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	Preface

	Welcome
SwiftUI makes it astonishingly easy to create beautiful, fast, native apps for all of Apple’s platforms, and I don’t think I’ll ever grow tired of watching folks be amazed at how fast we can put apps together.

However, once you’re past the basics it’s common to find some parts of SwiftUI confusing – you try some code out and wonder why it doesn’t behave the way you expect, and it’s easy to fall into the trap of experimenting with various modifiers and workarounds until you get exactly the result you want. 

Although I can’t solve all your problems with SwiftUI, the core goal of this book is to help you build a better understanding of what SwiftUI is doing behind the scenes – to really understand what it’s doing and why, and in understanding that learn to write better code. So, rather than just show you a huge range of different APIs that are on offer, we will instead be focusing on the real core fundamentals of SwiftUI so you can see exactly what makes it tick.

We’ll accomplish this partly by looking at the small amounts of the source code for SwiftUI that gets exposed by Swift’s interface file, but also by writing a whole bunch of code ourselves so you can see exactly how SwiftUI responds to various scenarios. 

If you work your way through the whole book, including trying all the sample code, you should come away with a much deeper understanding of what SwiftUI is doing when it runs our code.

Of course, a book full of behind the scenes explanations wouldn’t be much fun, so I’ve tried to include a variety of more graphical techniques too – I feel confident everyone will learn something while following along!

Working with SwiftUI’s public interface

At various points in this book I will ask you to run a specific command. It’s quite long, so I’ve made a GitHub gist from it at this link: https://bit.ly/swiftinterface

In case that link doesn’t work, here’s the command in full:

xed /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/System/Library/Frameworks/SwiftUI.framework/Modules/SwiftUI.swiftmodule/x86_64-apple-ios-simulator.swiftinterface

If that command works immediately, great – you should see Xcode open with an editing window full of code! But don’t worry if you get an error, because I’ll address that in a moment.

The command above asks Xcode to open SwiftUI’s public interface file for reading. That’s not the same as the generated interface Xcode generates for us using Open Quickly or Jump to Definition, but is instead the public API interface file SwiftUI actually ships with.

These two files have many things in common, but the public API interface file provides a great deal more detail, and, critically for us, also includes small amounts of Swift code that implement various SwiftUI features. This is required for performance reasons, because some parts of SwiftUI are so trivial or so commonplace that Swift literally copies Apple’s own SwiftUI code into our files at build time as part of a process called inlining. 

The reason I’m saying this up front is two-fold: so I don’t need to keep explaining that this public interface file provides useful snippets of Apple’s own source code that show us how a feature is implemented, but also because you might get an error when running it.

So, if you see an error like this one: “xcode-select: error: tool 'xed' requires Xcode, but active developer directory '/Library/Developer/CommandLineTools' is a command line tools instance”, it means your Mac has a small misconfiguration that is easily corrected. Run this command to fix the problem: sudo xcode-select -s /Applications/Xcode.app. That will prompt you for your password, but once that’s done you’ll be able to run the original command without problem.

Anyway, you’re welcome to close the file for now; I’ll let you know when I want to dig into it.

Frequent Flyer Club

You can buy Swift tutorials from anywhere, but I'm pleased, proud, and very grateful that you chose mine. I want to say thank you, and the best way I have of doing that is by giving you bonus content above and beyond what you paid for – you deserve it!

Every book contains a word that unlocks bonus content for Frequent Flyer Club members. The word for this book is HARMONY. Enter that word, along with words from any other Hacking with Swift books, here: https://www.hackingwithswift.com/frequent-flyer

Updates

When you buy your books from Hacking with Swift, you get Swift updates for free. You can read the full version of my update policy at https://www.hackingwithswift.com/update-policy, but the abridged version is this: whenever I release to the public an updated book or video to reflect these changes, all existing buyers will get that update free.

This edition has the version 2022-10-25.

Dedication

This book is dedicated to my father, who died earlier this year. After he passed I looked through photos I had taken of him, and realized although I had a great many of him with my children I had very few of him with me. So, if you’re reading this and are lucky enough to have your parents or even grandparents around, go and make some memories with them!

	Chapter 1
Layout and Identity

	Parents and children
At the core of SwiftUI is its three-step layout process:


	A parent view proposes a size for its child.

	Based on that information, the child then chooses its own size and the parent view must respect that choice.

	The parent view then positions the child in its coordinate space.



It sounds so trivial, and you’re probably wondering why I’m starting out by mentioning something that is so straightforward, but the simple truth is that this simple process unlocks a huge amount of power and the more you really understand it the more you’ll be able to get SwiftUI doing exactly what you want.

The key to the power is answering a simple question: what is the “parent view” in that process? When you’re learning SwiftUI, the answer seems obvious. For example:

VStack {
    Text("Hello, world!")
        .frame(width: 300, height: 100)

    Image(systemName: "person")
}

If I asked a learner what the parent of the text view was, they would probably answer “the VStack.” And honestly that’s a perfectly fine answer, and I wouldn’t correct a beginner who said it – it feels natural, and it fits the hierarchy we can see when the code runs. However, it’s also wrong, and once you have sufficient experience with SwiftUI it’s important you understand why the answer is wrong, and more importantly what is right.

Let’s start simple: when we use any modifier in SwiftUI, we are most of the time creating a new view that wraps the original view to add some extra behavior or styling. For example, this is just one view:

Text("Hello, world!")

Whereas this is two views:

Text("Hello, world!")
    .frame(width: 300, height: 100)

This makes sense if you break it down and keep the three-step layout process in mind: the text view can’t position itself, because that’s the job of the parent. So, the only way for “Hello, world!” to be aligned center in a 300x100 container is for the parent – the frame – to be that 300x100 container. This is also why we can stack many modifiers to create more complex effects: we aren’t modifying the original view again and again, but instead modifying a new view that modifies the original.

Once you understand this process of creating new views using modifiers, so much of the rest of SwiftUI makes sense. This is why I repeatedly encourage folks to print out the underlying types of their views, like this:

Text("Hello, world!")
    .frame(width: 300, height: 100)
    .onTapGesture {
        print(type(of: self.body))
    }

When you do that, you’ll see the ModifiedContent type appear a lot – not exactly once for every modifier, because again not all modifiers create new views. ModifiedContent is itself a struct that conforms to the View protocol, and I’d like you to look it up using Open Quickly.

[image: The output of printing the type of self.body, showing ModifiedContent multiple times.]

If you aren’t familiar with it, Open Quickly is an Xcode feature that lets you type to search through your code and also Apple’s own APIs; activate it using Shift+Cmd+O, then type ModifiedContent and press return. This will open Xcode’s generated interface file for SwiftUI, and you should be able to find this in there:

@frozen public struct ModifiedContent<Content, Modifier>

A little further down you’ll also see its View conformance:

extension ModifiedContent : View where Content : View, Modifier : ViewModifier {

These things aren’t magic, and they aren’t secret – you can use ModifiedContent directly if you want, because it’s public API. For example, back in ContentView.swift we could create a custom a modifier like this one:

struct CustomFont: ViewModifier {
    func body(content: Content) -> some View {
        content.font(.largeTitle)
    }
}

We could apply that to some text using ModifiedContent, like so:

struct ContentView: View {
    var body: some View {
        ModifiedContent(content: Text("Hello"), modifier: CustomFont())
    }
}

That’s obviously a lot more wordy than the normal SwiftUI code we’d write, but what I want you to understand is that the end result is identical to what we’d get by using modifier() like this:

Text("Hello")
    .modifier(CustomFont())
    .onTapGesture {
        print(type(of: self.body))
    }

This is what SwiftUI’s result builder does for us: it repeatedly transforms our modifiers into ModifiedContent views, nesting them again and again to get exactly the right result. This is all done at compile time rather than run time: the actual underlying type of these two views are identical, rather than just the finished, rendering layouts.

So, when we write code like this:

Text("Hello, world!")
    .frame(width: 300, height: 100)

That creates the original text view, plus a new ModifiedContent around it that happens to contain the fixed frame instructions. The text still has its original frame – the original size it wants to work with – but now we’ve added a second frame around it. 

You can see the original frame is alive and kicking by passing in a custom alignment for the outer frame:

Text("Hello, world!")
    .frame(width: 300, height: 100, alignment: .bottomTrailing)

If you think about it, the only way the text can be aligned to the bottom trailing edge is if it knows its original frame. So, our text view has its own default frame that exactly matches the natural size for its text, and no amount of futzing from us can ever force that text to extend its bounds beyond the natural width and height of its lines.

However, by applying the frame() modifier we’re creating a new ModifiedContent view around the text that takes up more space – it’s not strictly a “frame” view in its own right, but I think it’s helpful to talk about it like that.

	Fixing view sizes
Let’s look at this simple code again:

Text("Hello, world!")
    .frame(width: 300, height: 100)

Like I said, despite attaching a frame() modifier, no amount of futzing from us can ever force that text to extend its bounds beyond the natural width and height of its lines – that’s just not how SwiftUI works.

Of course, the real question here is this: what is the natural size for the text? Well, the answer is that text likes to live on one long line, and that’s exactly what it will do unless you ask for something else. For example, we might say that our frame had a width of only 30 rather than 300, like this:

Text("Hello, world!")
    .frame(width: 30, height: 100)

Now there isn’t enough space for the text, it’s forced to wrap across several lines to fit into the tiny box we’ve allocated to it. 

[image: The words Hello World squeezed across several lines.]

On the surface this sounds like it breaks the second rule of SwiftUI’s layout system: “the child chooses its own size and the parent view must respect that choice.” In this case the child is the text view and the “frame” view is its parent, so how come the text is being forced to accept the size of its parent, the frame?

What’s really happening here is that all views use six values to decide how much space they want to use for layouts, and understanding how they interact is key to getting the most out of SwiftUI’s layout system.

The six are:


	Minimum width and minimum height, which store the least space this view accepts. Anything lower than these values will be ignored, causing the view to “leak” out of the space that was proposed to it.

	Maximum width and maximum height, which store the most space this view accepts. Anything greater than these values will be ignored, meaning that the parent must position the view somehow inside the remaining space.

	Ideal width and ideal height, which store the preferred space that this view wants. It’s okay to provide values outside these, as long as they still lie in the range of minimum through maximum. (If you’re coming from a UIKit background, think of this as being like the intrinsic content size of your view.)



It’s that last one that stores the natural size for our text: the text has ideal width and height suitable to store its characters on one single line, but it has no minimum size – it doesn’t care if we try to squeeze the text into a limited width, because it will automatically wrap its letters around to multiple lines.

This is where the fixedSize() modifier comes in, which has the job of promoting a view’s ideal size to be its minimum and maximum size. It’s used like this:

Text("Hello, world!")
    .fixedSize()
    .frame(width: 30, height: 100)

When that code runs, our text will appear at its original width, despite us trying to override it. Take a moment to think about it: what do you think is actually happening internally with that code?

Tip: I know it’s really tempting to skip ahead and read my discussion for this question, but I promise you’ll learn more if you just pause for a moment and think of your own answer to the question: how will SwiftUI interpret that code, and in what order? Remember, the fixedSize() modifier create a parent view around the text, then in turn the frame() modifier creates parent view around the fixedSize().

Still here?

Okay, what we end up with is this:


	We have three views in total: two ModifiedContent views and a Text view. 

	In terms of parent-child relationships, our frame is the overall parent, and it has a fixed size view for its child, which in turn has a text view for its child.

	When we create a 30x100 frame, it will offer that full space to fixedSize() child.

	The view created through fixedSize() proposes that same size to its Text view.

	The text has no idea it’s going to be placed in a 30x100 frame, so it says, “well, my ideal size is 95x20, but I’m happy to take up less space if needed.”

	The fixedSize() modifier then uses that same information, except now it turns the ideal size into a fixed size – it effectively returns the equivalent of self.frame(width: text.idealWidth, height: text.idealHeight).

	So now the frame gets told it has to position a child much bigger than the size it proposed, and does so – it doesn’t have a choice.



So, fixedSize() is how we promote ideal size up to be fixed size. You can use fixedSize() with no parameters to get both axes fixed at the same time, or provide Boolean parameters to fix one specific axis if you prefer.

In the case of text views, remember that fixing its horizontal size will default to it going over one line no matter how long its text is. If that’s what you want, great! If not, you might find that fixing only its vertical axis is more useful, because it allows the text to be squashed horizontally while still growing as tall as needed to handle its lines wrapping.

But what will other view types do? Consider code like this:

Image("singapore")
    .frame(width: 300, height: 100)

On its surface that appears to request a 300x100 image, but any SwiftUI veteran will know it doesn’t work like that – the image will be its original size, happily overflow the 300x100 frame we allocated for it. If you’re using Xcode’s preview canvas in selection mode you’ll be able to see the thin outline of the frame right there.

[image: An image exceeding its frame, which is visible as a thin blue line.]

You can see it more clearly if you use the clipped() modifier to see what’s really happening:

Image("singapore")
    .frame(width: 300, height: 100)
    .clipped()

Perhaps now you have a better idea of what’s happening here: image views get their ideal width and height directly from the image data you load into them, and just like text views no amount of futzing from us can override that.

“But Paul,” I hear you say, “surely we can override the ideal size by making the image resizable?” Nope! Again, no amount of futzing from us can override the ideal size of an image – you can see it for yourself with code like this:

Image("singapore")
    .resizable()
    .fixedSize()
    .frame(width: 300, height: 100)

That makes the image resizable, but then promotes the ideal size into a fixed size – lo and behold, the image is back to its original size again.

Earlier I said, “when we use any modifier in SwiftUI, we are most of the time creating a new view that wraps the original view to add some extra behavior or styling.”

Well, resizable() is one of the modifiers that doesn’t create a new view: it sends back an image with the resizing behavior in place, but that isn’t wrapped in some kind of “resizable” modifier – all we did was tell it to have a flexible width and height, but the underlying ideal size is still there.

The key here is to remember that whatever frame you try to apply to the image will automatically inherit values from the image that you don’t specifically override.

For example, a common problem SwiftUI learners hit is when they use a very wide image alongside some text, like this:

VStack(alignment: .leading) {
    Image("wide-image")
    Text("Hello, World! This is a layout test.")
}

If that image is very large compared to the device you’re using, e.g. 2000x1000, then it will stretch the width of the VStack beyond the edges of the screen, which will cause the text to be placed off screen too. This is rarely what you want – how would you go about fixing it?

[image: An image that is so large it extends beyond the canvas, causing text below it to be invisible.]

To fix this without squashing the image, the simplest thing to do is wrap it in a frame with a completely flexible width, like this:

VStack(alignment: .leading) {
    Image("wide-image")
        .frame(minWidth: 0, maxWidth: .infinity)
    Text("Hello, World! This is a layout test.")
}

Critically, if you remove the minWidth parameter there, the frame will get its minimum width from the image, which again wants to show its entire picture at its natural size. And even with both minimum and maximum width provided, adding fixedSize() afterwards shows that the ideal width and height of the image is still there!

[image: An image that is so large it extends beyond the canvas, causing text below it to be invisible.]

Another common problem beginners face is making two views the same width or height depending on their content. For example, they might have a layout like this:

HStack {
    Text("Forecast")
        .padding()
        .background(.yellow)
    Text("The rain in Spain falls mainly on the Spaniards")
        .padding()
        .background(.cyan)
}

In that layout, the HStack proposes the available space to its children, then splits up the space based on what they sent back. In practice, the larger text view will need significantly more space than the smaller one, and when space is restricted the text will wrap – how can we make them the same size?

[image: Two views with different heights.]

Well, the background() modifiers will create frames using whatever size they receive from the text they wrap, but if we add a custom frame to them then the backgrounds become free to expand to fill more space:

HStack {
    Text("Forecast")
        .padding()
        .frame(maxHeight: .infinity)
        .background(.yellow)
    Text("The rain in Spain falls mainly on the Spaniards")
        .padding()
        .frame(maxHeight: .infinity)            
        .background(.cyan)
}

Now, remember: even though we’ve told the background it has a flexible maximum height, we haven’t overridden its ideal height – that still comes through from the text it contains. So, each piece of text has its own ideal height that exactly fits its content, the background inherits that ideal height, and the HStack around it calculates its own ideal height to be the maximum of the ideal heights of the two views it contains. As the text views have infinite maximum heights and will therefore expand to fill all the available height, the HStack will also expand to fill all the available height.

As a result, if we make the HStack use fixedSize(), we can make our two text views have the same height with very little code:

HStack {
    Text("Forecast")
        .padding()
        .frame(maxHeight: .infinity)
        .background(.yellow)
    Text("The rain in Spain falls mainly on the Spaniards")
        .padding()
        .frame(maxHeight: .infinity)
        .background(.cyan)
}
.fixedSize(horizontal: false, vertical: true)

Telling the HStack to fix its size is different from telling each of the text views to fix their size: we want them to resize upwards to some upper limit, which in this case is the ideal size of their container.

[image: Two views with the same height.]

In their documentation, Apple describes fixedSize() as “the creation of a counter proposal to the view size proposed to a view by its parent,” which is quite apt once you understand what’s happening internally.

	Layout neutrality
Not all views have a meaningful ideal size, and in fact some views have very little sizing preference at all – they will happily adapt their own size based on the way we use them alongside other views. This is called being layout neutral, and a view can be layout neutral for any combination of its six dimensions.

In its purest form, layout neutrality it looks like this:

struct ContentView: View {
    var body: some View {
        Color.red
    }
}

That will fill the whole space with red, because the color will occupy whatever space is available. On the other hand, we could use the color as a background:

Text("Hello, World!")
    .background(.red)

Because the color doesn’t actually care how much space it takes up, it will simply read the ideal and maximum sizes from its child, the text, and use that for itself. It doesn’t read the minimum size because like I said earlier the text view is itself layout neutral for its minimum width and height – the text doesn’t mind being squeezed smaller, so the background color doesn’t mind either.

If we wanted to describe this behavior accurately, we’d say that the background color has an ideal width, ideal height, maximum width, and maximum height, but is layout neutral for its minimum width and minimum height. In practice this means it will fit snugly around the text it wraps rather than expanding to fill all the available space, but it’s also happy to be squeezed downwards if needed.

Now take a look at this code: 

struct ContentView: View {
    var body: some View {
        Text("Hello, World!")
            .frame(idealWidth: 300, idealHeight: 200)
            .background(.red)
    }
}

What do you think that might do, and why? Remember to work backwards – the layout starts with background(.red) as the parent, and works inwards from there.

Take a moment to pause and think about it before continuing.

If you break it down, the flow works like this:


	The background has the whole screen to work with, and Color.red is completely layout neutral so it’s happy to occupy whatever is available. If this were the entirety of our layout, the color would expand to fill the screen.

	The background passes on the size proposal it received (the whole screen) to its child, frame(), which is layout neutral for minimum width, minimum height, maximum width, and maximum height. 

	The frame proposes the whole screen to its child, the text, which is layout neutral for minimum width and minimum height, but cares very much about its ideal width, ideal height, maximum width, and maximum height.

	The text sends back to the frame the four values it cares about, but because the frame has provided its own ideal width and height those two are effectively ignored – the frame will use its own ideal width and height to override whatever the text asked for. However, because the frame is layout neutral for its maximum width and height, it will inherit those from the text.

	The frame then sends its final size up to its parent view, the background: it has the 300x200 ideal size we set, but a maximum size of whatever the text says it needs, e.g. 95x20.

	That 95x20 space then gets filled with the red background.



So, it really is important to think about all six sizing values when working with layout – they combine together in really interesting ways that may not necessarily make sense at first, but if you break it all down into a sort of blow-by-blow conversation then hopefully the exact behavior will become clear.

Helpfully, all six of these sizing values are optional, which means you can switch between layout neutrality and a fixed value by using either a number or nil. This is most commonly done using a ternary conditional operator, like this:

struct ContentView: View {
    @State private var usesFixedSize = false

    var body: some View {
        VStack {
            Text("Hello, World!")
                .frame(width: usesFixedSize ? 300 : nil)
                .background(.red)

            Toggle("Fixed sizes", isOn: $usesFixedSize.animation())
        }
    }
}       

What that code does at runtime depends on the value of usesFixedSize:


	When it’s true, the frame will propose 300 points of width to the text 

	When it’s false, the frame will propose to the text whatever size it receives from the VStack – it effectively does nothing at all.



So, if nil forces a view to be layout neutral for one particular dimension, what happens if we have a view that’s layout neutral for every dimension? We can certainly do this with the frame() modifier, but at some point every view has some kind of size data, even if that’s just a nominal ideal size in order to keep our layouts from exploding.

To see an example of what I mean, try code like this:

ScrollView {
    Color.red
}

What size can the scroll view propose to Color.red?

Usually Color.red is happy to fill all the available space, but it wouldn’t make any sense here because it would lead to an infinitely sized scroll view. In this situation, the red color will get a nominal 10-point height – enough that we can see it’s being placed, but it won’t expand beyond that.

[image: A scrollview containing a very small slice of color at the top.]

You can get a better idea of what’s happening if you try attaching a frame to the color, like this:

ScrollView {
    Color.red
        .frame(minWidth: nil, idealWidth: nil, maxWidth: nil, minHeight: nil, idealHeight: nil, maxHeight: 400)
    }
}

We’re now explicitly giving the color a maximum height to work with, but it won’t matter – it will still stay 10 points high, because our frame is layout neutral for its ideal height. This isn’t just that the color remains small while the frame grows empty around it, which you can see if you try coloring the frame blue:

ScrollView {
    Color.red
        .frame(minWidth: nil, idealWidth: nil, maxWidth: nil, minHeight: nil, idealHeight: nil, maxHeight: 400)
        .background(.blue)
    }
}

You won’t see any background there, because the frame still has an ideal height matching the color it contains. In order to get the color to expand, we need to override its ideal height in its frame parent, like this:

ScrollView {
    Color.red
        .frame(minWidth: nil, idealWidth: nil, maxWidth: nil, minHeight: nil, idealHeight: 400, maxHeight: 400)
    }
}

Now the red color will expand to be 400 points high – internally the color has an infinite maximum height but gets capped to the 400 points it is offered by the frame, but now the frame won’t adopt the 10-point ideal height of the color and will instead use 400 points so that the color can grow freely.

	Multiple frames
Many SwiftUI modifiers can be stacked to create interesting effects, such as perhaps adding multiple backgrounds to some text:

Text("Hello, World!")
    .frame(width: 200, height: 200)
    .background(.blue)
    .frame(width: 300, height: 300)
    .background(.red)
    .foregroundColor(.white)

[image: Two colored boxes, one inside the other, with Hello World in the center.]

However, it’s possible and indeed common to apply a frame() modifier twice back to back – with no other modifiers in between. This is because SwiftUI separates the concepts of fixed frames and flexible frames: a single view can have a fixed width or height, or it can have flexible dimensions provided, but it can’t have both.

Of course, often we do want both. For example, if you were designing a macOS app you might say want a fixed width for part of your UI, but have a minimum height so that users can’t make the window really tiny:

Text("Hello, World!")
    .frame(width: 250)
    .frame(minHeight: 400)

I don’t want to sound like a broken record, but remember the golden rule here: no amount of futzing from us can ever force that text to extend its bounds beyond the natural width and height of its lines. We aren’t making the text flexible at all, because it isn’t possible. Instead, we’re wrapping it in a new view that has a fixed width of 250 points, then wrapping that in another new view that has a flexible height of at least 400 points.

The best way to check your understanding is correct is to look at code like this:

Text("Hello, World!")
    .frame(width: 250)
    .frame(minWidth: 400)

What do you think that will do when run? It sounds like we’re giving SwiftUI completely contradictory instructions, but we really aren’t, and hopefully the answer becomes clear if you try to think like SwiftUI does.

Again, pause for a moment and think it through to decide for yourself before I walk you through what actually happens.

Still here? Okay:


	Our text has an ideal width and height matching its contents.

	We place that inside a frame that is 250 points wide.

	We place that frame inside another frame that is at least 400 points.



So, there is no contradiction at all, and if you try adding background colors after the text and each frame you’ll see exactly what’s happening:

Text("Hello, World!")
    .background(.blue)
    .frame(width: 250)
    .background(.red)
    .frame(minWidth: 400)
    .background(.yellow)

[image: Hello World centered in a blue rectangle, with a red rectangle around it, and a yellow rectangle on the outside.]

	Inside TupleView
You’ve seen how using modifiers with a single view gets transformed by @ViewBuilder into nested ModifiedContent views, but the other side of this coin is how Swift handles multiple views. Try this:

VStack {
    Text("Hello")
    Text("World")
}
.onTapGesture {
    print(type(of: self.body))
}

When that runs, you’ll see the type is ModifiedContent<VStack<TupleView<(Text, Text)>>, AddGestureModifier<_EndedGesture<TapGesture>>>, but really the important part in all that is TupleView<(Text, Text)> because that’s how SwiftUI encodes multiple views: a special view type that accepts other views inside it.

TupleView isn’t underscored, which means it’s public API, and I encourage folks to look it up using Open Quickly because it explains one of the key restrictions in SwiftUI. If you look for where TupleView is used, sooner or later you’ll find this:

public static func buildBlock<C0, C1, C2, C3, C4, C5, C6, C7, C8, C9>(_ c0: C0, _ c1: C1, _ c2: C2, _ c3: C3, _ c4: C4, _ c5: C5, _ c6: C6, _ c7: C7, _ c8: C8, _ c9: C9) -> TupleView<(C0, C1, C2, C3, C4, C5, C6, C7, C8, C9)> where C0 : View, C1 : View, C2 : View, C3 : View, C4 : View, C5 : View, C6 : View, C7 : View, C8 : View, C9 : View

That’s a generic result builder method that accepts 10 views, and you’ll also find alternatives that accept 9 views, 8 views, and so on – but, critically, you won’t find one that accepts 11 views, which is why SwiftUI isn’t able to statically represent more than 10 views in its type system. (If you look for other examples of buildBlock you’ll see there are some examples that are significantly more complex – see TableColumnBuilder for a real eye opener!)

[image: A small slice of SwiftUI’s generated interface, showing many versions of buildBlock.]

There’s no software restriction making 10 a hard limit, instead it’s a pragmatic choice by the SwiftUI team: they need to draw a limit somewhere, and 10 is a reasonable amount. If you wanted, you could use Open Quickly to look for buildBlock in SwiftUI’s generated interface, then copy it into your own code and add to it to allow 11 views, like this:

extension ViewBuilder {
    public static func buildBlock<C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10>(_ c0: C0, _ c1: C1, _ c2: C2, _ c3: C3, _ c4: C4, _ c5: C5, _ c6: C6, _ c7: C7, _ c8: C8, _ c9: C9, _ c10: C10) -> TupleView<(C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)> where C0 : View, C1 : View, C2 : View, C3 : View, C4 : View, C5 : View, C6 : View, C7 : View, C8 : View, C9 : View, C10 : View {
        TupleView((c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10))
    }
}

That uses 11 different views, so now you’ll find you can include 11 children inside any container. Heck, you could even just create a TupleView directly whenever you needed using as many views as you want, like this:

TupleView((
    Text("1"),
    Text("2"),
    Text("3"),
    Text("4"),
    Text("5"),
    Text("6"),
    Text("7"),
    Text("8"),
    Text("9"),
    Text("10"),
    Text("11"),
    Text("12"),
    Text("13"),
    Text("14"),
    Text("15")
))

Tip: Note the double opening and closing parentheses – the first is because we’re calling the TupleView initializer, and the second is to mark a tuple of our views, which is why we need to use commas to separate each view.

This isn’t magic, or a hack – it’s exactly what SwiftUI does internally, albeit now extended to go one higher than the SwiftUI team chose. In fact, you can see all this for yourself because all these TupleView instances are directly inlined into our code at build time for maximum efficiency using SwiftUI’s public interface file.

I mentioned this in the introduction to the book, but I’d like you to open it now. Run this command:

xed /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/System/Library/Frameworks/SwiftUI.framework/Modules/SwiftUI.swiftmodule/x86_64-apple-ios-simulator.swiftinterface

(If you hit the error about CommandLineTools, see the book introduction for how to fix it!)

If you look for extension SwiftUI.ViewBuilder { in the file that gets opened, you’ll see all the TupleView creation, like this:

extension SwiftUI.ViewBuilder {
  @_alwaysEmitIntoClient public static func buildBlock<C0, C1>(_ c0: C0, _ c1: C1) -> SwiftUI.TupleView<(C0, C1)> where C0 : SwiftUI.View, C1 : SwiftUI.View {
        return .init((c0, c1))
    }
}

That’s literally doing the same thing we did, except it can use the shorthand .init(()) rather than TupleView(()) because Swift can see the return type of the method.

SwiftUI doesn’t care how your TupleView instances are structured, meaning that you can place a TupleView inside a TupleView inside another TupleView and it will still get flattened down to a single collection of views. This means we can use Swift’s partial block results builders to allow any number of view children – try adding this:

extension ViewBuilder {
    static func buildPartialBlock<Content>(first content: Content) -> Content where Content: View {
        content
    }

    static func buildPartialBlock<C0, C1>(accumulated: C0, next: C1) -> TupleView<(C0, C1)> where C0: View, C1: View {
        TupleView((accumulated, next))
    }
}

Just having those two partial block builders will cause SwiftUI to nest many TupleView instances, but that’s okay – it really doesn’t care how the views are structured, because internally it uses runtime reflection that inspects the type metadata to figure out exactly how many children existed. If you desperately wanted to get the exact same TupleView layout as SwiftUI has by default, while also permanently removing the 10-view limit, you would need to add a bunch more buildPartialBlock() methods to handle the full set of C0 through C9 views.

	Understanding identity
Every view in SwiftUI must be uniquely identifiable, by which I mean that SwiftUI needs to know exactly which view is located where at all times. This means all views have an identity: something about it that makes the view unique.

In SwiftUI these identities come in two forms:


	An explicit identity, where we tell SwiftUI the identity for a particular view.

	A structural identity, where SwiftUI implicitly generates identities for our views based on where we use them in our code.



Regardless, all views must have an identity: SwiftUI will provide these as much as possible, but there are two key places where we use explicit identity:


	When we’re dealing with dynamic data, such as looping over an array.

	When we need to refer to a particular view, such as scrolling to a particular location.



Understanding why identity is so important actual boils down into what might be the single biggest misunderstanding about SwiftUI: “when you make a change in your view hierarchy, SwiftUI performs tree diffing to figure out what changed.” Tree diffing would effectively mean Swift looking at the state of your view hierarchy before your change, and looking at it after the change, then walking through each to figure out what was added and removed.

Previously I said that learners often think the parent of a view is whatever directly contains it – a text view’s parent might be a VStack, for example – and that it’s okay to take this approach while you’re learning. I think this is a similar situation: tree diffing feels natural when you’re learning because you can imagine exactly how it happens at runtime, and so I think it’s a perfectly fine answer that helps folks make progress.

However, in practice tree diffing never happens thanks to the concept of identity: as it builds your view code, the Swift compiler has complete oversight into every subview you’re using, alongside every modifier, every condition, every loop, and more, and these all get encoded directly into the type of your views. We saw this earlier when using type(of: self.body) to examine what the actual type of our view body was, but it’s really important you understand this extends to logic as well.

Try this, for example:

VStack {
    if Bool.random() {
        Text("Hello")
    } else {
        Text("Goodbye")
    }
}
.onTapGesture {
    print(type(of: self.body))
}

When that runs and you tap the text you’ll see it prints the following into Xcode’s console: ModifiedContent<VStack<_ConditionalContent<Text, Text>>, AddGestureModifier<_EndedGesture<TapGesture>>>. If we break that down, you can see:


	At the top level we have a ModifiedContent view that contains a VStack as its view and an AddGestureModifier as its modifier.

	Inside the VStack is a _ConditionalContent view, which contains two Text views.



That second part is what’s important here: the _ConditionalContent view, which is underscored because it’s considered a private implementation detail rather than something we should attempt to manipulate directly, is literally our if statement encoded into Swift’s type system.

Like I said, _ConditionalContent is not exposed as public API, but we can at least see where it’s being made – use Open Quickly (Shift+Cmd+O) to look for “buildEither”, and you should find this in the SwiftUI generated interface:

public static func buildEither<TrueContent, FalseContent>(first: TrueContent) -> _ConditionalContent<TrueContent, FalseContent> where TrueContent : View, FalseContent : View

So, that handles any kind of view for the true case, and any kind of view for the false case. When our condition changes – which it might whenever the body property is reinvoked, because it’s random – SwiftUI doesn’t need to do any view diffing because it just flips from the TrueContent view to the FalseContent view.

It even does this when handling switch statements, which it collapses down into a binary tree of all possible states. Try this to see what I mean:

enum ViewState {
    case a, b, c, d, e, f
}

struct ContentView: View {
    @State var loadState = ViewState.a

    @ViewBuilder var state: some View {
        switch loadState {
        case .a:
            Text("a")
        case .b:
            Image(systemName: "plus")
        case .c:
            Circle()
        case .d:
            Rectangle()
        case .e:
            Capsule()
        case .f:
            RoundedRectangle(cornerRadius: 25)
        }
    }

    var body: some View {
        Button("Press") {
            print(type(of: state))
        }
    }
}

I’ve wrapped the various states up in a separate property to make the type easier to read, but when you press the button you’ll see the type is _ConditionalContent<_ConditionalContent<_ConditionalContent<Text, Image>, _ConditionalContent<Circle, Rectangle>>, _ConditionalContent<Capsule, RoundedRectangle>> – it’s a binary tree covering all our cases, so SwiftUI would need to jump through true, true, true to get some text, or true, true, false to load the image, and so on.

This behavior of converting logic into types has two important side effects, both of which directly affect how we use SwiftUI:


	SwiftUI needs to be able to statically (i.e. at compile time) represent complex view layouts such as a stack containing three text views, then an image, then a nested stack, then a button, etc.

	That complex view layout is the actual underlying type of our view body.



Remember, using modifiers transforms our views into nested ModifiedContent views, and using things like VStack causes SwiftUI to group multiple views into a TupleView. All these transformations create extremely long types for our views, which is where Swift’s opaque return types come in: when we write some View as the return type for our view body, it means we don’t want to explicitly have to write out the return type for our layout beyond saying “it will be some type that conforms to the View protocol,” but – importantly – we aren’t trying to hide that information from Swift.

Remember, SwiftUI needs to know exactly what is in our view hierarchy in order to be able to update its layouts efficiently, but if we had sent back a regular protocol – if we were able to return View rather than some View, for example – then we’re explicitly hiding data from Swift. Elsewhere in our code that is often what we want, usually because we want to retain some flexibility for the future, but with SwiftUI it’s a very bad idea because it wants to identify all our views based on their type and position within our view hierarchy.

This is all made possible because the View protocol contains this line of code:

@ViewBuilder var body: Self.Body { get }

That explicitly marks the body property of our views as using @ViewBuilder – a result builder that converts our layout into a carefully curated collection of TupleView, ModifiedContent, _ConditionalContent, and more. I used this explicitly earlier because only body gets it automatically applied by the protocol.

So, ModifiedContent is generic over some kind of view and some kind of modifier, and TupleView is generic over all the views it contains, all so that SwiftUI has a complete overview of our layout – it can literally guarantee the contents of a VStack, for example, even when using conditions and loops to assemble it, which in turn it means all the views have clear structural identity.

Now, maybe you’re wondering why all this matters, and the answer is that the identity of our view dictates its lifetime: as soon as the identity of a view changes, either structurally or explicitly, the view is destroyed.

From a performance perspective this is pretty bad, because SwiftUI will throw away your platform views – the underlying UIView or NSView used to render your SwiftUI layout to the screen – when their matching SwiftUI lifetimes end, but more importantly it will also destroy any data your views were storing, because as far as SwiftUI is concerned you asked for your view to be destroyed.

You already saw how _ConditionalContent is generic over its true and false content types, so perhaps you can see where this is leading: whenever we flip between two views using an if condition, that causes SwiftUI to throw away its platform views and all the state we created each time.

You can see this in action with the following code:

struct ExampleView: View {
    @State private var counter = 0

    var body: some View {
        Button("Tap Count: \(counter)") {
            counter += 1
        }
    }
}

struct ContentView: View {
    @State private var scaleUp = false

    var body: some View {
        VStack {
            if scaleUp {
                ExampleView()
                    .scaleEffect(2)
            } else {
                ExampleView()
            }

            Toggle("Scale Up", isOn: $scaleUp.animation())
        }
        .padding()
    }
}

That renders the same view in two slightly different ways: one scaled up to 200%, and one at its default size. The scaling happens using an animated Boolean, and ExampleView stores some state for how many times its button was tapped.

When you run that code you’ll notice two things:


	The scaling effect happens as a fade – the smaller button fades out, while the larger one fades in.

	The tap count for your view gets reset to 0 every time you toggle the switch.



Both of these happen because of that _ConditionalContent flip: SwiftUI destroys the original ExampleView along with its platform rendering, and creates a new ExampleView in its place – the fade effect happens because we’re seeing a transition, rather than an animation. As for the @State being lost, again this is because SwiftUI considers the original view to be destroyed, so it removes all its data at the same time.

We’re losing data, we’re losing smooth animations, and we’re making SwiftUI do a lot of extra work, because as far as SwiftUI is concerned these are two separate views. 

This problem remains even if we removed the view modifier so all that was changing was the way ExampleView was created:

struct ExampleView: View {
    @State private var counter = 0
    let scale: Double

    var body: some View {
        Button("Tap Count: \(counter)") {
            counter += 1
        }
        .scaleEffect(scale)
    }
}

struct ContentView: View {
    @State private var scaleUp = false

    var body: some View {
        VStack {
            if scaleUp {
                ExampleView(scale: 2)
            } else {
                ExampleView(scale: 1)
            }

            Toggle("Scale Up", isOn: $scaleUp.animation())
        }
        .padding()
    }
}

Where things get interesting is what happens if we add some explicit identity, like this:

var body: some View {
    VStack {
        if scaleUp {
            ExampleView(scale: 2)
                .id("Example")
        } else {
            ExampleView(scale: 1)
                .id("Example")
        }

        Toggle("Scale Up", isOn: $scaleUp.animation())
    }
    .padding()
}

You might expect that to work, because now we’re telling SwiftUI that both our ExampleView instances are the same, but no dice – we’ll still get the views being destroyed and recreated, with all the associated problems of that.

The problem isn’t having two ExampleView instances; that’s actually fine, and thanks to the id() modifier SwiftUI is able to figure out that they are the same view. The actual problem is _ConditionalContent, because as we saw earlier it explicitly stores its data as two separate views – it is hard-coded to think of its two pieces of data as being distinct, no matter what identifiers we attach to them. This means from a structural identity perspective our two views are different, no matter what explicit identifiers we give them.

Remember, _ConditionalContent exists because the View protocol explicitly marks its body property as using @ViewBuilder. If we get our code out of the body then we don’t get @ViewBuilder unless we ask for it, which means we don’t get _ConditionalContent, and that in turn means SwiftUI is able to rely on the explicit identity we provide.

We can see this for ourselves if we move our two ExampleView instances into a computed property, like this:

struct ContentView: View {
    @State private var scaleUp = false

    var exampleView: some View {
        if scaleUp {
            return ExampleView(scale: 2)
                .id("Example")
        } else {
            return ExampleView(scale: 1)
                .id("Example")
        }
    }

    var body: some View {
        VStack {
            exampleView

            Toggle("Scale Up", isOn: $scaleUp.animation())
        }
        .padding()
    }
}

Now SwiftUI will work as expected: it will preserve the state between both views, animate correctly, and perform efficiently. Even better, we can actually remove the id() modifier here and SwiftUI can still figure out it’s the same view.

As usual, I’m going to explain why in a moment, but first I’d like you think about it before reading my answer – how is SwiftUI able to understand the two ExampleView instances are the same now, even without an explicit id() attached, when it couldn’t before?

Still here?

The answer is that removing @ViewBuilder removes the _ConditionalContent struct entirely, which means flipping between the two view states no longer means flipping between two different “True” view and a “False” view. 

Instead, because the exampleView property is used in a fixed position in our layout, SwiftUI can rely on good old structural identity to realize that the two structs should both map to the same underlying view – the property might return ExampleView(scale: 2) or ExampleView(scale: 1), but either way it’s an instance of ExampleView so SwiftUI considers them the same view.

This might sound ridiculous, or perhaps even dangerous: our code specifies two different ExampleView instances being sent back from a single property, so why should SwiftUI consider them the same? Understanding this gets to the very heart of what @State does and why it even exists.

You see, every time SwiftUI evaluates a view’s body property it creates new instances of all the view structs inside – it has to, because structs always have a unique owner, and can’t somehow be “reused” from a previous body invocation.

So, even a trivial view struct will be recreated often, which means SwiftUI regularly needs to map the old struct to the new struct – to recognize that two instances of a view struct are the same and should share the same state – so that it can preserve state correctly. When our exampleView property returns the same view type without using @ViewBuilder, it’s really no different from it having no condition at all and just returning a single view.

Of course, by ditching @ViewBuilder we’ve lost all the things that make SwiftUI natural – we have to return one specific type of view from both our condition cases, so we’re out of luck if one case wants to add a background color while the other doesn’t.

What SwiftUI really wants – and the kind of code we should really be striving for – is for us to use the ternary conditional operator, like this:

struct ContentView: View {
    @State private var scaleUp = false

    var body: some View {
        VStack {
            ExampleView(scale: scaleUp ? 2 : 1)

            Toggle("Scale Up", isOn: $scaleUp.animation())
        }
        .padding()
    }
}

Using this approach we’re back to having structural identity do all the hard work for us: regardless of the value of scaleUp we have an ExampleView as the first child of our VStack, so SwiftUI will keep it alive as the Boolean changes.

I think the problem is pretty clear in our current code, but it might take a little more thought when dealing with modifiers depending on which iOS version you’re targeting. For example, we might have some code to show a message in bold if the user hasn’t read it yet:

struct ContentView: View {
    @State private var isNewMessage = false

    var body: some View {
        if isNewMessage {
            Text("Message title here").bold()
        } else {
            Text("Message title here")
        }
    }
}

How could we write that as a single view? In iOS 16 and later the bold() modifier takes a Boolean saying whether it’s active or not, but if you’re targeting 15 or earlier – you either add the modifier or you don’t.

If you aren’t able to target 16 or later, the fix here is to remove bold() entirely and replace it with fontWeight(), which does accept other options:

Text("Message title here").fontWeight(isNewMessage ? .bold : .regular)

We could get even simpler because fontWeight() actually accepts an optional weight, where nil means “the default”:

Text("Message title here").fontWeight(isNewMessage ? .bold : nil)

Some SwiftUI modifiers simply refuse to accept a customization parameter, with the most notorious being hidden() – it unconditionally hides a view in our layout, while leaving space where it was. This means using it puts back to the state loss problem from earlier:

struct ContentView: View {
    @State private var shouldHide = false

    var body: some View {
        VStack {
            if shouldHide {
                ExampleView(scale: 1)
                    .hidden()
            } else {
                ExampleView(scale: 1)
            }

            Button("Toggle") {
                withAnimation {
                    shouldHide.toggle()
                }
            }
        }
    }
}

Remember, the problem here is @ViewBuilder, not ExampleView – even if you tried to build an improved hidden() modifier that accepts a Boolean, you’ll fall foul if you adopt @ViewBuilder:

extension View {
    @ViewBuilder func hidden(_ hidden: Bool) -> some View {
        if hidden {
            self.hidden()
        } else {
            self
        }
    }
}

Once again the key is to use a ternary conditional operator, which means no more need for @ViewBuilder:

extension View {
    func hidden(_ hidden: Bool) -> some View {
        self.opacity(hidden ? 0 : 1)
    }
}

That preserves our view’s identity regardless of the value of hidden, which ensures the same view stays alive the entire time.

So, while it might take a little extra work sometimes, using identity properly increases performance, preserves program state, and creates better animations.

	Intentionally discarding identity
There are a handful of places where you want to intentionally discard the identity of your views – to tell SwiftUI that two instances of a view are different no matter what it might otherwise think.

For example, consider the following list that shuffles its contents when a button is tapped:

struct ContentView: View {
    @State private var items = Array(1...20)

    var body: some View {
        VStack(spacing: 0) {                
            List(items, id: \.self) {
                Text("Item \($0)")
            }

            Button("Shuffle") {
                withAnimation {
                    items.shuffle()
                }
            }
            .buttonStyle(.borderedProminent)
            .padding(5)
        }
    }
}

Using withAnimation() here will trigger the default iOS list animation, where each row will slide from its old position to its new position. That might be what you want, but in many places this effect is rather hard on the eye – when a single row moves this animation looks great, but when everything moves it just causes a jumble.

[image: A list rearranging all its rows with animation.]

To fix this we can provide SwiftUI with an explicit identity for our list, but use a random value for that identity so that it changes every time the view is evaluated. This means SwiftUI sees the same structural location for the view but a different explicit identity, and so will consider the two lists to be different. In practice, that means it will remove one and insert the other using a default fade transition just by changing the code to this:

List(items, id: \.self) {
    Text("Item \($0)")
}
.id(UUID())

That immediately looks better when many rows are changing at once, but it also means we now have complete control over how the animation happens rather than being forced to use the default list reorder animation. So, we could make a 1-second ease-in-out animation like this:

Button("Shuffle") {
    withAnimation(.easeInOut(duration: 1)) {
        items.shuffle()
    }
}

Or we could add a custom transition rather than fading, like this:

List(items, id: \.self) {
    Text("Item \($0)")
}
.id(UUID())
.transition(.asymmetric(insertion: .move(edge: .trailing), removal: .move(edge: .leading)))

So, now we have complete control over the animation, which means you can create something less intense as the default row slide, or perhaps something just plain different like our edge transition. If you tap Shuffle quickly, you’ll even see multiple overlapping lists arrive and depart in swift succession.

[image: Multiple lists of items transitioning in and out at the same time.]

Remember, discarding identity does have the downside that SwiftUI will destroy any underlying data storage and recreate any platform views, so be careful – there is a cost to this work, particularly when dealing with more complex views such as List.

In the simplest case, this technique is useful when you want to let the user cycle through various options. For example, we could make a simple icon generator by selecting random colors and SF Symbols:

struct ContentView: View {
    let colors: [Color] = [.blue, .cyan, .gray, .green, .indigo, .mint, .orange, .pink, .purple, .red]
    let symbols = ["run", "archery", "basketball", "bowling", "dance", "golf", "hiking", "jumprope", "rugby", "tennis", "volleyball", "yoga"]
    @State private var id = UUID()

    var body: some View {
        VStack {
            ZStack {
                Circle()
                    .fill(colors.randomElement()!)
                    .padding()

                Image(systemName: "figure.\(symbols.randomElement()!)")
                    .font(.system(size: 144))
                    .foregroundColor(.white)
            }
            .transition(.slide)
            .id(id)

            Button("Change") {
                withAnimation(.easeInOut(duration: 1)) {
                    id = UUID()
                }
            }
            .buttonStyle(.borderedProminent)
            .padding(.bottom)
        }
    }
}

Just changing the id property to a new value is enough to pick a new random color, a new random SF Symbol, and having the changes animate in smoothly – all by explicitly discarding identity.

[image: A large purple circle showing someone playing rugby, with a Change button underneath.]

	Optional views, gestures, and more
We all know that optionals are a core feature of the Swift language, but don’t underestimate the usefulness of optionals in SwiftUI – you’ll find optionals are baked right into key places for extra flexibility.

For example, if you were just to look at Xcode’s autocompletion options you would see that the background() modifier accepts any kind of View, Shape, or ShapeStyle, but it doesn’t accept optionals – you need to provide a concrete instance of one of those types.

However, SwiftUI is really smart here, and to see why I’d like you to try this code:

Text("Hello")
    .background(Color.blue)
    .onTapGesture {
        print(type(of: self.body))
    }

When that runs, you’ll see it has the type _BackgroundStyleModifier<Color>. 

In comparison, we could make the background optional, like this:

.background(Bool.random() ? Color.blue : nil)

When that runs you’ll see the type is now _BackgroundModifier<Optional<Color>> – the background of our view is a Color?, meaning that it might be there or might not depending on the result of our random Boolean.

This is possible because Optional uses conditional conformance to become a View in its own right. To see how, use Open Quickly to bring up the generated interface for SwiftUI by searching for something like NavigationStack, then search in there for extension Optional. You’ll see that SwiftUI extends the Optional enum to conform to a range of protocols where it wraps types that conform to those protocols, like this:

extension Optional : Commands where Wrapped : Commands
extension Optional : Gesture where Wrapped : Gesture
extension Optional : View where Wrapped : View

So, Optional conforms to Commands where the thing inside the optional also conforms to Commands, etc. 

This is what makes it possible to conditionally apply backgrounds or overlays, or to conditionally enable a gesture based on some program state – use the gesture when your state is true, or use nil otherwise to remove it.

	Chapter 2
Animations and Transitions

	Animating the unanimatable
Almost everything can be animated in SwiftUI, although you’ll find there are quite a few things that take a little… encouragement, shall we say? 

First the easy stuff. We can trigger an explicit animation using withAnimation():

struct ContentView: View {
    @State private var scale = 1.0

    var body: some View {
        Text("Hello, World!")
            .scaleEffect(scale)
            .onTapGesture {
                withAnimation {
                    scale += 1
                }
            }
    }
}

And we can use implicit animations instead:

struct ContentView: View {
    @State private var scale = 1.0

    var body: some View {
        Text("Hello, World!")
            .scaleEffect(scale)
            .onTapGesture {
                scale += 1
            }
            .animation(.default, value: scale)
    }
}

Tip: Do not use implicit animations without providing the value parameter – that’s deprecated from iOS 15 and later because it would animate every change, including device rotation.

But not everything works this way. For example, if we had several overlapping views, we might want to animate the Z index of one view:

struct ContentView: View {
    @State private var redAtFront = false
    let colors: [Color] = [.blue, .green, .orange, .purple, .mint]

    var body: some View {
        VStack {
            Button("Toggle zIndex") {
                withAnimation(.linear(duration: 1)) {
                    redAtFront.toggle()
                }
            }

            ZStack {
                RoundedRectangle(cornerRadius: 25)
                    .fill(.red)
                    .zIndex(redAtFront ? 6 : 0)

                ForEach(0..<5) { i in
                    RoundedRectangle(cornerRadius: 25)
                        .fill(colors[i])
                        .offset(x: Double(i + 1) * 20, y: Double(i + 1) * 20)
                        .zIndex(Double(i))
                }
            }
            .frame(width: 200, height: 200)
        }
    }
}

That code is correct, but won’t work: the red box will jump to the front, despite the animation request. This is because Z index can’t be animated with SwiftUI – or at least not by default.

[image: A group of overlapping rounded rectangles.]

We can make our Z index code animate with a surprisingly small change, and the technique involved can be applied in numerous other places to animate practically anything.

The key is to create a new ViewModifier that conforms to the Animatable protocol, which has the job of handling whatever you need in your your animation. So, we might write this:

struct AnimatableZIndexModifier: ViewModifier, Animatable {
    var index: Double

    func body(content: Content) -> some View {
        content
            .zIndex(index)
    }
}

Tip: The name of the view modifier is “animatable” not “animated” – we’re providing the ability for this change to be animated, but whether or not it actually is animated depends on how it’s used.

While it’s possible to apply modifier structs directly to a view, it’s usually a better idea to wrap them in a View extension to make our code easier:

extension View {
    func animatableZIndex(_ index: Double) -> some View {
        self.modifier(AnimatableZIndexModifier(index: index))
    }
}

And now rather than using zIndex() on the view we want to change, we use animatedZIndex() instead:

RoundedRectangle(cornerRadius: 25)
    .fill(.red)
    .animatableZIndex(redAtFront ? 6 : 0)

However, that still won’t work – no animation will take place.

You see, all the Animatable protocol really does is give us the ability to read and write some kind of interpolated value over time. As we’re animating between the values 0 and 6, Animatable will send us values like 0.1, 1.35, 4.825, and so on, as it moves smoothly from 0 through to 6 based on whatever timing curve the animation is using. That’s all it does: it sends in the interpolated value, and it’s down to us to decide what should happen to it.

In this case, those interpolated values are exactly what we want for our Z index, so that our view moves smoothly from Z index 0 through to 6. So, when the Animatable protocol attempts to provide some animating data for us, we just need to assign that to our index property – add this property to AnimatableZIndexModifier now:

var animatableData: Double {
    get { index }
    set { index = newValue }
}

That’s it! If you run the code again you’ll see our animation works great.

Tip: You can just create a regular stored property called animatableData to get the same result, but it might result in quite clumsy code.

If you’re curious, try adding a print() statement into the setter we just made so you can see exactly what the Animatable protocol is doing:

var animatableData: Double {
    get { index }
    set { print(newValue); index = newValue }
}

When that runs you’ll now see all the interpolated values being passed in – it’s another feature of SwiftUI that looks like magic, but is actually surprisingly simple internally.

Having this kind of control is particularly important if you need to support iOS versions below 16, because a number of things could not be animated in iOS 15.6 and below. For example, animating the system font to a new size works out of the box in iOS 16 and later, but if you need backwards compatibility it means relying on Animatable like this:

struct AnimatableFontModifier: ViewModifier, Animatable {
    var size: Double

    var animatableData: Double {
        get { size }
        set { size = newValue }
    }

    func body(content: Content) -> some View {
        content
            .font(.system(size: size))
    }
}

Again, it’s a good idea to create a View extension to make it easier to use:

extension View {
    func animatableFont(size: Double) -> some View {
        self.modifier(AnimatableFontModifier(size: size))
    }
}

And now you can create a view to use it:

struct ContentView: View {
    @State private var scaleUp = false

    var body: some View {
        Text("Hello, World!")
            .animatableFont(size: scaleUp ? 56 : 24)
            .onTapGesture {
                withAnimation(.spring(response: 0.5, dampingFraction: 0.5)) {
                    scaleUp.toggle()
                }
            }
    }
}

The result looks fantastic, but keep in mind that using it means SwiftUI has to create the system font at every size increment passed in by Animatable – it’s a great effect, but it’s easily overused. I’m hoping that Apple’s own solution from iOS 16 and later is somehow more optimized!

	Avoiding pain in iOS 15.6 and below
If you need to target iOS 15.6 and below (or similar versions of macOS, tvOS, and watchOS), there is one particular thing that isn’t animatable by default even though it seems like it ought to be, and that’s the foregroundColor() modifier. This kind of code won’t work at all:

struct ContentView: View {
    @State private var isRed = false

    var body: some View {
        Text("Hello, World!")
            .foregroundColor(isRed ? .red : .blue)
            .font(.largeTitle.bold())
            .onTapGesture {
                withAnimation {
                    isRed.toggle()
                }
            }
    }
}

We could go down a complex route of making it animatable, but there is no neat solution with this approach – you’d need to store both the before and after colors right inside the view you want to work with, then use the values from the Animatable protocol to manually interpolate between the RGBA values of those two colors.

Fortunately, we can cheat a little, because the colorMultiply() method is animatable. This multiplies the original color of a view with some other color, meaning that the red value of the original is multiplied by the red value of our other color, then the green, then the blue, and then the alpha. If we use white as our original color, then multiplying by any other color will return that same color because we’re multiplying each of its components by 1.

So, if we give the text a white color we can multiply over it using the colors we’re trying to animate between, like this:

Text("Hello, World!")
    .foregroundColor(.white)
    .colorMultiply(isRed ? .red : .blue)

And that will work, without having to go into the mess of trying to make something custom. If you wanted, you could still wrap up this behavior in a neat modifier, like this:

extension View {
    func animatableForegroundColor(_ color: Color) -> some View {
        self
            .foregroundColor(.white)
            .colorMultiply(color)
    }
}

Fortunately for all of us, foregroundColor() is animatable in iOS 16.0 and later.

	Creating animated views
I said it earlier, but it bears repeating: all the Animatable protocol really does is give us the ability to read and write some kind of interpolated value over time. This means it isn’t restricted to ViewModifier, and actually works perfectly fine with a plain old View too.

As an example, we could make a view that knows how to animate a number between various values – we’d start off by making something that knows how to draw some text with a specific fraction length, like this:

struct CountingText: View, Animatable {
    var value: Double
    var fractionLength = 8

    var body: some View {
        Text(value.formatted(.number.precision(.fractionLength(fractionLength))))
    }
}

That’s barely doing anything, but thanks to SwiftUI the next step is trivial – how do you think we upgrade that so it supports animation?

Simple: we just add an animatableData property to get and set value, like this:

var animatableData: Double {
    get { value }
    set { value = newValue }
}

Now we can go ahead and use it just like any other view:

struct ContentView: View {
    @State private var value = 0.0

    var body: some View {
        CountingText(value: value)
            .onTapGesture {
                withAnimation(.linear) {
                    value = Double.random(in: 1...1000)
                }
            }
    }
}

The point is that Animatable sends in whatever value should be used and it’s up to us what we do with it – we might display it immediately, we might apply it to a bunch of other modifiers, or perhaps we stash the values away for use later on.

I’d like you to try it yourself: try creating a TypewriterText view that accepts a string to display, and is able to type it out using an animation.

Have a go and see how you get on! I’ll add my solution below.

The simplest solution looks like this:

struct TypewriterText: View, Animatable {
    var string: String
    var count = 0

    var animatableData: Double {
        get { Double(count) }
        set { count = Int(max(0, newValue)) }
    }

    var body: some View {
        let stringToShow = String(string.prefix(count))
        Text(stringToShow)
    }
}

We could then use it something like this:

struct ContentView: View {
    @State private var value = 0
    let message = "This is a very long piece of text that appears letter by letter."

    var body: some View {
        VStack {
            TypewriterText(string: message, count: value)
                .frame(width: 300, alignment: .leading)

            Button("Type!") {
                withAnimation(.linear(duration: 2)) {
                    value = message.count
                }
            }

            Button("Reset") {
                value = 0
            }
        }
    }
}

That works well, but we could improve the effect a little more by adding a hidden copy of our text inside a ZStack, so that SwiftUI preallocates the right amount of space for the text:

ZStack {
    Text(string)
        .hidden()
        .overlay(
            Text(stringToShow),
            alignment: .topLeading
        )
}

[image: A text being appearing letter by letter.]

But we can do better! Having this typewriting effect is nice for lots of folks, but what about folks who rely on VoiceOver, or folks who have specifically asked apps to reduce the amount of animation they use? If we factor in both those we can make this view even better.

First, add two properties to the view:

@Environment(\.accessibilityVoiceOverEnabled) var accessibilityVoiceOverEnabled
@Environment(\.accessibilityReduceMotion) var accessibilityReduceMotion

And now we can modify the body property to return two different things depending on whether we want the animation or not:

if accessibilityVoiceOverEnabled || accessibilityReduceMotion {
    Text(string)
} else {
    let stringToShow = String(string.prefix(count))

    ZStack {
        Text(string)
            .hidden()
            .overlay(
                Text(stringToShow),
                alignment: .topLeading
            )
    }
}

With that in place we have a great solution that works for everyone.

	Custom timing curves
SwiftUI gives us fine-grained control over how our animation movements take place: rather than relying on linear movements or ease-in-out, for example, we can instead create completely custom cubic Bézier paths that match whatever acceleration and deceleration we want.

For example, we could create a timing curve that very slowly around the center of an animation, but bounces hard on the edges:

extension Animation {
    static var edgeBounce: Animation {
        Animation.timingCurve(0, 1, 1, 0)
    }

    static func edgeBounce(duration: TimeInterval = 0.2) -> Animation {
        Animation.timingCurve(0, 1, 1, 0, duration: duration)
    }
}

Notice how I’ve added two variations of the same curve: one as a property, and one as a method that accepts a duration. This matches the same way Apple’s own timing curves are created – e.g. .easeIn and .easeIn(duration:) – so it makes it more natural to use our custom curves.

With that extension in place, we can now create animations using our custom timing curve just like we would use one of the built-in curves:

struct ContentView: View {
    @State private var offset = -200.0

    var body: some View {
    Text("Hello, world!")
        .offset(y: offset)
        .animation(.edgeBounce(duration: 2).repeatForever(autoreverses: true), value: offset)
        .onTapGesture {
            offset = 200
        }
    }
}

A particularly common animation curve is called “ease in out back”, which is like a double spring animation where the change goes in the wrong direction first, then moves forward normally, then overshoots the destination, then move back to the finished value. You’ll often see this in Apple’s own designs, such as the App Store: when you tap on one of their featured stories in the Today tab, the image shrinks a little, then scales up to fill the screen.

We can implement this ourselves:

extension Animation {
    static var easeInOutBack: Animation {
        Animation.timingCurve(0.5, -0.5, 0.5, 1.5)
    }

    static func easeInOutBack(duration: TimeInterval = 0.2) -> Animation {
        Animation.timingCurve(0.5, -0.5, 0.5, 1.5, duration: duration)
    }
}

Or create a stronger effect by increasing the steepness of the curve:

static var easeInOutBackSteep: Animation {
    Animation.timingCurve(0.7, -0.5, 0.3, 1.5)
}

static func easeInOutBackSteep(duration: TimeInterval = 0.2) -> Animation {
    Animation.timingCurve(0.7, -0.5, 0.3, 1.5, duration: duration)
}

Rather than try to guess the various X/Y values for your Bézier curves, a much better idea is to use a website such as https://cubic-bezier.com that lets you drag handles around visually to control exactly how the movement should work.

Once you’re done, that site lets you preview the movement compared to other common curves, and provides the current parameters to input into your timing  curve code – it really is the easiest way to get the exact effect you want, and gives you lots of chance to experiment to create some unique animation effects.

[image: The Cubic-Bezier.com website showing a visual way to design these curves.]

	Overriding animations
Animations can be triggered in all sorts of ways and places in SwiftUI, but we have API available to us that helps control the way animations happen – we can inject custom functionality into the process to get whatever specific result we’re aiming for.

Previously I showed you how we can make an Animatable view selectively disable its animations by watching the environment, but it’s not always possible to write code to bypass the animation in that way. In fact, a lot of the time you shouldn’t even be calling withAnimation() unless you actually want animation to happen.

So, rather than having view modifiers try to override an animation request, we could write a small global function to give us more control over the process, like this:

func withMotionAnimation<Result>(_ animation: Animation? = .default, _ body: () throws -> Result) rethrows -> Result {
    if UIAccessibility.isReduceMotionEnabled {
        return try body()
    } else {
        return try withAnimation(animation, body)
    }
}

As that’s a free function, we don’t have access to the SwiftUI environment to query the current setting for reducing motion, but UIAccessibility.isReduceMotionEnabled works just fine. Using this approach allows us to make our intent clear: when we say withAnimation() we mean this is a non-movement animation such as an opacity change, whereas when we use withMotionAnimation() we mean this involves movement and therefore might need to be skipped based on the user’s settings.

Use it like this:

struct ContentView: View {
    @State var scale = 1.0

    var body: some View {
        Button("Tap Me") {
            withMotionAnimation {
                scale += 1
            }
        }
        .scaleEffect(scale)
    }
}

That solves the problem for times when we create an explicit animation: just switch withAnimation() for withMotionAnimation() and our function takes care of the rest. But that doesn’t solve implicit animations like this one:

struct ContentView: View {
    @State var scale = 1.0

    var body: some View {
        Button("Tap Me") {
            withMotionAnimation {
                scale += 1
            }
        }
        .scaleEffect(scale)
        .animation(.default, value: scale)
    }
}

Even with withMotionAnimation() being used, our implicit animation will ignore the Reduce Motion setting – the implicit overrides the explicit. We could fix this by adding a new modifier that only selectively applies the animation, based on the user’s preferences:

struct MotionAnimationModifier<V: Equatable>: ViewModifier {
    @Environment(\.accessibilityReduceMotion) var accessibilityReduceMotion

    let animation: Animation?
    let value: V

    func body(content: Content) -> some View {
        if accessibilityReduceMotion {
            content
        } else {
            content.animation(animation, value: value)
        }
    }
}

As always, adding a View extension makes this much easier to use:

extension View {
    func motionAnimation<V: Equatable>(_ animation: Animation?, value: V) -> some View {
        self.modifier(MotionAnimationModifier(animation: animation, value: value))
    }
}

And now we can use that to get implicit animations that automatically respect the user’s settings:

Button("Tap Me") {
    scale += 1
}
.scaleEffect(scale)
.motionAnimation(.default, value: scale)

That’s a big step forward, but it still only solves part of the problem: what if we need to override the implicit animation on a case-by-case basis, rather than always overriding it? That is, what if we want the default animation most of the time, but in one particular event – when a particular button is clicked, for example – we don’t want it?

In this instance we need to use a transaction, which gives us control over what’s happening in the current animation. Transactions are SwiftUI’s stores all the context for an animation that is currently in flight, allowing it to be passed around the view hierarchy. We can create them by calling withTransaction() then customizing the new transaction, which is effectively what withAnimation() is doing – albeit with less code.

In particular, what we care about is the disablesAnimations property of transactions, which lets us disable implicit animations that would otherwise be part of this update.

So, we could disable our implicit animation like this:

Button("Tap Me") {
    var transaction = Transaction()
    transaction.disablesAnimations = true

    withTransaction(transaction) {
        scale += 1
    }
}
.scaleEffect(scale)
.animation(.default, value: scale)

That means we’ll get the default animation for all changes, except for those triggered by the button tap.

This behavior is so useful that I find it best to make another global animation function to wrap it all up in one place:

func withoutAnimation<Result>(_ body: () throws -> Result) rethrows -> Result {
    var transaction = Transaction()
    transaction.disablesAnimations = true
    return try withTransaction(transaction, body)
}

When we use withAnimation() we are effectively creating a new transaction with whatever new animation we want, so I think creating this similar withoutAnimation() function is a great counterpart.

That global function works great for the times when you want to blanket disable animations, but transactions let us go further: what if we have an implicit animation that we want to override – we want a different animation to happen, rather than just skipping animations entirely? Transactions are perfect here, because if set disablesAnimations to true we still get to apply our own animation in its place.

Once again, this kind of functionality is best wrapped up in another global function for easier access:

func withHighPriorityAnimation<Result>(_ animation: Animation? = .default, _ body: () throws -> Result) rethrows -> Result {
    var transaction = Transaction(animation: animation)
    transaction.disablesAnimations = true
    return try withTransaction(transaction, body)
}

We can now write code like this:

struct ContentView: View {
    @State var scale = 1.0

    var body: some View {
        Button("Tap Me") {
            withHighPriorityAnimation(.linear(duration: 3)) {
                scale += 1
            }
        }
        .scaleEffect(scale)
        .animation(.default, value: scale)
    }
}

That has a default implicit animation, but we’re explicitly overriding it with a 3-second linear animation – we get the implicit animation most of the time, but an explicit override for the times we need it.

So far we have looked at:


	Disabling explicit animations based on Reduce Motion

	Disabling implicit animations based on Reduce Motion

	Disabling implicit animations on a case-by-case basis

	Replacing implicit animations with an explicit animation on a case-by-case basis



But there’s one more situation you’re likely to encounter: what happens if part of your view hierarchy wants to override an animation?

This is another place where transactions solve the problem for us, but this time they are applied differently: we don’t want to create a new transaction to replace our global transaction, but instead we want each view to selectively override just their part of the transaction.

This is done using the transaction() modifier, which provides us with an inout transaction object to modify – we can just go ahead and modify it in place, and it will be used for any animation transactions that apply to this view.

Important: Apple very strongly recommends against using the transaction() modifier on container views, because it could generate huge amounts of work. Instead, use it on leaf views – views that don’t have any children.

To demonstrate this modifier in action, here’s an example view that creates a grid of circles in either red or blue:

struct CircleGrid: View {
    var useRedFill = false

    var body: some View {
        LazyVGrid(columns: [.init(.adaptive(minimum: 64))]) {
            ForEach(0..<30) { i in
                Circle()
                    .fill(useRedFill ? .red : .blue)
                    .frame(height: 64)
            }
        }
    }
}

That view has no idea about animations – we haven’t added them anywhere, implicitly or explicitly, but thanks to the way SwiftUI works we can trigger an animation externally like this:

struct ContentView: View {
    @State var useRedFill = false

    var body: some View {
        VStack {
            CircleGrid(useRedFill: useRedFill)

            Spacer()

            Button("Toggle Color") {
                withAnimation(.easeInOut) {
                    useRedFill.toggle()
                }
            }
        }
    }
}

Earlier I said that using withAnimation() effectively creates a new transaction with whatever new animation we want, and here’s where that behavior becomes important: that code says “start a new transaction, inside that set a Boolean to be true, which will cause all the circles to turn red.” That color adjustment will take place with our custom transaction in place, which means the circles will change in a particular way.

Now, even though all those circles in the grid have no idea an animation is taking place, they can still exert control over any animations that do take place – they can examine or override any animation that affects them.

For example, we could say that our circles don’t actually care what animations they have, as long as they start with a delay:

Circle()
    .fill(useRedFill ? .red : .blue)
    .frame(height: 64)
    .transaction { transaction in
        transaction.animation = transaction.animation?.delay(Double(i) / 10)
    }

With that in place, any animation that happens to the circle will now happen with a delay – we haven’t touched the rest of the animation, just that one small part.

The end result is quite beautiful, I think: even though the circles have no idea what kind of animation if any is taking place, we’ve now made them change color in a wave, and you can even press the Toggle Color button multiple times to move smoothly between the two states.

	Advanced transitions
SwiftUI’s transitions system allows us to customize the way views are inserted or removed, but because the built-in selection is pretty tame you’d be forgiven for thinking the transitions system isn’t that capable. Well, the truth is that transitions can do pretty much whatever the heck you want with your views: you can insert a whole range of new views around whatever you’re transitioning, create local state, add complex animations, and much more.

To demonstrate this I want to recreate a small but complex animation: the “heart” animation from Twitter. When you like a tweet, several things happen:


	A circle grows out from the center.

	That circle then shrinks from the inside out.

	Some colorful confetti pieces fly out from the edges of the circle.

	The filled heart icon springs out from the center, and bounces to its final position.



If we take screen captures of it along the way it looks like this:

[image: Twitter’s heart animation, shown as various stop frames side by side.]

Honestly, it’s best if you just try favoriting something on Twitter a few times – it’s a very fast animation, but there’s a lot going on.

We can recreate this entirely with SwiftUI’s transitions, meaning that we get a simple, reusable way of adding this kind of animation to any view that is being shown.

As this involves quite a few simultaneous animations, we’re going to start small and build our way up.

Tip: When working with complex animations like this one, I recommend you go to the simulator’s Debug menu and select Slow Animations so you can see exactly what’s happening.

First, we’ll create a simple view modifier that stores three properties and renders its content unchanged. The properties are:


	The speed the animation will take place. This will be used in various places as both animation duration and delay, so having it one central place makes our code easier to follow.

	The color to render the effect. This will be used to render the circle and confetti.

	How big to draw the confetti. This is helpful if the user is bringing in a larger view, where chunkier confetti look much better.



Add this new view modifier now:

struct ConfettiModifier: ViewModifier {
    private let speed = 0.3

    var color: Color
    var size: Double

    func body(content: Content) -> some View {
        content
    }
}

Again, that body() method does nothing right now – it just renders whatever it’s given, which is fine given that we’re just setting up a skeleton.

[image: Three heart icons stacked vertically.]

To make that easier to use, we’re going to extend AnyTransition with both a property and a method, just like SwiftUI’s own built-in transitions. The property will force default values of .blue and 3 for color and size, whereas the method will allow the user to customize them as needed.

So, add this extension:

extension AnyTransition {
    static var confetti: AnyTransition {
        .modifier(
            active: ConfettiModifier(color: .blue, size: 3),
            identity: ConfettiModifier(color: .blue, size: 3)
        )
    }

    static func confetti(color: Color = .blue, size: Double = 3.0) -> AnyTransition {
        AnyTransition.modifier(
            active: ConfettiModifier(color: color, size: size),
            identity: ConfettiModifier(color: color, size: size)
        )
    }
}

And finally we can create a simple test view that renders an SF Symbol using three fonts, so you can see how it looks at various sizes:

struct ContentView: View {
    @State private var isFavorite = false

    var body: some View {
        VStack(spacing: 60) {
            ForEach([Font.body, Font.largeTitle, Font.system(size: 72)], id: \.self) { font in
                Button {
                    isFavorite.toggle()
                } label: {
                    if isFavorite {
                        Image(systemName: "heart.fill")
                            .foregroundStyle(.red)
                            .transition(.confetti(color: .red, size: 3))                            
                    } else {
                        Image(systemName: "heart")
                            .foregroundStyle(.gray)
                    }
                }
                .font(font)
            }
        }
    }
}

Okay, that’s our set up code done. You’re welcome to run it if you want but you won’t be impressed – our view modifier really does nothing at all, so it will just flip between the unfilled and filled heart symbols.

That skeleton does give us a great place to build on, though, because now we can start to build up the animation step by step. If you remember, the first step in the animation is creating a circle that grows out from the center, meaning that it starts invisibly small and grows to fill all the available space and then some – it needs to be larger than the icon itself, not least because the final filled heart icon uses a spring animation and so overshoots its target size a little.

To make this circle animation, we’ll start by adding a new property to ConfettiModifier to track the circle’s growing size, starting at a very low value:

@State private var circleSize = 0.00001

Important: SwiftUI will complain loudly if you try to scale something to 0.0, so small values like 0.00001 are preferred.

Now I’d like you to add several modifiers to the content line in body():


	We’ll use hidden() to make the actual view we’re transitioning invisible, but still reserve space for it. Remember, the finished heart icon animates in separately at the very end, so we need to get the actual view out of the way.

	We’ll use padding(10) to make our circle area bigger than the view we’re transitioning, so we have space to overshoot.

	We’ll use overlay() to render the circle.

	We’ll use padding() a second time, this time with a value of -10.

	Finally, we’ll use onAppear() to start an animation to make circleSize 1.



Now, you might wonder why padding() is in there twice, and the answer is simple: we need to add some padding before the overlay in order that the overlay is able to take up more space than our transitioning view, but we don’t want that padding to stick around after the overlay – we don’t want it to move over views away from our buttons. So, whatever padding we add before the overlay needs to be removed after the overlay, to keep things balanced.

Go ahead and modify your body() method to this:

content
    .hidden()
    .padding(10)
    .overlay(
        // circle here
    )
    .padding(-10)
    .onAppear {
        withAnimation(.easeIn(duration: speed)) {
            circleSize = 1
        }
    }

Now, I left out the important overlay code because it deserves its own explanation. You see, if we place a circle into our overlay it will automatically take up all the available space – it will automatically be the same size as our transitioning view, plus the 10 points of padding.

This circle needs to be filled in with a color, but the second step in this animation is to make the circle shrink from the inside out. That is, once it has grown to its full size, it starts to become hollow, and shrinks thinner and thinner until it has finally disappeared. 

Getting this effect means we need to stroke our circle rather than fill it, and in particular we need to make sure the entire stroke is inside the circle, and also that the stroke width exactly is exactly half the available space so that it is always filled in completely – or least until we come to implement the hollowing out in the second animation step.

Getting exactly half the available space means using a GeometryReader, and because we’ll be adding colorful confetti later we’ll place that inside a ZStack. So, replace the // circle here comment with this:

ZStack {
    GeometryReader { proxy in
        Circle()
            .strokeBorder(color, lineWidth: proxy.size.width / 2)
            .scaleEffect(circleSize)
    }
}

Go ahead and run the app again and you should see our first animation step is done. I know, I know, it’s pretty dull, but things get faster from here on!

[image: Three large circles have replaced our hearts.]

The second animation step is where we need to hollow out our circle. This is actually pretty straightforward because we’re using strokeBorder(): if we reduce the lineWidth of our stroke it will automatically hollow out our circle for us.

So, first add a new property to track how much of the stroke we want to draw:

@State private var strokeMultiplier = 1.0

Second, modify your strokeBorder() modifier to multiply the line width by that multiplier:

.strokeBorder(color, lineWidth: proxy.size.width / 2 * strokeMultiplier)

And finally add another withAnimation() call after the previous one, setting strokeMultiplier to a very small value:

withAnimation(.easeOut(duration: speed).delay(speed)) {
    strokeMultiplier = 0.00001
}

Notice how I’ve made that delay by speed seconds, so that it waits until the previous animation has completed before starting.

Now if you run the app you’ll see our animation is starting to come together!

[image: The three circles have become hollow.]

The third step of our animation is to make some colorful confetti fly out from the edges of the circle. These have fairly precise movements: they start near the circle edge, move out a small amount, then disappear by shrinking away to nothing.

We can get a similar effect by adding three new properties to ConfettiModifier: one to track whether the confetti should be visible, one to track how far the confetti has moved, and a third to track the scale of the confetti. We’ll measure movement relative to the size of our GeometryReader, where 1.0 will mean “the very edge of the view”.

Add these three to ConfettiModifier now:

@State private var confettiIsHidden = true
@State private var confettiMovement = 0.7
@State private var confettiScale = 1.0

Those need to be animated to alternative values, namely false, 1.2, and 0.00001, which means adding two more withAnimation() calls alongside the others. These don’t need to be put in any specific order because they don’t depend on each other, but it’s generally a good idea to structure them in the order they will execute.

Add these two:

withAnimation(.easeOut(duration: speed).delay(speed * 1.25)) {
    confettiIsHidden = false
    confettiMovement = 1.2
}

withAnimation(.easeOut(duration: speed).delay(speed * 2)) {
    confettiScale = 0.00001
}

Again, note the careful use of delays to make sure these happen at exactly the right time.

Drawing the confetti particles takes more work, and in fact this the most complicated part of the whole transition because there are lots of very precise modifiers. To make things easier to follow, I’ll break this down into small parts, starting with something easy – add this inside the GeometryReader, below the circle code:

ForEach(0..<15) { i in
    Circle()
        .fill(color)
        // more modifiers to come
}

First, we need to give these circles a frame, otherwise they’ll all be huge. We already added a size property, but if we pass our i loop variable through sin() we’ll be able to modulate the size just a little – some confetti will be a bit bigger and some a bit smaller.

Add this modifier now:

.frame(width: size + sin(Double(i)), height: size + sin(Double(i)))

Next, we need to scale our confetti up or down depending on the value of confettiScale, which is an easy one:

.scaleEffect(confettiScale)

Moving on, we need to move our confetti outwards as the effect animates. This means pushing our circles outwards by our radius (half the proxy width), multiplied by whatever is in confettiMovement. When the view is first created that will put them at 70% of the radius because confettiMovement has an initial value of 0.7, but our animation moves them out to 120% of the radius so they fly outwards a good distance.

Now, we could do this using the following modifier:

.offset(x: proxy.size.width / 2 * confettiMovement)

That works, but’s a bit dull because every confetti piece would move exactly the same distance. To make things a bit more varied, we’re going to add some extra movement to every other piece, like this:

.offset(x: proxy.size.width / 2 * confettiMovement + (i.isMultiple(of: 2) ? size : 0))

It’s a small difference, but when you see the final effect I think you’ll appreciate it!

At this point we’ve moved all our confetti pieces out to the side of our circle, but they are all on the same side. So, our next step is to rotate the circles by 24 times i so they spread out across the entire circle, and we’re using 24 because we have 15 circles being created – 24 x 15 is 360, which covers all the angles.

Add this modifier now:

.rotationEffect(.degrees(24 * Double(i)))

We have just two more modifiers to go here, but the first one might be a bit confusing: we’re going to use offset() again.

The reason for this should become clear if you break down what’s happening:


	When we create views inside a GeometryReader they are placed in the top-left corner.

	Our first offset() pushed our confetti views half way across the GeometryReader horizontally.

	Our rotationEffect() modifier caused those views to rotate around their origin, which again is the top-left corner.

	So our confetti views are now fanned out in a circle around the top-left corner of our GeometryReader.

	We want them to be centered, which means offsetting them again, this time by half the width and height of our proxy.



Now, even though the confetti views are small, for real accuracy here we need to subtract half our confetti size from these offsets, because we want to make sure the particles are centered rather than positioned from their top-left.

Add this modifier now:

.offset(x: (proxy.size.width - size) / 2, y: (proxy.size.height - size) / 2)

Hopefully you can see why that’s needed, but if not try commenting out the modifier once you’ve seen it working – when it’s not active it will be immediately obvious what the problem is!

The final modifier is there to make sure our confetti stays hidden until we say we’re ready for it, like this:

.opacity(confettiIsHidden ? 0 : 1)

That completes the confetti work – if everything has gone to plan your finished code should look like this:

ForEach(0..<15) { i in
    Circle()
        .fill(color)
        .frame(width: size + sin(Double(i)), height: size + sin(Double(i)))
        .scaleEffect(confettiScale)
        .offset(x: proxy.size.width / 2 * confettiMovement + (i.isMultiple(of: 2) ? size : 0))
        .rotationEffect(.degrees(24 * Double(i)))
        .offset(x: (proxy.size.width - size) / 2, y: (proxy.size.height - size) / 2)
        .opacity(confettiIsHidden ? 0 : 1)
}

Go ahead and try it out and see what you think! I think the default size of 3 looks about right for the smaller buttons, but the bigger one would probably benefit from a custom size.

[image: Hollow circles with confetti particles flying out from the center.]

Anyway, we still have one last step to write in order to complete the Twitter animation: our filled heart icon needs to spring out from the center, bouncing to its final position.

Just like our other work, this means adding a property to track its movement, placing a view somewhere in our layout, then animating it. Start with this new property:

@State private var contentsScale = 0.00001

Again, using a value of 0.00001 rather than 0.0 avoids warnings from SwiftUI.

The view for this is simple, because it’s just the content parameter that was passed into the method, albeit with a scale effect so we can animate it. Add this after the GeometryReader but still inside the ZStack:

content
    .scaleEffect(contentsScale)

And now to finish off the whole effect we need to add one final withAnimation() call next to the others. I said earlier that it’s a good idea to structure your animation code in the order it executes, but it’s a bit trickier here because we want a spring animation rather than a specific duration. So, if I were you I’d place this in the middle of the four existing animations – after the strokeMultiplier animation but before the confettiIsHidden animation – because it has a delay that makes it fit into that spot well.

Add this final code now:

withAnimation(.interpolatingSpring(stiffness: 50, damping: 5).delay(speed)) {
    contentsScale = 1
}

Now run the project again and see what you think! It’s not identical to Twitter’s animation, but it’s close enough that you’d be hard pressed to tell the difference unless you zoomed in close and compared the two side by side.

[image: Hollow circles with a heart on the inside and confetti particles flying out.]

Yes, it did take quite a bit of code, but that’s only because there are numerous overlapping animations taking place and I’ve tried to make it fairly accurate to Twitter’s original. Hopefully it’s given you a good idea of just how powerful SwiftUI’s transitions can be – with the ability to insert  completely custom views and animations, there’s really no limit to what they can do.

Want to go further?

At this point you might well have had enough of transitions, but if you’re keen to take this to the next level there is one small but important change we can make: rather than forcing our transition to use a color, we can in fact let it use any kind of shape style including gradients.

Honestly, this takes very little work to do, so give it a try!

First, we need to make the modifier generic over some kind of ShapeStyle:

struct ConfettiModifier<T: ShapeStyle>: ViewModifier {

Second, we need to change its color property to be of type T rather than Color:

var color: T

And third we need to adjust the confetti() method inside our AnyTransition extension so that it’s also generic over some kind of ShapeStyle:

static func confetti<T: ShapeStyle>(color: T = .blue, size: Double = 3.0) -> AnyTransition {

And that’s it – we can now transition using a much wider variety of styles. For example, rather than using .red for the color, we can now use this:

.transition(.confetti(color: .red.gradient))

Or we could provide a wholly custom gradient for something really bright:

.transition(.confetti(color: .angularGradient(colors: [.red, .yellow, .green, .blue, .purple, .red], center: .center, startAngle: .zero, endAngle: .degrees(360))))

[image: Our heart animation, now with rainbow colors.]

	Chapter 3
Environment and Preferences

	The environment
When you apply a modifier to a view, we are most of the time creating a new view that wraps the original view to add some extra behavior or styling – this is something I’ve said a few times now, but it matters!

This isn’t always the case. One common example is Text, where there are a whole batch of modifiers we can apply directly to some text without creating wrapped views, like this:

Text("Tap")
    .font(.title)
    .foregroundColor(.red)
    .fontWeight(.black)
    .onTapGesture {
        print(type(of: self.body))
    }

When you tap that text in the simulator, you’ll see its type is still just Text – it silently just absorbs all the modifiers into itself. This is what allows us to create complex text with various fonts and colors, then use operator overloading to bring it all together into a single Text view. 

You can see this for yourself in the SwiftUI interface file – search for “internal var modifiers”, and you’ll see that all Text views store an array of enum cases with associated values for their modifiers. (If you forgot the xed command to use, and the fix in case you have problems, please see the introduction to this book!)

[image: A small piece of SwiftUI interface file, showing how text absorbs modifiers.]

Tip: This is exactly how Text views have different natural sizes when changing the font – the font gets absorbed directly into the view, and is used as part of its size calculations.

However, there’s a whole batch of modifiers that are more complex, because they propagate changes downwards into child views. SwiftUI doesn’t mark these out very clearly, or indeed at all, but you can see them in action if we modified our code to this:

VStack {
    Text("Tap")
}
.font(.title)
.onTapGesture {
    print(type(of: self.body))
}

Now we’re applying title() to the VStack rather than directly to Text, and the resulting type of our view will be very different – you’ll see _EnvironmentKeyWritingModifier in there.

First, this dual behavior of font() is possible because of Swift’s approach to overload resolution, which really boils down to “the most constrained wins.” In the case of font(), if you look in the SwiftUI interface file you’ll see func font is in there twice: once on Text, and once on View. Because Text is the more constrained of the two (it’s one specific struct rather than a whole group of structs that conform to a protocol), when we call font() directly on a Text view we’ll get Text.font() rather than View.font().

Second, you can see exactly why _EnvironmentKeyWritingModifier comes back in our type when you look at the font() method attached to View rather than Text: it’s marked @inlinable, which means Swift has the option of replacing a call to this View.font() method with the actual body of the method – it’s able to copy the code from the method right into our view at compile time. Obviously this requires Swift to have access to the code to copy, which is why we can see exactly what SwiftUI is doing here:

@inlinable public func font(_ font: SwiftUI.Font?) -> some SwiftUI.View {
    return environment(\.font, font)
}

Tip: Search the SwiftUI interface for return environment(\ to see other instances of this behavior.

So, we get two different results for font() depending on where it’s called: for Text views it gets absorbed into an internal array of enum values, but for all other views it is merely syntactic sugar that silently gets converted into the following:

VStack {
    Text("Tap")
}
.environment(\.font, .title)
.onTapGesture {
    print(type(of: self.body))
}

The question is: why? Understanding the answer is the key to understanding the environment in SwiftUI: this approach lets a view modifier flow downwards through all the child views of our VStack, rather than just being applied to a single view – we can adjust the font of everything inside the VStack at once, even without the view internally realizing it was happening.

The power of SwiftUI’s environment is that it flows downwards to every view contained in wherever you apply it, but views only need to read a value if they care about it.

To demonstrate this, we could make a simple TextField wrapper that understands the concept of required fields by showing a small red asterisk next to required fields.

This process takes at least two steps for every new environment key you want to add. First, we make a new struct that conforms to the EnvironmentKey protocol, which requires that provide a default value for times when there is nothing in the environment:

struct FormElementIsRequiredKey: EnvironmentKey {
    static var defaultValue = false
}

Second, we make an extension on EnvironmentValues telling the system how to read and write our setting from the environment:

extension EnvironmentValues {
    var required: Bool {
        get { self[FormElementIsRequiredKey.self] }
        set { self[FormElementIsRequiredKey.self] = newValue }
    }
}

Now we can go ahead and use it. For our TextField wrapper this means using @Environment(\.required) to read the current required state in our environment, then creating the view as normal:

struct RequirableTextField: View {
    @Environment(\.required) var required

    let title: String
    @Binding var text: String

    var body: some View {
        HStack {
            TextField(title, text: $text)

            if required {
                Image(systemName: "asterisk")
                    .imageScale(.small)
                    .foregroundColor(.red)
            }
        }
    }
}

Now we can go ahead and the new RequirableTextField view anywhere we want it, sending in the environment value for \.required as needed:

struct ContentView: View {
    @State private var firstName = ""

    var body: some View {
        Form {
            RequirableTextField(title: "First name", text: $firstName)
                .environment(\.required, true)
        }
    }
}

Earlier I showed you how the View.font() modifier is nothing more than a wrapper around .environment(\.font), and honestly this is good practice because it makes our code easier to read. In this case it would mean adding a new View extension like this:

extension View {
    func required(_ makeRequired: Bool = true) -> some View {
        environment(\.required, makeRequired)
    }
}

With that in place, we can now just called required(), like this:

RequirableTextField(title: "First name", text: $firstName)
    .required()

Tip: As you can see, making the Boolean parameter have a default value of true makes for much more natural use at the call site – saying required() is the same as required(true).

[image: A text field with a red asterisk on its side.]

Now, as we’re applying required() directly to our custom text field, the environment approach might seem overkill – why not just pass it directly into the RequirableTextField initializer?

Well, consider code like this:

struct ContentView: View {
    @State private var firstName = ""
    @State private var lastName = ""

    @State private var makeRequired = false

    var body: some View {
        Form {
            RequirableTextField(title: "First name", text: $firstName)
            RequirableTextField(title: "Last name", text: $lastName)
            Toggle("Make required", isOn: $makeRequired.animation())
        }
        .required(makeRequired)
    }
}

Now we’re making the whole form required at once, which flows the environment key downwards into each text field automatically – they could even have been in a different subview entirely, but would still have been able to access the environment data.

[image: Two text fields are now required, with a toggle switch below.]

I’d like you to try making a custom environment key now: can you create one that stores a stroke width for all the shapes you want to draw? 

Have a go and see how you get on! I’ll add my solution below.

First, we need to define the custom environment key and an extension on EnvironmentValues:

struct StrokeWidthKey: EnvironmentKey {
    static var defaultValue = 1.0
}

extension EnvironmentValues {
    var strokeWidth: Double {
        get { self[StrokeWidthKey.self] }
        set { self[StrokeWidthKey.self] = newValue }
    }
}

We could even add a View extension if you wanted:

extension View {
    func strokeWidth(_ width: Double) -> some View {
        environment(\.strokeWidth, width)
    }
}

Now we can go ahead and use it with some drawing:

struct CirclesView: View {
    @Environment(\.strokeWidth) var strokeWidth

    var body: some View {
        ForEach(0..<3) { _ in
            Circle()
                .stroke(.red, lineWidth: strokeWidth)
        }
    }
}

And then set that value at some higher point in the environment, like this:

struct ContentView: View {
    @State private var sliderValue = 1.0

    var body: some View {
        VStack {
            CirclesView()
            Slider(value: $sliderValue, in: 1...10)
        }
        .strokeWidth(sliderValue)
    }
}

Tip: We’ll be using StrokeWidthKey and CirclesView in the next chapter, so stash your code somewhere safe and put mine in its place for easier reference.

[image: Three circles with red strokes, and a slider below them.]

	@Environment vs @EnvironmentObject
We can write any kind of data into environment keys, but the environment never watches for changes in observable objects. This means if you try to store a class in there then update it, the environment won’t know to update any views that are watching.

In practice, this makes @Environment more suited to value type data, as compared to @EnvironmentObject, which is specifically designed to store class instances – the clue is right there in the name.

There are two compelling reasons why, where possible, you should aim to use simple environment keys rather than passing in environment objects.

The first is simple: the EnvironmentKey protocol requires that we provide a default value for any custom keys we create, whereas environment objects can be missing entirely – and will trigger a hard crash in your code when this happens. Yes, in theory this is the kind of thing we should spot in development, but “should” in software development really means “might”, so why leave things up to chance?

The second is a little more complex: when an observable object announces that it has changed, SwiftUI makes all views that use it get refreshed. That sounds straightforward, but it has an important impact for times when we are publishing lots of data, only some of which views might care about.

To demonstrate this, we could add another custom environment key alongside the StrokeWidthKey we made in the previous exercise, this time to store the font that should be used for title text:

struct TitleFontKey: EnvironmentKey {
    static var defaultValue = Font.custom("Georgia", size: 34)
}

extension EnvironmentValues {
    var titleFont: Font {
        get { self[TitleFontKey.self] }
        set { self[TitleFontKey.self] = newValue }
    }
}

Again, we could make a View extension to make it easier to access:

extension View {
    func titleFont(_ font: Font) -> some View {
        environment(\.titleFont, font)
    }
}

Now we can send both values into the environment, like this:

struct ContentView: View {
    @State private var sliderValue = 1.0
    @State private var titleFont = Font.largeTitle

    var body: some View {
        VStack {
            CirclesView()
            Text("Hello, world!")
                .font(titleFont)

            Slider(value: $sliderValue, in: 1...10)

            Button("Default Font") {
                titleFont = .largeTitle
            }

            Button("Custom Font") {
                titleFont = TitleFontKey.defaultValue
            }
        }
        .strokeWidth(sliderValue)
        .titleFont(titleFont)
    }
}

That works great: the stroke width in CirclesView changes with the slider, and the font style in ContentView changes as the buttons are pressed.

[image: Three circles with red strokes, the text Hello World, and a slider below it all.]

I’d like to add one more line of code so you can see what’s going on – modify the body property of CirclesView to this:

var body: some View {
    print("In CirclesView.body")

    return ForEach(0..<3) { _ in
        Circle()
            .stroke(.red, lineWidth: strokeWidth)
    }
}

That prints out a message every time body is called, which is helpful here because it lets us run the project back and see the message being printed again and again as we drag around the slider. But, importantly, it won’t be printed when pressing the buttons: those also change the environment, but SwiftUI knows CirclesView doesn’t actually use the titleFont environment key so it doesn’t need to reinvoke body.

So, that’s how environment keys work, but what happens if we had used an environment object here instead? To find out, we would start by making some kind of class to store our two values together as theme data:

class ThemeManager: ObservableObject {
    @Published var strokeWidth = 1.0
    @Published var titleFont = TitleFontKey.defaultValue
}

In CirclesView we aren’t going to watch for precise keys, but instead we’ll expect to receive a whole environment object of theme data:

struct CirclesView: View {
    @EnvironmentObject var theme: ThemeManager

    var body: some View {
        print("In CirclesView.body")

        return ForEach(0..<3) { _ in
            Circle()
                .stroke(.red, lineWidth: theme.strokeWidth)
        }
    }
}

And now in ContentView we would make an instance of that using @StateObject, the inject it into the environment:

struct ContentView: View {
    @StateObject private var theme = ThemeManager()

    var body: some View {
        VStack {
            CirclesView()
            Text("Hello, world!")
                .font(theme.titleFont)

            Slider(value: $theme.strokeWidth, in: 1...10)

            Button("Default Font") {
                theme.titleFont = .largeTitle
            }

            Button("Custom Font") {
                theme.titleFont = TitleFontKey.defaultValue
            }
        }
        .environmentObject(theme)
    }
}

When you run the project now you’ll see an important difference: every time titleFont is set our "In CirclesView.body" message is printed, even though the CirclesView doesn’t care about it. This generates significantly more work for our views, with no actual benefit at all – the body property is even reinvoked if titleFont is set to its existing value!

From a SwiftUI perspective this behavior makes absolute sense: the class is sending a change notification, so SwiftUI doesn’t really have a way of checking exactly what changed inside the view – maybe strokeWidth also changed as a result of titleFont changing.

Try to think of it like this: every time you make a view use an @ObservedObject or an @EnvironmentObject, you are effectively creating a dependency on that data. It doesn’t matter if the actual body property doesn’t change as one of the @Published values changes, because if you recall Swift doesn’t perform tree diffing.

So, when you bring together the extra safety of always having a default value and the extra performance of skipping unnecessary work, I hope you can see why using environment keys are preferable where possible!

Of course, as with many things there is a middle ground: you can store your data as a shared theme, then expose it using environment key. This works when you want to be able to read and write the data in one object, but you’re still keen to avoid surprise crashes from missing data.

Using this approach we might abstract our theme information into a protocol, like this:

protocol Theme {
    var strokeWidth: Double { get set }
    var titleFont: Font { get set }
}

We can then make structs adopting that protocol, based on whatever theme requirements we have:

struct DefaultTheme: Theme {
    var strokeWidth = 1.0
    var titleFont = TitleFontKey.defaultValue
}

Next, we’re going to wrap that in a class that is able to publish changes as the theme updates. Apps only ever have one theme active at a time, so we could implement this as a singleton:

class ThemeManager: ObservableObject {
    @Published var activeTheme: any Theme = DefaultTheme()

    static var shared = ThemeManager()
    private init() { }
}

Now we can expose all that to the environment, focusing only on the internal Theme struct:

struct ThemeKey: EnvironmentKey {
    static var defaultValue: any Theme = ThemeManager.shared.activeTheme
}

extension EnvironmentValues {
    var theme: any Theme {
        get { self[ThemeKey.self] }
        set { self[ThemeKey.self] = newValue }
    }
}

We need to expose this to our views in a natural way, but we can’t just make a simple View extension this time because we need to actually watch the ThemeManager for changes. We don’t own this theme manager object because we’re using a singleton, so a simple @ObservedObject is the right choice:

struct ThemeModifier: ViewModifier {
    @ObservedObject var themeManager = ThemeManager.shared

    func body(content: Content) -> some View {
        content.environment(\.theme, themeManager.activeTheme)
    }
}

And now we can wrap it up in a View extension for easier use:

extension View {
    func themed() -> some View {
        modifier(ThemeModifier())
    }
}

With that all done, we can switch ContentView over to using @ObservedObject for its theme manager, so it’s able to read and write data:

@ObservedObject var theme = ThemeManager.shared

That means using theme.activeTheme everywhere, because now we want to modify the theme struct directly. Once that’s done, add a themed() modifier to ContentView so the active theme is sent into the environment.

The interesting part is in CirclesView, where now we can watch the environment key rather than using @EnvironmentObject:

struct CirclesView: View {
    @Environment(\.theme) var theme

    var body: some View {
        print("In CirclesView.body")

        return ForEach(0..<3) { _ in
            Circle()
                .stroke(.red, lineWidth: theme.strokeWidth)
        }
    }
}

You’ll see that still triggers when the stroke width changes or when the font changes, but doesn’t change when the font is changed to its existing value – SwiftUI is smart enough to discard that.

But we can get even better: because @Environment uses a key path rather than always accepting a whole observable object like @EnvironmentObject does, we can actually tell SwiftUI we want access to only part of the theme, which means only that part of it will be a dependency for this view:

struct CirclesView: View {
    @Environment(\.theme.strokeWidth) var strokeWidth

    var body: some View {
        print("In CirclesView.body")

        return ForEach(0..<3) { _ in
            Circle()
                .stroke(.red, lineWidth: strokeWidth)
        }
    }
}

And now SwiftUI will only reinvoke the body property when that one specific value changes – we’re back to where we were originally in terms of performance, while also benefiting from having the environment object available elsewhere if needed.

This approach obviously takes more work, but it gives us the ability to synchronize changes everywhere with some kind of theme control panel, but also means we get the guaranteed safety of using environment keys rather than environment objects.

	Overriding the environment
As we’ve seen, SwiftUI’s environment flows down through our views, which allows parents to set some data for their children that can then be read out as needed.

For example, we might create a simple welcome view for our app:

struct WelcomeView: View {
    var body: some View {
        VStack {
            Image(systemName: "sun.max")
            Text("Welcome!")
        }
    }
}

We could then use it somewhere else, adjusting its font as needed:

struct ContentView: View {
    var body: some View {
        WelcomeView()
            .font(.largeTitle)
    }
}

That works well enough, but what if we wanted to customize the font for the SF Symbols image we’re using? Maybe our designer wants that to be much bolder, so the image stands out more clearly.

[image: A sun icon with the word Welcome below.]

We could try adding a font() modifier to it, like this:

Image(systemName: "sun.max")
    .font(.largeTitle.weight(.black))

But now we’ve introduce a problem: that font will override whatever comes in from the environment, so if we later changed ContentView to use .font(.headline) instead we’ll have a mismatch – our symbol will use a large title, whereas the text below will use a headline font.

In this situation, the second font() modifier isn’t really what we meant – we don’t want to force a wholly new font, we just want to bold up whatever font we were asked to use. SwiftUI has a wholly separate modifier for this, called transformEnvironment(): it is able to transform any one specific environment key somehow, and passes us an inout reference of whatever the current value is.

So, a much better solution is to write this:

Image(systemName: "sun.max")
    .transformEnvironment(\.font) { font in
        font = font?.weight(.black)
    }

This approach is really similar to the transaction() modifier: any kind of font applied to this image will automatically be transformed using our custom closure.

[image: The sun icon is now bold, while the text is still its default weight.]

	Preferences
We’ve seen how SwiftUI’s environment flows downwards, but sometimes you want information to flow upwards too – to send data from a child view upwards to its ancestor views. In SwiftUI this is done using preferences, and the canonical example of this in action is the navigationTitle() modifier:

NavigationStack {
    VStack {
        Image(systemName: "sun.max")
        Text("Welcome!")
    }
    .navigationTitle("MyApp")
}

In that code, the VStack describes its navigation title, but that data flows upwards to the NavigationStack containing it. This makes sense from a UI perspective, because of course the navigation stack can push and pop views freely, and it needs to be able to update itself to show the titles of each of those views.

[image: An iOS device showing a sun icon and Welcome, with the navigation title My App.]

Just like the environment, preferences flow upwards continuously rather than just stopping at the first container. In our simple ContentView code, this means we can put navigationTitle() on a view inside the VStack, if we wanted:

NavigationStack {
    VStack {
        Image(systemName: "sun.max")
        Text("Welcome!")
            .navigationTitle("MyApp")
    }
}

That will give exactly the same result – the title preference just flows upwards until it’s used.

Of course, that might set off some alarm bells: what happens if we have multiple navigation titles? We can find out easily:

NavigationStack {
    VStack {
        Image(systemName: "sun.max")
            .navigationTitle("Image")

        Text("Welcome!")
            .navigationTitle("Text")
    }
    .navigationTitle("VStack")
}

As you’ll see when that code runs, the navigation view just picks the first one it finds – it will show “Image” as its title.

This kind of preference system is open to us to use as needed, although you should keep in mind that having data flowing freely both downwards and upwards might result in spaghetti code.

Our own preferences work in a similar way to navigationTitle():


	Any view can add them.

	They flow upwards through our views.

	We need to choose one value to use.



It’s not identical, because we get to decide how the single value is selected – maybe we choose the first one like navigationTitle(), or maybe we combine values together somehow.

Enough talk: let’s try and implement a preference key ourselves, which will let a child view report its size upwards to containers.

The first step is to create a new struct that conforms to the PreferenceKey protocol. This requires us to provide a default value for the preference, just like EnvironmentKey, but now we also need to provide a reducer function – code that chooses which value to use, when several come in.

In our case, we want to track the width of some view, but if we get multiple widths coming in we’ll just track the last one:

struct WidthPreferenceKey: PreferenceKey {
    static let defaultValue = 0.0

    static func reduce(value: inout Double, nextValue: () -> Double) {
        value = nextValue()
    }
}

Now we can make a view that sets a value for that preference, like this:

struct SizingView: View {
    @State private var width = 50.0

    var body: some View {
        Color.red
            .frame(width: width, height: 100)
            .onTapGesture {
                width = Double.random(in: 50...160)
            }
            .preference(key: WidthPreferenceKey.self, value: width)
    }
}

That changes its width whenever it’s tapped, which is helpful so you can see what’s happening.

Finally, we need to place that view somehow, and watch for changes to its preferences. This watching is done using the onPreferenceChange() modifier, which runs code of our choosing whenever some specific preference data changes, like this:

struct ContentView: View {
    @State private var width = 0.0

    var body: some View {
        NavigationStack {
            VStack {
                SizingView()
            }
            .onPreferenceChange(WidthPreferenceKey.self) { width = $0 }
            .navigationTitle("Width: \(width)")
        }
    }
}

That code works great: you can run the project, then tap the red square to see its width adjust and be reflected in the navigation view.

[image: A 50x100 red rectangle, with 50.000000 in the navigation title.]

Of course, rather than just displaying the value, we can put it to use somehow. For example, we could use the value to set the widths of other, unrelated views, like this:

struct ContentView: View {
    @State private var width = 0.0

    var body: some View {
        NavigationStack {
            VStack {
                SizingView()

                Text("100%")
                    .frame(width: width)
                    .background(.red)

                Text("150%")
                    .frame(width: width * 1.5)
                    .background(.green)

                Text("200%")
                    .frame(width: width * 2)
                    .background(.blue)
            }
            .onPreferenceChange(WidthPreferenceKey.self) { width = $0 }
            .navigationTitle("Width: \(width)")
        }
    }
}

[image: A red rectangle with three color text boxes below, each having sizes that depend on the rectangle’s size.]

Or we can add multiple resizing views just fine, thanks to the reducer we wrote:

VStack {
    SizingView()
    SizingView()
    SizingView()
}
.onPreferenceChange(WidthPreferenceKey.self) { width = $0 }
.navigationTitle("Width: \(width)")

We made the reduce() method always use the final value it’s given, so when that code runs only the third SizingView will have its width reflected in the navigation title. Of course, it doesn’t have to be that way: we could make our reducer sum the preferences instead, like this:

static func reduce(value: inout Double, nextValue: () -> Double) {
    value += nextValue()
}

Now the final value for our preference will be the total of all three widths, and will automatically adapt when any of the three changes. 

[image: Three red rectangles of various sizes, with the total of their widths visible in the navigation title.]

Even better, if you wanted to mimic the “first preference only” approach of navigationTitle(), it takes literally zero code:

static func reduce(value: inout Double, nextValue: () -> Double) {

}

Because that never calls nextValue(), it means “you give me the first value and the next one, but I don’t care – do nothing with them.”

	Anchor preferences
You’ve seen how preferences allow us to send data from a child view up to its ancestors, and how it’s up to us to decide what to do – if anything – with that information. Well, SwiftUI provides a handful of specialized preference modifiers that are specifically aimed at making it easier to share sizing data and make use of it easily.

To demonstrate this, we’re going to create a simplified copy of part of the Airbnb app: at the top of the app’s Explore tab there are some options you can select, and whichever one is selected shows a line underneath. Sure, we could do this by giving every icon an underline that gets shown or hidden depending on the selection status, but the Airbnb app uses just one line that moves around and resizes based on the category selection.

[image: The Airbnb app, showing an Iconic Cities button underlined.]

Solving this problem will demonstrate not only how the more advanced preferences work, but you’ll also see how preference data can be more complex – it’s definitely a fun problem to tackle.

First, we can define what one category in our app looks like. We’ll provide two properties here: one for the identifier, which will be things like “Beach”, “Golfing”, or “Tropical”, and one for the SF Symbol that will be used to add an icon. We’ll make this struct be Identifiable so we can loop over arrays of them in SwiftUI, and also Equatable so we can compare one category to another. Start with this code:

struct Category: Identifiable, Equatable {
    let id: String
    let symbol: String
}

Next will be the preference data we want to share. Previously this was a simple number, but this time I want to share a custom struct containing two pieces of information: the category that it refers to, and an anchor. Anchors are opaque geometry stores, which means they can store a reference to some position and size on the screen but we can’t read it out directly because it wouldn’t be useful. Fortunately, SwiftUI knows how to read them for us, and in doing so automatically resolves the anchor’s geometry into coordinates that are useful for us.

If that sounds fuzzy, relax; it will make sense in a moment. For now, add this second struct to store the category and an anchor storing its geometry data:

struct CategoryPreference: Equatable {
    let category: Category
    let anchor: Anchor<CGRect>
}

Next we’re going to add a third struct that conforms to PreferenceKey. This is similar to the preference key we wrote for SizingView, except now we’re going to send back an array of data all at once – we’ll collect whatever array of CategoryPreference values we’re given and add them into a collection of all such values

struct CategoryPreferenceKey: PreferenceKey {
    static let defaultValue = [CategoryPreference]()

    static func reduce(value: inout [CategoryPreference], nextValue: () -> [CategoryPreference]) {
        value.append(contentsOf: nextValue())
    }
}

That completes all the underlying data we need for our work, so now we need two SwiftUI views to render it all: one to handle a single category button on the screen, and one to render all the buttons plus an underline and whatever else we want.

First, the category button. This will be given the category to show, along with a binding that will store which category is currently selected. This binding is important, as it allows our category button to adjust external state – to say “my category was selected” when it is tapped.

It looks like this:

struct CategoryButton: View {
    var category: Category
    @Binding var selection: Category?

    var body: some View {
        Button {
            withAnimation {
                selection = category
            }
        } label: {
            VStack {
                Image(systemName: category.symbol)
                Text(category.id)
            }
        }
        .buttonStyle(.plain)
        .accessibilityElement()
        .accessibilityLabel(category.id)
    }
}

We’ll come back to that in a moment, but first I want to create an initial version of ContentView, which has the job of showing several category buttons in a HStack. We’ll add more to this shortly, so I’ll also add a VStack where we can add extra things later, but the important part for now is that it has an array of categories and a single piece of state that stores the selected category – that’s what gets passed into CategoryButton as a binding.

Add this ContentView code now:

struct ContentView: View {
    @State private var selectedCategory: Category?

    let categories = [
        Category(id: "Arctic", symbol: "snowflake"),
        Category(id: "Beach", symbol: "beach.umbrella"),
        Category(id: "Shared Homes", symbol: "house")
    ]

    var body: some View {
        VStack {
            HStack(spacing: 20) {
                ForEach(categories) { category in
                    CategoryButton(category: category, selection: $selectedCategory)
                }
            }
        }
    }
}

At this point we have something fairly unimpressive: we’ve created the data model for our preferences, and also the views to show categories, but we haven’t actually linked them together. To do this means introducing two new modifiers: one to send the value upwards as a preference, and one to read the array of those values back out once they have been through our reducer function.

Now, previously we used the preference() modifier for sending a preference up to ancestors, but here we’re going to use a specialized preference specifically for working with geometry. This modifier is called anchorPreference() and takes three parameters:


	The preference key you want to send. For us that will be CategoryPreferenceKey.self, just like we’d have with a simple preference.

	What part of the geometry we want to send. Perhaps you might want to send just the leading edge, for example, but here we’re going to request .bounds to get the whole frame wrapped up.

	A transformation function that accepts an Anchor containing our bounds, and needs to convert that into whatever input your preference key expects. If you remember, we made ours work with CategoryPreference arrays, so we’ll convert the anchor into an array containing one CategoryPreference instance.



All this is done by adding this single modifier to CategoryButton, below accessibilityLabel():

.anchorPreference(key: CategoryPreferenceKey.self, value: .bounds, transform: { [CategoryPreference(category: category, anchor: $0)] })

So, we’re telling SwiftUI we want to express an anchor preference for the CategoryPreferenceKey, that it needs to use the bounds of the button we attached the preference to, and we want to receive that bounds as an anchor and place it inside a CategoryPreference object.

That sets the category preference key for each button, but we still need to add code to read the preference and act on it. This is where the second new modifier comes in: rather than just using onPreferenceChange() to read values coming in, we’re going to use overlayPreferenceValue(). This has the job of reading preferences and converting them into an overlay – it’s effectively a combination of onPreferenceChange() and overlay() in one modifier, which helps make our code simpler.

This is where SwiftUI performs a beautiful trick. Remember earlier when I said that anchors are opaque geometry stores? That means they contain geometry data, but don’t let us read that data back out because it wouldn’t have any meaning – just knowing X:35 Y:58 by itself doesn’t mean anything unless you know exactly what coordinate space you’re coming from and going to, for example.

SwiftUI solves this brilliantly using GeometryReader: if we use one of these anywhere in our view layout, we can pass an anchor to its proxy object and have it send back a relevant frame for us as a CGRect. That means the GeometryProxy figures out how to convert the original frame into whatever coordinate space our GeometryProxy is working in – it takes away all the hassle of figuring out where the two are in relation to each other, and just sends us back the bit we actually care about: a CGRect telling us the frame we actually want to use to refer to the original bounds we set with anchorPreference().

Enough chat, let’s put the code in place so you can see exactly how it works. Please add this modifier to the VStack in ContentView:

.overlayPreferenceValue(CategoryPreferenceKey.self) { preferences in
    GeometryReader { proxy in
        if let selected = preferences.first(where: { $0.category == selectedCategory }) {
            let frame = proxy[selected.anchor]

            Rectangle()
                .fill(.black)
                .frame(width: frame.width, height: 2)
                .position(x: frame.midX, y: frame.maxY)
        }
    }
}

I’m going to break that down and walk through every line, but first I want you to build and run the code so you can see what it does – you should find you can now tap on any button to see a line animate between them, automatically moving and resizing so that it always underlines each button correctly. It’s a great effect, although I should repeat that it’s from Airbnb rather than something I came up with by myself!

Anyway, let’s break down the code:


	We use overlayPreferenceValue() to specify we want to read in a particular preference key and convert it into an overlay. As a reminder, that means we want SwiftUI to place some kind of view over our VStack, and we’ll use the preference keys to figure out what that view should be.

	Inside our overlay we use a GeometryReader so we can evaluate our geometry somehow. This will automatically expand to fill all the available space, which is fine as an overlay because it will naturally fit the same space as the view it overlays.

	We look through all the category preferences for whichever one matches the selected category.

	If we find a match, we pass the selected preference’s anchor into our geometry proxy, which performs the conversion into a finished frame representing where that anchor is in the coordinates of our current GeometryReader.

	Now we have a real frame, we draw a black rectangle using the width of the frame so it matches the width of the thing we want to underline, giving it a 2-point height so it looks like a thick line.

	We want to position that rectangle so that its center lies at the middle bottom of our frame. If you prefer offset() rather than position() you should use frame.minX because we’re providing a relative movement rather than trying to center the view in some exact location.



The real magic in that code is proxy[selected.anchor], which takes care of all the geometry conversion for us – hopefully you can see now why Anchor is opaque!

[image: Three category buttons, with Shared Homes being underlined.]

The real power of this approach is that the rest of our UI has no idea that preferences are being used at all, which means if we added more to the VStack it would Just Work™ without any special extra work from us.

For example, we could add a List below the buttons HStack, showing all the categories and letting the user select them that way:

List(categories, id: \.id) { category in
    HStack {
        Button(category.id) {
            withAnimation {
                selectedCategory = category
            }
        }

        if selectedCategory == category {
            Spacer()

            Image(systemName: "checkmark")
        }
    }
}

That adjusts selectedCategory when each row in the list is tapped, which triggers body being reinvoked and will update the overlay preference. If you try it out, you’ll see SwiftUI automatically moves the underline rectangle around, just like we had when tapping the buttons directly.

We can also show the selected category by adding another view to the VStack, below the List:

if let selectedCategory {
    Text("Selected: \(selectedCategory.id)")
}

Again, that will automatically update no matter how the selected category changes – we get both the underline and text updating smoothly, all thanks to SwiftUI’s preferences system.

[image: A list of categories that match buttons above them. Beach is underlined, and also checked in the list.]

So, even though I think it takes a little understanding at first, I hope you can appreciate the power being exposed here: we’re able to send complex data to parent views, convert coordinate spaces, and more, all to quite elegantly achieve a very specific result.

	Chapter 4
Custom Layouts

	Adaptive layouts
Switching between layouts can be a complicated beast in SwiftUI, because as you saw earlier it’s easy to get stuck with view builder conditional content views that toss away your state, destroy your platform views, and screw up any animations. However, if done right it’s possible to move smoothly from one container view to another, e.g. from a HStack to a VStack – not only does it avoid the aforementioned problems, but SwiftUI will even animate between the two layouts for us.

The key here is SwiftUI’s AnyLayout view, which is a type-erased wrapper around a container capable of performing layout. You might see the “Any” in the name and imagine this should be avoided much like AnyView, but relax: this wrapper is specifically designed to let us dynamically switch between different layouts, e.g. horizontal and vertical, without destroying any state along the way.

You’re already familiar with HStack, VStack, and ZStack, but SwiftUI provides special alternatives to those called HStackLayout, VStackLayout and ZStackLayout – all of which are designed to work with AnyLayout, so we can swap between them freely and have SwiftUI rearrange our views automatically. These have different names not because Apple is changing their mind or because they plan to remove the old names, but simply for compiler reasons: if Apple made the original stack types work with AnyLayout it would cause our code to build significantly slower as the compiler tried to figure out which implementation we meant in our code.

Anyway, let’s get into some code, so you can see all this in practice. First, I want to make a simple test view that we can use repeatedly, so create this new SwiftUI view now:

struct ExampleView: View {
    @State private var counter = 0
    let color: Color

    var body: some View {
        Button {
            counter += 1
        } label: {
            RoundedRectangle(cornerRadius: 10)
                .fill(color)
                .overlay(
                    Text(String(counter))
                        .foregroundColor(.white)
                        .font(.largeTitle)
                )
        }
        .frame(width: 100, height: 100)
        .rotationEffect(.degrees(.random(in: -20...20)))
    }
}

Those views will provide enough variation that several of them will look suitably different on the screen, but they also have their own individual state – each view will have its own counter that increments when tapped.

What is more interesting is how we place a bunch of those on the screen at the same time. I already mentioned that AnyLayout has the job of wrapping another specific layout type, so in order to cycle through various layouts we’re going to create an array of them and cycle through them to use one at a time.

Start by adding this as a property to ContentView:

let layouts = [AnyLayout(VStackLayout()), AnyLayout(HStackLayout()), AnyLayout(ZStackLayout())]

So, that contains three different ways of laying out views: vertical, horizontal, and depth. Which one we use will depend on another property that points to an index in that array, so add this next:

@State private var currentLayout = 0

And our final property will be responsible for returning one layer from the array, based on the value of currentLayout:

var layout: AnyLayout {
    layouts[currentLayout]
}

For the body of our view, we’re going to create a VStack with four things inside:


	A button that goes to the next layout when pressed.

	Whatever layout is currently active, containing four instances of ExampleView inside.

	A spacer above the layout…

	…and another one below the layout, so it’s centered neatly.



We’ll also make the VStack take up all available space, and have a dark background color so our example views stand out clearly. Replace the current body property of ContentView with this:

VStack {
    Spacer()

    layout {
        ExampleView(color: .red)
        ExampleView(color: .green)
        ExampleView(color: .blue)
        ExampleView(color: .orange)
    }

    Spacer()

    Button("Change Layout") {
        withAnimation {
            currentLayout += 1

            if currentLayout == layouts.count {
                currentLayout = 0
            }
        }
    }
    .buttonStyle(.borderedProminent)
}
.frame(maxWidth: .infinity, maxHeight: .infinity)
.background(.gray)

That’s already enough to demonstrate the power of AnyLayout: when you run the app now you’ll see our four example views rearrange themselves smoothly every time the button is tapped. More importantly, as we switch between layouts each of the views will retain their state – you can tap on any of them to increase their counter, and those values will be preserved between layout changes.

[image: Three variations of our views: vertical, horizontal, and overlapping.]

That’s neat, right? But SwiftUI goes two steps further. First, alongside VStackLayout and others we can also use GridLayout to lay out views in a grid. To try it out, first modify your layouts array to this:

let layouts = [AnyLayout(VStackLayout()), AnyLayout(HStackLayout()), AnyLayout(ZStackLayout()), AnyLayout(GridLayout())]

Second, modify your layout code to this:

layout {
    GridRow {
        ExampleView(color: .red)
        ExampleView(color: .green)
    }

    GridRow {
        ExampleView(color: .blue)
        ExampleView(color: .orange)
    }
}

That splits up our views into two rows, so if you run the app now you’ll see we get a 2x2 grid layout alongside the other three.

[image: Three variations of our views: vertical, horizontal, and overlapping.]

If you pause to think about it, something neat is happening here: three of our four layouts aren’t grids, and yet SwiftUI won’t bat an eyelid about them containing GridRow. That particular view only does anything when contained inside a grid, and for all other layouts it behaves identically to a Group.

So now we’re cycling between four completely different layouts for our views, with SwiftUI preserving animation, state, and platform views throughout. But I said SwiftUI goes two steps further, so what’s the second one?

Well, all four of these layout types conform to an underlying protocol named simply Layout. Not only can we create our own types that conform to Layout, but when doing so those custom layouts can be used with AnyLayout too – you can move smoothly from the built-in layouts to ones you built yourselves.

Let’s look at that next…

	Implementing a radial layout
The first custom layout we’re going to build is by no coincidence also the easiest, and is designed to place its views in a circle. To build this layout you’ll need to meet the two most important methods in the Layout protocol:


	The sizeThatFits() method is given a proposed size for our layout, along with all the subviews that are inside, and must return the actual size our container wants to have. (Remember the three-step layout process: step 1 is the parent proposing a size, step 2 is the child deciding on its actual size, and step 3 is the parent placing the child based on that size.)

	The placeSubviews() method is given the actual CGRect the parent has allocated for the child, which will match the size we returned from sizeThatFits(). It will also be given the original proposed size, because it’s possible the parent proposed multiple sizes before one was finally chosen, and we’ll also get the subviews ready to place.



There’s one more thing both these methods accept, and we’ll be covering it in a later chapter: a cache, so that you’re doing slow calculations to create your layout you can skip doing the work more often than is necessary.

Anyway, let’s begin by creating a new struct with stubs for the two required methods:

struct RadialLayout: Layout {
    func sizeThatFits(proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) -> CGSize {

    }

    func placeSubviews(in bounds: CGRect, proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) {

    }
}

Swift will complain because we aren’t returning something from sizeThatFits(), but that’s okay: that entire method is just one line of code, so we might as well fill it in now. Put this inside sizeThatFits():

proposal.replacingUnspecifiedDimensions()

Before I explain what it does, I should make one thing clear: although that is the correct and only line of code for this radial layout, many if not most of the custom layouts you will make in the future will need significantly more logic to work. So, if you were thinking “wow, these custom layouts are easy,” you shouldn’t get your hopes up too much!

SwiftUI calls sizeThatFits() with a proposed view size and all our subviews. Very often you’ll want to query those subviews to ask how much space they want before deciding how much the whole container wants, but for a radial layout we don’t care – we just want to take all the space that was offered to us.

The proposed view size we receive into sizeThatFits() comes from our container’s parent, and it might call the method several times to get a full understanding of what our layout is happy to use. Sometimes we’ll be passed in a specific size the parent wants to give us, e.g. 300x200, sometimes we’ll be passed only part of a size, e.g. we can have 300 points horizontally and no vertical limit, and sometimes we’ll be passed one of three special values:


	Unspecified: “I don’t have a particular size in mind for you, so tell me your ideal size.”

	Infinity: “You can have as much space as you want, so what’s the most you’ll take?”

	Zero: “Space is really tight, so what’s the least you can work with?”



The point is that this proposal isn’t just a simple width and height, because even without the infinite and zero values it’s still possible to get nil for either or both width and height.

What replacingUnspecifiedDimensions() does is return a fully-formed CGSize with no optional width or height – both values will have something meaningful in there, with nil values being replaced by a default of 10. So, our sizeThatFits() method effectively means “I’ll take all the space you offered, but if you didn’t specify something I’ll ask for just 10 points.” Yes, 10 points isn’t really enough for a good layout, but there isn’t really a good alternative here – we can’t really create a circular layout unless we know the amount of space available to us.

This situation might seem familiar to you: back in the chapter on layout neutrality I mentioned that Color.red inside a scroll view would be given a nominal 10-point height because it wouldn’t make sense to use anything else. Hopefully now you can see where that value of 10 comes from – internally the Color is using replacingUnspecifiedDimensions() to replace its nil inputs with 10.

That’s enough talk, so let’s move on to the placeSubviews() method. This is more challenging, because it’s our job to figure out how to place all our subviews in a circle. It takes a small amount of trigonometry, but hopefully it won’t challenge you too much!

To begin with, we need to calculate the radius of the bounds we’re working with, then divide 360 degrees by the number of subviews so we can see how many degrees of our circle should be allocated to each view.

Start by adding these two lines to placeSubviews():

let radius = min(bounds.size.width, bounds.size.height) / 2
let angle = Angle.degrees(360 / Double(subviews.count)).radians

Note: The Angle.degrees(…).radians part is intentional – it’s a little easier to think about 360 degrees in a circle, but we need the final “angle per subview” value as radians.

Now we know the radius of our circle and how many degrees of our circle should be allocate to each view, we can start to place each view. This means going over all the views in subviews, figuring out how much space it wants, then placing it on our circle as appropriate.

Add this loop underneath the previous lines:

for (index, subview) in subviews.enumerated() {
    // more code to come
}

If we place every view at the very edge of our circle, we’ll hit a problem because a large part of each view will lie outside the circle’s perimeter. For example, if the radial layout goes horizontally edge to edge on the screen, the views on the left and right edge will both be hanging half way off the screen, which is a poor experience.

Rather than placing our views at the very edge of our circle, we’ll instead ask each view how much space it wants, then subtract half that from the position it would otherwise have been given – rather than “edge of the circle” it’s “edge of the circle minus half the view’s size” so it’s fully inside the circle.

So, the first line we’ll add inside our loop will be to ask each subview for its ideal size, like this:

let viewSize = subview.sizeThatFits(.unspecified)

Now for the trigonometry:


	We know the angle that needs to be allocated to each view to split up our circle fairly.

	If we multiply that angle by our loop index, we’ll find the angle where this particular view should be placed.

	Calculating the cosine of that angle will tell us how much X movement should happen to reach that position, in a range of -1 through +1.

	We can then multiply that by our radius to get that X movement in the range of -radius to +radius.

	Calculating the sine of the angle will tell us how much Y movement should happen to reach the view’s position, and again we will multiply that by our radius to get the actual location.



There are two bonus complications here:


	Like I said, we need to subtract half the width and height of the view from the final X and Y positions.

	SwiftUI considers 0 radians to be directly to the right, whereas users will expect 0 to be directly up. We can fix this by subtracting half of pi from our angle before putting it through sin() and cos().



Add these two lines to placeSubviews() below the previous code:

let xPos = cos(angle * Double(index) - .pi / 2) * (radius - viewSize.width / 2)
let yPos = sin(angle * Double(index) - .pi / 2) * (radius - viewSize.height / 2)

At this point we know where to place this view inside our container, but there are still two more small complications.

First, we’ve calculated where the view should be by multiplying its angle by our container’s radius, with a little extra logic in there for handling 0 degrees being up and ensuring views always lie inside the circle. What we haven’t done is offset this position so that it’s relative to the center of our container, which means right now those xPos and yPos values are offsets from the top-left corner of our container.

To fix this, we’re going to convert our two position values into a CGPoint, and while doing so add in the midX and midY of our bounds, so that our circle is centered on the center of our container as you’d expect.

Add this line to the method next:

let point = CGPoint(x: bounds.midX + xPos, y: bounds.midY + yPos)

The second small complication comes by asking a question: when placing the subview at point, are we saying the top-leading of the subview should be there? Or the center of the subview? Or something else? If we don’t specify SwiftUI will assume we mean top leading, but we’ve actually calculated the center position so we need to say that.

Attached to this is a chance to tell the subview exactly how much space we have allocated to it. Remember, children choose their final sizes and parents must respect that, so this space allocation is just another proposal – the child can do what it likes. We don’t care how much size the view takes up, so we’ll use .unspecified here.

Add this final line of code to end the loop:

subview.place(at: point, anchor: .center, proposal: .unspecified)

So, that asks each view for its ideal size, then uses it to place it inside our circle’s perimeter. The whole thing isn’t a lot of actual code, but it does take quite a bit of explaining because there’s a lot of power here.

We’ll look into these layouts more in coming chapters, but first I want you to try it out in a SwiftUI view – try replacing your ContentView struct with this one:

struct ContentView: View {
    @State private var count = 16

    var body: some View {
        RadialLayout {
            ForEach(0..<count, id: \.self) { _ in
                Circle()
                    .frame(width: 32, height: 32)
            }
        }
        .safeAreaInset(edge: .bottom) {
            Stepper("Count: \(count)", value: $count.animation(), in: 0...36)
                .padding()
        }
    }
}

That creates lots of circles in a radial layout, but adds a stepper to increment or decrement the circle count using animation. Try running it now – it’s a simple view, and again our radial layout code is pretty short, but I think you’ll be impressed by how good the results are!

[image: Four iPhones showing our radial layout with various numbers of views.]

	Implementing an equal width layout
The next custom layout we’re going to look at will create a HStack where each view is allocated exactly the same width.

In the “Fixing view sizes” chapter I showed you how we could make two views in the same HStack have the same height by using .frame(maxHeight: .infinity) on the views and .fixedSize(horizontal: false, vertical: true) on the HStack, but this is different: here we want all the views to have the same width, which is trickier to solve.

Now, you might think one solution is to give each child view .frame(maxWidth: .infinity), which will cause each view to resize freely horizontally – the HStack will just divide its available space by the number of views. However, the problem with this approach is that it makes all the views take up more space than is needed, causing our HStack to grow.

Yes, we want all our views to have the same size, but ideally that size is whatever is the largest of all the subviews – if subview A is 100 wide, B is 50 wide, and C is 150 wide, we want to give A, B, and C 150 points each, because that’s the largest width of the subviews.

Let’s start writing some code – add this empty struct now:

struct EqualWidthHStack: Layout {
}

Before we write sizeThatFits() and placeSubviews(), we’re going to write two helper methods that do work shared in both those other places. There are extremely concise ways of writing both of these functionally, but honestly the main focus here is understanding how the Layout protocol works so I’m going to give you longer code that is much easier to understand.

The first helper method has the job of going over all the subviews we’re laying out and figure out the maximum size – the maximum width of all the views, and the maximum height of all the views. This can be done by:


	Assuming a CGSize.zero maximum size to begin with.

	Looping over every view and asking its preferred size.

	If that view’s width is greater than our current maximum width, make that our new maximum width.

	Repeat that, just for height.



So, we’re not saying the maximum width and height for any one view, but instead the maximum height across all subviews and maximum width across subviews.

Add this method to the struct now:

private func maximumSize(across subviews: Subviews) -> CGSize {
    var maximumSize = CGSize.zero

    for view in subviews {
        let size = view.sizeThatFits(.unspecified)

        if size.width > maximumSize.width {
            maximumSize.width = size.width
        }

        if size.height > maximumSize.height {
            maximumSize.height = size.height
        }
    }

    return maximumSize
}

The second helper is a more complex one, but it solves an important problem that we can mostly ignore when working with SwiftUI: some views like to have a certain amount of distance between themselves and other views. I don’t mean because of padding; that’s part of the view’s size. Instead, this is a really neat feature of SwiftUI that allows a Text view to have more or less spacing depending on whether its neighbor is another Text view or is an Image. Even better, this automatic spacing automatically varies across platforms, so you’ll get different values on watchOS and tvOS because of the space differences.

Anyway, this second helper method is going to create a Double array containing spacing values, one for each subview. This can mostly be done by asking SwiftUI how much distance should be placed between one view and the next one, but the last subview is a special case because it doesn’t have a neighbor afterwards – we’ll return 0 for that.

Add this second helper now:

private func spacing(for subviews: Subviews) -> [Double] {
    var spacing = [Double]()

    for index in subviews.indices {
        if index == subviews.count - 1 {
            spacing.append(0)
        } else {
            let distance = subviews[index].spacing.distance(to: subviews[index + 1].spacing, along: .horizontal)
            spacing.append(distance)
        }
    }

    return spacing
}

That’s most of the hard work done now, so we can finally turn our eyes to the sizeThatFits() method. Remember, this is given a proposed size and all the subviews it needs to lay out, and should return a CGSize containing the actual size it wants to use.

Thanks to our helper methods, implementing sizeThatFits() is straightforward. We need to:


	Call maximumSize() to find the largest width and height across all our subviews.

	Call spacing() to get an array of the spacing between all the views, then sum those numbers into a single value.

	Return our maximum width multiplied by how many subviews we have, because each view will have the same size, then add to that the total spacing value.

	Return our maximum height. No further calculations are needed because it’s a horizontal stack.



Go ahead and add this sizeThatFits() method now:

func sizeThatFits(proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) -> CGSize {
    let maxSize = maximumSize(across: subviews)
    let spacing = spacing(for: subviews)
    let totalSpacing = spacing.reduce(0, +)

    return CGSize(width: maxSize.width * Double(subviews.count) + totalSpacing, height: maxSize.height)
}

The placeSubviews() method is a little trickier, but it still leans heavily on those two helper methods we wrote. So, start with this:

func placeSubviews(in bounds: CGRect, proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) {
    let maxSize = maximumSize(across: subviews)
    let spacing = spacing(for: subviews)

    // more code to come
}

In our radial layout example we used an .unspecified proposal size for each view because we didn’t care how much size each view was, but here we do care: we want every view to have the same size, which means creating a specific size proposal and giving it to the view. Again, that view might ignore the proposed size, but it’s important we give it the chance to take it into account.

The size proposal we’ll be sending every subview is simple: we already calculated the maximum width and height across our subviews, so that becomes our proposed size for every view. Add this line next:

let proposal = ProposedViewSize(width: maxSize.width, height: maxSize.height)

The final step is to lay out the views. To make this happen, we’ll create an x variable that represents the center X position of the next view we’re laying out. When we’re just starting out this will have the position of our left edge, plus half our maximum size – we’re centering the views, remember.

Please add this line now:

var x = bounds.minX + maxSize.width / 2

And now all that remains is to loop over the subviews, placing each one at the x position and in the vertical center of our container. Remember, it’s important we tell SwiftUI that we’re specifying the center of our views rather than the top-leading edge or something else, and this time we are going to use the proposal parameter because we’re going to ask each view to fit itself into the shared ProposedViewSize we made a moment ago.

The key thing here is that every time we place a view we need to modify x upwards by adding our maximum width value, but also by adding the spacing for the view we just added so that this view has the correct amount of space between it and the next view.

We can finish the method by adding this loop:

for index in subviews.indices {
    subviews[index].place(at: CGPoint(x: x, y: bounds.midY), anchor: .center, proposal: proposal)
    x += maxSize.width + spacing[index]
}

That completes our layout, so now all that remains is to try it out in a SwiftUI view:

struct ContentView: View {
    var body: some View {
        EqualWidthHStack {
            Text("Short")
                .background(.red)

            Text("This is long")
                .background(.green)

            Text("This is longest")
                .background(.blue)
        }
    }
}

When that runs you’ll see the views spread out across the screen, with “This is long” dead in the center. This is exactly what we want: the views themselves have retained the natural size (which is why the colored boxes are small), but their container has allocated each of them equal space.

[image: Three text views spaced out evenly despite their varying sizes.]

Even though you might think this effect is easier to achieve than a radial layout, you’ll notice it actually took more code – and that’s even with adding two helper methods. Now, to be fair we could dramatically reduce the code length if we switched to a more condensed, functional approach:

private func maximumSize(across subviews: Subviews) -> CGSize {
    let sizes = subviews.map { $0.sizeThatFits(.unspecified) }
    return sizes.reduce(.zero) { largest, next in
        CGSize(width: max(largest.width, next.width), height: max(largest.height, next.height))
    }
}

private func spacing(for subviews: Subviews) -> [Double] {
    subviews.indices.map { index in
        guard index < subviews.count - 1 else { return 0 }
        return subviews[index].spacing.distance(to: subviews[index + 1].spacing, along: .horizontal)
    }
}

However, keep in mind that the radial layout didn’t even need those methods in the first place: we always placed views at their natural size, and didn’t care about any spacing requests they had because they were being placed in a circle. Still, I wanted to show you this layout because sizing and spacing are both important skills and I’m sure you’ll use them in your own work!

If you’re looking for a challenge, how about you try implementing an EqualHeightVStack?

	Implementing a relative width layout
Have you ever wanted to make SwiftUI views take up a proportional amount of space in a HStack? I certainly have – to be able to say “give this view 20% of the space, this other view 30% of the space, and this final view the remaining 50%” is something that appeared briefly in the very earliest SwiftUI beta. Sadly it disappeared before SwiftUI 1.0 shipped and has yet to return, but with the power of the Layout protocol we can bring it back.

This is made possible because of SwiftUI’s layoutPriority() modifier, which controls how willing a view is to shrink or stretch. All views have a default layout priority of 0, but if you give a higher value to something it will grow to fill all the available space more readily.

This layout priority can be read through the Layout protocol, so we’re going to hijack it here as a way of specifying how much relative space should be allocated to a view. Rather than forcing developers to add numbers up to 1 or similar, we will instead sum up all the priorities for the views we’re trying to lay out, then calculate the relative size for a view based on its priority compared to the total. So, the total might be 1.0, 100, 12, or any other number depending on what works at the call site.

We can start by creating a struct for our layout, giving it the one property we care about: how much space we want to have between our views. This will be a single fixed value provided by the user rather than querying each subview for how much spacing it wants, because the rest of the space will be allocated proportionally.

Add this now:

struct RelativeHStack: Layout {
    var spacing = 0.0
}

All the hard work for this layout is contained in one helper method, which has the job of calculating all the frames for all the views in one pass. This will be called by sizeThatFits() so we know how much space we need, and also called again by placeSubviews() so we can actually assign each view its frame.

Because there’s a lot of code here, I’m going to break it down step by step so I can explain as I go. Start by adding this method stub:

func frames(for subviews: Subviews, in totalWidth: Double) -> [CGRect] {

}

Already you can see we’re passing in all the subviews, along with whatever is the total width allocated to our container.

Our first job will be to figure out how much total spacing we’ll be using across our layout. We already added a spacing property to control the amount of space between individual views, so to find the total spacing we just need to multiply spacing by 1 less than our column count. Why one less? Well, if we have two columns, we need only one space – the one that’s between the two columns. We don’t need to add space on either side of the layout, because that’s something that will be decided by whomever is placing the container.

So, start by adding this to the frames() method:

let totalSpacing = spacing * Double(subviews.count - 1)

Now we know how much space we have to allocate to each view, which is our total width minus our total spacing:

let availableWidth = totalWidth - totalSpacing

The final constant I want to set up front is an important one: what is the total of all the layout priorities of the views we’re working with? This might add up to 1.0, but really it’s arbitrary – this is a relative layout, after all.

So, add this constant now:

let totalPriorities = subviews.reduce(0) { $0 + $1.priority }

Now it’s time to start calculating frames, which means creating two variables:


	An array of frames, storing where we’ll place every subview we have.

	An X value, starting at 0, that represents the position we’ll place the next subview. Every time we place a view we’ll add its width plus spacing to our X value.



Add these lines now:

var viewFrames = [CGRect]()
var x = 0.0

And now we have the main chunk of this method, which needs to go over all the subviews we have, figuring out how much space each one should be allocated. Start with this:

for subview in subviews {
    // more code to come
}

return viewFrames

Inside that loop comes the real work. Remember, this is calculated using the layout priority assigned to the view rather than trying to take into account how one view should be spaced from others.

We already know how much space we have to allocate to all views (availableWidth), and we know the sum of all our subview priorities (totalPriorities), so we can calculate the width for this subview by multiplying the available width by the view’s priority, then dividing the result by the total priorities, like this:

let subviewWidth = availableWidth * subview.priority / totalPriorities

Now that we know how much space this particular subview can have, we can put it forward as a proposal and see what comes back:

let proposal = ProposedViewSize(width: subviewWidth, height: nil)
let size = subview.sizeThatFits(proposal)

Again, that size is decided solely by the child, but it will take into account our request: we’re asking for a specific width, but saying it can grow as high as it likes.

We can then combine our x value with the size we received into a CGRect, and add it to our array:

let frame = CGRect(x: x, y: 0, width: size.width, height: size.height)    
viewFrames.append(frame)

And finally we need to add to x the width of the view we placed, plus the spacing for the whole container, so the next view we lay out will go into the correct location:

x += size.width + spacing

That completes our helper method – as you can see, it does all the hard work of calculating frames for our views, which makes the rest of this layout straightforward.

First, the sizeThatFits() method. This will:


	Use replacingUnspecifiedDimensions() on the proposed container size, to make sure we always have sensible values to work with.

	Send the proposed width value into our frames() method to calculate all the view frames.

	Send back a CGSize containing our proposed width alongside the maximum Y value we got back from the frames() method – the bottom edge of the lowest view.



Add this method to the RelativeHStack struct now:

func sizeThatFits(proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) -> CGSize {
    let width = proposal.replacingUnspecifiedDimensions().width
    let viewFrames = frames(for: subviews, in: width)
    let height = viewFrames.max { $0.maxY < $1.maxY } ?? .zero
    return CGSize(width: width, height: height.maxY)
}

To finish up we need to implement placeSubviews(). Because the frames() method already does all the hard work of calculating every frame for every view, this just needs to loop over all the subviews and assign the position and size we calculated for each one. This time, though, we’re assigning the leading edge of each view, so that all our views are positioned in the vertical center of our container.

Add this last method to RelativeHStack:

func placeSubviews(in bounds: CGRect, proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) {
    let viewFrames = frames(for: subviews, in: bounds.width)

    for index in subviews.indices {
        let frame = viewFrames[index]
        let position = CGPoint(x: bounds.minX + frame.minX, y: bounds.midY)
        subviews[index].place(at: position, anchor: .leading, proposal: ProposedViewSize(frame.size))
    }
}

Note how we’re proposing a size to the view based on the return value from the frames() method – if you remember, that’s the size we got back when we called subview.sizeThatFits() for this view, so it should be acceptable.

That’s our layout complete! To give it a try, create some flexible views then assign layout priorities however you want. 

For example, we could create views with priorities 1, 2, and 3:

RelativeHStack(spacing: 50) {
    Text("First")
        .frame(maxWidth: .infinity)
        .background(.red)
        .layoutPriority(1)

    Text("Second")
        .frame(maxWidth: .infinity)
        .background(.green)
        .layoutPriority(2)

    Text("Third")
        .frame(maxWidth: .infinity)
        .background(.blue)
        .layoutPriority(3)
}

Or we could use 4, 4, 8 to get two views the same size then one that’s twice as large, or use 30, 50, 20 if you prefer to think in percentages, or really whatever numbers work best for your layout.

[image: Three sets of colored text views with space unevenly divided between them.]

	Implementing a masonry layout
Masonry layouts – sometimes called “waterfall” layouts – allow us to create a grid that’s ragged, which means although there are distinct columns in place there aren’t “rows” because each view is just slotted in wherever it fits according to its aspect ratio. This is a really common layout on the web, and in apps are mainly used for content walls – when the user is scrolling through a category of pictures looking for something specific, like Pinterest.

Implementing this is actually not as hard as you might think, particularly now that you’ve implemented three other layouts already. In fact, as you’ll see our approach is almost identical to creating RelativeHStack – large parts of the code are almost identical.

Start with a struct for the layout, giving it two properties: how many columns we have, and how much spacing we want between each item in our layout. The number of columns must be at least 1 otherwise the layout makes no sense, so we’ll add a custom initializer that ensures the column count is always at least 1.

Add this now:

struct MasonryLayout: Layout {
    var columns: Int
    var spacing: Double

    init(columns: Int = 3, spacing: Double = 5) {
        self.columns = max(1, columns)
        self.spacing = spacing
    }
}

Just like with RelativeHStack, all the real work for this layout is contained in one helper method that calculates and returns frames for all the views. Start by adding this method stub:

func frames(for subviews: Subviews, in totalWidth: Double) -> [CGRect] {

}

Just like before, we can figure out much total spacing we have by multiplying spacing by 1 less than our column count, like this:

let totalSpacing = spacing * Double(columns - 1)

Now we know how much spacing we have in total, we can calculate how much space is left for the columns by subtracting totalSpacing from totalWidth. If we then divide that number by our column count, we’ll have how much space should be allocated to each column. Add this next:

let columnWidth = (totalWidth - totalSpacing) / Double(columns)

There’s one last number I want to set up front, which is how much space we need to allocate for one column including its spacing, because it makes our code a little easier to read:

let columnWidthWithSpacing = columnWidth + spacing

At this point we know all the values we need to calculate our frames, so our first job is to create a ProposedViewSize that we can present to each view. This will be the same for all views: “you can use as much height as you want, but I’d like your width to be the same as our column width.”

Add this line next:

let proposedSize = ProposedViewSize(width: columnWidth, height: nil)

When it comes to calculating frames, masonry layouts assign views to columns in a very specific way – we don’t do it randomly because that would just cause a mess. Instead, our goal for any given view is to place it into the shortest column so that we aim for some balance. That doesn’t mean we’ll get balance because perhaps the final view we place in a column is much longer than all the others, but we’re at least aiming for it.

This means we need two arrays: one storing all our view frames across all columns, and one storing the heights of each column we have. Add these lines now:

var viewFrames = [CGRect]()
var columnHeights = Array(repeating: 0.0, count: columns)

We can now loop over all our subviews, figure out which column is the shortest, and place our view there. As we go through, we’ll also stash the latest view frame away in our viewFrames array, which is the value that will be returned from this method.

Please add this code now:

for subview in subviews {
    // more code to come
}

return viewFrames

Like I said, the first step in that loop is to figure out which column is shortest. If we assume that the shortest is the first one and set a gigantic height for it, we can loop over all the other columns and check whether they are shorter or not. If we find one that is shorter, we’ll make that our new selected column and use its height for our shortest height.

Replace the // more code to come comment with this:

var selectedColumn = 0
var selectedHeight = Double.greatestFiniteMagnitude

for (columnIndex, height) in columnHeights.enumerated() {
    if height < selectedHeight {
        selectedColumn = columnIndex
        selectedHeight = height
    }
}

At this point we know exactly which column should be used to place our subview, so we can figure out the X and Y coordinates for it. The X value is simply the index of the column multiplied by the columnWidthWithSpacing, and the Y value is the current height of whichever column was shortest. Add this just after the previous loop:

let x = Double(selectedColumn) * columnWidthWithSpacing
let y = columnHeights[selectedColumn]

To calculate the view’s size, we just need to ask it: given the proposed size we made earlier, how much space does it actually want? Add this next:

let size = subview.sizeThatFits(proposedSize)

Again, the view is free to ignore that proposal entirely, which would make our layout a mess. That’s how SwiftUI works, though: the parent proposes a size, but the child gets to make the final choice and the parent must respect that.

At this point we know the full set of data for the frame of this view, so we can create a CGRect from it:

let frame = CGRect(x: x, y: y, width: size.width, height: size.height)

To end this loop we need two more things. First, we just added a subview to a column, so we need to adjust the height of that column to include the subview’s height plus our spacing property. That doesn’t mean we’re always adding spacing below the finished, placed views; these column heights are just used for calculating where views ought to go.

Add this now:

columnHeights[selectedColumn] += size.height + spacing

And the final part of the loop is to add the frame value we created to our viewFrames array, which is being returned from the method:

viewFrames.append(frame)

That completes our frames() method – it’s not vast amounts of code, but it is done very precisely to make sure we balance each column as best as we can. The point is that eventually it returns the viewFrames array, which contains all the frames for all subviews.

With that hefty helper method in place, we can now turn to sizeThatFits() and placeSubviews(), both of which lean on it heavily. In fact, both these two are almost identical to their equivalents from RelativeHStack, so we can take a shortcut – copy and paste those two methods from your RelativeHStack code into your MasonryLayout, like this:

func sizeThatFits(proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) -> CGSize {
    let width = proposal.replacingUnspecifiedDimensions().width
    let viewFrames = frames(for: subviews, in: width)
    let height = viewFrames.max { $0.maxY < $1.maxY } ?? .zero
    return CGSize(width: width, height: height.maxY)
}

func placeSubviews(in bounds: CGRect, proposal: ProposedViewSize, subviews: Subviews, cache: inout Void) {
    let viewFrames = frames(for: subviews, in: bounds.width)

    for index in subviews.indices {
        let frame = viewFrames[index]
        let position = CGPoint(x: bounds.minX + frame.minX, y: bounds.midY)
        subviews[index].place(at: position, anchor: .leading, proposal: ProposedViewSize(frame.size))
    }
}

The only actual change is in the place() method inside placeSubviews(), because we want our views placed by their top-leading edge rather than just their leading edge. This is the default behavior when placing views, which means making two changes:


	The Y position will be the top-left corner of our view’s frame, remembering to add in the midX of our container so the views are centered correctly.

	Remove anchor: .leading from the code, so it aligns top-leading.



So, change the loop in your placeSubviews() method to this:

for index in subviews.indices {
    let frame = viewFrames[index]
    let position = CGPoint(x: bounds.minX + frame.minX, y: bounds.minY + frame.minY)
    subviews[index].place(at: position, proposal: ProposedViewSize(frame.size))
}

And that’s our layout complete! Honestly, once you see how well it works I think you’ll be really pleased because it’s an extremely effective algorithm.

To actually give this a meaningful test, we can create a trivial placeholder view that displays a random color and its size. What matters is that this view has a fixed aspect ratio, and the same is true if you want to use your own custom pictures instead – make them resizable, but ensure they stay at the correct aspect ratio so they can be placed into our columns well. 

Here’s my placeholder view:

struct PlaceholderView: View {
    let color: Color = [.blue, .cyan, .green, .indigo, .mint, .orange, .pink, .purple, .red].randomElement()!
    let size: CGSize

    var body: some View {
        ZStack {
            RoundedRectangle(cornerRadius: 10)
                .fill(color)

            Text("\(Int(size.width))x\(Int(size.height))")
                .foregroundColor(.white)
                .font(.headline)
        }
        .aspectRatio(size, contentMode: .fill)
    }
}

Important: The size displayed in those views won’t match the actual size used to place them in our grid, because they’ll get resized up or down as needed. However, the aspect ratio will be the same between the view’s requested and actual size, which is what matters.

To try this out we can now create a ContentView that creates 20 random view sizes and places them into a MasonryLayout inside a ScrollView. To make things more interesting, I’m going to make the column count adjustable using a stepper:

struct ContentView: View {
    @State private var columns = 3

    @State private var views = (0..<20).map { _ in
        CGSize(width: .random(in: 100...500), height: .random(in: 100...500))
    }

    var body: some View {
        ScrollView {
            MasonryLayout(columns: columns) {
                ForEach(0..<20) { i in
                    PlaceholderView(size: views[i])
                }
            }
            .padding(.horizontal, 5)
        }
        .safeAreaInset(edge: .bottom) {
            Stepper("Columns: \(columns)", value: $columns.animation(), in: 1...5)
                .padding()
                .background(.regularMaterial)
        }
    }
}

That completes our third and final layout, and I think it really shows off just how flexible SwiftUI is. Remember, all three layouts we’ve made work great in the AnyLayout example from earlier – we can flip through grids, ZStack, masonry layout, relative width layout, radial layout, etc, all without changing any other part of our code.

[image: Many placeholder views laid out in a masonry view, with three columns and ragged rows.]

Before we’re done, I’d like you to try one more thing. Modify your ContentView code to this:

MasonryLayout(columns: columns) {
    ForEach(0..<20) { i in
        if i.isMultiple(of: 2) {
            PlaceholderView(size: views[i])
        } else {
            Divider()
        }
    }
}
.padding(.horizontal, 5)

We’re now inserting dividers into half our views, and when you run the code you’ll see they appear correctly. The question is: how? How does SwiftUI know to make our divider horizontally rather than vertical?

Internally, SwiftUI asks our layout whether it defines one specific axis for its views. If we don’t specify something SwiftUI assumes we have a vertical layout, which works great for our masonry layout where a left-to-right divider looks great, but you’ll see it causes problems for horizontal layouts such as EqualWidthHStack and RelativeHStack – the dividers will still run left to right even in a horizontal axis, which looks wrong.

If you need to customize the axis of your layout, add a computed property called layoutProperties providing a specific value. For example, if we wanted to specifically tell SwiftUI that our masonry layout was vertical, we would add this:

static var layoutProperties: LayoutProperties {
    var properties = LayoutProperties()
    properties.stackOrientation = .vertical
    return properties
}

That specifies our masonry layout works vertically, but you won’t see a difference here – try upgrading one of our horizontal stack implementations to have a horizontal axis, and you should see them behave better!

	Layout caching
When we first looked at custom layouts I mentioned that both sizeThatFits() and placeSubviews() take a cache parameter that allows us to avoid repeating work by reusing calculations. For our radial and equal width layouts this wasn’t an issue, but our masonry layout is more complicated and is a place where we could consider caching.

Important: I said could consider there, not must use. Caching is something you should implement once you have used Instruments to profile your app and verified there’s a performance problem you need to address.

No, seriously: You shouldn’t add a cache to your layout unless your profiling has shown conclusive proof that it’s needed, because bad caching is a very common source of bugs. I’m adding a cache here only so you can see how it works, not because one is desperately needed.

To make a layout cache you first need to make the easiest choice: what data do you want to cache? In the case of our masonry layout we only really have one piece of data, and it’s also the most complex to calculate: all the frames for our views. So, at the very least we need to add a struct like this one to our code:

struct Cache {
    var frames: [CGRect]
}

Now, you can put that anywhere in your project, but I’m a big fan of nesting types where they have limited applicability. In this case, that Cache type is designed specifically for use by our MasonryLayout struct, so I’d place it inside like this:

struct MasonryLayout: Layout {
    struct Cache {
        var frames: [CGRect]
    }

    // rest of the masonry code
}

Important: As soon as you add that nested Cache struct, SwiftUI will attempt to use it for the layout. We aren’t ready for this quite yet, so you’ll see compiler errors for the time being.

That cache is enough to store all the data we care about for performance reasons, but before we solve our compiler errors there’s another property I want to add and it’s in answer to a simple question: how can we know when our cache is invalid? 

Well, SwiftUI will automatically invalidate our cache when our layout or its subviews change, but that only applies to the properties of our layout rather than the amount of space it’s allocated on the screen. This means if we adjust the size of our layout at runtime, either explicitly adjusting its frame or because the device rotated, our cache is likely to be wrong.

To fix this problem, we need to give our cache a width property that will store the amount of space we were laying out for. When we’re asked to place our subviews, we can double check we’re still referring to the width we used for our cache, and if not we’ll recreate the cache from scratch.

Add this property to the Cache struct now:

var width = 0.0

That’s our Cache type complete, so now in order to make Swift happy we need to use it in three places. It won’t work yet, but at least we’ll be back to our code compiling cleanly.

The first is a new method that Layout will call when it wants to create a new cache for our layout. This is called simply makeCache(), and it should return a new cache object ready to use. Add this to MasonryLayout now:

func makeCache(subviews: Subviews) -> Cache {
    Cache(frames: [])
}

The second and third places we need to use Cache are in the signatures for sizeThatFits() and placeSubviews(). Find this code in both the method signatures:

cache: inout Void

And replace it with this:

cache: inout Cache

Note: If you used Xcode’s code completion for the signatures, you might have cache: inout (), which is identical to cache: inout Void.

That will make our code compile cleanly again, although it won’t actually utilize the cache yet. This part is surprisingly easy, though, because we just need to copy the data we’re creating into our cache at the right times.

For sizeThatFits(), that means adding two lines of code directly before the return statement:

cache.frames = viewFrames
cache.width = width

Remember, SwiftUI already created a Cache object for us, so we just need to update it with the latest values we computed.

sizeThatFits() will be called when our layout is created or recreated, or when its subviews change. It will also be called when the size we allocate to a view changes, e.g. if we add padding at runtime. However, it will only be called once per orientation otherwise, so the following can happen:


	We launch our app in portrait. sizeThatFits() is called and sets up the cache for our portrait size.

	We rotate to landscape. sizeThatFits() is called and sets up the cache for our landscape size.

	We rotate back to portrait. sizeThatFits() won’t be called again because it was already called for the portrait orientation, so our layout will accidentally use our cache that was configured for landscape.



So, we need to be careful in placeSubviews(): if we find that our bounds doesn’t match our cached size, we should update the cache by calling frames again and resetting the width.

Put this at the start of the method, in place of the let viewFrames line:

if cache.width != bounds.width {
    cache.frames = frames(for: subviews, in: bounds.width)
    cache.width = bounds.width
}

That ensures the cache is always in a good state before we try and use it.

Speaking of using it, the last step in this process is to replace viewFrames[index] a couple of lines lower, because we need to use our cache instead – make that read cache.frames[index] instead, and now our cache will be used.

You can see it in action if you put this at the very start of the frames() method:

print("Recreating cache")

When you run the app you’ll see “Recreating cache” is printed only once, whereas previously the frames() method would have been called unconditionally in both sizeThatFits() and placeSubviews(). So, at the very least we’ve halved the number of calculations we perform. 

That doesn’t mean we can eliminate all the extra work – SwiftUI is free to rebuild our cache whenever and as often as it wants, but that’s an implementation detail and nothing I’d worry about.

	Customizing layout animations
SwiftUI does a good job of animating some parts of our layouts automatically. For example, you’ll find you can animate something like the spacing in both our custom HStack just by changing the value, and as you saw our masonry layout animates its columns flawlessly.

However, sometimes it’s not perfect, and the problem occurs when our intermediate states matter: if you’re animating the spacing of a HStack, for example, then SwiftUI can look at the spacing before the animation, look at the spacing after, then interpolate between the two – it will call sizeThatFits() and placeSubviews() once each, then handle the rest itself. However, if you need to calculate your intermediate states for every step in the animation – if you’re animating values used inside sizeThatFits(), for example – then we need to give SwiftUI a little extra help.

To demonstrate this, I want to return to our radial layout. Rather than placing our circles around a full circle, we could instead add a property to control how much of the circle we use. Add this to your RadialLayout struct now:

var rollOut = 0.0

We can then adjust our placeSubviews() method so that the angle value we calculate for each view is multiplied by rollOut, like this:

let angle = Angle.degrees(360 / Double(subviews.count)).radians * rollOut

So, if angle was originally 10% of a circle, when rollOut was only 0.5 then the angle would be just 5% of a circle, and when it’s 0.0 then the angle would 0% for all the views – the circles wouldn’t roll out at all.

We can then try that out by adjusting our ContentView code to track a Boolean property of whether our circle should be rolled out or not, convert that into a Double to use with the RadialLayout initializer, and finally add a button to toggle the Boolean. Adjust your ContentView struct to this:

struct ContentView: SelfCreatingView {
    @State private var count = 16
    @State private var isExpanded = false

    var body: some View {
        RadialLayout(rollOut: isExpanded ? 1 : 0) {
            ForEach(0..<count, id: \.self) { _ in
                Circle()
                    .frame(width: 32, height: 32)
            }
        }
        .safeAreaInset(edge: .bottom) {
            VStack {
                Stepper("Count: \(count)", value: $count.animation(), in: 0...36)
                    .padding()

                Button("Expand") {
                    withAnimation(.easeInOut(duration: 1)) {
                        isExpanded.toggle()
                    }
                }
            }
        }
    }
}

Go ahead and run that now and see what you think – you should find that as you toggle isExpanded the circles move from one point directly out to their final location.

It’s important you understand what’s happening here: SwiftUI knows the initial position of the circles, and when isExpanded is toggled it will calculate the destination position of the circles, so it simply animates from the original to the new positions in one action.

This happens because SwiftUI doesn’t understand rollOut should be animated. It knows the result of changing rollOut should be animated because that’s baked right into the framework, which is why our circles animate their position, but it doesn’t know that it should animate all the rollOut values as it moves from 0 to 1.

We can do better.

You see, the Layout protocol inherits from Animatable, which means we can ask SwiftUI to give us all the intermediate values by implementing animatableData just like animating any other SwiftUI views.

Add this property to RadialLayout now:

var animatableData: Double {
    get { rollOut }
    set { rollOut = newValue }
}

With that tiny change, we’ve told SwiftUI we want to do something special when the animating value changes – that rather jumping directly to the new rollOut property, it should instead move from 0.0 to 0.05, 0.1, etc, and let us do something with each intermediate value.

We’ll look at the impact of this more in a moment, but first please run the result so you can see the difference. All being well you should see our circles animate outwards along the circle’s perimeter rather than just sliding directly to their destination – it’s much nicer, I think.

To understand what has changed internally – and if you haven’t figured it out by now, I really think it’s important to think about these internals so you know what’s really happening when SwiftUI works with our code – I want you to comment out the animatableData property we just added, and instead add print statements to both sizeThatFits() and placeSubviews(), like this:

print("In sizeThatFits")

Or this:

print("In placeSubviews")

When you run the app you’ll see those messages printed out at various times, but it’s not a lot – SwiftUI might call each one twice when changing rollOut, for example, so it can calculate the positions of its subviews before and after the animation.

Now uncomment the animatableData property so that it’s live code again, while also leaving our little print() calls in, and this time you’ll see something very different: our print() calls get executed a lot. In fact, both sizeThatFits() and placeSubviews() get called twice each for every tiny change of animatableData, so if it animates from 0.0, through 0.01, 0.02, 0.03, etc, all the way up to 1.0, those methods are getting called many, many times.

This is what makes our improved animation work: rather than making circles from in a straight line from their start to end position, SwiftUI calls this line of code again and again to calculate a custom location for all the intermediate positions of our subviews:

let angle = Angle.degrees(360 / Double(subviews.count)).radians * rollOut

That means the latest value of rollOut is being read every time it changes, causing the much nicer animation.

Obviously you can go ahead and remove the print() calls now, but I do want you to keep in mind that animating layouts like this will trigger an exponential rise in the number of times your layout methods are called, so you should avoid doing anything too computationally expensive in there unless you’re carefully profiling the animation on older devices.

Tip: If your animation really does manage to push the CPU hard – a surprisingly hard thing to do! – this might be a good place to consider introducing a cache to reduce the number of calculations you’re performing.

	Chapter 5
Drawing and Effects

	Drawing with Canvas
It’s no secret that I am obsessed with drawing using SwiftUI, and honestly I’ve lost countless hours noodling around, experimenting, and overall having fun creating beautiful effects with surprisingly little code. Over the coming chapters I want to explore a handful of these techniques with you, partly because it really is a lot of fun creating beautiful things, but partly also because I hope it will inspire you to add a little extra surprise and delight to your own apps.

We’re going to start with something nice and easy: a trivial particle system that lets us draw in glowing lights by touching the screen. Particle systems work by creating dozens, hundreds, or even thousands of very small images, which can be colored and animated to create a variety of special effects such as fire, smoke, fog, and rain.

In this initial foray into drawing, our particle system will be trivial: we’ll constantly be creating and deleting particles, and the user will be able to move their finger to reposition the place where we generate particles from. This takes fewer than 50 lines of code, and that’s including whitespace and lines that are just closing braces – it’s a great entry point into the world of drawing with SwiftUI.

The first step is to create a Particle struct that will store the data one particle needs to work. We’ll make more advanced particles later on, but for this example our particle just needs two pieces of data: its position on the screen, and the date it should be destroyed. We’ll pass the X and Y values in from the particle system that generates it all, but we can automatically set the destruction date to be the current time plus 1 second so that each particle lasts that long before being destroyed.

Add this struct now:

struct Particle {
    let position: CGPoint
    let deathDate = Date.now.timeIntervalSinceReferenceDate + 1
}

Now that we have defined a single particle, the next step is to create the particle system responsible for creating and managing all the particles. This has six interesting things:


	It will be a class rather than a struct, so we can mutate its values freely without triggering SwiftUI updates.

	It needs to store an array of all the particles that are currently alive.

	It also needs to store the current position of the particle system, which is used to create new particles.

	We’ll give it one method, called update(). This will be called every time we want to redraw our canvas, and will be provided with the current time.

	Inside there we’ll destroy any particles that are past their deathDate property.

	Finally, it will also create a new particle at the current position of the particle system.



It takes much less code to implement all that than it does to explain it, so go ahead and add this class now:

class ParticleSystem {
    var particles = [Particle]()
    var position = CGPoint.zero

    func update(date: TimeInterval) {
        particles = particles.filter { $0.deathDate > date }
        particles.append(Particle(position: position))
    }
}

That completes all our data model, so what remains is to create one of those particle systems inside ContentView, then use its data to render particles inside TimelineView and Canvas.

This class doesn’t conform to ObservableObject because it doesn’t need to – it manages itself without needing to publish any changes. So, we’ll create it using @State rather than @StateObject, which is enough to keep the object alive through view recreations without also requiring ObservableObject.

Add this property to ContentView now:

@State private var particleSystem = ParticleSystem()

Now for the view’s body. I’m going to tackle this in three parts to make it easier to follow: we’ll create the SwiftUI views first, then add some modifiers to make it look and work right, then finish up by adding the actual drawing code. 

First, the views. We need a TimelineView so that SwiftUI knows to redraw our layout on a fixed schedule, which in our case will be .animation so it redraws as often as necessary to get smooth animations. Inside that we’ll place a Canvas, which is where SwiftUI gives us free rein to draw whatever we need inside a drawing context with a fixed size.

Replace your current body property with this:

TimelineView(.animation) { timeline in
    Canvas { ctx, size in
        // drawing code here
    }
}

We’re going to add three modifiers to that TimelineView to get exactly the right effect:


	A custom drag gesture so that we can update the particle system’s position as the user moves their finger. If we give this a minimum distance of 0 it means the gesture will start being triggered as soon as the user moves their finger even the smallest amount.

	We’ll the TimelineView to ignore the safe area, so the user can draw to the very edges of the screen.

	Finally, we’ll give it a black background color so that our finger drawings stand out nice and bright.



Add these three modifiers to the TimelineView now:

.gesture(
    DragGesture(minimumDistance: 0)
        .onChanged { drag in
            particleSystem.position = drag.location
        }
)
.ignoresSafeArea()
.background(.black)

The last part of the puzzle is to fill in the drawing code. This needs to call the particle system’s update() method with the current time from the TimelineView, then loop over all the particles and render a circle at their location. I chose a 32x32 size for my circles, but you can make the circle whatever size you want – just make sure you subtract half the size from the X and Y position so the circle is centered on the user’s finger.

Replace the // drawing code here comment with this:

let timelineDate = timeline.date.timeIntervalSinceReferenceDate
particleSystem.update(date: timelineDate)

for particle in particleSystem.particles {
    ctx.fill(Circle().path(in: CGRect(x: particle.position.x - 16, y: particle.position.y - 16, width: 32, height: 32)), with: .color(.cyan))
}

Go ahead and give it a try. All being well you should find you can drag your finger on the screen to see blue circles follow you around, each of which should disappear a second after they are created.

[image: Lots of circles arranged in what can only be described as a squiggle.]

That’s a start, but it’s not what I’d call beautiful. We can do better! First, rather than making circles simply disappear we can make them fade away slowly by subtracting the current time from their deathDate property and using that for the canvas opacity. So, if deathDate was 3.5 and the timeline date was 3.0, we’d set opacity to 0.5.

Add this line of code directly before the ctx.fill() line:

ctx.opacity = particle.deathDate - timelineDate

That’s an improvement, but to get something much nicer I’d like you to add these two lines of code directly after the call to particleSystem.update():

ctx.blendMode = .plusLighter
ctx.addFilter(.blur(radius: 10))

The first of those tells SwiftUI to blend the circles together so the colors get lighter when they overlap, and the second will apply a Gaussian blur to all the circles so they look more like a smooth glow than individual circles.

And with that we’re done with our first drawing example! Try it out and see what you think – given how little code we’ve written I think the end result is quite beautiful!

[image: Lots of circles drawn in a squiggle, but blended together intensively so it looks like glowing light.]

	Falling snow
Now that you’ve got the hang of a basic particle system, let’s take it up a notch by creating particles that move independently rather than always staying where they were created. This means being able to constantly adjust our particles after they have been created, which in turn means using a class rather than a struct for the Particle type.

Add this class now:

class Particle {
    var x: Double
    var y: Double
    let xSpeed: Double
    let ySpeed: Double
    let deathDate = Date.now.timeIntervalSinceReferenceDate + 2

    init(x: Double, y: Double, xSpeed: Double, ySpeed: Double) {
        self.x = x
        self.y = y
        self.xSpeed = xSpeed
        self.ySpeed = ySpeed
    }
}

There are a few things that deserve extra explanation:


	I’ve split x and y into two separate properties because it makes them easier to work with.

	The ySpeed will determine how fast this particle moves down the screen, and the xSpeed is there to let us add a very small amount of horizontal movement to make the particles look a bit more natural.

	There’s a 2-second lifetime for each particle so they can fall most if not all of the way down the screen before being destroyed.

	It’s a class rather than a struct, so we need a custom initializer.



Next we need to write the ParticleSystem class. This is similarly enhanced from our previous, simpler particle system, because now it needs some extra features:


	We need to move all particles that are still alive.

	That movement needs to happen at a fixed speed regardless of how fast the app is rendering.

	We need to create new particles at random locations at the top of the screen, so they fall down evenly from the left screen edge to the right.

	Knowing where the right edge of the screen lies means sending in the canvas size.



That second point is the most interesting from a code perspective, because we need to make sure particles move at the same speed no matter whether update() is called 60 times a second (the ideal for many devices), 120 times a second (the ideal for devices that support ProMotion), or even just 30 frames a second if your app is busy doing a lot of other work.

This can be done using a technique called frame-independent movement, which means we calculate how much time has passed since update() was last called, then multiply our movement speed by that time difference. So, if we want to move 60 points per second and a tenth of a second has elapsed since the last update, we move by 6 points, but if only 1/60th of a second elapsed then we move only 1 point.

Doing this means giving our ParticleSystem class an extra property that stores when update() was last called. This can be the current date to begin with, but it will be changed every time update() is called.

Start with this new class:

class ParticleSystem {
    var particles = [Particle]()
    var lastUpdate = Date.now.timeIntervalSinceReferenceDate
}

The update() method will accept the same time interval we used in the previous particle system, but like I said we’re also going to make it accept the size of the screen so we know where particles can be created. Each new particle needs various values provided as part of its initializer:


	The X coordinate will be any value between -32 and the screen width. Our particles will be 32 points, just like in the previous particle system, so using -32 means we’ll position some particles partly off the left edge to ensure a full spread of positions.

	The Y coordinate will always be exactly -32, which places new particles just off the top edge of the view.

	The X speed will be a random number between -50 and 50, so particles move very gently left or right.

	The Y speed will be a random number between 100 and 500, so particles move swiftly down the screen. Having a lot of variation in speed will create a pleasing sense of depth to the particles.



Note: It’s important we replace the value of lastUpdate with whatever is the new timeline date, so the next time the method is called we move the correct amount.

Add this method to ParticleSystem now:

func update(date: TimeInterval, size: CGSize) {
    let delta = date - lastUpdate
    lastUpdate = date        

    // update all particles here

    let newParticle = Particle(x: .random(in: -32...size.width), y: -32, xSpeed: .random(in: -50...50), ySpeed: .random(in: 100...500))
    particles.append(newParticle)
}

Obviously I left the most important part out, which is where we update each particle to take into account its movement across the screen. We need to remove particles from our array whenever they pass their death date, just like we did with the previous particle system, so we might as well use the same loop to perform our frame-independent movement.

Add this loop in place of the // update all particles here comment:

for (index, particle) in particles.enumerated() {
    if particle.deathDate < date {
        particles.remove(at: index)
    } else {
        particle.x += particle.xSpeed * delta
        particle.y += particle.ySpeed * delta
    }
}

That completes our data model, so now we can turn to the SwiftUI view to render it all using TimelineView and Canvas. We’re going to write a few versions of this, but our initial pass is identical to the ContentView struct from our previous particle system apart from three changes:


	We need to pass the canvas size into our particle system’s update() method, so it knows the full range of space that can be used to create particles.

	We aren’t going to add a blend mode. You can add one if you want, but it’s not the effect I’m looking for here.

	We don’t need to offset the particle’s X and Y position by half the circle width, because we don’t need to draw exactly under the user’s finger any more.



Otherwise it’s exactly the same, so replace your existing ContentView struct with this:

struct ContentView: View {
    @State private var particleSystem = ParticleSystem()

    var body: some View {
        TimelineView(.animation) { timeline in
            Canvas { ctx, size in
                let timelineDate = timeline.date.timeIntervalSinceReferenceDate
                particleSystem.update(date: timelineDate, size: size)
                ctx.addFilter(.blur(radius: 10))

                for particle in particleSystem.particles {
                    ctx.opacity = particle.deathDate - timelineDate
                    ctx.fill(Circle().path(in: CGRect(x: particle.x, y: particle.y, width: 32, height: 32)), with: .color(.white))
                }
            }
        }
        .ignoresSafeArea()
        .background(.black)
    }
}

[image: Fluffy white blobs falling from the top of the screen.]

That already creates a neat snow effect, but it takes only a little extra work to push this into much more interesting territory. For example, we could make our snow blobs look like metaballs with only a little extra code.

Important: Before you decide to email me saying I wrote “metaballs” when I meant to write “meatballs”, you should know that metaballs is the correct spelling and is the term used for organic-looking shapes that appear to meld together when they are in close proximity to each other.

If you haven’t seen metaballs in action before, you’re in for a real treat – not least because it’s remarkable how little code it takes in SwiftUI.

The first step is to tell SwiftUI to render all our particles into a distinct layer. This means all the particles will be rendering into a new transparent context, which is then drawn onto our original context in one pass. So, rather than seeing each particle as individual, the original context will just be given all the particles as one finished drawing – perfect for blending into metaballs.

To make this happen, add ctx.drawLayer { ctx in before the for loop in our canvas, and add a closing brace after the loop ends, like this:

ctx.drawLayer { ctx in
    for particle in particleSystem.particles {
        ctx.opacity = particle.deathDate - timelineDate
        ctx.fill(Circle().path(in: CGRect(x: particle.x, y: particle.y, width: 32, height: 32)), with: .color(.white))
    }
}

Important: That creates a new context inside drawLayer(). I’ve given it the same ctx name as the outer layer because a) we can’t draw to the outer context from inside the layer, and b) it means we don’t need to change the opacity and fill() lines, but you’re welcome to name it inner or similar.

If you run the code now you’ll see nothing has changed, but behind the scenes SwiftUI is now rendering all the particles into a new layer, then drawing that layer into our main context. Although it looks the same to the user, the behind the scenes part matters to us because if we add more filters they get applied to the whole sublayer in one pass – overlapping circles are treated like one contiguous shape rather than two separate ones.

In this case we’re going to add the alpha threshold filter, which tells SwiftUI to replace all the pixels with a specific color if they fall within alpha values of our choosing, or make them transparent otherwise. The maximum alpha value is 1 by default, so if we specify 0.5 for the minimum it means that all pixels between alpha 0.5 and 1.0 will be replaced with a specific color, but pixels outside that alpha range will be invisible. 

Think about it: we’re using a blur filter already, so already quite a lot of each circle will fall outside that alpha threshold because only the central parts will have enough opacity to pass the threshold. But when two circles overlap, even partly, the parts where they overlap will have a higher alpha value, and because we’re rendering all our circles into a sublayer it means this filter will see the combined circle areas as a single pixel colors to evaluate.

To see the result of all this, and the following code directly before the blur filter:

ctx.addFilter(.alphaThreshold(min: 0.5, color: .white))

If you run the code now you should see the metaball effect in full swing: as the particles overlap each other they will appear to merge together as if they were water drops rolling down a window. Hopefully you can see what I meant when I said they looked organic!

[image: White balls falling down from the top of the screen, blending together when they are near to each other.]

To create an even more interesting effect, try using your TimelineView as the mask for something else, such as a linear gradient, like this:

LinearGradient(colors: [.red, .indigo], startPoint: .top, endPoint: .bottom).mask {
    // current TimelineView code
}
.ignoresSafeArea()
.background(.black)

Now the metaballs will appear to change color the lower they get on the screen, creating an effect reminiscent of lava lamps. Can we make an actual lava lamp effect? Certainly, but that takes quite a bit more thinking…

[image: Brightly colored balls falling from the top of the screen, blending together when they are near to each other.]

	Creating a lava lamp
For a really advanced effect, we can use SwiftUI to create a lava lamp by combining Canvas, metaballs, and a chunk of mathematics. To make things easier to follow I’m going to adopt a simplified approach first that does without the math, but if you have the patience I encourage you stick around for the extended version – it’s worth it!

As with the previous two particle systems, the first step is to define what one particle needs to know in order to work. The particles will move, which means we need a class with X and Y coordinates, but this time there are a few small changes:


	We will need to be able to loop over particles in SwiftUI code, which means making this class conform to Identifiable with a random UUID.

	Each particle will have a unique size, making our lava lamp more varied.

	The lava bubbles won’t move horizontally, so we need only a single speed property to handle Y movement.

	We need to track whether this bubble is currently moving up or down, because we will never destroy the lava particles – we just keep reusing the same initial batch, flipping their direction when they reach one end.



There is also one important change: we need to fill our lava lamp with lots of particles when the app is launched, which means creating all our particles up front rather than on a rolling basis. That in turn means we don’t actually know the canvas’s dimensions when creating our particles, so rather than storing absolute X and Y positions – e.g. X:50 Y:300 – we will instead store relative positions between 0 and 1, where 0 is the top or left edge and 1 is the bottom or right edge.

So, start by creating this new Particle class:

class Particle: Identifiable {
    let id = UUID()
    var size = Double.random(in: 100...250)
    var x = Double.random(in: -0.1...1.1)
    var y = Double.random(in: -0.25...1.25)
    var isMovingDown = Bool.random()
    var speed = Double.random(in: 0.01...0.1)
}

Note: That creates particles in positions that go slightly beyond the screen’s bounds to make sure we get a full spread. The spread is wider for the Y axis because we’ll be moving particles vertically, so they can safely go further off the screen before coming back on. 

Next we need to create a ParticleSystem class responsible for creating the lava bubbles and moving them around. This starts similar to the previous particle system, so add this now:

class ParticleSystem {
    let particles: [Particle]
    var lastUpdate = Date.now.timeIntervalSinceReferenceDate

    func update(date: TimeInterval) {
        let delta = date - lastUpdate
        lastUpdate = date

        for particle in particles {
            // move the particles
        }
    }
}

Apart from the // move the particles comment, there is one important difference here: rather than creating particles dynamically as the app runs, we’re instead going to create them all up front. This is why particles can be a constant array now, and also why it doesn’t have a default value – we need to add an initializer to create all our particles up front. 

We could make the number of particles fixed, but it’s hardly any extra work to make that amount customizable. So, add this initializer to ParticleSystem now:

init(count: Int) {
    particles = (0..<count).map { _ in Particle() }
}

Now for the movement: if the particle is moving down, we’ll add to its Y position using frame-independent movement, otherwise we’ll subtract from it. Critically, we’ll add two extra checks to make sure particles flip their movement when they are fully off the screen.

Replace the // move the particles comment with this:

if particle.isMovingDown {
    particle.y += particle.speed * delta

    if particle.y > 1.25 {
        particle.isMovingDown = false
    }
} else {
    particle.y -= particle.speed * delta

    if particle.y < -0.25 {
        particle.isMovingDown = true
    }
}

Now for the main event: rendering all this in SwiftUI. We’re going to take a different approach here, partly because it demonstrates an important Canvas technique, but honestly mostly because it makes it much easier to switch over to the more advanced version if you decide to pursue it!

The different approach is this: rather than just filling circles in our Canvas code, we are instead going to create our shapes as SwiftUI views and pass them into the canvas as symbols. This is a real powerhouse Canvas technique because it lets us place any kind of SwiftUI view directly into our drawings. This will be really important in the more advanced lava lamp effect, but for now we’ll just create SwiftUI circles in there.

Apart from that drawing change, there are two other thing we’re going to do: 


	Rather than use fixed values for the blur and threshold filters, we’ll make them local state you can adjust using sliders. This will give you a much better idea of how the finished effect really works, because you’l be able to noodle around with both sliders to get exactly the result you want.

	We’ll be using the same LinearGradient mask as before, but this time we’ll give it a background color indigo. Why? Well, if lava lamps can’t be disco, what can?



Go ahead and add this ContentView now:

struct ContentView: View {
    @State private var particleSystem = ParticleSystem(count: 15)
    @State private var threshold = 0.5
    @State private var blur = 30.0

    var body: some View {
        VStack {
            LinearGradient(colors: [.red, .orange], startPoint: .top, endPoint: .bottom).mask {
                TimelineView(.animation) { timeline in
                    Canvas { ctx, size in
                        particleSystem.update(date: timeline.date.timeIntervalSinceReferenceDate)
                        ctx.addFilter(.alphaThreshold(min: threshold))
                        ctx.addFilter(.blur(radius: blur))

                        ctx.drawLayer { ctx in
                            // draw particles here
                        }
                    } symbols: {
                        // create symbols here
                    }
                }
            }
            .ignoresSafeArea()
            .background(.indigo)

            LabeledContent("Threshold") {
                Slider(value: $threshold, in: 0.01...0.99)
            }
            .padding(.horizontal)

            LabeledContent("Blur") {
                Slider(value: $blur, in: 0...40)
            }
            .padding(.horizontal)
        }
    }
}

[image: Our layout so far: mostly blank, with some sliders at the bottom.]

I’ve removed two key parts from that code, both relating to the way canvas symbols work. You see, the way this works is that we get to pass in as many SwiftUI views as we want, either statically written out in code or dynamically using ForEach, but the main thing is that we give each view a unique identifier. Our Particle class conforms to Identifiable, which means SwiftUI will take care of that part for us.

So, for the case of our lava particles, I’d like you to add the following code in place of the // create symbols here comment:

ForEach(particleSystem.particles) { particle in
    Circle()
        .frame(width: particle.size, height: particle.size)
}

That creates a whole bunch of SwiftUI Circle shapes, each the correct size for their bubble. Again, SwiftUI will silently tag each view for us because of the Identifiable conformance, and that matters because when it comes to the rendering code – where the // draw particles here comment is – we need to look up each circle using the same identifier.

This lookup is done using the resolveSymbol(id:) method, which takes an identifier to look up in the list of symbols. If it’s found we’ll be sent back the resolved symbol to use, which will be a SwiftUI view we can draw just like any other shape.

Remember, this time we’re using relative positions for our particles, so we need to multiply the particle’s X and Y positions by our canvas’s width and height respectively.

Go ahead and replace the // draw particles here comment with this:

for particle in particleSystem.particles {
    guard let shape = ctx.resolveSymbol(id: particle.id) else { continue }
    ctx.draw(shape, at: CGPoint(x: particle.x * size.width, y: particle.y * size.height))
}

That’s us done, at least with the simplified version – try it out and see what you think! The code is broadly similar to our previous particle system, but I think it looks remarkably good.

[image: A lava lamp effect created by blending circles together with a gradient.]

Wouldn’t it be lava-ly?

Can we do better? Yes! If we create irregular polygons rather than circles, we can adjust the length of each of their sides using animation, making the shape change constantly. Thanks to our blur filter the shapes will still look nice and smooth even though they are pretty rough polygons

I’ll be honest, this does take a bit of math. However, I have tried to remove as much code as I possibly can, so hopefully it’s understandable.

First, the good news: Particle and ParticleSystem don’t need to change at all, and only one small line of ContentView will change – most of what we’re writing is new.

Now for the first piece of mathematics: we’re going to add an extension on Array so that it conforms to both VectorArithmetic and AdditiveArithmetic when it contains Double as its element type. These protocols are used to provide animating values to SwiftUI, which in our case means the polygon points we generate will animate to be longer or shorter over time.

Yes, I know that extending a type we don’t own to support protocols we don’t own is frowned upon, but it avoids having to create a wholly separate type – this code really is as simple as I can make it!

There are quite a few parts here, so start by adding this empty extension so we can fill it in bit by bit:

extension Array: VectorArithmetic, AdditiveArithmetic where Element == Double {
}

First, we need to tell SwiftUI what zero looks like, which for us means an empty array with 0 in. Add this to the extension now:

public static var zero = [0.0]

Next we need to add operator overloads for += and -= so that SwiftUI can add one array to another. I’m going to assume (again, this is simplified!) that our lava polygons don’t change their side counts over time, so we can safely enumerate over both arrays and add or subtract each item.

So, add these two new methods to the extension:

public static func +=(lhs: inout [Double], rhs: [Double]) {
    for (index, item) in rhs.enumerated() {
        lhs[index] += item
    }
}

public static func -=(lhs: inout [Double], rhs: [Double]) {
    for (index, item) in rhs.enumerated() {
        lhs[index] -= item
    }
}

Next, the protocols require that add a scale(by:) method that multiplies each item in the array by another number, so add this:

public mutating func scale(by rhs: Double) {
    for (index, item) in self.enumerated() {
        self[index] = item * rhs
    }
}

Finally, the protocols require we add a - operator overload and a magnitudeSquared property. Although the protocols require that these exist, they won’t actually be used by our lava lamp effect so we can just write dummies like these two:

public static func -(lhs: [Double], rhs: [Double]) -> [Double] { [] }
public var magnitudeSquared: Double { 0 }

Okay, that completes our extension, so now we’re going to create two structs to represent each blob: one that creates the shape using whatever points are provided, and one that wraps the shape in a view that animates over time.

The view is straightforward, but the shape is where more mathematics comes in, so let’s start there.

First, we can create a new struct that conforms to Shape, and has a property to store an array of numbers that represent how much we should shrink or extend each side of the polygon. In order for this to be animated we need to either store these values in an animatableData property containing these values, or store them in another property and provide a getter/setter combo for animatableData.

We’re aiming for the simplest solution, so that means using a single property. Add this now:

struct AnimatablePolygonShape: Shape {
    var animatableData: [Double]

    init(points: [Double]) {
        animatableData = points
    }
}

Now for the mathematics: we need to create a path(in:) method that creates a path from our polygon’s points, taking into account the animatable data array that describes how much to shrink or extend each side.

We’ll fill this in piece by piece, starting with this:

func path(in rect: CGRect) -> Path {
    Path { path in
        // more code to come
    }
}

If we want to draw completely regular polygons – i.e., polygons where every side has the same length, we can do so by following a simple procedure:


	Calculating the center of our drawing rectangle, by halving the width and height.

	Calculate the radius of the largest circle that can fit into our space. This is as simple as choosing the smallest of the two numbers from our center.

	Count from 0 to the number of sides we want to create, and calculate how far we are through the number of sides as a fraction between 0 and 1. So, if we’re placing five sides, the first side will be 0.0, the third side will be 0.5, and the last will be 1.0.

	Multiply that fraction by pi times 2 so we get an angle between 0 and 2π radians, or 0 through 360 degrees, meaning that we know the angle we need to use to create each point.

	Get the X coordinate for this point by calculating the cosine of the angle we just made, multiplying it by our radius, then adding the result to our center X value.

	Get the Y coordinate by doing the same thing, except using sine rather than cosine.



Again, that creates regular polygons. We want irregular polygons using the animatable Double array, which will contain numbers between 0.8 and 1.2 – one for each point in our polygon. So, once we’ve figured out the correct X/Y coordinates for our regular polygon, we can multiply those values by the matching element in animatableData so that each side can be made any length from 80% to 120% its original size.

That might seem awfully complicated, but I think the code is surprisingly straightforward given how good the finished effect looks!

So, go ahead and replace the // more code to come with this:

let center =  CGPoint(x: rect.width / 2, y: rect.height / 2)
let radius = min(center.x, center.y)

let lines = animatableData.enumerated().map { index, value in
    let fraction = Double(index) / Double(animatableData.count)
    let xPos = center.x + radius * cos(fraction * .pi * 2)
    let yPos = center.y + radius * sin(fraction * .pi * 2)
    return CGPoint(x: xPos * value, y: yPos * value)
}

path.addLines(lines)

Again, if we removed the * value part of that code each of our blobs would be regular n-sided polygons, and if it weren’t for the fact that we only know the shape’s size when path(in:) gets called we could calculate the polygon’s points once in the initializer.

That defines a single irregular polygon shape, but in order to make it move on the screen we need to wrap it in a SwiftUI view that has an animation in place. This is much simpler, but still has a few tricks up its sleeve:


	When the view is created we will immediately fill a points array with 8 random numbers between 0.8 and 1.2. These will be used for the polygon.

	The view will have a timer firing once a second, and each time it fires we’ll create the points for our polygon.

	Because we’ll have multiple lava bubbles at the same time, we’ll add a 1-second tolerance to our timer so iOS can definitely coalesce them – rather than firing one timer, then waiting a split second and firing another, iOS will be able group them all together so they fire at the same time, which is more efficient.

	We’ll attach an ease-in-out animation to our polygon shape, but it will have a 3-second duration.



Yes, the timer fires three times as fast as the animation takes to complete, which is intentional – it would look strange if one animation completed fully before the next one started, so this way SwiftUI will always be interpolating our animations smoothly. It’s a great little trick, but really effective as you’ll see!

Add this new view now:

struct AnimatingPolygon: View {
    @State private var points = Self.makePoints()
    @State private var timer = Timer.publish(every: 1, tolerance: 1, on: .main, in: .common).autoconnect()

    var body: some View {
        AnimatablePolygonShape(points: points)
            .animation(.easeInOut(duration: 3), value: points)
            .onReceive(timer) { date in
                points = Self.makePoints()
            }
    }

    static func makePoints() -> [Double] {
        (0..<8).map { _ in .random(in: 0.8...1.2) }
    }
}

And that’s it! That completes all the major code changes to make the more advanced lava lamp effect work.

To see it in action, we need to change one tiny part of ContentView: in the symbols for the Canvas view, change Circle() to AnimatingPolygon(), like this:

ForEach(particleSystem.particles) { particle in
    AnimatingPolygon()
        .frame(width: particle.size, height: particle.size)
}

Now give it a try and see what you think – you should see our lava blobs now gently change shape all by themselves, even without colliding with other blobs. 

[image: Our lava lamp effect now uses shapes that are not perfectly circular.]

If you want to see the effect more clearly, try reducing the particle system count down to 5 or so, or dragging the blur slider down to 0 so you see our irregular polygons rather than the smoothed out blobs.

Hopefully I managed to find the right balance between mathematical accuracy and explanations that are easy to understand, but more importantly I hope you appreciate the final effect!

[image: If you turn off the blurring, you can see our regular polygons more clearly.]

	Blurred backgrounds
We’ve looked at lots of custom drawing using Canvas, but you can create some really effective results just with plain old shapes and animations. To demonstrate this, I want to show you how to we can create a soothing background animation without even coming close to needing Canvas.

To make this work we’re going to create a new SwiftUI view called BackgroundBlob, which will have a random alignment on the screen and a random color. Inside there we need several modifiers:


	The frame will be random between 200 and 500 wide, and 200 and 500 high.

	That frame will be wrapped in a second frame using the random alignment, so each blob will be placed at a random screen corner.

	We’ll then use offset() to push the blob randomly between -400 and +400 points both horizontally and vertically.

	We can then rotate the blob by some amount, using a looping animation to make it happen smoothly and continuously.

	As soon as the blob is shown, we’ll adjust its rotation amount so the animation is triggered.



The key to this effect is rotating after the offset, which causes the view to be rotated around its original location so that it moves in interesting ways.

Create a new SwiftUI view called BackgroundBlob, then give it this code:

struct BackgroundBlob: View {
    @State private var rotationAmount = 0.0
    let alignment: Alignment = [.topLeading, .topTrailing, .bottomLeading, .bottomTrailing].randomElement()!
    let color: Color = [.blue, .cyan, .indigo, .mint, .purple, .teal].randomElement()!

    var body: some View {
        Ellipse()
            .fill(color)
            .frame(width: .random(in: 200...500), height: .random(in: 200...500))
            .frame(maxWidth: .infinity, maxHeight: .infinity, alignment: alignment)
            .offset(x: .random(in: -400...400), y: .random(in: -400...400))
            .rotationEffect(.degrees(rotationAmount))
            .animation(.linear(duration: .random(in: 2...4)).repeatForever(), value: rotationAmount)
            .onAppear {
                rotationAmount = .random(in: -360...360)
            }
    }
}

Tip: I’ve given the animations a very fast duration between 2 and 4 seconds, and also thrown in a bright purple color that really stands out. That’s intentional because I want to really drive home how the effect works, but in practice you’ll want to use 20 and 40 to get something much more sedate, and you might also want to tweak the color palette too.

To get the full effect, we need to layer many of those background blobs on top of each other in a ZStack with a solid background color, so replace your current ContentView code with this:

struct ContentView: View {
    var body: some View {
        ZStack {
            ForEach(0..<15) { _ in
                BackgroundBlob()
            }
        }
        .background(.blue)
    }
}

Now try running it and see what you think! You should see a whole bunch of ellipses swirling around on the screen, and it won’t look anything at all like the soothing background animation I promised.

[image: Lots of ellipses filled with different colors.]

Fortunately, you’re just one line of code away from the final result, because we just need to add a blur to each of the circles to make the blend together nicely.

So, add this below the onAppear() modifier in BackgroundBlob:

.blur(radius: 75)

Now you should find all the colors mix together in more interesting ways, and in particular using blobs that are the same blue color as the background causes our shapes to get cut out in interesting ways.

[image: A background blur in a range of subtly different colors.]

Again, I’ve specifically chosen a fast animation and a bright purple in order to make the effect more obvious – at the very least you’ll probably want to adjust the animation to a range between 20 and 40 seconds to get something gentler. You might also want to adjust the color palette to be more harmonious, or on the other hand you might want something outrageously bright like this:

let color: Color = [.blue, .blue, .blue, .cyan, .indigo, .mint, .orange, .pink, .purple, .red, .teal, .yellow].randomElement()!

Regardless of which approach you take, I think it’s a delightfully simple effect and shows just how much work SwiftUI can do for us!

[image: A background blur in a range of very bright colors.]

	Magic with SpriteKit
Some people will see SpriteKit in this chapter title and skip right by, which is sad because we’re about to make something absolutely magical.

You see, SpriteKit and SceneKit are Apple frameworks that are backed by Metal, which is Apple’s high-performance 3D rendering framework. This means SpriteKit is able to use Metal to create some extraordinarily advanced effects, and of course SwiftUI is able to embed SpriteKit scenes right into our view hierarchies.

To demonstrate this, we’re going to build a water rippling effect: we’re going to write code that makes any SwiftUI views have animated ripples, like they are being viewed through water. This takes a bit of thinking because it involves multiple parts:


	We’ll have a fragment shader, which is the named used for a tiny program able to manipulate what is effectively a single pixel in a texture. Modern CPUs have hundreds or even thousands of tiny GPU cores dedicated to running these shaders, which means a shader can potentially run hundreds of millions of times every second.

	We’ll run that program inside an SKScene subclass, which is the SpriteKit equivalent to View.

	That SKScene subclass will be rendered from inside a SwiftUI view, which will make sure it’s configured correctly.

	We’ll then render that view inside another, adding some controls so you can experiment with the water effect.



That sounds like a lot of work because it is a lot of work, but trust me: this effect is incredible, and most definitely worth it.

Tip: If you’re a coffee drinker, make a brew now – there’s quite a lot to digest here.

To get started, add import SpriteKit to the top of your file. Now add the following the following class:

class WaterScene: SKScene {
}

This scene needs to have three properties: one for the sprite it will display, which will be our SwiftUI view with the water effect applied, and a second the UIImage we want to place inside there. We’ll be making that image dynamically, but we still need to store it somewhere.

Important: UIImage is available only iOS, watchOS, and macOS Catalyst. If you intend to target macOS, use NSImage instead.

Add these two properties to the water scene now:

private let spriteNode = SKSpriteNode()
var image: UIImage?

I mentioned a third property, and this is the tricky one: we need to create our shader, which means writing some fragment shader code. This is not Swift code – it’s much, much lower-level than that, because of the need to run literally millions of times every second.

SpriteKit lets us write shaders either in GLSL (the OpenGL Shading Language) or MSL (the Metal shading language). Both these two get compiled on the device when the app runs, so it can be fully optimized for whatever hardware it’s running on.

Of the two options, GLSL is significantly simpler than MSL, and helpfully the system will automatically convert GLSL to MSL when compiling our shader. So, we’ll be using GLSL here – it’s just as fast, but way less code for us.

Go ahead and add this property to the water scene:

let waterShader = SKShader(source: """
void main() {
    // more code to come
}
""")

That creates a main() function in our shader, with a single comment inside. We’re going to write that line by line, so I can explain what it all does. Before I dive into the code, though, I want to summarize how the effect works:


	Imagine a grid of pixels.

	Our shader will effectively be run on every pixel in that grid.

	It will be given the full grid, along with the X/Y coordinates it’s supposed to use.

	Rather than returning pixel at the X/Y coordinate that was requested, we will instead return a different pixel from a nearby coordinate – we’re simulating the water refracting light. 

	Which nearby coordinate we choose depends on the control settings the user provides.



All set?

Okay, the first step is to figure out how fast we want our effect to happen. This can be done by reading two values that will be passed in externally: u_time will tell us how much time has passed since the shader was created, and u_speed will tell us how fast the user has requested for the water to move. If we multiply those two together we are effectively making time move faster, so the water will ripple more quickly.

Put this in your main() function now:

float speed = u_time * u_speed;

Next we need to decide which pixel we’re going to read. Here we need to use several more external values: v_tex_coord will tell us which pixel we were asked to read, u_frequency will contain how fast the user wants ripples to be created, and u_strength will tell us how strong the user wants the effect to be.

Figuring out which pixel to use involves a small amount of mathematics, so let me break it down:


	We already set speed to the current time multiplied by how fast the user wants the ripples to happen.

	If we take multiply that speed by the ripple frequency it means the pixel we choose will change faster, creating more or fewer ripples.

	We don’t want all the pixels to change uniformly: if they all moved up by one or down by three it would look like the whole image was moving up a bit rather than ripples. 

	So, we’ll add the pixel’s original X coordinate to speed first, then multiply by frequency. 

	We’ll put the result of that operation through cos() to get a value between -1 and 1 telling us which pixel direction we want to move in.

	Finally, we’ll multiply that by the strength the user asked for.



Here’s a worked example, assuming our X coordinate is 22, our speed is 8, our frequency is 4 and our strength is 2:


	We add the X coordinate to our speed, making 30.

	We multiply that by frequency, making 120.

	We calculate the cosine of that to produce some long number that is approximately 0.81.

	We multiply that by strength to get 1.62.



So, we read 1.62 pixels to the left – yes it’s not a whole number, but Metal will figure it out. Alternatively, if we were reading X:23 rather than X:22, we would get cos((23 + 8) * 4) * 2, which is approximately -0.19, so the pixel offset we read is slightly different, which creates the ripple effect.

Add this line of code next:

v_tex_coord.x += cos((v_tex_coord.x + speed) * u_frequency) * u_strength;

Tip: Remember, v_tex_coord tells us which X/Y coordinates we were asked to read.    

To get the Y offset, we do the same thing as X except now using sin() rather than cos():

v_tex_coord.y += sin((v_tex_coord.y + speed) * u_frequency) * u_strength;

At this point we now know exactly which pixel we want to read, so we need to read that value and send it back. GLSL provides three helpers here:


	The texture we’re working with is provided as u_texture.

	We can read a pixel from there by calling the built-in texture2D() function, passing a texture and a pixel coordinate.

	The return value from texture2D() will be the new color to use, and we can assign that to the special value gl_FragColor – that’s what SpriteKit will use for the finished pixel color for our shader.



Add this final line to the function now:

gl_FragColor = texture2D(u_texture, v_tex_coord);

Tip: If we try and read pixels from outside the bounds of the texture, Metal will automatically wrap them around to the other side for us. As a result, it usually works better if your SwiftUI views have a little padding around them to avoid this wrapping.

I know it took a lot of explaining, but the entire function is really just this:

void main() {
    float speed = u_time * u_speed;

    v_tex_coord.x += cos((v_tex_coord.x + speed) * u_frequency) * u_strength;
    v_tex_coord.y += sin((v_tex_coord.y + speed) * u_frequency) * u_strength;

    gl_FragColor = texture2D(u_texture, v_tex_coord);
}

Fragment shaders are easy to write once you get the hang of them – this one is taken from a huge library of them I wrote for my ShaderKit repository, which you can find here: https://github.com/twostraws/ShaderKit/.

We’re done with the shader now, but we still have some SpriteKit work to do. First, when our scene loads we need to do some quick set up work:


	Give our scene a transparent background color

	Make it resizable to whatever size SwiftUI wants,

	Make sure our GLSL shader is assigned to the sprite node that will contain our rendered SwiftUI view.

	Add our sprite node to the scene, so it gets drawn.



This can all be done through the sceneDidLoad() method, which is the SpriteKit equivalent to viewDidLoad() from UIKit. Add this method to the class now:

override func sceneDidLoad() {
    backgroundColor = .clear
    scaleMode = .resizeFill

    spriteNode.shader = waterShader
    addChild(spriteNode)
}

Next we need to write an updateTexture() method, that will convert our UIImage into a texture, place it into the sprite, and make sure it’s all sized and positioned correctly.

Add this method now:

func updateTexture() {
    guard view != nil else { return }
    guard let image else { return }

    let texture = SKTexture(image: image)
    spriteNode.texture = texture
    spriteNode.size = texture.size()
    spriteNode.position.x = frame.midX
    spriteNode.position.y = frame.midY
}

The very first line of updateTexture() checks whether our scene is currently being shown in a view, because if it isn’t we silently exit to avoid wasting time. When our scene actually is being moved into a real view, SpriteKit will call a separate method named didMove(to:), and that’s our chance to call updateTexture() so everything gets positioned correctly.

Add this now:

override func didMove(to view: SKView) {
    updateTexture()
}

That finishes all our WaterScene code, so we’re half way there! 

The next step is to create a SwiftUI view that’s responsible for creating and managing our water scene. This is the bridge between SpriteKit and the rest of our SwiftUI app – we want this thing to be neatly encapsulated so that we don’t have to worry about SpriteKit every time we use it.

Start by creating a new SwiftUI view called WaterEffect, and give it this code:

struct WaterEffect<Content: View>: View {
    @State private var scene = WaterScene()

    var speed: Double
    var strength: Double
    var frequency: Double
    @ViewBuilder var content: () -> Content

    var body: some View {
    }
}

That doesn’t have a real body property yet, but before we add that I want to explain what we have so far:


	We have a WaterScene instance stored as state, meaning that SwiftUI will keep it alive without watching it for changes.

	We have properties to store the three user-configurable effect inputs: speed, strength, and frequency.

	Most importantly, we also have a view builder that will generate some kind of SwiftUI content. This is what we’ll be using in our game scene.



Tip: We need to make the struct generic so that it’s able to render any kind of SwiftUI views.

Inside the body property comes the real work. You see, our content property will contain a whole bunch of SwiftUI views, and we need to pass those to the water scene to render. That thing expects a UIImage, not SwiftUI views, so the first thing we need to do is render those SwiftUI views as an image.

This can be done using the ImageRenderer struct, which accepts any views as its input and has a uiImage property that contains the resulting image.

Add these two to your body property now:

let renderer = ImageRenderer(content: content())
let image = renderer.uiImage

Tip: If you’re using macOS, access the nsImage property rather than uiImage.

Now that we have our view image ready to go, we can read its size or replace it with .zero if there was a problem:

let size = image?.size ?? .zero

Next we need to send all those user values into the shader. We have speed, strength, and frequency as properties of this view, and our shader expects u_speed, u_strength, and u_frequency to be provided in order to work. All those “u” names are there for a reason: these are called uniforms, which are the name for fixed values we assign to a shader to customize it. These are specified by name and value, with the names matching the names used inside the shader code.

There is one small complication here, but it’s best explained after you see the code. Add this to your body property next:

scene.waterShader.uniforms = [
    SKUniform(name: "u_speed", float: Float(speed)),
    SKUniform(name: "u_strength", float: Float(strength) / 20.0),
    SKUniform(name: "u_frequency", float: Float(frequency))
]

Do you see the complication? Rather than sending our strength value in directly, we divide it by 20 to make it a lot smaller – we only need very small offsets to make this work, but it’s hard to work with very small values.

Moving on, we can now assign our new image to the scene, and call its updateTexture() method:

scene.image = image
scene.updateTexture()

Finally, we can send back a new SpriteView with that scene in place, making sure to enable transparency on it and also give it a frame matching our rendered view’s size:

return SpriteView(scene: scene, options: .allowsTransparency)
    .frame(width: size.width, height: size.height)

You’ll be pleased to know we’re now effectively done with our water code – almost everything from now on is just using it somehow. 

Our WaterEffect view is capable of rendering any kind of SwiftUI view, so we’re going to create a little sandbox that renders adds some user customization points.

Replace your current ContentView with this:

struct ContentView: View {
    @State private var text = "Hello"
    @State private var speed = 0.5
    @State private var strength = 0.5
    @State private var frequency = 5.0

    var body: some View {
        VStack {
            WaterEffect(speed: speed, strength: strength, frequency: frequency) {
                // Views to render here
            }

            TextField("Enter a message", text: $text)
                .textFieldStyle(.roundedBorder)

            LabeledContent("Speed") {
                Slider(value: $speed)
            }

            LabeledContent("Strength") {
                Slider(value: $strength)
            }

            LabeledContent("Frequency") {
                Slider(value: $frequency, in: 5...25)
            }
        }
        .padding()
    }
}

What should go in place of that // Views to render here comment? It’s down to you! Something like this is a good test of the effect:

Circle()
    .fill(.red)
    .frame(width: 150, height: 150)
    .padding()
    .overlay(Circle().stroke(.red, lineWidth: 4))
    .overlay(Text(text).font(.title).foregroundColor(.white))
    .padding()

Reminder: Having some padding around your view is a good idea, because it avoids Metal wrapping pixel coordinates around at the edges.

[image: A SwiftUI circle with some text on top, warped as if viewed through a water ripple.]

Now try running the effect and see what you think! You’ll see you can type into the text box to have the water effect update immediately, and of course dragging the sliders around is also instant. You might also notice how low the CPU usage is – Metal is fast!

There’s one last thing I want to do before we’re done, and it’s to fix a small problem you might not have even noticed. You see, when using ImageRenderer to convert views into images, SwiftUI will use an image scale of 1.0, which means a 400x400 view will be rendered at 400x400 pixels. That might sound good, but keep in mind that all modern devices have screen resolutions that are either 2x or 3x resolution, which means on an iPhone 14 a 400x400 view should render into a 1200x1200 image.

To fix this, we need to add a property to the WaterEffect view that will read the correct scale for the display:

@Environment(\.displayScale) var displayScale

Now we can assign that to the image renderer like this:

let renderer = ImageRenderer(content: content())
renderer.scale = displayScale

It’s a small difference, but it does mean the rendered SwiftUI views will look pin sharp now, just as nature intended.

That’s our code all finished now, so go and experiment! And if you’re feeling really brave, try adapting some of the other effects in https://github.com/twostraws/ShaderKit – you’ll see a whole bunch of them in the Shaders directory.

	Chapter 6
Performance

	Delaying work…
There are all sorts of tips to help you make your SwiftUI code as fast as possible, but the best place to start is with this rule: the fastest code is the code that never executes. In SwiftUI terms this means taking steps to skip work where possible, or at least delaying work as much as possible.

For example, if you’re updating your user interface as the user interacts with it, does it need to update for every single small change the user makes – for every letter they types, or even pixel they drag a slider? If you’re generating a QR code from their data, or perhaps even using the SpriteKit water effect we made in an earlier chapter, re-rendering for every pixel of a slider drag is clearly overkill.

For many operations, you’ll often find that introducing a small debounce dramatically improves performance while sacrificing little to none of your user experience. Debouncing is the practice of waiting for a certain amount of time before taking an action. For example, if we’re debouncing a text field for 1 second, the user needs to stop typing for a full second before we update our app state – they can type as much as they want and no work will happen until they finally stop.

Even a debounce as low as 0.1 – a tenth of a second! – can lead to huge performance improvements, because the alternative might be updating views as 120fps, which equates to just 0.008 of a second.

We can implement a simple generic debounce system using Combine, which will:


	Be generic over some kind of T, because we don’t care what kind of data we’re trying to debounce.

	Have two published properties: one for the input value, and one for the output. The input property will always be the latest value, and the output property will be the most recently debounced version.

	Have a private AnyCancellable property that stores our actual debouncing work. This comes from the Combine framework, and allows us to cancel the work if needed.



Start with this:

import Combine

class Debouncer<T>: ObservableObject {
    @Published var input: T
    @Published var output: T

    private var debounce: AnyCancellable?
}

We need to write an initializer that accepts two values from the user: the initial value to use for both the input and output (because they will be the same to start with), and also how long we want our debounce to wait for.

The way this works is simple: elsewhere in SwiftUI we’ll adjust the input property directly, but we’ll attach to that Combine debounce() and sink() operators so that after a period of time has passed we copy the value from input into output. Because output uses @Published, changing it will automatically cause any observing SwiftUI views to reinvoke their body property.

Go ahead and add this initializer now:

init(initialValue: T, delay: Double = 1) {
    self.input = initialValue
    self.output = initialValue

    debounce = $input
        .debounce(for: .seconds(delay), scheduler: DispatchQueue.main)
        .sink { [weak self] in
            self?.output = $0
        }
}

And that’s it – that’s our entire Debouncer class done already. To try it out, create instances of it using @StateObject, then bind your controls to input and your readouts to output. For example, this debounces a text field and a slider:

struct ContentView: View {
    @StateObject private var text = Debouncer(initialValue: "", delay: 0.5)
    @StateObject private var slider = Debouncer(initialValue: 0.0, delay: 0.1)

    var body: some View {
        VStack {
            TextField("Search for something", text: $text.input)
                .textFieldStyle(.roundedBorder)
            Text(text.output)

            Spacer().frame(height: 50)

            Slider(value: $slider.input, in: 0...100)
            Text(slider.output.formatted())
        }
    }
}

I encourage you to try that out, because you’ll see how our view waits until the user pauses for a moment before reloading.

For work that takes place outside of bindings, use Swift’s Task to spin off the work, sleep for some amount of time, then execute it after the delay finishes. This works well because if you need to schedule the same work while the sleep is happening, you can cancel the task and schedule it again – it’s debouncing, just done without Combine.

As an example, this view model can do some work immediately, or schedule some work to happen after a 3-second delay:

class ViewModel: ObservableObject {
    private var refreshTask: Task<Void, Error>?
    var workCounter = 0

    func doWorkNow() {
        workCounter += 1
        print("Work done: \(workCounter)")
    }

    func scheduleWork() {
        refreshTask?.cancel()

        refreshTask = Task {
            try await Task.sleep(until: .now + .seconds(3), clock: .continuous)
            doWorkNow()
        }
    }
}

Note: If you need to support older versions of Apple’s operating systems, use Task.sleep(nanoseconds: 3_000_000_000) to get the same result.

That view model exposes both scheduleWork() and doWorkNow(), so you can choose which you use depending on circumstances:

struct ContentView: View {
    @StateObject private var viewModel = ViewModel()

    var body: some View {
        VStack {
            Button("Do Work Soon", action: viewModel.scheduleWork)
            Button("Do Work Now", action: viewModel.doWorkNow)
        }
    }
}

	…or skipping it entirely
Delaying work is a good start, not least because it helps your apps load faster and keeps your views responsive more of the time. Even better is avoiding work entirely – looking for ways to skip work that isn’t necessary, beyond things I’ve covered elsewhere such as preferring ternary conditionals to if in a view builder.

For example, it’s common to write SwiftUI code that interacts with classes that either don’t conform to ObservableObject, or do conform but we don’t happen to care in this circumstance. In these places you should use @State to store a reference to the class, as opposed to either let (which would destroy and reallocate the class instance every time the view was recreated) or @StateObject (which would monitor the object for changes).

You can see this in action in the following code, which uses @State to store a Core Image context – something that is resource-intensive to create, and so is best kept alive:

import CoreImage
import CoreImage.CIFilterBuiltins
import SwiftUI

struct ContentView: View {
    @State private var context = CIContext()
    @State private var name = "Paul"

    var body: some View {
        VStack {
            TextField("Enter your name", text: $name)
                .textFieldStyle(.roundedBorder)
                .padding()

            Image(uiImage: generateQRCode(from: "\(name)"))
                .resizable()
                .interpolation(.none)
                .frame(width: 200, height: 200)
        }
    }

    func generateQRCode(from string: String) -> UIImage {
        let filter = CIFilter.qrCodeGenerator()
        filter.message = Data(string.utf8)

        if let output = filter.outputImage {
            if let cgImage = context.createCGImage(output, from: output.extent) {
                return UIImage(cgImage: cgImage)
            }
        }

        return UIImage(systemName: "xmark.circle") ?? UIImage()
    }
}

Using @State like this is effectively using it as a cache – we’re storing something persistently, but not trying to do any change tracking.

Another common place where wasted work happens is in onAppear(). First I should say that using onAppear() is broadly a good thing: it’s much, much better to take work out of view initializers and put it into onAppear() where possible, because initializers are called far more frequently than onAppear().

That being said, onAppear() is still called whenever a view is presented, so if you’re putting work in there you might find it’s being repeated pointlessly. You can see the problem in this example code:

struct ContentView: View {
    var body: some View {
        TabView {
            ForEach(1..<6) { i in
                ExampleView(number: i)
                    .tabItem { Label(String(i), systemImage: "\(i).circle") }
            }
        }
    }
}

struct ExampleView: View {
    let number: Int

    var body: some View {
        Text("View \(number)")
            .onAppear {
                print("View \(number) appearing")
            }
    }
}

When that runs, you’ll see that moving between the tabs repeats the onAppear() code, even when you’ve already visited a tab. Is that what you want? If so, you have nothing to worry about, but if you were using onAppear() as a way to delay initialization of values for this view, you might find you only really want that work to happen once.

The good news is that we can do better: we can create an onFirstAppear() modifier that runs its closure only when a view appears for the very first time:

struct OnFirstAppearModifier: ViewModifier {
    @State private var hasLoaded = false
    var perform: () -> Void

    func body(content: Content) -> some View {
        content.onAppear {
            guard hasLoaded == false else { return }
            hasLoaded = true
            perform()
        }
    }
}

extension View {
    func onFirstAppear(perform: @escaping () -> Void) -> some View {
        modifier(OnFirstAppearModifier(perform: perform))
    }
}

And now you have the option of using onAppear() when you want some code to always run on appearance, or onFirstAppear() when you want to do the work only once:

Text("View \(number)")
    .onFirstAppear {
        print("View \(number) appearing")
    }

Finally, if you’re targeting multiple platforms, don’t be afraid to write a handful of platform-specific modifiers that lock off certain code on a case-by-case basis. For example, if you want some text to have zero padding on watchOS, you can add a method like this to make such a change apply only to watchOS:

public extension View {
    func watchOS<Content: View>(_ modifier: @escaping (Self) -> Content) -> some View {
        #if os(watchOS)
        modifier(self)
        #else
        self
        #endif
    }
}

That does nothing at all for all operating systems apart from watchOS, so the Swift compiler will optimize it out at build time. Use it like this:

Text("Hello, world!")
    .watchOS {
        $0.padding(0)
    }

	Watching for changes
One of the most common SwiftUI performance sinks is recomputing views as a result of change notifications.

When these happen as a result of @State changes it’s usually obvious: the user typed into your text field or dragged your slider, and so your view’s body property needs to be reinvoked. That’s unavoidable for the most part. Where things get more complex is when some external object changes and your view is recomputed – what changed and why?

There are a handful of techniques I use here, any or all of which might prove useful to you depending on the circumstances.

First, here’s a simple set up that triggers external notifications on a regular basis:

class AutorefreshingObject: ObservableObject {
    var timer: Timer?

    init() {
        timer = Timer.scheduledTimer(withTimeInterval: 0.1, repeats: true) { _ in
            self.objectWillChange.send()
        }
    }
}

struct ContentView: View {
    @StateObject private var viewModel = AutorefreshingObject()

    var body: some View {
        Text("Example View Here")
    }
}

If you run that you’ll see it looks and works just like any other SwiftUI view – there’s no indication it’s doing vast amounts of work thanks to the change notifications coming in.

To address this, I want to introduce you to a neat trick I learned from Peter Steinberger, which is to create a random color extension such as this one:

extension ShapeStyle where Self == Color {
    static var random: Color {
        Color(
            red: .random(in: 0...1),
            green: .random(in: 0...1),
            blue: .random(in: 0...1)
        )
    }
}

Use it like this:

Text("Example View Here")
    .background(.random)

With that in place it becomes obvious that are view is being recomputed, because the text will literally flash through colors on the screen:

That doesn’t explain why something changed, though, and for that you need the View._printChanges() method. This can be called from inside any view’s body property, and will automatically print what triggered a change.

Because of the way Swift’s result builders work, to use _printChanges() you either need to assign it to a value such as _ (underscore), or add an explicit return to your view body. In the first case you’d write this:

var body: some View {
    let _ = Self._printChanges()
    Text("Example View Here")
}

And in the second this:

var body: some View {
    Self._printChanges()
    return Text("Example View Here")
}

Either way, you’ll see output such as ContentView: _viewModel changed, which is telling us that the body property was reinvoked because that particular object announced a change.

This kind of performance problem is particularly common when apps grow over time. When you’re just starting out with a small app, it’s common to create your view model right in your App struct, and post it into the SwiftUI environment for all your views to share. But as your app grows and more views depend on that data, you might come to find that a small change in one view causes a cascade of refreshes to happen elsewhere.

Like I said when we looked at environment keys, every time you make a view use @ObservableObject, you are effectively creating a dependency on that data – you’re telling SwiftUI to refresh your view when that data changes, even if your view doesn’t actually care about the precise thing that changed. 

This isn’t a theoretical problem, and in fact it’s something I hit with my own Control Room app for macOS – it’s on GitHub here: https://github.com/twostraws/ControlRoom. This project started out small but grew extensively over time, and suddenly @AppStorage values that were fine before were causing significant performance problems – typing into a text field took a whole second for every character to appear! 

Do you need to make your view dependent on an external object? If so, does it need to be every property on that object, or just part of it? We looked at how to solve this in the environment keys chapter, so if you find your views are refreshing more often than you’d like that’s the best place to start.

If you’re stuck – if you have a view that’s changing and you’re not sure why even with _printChanges() – then I recommend adding a handful of View extensions that let us inject pieces of code directly into SwiftUI’s views.

Here are the three I rely on the most:

extension View {
    func debugPrint(_ value: @autoclosure () -> Any) -> some View {
        #if DEBUG
        print(value())
        #endif

        return self
    }

    func debugExecute(_ function: () -> Void) -> some View {
        #if DEBUG
        function()
        #endif

        return self
    }

    func debugExecute(_ function: (Self) -> Void) -> some View {
        #if DEBUG
        function(self)
        #endif

        return self
    }
}

The first of those prints a message when the modifier is executed, the second runs arbitrary code, and the third runs arbitrary code while also giving access to the current view. All three use #if DEBUG to ensure the diagnostic code never leaves Xcode – as soon as you ship these apps to the App Store that code will be compiled out completely.

If you’ve tried background colors, checked _printChanges(), and even tried using debugExecute() to check what’s happening, and you’re still not sure where the problem is, there’s one last option: adding an assert() modifier to View, so that you can check exactly what’s happening and hopefully catch the problem.

It looks like this:

extension View {
    public func assert(
      _ condition: @autoclosure () -> Bool,
      _ message: @autoclosure () -> String = String(),
      file: StaticString = #file, line: UInt = #line
    ) -> some View {
        Swift.assert(condition(), message(), file: file, line: line)
        return self
    }
}

That uses @autoclosure to avoid doing any work that isn’t needed, and also calls down to Swift’s internal assert() function that gets compiled out of App Store releases.

Use it like this:

struct ContentView: View {
    @State private var counter = 0
    let timer = Timer.publish(every: 0.1, on: .main, in: .common).autoconnect()

    var body: some View {
        Text("Example View Here")
            .onReceive(timer) { _ in
                counter += 1
            }
            .assert(counter < 50, "Timer exceeded")
    }
}

That adds an explicit, code-level check that counter must be less than 50 at all times, and as soon as the view body is reinvoked when that isn’t true Xcode will stop execution and print the message “Timer exceeded”.

	The SwiftUI cycle of events
If there is one thing – just one thing – I would recommend everyone do in order to better understand the sequence of events SwiftUI goes through when working with all our views and modifiers, and in doing so get a much better idea of what code is being run when our apps execute, it is this: create a bunch of test structs that represent your app, some views, modifiers, properties, initializers, etc, and make them all print out messages explaining what’s going on. It takes only a few minutes to do, and yet most people will be surprised what they see when it runs.

If you’re not sure where to start, something like this is a great beginning:

@main
struct MyApp: App {
    @State private var property = ExampleProperty(location: "App")

    var body: some Scene {
        print("In App.body")

        return WindowGroup {
            NavigationStack {
                ContentView()
            }
        }
    }

    init() {
        print("In App.init")
    }
}

struct ExampleProperty {
    init(location: String) {
        print("Creating ExampleProperty from \(location)")
    }
}

struct ExampleModifier: ViewModifier {
    init(location: String) {
        print("Creating ExampleModifier from \(location)")
    }

    func body(content: Content) -> some View {
        print("In ExampleModifier.body()")
        return content
    }
}

struct ContentView: View {
    @State private var property = ExampleProperty(location: "ContentView")

    var body: some View {
        print("In ContentView.body")

        return NavigationLink("Hello, world!") {
            DetailView()
        }
        .modifier(ExampleModifier(location: "ContentView"))
        .task { print("In first task") }
        .task { print("In second task") }
        .onAppear { print("In first onAppear") }
        .onAppear { print("In second onAppear") }
    }

    init() {
        print("In ContentView.init")
    }
}

struct DetailView: View {
    @State private var property = ExampleProperty(location: "DetailView")

    var body: some View {
        print("In DetailView.body")

        return Text("Hello, world!")
            .modifier(ExampleModifier(location: "DetailView"))
            .task { print("In detail task") }
            .onAppear { print("In detail onAppear") }
    }

    init() {
        print("In DetailView.init")
    }
}

When that runs you’ll see a whole lot of output, and while you use it some more will come out. In particular, watch out for:


	The App property being created before App.init() is called.

	Swift running DetailView.init() immediately, long before we even press the button to show it. Heck, it’s run twice!

	The ContentView.body property being executed more than once.

	The two onAppear() modifiers being executed in the order they appear in the code, and the two task() modifiers being executed in the order they appear in the code, but onAppear() running before task().

	Both the onAppear() and task() modifiers in DetailView only being run when the view is shown.



The point of this exercise is to remind you that SwiftUI can create our views and reinvoke their body properties as often as it wants, whenever it wants – even just launching our app run DetailView.init() twice, and it’s not even visible. This is why it’s so absolutely critical to keep your initializers as simple as possible: do no slow work in there, and under no circumstances attempt to access network data from there!

Instead, push work back into onAppear() or task() where possible, so you allow SwiftUI to call init() and body frequently without hiccups. These are called when your views are added to the active view hierarchy – when they are being placed onto the screen – and so you can be sure the work you’re doing is actually useful.
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_c7: C7, _ c8: C8, _ c9: C9) —> TupleView<(CO, C1, C2, C3, C4, C5, C6, C7, C8, C9)> where CO : View, C1 : View, C2 : View, C3 : View,
C4 : View, C5 : View, C6 : View, C7 : View, C8 : View, C9 : View
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