

Prototyping Python

Dashboards for

Scientists and

Engineers

Build and Deploy a Complete

Dashboard with Python

Padraig Houlahan

 Prototyping Python Dashboards for Scientists and Engineers: Build and

 Deploy a Complete Dashboard with Python

Padraig Houlahan

Flagstaff, AZ, USA

ISBN-13 (pbk): 979-8-8688-0220-1

ISBN-13 (electronic): 979-8-8688-0221-8

https://doi.org/10.1007/979-8-8688-0221-8

Copyright © 2024 by Padraig Houlahan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Celestin Suresh John

Development Editor: James Markham

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

 To my mother, Kathleen (Moriarty) Houlahan. Teacher.

 (Born 1927, Brandon, County Kerry, Ireland)

Table of Contents

About the Author ���ix About the Technical Reviewer ���xi Acknowledgments ���xiii Introduction ��xv Chapter 1: Working with Python ���1

Coding Design: Python and OOD ���1

Python Data Types ���4

Lists, Tuples, and Sets ���6

Dictionaries ���9

Series ��11

Dataframes ��12

The Spyder IDE ��23

Summary���25

Chapter 2: Reactive Programming with PLOTLY and DASH�����������������27

Getting Started with PLOTLY ���27

Getting Started with DASH ��32

Summary���38

Chapter 3: Working with Online Data ���39

About the ATADS Dataset ��39

ATADS Screen Scraping ��45

Converting Excel to CSV with Data Cleanup ��48

v

Table of ConTenTs

Managing and Keeping Our Files Up to Date ��49

Summary���51

Chapter 4: Planning the Dashboard Prototype �����������������������������������53

Overview ���53

Project Tasks ���57

Trends and Forecasts ��59

Other Design Considerations���61

Summary���62

Chapter 5: Our First Dashboard ��63

The atads�py File ���64

The atads_layout Class ���67

The atads_figures Class ��70

Initialization ���70

Class Methods ���73

Fine-Tuning with CSS ��85

Summary���88

Chapter 6: Dashboard Enhancements���89

Adding the Banner and the Instruction Panels ���92

Monthly and Weekday Histogram Panels ��96

The Spectrum Panel ��100

Quantifying Weekly and Seasonal Effects ���105

The Final ATADS Dashboard ��113

Summary���114

Chapter 7: Hosting an Application on a UNIX Server ������������������������115

Creating the Python Environment ���117

Running a Flask Application ��119

vi

Table of ConTenTs

Using uWSGI ��121

Using GUNICORN ���122

Summary���123

Chapter 8: Deploying Your Project As a UNIX Service ����������������������125

Creating a Hello World System Service ���127

Using NGINX to Share Your Hello World App ��128

Adding the Dashboard Project to Your Server ���131

Creating the Dashboard System Service and Deploying with NGINX ����������������133

Securing Your Server ��135

Summary���137

Chapter 9: The BTS T100 Dataset: Interacting Controls and

Tables ���139

The BTS T100dm Dataset ��140

Prototyping a T100dm Display ��140

Managing Modes and Interacting Menus ��144

Figures and Tables ��146

Summary���149

Chapter 10: Creating a Web Portal ���151

Troubleshooting WordPress ���155

Summary���162

Chapter 11: Using Our Dashboard for Data Visualization and

Analysis ��163

Airport Type, Trends, and Location ��164

Airshows and Seasonal – Using Spectra ��166

Incorporating Models ��173

vii

Table of ConTenTs

Media, Presentations, Reports, and Projects ��177

Summary���181

Chapter 12: Afterword ��183

Appendix A: Utilities for Managing ATADS Data ��������������������������������185

Index ���197

viii

About the Author

Padraig Houlahan has a diverse career,

spanning research, teaching, and IT

management. He has worn multiple hats over

the years, functioning as a scientist, software

developer, college professor, flight instructor,

and IT director. Throughout his journey, he

has maintained an enduring fascination with

the art of uncovering patterns within data.

His M.A. research involved searching for,

and placing upper limits on, gravitational

waves in Lunar Laser Ranging data, while his

Ph.D. research introduced an innovative pattern recognition approach for characterizing the structure of astronomical nebulae. Since then, his focus has pivoted toward aviation-centric software projects. These ventures involve real-time tracking and visualization of aircraft to aid in traffic flow analysis. Furthermore, he has played a pivotal role in rendering extensive datasets accessible to both students and faculty, benefiting airline and airport operators alike. Teaching has always held a special place in his heart, driven by the joy of witnessing students derive satisfaction from acquiring new knowledge and insights.

ix

About the Technical Reviewer

Shibsankar has 10+ years of experience

working in IT where he has led several data

science initiatives, and in 2019, he was

recognized as one of the top 40 data scientists

in India. His core strength is in deep learning,

NLP, and graph neural networks, whereas

he has also spent time solving problems in

computer vision. He has experience working in

the domain of foundational research, fintech,

and ecommerce.

He is currently working at Optum as a principal data scientist.

Before that, he worked at Walmart, Envestnet, Microsoft Research, and Capgemini. He pursued a master's from the Indian Institute of Technology, Bangalore.

xi

Acknowledgments

While writing this book was a solitary endeavor, it could not have happened without the influence of an ecosystem of family and friends who help me keep my sanity, an ecosystem that includes the following people.

My wife Tania, a voracious reader and lover of animals and of the outdoors, who faces the daily challenge of managing her “grumpy old man in training” all the while working in physical therapy, teaching Aikido, learning mandolin, and wildlife sketching.

My mother, a remarkable individual born in a very remote part of Ireland, one of the most intellectually curious people I ever met, who became a teacher and who cultivated a love of learning and culture in all her children.

My friend Dr. Otto Franz, an astronomer whom I met while working at Lowell Observatory, now retired and living in Texas, who still stays in contact with weekly Facetime sessions, with whom I have the privilege of discussing topical and scientific issues with someone who was a child in Austria during the Nazi occupation, who offers eyewitness testimony and insights into extremism, historic and current. His appreciation of the importance of bringing data to life, and seeing the merits in my work, is greatly appreciated.

My friends Bill Burke (a superb luthier and musician) and his wife Pat (who meticulously documents historic archeological sites) for their regular wonderful conversations – on all things; and close friends Tim Sober and Carol Kennedy, Barry Malpas and his wife Anne Wittke, and Klaus Brasch for our regular conversations and sanity-saving rambling social and political reviews.

xiii

aCknowledgmenTs

And I must also mention Dr. Darrel Smith, a long-time friend and professor of Physics, Dr. Jules Yimga (Chair, School of Business), and Dr.

Zafer Hatahet (Dean, College of Arts and Sciences) all at Embry-Riddle Aeronautical University (Prescott, AZ) for their positive responses to the software development efforts which are the focus of this book.

Truly, it does take a village to raise a child!

xiv

Introduction

I wrote this book for a past me. I’m now retired but have maintained a lifelong interest in programming; there’s just something very satisfying in developing a piece of code that solves a problem. Frankly, it’s empowering; you have a solution that gets the job done. I have had the good fortune of having worked on software projects that were done mainly to support academic research – research in astronomy and aviation-related studies, which have been my main interests – not programming.

I like programming, but it’s simply a way to get me to where I want to be.

Sometimes, it’s the journey, but for me, it’s mainly the destination.

I am not alone. There are countless researchers and grad students and data analysts who program, but whose main interest is not programming.

Being able to code is simply a necessary skill. It’s the norm for academic types to write unique custom software tailored to a specific purpose or a narrowly crafted dataset. University departments, whether scientific or business or engineering, will rarely devote time to teaching graduate student workers and young faculty to program; they are expected to sink or swim. They will write code that would fail to consider multitudes of possible scenarios or input format, for example. “Need to enter a number?

Well, make sure you use three significant digits for that column, or the code might crash!” – this probably happens more often than many would like to admit. The point here is not to assign blame, but to be realistic; very often, code is written in a very functional, get-it-done style, to simply… get it done. It’s not about being the cleverest or the fastest, but simply getting to the destination.

xv

InTroduCTIon

There will be conflicting forces. As a team member, there is often a need to share your code and make it available for others to use, so they can get their work done. An Object-Oriented Design makes this much easier.

Sometimes, the code takes on a life of its own and becomes a badly needed resource, a service if you will, to a broader interest group. Your supervisor or manager is not really interested in the details, just the results, and so a little more effort on the journey is warranted. And this is where dashboards enter the picture – they represent an encapsulation of your knowledge codified into a controlled look and feel and access. A particular kind of programming really, but to the nonspecialist, another hill to climb.

There have been many times when I found myself in such a position and wished I had some complete examples to look at, to see how things were done, and so this is the sense in which I say this book is written to a past me. In showing how a dashboard was built around an important aviation dataset, I hope I can help others benefit and expedite their own projects without facing the often-daunting headwinds of learning new technologies and techniques all by themselves.

 Why Dashboards?

 A picture is worth a thousand words.

—Fred R. Barnard

All data is ultimately a collection of bits – ones and zeros really. It can be stored in various forms from disks to paper, but to be useful it needs to be understood and accessible, both of which benefit from being able to readily visualize what the data represents and from being able to analyze and share it. Dashboards (graphical displays using features like buttons, sliders, menus, and graphics) have emerged as powerful tools to address these needs. When well designed, you can encapsulate the problems xvi

InTroduCTIon

of data management, display, and access into a self-contained project, allowing collaborators to work remotely if needed, all the while providing a focus for the research effort’s needs to manage the data centrally.

Well-designed dashboards should make their data as intuitive and functional to the user as possible. By intuitive, I ideally mean the user should see compelling graphics and results that are easy to comprehend.

It might not be possible to avoid long tables of data, but in general, well-designed graphical elements are more effective than raw numbers for initial explorations. Part of this is simply human nature. We are visual creatures. Of course, students and researchers need to get into the weeds with the algorithms and raw data, but eventually, that data must be reduced into usable summaries and statistics for practical use by themselves and external users.

To be functional, a dashboard needs to meet the designers’ goal of making the data’s attributes of interest accessible. A large dataset might contain more information than the designer is interested in. So, the designer’s task is to figure out what part of the dataset to use and to create displays and tools to reveal the embedded traits of interest; the designer must regularly choose between too little and too much. If they include too much information, they run the risk of overwhelming the nonexpert; too little, and their dashboard appears to be inconsequential. For these reasons, designers must always keep the end user in mind and be willing to revise their dashboards accordingly.

There are multiple ways a dashboard might be built and accessed like web based, application based, and desktop based. A web-based dashboard has an advantage as it offers freedom to the developer to maintain an operating system–specific environment and configurations. This makes them more stable and greatly simplifies the development process – the designer only needs to develop for a single platform. At the same time, the distribution problem is solved. A dashboard on a server can be shared with any other computer on the Internet.

Good dashboard projects are therefore a reflection of carefully planned data analysis, reduction, presentation, management, and dissemination.

xvii

InTroduCTIon

 The Importance of Data Visualization

The main dashboard we will build in this book allows the user to explore the government’s airport operations dataset (ATADS) that tracks various types of daily operations for more than 500 US airports. Operations include the kind of flights (military, civilian, commercial), the conditions (whether they were conducted using Instrument Flight Rules [IFR] or Visual Flight Rules [VFR]), and whether they were local or itinerant. VFR operations are permitted when the weather conditions meet certain minimum visibility and cloud clearance criteria and are normally used by private pilots and small air taxi or commercial companies. One cannot assume IFR flights happen under inclement weather since larger commercial airlines will use these by default for safety.

A dataset such as this contains a wealth of hidden information that is hard to appreciate without seeing it graphically, so we can answer basic questions concerning activity trends. But if we pay close attention, we will also discover other features that would be difficult to detect from inspection of tabular data by itself, some of them being quite fascinating in their own right, and so a graphical inspection of the data is very important since it will very likely lead to further questions to explore.

This ability to support visual inspection of graphical data is an important feature of many dashboards and is essential in ours. After we are done developing and deploying our dashboard, in a later chapter, we will demonstrate how powerful it is in providing insight into the ATADS dataset and hopefully encourage and motivate you to explore your project’s data.

Finally, an important aspect of this book is not just showing how to design, build, and deploy a dashboard, but since we are using an important dataset from the aviation industry, we also address issues of how our dashboard can support research and aviation professionals and business students pursuing a career in aviation management. There are scenarios we will explore as part of demonstrating the project’s xviii

InTroduCTIon

usefulness, and it is hoped that all readers will appreciate how what might be perceived as a fairly dry dataset actually presents wonderful opportunities for, and naturally suggests, topics for further exploration.

Having been a researcher and scientist, I have always enjoyed digging deep into data to see what’s hidden beneath the surface, which is why I think it’s important to explore how the dashboard can help reveal and document behaviors and events such as hurricanes and pandemics. Hopefully, these explorations will motivate those interested in other datasets.

 Why This Book?

This book is intended for those who work with data and also have the need to share insights regarding data. An essential aspect is a desire to help their end user “lift the veil” and understand underlying data features such as trends and patterns. Large organizations can have teams of developers and experts to achieve these goals, but many who could benefit from such capability (e.g., college faculty and graduate students) work with minimal resources and need to take a jack-of-all-trades approach to building applications; they need to solve the data access, data importation, data display, analytical tool build, server operating system management, and deployment problems (if your dashboard is wildly successful, you will need a scalable solution!). All these must be done in a realistic manner.

Some corners can be cut – there are fewer deployment concerns if the project is behind a firewall or if the users are all experts, and primitive graphics can work if there are deadline constraints. Regardless, there is a daunting task and skillset list the graduate or faculty member must master.

This book is intended to show how a complete dashboard-based project can be created and deployed. I will use some government aviation datasets as core material, and I will show the various design issues and solutions I encountered in developing an online dashboard. In taking a step-by-step approach, I hope newcomers will see how this can be done xix

InTroduCTIon

and encourage them to do it for themselves. I hope the reader finds it useful to have the diverse underlying issues addressed in one volume with personal observations included along the way.

There are many online resources that can show you how to make a simple dashboard or that offer solutions created by others that can be licensed. There are few, if any, that demonstrate a complete solution incorporating real-world data access and download, comprehensive reactive programming, and server configuration issues. The obvious reason is that it takes a considerable effort to organize and present such a complete overview, such as this work, and this is beyond the scope of most online articles. Perhaps not too unfairly, many online examples teach how to draw a stickman when what you really need to know is how to do a portrait.

In this book, we address the “complete solution” for the core application and provide the user with complete code examples and the needed server configurations. This should serve as a powerful self-contained resource to learn from, and to refer to, since there were many times when working on various research projects, I found myself at a point where I felt I understood the broad strokes of a coding issue, but, frustratingly, just needed a little extra help in the form of seeing how someone else solved an issue, and this was all I needed to move forward.

No question having complete examples to refer to is both a tremendous time saver and stress reliever.

There is no need to be a computer expert to achieve this, but computer expertise is still needed. Most researchers and students these days have experience with some programming, system administration, and basic web HTML hacking and could learn how to build dashboards for themselves. For this reason, when discussing code examples, only the major features will be addressed; the assumption will be that the reader will be able to understand a function’s working from reading the code combined with their understanding of coding basics.

xx

InTroduCTIon

I have also taken the liberty of addressing some issues related to data analysis and interpretation for aviation professionals specifically interested in aviation datasets, and this goes beyond the basic task of creating a dashboard. I include a discussion showing how our dashboards can provide insight into many aviation issues ranging from the impact of hurricanes to pandemics, and I even include discussions on how to create models to test your understanding and to help incorporate spectral analysis into your work. I realize spectral analysis of airport operations data is surprising perhaps, but why not? The techniques are universal, and it was interesting to see how it worked out and it raised interesting questions in its own right. And, of course, these discussions can be generalized to non-aviation projects. So, in this book, we will build a custom tool and show how to use it, which is a valuable part of the feedback used to refine our designs.

I will note that dashboards will evolve. In other words, you don’t have to achieve every desirable outcome in your first attempt. Start with a simple goal such as displaying a time series of a single data type.

Figure out how to import and display the data; at this point, you have made significant inroads into the I/O and graphics display problem.

Next, start adding tools like linear models for trend analysis or panels to display important statistical values. And that’s it! Well, almost. As you work with your data and your dashboard, you probably will have “Aha!”

moments where new ways to visualize the data pop into your mind, and so displays will have to be modified or new tools created. The project will evolve. However, even as large datasets are continuously updated, their corresponding dashboards should eventually stabilize. Done right, this is a wonderful outcome for any research project, a resource to be shared with end users – public or academic. And let’s not forget the benefits your colleagues will gain by not having to reinvent the wheel.

xxi

InTroduCTIon

 How to Use This Book

Depending on what programming challenges you face and your stage of completion, your approach to how you might use this book will vary greatly. It would fall into one or more of the following strategies:

• As a general reference on how to build and deploy a

Python dashboard.

• As a template: Here, you would download the code

examples from the publisher’s website to explore

the various solutions and to modify them to suit

your purpose. You would provide your own CSV file

collection and modify the names and labels so that

the drop-down menus and equation strings would

be appropriately populated. The result would be a

dashboard tailored to your project.

• As a resource: See how to work with PLOTLY/DASH

when first learning reactive programming.

• As a guide on how to deploy a Python application using

NGINX and GUNICORN, with a discussion of how to

use CSS to control your dashboard’s screen layout.

• As a resource to augment your current development

efforts: For example, to see how borders, titles,

equation strings, and mouseover text are created and

curve fit and Fourier techniques implemented.

xxii

InTroduCTIon

• As a how-to when getting started with some file format

translation (e.g., when converting XLS to CSV) and in

screen scraping (i.e., automatically navigate a complex

website to customize data for download).

• As an introduction on how to construct a WordPress

web portal and on how to track down arcane formatting

issues using Chrome Developer Tools.

No matter which strategy is of interest to you on a particular day, my goal is to help you see how a functioning dashboard is constructed and deployed by giving you access to the underlying code and server configuration details, for you to learn from and leverage the learning while developing a dashboard, so you can break through whatever roadblock is distracting you from your project’s objectives.

 Bits and Pieces

The projects I describe in this book use Python and PLOTLY/DASH for code development.

DASH is a free, open source software available under the MIT license, and the license file which contains the copyright statement can be found at https://github.com/plotly/dash/blob/dev/LICENSE. (Same for Plotly.py – https://github.com/plotly/plotly.py/blob/master/

LICENSE.txt.)

I use the Anaconda code management environment to access the Spyder Python development environment. I find this combination works well for me. Spyder can be run by itself, but running it under Anaconda has generally made software updates more seamless. Spyder is free and lightweight. It’s effective for me. It has limitations and sometimes I’ve been frustrated by it, but it delivered. There are other flavors of Python – feel free to use whatever works for you. Ultimately, you will have code in a “.py”

file – it matters not whether it came from Spyder or PyCharm or whatever.

xxiii

InTroduCTIon

While running a Plotly application in the Spyder IDE, it starts an application server. By default, the dashboard is accessible via a browser at http://127.0.0.1:8050 where 127.0.0.1 is the IP address of the localhost server of the local computer and 8050 is the default port for Plotly/

DASH. As we will discuss later, when we deploy our dashboard, we will need to offer different port numbers to different users, so that each user can experience a personalized view.

To handle the complex problems of displaying results on a screen, such as with a dashboard, we do not have to reinvent the wheel, we can use software libraries created by experts who specialize in this problem. Again, there are many possibilities, but I work with PLOTLY – a commercial product that faculty and students can use for free. If your project has commercial implications, you will of course need to talk to them. I personally like the PLOTLY solutions because I find they are well documented for the most part, and I think their support forums are very effective – they seem to go to great efforts to help their users. And, while not perfect, they provide some really good foundational code examples demonstrating their very comprehensive capabilities.

In some ways, creating a new dashboard is like trying to find your way through a swamp of data and technology issues to get to the other side.

I just show the path I took that worked for me. There are many others, but this approach is one that worked and is well suited to small teams or individual developers.

Beyond the basic software coding, there are some other major configuration efforts: mainly setting up the web server and the system configuration. I used NGINX because it is a widely used lightweight server, and then the operating system needed appropriate servers configured to service NGINX, the dashboard. There are some other tasks I’ll cover, but all this complexity can be handled if broken down into appropriate steps.

xxiv

InTroduCTIon

 Prototyping

This is a book intended to be a resource for professionals, researchers, and students, whether they are involved in university projects or airline IT

departments. Airlines, airport operators, researchers, and students might want to develop customized dashboards to support their specific needs.

I emphasize time series data, daily records of activity, from which trends and patterns might be gleaned to help with forecasting. Obviously, any CSV time series data could be used – shipping traffic, hotel occupancy, weather stations, etc. Our use of one industry’s dataset helps make our challenges more focused and less abstract.

When prototyping, functionality will be a core design philosophy, and at the early stages of a project, there will be many cycles where designs are abandoned or changed daily; documentation might be sparse, and the code should be as self-documenting and intuitive as possible. Sometimes, brute-force, inelegant solutions will be applied to simply get the job done, with a promise to oneself to clean things up or to automate a chore later. Object-Oriented Design (OOD) objects will become bloated until they are intolerable to work with, and refactoring (code redesign) will be done to restore clarity. There will also likely be dead pieces of code left in a file, commented out, but kept there because it worked or had a clever algorithm that might still be useful. This is the real world of prototyping.

When developing complex coding solutions, it is essential to understand the technical stuff, but there is a reason why websites offer step-by-step solutions on how, for example, to install and configure a MySQL server; having access to solutions is an extremely efficient way to get things done, to bypass a possibly considerable burden in time and effort required to build something from scratch. This is one of this book’s main goals – to allow the reader to see how a complex dashboard was xxv

InTroduCTIon

implemented. Some code segments will look ugly; some solutions need to be better automated; some OOD objects should be rewritten. And yet, what a time saver it would have been for me if I knew then what I know now and picked up this book – warts and all – to help me get going!

 Being Organized – Managing Your Project

Whether you're embarking on a new project expected to occupy your focus in the foreseeable future or already knee-deep in prototyping, effective effort management is crucial. It's essential to initiate this process promptly if you haven't done so already.

Keeping notes in a manila folder is OK, but I strongly recommend you buy a large hardcover notebook such as one found in a college or office supply store. I like to use a black pen – the contrast it provides is easier on your eyes. Let your notes breathe – writing notes in the equivalent of an 8pt font or with a pencil will make your notes too hard to reread; leave plenty of space between the lines. Number your pages and leave four or five pages at the beginning of the notebook, so you can build a table of contents on the fly with page number, date, and a few words describing that page’s contents. With this, you will be able to find work done months ago with minimal effort. I would suggest writing comments and keywords at the top of each page or day’s work, giving a little more information than what you entered in your table of contents. I keep critical information like server IPs, names, and accounts at the back of the notebook, so I can quickly find them as needed. Critical code segments can be printed out and taped/

glued into the notebook. When glancing at an older entry, you can always add a quick note to see a later page for clarity. Yes, all of this is old school, but it will give you a sense of accomplishment and progress and will help keep concerns your project is becoming overwhelming at bay since you will be able to quickly reorient yourself with forgotten ideas and solutions.

xxvi

InTroduCTIon

Your notebook, if done properly, will document your prototyping.

It’s a balance between how much or how little to include. Too much becomes a chore, and too little is ineffective. I make regular copies of my working folder with all the assets (data files, CSS, logos) and the code files themselves, so if I find I need to revert to a previous version, I simply copy that version into my active folder. Eventually, professional solutions might be needed such as GIT, but when starting I believe a notebook is sufficient without needing an additional technical layer to worry about, although I’m sure others would disagree.

xxvii

CHAPTER 1

Working with Python

In this chapter, we will review some of the essential aspects of software development using Python, such as its data types and powerful data manipulation tools. Python has a way of approaching data management that, while generally intuitive, also has nuances the user must master.

For example, if an ordinary person was asked to state the numbers in the range 1 to 5, they would probably answer “1, 2, 3, 4, 5.” Unfortunately, in Python, the range(1,5) function returns [1,2,3,4]. Small details like this are obviously important and indicative of how Python approaches data structures. The Python programmer must be comfortable with this

“Pythonic Way” through understanding fundamentals like those we provide here for review and reference.

 Coding Design: Python and OOD

My first exposure to scientific programming (a long, long time ago) was through developing scientific software for research using FORTRAN. The coding style was very linear – written to process data from the start of a data file to the end, applying various algorithms as appropriate. There was very little interaction between the user and the code – parameters could be set in a configuration file and through command-line arguments, with text messages being output to indicate progress as needed. The advent of GUI interfaces revolutionized programming; displays could

provide buttons and sliders and images responding to cursor position.

© Padraig Houlahan 2024

1

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_1

Chapter 1 Working With python

Essentially, this new paradigm demanded a different, nonlinear approach; it required main loops that simply monitored and reacted to events: mouse positions, command keys, and clicks. This was the start of event-driven (reactive) programming.

There was a steep price to be paid for this. Programming became much more complex. It wasn’t enough to develop algorithms to number-crunch data, the nonspecialist programmer in a Physics or Biology department also needed to learn how to construct GUI interfaces for graphics display and event handling. A code developed for a PC might break when the OS was upgraded, so different versions might need to be maintained, requiring a relentless search for platform and OS-specific libraries. This was doable with team effort but daunting for the programmer used to linear programming, not wishing to be distracted from their primary pursuits. As languages were coming into fashion such as C and C++, so also was a new philosophy and style of programming, Object-Oriented Design (OOD).

All programs use algorithms to process data. To manage a complex program with hundreds and thousands of lines of code, algorithms are implemented as functions that subdivide the task into manageable pieces.

There is a problem though. If a task is subdivided into many subtasks (or functions), how are the results from various functions to be shared as needed with each other? One might think that having all variables be globally accessible to all functions would work. It could – in principle – but with hundreds, perhaps thousands, of variables used in a project, it is too easy for confusion to reign, for an unrelated function working silently to unexpectedly modify values used by another.

A better approach is to pass the variable names as arguments to each function. At least then, in a study of traffic flows, those variables associated with position might be isolated from those associated with motion, and from road conditions if needed. OOD has taken this approach one step further, by defining classes. A class is a definition where a building block of code is constructed with the intention of isolating the functions (methods) 2

Chapter 1 Working With python

designed for the data and the data itself by bundling them together in a single entity. This compartmentalization helps make OOD code very robust and facilitates code sharing. It’s a divide and conquer approach, with another tremendous benefit – class variables can be defined that are accessible to all class methods – a kind of local globalization if you will, perhaps not ideal for enormous projects, but incredibly effective for small team research efforts.

OOD naturally allows for managed development; if a coding segment is getting hard to manage and confusing because it is getting too long, then as in linear programming, simply divide it into more methods and classes. Eventually, your objects will be collections of methods and variables. It does seem magical to create an OOD design, define an object in a class, and then what? How is that definition activated? The answer is it is instantiated. If I define class automobile(), then I instantiate it with a command like myCar = automobile(). The color of the car might be myCar.

color and the speed found by using a method as in mySpeed = myCar.

getCurrentSpeed().

Objects can be used as the basis of other objects, so there is no need to reinvent the wheel. A generic transport class might have methods and variables suitable for Auto, Bike, Train, Ship, and Plane derived classes.

Much has been written about OOD benefits, and I’m barely covering the basics. But I will lastly point out another important aspect – OOD

designs are naturally hierarchical and encourage the programmer to look at their project hierarchically. Start with the gross tasks and subdivide and isolate the subtasks and data as needed. While this is also done in linear programming, the problem there is one was often trying to flatten a hierarchical paradigm into a linear one. In my opinion, OOD simply fits better with your mind’s innately hierarchical paradigm. This is not to say there is no place for linear programming – for simplicity, it is hard to beat a linear program for building a utility that filters and manipulates data and data files, and I use such utilities extensively – but for more complicated projects, OOD should be the preferred design approach.

3

Chapter 1 Working With python

Finally, prototyping is an iterative process, where strategies are tried and tested, often rejected, and new approaches attempted based on insights gleaned from previous failures. It makes little sense to try and attempt to replicate this aspect of prototyping, but we can show how we implemented a version of a project’s code for you to learn from, to see what coding and design strategies were used and to judge their success by the resulting dashboard. In a subsequent chapter, we will explore the code used to build our prototype, but to properly appreciate what was done, it is necessary to understand coding structures such as Python’s data types and how to use powerful solutions such as PLOTLY and DASH. I include many figures with code segments and demonstrations, most of which you can (should?) replicate for yourself using your Python’s IDE console in the hope they would help the reader get through some of the more nuanced challenges and have examples to revisit and refer to as necessary.

 Python Data Types

[This is probably the section you will most likely be tempted to skip or skim through. It provides an overview of Python’s data structures and many code snippets demonstrating how they work. You might be impatient and wish to maintain your momentum while developing code for your project and not wish to be distracted with such arcane details. You can always go online and look up details later. Absolutely. But here’s the thing: Python is nuanced and has some surprising quirks – how can such a powerful tool not have? – and having an understanding of its data structures will help you avoid some of those times during code development when you hit a wall; when things don’t make sense; when your intuition has failed; and when instead of the intuitive and rational result, you are getting the unexpected. Many times, this will be a consequence of not appreciating how Python data structures function. Remember there is a world of difference between recognizing the familiar (“I’ve seen this stuff before”), 4

Chapter 1 Working With python

being able to comprehend what is written, and being able to apply the material. Using your Python IDE (coding environment), use the console to mimic the examples here and explore data types created and returned by functions. This section can only provide a short overview, but it will give an important sense of key aspects that must be understood, with many examples of snippets demonstrating key ideas that you can revisit.]

Python has become one of the most popular programming languages used by data scientists and engineers and offers OOD capability and terrific data manipulation solutions, and it has a comprehensive collection of powerful libraries such as Numpy, Scipy, and Pandas available for general use. Many libraries are maintained by experts wishing to contribute to the community at large. Some libraries are commercial, where companies provide their resources and offer tech support to their clients; often, they grant access to noncommercial developers such as faculty and graduate student developers. Of course, if a product emerges with commercial viability, developers need to appropriately license the software used.

A particular feature offered by Python that has become incredibly useful to data managers is a structure called a dataframe. Simply put, a dataframe is a matrix that can hold different kinds of data, numeric or text, and this makes them very useful for holding many kinds of datasets. While simple in concept, there is a fussiness associated with dataframes – we need to be able to slice and dice them, to be able to access blocks and subsets, to be able to index into them, and to use labels and column headers. In this chapter, I will review some of the most powerful techniques for achieving these goals to serve as a convenient reference.

However, before exploring dataframes, it is essential we understand some of the basic data structures such as Python lists, tuples, and sets. In the following sections, I will share an overview of their key features and behaviors.

5

Chapter 1 Working With python

 Lists, Tuples, and Sets

Tuples in Python are simple collections of data that use () while coding.

Tuples in Python are immutable with values, once assigned, that cannot be changed. An example is as follows:

my_tuple=('apple', 2, 'dog').

They are ordered, so my_tuple[2] shows the third element, “dog” in this case.

A set in Python is an unordered collection of unique elements that uses curly braces { } while coding where only one instance of each element is allowed. By unordered, we mean the position of an element is not guaranteed, and we cannot access an element in a set by its index. On the other hand, a list in Python is an ordered collection of values that uses []

brackets while coding, where an element is accessible by its index. (Don’t be confused by “ordered” with “sorted!” Ordered means the position of elements is maintained in its sequence.) Figure 1-1 shows how powerful sets can be, where a list with duplicate elements can be turned into a set, and back again, resulting in a list of unique elements. This would be an effective strategy for extracting a unique list of cities from a large database of addresses. Once a set is created, you cannot change the elements, but you can add more (see Figure 1-1).

You cannot access a set element directly, but you can iterate over a set and test if something is a set member.

6

Chapter 1 Working With python

 Figure 1-1. Sets can be constructed from elements listed in { } brackets and will automatically eliminate duplicates. A list with duplicates (my_list) can be converted into a set (my_set) and then converted back, resulting in a list of unique elements (my_list2) Lists can be indexed (the first element is [0], the second is [1], and so on) and changed. A list can hold duplicate entries and can have mixed types. Figure 1-2 shows some of the many operations that can be done on lists such as creating, inserting, and removing elements, accessing elements, joining lists, and finding the number of elements present. List elements can be sorted, so if C is a list, do C.sort() or C.reverse() as needed.

7

Chapter 1 Working With python

 Figure 1-2. Elements can be changed, inserted, appended, and removed from lists. Lists can be joined together. Elements can be accessed

Now here’s a tricky one. If you want to copy a list, it is not good enough to do B = A, since B will be a reference to A, and if A changes, so might B, depending on whether shallow or deep copying is used by your interpreter.

To be on the safe side, B = A.copy() is how we save a copy of A to B. After this, we can change or even delete A, but B will remain intact.

8

Chapter 1 Working With python

The reason why deep and shallow copy options exist is that for a large list that is not changing, the shallow copy is a list of references and is much faster to work with. A deep copy requires more time and space to implement.

 Dictionaries

Dictionaries are data collections defined by key/value pairs and use curly bracket notation { }. For example, I might have a dictionary for a student Physics class:

my_class = {

"students": 20,

"title": "Introduction to Physics",

"room": 214

}

The dictionary keys are found by my_class.keys(). Similarly, I could find the values using my_class.values().

All of these appear very straightforward, but there are pitfalls ahead.

At this point, you might guess (wrongly) that if you wanted to access the second dictionary key, it would be a simple list indexing exercise. This is not the case. To illustrate the problem, consider the results shown in Figure 1-3 where I created a dictionary and tried accessing one of the key values. The problem arises because the keys() function returns a Python set, not a Python list. The solution is to apply the list() function to the my_

class.keys() output, which returns a list of the dictionary keys, and this list can be indexed. This is shown in Figure 1-4. You can also apply the list() function to the output of the values() functions and index the results.

9

Chapter 1 Working With python

 Figure 1-3. After creating a dictionary for a class of students, I stored the keys as k = my_class.keys(). I get an error in trying to access the first element using k[0], because k is a set and being unordered cannot be indexed

10

Chapter 1 Working With python

 Figure 1-4. Applying the list function to the my_class.keys() or my_

 class.values() output returns a list which can then be indexed Series

A Pandas series is like a list, but it allows using labels and integers for indexing, so unlike dictionaries, we use .index() instead of .keys() to get the indexes. We access the Pandas library using a statement like “import pandas as pd,” so we can use the shorthand pd.Series to use the Pandas Series() function and so on. Series allows vector operations and can be multiplied by scalers and added together, as demonstrated in Figure 1-5.

11

Chapter 1 Working With python

 Figure 1-5. Series can be created from dictionaries, they support vector operations, and they can be added/combined together Dataframes

Dataframes are 2D structures that can hold mixed data types. They are created using the Pandas library. Dataframes are very powerful and flexible, and this comes at a cost: there can be many ways to create and manipulate them – some highly nuanced. In what follows, I will demonstrate some of their configuration and manipulation capabilities and some of their not-so-intuitive but important attributes.

12

Chapter 1 Working With python

 Building Dataframes

Dataframes can be created from lists or dictionaries and might have row indexes and/or column names specified.

In Figure 1-6, I show a short code segment creating a dataframe (df) from two lists and the result of running the code in the console. The console shows the code steps and the resulting dataframe.

 Figure 1-6. Running a code segment that creates a dataframe from two lists

The result is a little confusing. Yes, the lists have appeared as columns, but there’s a zero over the second column and none over the first. Why are they being treated differently? Let’s try building the dataframe using a dictionary of the A and B lists instead – again, using our console (see Figure 1-7).

13

Chapter 1 Working With python

 Figure 1-7. Building a dataframe using a dictionary with keywords and a list for each dictionary value. Default indexing appears on the left side This result is very interesting. Here, we see the dictionary keyword for each list produces a more intuitive result. We have rows indexed numerically and two columns. In fact, each dictionary key/value pair produces a column in the dataframe. And there is an extra column on the left, showing the index values for each row.

We can change the index column’s labels by setting an index parameter to a label list while building the dataframe as in Figure 1-8.

 Figure 1-8. Creating the dataframe from the dictionary with an index list specified

14

Chapter 1 Working With python

To understand what happened with the dataframe in Figure 1-6, let’s use the dataframe column attribute to explore the columns present in the dataframe produced from lists and that from dictionaries. The results are shown in Figure 1-9 in which the df.column output is stored in variables l1 and l2. l2 is a little less cryptic than l1, and to me, this is, frankly, a very annoying result, since not only do we not get a straightforward answer, but we get two different answer styles. The solution is to apply the len() function to the variables, and we see the dataframe built from the lists has one column, while that built from the dictionary has two; absent explicit indexing when only using lists, the second list was treated as the index, and so there was only one column of data. This explains the confusion we encountered with Figure 1-6 without the index specified when creating the dataframe, the last list provided was used for the row indexes, and so the resulting dataframe only had one column.

 Figure 1-9. Building the dataframe from lists instead of a dictionary with keywords resulted in a one-column dataframe. Regardless of how the dataframe was created here, using len(df.columns) correctly tells us how many columns are present

15

Chapter 1 Working With python

We can also explore the row indexes using df.index, but as in the case of df.columns, the output is similarly inconsistent with RangeIndex in one and Index in the other. As a programmer, this is not what I want to see.

But there is a good workaround that you can try: regardless of how the dataframe was constructed (list vs. dictionary), apply the list() function to df.columns and df.index. This is shown in Figure 1-10 where the expected output lists are produced.

 Figure 1-10. Whether the dataframe was produced from lists (df0) or from a dictionary (df1), the list() function shows the row index and column names as a list

16

Chapter 1 Working With python

So, at this point, we have row and column labels and the dictionary list data stored in our dataframe columns. The dataframe looks reasonable –

there are no confusing columns or missing labels.

 Accessing Dataframe Rows and Columns

Our next steps are to see how to access dataframe rows and columns.

Here are two ways regularly found in online articles on how to extract a column from a dataframe using the column names – see Figure 1-11. In the first approach, since the second column name is a simple string (“col2”), I can simply do df.col2. I store the output in variable e. I also extract using list notation, df[‘col2’], and store the result in variable f.

However, these results are problematic for a few reasons. First, neither result is a simple list – you might have been expecting – and second, e and f are of type series – we now need to extract the series data. Yes, this is a little confusing – we extracted series from the dataframe, and we now have to extract lists from the series. We therefore need one last step – use the list() function to convert series data into list form. As shown in Figure 1-11, this

yields the desired output: [‘a’, ‘b’, ‘c’].

17

Chapter 1 Working With python

 Figure 1-11. Accessing the dataframe’s second column using the column name “col2”. The results from df.col2 and df[‘col2’] are both in series form and need to be converted into lists using the list() function We should also note that in Figure 1-11, the results of the column extraction operations are of type series – this is why dataframe columns, just like series, can be combined and rescaled vectorially.

18

Chapter 1 Working With python

 Using loc[] and iloc[] to Access by Position

loc[] and iloc[] are two functions that can extract data from dataframes based on position (i.e., using labels and indexes). loc[] uses labels, while iloc[] uses integers. Figure 1-12 shows them being applied to a dataframe to extract the second row (“r2” and index 1). Both functions produce the same overly verbose results, but as before, the len() and list() functions give us the essential information – the actual row contents and size.

 Figure 1-12. Using the .loc[] and .iloc[] dataframe attributes on row r2 (index 1) gives the same verbose results from which the actual data list and length can be readily found

19

Chapter 1 Working With python

The iloc[] attribute can extract from both rows and columns if its arguments include a comma, that is, it takes the form iloc[row_specifier, column_specifier]. For example, remembering that in Python, a range specified by X:Y starts from X but ends at Y-1, iloc[1:3,0:4] would extract those cells that are found on row indexes 1 and 2 (rows 2 and 3) and columns 0 through 3 as demonstrated in Figure 1-13.

 Figure 1-13. iloc[] can be used to extract subsets of rows and columns using a comma-separated row and column specifiers We are not restricted to contiguous rows and columns. Row and column specifiers can be lists. For example, as shown in Figure 1-14, iloc[]

can take a list of rows and a list of columns. (If only one list is provided, it defaults to selecting rows.)

20

Chapter 1 Working With python

 Figure 1-14. Multiple noncontiguous rows and columns can be extracted by using lists of column/row indexes

 Filtering – Extracting Elements by Value

We can create filters to extract information from dataframes based on cell values. For example, df.age > 20 would identify all rows where the age column was greater than 20. The result is a series of Boolean true or false values. The filter could be saved as a variable, f = (df.age > 20), and passed to the dataframe: df[f]. Figure 1-15 demonstrates some examples.

Filters can be AND/OR combined using the “&” and “|” operators. To avoid parsing errors, it is best to wrap your filters in parentheses.

Even though the filter is a series, it can be passed to the dataframe, and behind the scenes, Python treats it as a list of true/false elements.

I could have combined my multiple statements into a single one like df[(df.age > 20) | (df.pet == 'goldfish')].name

which would be very compact. More complicated, compact filters will be harder to read, and it will be a judgment on the programmer’s part on how they wish to write their code, whether to strive for compactness or to accept a little more bloat if it clarifies functionality.

21

Chapter 1 Working With python

 Figure 1-15. Two filters are applied to the dataframe to find owners either older than 20 or who have a goldfish. Since the result is a dataframe, the df.name construct prints out their names. Note the filters are wrapped in parentheses to avoid parsing errors, and they are stored as variables

As we can now see, dataframes are part of a data management hierarchy offered by Python and Pandas that provide an environment for a data matrix that includes names and indexes, tools to manipulate the data, and capabilities to extract and filter the data. While it can be surprising to get a series instead of a list when asking for row or column content, and to 22

Chapter 1 Working With python

have the data type silently switch from series to dataframe depending on whether, for example, a single or multiple columns were extracted, Python remains an incredibly useful and flexible tool for working with data, and regularly revisiting summaries and examples like those provided here or online perhaps will expedite your coding.

 The Spyder IDE

The Spyder IDE (integrated development environment) presents users with a multi-panel display that is configurable. In Figure 1-16, I show a typical layout where the code is in the left pane, and there is a variable explorer and a console stacked on the right.

 Figure 1-16. The Spyder development environment is a wonderful way to develop code, with many features such as being able to step through code, line by line; being able to explore variable content; and a console for command-line testing

23

Chapter 1 Working With python

The variable explorer is extremely useful since you can examine the state of a variable or a dataframe and see if they contain the data you think they should! For example, in Figure 1-17, I can see the contents of a dataframe used by the atads.py program developed in a later chapter.

Finally, note that many of the demonstrations exploring Python data types were created using the console window. When you run an application, you can use the console to print various data structures and test out filters before adding them to your code.

 Figure 1-17. The variable explorer feature allowed me to open an object called my_ figs and see what some of its dataframes and lists contain. For example, I have 24 entries in my unique year list (df_

 years_unique), and my core dataframe df has 365 rows (one for each day of the year) and 37 columns of data. It also shows there are 539

 unique airports

24

Chapter 1 Working With python

 Summary

In this chapter, we reviewed basic Python data structures since seemingly intractable errors often arise when we fail to appreciate how they are defined and used. When coding, using an IDE that allows the user to explore variable and data structures, seeing not just the values but the types and dimensions, makes debugging considerably easier. Being comfortable with lists and dataframes is an essential skill, and this chapter will serve as a quick reference to key techniques and methods.

In the next chapter, we will introduce reactive programming using PLOTLY and DASH. This kind of programming supports interactivity where displayed output responds to widget (e.g., buttons, sliders, checkboxes) selection.

25

CHAPTER 2

Reactive

Programming with

PLOTLY and DASH

Reactive programming requires the programmer to build a framework around their core algorithms that supports interactivity, that is, having the application respond to mouse and keyboard input. This framework might constitute the bulk of the programmer’s effort; however, the techniques used will often be easily applied to other projects, in effect becoming a mostly reusable (or at least easily customizable) wrapper for the primary function’s code. In this chapter, we introduce PLOTLY and DASH to support interactivity and output deployment to a web browser.

 Getting Started with PLOTLY

To understand how PLOTLY works, let’s explain with a simple dashboard.

© Padraig Houlahan 2024

27

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_2

Chapter 2 reaCtive programming with pLotLY and daSh

 Figure 2-1. The output created by the code shown in Figure 2-2

 appears in a new browser window. Notice the plot is alive and responds to the cursor position.

A lot is happening in this short code:

1. We import the PLOTLY graphics libraries and the

Pandas libraries.

2. The Spyder IDE can be fussy with PLOTLY and be

inconsistent in displaying output, but this can be

avoided if we use the PLOTLY.io library to set the

default browser and use the plot() routine.

3. We build a dataframe from a dictionary based on

two lists.

4. We define four utility functions to demonstrate

how to add titles, annotation (a watermark), and a

border and to apply alternate colors to successive x

intervals as a visual cue for the user.

5. We assemble the figure and plot it.

28

Chapter 2 reaCtive programming with pLotLY and daSh The graphics output appears automatically as a new window that pops up in our browser. PLOTLY embeds buttons at the top-right corner to zoom and move around the plot and for downloading to our desktop. If we resize the window, the plot will also resize. Placing the cursor over a point will show information about the point. PLOTLY does not provide a border around its charts, and because I like to see one, I included a function to do this. Note also I did not have to specify the browser I was using or the operating system. Finally, there might be a bug in the libraries used for this demonstration, so add_border() had to be done before the add_year_

block_colors() routine.

Our example code also introduces us to some of the core PLOTLY

graphing routines regularly encountered: go.Figure() creates a figure object, while add_trace() adds a curve and/or data points; we used update_layout() for adding borders and titles and add_annotation() for adding text to the chart; finally, we used add_vrect() for creating vertical rectangular shapes that could be color coded to create an alternating background used to help delineate years visually. These functions have many more configurations than shown here.

Notice how when working with borders and annotations, we used

“paper” coordinates which treat the x and y ranges as going from 0 to 1, regardless of what the actual data values are, so changing the data selected leaves the chart layout unchanged, and also that the plot connects points and adds a marker at each point because we set mode=‘lines+markers’ in the add_trace() routine.

There are many features built into the demonstration code that you will need to refer to for later work. For now, it is sufficient that the code works and demonstrates some of PLOTLY’s many capabilities; it is very likely that a solution already exists for some feature you might wish to implement, and you shouldn’t have to reinvent the wheel.

29

Chapter 2 reaCtive programming with pLotLY and daSh

 Figure 2-2. A basic PLOTLY program to display a graphic chart. Titles, borders, annotation, and alternate color backgrounds are supported But what about OOD? Let’s create an OOD version of the code in Figure 2-2 (the code is shown in Figure 2-3). To do so, we will create a class called my_chart, which will accept two lists for the x and y variables. For brevity, we will only keep the add_titles() function as a function in the class.

30

Chapter 2 reaCtive programming with pLotLY and daSh

The class will use an initialization function __init__(self, x, y) – note all functions defined in a class must have “self” as their first argument – and it expects two lists to be passed in when invoked. In the initialization, we will set some useful variables, and those we want to reuse are defined with “self.” as a prefix. To use class variables, we will invoke them with terminology like self.df.xvals within the class definition, but externally by using the object name, that is, my_fig.df.xvals.

 Figure 2-3. An OOD version of the previous code. Functions and variables are encapsulated in the class definition, and the x and y lists can be passed to the object my_fig instantiated on the last line and immediately create a graph similar to that in Figure 2-1

31

Chapter 2 reaCtive programming with pLotLY and daSh For this demonstration, for dramatic effect, I build and display the plot while initializing the class, which means that as soon as I create (instantiate) the class object my_fig, the plot is immediately displayed.

So, in this case, once the class is defined, I only have to change the x-y data lists, and a new chart like that in Figure 2-1 is created after rerunning the program. So, when does a class start working? Answer: As soon as it’s instantiated into an object.

Finally, in our OOD design, we could separate the class into an external file that could be reused and shared with others to create a stable and consistent product – one of the major benefits of OOD philosophy.

 Getting Started with DASH

DASH is a framework that allows you to create interactive graphics with Python – without having to learn HTML, CSS, or JavaScript. It has its overhead of course; you still have to learn how to implement buttons and sliders and other GUI elements into your dashboard’s software, but you are not faced with the chore (stress?) of having to embark on separate JavaScript or CSS projects; it can all be done with Python.

The process of building an interactive dashboard requires us to add capabilities beyond what we achieved in our previous project where we successfully created a web-served graphic. Yes, it was nice that PLOTLY

had some useful buttons for scaling and saving the graphics, and even for examining data points with the cursor, but a dashboard needs to allow the user to transform or select or rearrange the data and graphics under the designer’s guidance, and so sliders, buttons, checkboxes, and other features (widgets) must be supported. This can all be done using DASH.

To create a DASH application – your dashboard – you need to add instructions defining your dashboard’s layout and how to respond to events (callbacks) triggered by actions such as buttons or checkbox clicks.

The DASH application will listen for such events, and your code must respond to each type accordingly.

32

Chapter 2 reaCtive programming with pLotLY and daSh

To show how DASH works, let’s create a simple application that allows the user to interact with a slider and change a chart output displayed in a browser window. This is a basic dashboard, but if we can do this for one graph and slider, we can add many more; how hard can it be to add a button or a checkbox if we can get a slider to work? Starting with a simple dashboard is an essential first step that puts us on a path to creating more sophisticated ones with many useful chart configurations and input selectors.

For our first dashboard’s data, we will create a dataframe using simulated data for a range of years. We will include a layout that recognizes two major components, a chart and a slider. The chart shows the output, while the slider provides the program’s input. DASH will automatically detect changes in the slider and handle them with the callback feature and rebuild and refresh the chart in response. The dashboard and code are shown in Figures 2-4 and Figure 2-5, respectively.

 Figure 2-4. A simple dashboard using DASH. Changing the slider’s endpoints changes the displayed chart’s year limits

33

Chapter 2 reaCtive programming with pLotLY and daSh

 Figure 2-5. Using DASH, we can create a fully functioning dashboard where a user-controlled slider changes the displayed graphic – without requiring JavaScript, HTML, or CSS. The code builds on previously encountered solutions such as constructing and filtering dataframes and creating figures using PLOTLY’s graphics objects

34

Chapter 2 reaCtive programming with pLotLY and daSh The major parts of the code are as follows:

1. We first import all needed libraries. I also use

Python’s random library, so I could create a

dataset with some randomness – to make it a little

more real.

2. A dataframe is constructed from a dictionary using

two lists we created.

3. There are entries where a DASH app object is

created, an app.layout is defined in which our chart

and slider are configured, and a final instruction to

run the app.

4. There is a @callback function which handles the

input and output to layout components.

5. Immediately after the @callback, there is an update_

figure() function in which the figure is built using

Plotly graphics object library tools. The resulting

figure is returned using a return statement.

We use dcc routines from the DASH library to support a Chart() and RangeSlider(). Both have an essential parameter – an ID – and these are used by the callback’s Input/Output specifiers. For the chart, its ID (graph-with- slider) is associated as the callback’s output – the figure returned by the update_figure() function is sent to the chart. The RangeSlider has its own ID (year-slider) the Input callback uses. Both the callback’s Input and Output take two arguments, the ID of the layout component and the DASH

data type being transferred. For the chart, the DASH data type is a “figure” ; for the RangeSlider, it’s a “value” since a numerical input is used. For the RangeSlider, the actual value is passed to the update_figure() function and associated with the name set in the update_function()’s argument list.

35

Chapter 2 reaCtive programming with pLotLY and daSh If there were multiple Input callbacks, they would require a corresponding set of arguments to the update_function(), and those arguments must match the Input order.

The callbacks act as a man-in-the-middle directing information received from widgets like sliders into the update_figure() function and sending output back to the chart. The IDs are an essential part of making sure information from various widgets and charts are properly routed.

Strictly speaking, the callback() is a Python decorator as indicated by the “@” operator. Python decorators are mechanisms that allow you to enhance an existing function, to add something extra, and to decorate it.

It’s beyond the scope of this book to delve deeply into this very powerful capability, but a simple example is worth exploring – see Figure 2-6. In this example, I create a decorator called multiply_these, and its role is to simply add an extra string to the output of the function it is decorating.

That function is a_times_b() which would normally produce a number.

However, when the decorator is applied by placing @multiply_these before the a_times_b() definition, from that point on, a_times_b() will add the extra string before the numeric output. Note that our example successfully passes appropriate arguments through the decorator to the decorated function. Decorators are very powerful and could be used to add a timestamp feature, for example, whenever a particular function is called, without having to edit the function.

36

Chapter 2 reaCtive programming with pLotLY and daSh

 Figure 2-6. Here, we created a decorator called multiply_these and applied it to a simple function (a_times_b). Without the decorator,

 a_times_b(2,3) would simply return the number 6, but with the decorator, an extra string “Doing multiplication…” is included in the output

Another noteworthy detail is that RangeSlider returns a list of two values that get assigned to the selected_years variable in the update_

function() – set to a default of [2001, 2010] – and these values are accessed to define the filter used to select the appropriate years from the dataframe.

We should also note that DASH has its constructs to create HTML, and the code’s app.layout creates an HTML <DIV> using the DASH html.Div function. So, yes, it is true to say we can build a web-served dashboard without knowing HTML or CSS, but in reality, as we will see in a later chapter, we can make our prototype more attractive (and hence more enticing to the end user) if we use a little CSS to control the page layout.

37

Chapter 2 reaCtive programming with pLotLY and daSh Summary

In this chapter, we covered the basic of how to construct code used to wrap an application’s core functionality, so the user can interact with the application. Most importantly, we saw how callbacks track input and layouts and manage the I/O elements.

In the next chapter, we will take the first step in building a dashboard intended to display real-world data used by the aviation industry – namely, solving the problem of how to grab data from an online website and convert it from a format useful to managers (Excel) into one more useful to data scientists (comma-separated values).

38

CHAPTER 3

Working with Online

Data

A chapter on data? Yes, this might seem strange at first. It makes us wonder how hard it can be to work with a TSV (tab-delimited values) or a CSV

(comma-separated values) file format. Unfortunately, data files often do not present themselves so nicely. In our case, for our first dashboard, we use the government’s ATADS (Air Traffic Activity System) data, and it is accessed by going to a web interface, selecting various configuration options on different pages, and then deciding what format to download – between HTML, Word, and Excel. (Since their audience includes airline and airport managers, this is understandable.) Therefore, it is useful to know how to work with site navigation to grab online data (screen scraping). Even then, there are problems with the ATADS data – we would like to translate it into CSV format and be careful with embedded numeric commas, so “1,234”

gets translated into “1234”; extra commas are not good in a CSV file.

 About the ATADS Dataset

We will use the Federal Aviation Administration’s ATADS dataset. I have used this dataset because I was looking for aviation data to explore and make it available to students, and aviation has always been an interest of mine. As with anyone who likes to work with data, there is always the thrill of seeing if there are hidden features that might be revealed.

© Padraig Houlahan 2024

39

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_3

Chapter 3 Working With online Data

The ATADS dataset tracks reported flight operations at more than 500

US airports. Airport operators report various activities as being local or itinerant, civil or military, air carrier, air taxi, general aviation, and IFR vs.

VFR. The number of each type is reported for each day. Long-term trends can give some indication as to whether an airport’s activity is growing or declining and so on, which is why it is of interest to managers and engineers. As previously noted, it can be downloaded in either Excel or HTML format.

To download the data, there are some hoops to jump through. As shown in Figure 3-1, the user is presented with a panel of buttons, each of which sets different configuration parameters, from the download format (HTML, Word, or Excel) to the date ranges to the airport facilities of interest. As a service for managers, the output options can provide rankings and summaries – see Figure 3-2.

 Figure 3-1. The web page for the ATADS dataset

40

Chapter 3 Working With online Data

We are interested in the raw data, so we will not use summaries and will extract all data for all airports. However, this presents a problem, since the data for the almost 20 years the dataset has been available is quite large – about 170 MB each year. Remember that when encoding data in non-CSV format, there can be lots of extra characters stored in the file. Even the Excel file downloads have HTML tags. To illustrate the issue, consider a highly formatted document with a table of data in HTML

format. Individual cells will be wrapped in tags, so the number 42 will appear as <td>42</td> – 11 characters to hold two digits of information!

We are interested in the numeric value, and if we can translate this into CSV, we would replace the angle bracket tags with a single comma and use three characters to store the data instead of 11 – a considerable space savings.

But isn’t space/storage cheap? Yes and no. Disk storage is indeed relatively inexpensive, but if we wish to manipulate and move gigabytes of data into and out of our program, that’s a significant memory usage burden.

41

Chapter 3 Working With online Data

 Figure 3-2. The output is highly configurable and even offers different comparison and summary report in various data format

To show what a basic download looks like, I downloaded the data for January 2023 and opened the file using Excel. The result is shown in Figure 3-3. It’s a nice presentation, but very far from a CSV style format that can be easily imported into Python.

42

Chapter 3 Working With online Data

 Figure 3-3. The result of downloading an Excel style formatted report for January 2023 using all airports and viewing in Excel.

 The spreadsheet is 1644 rows long and contains various headers and labels.

Let’s open the file using Notepad to see what it is really like; see Figures 3-4 and 3-5. The first thing we notice is the file is large – almost 25,000 lines. Figure 3-4 shows the HTML code up to the header on line one of the Excel, while Figure 3-5 shows the raw text corresponding to the Excel spreadsheet entry for Lehigh Valley airport (ABE) Jan-23 (row 10).

We see the HTML encoding is worse than the simple example

presented earlier. The numeric count of 1036 is entered as “<td nowrap align=right>1,036</td>” and uses 26 characters to store a four-digit number. And note the number is recorded with a comma, that is, “1,036”

and not “1036”, which is a problem for CSV files where we expect data to be numeric if we are not careful. (There is a design issue here. Indeed, my CSV file will have a mix of numeric values, such as counts for various 43

Chapter 3 Working With online Data

categories, and strings for airport labels, but I at least want the count fields/cells to be as clear as possible, and so I want them to be purely numeric, so if I need to open a file with Notebook to visually inspect an entry or to cut a column out of a file with a UNIX command-line utility, I don’t want to have to do further data format manipulation.) Clearly, this file needs to be stripped of the formatting tags and cleaned.

We must also remember the ATADS is dynamic; it is updated monthly when new reports are added. There is no need to download the whole dataset each time. I suspect this is normally not an issue airport and airline managers care about since they only care for a small set of airports of interest.

 Figure 3-4. The plain text version of the downloaded file showing the entries up to the first major label

44

Chapter 3 Working With online Data

 Figure 3-5. The segment of the download file Excel used to create row 10 of Figure 3-3 . Cell elements are identified because they are wrapped in <td…> …</td> tags. Note the undesirable numeric commas (1,036

 vs. 1036) and the unwanted extra space in line three’s “ABE” entry.

Our data download challenge can now be seen to break down into the following tasks: accessing the data through manual or automated web page navigation (screen scraping); cleaning the data to remove HTML tags, headers, and embedded commas to create a CSV file; and managing the newly created CSV file through adding it to our CSV version of the whole ATADS data used by our application.

 ATADS Screen Scraping

It is a chore to have to manually navigate through the different buttons and pages necessary to configure the data download. If this only needs to be done rarely, it’s probably easier to simply do it. However, for consistency (i.e., to be sure the same parameter configurations are set each time) and convenience, it would be nice to be able to do this programmatically. In Appendix A, I include a Python code that demonstrates how this might be done. The code uses various libraries and assumes ChromeDriver as a prerequisite. The basic idea is this screen-scraping program will 45

Chapter 3 Working With online Data

automatically open a Chrome browser, go to the URL with the ATADS page, automatically click the various buttons and links, and finally submit the request. Eventually – depending on how large the data request was – the server will initiate a download to your computer. You will see buttons and checkboxes toggled in the browser window being controlled by the program.

To identify the various parameter names being configured, I used the Chrome browser’s Developer Tools. In order to do that, you need to go to the Chrome browser’s top-right corner with the three vertical dots, select

“More tools,” and then select “Developer tools” – please refer to Figure 3-6.

For the web page being viewed, the Developer Tools shows its underlying structure – all the HTML and JavaScript tables, divs, variables, and so on.

 Figure 3-6. Finding the Developer Tools in Chrome Developer Tools has a window that shows the page elements, and with a little bit of diligence, you can navigate down through the hierarchy, opening collapsed fields, until you find what you want. For example, to find the variable name for the starting month of the date range selection, run the cursor up and down the element list. As you do this, the web page window blocks will highlight. If a block is larger than the element you are interested in, go deeper into the element list (click the small black triangle) and repeat the process. As shown in Figure 3-7, we will 46

Chapter 3 Working With online Data

eventually find a row in the right panel’s hierarchy that exclusively selects the starting month field in the web panel. In there, we find the variable name of interest: “fm_r”. This process is repeated for all parameter names of interest. To set a value and click the element, commands like driver.find_element(By.XPATH,"//select[@name='fm_r']

/option[text()='Jan']").click()

get the job done. (While I hardwired the selection of January in this example, a more general and elegant solution is warranted.) With the demo code, all that needs to be done for a later data pull is to change the hardwired data values and rerun the program.

With a little extra effort, this could be run as a scripted crontab under Unix and fully automated if desired, if a virtual desktop was installed on the server. In any event, whether through manual navigation or through the use of screen scraping, we now have a downloaded Excel file that needs to be cleaned and turned into a CSV file.

 Figure 3-7. With the cursor highlighted line on the element list on the right, we see the starting month parameter is highlighted on the left, so we now know which element controls the parameter. From the selected element text on the right panel, we see this is controlled by the

 “fm_r” variable.

47

Chapter 3 Working With online Data

Screen scraping is tricky, but we have a working demo to use and refine and to learn from!

 Converting Excel to CSV with Data Cleanup

The downloaded ATADS data file is not in CSV format and has many unwanted elements such as HTML tags that need to be removed. (There is an additional fix that needs to be applied. Airports are assigned three-letter IDs, so Phoenix, for example, is “PHX.” However, in the Excel file, it appears as “PHX ” – four characters with an extra trailing space that must be removed.) Yes, Excel can save an xls file as a csv, but I chose to write a small utility for this purpose because it can take a long time for Excel to load a large file, and I also needed to apply the customized necessary cleanup fixes.

The code used to do this conversion is shown in the reference section and is called xls2csv.py. It’s a straightforward piece of code with a few details I’ll address for clarity. First off, note it follows an OOD structure, with a class (xls2csv) with a small number of variables and methods (functions); even in such a small program, the OOD effort was more than helpful.

I’ll note that I download ATADS data one year at a time – where I live it can be slow to download larger amounts and can trigger timeouts. I save the downloaded yearly files and rename them appropriately. For example, the downloaded data for 2014 might appear as a file named WEB-Report-12345.xls which I rename to atads2014.xls; these I save in a single directory called ATADS_XLS. If I want to update the data, I simply redownload the current year’s data, so the most recent months are included.

The xls2csv.py code reads in an xls file line by line. It skips uninteresting style and header rows, and when it determines it’s at the start of the data table, it processes each subsequent row in sequence.

48

Chapter 3 Working With online Data

(Remember, an Excel row is a multiline entry in the file – see Figure 3-5.)

Cell values are found between “<td>” and “</td>” tags and extracted.

Unwanted commas are removed using the Python re library pattern substitution capability where any instance of “ ,” is replaced with “”.

To fix the extra white space in the airport codes, I used a Python regular expression. Here is the code to remove white spaces using the re library in Python:

re.sub(r'([A-Z]{3})([])',r'\1', line0, count=1)

Regular expression (also called regex) is a powerful tool and in this example can be read as follows: when three uppercase characters are encountered [A-Z]{3} followed by a white space [], then strip the last character. Only do this once per line (count=1) so as not to corrupt other text fields. This works because the airport three-letter codes appear early in the row. As each cell in a row is processed, an output string is built and eventually written out.

Maintaining the XLS files does present a small challenge since most of the yearly files are static and only the current year is changing. By setting the year_list in xls2csv, you can choose which files to rebuild as necessary.

 Managing and Keeping Our Files Up to Date

After processing the XLS files, we now have a collection of CSV files – one for each year in my ATADS_XLS folder – which I store in my ATADS_CSV

folder; there are dozens of files since I like to explore long-term trends.

The CSV files are more compact than the XLS files, but there’s still more than ~300 MB of data. If our ultimate dashboard is to reside on a server to be used by a class of students, having the server loading ~300 MB for each student dashboard is not ideal. A case could be made to import the CSV

data into a MySQL server and to have the dashboard grab whatever data it needs, but then we’d need to have such a server running.

49

Chapter 3 Working With online Data

We have to make a design decision. To solve our dilemma, I decided to split the data by creating an APT_CSV folder with CSV files for each airport such as JFK.csv, PHX.csv, etc.; since there are about 500 airports, the whole ~300 MB timespan of data is less than 1 MB per airport. Since the dashboard developed in the following chapters assumes users are only exploring a few airports at a time, the application only needs to import few MBs rather than the full dataset – a much more reasonable burden.

The last challenge here is to build a collection of CSV files – one for each airport – from the collection of annual CSV files, and this brings us to another design choice. Do we want to be efficient and simply append the latest data to the existing airport CSV files or do a clean rebuild from scratch? The problem here is that when we download the annual ATADS

data, say, for 2020 June, the APT_CSV collection already has 2020’s April data. I decided it would be less confusing, albeit more inefficient, to simply rebuild the APT_CSV folder contents from the ATADS_CSV annual files, to sacrifice a little efficiency to maintain clarity and robustness.

Split_by_apt.py is a simple program that achieves these goals. For each year’s file in the ATADS_CSV folder, it creates a list of unique airport IDs.

For each airport, it appends that airport’s entries to the corresponding airport file in the APT_CSV folder. It uses the powerful Pandas library. The code reads a year’s CSV file into a master dataframe and uses the master dataframe’s second column to create a unique list of airports. For each airport, it creates a secondary dataframe for that airport and appends it to the airport's csv files in APT_CSV.

The APT_CSV folder is the final result of our data importation, cleanup, and conversion from Excel to CSV. It contains a CSV file for every airport in the ATADS dataset, and these files can now be used as input for our dashboards.

50

Chapter 3 Working With online Data

 Summary

In practice, the programmer might not receive data in a convenient format or have it be easily accessible. Since many datasets are now shared over the Internet, in this chapter we showed a solution that allowed us to download ATADS data – a solution that could be added to a unix chron file, so the process could be automated. For our data, we also encountered a problem in that it was not in CSV format, but rather in Excel. Because our files are so large, Excel could be very slow if we used it to do the conversion. In any case, we developed a Python code to do the format conversion into CSV, and this code could also be run as part of a unix chron job.

In the next chapter, we address some of the design issues our ATADS

dashboard will raise, such as which features we would like to include and how the application might be deployed so it can be accessed by remote users.

51

CHAPTER 4

Planning the

Dashboard Prototype

In this chapter, we go deeper into technical design issues and list the main tasks our project faces. We also take the opportunity to review linear equations, since we will use these for trend analysis and forecasting.

 Overview

For this project, we want to use a government dataset (the ATADS) that tracks daily airport operations counts (including many metrics such as how many flights were commercial or military or conducted under visual or instrument conditions) at about 500 US airports, and we wish to make the data accessible to end users. By accessible, I mean we would like the end users (airport and airline managers, aviation and business researchers, and specialists) to be able to quickly see what’s happening with various aspects of selected airport operations. We would like the end user to be able to select among airports and time ranges, to see some detailed metrics, and to be able to produce nice charts for reports and web content. Interactivity would be an essential component to support user explorations. Such access would allow users to compare airports, to identify trends, and to illuminate planning.

© Padraig Houlahan 2024

53

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_4

Chapter 4 planning the DashboarD prototype Interactivity entails programming that allows users to click menus and buttons and to select graphical regions for deeper study. This is a dynamic process and requires a reactive programming environment, such as the one that PLOTLY/DASH provides.

But we also need to solve the distribution problem – making our solution available to others, perhaps at remote parts of the Internet. This we will do by adapting our software into a services kind of environment that our Nginx web server will use to respond to remote requests.

Our goals therefore break down into the following elements: data import and manipulation, reactive code development, creation of Linux services, and the creation of a Unix web server such as Nginx. In addition, to support end users we will create a web portal that uses blogging software, so we have a centralized environment for feedback, support, and documentation – essential resources for our users.

Figure 4-1 shows the primary relationships between the project’s elements.

54

Chapter 4 planning the DashboarD prototype

 Figure 4-1. Our project overview shows the various elements we will bring together, so we can share our solution and provide a central resource and documentation area

Here is what Figure 4-1 is telling us: we will develop a program (for now, called “Our App”) that needs to be shared. Our Unix operating system will host critical servers we will need to configure. We will use the Nginx web server to respond to incoming requests from remote user web browsers. Our web portal is simply an HTML/CSS page with links to the WordPress server. For logins and document tracking, WordPress 55

Chapter 4 planning the DashboarD prototype uses a MySQL database server that we also need to configure. Flask and GUNICORN are two solutions that allow our systems to transact queries and responses from our application to meet end-user needs.

Since we are working with aviation data, an analogy will help us understand the Flask/GUNICORN role. In very rough terms, let’s consider our project to be an airport, and our goal is to move cargo and passengers in and out of this airport. This movement of goods and people is like servicing the requests and responses that our project’s application handles. Flask is like a small single-engine aircraft that can carry a small number of passengers. It can get the job done, but it’s fragile and not suitable for heavy weather conditions or large cargo surges. GUNICORN, on the other hand, is like a large commercial jet; it can handle many passengers and lots of cargo under less-than-ideal conditions. During development, we will use Flask to get our project working, but we will switch to GUNICORN when we are ready to put our project into production.

You might be wondering which of the blocks in Figure 4-1 is our actual server. The answer is, other than the row of remote user browsers, all of the blocks are servers we require in some sense, and that group as a whole is the system that services our ATADS users. In my case, I have them all on a single virtual platform hosting an Ubuntu operating system, but if the project needed to grow (perhaps to delegate control to colleagues), I could move some blocks to other virtual systems. Also, I will note there is an advantage in having all the blocks on one virtual server since that server could be replicated as many times as necessary to offer scalability and redundancy.

Now it’s time to take a slow deep breath. Yes, our project is complicated, but there is good news. Other than for our app, we are not breaking new ground here; most blocks/components have all been done before. And because of either benign enlightenment or sheer exasperation with customers tormenting their customer support teams, many of the server farm vendors that can host such services relatively inexpensively provide 56

Chapter 4 planning the DashboarD prototype remarkably detailed step-by-step instructions on how to do each piece.

We, therefore, can direct our creativity into building the core application and can use well-documented solutions for implementing all the Flask/

GUNICORN, MySQL, WordPress, and Nginx installation and configuration.

Yes, it will be fussy, but we will have great templates to guide us.

 Project Tasks

Our first dashboard should offer the user an interface with which they can readily explore the underlying data. This means we have to carefully find a balance between offering them too much information that confuses and clutters the presentation and having a display that’s too simplistic.

Since our data is essentially a collection of time series, it is natural that we would want to see data plotted against a time axis, with an ability to concentrate on different year intervals. There are multiple kinds of flight operations, and being able to select between them would also be desirable.

Being able to select multiple airports would be useful for studies interested in identifying and seeing how peer airports compare.

Being able to display raw data is not enough; we would also like to be able to declutter the data and see underlying trends which will require polynomial regressions and smoothing.

Our prototype will run on a personal computer, and once this is working, we can address issues concerning how to host it in a UNIX

environment for sharing. We can always add more features and panels and charts later, but, first, we need to display our ATADS data and build the tools needed to modify our chart based on user-selected options using PLOTLY, and this means we must now specify what exactly we would like our dashboard to do.

No matter what data is being used, it cannot be overstated how important it is for the user to have a sense of what it looks like, and being able to see it in graphical form is extremely important. Aviation researchers 57

Chapter 4 planning the DashboarD prototype and professionals need to compare airports – to identify peer airports, to see how similar ones are performing, to quickly identify features and patterns, and to quantify trends for forecasting discussions.

So, here’s a list of dashboard capabilities we will offer the end user: 1. An ability to select one or more airports for study.

2. A means to select a range of years, so either long-

term or short-term trends can be studied.

3. An ability to select one of the operational metrics

(ATADS data columns).

4. A graphical display of the data’s time series, so

patterns and trends can be identified.

5. An option to smooth data so longer-term features

are more easily seen and to reduce short-period

clutter.

6. If desired, graphs for different airports

should overlap each other to make it easier to

compare them.

7. A means to display basic trends (linear and

quadratic) and their associated equations.

8. An ability to explore and document periodicities

in the data since often very well-defined patterns,

weekly and seasonal, are present and it would be

useful to quantify them.

It should go without saying that we would like to achieve these goals with a dashboard that is convenient and pleasing to use, so it should be intuitive and attractive. You might not get the correct balance between elegance and usefulness, between simplicity and clutter, the first time, but that’s what prototyping is all about. Our goal is to get the first prototype version working which will serve as a baseline for later adjustments.

58

Chapter 4 planning the DashboarD prototype Trends and Forecasts

Having a database is pointless if we don’t know how to use it effectively.

While it is true that data is sometimes (often?) collected with no real underlying sense of what it might be used for, other than perhaps justifying the collection effort and demonstrating that something is being done, in general, data is collected to help illuminate a subject. Professionals will use data to help them better understand what is going on and to appreciate patterns and trends, and so data can help them anticipate the future.

One of the major goals of our dashboard is to help with the visualization process; the other is to help identify patterns and trends and facilitate forecasting.

For our purposes, since we are mainly concerned with time series data, we will simply say that a trend is a curve we distill from the data.

For us, we will only care about low-order polynomial curves (equations involving terms like t or t2) for a variety of reasons. First, polynomials are a straightforward type of math function that is user-friendly and can be applied to various sets of data. Unlike more complex functions like those found in trigonometry, polynomials are easy for regular users to understand and work with. Now, when it comes to the order of polynomials, higher-order ones can get confusing, especially for those who are not dedicated researchers. For our data, the most useful equations are the simple first-order, linear ones, which represent straight lines. Whether it’s a linear or higher-order equation, having a mathematical equation is valuable because it not only helps us measure current behaviors but also enables us to predict future ones. Linear (first order) and quadratic (second order) polynomials are equations of the form

y = a0 + a1 × t,

Eqn 4.1

and

y = a0 + a1 × t + a2 × t2

Eqn 4.2

59

Chapter 4 planning the DashboarD prototype respectively. The highest power is the order of the polynomial. In equations like these, the a0, a1, a2 are numbers called the coefficients.

Curve fitting (sometimes called “regression”) is a set of mathematical techniques applied to a dataset used to determine the coefficients that characterize the most reasonable curve that passes through the data. The distances between the data points and the curve are kept to a minimum.

This can involve complicated mathematics but has been encapsulated in the Python poly libraries we will use.

Note, when comparing the coefficients derived for a linear curve fit with those for the quadratic, there is absolutely no requirement the a0 and a1 coefficients will match or that you can simply add another term to an existing linear solution and get the quadratic. Once the coefficients are found (linear or quadratic), their associated curve is generated using either Equation 4.1 or Equation 4.2 as appropriate.

In Equation 5.1, the a1 coefficient is the slope (or trend or rate) of the line.

In Equation 5.2, the slope (from calculus) would be a1 + 2 × a2 × t – and changes with t!

In both equations, a0 is the intercept, the value when t is 0.

A benefit of curve fitting is that, mathematically, it can distill the essence of a large collection of points down to two or three numbers, the coefficients. It is beyond the scope of this book to delve deeper into this topic, but be extremely careful here. At the same time, you can always apply curve fitting algorithms and perhaps even get better fits using higher-order polynomials; their interpretation can be fraught with danger.

This was one of the main reasons I avoided adding higher polynomial orders as a dashboard option. Having said this, being intimately familiar with your data’s behavior and trends will make curve fitting interpretation more reasonable. This kind of familiarity is gained, in part, by exploring your data visually with tools like our dashboard!

60

Chapter 4 planning the DashboarD prototype Other Design Considerations

Now that we have an initial set of goals/tasks to aim for, we can begin to visualize how we might achieve them. Keeping it simple (to begin with), we at least want a chart, so trends can be studied, and we need a means to select various options, so there are graphical tasks and layout ones.

We have seen how we could benefit from using an OOD approach which would help keep the project organized, and we will take it one step further by splitting the code across multiple files. (Yes, a dedicated programmer might argue our project is small enough we could leave it as a single file – the first draft is only about 800 lines of code – but projects grow, and later versions are longer, and there is a point where it’s tiresome, visually overwhelming, and distracting when having to scroll or navigate around hundreds of lines of code.) Referring back to our example of a DASH

application in Figure 2-5, a natural division of work suggests itself – there is a section where layouts are handled, there is a section inside the update function where figures are created, and of course there is the whole DASH

solution itself. So, our prototype will use three files, one for the top level (similar to Figure 2-5) that oversees everything and one each supporting the layout and figure creation: atads.py, atads_figures.py, and atads_

layout.py.

atads_figures.py has a class (atads) that handles the data import and figure creation, while atads_layout.py has a single class (my_layout) that supports widgets like drop-down menus, checkboxes, and radio buttons and allows the end user to select airports and to configure other parameters. So, not only are we isolating code into separate files for convenience and to reduce clutter, but we are also encapsulating using Python classes, so project tasks are self-contained and more stable.

61

Chapter 4 planning the DashboarD prototype Summary

In this chapter, we described our project in greater detail, establishing a list of desirable features and capabilities, with a discussion on trends and polynomial equations, which empower users by providing concrete summaries of airport performance and which also facilitate comparing airports with one another.

In the next chapter, we will start building a simple dashboard, which will serve as the first prototype with a single chart and some widgets that will allow us to see how PLOTLY and DASH work. This will be where we explicitly build an OOD solution following our design goals. Once the first prototype is working, it is easier to add additional charts and features.

62

CHAPTER 5

Our First Dashboard

In this chapter, we develop a dashboard with working widgets, organized into three files to implement an OOD solution that will support future refinement and maintainability. We will use class constructs to group figure rendering and data management, layout, and reactive programming together. Core algorithms will be used to support regression/trend analysis and CSS code shown to allow the programmer better control chart and widget screen layout. The result will be a basic but fully functional dashboard.

Figure 5-1 shows us our initial dashboard showing data for three years near the pandemic. The dashboard consists of two main panels – a configuration side to select among airports, years, and display options (including whether to apply linear or quadratic curve fitting) and a panel showing the plotted data and other summaries. Unlike the example in Figure 2-5, where the slider appeared below the chart, this layout uses a CSS file which we will address later to arrange the panels side by side.

We have attempted to produce a dashboard that has highly configurable, useful (intuitive), and pleasing graphics. Because others might like to use the dashboard, a watermark is included, so an airport publishing web content could help ensure subsequent inquiries are directed back to them.

Pandemic effects are apparent, and we used smoothing (red curve).

A linear curve was fitted that tells us that over this interval, these daily operations increased by 122.3 annually. A gentle alternating color background helps delineate yearly intervals, and the mouseover shows the actual, smoothed, and curve-fitted counts for the day.

© Padraig Houlahan 2024

63

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_5

Chapter 5 Our First DashbOarD

 Figure 5-1. Our first dashboard shows daily Air Carrier traffic operations at Phoenix Sky Harbor airport. The user can select among a variety of options on the left to select the data used to create the chart.

We are essentially following the design we discussed in the introduction of Chapter 2 to DASH programming and design considerations of Chapter 4, and we have already demonstrated all of the techniques needed to produce the dashboard, so we will now go through this dashboard’s specifics by exploring its three core files – atads.py, atads_figures.py, and atads_layout.py – and the CSS file used to finesse the on-screen layout.

 The atads.py File

Our atads.py file (shown in Figure 5-2) is our prototype’s top-level file –

similar to the DASH example shown in Figure 2-6. Our prototype follows the same overall flow: a DASH app is created using app = dash.Dash(), then the layout defined with app.layout(), the callbacks set, and the app activated (app.run).

64

Chapter 5 Our First DashbOarD

We created two new classes. The first atads_layout() handles the widgets used by the user to specify airports, years, and graphing options, while the other atads_figures() handles the graphing and charting tasks.

This not only allows us to group our tasks functionally but also reduces clutter since the new classes can be kept in external files.

Since there are many configuration options, individual settings were grouped into the atads_layout.controls() method; this is where the dropdown menu, year selection, and plotting parameters that appear in the dashboard’s settings panel are configured. DASH constructs, such as html.Div, html.Label, and html.Br, are used to control the control panel layout and to provide labels for various parameter groups. Some of the controls need data stored in the my_figs object to create the pull-down menus, and these are passed as arguments to the my_layout.controls() method; even though the atads_layout class uses information from the atads_figures class, so little information is passed between them, it was simpler to do it this way instead of using Python inheritance, that is, basing one class on another.

The callback section is more complex because while we only have one output (the main chart), we have more user-selectable settings, and each needs its own callback Input() statement. The order of the Input() lines must match the order of the variables presented to the update_dashboard() function. In DASH, callback Input() and Output() statements map to the update’s command-line arguments and return value, respectively. Finally, update_dashboard() updates the data and the displayed chart if changes are made to the settings.

While our design has some limitations (e.g., it would be better to split the callbacks, so airport data was not refreshed whenever parameters were changed, and, perhaps, we should hide the change_settings() inside the layout class), our design is simple and easily modified. If we wanted to add additional parameter options, we can see we would only need to 65

Chapter 5 Our First DashbOarD

add an appropriate Input() for the callbacks, an appropriate argument to the update_dashboard(), and an entry to the atads_layout.controls() function.

 Figure 5-2. The atads.py file uses two new classes (atads_layout

 and atads_figures) to manage layout and charting. This division of labor allows this top-level code to be simpler since the extra classes are imported from external files. A key method for managing user inputs –

 my_layout.controls() – accepts critical data from the my_figs object through its function argument list.

66

Chapter 5 Our First DashbOarD

 The atads_layout Class

Our atads_layout.py file contains the atads_layout class definition. This class is needed to associate various widgets and the output chart to the callbacks, where each association is done by one of the class methods. The class methods are functions that return a DASH function; all the work is done by a single line of code in each method. To ensure the association is mapped correctly, each function sets an ID for its widget – used by a top-level callback.

Figures 5-3a and 5-3b show the atads_layout.py file’s contents. In Figure 5-3a, widgets for displaying the main chart and user-selectable options are shown. The dropdown_airports() method expects to receive a list of unique airports, while the dropdown_use_variable() expects a dictionary, where each member maps a user-friendly variable name to an internal variable.

67

Chapter 5 Our First DashbOarD

 Figure 5-3a. These methods from the atads_layout() class manage the user selection display and inputs for the drop-down menus and year-selection checkboxes.

In Figure 5-3b, the remaining methods control the radio button widgets used to specify whether the raw chart should be displayed and/or a smoothed version and/or a polynomial (linear or quadratic) fitted curve.

68

Chapter 5 Our First DashbOarD

Our atads_layout class demonstrates radio buttons, checkboxes, and pull-down menus and is intuitively extendible, and its methods serve as templates for adding more selectable parameters as the prototype dashboard evolves.

 Figure 5-3b. The radio buttons used by the prototype are also defined in the atads_layout class.

69

Chapter 5 Our First DashbOarD

 The atads_figures Class

The atads_figures class is the heart of our dashboard’s development effort; this is where we manipulate our data and build original algorithms tailored to our goals. Conditional on user selections, our atads_figures class handles how data is imported and adjusted, filtered, processed, and the desired graphical outputs created.

To understand how the atads_figures class functions, we will first review how its initialization works including managing data and variable names, then the update_maincart() method which controls how the main scatter plot is rendered, and then the remaining methods grouped by purpose, enhancing the chart’s appearance, adding line traces, and creating polynomial curve fits.

 Initialization

Importing and adjusting the data consists of inputting data from our APT_

CSV folder (see Chapter 3), where the CSV files for our airports of interest are read using the Pandas read_csv() function and saved as a dataframe self.df[]. But since the CSV data uses separate columns for years, months, and days, we also create a new column ydecimal where each row’s year, day, and month, converted into a decimal year format, are stored to facilitate plotting time series.

The class initialization breaks down into two main parts: variable name management and initialization of miscellaneous variables.

70

Chapter 5 Our First DashbOarD

 Variable Name Management

Before we can work with our data, we must define what names to assign our CSV data columns, and we need a dictionary to display more friendly variable names to the user instead of internally succinct ones, so, for example, in the variable selection drop-down menu, the user might select IFR (itin.) Air Carrier and that would be mapped to ifri_carrier.

We use self.names[] to set the initial column names and then self.

var_names[] and self.var_labels[] for building the variable selection’s menu name mapping dictionary (self.var_dict[]). The dictionary is created by self.make_var_dict(). (There is some redundancy here – born out of a desire to keep options open when working with other datasets.) Note that not all data columns were of interest, and some were excluded when making the dictionary. (See Figure 5-4.)

71

Chapter 5 Our First DashbOarD

 Figure 5-4. The atads_figures class initialization customizes the variable names used for the CSV data (self.names) and also defines the lists used for creating the self.var_dict used to map user-friendly (self.var_labels) and the more succinct forms (self.var_names) used internally.

72

Chapter 5 Our First DashbOarD

 Miscellaneous Variable Initialization

At the end of the __init__() function (see Figure 5-5), some useful variables are set, the variable name dictionary created, a list of unique airports built, and data for PHX (Phoenix Sky Harbor) read as a default.

 Figure 5-5. The last part of the atads_figures class initialization sets some general variables and builds the self.var_dict dictionary, builds a list of available airports, and reads in PHX as the default airport.

 Class Methods

The class methods, other than __init__(), naturally form into different groups based on their roles:

1. A set of utilities supporting data input and managing

the main internal data repository – the self.df

dataframe

2. The

update_mainchart() used to create the

graphical output

3. Utilities to draw line graphics

4. Utilities to support linear and quadratic polynomial

curve fitting

5. Utilities to enhance graphical output – titles,

watermarks, colors, etc.

73

Chapter 5 Our First DashbOarD

 I/O and Variable Name Utilities

(See Figure 5-6.)

make_var_dict() is used for building the variable name dictionary (self.var_dict) needed by the variable selection drop-down menu, so user-friendly menu items are mapped onto the more terse variables used by the code. The method uses the very useful zip() utility for creating a dictionary from two lists.

get_airport_list() reads the contents in self.apt_root_dir (“/APT_

CSV”). Since there is a CSV file for each airport, the contents are used to create a list of unique airports. (Note the use of the listdir, isfile, and join functions imported from the Python os libraries.)

get_airport_data() is used for importing data for our selected airport list. At the start, it empties the self.df dataframe using iloc[0:0]

and appends the output (self.df_new) from each read_apt() call to self.

df. read_apt() is run for each airport on the selected airport list. After the method runs, all required airport data is available in the self.df[]

dataframe for use throughout the rest of the application.

The read_apt() method reads one airport at a time into a dataframe.

In addition, a column is added to the dataframe for a new variable (ydecimal) which is the date expressed in decimal years. The method uses the Pandas csv library function read_csv() to load csv data into a dataframe. The dataframe is filtered using the isin() function to extract only entries for years listed.

74

Chapter 5 Our First DashbOarD

 Figure 5-6. These atads_ figures methods create the self.var_dict

 dictionary, build a list of available airports by inventorying the files in the APT_CSV folder, and read in all the requested airport in the apt_

 list. Each airport is read using the Pandas read_apt() method which also adds a new column where the date is expressed as a decimal year (ydecimal).

 The update_mainchart() Method

This is the main method used to create the graphical output. It relies on the curve fitting, line plotting, and chart enhancing utilities, as seen in Figure 5-7.

75

Chapter 5 Our First DashbOarD

This method’s arguments receive lists of airports and years and parameters that specify whether to include the raw curve, a smoothed version of the raw curve, or polynomial fits and which variable (dataframe column) to use. Note the data column being used is specified by the active_variable argument.

For each airport, its data is extracted from self.df into self.df_apt –

used by the utilities that construct the actual charts.

The if statements optionally include the various traces, via our add_airport_trace(), add_smooth_trace(), and add_poly_trace_and_

eqnstr() methods addressed later.

Note that show_poly can be either 0, 1, or 2; when 0, no curve fitting is done; when nonzero, either the linear or quadratic curve fitting is used.

To minimize clutter, curve fitting, and equation display will only be done for the first two airports (apt_count < 3).

After all airport curves have been added, chart enhancements such as borders, colors, watermarks, and titles are added and the x-axis range and mouseover activated.

76

Chapter 5 Our First DashbOarD

 Figure 5-7. The update_mainchart() method is used to construct the prototype’s chart from the user-specified parameters. Most of the

 atads_ figures’ other methods support this one method.

 Methods for Drawing Raw and Smoothed Data

There are two methods to support drawing the raw and smoothed data for the active_variable for a specified airport (see Figure 5-8a and an example using smoothing in Figure 5-8b). Both methods use the Plotly graphics object scatter() function previously encountered and add a new column to the dataframe (self.df[‘smth’]).

77

Chapter 5 Our First DashbOarD

add_airport_trace() adds the raw data to the chart and also sets the hovertemplate (mouseover) parameter information to the year-month-date and decimal year value which appears whenever the cursor is placed near a chart point.

add_smooth_trace() takes the smoothing number (i.e., the smoothing window size) and calculates the average value for the active variable, for each x-coordinate centered on the window. The x-coordinate is shifted by half a window width to correct an unwanted offset created from the rolling() function. By smoothing the data, short-term variations are suppressed, which visually emphasizes long-term patterns.

 Figure 5-8a. Methods for plotting the raw and smoothed versions of the active_variable data

78

Chapter 5 Our First DashbOarD

 Figure 5-8b. Applying a 30-day smoothing filter to the raw data for Phoenix (PHX) produces a curve (red) that nicely captures the seasonal changes. The raw data is shown as a blue curve.

 Methods to Enhance Chart Visual Appeal

These methods (see Figure 5-9) are similar to those introduced in Figure 2-2 and add borders, alternating background colors for each year, a watermark, and some titles. They are straightforward and self-explanatory applications of the PLOTLY libraries.

As previously noted, paper coordinates are used for the convenience of referring to the chart’s region as extending from 0 to 1 in each axis, so annotations, for example, can be positioned without regard to data values or data scaling.

The watermark used is a reference to a demo website (avopsinsight.

com) I created to test the software and for student use.

79

Chapter 5 Our First DashbOarD

 Figure 5-9. The class methods used to make our charts more visually appealing by adding watermarks, alternating year colors, titles, and a border

80

Chapter 5 Our First DashbOarD

 Methods to Add Polynomial Curve Fits

We don’t need to master the mathematics of curve fitting. We can import the poly library to do the curve fitting: poly.poly() finds coefficients, while poly.polyval() uses coefficients to return a list of y-values matching the fitted curve.

There are two method groups to support polynomial curve fitting. The first (see Figure 5-10) uses add_poly_trace_and_eqnstr(), which extracts the needed data from the self.df dataframe, based on year range, airport, active variable, and polynomial order. It then calls get_poly_coeffs() to return the polynomial coefficients using the poly.polyfit library.

Using the coefficients, the polynomial is drawn using draw_poly() which invokes the poly.polyfit() function to return a set of y-values so the fitted curve can be plotted and an equation string (self.eqn) constructed similar to equations 5.1 or 5.2 and added to the chart by the self.add_eqn_str() method.

The second group of methods supporting our curve fitting are simply routines that can convert the coefficients returned by the polynomial fitting process into equations like Figure 5-1 or 5-2, suitable for inclusion onto our charts. These are shown in Figure 5-11.

There are multiple challenges being met here. First, we need to augment the equations with airport names, so the strings are more user-friendly. Second, we want to keep the mathematical +/– symbols elegant with appropriate numbers of decimal places; and third, we make a mathematical transformation, so our equations are for time intervals after the start year – otherwise, they would mathematically refer to 0 A.D.!

get_apt_linear_equation_string() and get_apt_quadratic_equation_

string() are the methods used to create the displayed equation strings.

They are similar except the latter is a little more involved because it involves a quadratic term.

Both methods take the input coefficients c[] and convert them into new coefficients c00, c11, and perhaps c22 to work with intervals after the starting year.

81

Chapter 5 Our First DashbOarD

To understand what’s happening here, consider the linear equation form, and remember that c[1] is the slope of the line, and c[0] is the intercept – the value when t = 0.

Assume an airport in the year 2000 A.D. had 800 daily operations, and the growth rate for that year was an additional 10 operations on average.

This means the trend (slope) is c[1] = 10/yr. What is c[0]? c[0] must obey Equation 4.1, so if y = 800, and c[1] is 10, then 800 = c[0] + 10 × 2000, and so c[0] = 800 – 20000 = –19200.

 Figure 5-10. These methods use get_poly_coeffs() to get the coefficients needed by draw_poly() to add the curve fit polynomial to the chart and build and add the text equation strings to the chart.

82

Chapter 5 Our First DashbOarD

Let’s test this. How many operations were there in the year 2000? We expect y should be 800, t is 2000, c[1] is 10, and c[0] is –19200, so y = –19200 + 10 × 2000 = 800

which works! But this is a little awkward, since calculating y for 2003

requires calculating y = –19200 + 10 × 2003 and so on. We know it must be an additional 30 operations, three years after 2000, and so on; there must be an easier way.

If instead of using the time since 0 A.D. we used the time since 2000

A.D, our equation would be simpler: y = 800 + 10 × t, where t is now the years after 2000. It’s still a straight line; we are using new coefficients c00 =

800 and c11 = 10. For the linear model, the trend/slope/rate didn’t change, but the intercept did.

It’s a little more complicated for quadratics, but the point here is that new coefficients must, and can, be calculated from the originals (provided by the poly_fit routine), if we wish to refer to year_min instead of 0

A.D. for our time reference.

If all of this is a little confusing, just remember poly_fit() gives us coefficients (c[0], c[1], etc.) assuming we are measuring time from 0 A.D, but we are converting them to coefficients (c00, c11, etc.) that assume time is measured from the start of our time frame (year_min).

83

Chapter 5 Our First DashbOarD

 Figure 5-11. Methods to convert the coefficients into a text string showing an equation

The rest of the effort for these two methods is assembling the equation string with the proper sign and numeric formatting by creating a string version of each coefficient and a more elegant numeric sign with a space on both sides.

84

Chapter 5 Our First DashbOarD

 Fine-Tuning with CSS

While we can display our PLOTLY/DASH output in a web browser without using CSS, realistically, when working with more complicated dashboards, we can, and should, use CSS to control the widget and chart screen layout.

Just like any other form of coding, writing CSS can become quite a chore; however, there are some basic techniques that can be implemented which, with a relatively small amount of effort, will give you considerable control over your dashboard’s look and feel, and in keeping with our overall strategy, we are not trying to provide a comprehensive overview, but rather a concrete example to refer to.

Our goal here is to create a CSS file which PLOTLY will automatically read if it is at the same directory as our Python code, and we will use this file to control the layout (e.g., widget and chart sizes, positions, background colors, rounded corners). (Be careful here – other CSS files in embedded folders might also be detected and produce hard-to-track unwanted behaviors!) When we developed our atads_layout class, we used ids so callbacks could manage input and output flows, but we also included a className parameter in some of the html.Div() methods. CSS

can use className values to position elements on our display.

Look again at Figure 5-1 which shows our dashboard. Notice there are two panels in a side-by-side layout; the panels are not at the top of the window – there is a gap above and below; there are colors set for backgrounds, and there are rounded corners; the chart and widgets have some padding, so they are nicely presented and not bunched up against enclosing rectangles. This was all done using CSS.

CSS is extremely powerful and gives experts an ability to fine-tune web page layout, but nuanced layouts and appearance can require extremely arcane commands and an unwanted level of effort and distraction since most engineers and researchers care more about getting the dashboard’s contents to their end users than becoming web specialists. One solution is to use CSS grid displays which offer a reasonable approach to layout by 85

Chapter 5 Our First DashbOarD

allowing us to define a grid overlay consisting of rows and columns. The rows and columns allow us to define individual or rectangularly grouped cells, and these can be used to hold charts and widgets.

The cell groupings (which I will call panels) give flexibility and can hold widget collections, charts, etc., of different sizes, so we are not restricted to the size of an individual grid cell, and in addition, we can control the spacing of the grid’s rows and columns. Grids therefore allow us to add, and position, panels of different sizes (as long as they are rectangular) on our display.

Let’s now examine the CSS file used to create Figure 5-1’s display.

In our display, we have multiple rows, but only the second is used. The first row allows for a small logo and a banner to be added later. The second displays our parameter selection widgets and the main chart. There are (unused) rows for additional dashboard panels to be added later.

At the top of our CSS file, we have the CSS code for the app.layout assignment’s className=‘content’ statement in the atads.py file (see Figure 5-12). We specify we are using the grid layout, and we set a template for the rows and columns. There are six columns and are all equally wide, sharing the same fraction of the width. If I wanted one column to be twice as wide as any of the others, I would have specified 2fr for that column.

The grid row heights I specified explicitly – it was the easiest way to get started. The first row is 150px, the second is taller (480px), and so on. The remaining rows are placeholders for later development.

 Figure 5-12. Part I of the CSS file sets up the CSS grid display, the number of rows and columns, and also their relative sizes.

86

Chapter 5 Our First DashbOarD

The first row’s CSS is shown in Figure 5-13 – it is a placeholder for a banner to be installed later. We use the grid-row-start and grid-row-end (and similarly for columns) to define the screen display regions/panels assigned to the banner. The notation “.banner{ }” refers to a CSS class defined in our code, and the code for a CSS class can be used to set many parameters, such as font sizes, alignment, and colors for that class. In this case, the banner CSS code block is simply a placeholder for when we add a banner over our dashboard in the next chapter. Being unspecified in the atads.py code means the first row of the display is empty. The grid display layout allows you to build in elements as you develop your dashboard and maintain placeholders for later use.

 Figure 5-13. Part II of the CSS file controls the first row which has a placeholder for a logo on the left and a banner on the right. The allocated display space for each is determined by the row and column start and end parameters.

It is worth noting that there is flexibility in how code assigned to classes is applied. For example, “.class1 .class2 {}” would apply the code in the curly brackets to class1 and class2. On the other hand, “.class1.class2 {}”

would mean only apply the code when both class1 and class2 are present.

The second row’s CSS is shown in Figure 5-14. Notice the atads_layout class used parameter_selections and chart as className settings in html.Div() statements, and our CSS is now referring to them when building this row’s grid structure.

87

Chapter 5 Our First DashbOarD

 Figure 5-14. Part III of the CSS file is used to create the second row of our display grid. .chart{} refers to the chart class defined in an html.

 Div() statement in atads_layout.

For visual appeal, I have added a blue background to the panels, rounded corners, and a white 1px wide border.

 Summary

Our first draft of a dashboard has laid a foundation for enhancement since we have learned how to add panels to our dashboard. In the next chapter, we will build on these techniques to increase our dashboard’s utility.

88

CHAPTER 6

Dashboard

Enhancements

We have made considerable progress with our dashboard and learned how to create a reactive application that, being browser-friendly, could be accessed universally if we deploy it on a server. Before delving into the deployment in a server, a topic we will explore in the next chapter, we’ll first make some improvements to enhance the appearance and functionality. Because we have used Python classes to organize our code, it will be easy to add new components by making local changes. By this, I mean that changes (additions and modifications) can be made with a reasonable assurance that they will not break something elsewhere.

The enhancements we wish to make will be to improve the appearance of the dashboard by adding a banner, information panels, and additional charts. Some new charts will present histograms showing operational counts by month and by day of the week, so, for example, questions concerning the busiest month or day of the week can be answered.

We will also add a Discrete Fourier Transform (spectrum) chart – an advanced technique used by scientists and engineers to identify periodic patterns in data – because this kind of technique can be very powerful with time series data; it will also allow us to demonstrate how easy it is to add sophisticated methods to a well-designed dashboard.

© Padraig Houlahan 2024

89

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_6

Chapter 6 DashboarD enhanCements

Very simply, a spectrum is a list of values where each value indicates how much of a certain frequency is present. If, as an input, I had a perfect (sine) wave of frequency 10 and obtained its spectrum spanning frequencies 0, 1, 2, 3, … 100, then ignoring aliasing and other artifacts, this spectrum could be represented as a list of 101 entries, all being 0 except the 10th. In general, larger values in a spectrum indicate the degree to which frequencies are significant. For the record, frequency and period are reciprocals: a frequency of 1/10 corresponds to a period of 10. Frequencies are measured “per unit time,” such as “once per day.”

A little overkill perhaps for aviation data, but fascinating, nonetheless, as we shall see.

The final dashboard version we are building is shown in Figure 6-1.

It has eight panels: Row 1 is a banner; Row 2 has the parameter selection and main chart panels; Row 3 is a general informational, a monthly and a weekday, panel; and on Row 4, there are panels for information and for spectrum.

We have already seen how to build Row 2, and we will use the same strategies to add all the other panels. The biggest differences will be that panels involving charts will require their own highly customized update methods, but other than for the update methods, the needed changes will be simple additions based on our existing panel entries.

All enhancements (new panels) will require adding new methods and html.Div() entries to the atads_layout class since we need the html.

Div(className=) entries to create their panels with our CSS grid, and the CSS file will need code blocks to position and size them. The new elements will also need to be invoked from the app.layout() statement in atads.py.

However, the charts, being dynamic, will also require callback entries and their own update functions and methods in the atads_figures class.

Figure 6-2 shows the relevant part of the atads.py file, where we can see how its app.layout(), callbacks, and updates were added. Remember, static panels like the banner and instructions do not need update or callback entries.

90

Chapter 6 DashboarD enhanCements

 Figure 6-1. The ATADS analysis dashboard. The top row is the banner, the second we have already completed. The third row’s three panels are a general informational one followed by histograms showing monthly and day-of-week effects. The fourth row has brief information about the spectrum to the right, which in this case shows peaks that reveal weekly, semiweekly, and three times a week activity at Phoenix Sky Harbor. Pandemic effects are clearly shown in the main chart

91

Chapter 6 DashboarD enhanCements

 Figure 6-2. To add the new panels, new layout entries had to be added to the app.layout() function, new outputs to the callbacks, new updates to the update_dashboard() body, and new return values

 Adding the Banner and the

Instruction Panels

We can make our dashboard more attractive to the end user by adding a banner across the top and by adding simple instruction panels, one for the parameter selection panel and another briefly explaining spectra.

These are static elements and will not involve DASH callbacks, so are very similarly implemented.

92

Chapter 6 DashboarD enhanCements

To add a banner, we will add a new method to our atads_layout class called banner() which sets className=‘banner’ that is invoked in the CSS file as a .banner{} block.

To add the instruction panels, we use the same strategy: create new instructions() and spectrum_instructions() methods in atads_layout.py that use className values of the instructions and spectrum_instructions panels. These new classNames are then used in the CSS file by the

.instructions{} and .spectrum_instructions{} blocks.

The CSS file blocks for these static panels are shown in Figure 6-3.

93

Chapter 6 DashboarD enhanCements

 Figure 6-3. Using our CSS file’s grid, we can position the banner and instruction panels using the .banner{}, .instructions{}, and the

 .spectrum_instructions{} blocks.

94

Chapter 6 DashboarD enhanCements

Note, when you add new panels/elements to your dashboard, you might find the rendering doesn’t quite work right unless you modify CSS

grid column and row dimensions.

To actually add the banner and the instructions, their methods, my_

layout.banner(), my_layout.instructions(), and my_layout.spectrum_

instructions(), are added to the app.layout statement in the atads.py file (see Figure 6-4).

 Figure 6-4. The new methods added to the atads_layout class. Each uses a className setting that uses a corresponding class block in the CSS file. Both elements are static but can be easily modified in these definitions for later dashboard versions.

95

Chapter 6 DashboarD enhanCements

 Monthly and Weekday Histogram Panels

The monthly and weekday charts require very similar changes to the dashboard, but they will have an important difference: to better visualize day-of-week effects, the time series will be smoothed with a 21-day window to remove seasonal effects, and the smoothed version subtracted from the original, to flatten it, leaving the weekday effects (mostly). A close-up of the dashboard showing these charts is shown in Figure 6-5.

 Figure 6-5. The monthly and weekly histograms. Because the weekly is constructed by subtracting the local background in a 21-day moving window, it shows deviations from the background by day of the week.

Because our dashboard will now have multiple charts/figures, we will also need to modify some existing code such as the add_black_border() method, which was originally written to use self.fig_main. To make it available for other charts, we will modify it slightly, so we can pass a figure as a function argument.

The update_mchart() method added to the atads_figures class is shown in Figure 6-6. It is intentionally restricted to the most recent year selected (because I felt it might be confusing if users combined multiple 96

Chapter 6 DashboarD enhanCements

years since yearly trends can change substantially) and, like the main chart, adds a black border, titles, a watermark, and support for mouseover information. Unlike the main chart, it uses the graphics object go.Box() method to create the histogram.

 Figure 6-6. The update_mchart() method is used to build the monthly histogram chart

Notice how we changed the x-axis tickmarks to letters indicating the month by mapping the ticktext list to the numeric tickvals.

To create the weekday chart, we use a similar code but flatten the data, so seasonal changes do not affect the result. The method is called update_

wchart() and is shown in Figure 6-7. Again, the main difference is that a smoothed version of the data is subtracted from the original to produce a flattened dataset. As we did for the monthly chart, the x-axis labels are 97

Chapter 6 DashboarD enhanCements

converted from numeric to text using ticktext/tickvals. In doing this, the day-of-week counts are deviations from the longer-term trends and not absolutes.

 Figure 6-7. The update_wchart() method creates the day-of-week histogram. It flattens the data by subtracting a smoothed version of the local data from itself (df_diff) to remove seasonal effects To handle the new charts, two new methods were added to the atads_

layout class, defining the IDs needed by the callbacks and the className settings needed by the CSS; see Figure 6-8.

98

Chapter 6 DashboarD enhanCements

 Figure 6-8. Methods added to the atads_layout class define the IDs needed by the callbacks and the classNames needed by the CSS file With these in place, the atads.py file uses the app.layout statement to call the new layout methods and additional outputs added to its update_

dashboard() callbacks and return values list. These changes can be seen in the atads.py segment shown in Figure 6-9.

The final piece is to add entries to the CSS file to control the grid and sizing.

99

Chapter 6 DashboarD enhanCements

 Figure 6-9. The CSS file blocks setting the grid parameters to position the new charts

 The Spectrum Panel

A spectrum panel chart is shown in Figure 6-10. Placing the cursor near a peak shows the associated frequency and period. Here, there is a peak at a frequency of 0.144/day which is 1/7 days – equivalent to once per week. There are other obvious peaks at two and three times this frequency, corresponding to twice and three times per week. A proper explanation of spectra is beyond the scope of this work, but qualitatively, we can see how they can reveal specific frequencies and periods in time series data and allow us to compare and explore airports.

100

Chapter 6 DashboarD enhanCements

 Figure 6-10. The spectrum corresponding to a year of ATADS

 Itinerant PHX Air Carrier data (i_carrier)

Just as for the other panels, the spectrum chart needs an entry in atads_

layout() and in the CSS file, shown in Figures 6-11a and 6-11b, respectively.

 Figure 6-11a. The atads_layout class entry for the spectrum

 Figure 6-11b. The CSS block used for positioning the spectrum chart 101

Chapter 6 DashboarD enhanCements

In what follows, we show how our spectra are created by our update_

spectrum() method. We provide a solution that works, but the reasons why the scales are set, or why frequencies are calculated in certain ways, are not provided. However, readers with some awareness of Fourier Transforms (or Discrete Fourier Transforms) should be comfortable with the idea that libraries can be used to convert (transform) time series data into an inventory of constituent frequencies. Our role here is to show the specifics of how this was achieved for the ATADS data and then used to plot spectra.

The reader can copy and modify the algorithms for their own purposes.

Creating the actual spectrum uses many of the same strategies used for other charts where we essentially used an array of t[] and y[] data, where the t[] array was the dataframe’s “ydecimal” column used for the x-axis, and the y[] array was the extracted values, for example, df[active_

variable] used for the y-axis; DASH graphics objects were used to add the trace, add black borders, set the captions, etc.

For our spectrum, the x-axis is for frequencies, from zero up to some maximum determined by the input data’s time range and the number of days being studied. The y-axis is for amplitude, a measure of how significant a frequency’s contribution is. The general idea here is that, mathematically, we can consider a time series such as those shown in our dashboard’s main chart, as consisting of a combination of waves or frequencies. As a simple example, a pure wave with a fixed wavelength (and hence frequency) could be equally represented by a single frequency and an amplitude (ignoring issues such as phase shifts). Such a wave would have a simple spectrum – a spike at the wave’s frequency and zero everywhere else. The Discrete Fourier Transform is a mathematical tool to analyze such a sequence and provide a list of the amplitudes of each frequency present. To actually draw the spectrum, both the list of amplitudes and the list of corresponding frequencies are required.

Our atads_figures class’ update_spectrum() method does this for us as part of building the spectrum (see Figure 6-12). It generates a rescaled array (y_vals[]) passed to the Fast Fourier Transform (FFT) library, and 102

Chapter 6 DashboarD enhanCements

that outputs the amplitudes of the frequencies present (a_vals[]). The possible frequencies present are constrained by the number of input values and the day range and are calculated and stored in fq_list[]. The spectrum is simply a plot of the a_vals vs. the fq_vals.

There are only about a dozen lines of code specific to the problem of finding the amplitudes a_vals[] and frequencies fq_list[]. For each airport, its active_variable column is used to set the y_vals[] array from which the mean() value is subtracted. This is done to stop a spike appearing at zero frequency since a signal with zero frequency is a constant – related to the mean of the input data. By removing the mean value, we don’t end up with a chart where a large peak at the origin sets a scale that hides smaller details elsewhere. The fft() function gives us a list of initial amplitudes, but we later rescale them, so their values range from 0 to 1, so we can overlay charts from diverse airports without rescaling. By its nature, the fft() function returns amplitudes assuming a specific set of frequencies (fq_list[]), and these are calculated separately using the number of data points and time interval. To allow the cursor to display both frequency and period, an array of periods is also calculated (p_vals[]).

Note the fft() function only receives the y_vals[] array – it receives no information concerning the actual times; it simply assumes the y_vals[]

members are equally spaced in time. It is up to the programmer to build the corresponding frequency array, fq_vals[].

Once we have the a_vals[] and fq_list[] arrays, we can proceed with our usual chart construction.

Since our time units are for daily airport operations counts, the frequencies are in “per day” or “1/day” units. For every frequency f, there is a period p = 1/f, so something with a weekly period p = 7 would have a corresponding frequency f = 1/p = 1/7 = 0.144. Both the frequency and the period are provided by the cursor. If something occurs twice a week, the frequency would be twice as large (0.244) with half the period (3.5 days).

103

Chapter 6 DashboarD enhanCements

 Figure 6-12. The update_spectrum() method uses NUMPY’s fft.fft()

 to create a list of frequency amplitudes (a_vals[]). Various scaling parameters and arrays are used to create the frequency list (fq_list[]) and the corresponding list of periodicities (p_vals[]). The spectrum is a plot of the a_vals vs. the fq_vals.

104

Chapter 6 DashboarD enhanCements

 Quantifying Weekly and Seasonal Effects

In this section, we address an interesting issue: Is there a way to quantify both the short-term (weekly) and long-term (seasonal/annual) variations often seen in our data? The challenge here is to figure out how to separate them so they can be estimated independently. As an example, we present a solution employing smoothing filters to mitigate smaller-scale variations in a data vector (specifically, a column in a dataframe). The outcome is a smoothed data vector that can be subtracted from the original, leaving behind a vector solely comprised of short-term fluctuations. This refined vector allows for the calculation of standard deviation, effectively documenting the scale of these fluctuations. On the other hand, choosing a sufficiently long smoothing filter window naturally results in a vector containing only long-term fluctuations, which can also be summarized with the standard deviation function.

In what follows, the discussion might be a little arcane for the nonspecialist, but it does demonstrate a very useful technique applicable to many datasets.

When viewing airport operations as a time series, we should be very aware of the fact that the data is not random in a Gaussian random noise sense and is often unbalanced or skewed. As an example, if we look at the main (time series) chart in Figure 6-1, there is an obvious asymmetry where the data shows noticeable drops weekly – there are no weekly spikes. There are also patterns relating to weekly cycles which are nonrandom, and there are seasonal trends, where there is often less traffic in the hotter months than in the cooler. We would like to be able to characterize these variations to better document trends and compare airports with another airport.

The quantity usually used in statistics to measure the spread of a set of values is the standard deviation, σ, where we might say a random variable with mean 20, and σ = 2, would be summarized with a statement like x = 20 +/– 2. This statement implies 99% of the actual values lie within 105

Chapter 6 DashboarD enhanCements

+/– 3σ of the mean and lie in the range 20–6 to 20+6 or between 14 and 26. Conversely, if we wanted to describe our data in terms of a signal or pattern’s amplitude, if the signal’s standard deviation was σ, the signal amplitude would be 3σ.

(Strictly speaking, it is a little problematic to interpret σ for our data in a purely statistical sense, because our data, being skewed, influenced by weekly cycles of human activity, and also seasonal weather cycles, does not normally present itself as a single-valued quantity with normal randomness. We could calculate σ for our data column, but we clearly would be losing information concerning the weekly and seasonal scales.) Since our data appears to consist of two kinds of variations (signals), weekly and seasonal, we would like to isolate and measure them. The question now is this: How can we isolate the signals so that we can estimate their significance using either their standard deviations or amplitudes? (Note, this is not the same question as was addressed by our monthly and weekly histograms – those charts were based on averages taken over the year. To understand this, let’s say a week’s activity in January was [800, 850, 865, 865, 865, 865, 865], but in the heat of the summer, declined to [700, 750, 765, 765, 765, 765, 765]. Our weekly histogram would say the average activity was lowest for Mondays, around 775, but notice that in each week, the weekly variations range between 0 and 65. The variations, in January, are like a signal superimposed over an 800 seasonal background and similarly for the summer.)

Our solution will use smoothing filters (algorithms), which create new vectors from an original based on a rule that smears out the data over a specified timescale (the filter’s “window”). As an example, if the filter window spans over five elements, then the value at position 87 in the new vector might be the average of elements located at positions 85, 86, 87, 88, and 89 in the original, that is, over the five elements centered on position 87 in the raw data. In this fashion, we can fill in all the elements in the new vector based on the old values. If we compute an average over five 106

Chapter 6 DashboarD enhanCements

elements, variations will be smoothed out for scales shorter than five. In general, if we apply a smoothing filter of window size X, details with scales smaller than X are suppressed.

When applying a window-based filter, there will be boundary issues.

For example, suppose we had a data column with 15 entries using a period 5 repeating pattern of the form

[101, 102, 103, 104, 105, 101, 102, 103, 104, 105, 101, 102, 103, 104, 105]

This pattern represents a period 5 sawtooth (triangular) wave ranging from 1 to 5, with a constant offset of 100.

If we apply a smoothing filter with a window of 5, then our smoothed data would look like

[NA, NA, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, NA, NA]

where NA indicates Not Available. The NAs occur near the boundaries where the filter window wants to extend past the actual data. Because a filter window of size 5 always contains a combination of (101, 102, 103, 104, 105), the average will always be 103. In this example, the window size perfectly suppressed the original data’s perfect sawtooth pattern. Also note that the first non-NA entry is at position 3, and we need to apply an offset of half the window size to align the smoothed data if there are other dataframe columns. [You can test this easily by commenting out the line in Figure 5-8 that uses the shift() function. If you do this, you will see the smoothed curves are offset from raw data.] If we now subtract our smoothed data from the original, we extract the triangular wave:

[NA, NA, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, NA, NA]

In this form, we see a sawtooth of mean 0 and amplitude 2. Our smoothed curve, subtracted from the original, allowed us to isolate signals with periods smaller than the filter window size.

107

Chapter 6 DashboarD enhanCements

As previously noted, very often, our data appears to consist of two patterns, one a weekly cycle and one showing long-term, seasonal changes that we might model as the sum of two vectors: Y[] = YW[] + YS[]. If we apply a 31-day smoothing filter to Y(), we would suppress the weekly variation, resulting in a vector S31[], a data sequence providing us with an estimate of the underlying YS similar to the smoothed curve seen in Figure 5-8. If we now use 9-day smoothing to suppress weekly effects, resulting in S09, then subtracting S09 from Y would allow us to isolate the weekly variations: YW = Y – S09. As an example, in Figure 6-13 we show how a 30-day filter was used to create the smoothed version of the raw data. The red curve would be S30 (30-day smoothed) vector, the blue one, and the Y vector. With 30-day smoothing, we have a curve that serves to provide a good estimate of long-term trends in the data. For this airport (PHX), there are very distinct weekly (short-term) variations, linked to airline activity which is generally more scheduled than small aircraft operations.

 Figure 6-13. Here, the red curve represents the results of applying a 30-day smoothing filter to the raw (blue) data; short-term information has been lost in creating it. However, subtracting the red from the blue would flatten the blue curve leaving short-term fluctuations.

108

Chapter 6 DashboarD enhanCements

To summarize, we are viewing our data as having two main

components: a changing seasonal background (red) in Figure 6-13 with weekly variations superimposed. To isolate weekly activity signals, subtract the 9-day smoothed data from the raw data. To isolate seasonal (monthly) variations, use 31-day smoothed data.

Now that we can isolate the short- and long-term signals into dataframe columns, we would like to characterize their significance.

We will calculate their standard deviations and remember the signal amplitude is simply three times the standard deviation.

A word of caution: In our charts, we will refer to these two standard deviations calculated for the weekly and seasonal scales as stdv09 and stdv31, respectively; we are deliberately avoiding the temptation to label them in the chart subtitles as weekly and monthly, for two reasons. First, we made arbitrary choices of 9 and 31 for our smoothing filter windows, and we wish to be explicit and force the user to remember our filter window sizes; another researcher might prefer to use 7 and 28 perhaps.

Our choices were intended to avoid introducing artifacts into our analysis by using window sizes which are multiples of a week – a common fundamental resonance in the data. Second, while in this work, short-term, weekly, and stdv09 all refer to the same scales, in using stdv09 in the charts, my results will not be confused with a researcher’s who decided to use 11 instead of 9 for the window scaling and who should then report their customized dashboard version’s results using stdv11, etc.

But didn’t we say that σ is used to measure things like Gaussian noise, and if so, why are we using it here? The answer is we are using σ because it is a known mathematical quantity and will measure the scale of variations to whatever data sequence we apply it to. The resulting number might have a slightly ambiguous statistical interpretation because of skewed data, but we are not making a statistical argument; we are simply using the standard deviation as a tool to estimate activity scales, so we can track trends and compare airports.

109

Chapter 6 DashboarD enhanCements

Now that we have a strategy for isolating and estimating the influence of weekly and seasonal patterns in our data, we would like to add this capability to our dashboard; we will need to modify the atads.py file to track a radio button toggle set to show our new scale estimates, stdv09 and stdv31; modify our atads_figures.py file where charts are created; and add a radio button radio_show_scales() item to atads_layout.py.

The elements needed to add this capability to our dashboard’s atads.

py file are shown in Figure 6-14, while the atads_figure.py changes are shown in Figure 6-15 and atads_layout.py in Figure 6-16.

 Figure 6-14. The atads.py file modifications needed to support showing the chart scales. We added an entry to support a new radio button to the parameter selection panel, a new callback Input() entry, and the show_scales parameter to the end of the update functions.

110

Chapter 6 DashboarD enhanCements

In Figure 6-15, the method used to extract the scales is get_scales(), which for filter windows 9 and 31 adds two columns to the dataframe holding the smoothed S09 and S31 data. Then the stdv09 estimate for the short-term signals is calculated from the original data minus S09, while stdv31 is calculated from S31. get_scales() returns a string to be displayed as a chart subtitle.

 Figure 6-15. To calculate the short-term scale, stdv10, the standard deviation is calculated using the difference between the raw data (df_

 fac[active_variable]) and its 9-day smoothed version s09. stdev31 is simply based on the 31-day smoothed version, s31.

Finally, the atads_layout.py file has a new method to support the show scales radio button (see Figure 6-16).

111

Chapter 6 DashboarD enhanCements

 Figure 6-16. To support the new radio button, a new method radio_

 show_scales() is added to the atads_layout.py file.

With these changes, row 2 of our dashboard looks like that in Figure 6-17 where ANC and JFK are compared with the Show Scales feature active for the year 2019.

 Figure 6-17. ANC and JFK Air Carrier traffic for the year 2019 with the Show Scales button active

Even casual observation reveals that ANC’s short-term or weekly variations are more noticeable than those of JFK, aligning with their respective standard deviation scales of 99 and 75. However, over the year, JFK is much flatter than ANC; with STDV31 scales of 52 and 222, respectively, a factor of four!

112

Chapter 6 DashboarD enhanCements

 The Final ATADS Dashboard

With these changes, we now have a fully functional dashboard that allows us to compare multiple airports for different kinds of operations; explore data trends and find mathematical equations; and we can see monthly and weekday behaviors. The charts respond to mouseovers and have the built-in DASH capability to allow them to be selected, zoomed, and downloaded. We have also demonstrated how we can add new charts and panels if we wish, so our solution is scalable.

Is there such a thing as a completed dashboard project? I think the answer is both yes and no. If the dashboard fulfills its initial objectives, then yes; however, end users will almost certainly envision new features they would like to see implemented, so a successful dashboard will likely evolve.

In our case, there is still much that could be done. For example, we could consider splitting our atads_figures class into subclasses, and there are other kinds of charts we might like to add based on region and state.

I elected to show multiple charts on the dashboard because there have been times when I noted a curious aspect in passing. As an example, while testing code I noticed some airports have significantly less day-of-week variation compared to others (i.e., PHX vs. JFK) that I might not have noticed if only the time series was displayed. However, having a single chart would be a possibility and could be implemented by having a set of radio buttons selecting different chart types and then using an if condition to select the one to be returned by the main callback.

Another improvement might be to use airport long names for pull-down menus instead of the three-letter versions. This would require creating additional lists and dictionaries similar to those done for the variable names. It might also be useful to add a feature where a chart’s data could be displayed as a table and downloaded.

113

Chapter 6 DashboarD enhanCements

(You might have wondered about our CSS entries having redundancy such as the entries that create the rounded corners on our panels (border-radius: 10px) appearing in multiple elements because we simply copied and modified some blocks to create others. Should these not be cleaned up? Could we not put common elements into a block that is universally accessible? Maybe. There is no guarantee different browsers will interpret your CSS code the way you wish; in my experience, CSS is not as consistently implemented as a programming code like Python, and for small projects, redundancy gives stability and control. With a larger project, managed by a team, a member could delve into CSS nuances to organize the CSS, but for us, we will accept a little redundancy, so we can maintain a consistent working style and stay focused on more interesting issues.)

So, a project such as this will naturally suggest improvements with use and familiarity. With careful planning, it can avoid becoming ponderous if functionality is managed with a good divide-and-conquer design – using tabs on your browser display opens many possibilities for showing the end user smaller facets of a large project. Changes and improvements keep the dashboard relevant, and if well designed, these changes should be easy to make and give the developer a well-deserved sense of achievement.

 Summary

In this chapter, we finished the atads dashboard by adding histograms to track seasonal and weekly effects and a spectrum chart. For aviation data, the spectrum is a novel or fun feature, but the underlying capability is very powerful if applied to other datasets.

We will next tackle the problem of how to deploy our dashboard, since we need a way for colleagues to access our work. We will use Unix server technology, which is well suited to this task and widely used by academic and industry researchers.

114

CHAPTER 7

Hosting an

Application on a

UNIX Server

Now that you have a working dashboard on your personal computer/

laptop, the next challenge is to make it available to your colleagues, and we will explore how this can be done using an Ubuntu (UNIX)-based server.

In what follows, we will assume you will refer to some of the open source tutorials on the Internet which offer very detailed instructions on how to do most of what we need; the instructions can change if there are significant operating system changes, so be sure to use the appropriate versions.

We will need to do the following:

•

Set up a Python virtual environment in which our

software will be stored.

•

Test the software with FLASK and uWSGI.

•

Configure GUNICORN.

•

Install NGINX.

•

Create the virtual hosts in system configuration.

•

Add a new service to the operating system.

•

Secure our server with Fail2ban.

© Padraig Houlahan 2024

115

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_7

Chapter 7 hosting an appliCation on a UniX server By creating a virtual environment, we can isolate our code from other software and configurations on our server. We could create separate virtual environments for different projects, and changes done in one virtual environment will not interfere with others.

But what about FLASK, WSGI, GUNICORN, and NGINX? What are they and why do we need them? With these, we are really entering the world of servers, and the terminology can be confusing, so let’s clarify what these are.

WSGI (Web Server Gateway Interface) is a specification, a way of doing things, that allows web servers like APACHE and NGINX to work with Python applications; NGINX cannot talk directly to a Python application.

FLASK is a web framework, a WSGI application; it is not a server!

FLASK has some limitations; being single-threaded, it cannot handle multiple users.

GUNICORN is a WSGI server. It can manage multiple worker processes to service interactions with your FLASK application. Being very efficient, it is well suited to this role, but it is not well suited for a public-facing server.

uWSGI is (very confusingly named!) a WSGI server, as is GUNICORN.

NGINX is a web server that can handle multiple clients, but it cannot communicate directly with a Python application. It can serve static pages but will send requests for dynamic pages to GUNICORN (our WSGI server of choice), which will translate the requests to WSGI to be used by FLASK.

In the world of servers, NGINX and GUNICORN are a very powerful combination.

We've established a chain of components connecting our Python application to the external-facing NGINX web server. Now, let's delve into the configurations of these different components.

We will build a simple Hello World web application to demonstrate the various steps. While many of the online recipes for doing something like this are terrific, when first learning, they can be confusing for many reasons.

First, they often use app.py for the application, invoke the app as a flask instance inside app.py, and then pass app:app as a function parameter –

that’s a lot of apps! Second, when learning from examples, some recipes 116

Chapter 7 hosting an appliCation on a UniX server

will use app.run(), and others app.run(host=‘0.0.0.0’) in their app.py file with very different consequences we shall demonstrate. Third, some demonstrations use a wsgi.py file that some servers relate to, but it’s not needed in other modes of running our app, and fourth, the wsgi.py file is very similar to our hello.py file – a very confusing redundancy.

 Creating the Python Environment

We want our project to be isolated, and therefore we will set up a virtual environment to contain it. Virtual environments are mechanisms that allow us to isolate projects from each other and can hold their versions of libraries. We will use the Python venv package which must first be installed along with some other useful packages in the usual fashion; then we will create a virtual environment for our Hello World project named hwenv, and finally we will activate it with the source command (see Figure 7-1a). When the virtual environment is active, our prompt will usually have something like (hwenv) embedded in it to remind us of which environment is active. deactivate is a command used to exit from a virtual environment. Note that the new environment will be a folder with the name hwenv, and we will create our application files within that directory.

 Figure 7-1a. Installing the venv package, creating our environment (hwenv) for our project, activating the environment, and installing other packages (wheel, flask, and gunicorn) we will use later; wheel

 is a package that helps ensure you can install software in your virtual environment.

117

Chapter 7 hosting an appliCation on a UniX server

The folder’s contents can be seen using the UNIX tree utility (configured here to show three levels deep): tree -L 3 hwenv, the output of which is shown in Figure 7-1b where we can see local copies of various installed applications have been kept for our use. Also, if you explore the activate script, you will see it resets our home directory and search path which is how it really creates a private environment for the project and prevents us from accidentally loading other software versions residing on the server.

 Figure 7-1b. The output of the tree command after being applied to the hwenv folder shows how our Python environment keeps local copies of critical software. Running the activate command ensures only these copies will be used.

118

Chapter 7 hosting an appliCation on a UniX server

 Running a Flask Application

In the hwenv directory, create a file named hello.py (see Figure 7-2). In hello.py, we import the flask library and create an app – an instance of Flask. We use a decorator to set the path “/” and add a simple function to display a string “Hello World!” and a mechanism to run the app instance.

 Figure 7-2. Our flask application: hello.py

It’s a Python application, so let’s test it (see Figure 7-3).

 Figure 7-3. Running the first version of hello.py using Python It seems to work, but there is a catch that can be very annoying if not understood. Notice how the output suggests we should be able to see output at port 5000. But this is for the localhost 127.0.0.1. If you are running the application on an external machine instead of localhost, then you need to use the IP address of the external machine.

To fix this, and to turn on debugging while we’re at it, change app.

run() to app.run(debug=True, host=’0.0.0.0’), which allows for all IPs (0.0.0.0), and rerun (see Figure 7-4).

119

Chapter 7 hosting an appliCation on a UniX server

 Figure 7-4. Running the application with app.run(debug=True,

 host=‘0.0.0.0’) specified. Notice how both the localhost 127.0.0.1 and our public-facing IP use port 5000.

Our web page can now be seen (see Figure 7-5).

 Figure 7-5. The hello.py output can now be seen from remote sites.

(If you encounter problems, make sure port 5000 is not being used by another project, and if not open, do “sudo ufw allow 5000” to open it through the firewall.)

We have seen how Python can use flask to send information to port 5000. What about flask itself? In Figure 7-6, I invoke flask and tell it to find the app instantiation in hello.py (--app hello), set the host parameter to work with all IPs (--host=0.0.0.0), and change the port number (--

port=5001).

120

Chapter 7 hosting an appliCation on a UniX server

 Figure 7-6. Using flask to run the hello.py application, sharing it universally, and setting the port number to 5001

If we go to port 5001, we will see the same output as in Figure 7-5.

So, we see that FLASK can also run a Python program and send the output to a UNIX port.

 Using uWSGI

uWSGI is a WSGI server we can use to serve our Python application. Use

“pip install uwsgi” to install it.

We can create a configuration file (wsgi.py) for uWSGI to find relevant information about our project (see Figure 7-7).

 Figure 7-7. The wsgi.py file is the project’s WSGI entry point. It holds all the information uWSGI needs, in this case to use the instance of app found in hello.py.

This file simply says to use the app instance found in the hello.py file.

When calling uwsgi, the entry point is passed in as a parameter wsgi:app.

This is equivalent to “from wsgi.py import app”. We will select HTTP as the communication protocol and keep 5000 as our port. Note, just as for our flask application’s parameters, the 0.0.0.0 is not enclosed in single quotes.

The command and some of the screen output are shown in Figure 7-8.

121

Chapter 7 hosting an appliCation on a UniX server

 Figure 7-8. The result of running uwsgi where the HTTP protocol is specified. The entry point argument (-w wsgi:app) could be read as

 “from wsgi.py import app”.

While the uwsgi command is running, our web browser will again see

“Hello World!” at port 5000 of the server.

 Using GUNICORN

We have shown how our app can be run by python, flask, and uwsgi. Let’s see how to run it using gunicorn. First, make sure gunicorn is installed, and it can be run as shown in Figure 7-9.

 Figure 7-9. The terminal output from executing the gunicorn

 command. The command successfully serves port 5000.

122

Chapter 7 hosting an appliCation on a UniX server The command line should be very intuitive to us now; gunicorn is asked to bind to port 5000 of all IPs and to work with the app instance referred in wsgi.py.

Note, while it is nice to use a wsgi.py entry point file, it should come as no surprise that the gunicorn command in Figure 7-9 also works if hello:app is used instead of wsgi:app.

 Summary

We have come a long way with this chapter. We have taken our dashboard from our laptop and have added it to a Unix environment, which means it can now be shared and is in an environment that is stable and independent of the developer and hence is better placed to support team projects.

We still need to add other capabilities, such as to make the dashboard a unix service, so, for example, it will automatically restart when the server reboots, and to build support for it using a powerful web server such as Nginx. And there are issues of security – how to protect your server from malevolent actors. These issues will be addressed in the next chapter.

123

CHAPTER 8

Deploying Your

Project As a UNIX

Service

Developing and running an application in a local machine and serving the application as a service on a server present an interesting challenge.

At this point, we can run our application, and colleagues can access our dashboard remotely. But we should harden our design. Wouldn’t it be nice if the software started automatically in the event of a server reboot?

Without us having to log in and start the virtual environment each time?

At the same time, there might be many other projects and static web pages that need to be served, so you will likely have to either use an existing web server such as NGINX or APACHE or install them yourself.

Note that much of what we do in this chapter requires UNIX admin (sudo) privileges since we are working at levels above the normal users.

We have used no web servers until now – our gunicorn or flask or uwsgi applications simply provided the data to port 5000, and your web browser did the rest – it used that data to render the web page. To better manage our outward-faced services, we will use NGINX.

© Padraig Houlahan 2024

125

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_8

Chapter 8 Deploying your projeCt as a uniX serviCe NGINX is a powerful and efficient web server and, when placed before GUNICORN, is called a “reverse proxy.” It is easily installed using “sudo apt install nginx.” You can build out your server’s web presence by adding pages to the /var/www directory, so remote visitors can find information and links to your project.

NGINX will be a service offered by our server. Services are applications that are usually started automatically and are available whenever the server is rebooted that handle important server functions – anything from handling DNS requests to file management to user logins. They are usually multi-threaded – meaning they can handle multiple simultaneous requests. In going from the user to multiuser world, we move from applications to services.

When standard packages like NGINX or APACHE are installed, the installation process will configure all that is needed for them to act as services. In our case, we must build the service configurations for customized projects like ours.

Once a service is configured, it can be managed using the systemctl command which has the structure:

sudo systemctl action servicename

where we are using sudo to gain admin privileges.

There are five kinds of actions we most care about: start/stop for starting the service; enable/disable to cause it to start automatically on reboot; and status, which tells us about the service, whether it is running or enabled, and more.

In the rest of this chapter, we will first go through the processes of creating a service for our hello.py app and show how to share it with NGINX, before we show how to similarly process our atads project. The reason we are taking this approach is our atads project uses DASH and will necessitate some customizations not required by our non-DASH hello.py application.

126

Chapter 8 Deploying your projeCt as a uniX serviCe

 Creating a Hello World System Service

An Ubuntu service can be created by adding a configuration file to the

/etc/systemd/system directory. We will add a file called hwapp.service to support our hello-world app (hwapp) – see Figure 8-1.

 Figure 8-1. The hwapp.service file which allows hwapp to act as a service - in this case uses the virtual environment in my home directory (pjh)

The service configuration file contents are laid out in blocks.

In the [Unit] block, a description is provided and also a directive to wait until networking has first been established.

In the [Service] block, user and group memberships are set, along with information such as what directory to use. Essentially, the gunicorn command is used to start the hwapp.py application in our hwapp environment’s directory. For now, we are using it to start services on port 5000 for all IPs, but because we will want to run the app as a Unix socket later, I include the Unix socket form as a comment for later.

Finally, the [Install] block indicates the Unix server needs to be in a multiuser state.

We can test our service with sudo systemctl start hwapp.service and check the results using sudo systemctl status hwapp – see Figure 8-2.

127

Chapter 8 Deploying your projeCt as a uniX serviCe

 Figure 8-2. Our hwapp service status

If we use our web browser and go to port 5000, we will see our familiar

“Hello World!” greeting.

From the status, a system administrator could see the hwapp service is active, is a gunicorn-served application that has not yet been enabled, has three worker threads, is located in the /home/pjh/hwenv directory, and is available to all IPs at port 5000.

 Using NGINX to Share Your Hello World App

We can now have NGINX manage all requests by adding a file to the /etc/

nginx/sites-available directory.

But first, we must consider our current configuration where our gunicorn command produces output bound to port 5000 – it could block, or be blocked by, another service trying to use that port. The way around this kind of conflict is to have nginx and gunicorn communicate with socket files created in the application’s directory.

Using (uncommenting) the ExecStart line in Figure 8-1 for binding to a unix socket, and commenting out the port binding one we were using, now produces a different output after restarting the hwapp service and checking its status (see Figure 8-3). Now we see our service is bound to unix:app.sock and is also listening there.

128

Chapter 8 Deploying your projeCt as a uniX serviCe

 Figure 8-3. Checking the status of our hwapp. We have multiple workers active, and the service is using a unix socket to communicate with nginx

If we visit the server’s web page at http://A.B.C.D, we will not find the

“Hello World!” output, because we have to update nginx to handle the unix socket traffic. This is easily done in a small number of steps: First, as root, go to /etc/nginx/sites-available.

Second, create a file for your app called hwapp containing the block shown in Figure 8-4.

 Figure 8-4. A basic NGINX server block that passes requests to http://

 A.B.C.D t o our hwapp service socket This tells nginx to send traffic coming into the “/” directory over to our unix socket.

129

Chapter 8 Deploying your projeCt as a uniX serviCe

Third, create a link to the hwapp file in the sites-enabled directory to make it available:

ln -s /et/nginx/sites-available/hwapp /etc/nginx/

sites-enabled

Fourth, restart nginx.

Your hwapp should now show your “Hello World!” message.

(If you encounter issues, check the user and group in the hwapp.

service file have rw permissions for your app.sock file, and make sure any directory in the path is not blocking access.

We need to take one important additional step. While we’re happy our project can be accessed using http://A.B.C.D, this URL should really be reserved for the server’s main web interface, which means we should have individual projects accessed elsewhere. A reasonable choice in our case might be from http://A.B.C.D/hello with obvious application to other projects.

To support this style of URL for our project, we need to make two changes to our hwapp.service server block file as shown in Figure 8-5.

 Figure 8-5. The modified hwapp.service server block used to support a URL of the form http://A.B.C.D/hello. S ee the text for important details

130

Chapter 8 Deploying your projeCt as a uniX serviCe There are two critical changes present. The first is the obvious modification of the location block where we use /hello instead of /. By itself, this change will not suffice even though it appears intuitively obvious that it should. If you restart nginx, you will likely get a 404 “file not found”

error, because “location” works in mysterious ways. To fix this, a second modification to the server block is necessary – note the :/ added after app.

sock in the proxy_pass argument.

With both changes, restart nginx using systemctl, and now you should find your “Hello World!” displayed at http://A.B.C.D/hello – success!

 Adding the Dashboard Project

to Your Server

What about our dashboard project? Based on our preceding experiments, to add our dashboard to the UNIX server, we simply do the following: 1. Build a virtual environment (atadsenv).

2. Install any needed packages.

3. Upload our atads.py, atads_figures.py, and atads_

layout.py files.

4. Upload our APT_CSV directory.

5. Upload the folder containing your style,css file.

6. Create a wsgi.py entry point file.

7. Modify

atads.py to support flask.

Our dashboard’s atads.py has an important difference with our hello.

py application – in atads.py, we currently have an app as an instance of DASH, but in hello.py it is an instance of Flask. To allow our atads.py 131

Chapter 8 Deploying your projeCt as a uniX serviCe

version to work with Flask, we need to modify the app instance as shown in Figure 8-6. The basic idea here is we create an instance of Flask called

“server,” and this is used by the Dash app instance.

 Figure 8-6. In atads.py, the app instance is modified to work with Flask

So, with our DASH application, we will use server instead of app, and in our wsgi.py file, we will change the first line to import server instead of app and do server.run() instead of app.run() – see Figure 8-7.

 Figure 8-7. The wsgi.py file used for our dash application uses server, not app, since the meaning of app is different; in atads.py, server was the Flask instance, and app was the Dash instance.

To run our software using Flask, do

flask --app atads run --host=0.0.0.0 --port 8050

and we will see our dashboard at port 8050.

To use gunicorn, do

gunicorn - -bind 0.0.0.0:5000 atads:server

132

Chapter 8 Deploying your projeCt as a uniX serviCe

or

gunicorn - -bind 0.0.0.0:5000 wsgi:server

and we will, again, see our dashboard at port 8050.

 Creating the Dashboard System Service

and Deploying with NGINX

Now that our dashboard is working and can be run using gunicorn, all that’s left is to create an atads.service and the necessary NGINX server block. Unlike our hello.py app, where we could either use a port or a Unix socket for nginx to use, we will not use a Unix socket, because Dash is a little more fussy when it comes to sockets.

Figure 8-8 shows the atads.service file we will add to

/etc/systemd/system.

 Figure 8-8. The atads.service file

The service is started with

sudo systemctl start atads.service

133

Chapter 8 Deploying your projeCt as a uniX serviCe

For our server block, we will create the file /etc/nginx/sites-available/

atads as shown in Figure 8-9. Since I like to use both our services, I have merged the hello service into the atads server block.

 Figure 8-9. The final server block that allows nginx to serve both our services, hello.py using a Unix socket and atads using port 5000

To use this block, delete the unneeded hwapp and link in our new one: cd /etcnginxsites-enabled

sudo rm hwapp

ln -s /etc/nginx/sites-available/atads .

and start/restart our services:

sudo systemctl start atads.service

sudo systemctl restart nginx

With this design, going to http://A.B.C.D results in seeing port 5000

output directly, while going to http://A.B.C.D/atads and http://A.B.C.D/

hello shows our dashboard and the hello app, respectively. We can now offer different projects (services) to end users using URLs ending in a path – a somewhat more elegant solution than using port numbers.

134

Chapter 8 Deploying your projeCt as a uniX serviCe Securing Your Server

To support this book’s effort, I created a small inexpensive droplet server, so I could start with a fresh install and build in each part as needed. From a teaching perspective, this mimics the process many readers will follow and avoids confusion where things work too easily because solutions have already been installed on an existing server. Also, using a small server as a sandbox means you have more control and can build, break, and delete things as often as you like.

With your server now saying “Hello World!” or, better yet, serving your project, there will be a sense of achievement in having this resource to support your project and your colleagues’ efforts. You will probably be curious about your server traffic and will soon be appalled at how quickly your server will come under attack – the brute-force attempts at logging in through SSH and the requests for web pages and scripts known to have security flaws. There will be thousands of such attempts each day.

At first, you might think it’s simply a matter of blocking IPs. This won’t work. There are simply too many. Your small server would be more of an IP

filter than anything else and waste CPU on this fruitless activity.

A better option will be more expensive – find a hosting service that will block IPs from threatening sites. It’s not easy to block the IPs from threatening sites since there are scores of IP subnets assigned to them, and there is no easy universal mask easily implemented. What to do? You do have some options. You should upgrade your server to use HTTPS instead of HTTP. This is easily done using a service like letsencrypt, which you can install for free – although if using it for non-hobby purposes, you should consider donating to them. The install is quite simple, and I won’t cover it here since my server is a sandbox without a domain name, but when you use letsencrypt, it will modify your nginx server blocks in sites-available, and if you let it – you should – it will rewrite any incoming HTTP request as HTTPS. This won’t stop the volume of attacks, but it will make them less likely to be successful.

135

Chapter 8 Deploying your projeCt as a uniX serviCe Next, make sure your firewall only permits access to the least number of ports possible: SSH, HTTPS, DNS, and FTP mainly.

Your next consideration is easy; is your firewall behind an institutional firewall such as for a college campus or a corporation? If so, you already have a significant level of protection and might simply configure your server to only accept institutional IPs.

Unless you wish to devote a lot of your energy to the server, avoid the temptation to include unnecessary services such as email. If you’d like to receive an email to your server’s domain, just use a forwarder at your ISP. It makes things much simpler.

And then there’s software like Fail2ban, which is one of the most useful tools to have on your system. It’s beyond the scope of this work to give a detailed explanation on how to install it, but the basic idea is it is a utility that can monitor your log files for events like failed SSH login attempts or requests for web files known to have vulnerabilities. Fail2ban is highly configurable, and you could, as an example, specify that repeated failed logins (“the fail”) will result in that remote IP being blocked (the ban) for some time. The ban time could be for hours or days. Obviously, the longer the ban, the more IPs there will be to test against for each new connection. Fail2ban is not perfect, and if you’re not careful, you could lock yourself out of your system, but it does give a sense of slowing down the assault rate.

Finally, don’t forget the most fundamental aspect of server security –

being able to recover in the event of an attack or the loss of software or data files. It is very comforting to run a server on a large server hosting site managed by teams of experts, who make sure their servers are properly backed up. Your server is basically a collection of files on another server.

So, make a periodic backup or image of your working server. At a moment’s notice, you could shut down your misbehaving or corrupted server and start up its image within minutes and be back online. A benefit of this 136

Chapter 8 Deploying your projeCt as a uniX serviCe technology is you could test out a major software upgrade using a copy of the server, and if it works, roll it into service. If there are problems, it is easy to back out – fire up the original until you solve the problems on your spare/development server.

 Summary

In this chapter, we moved our atads dashboard into the world of server technology, with operating system support to start it automatically and serve it in a multiuser environment, and we addressed security considerations. The dashboard is now a unix service.

Our atads dashboard, now fully deployed and functional, is very straightforward with minimal interaction between widgets in the sense that its widgets were static. In the next chapter, we will show another dashboard that uses important aviation data from the Bureau of Transportation Statistics (BTS), which will illustrate how to have menu items change dynamically and also a capability to allow a user to download the data (subset) used in a chart.

137

CHAPTER 9

The BTS T100

Dataset: Interacting

Controls and Tables

Our dashboard for exploring the ATADS dataset is quite functional and useful. However, because that dataset is essentially a list of stand-alone data for individual airports, with no relational information between airports, our dashboard’s controls were easily implemented. There will be times with other projects when controls will interact such as when one menu’s items will depend on another’s selection, and we will show a way to achieve this. Also, it could be very useful to an end user if they could see the data used to create a chart, displayed as a table, and be able to download it if they wished. For these reasons, we will show a prototype dashboard for another aviation dataset from the Bureau of Transportation Statistics (BTS) – the T100 Domestic Segment data (T100dm). So, in this chapter, we will show a quick prototype based on our previous one, but we will only address the new design challenges involving dynamic menus and table displays.

© Padraig Houlahan 2024

139

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_9

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 The BTS T100dm Dataset

The T100dm dataset has many columns describing the passenger, mail, and cargo volumes between different airports in the United States. It is developed from monthly reports submitted by airlines. It is beyond the scope of this book to explore it in depth; we will restrict ourselves to those columns relating to dates, origin and destination airports, carriers, and passenger, mail, and cargo (P/C/M) volume.

The challenge we are facing is to design a dashboard that will provide insight into how traffic flows through an airport (“the hub”) and between airports (“the segment” linking the hub with a connecting airport).

We can envision an aviation data analyst or a journalist looking for answers to questions like

• What was the volume of traffic (passenger/cargo/mail)

that passed through airport X?

• How much of that cargo (P/C/M) was carried by

carrier Y?

• How much traffic was there between airports X and Z?

• What were the trends?

• What was the tabulated data (monthly counts)?

• What do the histograms look like?

 Prototyping a T100dm Display

Because not all airports have routes between each other, the list of connecting airports will change as the hub changes. If we select a hub airport X, then we have two immediate choices – either consolidate all data for that airport or select a connecting airport Z to allow segment traffic 140

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

analysis. To support these choices, we need two menus – one for selecting a hub airport and a second for selecting a connector airport (the segment).

The hub airport will be drawn from a menu based on all unique airports in the T100dm data, and once the hub is selected, the connector/segment airport list can be constructed. The hub selection menu will dictate what the segment menu shows – conditional upon the mode, since, for example, in Hub mode, the Connecting Airport menu will be empty.

A similar choice will exist when selecting carriers; for either a hub or segment analysis, there will be a possibility of consolidating traffic for all carriers or to specific carriers or to those operating on a particular segment. So, like the Connecting Airport menu, there is a Carrier menu that will be populated depending on whether a hub and/or a connecting airport is specified and on the mode!

Modifying the menus based on hub or segment mode or by carrier is an important service to offer the end user; a reporter might want to know what connections exist between X and Z. It is one thing to know a set of airlines use airport X, but which ones operate between on the X-Z route?

Managing these options, and presenting them meaningfully, is really the heart of our task. We’re basically treating the problem as consisting of the display of various modes, with menus adjusted dynamically.

Figure 9-1 tabulates the modes we wish to manage.

141

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

Mode

Label

Purpose

Hub Menu

Segment

Carrier

Menu

Menu

Hub

H

Consolidate all

All Airports

-

-

traffic for all

carriers

Segment

S

Show

All Airports

Connecting

-

consolidated

Airports

carrier traffic

between two

airports

Segment by

SC

Show segment

All Airports

Connecting

Segment

Carrier

traffic by

Airports

Carriers

carrier

Hub Carrier

HC

Show hub

All Airports

-

Hub

traffic by

Carriers

carrier

Carrier

C

Show

-

-

All Carriers

consolidated

carrier traffic

for all airports

 Figure 9-1. The different dashboard modes determine how the menus should be populated

To implement our design, a mode is specified based on user input, and then menus are populated accordingly, where, for example, with SC, only carriers specific to the hub segment are used for the carrier menu, so for the same hub, if the connecting airport (the segment) is changed, so must the carrier menu. Yes, there’s a fussiness in all this, but that’s the whole point of the dashboard – to relieve the end user of having to figure this out for themselves from raw data.

Our prototype is shown in Figure 9-2. It is basically a replica of our ATADS dashboard with a modified label and variable name changes with some additional features needed to support this dataset. In what follows, I will mainly address aspects pertinent to this chapter and so will not address all details and functions which can be seen on the online copy.

142

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 Figure 9-2. Prototype T100dm dashboard. Changing mode determines the menu items displayed in each of the pull-down menus The design is very simple; there are three drop-down menus – for Hub, Connecting Airport (segment), and carrier. There are radio buttons to select the mode, the traffic type, and radio buttons to add a linear equation if desired. A histogram shows the results, and we have also added a table to show the chart’s data. Because the table is created using DASH, there is an Export button which allows the user to download the data for use in their own Excel spreadsheet.

So, there are three aspects to our prototype of immediate interest: controlling the menu items, managing the modes, and displaying the table – everything else (stylesheet grids, figures, borders, buttons, etc.) is essentially what we have already covered in previous chapters.

143

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 Managing Modes and Interacting Menus

Our menus are populated using a three-step process. First, the mode is specified, and second, for that mode, the menus are activated as needed.

Specifically, we pass a mode parameter to our callbacks; this is then used to set intermediate parameters tracking whether a menu is active or not.

Third, if a menu is active, it is populated or left empty otherwise. This three-step process is a little complex and was much easier to implement once the dashboard mode specification shown in Figure 9-1 had been completed.

Note that if the mode is not changed, our callbacks can be used to navigate menu items as desired.

We rely on some custom utility functions to extract data of interest from our raw data: get_hub_df() when in Hub mode and get_segment_

df() when in Segment mode.

There are three utilities for extracting carrier data because we can view carrier data for all airports, for a hub, or for a segment (get_carrier_df(), get_hub_carrier_df(), and get_segment_carrier_df(), respectively).

Figure 9-3 shows the mode management code used in the callback routine to process mode changes by flagging whether particular menus are active, extracting the needed data from our raw data, and building appropriate airport, segment, and carrier lists. In Hub mode, for example, the segment and carrier on/off menu flags (smenu and cmenu) are set to False, the hub’s on/off flag hmenu parameter is to True, and we only build a dataframe based on the bub bts.get_hub_df().

144

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 Figure 9-3. The mode parameter is used to determine whether a menu is active or not by setting parameters like cmenu (for the Carrier menu) to True or False, to extract data used by that mode

 get_xxxx_df(), and building needed lists of airports and carriers 145

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

The actual populating of our menu items is done in the next step as shown in Figure 9-4. All needed lists of airports and carriers have already been built in the previous step, and they are now used or not – remember inactive menus are left blank.

 Figure 9-4. If a menu is active, airport, segment, and carrier lists are used to populate menu items; otherwise, the menu is disabled Figures and Tables

Our plotting methods are almost identical to those used in our earlier dashboard, but because we are using histograms with a trendline option, in case a reader feels this is a substantial change, the relevant methods are shown in Figure 9-5.

146

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 Figure 9-5. Drawing the histograms using the go.Bar() trace.

 Because only a linear trend is used, our customized polynomial solution is set to first order using get_poly(1)

The whole point of having modes and menus is to extract a subset of data from our raw data and in our code. In addition, all modes use the get_totals_by_month() method to produce monthly totals suitable for plotting, and it will insert a column with months ranging from 1 to 12. For example, the get_totals_by_month(df_hub) method extracts data from the hub’s dataframe df_hub and sets the df_group_by_month dataframe.

And similarly for segment and carrier reporting (see Figure 9-6).

147

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

 Figure 9-6. get_totals_by_month(df_hub) is used in hub mode to set the working dataframe df_group_by_month which is then used to create dictionary data and returned by the callbacks to the layout’s

 DataTable

Filling the table is then achieved by creating a dictionary called data from df_group_by_month and returning it from the callback to the table layout.

Please note a word of caution. Python is very popular among data analysts, and it offers some extremely powerful functions for summarizing dataframe contents by aggregating or splitting or grouping entries, and 148

Chapter 9 the BtS t100 DataSet: InteraCtIng ControlS anD taBleS

these capabilities can be very confusing to work with. Unless you are a specialist working regularly with these tools, and hence intimately familiar with them, I would suggest using the simplest and most brute-force solutions you can get away with since they will likely be the easiest to work with at a later point when you need to refresh your understanding of how they functioned.

 Summary

Complex dashboards will require complicated interactions among their widgets, such as needing dynamic menus. In this chapter, we showed one way to organize how menus are populated depending on what functionality (mode of operation) we were pursuing. We also demonstrated how to make the data used to produce a chart available to the user, who might need to do their own analysis using Excel.

In the next chapter, we will show how to encapsulate and share your project through building a web portal that offers users not just access to the dashboard but also to documentation and to forums where they can learn from each other and contribute to the knowledge base.

149

CHAPTER 10

Creating a Web Portal

Having created a dashboard that resides on your server, you might want to consider managing how it is presented to your colleagues and end users by creating a web portal, by which I mean a web presence which serves as the entry point to your projects and also as a location where you can provide a context for your projects that could include links to blogs, documentation, and other project software.

Your web portal could be as simple as a basic HTML page with a welcome header and links to your project’s dashboards and other documentation. It might include corporate or college logos and maybe some graphics to give it a little finesse. By keeping it simple, your life will be easy.

In Figure 10-1, I show a primitive but functional portal to share dashboards with students. It’s not very fancy and was built using very rudimentary HTML, but it gets the job done. It has the advantage of being easy to implement, and enhancements can be deferred to a later time.

© Padraig Houlahan 2024

151

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_10

Chapter 10 Creating a Web portal

 Figure 10-1. A primitive but functional welcome page for end users, giving them options to go to different project areas

In case you are new to HTML coding, and just want to get going, the code used to build the portal is shown in Figure 10-2.

 Figure 10-2. The very basic HTML code used to generate the page shown in Figure 10-1

152

Chapter 10 Creating a Web portal

There is one notable advantage of using such a simple code – there’s not much that can go wrong in the sense all browsers will render the page.

And, this page’s directory, being at the top of your project web tree, would be a good place to implement login and access controls (perhaps using a

.htaccess file) which would protect your whole project tree.

But a web portal can be so much more, as shown in Figure 10-3 where I used WordPress to build out the portal. My considerations in designing the portal were

1. I wanted to have as uncluttered a look as possible.

2. I wanted essential features, such as links to

dashboards, immediately accessible to the visitor.

3. Visitors should be enticed to explore dashboards by

seeing some of their graphical charts.

4. There should be an obvious location for

documentation describing information about the

dashboards and how to use them.

5. For users, a registration and blog area for

discussions – mainly with the intent to support

student courses.

6. No ads. Yes, that is a heretical position to hold, but I can live with it for now.

As of late 2023, this web portal is still under construction, but it is functional and extensible.

153

Chapter 10 Creating a Web portal

 Figure 10-3. The AVOPSinsight.com web portal is intended to provide an attractive first impression for students and end users, where they can quickly find dashboards of interest and access other resources

154

Chapter 10 Creating a Web portal

 Troubleshooting WordPress

WordPress is an extremely powerful social media application, and being powerful, it can be daunting trying to achieve a finessed result. There are detailed online descriptions on how to first install MySQL, a necessary prerequisite, so I won’t address them here.

When installing WordPress, you will have to decide what theme to use, where themes define the WordPress look and feel, such as how many menu bars or vertical columns are presented. There is a whole industry of companies offering an enormous number of choices; themes and fads come and go, and you could spend vast amounts of time trying to find a nonexistent perfect theme. I would recommend picking a basic one offered by the WordPress designers until you feel like you need a more complex one and you’re ready to take it on as a major project.

Once you have selected a theme, it can be a real nuisance to find your site looks quite good, but an annoying quirk persists. While many themes are free, I have found it next to impossible to find a perfect one –

there always seems to be some maddeningly frustrating deficiency –

which means you either have to live with it, learn how to fix it, or pay the designers to customize it. Being a cynic, I suspect the deficiencies are intentional to encourage business!

So how do you fix one of these quirks? There are a bewildering amount of code and stylesheet/CSS parameters underlying most themes; your challenge is to identify the settings specific to the quirk you are trying to fix, and WordPress allows you to add parameters which will override the theme. I will now demonstrate how I tracked down the setting behind one particular quirk using Chrome’s Developer Tools and adjusted it to get a more pleasing result. The process is similar to how we figured out which variable names to use when we explored screen-scraping ATADS

data in an earlier chapter, but WordPress themes can be very complex, so we will undertake a more in-depth description of how to work with the Developer Tools.

155

Chapter 10 Creating a Web portal

For my portal, I used the twentysixteen theme, and while I liked its clean layout style, it had a very ugly aspect in that the listed items along the right-hand sidebar were too widely spaced – see Figure 10-4.

To fix this line spacing issue, we can use Google Chrome’s toolbox to identify the source of the “problem,” and then since WordPress allows users to enter custom CSS commands, we try custom CSS commands to attempt a fix by overwriting default parameters.

 Figure 10-4. The default layout for the twentysixteen theme yields an unsatisfactory excessive spacing between list items along the right side 156

Chapter 10 Creating a Web portal

In Chrome, go to the top-right corner, click the three vertical dots, and locate the Developer Tools area as shown in Figure 10-5. You might now be presented with a screen that is overwhelming such as that in Figure 10-6.

 Figure 10-5. Finding Chrome’s Developer Tools

157

Chapter 10 Creating a Web portal

 Figure 10-6. Developer Tools reveals the thousands of parameters defining your theme’s look and feel. To make room for its output, the web page is squeezed into the left column

To make sense of the display, note the two horizontal menu/tab bars along the top (see Figure 10-7).

 Figure 10-7. Chrome’s Developer Tools has a complex selection of tabs. We focus on the Elements and Styles tabs

The top one shows we are working with elements, and the second shows we have selected the CSS Styles view. If you move your cursor up and down the second (Elements) column, your web display background will show a blue background as you highlight various elements. You will have to click the small black triangles to open up hidden layers. Keep doing this until you have identified the area of interest.

158

Chapter 10 Creating a Web portal

 Figure 10-8. Moving your mouse cursor highlights blocks in the left column display. If the blocks are too large, click the small triangles to go deeper into the styles

After some testing, I found elements associated with the lists (see Figure 10-8), and this seemed like a good place to examine. Clicking an element causes three small dots to appear which mark which element is selected, and notice on the far right, I see an intriguing padding statement (Figure 10-9). If I place the cursor over this statement, a small circle with an arrow appears, and if I click that, then at the top of the styles column I see an associated widget style (Figure 10-10).

159

Chapter 10 Creating a Web portal

 Figure 10-9. On the far right, we see a padding specification associated with our selected styles

 Figure 10-10. We have now identified a widget associated with our list item

Notice some blue checkboxes appear if you place your cursor near the widget entries, and you can use these checkboxes to toggle features on and off. In this case, I can toggle the padding-top on or off and see the effect on the leftmost column showing my blog lists, and indeed the list entry spacing changes as I toggle the padding. (In this case, the toggling was activating/deactivating the padding-top:0em I had previously set to fix the spacing.)

160

Chapter 10 Creating a Web portal

So, we have successfully identified the elements causing the unsightly spacing. To fix the problem, we now add an override into our WordPress customization area. Go to the WordPress dashboard, and find the Additional CSS area for your theme, and force the widget’s padding into the form you want (see Figure 10-11). In my case, setting the padding-top to 0.0em worked! From this point on, the blog will show nicer spacing that better defines my lists visually.

 Figure 10-11. The entries placed in the WordPress Additional CSS field that overrides the default line spacing and creates a more pleasing list grouping

161

Chapter 10 Creating a Web portal

 Summary

In this chapter, we explored wrapping our project in a web portal which allows us to manage and centralize our efforts. We can offer visitors documentation and blog forums for them to learn from each other and to contribute to our project’s knowledge base – a powerful, self-contained encapsulation of our work and perhaps also of our team’s. We used WordPress because it is well placed to do just this; however, WordPress can be very nuanced, and so we demonstrated how Google’s toolbox can be used to track down troublesome design or layout quirks, an essential skill for anyone relying on WordPress. The payoff of course is a web portal that can be visually attractive and very functional, a valuable asset for colleagues and team members.

162

CHAPTER 11

Using Our Dashboard

for Data Visualization

and Analysis

Now that we have a working dashboard, let’s address the issue of how best to use it and see how it performs against the ATADS dataset. You will likely have your own dataset, but there will be strong similarities in how data –

especially time series – should be explored. While I write this chapter with aviation business students, researchers, and professionals in mind, the non-aviation specialist can see how useful our dashboard’s tools are, see how we use features such as spectra and trends, and perhaps also think about how our strategies/interpretations could be similarly applied to their project data.

Understand your data. Don’t just treat it as a mere collection of measurements. Spend some time thinking about what was measured and why. For example, in the ATADS data, there are categories for local and itinerant traffic. For itinerant, we would naturally think in terms of air carrier and air taxi, but it also includes small aircraft operations, all between airports. What then is interesting about local? There are many operations where aircraft return to their point of departure – EMS

helicopters, media (weather and traffic), pilot training, and firefighting. A remote airport might be fairly quiet for most of the year, but there could be event-driven activity such as fires and airshows!

© Padraig Houlahan 2024

163

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_11

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis We will demonstrate how we can use our dashboard to explore different attributes, from using spectra to detect periodic patterns to comparisons between major hubs based on where they are located, exploring different airport types, and disaster studies. The cases explored here are selected to demonstrate ways of approaching, documenting, characterizing, and presenting data in a manner suitable for reports and web content.

 Airport Type, Trends, and Location

An airport’s location can influence its working. As an example, along the East Coast of the United States, airports are more likely to be impacted by hurricanes, unlike the West Coast. Figure 11-1 shows the air carrier traffic for three major hubs, suggesting they are operated close to capacity since the graphs tend to be fairly constant. End-of-year holiday slowdowns for Christmas and Thanksgiving days are evident. Los Angeles (LAX), being on the West Coast, experiences few major interruptions, unlike Colorado’s Denver (DEN) and New York’s John F. Kennedy (JFK). With charts like this, one could document storm frequency and impact for (disaster) planning purposes.

164

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-1. Three major hubs in the United States show their recovery from the pandemic. The graphs suggest the airports are close to being saturated. Some show significant short-term drops not shared by others, indicating closures/slowdowns caused by storms and hurricanes

While airports like JFK seem congested, Arizona’s Grand Canyon (GCN) airport, relying heavily on local tour flights – especially using helicopters – we would expect to be busiest in the summer months.

However, looking at six recent years of operations suggests its business changed after the COVID-19 pandemic since the pre-pandemic activity was significantly greater (see Figure 11-2).

165

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-2. Grand Canyon airport (GCN) mainly caters to offering tourists air tours. While activity has been building since the pandemic, it is substantially below pre-pandemic levels Airshows and Seasonal – Using Spectra

(Because spectra are normally used in scientific and engineering studies, it is novel to apply them to business activities, and it is worth discussing their uses to better explain them. The insights they provide are more like curiosities, and the real purpose they serve is to help the aviation professional or researcher better appreciate their data. Since spectra separate various periodicities in a dataset, we initially consider one of the simplest – a repeating pulse in the data – such as what occurs with annual airshows.)

With airshows, we expect a surge in civilian aircraft, and perhaps military, traffic, such as the famous annual one at Oshkosh (OSH).

Figure 11-3 shows the VFR traffic that visits this airport during its annual fly-in. Most small aircraft pilots will arrive under VFR conditions since IFR

is more demanding and dangerous for those not well practiced. Also, there is such a high density of traffic in the area that trying to handle so many 166

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis IFR approaches would simply slow things down unacceptably. The figure shows us the fly-in was canceled during the pandemic but returned to normal thereafter. Peak operations during the busiest week reached 2500

operations in a day. That’s almost one operation every 30 seconds.

 Figure 11-3. The top panel shows a multiyear view of the annual Oshkosh fly-in traffic. The pandemic caused its cancelation, but it returned successfully afterward. In the bottom panel, we used the cursor to select the peak in 2019, and we can see how there were between 1000 and 2500 operations in the course of a week 167

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis A smaller airshow is held at my hometown airport, Flagstaff (FLG).

This is smaller and is more of a show than a fly-in. It makes an interesting comparison with Oshkosh because most of the activity happens on the day of the event (see Figure 11-4).

 Figure 11-4. Flagstaff (FLG) has an annual airshow which is more of a display than a fly-in. As a result, its peak traffic happens over a single day

What’s interesting is that if we look at their corresponding spectra, we find both Flagstaff and Oshkosh have a clear peak at 362 days, but the larger event shows a clutter of peaks (see Figure 11-5)! Why 362 days instead of 365? The reason is both the Oshkosh and Flagstaff airshow spectra are based on a multiyear data selection, and there is no guarantee of a precise interval of 365 days between annual events, since organizers are probably trying to pick a weekend/day-of-week instead of an exact 365- day interval.

168

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-5. Since Flagstaff’s airshow is largely a one-day event, its spectrum (top) shows a strong peak with a period of about a year (362 days). The Oshkosh (OSH) fly-in is a weeklong annual event, and its spectrum (bottom) also shows a 362-day peak and many smaller ones

Why are there so many peaks in the OSH spectrum? I suspect the algorithm is detecting periodic intervals where the main fly-in is being compared to seasonal and recreational traffic, that is, there is significant 169

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis seasonal traffic, but it perhaps appears overwhelmed by the fly-in’s spike.

And, for example, traffic arriving a week before and leaving a week later will contribute to a period of 14 days and also one of 350 days.

We have to be careful when interpreting spectra; it is a specialized undertaking, but there is no harm in being aware of the periodic patterns in your data, and a spectrum can give you a quick way to determine the main periods. If you wish to explore things in greater depth, you could add a feature to your dashboard where you inject patterns of known amplitude and periodicity – just to see how they show up in your spectra; the idea here is to add a signal you understand (because you created it) near the peak you are curious about. For example, if you were curious about a seven-day period, adding a series to your dataframe consisting mainly of zeros, but with every 12th entry being 10, for example, should produce a spike at period 12, corresponding to 10 operations occurring every twelfth day. If your nearby injected signal peak with amplitude 10 is similar to the seven-day one you are interested in, you could reasonably say the seven-day period signal is consistent with an activity pattern of amplitude 10

operations per day.

For a regular airport, one could look at Phoenix Sky Harbor (PHX)’s Total Operations and visually see there are short-term (weekly) cycles and seasonal ones. The spectrum is quite striking, and we see there are distinct 7-day, 3.5-day, and 2.3-day periodic operations corresponding to weekly, twice weekly, and three times a week operations (see Figure 11-6).

170

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-6. Phoenix (PHX)’s spectrum (bottom) shows strong 7-, 3.5-, and 2.3-day cycles corresponding to 1, 2, and 3 times per week.

 Remember, two times the frequency, halves the period, etc. The Total Ops. Chart (top) shows sr=tronf weekly variations, seasonal effects, and the pandemic’s influence

While Phoenix shows a seasonal effect, if we consider more northerly airports exposed to harsh winters, we see a very different annual activity pattern such as that for Juneau (JNU), Alaska (see Figure 11-7). Almost certainly, the activity is tourism related.

171

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-7. Five years of Total Operations for Juneau (JNU). There is clearly a strong seasonal effect still present during the pandemic.

 Much of the activity is likely warmer weather tourism related The summary provided by Juneau’s monthly and weekly histograms (Figure 11-8) confirms the seasonal effects and also shows the activity is weakly sensitive to the day of the week.

172

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-8. The monthly chart shows a cleaner representation of Juneau’s Total Operations, emphasizing the seasonality, while the weekday chart suggests a continuous daily routine, largely independent of the day of the week

 Incorporating Models

Sometimes, when exploring a dataset, it can be very useful if we can create a model. This does two things: it gives us opportunities to test datasets against theories/models, and a good model will usually present a much simpler summary of the observations. Since we are mainly concerned with time series data, our models will need to be constructed from Python lists.

To take a concrete example, let’s try and understand Oshkosh’s spectrum (Figure 11-4). Our goal here is to see if we can create a dataset with similar characteristics to its Total Ops. Chart and, by tweaking the model, see if we can account for the spectrum.

Here are the main attributes I can see visually from the Total Ops.

Chart (Figure 11-3): there is a large annual burst of activity lasting for a week of amplitude 1000+ ops/day, and there is a seasonal behavior that peaks in the summer.

173

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis We will treat these as two signals that need to be added together, and our task is to now model these signals separately. To do this, let’s build the models using an IDE (integrated development environment) console for testing.

The steps needed to build the fly-in’s list (yf) are as follows: 1. Build an empty list of length 365 using yf = [0] × 364

2. Set days 178–182 to 1500 as a crude model for the

activity

3. Replicate for the five-year interval: yf = yf × 5

yf is now a 1820-long list of zeros except for the group of elements every 364 days of size 1500.

To build the seasonal background yb, we will assume there is an overall amplitude of 100 that varies by season:

1. Create a week’s worth of data: yb = [100] × 7

2. Make a year’s worth: yb = yb × 52

3. Add a block of activity for the fly-in days

4. Include an annual sine wave modifier

5. Replicate for 5 years using yb = yb x 5

This model assumes the fly-in impact is about 1500 daily operations for 5 days, and the non-flying traffic is 0 in the winter but peaking at 100 in midsummer. We also assumed a year was 364 (52 × 7) days for convenience. In general, though, we would like to be able to adjust these, so we encoded them as parameters a1 and a2 used by a method in our atads_figures.py file (see Figure 11-9).

174

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-9. The code used to implement our model where the fly-in adds a2 ops per day, and the non-fly-in activity is a sinusoid peaking at a1 ops midyear. In the update_spectrum() method, I manually set a1 and a2 to 100 and 1500, respectively

With this module, we can change the a1 and a2 parameters to see the effect on the model spectrum.

The results are very interesting and can be seen in Figure 11-10 where I show models where the fly-in was comparable to the background traffic (a2 = 150) and also where it was substantially greater (a2 = 1500).

175

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-10. When the fly-in amplitude was 15 times the local background (non-fly-in), the complicated set of peaks emerges in the spectrum (top). With a model where it was only 50% greater, the spectrum’s main annual peak dominates (bottom)

There are many variations we could try to our model – add an offset to the background so there is nonzero traffic in the winter, and try something other than a flat week of activity for the fly-in. We could try a short period signal for regular airports to model weekly activity and so on.

The lesson here is that Python has some very elegant ways to create lists of data that allow you to construct models for the observations, and they can be used to develop insight into your datasets – in this case, nicely explaining how fly-in activity compared to non-fly-in influences the airport’s spectrum.

176

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis Media, Presentations, Reports, and Projects

Having nice customizable graphics helps you understand your data, but being able to use them to support project and company objectives is also a considerable benefit. We live in a media age, where people like to see attractive images, and there is pressure to continuously create new web content, especially for public consumption. Reports and white papers are management tasks that can also benefit from attractive graphics. In academics, researchers and students can incorporate them into journal articles and class projects. Because the ATADS dataset is updated monthly, our dashboard could play a regular role in creating new content and supporting academic and business activities.

In the following text, I present a list of projects suitable for airport staff facing a need for web content creation and report writing and airport management students writing theses and white papers. Obviously, the context (web/corporate/academic) will dictate a task’s desired outcomes, but the list does convey how useful a dashboard like ours can be for supporting such projects. (When I suggest documenting or exploring, I envision projects that students could do where they build reports incorporating suitable charts and numbers providing quantitative results.) To demonstrate the possibilities, I did a Google search for “Alaska wildfire smoke” to see if there was an event that would show up in our ATADS data. I immediately found a NASA page for a May 2002 fire near Fairbanks (FAI), Alaska (see Figure 11-11).

177

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-11. A NASA page describing smoke near Fairbanks (FAI) in May 2002

Using our dashboard, we can see there was indeed a measurable drop in April/May 2002 operations (Figure 11-12).

178

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

 Figure 11-12. Three years of data for Fairbanks (FAI), spanning the years 2001–2003. There is a noticeable dip around late April 2002, not present in adjacent years, probably caused by the smoke from wildfires

Possible projects and activities:

• Document trends for growth, noise, and congestion

studies: Do the charts suggest the airport is stagnant or

saturated?

• Document the nature of the airport: Is it mainly for

small aircraft? Airlines? Mainly for tourism or very

seasonal?

• Explore the impact of rain and snowstorms, hurricanes,

and fires (smoke): Document the incidences of

historical events – these can be identified by noting

significant dips in operations’ data and doing Google

searches for those dates and cities. By what percentage

did storms degrade throughput?

179

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis

• Track the impact of a hurricane by following its impact on airports along its path; the dip in activity will change day by day as the storm moves north.

• Document disasters: How did a disaster such as the

pandemic, flooding, or 9-11 impact the airport? Did the

airport recover fully?

• Is there a shift in the airport’s operations? With small airplane ownership being increasingly unaffordable,

and with fuel costs rising, are commercial and

noncommercial operators equally affected?

• Estimate the activity levels for the next three years

using trend data.

• Compare an airport with another: Identifying peer

airports can provide useful insight into trends and

performance.

• Develop models for airport operations using Python

tools to characterize observed historical trends and

explain their spectra.

While many of these questions are of interest to all, the fact that there are more than 500 airports with data that change monthly allows business school faculty to offer a very diverse range of projects, with fresh variations possible each semester.

In my opinion, projects like these can provide useful material for journalists and other non-aviation specialists and airport supporters and are appropriate for corporate websites and social media.

180

Chapter 11 Using OUr DashbOarD fOr Data VisUalizatiOn anD analysis Summary

This chapter showed how we can use our dashboard to explore different attributes, such as using spectra, exploring different airport types, and disaster studies. These cases demonstrated how approaching, documenting, characterizing, and presenting data work for reports and web content.

181

CHAPTER 12

Afterword

Being able to build dashboards to support your colleagues or students is an extremely empowering capability. With a good design, you can present data and analysis tools to them to make their work as effortless and pleasing as possible. In learning how to design and build dashboards and how to deploy them, you are mastering technologies that allow you to encapsulate and share expertise.

There were times when I naively tried sharing raw code demonstrating some aspect of a course I was teaching and encountered frustration when code that worked fine on one OS didn’t work at all on another, where some students had sufficient skills to install software on their laptops and others had no idea on what to do with missing libraries or OS resources.

The solution at the time was to install my software on each computer in a student computer lab. With the techniques concerning deployment demonstrated in this book, those kinds of issues are a thing of the past –

the students could now simply go to your web portal.

What’s missing from this book is what to do if you create a dashboard in wide demand. The easiest answer is to use a technology like Kubernetes (Google also offers this kind of capability) that can load balance and scale your dashboard to serve many users. For small project teams, you are unlikely to need them, but if you are filling an important and high-demand niche, your peers and students would benefit.

© Padraig Houlahan 2024

183

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8_12

Chapter 12 afterword

Don’t be afraid to divide and conquer. If you can create one dashboard, you can create others. While it’s always a judgment call, it’s probably best to separate out different aspects of your team’s work into different dashboards, letting your web portal offer your users a menu of solutions, then to blend them all into one major project. And remember, each time you create a stand-alone dashboard, not only will you have the satisfaction of completing a self-contained project that encapsulates your team’s capabilities and solutions, but you will also be setting your project up for stability – users don’t really like to see the software they have come to rely on change. Creating dashboards can be a rewarding and satisfying outlet for your creative skills that essentially self-document and stabilize your work, allowing you to concentrate on new challenges. They really are the next step beyond simply coding a solution to be run at the command line from a particular directory; once you start creating them, you probably will not settle for anything less in the future.

Finally, the whole point of creating a dashboard is to share data and hopefully gain a greater depth of understanding, which is why I took many opportunities to demonstrate interesting phenomena and techniques and why I think it’s a great way to help students learn – and hopefully develop an appreciation for – the art of communicating technical topics supported with compelling graphics and quantitative results.

184

 APPENDIX A

Utilities for Managing

ATADS Data

Since the Federal Aviation Administration’s ATADS data is refreshed monthly, your ATADS dashboard also needs to have its data periodically updated. I manage the data by keeping downloaded and derived files and the needed utilities in a folder (ATADS_DATA_UTILS).

I use three main subfolders:

ATADS_XLS: A directory containing downloads of

annual Excel files, for example, atads2020.xls

ATADS_CSV: A directory containing annual files

converted from xls to csv, for example, atads2020.csv

APT_CSV: A directory containing csv data for

individual airports, for example, JFK.csv

The three core utilities provided in Figures A-1 through A-3 are

• Figure A-1: atads_scrape.py (a utility for downloading data)

© Padraig Houlahan 2024

185

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-1. Screen-scraping demo code: atads_scrape.py 186

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-1. (continued)

187

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-1. (continued)

188

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-1. (continued)

189

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-1. (continued)

190

Appendix A Utilities for MAnAging AtAds dAtA

• Figure A-2: xls2csv.py (a utility to mainly convert file formats from Excel to csv)

 Figure A-2. Converting the Excel file into CSV: xls2csv.py 191

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-2. (continued)

192

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-2. (continued)

193

Appendix A Utilities for MAnAging AtAds dAtA

• Figure A-3: split_by_apt.py (a utility to split the annual csv data into individual airport csv files)

 Figure A-3. Building the airport csv files: split_by_airport.py 194

Appendix A Utilities for MAnAging AtAds dAtA

 Figure A-3. (continued)

atads_scrape.py uses chromedriver.exe to control Google Chrome in order to navigate the remote website. Both Chrome and chromedriver.

exe need to be installed/present – I simply place chromedriver.exe in the ATADS_DATA_UTILS folder. At this time (early 2024), there appears to be a bug in chromedriver.exe, and it ignores the user-specified default download directory; the downloaded file will probably appear in Chrome's normal download area.

Notes

The strategy used is to accumulate annual xls files in ATADS_XLS. This can be very time consuming, but once done, only the current year's data needs to be downloaded. While only the current year's csv file in ATADS_CSV

needs to be refreshed, xls2csv.py rebuilds all annual csv files. While this is inefficient, it does keep the process simple. All files in APT_CSV are rebuilt by split_by_apt.py – again, we choose simplicity over efficiency.

195

Appendix A Utilities for MAnAging AtAds dAtA Data Update Process

[Using year 2023 as an example]

1. Set the download year in atads_scrape.py to “2023”

2. Use

atads_scrape.py to download 2023’s data

3. Find the downloaded file (WEB-Report-*****.xls)

and rename as atads2023.xls

4. Add atads2023.xls to the ATADS_XLS folder –

overwrite already existing if needed

5. Rebuild the annual csv files in ATADS_CSV from

those in ATADS_XLS by running xls2csv.py

6. Build the individual airport csv files using

split_by_apt.py

Directory APT_CSV should now have the updated airport files and should be copied to the atads active area.

This data management scheme could be easily modified for greater efficiency and automated to run monthly using a Unix cron job if desired.

196

Index

A

add_black_border()

method, 96

add_titles() function, 30

atads_layout class, 98, 99

Airshow, 166, 168

className, 98, 99

Air Traffic Activity System (ATADS)

CSS file, 99, 100

data, 39, 53

ticktext/tickvals, 97, 98

Airport operators report, 40

convert Excel to CSV with data

update_mchart()

cleanup, 48, 49

method, 96, 97

output, 42

update_wchart()

plain text version,

method, 97, 98

downloaded file, 44

improvements, 114

screen-scraping program, 45–48

instruction panels, 92, 93, 95

segment, downloaded file, 45

names, 113

Split_by_apt.py, 50

spectrum panel, 100, 101

web page, 40

amplitudes/frequencies, 103

APT_CSV, 49, 50, 185

atads_layout(), 101

ATADS_CSV, 185

creation, 102

ATADS dashboard, 90, 91, 142

CSS file, 101

app.layout(), 90, 92

Discrete Fourier

atads_figures class, 113

Transform, 102

banner, 92, 93, 95

fft() function, 103

charts, 113

time units, 103

code testing, 113

update_spectrum() method,

CSS, 114

102, 104

enhancements, 89, 90

x-axis/y-axis, 102

histogram panels, monthly/

update_dashboard(), 90, 92

weekday, 96

weekly/seasonal effects

© Padraig Houlahan 2024

197

P. Houlahan, Prototyping Python Dashboards for Scientists and Engineers,

https://doi.org/10.1007/979-8-8688-0221-8

INDEX

ATADS dashboard (cont.)

add_poly_trace_and_

ANC and JFK, 112

eqnstr(), 81

atads.py file, 110

challenges, 81

components, 109

coefficients to text

data column, 107

string, 81, 84

filter window, 107

draw_poly(), 81

get_scales(), 111

get_apt_quadratic_

isolation, 106

equation_string(), 81

patterns, 108

linear equation, 82

radio_show_scales(),

operations, 83

111, 112

poly library, 81

smoothed version, raw

year_min, 83

data, 108

update_maincart() method, 70

smoothing filters, 105

atads_layout class, 67–69

standard deviation, 105, 109

atads_layout.controls() method, 65

time series, 105

atads.py file, 64–66

vectors, 106

ATADS_XLS, 185

ATADS dataset, 177

automobile() class, 3

atads_figures class, 70

class methods

B

add_airport_trace(), 78

add_smooth_trace(), 78

BTS T100 dataset

chart visual, 79, 80

aviation data analyst, 140

groups, 73

dashboard, 140

I/O, 74, 75

mode management code, 144

polynomial curve fits, 84

modes and menus, 147

update_mainchart(), 75, 76

T100dm dataset, 140

variable name utilities,

table layout, 148

74, 75

three-step process, 144

initialization, 70

__init__() function, 73

C

variable name

management, 71, 72

@callback function, 35

polynomial curve fits

Class, definition, 2

198

INDEX

CSS

projects and activities, 179

app.layout assignment, 86

websites and social media, 180

atads_layout class, 85

Dashboard prototype

cell groupings, 86

atads_figures.py, 61

code block, 87

DASH application, 61

dashboard, 85, 86

OOD approach, 61

grid, 85, 86

overview, 53–57

placeholder, 87

project tasks, 57, 58

row’s grid structure, 87, 88

trends and forecasts, 59, 60

uses, 85

Dataframes, 5

web page layout, 85

access dataframe rows and

Curve fitting, 60

columns, 17, 18

building, 13–17

D, E

filter–extract elements,

value, 21–23

DASH, 61

loc[] and iloc[] to access by

a_times_b(), 36

position, 19–21

callback(), 36

Developer Tools, 46, 157, 158

code, 35

Dictionaries, 9, 10

create DASH application, 32

Directory APT_CSV, 196

create HTML, 37

Discrete Fourier Transform, 89, 102

dashboard, 33

dcc routines, 35

interactive dashboard, 32

F

multiply_these, 36, 37

FAA’s ATADS data, 185

Python, 32, 36

Fail2ban, 136

DASH app instance, 132

Flagstaff (FLG), 168

Dashboard, 63, 64, 144, 149, 163,

Flask, 116

164, 177, 178, 183, 184

debugging, 119, 120

airport’s location, 164

hello.py, 119

ATADS data, 163

output, 119

COVID-19 pandemic, 165

port number, 120, 121

fly-in impact, 174

web page, 120

199

INDEX

Flask/GUNICORN, 56

server block, 133

FORTRAN, 1

Unix socket, 133

URLs ending, 134

G

O

GUI interfaces, 1

GUNICORN, 116, 122, 123

Object-Oriented Design (OOD),

30, 31

coding design, 1–4

H, I, J, K

Objects, 3

hwapp file, 130

Oshkosh’s spectrum, 173

hwapp.py application, 127

hwapp.service, 127, 130

P, Q

Pandas, 5, 11, 12, 22

L

Pandas Series() function, 11

len() function, 15

Phoenix, 171

list() function, 9

Phoenix Sky Harbor (PHX), 170

PLOTLY, 27–32, 57

Plotting methods, 146

M

Prototyping, 4

Mode parameter, 145

proxy_pass argument, 131

my_class.keys(), 9

Python, 148, 176

my_fig, 32

coding design, 1–4

my_layout.controls()

Python data types

method, 65, 66

dataframe, 5, 12

MySQL database server, 56

data structures, 4

dictionaries, 9, 10

libraries, 5

N

lists, 6–9

NGINX, 116, 123, 126

series, 11, 12

configuration, 128

sets, 6, 7

ExecStart line, 128

tuples, 6

hwapp, 129, 134

Python IDE, 5

200

INDEX

R

requirements, 115

virtual environment, 116

Regression, 60

update_dashboard() function, 65

Regular expression, 49

update_figure() function, 35, 36

uWSGI, 121, 122

S

Screen-scraping program, 45–48

V

Server, 135

blocking IPs, 135

Variable explorer, 24

HTTP, 135

VFR traffic, 166

sandbox, 135

security, 136

W

SSH login, 136

traffic, 135

Web portal

Spectrum, 90

construction, 153

Split_by_apt.py, 50

dashboard, 151

Spyder IDE, 23, 24, 28

functional portal, 151

sudo systemctl status hwapp, 127

HTML coding, 152

HTML page, 151

login and access controls, 153

T

Web Server Gateway Interface

T100dm data, 141

(WSGI), 116

Tuples, 6

WordPress, 55, 153, 161, 162

CSS commands, 156

U

CSS Styles view, 158

Developer Tools, 155

Ubuntu service, 127

installing, 155

Unix operating system, 55

stylesheet/CSS parameters, 155

UNIX server

capabilities, 123

Hello World, 116

X, Y, Z

Python environment, 117, 118

xls2csv.py, 48

201

Document Outline

	Table of Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Introduction

	Chapter 1: Working with Python

	Coding Design: Python and OOD

	Python Data Types

	Lists, Tuples, and Sets

	Dictionaries

	Series

	Dataframes

	Building Dataframes

	Accessing Dataframe Rows and Columns

	Using loc[] and iloc[] to Access by Position

	Filtering – Extracting Elements by Value

	The Spyder IDE

	Summary

	Chapter 2: Reactive Programming with PLOTLY and DASH

	Getting Started with PLOTLY

	Getting Started with DASH

	Summary

	Chapter 3: Working with Online Data

	About the ATADS Dataset

	ATADS Screen Scraping

	Converting Excel to CSV with Data Cleanup

	Managing and Keeping Our Files Up to Date

	Summary

	Chapter 4: Planning the Dashboard Prototype

	Overview

	Project Tasks

	Trends and Forecasts

	Other Design Considerations

	Summary

	Chapter 5: Our First Dashboard

	The atads.py File

	The atads_layout Class

	The atads_figures Class

	Initialization

	Variable Name Management

	Miscellaneous Variable Initialization

	Class Methods

	I/O and Variable Name Utilities

	The update_mainchart() Method

	Methods for Drawing Raw and Smoothed Data

	Methods to Enhance Chart Visual Appeal

	Methods to Add Polynomial Curve Fits

	Fine-Tuning with CSS

	Summary

	Chapter 6: Dashboard Enhancements

	Adding the Banner and the Instruction Panels

	Monthly and Weekday Histogram Panels

	The Spectrum Panel

	Quantifying Weekly and Seasonal Effects

	The Final ATADS Dashboard

	Summary

	Chapter 7: Hosting an Application on a UNIX Server

	Creating the Python Environment

	Running a Flask Application

	Using uWSGI

	Using GUNICORN

	Summary

	Chapter 8: Deploying Your Project As a UNIX Service

	Creating a Hello World System Service

	Using NGINX to Share Your Hello World App

	Adding the Dashboard Project to Your Server

	Creating the Dashboard System Service and Deploying with NGINX

	Securing Your Server

	Summary

	Chapter 9: The BTS T100 Dataset: Interacting Controls and Tables

	The BTS T100dm Dataset

	Prototyping a T100dm Display

	Managing Modes and Interacting Menus

	Figures and Tables

	Summary

	Chapter 10: Creating a Web Portal

	Troubleshooting WordPress

	Summary

	Chapter 11: Using Our Dashboard for Data Visualization and Analysis

	Airport Type, Trends, and Location

	Airshows and Seasonal – Using Spectra

	Incorporating Models

	Media, Presentations, Reports, and Projects

	Summary

	Chapter 12: Afterword

	Appendix A: Utilities for Managing ATADS Data

	Notes

	Data Update Process

	Index

index-44_1.jpg
In [75]:
out[75]:

df

col1 col2

ri
r2
r3

In [76]:
In [77]:
out[77]:

col1
col2

1
2
s

a
b
c

r = df.loc['r2']
o

2
b

Name: r2, dtype: object

In [80]:

In [83]:
out[83]:

coll
col2

s = df.iloc[1]
s

2
b

Name: r2, dtype: object

len(s)

out[84]:

list(s)

out[85]:

25 °b%]

Using .loc[] and label

Using .iloc[] with index

Use len() and list()
to get summaries

index-43_1.jpg
In [123]:

In [124]:
out[124]:

ri a
r2 b
r3 c

=df.col2

1 e=df['col2’]

e

Name: col2, dtype: object

In [125]:
out[125]:

71 a
r2 b
r3 @

7

Name: col2, dtype: object

In [126]:
out[126]:

In [127]:
out[127]:

In [128]:
out[128]:

In [130]:
out[130]:

list(e)

[*a’, 'b", ']

list(f)

[a ‘b, c']

type(e)
pandas.core.series.Series

type(f)
pandas.core.series.Series

index-192_1.jpg
INU [Total Ops.] Traffic by Year

index-191_1.jpg
PHX [Total Ops] Traffic by Year

CCEELERE]
PHX Total Ops. Spectrum (Detected Usage Patterns)

oz
Freq (1/day)

index-195_1.png
o
#
"
¥
#

Bulld a model where for 3 years Oshkosh Tly-in traffic adds a2 operations for days 175 - 182

Include a background non-fly-in activity that is a sine function that peaks at level a1

assume years are exactly 52 weeks long (364 days)

import math

using the math libs

def build_oshkosh_model(self,a1, a2):

yf = [0]"364 # build a year of zeros

for i in range(175,182): # set daily ops for a week to a2
Y[= a2

VF = yF*s # replicate to a 5 year span

yb = [a1]*368 # build a year of data background data

for i in range(o,364): # add a sinusoid modulation

Yb(i] = yb[i]*math. sin(3.14%1/364)

¥b = yb*s # replicate to a 5 year span
y_osh = [] # initialize our model output list
for 1 in range(1820): # conbine the fly-in and background ops.

y_osh.append(yf[i] + yb[i])

return y_osh

def update_spectrun(self,airport_list, yr_list, active_variable):

for i in airport_list:

y_vals

self.build_oshkosh_model(100,1500) # Testing a1-100 and a2-1500 conba

index-193_1.jpg

index-52_1.jpg
yvals

e Q+i0 Bxe B
Time series using Y-Values
| A Legend
—— e
(Do P
2 £ ;s 35 I <

index-198_1.jpg
& earthobservatory.nasagov/images/9603/fires-ar oke-in-alaska

J-heavy -

May 27 12:00:00, 2002 & opec

Heavy smoke coming from forest fires around Fairbanks, Alaska, has drifted south and
appears to be lined up with the clouds at the bottom of the image. The fire just right of
center is the MP 78 Elliott Highway Fire, and to its east is the West Fork Chena Fire. Both
of the fires continue to spread, crossing rivers and roads, and threatening structures. This
image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on
the Terra sateliite on May 27, 2002

index-49_1.jpg
B
Name e sz Vale ,|
 my_figs atads_figures 1 atads_figures object of atads_figures mdule
> active apts 1ist 1P i
> add_airport_trace method 1 method object s
> add_black_border method 1 method object B
> add_eqn_str method 1 mathod object &
> add_smooth_trace sechod 1 method object &
> ‘add_vatermark method 1 mathod object E
> apt_files fres 539 ['ABE.cov', “ABL.csv’, "ABQ.csv', ABY.csv', "ACK.c
> apt_root_dir str 10 ./APT_CSV/ B
> df Dataframe (365, 37) Column names: date, facility, state, reglon, ddso,
\ > df active apts st 3 piix
{ > ¢ atrport unique List 539 [ABE", “ABI', “ABQ’, ABY', 'ACK', ACT', ‘ACY',
> df count. int 10 C
(> oo Dataframe (365, 37) Column names: date, facility, state, region, ddso,
> df years unique List 2 [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 20
> dfyrist set 1021}
> draw_poly sethod 1 method object
> get_airport data method 1 method abject
> get_apt_Linear_equation_string method 1 method object
> get_apt_quadratic_equation_string sethod 1 method object
5 oot nony ethod 1 mothod ahiect

SoveandGose | | Cose

index-196_1.jpg
o0g

ol

o4

02

0.05

o1

015

02

025

03

035

04

045

0.

o4l

02

Freq: 0.003
Period (d

0.05

o1

015

02

025
Freq (1/day)

03

035

04

0.45

index-1_1.png
Build and Deploy a Complete
Dashboard with Pythan

Padraig Houlahan

index-55_1.png
import pandas as pd
import plotly.graph_objects as go

import plotly.io as io
io.renderers. default="browser"
from plotly.offline import plot

class my_chart:
def __init_(self, x,y):

d = {"xvals':x, 'yvals':y}
self.df = pd.DataFrame(d) # build dataframe from dictionary
self.fig = go.Figure()

self.active_variable="yvals’

self.title_str='Time series for Y-Values'

self.fig.add_trace(go.Scatter (x=self.df .xvals, y=self.df.yvals,
mode="lines+markers’, name="'df yvals',showlegend=True))

self.add_titles()

plot(self. fig)

def add_titles(self):
self.fig.update_layout(
title=self.title_str,
font=dict(family="sans serif",size=14,color
xaxis_title="Years", yaxis_title=self.active_variable,
legend_title="Legend")

index-54_1.jpg
dmport pandas as pd
inport plotly.graph_objects as go

import plotly.io as io # spyder help
io.renderers.default="browser"
from plotly.offline import plot

x = [1,2,3,8,5]
y = [2,2,3,4,4]

d = {"xvals'ix, ‘yvals'iy}
4f = pd.DataFrane(d) # build datafrome from dictionary

def add_titles(figo,title_str,active_variable): # add title
Figo. update_layout(
titlestitle str,
font=dict(family="sans serif",size=14,color="8lue
xaxis_title="Years", yaxis_title=active_variable,
legend_title="Legend”)

def add_border (Figo): # add border
71g0. update_layout(shapes=[go. layout. Shape(

rect’,

xref="paper’, yref="paper’,

¥0m0., you0., X1-1.0, Y1-1.0

opacitys.s, ine={ 'width

*black'})])

def add_watermark(figo): # add annotation/watermark
Fig0..add_annotation(

per”,yrefa"paper”,

x=0, y=0,

texta"[Demo Project]”,

fontadict(family="sans serif,sizes10,color="LightslateGray"),

showarrowsFalse, yshift=10)

def add_year_block_colors(figo,year_min, year_max): # color code x intervals
for y in range(int(year_min), int(year_nax)
if (y%2) = 0:
1g0.add_vrect(x0my, x1=y+l,
row="all", col=1,
fillcolor="mistyrose”, opacity=0.4, line width=0)

fig = go.Figure() # build the figure

fig.add_trace(go.Scatter(

=df.xvals, y=df.yvals,
modex="1inessmarkers', name='df yvals', sholegend=True))

add_border (fig)
add_watermark(fig)

add_titles(fig, '‘Tine series for Y-Values','yvals')
{_year_block_colors(fig,x[0],x[4])

plot(fig)

index-199_1.jpg
FAI [Total Ops.] Traffic by Year

index-46_1.jpg
df

out[2]:

age name pet
ri 22 Art horse
r2 12 Mary cat
r3 63 Ken dog

r2 13 Tim goldfish

df.iloc[[1,3],[0,2]]
out[12]:

age pet
r2 12 cat
r2 13 goldfish

Our dataframe

Row and col specifiers can be lists

index-206_1.jpg
ARARRARRRRFRARFARRBARRRARRRRARFRARFRBARRRARARRRRBRFRFBARRRRARABRARRRIRS
#

Load the Chrome driver

#
e

driver = webdriver.Chrome(options=options)
#driver = webdriver.Chrome()
get web page

S
#

Activate the driver

#
e

driver.get(urlpage)

HRBBBBBHBBERBBRRBBBBRHBBEHBBHR BB BHBHRBRRBBERBBBRBBBBHRBBER BB BB RS
#

Wait for the driver to open and load the target page in a browser

#
e e S e e e s e e e

time.sleep(30)

index-45_1.png
Our dataframe

out[2]:

age name pet
rio22 Art horse
r2 12 Mary cat
r3 63 Ken dog
r2 13 Tim goldfish
df.iloc[1,1] # Extract cell row 2 col 2
out[3]: 'Mary'
res = df.iloc[0:2,1] # Extract cells from rows 1 and 2
res # that are in col 2
out[7]:
r1 Art
r2 Mary
Name: name, dtype: object
type(res)
Out[8]: pandas.core.series.Series # A1 col result is returned as a Series
res = df.iloc[0:2,1:3] # Extract cells from rows 1 and 2
res # that are also in cols 2 and 3
out[10]:

name pet

r1 Art horse
r2 Mary cat

type(res)
Out[11]: pandas.core.frame.DataFrame # Multi col result is a Dataframe

index-205_1.png
HABBRRRAR BB BERA BB RBRERRR BB BBRRRBF BB BRRBRRBBERRRA BB RRRAHR BB RHR BB RBRE
#

Load libraries

#
s

from selenium import webdriver
import time
from selenium.webdriver.common.by import By

I
#

USER SETTING

#
]

do_year = "2000"

HRRBRHRBRRBBRBERBB BB RERBR BB BB BB BB R BRR BB AR BRRRRRB BB RRR BB BB RRBRRBRRRY
#

Set the target page URL

#

R S R R R R R

urlpage = 'https://aspm.faa.gov/opsnet/sys/airport.asp
print(urlpage)

I
#

Tell Chrome where to save downloaded data

#
e

options = webdriver.ChromeOptions()

: /windows /Users/pjhmx/Desktop/",
"download.prompt_for_download": False

}

options.add_experimental option("prefs”, profile)

index-48_1.jpg
e G e e P Gt s s ot Vw1
Amae ool

© e X (K] st X i X i X sy X i X

btk et et 1, ot
o e Ty eprt st ok

20 2 ke)

L7 roptom e e -1,
0.
HhATe)
s s b 10,
TamiC ot

b o)

" Ao b,
paretetil
P
X o i oatrtionsd)

e e
R -

e S o

LR
R R b e Lt

index-47_1.jpg
out[37]:

age name pet
ri 22 Art horse
r2 12 Mary cat
r3 63 Ken dog

r2 13 Tim goldfish

f = (df.age > 20)

f

out[42]:

r1 True
r2 False
r3 True
r2 False

Name: age, dtype: bool

g = (df.pet == 'goldfish')

df[f | g]
out[4e]:

age name pet
r1 22 Art horse
r3 63 Ken dog

r2 13 Tim goldfish

df[f]g].name

out[41]:

r1 Art
r3 Ken
r2 Tim

Name: name, dtype: object

%

#

select by age
The filter is a boolean series

that identifies rows which satisfy
the filter's condition

Find goldfish owners

Find older than 20 OR goldfish owners

Get the owner names

cover_image.jpg
Prototyping
Python

Dashboards for
Scientists and

index-178_2.jpg
Console Sources Network Performance Memory Application Security Lighthouse > ® i
= Stles Computed Layout Eventlisteners DOM Breakpoints Properies 3>

index-180_1.jpg
Pesection id="block-36" class="widget widget
block™> i= ¢/section>
P csection 1d-"block-46" class="widget widget
block™> w= ¢/section
P csection 1d="block-60" class="widget widget
_block widget_text™> .= ¢/section
P csection ide"block-56" class="widget widget
_block*™: >& (Iucumn
_block™ - -0 i

| Py u---ua-u- o Ve oy —————

L&

articl style.css?v.20230028:85

«, aside, details, figcaption,

figure, footer, header, matn,

wenu, nav, section, summary {
isplay: block;

zing: inherit;
Sex-giztas: fahendes

» font-size

netgnt

» Line-hesght

¥ sargin-bottom
overflow-wrap

» padding-top
text-size-adjust

idth

16px

$1.2344px

28px

1.6px

break-word
© 28px

100%

295.031px

index-179_1.jpg
€ 9 C & avopsinsightcom/wordpress/

O .

. I

et Dashboard

Notes and Docs

saciontblock ST widgetwidge
*block

oMk v et

index-181_1.jpg
Ve NAN s wN R

Customizing

Additional CSS

.widget {
padding-top: ©.0en
margin-bottom: ©.lem;
border-top: 0;
background-color: #fff;

}

Published

index-180_2.jpg
b nl e S

~ Styles Computed Layout EventListe
Fiter | shov .cls +, G B 2

element.style {

}

widget { wordpress/:145
adding-top: @em;
argin-bottom: @.lem;
border-top: b 8;
background-color: [|#fff;

} &

@media screen and (min-width:

index-186_1.jpg
GON [Total Ops.] Traffic by Year

index-185_1.jpg
JFK:LAX:DEN [(itin.) Air Carrier] Traffic by Year

index-188_1.jpg
e e+ oExa @
FLG [VER (itin.) Total] Traffic by Year

[potssis

201055 201965
Years

index-187_1.jpg
OSH [VFR (itin.) Total] Traffic by Year

OSH [VER (itin.) Total] Traffic by Year

a&j

G e+ oaxs @

Vi total

20185 2019355

1
20106

200965
Years

index-189_1.jpg
FLG VFR (itin.) Total Spectrum (Detected Usage Patterns)

EESEEECE]

508
Freq (1/day)

OSH Total Ops. Spectrum (Detected Usage Patterns)

et oExs @

3
Freq (1/day)

index-33_1.jpg
A = ['cat
A

',True, 5, 8]

Create list A

out[27]: ['cat', True, 5, 8]

Al2

out[28]: 5

len(A)

out[29]: 4

A[e] = 'dog’

A
out[31]:

A.append(
A
out[33]:

‘dog', True,
"house")

‘dog', True,

B = ['plane’]

C=A+8B
out[36]:

C.pop(2)

out[38]: 5

c
out[39]:

‘dog', True,

‘dog', True,

C.insert(1,'car')

c
out[41]:

S5,

5,

S,

8,

See 3rd element

Get the length of A

Change the first element
8]

Add an element to A
8, ‘house']

Create list B

Join list A and B
8, ‘house', ‘plane’]

Remove the third element

‘house’, 'plane’]

Insert an element at position 2

'dog', 'car', True, 8, 'house', 'plane']

index-32_1.jpg
s = {5,4,4,3,3,1,2} # create a set

s
out[2]: {1, 2, 3, 4, 5} # only unique elements used

my_list = ['cat’, "dog’, ‘mouse’, 'dog'] # create a list

my_list

out[s]: ['cat’, ‘dog’, ‘mouse’, 'dog'] # all elements used

my_set = set(my_list) # create a set from a list

my_set

out[7]: {cat’, 'dog’, ‘mouse’} # only unique elements kept

my_list2 = list(my_set) # create a list from set

my_list2

out[9]: ['cat’, 'dog’, ‘mouse'] # now we have a list of unique elements
my_set.add(" cow') # add a new item to a set

my_set

out[11]: {'cat’, 'cow', 'dog', ‘mouse'}

index-36_1.jpg
my_class = {"room":214, "students":20, "title": "Physics"}
my_class
out[17]: {'room': 214, 'students': 20, 'title': 'Physics'}

k = my_class.keys()

<

out[19]: dict_keys(['room’, ‘students', ‘title'])

list(k)
out[20]: [‘room', ‘students’, 'title']

v = my_class.values()

out[22]: dict_values([214, 20, 'Physics'])

list(v)
out[23]: [214, 20, 'Physics']

list(v)[2]
out[25]: 'Physics’

index-35_1.jpg
my_class "room"”:214, "students": 20, "title": "Physics"}

my_class
out[3]: {'room': 214, 'students': 2@, 'title': 'Physics'}

my_class.keys()
out[4]: dict_keys(['room', 'students', ‘title'])

my_class.values()
out[5]: dict_values([214, 20, 'Physics’])

k = my_class.keys()

out[7]: dict_keys(['room', 'students’, ‘title'])

type (k)
out[8]: dict_keys

k[e]
Traceback (most recent call last):

Cell In[9], line 1
k[e]

TypeError: 'dict keys' object is not subscriptable

index-38_1.png
In [100]: import pandas as pd

: # make a dataframe using lists

.t A= [1,2,3]
:B=7['a','b','c']

..t df = pd.DataFrame(A,B)
ceat df
out[100]:

N0 oo
W e

index-37_1.jpg
d={"'a":1, ‘cat’:5, 4:10}
s = pd.series(d)

*

Create a dictionary
Create series s from dictionary d

#

t = 2%s

*

Multiply all series values by 2

u

tes # Add series s and t together

s # Show s
out[59]:

a 1

cat 3

a 10

dtype: intea

t # Show t
out[6e]:

a 2

cat 10

a 20

dtype: intea

u # Show u
out[61]:

a 3

cat 18

a 30

dtype: intes|

list(u.values) # List the values for series u
out[66]: [3, 15, 30]

list(u.index)
out[67]: ['a', 'cat', 4]

*

List the indexes for series u

index-39_2.jpg
...: df = pd.DataFrame(d,index=['r1','r2"','r3"'])

et
out[107]:

coll col2

ri 1 a

r2 2 b

r3 3 C

index-39_1.png
In [104]:

:d={"coll':A, 'col2':B}

...t df = pd.DataFrame(d)
oot df
out[104]:
coll col2
] 1 a
1 2 b
2 3 C

index-41_1.jpg
dfe = pd.DataFrame(A,B)
df1 = pd.pataFrame(d)

dfe.index
Oout[162]: Index(['a', 'b', 'c'], dtype='object')

df1.index
out[163]: RangeIndex(start=e, stop=3, step=1)

list(dfe.index)
out[164]: ['a‘, ‘b, 'c']
list(df1.index)
out[165]: [e, 1, 2]

list(df1.columns)
out[166]: ['coll’, 'col2']

list(dfe.columns)
out[167]: [e] |

index-111_1.jpg
/* ROW 2 year/apt selection and time series chart

.parameter_selections {
background: #aaaaff;
grid-column-start: 1;
grid-column-end: 3;
grid-row-start: 2;
grid-row-end: 3;
padding: 3%;
padding-right: 5%;
color: #444444;
font-size: 105%;
border-radius: 1@px;
border:1px solid white;

}

.chart{

background: #aaaaff;
grid-column-start: 3;
grid-column-end: 7;
grid-row-start: 2;
grid-row-end: 3;
border-radius: 10px;
border:1px solid white;
overflow: hidden;
padding: 1%;

index-40_1.png
df
11

pd.DataFrame(A,B)
df.columns

: df
12

pd.DataFrame(d)
df.columns

In [150]: 11
out[150]: RangeIndex(start=e0, stop=1, step=1)

In [151]: 12
out[151]: Index(['coll’, ‘col2'], dtype='object")

In [152]: len(l1)
out[152]: 1

In [153]: len(l2)
out[153]: 2

index-110_1.png
/* ROW 1 - Banner */

~banner {
max-width: 100%;
max-height: auto;
grid-column-start: 1;
grid-column-end: 7;
grid-row-start: 1;
grid-rou-end: 2;
background: #babs29;
padding: 2%;
color: #1111fF;
align-content: center;
font-size: 100%;
border-radius: 10px;
border:1px solid white;

index-115_1.jpg
app.layout = html.Div(
classha
children=[
configure_settings(),
my_layout .chart(),
my_layout. instructions(),
my_layout.banner(),
my_layout.mchart(),
my_layout .uchart(),
my_layout..spectrum_instructions(),
my_layout. spectrum_chart()

content”,

n

@app. callback(
output (" “figure™),
Output ("wchart” “Figure"),
output("scatter_plot”, "figure"),
Output("spectrum”, “Figure"),
Tnput(*airports”, “value"),
Input("years” “value"),
Input(“use_variable”, "value"),
Input("smoothing”, “value"),
Tnput (*show_raw”, “value"),
Input(*show_poly”, “value")
)

def update_dashboard(airport_list, yr_list, active_variable, smoothing,show_raw,show_poly):
my_figs.get_airport_data(airport_list,yr_list)
my_figs.update_wchart(airport_list, yr_list, active _variable)
my_figs.update_mchart(airport_list, yr_list, active_variable)
my_figs.update_mainchart(airport_list, yr_list, active variable, smoothing,show_raw,show_poly)
my_figs.update_spectrun(airport_list, yr_list, active variable)
return my figs.fig monthly, my figs.fig weekly, my figs.fig main, my figs.fig spectrum

index-114_1.jpg
< C O 1270018050 ae*x 0@

index-118_1.jpg
def banner(self):

return

html.Div(
className="banner",

childre;

html.H1("Airport Operations Display Module "),

html.P(*This module can be used to explore airport \
activity as reported by the FAA's ATADS database.”),
D

def instructions(self):

return

html.Div(

className="instructions",
children=[

htnl.P("Use the Airport drop-down menu to find the airport(s) of interest.”),
html.p("Use the Variable menu to select the parameter of interest. "),
htnl.p("Explore trends and reduce clutter using the polynomial \
smoothing options”),
html.P("Use the mouse and scroll button to explore the charts \
with the Zoom, Pan, and Download buttons etc. ")

D
def spectrun_instructions(self):
return html.Div(
className="spectrun_instructions”,
children:

html.P("The spectrun of a time series can show cyclical usage patterns.”),
html.p("A weekly pattern would have a frequency of f = 1/7 = 0.14 per day"),
html.P("and a period P = 7 days"),

html.p("Annual airshows (e.g. OSH) show strong signals near P = 360 days"),
html.P("Use the mouse to explore the chart."),
html.p("The plots have been scaled to lie in [0,1]
html.Br(),

3y

index-117_1.jpg
.banner {
max-width: 100%;
max-height: auto;
grid-column-start: 1;
grid-column-end: 7;
grid-row-start: 1;
grid-row-end: 2;
background: #babg29;
padding: 2%;
color: #1111ff;
align-content: center;
font-size: 100%;
border-radius: 10px;
border:1px solid white;

}

.instructions {
background: #eeaaff;
grid-column-start: 1;
grid-column-end: 3;
grid-row-start: 3;
grid-row-end: 4;
border-radius: 10px;
border:1px solid white;
overflow: hidden;
padding: 1%;

}

.spectrum_instructions {
background: #aaddbb;
grid-column-start: 1;
grid-column-end: 3;
grid-row-start: 4;
grid-row-end: 5;
border-radius: 10px;
border:1px solid white;
overflow: hidden;
padding: 1%;

index-207_1.png
HRARRRRREREARRARRARRR R RARRRRAR AR AR ARRBRAB G AR AR RARRARG ARG BRI RRRRR O
#

Set BUTTON:REPORT parameters

#

B e P T e e e T T

mylink=driver.find_element (By.ID,"b_repOpt")
print(mylink)
mylink.click()

driver. find_element(By.CSS_SELECTOR, "input[type="radio’][value="msexcel']").click()
driver. find_element(By.NAME, 'nosubtot ') .click()

driver. find_element(By.NAME, 'ifr’).click()

driver. find_element(By .NAME, 'vfr®).click()

T T T T e e T
#

Set BUTTON:DATE Parameters

#

T T T e P T e T R e T

mylink=driver. find_element(By.1ID,"b_dSelector™)
print(mylink)
mylink.click()

driver. find_element(By. 1D, ‘RangeOption").click()

driver. find_element (By.XPATH,"//select[@name="fm_r']/option[text()="Jan"]").click()
driver. find_element (By.XPATH, *//select [@name="fy_r']/option[text()="+do_year+"]").click()
driver. find_element(By.XPATH,"//select[@name="fd_r']/option[text()="1"1").click()

driver. find_element (By.XPATH,"//select[@name="tm_r']/option[text()="Dec’]").click()
driver. find_element (By.XPATH, "//select[@name="ty_r']/option[text()="+do_years+"]").click()
driver.find_element(By.XPATH,"//select[@name="td r']/option[text()="31"]1").click()

index-209_1.jpg
HERBAABBABERBRRRBBH B AR BB BB BBRRARRBRH BB H BB BB B AR BB BB BHHBAR BB BB R0 0000
#

Build data request

#
g e et

js = "addF1d(’DATE')"
driver.execute_script(js)
js = "addF1d('LOCID')"

driver.execute_script(js)
js = "addF1d(’STATE')"

driver.execute_script(js)
js = "addF1d('REGION')"

driver.execute_script(js)
js = "addF1d(’'DDSO_SA')"
driver.execute_script(js)
js = "addF1d('CLASS_ID')"
driver.execute_script(js)

HESRBHRRRRBRRRERBRRBRRRRER BB R BB BB BB RBDRRRH R AR BR R BB ERBRR BB R R BB B BB BB RRY
#

Submit data request

#

HERRFHRER BB H B EA R B HER BB EHR B BRI R BB R B E R R AR B HA BB E B ER BB R BB E R BB R SRR
mylink=driver.find_element(By.ID,"b_Submit")

print(mylink)

mylink.click()

index-208_1.jpg
FHABERHABBERBFRBRFBRRRR AR BRRRRRBARBRRAF BB RF BB B AR BRRBBRR AR B BB BB R R
#

Set BUTTON:FACILITIES parameters

#

T R

mylink=driver.find_element(By.ID,"b_locOpt")
print(mylink)
mylink.click()

R R R
#

Set BUTTON:FILTERS parameters

#
HEFHHRRRRRRRRRRRRBRBRRRRRBBHBEHHEHH R R R R R R R R BB R BB R

mylink=driver.find_element(By.ID, "b_addOpt")
print(mylink)
mylink.click()

R
#

Set BUTTON:GROUP parameters
mylink=driver.find_element(By.ID,"b_groupSelector™)
print(mylink)
mylink.click()

index-210_2.jpg
HHHEHHH R R

#
skip from top to the end of the thead block
#

def skip_through_end_of_thead_block(self):
while (True):
line = self.f xls.readline()
if '/thead>’ in line:
break

print("leading headers skipped")
return

index-210_1.jpg
import re
HEHHHHHRHERREBRRE AR H RSB R SR H SR SRR H R B H AR AR SRR SRR SRR SR SRR SRR R0
Convert a downloaded ATADS file from xls format to CSV

Non-data blocks are skipped, then the data rows are processed

Unwanted commas are removed, and an unwanted space removed so
airport 3 letter ids are recovered

BHE SRR ®R

R R

class my_xls2csv:
def __init_(self):

self.f xls
self.f_csv
self.in_data_table = False
self.year_list = [2014]
self.year = 2014

self.res

index-212_1.jpg
SRR R R R R
#

Convert one year of ATADS xls data

#

def do_atads_year(self):

print (‘Doing year: ',str(self.year))
self.xls_file = 'ATADS_XLS/atads' + str(self.year) + '.xls"
self.csv_file = 'ATADS CSV/atads' + str(self.year) + '.csv'

print (“Converting “, self.xls_file, " to *, self.csv_file)
self.f xls = open(self.xls file,'r")
self.f_csv = open(self.csv_file,'a")

self.skip_through_end of thead_block()

print(“reading data table...\n")
self.in_data_table=True # Table start

while self.in_data_table:
self.read_XL_row()

if self.in_data_table:
self.f_csv.urite(self.row_str)
else:
break

self.f_csv.close()
self.f_xls.close()

index-211_1.jpg
Raitudaiedudoideduiodudiiodiditodiditdudite bt bbb dedtedoddedobdedobodedodeduduididiiotdit bt bt dd bbbt bt doddodnied
Process a row of the XL table which is multi-line of the form

<t
<td> </td>

</tr>
Clean data by removing unwanted conmas and fixing Airport I0 field

by removing extra space ('ABC ' -> 'ABC')

and by erasing <*> entries

def read XL_rou(self,
do_read = True
stro
while (do_read):
Line = self.f_xls.readline()
line = line.strip()
if "table_footer_lead' in line: # End of data table
self.in_data_table-False

elif "<tr" in line: # XL row start
stro = ™

elif "ctd " in line:

cell start

lineo = re.sub(",","",line) # remove conmas
change’ABC " to "ABC’
Linel = re.sub(r* ([A-Z}{3})([1)",r*\1°, lineo, count=1)
sremove <> tags
stro = stro + *, + re.sub(*<.*2>", ", line1)
elif "¢/tr" in line: # End of XL row found

do_read = False

self.row str = stro[1:]+'\n" # also cleanup leading *,

index-213_1.jpg
import pandas as pd
import os
from os.path import isfile, join

#
For each year's csv file, and for each apt, apppend the apt's data to the APT/apt
version

names=[
“date” “facility”,
“class”, “ifri_carrier
“ifri_total", "vfri_carrier

tate”, region”, "ddso”,
i_taxi”,"ifri_general”,"ifri_mil",
“taxi”,"vfri_general”,"vfri_mil",

"vfri_total”, "i_carrier”, _taxi”, "i_general”, "i_mil",
"i_total", "loc_civ", loc_mil", "loc_total”, “total_ops"
1

def get_csv_year files():
The path for listing items
path = './ATADS_CSV/"

The list of items
csv_files = os.listdir(path)
return(csv_files)

year_file

et_csv_year files()

index-212_2.jpg
x2c = my_xls2csv()

for year in x2c.year_list:
X2c.year = year

x2c.do atads year()

index-214_1.png
for yrf in year_files:
print (yrf)

df = pd.read_csv(open("./ATADS_CSV/'+yrf))
df.columns = names

apt_list = df[df.columns[1]].unique()
for apt in apt_list:
apt_csv = './APT_CSV/'+apt+'.csv'

dfa = df.loc[df[facility'] == apt]

dfa.to_csv(apt_csv,mode='a’,index=False, header=False)

index-100_1.png
def update_mainchart(self,airport_list, yr_list, active variable, smoothing,show_raw,show_poly):

var_str = self.var_dict.get(active_variable)
self.eqn =

title_str
title_stro

.join(airport_list)
title_stro + ' ['+ var_str+']"

Traffic by vear

year_min
year_max

float(min(yr_list))
float (max(yr_list)+1.)

self.fig_main = go.Figure()

apt_count =

for apt in airport_list:
apt_count = apt_count+1

self.df_apt = self.df[self.df[facility'].isin({apt})]

if show_raw == '1
self.add_airport_trace(apt, active_variable)

if smoothing != '@':
self.add_smooth_trace(apt, smoothing, active_variable)

if show_poly 1= ‘0 and apt_count < 3:
p = int(show_poly)
self.add_poly_trace_and_eqnstr(p,apt,year_min, year_max,active_variable)

self.add_waternark()
self.fig_main.update(layout_xaxis_range = [year s
self.add_titles(title_stro,active_variable)
self.add_border()
self.year_block_colors(year_min, year_max)
self.fig main.update layout(hovermode='x unified')

in,year_max])

index-102_1.jpg
PHX [Total Ops.] Traffic by Year

index-101_1.png
def add_airport_trace(self,apt,active_variable):
self.fig_main.add_trace(go.Scatter(name=apt,

=self.df_apt[ydecimal'],

elf.df_apt[active_variable],

connectgaps = False,

text=self.df_apt['ymd'],

hovertemplate=

"%{text}<brocors" +

" %{y)}<brs>" +

“<extra></extra>"

)

def add_smooth_trace(self,apt, smoothing,active_variable):
window=int(smoothing)
self.df_apt['smth'] = self.df apt[active_variable].rolling(window).mean()
self.df_apt['smth'] = self.df apt['smth'].shift(-window//2)
self.fig_main.add_trace(go.Scatter(name=apt,

elf.df _apt['ydecimal'],

y=self.df_apt['smth']))

index-105_1.png
def

def

def

def

add_poly_trace_and_eqnstr(self,p,apt,year_min,year_max,active_variable):
eqn_str=""

self.df_vals = self.df_apt[self.df_apt[ydecimal'].between(year_min, year_max)]
coefs = self.get_poly coeffs(apt,p,year_min,year_max,active_variable)
self.draw_poly(apt, coefs)

if p

eqn_str = eqn_str + self.get_apt_linear_equation_string(apt,coefs,year_min)

ifp

eqn_str = eqn_str + self.get_apt_quadratic_equation_string(apt,coefs,year_min)

self.eqn = self.eqn + eqn_str
self.add_eqn_str()

get_poly_coeffs(self,apt,poly_order,year_min,year_max,active_variable):
p = int(poly_order)

coefs = poly.polyfit(self.df_vals['ydecinal'].values, self.df_vals[active variable].values,p)
return coefs

draw_poly(self,apt, coefs):
Ffit = poly.polyval(self.df_vals|'ydecinal'], coefs)
self.fig_main.add_trace(go.Scatter (name=apt,
x=self.df_vals[ydecimal'],
y=Ffit))

add_eqn_str(self):
self.fig_main.add_annotation(
elf.eqn,

‘paper”, yref="paper",

index-103_1.jpg
def add_watermark(self):
self.fig_main.add_annotation(
xref="paper", yref="paper",

[AvoPsinsight.com]”,

font=dict(family="sans serif", size=10, color="LightslateGray"),
showarrow=False,

yshift=10)

def year_block_colors(self,year_min, year_max
for y in range(int(year_min),int(year_max)):
if (y % 2) == o:
self.fig main.add_vrect(
x0=y,
X1=y+1,
row="all",
col=1,
fillcolor="mistyrose",
opacity=0.4,
line_width=0)

def add_titles(self,title str,active variable):
self.fig_main.update_layout(
title=title_str,
font=dict(family="sans serif", size=14, color="Blue"),
xaxis_title="vears",
yaxis_title=active_variable,
legend_title="Airport",

)

def add_border(self):
self.fig_main.update_layout(shapes=[go.layout.shape(

xref="paper’, yref='paper’,

X0=0., y0=0.,x1=1.0, y1=1.0,

opacity=.4,

line={'width': 1, ‘color’: 'black'}
)M

index-109_1.png
.content {

background: #555555;

display: grid;

grid-template-columns: 1fr ifr 1fr 1fr 1fr 1fr;

grid-template-rows: 150px 480px 150px 480px 500pX 200px;
grid-gap: 1%;

padding: 1%;

border-radius: 10px;

overflow: hidden;

}

index-107_1.png
det get_apt_linear_equatlon_string(selt,apt,c,year_min):
€00 = c[0] + year_min*c[1]
c11 = c[1]

"{
"{
apt_str = " [" +apt +": Ops =
if i1 <o
signil
a11="{:.4f}" . format(-c11)
eqn_str = eqn_str + ' + '+ cll + ' * t]
else:
signll = '+ °

200
a1l

1f}".format(c00)
1f}".format(c11)

apt_str = apt_str + 200 + signll +all + ' = t] '
return apt_str

def get_apt_quadratic_equation_string(self,apt,c,year_min):
apt_str = " [* +apt +": Ops = "
0 = year_min

c[0] + c[1]*t0 + c[2]*t0*t0

(1] + 2*c[2]*t0

c[2]

200="(:.1f}" . format(c00)
a11="{:.1f}".format(c11)
222="{:.1f}" . format (c22)

<00
c11
c22

if <11 < o:
signll
{:.16}". format (-c11)

apt_str = apt_str + a00 + signll +all + ' * t ' + sign22 + a22 + ' ¥ t * t]
return apt_str

index-10_1.jpg

index-141_1.jpg
$ tree -L 3 hwenv/

hwenv/

F— _pycache__

| F— hello.cpython-311.pyc
| L— wsgi.cpython-311.pyc
— app.sock

F— bin

T

Activate.ps1
— activate
F— activate.csh
activate.fish
flask
gunicorn
pip
pip3
pip3.11
python -> python3
python3 -> /usr/bin/python3
python3.11 -> python3
uwsgi
wheel
F— hello.py
— include
L— python3.11
— 1ib
L— python3.11

L— site-packages
— 1ib64 -> 1ib
— pyvenv.cfg
L— wsgi.py

[TTTTTTTTT]

9 directories, 20 files

index-140_1.png
sudo apt-get update
sudo apt install python3-dev python3-pip python3-venv

python3 -m venv hwenv # Create a virtual environment called hwenv
source hwenv/bin/activate

(hwenv)pip install flask gunicorn
(hwenv)pip install wheel

index-142_2.png
$ python hello.py

* Serving Flask app ‘hello’

* Debug mode: off

WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Running on http://127.0.0.1:5000

Press CTRL+C to quit

index-142_1.png
from flask import Flask
app = Flask(_name_)

@app.route('/")

def hello():
return("Hello orld!")

if _name_ == '_main_':
app.run()

index-143_2.jpg
€& > C A Notsecure | 146.190.48.240:5000
™ Gmail @B YouTube B¥ Maps Stellarium Web Onl

Hello World!

index-143_1.png
$ python hello.py

* Serving Flask app ‘hello’

* Debug mode: on

WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Running on all addresses (.0.0.0)

* Running on http://127.0.0.1:5000

* Running on http://146.190.48.240:5000

Press CTRL+C to quit

* Restarting with stat

* Debugger is active!

* Debugger PIN: 250-959-470

index-144_2.png
$ cat wsgi.py
from hello import app

if __name__ __main__":

app.run(;

index-144_1.png
$ flask --app hello run --host=0.0.0.0 --port=5001

* Serving Flask app 'hello’

* Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment.

Use a production WSGI server instead.

* Running on all addresses (0.0.0.0)

* Running on http://127.0.0.1:5001

* Running on http://146.190.48.240:5001

Press CTRL+C to quit

index-135_1.jpg
WW{'MWW WM’W M =

index-134_1.png
def get_scales(self,apt,y0,y1,active_variable):
‘window=10
self.df_fac['s09'] = self.df_fac[active_variable].rolling(window).mean()
self.df fac['s00'] = self.df_fac['s09'].shift(-window//2)
window=30
self.df_fac['s31']
self.df_fac['s31']

self.df_fac[active_variable].rolling(window).mean()
self.df_fac['s31'].shift(-window//2)

stdves
stdva1
streo

self.df_fac[active_variable] - self.df_fac['se9']).std()
self.df_fac['s31']).std()
-1F)" Format (stdvao)

“{
str31 = "{(:.1F)" . format(stdv31)

Stat_str = " [* +apt +": STOV@9= " + str09 + ' STOV31= ' + str3l + ']'
return stat_str
def update mainchart(...,show_scales): # add the show_scales parameter

for i in airport_list:

if show_scales == "1°:
eqn_str = eqn_str + self.get_scales(i,year_min, year_max,active_variable)
self.eqn = self.eqn + eqn_str

index-135_2.jpg
def radio_show_scales(self):
return dcc.RadioItems(id="show_scales’,
options=[
{'label’: 'No', 'value': '@'},
{'label’: 'ves', ‘value': '1'}

1
value='0’,
labelstyle={"'display’: ‘inline-block'}

index-123_1.png
.monthly chart{
background: #aaaaff;
grid-column-start: 3;
grid-column-end: 5;
grid-row-start: 3;
grid-row-end: 4;
border-radius: 1epx;
border:1px solid white;
overflow: hidden;
padding: 1%;

}

.weekly_chart{
background: #aaaaff;
grid-column-start: 5;
grid-column-end: 7;
grid-row-start: 3;
grid-row-end: 4;
border-radius: 10px;
border:1px solid white;
overflow: hidden;
padding: 1%;

index-124_2.jpg
def spectrum_chart(self):
return html.Div(
className="spectrum_chart",
children=[
dcc.Graph(id="spectrum"),
ip)

index-124_1.jpg
.spectrum_chart{
background: #aaddbb;
grid-column-start: 3;
grid-column-end: 7;
grid-row-start: 4;
grid-row-end: 5;
border-radius: 10px;
border:1px solid white;
overflow: hidden;
padding: 1%;

index-127_1.png
def update_spectrum(self,airport_list, yr_list, active_\

title_stro=':".join(airport_list)
self.Fig_spectrun = go.Figure()

var_str = self.var_dict.get(active_variable)
for 1 in airport_list:

variable):

¥0 = self.df[self.df['facility'].isin({i})]
¥0 = yo[active_variable] - yo[active_variable].mean()

y_vals = yo *

a_vals = np.abs(np.fft.fft(y_vals)) #
len(y_vals) *
np.arange(N)

T=N

freq = n/T

n_oneside = N//2

freql:n_oneside] #
X a_vals[:n_oneside]/n_oneside #
a_vals = a_vals /a_vals.max() *

fa_list[e] = 0.000001 #
self.p_vals = np.reciprocal(fq_list) #

self.fig_spectrun.add_trace(go.Scatter(nam

q_list,

q_list,
custondata = self.p_vals,
hovertenplate=
"Freq.: ¥k{text:0.3f}
" +

set the input array for FFT
get the FFT amplitude array a_vals(]

set scaling parameters and arrays

build list of frequencies
rescale amplitudes
Normalize to [0,1]

avoid divide by zero
build array of periodicities

“Period (days): ¥(customdata:0.1f}" +

"<cextra></extra>”))

self.add_watermark(self. fig_spectrum,’ [AVOPSinsight.con]')

self.add_black_border(self.fig_spectrum)
self.fig_spectrun.update_layout(

titla=title_strd+ * '+ var_str+" Spectrum (Detected Usage Patterns)”,

xaxis_title="Freq (1/day)",
yaxis_title=active_varisble,
legend_title="Airport")

index-124_3.jpg
) Air Carrier Spectrum (Detected Usage Patterns)

Freq (vday)

index-133_1.jpg
def configure_settings():
return html.Div(
classhame="paraneter_selections”,
children=

(8

html. Label(*show Scales’),
my_layout.radio_show_scales()
D

@app. callback(

Input("show_scales”,
)

def update_dashboard(...,show_scales):
my_figs.update_mainchart(. .. ,show_scales)

"value")

add support for show_scales radio button

add callback for show_scales
add show_scales to function arguments

pass show_scales to graph creating routine

index-131_1.jpg
PHX (itin.) Air Carrier] Traffic by Year

index-120_1.jpg
def update_mchart(self,airport_list, yr_list, active variable, smoothing,show_raw,show_poly):
title_stre=":".join(airport_list)

self.fig_monthly = go.Figure()
year_max = [max(yr_list)]
year_str = str(year_max[0])+
var_str = self.var_dict.get(active_variable)
for i in airport_li
self.df Fac = self.df[self.df[facility'].isin({i})]
df_fac_yr = self.df_fac[self.df_fac['year'].isin(year_nax)]
self.fig_monthly.add_trace(go.Box(name=i+': ' +str(year_nax),
X=df_fac_yr["month'],
y=df_fac_yr[active_variable]))

self.add_watermark(self. fig_monthly, " [AVOPSinsight.con]')
self.add_black_border(self.Fig_monthly)

self.fig_monthly.update_layout(
xaxis = dict(
ticknode = ‘array’,
tickvals = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
ticktext = ['3°, 5 Ty Thn SIS,

»'N,'0']))

self.fig_monthly.add_annotation(
[Traffic by month]:

+ var_str,

family="sans serif",
sizes=12,
color="8lack"),

x unified', boxmode="'group')

index-119_1.jpg

index-122_1.jpg
def mchart(self):
return html.Div(

className="monthly_chart",
children=[
dcc.Graph(id="mchart"),
1))
def wchart(self):
return html.Div(

classNam
children=[
dcc.Graph(id="wchart"),

'weekly_chart"”,

1

index-121_1.jpg
def update wchart(self,alrport_list, yr_list, active variable, smoothing,show_raw,show_poly):
title_stre=":".join(airport_list)
self.Fig_weekly = go.Figure()

year_max = [max(yr_list)]

year_str = str(year_max[0])+':"

var_str = self.var_dict.get(active_variable)

for i in airport_list:
self.df fac = self.df[self.df['facility'].isin({i})]
df_fac_yr = self.df_fac[self.df fac['year'].isin(year_max)]

window
df fac = df_fac_yr[active_variable]
df_fac_smth = df_fac.rolling(window).mean()
df fac_smth = df_fac_smth. shift(-window//2)
df diff = df_fac - df_fac_suth
self.fig_weekly.add_trace(go.Box(name=i+": '+str(year_max),
x=df_fac_yr| ‘wdaynun'],
y = df_diff))

self.fig_weekly.update_layout(

xaxis = dict(

ticknode = “array’,

tickvals = [0, 1, 2, 3, 4, 5, 6],

ticktext = ['W',"'Tu’, ‘W', 'Th", 'F', 'sa’,’su']))
self.add_waternark(self.fig_weekly, *[AVOPSinsight.com]")

self. fig_weekly.add_annotation(
ear_stretitle_stro+" [Deviations by weekday]: “+var_str,
", yref="paper",

family="sans serif",size=12,color="
[showarrow=False)

lack”),

self.fig_weekly.update_xaxes(nticks=7)
self.add_black_border(self.fig_weekly)
self.fig weekly.update layout(hovermode='x unified" ,boxmod

group')

index-87_1.jpg

index-78_1.png
MYSQL

> m
B

Flask/GUNICORN

Our App

Web Portal

Unix Services

End User

End User

Eod User

‘Web Browser ‘Web Browser

‘Web Browser

index-91_1.jpg
from dash import dcc
from dash import html

class atads_layout:
def controls(self,df_airport_unique,var_dict,df_years_unique):
return htnl.Div(
parameter_selections”,

self.dropdown_airports(df_airport_unique)
self.dropdown_use_variable(var_dict)
html.Br(),
self.select_years(df_years_unique),
htnl.Label("Smoothing. ..")
self.radio_smoothing(),
htnl.Label('Show Raw Plot..."),
self.radio_show_raw(),
htnl.Label('Polynomial®),
self.radio_show_poly()

n

def chart(self):
return html.Div(
classhan

children=[

dcc.Graph(i

“chart”,

scatter_plot”),

n

def dropdown_airports(self,df_airport_unique):
return dcc.Dropdown(id="airports’, options=[
{'label’: i, 'value': i} for i in df _airport_unique
1, multi=True, value=["PHX"],placeholdes

def dropdown_use_variable(self,var_dict):
return dcc.Dropdown(id="use_variable’,
option
{"1abel’

var_dict[i], 'value':i} for i in var_dict

1, multi=False, value=!

def select_years(self,df_years_unique):
return dcc.Checklist(id="years', options=
{'label': i, value': i} for i in df_years_unique

1,inline=True, value=[2023])

‘Filter by airport...')

_carrier”,placeholder="Filter by variable..

index-89_1.png
import dash
from dash.dependencies import Input, Output
from atads_layout import atads_layout
from atads_figures import atads_figures
from dash import html

app = dash.Dash(_name_)
my_figs = atads_figures()
my_layout = atads_layout()

app. layout = html.Div(

classha

children=[

#configure_settings(),

my_layout. controls(
my_figs.df_airport_unique,
my_figs.var_dict,
my_figs.df_years_unique),

my_layout..chart()

n

@app. callback(
output("scatter_plot”,

content”,

Figure”),

Input(“airports”, value"),
Tnput(“years” value™),
Input(“use_variable”, “value"),
Input(“smoothing”, “value"),
Tnput(”show_raw", “value"),
Tnput(“show_poly”, “value")
)

def update_dashboard(airport_list, yr_list, active_variable, smoothing,show_raw,show_poly):
my_figs.get_airport_data(airport_list,yr_list)
my_figs.update_mainchart(airport_list, yr_list, active_variable, smoothing,show_raw,show_poly)
return my_figs.fig_main

if _name__ == "_main_":

app.run(host="0.0.0.0")

index-167_1.jpg
if hmenu == True:

hub_options = [{'disabled’:False}]

hub_options =[{‘label’: i, ‘value': i} for i in bts.list_of_airports]
else:

hub_options = [{'disabled":True}]

if smenu == True:

segment_options = [{disabled" :False}]

segment_options =[{'label': i, ‘value': i} for i in bts.list_of_segments]
else:

segment_options = [{'disabled’:True}]

if cmenu == True:

carrier_options = [{'disabled’:False}]

carrier_options =[{‘label’: i, ‘value': i} for i in bts.list_of_carriers]
else:

carrier_options = [{'disabled’:True}]

index-166_1.png
if mode ==

bts.mode =

hmenu = True

smenu = False

cmenu = False

bts.hub = hub

bts.get_hub_df()

bts.get_totals_by_month(bts.df_hub)
elif mode == 'S’

bts.mode =

hmenu = True

smenu = True

cmenu = False

bts.segment = connector

bts.get_segnent_df()

bts.get_totals_by_month(bts.df_segment)
elif mode == 'SC

bts.mode = 'SC’

hmenu = True

smenu = True

cmenu = True

bts.segment = connector

bts.carrier = carrier

bts.get_segment_carrier_df()

bts.build_segment_carrier_list()

bts.get_totals_by_month(bts.df_segment_carrier)
elif mode == 'HC'

bts.mode = ‘HC'

hmenu = True

smenu = False

cmenu = True

bts.hub = hub

bts.get_hub_df()

bts.carrier = carrier

bts.get_hub_carrier_df()

bts.build_hub_carrier_list()

bts.get_totals_by_month(bts.df_hub_carrier)
elif mode == 'C'

bts.mode = 'C*

hmenu = False

smenu = False

cmenu = True

bts.carrier = carrier

bts.get_carrier_df()

bts.build_carrier_list()

bts.get_totals_by month(bts.df _carrier)

index-169_1.jpg
def get_totals_by_month(sel,df_in):
res=df_in. groupby(‘NONTH") [['PASSENGERS ", ‘FREIGHT " , "MAIL"]] . sun()
nrows = res.shape[0]
count = list(range(1,nrous+1))
res. insert(@, ‘Month’, count)
self.df_group_by_month = res

htnl.Div(className = ‘hub_table’,
children=[
dcc.Graph(id="sgraph”),
dash_table.DataTable(id="hub_tbl",
Style_header={
*backgroundColor
‘color’: ‘white’
b
export_fornat =
style_data={
“backgroundColor': ‘rgb(5e, 50, 50)°,

*rgb(30, 30, 30),

csv”,

“color’: ‘white®,
“border’: "1px solid blue'}
)
D,
@app. callback(
Output(*hub_tbl", ‘data’),

if mode == "H':
bts. get_totals_by_month(bts.df_hub)
data = bts.df_group_by_month.to_dict("records’)

return ..., data,...

index-9_1.jpg

index-168_1.jpg
def add_barchart_trace(self):

df1 = self.df_selected
self.fig.add_trace(go.Bar(
x=df1["Month'],
y=bts.yvals,

marker=dict(
color="blue"
)
showlegend=False
))

def do_bar_chart(self,col):

self.fig = go.Figure()
self.draw_frame()
self.get_yvals()
self.add_barchart_trace()

if self.show_trend == "ON':
self.get_poly(1)
self.get_linear_equation_string(1)
self.add_eqn_str()

self.add_watermark()

self.add_subtitle()

self.add title()

index-172_2.png
<html>
<body>

<h1>AVOPSinsight Web Portal</hl>
<h3>(A resource for airport and sirline professionals)</h3>

<a href=!

‘https://avopsinsight.com/wordpress”>Documentation and Blog

<h3>Airport Operations: FAA Air Traffic Activity System (ATADS). </h3>

FAA ATADS Dashboard

<ha> NEWI1111 Just added June 20231111 </ha>
<h3>Bureau of Transportation Statistics - T100 Domestic Market dataset. </h3>
‘https://avopsinsight.con:9099">BTS T100 Domestic Market Dashboard

index-172_1.png
VOPSinsight Web Portal

(A resource for airport and airline professionals)

irport Operations: FAA Air Traffic Activity System (ATADS).

FAA ATADS Dashboard

index-95_1.jpg
import pandas as pd

import plotly.graph_objects as go

import numpy.polynonial.polynomial as poly
import numpy as np

from os import listdir

from os.path import isfile, join

class atads_figures:

def _init_(self):

self.names=|
“date”, "facility”, "state", "region”, "ddso", "class”,
“ifrd_carrier”, "ifri_taxi®,"ifri_general”,"ifri_mil","ifri_total”,
vfri_carrier”, "vfri_taxi®,"vfri_general”,"vfri_mil","vfri_total”,
“i_carrier”, "i_taxi","i_general”,"i_mil","i_total",
"loc_civ", "loc_mil", "loc_total",
“total_ops”,
917,558 2132 Je4qx kg5 =fee

1

self.var_names=[

ifri_carrier”, "ifri_taxi®,"ifri_general”,"ifri_mil","ifri_total”,
“vfri_carrier”, "vfri_taxi®,"vfri_general”,"vfri_mil","vfri_tota
"i_carrier”, "i_taxi","i_general”,"i_mil","i_total",

"loc_civ", "loc_mil", "loc_total",

“total_ops”

1

self.var_labels=[

“IFR (itin.) Air Carrier”,

“IFR (itin.) Air Taxi”,
(itin.) Gen. Av.",
(itin.) Military",
(itin.) Total",
(itin.) Air Carrier”,
(itin.) Air Taxi",
(itin.) Gen. Av.",
(itin.) Military",
(itin.) Total”,
(itin.) Air Carrier”,
(itin.) Adr Taxi”,
(itin.) Gen. Av.",
(itin.) Military",
(itin.) Total”,
"(local) Civilian”,
“(local) Military",
“(local) Total”,
“Total 0ps."
1

index-176_1.jpg
« C & ovopsinsight.comw

Airport Activity Charts

Vgl

index-92_1.jpg
def radio_smoothing(self):
return dcc.RadioItems(id="smoothing",

options=[
{"label’: 'None', 'value': '0'},
{'label': '7 day', 'value': '7'},
{'label': ‘10 day', 'value': '10'},

{'label': '3 day', 'value': '30'}

labelstyle={'display': ‘inline-block'}

def radio_show_raw(self):
return dcc.RadioItems(id="show_raw',

options=[
{'label’: ‘'ves', ‘value': '1'},
{'label’: 'No', ‘'value': '0'},

1

value="1',

labelstyle={'display': ‘inline-block'}

)
def radio_show_poly(self):
return dcc.RadioTtems (id="show_poly",

options=[
{'1abel ‘None', ‘value': '@'},
{'1label ‘Linear’, ‘value': '1'},
{'label': ‘'Quadratic’, ‘value': '2'}

1

value='e’,

labelstyle={'display': ‘inline-block'}

index-174_1.jpg
C @ avopsinsight.com/wordpress/

avopsinsight

Airport Activity Charts Noes s

FAA AIRPORT OPERATIONS (ATADS)

Yol sl

Fortsess

BS T100 DOMESTIC MARKET (PASSENGER/CARGO/MAIL)

index-98_1.jpg
def make_var_dict(self):
keys_list = self.var_names
values_list = self.var_labels
2ip_iterator = zip(keys_list, values list)
self.var_dict = dict(zip_iterator)

def get_airport_list(self;
self.df_airport_unique=(]
self.apt_files = [f for f in listdir(self.apt_root_dir) if isfile(join(self.apt_root_dir, f))]
for f in self.apt_files:
First_chars = f[0:3]
self.df_airport_unique.append(first_chars)
self.df_airport_unigue. sort()

def get_airport_data(self,apt_list, yr_list):
self.df - self.df.iloc[0:0]
for i in apt_lisf
self.read_apt(i, yr_list)
self.df = pd.concat([self.df, self.df_new])

def read_apt(self,apt, yr_list):
filename=self.apt_root_dir+apt+’.csv' |
self.df new = pd.read_csv(filename,header=None,
names=self.nanes, delimiter=",")

self.df_new['date’] = pd.to_datetime(self.df_new['date’])
self.df_new['daynum’] = self.df_new['date’].dt.dayofyear

self.df_new[‘wdaynun'] = self.dF_new['date’].dt.dayofweek

self.df_new['month'] = self.df_new['date’].dt.month

self.df_new['year'] = self.df_new['date’].dt.year

self.df_new['ynd'] = pd.to_datetime(self.df new["date’]).dt.strftime("%n/%d/%Y")
self.df_new['ydecimal'J-self.df_new['year']vself.df_new] 'daynun’]/365.25
self..df_new.sort_values(by = 'ydecimal')

self.df new = self.df new[self.df new['year'].isin(yr list)]

index-178_1.jpg

index-96_1.jpg
self.active_apts = ['PHX']
self.apt_root_dir="./APT_CSV/'

self.my_debug="no bug report"

self.df = pd.DataFrame()

self.df_count = @

self.df_years_unique = [i for i in range(2006,2024, 1)]

self.make_var_dict()
self.get_airport_list()
self.get_airport_data(['PHX'],{2021})

index-177_1.jpg
Qv x *»0@ :

New window +N
—
New Incognito window Ctrl+ShiftsN
History
Downloads
Bookmarks
Google Password Manager
Notes and Docs .
Extensions
Zoom - 8% +]
BTS T100 Data ~
Print.. Ctri+P
‘'T100 Market vs Segment? Cast...
Find culsF
AT Save page s. Curl+S | More tools
g Create shorteut... Edit Cut Copy Paste
Name window. Settings
Mo
Clear browsing data... CtrlsShift+Del Help
Day performance [T Exit
Dpat Teskmanager Shift+Esc m
Developer tools Ctri+Shift+]
sta.

Aviation Statistics T

index-164_1.jpg
Gontie.

S b Tt by Care
S o T

-
ey
Pt
o

index-57_1.jpg
25

20

15

10

2002

2003

2004

2005

2006

2006

a Q.+

2008

Bex

2010

2000

2010

index-61_1.jpg
: def multiply_these(func): # define the decorator

def multiply2(x,y):
print("Doing multiplication...") # Add a string to the output
return func(x,y)

return multiply?

: @aultiply_these #Tnplenent the decorator
: def a_times_b (a,b):
print (a*b)

a_times_b(2,3) # Run the function a_times_b()

Doing multiplication... # The decorator added the extra string
6

index-58_1.jpg
from dash import Dash, dcc, html, Input, Output, callback
import pandas as pd

import random as rd

import plotly.graph_objects as go

1list1 = list(range(2001,2011))
list2 = [(2*(x-2000) + 4 + rd.random()) for x in list1]
d = {"year':list1, 'yvals':list2}

df = pd.DataFrame(d)

app = Dash(__name_)

app.layout = html.Div([
dcc.Graph(id="graph-with-slider'),
dcc.Rangeslider(2000, 2010, step=1, value=[2001,2010],
marks={str(year): str(year) for year in df['year'].unique()},
id="year-slider"

n

@callback(
output(‘graph-with-slider’, ‘figure'),
Input('year-slider’, 'value'))

def update_figure(selected years):
yr1 = selected years[o]
yr2 = selected_years[1]

filtered df = df[(df.year >= yr1) & (df.year <= yr2)[]

fig = go.Figure()

fig.add_trace(go.Scatter(x=Filtered_df.year, y=filtered df.yvals,
mode="Tinessmarkers ', name="df yvals',showlegend=False))

return fig

if _name__ main_":

app.run(debug=True)

index-149_1.png
[unit]

Description=Gunicorn instance for hwapp project
After=network. target

[service]
User=pjh

Group=wn-data

WorkingDirectory=/hone/pjh/hweny
Environment="pATH=/hone/pjh/hwenv/bin"

app.sock -m @07 wsgi:app
5000 -m 007 wsg

#Execstart=/hone/pjh/hwenv/bin/gunicorn --workers 3 --bind uni:
Execstart=/home/pjh/hwenv/bin/gunicorn --workers 3 --bind 0.0.0.

[1nstall]
WantedBy=nulti-user.target

index-70_1.jpg
cux »0@
N nepoesiie oo

= :
ol ey .

= b A
e E
elenent.style { ot

P ¢ - s

lmna Sove page s Cubos:

B el Lo o [
== =
Char browsing data.. CuteShRsDl- d &
Fertomance (QE3 o
e e R

L

index-151_1.png
$ sudo systeactl status hwapp
@ huapp. service - Gunicorn instance for atads project
Losded:
Active:
rain PID:
Tasks:

gRRREEE

loaded (/etc/systond/systen/hmapp.service; disabled; preset: enabled)
active (ruming) since Hed 20231004 1

83681 (gunicorn)

3 (nits 1097)

s

sosns

: /systen.slice/hwapp.service

Fu3681 /home/p3h/huenv/bin/python3 /hone/pSh/hwenv/bin/gunicorn —-workers
13652 /hose/p3n/hueny/bin/python3 /hone/p3h/hweny/bin/ Eunicorn --orkers
13633 /home/p3h/huenv/bin/pythons /hone/p3h/hwenv/bin/ gunicorn - arkers
3638 /home/p3n/haenv/bin/pythons /hone/3h/hweny/bin/ gunicorn - orkers

007 v
007 wsgi.
007 wagi.
0 007 wagh

devsry systesd(1]: Started mapp.service - Gunicorn instance for atads project.

mixapp. sock (23681)

 ync

(83682] (IN50) Booting vorker with pid: 83682

evsry gumicorn[83681]: [209-10-04 17:38:33 +0000] [33681] (INFO] Starting gunicorn 21.2.0
evsry gunicorn[83681]: [203-10-64 17:38:33 0000 [33681] (IWFO] Listening a

jevsrv gunicorn - sing wor

u ez fony ot 37133 ol [sem] (el e

fevsrv gunicorn 262310-04 17:38:33 40000

devsry gunicornl [2023-10-04 17:38:33 +0060) (43681] (INFO] Booting vorker. with pic:
devsrv gunicorn[83684]: [2023.10.04

33 10000] (83684] (INFO) Booting worker with pid: 83684

index-69_1.png
<tr>
<td nowrap style=text-align:right;>1/2023¢/td>

<td nowrap style=text-align:left;>ABE </td>

<td nowrap style=text-align:left;>PAc/td>

<td nowrap style=text-align:left;>AEA</td>

<td nowrap style=text-align:left;>EN</td>

<td nowrap style=text-align:left;>Conbined TRACON & Tower with Radar</td>

<td nowrap align=right>1,036</td>

<td nowrap align=right>410</td>

<td nowrap align=right>2,228</td>

<td nowrap align-right>118¢</td>

<td style="border-right: #a0a0a0 1px solid;text-align:right;" nowrap>3,792¢/td>
<td nowrap align=right>2,124</td>

<td nowrap align=right>158</td>

<td style="border-right: #a0a0ae 1px solid;text-align:right;" nowrap>2,282¢/td>
<td nowrap align=right>6,074</td>

</tr>

index-150_1.png
$ sudo systemctl status hwapp
@ huapp.service - Gunicorn instance for hwapp project
Toaded (/etc/systend/systea/iwapp.service; disabled; preset
active (running) since wed 2023-10-64 18116154 UIC; 55 3go
801 (gunicorn)
(11nit: 1097)
so.on
sazms
+ /systen.slice/mapp. service
181601 /home/ph/hwenv/bin/python3 /hone/p h/hwen/bin/gunicorn --workers 3 --bind .0.0.0:5000 -m 007 wsgi:app
84602 /home/p h/hwenv/bin/python3 /hone/p h/hwenv/bin/gunicorn --workers 3 --bind ©.0.0.0:5000 -n 007 wsgiiapp
84603 /hone/pJh/hwerv/bin/python3 /hone/p h/hwenv/bin/gunicorn --workers 3 --bind 6.0.0.0:5000 -n 007 wSgiiapp
L4604 /hone/ph/huer/bin/pychon /hone/p3h/huen/bin/gunicorn --workers 3 --bind 0.0.0.0:5000 -n 007 wgi:app

enabled)

Oct 04 18:16:50 devsry systemd(1]: Started huapp. service - Gunicorn instance for hwapp project
Oct 04 18:16:54 devsry gunicorn[84eL: [2023-10.4 16:16:54 +0000] [84601) [INFO] Starting gunicorn 21.2.

Oct 04 18116:54 devsry gunicorn[8asen]: [2023-10-04 16:16:54 40000] [84601] [INFO] Listening at: hetp://0.0.0.0:5000 (84601)
Oct 04 18:16:540 devsry gunicorn[84601]: [2023-10.84 18:16:54 +0000] [84601] [IWFO] Using worker: sync

Oct 04 18116154 devary gunicorn[84502]: [2023-10-04 16:16:54 40000) [34602) [UNFO) Booting worker with pid: 84602

Oct 04 18116154 devsry gunicorn[sases]: [2023-10-04 16:16:54 19000] [34603] [INFO] Booting worker with pid: 84603

Oct 04 18116154 devsry gunicornlsases]: [2023-10-04 16:16:54 10000] [84604] [INFO] Booting orker with pid: sécos

index-152_1.jpg
server {
listen 8e;
server_name 146.190.48.240;

location /hello {
include proxy_params;
proxy_pass http://unix:/home/pjh/hwenv/app.sock:/;
}

index-71_1.jpg
€ I G e n
MG @ ette B vags B e WOl @ Mps/amksgen 4 SOUAPRS
e
s "l cellpncng " cllpasing 3
Vi

Aie Traffc Actvity System (ATADS) > Airport Operations.

oEewTw

Bt e
e

s v <o

s

g
5 st 240144 i
e - | &

wEw > @y 3
®a0m Ovewrn O s e oty 1 soeteey Gine ube 150y 5 see

index-151_2.jpg
server {
listen 80;
server_name 146.190.48.240;

location / {
include proxy_params;
proxy_pass http://unix:/home/pjh/hwenv/app.sock;
}

index-66_1.jpg
Activity System (ATADS) > Airport Operations

Format

Select Output @ Selected options:
Dates - Nane.
Display: 7
oyt ot
© Day Of Wesk Repor B Show Local -Yes
O Comparison Report Kl Format: HTML.
O Ranking Report Bl
O issing Data Report Bl
O Peak Days Repon Bl
OPtonS: 3 oy tinerant @ Show Local

O'snowiFr O showVvFR
©Hm

O msExcel

O msWord

O No sub-Totals

index-154_2.jpg
$ cat wsgi.py

from atads import server
if __name__ == "__main__":
server.run(host='0.0.0.0")

index-64_1.jpg
& 9 C @& aspmfaagov/opsnet/sys/airportasp e x »0@

M Gmail @8 YouTube B¥ Maps W1 Stellrium WebOnii. @ hitps/saiwkdprim... 4 SKY-MAP.ORG - Int.

Federal Aviation
Administration

anPage Arport OpsTower Ops TRACON

© TotalTerminsl Ops Center Act Mandied Faciity Info Other Reports _ FA& Operations & Performa

Air Traffic Activity System (ATADS) > Airport Operations

RGP @

My Reports

Pleasa use option buttons above to specly you epor crea.and then cick Run

0.5 Depariment o Tansporston
Fedars! Avton Admin rsten
500 Tndependence Averie, Su
Washington, 0C 20551

s {1-sss-a35-5322)

index-154_1.jpg
from flask import Flask
server = Flask(__name_)

app = dash.Dash(__name__,server=server)

if __name__ == "__main__":
app.run(debug=True,host='0.0.0.0")

index-68_1.png
B sponcossrxs x

Fle it View

<Al cheads <HILLOATADS eportc/titlescstyles
body, td {font-fanily:Arial, Verdana,Helvetica,sans- seri ; font -size: 10pt;colors #333;)
i {colorsseotase;)

thead (display: table-header-group; }

vinfo (font-size:a0%;)

Ctable_header. {text-align:center; background-color:4COEAFE; font-weight:bold; color:#004080;)
Ctable header_right (text-align:right; background.color:COEATE; font-weightibold; color:#0040a0;)

Ctableheader left (text aligntleft; background color:aCoarc; font welghtibold; color:n004o0;)

CtableTsubtot3 (text align:right; color:black; background-color:sdfdfde;)

Ctable subtotal_lead (text-align:Left; color:black; background-color:adfdfd;)

 font-melght :bold; Color: #001680;)

[t3ble”footer lead {text-align:1eft; background-color:4COEAFE; font weight:bold; color:4004080;)

Ctable header_bot {vertical-align:botton; text-alignicenter; background-color:4COEEFE; font-neight:bold; color:4004es0;)
“table header_right_bot {vertical-align:bottoa; text-aligniright; background-color:aCOEAFE; font-weight:bold; color:#0adosn;
[tableheader_left_bot {vertical-alignibotton; text-align:left; background-color:fCOLAFE; font-weight:bold; color:$004030;)
stylere/nesd> chody>

<table border-o cellpaddinges cellspacingeo width="100%">

<thead>

SR e) (e G T

tandard Report</hi>From 91/2023 To €2/2023</span</tds</tr>

index-156_1.png
$ cat /etc/nginx/sites-available/atads
server

listen 80;
server_nare 146.190.48.240;

location / {
include proxy_params;
proxy_pass http://0.0.0.0:5000/;
}

location /atads {
include proxy_params;
proxy_pass http://0.6.0.0:5000/;
}

location /hello {
include proxy_params;

proxy_pass http: //unix: /home/pjh/hwenv/app. sock:/;
}

index-67_1.jpg
< WeB Repor. Pacrig Hoularan @) @

Layout Formulas Data Review View Help

Ji| | ATADS : Airport Operations : Standard Report
) ER] & G

Report

oDsSO
Service
Date Facilty State Region Area
Jan23 ABE PA AEA Combined TRACON & Tower with Radar
Jan23ABI TX ASW ined TRACON & Tower wih Radar
Jan23 ABQ NM ASW
Bl Sub-Total for Unknown
28 sub-Total for CE

Sub-Total for ASW
Jan23 ABY GA AS 'S Foderal Conlract Tower

Jan23 ACK A Towers with Radar

Jan23 ACT TX bined TRACON & Tower with Radar
Jan23 ACY NJ Combined TRACON & Tower with Radar

BIY Sub-Total for Unknown

index-155_1.png
$ cat /etc/systemd/system/atads.service
[unit]

Description=unicorn instance for atads project
After=network. target

[service]

Group=ii-data

workingoirectory=/hone/pjh/atadseny
Environment="PATH=/home/pjh/atadsenv/bin"

Execstart=/home/pjh/atadsenv/bin/gunicorn --workers 3 --bind 6.0.0.0:5000 -m 007 atads:server

[1nstall]

WantedBy=multi-user.target

index-145_2.png
$ gunicorn --bind ©.0.0.0:5000 wsgi:app

[2023-10-01 22:06:15 +0000] [38446] [INFO] Starting gunicorn 21.2.0

[2023-10-01 22:06:15 +0000] [38446] [INFO] Listening at: http://0.0.0.0:5000 (38
[2023-10-01 22:06:15 +0000] [38446] [INFO] Using worker: sync

[2023-10-01 22:06:15 +0000] [38447] [INFO] Booting worker with pid: 38447
[2023-10-01 22:06:21 +0000] [38446] [INFO] Handling signal: winch

index-145_1.png
$ uwsgi --socket 0.0.0.0:5000 --protocol=http -w wsgi:app

x Starting uWSGI 2.0.22 (64bit) on [Sat Sep 30 18:59:47 2023] *
compiled with version: 12.3.0 on 30 September 2023 18:48:21

0s: Linux-6.2.0-32-generic #32-Ubuntu SMP PREEMPT_DYNAMIC Mon Aug 14 10:3:50 UTC 2023
nodename: devsrv

machine: x86_64

clock source: unix

detected number of CPU cores: 1

current working directory: /home/pjh/hwenv

detected binary path: /home/pjh/hwenv/bin/uwsgi

111 no internal routing support, rebuild with pcre support 111

*** WARNING: you are running ukSGI without its master process manager ***
your processes number limit is 3657

your memory page size is 4096 bytes

detected max file descriptor number: 1024

lock engine: pthread robust mutexes

thunder lock: disabled (you can enable it with --thunder-lock)

uwsgi socket @ bound to TCP address €.0.0.0:5000 fd 3

