

 [image: Command Line Git - Everything you need to know to get started]

 Command Line Git - Everything you need to know to get started

 Illustrated guide to Git with useful mental models and exercises.

 Maksim Ivanov

 This book is for sale at http://leanpub.com/using-git-from-command-line-everything-you-need-to-know-to-get-started

 This version was published on 2023-10-09

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2023 Maksim Ivanov

Table of Contents
	Introduction	Why Learn Git?
	Why Use the Command Line?
	Prerequisites
	What You’ll Learn
	How to Use This Book
	How to Download the Exercises
	How to Get Help

	How Git Works - Building a Mental Model	What is Version Control?
	What is Distributed Version Control?
	How Does Git Work?
	Git Workflow

	Installing and Using Git on Windows	Installing Git Using the Official Installer
	PowerShell Primer

	Installing Git on Mac OS
	Installing Git on Linux	Installing Git

	Mac OS and Linux Command Line Primer	How to Open the Command Line
	How to Use the Command Line

	Configuring Git	Configuration Levels
	Configuring Git Using Text Files
	Complete List of Available Settings
	Using the Config Command
	Setting Configuration Options
	Removing Configuration Settings
	Viewing Configuration Settings
	Exercises

	Creating a Repository	Before You Start
	How to Clone a Repository
	How to Initialize a Repository in an Existing Folder
	What is Inside the .git Folder
	Exercises

	Checking the Status of a Repository	How to Use the Status Command
	Short Status
	Exercises

	Selecting Changes to Commit - Staging	How to Stage Changes
	Staging Multiple Files
	Viewing Staged Changes
	Removing Files From the Staging Area
	Staging Individual Changes
	Exercises

	Committing Changes	Merge Commits
	How to Commit Changes
	How to Overwrite the Last Commit
	Exercises

	Understanding .gitignore	How to Ignore Files
	Glob Patterns
	Generate a .gitignore File for Your Project
	Exercises

	Viewing the Commit History	How to View the Commit History
	How to View the Commit History in One Line
	How to View the Commit History in a Graph
	Exercises

	Switching Between Commits	What Does It Mean to Switch Between Commits?
	How to Switch to a Particular Commit
	How to Switch Relative to the Current Commit
	How to Switch Back
	Exercises

	Understanding HEAD	When the HEAD is Detached
	What Happens When You Commit in the Detached HEAD State
	How to Find Dangling Commits
	How to Reattach the Dangling Commit
	How to Fix the Detached HEAD
	Exercises

	Restoring the Working Directory	Discarding the Untracked Files
	Discarding the Tracked Files
	Discarding the Staged Files
	Exercises

	Undoing Changes	Reverting the Commit
	Resetting Changes
	Exercises

	Using branches	How Does Git Store Branches
	Creating New Branches
	Switching Branches
	Listing Branches
	Deleting Branches
	Merging Branches
	Exercises

	Resolving Merge Conflicts	How Conflicts Happen
	How to Avoid Conflicts
	How to Resolve Conflicts
	Exercises

	Stashing changes	What is a Stash?
	Put Aside Changes
	View Stashes
	Using Named Stashes
	Preview Stash Contents
	Apply Stashes
	Drop stash
	Exercises

	Using Remotes	What is a Remote
	Adding a Remote
	Adding GitHub as a Remote Repository
	Listing Remotes
	Pushing to a Remote Repository
	Pulling or Fetching from a Remote Repository
	Renaming Remotes
	Removing Remotes
	Exercises

	Afterword
	Appendix	Answers to Exercises

 Guide

 	
 Cover

Introduction

The goal of this book is to get you up and running using Git from the command line as quickly as possible without overwhelming you with too much information.

To make the learning process more intuitive and engaging, I use mental models, analogies and metaphors to help you understand and remember the concepts.

I also use diagrams and illustrations. They help you visualize complex ideas and also serve as a bit of entertainment to keep you engaged.

At the end of each chapter, you will find exercises that are crafted to reinforce the concepts you have just learned. These exercises are hands-on tasks that allow you to apply the new knowledge. By practicing what you learn, you understand the topics better and solidify the information in your memory. It is important to do the exercises. They will help you learn Git faster.

Why Learn Git?

Have you ever lost hours of work because you accidentally deleted a file or forgot to save it? Or maybe you wanted to go back to a previous version of a file but couldn’t, because the history of changes was not saved?

These are the problems that version control systems solve. They allow you to save the history of changes and go back to any previous version of a file. On top of that they allow you to share the history of changes with other people.

Git is the defacto standard for version control. It is used in almost every software project. If you are a software developer, you’ll need to know Git. But it will also be useful for anyone who works with text files.

I worked with several startup founders who among other things knew how to use Git. It helped them understand the development process better and reduced friction when working with the development team.

For example, they could pull the latest changes from the repository and test them on their local machine. Or they could switch to a branch that was created for a particular feature and preview it there.

Overall it gave them a greater understanding of what was going on with the project and helped them make better decisions.

Why Use the Command Line?

Git has many applications with graphical user interfaces (GUI). Some of them are very good. So why use the command line?

I believe using Git from the command line is the best way to learn it. It’s also the most flexible way to use it. You won’t be limited to a particular GUI application or an editor plugin. You will be able to use Git from a remote server, from a virtual machine or from a Docker container. So you’ll be a lot more powerful.

Another benefit is that you’ll learn the “language” that Git uses and not the “language” of a particular GUI application. Some GUI applications hide the complexity of Git. It works great until something goes wrong. By using Git from the command line you’ll learn the terms and concepts that Git uses. This will help you communicate with other developers and get help if you need it.

Prerequisites

You don’t need to know anything about Git to read this book. You don’t need to know anything about the command line either.

I will explain everything from the beginning, including all the concepts and commands.

You need a computer with a terminal and a text editor.

On Windows you can use PowerShell or Git Bash. On Mac and Linux you can use the built-in terminal.

You can use any text editor you like: VS Code, Sublime Text, even Notepad will work.

What You’ll Learn

You’ll learn how to set up Git on your computer, how to create a repository, how to commit changes, how to create and merge branches, how to resolve merge conflicts, and how to use remote repositories.

In other words, you’ll learn how to use Git for everyday tasks.

We won’t discuss advanced topics like rebasing or Git hooks. Instead we’ll focus on building a solid foundation that will allow you to use Git effectively.

How to Use This Book

To learn the subject effectively it is important to make connections with the existing knowledge. One of the reasons why the information does not stick is that it might be too different from everything else that the person knows.

[image: Making connections]Figure 1. Making connections

This is why we’ll first make an overview of how Git works and then go through a demonstration of a typical workflow where you see most of the everyday commands.

We intentionally won’t go into details in that chapter. The main goal at first is to get an overall understanding of how things work.

In the next chapters, we’ll review specific aspects of Git, different commands, and tasks you might want to perform.

With this approach, you’ll start with the broad context to tie in the new knowledge to.

After the first chapter we go more or less sequentially and each chapter focuses on a particular aspect of using Git. So if you are already familiar with certain topics - you can skip them.

Each chapter contains exercises. Some of them contain example repositories, I recommend spending some time practicing with them, this will greatly help the knowledge to stick.

You might also find the exercise repositories helpful as testing playgrounds in case you get confused about the state of your repository.

How to Download the Exercises

This book is shipped with a zip archive. If your version of the book does not have it, you can download it from here.

After you download it, you’ll need to unzip it. You’ll find the exercises in the exercises folder.

Each exercise is a separate Git repository. You will need to open them in your terminal. You can do this by writing cd and then dragging the folder into the terminal window. This will paste the path to the folder. Then you can press enter to go to that folder.

How to Get Help

If you got stuck, or something is not clear or doesn’t work, please write me an email at gitbook@maksimivanov.com.

Please use the following format:

[image:]Figure 2

This will help me help you faster.

How Git Works - Building a Mental Model

Git gets easier once you get the basic idea

that branches are homeomorphic endofunctors

mapping submanifolds of a Hilbert space.

— @tabqwerty

In this chapter, we’ll create an imaginary picture of how Git works, the so-called mental model.

Having the right mental model is crucial. Git is a complex tool with many features. commands and options, but if you imagine working with Git a certain way, you’ll skip a lot of confusion and frustration.

This imaginary picture of how Git works does not have to be 100% accurate or cover all the details. It just has to help you understand the state your project is in and predict what will happen when you run a certain command.

You can use multiple mental models to think about the same thing. Each model will help you grasp a different aspect of the topic you’re trying to understand. Throughout this book, I’ll suggest a few ways to imagine how Git works in different situations.

So here is the first mental model: a racing board game. Some examples of racing board games are Snakes and Ladders, Game of the Goose, and Monopoly. The point is that you have a board with squares and a piece that you move across the board.

[image: Board game example]Figure 3. Board game example

Now let’s tie this image to Git, the distributed version control system.

What is Version Control?

Version Control Systems (VCSs) let you to keep track of changes to your code over time. Every time you make changes, you can create a snapshot of the new state of your project.

This is also similar to the saving slots in a video game. You can save the game at any point and then go back to that point later.

These snapshots will be our squares on the board. Unlike the board game, where all the squares are created in advance, in version control we create the squares as we go.

[image: Imagine Git as a board game (don’t mind squares being circles)]Figure 4. Imagine Git as a board game (don’t mind squares being circles)

When we save a snapshot of our project (create a commit in Git terms) - a new square is created and our piece1 moves there automatically.

Now we can go back to any of the previous squares and see what the project looked like at that point in time.

It is also similar to the undo/redo feature in a text editor or a drawing program, but it is more powerful. With undo/redo you are usually limited to one change at a time and if you start making changes after you undo something, you lose the changes that you undid.

With version control, you can jump to any point in the timeline and if you start making changes after that, you just create a new branch in the timeline, so the old changes will still be there.

Later you can choose to merge this new version to the main timeline, discard it, or keep it indefinitely.

What is Distributed Version Control?

Git is a distributed version control system. It means that everyone who works on a project has a copy of the entire project history on their computer.

[image: Distributed version control]Figure 5. Distributed version control

With the game board analogy, it means that everyone has a copy of the board and the piece. When you make a change to your board, it doesn’t affect anyone else’s board. To share your changes with others, you have to tell them explicitly that the changes were made.

The opposite of it is a centralized version control system. It means that there is a central server that stores the entire project history. When you want to make a change, you have to connect to the server and send the changes to it. If you want to go back to a previous version, you have to connect to the server and ask it how did the particular version look like.

[image: Centralized version control]Figure 6. Centralized version control

To apply our board game analogy, it is as if there is a game master who keeps the board and the piece. When you want to make a change, you have to ask the game master to make the change for you. If you want to go back to a previous version, you ask the game master to move the piece and send you the updated board.

To be honest, most often Git is used with a central server (like GitHub or GitLab). But with Git it is used only as a mediator. You can still share the changes directly between your computers.

How Does Git Work?

Git stores the snapshots of your work as commits. Each commit contains a snapshot of the entire project2. It is similar to saving a copy of the entire project every time you make a change.

[image: Git incremental snapshots]Figure 7. Git incremental snapshots

Every time you want to preserve the state of your project you select the changes you want to save and create a commit.

Look at the picture above. Every time we have some new changes we create a new commit. Each commit has a unique ID. Later we can use this ID to go back to the commit.

On top of storing the history of changes, Git also allows you to keep multiple versions of the same project. To do this it has a feature called branches.

[image: A project with two branches “main” and “bugfix”]Figure 8. A project with two branches “main” and “bugfix”

A branch is a sequence of commits. When you create a branch you create a new sequence of commits starting from the current commit.

You can create multiple branches and work on them in parallel. Once you are done with the particular branch you can merge it back.

Git Workflow

Let’s go through a typical workflow, where we create a new project, make some changes, commit them, and switch between the commits.

Before we start, make sure you have Git installed on your computer. I included two chapters: Installing Git on Windows and Installing Git on Mac OS. Check them out and follow the instructions if you don’t have Git installed yet. For Windows users, I also explain how to use the command line.

We start with an empty folder called example-project. First, we want to make this folder a Git repository. To do this we run the git init command inside this folder.

[image:]Figure 9

Now we have a Git repository. In the beginning, the repository is empty, it doesn’t contain any commits, but the HEAD already exists and points to the branch main.

You can see the current branch by running the git status command.

[image:]Figure 10

We are on a branch called main and there are no commits yet.

[image: Git repository created, but it is empty]Figure 11. Git repository created, but it is empty

Imagine it as a game piece, for now without any squares on the board.

Let’s make some changes to our project and save them as commits.

We start by creating a file called POEM.md, which will contain a short poem.

[image:]Figure 12

Now we have a file called POEM.md in our project. Let’s see if Git noticed this change. Run git status:

[image:]Figure 13

The message changed, now it says that we have an untracked file. It means that Git noticed that we created a new file, but it is not included in any commits yet.

To save the current state of the project as a commit we first need to select the changes to include there. We do this with the git add command.

[image: Selecting changes to include in a commit]Figure 14. Selecting changes to include in a commit

You can imagine the git add command to work similarly to how file selection works in a file manager. You select the files that you want to include in the commit.

In our case, the POEM.md is a new file that we want to include in our first commit, so we run git add POEM.md.

[image:]Figure 15

Now we have selected the changes in the file, or in Git terms we have staged the changes. Check the status of the project:

[image:]Figure 16

Now the POEM.md is listed under the “Changes to be committed” section. It means that the changes in this file are selected to be included in the next commit.

We can save the changes with the git commit command. We also need to provide a message for the commit. The message should describe the changes that we made there3.

If we run git commit without any arguments Git will open a text editor4 and ask us to enter the message there. But we can also provide the message directly in the terminal with the -m option.

[image:]Figure 17

Voila! We have created our first commit. We can see that this commit has a unique identifier 0b0d7b5 and it has a message Add a poem. Git automatically creates unique identifiers for each commit, so that we can refer to them later.

[image: Git repository with one commit]Figure 18. Git repository with one commit

Now our repository has one commit and the HEAD points to it. Check the status of the project:

[image:]Figure 19

Git says that there are no changes to be committed. It means that nothing changed since we committed last time.

Let’s say we add another verse to our poem.

[image:]Figure 20

If we check the status of the project, we’ll see that we have one file that is modified.

[image:]Figure 21

Stage and commit the changes:

[image:]Figure 22

Now we have two commits in our project. We can see the history of commits with the git log command.

[image:]Figure 23

The commits are sorted from the newest to the oldest. With the newest commits at the top.

I used a --oneline flag to make the output shorter. It shows only the first line of the commit message and the commit hash.

You can also see where the HEAD is pointing.

[image: Git repository with two commits]Figure 24. Git repository with two commits

Bringing back the game board analogy, we have a board with two squares and the piece is on the second square.

We can move the piece back to the first square with the git checkout command.

[image:]Figure 25

This will reset the contents of your project folder to the state of the first commit.

[image: Checking out the first commit]Figure 26. Checking out the first commit

If we check the contents of the POEM.md file, we’ll see that it contains only the first verse.

[image:]Figure 27

We can also see that the HEAD is pointing to the first commit.

[image:]Figure 28

Now we can return to the latest changes using the git checkout command:

[image:]Figure 29

And the poem is complete again:

[image:]Figure 30

Here you go, this is the essence of Git. You can create snapshots of your project and move between them.

	In terms of Git, the game piece is called HEAD and it points to the current snapshot.↩︎

	Git creates a very convincing illusion that it stores only the changes between the snapshots. But in reality, it stores the entire snapshot, but with some smart optimizations. You can read more about it in Snapshots not differences chapter of the Git book.↩︎

	You can read more about writing good commit messages in How to Write a Git Commit Message article https://chris.beams.io/posts/git-commit/.↩︎

	By default Git uses Vim as the text editor. If you are not familiar with Vim, there is a risk that you will get stuck in it. In this case, press Esc and type :q! to exit Vim without saving the changes. If you want to use a different text editor, you can configure it with the git config --global core.editor <editor> command. For example, to use Nano as the text editor run git config --global core.editor nano.↩︎

Installing and Using Git on Windows

There are several ways to install Git on Windows:

	
Using the official installer

	
Using the Winget package manager

	
Using Chocolatey

Here we will use the official installer. You can also use Winget or Chocolatey if you prefer.

We’ll also briefly go over the basics of using PowerShell.

It is the default command-line shell on Windows and you’ll need to know a few commands to go through the exercises in this book.

Installing Git Using the Official Installer

The easiest way is to download the installer from the official git website

After you download the installer you have to run it and follow the instructions. You can leave most of the settings as they are. One thing I would suggest to change is the default editor. Choose the one you are most comfortable with:

[image: Default Git editor]Figure 31. Default Git editor

This editor will be used to write commit messages.

If you don’t select an editor, Git will use Vim. Vim is a terminal based editor. It is very powerful, but it has a steep learning curve. A lot of people get stuck when they first open it. If you find yourself in this situation - to exit Vim press Esc and then type :q! and press Enter.

I would also suggest to change the default branch name to main:

[image: Default Git branch name]Figure 32. Default Git branch name

After you finish the installation, you can open the PowerShell and run the following command:

[image:]Figure 33

If everything is fine you will see the version number.

[image: Git version]Figure 34. Git version

PowerShell Primer

PowerShell is a command-line shell, it looks like this:

[image: PowerShell]Figure 35. PowerShell

It is a text input field where you type commands. After you press enter, PowerShell executes the command and prints the output.

You can use PowerShell to run programs, navigate the file system, and perform other tasks.

To open it open the Start menu and type PowerShell, you should see it in the search results. It will be a program with a square blue icon:

[image: PowerShell]Figure 36. PowerShell

Now let’s go over a few basic commands that you need to know to go through the exercises in this book.

Navigating the File System

The first thing you want to learn is how to find out where you are. To do that run the following command:

[image:]Figure 37

The name of the command stands for “print working directory”.

In my case, it prints:

[image:]Figure 38

It means that I am in the C:\Users\maksim directory.

If I want to see the contents of the current directory I can use the ls command:

[image:]Figure 39

ls stands for “list”. It outputs the contents of the current directory.

The output will look like a table with the following columns:

	
Mode - the type of the file or directory, here d stands for directory, f stands for file

	
LastWriteTime - the date and time when the file or directory was last modified

	
Length - the size of the file

	
Name - the name of the file or directory

If you want to see what is inside of a specific directory you can pass its path to the ls command:

[image:]Figure 40

To change the current directory you can use the cd command:

[image:]Figure 41

cd stands for “change directory”. It changes the current directory to the one you specify.

Here we used a relative path to the git-exercises directory. We could also use an absolute path:

[image:]Figure 42

The difference is that relative paths are relative to the current directory, while absolute paths start from the drive letter.

To go one level up you can use the .. shortcut:

[image:]Figure 43

This will change the current directory:

	
from C:\Users\maksim\workspace\git-exercises

	
to C:\Users\maksim\workspace

You can also use the ~ shortcut to go to the home directory:

[image:]Figure 44

This will change the directory from C:\Users\maksim\workspace to C:\Users\maksim.

Viewing the Contents of a File

To view the contents of a file right in the PowerShell you can use the cat command:

[image:]Figure 45

cat stands for “catenate”. Catenate means to link together. It is called this way because if you call it with several files it will print the contents of all of them one after another.

If you call it with just one file it will print the contents of that file. It is very useful for quickly viewing the file contents.

Creating, Editing, Renaming, and Deleting Files

The quickest way to create a file is to use the echo command:

[image:]Figure 46

This will create a file named hello.txt with the contents Hello, World!.

echo is a command that prints its arguments. If you just run echo "Hello, Git!" it will print Hello, Git! to the console. Kind of like the real echo. But if you add the > symbol and a file name after it, it will redirect the output to the file instead of printing it to the console.

To edit a file with the default text editor you can use the ii command:

[image:]Figure 47

ii stands for “invoke item”. It opens the file or directory you specify with the default program.

The default program is the one that is associated with the file type. It is the same program that opens the file when you double-click on it in the File Explorer.

Use mv command to rename the file:

[image:]Figure 48

mv stands for “move”. It moves the file or directory you specify to the new location, but it is often used to rename files and directories.

To remove the file you can use the rm command:

[image:]Figure 49

rm stands for “remove”. It removes the file or directory you specify.

Creating, Renaming, and Deleting Directories

Run mkdir command to create a folder:

[image:]Figure 50

mkdir stands for “make directory”.

Use mv to rename or move the directory:

[image:]Figure 51

This works the same way as renaming files.

To remove a directory you can use the rm command:

[image:]Figure 52

The -r flag stands for “recursive”. It means that rm will remove the directory and all its contents.

Installing Git on Mac OS

Git is already installed on Mac OS.

You can check which version you have by running the following command in the terminal:

[image:]Figure 53

This version of Git is usually a bit outdated. It means that you might lack some of the features or other improvements that are available in the newer versions of Git.

So generally it is a good idea to update it to the latest version available.

If you want to update your version of Git you can do it using Homebrew. It is a package manager for Mac OS. It allows you to install programs from the command line.

Run the one-liner script from the official website to install Homebrew.

Once you have Homebrew - you can install Git using the following command:

[image:]Figure 54

After the installation is complete - confirm that Git is installed by checking the version:

[image:]Figure 55

If everything is fine you should see the new version number.

Installing Git on Linux

Some Linux distributions come with Git pre-installed. To check if Git is installed on your system, run the following command in the command line:

[image:]Figure 56

If you see the version number, then Git is installed on your system.

Installing Git

The most common way to install Git on Linux is to use the package manager that comes with your distribution.

Here is how to install it if you are on Ubuntu.

First, update the package list:

[image:]Figure 57

Then install Git:

[image:]Figure 58

After the installation is complete, verify that Git is installed by running the git --version command:

[image:]Figure 59

Mac OS and Linux Command Line Primer

Command line is a program that let’s you interact with your computer using text.

It has a text input where you type commands. After you press enter the command is executed and the output is displayed in the command line.

You can use the command line to run programs, manage files and folders, and automate tasks.

How to Open the Command Line

Mac OS

To open the command line on Mac OS you have to open the Terminal app. To do it open the launchpad and type terminal:

[image: Terminal]Figure 60. Terminal

Then click on the Terminal icon to open it.

Linux

All Linux distributions that I know of have some Terminal application installed by default.

To open the Terminal app on Ubuntu click on the Activities button at the top left corner of the screen, and then type “terminal” or “shell”.

[image: Opening the Terminal on Ubuntu]Figure 61. Opening the Terminal on Ubuntu

The Terminal icon should appear. Click on it to open the Terminal.

How to Use the Command Line

Both Mac OS and Linux use the same command line interface.

There are some differences between different versions of the programs, but for the purpose of this book, they are not important.

When you open the command line you will see a prompt. It is a text with a blinking cursor at the end. It indicates that the command line is ready to accept input.

[image: Command line prompt]Figure 62. Command line prompt

Now let’s go over the commands you’ll need to know to complete the exercises in this book.

Navigating the File System

The first thing you want to learn is how to find out where you are. To do that run the following command:

[image:]Figure 63

The name of the command stands for “print working directory”.

In my case, it prints:

[image:]Figure 64

It means that I am in the /Users/maksimivanov/workspace directory.

If I want to see the contents of the current directory I can use the ls command:

[image:]Figure 65

ls stands for “list”. It lists the items located in the current directory.

To see hidden files and directories you can use the -a option:

[image:]Figure 66

Here the .config directory is hidden. In Unix-like operating systems there is a convention to hide files and directories whose names start with a dot.

If you want to see the contents of a particular directory you can pass its path to the ls command:

[image:]Figure 67

To change the current directory you can use the cd command:

[image:]Figure 68

Here ~ is a shortcut for the home directory. It is /Users/maksimivanov in my case.

cd stands for “change directory”. It changes the current directory to the one you specify.

You can also use relative paths:

[image:]Figure 69

Here we went one directory up from the current directory and then into the git-branches directory.

To return to the previous directory you can use the - option:

[image:]Figure 70

This command will take you to the previous directory you visited.

Viewing the Contents of a File

To view the contents of a file you can use the cat command:

[image:]Figure 71

cat stands for “catenate”. It prints the contents of a file to the command line.

Creating, Editing, Renaming, and Deleting Files

The quickest way to create a file is to use the echo command:

[image:]Figure 72

Here we created a file named hello.txt with the contents Hello, World!.

If you want to create an empty file you can also use the touch command:

[image:]Figure 73

To edit a file you can use the nano command:

[image:]Figure 74

nano is a text editor. It is a simple editor that is easy to use. It comes preinstalled on most Linux distributions and Mac OS.

Use the mv command to rename files:

[image:]Figure 75

mv stands for “move”. It moves the file or directory you specify to the new location, but it is often used to rename files and directories.

To remove the file you can use the rm command:

[image:]Figure 76

rm stands for “remove”. It removes the file or directory you specify.

It won’t ask you for confirmation, or put the file in the trash bin, the file will be removed immediately, so be careful when using it.

Creating, Renaming, and Deleting Directories

The mkdir command lets you create directories:

[image:]Figure 77

mkdir stands for “make directory”.

Use the mv command to rename or move directories:

[image:]Figure 78

This works the same way as renaming files.

To remove a directory you can use the rm command:

[image:]Figure 79

The -r flag stands for “recursive”. It means that rm will remove the directory and all its contents.

In Unix systems, the -r flag is mandatory when you are removing a directory.

Be careful, rm -r will remove the directory and all its contents immediately, without asking for confirmation, or putting the files in the trash bin.

Configuring Git

The first thing you want to do after you’ve installed Git is to configure it. At a minimum, you should configure your name and email address. This information will be used to identify you as the author of the commits you make.

Git can be configured by editing the configuration files or using the git config command. In this chapter, we’ll learn how to configure Git using both methods.

We’ll cover:

	
Different levels at which Git can be configured.

	
How to configure Git using configuration files.

	
How to set, remove, and view configuration settings using the git config command.

We’ll finish the chapter with exercises to help solidify your knowledge. These exercises will not only help you practice but will also introduce some useful settings you can use in your projects.

We’ll configure your default editor, set up custom diff commands, and create command aliases for common commands.

Configuration Levels

Git can be configured at three distinct levels:

	
System These settings apply to all users on the system and all repositories. They are stored in the /etc/gitconfig file on Linux and macOS systems. On Windows systems, they are stored in the C:\ProgramData\Git\config file.

	
Global These settings apply to all repositories for the current user. They are stored in the ~/.gitconfig file (C:\Users\<user>\.gitconfig on Windows).

	
Local The default level. Settings on this level apply only to the current repository. They are stored in the .git/config file inside the repository directory.

The priority of the configuration levels is as follows:

	
Local

	
Global

	
System

It means that if you have a setting defined at the local level, it will override the same setting defined at the global or system level.

[image: Configuration levels]Figure 80. Configuration levels

In other words, Git always takes the closest setting to the repository you are working on. If it doesn’t find the setting there, it will look for it in the global configuration. If it doesn’t find it there, it will look for it in the system configuration.

Typically, you’ll want to configure your user at the global level, leave the system-level settings as they are, and sometimes make adjustments for a specific repository at the local level.

Configuring Git Using Text Files

You can manually edit the configuration settings by opening the respective configuration file in a text editor. For example, to edit global settings, you can open ~/.gitconfig and make your changes.

Here are the contents of the ~/.gitconfig file on my system:

[image:]Figure 81

This file contains the user name and email that I use for my commits. It also contains the default branch name that I use when I initialize a new repository.

Configuration files consist of properties grouped into sections. A property is a key and value delimited by an equal sign:

[image:]Figure 82

A section is a group of properties that are enclosed in square brackets:

[image:]Figure 83

Complete List of Available Settings

You can find the complete list of configuration settings in the Git documentation (https://git-scm.com/docs/git-config#_variables).

The variables there are written in the following format:

[image:]Figure 84

So, for example, if the setting is listed as user.name, it means that it’s located in the user section and the key is name:

[image:]Figure 85

Using the Config Command

Git provides a command-line interface to manage configuration settings. The command is called git config. It can be used to set, remove, and view configuration settings.

If you run this command without any arguments, it will show you the list of available options. For now, we’ll use only a few of them, but it’s good to know that there are more options available.

You can specify the level at which you want to edit the configuration by providing the --global, --local, or --system options. If you don’t specify the level, the local level will be used by default.

Setting Configuration Options

To set a configuration setting, you run git config with <option> and <value> arguments:

[image:]Figure 86

For example, to set the user name, you can run the following command:

[image:]Figure 87

Here, we have to use the quotes because the user name contains a space. If you don’t use the quotes, Git will treat Maksim and Ivanov as two separate arguments.

By default, it will set the configuration setting at the local level. To set it at the global level you have to use the --global option:

[image:]Figure 88

This will set the user name in the ~/.gitconfig file.

To specify the default branch name you can run the following command:

[image:]Figure 89

Now, when you run git init, it will create a new repository with the main branch.

Removing Configuration Settings

To remove a configuration setting, you have to use the --unset option:

[image:]Figure 90

For example, to remove the user name you can run the following command:

[image:]Figure 91

This will remove the user.name setting from the current repository configuration file.

To remove the setting from the global configuration file you have to use the --global option:

[image:]Figure 92

Viewing Configuration Settings

To view the settings you can run the following command in the command line:

[image:]Figure 93

This command will show you combined settings from all three levels.

For me, it outputs the following:

[image:]Figure 94

To limit the output to the settings from the specific configuration file, you can use the --local, --global or --system options:

[image:]Figure 95

You can also check the settings by opening the configuration file in a text editor.

Exercises

Set Name and Email

Set the user name and email in the global settings.

Open the terminal and run the following commands:

[image:]Figure 96

Change the <your name> and <your email> to the name and email that you want to use.

In the terminal, you’ll have to wrap the name and email in quotes if they contain spaces. Otherwise, the terminal will treat them as separate arguments.

View Settings

Check the settings.

Open the terminal and run the following command from the home directory:

[image:]Figure 97

You should see the user name and email that you set in the previous exercise.

Set Default Branch Name

Set the default branch name to main.

Open the terminal and run the following command:

[image:]Figure 98

Set Default Editor

Set the default editor. You can use any editor that you want.

Here are some examples:

	
nano

	
Vim

	
code (Visual Studio Code)

	
subl (Sublime Text)

	
Notepad (Notepad on Windows)

This editor will be used for entering commit messages.

Make sure that the editor is installed on your system.

Open the terminal and run the following command:

[image:]Figure 99

Verify that it worked by trying to commit changes. I’ve prepared a repository for you to practice. You can find it in the configuring-git-00 directory. Open it in the console and run the following commands:

[image:]Figure 100

It should open the editor that you set in the previous step. By default, it will be Vim. If you don’t know how to use it, you can press i to enter the insert mode, type the commit message, and then press Esc and type a special key sequence :wq to save and exit.

Setup Custom Command Aliases

Set the st alias for the status command.

Open the terminal and run the following command:

[image:]Figure 101

Verify that it worked by opening a repository (for example, one of the exercises) and running the following command:

[image:]Figure 102

You should see the same output as if you run git status.

Creating a Repository

A central Git concept is a repository. A repository is a folder that contains the project files and the history of changes.

[image: The difference between a regular folder and a git repository]Figure 103. The difference between a regular folder and a git repository

The difference between a regular folder and a Git repository is that the Git repository contains a .git folder.

This folder is created when you initialize a new repository and contains the project history and configuration.

If you run Git commands in a regular folder - nothing will happen. You have to make the folder a Git repository first.

There are two ways to create a repository:

	
Initialize a new repository in an existing folder

	
Clone an existing one from a server

In this chapter, we will learn both ways.

Before You Start

It is a good idea to store your repositories in one place.

For example, I store all my Git repositories in a workspace folder in my home directory:

[image:]Figure 104

You can create a similar folder on your computer. Or you can use a different location. It is up to you.

I assume that you will clone or initialize repositories in this folder.

How to Clone a Repository

Cloning a repository means downloading its contents from a remote server1.

To clone a repository, you have to run the following command in the command line:

[image:]Figure 105

The <url> block is a placeholder that stands for the address of the remote repository. For example, to clone the Git source code, you can run the following command:

[image:]Figure 106

This will create a folder called git with the contents of the repository. By default, Git uses the name of the repository as the name of the folder. But you can specify a different name as the second argument:

[image:]Figure 107

Here, the folder will be called my-git.

How to Initialize a Repository in an Existing Folder

To make a folder a Git repository you have to run the following command in the command line:

[image:]Figure 108

This command will generate a hidden folder called .git in the current directory. This folder contains the project configuration and the history of changes.

What is Inside the .git Folder

Normally you don’t view or edit the contents of the .git folder. It is managed by Git. But for the sake of learning let’s take a look at what is inside:

[image:]Figure 109

Let’s go through the most important files and folders:

	
HEAD - it is a text file that contains information about where you are currently in the project history. By default, it will contain the name of the current branch. We will talk about branches later in this book.

	
config - it is a text file that contains the configuration of the project.

	
description - it is a text file that contains the project description. It is used by the GitWeb program. If you are not using GitWeb you can ignore it. Nowadays most people use GitHub or GitLab to host their repositories and keep the project description in the README.md file.

	
hooks - it is a folder that contains scripts that are executed when certain events happen. For example, you can run tests automatically before you commit changes.

	
info - it is a folder that has an exclude file. This file is used to exclude files and folders from the project on the local machine. Unlike .gitignore it is not shared with other people.

	
objects - it is a folder that contains all the content of the project. It is a bit more complicated than that, but for now this definition will suffice.

	
refs - it is a folder that contains references to commits. It can be branches or tags. We will talk about branches and tags later in this book.

Exercises

Initialize a New Repository

Create a new folder and initialize it as a Git repository.

Open the terminal and run the following commands:

[image:]Figure 110

These commands will create a folder called my-project and initialize it as a Git repository.

Explore the .git Folder

You can check the list of files and folders in the .git folder using the ls command:

[image:]Figure 111

You can read the contents of the files using the cat command:

[image:]Figure 112

Go through the list of files and folders and read the contents of the files.

	It is possible to clone a repository from a local folder. But this is a less common scenario. Read more about it in the Git documentation.↩︎

Checking the Status of a Repository

There are a lot of parameters that change when you work with Git.

For example, the current branch, the current commit, which files have changed since the last commit, etc. To be able to quickly access this information, Git provides the git status command.

[image: Checking the status of a repository]Figure 113. Checking the status of a repository

The output of git status can be pretty wordy, but once you get used to it - you’ll be able to get the information you need at a glance.

In this chapter, I’ll show you the structure of the git status output to make it easier for you to understand it.

How to Use the Status Command

The git status command returns a summary of the current state of the repository. It shows the current branch, the current commit, and the state of the working directory. Here is a typical output:

[image:]Figure 114

This is a lot of information, but it is structured into sections. Noticing them will make reading the output of the git status command much easier.

[image: Status output structure]Figure 115. Status output structure

First goes the branch information:

[image:]Figure 116

This section shows the current branch and if you are behind or ahead of the remote version of this branch.

In this case, we have one commit that is not pushed to the remote repository.

Then goes the section describing the changes in the tracked files:

[image:]Figure 117

Here, it says that the README.md file was modified. It means that we didn’t stage the changes in this file. If we want to commit these changes, we need to stage them first.

The last section describes the untracked files:

[image:]Figure 118

Here we have a new file that is not tracked by Git yet.

The last line is a summary of the current state of the repository:

[image:]Figure 119

It says that we don’t have any changes staged for commit. It also suggests that we can use the git add command to stage the changes.

Short Status

The default output of the git status command is pretty verbose. If you want to get a more concise output, you can use the git status -s command. The same status as above will be displayed like this:

[image:]Figure 120

That’s it. File names on the right, and the status on the left.

Here are possible status codes:

	
?? - untracked file

	
A - new file added to the staging area

	
M - modified file

	
D - deleted file

	
R - renamed file

	
C - copied file

	
U - file with merge conflicts

Exercises

Check the Statuses of the Repositories

For this chapter, I’ve prepared a few repositories that you can use to practice. You can find them here:

	
check-status-01 - newly created repository

	
check-status-02 - repository with an untracked file

	
check-status-03 - repository with a staged file

	
check-status-04 - repository with a few commits

Go over the repositories and check the status of each one. Try to understand the output of the status command.

Selecting Changes to Commit - Staging

To commit changes, we must first select what goes into the commit. In terms of Git, it is called staging.

Staging changes is similar to how you select files and folders in the file manager:

[image: Adding files to the staging area]Figure 121. Adding files to the staging area

For Git, a file can be in one of the five states:

	
untracked - means that Git does not track the changes in this file.

	
changed - means that Git tracks the changes in this file; the file has changed since the last commit, and the changes are not staged.

	
staged - means that the changes in these files are marked to be committed.

	
committed - means that the changes are saved in a commit.

	
ignored - means that Git ignores this file. Git will act as if the file does not exist.

How to Stage Changes

To add changes to the staging area, you have to use the git add command:

[image:]Figure 122

For example, to add the README.md file, run the following command:

[image:]Figure 123

Now, the README.md file is staged, and Git will track changes in this file.

If we make changes, for example, we add a new line to it - then Git will say that it is both staged and modified.

If you make changes to a file that Git already tracks, you have to add it to the staging area again. In our example, we’ll need to stage the README.md file again after adding a new line.

Here is the result of the git status command after we added and then modified the README.md file:

[image:]Figure 124

Here Git can see that we staged the README.md file, so it is listed in the Changes to be committed section. It also shows that we’ve changed the README.md file, but we haven’t staged the changes yet. So it is listed in the Changes not staged for commit section, too.

To stage the new changes we have to run the git add command again:

[image:]Figure 125

Now the status command will show that we only have changes that are ready to be committed:

[image:]Figure 126

Staging Multiple Files

You can add multiple files at once:

[image:]Figure 127

And even add all the files in the current directory:

[image:]Figure 128

Now all the files in the current directory will be added to the staging area (except the files that are ignored1).

Viewing Staged Changes

Git has a diff command that shows the changes in the files. For example, you can see what has changed since the last commit:

Let’s say we have a README.md file with the following content:

[image:]Figure 129

This file is already tracked by Git and committed. Now we add a new line to it:

[image:]Figure 130

Now, if we run the git diff command, we’ll see the following output:

[image:]Figure 131

Here is what this output means:

	
diff --git a/README.md b/README.md - this line shows the name of the file that was changed. In this case, it is the README.md file.

	
index c39619d..d63b9b6 100644 - this line shows the hashes of the file before and after the change. It is used to identify the file.

	
--- a/README.md - the name of the file before the change.

	
+++ b/README.md - the name of the file after the change (they could be different if the file was renamed).

	
@@ -1 +1,2 @@ - this line shows the line numbers that were changed in the old and the new file. The numbers that go after the - are the affected lines in the old file. The numbers that go after the + are the affected lines in the new file. Here it is the first line in the old file and two lines starting from the first line in the new file.

The last two lines show the changes:

[image:]Figure 132

The first line was not changed. The second line starts with the + sign. It means that this line was added. If the line would start with the - sign it would mean that the line was removed.

By default, this command shows the changes in the files that are not staged. If we run git add . and then git diff again we won’t see any output.

If you want to see the staged changes you have to use the --staged flag:

[image:]Figure 133

It is useful to preview the changes that you are about to commit.

For example, you added a new file .env that contains secret keys. You don’t want to commit this file, so you add it to the .gitignore file. But you want to make sure that you didn’t accidentally stage it. You can run the git diff --staged command to make sure that the file is not staged.

Removing Files From the Staging Area

There is more than one way to unstage the changes. To avoid confusion, I’ll show you the most common way.

If you want to preserve the changes but remove them from the staging area use the git restore command:

[image:]Figure 134

For example, to remove the README.md file from the staging area, run the following command:

[image:]Figure 135

Now, the changes in the README.md file are not staged anymore.

Staging Individual Changes

Ok, here is a secret. You don’t have to stage the whole file. You can stage individual changes in the file.

To do this, you have to use the -p flag. It will start an interactive process that will allow you to stage individual changes:

[image:]Figure 136

Git will go over the changes in the file and ask you if you want to stage them. The individual changes are called hunks.

A hunk is a part of the file that was changed. It is also described by the @@ -1 +0,0 @@ line. Here it means that in the old file, this hunk is on the first line, and in the new file, it is not present.

You can use the following keys to answer:

	
y - stage the change

	
n - don’t stage the change (skip)

	
q - quit the process

	
a - stage all the changes

	
d - don’t stage all the changes

	
/ - search for a specific change

	
e - edit the change

	
? - show the help

This is useful when you have made a lot of changes in the file, but want to commit them separately.

Exercises

Add Files to the Staging Area

For this exercise, you’ll need the add-files-01 repository. You can find it in the attachments.

This repository contains two files. A README.md file that is already tracked by Git and a LICENSE file that is not tracked by Git yet.

Check the status of the repository to see the status of the files.

Add the LICENSE file to the staging area. Stage the changes in the README.md file.

Check the status of the repository.

Unstage Files

For this exercise, you’ll need the add-files-02 repository. You can find it in the attachments.

In this repository, all the changes are already staged. Check the status to see what files are staged.

Unstage the files. Make sure that the changes are preserved in the working directory.

Check the status to see that the files are not staged anymore.

	We’ll talk about ignoring files using the .gitignore file in the dedicated chapter.↩︎

Committing Changes

Git stores changes in commits. A commit is like a snapshot of the repository in its specific state.

[image: Anatomy of a commit]Figure 137. Anatomy of a commit

I intentionally made the illustration of the commit look strange. The tentacle is supposed to represent the connection with the parent commit. This link is unidirectional. The parent commit knows nothing about its children.

This is because commits are immutable. They cannot be changed after creation. So when we create a new commit we have a chance to store the hash of the parent. But as the parent commit was already created we cannot record the hash of the child there.

Commits contain the snapshot of the repository and also a bunch of extra information:

	
hash (SHA-1 Checksum) - commit unique ID generated based on the contents of the commit (including parent commit hash)

	
parent commit - the previous commit in the chain

	
author - who made changes in the commit

	
committer - who created the commit (can be different from the author)

	
timestamp - when the commit was created

	
message - a short description of the changes

	
tag - a short name that identifies the commit, often used to mark releases (e.g. v1.0.0)

In some sense, the most important fields are the hash and the parent commit hash. The hash is a unique identifier of the commit. It is calculated based on the contents of the commit. It is practically impossible1 that two commits will have the same hash.

Commits form a chain:

[image: A chain of commits. Each commit knows the hash of its parent.]Figure 138. A chain of commits. Each commit knows the hash of its parent.

The hash of each commit in the chain is calculated based on the contents of the commit itself and the hash of its parent commit.

This is done to guarantee the integrity of the commit history.

Merge Commits

Some commits can have multiple parents. These commits are called merge commits.

[image: Merge commit]Figure 139. Merge commit

Merge commits are created when you merge branches. They have the last commit from each branch as parents.

Let’s say we have a repository with four commits:

[image:]Figure 140

To see the parent hashes along with the commit hashes, you can run git log with the formatting directive:

[image:]Figure 141

Here, I used a few placeholders:

	
%s - subject of the commit message

	
%h - abbreviated commit hash

	
%p - abbreviated parent commit hashes

	
%n - newline

You can find the full list of placeholders in the git log documentation.

You can see that each commit has a unique hash. Each commit, starting from the second commit, has a parent commit hash. The merge commit has two parent commit hashes.

How to Commit Changes

To commit the changes, you first need to stage them. To do it, you run the git add command:

[image:]Figure 142

After the changes are staged, you run the git commit command:

[image:]Figure 143

If run without any arguments - Git will open the default text editor and ask you to enter the commit message. After you enter the commit message and save the file, Git will create a new commit with the changes that you’ve staged and the commit message that you’ve entered.

Commit messages can be multiple lines long. It is a good idea to use the first line to write the subject of the commit message. It should be short and describe the changes that you made. You can describe the changes in more detail in the following lines.

You can also combine adding and committing the changes in one command. To do this, you have to use the -a flag:

[image:]Figure 144

This will add all the changes to the staging area and then commit them. The difference between this and running the add + commit commands is git commit -a will only commit the changes that Git already tracks. It will not commit the files that you’ve just created.

You can also specify the commit message inline using the -m flag:

[image:]Figure 145

In this case, you can also provide multiple lines of text. To do this, use the -m flag multiple times:

[image:]Figure 146

The backslash \ is used to split the command into multiple lines. It is not required. You can also write the command in one line.

It is a good idea to have a convention for commit messages. It will make it easier to understand the history of the project. You can find a good convention in the Conventional Commits specification.

How to Overwrite the Last Commit

You can also pass an --amend flag to the git commit command. Then, instead of creating a new commit, it will add the changes to the previous commit. It is useful when you want to add something to the last commit or fix the commit message.

[image:]Figure 147

By default, it will ask you to edit the commit message. You can also specify the commit message inline:

[image:]Figure 148

Or you can leave the commit message as it is:

[image:]Figure 149

With the --no-edit flag, Git will reuse the old commit message.

Exercises

Commit Changes

Open the commit-changes-01 repository. You can find it in the attachments.

In this repository, you’ll see a README.md file. It is not tracked by Git yet.

Add this file to the staging area. Commit the changes.

Use a commit message that describes the changes that you’ve made.

Update the Last Commit

Open the commit-changes-02 repository. You can find it in the attachments.

In this repository, you’ll see a README.md file. It has some changes that still need to be staged.

Stage the changes in the README.md file and add them to the last commit.

Reuse the old commit message.

	It is possible, but the probability is so low that it is not worth considering. You can find a calculation of the probability in this StackOverflow answer https://stackoverflow.com/a/23253149. According to it, you would have to have to have fifty thousand billion billion different commits to have even a 0.1% chance of a collision.↩︎

Understanding .gitignore

Some files should never be tracked by Git. For example, the files that contain sensitive information like passwords or API keys. Or the files that are generated by the build process.

[image: Ignoring files using .gitignore]Figure 150. Ignoring files using .gitignore

How to Ignore Files

To prohibit Git from tracking specific files or directories, you can add them to the .gitingore file. This file should be located in the root directory of the repository.

Here is an example of the .gitignore file:

[image:]Figure 151

Glob Patterns

The .gitignore file uses the glob pattern syntax.

Glob patterns are used to match filenames or directory names. They are similar to regular expressions, but they are simpler and more limited.

Here are some examples of glob patterns:

[image:]Figure 152

There is a glob checker tool that you can use to test your glob patterns: https://globster.xyz/

Generate a .gitignore File for Your Project

Some kinds of projects have known sets of files that should be ignored. For example, the NodeJS projects should ignore the node_modules directory. Often, you’ll also want to ignore the build directory.

To generate the .gitignore file for your project, you can use the gitignore.io service.

You can also add a Git alias to be able to generate the .gitignore file from the command line:

[image:]Figure 153

Now you can list the .gitignore templates using the git ignore list command:

[image:]Figure 154

You can generate the .gitignore file using the git ignore <template> command:

[image:]Figure 155

Exercises

Create a .gitignore File

For this exercise, you’ll need the gitignore-01 repository. You can find it in the attachments.

This repository contains a front-end project. We want to ignore the node_modules directory, the build directory, and the .env file.

Create a .gitignore file in the root directory of the repository. Add the node_modules directory, the build directory, and the .env file to the .gitignore file.

Stage the changes and commit them. Use a commit message that describes the changes that you’ve made.

Practice Using Glob Patterns

Open the glob checker tool: https://globster.xyz/

	
Try to create a glob pattern that matches all the .ts and .js files, but not .module.ts.

Viewing the Commit History

When working with Git, you’ll often need to switch between commits. For example, you might want to go back to the previous commit to see how the code was before you made the changes. Or you might want to go back to the commit where you introduced a bug to see what exactly you changed.

[image: Map of commits]Figure 156. Map of commits

To be able to choose the commit you want to go back to, you need to know how to view the commit history.

This chapter is based on an example repository. You can find it in the viewing-commit-history-00 folder.

How to View the Commit History

To view the commit history, you can use the git log command:

[image:]Figure 157

By default, it will show the commits in the reverse chronological order. The newest commit will be at the top. The oldest commit will be at the bottom.

The log command output is navigatable. You can use the arrow keys (or j and k keys) to scroll up and down. You can also use the space key to scroll down one page. You can use the b key to scroll up one page. If you want to exit the log, press the q key.

Here is an example of the output:

[image:]Figure 158

Here, we can see three commits. Each commit has a hash, author, date, and commit message.

The hash is a unique identifier of the commit. It is used to refer to the commit. For example, if you want to see the changes that were made in a specific commit, you can use the show command and pass the hash to it:

[image:]Figure 159

It will output the changes that were made in this commit. Here is a typical output:

[image:]Figure 160

As you can see, the output contains the commit hash, author, date, and commit message. It also contains the changes that were made in this commit.

The changes are shown in the diff format. The lines that start with + are the lines that were added. The lines that start with - are the lines that were removed.

Here, the line This is a README file with changes was removed. The line # This is a README file was added. And the line Now with proper formatting was added.

The line @@ -1 +1,3 @@ shows the location of the displayed chunk in the old and the new file. In this case, it means that the chunk starts at line 1 and it has only one line. In the new file, the chunk starts at line 1, and it has three lines.

How to View the Commit History in One Line

You can use the --oneline flag to compress the commit information into one line:

[image:]Figure 161

The commit hashes will use only the first 7 characters. The commit messages will show only the first line.

Here, you can also see that there was a merge commit. It was created when the add-license branch was merged into the main branch. It has the (add-license) prefix before the commit message.

How to View the Commit History in a Graph

To see the relations between branches better, you can use the --graph flag:

[image:]Figure 162

The same history as in the previous example will look like this:

[image:]Figure 163

Git uses ASCII characters to draw the graph.

This is useful when you want to know which commits come from which branches and when the branches were created and merged.

Exercises

View the Commit History

Open the view-commit-history-01 repository. You can find it in the attachments.

Log the commit history.

Use the show command to see the changes that were made in the last commit.

Try using fewer characters from the hash.

View the Commit History as a Graph

Open the view-commit-history-02 repository. You can find it in the attachments.

Log the commit history with the --graph flag.

Try using the --oneline flag.

View the Commit History for a Specific File

You can limit the commit history to a specific file. To do this, you can use the --follow flag:

[image:]Figure 164

Open the view-commit-history-03 repository. You can find it in the attachments.

Check the whole history.

Check the history for the README.md file only.

Switching Between Commits

One of the greatest advantages of using Git and version control, in general, is that you can go back to any previous state of your project. This is invaluable when you need to find the point in time when a bug was introduced or when you need to go back to a previous version of your project.

In Git, this time travel is done by switching between commits.

What Does It Mean to Switch Between Commits?

When you switch between commits, Git will update the files in the working directory so that they match the state of the repository at the time of the commit.

Git will also update your position on the map of commits.

[image: Git updates the position of the HEAD pointer]Figure 165. Git updates the position of the HEAD pointer

Git does that by moving the HEAD pointer.

How to Switch to a Particular Commit

To switch to a specific commit, you can use the git checkout command:

[image:]Figure 166

This command will switch to the commit with the specified hash. Git will update the files in the working directory to match the state of the repository at the time of the commit.

Don’t worry. All the commits that go after that commit will still be there. You can switch back to them at any time.

You don’t have to use the full hash. You can use the first few characters of the hash. As long as it is unique, Git will know which commit you want to switch to. Usually, the first seven characters are enough.

How to Switch Relative to the Current Commit

[image: You can switch relative to the HEAD pointer]Figure 167. You can switch relative to the HEAD pointer

The current commit is marked with the HEAD pointer. You can use the caret (^) and tilde (~) characters to move relative to it.

Let’s say we have the following commits:

[image:]Figure 168

We are currently at the latest commit 859b73b.

The caret character (^) means the parent commit:

[image:]Figure 169

This command will move us one commit back:

[image:]Figure 170

To move to one of the grandparents, you can use the caret character multiple times:

[image:]Figure 171

This will move HEAD three commits back. Here is the result:

[image:]Figure 172

The tilde character (~) allows you to specify the exact number of commits you want to move back:

[image:]Figure 173

This will move HEAD two commits back:

[image:]Figure 174

How to Switch Back

If you want to switch back to where you were before you switched to a commit, use the git checkout command with the - (dash) flag:

[image:]Figure 175

You can also go back using the switch command:

[image:]Figure 176

This will move you to the previous commit you’ve been on.

To switch back to the tip of the branch, you can use the branch name:

[image:]Figure 177

Exercises

Switch to a Commit

Open the switch-between-commits-01 repository. You can find it in the attachments.

Find the commit with the message “Add markdown header”. You can do this by using the log command with the --grep flag:

[image:]Figure 178

Switch to this commit.

Switch back to the latest commit. Remember that there are multiple ways of doing this. You can use the checkout command with a branch name, or you can use the - flag to return to the previous commit you’ve been on.

Understanding HEAD

HEAD is a pointer to the current commit.

We already discussed HEAD in the introductory chapter, where I compared Git to a board game, where HEAD is a game piece that you move along the board.

In this chapter, we’ll focus on the detached HEAD state.

We’ll use a simple repository with two commits as an example:

[image: A repository with two commits]Figure 179. A repository with two commits

You can find this repository in the attachments. It’s called understanding-head-00.

When the HEAD is Detached

By default, the HEAD is attached to the tip of the current branch. It means that when you make a new commit, the HEAD will move to the latest commit.

When you switch to a specific commit, Git will detach the HEAD. It will point to the commit that you’ve switched to instead of the tip of the branch. When you do this, Git warns you that the HEAD is now in the detached state:

[image:]Figure 180

Here, I used the switch command to switch to the commit with the hash 2fc5725. You can also use the checkout command to do the same thing.

[image: Detached HEAD state]Figure 181. Detached HEAD state

Another thing that happens in this state is that git log won’t show any commits that go after the current commit.

For example, if you run the log command now, you’ll see only one commit:

[image:]Figure 182

This happens because commits are connected in a chain. Each commit has a reference to its parent commit. But parent commits don’t have references to their children.

What Happens When You Commit in the Detached HEAD State

When you create a new commit from the detached state, there is a problem because, by definition, if you are in the detached HEAD state - you are somewhere in the middle of the commit chain. You are not at the tip of the branch.

It means that we cannot just insert a new commit into the chain. That would require us to change the commit that goes after the current commit. And that would cause the whole chain to change.

The hash of each commit is calculated, among other things, based on the hash of the previous commit. So, if we change the parent hash of the next commit, it will change its hash. And the hash of the next commit will change as well. And so on.

To avoid that, Git creates a new commit that does not belong to any branch. The only thing that ties it to the current chain is the parent hash.

[image: Dangling commit]Figure 183. Dangling commit

This kind of commit is called a dangling commit.

The danger with this kind of commit is that if you switch to another branch, this commit will not be visible if you run the log command. It will be lost.

Here we are currently on this new dangling commit:

[image: Detached HEAD]Figure 184. Detached HEAD

If we run git log from here, you’ll see the commit we are currently on and the initial commit:

[image:]Figure 185

Here, Git reminds us again that we are in the detached HEAD state.

Now, when we switch back to the main branch, we won’t see the dangling commit:

[image:]Figure 186

Here we see only the commits that belong to the main branch. The commit that we’ve created in the detached HEAD state is lost.

How to Find Dangling Commits

If you’ve created a commit in the detached HEAD state and then switched to another branch, you can still find the commit you created. There are a couple of ways to do it.

The first way to find the commit is to use the git fsck command:

[image:]Figure 187

This command will print out all the dangling commits. You can then checkout the commit by its hash.

Another option is to use the git reflog command. It will show you the history of the HEAD movements. And you can find the commit that you’ve created in the detached HEAD state there:

[image:]Figure 188

You’ll see the commit hashes and the messages of the commits you visited. The commit that you’ve created in the detached HEAD state will be there as well.

Be careful. The reflog is not permanent. By default, it will keep the history of the HEAD movements for 90 days. After that, it will be deleted.

How to Reattach the Dangling Commit

Once you’ve found the dangling commit, you can reattach it to the branch. You can do it by creating a new branch from the dangling commit:

[image:]Figure 189

Here, we create a new branch called my-new-branch from the dangling commit. And the HEAD will be pointing to the tip of the new branch.

Now, you’ll be able to merge the new branch into the main branch.

How to Fix the Detached HEAD

To return to the normal “attached” state, you can just switch to the branch that you want to attach the HEAD to.

For example, to attach the HEAD to the main branch, you can run:

[image:]Figure 190

or

[image:]Figure 191

Those two commands are equivalent.

Exercises

Find Where HEAD is Pointing To

Open the understanding-head-01 repository. You can find it in the attachments.

Check the contents of the .git/HEAD file.

Check the commit history using the log command. Where is the HEAD pointing to? What is the hash of the commit?

Moving the HEAD

Open the understanding-head-02 repository. You can find it in the attachments.

Check the commit history using the log command. Where is the HEAD pointing to? What is the hash of the commit?

Now move the HEAD to the previous commit. You can do it by referencing the commit by its hash or by using the HEAD~1 reference.

Check the commit history again. Where is the HEAD pointing to now? What is the hash of the commit?

Detached HEAD State

Open the understanding-head-03 repository. You can find it in the attachments.

This repository is in the detached HEAD state. Check the contents of the .git/HEAD file.

Try to stage the changes in the README.md file and commit them.

Check out the main branch. Can you find the commit that you’ve just created?

To find dangling commits, you can use the git fsck command:

[image:]Figure 192

This command will print out all the dangling commits. You can then checkout the commit by its hash.

You can also use the git reflog command to find the hash of the commit that you’ve just created.

Restoring the Working Directory

Sometimes, you might find yourself with a working directory that is in a bad state. Maybe you ran a script that generated a lot of files, and you want to get rid of them. Or maybe you just want to discard all the changes that you made.

Git has several commands that can help you with that:

	
git clean

	
git checkout

	
git restore

	
git reset

git clean and git checkout discard the changes from the working directory. git clean discards the changes from untracked files and git checkout discards the changes from tracked files.

git restore and git reset bring the working directory and the staging area to the state of a certain checkpoint. This checkpoint can be a commit or the staging area.

But there is a major difference between these two commands.

git restore is safe because it doesn’t change the history of the repository. It only changes the working directory and the staging area.

git reset is dangerous because if you reset to a certain commit in the past - all the commits that go after it will be lost.

Because of this danger, in this chapter, we will focus on safe commands - git clean, git checkout, and git restore. I talk more about the git reset command in the Undoing Changes chapter.

Keep in mind that when I say that the other commands are safe - I mean that they don’t change the history of the repository. The changes they discard are lost forever. They don’t go to the trash bin. So be careful when using them.

Let’s say you have a repository with three files:

	
modified.txt - a file that existed in the previous commit and was modified

	
staged.txt - a file that existed in the previous commit and was modified and staged

	
untracked.txt - a new file that is not tracked by Git

If we run git status - it will look like this:

[image:]Figure 193

Discarding the Untracked Files

If you only care to discard the untracked files, you can use the clean command:

[image:]Figure 194

[image: The git clean command]Figure 195. The command

The -f flag is required to let Git know that you really want to remove the untracked files.

It is a really good idea to run git clean with the -n flag first. This will show you what files will be removed without actually removing them:

[image:]Figure 196

If the result looks correct you can proceed and actually remove the files.

Discarding the Tracked Files

To discard the changes in the tracked files you can use the checkout command:

[image:]Figure 197

Here I use the . symbol to discard the changes from all the files in the working directory. But you can be more specific and list the files that you want to discard.

[image: The result of the git checkout command]Figure 198. The result of the command

In any case, Git will discard changes only in the tracked but not staged files. The changes in the staged files will remain.

You can also use the restore command to discard the changes from the tracked files:

[image:]Figure 199

The result will be similar to the checkout command.

[image: The result of the git restore command]Figure 200. The result of the command

Discarding the Staged Files

If you already staged the changes you can use the restore command to discard them:

[image:]Figure 201

The changes will be only unstaged, they will remain in the working directory.

[image: The result of the git restore --staged command]Figure 202. The result of the command

If you want to discard both the staged and the unstaged changes, you can use the restore command with the --staged and the --worktree flags:

[image:]Figure 203

[image: The result of the git restore --staged --worktree command]Figure 204. The result of the command

Exercises

Discard the Non-Staged Changes

Open the restoring-working-directory-01 directory.

Check the status of the repository. You should see that there are changes in the working directory, but they are not staged.

Undo the changes from the working directory.

Discard the Staged Changes

Open the restoring-working-directory-02 directory.

Check the status of the repository, you’ll see that there are changes in the working directory and they are staged.

Undo the staged changes.

Discard the Untracked Files

Open the restoring-working-directory-03 directory.

Check the status of the repository. You’ll see that there are untracked files.

Discard the untracked files.

Undoing Changes

Sometimes, you might want to undo the changes that you made. If you haven’t committed them yet - then check the Restoring the Working Directory chapter.

But if you’ve already committed the changes, you have two options. You can either revert the commit or remove the commit with unwanted changes.

Reverting the Commit

The rule of thumb is that if you’ve pushed the commit to the remote repository, then you should use the git revert command.

git revert will generate a new commit with the opposite changes from the commit you want to revert.

It means that if you have a commit that adds a line to a file, then the revert commit will remove that line from the file.

This is the safest way to undo changes because it doesn’t change the history of the repository.

Here is an example. Let’s say we have a repository with a single commit that adds a LICENSE file:

[image:]Figure 205

Then you add a new commit with unwanted changes:

[image:]Figure 206

Now you have two commits:

[image:]Figure 207

Let’s revert the commit with unwanted changes:

[image:]Figure 208

Now you have a third commit that reverts the changes from the second commit:

[image:]Figure 209

If you check the contents of this commit, you’ll see that it removed the line that was added in the commit with unwanted changes:

[image:]Figure 210

Resetting Changes

If you haven’t pushed the unwanted commit yet, then you can use the reset command.

Be extra careful with this command.

This command can erase commits from the history of the repository. It means that you should only use it if you are sure that you don’t need the commit anymore.

There are three modes of the reset command: --soft, --hard, and without any mode flag.

The difference between them is what happens with the changes from the commit you want to remove.

[image: Reset modes]Figure 211. Reset modes

If you use the --soft mode, then the changes from the commit will be moved to the staging area. It means that you can commit them again.

If you run the reset command without any mode flag, then the changes from the commit will be moved to the working directory. It means that you can edit them and then stage and commit them again.

If you use the --hard mode, then the changes from the commit will be removed completely. It means that you can’t get them back.

Exercises

Undo the Non-Staged Changes

Open the undoing-changes-01 directory.

Check the status of the repository. You should see that there are changes in the working directory, but they are not staged.

Undo the changes from the working directory using the git reset command.

Reset the Commit

Open the undoing-changes-02 directory.

Run git status.

Reset the last commit using the --soft mode.

Check the status of the repository again.

Revert the Commit

Open the undoing-changes-03 directory.

Revert the second to last commit.

This will cause a merge conflict in the README.md file. You’ll need to open it and resolve the conflict manually.

To do this remove the conflict markers (<<<, >>> and ===) and the unwanted change. The unwanted change in this case is the line with the following content:

[image:]Figure 212

Preserve the line saying Changes that we want to preserve.

The resulting text should be:

[image:]Figure 213

Using branches

Typically, a repository has at least one branch. It’s the branch that is created when you run git init or git clone. Usually, this branch is called main.

[image: Git main branch]Figure 214. Git main branch

Sometimes, you might want to work on a particular part of your project without affecting the main branch.

For example, if you are developing a new feature and you don’t want to break the main branch while you are working on it.

Usually, in software development, the main branch is the one that is deployed to production. So you want to keep it stable.

One way of achieving this would be feature flags. This doesn’t have anything to do with Git. You just add some code that checks if the feature is enabled, and if it is - it runs the code for the new feature.

But this can be cumbersome. You might have to add such feature flags in many places in your code. And you might have to remove them later.

Git offers a different approach. You can create a new branch and work on the new feature there.

[image: Git multiple branches]Figure 215. Git multiple branches

When you have multiple branches, you can switch between them and work on them independently.

At some point, you might decide to merge the changes from the new branch to the main branch.

[image: Git switching branches]Figure 216. Git switching branches

And sometimes, you just want to discard the changes from the new branch and delete it.

How Does Git Store Branches

You can list the commits in a branch using the log command:

[image:]Figure 217

This might give the impression that Git stores branches as lists of commits. But that’s not true.

You can think about the branch as a label that is attached to a commit. When you create a new branch, Git just adds a new label to the commit you are currently on. A commit can have many labels attached to it at the same time.

When you run git log with a branch name, Git starts from the commit that the branch points to and then walks the commit chain until it reaches the initial commit (great grandparent of all the commits, the first commit in the repository).

[image: Git branch as a label]Figure 218. Git branch as a label

Once you start committing changes to those branches, the commit chain will diverge. Each branch will point to a different commit.

[image: Commit chains of different branches]Figure 219. Commit chains of different branches

Creating New Branches

To create a new branch, use the git branch command.

[image:]Figure 220

For example, we can create a new branch where we’ll add a LICENSE file:

[image:]Figure 221

This command will only create the branch. The HEAD pointer will not move to it.

To create a new branch your repository must have at least one commit. Otherwise, Git will not know which commit to point the new branch to.

Switching Branches

To switch to a branch, you can use the git checkout command:

[image:]Figure 222

For example, we can switch to the add-license branch:

[image:]Figure 223

You also can create a new branch and switch to it at the same time using the -b flag:

[image:]Figure 224

Even though we now switched to another branch, the HEAD pointer still points to the same commit. The only thing that changed is the branch label.

[image: Git switching branches]Figure 225. Git switching branches

Now we can create a LICENSE file:

[image:]Figure 226

And commit the changes:

[image:]Figure 227

Now, the add-license branch is one commit ahead of the main branch.

[image: Git switching branches]Figure 228. Git switching branches

Listing Branches

You can list the branches using the branch command.

[image:]Figure 229

If you don’t pass any arguments, it will list all the branches in the repository:

The branch you are currently on will be marked with an asterisk:

[image:]Figure 230

You can also use a -a flag to list all the branches, including the remote branches:

[image:]Figure 231

Deleting Branches

To delete a branch, use the git branch command with the -d flag:

[image:]Figure 232

For example, we can delete the add-license branch:

[image:]Figure 233

Merging Branches

After you are done with the changes in the branch you made, you can merge it back to the main branch. To do this, you first need to switch to the main branch, and then you can use the git merge command:

[image:]Figure 234

This will merge the changes from the specified branch to the current branch.

For example, if we are on the main branch and we want to merge the changes from the add-license branch we can use the following command:

[image:]Figure 235

This will merge the changes from the add-license branch to the main branch.

It means that the main branch will now contain all the commits from the add-license branch. Git will put all the commits from the add-license branch on top of the main branch. It will also create an extra “merge” commit.

Sometimes, during the merge, you might get a conflict. It happens when the same part of the file is changed in both branches, and it is impossible to tell automatically which change should be used. We discuss this in the next chapter.

Exercises

Creating New Branches

Open the using-branches-01 directory.

Create a new branch called add-contributing.

Switching Branches

Open the using-branches-02 directory.

Check the list of branches.

Switch to the add-contributing branch.

Switch back to the main branch.

Merging Branches

Merge the changes from the update-license branch to the main branch.

Open the using-branches-03 directory.

Switch to the main branch.

Merge the changes from the update-license branch.

Check the log.

Resolving Merge Conflicts

When you merge two1 branches, Git calculates how the resulting files should look like automatically. If the changes happen in different places of the file - it will just include them both, but what if two branches change the same lines?

Imagine we work together on a project and decide to update the README.md file. Each of us creates a branch and makes some changes to the file.

In my branch, I decided that the heading in this README.md file should be “Read Me” and you decided that it should be “Git Tutorial”.

I merged my branch to main, and now it’s time to merge your branch:

[image: Merge conflict]Figure 236. Merge conflict

Git won’t know which heading to use. In such cases, Git will mark the file as having a merge conflict, and we’ll have to resolve it manually.

In this chapter, we’ll learn how conflicts happen and how to resolve them.

How Conflicts Happen

The typical scenario when a merge conflict happens is when you have two branches and you change the same file in both branches.

Just changing the same file is not enough. Git is quite good at merging changes in the same file. The problem is when you change the same lines of code in both branches.

For example, you have a main branch and a feature branch. You make some changes in the main branch, and then you switch to the feature branch and make some changes there. Coincidentally, you change the same lines of code in both branches.

Git won’t be able to merge the feature branch into the main branch automatically because it doesn’t know which changes are more important.

How to Avoid Conflicts

The best solution here is to communicate with your team members. If you know that someone is working on a specific file, you can wait for them to finish, and then you can start working on it.

Another good strategy is to keep your changes small. If you work in small increments, the chances of having a conflict are much lower. One way of doing this is making sure your branches are short-lived and focused on a single task.

How to Resolve Conflicts

Once you get the conflicts - you’ll have to decide which changes to keep and which to discard. You can do it manually by editing the files or in bulk by providing a strategy to Git.

Resolving Conflicts Manually

When you have a conflict, Git will mark the conflicting lines in the file. You’ll have to edit the file and remove the conflict markers. Then, you’ll have to add the file to the staging area and commit the changes.

Let’s go over an example. You can find this example in the resolving-merge-conflicts-00 folder.

We have a repository with three branches: main, update-readme, and add-license.

In the main branch, we have an empty README.md file.

In the update-readme branch, we add the following line to the README.md file:

[image:]Figure 237

In the add-license branch, we create a LICENSE file and add the following line to the README.md file:

[image:]Figure 238

Note that both branches originate from the same commit on the main branch, where the README.md file is empty.

We are currently on the main branch. If we try to merge both branches into the main branch, we’ll get a merge conflict:

[image:]Figure 239

By default, Git tries to merge the files automatically. If it can’t do it - it will mark the file as having a merge conflict.

You can see the list of files that have merge conflicts using the git status command:

[image:]Figure 240

The files that have merge conflicts will be under the “Unmerged paths” section:

[image:]Figure 241

If you open the file, you’ll see the following:

[image:]Figure 242

The <<<, === and >>> lines are called conflict markers. They are used to mark the beginning and the end of the conflict.

When you perform a merge, the changes that are in the current branch will be between the <<<<<<< HEAD and ======= lines. The changes from the branch you are merging are always between the ======= and >>>>>>> your-branch lines.

To resolve the conflict, you have three options.

Option one is to keep both changes. In this case, you’ll have to remove the conflict markers and keep the content from both blocks:

[image:]Figure 243

Option two is to keep the changes from the current branch and discard the changes from the other branch:

[image:]Figure 244

Option three is to keep the changes from the other branch and discard the changes from the current branch:

[image:]Figure 245

In all three cases, you have to remove the conflict markers (the <<<<<<< HEAD, ======= and >>>>>>> add-license lines).

After you resolve the conflict, you have to add the file to the staging area and commit the changes:

[image:]Figure 246

Here, we used the --no-edit option to use the commit message that Git generated for us.

By default, Git generates a merge commit message that looks like this:

[image:]Figure 247

If we didn’t use the --no-edit option, Git would open the editor and ask us to provide a commit message.

Resolving Conflicts Using a Strategy

You can also resolve conflicts using a strategy2. You can provide the strategy to the git merge command using the -s option.

For example, let’s say we have two branches - main and other-branch. We want to merge the changes from the other-branch into the main branch. In case of conflicts, we want to keep the changes from the main branch.

If we are currently on the main branch, we can use the ours strategy to keep the changes from the main branch:

[image:]Figure 248

In this case, Git will always choose the changes from the current branch.

If you want to keep the changes from the branch you are merging and discard the changes from the current branch you can use the theirs strategy:

[image:]Figure 249

Then Git will choose the changes from the other branch you are merging.

Exercises

Resolve the Both Added Conflict.

Open the resolving-merge-conflicts-01 directory.

Run the git status command. You should see that the README.md file has a merge conflict.

Check the contents of the README.md. We want to leave the changes from the add-readme branch and discard the rest.

Resolve the Both Deleted Conflict.

Open the resolving-merge-conflicts-02 directory.

Run the git status command. You should see that the README.md file has a both deleted conflict. Also, there will be two new files - README.txt and README.org.

The type of conflict is “both deleted”. Most often, that happens because the file was renamed in both branches.

The file with the old name will be considered deleted in both branches, and there will be two new files, one from each branch, and Git doesn’t know which one to keep.

Accept the changes from the current branch.

Resolve the Both Modified Conflict Manually.

Open the resolving-merge-conflicts-03 directory.

Run the git status command. You should see that the README.md file has a merge conflict.

Open the README.md file and resolve the conflict. We want to keep the line saying “Updated README”.

Add and commit the changes.

Resolve the Both Modified Conflict, Using the ours Strategy.

Open the resolving-merge-conflicts-04 directory.

Merge the branch called another-branch into the new-branch. Use the ours strategy to resolve the conflicts.

Check the contents of the README.md file.

	Git is not limited to merging two branches. You can merge as many branches as you want, but for the sake of simplicity, we’ll assume that we are merging two branches. This is also the most common scenario.↩︎

	Resolving strategies is a more advanced topic. Also, throughout my career, I noticed that most of the time, you can resolve conflicts manually. But it’s good to know that there are other options. You can read more about them in the official documentation.↩︎

Stashing changes

Let’s say you made some changes in your working directory, and now you want to switch to another branch. For example, you urgently need to fix a bug in the main branch. You decide to drop the task at hand and switch to the main branch:

[image:]Figure 250

Git protects you from losing your changes. It tells you that you have uncommitted changes in the working directory, and switching branches would overwrite them. It even suggests you commit your changes or stash them before switching branches.

We already know how to commit changes. But what does it mean to stash changes?

What is a Stash?

A stash is a place where you can put aside your uncommitted changes. You can then apply them later.

I like to imagine it as a stack of boxes.

[image: Stack of boxes]Figure 251. Stack of boxes

Each box contains a set of changes. Once you stash them, you put the new box on top of the stack.

When you apply the changes from the stash - by default Git will take the box from the top of the stack.

[image: Applying the changes from the stash]Figure 252. Applying the changes from the stash

You can also specify which box you want to take.

[image: Applying the changes from the stash]Figure 253. Applying the changes from the stash

Once you apply the changes from the stash, you can choose to leave the box where it is or to destroy it.

Put Aside Changes

Let’s say you have some uncommitted changes in the working directory.

For example, you added a few lines to the poem in the POEM.md file:

[image:]Figure 254

The lines that start with + are the new lines.

You can put these changes aside using the git stash command:

[image:]Figure 255

Git will create a stash and automatically generate a name for it. By default, it will use the current branch name, commit hash, and the first line of the commit message.

The changes that you put aside are now gone from the working directory. So the POEM.md now looks like this:

[image:]Figure 256

View Stashes

You can see the list of stashes using the git stash list command:

[image:]Figure 257

Each stash in the list has a name and an index. The index is the number in the curly braces. In this case, we only have one stash, and its index is 0.

If we add more changes and stash them too, we will see a new stash in the list:

[image:]Figure 258

We made the new stash from the same branch and commit as the previous one. So the name of the stash is the same. But the index is different.

Using Named Stashes

It is easy to lose track of what was done in a particular stash. To make it easier to understand what is in the stash you can give it a name:

[image:]Figure 259

Now, when you list the stashes, hopefully it will be more clear what is in each stash:

[image:]Figure 260

Preview Stash Contents

You can preview the stash contents by using the git stash show command:

[image:]Figure 261

As you can see the diff contains the changes that we put aside.

Here we provided the stash index (0) as an argument to the git stash show command. In this case, it is the same as git stash show without an index, because by default Git will show the latest stash.

We also used the -p flag to show the diff. Without this flag, Git will only show the list of files that were changed:

[image:]Figure 262

Apply Stashes

To apply the changes from the stash, you can use the git stash apply command:

[image:]Figure 263

This will apply the changes from the latest stash. If you imagine the stash as a stack of boxes, then it will be the box from the top.

If you have multiple stashes, you can specify which stash you want to apply. To do this, you can use the stash index:

[image:]Figure 264

When you use the git stash apply command, the stash will still exist. You can apply it again later.

Drop stash

If you don’t need the stash anymore, you can drop it:

[image:]Figure 265

This will remove the latest stash (the top one if we imagine the stash as a stack of boxes).

You can remove a specific stash by providing a stash index:

[image:]Figure 266

This will remove the second stash from the top because the index starts from 0.

You can also apply and drop the stash in one command:

[image:]Figure 267

This will apply the changes from the latest stash and drop it.

You can also drop all the stashes using the git stash clear command:

[image:]Figure 268

Exercises

Stash the Changes

Open the stashing-changes-01 directory.

Switch to the feature branch. You should see the following message:

[image:]Figure 269

Stash the changes and switch to the feature branch.

Apply the Stash

Open the stashing-changes-02 directory.

Switch to the old-feature branch.

Check the list of stashes.

Apply the changes from the stash and drop the stash.

Pop the Stash

Open the stashing-changes-03 directory.

Switch to the old-feature branch.

Check the list of stashes.

Pop the stash.

Using Remotes

One of the biggest advantages of using a version control system is that you can collaborate with other people. To do this, Git provides a feature called remotes.

What is a Remote

Git is a decentralized version control system. This means that every participant in the project has a full copy of the repository on their machine.

To represent the other participants, Git uses the concept of remotes. A remote is a reference to a repository. It can be a reference to another repository on your machine or another machine on the network.

A remote has a name, for example, “origin”, “github”, “gitlab”, etc., and a URL that points to the repository it represents.

It also contains a lightweight representation of the repository. This representation contains a list of branches and only the commits that are not present in the local repository.

[image: A repository that has a remote called “origin”]Figure 270. A repository that has a remote called “origin”

In this picture, I show a local repository that has a remote called origin. This remote points to https://git.net/repo.git.

You can think about remotes as photocopies of the repositories. By that, I mean that a remote contains only a small amount of information about the repository it represents.

Git updates this “photocopy” every time you fetch or push changes to the remote repository.

Fetching is the process of getting changes from the remote repository to its local representation. Pushing is the process of sending changes from your local repository to the remote repository.

Adding a Remote

If you clone a repository from a remote server, Git will automatically add a remote called origin that points to the remote repository.

[image:]Figure 271

Git will check what is the default branch on the remote repository and create a local branch with the same name. It will also set up the local branch to track the remote branch.

Tracking means that when we push changes to the remote or pull changes from there, Git will know which remote branch to use.

So, for example, if the default branch on the remote repository is main Git will create a local main branch and set it up to track the main branch of the remote repository.

If you’ve just created a new repository, you won’t see any remotes. To add a remote repository, you use the git remote add command:

[image:]Figure 272

The <remote-name> is a short name to refer to the remote repository. The most common name is “origin”. The <remote-url> is the URL of the remote repository.

Adding GitHub as a Remote Repository

GitHub is hosting service for Git repositories.

You can create a new repository there and add it as a remote:

Let’s create a new repository on GitHub. Go to https://github.com/new and enter the repository name. Let’s call it “git-tutorial”. Leave the other options as they are and click on the “Create repository” button.

You should see a setup page for your repository with a few options. We’ll be adding a remote to an existing repository.

Open a terminal and navigate to the directory of the repository you want to add a remote to. Then run the following command:

[image:]Figure 273

Change <your-username> with your GitHub username.

Listing Remotes

To see the list of remotes, you can use the git remote command:

[image:]Figure 274

Here you can see that we have one remote called origin. This is the remote we just added.

You can also see the URL of the remote repository if you add the -v (verbose) option:

[image:]Figure 275

The remote can have different URLs for fetching and pushing. This is why you see it listed twice here.

Pushing to a Remote Repository

Now that you’ve added a remote, you can push your changes to it.

By default, Git pushes the changes from the branch you are currently on. But it also needs to know the corresponding remote branch.

To push your changes to a remote repository, use the git push command:

[image:]Figure 276

Here, we specify the <remote-name> and the <branch-name> manually.

But you can also set the default upstream branch using the -u (short for --set-upstream) option:

[image:]Figure 277

Here, we tell Git to push the changes from the local main branch to the origin remote and set the origin/main branch as the upstream branch for the local main branch.

This sets up the tracking relationship between the local and remote branches. The local main branch can now be called

You’ll see something like this:

[image:]Figure 278

The last three lines are the important ones. They tell us that the main branch was pushed to the origin remote and that the main branch is set up to track the origin/main branch.

The remote repository did not have the main branch so it was created. The local main branch is now connected to the origin/main branch.

From now on, when we push changes to the main branch, Git will know that we want to push them to the origin/main branch. It’s the same for pulling changes.

If you run git status now, Git will tell you if the local and remote branches are in sync:

[image:]Figure 279

If you make some commits on the local main branch and then run git status you’ll see something like this:

[image:]Figure 280

This means that the local main branch is one commit ahead of the origin/main branch.

Pulling or Fetching from a Remote Repository

There are two commands that you can use to get changes from a remote repository: pull and fetch.

The fetch command only “fetches” the changes from the remote repository. It does not merge them into the current branch automatically. To merge the fetched changes, you need to use the merge command.

[image:]Figure 281

For example, to fetch the changes from the origin remote and merge the changes from branch main you would run:

[image:]Figure 282

The pull command is a combination of the fetch and merge commands. It fetches the latest changes from the remote repository and then merges them into the current branch.

Usually, if you want to sync your local branch with its remote counterpart - you’ll use pull.

Fetching and then merging as two distinct steps can be useful in cases when you are doing something tricky. For example, if you expect that someone tampered with the history of changes on the remote branch and there might be conflicts on pull. Then you might want to fetch and then merge to some temporary branch instead.

Renaming Remotes

You can rename the remote by using the remote rename command:

[image:]Figure 283

Now, if you run git remote you’ll see the new name:

[image:]Figure 284

Removing Remotes

You can also remove a remote by using the git remote remove command:

[image:]Figure 285

This command will remove the local representation of the remote repository. It will not delete the remote repository on the remote machine.

It is like removing a record from your address book. This change only affects your machine.

Exercises

Add a Remote

Add a remote to the repository. Use the repository from the using-remote-repositories-01 directory.

[image:]Figure 286

Here, we are using a local folder as a remote repository. This is useful for testing. In real life, you would use a remote repository hosted on a remote machine.

List Remotes

List the remotes of the repository. Use the repository from the using-remote-repositories-02 directory.

[image:]Figure 287

Try the -v (verbose) option.

Push to a Remote

Push the main branch to the origin remote. Use the repository from the using-remote-repositories-03 directory.

[image:]Figure 288

Pull from a Remote

Pull the main branch from the origin remote. Use the repository from the using-remote-repositories-04 directory.

[image:]Figure 289

Fetch from a Remote

Fetch the main branch from the origin remote. Use the repository from the using-remote-repositories-05 directory.

[image:]Figure 290

Observe the changes in the local main branch. You should see that the local main branch is not updated.

Then, merge the changes from the origin/main branch into the local main branch.

Rename a Remote

Rename the origin remote to github. Use the repository from the using-remote-repositories-06 directory.

[image:]Figure 291

Remove a Remote

Remove the github remote. Use the repository from the using-remote-repositories-07 directory.

[image:]Figure 292

Try running git pull github main. You should see an error message.

Afterword

I hope you enjoyed this book and feel more confident using Git.

In this book, we didn’t cover all the Git functionality. Instead, we focused on commands that will help you solve most of the tasks you’ll face in your daily work.

If you want to learn more about Git, I recommend reading the Pro Git book. It’s a great book that covers all the Git functionality in detail.

If you have any questions or feedback, please email me at gitbook@maksimivanov.com.

Appendix

Answers to Exercises

Check the Statuses of the Repositories

Here are the results of calling git status in the repositories:

check-status-01

[image:]Figure 293

check-status-02

[image:]Figure 294

check-status-03

[image:]Figure 295

check-status-04

[image:]Figure 296

Add Files to the Staging Area

add-files-01

[image:]Figure 297

Remove Files from the Staging Area

add-files-02

[image:]Figure 298

Commit Changes

commit-changes-01

[image:]Figure 299

Update the Last Commit

commit-changes-02

[image:]Figure 300

Create a .gitignore File

gitignore-01

[image:]Figure 301

Practice Using Glob Patterns

[image:]Figure 302

View the Commit History

view-commit-history-01

[image:]Figure 303

View the Commit History as a Graph

view-commit-history-02

[image:]Figure 304

View the Commit History for a Specific File

view-commit-history-03

[image:]Figure 305

Switch to a Commit

switch-between-commits-01

[image:]Figure 306

Find Where HEAD is Pointing To

understanding-head-01

[image:]Figure 307

Moving the HEAD

understanding-head-02

[image:]Figure 308

Detached HEAD State

understanding-head-03

[image:]Figure 309

Discard the Non-Staged Changes

restoring-working-directory-01

[image:]Figure 310

Discard the Staged Changes

restoring-working-directory-02

[image:]Figure 311

Discard the Untracked Files

restoring-working-directory-03

[image:]Figure 312

Undo the Non-Staged Changes

undoing-changes-01

[image:]Figure 313

Reset the Commit

undoing-changes-02

[image:]Figure 314

Revert the Commit

undoing-changes-03

Here I’m using awk to edit the file. You can use any text editor you like.

[image:]Figure 315

Creating New Branches

using-branches-01

[image:]Figure 316

Switching Branches

using-branches-02

[image:]Figure 317

Merging Branches

using-branches-03

[image:]Figure 318

Resolve the Both Added Conflict.

resolving-merge-conflicts-01

Here I’m using awk to edit the file, but you can use any text editor you like.

[image:]Figure 319

Resolve the Both Deleted Conflict.

resolving-merge-conflicts-02

[image:]Figure 320

Resolve the Both Modified Conflict Manually.

resolving-merge-conflicts-03

Here I’m using awk to edit the file, but you can use any text editor you like.

[image:]Figure 321

Resolve the Both Modified Conflict, Using the ours Strategy.

resolving-merge-conflicts-04

[image:]Figure 322

Stash the Changes

stashing-changes-01

[image:]Figure 323

Apply the Stash

stashing-changes-02

[image:]Figure 324

Pop the Stash

stashing-changes-03

[image:]Figure 325

Add a Remote

using-remote-repositories-01

[image:]Figure 326

List Remotes

using-remote-repositories-02

[image:]Figure 327

Push to a Remote

using-remote-repositories-03

[image:]Figure 328

Pull from a Remote

using-remote-repositories-04

[image:]Figure 329

Fetch from a Remote

using-remote-repositories-05

[image:]Figure 330

Rename a Remote

using-remote-repositories-06

[image:]Figure 331

Remove a Remote

using-remote-repositories-07

[image:]Figure 332

 EPUB/resources/img03-installing-git-on-windows-main-branch.png
¢ Git 2.42.0.2 Setup - O

Adjusting the name of the initial branch in new repositories .\?’
What would you like Git to name the initial branch after "git init"? 0

() Let Git decide

Let Git use its default branch name (currently: "master") for the initial branch
in newly created repositories. The Git project intends to change this default to
a more inclusive name in the near future.

(®) Override the default branch name for new repositories

NEW! Many teams already renamed their default branches; common choices ar
"main", "trunk” and "development". Specify the name "git init" should use for th
initial branch:

== |

This setting does not affect existing repositories.

EPUB/resources/optimized-code-block-18-using-branches-119.png
$ git checkout main
$ git merge add-license

EPUB/resources/optimized-code-block-23-appendix-104.png
$ git checkout main
Switched to branch 'main'

$ git merge update-license --no-edit
Updating 0cd5b76..c3c95b5
Fast-forward

LICENSE | 1 +

1 file changed, 1 insertion|(+)

git log

c3c95b5 (HEAD -> main, update-license) Update LICENSE
Oedsb76 Add LICENSE

el293ebh Add README

EPUB/resources/optimized-code-block-12-understanding-gitignore-12.png
Ignore all files that end with .log
*.log

Ignore the node_modules directory
node_modules

Ignore the .env file
.env

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-87.png
$ cat README.md
Git Exercises

This repository contains exercises for learning Git.

EPUB/resources/optimized-code-block-02-how-git-works-183.png
$ git log main --oneline

2b2b2b2 (main) Add another verse
0b0d7b5 (HEAD) Add a poem

EPUB/resources/optimized-code-block-07-configuring-git-56.png
[user]
name = Maksim Ivanov

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-44.png
$ pwd
/Users/maksimivanov/workspace

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-47.png
$ git add .

EPUB/resources/optimized-code-block-08-initializing-repository-69.png
$ mkdir my-project

$ cd my-project
$ git init

EPUB/resources/img11-committing-changes-anatomy.png
Link to a parent
1’ + message

« author

H « committer

« date

Commit hash H f4c9. ..

EPUB/resources/optimized-code-block-07-configuring-git-72.png
$ git config user.name "Maksim Ivanov"

EPUB/resources/optimized-code-block-13-viewing-commit-history-52.png
$ git log --graph

EPUB/resources/optimized-code-block-02-how-git-works-85.png
$ git status

On branch main

No commits yet

EPUB/resources/img15-understanding-head-detached.png
HEAD

0bOd7b5

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-100.png
$ touch empty.txt

EPUB/resources/optimized-code-block-21-using-remote-repositories-145.png
$ git remote add origin "../remote-repo"

EPUB/resources/optimized-code-block-20-stashing-changes-50.png
$ git stash list
stash@{0}: WIP on main: 8994el7 Add a poem

EPUB/resources/optimized-code-block-21-using-remote-repositories-102.png
$ git status

On branch main
Your branch is ahead of 'origin/main' by 1 commit.
(use "git push" to publish your local commits)

EPUB/resources/optimized-code-block-13-viewing-commit-history-56.png
* 2018fee (HEAD -> main) Format README.md file properly
2eeldll Merge branch 'add-license'

636615e (add-license) Update LICENSE.md
7648479 2dd LICENSE.md

*
|
|
|
* 8la0bdf Update README.md
* 6e2f25c Modify README.md
|
*

87d117f Add README.md

EPUB/resources/optimized-code-block-23-appendix-132.png
$ git checkout old-feature
Switched to branch 'old-feature'

$ cat README.md
README

$ git stash list
stash@{0}: On main: Add a new line to the README.md file

$ git stash apply
On branch old-feature
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")

$ git stash drop
Dropped refs/stash@{0} (clf7bdlf3lecf029cad422c7balfllédacel02de6)

$ cat README.md
README

You can apply stashes on any branch

EPUB/resources/optimized-code-block-15-understanding-head-18.png
$ git switch 2£c5725
Noke: switching be "9£21c9709663188632a71b2531abeeb0a0dd842107

You are in 'detached HEAD' state. You can look around,

make experimental changes and commit them, and you can
discard any commits you make in this state without impacting
any branches by switching back to a branch.

If you want to create a new branch to retain commits you create,
you may do so (now or later) by using -c with the switch command.
Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable
advice.detachedHead to false

HEAD is now at 9£31c97 Create README.md

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-85.png
This is the content from the current branch.

EPUB/resources/img18-using-branches-switching.png
main

d5£8. .0 add-license

EPUB/resources/optimized-code-block-02-how-git-works-97.png
$ echo "

Octopus and cat, one animal from two.
This peculiar creature will teach Git to you.
" > POEM.md

EPUB/resources/img13-viewing-commit-history-intro.png

EPUB/resources/optimized-code-block-20-stashing-changes-3.png
$ git checkout main

error: Your local changes to the following files would be overwritten by checkout:

[filename]
Please commit your changes or stash them before you switch branches.

Aborting

EPUB/resources/img15-understanding-head-dangling.png
These two commits sit

N/ :Z tight on a branch

main

&——— This one is DANGLING

cbec4. ..

EPUB/resources/optimized-code-block-23-appendix-12.png
$ git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: STAGED. txt

EPUB/resources/optimized-code-block-03-installing-git-on-windows-96.png
PS C:\Users\maksim\workspace\git-exercises> cd ..

EPUB/resources/optimized-code-block-02-how-git-works-139.png
$ git status

On branch main
nothing to commit, working tree clean

EPUB/resources/optimized-code-block-17-undoing-changes-91.png
This is a README file
Changes that we want to preserve

EPUB/resources/optimized-code-block-02-how-git-works-191.png
$ cat POEM.md
Octopus and cat, one animal from two.

This peculiar creature will teach Git to you.
An octopus and a cat merged into one,
This quirky beast makes git lessons fun.

EPUB/resources/optimized-code-block-23-appendix-120.png
$ cat README.md
<<<<<<< HEAD
Updated README

This line is unwanted.
>>>>>>> another-branch

awk '/<<<<<<< HEAD/ {flag=1l; next} \

/>>>>>>> another-branch/ {flag=0; print "Updated README"; next} \
!flag' README.md > tmp && \
mv tmp README.md

$ cat README.md
Updated README

$ git add README.md
$ git commit --no-edit
[new-branch ca5db31] Merge branch 'another-branch' into new-branch

EPUB/resources/optimized-code-block-12-understanding-gitignore-32.png
$ git config --global alias.ignore \
"1gi() { curl -sL https://www.gitignore.io/api/$@ ;}; gi'

EPUB/resources/optimized-code-block-21-using-remote-repositories-35.png
$ git remote add <remote-name> <remote-url>

EPUB/resources/optimized-code-block-02-how-git-works-187.png
$ git checkout 2b2b2b2
Note: switching to '2b2b2b2'.

EPUB/styles/resources/leanpub_pencil.png

EPUB/resources/optimized-code-block-03-installing-git-on-windows-119.png
PS C:\Users\maksim> echo "Hello, World!" > hello.txt

EPUB/resources/optimized-code-block-02-how-git-works-101.png
$ git status

On branch main
No commits yet
Untracked files:

(use "git add <file>..." to include in what will be committed)
POEM.md

nothing was added to the commit but untracked files are present
(use "git add" to track)

EPUB/resources/optimized-code-block-21-using-remote-repositories-164.png
$ git pull origin main

EPUB/resources/optimized-code-block-15-understanding-head-53.png
$ git log --oneline
[detached HEAD fe02a84] Update README.md

1 file changed, 1 insertion (+)
cbc4a84 (HEAD) Update README.md
£4c9725 Initialize repository

EPUB/resources/optimized-code-block-03-installing-git-on-windows-84.png
PS C:\Users\maksim> cd workspace\git-exercises

EPUB/resources/img18-using-branches-multiple.png
main

feature

b9e3. .. d5£8. ..

EPUB/resources/optimized-code-block-03-installing-git-on-windows-160.png
PS C:\Users\maksim> rm my-dir -r

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-43.png
$ git add README.md LICENSE

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-57.png
$ git merge update-readme
$ git merge add-license

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md
Automatic merge failed;

fix conflicts and then commit the result.

EPUB/resources/img11-committing-changes-merge.png

EPUB/resources/optimized-code-block-18-using-branches-89.png
$ git branch

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-56.png
$ 1s -a
.config

introduction-to-git
git-basics
git-branches

EPUB/resources/optimized-code-block-23-appendix-144.png
$ git remote
origin

production
staging
upstream

EPUB/media/resources/title_page.png
y g
<.O O
m ! o -
\'- & .
" 1
“a *F . . : /
32 N » e . o =
- - v :
e -

v

-

A -
/’l--‘

'?

EVERYTHING YOU NEED TO KNOW
TO GET STARTED

s

b 4

EPUB/resources/optimized-code-block-18-using-branches-30.png
$ git log main --oneline
538c017 (HEAD -> main) Add another verse

86b4a20 Add a poem
9053617 Add LICENSE.md
8f8e64d Add README.md

EPUB/resources/optimized-code-block-07-configuring-git-101.png
$ git config --global --unset user.name

EPUB/resources/optimized-code-block-05-installing-git-on-linux-24.png
$ git --version
git version 2.25.1

EPUB/resources/optimized-code-block-21-using-remote-repositories-63.png
> git remote -v

origin git@github.com:<your-username>/git-tutorial.git (fetch)
origin git@github.com:<your-username>/git-tutorial.git (push)

EPUB/resources/optimized-code-block-02-how-git-works-171.png
$ git checkout 0b0d7b5
Note: switching to 'Ob0d7b5'.

EPUB/resources/optimized-code-block-11-commiting-changes-55.png
$ git commit

EPUB/resources/optimized-code-block-07-configuring-git-161.png
$ git config --global core.editor <editor>

EPUB/resources/optimized-code-block-07-configuring-git-68.png
$ git config <option> <value>

EPUB/resources/optimized-code-block-23-appendix-140.png
$ git remote add origin ../remote-repo

EPUB/resources/optimized-code-block-12-understanding-gitignore-40.png
$ git ignore node

EPUB/resources/optimized-code-block-21-using-remote-repositories-98.png
$ git status

On branch main
Your branch is up to date with 'origin/main'.

EPUB/resources/img03-installing-git-on-windows-powershell.png
Select Windows PowerShell

EPUB/resources/optimized-code-block-18-using-branches-104.png
$ git branch -d <branch-name>

EPUB/resources/optimized-code-block-23-appendix-136.png
$ checkout old-feature
Switched to branch 'old-feature'

$ cat README.md
README

$ git stash list
stash@{0}: On main: Add a new line to the README.md file

$ git stash pop
On branch old-feature
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (5cd343e798dccddal0b206b99£827£af055923198)

$ cat README.md
README

You can apply stashes on any branch

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-89.png
This repository contains a LICENSE file.

EPUB/resources/img21-using-remote-repositories.png
o—CQ \/— Remote called “origin”
ga git push
e (O ==

origin https://git.net/repo.git

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-82.png
$ git diff --staged

EPUB/resources/optimized-code-block-23-appendix-6.png
$ git status
On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

EPUB/resources/img10-adding-files-to-the-staging-area-intro.png
(D D D

src LICENSE ' README.md Makefile

git add src LICENSE

0

.env

EPUB/styles/resources/leanpub_bug.png

EPUB/resources/optimized-code-block-12-understanding-gitignore-36.png
$ git ignore 1list

EPUB/resources/optimized-code-block-21-using-remote-repositories-130.png
$ git remote
$ github

EPUB/resources/optimized-code-block-16-resetting-working-directory-42.png
$ git clean -n
Would remove untracked.txt

EPUB/resources/optimized-code-block-21-using-remote-repositories-74.png
$ git push <remote-name> <branch-name>

EPUB/resources/img12-understanging-gitignore-intro.png
D D
LICENSE README . md

-
-
-
————
-
-
-
.-

D D

Makefile .env

EPUB/resources/optimized-code-block-12-understanding-gitignore-21.png
Match all files that end with
%/ _ {png,ico,md}

Match all files that end with
* . tmp

Match all files that end with
and all subdirectories
** /% _log

Match all files that end with
#& SV (* module) . ts

.png, .ico or .md

.tmp in the root directory

.log in the root directory

.ts but not .module.ts

EPUB/resources/img17-undoing-changes-stages-of-changes.png
Endless Working Staging Commit
Void directory area

git reset
—-soft

git reset

git reset
——hard

EPUB/resources/optimized-code-block-23-appendix-156.png
$ git fetch origin main

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0O

Unpacking objects: 100% (3/3), 311 bytes | 155.00 KiB/s, done.

From /remote-repo

* branch main -> FETCH_HEAD

992885c..8aa7004 main -> origin/main

git branch -a

main

remotes/origin/HEAD -> origin/main
remotes/origin/main

$ git log -oneline
992885c (HEAD -> main) Initial commit

$ git log --oneline origin/main
8aa7004 (origin/main, origin/HEAD) Simulate a direct change to remote
992885c (HEAD -> main) Initial commit

$ git merge origin/main
Updating 992885c..8aa7004
Fast-forward

POEM.md | 1 +

1 file changed, 1 insertion (+)

EPUB/resources/optimized-code-block-08-initializing-repository-35.png
$ git clone <url>

EPUB/resources/optimized-code-block-20-stashing-changes-45.png
Octopus and cat, one animal from two.
This peculiar creature will teach Git to you.

EPUB/resources/optimized-code-block-15-understanding-head-74.png
$ git reflog
9e7dd3e (HEAD -> main) HEAD@{0}: checkout: moving from 6ba726d to main

cbc4a84 HEAD@{l}: commit: Update README.md

£4c9725 HEADQR{2}: checkout: moving from main to HEAD*
9e7dd3e (HEAD -> main) HEAD@{3}: commit: Add LICENSE file
£4c9725 HEADQ{4}: commit (initial): Initialize repository

EPUB/resources/optimized-code-block-15-understanding-head-68.png
$ git fsck --lost-found

Checking object directories: 100% (256/256), done.

Checking objects: 100% (3/3), done.
dangling commit cbc4a840966318£632a71b231a8ce59a0dd44210

EPUB/resources/optimized-code-block-23-appendix-31.png
$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")

$ git log --oneline
c2b2452 (HEAD -> main) Add README.md

$ git add README.md

$ commit --amend --no-edit

[main ad04073] Add README.md

Date: Tue Sep 26 21:01:15 2023 +0200
1 file changed, 1 insertion(+)
create mode 100644 README.md

$ git log --oneline
ad04073 (HEAD -> main) Add README.md

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-51.png
This repository contains a LICENSE file.

EPUB/resources/optimized-code-block-20-stashing-changes-116.png
$ git stash clear

EPUB/resources/optimized-code-block-03-installing-git-on-windows-148.png
PS C:\Users\maksim> mkdir my-dir

EPUB/resources/img02-how-git-works-git-branches.png
HEAD

main

bugfix

EPUB/resources/optimized-code-block-21-using-remote-repositories-50.png
$ git remote add origin git@github.com:<your-username>/git-tutorial.git

EPUB/resources/optimized-code-block-18-using-branches-68.png
$ git checkout -b <branch-name>

EPUB/resources/optimized-code-block-23-appendix-74.png
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: README . md

$ git restore --staged --worktree README.md
$ git status

On branch main

nothing to commit, working tree clean

EPUB/resources/optimized-code-block-20-stashing-changes-124.png
error: Your local changes to the following files would be overwritten by checkout:

src/App. tsx
Please commit your changes or stash them before you switch branches.
Aborting

EPUB/resources/img02-how-git-works-centralized.png

EPUB/resources/optimized-code-block-23-appendix-128.png
$ git checkout feature
error: Your local changes to the following files would be overwritten by checkout:

README . md
Please commit your changes or stash them before you switch branches.

Aborting

$ git stash
Saved working directory and index state WIP on main: ab4b067 Add README.md

$ git checkout feature
Switched to branch 'feature'

EPUB/resources/optimized-code-block-18-using-branches-108.png
$ git branch -d add-license

EPUB/resources/optimized-code-block-11-commiting-changes-86.png
$ git commit --amend -m "Create readme file"

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-58.png
This is a readme file.

EPUB/resources/img02-how-git-works-staging.png
1
D 1 &———> git add POEM.md

EPUB/resources/optimized-code-block-20-stashing-changes-33.png
Octopus and cat, one animal from two.

This peculiar creature will teach Git to you.
+An octopus and cat, merged into one,
+This quirky beast makes git lessons fun.

EPUB/resources/optimized-code-block-16-resetting-working-directory-59.png
$ git restore

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-30.png
Changes not staged for commit:

modified: README . md

EPUB/resources/optimized-code-block-21-using-remote-repositories-159.png
$ git push origin main

EPUB/resources/img16-restoring-the-working-directory-checkout.png
git checkout .

Staged: Staged:

staged.txt - staged.txt

Modified: Modified:
modified.txt -

Untracked: Untracked:
untracked. txt untracked. txt
Discarded:

modified.txt

EPUB/resources/optimized-code-block-13-viewing-commit-history-30.png
commit 2018feedelcc36£209b162c096ccc839c56££f3e6 (HEAD -> main)
Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Mon Sep 25 20:08:38 2023 +0200

Format README.md file properly

diff --git a/README.md b/README.md
index 827ff44..2be8597 100644

--- a/README.md

+++ b/README.md

@@ -1 +1,3 @@

-This is a README file with changes
+# This is a README file

+

+Now with proper formatting

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-36.png
Untracked files:

LICENSE

EPUB/resources/optimized-code-block-20-stashing-changes-39.png
$ git stash
Saved working directory and index state WIP on main: 8994el7 Add a poem

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-116.png
$ rm hello-world. txt

EPUB/resources/optimized-code-block-21-using-remote-repositories-183.png
$ git remote remove github

EPUB/resources/img18-using-branches-commit.png
add-license

EPUB/resources/optimized-code-block-17-undoing-changes-85.png
Unwanted changes to the README.md file

EPUB/resources/optimized-code-block-03-installing-git-on-windows-34.png
$ git --version

EPUB/resources/optimized-code-block-23-appendix-19.png
$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

Untracked files:
(use "git add <file>..." to include in what will be committed)
LICENSE

no changes added to commit (use "git add" and/or "git commit -a")

$ git add .
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: LICENSE
modified: README . md

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-42.png
no changes added to commit (use "git add" and/or "git commit -a")

EPUB/resources/optimized-code-block-14-switching-between-commits-81.png
$ git log --grep <message>

EPUB/resources/optimized-code-block-03-installing-git-on-windows-154.png
PS C:\Users\maksim> mv my-dir my-dir2

EPUB/resources/optimized-code-block-23-appendix-9.png
$ git status
On branch main

No commits yet
Untracked files:

(use "git add <file>..." to include in what will be committed)
UNTRACKED. txt

nothing added to commit but untracked files present
(use "git add" to track)

EPUB/resources/img18-using-branches-merged.png

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-74.png
This is a README file
+This is a modification to the README file

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-114.png
$ git merge -s ours other-branch

EPUB/resources/optimized-code-block-18-using-branches-64.png
$ git checkout add-license

EPUB/resources/optimized-code-block-08-initializing-repository-57.png
HEAD
config

description
hooks

— ...
L

info
L— exclude

|_
|_
|_
B
I

B
B
L

2]
o
H
1]

[T

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-74.png
$ cd ../git-branches

EPUB/resources/optimized-code-block-18-using-branches-47.png
$ git branch <branch-name>

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-120.png
$ git merge -s theirs other-branch

EPUB/resources/optimized-code-block-14-switching-between-commits-58.png
$ git log --oneline

89a2e97 (HEAD -> main) Add LICENSE
c7403e7 Add README.md

EPUB/resources/optimized-code-block-02-how-git-works-179.png
$ cat POEM.md

Octopus and cat, one animal from two.
This peculiar creature will teach Git to you.

EPUB/resources/optimized-code-block-03-installing-git-on-windows-127.png
PS C:\Users\maksim> ii hello.txt

EPUB/resources/optimized-code-block-23-appendix-152.png
8§ git pull eorigin main

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), 311 bytes | 311.00 KiB/s, done.

From ../remote-repo
* branch main - FEICH HERD
l4e78ef..6e54725 main -> origin/main
Updating 1l4e78ef..6e54725
Fast-forward
POEM.md | 1 +
1 file changed, 1 insertion(+)

EPUB/resources/img06-mac-os-and-linux-command-line-primer-linux-terminal.png
Terminal

EPUB/resources/optimized-code-block-02-how-git-works-153.png
$ git add POEM.md

$ git commit -m "Add another verse"
[main 2b2b2b2] Add another verse
1 file changed, 1 insertion(+)

EPUB/resources/optimized-code-block-14-switching-between-commits-32.png
859b73b (HEAD -> main) Add README.md changes

87c028d Add markdown header
892297 Add LICENSE
c7403e7 Add README .md

EPUB/resources/optimized-code-block-20-stashing-changes-72.png
$ git stash show -p 0

diff --git a/POEM.md b/POEM.md
index 820bfl7..0£f£f447f 100644
--- a/POEM.md

+++ b/POEM.md

g -1,2 41,4 @@

Octopus and cat, one animal from two.

This peculiar creature will teach Git to you.
+An octopus and cat, merged into one,

+This quirky beast makes git lessons fun.

EPUB/resources/optimized-code-block-07-configuring-git-178.png
$ git st

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-106.png
$ git add -p README.md

diff --git a/README.md b/README.md
index 4e7d9b5..e69de29 100644

@@ -1 +0,0 @@
-# add-files

Stage this hunk [y,n,q,a,d,/,e,?]?

EPUB/resources/optimized-code-block-23-appendix-35.png
$ git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)
.env
README . md
build/
package. json
src/

nothing added to commit but untracked files present
(use "git add" to track)

$ echo "node_modules
.env
build" > .gitignore

$ git status

On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)
.gitignore
README . md
package. json
src/

nothing added to commit but untracked files present
(use "git add" to track)

$ git add
$ git commit -m 'Add the .gitignore file' \
-m 'Ignore the node modules, .env, and build folder'

EPUB/resources/optimized-code-block-05-installing-git-on-linux-16.png
$ sudo apt update

EPUB/resources/optimized-code-block-20-stashing-changes-98.png
$ git stash drop

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-80.png
$ cd -

EPUB/resources/img06-mac-os-and-linux-command-line-primer-mac-terminal.png
Terminal

EPUB/resources/optimized-code-block-23-appendix-78.png
$ git status
On branch main
Untracked files:
(use "git add <file>..." to include in what will be committed)

LICENSE

nothing added to commit but untracked files present
(use "git add" to track)

$ git clean -f LICENSE
Removing LICENSE

$ git status
On branch main
nothing to commit, working tree clean

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-14.png
$ git status
On branch main
Your branch is 1 commit ahead of owigin/main.
(use "git push" to publish your local commits)
Changes not staged for commit:
modified: README . md

Untracked files:

LICENSE

no changes added to commit (use "git add" and/or "git commit -a")

EPUB/resources/optimized-code-block-08-initializing-repository-80.png
$ cat .git/HEAD

EPUB/resources/img16-restoring-the-working-directory-restore-staged-worktree.png
git restore . --staged —-worktree

Staged: Staged:
staged. txt -
Modified: Modified:

modified.txt -

Untracked: Untracked:
untracked. txt untracked. txt
Discarded:
staged. txt

modified.txt

EPUB/resources/optimized-code-block-11-commiting-changes-82.png
$ git commit --amend

EPUB/resources/optimized-code-block-17-undoing-changes-18.png
$ git log --oneline
la2b3c4 (HEAD -> main) Add license

EPUB/resources/img16-restoring-the-working-directory-restore.png
git restore .

Staged: Staged:

staged.txt - staged.txt

Modified: Modified:
modified.txt -

Untracked: Untracked:
untracked. txt untracked. txt
Discarded:

modified.txt

EPUB/resources/optimized-code-block-13-viewing-commit-history-20.png
commit 2018feedelcc36£209b162c096ccc839c56££f3e6 (HEAD -> main)
Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Mon Sep 25 20:08:38 2023 +0200

Format README.md file properly

commit 2eel411£f1£6219752340a15833%e5c8aab3cbe45
Merge: 8laObdf 636615e

Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Mon Sep 25 20:08:38 2023 +0200

Merge branch 'add-license'
commit 81a0bdf2c85227159e9£1734fd1174a28fa318a8
Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Mon Sep 25 20:08:38 2023 +0200

Update README.md

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/resources/optimized-code-block-23-appendix-124.png
$ git merge another-branch --no-edit -s ours
Merge made by the 'ours' strategy.

$ cat README.md
Updated README

EPUB/resources/optimized-code-block-23-appendix-46.png
git log --oneline --graph
0b55b6b (HEAD -> main) Merge create-license into main

* 5c00b44 (create-license) Add LICENSE
| 5ed3a60 Update README.md
/

$
*
I
|
*
|
*

7048071 Add README.md

EPUB/resources/optimized-code-block-02-how-git-works-157.png
$ git log --oneline

2b2b2b2 (HEAD -> main) Add another verse
0b0d7b5 Add a poem

EPUB/resources/optimized-code-block-04-installing-git-on-mac-os-19.png
$ brew install git

EPUB/resources/optimized-code-block-02-how-git-works-149.png
$ git status

On branch main

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: POEM.md

no changes added to commit (use "git add" and/or "git commit -a")

EPUB/resources/optimized-code-block-02-how-git-works-79.png
$ git init

Initialized empty Git repository in
/Users/username/example-project/.git/

EPUB/resources/optimized-code-block-21-using-remote-repositories-135.png
$ git remote remove github

EPUB/resources/optimized-code-block-21-using-remote-repositories-178.png
$ git remote rename origin github

EPUB/resources/img15-understanding-head-commit-from-detached.png
main

cbec4. ..

EPUB/resources/optimized-code-block-15-understanding-head-83.png
$ git switch -c my-new-branch cbc4a84

EPUB/resources/optimized-code-block-15-understanding-head-59.png
$ git switch main

$ git log --oneline
9e7dd3e (HEAD -> main) Add LICENSE file
£4c9725 Initialize repository

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-125.png
$ mkdir my-dir

EPUB/resources/optimized-code-block-14-switching-between-commits-54.png
git checkout HEAD~2

EPUB/resources/optimized-code-block-23-appendix-114.png
$ git rm README. txt
$ git status
On branch conflict second

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add/rm <file>..." as appropriate to mark resolution)

both deleted: README . md
added by us: README . org

$ git add .

$ git status

On branch conflict_second

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

$ git commit --no-edit
[conflict second 433c9ba] Merge branch 'conflict' into conflict_second

EPUB/resources/optimized-code-block-18-using-branches-95.png
* add-license
main

EPUB/resources/optimized-code-block-18-using-branches-60.png
$ git checkout <branch-name>

EPUB/resources/optimized-code-block-11-commiting-changes-34.png
$ git log --oneline"
a401b92 (HEAD -> main) Merge branch 'add-license'

cl8f3f4 Update README.md
d8e4d59 (add-license) Add LICENSE.md

c6ebb4d Add README.md

EPUB/styles/resources/leanpub_comments.png

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-95.png
$ git add README.md

$ git commit --no-edit
[main 379b79e] Merge branch 'add-license'

EPUB/resources/img18-using-branches-labels.png
main

f4c9... 9e7d... 4b2c... d5f8..»

bugfix

EPUB/resources/optimized-code-block-07-configuring-git-174.png
$ git config --global alias.st status

EPUB/resources/optimized-code-block-13-viewing-commit-history-26.png
$ git show 2018feedelcc36£209b162c096ccc839c56f£3e6

EPUB/resources/optimized-code-block-11-commiting-changes-73.png
$ git commit \

-m "Create readme file" \
-m "Add installation and troubleshooting instructions”

EPUB/resources/img18-using-branches-single.png
f4c9... 9e7d... 4b2c. .. f3e2. ..

EPUB/resources/img15-understanding-head-intro.png
HEAD

0bOd7b5 2b2b2b2

EPUB/resources/optimized-code-block-21-using-remote-repositories-115.png
$ git fetch origin
$ git merge origin/main

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-38.png
$ pwd

EPUB/resources/optimized-code-block-11-commiting-changes-69.png
$ git commit -m "Create readme file"

EPUB/resources/optimized-code-block-14-switching-between-commits-50.png
$ git log --oneline
c7403e7 Add README.md

EPUB/resources/optimized-code-block-16-resetting-working-directory-76.png
$ git restore --staged --worktree

EPUB/resources/optimized-code-block-15-understanding-head-98.png
$ git checkout main

EPUB/resources/optimized-code-block-20-stashing-changes-56.png
$ echo "This is a new line" >> POEM.md
$ git stash

Saved working directory and index state WIP on main: 8994el7 Add a poem
$ git stash list

stash@{0}: WIP on main: 8994el7 Add a poem

stash@{1l}: WIP on main: 8994el7 Add a poem

EPUB/resources/optimized-code-block-20-stashing-changes-80.png
$ git stash show 0

POEM.md | 2 ++
1 file changed, 2 insertions(+)

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-67.png
Unmerged paths:

(use "git add <file>..." to mark resolution)
both modified: README . md

EPUB/resources/optimized-code-block-14-switching-between-commits-46.png
$ git checkout HEADA~~

EPUB/resources/img02-how-git-works-one-commit.png
HEAD

main

0bOd7b5

EPUB/styles/resources/leanpub_key.png

EPUB/resources/optimized-code-block-23-appendix-42.png
$ git log

commit 47c5lea6cbfa3c65a30819403636acaSelf5a6a4 (HEAD -> main)
Author: Maksim Ivanov <gitbook@maksimivanov.com>

Date: Tue Sep 26 22:03:05 2023 +0200

Update README.md
commit 4e889560al77dafe482c2275£2e1100354546c6d
Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Tue Sep 26 22:03:05 2023 +0200
Add README.md
$ git show 47c5lea
commit 47c5lea6cbfa3c65a30819403636aca5elf5a6a4 (HEAD -> main)
Author: Maksim Ivanov <gitbook@maksimivanov.com>

Date: Tue Sep 26 22:03:05 2023 +0200

Update README.md

diff --git a/README.md b/README.md
index ¢39619d..827££f44 100644

--- a/README.md

+++ b/README.md

@e -1 +1 @@

-This is a README file

+This is a README file with changes

EPUB/resources/img02-how-git-works-checkout.png
HEAD

main

0bOd7b5 2b2b2b2

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-14.png
$ git add <file>

EPUB/resources/img07-configuring-git-configuration-layers.png

EPUB/resources/optimized-code-block-04-installing-git-on-mac-os-23.png
$ git --version

EPUB/resources/optimized-code-block-07-configuring-git-146.png
$ git config --global init.defaultBranch main

EPUB/resources/optimized-code-block-17-undoing-changes-30.png
$ git revert la2b3c4

EPUB/resources/optimized-code-block-18-using-branches-99.png
$ git branch -a

EPUB/resources/optimized-code-block-15-understanding-head-28.png
$ git log --oneline
2fc5725 Initialize repository

EPUB/styles/resources/leanpub_info-circle.png

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-66.png
$ cd ~/workspace/git-basics

EPUB/resources/img01-introduction-knowledge-graph.png
commit make changes

branch add to staging
remote
commit
staging
branch off
push

merge

add Q&o

push to remote

EPUB/resources/optimized-code-block-18-using-branches-80.png
$ git add LICENSE
$ git commit -m "Add LICENSE file"

EPUB/resources/optimized-code-block-03-installing-git-on-windows-110.png
PS C:\Users\maksim> cat README.md

Git Exercises

This repository contains exercises for learning Git.

EPUB/resources/optimized-code-block-23-appendix-62.png
$ git log --oneline

b695£06 (HEAD) Update LICENSE
c4531bf Update README.md
4d8bc90 Add CONTRIBUTING.md
5d86c0f Add LICENSE

d2fede2 Add README.md

$ git checkout HEAD~1
Previous HEAD position was b695f06 Update LICENSE
HEAD is now at c4531bf Update README.md

$ git log --oneline

c4531bf (HEAD) Update README.md
4d8bc90 Add CONTRIBUTING.md
5d86c0f Add LICENSE

d2fede2 Add README.md

EPUB/resources/optimized-code-block-03-installing-git-on-windows-58.png
$ pwd

EPUB/resources/optimized-code-block-20-stashing-changes-67.png
$ git stash list

stash@{0}: WIP on main: 8994el7 Add a poem
stash@{1l}: WIP on main: 8994el7 Add a poem
stash@{2}: On main: Add two more lines to the poem

EPUB/resources/optimized-code-block-18-using-branches-113.png
$ git checkout main
$ git merge <branch-name>

EPUB/resources/optimized-code-block-23-appendix-96.png
$ git branch add-contributing

$ git branch
add-contributing
* main

EPUB/resources/img16-restoring-the-working-directory-restore-staged.png
git restore . --staged

Staged: Staged:
staged. txt -
Modified: Modified:
modified.txt modified.txt
Untracked: Untracked:
untracked. txt untracked. txt
Discarded:

staged. txt

EPUB/resources/optimized-code-block-08-initializing-repository-39.png
$ git clone https://github.com/git/git.git

EPUB/resources/optimized-code-block-11-commiting-changes-38.png
$ git log --pretty="format:%s%nHash: %$h; Parent Hashes: %p;%n"

Merge branch 'add-license'
Hash: a401b92; Parent Hashes: cl8£3f4 d8e4d59;

Update README.md
Hash: c18f3f4; Parent Hashes: c6ebb4d;

Add LICENSE.md
Hash: d8e4d59; Parent Hashes: c6ebb4d;

Add README.md
Hash: c6ebbd4d; Parent Hashes:

EPUB/styles/resources/leanpub_question-circle.png

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-93.png
$ git restore --staged <file>

EPUB/resources/optimized-code-block-01-introduction-78.png
Subject: [Git Book] <Short description of the problem>
Body:

Your operating system and version

Your terminal

Your Git version

The commands you've run

The output of the commands

The expected result

The chapter and exercise you are working on

EPUB/resources/optimized-code-block-23-appendix-70.png
$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")

$ git restore README.md

$ git status
On branch main
nothing to commit, working tree clean

EPUB/resources/img18-using-branches-labels-commits.png
d5£8. .. 8f2d. . >

EPUB/resources/optimized-code-block-15-understanding-head-94.png
$ git switch main

EPUB/resources/img03-installing-git-on-windows-git-version.png
‘Windows PowerShell
PS C:\Users\maksim> git --version
git version 2.42.0.windows.2
PS C:\Users\maksim>

EPUB/resources/img20-stashing-changes-apply.png
git stash apply
A

—

S S VN

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-63.png
$ git status

EPUB/resources/optimized-code-block-21-using-remote-repositories-80.png
$ git push -u origin main

EPUB/resources/optimized-code-block-14-switching-between-commits-42.png
$ git log --oneline

87c028d (HEAD -> main) Add markdown header
89a2e97 Add LICENSE

c7403e7 Add README.md

EPUB/resources/optimized-code-block-21-using-remote-repositories-111.png
$ git fetch <remote-name>
$ git merge <remote-name>/<branch-name>

EPUB/resources/optimized-code-block-02-how-git-works-129.png
$ git commit -m "Add a poem"

[main (root-commit) O0b0d7b5] Add a poem
1 file changed, 2 insertions(+)
create mode 100644 POEM.md

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-94.png
$ echo "Hello, World!" > hello.txt

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-97.png
$ git restore --staged README.md

EPUB/resources/optimized-code-block-21-using-remote-repositories-25.png
$ git clone <remote-url>

EPUB/resources/optimized-code-block-23-appendix-110.png
$ cat README.md
<<<<<<< HEAD

How to use the project
>>>>>>> add-readme

awk '/<<<<<<< HEAD/ {flag=1l; next} \

/>>>>>>> add-readme/ {flag=0; print "# How to use the project"; next} \
'flag' README.md > tmp && \

mv tmp README.md

$ cat README.md
How to use the project

EPUB/resources/optimized-code-block-03-installing-git-on-windows-90.png
PS C:\Users\maksim> cd C:\Users\maksim\workspace\git-exercises

EPUB/resources/optimized-code-block-16-resetting-working-directory-68.png
$ git restore --staged .

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-62.png
$ 1ls /Users/maksimivanov
Applications

Desktop

Documents
Downloads
workspace

EPUB/resources/optimized-code-block-07-configuring-git-106.png
$ git config --list

EPUB/resources/optimized-code-block-23-appendix-15.png
$ git status

On branch main
nothing to commit, working tree clean

EPUB/resources/optimized-code-block-21-using-remote-repositories-57.png
$ git remote
origin

EPUB/resources/optimized-code-block-15-understanding-head-130.png
$ git fsck --lost-found

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-18.png
$ git add README.md

EPUB/resources/optimized-code-block-17-undoing-changes-34.png
$ git log --oneline

la2b3c4 (HEAD -> main) Revert "Unwanted changes"
la2b3c4 Unwanted changes

2d3e4f5 Add license

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-137.png

EPUB/resources/optimized-code-block-14-switching-between-commits-38.png
$ git checkout HEAD”

EPUB/resources/optimized-code-block-23-appendix-164.png
$ git remote remove github

EPUB/resources/optimized-code-block-23-appendix-92.png
$ git revert HEAD*

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

error: could not revert 2bc23c6... Add unwanted changes to README.md
hint: After resolving the conflicts, mark them with

hint: "git add/rm <pathspec>", then run

hint: "git revert --continue".

hint: You can instead skip this commit with "git revert --skip".
hint: To abort and get back to the state before "git revert",

hint: run "git revert --abort".

$ cat README.md

<<<<<<< HEAD

Unwanted changes to the README.md file
Changes that we want to preserve

This is a README file
>>>>>>> parent of 2bc23c6 (Add unwanted changes to README.md)

awk '/<<<<<<< HEAD/ {flag=1l; next} \

/>>>>>>> parent of / {flag=0; print "This is a README file"; \

print "Changes that we want to preserve"; next} !flag' README.md > tmp && \
mv tmp README.md

$ cat README.md
This is a README file
Changes that we want to preserve

$ git add README.md

$ git revert --continue --no-edit

[main c526a0a] Revert "Add unwanted changes to README.md"
1 file changed, 1 insertion(+), 1 deletion(-)

EPUB/resources/optimized-code-block-21-using-remote-repositories-169.png
$ git fetch origin main

EPUB/resources/optimized-code-block-21-using-remote-repositories-126.png
$ git remote rename origin github

EPUB/resources/img16-restoring-the-working-directory-clean.png
git clean

Staged: Staged:

staged.txt - staged.txt

Modified: Modified:

modified.txt ———> modified.txt

Untracked: Untracked:
untracked. txt —

Discarded:
untracked. txt

EPUB/resources/img02-how-git-works-no-commits.png
HEAD

main

EPUB/resources/optimized-code-block-23-appendix-58.png
$ cat .git/HEAD
a3£f67b87dde654d999511288974374b57£133ble

$ git log --oneline

a3f67b8 (HEAD) Add CONTRIBUTING.md
da86b20 Add LICENSE

ae%96981 Add README.md

EPUB/resources/img09-checking-the-status-of-a-repository-intro.png
git status

You are on branch main

Your branch is 1 commit ahead origin/main

You have changes not staged for commit

EPUB/resources/optimized-code-block-07-configuring-git-112.png
$ git config --list

user.email=gitbook@maksimivanov.com
user.name=Maksim Ivanov
init.defaultbranch=main

EPUB/resources/optimized-code-block-23-appendix-23.png
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: LICENSE
modified: README . md

$ git restore --staged LICENSE README.md

$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

Untracked files:
(use "git add <file>..." to include in what will be committed)

LICENSE

EPUB/resources/optimized-code-block-07-configuring-git-91.png
$ git config --unset <option>

EPUB/resources/img14-switching-between-commits-intro.png
HEAD
git checkout 9e7d...

L:"‘————_—-__—-—-—.‘"“-~

f4c9... 9e7d... 4b2c... d5£8. .. f9e2. ..

EPUB/resources/optimized-code-block-23-appendix-66.png
$ git add .
$ git commit -m 'Modify README.md'
[detached HEAD 7£54053] Modify README.md
1 file changed, 1 insertion(+), 1 deletion(-)

$ git checkout main

$ git log --oneline

639f1f1 (HEAD -> main) Update CONTRIBUTING.md
28b400d Update LICENSE

fe81280 Update README.md

0c24c53 Add CONTRIBUTING.md

adl922c Add LICENSE

7278441 Add README.md

$ git fsck --lost-found
Checking object directories: 100% (256/256), done.
dangling eomnit T7E£540824bd264e094b6RdIEET0Eea0731e49a73E

EPUB/resources/optimized-code-block-18-using-branches-76.png
$ touch LICENSE

EPUB/resources/optimized-code-block-16-resetting-working-directory-49.png
$ git checkout .

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-38.png
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: README . md

EPUB/resources/optimized-code-block-23-appendix-82.png
$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")

$ git reset --hard
HEAD is now at d9889%ee Add README.md

$ git status
On branch main
nothing to commit, working tree clean

EPUB/resources/img02-how-git-works-two-commits.png
HEAD

main

0bOd7b5 2b2b2b2

EPUB/resources/img02-how-git-works-decentralised.png

EPUB/resources/optimized-code-block-11-commiting-changes-51.png
$ git add <file>

EPUB/resources/optimized-code-block-23-appendix-148.png
% git push erigin main

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.
Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 292 bytes | 292.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To ../remote-repo
* [new branch] main -> main

EPUB/resources/optimized-code-block-07-configuring-git-165.png
$ git add .
$ git commit

EPUB/resources/optimized-code-block-03-installing-git-on-windows-80.png
PS C:\Users\maksim> ls C:\Users\maksim\workspace
Directory: C:\Users\maksim\workspace

Mode LastWriteTime Length Name

6/10/2021 9:55 AM git-exercises

EPUB/resources/optimized-code-block-18-using-branches-51.png
$ git branch add-license

EPUB/resources/optimized-code-block-08-initializing-repository-43.png
$ git clone https://github.com/git/git.git my-git

EPUB/resources/img03-installing-git-on-windows-editor.png
L Git 2.42.0.2 Setup — R

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Vim (the ublqunous text editor) as Git's default editor N

Use Notepad++ as Git's default editor

Use Visual Studio Code as Git's default editor

Use Visual Studio Code Insiders as Git's default editor
Use Sublime Text as Git's default editor

Use Atom as Git's default editor

Use VSCodium as Git's default editor

Use Notepad as Git's default editor

may set it to some other editor of your choice.

ot [es || oo

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-22.png
On branch main

Your branch is 1 commit ahead of origin/main.
(use "git push" to publish your local commits)

EPUB/resources/optimized-code-block-23-appendix-86.png
$ git status
On branch main
nothing to commit, working tree clean

$ git reset HEAD” --soft
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: README . md

EPUB/resources/img14-switching-between-commits-relative.png
HEAD
git checkout HEAD~3

/\

c7403e7 89a2e97 87¢028d 859b73b

~—

git checkout HEADM

EPUB/resources/optimized-code-block-11-commiting-changes-90.png
$ git commit --amend --no-edit

EPUB/resources/optimized-code-block-20-stashing-changes-63.png
$ git stash push -m "Add two more lines to the poem"
Saved working directory and index state On main: Add two more lines to the poem

EPUB/resources/optimized-code-block-17-undoing-changes-26.png
$ git log --oneline

la2b3c4 (HEAD -> main) Unwanted changes
2d3e4f5 Add license

EPUB/resources/optimized-code-block-14-switching-between-commits-17.png
$ git checkout <hash>

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-28.png
On branch main
No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: README . md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

EPUB/resources/optimized-code-block-09-checking-the-status-of-a-repository-49.png
$ git status -s

M README.md
?? LICENSE

EPUB/resources/img19-resolving-merge-conflicts-intro.png
git merge feature
T(_ oe Tutert!

main feature

<<<< HEAD
Read Me

Git Tutorial
>>> feature

EPUB/resources/optimized-code-block-13-viewing-commit-history-43.png
$ git log --oneline
2018fee (HEAD -> main) Format README.md file properly
2eel4ll Merge branch 'add-license'

8la0bdf Update README.md

6e2f25c Modify README.md

636615e (add-license) Update LICENSE.md
87dL17€ Add README .mel

7648279 Rdd LICENSE.md

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-62.png
This is a modification to the README file

EPUB/resources/optimized-code-block-05-installing-git-on-linux-5.png
$ git --version
git version 2.25.1

EPUB/resources/optimized-code-block-14-switching-between-commits-63.png
$ git checkout -

EPUB/resources/optimized-code-block-03-installing-git-on-windows-64.png
PS C:\Users\maksim> pwd

Path

C:\Users\maksim

EPUB/resources/img20-stashing-changes-intro.png
git stash

SO

EPUB/resources/optimized-code-block-17-undoing-changes-38.png
$ git show la2b3c4

EPUB/resources/optimized-code-block-07-configuring-git-45.png
[section]
key = value

EPUB/resources/optimized-code-block-02-how-git-works-113.png
$ git add POEM.md

EPUB/resources/optimized-code-block-21-using-remote-repositories-152.png
$ git remote

EPUB/resources/optimized-code-block-13-viewing-commit-history-12.png
$ git log

EPUB/resources/optimized-code-block-07-configuring-git-116.png
$ git config --local --list

$ git config --global --list
$ git config --system --list

EPUB/resources/optimized-code-block-03-installing-git-on-windows-70.png
PS C:\Users\maksim> ls

Directory: C:\Users\maksim

LastWriteTime Length Name

6/10/2021 H

6/10/2021 : workspace
6/10/2021 : Desktop
6/10/2021 : 122 README.md

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-71.png
<<<<<<< HEAD
This is the content from the update-readme branch.

This repository contains a LICENSE file.
>>>>>>> add-license

EPUB/resources/optimized-code-block-16-resetting-working-directory-34.png
$ git clean -f
Removing untracked. txt

EPUB/resources/optimized-code-block-16-resetting-working-directory-29.png
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: staged. txt

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: modified. txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

untracked. txt

EPUB/resources/optimized-code-block-03-installing-git-on-windows-141.png
PS C:\Users\maksim> rm hello.txt

EPUB/resources/img02-how-git-works-snapshots.png
Here we switch to a commit
with hash starting with "4b2c’

O

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-101.png
Merge branch <branch-name>

EPUB/resources/img09-checking-the-status-of-a-repository-structure.png
On branch main

Your branch is 1 commit ahead of origin/main. «— Branch information

(use "git push" to publish your local commits)

Changes not staged for commit: Status Of the ﬁles in the
modified: README . md — Working directory

Untracked files:

LICENSE

Summary

no changes added to commit (use "git add" and/or "git commit -a") (—J

EPUB/resources/optimized-code-block-07-configuring-git-95.png
$ git config --unset user.name

EPUB/resources/optimized-code-block-07-configuring-git-52.png
section.key

EPUB/resources/img11-committing-changes-chain.png
f4c9... 9e7d... 4b2c. .. d5£8. ..

EPUB/resources/optimized-code-block-07-configuring-git-126.png
$ git config --global user.name <your name>
$ git config --global user.email <your email>

EPUB/resources/optimized-code-block-07-configuring-git-35.png
[user]
email = git.book@maksimivanov.com

name = Maksim Ivanov
[init]
defaultBranch = main

EPUB/resources/optimized-code-block-04-installing-git-on-mac-os-7.png
$ git --version

EPUB/resources/optimized-code-block-23-appendix-54.png
$ git log --grep "Add markdown header"

commit 52d5b34083fa5675aef3£856075936602b72cac7
Author: Maksim Ivanov <gitbook@maksimivanov.com>
Date: Tue Sep 26 22:06:56 2023 +0200

Add markdown header
$ git checkout 52d5b34

'Note: switching to '52d5b34083fa5675aef£3£856075936602b72cac7"'.
HEAD is now at 52d5b34 Add markdown header

$ git checkout -
Previous HEAD position was 52d5b34 Add markdown header
Switched to branch 'main’'

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-104.png
$ nano hello.txt

EPUB/resources/optimized-code-block-21-using-remote-repositories-88.png
$ git push -u origin main

Enumerating objects: 6, done.

Counting objects: 100% (6/6), done.
Delta compression using up to 12 threads

Compressing objects: 100% (3/3), done.
wWriting objects: 100% (6/6), 499 bytes | 499.00 RKiB/a, done.
Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
To github.comn: satansdesr/vigilant-engine. . git
* [new branch] main -> main
branch "main' sat up to track ‘origin/main®.

EPUB/resources/optimized-code-block-14-switching-between-commits-67.png
$ git switch -

EPUB/resources/optimized-code-block-08-initializing-repository-22.png
/Users/maksim/workspace

EPUB/resources/optimized-code-block-07-configuring-git-78.png
$ git config --global user.name "Maksim Ivanov"

EPUB/resources/optimized-code-block-23-appendix-160.png
$ git remote rename origin github

EPUB/resources/optimized-code-block-20-stashing-changes-110.png
$ git stash pop

EPUB/resources/optimized-code-block-20-stashing-changes-91.png
$ git stash apply 1

EPUB/resources/optimized-code-block-23-appendix-38.png
** /1 (* module) .{ts,js}

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-34.png
$ git add README.md

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-81.png
This is the content from the current branch.
This repository contains a LICENSE file.

EPUB/resources/optimized-code-block-13-viewing-commit-history-82.png
$ git log --follow <file>

EPUB/resources/img06-mac-os-and-linux-command-line-primer-prompt.png
W workspace — -zsh — 65x12

maksimivanov (workspace)> % I

EPUB/resources/optimized-code-block-11-commiting-changes-63.png
$ git commit -a

EPUB/resources/img08-initializing-repository-intro.png
git init o_c@—o
o — =

git clone
folder repository

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-131.png
$ mv my-dir my-dir2

EPUB/resources/optimized-code-block-23-appendix-100.png
$ git branch
add-contributing
* main

$ git checkout add-contributing
Switched to branch 'add-contributing'

$ git branch
* add-contributing
main

$ git checkout main
Switched to branch 'main'

$ git branch
add-contributing
* main

EPUB/resources/optimized-code-block-03-installing-git-on-windows-135.png
PS C:\Users\maksim> mv hello.txt hello2.txt

EPUB/styles/resources/leanpub_warning.png

EPUB/resources/img02-how-git-works-board-game.png
j Start & C > Finish

EPUB/resources/optimized-code-block-19-resolving-merge-conflicts-47.png
This is the content from the update-readme branch.

EPUB/resources/optimized-code-block-02-how-git-works-145.png
$ echo "

An octopus and a cat merged into one,
This quirky beast makes git lessons fun.
" >> POEM.md

EPUB/resources/optimized-code-block-05-installing-git-on-linux-20.png
$ sudo apt install git

EPUB/resources/optimized-code-block-20-stashing-changes-85.png
$ git stash apply

EPUB/resources/optimized-code-block-08-initializing-repository-76.png
$ 1s

.git

EPUB/resources/optimized-code-block-07-configuring-git-84.png
$ git config --global init.defaultBranch main

EPUB/resources/optimized-code-block-03-installing-git-on-windows-103.png
PS C:\Users\maksim\workspace> cd ~

EPUB/resources/img03-installing-git-on-windows-search-powershell.png
Search

Here is how Windows B

PowerShell looks like in =~ —>

the search results

EPUB/resources/optimized-code-block-08-initializing-repository-50.png
$ git init

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-50.png
$ 1s

introduction-to-git
git-basics
git-branches

EPUB/resources/optimized-code-block-20-stashing-changes-104.png
$ git stash drop 1

EPUB/resources/optimized-code-block-23-appendix-27.png
$ git status
On branch main

No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)
README .md

nothing added to commit but untracked files present
(use "git add" to track)

$ git add .

$ git commit -m 'Create the readme file'

[main (root-commit) a6aB8ea9] Create the readme file
1 file changed, 1 insertion(+)

create mode 100644 README.md

$ git log

commit a6a8eaf95a87903050e4bd55479635bc2a921£fa93 (HEAD -> main)
Author: Maksim Ivanov <gitbook@maksimivanov.com>

Date: Tue Sep 26 20:54:34 2023 +0200

Create the readme file

EPUB/resources/optimized-code-block-10-adding-files-to-the-staging-area-66.png
diff --git a/README.md b/README.md
index ¢39619d..d63b%6 100644
--- a/README.md

+++ b/README .md

@@ -1 +1,2 @@

This is a README file

+This is a modification to the README file

EPUB/resources/img02-how-git-works-git-board-game.png
HEAD

—O

f4c9... 9e7d. .. 4b2c. .. d5£8. .. new commit

EPUB/resources/img20-stashing-changes-apply-specific.png
[stashe{e}

git stash apply stashe{2} 5 Stashe{1}
— T stashe{s}
[T stashe{4}

EPUB/resources/optimized-code-block-17-undoing-changes-22.png
$ echo "Unwanted changes" >> LICENSE

$ git add LICENSE
$ git commit -m "Unwanted changes"

EPUB/resources/optimized-code-block-06-mac-os-and-linux-command-line-primer-110.png
$ mv hello.txt hello-world. txt

EPUB/resources/optimized-code-block-07-configuring-git-41.png
key = value

EPUB/resources/optimized-code-block-23-appendix-50.png
$ git log --oneline

3a82e32 (HEAD -> main) Update README.md again
4£f846b7 Merge create-license into main
63ceal0 Update README.md

83c8ac8 (create-license) Add LICENSE

fbfbd4e Add README.md

$ git log --oneline --follow README.md
3a82e32 (HEAD -> main) Update README.md again
63ceal0 Update README.md

fbfbd4e Add README.md

EPUB/resources/optimized-code-block-02-how-git-works-117.png
$ git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: POEM.md

EPUB/resources/optimized-code-block-14-switching-between-commits-73.png
$ git checkout <branch-name>

EPUB/resources/optimized-code-block-07-configuring-git-137.png
$ git config --list

