. The simulations, run at different points in the release can tell us if the team is falling behind on its commitments, is on track to meet its date, or can pull more work into the release. As opposed to getting a singular result by using averages, Monte Carlo provides a wider range of possible results with varying degrees of confidence. This gives the team the ability to commit at whichever level of confidence the team and the product manager agree to. Since the method uses team’s past data, the team has the ability to both influence the forecasts and determine the confidence level at which they want to make a commitment.

At Ultimate, each team’s release is independent which means that each team has its own release dates. Using the story data from the teams as outlined in Section 3, and feeding that data into an MCS, we have put together a release dashboard that tracks each team’s progress toward its target dates. Below is a screenshot of the Monte Carlo release tracking dashboard that gets updated every hour each day to reflect the completion likelihood for every release currently in progress. The information here also includes the code freeze date for the release, stories remaining to be closed and the date where we can say with 85 percent confidence that the team will be done with the stories in the release.

Usually the teams commit to higher levels of confidence. This means that they are committing to fewer stories that they would have committed to had they used an average to make the commitment. Once the initial commitment has been met, the Monte Carlo predictions start telling us how likely is the team to complete the new work that they have pulled in. This empowers the team to commit to new work when they have capacity to do so. As the date for the release gets closer the possibility of missing the release (if the team has slowed down for any reason), increases. Each team figures out the point at which they are in the red zone and starts having conversations about risk mitigation at that point.

[image: Ultimate Software Case Study Figure 4]

Figure 4: Monte Carlo Dashboard

This dashboard gives us a single place where the organization can look and see the risk of any given release completing on time. This dashboard is of such importance to our Agile practice at scale, that it becomes the focal point of an organization-wide daily tactical meeting called the Daily Product Review.

The Daily Product Review

The Daily Product Review (DPR) is Ultimate Software’s successor to the Scrum of Scrums. The DPR, which is a 15-minute daily meeting, brings together the key metrics of Cycle Time and release completion likelihood in one place to provide the overall scorecard for the development organization. It reinforces the metrics and practices we care about on a daily basis. Ultimate has a large development organization where teams run autonomously and (for the most part) independently. The DPR helps the leads of the teams come together to reaffirm that we are all part of a greater whole. Below are some pieces of the DPR board that help us reinforce and scale these practices.

A slightly modified version of the Monte Carlo dashboard in Figure 4 finds its way to the DPR board. This view is updated only once a day in the morning and for the Stories Remaining and Completion Likelihood columns contains the changes since the same time on the previous day. When a team’s release starts to go red or starts slipping further into red they usually respond with any combination of the following strategies:

	Reducing scope of the release.
	Moving the date for the release.
	Working extra hours to bring the remaining stories count down.
	Or some combination of parts or all of the above.

Another part of the DPR board is the individual Team Updates tiles. These tiles are color coded green, yellow or red based on the number of stories that the team has above the 95th percentile of the Cycle Times for their stories. The team can add notes to their tiles with the dependencies that are causing the stories to take a long time and the course of action they are taking to address the long running stories. The assumption here is that anything exceeding the 95th percentile is probably something out of the team’s control. As can be seen in the updates from the Payroll team below, there first story is blocked due to an external dependency and the second was blocked due to the lack of proper builds. The manager of the development team which is blocked, usually takes the lead in trying to resolve the issue. With a shared understanding of how important the resolution of these blockages is to the predictability of the teams, managers of the teams causing the blockage, work to resolve these through the course of the day.

[image: Ultimate Software Case Study Figure 5]

Figure 5: Team Updates in DPR

Moving Beyond Development

Adopting Agile techniques has provided the benefits of increased productivity and predictability. For an overall perspective though, Ultimate Software is in a waterfall sandwich. The Agile development organization sits in the middle of traditional sales and support organizations and traditional deployment and activation organizations. As a part of the next evolution of Agile and flow based thinking at Ultimate Software, we are expanding out to organizations that flank development. Ultimate’s culture that encourages managers and employees to experiment and make the right decisions for Ultimate, has aided greatly in spreading the principles outside of core development. Departments within Ultimate Software have started pulling the services of the Agile coaches within development to help them with the same principles.

Our closer engagement with Product Strategy and the ability to give them higher degree of predictability has vastly improved Development’s ability to assist with support issues without interrupting active work. Tier 3 support has also adopted Kanban practices in order to improve their ability to support our customers. Product Strategy is able to utilize the predictability and productivity gains of Development to provide better guidance to Sales on upcoming products and features. As we continue to improve the predictability that we can provide Sales, we can start creating feature requests and priorities in conjunction with Sales. Features can then be pulled all the way through the value stream and tracking of cycle time and throughput can allow us to make and keep more accurate commitments to our customers.

While the upstream expansion helps us get better at the creation of value, expanding downstream to deployment and activations is where we can improve the delivery of value to our customers. As Ultimate Software has started working on new products, we have pulled deployment activities onto the teams. For our older products, we have always done a handoff to our Sass deployment group. We broke the “over the wall” mentality by embedding deployment engineers on the development teams for new products and helping them educate the rest of the team on maintaining their own deployment pipelines. The teams were initially concerned about taking on the additional responsibility. Those fears have abated as the teams have realized the support that is available to them form the rest of the organization. This practice has also greatly reduced the occurrences of production environment surprises. Since the teams help build the environments that they deploy code to, the code does not behave unexpectedly when pushed to production. These teams are supported by three groups outside of Product Engineering. Groups that manage the Build and Deployment infrastructure for the products being developed have also adopted Kanban principles and started measuring cycle times for making infrastructure available to teams. They have established SLAs for different types of requests and have become predictable with these metrics.

We can now see a feature make its journey all the way from a request generated in Sales to Product Strategy, to Development and finally to Production. Once we are able to track the progress of a feature in this manner, we can start identifying opportunities for improvement in the inception-to-delivery cycle. The organization as a whole can identify where features get stuck and apply our understanding of flow to eliminate the time features have to wait in queues across the entire organization.

Another aspect that is downstream from the development and even the deployment group is activations. Activations is the group that helps a new customer go live with Ultimate Software’s products. The activation process can take up to a year and can involve multiple teams. Every day that a customer is in the activation phase, Ultimate Software is investing time, but not receiving full revenue. This is an area that can use the benefits that the Development Organization has gained from flow and Agile practices. Development has started working with Activations to share the principles and practices that have made a positive difference in the predictability and speed of completion for deliverables.

Moving Kanban outside the lines is the next large step for Ultimate Software. We have already started moving in this direction through our work with support and deployment teams. Ultimate continues to scale out its Agile implementation without using any established frameworks. Setting up the right channels of communication and visualizing our work in a manner that is easily understood by all is at the crux of how Ultimate has been able to successfully adopt and evolve Agile at scale.

Conclusion

Through the innovative use of flow practices and principles Ultimate has been able to achieve many of the benefits of a Lean-Agile implementation without the use of a heavyweight framework:

	Improved Productivity: More features released to customers more quickly means higher overall customer satisfaction
	Streamlined Planning: Using techniques like Monte Carlo Simulation, the time it takes to plan a release has been reduced from days to minutes
	Early Warning Signals: Signs that a given story or a given release may be going off track are observed much earlier in the process allowing us to react and adjust
	Easily Pivot: Without a detailed understanding of our true capacity we would not be able to pivot to handle new customer requests and/or government regulations

We have been able to recognize these benefits much more quickly and at a fraction of the cost of a more traditional scaled Agile implementation. The practice outlined here are ones which any organization-regardless of size-can easily pick up and see immediate results.

Acknowledgments

We’d like to acknowledge Rafael Santos and Fernando Trigoso who while no longer at Ultimate Software played key roles in our early agile and Kanban success.

Endnotes

Chapter 1 - Ford's Folly in Brazil

	PBS: "The Life of Henry Ford" https://www.pbs.org/wgbh/americanexperience/features/henryford/

	The Henry Ford: "Ford Rubber Plantations in Brazil" https://www.thehenryford.org/collections-and-research/digital-resources/popular-topics/brazilian-rubber-plantations/
	Macintyre, Ben: "Dearborn-on-Amazon" https://www.nytimes.com/2009/07/19/books/review/Macintyre-t.html

	Romero, Simon: "Deep in Brazil’s Amazon, Exploring the Ruins of Ford’s Fantasyland" https://www.nytimes.com/2017/02/20/world/americas/deep-in-brazils-amazon-exploring-the-ruins-of-fords-fantasyland.html
	NPR: "Fordlandia: The Failure Of Ford's Jungle Utopia" https://www.npr.org/2009/06/06/105068620/fordlandia-the-failure-of-fords-jungle-utopia

	The Henry Ford: "Dearborn in the Jungle:Why Belterra Flourished Where Fordlandia Failed https://www.thehenryford.org/explore/blog/dearborn-in-the-jungle-why-belterra-flourished-where-fordlandia-failed

	Womack, Jones, and Roos. "The Machine That Changed The World"

	Lean Enterprise Institute: "Lean Thinking and Practice" https://www.lean.org/lexicon-terms/lean-thinking-and-practice/

Chapter 2 - Lean, Kanban, and Scaling

	Womack, Jones, and Roos. "The Machine That Changed The World"
	Coleman, John and Vacanti, Daniel S. The Kanban Guide - https://kanbanguides.org/
	Johnson, Colleen and Singh, Prateek, and Vacanti, Daniel (2021). The Kanban Pocket Guide https://prokanban.org/kpg/

Chapter 3 - Identifying Value

	Coleman, John and Vacanti, Daniel S. The Kanban Guide - https://kanbanguides.org/

	Starling, Julie: "Schrodinger's Work Item and the Quest for Value" https://prokanban.org/blog/schrodingers-work-item-and-the-quest-for-value/

Chapter 4 - Mapping the Value Stream

	Wester, Julia: "Designing Your Board to Focus on Flow" https://prokanban.org/blog/designing-your-board-to-focus-on-flow/
	Johnson, Colleen and Singh, Prateek, and Vacanti, Daniel (2021). The Kanban Pocket Guide - https://prokanban.org/kpg/

Chapter 5 - Creating Flow

	Vacanti, Daniel: “Actionable Agile Metrics for Predictability”

	Gonzales Ulises: "Revolutionizing Your Workflow: The Impact of Kanban Policies" https://prokanban.org/blog/revolutionizing-your-workflow-the-impact-of-kanban-policies/
	Coleman, John and Vacanti, Daniel S. The Kanban Guide https://kanbanguides.org/
	Wheeler, Donald: Understanding Chaos

Chapter 6 - Establish Pull

	Womack, Jones, and Roos. "The Machine That Changed The World"

	Johnson, Colleen and Singh, Prateek, and Vacanti, Daniel (2021). The Kanban Pocket Guide - https://prokanban.org/kpg/

	Singh, Prateek: "Optimal Operating Capacity" https://singhpr.medium.com/optimal-operating-capacity-wip-limits-21c91db25c2e

Interlude

	Coleman, John and Vacanti, Daniel S. The Kanban Guide - https://kanbanguides.org/

Chapter 7 - Planes, Trains, and Automobiles

	IMDB: Planes, Trains, and Automobiles https://www.imdb.com/title/tt0093748/
	Parker, Dylan: The Real Meaning of Steve Martin and John Candy's Planes, Trains, and Automobiles https://www.thethings.com/what-is-the-real-meaning-of-planes-trains-and-automobiles/

Chapter 8 - Strategic Alignment

	Bas, Andriy. "A History of Objectives and Key Results (OKRs)" https://www.plai.team/blog/history-of-objectives-and-key-results

	McKinsey: Enduring Ideas: The Three Horizons of Growth https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/enduring-ideas-the-three-horizons-of-growth

Chapter 9 - Operating The Board

	Coleman, John and Vacanti, Daniel S. The Kanban Guide - https://kanbanguides.org/
	Johnson, Colleen and Singh, Prateek, and Vacanti, Daniel (2021). The Kanban Pocket Guide - https://prokanban.org/kpg/

Chapter 10 - Blockers and Dependencies

	Johnson, Colleen and Singh, Prateek, and Vacanti, Daniel (2021). The Kanban Pocket Guide - https://prokanban.org/kpg/

Chapter 11 - Prioritization

	Reinertsen, Donald. “The Principles of Product Development Flow”

Chapter 12 - Forecasting

	Vacanti, Daniel: “When Will it be Done?”

	Vacanti, Daniel. “Actionable Agile Metrics for Predictability”

	Vacanti, Daniel. "Actionable Agile Metrics Volume II: Advanced Topics in Predictability"

Chapter 13 - Predictability

	Shewhart, W. A. Statistical Method from the Viewpoint of Quality Control, 1939

	Wheeler, D.J. (2003). Making sense of data. SPC Press

	Vacanti, Daniel. "Actionable Agile Metrics Volume II: Advanced Topics in Predictability"

	Little, J. D. C. A proof for the queuing formula: L = λ W. Operations Research. 9(3) 383–387, 1961

Chapter 14 - Effectiveness

	Stephen-Davidowitz, Seth "Everybody Lies". Harper Collins, 2017.

	Gladwell, Malcolm. Blink : the Power of Thinking without Thinking. New York :Little, Brown and Co., 2005.

Chapter 15 - Efficiency

	Coleman, John and Vacanti, Daniel S. The Kanban Guide - https://kanbanguides.org/
	Vacanti, Daniel. “Actionable Agile Metrics for Predictability”

	Leopold, Klaus. “Practical Kanban”

	Savage, Sam: "The Flaw of Averages"

Chapter 16 - The Sheep of North Ronaldsay

	A Vision of Britain Through Time https://www.visionofbritain.org.uk/unit/10197247/cube/TOT_POP
	MacEwen, Terry: "The Seaweed Eating Sheep of North Ronaldsay" https://www.historic-uk.com/CultureUK/Sheep-Of-North-Ronaldsay/
	Common Problems with the Scaled Agile Framework (SAFe) https://projectmanagementacademy.net/resources/blog/common-problems-with-safe/

Chapter 18 - Conway is Killing You and Little is Helping

	Little, J. D. C. A proof for the queuing formula: L = λ W. Operations Research. 9(3) 383–387, 1961

	Conway, Melvin: How do Committees Invent, Datamation Magazine, 1968

Chapter 19 - The Shapes of Backlogs and Teams

	Schwaber, Ken and Sutherland, Jeff (2020). The Scrum Guide. ScrumGuides.org

Chapter 20 - Don’t Be a Ditka

	Adventures with Agile. “Cost of Delay: Theory & Practice with Donald Reinertsen” https://www.youtube.com/watch?v=OmU5yIu7vRw

	Arnold, Joshua. “Cost of Delay Divided by Duration” http://blackswanfarming.com/cost-of-delay-divided-by-duration/

	Arnold, Joshua. “Experience Report – Maersk Line” http://blackswanfarming.com/experience-report-maersk-line/

	SBE Council. “Facts & Data on Small Business and Entrepreneurship” http://sbecouncil.org/about-us/facts-and-data/

	Cutler, John. “Better Decisions (By Forecasting Cycle Time as a Team)” https://hackernoon.com/better-decisions-by-forecasting-cycle-time-as-a-team-6d36690f511f

	Duke, Annie. “Thinking in Bets”

	Leopold, Klaus. “Practical Kanban”

	Cade Massey, Richard H. Thaler. “Overconfidence vs. Market Efficiency in the National Football League” http://www.nber.org/papers/w11270.pdf

	Reinertsen, Donald. “The Principles of Product Development Flow”

	Thaler, Richard H.. Misbehaving: The Making of Behavioral Economics (pp. 279-280). W. W. Norton & Company. Kindle Edition.

	Vacanti, Daniel. “Actionable Agile Metrics for Predictability”

	Vacanti, Daniel. “When Will It Be Done?”

Chapter 21 - Ultimate Software Case Study

	Vacanti, Daniel. “Actionable Agile Metrics for Predictability”

Bibliography

Adventures with Agile. “Cost of Delay: Theory & Practice with Donald Reinertsen” https://www.youtube.com/watch?v=OmU5yIu7vRw

Arnold, Joshua. “Cost of Delay Divided by Duration” http://blackswanfarming.com/cost-of-delay-divided-by-duration/

Arnold, Joshua. “Experience Report – Maersk Line” http://blackswanfarming.com/experience-report-maersk-lin

Coleman, John and Vacanti, Daniel S. “The Kanban Guide” https://kanbanguides.org 2020.

Cutler, John. “Better Decisions (By Forecasting Cycle Time as a Team)” https://hackernoon.com/better-decisions-by-forecasting-cycle-time-as-a-team-6d36690f511f

Deming, W. Edwards. Out of the Crisis. The MIT Press, 2000.

Duke, Annie. Thinking In Bets. Portfolio, 2018.

Gladwell, Malcolm. Blink : the Power of Thinking without Thinking. New York :Little, Brown and Co., 2005.

Hubbard, Douglas W. How to Measure Anything: Finding the Value of Intangibles In Business. John Wiley & Sons, Inc., 2009.

Johnson, Colleen, and Singh, Prateek, and Vacanti, Daniel. The Kanban Pocket Guide 2021. https://prokanban.org

Leopold, Klaus. Practical Kanban. 2017.

Little, J. D. C. A proof for the queuing formula: L = λ W. Operations Research. 9(3) 383–387, 1961.

Little, J. D. C., and S. C. Graves. “Little’s Law.” D. Chhajed, T. J. Lowe, eds. Building Intuition: Insights from Basic Operations Management Models and Principles. Springer Science + Business Media LLC, New York, 2008.

Reinertsen, Donald G. The Principles of Product Development Flow. Celeritas Publishing, 2009.

Romero, Simon: "Deep in Brazil’s Amazon, Exploring the Ruins of Ford’s Fantasyland" https://www.nytimes.com/2017/02/20/world/americas/deep-in-brazils-amazon-exploring-the-ruins-of-fords-fantasyland.html

Savage, Sam L. The Flaw of Averages. John Wiley & Sons, Inc., 2009.

Schwaber, Ken and Sutherland, Jeff (2020). The Scrum Guide. ScrumGuides.org

Shewhart, W. A. Statistical Method from the Viewpoint of Quality Control, 1939.

Singh, Prateek and Vacanti, Daniel S. DrunkAgile YouTube Channel www.youtube.com/channel/ UC758reHaPAeEixmCjWIbsOA

Stephen-Davidowitz, Seth. Everybody Lies. Harper Collins, 2017.

Vacanti, Daniel S. Actionable Agile Metrics for Predictability ActionableAgile Press, 2014.

Vacanti, Daniel S. When Will It Be Done? ActionableAgile Press, 2017.

Wheeler, D.J. (2003). Making sense of data. SPC Press.

Wheeler, D.J. (2000). Understanding Variation. SPC Press.

Womack, Jones, and Roos. "The Machine That Changed The World"

Acknowledgments

This book is a result of the hard work of numerous people. All of them have shared with me their experiences and wisdom, that have in one way, or another been incorporated in this book.

No one, in the past 10 years has done this more than Daniel Vacanti. Dan's knowledge, encouragement, mentorship, and guidance have helped me grow both personally and professionally. I was lucky to have been introduced to Dan in 2013. Now, a decade later, fueled by numerous arguments over glasses of whisky, I am indebted to him for not just mentoring me, but also being a friend who is always available to talk, critique, and share. Here is to many more Drunk Agile episodes and books, Dan!

The person who introduced me to Dan was Steve Reid. Steve is the greatest boss I have ever worked for. That is not simply for the reason that he helped me grow while he was my boss. This is for the reason that Steve's approach and demeanor till date influences me. Steve taught me how to approach complex people and organizational problems while remaining calm. He also supported me on multiple occasions and that support propelled my growth. I am aware of at least two occasions (I am sure there were more) when people approached Steve with requests for me to take down some of my work, and he flatly refused. Thank you, Steve, for all your support and guidance over the years.

The ideas in this book would never have been validated without the rest of the Process Improvement leadership team at Ultimate Software - Ernesto Diaz, Becky McNeeley, and Russell Roach. You all helped create and influence the best scaled flow based agile program I have ever been a part of. I learned so much from all of you. Thank you, Russell, for your candor, Becky for your thoughtfulness and Ernie for repeatedly showing your teams the light (and for the coffee).

ACES, Payroll, and Compliance teams at Ultimate Software had the misfortune of being directly managed by me. You all took the concepts and ran with it. You made my life as a manager so much easier. The Payroll team was the greatest mix of experience and enthusiasm I have ever seen. Compliance was 40 people working in perfect harmony to deliver timely products. ACES though, stood out. I do not have words for how incredible that team was and how till date, every member of that team affects my thinking.

ProKanban.Org is the most thoughtful and inclusive community I have seen built to promote Kanban and Agile. Colleen Johnson deserves most of the credit for this. Always the voice of reason when Dan and I have crazy ideas. Colleen is professionally and personally an inspiration. She was the first person I saw speak about Kanban for higher level flow. Thank you, Colleen, for inspiring me and for building a safe and inclusive community.

Thank you to the creators of SAFe, without your misguided framework, I would not have anything to write about.

Thanks to Heidi Helfand for all the great work she has done. Working with Heidi was a great learning experience. She provided a much needed different perspective on the evolution of an organization and managing that change. Thank you for being an excellent leader, a great source of knowledge, and for reviewing a very early version of this book. This book is so much better because of you.

To my community - Janee McConnell, Maria Malaniia, and the PKTs. Every day, we make progress in bringing the knowledge of flow to people. We are putting joy back into people's work lives and have a long way to go. I am proud to be part of this community.

My parents Praveen Singh and Divya Singh have always been the foundation for everything. Amongst numerous other qualities, they tried to instill in me the constant pursuit of knowledge and a work ethic that centers around being diligent. I have always tried to live up to everything that the two of you taught me. Thank you, Papa, for being my first and greatest teacher. Thank you Mummy for shaping me into the person I am today.

My brother Harsh and I are as similar as we are different. His level of dedication as a husband, father, and son makes me proud every day. I do not think either of us would have been the same without each other. Harsh, we need to grab a drink soon, regardless of when you read this.

My lovely daughter Miranda Sanner, with her unique perspective has taught me so much. Her perspective has always helped me evolve my thinking. She also designed this book's cover. Our endless talks over coffee and drinks are something I always look forward to. I learn as much from them, as I hope you do. I am so proud to be your dad.

Nisha, you can't read this, but thanks for being the best company one can ask for.

My love, my best friend, and my partner in everything, my wife - Yvette Singh. You make all the magic happen. Your support makes everything in life easier. From the book perspective - thank you for reviewing every draft of this book, you were the driving force behind this book getting done. From the life perspective - thank you for putting up with me. I am proud to be your husband and am lucky to be loved by you.

Thanks for reading.

Prateek Singh

October 2023

About the Author

Over the past two decades Prateek Singh has been working to shape, improve and lead software development teams and products. He has worked on and led multiple cross-functional agile teams. He has helped refine the processes and vision for these team, helping them produce products and services for customers.

Prateek's career started as a software developer. He eventually moved into multiple team lead roles where mentoring, identifying and removing impediments, ensuring sustainable project pace and ensuring that the team delivers high-quality products were his main responsibilities. Prateek has used Scrum, Kanban, and Agile principles to ensure the success of the team via continuous improvement.

As a manager, Prateek has been a mentor and a guide helping employees develop their career paths and help them achieve their goals. Motivating and helping people realize their potential.

Prateek was one of the leaders of data-driven agile transformation efforts across Ultimate Software, He coached individuals, teams, leadership, and the organization as a whole on how to be more lean and nimble in their approach. He led a team of Agile Coaches who help scale agility across 90+ teams.

Prateek contributes to the broader Agile development community by regularly speaking at conferences, writing blog posts, and co-hosting the Drunk Agile podcast.

Currently, Prateek is an Independent Agile Consultant, helping organizations. Prateek is also the Head of Learning and Development at ProKanban.Org where he develops courses and supports the trainer community.

OEBPS/image_rsrc2BD.jpg
Team

Team

Team

Team

Team

UL UL

OEBPS/image_rsrc2B0.jpg
() ActionableAgile™ Monte Carlo: When ©2013.2020 Actinatieagla Sotvare 38

‘Throughput Basis
"
2
o
H
g .
2 .
.
2
o
0140 2023 012023 01 Aug 2023
Monte Carlo (10K Trials)
:
3

25002023 2550228 Sop 2023 Teou202s
'Date When 30 tems Complete.

OEBPS/image_rsrc2BM.jpg
1D Scenario - 1 |Scenario - 2 |Scenario - 3 |Scenario - 4
1 85.7% 91.2% 88.4% 90.0%
2 84.1% 80.6% 88.0% 89.6%
3 86.1% 66.1% 87.5% 89.7%
a4 60.0% 56.2% 70.9% 72.1%
5 45.1% 47.7% 48.1% 57.5%
6 28.4% 37.6% 33.7% 39.7%
7 13.3% 29.2% 18.8% 22.9%
8 6.9% 22.8% 10.5% 14.9%
9 3.6% 17.1% 5.5% 7.4%
10 1.2% 13.6% 2.5% 4.4%

OEBPS/image_rsrc2BX.jpg
[Result Percentile Random Random
Prioritization, No | Prioritization, Right
Right Sizing Sized Projects

90th Percentile 18601 157785
80th Percentile 22285 171258
70th Percentile 25165 183016
60th Percentile 27974 192107
50th Percentile 30433 200612
40th Percentile 33506 208877
30th Percentile 36728 218940
20th Percentile 40462 227761
10th Percentile 45831 244107

OEBPS/image_rsrc2AF.jpg
2 4 4 3
Up Next Analyzing Creating | Validating

Scaled Board With []

E5i C]
pics
-/ /=7
|
\
\
\

ras
OiC

1 37 4 2 13 2
Up Next Anawsi/s Dev/QA Dorie Developing | Validating Done

- - ..
| mm | L =L
-, (] @

OEBPS/image_rsrc2AZ.jpg
() ActionableAgile™ Monte Carlo: When ©2013.2020 Actinatieagla Sotvare 38
Throughput Basis.
..
°
o
E
g .
§ .
.
2
o
n s L) T2z
Monte Caro (10K Trals)
g
g
8
OSwanSpz 13S0 202 eSwan teswan 20swan CET

'Date When 30 tems Complete.

OEBPS/image_rsrc2A9.jpg

OEBPS/image_rsrc2BF.jpg

OEBPS/image_rsrc2AM.jpg
Customer Retent Market Expansion

Revenue Growth

OEBPS/image_rsrc2AD.jpg
Start

Up Next

Analyzing

il
Joon

Finish

Creating\ Validating

18
il 1

Done

OEBPS/image_rsrc2BV.jpg
[Result PercentilelRandom Prioritization,| CD3 Prioritization

NoRight Sizing | No Right Sizing
90th Percentile 18601 52475
80th Percentile 22285 58926
70th Percentile 25165 63308
60th Percentile 27974 67167
50th Percentile 30433 71188
40th Percentile 33506 75227
30th Percentile 36728 79490
20th Percentile 40462 85068
10th Percentile 45831 91294

OEBPS/image_rsrc2AB.jpg
Up Next Analyzing Creating Validating Done

] I
Joon
I
a0

OEBPS/image_rsrc2AS.jpg
1l IS
Tll@

Up Next

i,

3
Analyzing

—{C_

/

=
__

Creating

Validating

-8

i) JE

OEBPS/image_rsrc2B4.jpg
o
oora0is

OEBPS/image_rsrc2C0.jpg

OEBPS/image_rsrc2AK.jpg
30

26.5

25
20

15

10

0.5

‘e,

OEBPS/image_rsrc2BS.jpg
Time

Cost of i
Delay

OEBPS/image_rsrc2A7.jpg

OEBPS/image_rsrc2AU.jpg

OEBPS/image_rsrc2B6.jpg
10
Doing

=
B
o

OEBPS/image_rsrc2C2.jpg
i

&

Features Completed

IJIJJJI‘IJII

=201 w2015

OEBPS/image_rsrc2BH.jpg
Priority |Scenario - 1 |Scenario - 2 |Scenario - 3 |Scenario - 4
1 90.2% 95.9% 95.8% 96.3%
2 95.1% 96.9% 92.9% 95.0%
3 60.5% 7.0% 78.8% 70.4%
4 99.1% 3.9% 99.2% 99.5%
5 97.6% 92.6% 98.3% 98.5%
6 51.1% 0.2% 69.0% 71.6%
7 43.8% 100.0% 60.5% 66.8%
8 13.6% 0.0% 28.8% 31.5%
9 0.1% 0.0% 1.7% 1.4%
10 0.6% 0.0% 1.7% 1.3%

OEBPS/image_rsrc2BA.jpg
Paulaner Hefe 0.5 5.60 690 460

OEBPS/image_rsrc2BZ.jpg
[Result Percentile Random Duration
Prioritization, No | Prioritization, Right
Right Sizing Sized Projects

90th Percentile 18601 450039
80th Percentile 22285 467315
70th Percentile 25165 478467
60th Percentile 27974 488152
50th Percentile 30433 495300
40th Percentile 33506 501854
30th Percentile 36728 510849
20th Percentile 40462 519673
10th Percentile 45831 532578

OEBPS/image_rsrc2AW.jpg
MUGEEEE . |-

gumgmnE - |= |- -

8k

OEBPS/image_rsrc2B8.jpg
Strategy
Acceptance
Criteria

Use When

Individual Acceptance Criteria fits the
FIRST acronym principles and can be
split out

Questions to ask

Do any of the ACs fit the FIRST acronym principles individually?
Are all of the ACs required in order to receive some feedback
(from anybody)?

Conjunctions and
Connectors

Look for connector words (and, or, i,
etc), dashes, slashes, commas

‘Are there any conjunctions or connectors in the story title?
Are there any conjunctions or connectors in any of the ACs?
Can these conjunctions/connectors be split apart in order to
receive feedback sooner?

Generic Terms &
Plurals

Look for non-proper nouns or other
generic words that could be replaced
with something more specific. Look

for plurals that could be split (pages,
fields, etc.)

Can any of the terms listed be further or more clearly identified?
Are plurals being used anywhere where they could be split up
and processed separately?

User Role or
Persona

More than one role is impacted, and
the functionality is handled differently
for each role

‘Which roles are involved in this story?
Ave different roles impacted differently by this functionality?

Business Rules,

Can be hard to discover - but think
about test cases. Test cases often
imply or hint at business rules that
could be broken out into individual
stories

‘Which business rules apply to this story?
Can simpler rules suffice in order to receive some feedback on
the functionality?

‘Which test scenarios are used to verify this story?

Platform Options | Provide for support of different ‘Which platforms/browsers need to be supported?
platforms. For example, mobile vs | Are all of these platforms/browsers required for a first pass?
tablet, 105 vs Android. Also used for
browser compatibility
Exception Happy vs Unhappy Path ‘What is the happy path?
Processing Are there exceptions and/or edge cases identified in the story?
Operations Based on different operations ‘What operations are involved in this story?
performed. Typically for the Is it necessary that all operations are performed at once in order
management of entities such as to receive some feedback?
customers, etc. (CRUD)
‘Workflow Steps | Identify the steps in the workflow and | What are the workflow steps in this story?

implement it in workflow stages

Can the workflow steps be split and still provide some feedback
on the functionality?

Optimize Now vs
Later

Functional Optimization. Also
referred to Simple to Complex.
Implement simple functionality that
provides enough value. More
complex functionality added later

Can the functionality be simplified and still provide some
value/feedback?

‘What are other ways to handle this functionality that would
allow us to get feedback sooner?

Major Effort

‘A significant effort is required for the
first story. New technical aspects, etc.

Is there some new technology we are implementing?
Is there one part of the story that we don't know how to handle
technically or is new to the TEAM?

OEBPS/image_rsrc2A5.jpg
Scaling
Simplified
m u

A Practitioner’s Guide to Scaling Flow

Prateek Singh

OEBPS/image_rsrc2AP.jpg
1
Up Next

Portfolio Board mm=)
With Epics

3 4
Analysis Dev/QA

(.

0000
B

2 3 3
Up Next Analyzing Creating | Validating

L]
e
Joas
108
080

/ Team Boards With Stories
- 4

Done

2 3 2
Ready Developing | Validating

o
<
=]
™

To Do

o
S¥N
B

o

Done

OEBPS/image_rsrc2B1.jpg
Up Next Analyzing Development Done

Epic: I-Team 2 : Epic: D- Team 2
Forecast: 8/27 Forecast: 8/15

Multiple Team Board (Epic/Feature Level)

OEBPS/image_rsrc2AG.jpg
¢
-
Smw
v Jam
|3
2m.r.
6um.
R
Zz .
a

OEBPS/image_rsrc2BJ.jpg

OEBPS/image_rsrc2AY.jpg
MONTE CARLO WHEN - DATE WITH 70% CONFIDENCE

Up Next Analyzing Development Done

Single Team Board (Epic/Feature Level)

OEBPS/image_rsrc2AN.jpg
Customer Retent...

Expected

6 Months Later...

Market Expansion

Revenue Growth

33.3%

Compliance

Actual

Market Expansion

10.0%

22.5%

Archeticture Shift

27.5%

10.0%
Revenue Growth

Customer Retention

OEBPS/image_rsrc2BC.jpg

OEBPS/image_rsrc2BY.jpg
[Result Percentile Random CD3 Prioritization
Prioritization, No | Right Sized Projects
Right Sizing
90th Percentile 18601 205580
80th Percentile 22285 216802
70th Percentile 25165 226036
60th Percentile 27974 234863
50th Percentile 30433 242481
40th Percentile 33506 250638
30th Percentile 36728 258132
20th Percentile 40462 266853
10th Percentile 45831 279346

OEBPS/image_rsrc2AE.jpg
2 4 4 3

Scaled go'ard With —
pics

1 3 4 2
UBNGE T Auoes | Deofh | ok Developing | Validating | Done

)

@
() - .
=

OEBPS/image_rsrc2AC.jpg
Up Next

Analyzing

Creating

Validating

Done

OEBPS/image_rsrc2BP.jpg
Lifetime Profits Curve

$1M
$900K

Lifetime Profit (S)

Jan1 Feb1 lL

OEBPS/image_rsrc2C1.jpg
MONTH

January
February
March
April

May

June

July
August
September
October
November

AVERAGE
TOTAL CYCLE
TIME

(days)

18.49
20.72
12.77
4.24
9.21
7.83
6.94
6.39
5.05
7.23
8.08

AVERAGE
QUEUING
TIME
(days)

8.84
1141
5.74
0.68
1.91
1.91
2.23
2.63
113
1.56
1.88

TOTAL CYCLE
TIME
85t PERCENTILE
(days)

36
34
27
7

18
13
12
1
10
12
11

OEBPS/image_rsrc2BU.jpg
[Result Percentile Random

Prioritization, No
Right Sizing

90th Percentile 18601

80th Percentile 22285

70th Percentile 25165

60th Percentile 27974

50th Percentile 30433

40th Percentile 33506

30th Percentile 36728

20th Percentile 40462

10th Percentile 45831

OEBPS/image_rsrc2AR.jpg
SLE — 85% of items are done in 120 days or less
3 3 4 3
Up Next Analyzing Creating Validating Done

39 Days

22 Days

130 Days

T B
il
3l

140 Days

OEBPS/image_rsrc2B3.jpg
‘eature B Feature C

Feature A

Forecasted
Date

Time ——

OEBPS/image_rsrc2BG.jpg

OEBPS/image_rsrc2BE.jpg

OEBPS/image_rsrc2BN.jpg
Lifetime Profits Curve

$1IM

Lifetime Profit (S)

Jan1l Time

OEBPS/image_rsrc2BW.jpg
IResult Percentile Random Duration

Prioritization, No | Prioritization, No
Right Sizing Right Sizing

90th Percentile 18601 63916

80th Percentile 22285 70255

70th Percentile 25165 75217

60th Percentile 27974 79700

50th Percentile 30433 83616

40th Percentile 33506 87374

30th Percentile 36728 92342

20th Percentile 40462 97113

10th Percentile 45831 105177

OEBPS/nav.xhtml

Table of contents

		Introduction		The Problem of Scaling

		The Problems with Scaling

		Answering the Key Questions

		The Structure of This Book

		Section I - Setting up our System		Chapter 1 - Ford's Folly in Brazil		A Giant Of The Industry...With A Proven Framework

		Results of The Lift and Shift

		Our Own Fordlandia

		Big in Japan

		The Principles of Lean

		Chapter 2 - Lean, Kanban, and Scaling		The Principles of Lean

		Definition of Workflow (DoW) in Kanban

		Dimensions of Scaling		One Team Working on One Product

		Conclusion

		Chapter 3 - Identifying Value		Work Breakdown Structure

		Which Level Delivers Value?

		"Potential" Value

		Chapter 4 - Mapping the Value Stream		Idea to Feedback

		Starting With Activities

		Do not 'Seek Perfection' Yet

		Chapter 5 - Creating Flow		Start and Finish Points

		Exit/Entrance Criteria

		Blocker Policies

		Flow Metrics

		Service Level Expectation

		Chapter 6 - Establish Pull		Pull at Every Stage

		Controlling WIP

		Interlude

		Section II - Operating and Improving our System		Chapter 7 - Planes, Trains, and Automobiles		A Thanksgiving Classic

		A Tale of Delays

		Structures, Priorities, and Dependencies

		Lead with Flow

		Chapter 8 - Strategic Alignment		Defining Strategy		Strategic Business Objectives

		Objectives and Key Results (OKRs)

		Strategic Horizons

		Aligning Strategy and Operation

		Handling Mismatches

		Chapter 9 - Operating The Board		Flow Metrics Revisited

		Portfolio Standups

		Leveraging WIP

		Leveraging SLE

		Chapter 10 - Blockers and Dependencies		Blockers		Internal Blockers

		External Blockers

		Dependencies

		Chapter 11 - Prioritization		Three Levels of Prioritization

		Prioritizing Active Work

		Prioritizing 'What's Next?'

		Prioritizing the 'Next 10 Things' or Next Quarter or 'Next 4 Weeks'

		Common Methods of Prioritization

		Single Queue		Cost of Delay/CD3 (Weighted Shortest Job First)

		Stack Ranking by Perceived Value

		Shortest Job First

		Random Selection

		Multiple Queues		Cost of Delay/CD3 (Weighted Shortest Job First)

		Based on Investment Strategy

		Based on Available Skillset

		Random (or Round-Robin)

		The Waste of Prioritization

		The Key Decision

		Chapter 12 - Forecasting		Principles of Forecasting

		Monte Carlo

		One Team Working on One Product		Impact of Feature WIP

		Multiple Teams Working on Multiple Products

		Multiple Teams Working on the Same Product (Impact of Dependencies)

		Planning

		Chapter 13 - Predictability		Shewhart's Stability

		Cycle Time Scatterplot

		Little's Law

		Right-Sizing

		"Doing" Predictability

		Chapter 14 - Effectiveness		Everybody Lies

		Monitoring

		Success Metrics

		Chapter 15 - Efficiency		Continuously Managing Flow

		Refining The Workflow

		Removing Sources of Inefficiency

		Section III - Getting Started and Assorted Essays		Chapter 16 - The Sheep of North Ronaldsay		History of North Ronaldsay

		The Sheep That Eat Kelp

		The Decision Makers

		Chapter 17 - Getting Started		Patterns to Watch Out For		Stagnation

		Executive Privilege

		Prioritization Horse Trading

		Hidden Work

		Lack of Education

		Churn and Baggage

		(R)Evolution

		Chapter 18 - Conway is Killing You and Little is Helping		Conway’s Law

		Conway’s Effect on Products

		Conway’s Effect on Process

		Little’s Law

		Conway And Little Are Your Friends

		This Is Hard

		Chapter 19 - The Shapes of Backlogs and Teams

		Chapter 20 - Don’t Be a Ditka		Prioritization in Product Development

		Cost of Delay

		Cost of Delay Divided by Duration

		Problems with CD3

		The Saints Come Marching In

		Uncertain Value

		Uncertain Duration

		New Items Show Up

		CD3 is Bollocks

		Output Over Outcomes (Simulation Results)		Case I: CD3 Assumptions Are Met

		Case II: CD3 Assumptions Not Met

		Case III: Right Sizing of Items

		A Final Important Simulation Result

		Right Sizing Wins

		Ravings of a Madman		Only Have to be Better Than the Next Best Thing

		The CD3 Numerator Is Most Important

		Where’s the Beef?

		CoD is Easy to Quantify

		It’s the Conversation that Matters Most

		Conclusion

		Epilogue

		Simulation Set Up

		Chapter 21 - Ultimate Software Case Study		Background

		Results with Kanban		The Aces Team

		Payroll Team

		Organization Wide Impact

		Monte Carlo Simulation and Probabilistic Release Planning and Tracking		Release Planning

		The Daily Product Review

		Moving Beyond Development

		Conclusion

		Acknowledgments

		Endnotes

		Bibliography

		Acknowledgments

		About the Author

Guide

		Cover

		Beginning

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

OEBPS/image_rsrc2AT.jpg
SLE — 85% of items are done in 74 days or less

OEBPS/image_rsrc2B5.jpg
Average Cycle Time =

Average Work in Progress

Average Throughput

OEBPS/image_rsrc2BR.jpg
Lifetime Profit (5)

Lifetime Profits Curve and CoD

At (Om /ot) = Am

Time

OEBPS/image_rsrc2C3.jpg
Team Updates

Payroll

95% cycle time > 15.0 Days
Jira Number Jira Type. Status Days in Progress
ULT-209294 SF Escalation Sory In Testing 27
unanaz Story In Testing 2

Notes:

Payroll Echo Build Failures:
We have idenified an issue vith the “Create and Calculate” pay step on the builds mada it to the ‘Echa” phase last night. A fixis currently being worked on and checked in now Futher pdates wil be
forthcoming

Stories Above:

‘The oldest story i still wating on a response from Gnostice. They have untl Friday before we star to revert the changes

‘The second story has held up due to the lack of a Release to Dev buld yesterday. It is currently being tested

OEBPS/image_rsrc2AJ.jpg
Up Next

JE0E

Analyzing

4
Creating

4
Validating

-8
o s

Done

OEBPS/image_rsrc2A8.jpg

OEBPS/image_rsrc2BT.jpg
Cost of [N
Delay

20K

15K

10K

sk

—

Sw 10w 15w 20w Time

OEBPS/image_rsrc2AV.jpg
Up Next Analyzing Creating Validating Done

] 1N
goos
I

OEBPS/image_rsrc2B7.jpg
L]
Number of Each dot =
Stories Feature
/ c 85% of
Features had
e 17 Stories or
2 ° . . eless
200 . L]
17 L = e L =
L] L) L]
L]
L]
L] L] L]
10 L] o
L]
. .' :
| e e et e By gy 8 N8
LN] = - L] L] ° . L]
o000 o o L] L] Ll

)
0710172019

010172020

0410172020

95%

OEBPS/image_rsrc2AA.jpg

OEBPS/image_rsrc2AH.jpg

OEBPS/image_rsrc2B2.jpg
Team

Hi

& Integration
Identity Management

Com

Recruiting
Foundation Services
Onboarding
UltiPro TouchBase
Integration Services.
People Domain
Bulk Data Export Services
Data Warehouse
Business Intelligence.
Identity Management
Foundation Services

Hi

g Integration

ut™M
Payroll
Talent Management
UTA

Com

People Domain
‘Tax Management Platform
‘Tax Management Integration
TaxManagement
Identity Management

SPS

Release

January 2017
January 2017
January 2017
January 2017
January 2017
January 2017
January 2017
January 2017
January 2017
February 2017
February 2017
February 2017
V12.2.1(R1-Spring 2017)
V12.2.1(R1-Spring 2017)
V1221 (R1-Spring 2017)
V12.2.1(R1 - Spring 2017)
V1221 (R1 - Spring 2017)
V12.2.1(R1 - Spring 2017)
V12.2.1(R1-Spring 2017)
V1221 (R1-Spring 2017)
V1221 (R1-Spring 2017)
T™-Beta
TM-Beta
TM-Beta
V12,12 (R2- Fall/YE 2016)

SPS-CR

MonteCarlo

Code Freeze Date

01/10/2017
01/31/2017
01/31/2017
01/31/2017
01/31/2017
01/31/2017
01/31/2017
01/31/2017
01/31/2017
02/28/2017
02/28/2017
02/28/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
03/15/2017
04/01/2017
04/01/2017
04/01/2017
09/29/2016
09/30/2017

Stories Remai

12

5

a

35

27

17

47

12

10

57

170

69

111

2

01/25/2017

05/12/2017
01/10/2017
01/03/2017
01/03/2017
02/22/2017
01/17/2017
02/03/2017
12/21/2016
03/24/2017
12/21/2016
01/17/2017
12/21/2017
09/12/2017
02/08/2017
12/08/2016
12/28/2016
02/17/2017
04/20/2017
03/02/2017
02/06/2017
11/15/2017
10/19/2017
03/15/2017
N/A
02/13/2017

Completion Likelihood

37.42%
2456%
99.99%
99.99%
99.90%
28.46%
99.94%
80.58%
99.99%
25.06%
99.99%
99.99%
074%
001%
99.90%
99.99%
99.99%
99.82%
48.62%
98.30%
99.99%
001%
001%
96.96%
0.00%

99.99%

Features Remai

a5
13
2
22
17

OEBPS/image_rsrc2BK.jpg
Priority |Scenario - 1 |Scenario - 2 |Scenario - 3 |Scenario - 4
1 70.5% 84.6% 85.6% 78.6%
2 99.7% 99.9% 99.9% 99.8%
3 55.0% 0.7% 54.9% 65.1%
4 1.6% 12.0% 12.5% 10.4%
5 34.5% 100.0% 52.3% 56.6%
6 0.5% 89.4% 1.9% 4.1%
7 0.1% 0.0% 0.2% 0.9%
8 0.0% 32.3% 0.0% 0.0%
9 0.0% 0.2% 0.0% 0.0%
10 0.0% 0.1% 0.0% 0.0%

OEBPS/image_rsrc2BB.jpg

OEBPS/image_rsrc2A6.jpg

OEBPS/image_rsrc2AX.jpg
() ActionableAgile™ Monte Carlo: Wen

©20132020 AcsonanengesSovare A5
Throughput Basis.
..
B
o
g .
H
H
.
.
:
.
Himaies N)
Wente Cao (10K Tr)
s0s o
i
i
i
800 +
i
i
i
e !
g i
H |
& w
=
2hn 2025 Ervr orsizm s T

'Date When 30 tems Compete.

OEBPS/image_rsrc2B9.jpg

