

[image: Java Challengers]

 Java Challengers

 Master the Java Fundamentals with fun Java Code Challenges! Become a Java Challenger!

 Rafael Chinelato del Nero

 This book is for sale at http://leanpub.com/javachallengers

 This version was published on 2023-10-29

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2021 - 2023 Rafael Chinelato del Nero

 Table of Contents

 	
 Foreword

 	
 Jeanne Boyarsky

 	
 1 Introduction

 	
 1.2 Why Java?

 	
 1.3 What kinds of concepts are in this book?

 	
 1.4 Who is this book for?

 	
 1.5 What are the Java Challenges?

 	
 1.6 Disclaimer about the Java Challenges

 	
 1.7 Java versioning and tools

 	
 1.8 Will this book prepare you for the software development market?

 	
 2 Variable types and flow control (Review)

 	
 2.1 A Brief Review about Algorithms

 	
 2.2 Arithmetic Operators

 	
 2.3 Flow Control

 	
 2.4 Loops

 	
 2.5 Arrays

 	
 2.6 Local variable restrictions

 	
 2.7 Candy Price Code Challenge

 	
 2.8 Summary

 	
 3 Basic object-oriented programming (Review)

 	
 3.1 Classes

 	
 3.2 Methods

 	
 3.3 The Keyword this

 	
 3.4 Constructors

 	
 3.5 Object references

 	
 3.6 Arrays are objects in Java

 	
 3.7 Bank Deposit/Withdraw Challenge

 	
 3.8 Summary

 	
 4 Encapsulation access modifiers, and package structure

 	
 4.1 Programming to interfaces

 	
 4.2 What are and how to use getters and setters?

 	
 4.3 The Builder Design Pattern

 	
 4.4 Organizing Packages in a Real Project

 	
 4.5 Encapsulation Patterns

 	
 4.6 Access Modifiers

 	
 4.7 Inner Class

 	
 4.8 The static keyword

 	
 4.9 Instance and static block

 	
 4.10 Small Real-World Project Challenge

 	
 4.11 Summary

 	
 5 Overloading

 	
 5.1 Overloading basics

 	
 5.2 Wrappers and autoboxing

 	
 5.3 Varargs

 	
 5.4 Overloading Real-World Usage Challenge

 	
 5.5 Summary

 	
 6 Inheritance and Polymorphism

 	
 6.1 When to use inheritance

 	
 6.2 Every Class is an Object

 	
 6.3 Checking the type of an object

 	
 6.4 The toString method

 	
 6.5 Access modifiers and inheritance

 	
 6.6 Object composition

 	
 6.7 Multiple inheritance in Java

 	
 6.8 Using super to access a parent class’s methods

 	
 6.9 Constructors and inheritance

 	
 6.10 Class casting

 	
 6.11 Preventing inheritance

 	
 6.12 Abstract classes

 	
 6.13 Factory Method Strategy Discount Real-world Challenge

 	
 6.14 Summary

 	
 7 Interfaces

 	
 7.1 Interfaces and Polymorphism

 	
 7.2 Covariant return types

 	
 7.3 Default methods

 	
 7.4 Abstract classes vs. interfaces

 	
 7.5 Static methods in interfaces

 	
 7.6 Simulating multiple inheritance with default methods

 	
 7.7 Private methods in interfaces

 	
 7.8 Command Design Pattern Challenge

 	
 7.9 Summary

 	
 8 Exceptions

 	
 8.1 Checked and unchecked exceptions

 	
 8.2 Stack Trace

 	
 8.3 Handling or Declaring Checked Exceptions

 	
 8.4 try, catch, finally

 	
 8.6 try with resources

 	
 8.7 Multi catch

 	
 8.8 Creating a customized exception

 	
 8.9 Throw early, catch late

 	
 8.10 Real World Exception Creation Challenge

 	
 8.11 Summary

 	
 9 Lambdas and Functional Interfaces

 	
 9.1 What is Lambda?

 	
 9.2 Functional Interfaces

 	
 9.3 Method Reference

 	
 9.4 Lambda Method Reference Matcher Challenge:

 	
 9.5 Summary

 	
 10 Optional

 	
 10.1 Wrapping a value into Optional

 	
 10.2 isPresent and isEmpty

 	
 10.3 Optional Antipatterns

 	
 10.4 ifPresent and ifPresentOrElse

 	
 10.6 Handling Exceptions with orElseThrow

 	
 10.7 Transforming Optional Data

 	
 10.8 Final Yoshi Food Optional Challenge

 	
 10.9 Summary

 	
 11 Generics and Object Comparison

 	
 11.1 Comparing objects with equals and hashcode

 	
 11.2 Generics

 	
 11.4 Upper and Lower Bound Generics

 	
 11.5 Summary

 	
 12 Collections

 	
 12.1 Collections API

 	
 12.2 List

 	
 12.3 ArrayList

 	
 12.4 Vector

 	
 12.5 Deque & Stack

 	
 12.6 ConcurrentModificationException

 	
 12.7 Using Comparable

 	
 12.8 Set

 	
 12.9 HashSet

 	
 12.10 LinkedHashSet

 	
 12.11 TreeSet

 	
 12.12 Map

 	
 12.16 TreeMap

 	
 12.17 Elements Searching

 	
 12.18 Summary

 	
 13 Streams

 	
 13.1 Streams Basic Principles

 	
 13.2 Creating a Stream

 	
 13.3 Intermediate VS Terminal Operation Methods

 	
 13.4 Intermediate Operations

 	
 13.5 Terminal Operations

 	
 13.6 Parallelizing Data Processing with parallel()

 	
 13.7 Collecting Data with collect()

 	
 13.8 Collectors.groupingBy

 	
 13.9 Summary

 	
 14 Newest Features of Java

 	
 14.1 Java Release Strategy

 	
 14.2 Introduction to Modules

 	
 14.3 Java JDK Base Modules

 	
 14.4 Named application module

 	
 14.5 Unnamed module

 	
 14.6 Exporting Packages from Module

 	
 14.7 Requiring a Module

 	
 14.8 Exporting a service with provides with

 	
 14.9 Module Reflection Access

 	
 14.10 Star Trek Planets Module Special Challenge

 	
 14.11 Reserved word var

 	
 14.12 New switch case statement

 	
 14.13 Using Pattern Matching Type Checks Java 15

 	
 14.14 Using record

 	
 14.15 Using Sealed classes Java 15

 	
 14.16 Text Blocks Java 15

 	
 14.17 Summary

 	
 15 Concurrency Fundamentals

 	
 15.1 Fundamentals of Concurrency

 	
 15.2 Thread

 	
 15.3 Using Thread sleep

 	
 15.4 Using join

 	
 15.5 non-daemon and daemon Thread

 	
 15.6 Using interrupt

 	
 15.7 Race Condition

 	
 15.8 Mutual Exclusion (Mutex)

 	
 15.9 Using wait and notify

 	
 15.10 Summary

 	
 16 Advanced Concurrency

 	
 16.1 ReentrantLock Basics

 	
 16.2 Atomic Variables

 	
 16.3 The volatile keyword

 	
 16.4 The happens-before Rule

 	
 16.5 CompletableFuture

 	
 16.6 Threadpool with Executors

 	
 16.7 ConcurrentHashMap

 	
 16.8 ConcurrentSkipListMap

 	
 16.9 Producer Consumer with BlockingQueue

 	
 16.10 Summary

 	
 17 Next Steps

 	
 17.1 Other important Java features

 	
 17.2 Practicing Clean Code

 	
 17.3 Tendencies of the market

 	
 17.4 Getting prepared for interviews

 	
 17.5 Strategies to Stay Sharp

 	
 17.6 Learn more about negotiation

 	
 17.7 Do you want more?

 Guide

 	
 Begin Reading

Foreword

James Gosling

// Will be added soon!

Jeanne Boyarsky

Back in 2017, I attended Rafael’s JavaOne session: “Learn the Concepts between these 10 Java Challenges and Eliminate Stressful Bugs.” My reaction at the time:

This was fun! Being a cert book author gave me an advantage but some were still tricky and tough! And using The Simpsons as examples was fun. He did show of hands for each option; most people didn’t raise their hand for any of the choices.

It’s now five years later. I’m still a certification book author, but the session has grown into a full book! There are more challenges with the same fun and style. I’m pleased that the Simpsons remain!

Whether you are learning Java or an experienced developer, there is something in this book for you. Don’t let bugs hit you. Learn here so you can avoid surprises in your code!

And have fun. I’m sure you will find it, um, challenging.

1 Introduction

Java is one of the most used programming languages in the world, and it’s also very powerful. Developers who know Java in depth are highly valued by the market and ablfe to create high-quality, maintainable code. Java is not a simple language to master, but this book will provide valuable guidance for developers who want to harness its full power and be a reference as a software engineer.

Even senior developers may not be familiar with some key concepts of the Java language, and that will impact the quality of the code they write. But reading a book is not enough to really acquire a skill. Developers have to put their knowledge into practice by applying what they’ve learned in some way.

This book provides more than 70 Java Code Challenges in total to test your understanding of the and trully absorb the concepts it introduces. You’ll get up-to-date with the most recent Java versions and will learn Java from real project situations so that when you come across similar situations you will know how to respond effectively.

As the name suggests, Java Challengers is not an easy book, but it will guide you through the concepts and won’t leave gaps that will make learning difficult. Although the subjects the book presents are complex, the concepts are explained in a practical way, aiming to facilitate the learning process of the reader.

After you read, consider, and try to solve each challenge, you can test the code provided and run your own tests by changing it and analyzing the output. This will help you connect the dots with the content you consume in the book.

You’ll then be able to use the concepts you’ve learned in your day-to-day work, which is the whole point of going deep into the concepts of a programming language.

To produce highly maintainable Java code you have to use the most suitable features of the language. Then bugs have a really hard time hiding. This increases the satisfaction of developers, managers, and customers with the delivered product, bringing more profit to the company. Everyone wins.

It’s definitely worth it to invest time in a deep dive into the Java language, and that’s exactly what this book will provide. So, what are you waiting for? Are you ready for all the challenges? How many of them can you get right? Are you prepared to take your Java skills to a whole new level?

1.2 Why Java?

Java is the world’s most popular programming language, and a developer who knows Java will rarely be unemployed. Many companies opt to use this language to make hiring new developers an easier task—its popularity means it’s easier to find professionals who know Java.

Reliability, maturity, and robustness are the essence of the language, and companies of all sizes choose Java because of those qualities.

Java also has a large ecosystem of open source projects that help programmers with their day-to-day development, many of which are free.

With Java it’s possible to create organized, structured code with reliable unit tests that help developers build robust software that’s resistant against bugs.

1.3 What kinds of concepts are in this book?

You will learn about core concepts from the Java language that will be useful in your day-to-day work. The book covers crucial concepts such as polymorphism, encapsulation, overloading, inheritance, composition, exceptions, Optionals, generics, concurrency, equals and hashCode, collections, streams, functional programming with lambdas and method references, and the main concepts from the newest Java versions (since this book will be updated from time to time).

It makes a big difference if a Java developer really understands these concepts, and that’s why they are explored in this book.

1.4 Who is this book for?

Java Challengers is aimed at developers who want to create high-quality code in their day-to-day work. With a consolidated knowledge of the core concepts you will be able to use the full power of Java, applying the most suitable features to the situations you are facing.

Developers who like solving challenging puzzles will also enjoy the book—the challenges aren’t easy, but they are fun.

You don’t have to be an experienced developer to get value out of this book. Developers who have at least some knowledge of the basics of programming logic and algorithms should be able to understand the book, although familiarity with object-oriented programming is also recommended.

1.4.1 Who is this book not for?

Java Challengers covers most of the core certification content, but this book is not focused on certification. You can use it as supporting material, and if your goal is Java certification you can get extra material such as mock exams, check tutorials, articles, or other books. It’s actually a good idea to mix your learning sources, we learn much better a subject when reading, listening, watching and doing something useful with the learned concepts.

This also may not be the right book for developers who are looking for a general introduction but aren’t focused on creating high-quality code and becoming experts. The point of going deep into Java concepts is to give developers the power to use the full capabilities of Java by applying the most suitable features of the language to the problem at hand.

Finally, developers who just want to write "code that works" without going any deeper shouldn’t read this book.

1.4.2 What is covered in the book?

Many features that are infrequently used in real projects have not been included in this book. For example, the Java JDBC (Database library) are not discussed because it’s likely that in a real project you will be using some kind of persistence framework (a set of libraries that facilitates day-to-day work with a predefined and simpler structure) such as Hibernate, Spring Data, or others.

Instead, core features of Java are explored in a way that they can be totally absorbed and used as best as possible. Reinventing the wheel is one of the worst things that can happen in software development. If you know the core features of Java well, you won’t take the risk of using the wrong feature to solve a problem. You will be using Java masterfully.

1.5 What are the Java Challenges?

The Java Challenges are challenging code puzzles that require you to know the relevant Java concepts very well. Most of the challenges include the main method, and your goal is to guess what will happen when running the code.

The Java code challenges are carefully designed to explore the most important Java concepts that will make a difference in your day-to-day work as a Java developer. Many of them feature well-known shows and characters, and expect to see funny class/method/variable names.

If you get the challenges right, that’s great! But if not, don’t get frustrated; try to understand why, and eventually you will absorb the concepts. The point of the book is to deepen your understanding of Java by having fun with the challenges.

You will also find a real-world challenge at the end of each chapter which will get you better prepared for applying suitable solutions to problems you might face in real projects. These will help you with interview problem-solving questions too.

The real-world challenge will usually be a situation where you must apply the concepts learned in the chapter to solve a common problem. Many of them involve established design patterns and unit tests, and solutions are available so you can check if your code is correct.

1.6 Disclaimer about the Java Challenges

The intention of the Java challenges is to test your understanding of the concepts explained throughout the book, so don’t expect clean code in every challenge. Instead, see the challenges as a way to fix the concepts in your mind and practice your code analyzing skills.

The better you are able to analyze code, the faster and sharper programmer you will become. These exercises will enable and empower you to produce flexible and meaningful code using the most appropriate Java concepts. The more features and concepts from Java you master, the better able you will be to track down bugs and fix them efficiently. In addition, you will be able to produce highly optimized solutions for many different situations.

1.6.1 Running a Java application without a class and main method

As of Java 9, you don’t need to create a class or a main method for simple code tests. You can use the command line with jshell. It’s a powerful tool when you want to run something quickly to test syntax or code logic. You can implement the code examples in this book using jshell if you wish.

Make sure you have Java 9 or later installed on your machine by running the following command on your command terminal:

 java --version

Then configure the environment variable JAVA_HOME and add JAVA_HOME\bin to your operating system environment variable PATH.

Just a brief review about the PATH environment variable, this path will enable you to run commands globally on your command terminal.

We have two options when running the java command lines, either we point our current directory in the command terminal to JAVA_HOME\bin or we inform our OS that we want to use the commands located in JAVA_HOME\bin globally without having to change your current directory to the JAVA_HOME\bin every time we want to use java commands.

Once you’ve done that, you can start JShell using the following command:

 jshell

Then you can write Java code without the obligation of declaring a class and a main method, and execute it immediately from the command line. It’s a great option to practice the examples in the book, but any way you choose to write your code is fine. What really matters is you doing your own tests with as many examples as you can from this book.

1.6.1 Where to run the Java applications

You can write Java code in a Notepad file, at the command line, and so on, but of course that wouldn’t be productive for big, complex projects. It would be very hard to organize and produce all the Java files required by the system!

Fortunately, there are tools that can help us in our day-to-day work, known as integrated development environments (IDEs). Of the top Java IDEs, the one

I like the most is IntelliJ. It’s practical and easy to use, has great integration with most common Java technologies, and is very performant.

Another option is Eclipse, which has the best set of programming keyboard shortcuts but in my opinion is not so good at integrating and building complex systems. A third popular IDE is NetBeans; I haven’t used it much but it’s generally regarded as a good IDE for Java and it will do the job.

IDE choice is very personal, so pick the IDE you like the most—after all, what matters most is the Java code, not where the code was written!

1.6.2 Golden tips to solve the Java Challenges

The challenges are tricky, and they will demand that you analyze the code carefully so that you can guess the output.

Before deciding on a solution to a challenge, you should consider every alternative to see if there is another one that makes sense. If so, analyze the code again and make your best guess.

It can be tempting to go straight to the obvious answer. Before all the challenges there will be a detailed explanation covering everything you need to answer the problem correctly.

If you feel confident that you already know the concept you can try the challenge before reading through the description; if you get the answer wrong, you can always go back to the concept’s explanation to try to find out what happened.

Another crucial action for taking full benefit of this book is to run the code in a challenge and change it so that you can test the outputs by yourself. This is a good way to be sure that you’ve absorbed the main concepts.

Some persistence will be required, but if you run the code enough times, the concepts will be clear and consolidated.

1.7 Java versioning and tools

As you read the book, it’s highly recommended that you test the code to see what happens with each example. All the code is stored in GitHub. You can download the project if you don’t have knowledge of Git, or you can simply use the Git commands if you know them.

Git is a widely used tool for storing and versioning code, and familiarity with it is a must for every software engineer. If you don’t know Git yet, it’s time to practice it. You can learn the basic commands and run the Java Challenges code.

You will find all the code for this book, from examples to the challenges, at
https://github.com/rafadelnero/javachallengersbook.

You’ll see that the project includes a build manager tool called Maven. Maven provides an automated way to build, test, deploy, and manage code dependencies that makes our lives as software engineers easier.

You will have to import the project as a Maven project, and then you will be able to run the code from the book. There are also some unit tests included so you can learn a bit about how tests should be applied.

In working through the challenges, you will be able to use and learn about a variety of popular tools.

1.8 Will this book prepare you for the software development market?

A deep knowledge of Java is the most important knowledge every Java developer should have in their toolbelt, because it’s from code that all the business logic will be built. If developers write high-quality code it will require less maintenance, which translates to more profit for the company and less stress for everyone.

The Java knowledge on its own is great but you need to expand more your knowledge-base to be highly effective. You don’t need to know every other single technology very well, instead, you need to know enough to solve a a problem in a real-project.

Also, be careful to not try to embrace the world. If you start learning several technologies at the same time, it might be overwhelming and you will be very likely to be frustrated and eventually give up.

One culture that is expanding in the market is DevOps. That’s because many projects are being moved to a cloud platform, and many automation/container technologies come along with it (Jenkins, GitHubActions, Docker, Kubernetes). Instead of manually making deployments, testing, and checking code quality, we can simply use DevOps tools to automate the whole process of software delivery.

When we talk about DevOps, a crucial skill to have is the Linux OS, I highly encourage you to use Linux on your machine or if you have a Mac OS it will be better for you to get familiarized with command lines. If you are a Windows user though, you can still use a Linux subsystem, a dual-boot or a virtual machine with Linux too. Also, if you are a beginner on Linux, I recommend you to start with Ubuntu because it’s a more user-friendly platform and at the same time a robust one.

The cloud era is in full swing, so we need to know at least a bit about technologies such as top cloud providers such as AWS, Google Cloud Platform, Azure, Oracle Cloud, a little bit about Infrastructure as Code technologies Terraform, Cloud Formation, or any other scripts to provision cloud services. A working knowledge of databases is also essential for every developer, because we often have to build complex SQL scripts to bring in the necessary data for the business. NoSQL is a big thing too.

It’s also important to know the main concepts of the Microservices architecture. You will be asked about these concepts in an interview, so at least have an idea of the advantages and disavantages of using Microservices.

Many projects in the market rely on full stack developers, which means that developers have to know at least the basics of a front-end technology.

Therefore frameworks such as Angular, React, and Vue are some of the big ones; this might change with time. All these technologies are based on Javascript, so it’s a good idea to have a basic knowledge of the language as well.

The good thing is that by mastering Java concepts, you will be able to learn any other language far more easily because in the end you will simply use the same language concepts and paradigms you have from Java to learn another language and this process will be incredibly faster.

It’s a lot to learn, isn’t it? But don’t worry, you don’t need to be a specialist in all those technologies. You need a basic understanding of how to use them, and then you can choose one specific technology that you would like to explore in depth. If you’re reading this book it means you’ve selected Java, which I think is a powerful choice.

Let’s start going deep into Java!

2 Variable types and flow control (Review)

This chapter covers:

 	Creating basic Java algorithms based on a problem

 	Using suitable types of primitive variables

 	Using flow control instructions

 	Using loops

 	Using unidimensional and bidimensional arrays

 	Declaring and using local variables

 	Total of 6 Java code challenges

The core purpose of every programming language is to control the flow of logic, making computations with different values and organizing information in a way that solves a problem for the final user of the software. This chapter introduces several concepts that you can use to accomplish this objective, including variables (primitives and special types), conditions, loops, and arrays.

Using the information in this chapter, you will be able to develop your own algorithms to solve specific problems. For example, you could build a mathematical formula to make a calculation, construct logic to check if a password is correct with a condition, or create a program that will receive two numbers, multiply them, and print the result. Your imagination is the limit.

Your code might not have the robustness required by a real project, but you will be able to design the logic to solve specific problems. We’ll start with an in-depth exploration of variables.

2.1 A Brief Review about Algorithms

Code algorithm is an organized and logical way to solve a particular problem through instructions where we get the output or result expected.

We are dealing with algorithms every day in our lives. When we go to a shop to buy what we need, we have to give our brain logical instructions to get the job done. We can go beyond that, when we are going to sleep, we also have to take some logical actions to sleep properly, any other common action we take every day can be seen as an algorithm.

Mathematical functions are another example of algorithms, in the computer, the difference is the way we pass the instructions. The instructions have to be in the language the computer understand that would be binary numbers but binary numbers are too hard to manipulate in a pure way, that’s why we have programming languages that have powerful features to solve real-world problems about financial businesses, entertainment, modern machines, mobile devices and the list goes on and on.

Let’s then review the universal code concepts so that we can apply a logic algorithm effectively with Java or any other language.

2.1.1 Code Syntax

Code syntax is the way the compiler will understand the code, it’s a predefined way that we must write our code. If we don’t follow the pattern the JVM is expecting, the code won’t compile.

We can try to use a variable without declaring the type for example, which Java won’t accept:

 intVariable = 7;

We have to always follow the code syntax to work with any programming language. Java for example has a very similar syntax from the C language.

2.1.2 Code Semantic

Everything is the real-world has to be done with a defined logic, when we want to brush our teeth we open the bathroom cabinet, then get the toothbrush, then put on the toothpaste, move the toothbrush into our mouth, brush it until our teeths get clean, wash the toothbrush, wash the mouth, then put the toothbrush back in the cabinet.

Notice that it wouldn’t be possible to brush our teeths without following that logic, if we try to brush our teeths without the toothpaste for example, that wouldn’t work.

Another example is when we are going to cook something, we have to follow a logic with the receipt, if we cook the ingredients in the wrong order or with the wrong ingredients, the receipt won’t work as well.

Simply put, code semantic is the logic we have to implement to perform tasks.

2.1.3 Variables in Java: Primitive types and values

A variable in programming is a way to store a value into a named allocated space in the computer’s memory. We can store text, binary, and numerical values in a variable and then make calculations, perform comparisons, and so on.

Java has two main types of variables: primitives and objects. Many of the primitive variable types are also used in other programming languages. If you’ve worked with C, for example, you will find that many of the variable types in Java are the same. We’ll focus on the primitive types for now; Java objects will be introduced in the next chapter.

2.1.4 Primitive types

As mentioned previously, it’s possible to store and manipulate characters, numbers, and binary values such as true and false with the variety of primitive variable types defined in Java. The eight Java primitives are listed in table 2.1. The table contains the following information:

 	Type: The variable type, defined by the size of the allocated space in memory and the data structure (for example, if it’s text or numbers).

 	Range: The range of values that can be used for the variable type.

Default instance value—The default value of the variable when no value is assigned to it upon creation of a new instance. We will explore instances in the next chapter.

 	Size: The size that will be allocated in memory for the variable type.

Example literals—Examples of values that can be used in this type of variable.

 	Type
 	Range
 	Default value
 	Size
 	Example literals

 	boolean
 	true or false
 	false
 	1 bit
 	true, false

 	byte
 	-128 .. 127
 	0
 	8 bits
 	1, -90, 128

 	char
 	Unicode character or 0 to 65,536
 	\u0000
 	16 bits bits
 	‘a’, ‘\u0031’, ‘\201’, ‘\n’, 4

 	short
 	-32,768 .. 32,767
 	0
 	16 bits
 	1, 3, 720, 22000

 	int
 	-2,147,483,648 .. 2,147,483,647
 	0
 	32 bits
 	-2, -1, 0, 1, 9

 	long
 	-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807
 	0
 	64 bits
 	-4000L, -900l, 10L, 700L

 	float
 	3.40282347 x 1038 .. 1.40239846 x 10-45
 	0.0
 	32 bits
 	1.67e200f, -1.57e-207f, .9f, 10.4F

 	double
 	1.7976931348623157 * 10308 .. 4.9406564584124654 * 10-324
 	0.0
 	64 bits
 	1.e700d, -123457e, 37e1d

Table 2.1.4 The primitive variable types defined in Java

Note that the primitive types in Java can never have the value null; if you don’t assign them a value when you create them the JVM will assign them the default value listed in this table. This will only happen with an instance variable, a concept we will explore more deeply in future chapters. As you’ll see later in this chapter, local variables are not assigned default values if one is not provided; you must assign them values when you create them, or your code will not compile.

2.1.5 Manipulating a variable in Java

Java is a strongly typed language and it’s necessary to define the variable type before using it.

After declaring the variable we must assign some value, otherwise the variable existence doesn’t make much sense. The most basic way to assign a value to a variable is by using the simple assignment operator, =. When we are assigning a value to a variable for the first time we say we are initializing it.

If we are using the primitive types for example, we need to use the following syntax to declare and assign the values to those variables.

 1 int luckNumber = 7;
2 double weight = 70.0;
3 boolean isJavaRocker = true;

In Java 10 we also have the possibility to define a non-typed variable that can have any value type within it.

For example:

 var luckNumber = 7;

The luckNumber variable will be inferred as an int type with the value of 7.

We can’t try to declare a variable without giving a type like Javascript, the following code, for example, won’t be compiled:

 luckNumber = 7;

2.1.6 Variable Names Rules

There are some rules in order to give variable names. In Java, ideally we should simply follow the JavaBeans convention using the camelCase pattern. But it’s also good to at least know what name we can use for variables.

Let’s see at first valid examples of variable names in Java:

 	Case scenario
 	Valid variable names (but not recommended)

 	A variable name can start with A to Z
 	int HomerAge = 35;

 	A variable name can start with _
 	int _homerAge = 35;

 	A variable name can start with $
 	int $homerAge = 35;

 	After the first character, we can use numbers.
 	int homerAge007 = 35;

Let’s see now invalid variable names in Java:

 	Case scenario
 	Invalid variable name

 	A Java keyword can’t be used as a variable name.
 	int double = 7;

 	A variable can’t start with a number.
 	int 007HomerAge = 35;

 	Special Characters other than $ and _ for variable names.
 	int *homerAge = 35;

 	Special characters that are not $ or _ in the middle of the name
 	int homer-age = 35;

One other very important detail about variable names with Java is that they are case-sensitive, which means that if the variable name has a capital letter when declared, we have to use the variable in the exact way, otherwise it won’t compile.

 double homerGrade = 0;

If we try to use the variable homerGrade as the following code, the code won’t compile:

 System.out.println(homergrade);

To use variables in Java, the naming case has to exactly match, if we use the homerGrade variable as the following, the code will compile successfully:

 System.out.println(homerGrade);

Even though those are the rules to name Java variables, it’s not a good practice to start a variable with a capital letter, with underscore (_), or a currency symbol ($).

Instead, we should follow the JavaBeans conventions which we will explore in the next session.

2.1.7 Variable naming conventions

Java uses a standard naming convention for variables so that it’s clear to anyone viewing the code what the variables are. The convention it uses is camelCase, where the first word is lowercase and the first letter of each following word in the name is uppercase. For example:

 1 simpsonName
2 beerFlavor
3 misterBurnsAge

Every Java developer should follow the JavaBeans convention for naming different elements of code. Following a defined and agreed-upon standard ensures your code is readable and understandable by a wide audience.

 Note: Java Beans Definition

 The JavaBeans specification is a set of guidelines agreed upon by the community in order to standardize Java code so that developers can understand one another’s code more easily. When reading code, this helps a lot because we know instantly whether we are dealing with classes, methods, or variables.

 If you wish to take a look at the Java Beans convention document, you can find it at https://www.oracle.com/technetwork/articles/javaee/spec-136004.html.

2.1.8 Incrementing and Decrementing Variables

There are different ways to assign a value to a variable in Java, and to increment or decrement the assigned value. Let’s take a look at some of the operators that are available.

You can change a variable’s value by assigning it a new value. Suppose you need to add a specific number to the value. One option is to do the following:

—
Note: System.out.prinln Purpose

We will be using the System.out.println method many times in the examples. This statement has many object oriented concepts that we will explore much deeper in further chapters. For now when you see this statement just keep in mind that it’s used to print something on the console.
—

 1 homerGrade = homerGrade + 2;
2 System.out.println(homerGrade);

 The code above will print 4

You can also use Java’s addition assignment operator (+=), specifying the amount to add to the variable’s value. This will do exactly what was done in the previous example, adding 2 to the value of homerGrade:

 1 int homerGrade = 2;
2 homerGrade += 2; // #1
3 System.out.println(homerGrade); // #2

 	#1: This is the same as homerGrade = homerGrade + 2

 	#2: This will print 4

Other versions of the assignment operator exist for decreasing the value of a variable (-=), multiplying or dividing it by another value (*= and /=), and more.

2.1.9 Increment operator

A common operation is to increment the value of an integer variable by one. In Java, you can do this with the following code:

 1 int homerGrade = 0;
2 homerGrade = homerGrade + 1;

But there’s a more concise option: using the increment operator, ++. You can add one to a variable’s value by including ++ before or after the variable’s name in an expression. These are known as the pre-increment and post-increment operators, respectively.

Let’s see how the post-increment operator works:

 1 int homerGrade = 0;
2 System.out.println(homerGrade++);
3 System.out.println(homerGrade);

By running the above code with jshell, it will print:

 1 0
2 1

As you can see, the value of the homerGrade variable is only incremented in the line following the increment operation.

The pre-increment operator acts in a different way—the variable’s value is incremented by one on the same line where the operator appears. For example:

 1 int homerGrade = 0;
2 System.out.println(++homerGrade);

When running the code above with jshell, it will print:
1

With the pre-increment operator, the value is incremented first and then the result is computed. With the post-increment operator, the result is computed and then the value is incremented.

2.1.10 Decrement operator

The same rules are applied with subtraction, using Java’s decrement operator (–). Again, there are two versions. In the following code example, which uses the post-decrement operator, the value of the homerGrade variable will only be decremented at the next line:

 1 int homerGrade = 2;
2 System.out.println(homerGrade--);
3 System.out.println(homerGrade);

Running this code will print:

 1 2
2 1

When using the pre-decrement operator the value of the homerGrade variable will be decremented right away, before the result is computed:

 1 int homerGrade = 2;
2 System.out.println(--homerGrade);
3 System.out.println(homerGrade);

This will print:

 1 1
2 1

2.2 Arithmetic Operators

The arithmetic operators are one of the most core concepts for every programming language. When developing code, we are manipulating information all the time.

Let’s see the most basic arithmetic operators in Java:

 	Operator
 	Description

 	*
 	Multiplication operator

 	/
 	Division operator

 	%
 	Remainder operator

 	+
 	Additive operator (also concatenates String)

 	-
 	Subtraction operator

Let’s explore then the operators precedence. Like in math, multiplication and division have precedence over addition and subtraction. Let’s see some examples:

 System.out.println(5 + 5 * 5);

The result of the code above will be 30 because the multiplication operation is the priority and will be executed first. Considering that 5 * 5 will be 25 and then will be added to 5.

Then let’s analyze a similar example with division that is also a priority:

 System.out.println(5 + 5 / 5);

The output will be:
6

The result will be 6 because 5 / 5 will be executed first giving the result of 1 and then will be added to 5.

But what happens when there is division and multiplication in the same operation? Let’s see that in the following example:

 System.out.println(5 / 5 * 1);

The output will be:
1

In the code above, the priority will be decided by the order the operators were introduced. Therefore 5 / 5 will be executed first with the result of 1 and then will be multiplied by 1 which will give us the output of 1.

Let’s see now what happens when we use multiplication first:

 System.out.println(5 * 5 / 1);

The output will be:
25

In the code above, 5 * 5 will be executed first with the result of 25 and then will be divided by 1, therefore the final result will be 25.

There is also the remainder operator, let’s quickly review how it works:

 System.out.println(5 % 5);

The output will be:
0

The remainder of 5 / 5 is 0, when we divide 5 by 5 there is no remainder value.

A very common use case for algorithm is to check whether a number is even or odd and we can accomplish that by using the remainder operator, let’s see an example to check if a number is even:

 System.out.println(5 % 2);

The output will be:
1

The calculation above returns 1 because that’s the remainder number of the division between 5 and 2 which means that 2 * 2 is 4 and 1 is the remainder. Therefore the number 5 is odd.

If we do a similar operation with an even number we have the remainder of 0.
System.out.println(4 % 2);

In code above 4 / 2 is 2, therefore there is no remainder and also means that 4 is an even number.

The precedence of the remainder operator is the same as the multiplication and division, let’s explore the following example:

 System.out.println(5 + 4 % 2);

The output will be:
5

The first operation to be executed is 4 % 2, then we will have the result of 0 and will be added to 5. Therefore the final result will be 5.

There is a way to force the precedence of the calculations too, we can accomplish that by using parenthesis ‘()’. If we want for example to perform an addition operation before a multiplication, division or remainder operators, we can do the following:

 System.out.println((5 + 5) * 5);

The output will be:
50

When running the code above, the first operation to be executed will be 5 + 5 that will be 10 and then will be multiplied by 5 which means that the final result will be 50. If the parenthesis wasn’t there, the output would be 30.

Important points to remember about the arithmetic operators:

 	Multiplication, division and the remainder operators have priority over addition and subtraction.

 	If we are using only the multiplication, division and the remainder operators, the priority will be decided by what operator was used first.

 	Parenthesis will always be the highest priority over any operator.

2.2.1 Commenting code

As you’ve seen in the previous examples, it’s possible to add comments to your Java code to explain the details of what is happening. It’s very common to see code comments in real-world projects. Sometimes comments are overused and just make code confusing, but in general they are still useful.

The simplest way to comment code is by using //, which tells the JVM (Java virtual machine) compiler to ignore everything that follows up to the end of the line. Let’s look at an example:

 1 // The following code will calculate the sum from number1 and number2
2 int number1, number2 = 5;
3 System.out.println(number1 + number2); // The JVM will print 10

In real-world projects it’s not recommended to pollute code with several comments between code instructions. According to Uncle Bob (Robert Martin), author of the popular handbook Clean Code (Prentice Hall, 2008), commenting code is a way to say that we’ve failed at making our code simple to understand.

Comments like these are used in the examples in this book for the purpose of clarity and to ensure that the reader can follow along, but keep in mind that I would avoid using such comments in a real-world project.

Another popular use for comments is to provide descriptions of variables, classes, and methods, as a formal way to document your code. (Don’t worry, we’ll study all those concepts in depth in the next chapter.)

You’ve already seen the main Java method, so let’s use that as an example:

 1 /* This is the main Java method that will bootstart the program */
2 public static void main (String[] args) { }

The compiler ignores everything between the /* and the */, so these comments can span multiple lines. Documentation comments achieve the same effect:

 1 /**
2 * This is the main Java method that will bootstrap the program
3 */
4 public static void main (String[] args) { }

You can also use commenting features known as tags in your comments, like these:

 1 @author Homer Simpson, @since 1.0

To specify additional information such as the author and what software version the code became available in.

You can use HTML (Hypertext Markup Language) to format your code comments too, applying tags such as <p> for a new paragraph, for bold text, <table> to add a table, and so on. You can explore classes from the Java Development Kit (JDK) to see some examples, the String class for example is a good one to take a look at.

For the purposes of this book you don’t need to know all the possible tags and options for commenting code; you can learn the main tags and apply them where appropriate.

2.3 Flow Control

Flow control is a concept we use every day, in our day-to-day lives. We define conditions to check whether we can perform a particular action. For example, if it’s a warm, sunny day, we can go to the beach. If we have time off from work and some money to spare, we can go on vacation. If you solve the Java Challenges, you can call yourself a Java rockstar! :)

Flow control is basically the ability to test a condition and perform one action if it’s true and another if it’s false. It’s a way to control the programming flow based on conditions we are expecting.

We often use conditions in programming, and knowing how to manipulate conditions in depth makes a big difference to the quality of the code we create. Many developers aren’t familiar with all the details of conditions in Java, so let’s explore them in a little more depth.

Before analyzing our first flow control example, take a look at table 3.2, which summarizes the equality and relational operators we use to compare variables and values in programming.

Table 2.3 Equality and relational operators in Java

 	Relational operators
 	Explanation
 	Example
 	Returns

 	————-
 	————-
 	1 == 1
 	true

 	!=
 	Not equal to
 	1 != 1
 	false

 	>
 	Greater than
 	2 > 1
 	true

 	>=
 	Greater than or equal to
 	1 >= 1
 	true

 	<
 	Less than
 	3 < 2
 	false

 	<=
 	Less than or equal to
 	1 <= 3
 	true

Let’s start with the most basic flow control statement in any programming language, the if statement:

 1 int homerAge = 35;
2 if (homerAge >= 21)
3 System.out.println("Homer can drink beer");

When this command is executed, "Homer can drink beer" will be printed.

Notice that in this example braces ({}) are not used around the condition for the if statement. That’s perfectly allowed in Java, but only when there’s a single instruction for the if statement. If we do this, for example, the second message will always be printed, even if (as in this case) the condition homerWeight > 340 is not true:

 1 int homerWeight = 240;
2
3 if (homerWeight > 340)
4 System.out.println("Homer is obese");
5 System.out.println("Homer needs to go on a diet"); //#1

The point //#1 in the code will not be considered part of the if statement and will always be executed, because there are no braces.

Not using braces might be fine for some cases, but you might forget to add the braces when adding a new instruction to the if condition, so you must be careful if you decide to leave them out. The safest practice is to always include curly braces.

2.3.1 Logical operators

When we need to compare two or more conditions, we make use of logical operators (AND, OR, NOT). Developers use these frequently, and we use them all the time in the real world too.

2.3.2 The AND logical operator

In Java, the operator to join two conditions (AND) looks like this: &&. The main rule with this operator is that both conditions must be true to return true.

Here’s an example:

 1 if (atLeast12YearsOld && hasMoney) {
2 System.out.println("Watch horror movie in the cinema"));
3 }

In this case, if a person is at least 12 AND has money for a ticket, then they will be able to watch a horror movie in the cinema. Note that both conditions must be true for the person to be able to go to the cinema.

There is another important rule with the && operator that makes sense in terms of performance. Because both conditions must be true, we know that if the first condition is false, the second condition doesn’t need to be evaluated. This is exactly what happens: the JVM won’t bother to evaluate the second condition if the first is false because it already knows that the && operator will return false. This is known as short-circuit evaluation.

Let’s look at an example to illustrate how this works. In this example the first condition, bartAge >= 12, won’t be fulfilled, so the second condition, bartMoney >= 10, won’t even be evaluated:

 1 int bartAge = 10;
2 double bartMoney = 20;
3
4 if (bartAge >= 12 && bartMoney++ >= 10) { // The second condition won't be executed
5 	System.out.println("Bart can go to the cinema"); // This code won't be executed
6 }
7
8 System.out.println(bartMoney); // This will print 20

You can prove this by checking the value of the bartMoney variable, which will be incremented by one when the second condition is executed. When you print this variable after the if statement it prints 20, which shows that the JVM did not execute this condition.

2.3.3 The OR logical operator

The OR logical operator verifies whether at least one of the conditions is true. It’s represented by || in Java. Let’s look at an example:

 1 boolean isBartWithCinemaTicket = false;
2 boolean isBartWithMoney = true;
3
4 if (isBartWithCinemaTicket || isBartWithMoney) {
5 	System.out.println("Bart can watch a movie at the cinema");
6 }

In this case, only one condition has to be true: if Bart has a ticket or money to buy a ticket, he will be able to watch a movie at the cinema. Even though only the isBartWithMoney variable is true, the || operator will return true.

Again for performance reasons, the || operator works in a similar way to the && operator. If the first condition is true, the second condition won’t even be checked because the JVM already knows the operator will return true.

You can see this in code using a similar example to the one in the previous section:

 1 int bartAge = 12;
2 double bartMoney = 20;
3
4 if (bartAge >= 12 || bartMoney++ >= 10) { // The second condition won't be executed
5 	System.out.println("Bart can go to the cinema"); // This code will be executed
6 }
7
8 System.out.println(bartMoney); // This will print 20

Because the first condition is true, the second condition won’t be executed and the bartMoney variable won’t be incremented. Also note that the if condition is met because we are using the || operator and at least one condition is true. Therefore, Bart can go to the cinema.
The NOT logical operator
The final logical operator is NOT, represented in Java with !. This operator takes a Boolean value as its operand and reverses it—if the condition is true the ! operator will transform it to false, and vice versa. For example:

 1 System.out.println(!true); // This prints false
2 System.out.println(!false); // This prints true

2.3.4 Boolean variables and conditions

Sometimes we have to handle complex conditions in our code. One way to improve the readability of the code is by creating a boolean variable with a meaningful name to indicate whether or not the condition is true.

Suppose we need to check if there is enough money in an account to make a withdrawal:

 if (moneyToWithdraw <= accountBalance) { ... }

We can assign this condition to a boolean variable:

 boolean isMoneyAvailableInBalance = moneyToWithdraw <= accountBalance;

And then use the variable in the if statement instead:

 if (isMoneyAvailableInBalance) { ... }

This technique is useful for making code more readable, especially when there are multiple conditions to compare inside a single if statement. A very powerful book to read if you’d like to dig deeper into code quality and code refactoring is Martin Fowler’s Refactoring: Improving the Design of Existing Code (Addison-Wesley).

Another option for improving the readability of code where there are several conditions in a single if or other Java statement is to use nesting, placing one if statement inside another. It’s best to avoid excessive nesting because it adds complexity and degrades the quality of the code, but considering that you are highly likely to see code nesting in real projects, it’s good to know how it works. Here’s an example:

 1 int simpsonAge = 18;
2
3 if (simpsonAge >= 18) {
4 if (simpsonAge <= 50) {
5 System.out.println("The Simpson age is from 18 to 50");
6 }
7 }

Even better, we could improve the code in this case by using &&, and the result would be exactly the same:

 1 if (simpsonAge >= 18 && simpsonAge <= 50) {
2 System.out.println("The Simpson age is from 18 to 50");|
3 }

Can you see how much simpler your code can be if you know the different features of Java? This is just one simple example of how an in-depth knowledge of what the language offers can help you write much clearer, better, and more meaningful code.

2.3.5 Naming conventions for boolean variables

 The JavaBeans convention for naming boolean variables is used with the following pattern is <YourConditionName>. It’s also common to prefix the names of booleans with has, and in many cases this may seem more suitable (for example, hasMoneyToSpend). The JavaBeans specification does not mention this alternative, however, it’s better to stick to the standard when possible, so always try to use the prefix is.

2.3.6 The ternary operator

When the condition you need to check is simple, you don’t always need to use an if statement. Instead, you can use Java’s ternary operator, ?, which functions like a simplified form of if statement. It takes three operands, as follows:

Condition ? Return a value when condition is true : Return a value when condition is false

The following code checks whether the value of the beerQuantity variable is greater than or equal to 50. If so, the value “Homer” will be returned. If the condition is false, the value “Moe” will be returned instead:

 1 int beerQuantity = 50;
2 String beersOwner = beerQuantity >= 50 ? "Homer" : "Moe";
3 System.out.println(beersOwner); // This will print "Homer"

The value “Homer” will be printed because the condition of the ternary operator is true.

 Note: String
String is a class that represents characters. You don’t need to worry about the details for now; this will be explored further in a later chapter.

In the same way it is possible to nest a normal if statement inside another one, it is also possible to nest ternary operators—but this is far worse. Nesting ternary operators will make code maintenance a nightmare.

Here’s an example:

 1 String beerOwner = beerQuantity >= 100 ? beerQuantity >= 200 ? beerQuantity >= 300 ?\
2 "Barney" : "Homer" : "Lenny" : "Carl";

It’s very confusing and difficult to understand, and you should avoid doing this at all costs.

2.3.7 Homer Beers Flow Control Challenge

In the following code, we will explore the concepts of the if statement, ternary operator, and logical operators. Homer will consume two batches of beer, batchOfBeer1 and batchOfBeer2. How many beers do you think Homer will have had at the end of this challenge?

 1 public class HomerBeersBatch {
 2
 3 public static void main(String... doYourBest) {
 4 int batchOfBeer1 = 5;
 5 int batchOfBeer2 = 5;
 6
 7 if (++batchOfBeer2 > batchOfBeer1 || batchOfBeer1++ == batchOfBeer2++) {
 8 batchOfBeer1++;
 9 }
10
11 batchOfBeer1 = (batchOfBeer1++ > batchOfBeer2 &&
12 ++batchOfBeer2 < batchOfBeer1++ ? ++batchOfBeer1 : ++batchOfBeer2);
13
14 System.out.println("Homer will have: " + batchOfBeer1-- +
15 " and " + batchOfBeer2++ + " beers.");
16 }
17
18 }

 	Homer will have: 7 and 7 beers.

 	Homer will have: 7 and 8 beers.

 	Homer will have: 5 and 7 beers.

 	Homer will have: 5 and 6 beers.

Explanation:

The first key for this challenge is to know that the pre-increment operator increases a variable’s value at the time the variable is used, and the post-increment operator increases the value after the variable is used. The other important thing to know is that the short-circuit logical operator || will only check what is necessary to determine whether the condition will be fulfilled or not. That means in the first if:

 1 if (++batchOfBeer2 > batchOfBeer1 || batchOfBeer1++ == batchOfBeer2++) {
2 batchOfBeer1++;
3 }

Only the first condition will be checked. Because it’s true, the second condition doesn’t need to be checked. Therefore, only batchOfBeer2 will be incremented. Then, the batchOfBeer1 variable will be incremented inside the if statement.

So, these will be the values of the two variables:

 1 batchOfBeer1 = 6;
2 batchOfBeer2 = 6;

The next statement is the the ternary operator:

 1 batchOfBeer1 = (batchOfBeer1++ > batchOfBeer2 && ++batchOfBeer2 < batchOfBeer1++ ? \
2 ++batchOfBeer1 : ++batchOfBeer2);

The condition batchOfBeer1++ > batchOfBeer2 will be false because the batchOfBeer1 variable will be incremented only after this condition is checked. batchOfBeer1 and batchOfBeer2 will have the same value, 6, so the “else” condition will be fulfilled and the third operand will be evaluated. Because we are using the pre-increment operator the batchOfBeer2 variable will be incremented to 7, and this value will be assigned to the batchOfBeer1 variable.

The values of the variables at that stage will be:

 1 batchOfBeer1 = 7
2 batchOfBeer2 = 7

Finally, in the last System.out.println the variables will each be incremented, but only after this statement has executed.

In conclusion, the right alternative is A, with the final output:

Homer will have: 7 and 7 beers.

2.3.8 The switch case statement

The switch case statement achieves a similar result to the if statement, but its syntax might be more appropriate when you want to check which of several possible values a variable has. Doing that with an if statement wouldn’t be suitable; the code would get confusing.

In the following code value of the variableToCompare is passed to the switch statement and is compared to each case value, and if a match is found that block of code is executed. If not, the default condition is executed:

 1 int variableToCompare = 3;
2
3 switch (variableToCompare) {
4 case 1: System.out.println("First condition");
5 case 2: System.out.println("Second condition");
6 default: System.out.println("Default condition");
7 }

This prints:
Default condition

Let’s look at an example:

 1 String barneyBeerPreference = "Duff";
2
3 switch (barneyBeerPreference) {
4 case "Guinness": System.out.println("Barney prefers Guinness");
5 case "Heineken": System.out.println("Barney prefers Heineken");
6 case "Duff": System.out.println("Barney prefers Duff");
7 default: System.out.println("Some other beer");
8 }

As you can see, the case "Duff" will fulfill the condition, so "Barney prefers Duff" will be printed. But then "Some other beer" will also be printed, and that’s not what we want, right? We want only the first message to be printed, not the default.

To only fulfill the "Duff" condition, we need to add the break keyword after each case statement so that we break the switch case flow after doing what we want.

2.3.9 The break keyword

When you want to break the execution of the current process, you can use the break keyword. By adding this keyword in the switch case statement, for example, you can stop execution and avoid printing the information from the default statement:

 1 String barneyBeerPreference = "Duff";
 2
 3 switch (barneyBeerPreference) {
 4 case "Guinness": System.out.println("Barney prefers Guinness");
 5 case "Heineken": System.out.println("Barney prefers Heineken");
 6 case "Duff": {
 7 System.out.println("Barney prefers Duff");
 8 break;
 9 }
10 default: System.out.println("Some other beer");
11 }

It’s important to know the nuances of the switch case statement, because at times you may find yourself maintaining code that is not so clear. If you don’t know how the core Java features work, you will have a hard time understanding or fixing bugs.

There are more optimized and less verbose ways to use the switch case statement in Java; we will explore those in future chapters because they involve more advanced concepts.

2.3.10 Breaking Bad Switch Case Challenge

In this challenge we will be exploring the following code:

 1 public class BreakingBadChallenge {
 2
 3 	public static void main(String... doYourBest) {
 4 		int formulaNumber = 10;
 5
 6 		String heisenbergFormula = "";
 7
 8 		switch (formulaNumber) {
 9 		case 1:
10 			heisenbergFormula += "H";
11 		case 10:
12 			heisenbergFormula += "Ne";
13 		case 30:
14 			heisenbergFormula += "Zn";
15 		case 25:
16 			heisenbergFormula += "Mn";
17 			break;
18 		default:
19 			heisenbergFormula += "He";
20 		}
21
22 		System.out.println(heisenbergFormula);
23 	}
24
25 }

 	Ne

 	NeZnMnHe

 	NeZnMn

 	NeHe

Explanation:

The formulaNumber with the value of 10 will fulfill the condition, so Ne will be printed. But note that we are not using the break keyword after each case. The switch statement will continue executing until it finds this keyword. This means Zn and Mn will be concatenated to Ne before the switch statement is interrupted with the break keyword, giving us the final output of NeZnMn.

In conclusion, the correct alternative is:

 C - NeZnMn

2.4 Loops

Looping in programming is a way to repeat certain logic until a condition is fulfilled. You can probably think of several examples in the real world: when we are brushing our teeth, we repeat the brushing action until they are clean; when we study for a test, we keep studying until we’re confident we know enough to pass it; when we need to drive somewhere, we keep driving until we get where we want to go.

As in real life, in programming loops are used all the time. But not all developers know the full range of possibilities with loops in Java. We are challenged every day with different problems, and knowing the nuances of loops will help developers to produce the best code possible.

2.4.1 The for loop

The for loop is the most commonly used loop in Java. There are three sections in a for loop:

 1 for (/* Initialize variable */; /* Condition to continue the loop */; /* Incrementer\
2 */) { ... }

This is the typical way to use it:

 for (int i = 0; i < 10; i++) { ... }

You can initialize as many variables as you want in a for loop:

 for (short i = 0, y = 0; i < 10; i++) { ... }

You can create an infinite for loop by specifying a condition that will never be false, or omitting the condition:

 for (; ;) { System.out.println("This will print forever"); }

You can even use a System.out.println in the incrementer area:

 for (;; System.out.println("Incrementer area")) { ... }

2.4.2 The break keyword in the for loop

As you saw in the switch case example, if you want to break out of the current process and exit the loop for some reason, you can use the break keyword to do so.

Suppose you want to stop the loop execution when the index is greater than or equal to 2:

 1 for (int i = 0; i < 10; i++) {
2 if (i >= 2) {
3 System.out.println(i);
4 break;
5 }
6 }

This code will print only 2. Because the break keyword is inside the for loop, the loop will be broken and the following numbers won’t be printed.

2.4.3 The continue keyword

Sometimes you want to have control over the continuation of a loop’s execution. For this goal, there is the continue keyword.

In the following code we will explore an example where we want logic to not be executed when a certain condition is fulfilled:

 1 for (int i = 1; i <= 5; i++) {
2 if (i >= 3) {
3 System.out.println("Goku beats one Majin Buu with " + i + " hits");
4 continue;
5 }
6 System.out.println("Goku hits Majin Buu");
7 }

There is a code instruction at the end of the for loop that prints the text "Goku hits Majin Buu" to the console. But we only want this text to be printed when the value of the variable i is less than 3.

If the i value is 3 or greater, we don’t want instruction outside of the if statement to be executed; instead, we want to print the message “Goku beats one Majin Buu with " + i + " hits”. A perfect solution for that is to use the continue keyword to go to the next loop iteration.

When the if condition is fulfilled, the continue statement will send control back to the top of the loop body, skipping any statements below it; this means the second print statement will not be executed.

Keep in mind, though, that you should generally avoid using the continue keyword because having multiple flows in code makes it harder to read and maintain. Use this feature only if it is particularly suited to the situation you are coding for.

2.4.4 The use of labels

Sometimes we need to control outer loops from an inner loop. In these cases, labels can be useful. It’s extremely rare to see this language feature in real-world code—indeed, it’s best to avoid it when possible because most developers don’t know about it and it will make the code harder to maintain—but still it’s useful to at least know that the feature exists with Java.

Here’s a code example that uses labels:

 1 outer:
 2 for (int i = 0; i < 5; i++) {
 3 inner:
 4 for (int j = 0; j < 2; j++) {
 5 if (j == 2)
 6 continue inner;
 7 if (i >= 3)
 8 break outer;
 9
10 System.out.println(i + ":" + j);
11 }
12 }

In this code, we’re manipulating the outer loop (labeled with outer:) and an inner loop (labeled with inner:).

When the value of the i variable declared in the inner loop is 2, the inner loop will force the continuation of the inner loop avoiding the execution of the following instructions within the inner loop.

In the second if statement we are checking if the value of the i variable is greater or equals to 3, if this condition is fulfilled we will break the outer loop which will break the inner loop as well. Therefore, the final output of this program will be:

 1 0:0
2 0:1
3 1:0
4 1:1
5 2:0
6 2:1

2.4.5 The while loop

The while loop is much simpler than the for loop. It consists of just the while keyword, the condition, and the loop body. With the while loop, we execute an action as long as the condition is true. When the condition is false, the loop breaks (stops executing).

The following while condition will print the numbers 0 to 10:

 1 int i = 0;
2 while (i <= 10) { System.out.println(i++); }

It’s also important to mention that the while loop might not be executed at all. This is the case when the while condition is false the first time through the loop, as in this example:

 1 int i = 20;
2 while (i <= 10) {
3 System.out.println("This while loop instruction won't be executed");
4 }

2.4.6 The do while loop

The main difference between the do while and while loops is that a do while loop will always be executed at least once. The check comes at the end of the loop execution, to determine whether it should continue or not.

In the following code example the numbers 0 to 10 will be printed:

 1 int i = 0;
2 do {
3 System.out.println(i++);
4 } while (i <= 10);

In this example, even though the condition is not fulfilled, the loop will still be executed once, printing 99:

 1 int i= 99;
2 do {
3 System.out.println(i++);
4 } while (i <= 10);

2.4.7 The for-each loop

The for-each loop is widely used because it’s a practical and easy way to loop into an array of elements, for example (we’ll study arrays in the next section).

The for-each loop will return each element of an array, and we can then manipulate them. The following code will print 0 1 2 3:

 1 int [] homerBeers = { 0, 1, 2, 3 };
2 for (int homerBeer : homerBeers) {
3 System.out.println(homerBeer);
4 }

2.5 Arrays

When you need to use multiple values in one variable, the most efficient way to do so is by creating an array.

An alternative is to do the following:

 1 String simpsonCharacterName1 = "Moe";
2 String simpsonCharacterName2 = "Burns";
3 String simpsonCharacterName3 = "Bart";

But as you can see, the variable names are repetitive and that makes the code confusing. If you use the array type instead, you can use a single variable name with multiple values:

 String [] simpsonCharacterNames = { "Moe", "Burns", "Bart" };

This representation is much more compact, taking up just one one line. You can then access each element of the array by index. Array indexes in Java start with 0, so if to print “Burns” you would do the following:

 System.out.println(simpsonCharacterNames[1]);

You can print all the information in the the array using any kind of loop, such as a standard for loop:

 1 for (int i = 0; i < simpsonCharacterNames.length; i++) {
2 System.out.println(simpsonCharacterNames[i]);
3 }

A while loop:

 1 int i = 0;
2 while (i < simpsonCharacterNames.length) {
3 System.out.println(simpsonCharacterNames[i++]);
4 }

Or a for-each loop:

 1 for (String eachCharacterName : simpsonCharacterNames) {
2 System.out.println(eachCharacterName);
3 }

You could even use streams and method references (these concepts will be explained in future chapters, but here’s an idea of what this would look like):

 Arrays.stream(simpsonCharacterNames).forEach(System.out::println);

Each of the loops will print the elements of the array:

 1 Moe
2 Burns
3 Bart

If we want only to declare an array and create an instance of this array, we can use the following syntax:

 int [] simpsonCharacterAges = new int[3];

Note that the keyword new here is related to the array instance and not the primitive type int.

Now that we have an array instance with a size of three elements, we can populate it with values, as follows. Note also that in Java the initial index of an array is 0, not 1:

 1 simpsonCharacterAges[0] = 35;
2 simpsonCharacterAges[1] = 102;
3 simpsonCharacterAges[2] = 10;

If we use a for-each loop to show the values of the array, as follows:

 1 for (int eachCharacterAge : simpsonCharacterAges) {
2 System.out.println(eachCharacterAge);
3 }

the output will be:

 1 35
2 102
3 10

2.5.1 Arrays Array Default Values

Remember the primitive variables with their default values we analyzed in the start of this chapter labeled as Table 2.1 The primitive variable types defined in Java?

An important detail from arrays in Java is that if we declare an array and don’t populate any value in it, the values of each element will contain the default value of each variable. Let’s see some examples.

 1 int[] intNumbers = new int[3];
2 System.out.println(intNumbers[0]);

 It will print 0.

 1 double[] doubleNumbers = new double[3];
2 System.out.println(doubleNumbers[0]);

 It will print 0.0.

Also consider that objects, a subject we will go deeper in the next chapter, will have the default value of null when used in an array. Let’s see the example of the String type:

 1 String[] names = new String[3];
2 System.out.println(names[0]);

 It will print null.

2.5.2 Mario Bros Index Array Challenge

This challenge will test your understanding of array creation syntax, how array indexes work, and how to iterate through each element of the array. Your goal is to figure out what will happen after running the main method just by analyzing the code. When you think you know the answer, try running the code.

 1 public class MarioBrosIndexChallenge {
 2
 3 public static void main(String[] args) {
 4 String[] marioCharacters = new String[3];
 5 marioCharacters[1] = "Mario ";
 6 marioCharacters[2] = "Luigi ";
 7 marioCharacters[3] = "Peach ";
 8
 9 for (String marioCharacter: marioCharacters) {
10 System.out.print(marioCharacter);
11 }
12 }
13 }

 	Mario Luigi Peach

 	nullMario Peach

 	java.lang.ArrayIndexOutOfBoundsException will be thrown

 	nullMario Luigi

The key to this challenge is the array index. As mentioned earlier, array indexes start from 0. Here we are creating an array with three elements. Because every array in Java starts with the index of 0, not 1, this means it’s impossible to access the index 3, and if we try that the JVM will throw an ArrayIndexOutOfBoundsException.

This exception name is very clear: it tells us that we can’t access an element whose array index is out of bounds. For now, don’t worry too much about understanding exceptions in depth; we will explore this concept in detail in future chapters.

In conclusion, the correct alternative is:

 C - java.lang.ArrayIndexOutOfBoundsException will be thrown

2.5.3 Multidimensional arrays

Java also offers multidimensional arrays. This is basically an array with two or more dimensions, or an array of arrays. If you were developing the logic for a board game, for example, a multidimensional array would be required.

You can imagine a bidimensional array like a set of information laid out in rows and columns. This type of array would be well suited to developing a tic-tac-toe game, for example. The indexes of the array would be:

 1 0, 0 | 0, 1 | 0, 2
2 1, 0 | 1, 1 | 1, 2
3 2, 0 | 2, 1 | 2, 2

In each pairing you can think of the first index as the row number and the second as the column number.

To create a tic-tac-toe board, you could use the following code:

 1 String [][] tictactoeBoard = new String[3][3]; // #1
 2
 3 for (int row = 0; row < 3; row++) {	// #2
 4 for (int column = 0; column < 3; column++) { // #2
 5 tictactoeBoard[row][column] = row + "," + column + "|"; // #3
 6 System.out.print(tictactoeBoard[row][column]); // #4
 7 }
 8
 9 System.out.println(); // #5
10 }

 	#1 Declare a bidimensional array with three rows and three columns.

 	#2 Declare two for loops, one to iterate through the rows and one to iterate through the columns.

 	#3 Inside the loops, iterate through the rows and columns and populate the tictactoeBoard array with the row and column indexes.

 	#4 While populating the tictactoeBoard variable, also print its value.

 	#5 Add a line break at the end of each row.

The output of this program will be:

 1 0,0|0,1|0,2|
2 1,0|1,1|1,2|
3 2,0|2,1|2,2|

2.5.4 Bidimensional Simpson Array Challenge

This code challenge explores several of the concepts you’ve learned about in this and the preceding sections: bidimensional arrays, a for loop declaring two variables, a while loop, and if statements. Your job is to predict the information contained in some of the array elements at the end.

This challenge is not so code-friendly—as mentioned in the introductory chapter, some of the challenges focus more on exploring the concepts and less on developing clean code.

 1 public class BidimensionalArrayChallenge {
 2
 3 public static void main(String... doYourBest) {
 4 String[][] simpsonsFoods = new String[2][2];
 5
 6 simpsonsFoods[0][0] = "Donuts";
 7 simpsonsFoods[1][0] = "Broccoli";
 8 simpsonsFoods[1][1] = "Krusty burger";
 9
10 for (int lineIndex = 0, columnIndex; lineIndex < 2; lineIndex++) {
11 columnIndex = 0;
12
13 while (columnIndex < 2) {
14 if (simpsonsFoods[lineIndex][0] == "Broccoli") {
15 simpsonsFoods[lineIndex][columnIndex++] = "Healthy";
16 } else {
17 simpsonsFoods[lineIndex][columnIndex] = "Junk";
18 break;
19 }
20 }
21 }
22
23 System.out.println(simpsonsFoods[0][0] + "|" + simpsonsFoods[0][1] + \
24 "|" + simpsonsFoods[1][0] + "|" + simpsonsFoods[1][1]);
25 }
26 }

 	Junk|null|Healthy|Junk

 	Junk|Junk|Junk|Healthy

 	Junk|Junk|Healthy

 	Junk|Healthy|Junk|

Let’s analyze what happens in each iteration.

In the first iteration, the lineIndex and columnIndex variables are 0.

In the first if statement, the array element value will be "Donuts". Then "Junk" will be assigned in the place of "Donuts". Because we are using the post-increment operator, the columnIndex will be incremented only after this instruction has been executed. Also, note that the break keyword is used in this condition; therefore, it will break out of the inner loop that is iterating through the columns.

In the next iteration, the lineIndex variable will be incremented to 1 and the columnIndex will be reseted to 0, then the value to be compared now is “Broccoli” which will fulfill the ‘if’ condition. Therefore the value from simpsonsFoods[1][0] will be “Healthy”.

Then, in the last iteration, the lineIndex will be 1 and columnIndex also 1. The fulfilled condition will be the second one. Therefore the value assigned to simpsonsFoods[1][0] will be “Junk”.

Notice also that the simpsonsFoods[0][1] position of the array wasn’t populated. In that case the default value of a String will be assigned which is null.

In conclusion, the final values of the selected array indexes will be:
A - Junk|null|Healthy|Junk

2.6 Local variable restrictions

The part of your program in which a variable can be seen and used is known as its scope. In Java, variables are scoped to the block in which they are defined. A code block is any code snippet surrounded by curly braces ({}):

 1 public static void main(String[] theSimpsons) {
2 // The code inside the main method is a code block
3
4 if (true) { /* This is a code block too */ }
5
6 for (;;) { /* This is another code block */ }
7 }

Variables that are declared inside a method can only be used within that method block. These are called local or method variables. Local variables effectively come into existence when a method starts its execution and cease to exist when the method ends its execution. They’re accessible anywhere within the method block, including in inner/nested blocks, but there is no way to access a local variable outside of the method in which it was declared.

In the following example, the simpsonName variable is declared in the main method and used inside the enclosed for loop:

 1 public static void main(String[] theSimpsons) {
2 String simpsonName = "Homer"; // This variable can be used anywhere in the main \
3 block
4 for (int i = 0; i <= 10; i++) {
5 System.out.println(simpsonName); // simpsonName can be used here
6 }
7 }

It’s possible to declare a variable in any Java statement. If you declare the variable in a for loop, if statement, or any other non-method block, the local variable will only be accessible there. This is known as block scope.

In the following example, you won’t be able to access the allanHangoverAge variable outside the if block. Because the variable was declared inside the if block, it can only be used there:

 1 public static void main(String[] hangover) {
2 if (true) {
3 int allanHangoverAge = 40; // This variable is only visible in the if block
4 }
5
6 // System.out.println(allanHangoverAge); We can't access allanHangoverAge here
7 }

Attempting to run this code with the print statement uncommented would result in a compile-time error, and most IDEs would highlight this line and variable as being problematic.

We could even create a block without a statement (an “anonymous block”), and the same rule would be applied:

 1 public static void main(String... starWars) {
2 {
3 int jediForce = 0; // This variable can only be used inside this block
4 }
5
6 // System.out.println(jediForce); jediForce can't be used here
7 }

Note that in practice, these blocks are rarely used outside of switch case statements.

As these examples show, a local variable is accessible only within the block (set of braces) in which it was declared, and any nested blocks.

It’s also possible for a variable to be local to a loop. In a real project, you may come across code like this:

 1 public static void main(String... starWars) {
 2 for (int outerLooping = 0; outerLooping < 10; outerLooping++) {
 3 System.out.println(outerLooping);
 4 // System.out.println(innerLooping); innerLooping can't be used here
 5
 6 for (int innerLooping = 0; innerLooping < 10; innerLooping++) {
 7 	System.out.println(innerLooping); // Both variables can be used here
 8 System.out.println(outerLooping);
 9 }
10
11 }
12
13 // System.out.println(innerLooping); This variable can't be used here
14 // System.out.println(outerLooping); This variable can't be used here
15 }

Here, the outerLooping variable is declared and accessible in the outer for loop and in the inner for loop, but not outside both loops.

The innerLooping variable is declared and accessible only inside the inner for loop.

Another corner case in most Java statements is when we don’t use braces. If we attempt to include multiple instructions without braces, only the first one will be executed and any variables we declared within the loop will not be accessible beyond that first instruction. For example:

 1 for (int i = 0; i < 3; i++)
2 System.out.print(i);
3 System.out.print("\nThis statement is not part of the for loop");

 Note: Escape sequence
Notice that we are using the escape sequence \n, which means that we are breaking a line.

** The output of this code is**:

 1 012
2
3 This statement is not part of the for loop

2.6.1 Simpson Variable Scope Challenge

In the following Java challenge you will see some variables being declared. Your goal is to replace the // Replace code placeholder with the right alternative so that the code runs and compiles fine.

 1 public class ScopeChallenge {
 2
 3 public static void main(String... doYourBest) {
 4 boolean isHomerFat = true;
 5
 6 {
 7 String homerFavoriteBeer = "Duff";
 8 }
 9
10 if (isHomerFat) {
11 String homerFavoriteFood = "Doughnuts";
12 for (int beersQuantity = 0; beersQuantity <= 10; beersQuantity++)
13 if (isHomerFat)
14 // Replace code
15 }
16 }
17
18 }

 	System.out.println(beersQuantity);
System.out.println(homerFavoriteFood);
System.out.println(isHomerFat);

 	System.out.println(homerFavoriteBeer);

 	int homerAge = 35;
System.out.println(isHomerFat);

 	System.out.println(homerFavoriteFood);
System.out.println(beersQuantity);

 Explanation:

Let’s first analyze the alternatives that won’t compile.

Alternative B can’t be right because homerFavoriteBeer is only accessible inside the anonymous block.

Alternative C can’t be right because it begins by initializing a variable that can’t be used in just one line. Because the if statement does not contain braces, it will be interpreted by the compiler as containing only one instruction (the variable initialization). It will be impossible to do anything with this variable afterwards because its scope will be local to that statement, so this code does not make sense and doesn’t compile.

Alternative D is incorrect for a similar reason. Because the for loop does not contain braces, it will be interpreted as containing only one instruction: in this case, if (isHomerFat) System.out.println(homerFavoriteFood);. The beersQuantity variable is initialized in the for statement, but we are trying to use it after the if statement. This code won’t compile because that variable will not be accessible in the second line of code.

Finally, alternative A is correct. In this case the variable beersQuantity that was declared in the for statement is accessible in the if statement. The homerFavoriteFood variable is also accessible: it was declared in the outer if statement that encloses the for loop and inner if statement. The isHomerFat variable was declared at the beginning of the main method and therefore is accessible throughout the whole main block.

2.6.2 Local variable initialization

If you declare a local variable without initializing it with a value, the code won’t compile. Local variables aren’t assigned default values, so if they don’t get initialized there is no way to use them.

If you try to use a local variable you’ve declared without initializing it, like this:

 1 int moeAge;
2 System.out.println(moeAge);

the JVM will generate a compilation error like the following:

variable moeAge might not have been initialized

There’s one exceptional case that it’s good to be aware of. If you use an explicit true condition in the if statement, the variable will be considered as initialized by the JVM. Therefore, the following code will compile:

 1 int beerCount;
2
3 if (true) {
4 beerCount = 0;
5 }
6
7 System.out.println(beerCount);

This code will also work:

 1 int beerCount;
2
3 if (1 == 1) {
4 beerCount = 0;
5 }
6
7 System.out.println(beerCount);

If you try to use a boolean variable in the if condition, you’ll get a compilation error because the JVM can’t predict if the variable will be true or false, and therefore the beerCount variable might or might not be initialized:

 1 int beerCount;
2 boolean test = true;
3
4 if (test) { // The JVM can't predict the beerCount variable will be initialized
5 beerCount = 0;
6 }
7 System.out.println(beerCount); // Compilation error here

If we try to run the program above we will get the following compilation error message:
variable beerCount might not have been initialized

The solution for this code is to use the else clause to ensure that the variable is initialized in every case. The following code will compile fine:

 1 int beerCount;
 2 boolean test = true;
 3
 4 if (test) {
 5 beerCount = 0;
 6 } else {
 7 beerCount = 1;
 8 }
 9
10 System.out.println(beerCount); // This will print 0

Points to remember

 	A local variable can be only used in the declared block of code.

 	A local variable in Java must be always initialized.

 	If there is no certainty that the local variable will be initialized, there will be a compilation error.

2.7 Candy Price Code Challenge

Software engineers deal with algorithms all the time, and many companies ask job applicants to solve them during interviews. It’s crucial to be able to analyze a situation and solve the problem with code. Understanding the problem you want to solve is a vital skill, and you should be constantly working on that.

In real-world projects, this is always the first thing you should try to do. Only then you will be able to provide the best possible solution and use your full potential as a software developer. To understand more about the problem and the system you’re working with, you should talk to people, come up with questions, make notes—get curious. Then, by consequence, you will acquire knowledge about your project.

That said, let’s take a look at this algorithm problem!

The boss of a candy company has a certain amount of money to spend, and they want to maximize the number of candies they can buy with this money to give to their employees.

Given an array of candy prices [4, 5, 3, 6, 7, 9] and supposing the boss has 30 dollars to spend, what is the maximum number of candies the boss can buy? Assume that only one of each item is available.

Your goal is to calculate the largest number of candies the boss can buy with their available funds.

Let’s consider a simpler example first. If the boss has 10 dollars to spend and the candy prices are [5, 2, 1, 3, 4], the array will first have to be sorted: [1, 2, 3, 4, 5]. Then we have to iterate through the elements of this array and verify when the available amount of money is going to be totally used. If we count the number of candies that can be purchased, there will be 4 items for this test case (1 + 2 + 3 + 4 = 10).

Array sorting wasn’t addressed in this chapter, but for now you can use the bubble sorting strategy, which is one of the simplest ways to sort an array.

You create the candyPrices variable with the prices you wish, and then the following code should work to sort your array:

 1 int lengthOfPrices = candyPrices.length;
 2 for (int i = 0; i < lengthOfPrices-1; i++)
 3 for (int j = 0; j < lengthOfPrices - i-1; j++)
 4 if (candyPrices[j] > candyPrices[j+1]) {
 5 int temp = candyPrices[j];
 6 candyPrices[j] = candyPrices[j+1];
 7 candyPrices[j+1] = temp;
 8 }
 9 }
10 }

Once you have the array sorted, it’s up to you to print the information on the largest number of candies that can be bought with the money the boss has available.

 Note: Sorting an Array
You could use an existing Java API method to sort the array, but because this hasn’t been introduced in the book yet the solution presented here is to sort the array manually. If you already know the API solution, you can use that instead for this challenge.

Try the following test case scenario: you receive the array of candy prices [8, 4, 1, 3, 10, 11], and the company boss has 20 dollars to spend on candies. The count of maximum possible candies to be bought should be 4. You can use any kind of loop or flow control statement that you find suitable for your logic.

2.8 Summary

 	You learned about the different primitive types available in Java, what kinds of values they can store, and how to name them.

 	How to assign values to variables and how to increment and decrement the values of numerical variables.

 	Different flow control options available in Java were introduced, such as the if statement, ternary operator, and switch case statement.

 	How to use logical operators for comparing conditions and boolean variables to simplify code dealing with complex conditions.

 	The core types of loops are: for, while, do while, and for-each.

 	Multiple-valued variables, also called arrays, and you learned that you don’t need to declare several different variables to handle multiple values.

 	Declare, iterate, and manipulate bidimensional arrays.

 	The restrictions of local variables were discussed, including variable scope, where to declare them, and when to initialize them.

By applying the concepts in this chapter, you were able to solve an algorithm of reasonable difficulty.

Congratulations, you’ve finished the first chapter of Java Challengers! You are on your way to becoming a better programmer and learning how to analyze and improve complex code.

3 Basic object-oriented programming (Review)

This chapter covers:

 	Creating, naming, and instantiating classes

 	Creating and using class methods, and manipulating instance variables

 	Accessing instance attributes and methods with the keyword this

 	Understanding how to use constructors in a flexible way

 	Manipulating object references

 	Working with arrays

 	Total of 5 Java code Challenges

Before the advent of object-oriented programming there was the procedural paradigm, which made it very difficult to reuse code. With the procedural paradigm code easily gets spread throughout the whole system, and as a result it’s hard to maintain. For example, every time it was necessary to validate a certain type of ID, developers would have to invoke the same function to do this. Any change to that function then required changes to numerous parts of the codebase. Developers also had to write extensive documentation to ensure functions were used correctly.

To solve these problems, the object-oriented paradigm was created. The main intention of this paradigm is to minimize differences between software code and the real world, making it easier to solve business problems in a more concise way. With object orientation we can better express real entities and actions from real-world problems, making it easier to reuse code.

Object orientation also makes it easier to organize the code structure, write less code, and centralize code features, which makes applications more flexible and with encapsulated logic.
When you’ve mastered object-oriented concepts, it’s possible to create easy-to-maintain code whose features are well organized and simple to track down.

To make the difference between both paradigms, procedural and object-oriented programming clearer, let’s analyze diagrams describing them.

Let’s first analyze how difficult it is to organize code when working with the procedural paradigm:

 [image:]

Now let’s analyze how easier it is to understand the communication between different objects instead of only functions:

 [image:]

It’s also important to emphasize that even when working in a language that uses this paradigm, like Java, it’s possible to write code that does not fully take advantage of the power of object orientation. It’s crucial to fully understand object-oriented principles so that we can develop flexible code that uses the full power of the key concepts and tools.

In this chapter, we will explore the most fundamental concepts and why they are important in real-world applications.

3.1 Classes

A class in the object-oriented programming paradigm is a way to abstract and organize some element from the real world: a computer, game, person, animal, character, discount, payment, house, ship, city, and so on. Can you spot the similarity between all these diverse items? That’s right, they’re all nouns—people, places, or things. To make sense in a project (for simple systems, at least), a class should be abstracted from something that exists in the real world.

An easy way to check for this is to verify that the class’s name is a noun. A class with an action name (a verb), like PerformAction, should never be used.

Abstracting elements from the real world to create classes that make sense in the project you’re working on is not an easy task. You need to analyze what the nouns are in the problem you want to solve, and condense that information into classes that will be meaningful in the solution you want to develop.

You can also think of a class like a blueprint or a factory for creating particular objects. For example, if you create a class with the name Car, you will be able to create a specific car with its own characteristics.

Here are some examples of class declaration in Java:

 1 class Car { }
2 class Animal { }
3 class Discount { }

As you can see in these examples, we can create a car, an animal, or even a discount.

A class contains state with variables and behavior, or actions. For example, a Car class might define variables such as maximumSpeed, color, brandName and actions such as accelerate and brake. You might also create a class named Calculator with actions for performing different operations with numbers (add, subtract, multiply, and so on) and printing the result.

Now that we know that a class is a blueprint, in the remainder of this chapter, we’ll explore how to make things happen using this blueprint.

3.1.1 Naming classes

Naming is a crucial skill we have to develop as software developers. Sometimes it’s hard to define a name. We have to first abstract the concepts we’re working with and make sure we understand what we’re trying to do with them, which can require a considerable amount of effort.

In the previous chapter, I mentioned that Java developers should follow the JavaBeans convention for naming different elements of code. For naming classes the convention is to use the PascalCase pattern, which means to start each word in the class name with a capital letter.

Example class names include Account, Discount, Person, CustomerAddress, BillingAddress, and PaymentService.

3.1.2 Instantiating classes

A class instance is a living copy of the class blueprint that is capable of having its own state and set of actions. These instances are also known as objects.

For example, we can create different instances of a Person class and give them specific names and behaviors. We can specify that one instance of the Person class has a name of "James Gosling" and a birthDate of May 19, 1955, then we can then create another instance of Person that has a name of "Robert Cecil Martin" and a birthDate of December 5, 1952.

To create, or instantiate, an object of the Person class we would do the following:

 1 Person jamesGosling = new Person();
2 Person robertCecil = new Person();

Figure 3.1 illustrates this concept of creating living copies of the class from the blueprint it provides.

 [image:]

The jamesGosling and robertCecil instances are individual copies of the Person class with distinct names and behaviors.

 Constructor
Notice that when we are instantiating our class we use () at the end of the class name. This is actually the invocation of a constructor, which we will explore in detail later in this chapter. For now keep in mind that the constructor is responsible for initializing a class or instance constructing the object with the essential information.

Similarly, if we have a Car class we can create an instance representing a Porsche 911 with a maximum speed of 227 miles per hour, and another instance representing a Ferrari SF90 Stradale with a maximum speed of 212 miles per hour. Once we’ve created these instances, we can manipulate each of them in an isolated way. The Porsche and Ferrari can perform different actions without affecting each other.

To create these instances of a Car, the Java syntax is the following:

 1 Car porsche = new Car();
2 Car ferrari = new Car();

Figure 3.2 illustrates this concept of the Car class as a factory for creating instances with different attribute values.

 [image:]

Figure 3.2 porsche and ferrari are instances of the Car class.

The following is a small but complete code example where we are instantiating a Java object:

 1 public class Car {
2
3 public static void main(String[] args) {
4 Car porsche = new Car();
5 }
6
7 }

3.1.3 Class attributes

Now that you know what an instance is, it’s time to explore the use of attributes. In the Animal instance example, I mentioned attributes such as the animal’s type and sound. Let’s develop this idea further. The following example defines the class Animal, which has two attributes, breed and emittedSound. We can instantiate two instances of this class, a cat and a dog, and specify the attributes for each appropriately: :

 1 class Animal {
 2 String breed;
 3 String emittedSound;
 4
 5 public static void main(String [] args) {
 6 Animal dog = new Animal();
 7 dog.breed = "Husky";
 8 dog.emittedSound = "woof";
 9
10 System.out.println(dog.breed);
11 System.out.println(dog.emittedSound);
12
13 Animal cat = new Animal();
14 cat.breed = "Persian";
15 cat.emittedSound = "meow";
16
17 System.out.println(cat.breed);
18 System.out.println(cat.emittedSound);
19 }
20 }

The output of the Animal class’s main method is:

 1 Husky
2 woof
3 Persian
4 meow

3.1.4 Default values

What happens when you declare an attribute in a Java class without a value? In this case the JVM will initialize it automatically with a default value.

Table 3.1 lists the default values for Java primitive and object types.

 	Type
 	Default value

 	boolean
 	false

 	byte, short, int, long
 	0

 	float, double
 	0.0

 	char
 	‘\u0000’

 	Reference type (object reference)
 	null

It’s important to emphasize that these default values are assigned only to variables declared at the class or instance level (inside a class, but outside a method). As you’ll recall from chapter 2, local variables that are not declared at the class level, such as those declared inside a method—must be initialized manually upon creation.

Let’s see in practice how this works in code:

 1 public class DefaultAttributeValues {
 2
 3 boolean isHomerThin;
 4 int homerGrade;
 5 double nedFlandersBeerCount;
 6 char maggieWords;
 7 String margeSenseOfHumor;
 8
 9 public static void main(String[] defaultAttributesValues) {
10 DefaultAttributeValues values = new DefaultAttributeValues();
11 System.out.println(values.isHomerThin); //#1
12 System.out.println(values.homerGrade); //#2
13 System.out.println(values.nedFlandersBeerCount); //#3
14 System.out.println(values.maggieWords); //#4
15 System.out.println(values.margeSenseOfHumor); //#5
16 }
17 }

 	#1 Prints false

 	#2 Prints 0

 	#3 Prints 0.0

 	#4 Prints \u0000

 	#5 Prints null

It’s important to know how default values in Java work because we deal with variables all the time.

Data that is being passed in the wrong way is a common cause of bugs. Knowing that default values will be assigned when you don’t do this manually will make a huge difference when you’re developing code, fixing bugs, or adding new features, enabling you to optimize your code design.

3.2 Methods

In the object-oriented programming paradigm, a method is an action or behavior of a class or instance. In Java a method has to declare the data type of the value it returns (we’ll explore this concept further later in this section). If it doesn’t return a value—for example, if the method just performs an action—it must be declared void.

Let’s see how a dog emits a sound in Java code. The emitSound method doesn’t return a value (it simply prints “woof”), so we declare it with the void keyword:

 1 class AnimalMethodInvocation {
 2
 3 String emittedSound; //#1
 4
 5 void emitSound() { //#2
 6 System.out.println(emittedSound);
 7 }
 8
 9 public static void main(String[] args) {
10 AnimalMethodInvocation dog = new AnimalMethodInvocation();
11 dog.emittedSound = "woof"; //#3
12 dog.emitSound(); //#4
13 }
14
15 }

 	#1 Instance variable declaration

 	#2 emitSound method declaration

 	#3 Assign the value “woof” to the emittedSound instance variable

 	#4 Invoke the emitSound method from the dog instance

3.2.1 Passing parameters to methods

A parameter is a variable that can be passed in from outside a method and will live and die inside the method. Depending on what logic you are developing, it will often make more sense to create parameters than to manipulate instance variables.

To illustrate this concept, let’s consider an example where we pass a message as a parameter and print it in a method:

 1 class MessageParameter {
 2
 3 void print(String message) { //#1
 4 System.out.println(message); //#2
 5 }
 6
 7 public static void main(String[] args) {
 8 MessageParameter messageParameter = new MessageParameter(); //#4
 9 messageParameter.print("You are a Java Challenger"); //#5
10 }
11
12 }

 	#1 Declare the print method with the message parameter.

 	#2 Print the message parameter.

 	#3 Create an instance of MessageParameter and assign it to the messageParameter variable.

 	#4 Invoke the print method from the messageParameter instance variable, passing an argument value of “You are a Java Challenger”.

When the print method is executed, "You are a Java Challenger" will be printed to the console.

 Parameter VS Argument
Notice that I’ve used the terms "parameter" and "argument". Parameters are used when we are declaring a method. For example, we declare the print method with the message parameter.
Arguments are used when we are invoking a method. For example, we pass the argument "You are a Java Challenger" to the print method.

3.2.2 Returning primitive types

You’ll often want to return values from a method so that you can use the result of the method call in another method process. When you want to return a value from code logic, you can declare that in your method. You specify the method’s return type in the method declaration, and you use the return statement in the method body to return the value. For example, the following code demonstrates how you can return an int value from an addition operation:

 1 class CalculatorSum {
 2 int sum(int number1, int number2) { //#1
 3 return number1 + number2; //#2
 4 }
 5
 6 public static void main(String[] args) {
 7 CalculatorSum calculator = new CalculatorSum(); //#3
 8 int sumResult = calculator.sum(2, 2); //#4
 9 System.out.println(sumResult); //#5
10 }
11 }

 	#1 Declare the sum method with two parameters, number and number2, and specify that it will return an int primitive type.

 	#2 Return the sum of the number1 and number2 variables.

 	#3 Instantiate a CalculatorSum instance and assign it to the calculator variable.

 	#4 Invoke the sum method from the calculator instance, passing the argument value 2 for both number1 and number2, and return the result to the sumResult variable.

 	#5 Print the value of the sumResult variable, which is 4.

You can return any type of variable from a method; you just need to choose the most appropriate one for your needs. Let’s see, for example, how we would return a float variable from a multiplication operation with fractional numbers:

 1 class CalculatorMultiplication {
 2
 3 float multiply(float number1, float number2) { // #1
 4 return number1 * number2; // #2
 5 }
 6
 7 public static void main(String[] args) {
 8 CalculatorMultiplication calculator = new CalculatorMultiplication(); // #3
 9 float multiplicationResult = calculator.multiply(2.50, 2.50); // #4
10 System.out.println(multiplicationResult); // #5
11 }
12
13 }

 	#1 Declare the multiply method with the number1 and number2 parameters and specify that it will return a double.

 	#2 Return the result of multiplying the values of the number1 and number2 variables.

 	#3 Create a Calculator instance and assign it to the calculator variable.

 	#4 Invoke the multiply method from the calculator instance, passing the argument values of 2.50 and 2.50; return the result of the multiplication to the multiplicationResult variable.

 	#5 Print the value of the multiplicationResult variable, which is 6.25.

The value you return from a method can be any of the primitive types: byte, char, short, int, long, float, double, or boolean.

3.2.3 Returning objects

In addition to the primitive types, a method can return an object of any type (for example, a String object). For now, just keep in mind that when you instantiate any class in Java you are creating an object. We will go deeper into the why of that later in the book, so don’t worry too much about it right now.

In the following code, we concatenate (join) the value of two String object values and then return a String in the concatenate method:

 1 class TextHandler {
 2 String concatenate(String firstText, String secondText) { // #1
 3 return firstText + secondText; // #2
 4 }
 5
 6 public static void main(String []args) {
 7 TextHandler textHandler = new TextHandler(); // #3
 8 String concatenatedText = textHandler.concatenate("Java", "Challengers"); //\
 9 #4
10 System.out.println(concatenatedText); // #5
11 }
12 }

 	#1 Declare the concatenate method with the firstText and secondText parameters and specify that it will return a String object.

 	#2 Concatenate the firstText and secondText values and return them as a String.

 	#3 Instantiate Concatenator and assign it to the concatenator variable.

 	#4 Invoke the concatenate method and pass the argument values “Java” to firstText and “Challengers” to secondText; then assign the result to the concatenatedText variable.

 	#5 Print the value of the concatenatedText variable.

3.3 The Keyword this

The keyword this in Java provides a way of referencing the current instance, so that we can access its state (attributes) or behavior (methods). In the following example, we effectively assign the values "Lamborghini" to the brand instance variable and "black" to the color instance variable by invoking the setupCar method. The this keyword tells the JVM that we are accessing an instance variable, although because there are no local variables declared with the same names (we’ll consider that scenario in section 3.3.1) in this case using this is optional:

 1 class Car {
 2
 3 String brand; // #1
 4 String color; // #1
 5
 6 void setupCar() {
 7 this.brand = "Lamborghini"; // #2
 8 color = "black"; // #3
 9 }
10
11 public static void main(String[] args) {
12 Car car = new Car();
13 car.setupCar();
14 System.out.println(car.brand); // #4
15 System.out.println(car.color); // #5
16 }
17
18 }

 	#1 brand and color are declared as instance variables.

 	#2 By using the keyword this, we are accessing an instance variable.

 	#3 Using the keyword this is optional in this case because there is no local variable named color; the value “black” will be assigned to the instance variable anyway.

 	#4 Prints “Lamborghini”.

 	#5 Prints “black”.

It’s also possible to invoke an instance method using the keyword this:

 1 public class InvokingMethod {
 2
 3 public static void main(String[] args) {
 4 InvokingMethod invokingMethod = new InvokingMethod();
 5 invokingMethod.accelerate();
 6 }
 7
 8 void accelerate() {
 9 System.out.println("Accelerate!"); // #1
10 this.turnLeft(); // #2
11 }
12
13 void turnLeft() {
14 System.out.println("Turn left"); // #3
15 }
16 }

 	#1 This prints “Accelerate!”

 	#2 Invoke the turnLeft method.

 	#3 This prints “Turn left”.

As this example demonstrates, you can invoke instance methods from another method.

Note that you always need to instantiate a class to invoke an instance method. Also note that the use of the keyword this is optional when invoking an instance method: you can use it or not.

3.3.1 Local variables vs. instance variables

A common use of the keyword this is to differentiate between instance and local variables with the same names, so that it’s clear which ones we want to access. In the following example, we explore what happens if we don’t make use of this in a case like this.

Here, the color variable is declared both as an attribute of the class Car and as a local variable in the method changeColor. Because we are not using the keyword this in the assignment, the effect here is to assign the value of the local variable to itself. This operation is pointless, because a local variable lives and dies inside the method in which it was declared:

 1 public class Car {
 2
 3 String color = ""; // #1
 4
 5 void changeColor(String color) { // #2
 6 color = color; // #3
 7 }
 8
 9 public static void main(String[] args) {
10 Car car = new Car(); // #4
11 car.changeColor("black"); // #5
12 System.out.println(car.color); // #6
13 }
14 }

 	#1 Initialize the color instance variable with an empty String, "".

 	#2 This parameter is a local variable.

 	#3 The parameter value will be assigned to the local variable and will be lost because we are dealing with a local variable that lives and dies when the changeColor method is done executing.

 	#4 Create an instance of Car.

 	#5 Invoke the changeColor method, passing the argument "black" (this value will be lost).

 	#6 This will print "".

By using the keyword this, we can indicate that we want to access the instance variable color instead of the local variable from inside the changeColor method, avoiding any confusion. Invoking the following method changes the value of the color variable of the Car instance to "black":

 1 public class Car {
 2
 3 String color; // #1
 4
 5 void changeColor(String color) { // #2
 6 this.color = color; // #3
 7 }
 8
 9 public static void main(String[] args) {
10 Car car = new Car(); // #4
11 car.changeColor("black"); // #5
12 System.out.println(car.color); // #6
13 }
14 }

 	#1 Decare color as an instance variable.

 	#2 This color parameter is a local variable.

 	#3 The parameter value will be assigned to the instance variable because the keyword this is used here.

 	#4 Create an instance of Car.

 	#5 Change the value of the color instance variable to “black”.

 	#6 This prints “black”.

To sum up, we use the keyword this when we want to access an instance member instead of a local variable or parameter. When a local variable and an instance variable with the same name exist, the local variable will take precedence over the instance variable if we don’t use the keyword this. We need to explicitly indicate that we want to access the instance variable by using the keyword this.

3.4 Constructors

A constructor in Java is a special type of method whose main responsibility is to construct (create) an object of a class with certain attribute values. You can also invoke methods in the constructor, but its primary use is to define the object’s state by providing initial values for its attributes .

In the following example we instantiate a Car object and pass the values "Porsche" and "black" to the constructor, initializing the attributes of this class:

 1 public class Car {
 2
 3 String brand;
 4 String color;
 5
 6 public Car(String brand, String color) { // This is the constructor method
 7 this.brand = brand;
 8 this.color = color;
 9 }
10
11 public static void main(String[] args) {
12 Car porsche = new Car("Porsche", "black");
13 System.out.println(porsche.brand); // This will print Porsche
14 System.out.println(porsche.color); // This will print black
15 }
16
17 }

If you don’t declare a constructor, the JVM will create one automatically for you. When you instantiate a new object, you are always invoking a constructor. For example, in this case:

 1 public class SimpsonCharacter {
2
3 public static void main(String[] args) {
4 new SimpsonCharacter(); // The () of this instantiation is the constructor
5 }
6
7 }

the JVM will create the following default constructor:

 1 public SimpsonCharacter() {
2 }

If you do declare a customized constructor, however, the default constructor won’t be created automatically by the JVM. In this case, because we create a specific constructor, there will be no default constructor:

 1 public class SimpsonCharacter {
 2 String name;
 3
 4 public SimpsonCharacter(String name) { // Constructor method
 5 this.name = name;
 6 }
 7
 8 public static void main(String[] args) {
 9 new SimpsonCharacter("Homer"); // You need to pass a String here
10 }
11
12 }

This means that you can’t instantiate the SimpsonCharacter class with the following code:

 new SimpsonCharacter();

The only way to instantiate this class is by invoking the customized constructor by passing a name:

 new SimpsonCharacter("Homer");

If you want to make the class flexible, so it can be instantiated with either a custom or a default constructor, you need to declare both explicitly:

 1 public class SimpsonCharacter {
 2 String name;
 3
 4 public SimpsonCharacter() { }
 5
 6 public SimpsonCharacter(String name) {
 7 this.name = name;
 8 }
 9
10 public static void main(String[] args) {
11 new SimpsonCharacter(); // You can instantiate without a parameter
12 new SimpsonCharacter("Homer"); // You can also pass a String
13 }
14
15 }

This concept demonstrated here is called overloading. Simply put, this is a way of making different versions of constructors or methods with the same name that receive different types or numbers of parameters. It’s a core concept that will be explored in depth in future chapters.

3.4.1 Invoking constructors with the keyword this

It’s also possible to invoke a constructor from another constructor in the same class. This feature is useful because it allows us to reuse code from other constructors; we don’t need to rewrite the same piece of code.

It’s important to keep in mind that you can only invoke one constructor from another in the first line of the constructor. Otherwise, there will be a compilation error.

Let’s explore a common real-world project scenario where you can use this concept. Suppose you want to be able to instantiate a class named BatMobile either with two parameters that you specify, versionName and modelYear, or using the default constructor with two constant values, “Batman Forever” and 1995.

The only way to make it possible to instantiate this class either with or without parameters in the constructor is by declaring two constructors:

 1 public class BatMobile {
 2
 3 String versionName;
 4 int modelYear;
 5
 6 BatMobile(String versionName, int modelYear) {
 7 this.versionName = versionName;
 8 this.modelYear = modelYear;
 9 }
10
11 BatMobile() {
12 this("Batman Forever", 1995);
13 }
14
15 public static void main(String[] batMobileRocks) {
16 BatMobile batmanForever = new BatMobile();
17 batmanForever.printBatMobileDescription(); // #1
18
19 BatMobile batmanArkhamKnight = new BatMobile("Arkham Knight", 2014);
20 batmanArkhamKnight.printBatMobileDescription(); // #2
21 }
22
23 void printBatMobileDescription() {
24 System.out.println("Version name: " + this.versionName + " Model year: " + t\
25 his.modelYear);
26 }
27 }

 	#1 This will print “Version name: Batman Forever Model year: 1995”

 	#2 This will print “Version name: Arkham Knight Model year: 2014”

As you can see, instead of passing the values "Batman Forever" and 1995 outside our BatMobile class, we’ve done this inside the class. This default instantiation doesn’t need to be exposed outside of this class, and that’s what we want to accomplish when we are using the concepts of object-oriented programming.

Another great advantage of using this approach to invoke a constructor inside the class is the flexibility we gain; it makes our code much easier to maintain.

3.4.2 Resident Evil Variable Change Challenge

The following challenge explores the concepts of instances, constructors, and methods. The instance pointer keyword this will be also used, and this is the biggest key to this problem. Are you ready to solve this challenge? Try it out!

 1 public class ResidentEvilNameChange {
 2
 3 String name = "Nemesis";
 4
 5 ResidentEvilNameChange(String name) {
 6 name = name;
 7 }
 8
 9 public static void main(String[] doYourBest) {
10 ResidentEvilNameChange residentEvilNameChange = new ResidentEvilNameChange("\
11 Leon");
12 System.out.println(residentEvilNameChange.name);
13
14 residentEvilNameChange.changeName("Claire");
15 System.out.println(residentEvilNameChange.name);
16 }
17
18 void changeName(String name) {
19 this.name = this.name;
20 }
21 }

 	Leon
Claire

 	Nemesis
Claire

 	Nemesis
Nemesis

 	Leon
Nemesis

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

As mentioned previously, the key to this challenge is to understand how the keyword this works. By using that keyword, we are pointing to the current instance.

The first action we take in this code is to instantiate ResidentEvilNameChange. Then we pass the String "Leon" to its constructor—but notice that we are using the local variable here because we are not explicitly using the keyword this. You must remember that when you have a local variable that has the same name as an instance variable, the local variable will have higher priority and will be used instead of the instance variable if you don’t use this.

The constructor assigns the value "Leon" to the local variable name, which ceases to exist right after the constructor is invoked (recall that a local variable is alive only as long as the method in which it is declared is executing). The instance variable name will keep the value of "Nemesis".

Next we invoke the changeName method, which assigns the instance variable name to itself because we are using the keyword this twice. We are basically passing “Nemesis” to the name instance variable again, so its value is not changed.

In conclusion, the final output of this challenge is:

 	Nemesis
Nemesis

3.5 Object references

When we instantiate an object in Java by calling its constructor, space is allocated in the memory heap to store the object. The new operator returns a reference to that object, which is assigned to a variable of the appropriate type.

We can think of variables that we instantiate with any Java object as pointers or controllers that are able to access the real objects in the memory heap. In the scenario in figure 3.1, for example, the duke variable we create when instantiating an object with new Duke("Java rocks!"); will act as a controller, allowing us to manipulate the real Duke object by changing its properties and passing it to other methods as an argument.

Figure 3.1 The duke variable we create when we instantiate the Duke object is able to access that object in memory.

Let’s see how this works in code. In the following example, we first create an instance of the Duke class, then assign it to the variable alternativeDuke, which will point to the same Duke object in the memory heap. When we change any of this object’s instance variables (in this case, the preferredJavaVersion variable), the object itself will actually be changed:

 1 public class Duke {
 2
 3 int preferredJavaVersion;
 4
 5 public static void main(String[] dukeWantsToCode) {
 6 Duke duke = new Duke(); // #1
 7 duke.preferredJavaVersion = 11; // #2
 8
 9 Duke alternativeDuke = duke; // #3
10 alternativeDuke.preferredJavaVersion = 15; // #4
11
12 System.out.println(duke.preferredJavaVersion); // #5
13 System.out.println(alternativeDuke.preferredJavaVersion); // #6
14 }
15
16 }

 	#1 Create the Duke object in the memory heap and assign the object to the local duke reference variable.

 	#2 Assign the value 11 to duke’s preferredJavaVersion instance variable.

 	#3 Pass the object’s reference to alternativeDuke.

 	#4 Assign the value 15 to alternativeDuke’s preferredJavaVersion instance variable.

 	#5 This prints 15.

 	#6 This prints 15.

Both println statements print 15, because it’s the preferredJavaVersion instance variable of the actual object stored in memory that is changed with each assignment. The duke and alternativeDuke‘s reference variables both point to the same object, so the second change overwrites the first one.

3.5.1 Level Object Reference Challenge

This challenge explores how variables point to objects in the memory heap. You’re creating two variables, challenger and alternativeChallenger, then manipulating their values. Can you guess what the output is?

 1 public class Challenger {
 2
 3 int level;
 4
 5 public static void main(String[] doYourBest) {
 6 Challenger challenger = new Challenger();
 7 challenger.level = 7;
 8
 9 challenger.changeLevel();
10 Challenger alternativeChallenger = challenger;
11
12 alternativeChallenger.level = 12;
13
14 System.out.print(challenger.level);
15 System.out.print(alternativeChallenger.level);
16 }
17
18 void changeLevel() {
19 this.level = 9;
20 }
21 }

 	1212

 	77

 	912

 	99

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

Your first action in the main method is to instantiate the Challenger object. Then you assign the value 7 to the level variable.

The second important action is to invoke the changeLevel method from the challenge instance and then change the value of the level variable to 9. In doing this, you change the real object in the memory heap.

The key part of this challenge is when you assign the challenge instance to the alternativeChallenger variable. Remember that a variable is just a controller that points to the real object in the memory heap. Therefore, both variables will be pointing to the same object and will be changing properties of the same object.

When you change the value of alternativeChallenger’s level variable to 12, you are changing the object you created. challenger’s level variable will then have a value of 12 as well.

In conclusion, the correct answer for this challenge is:

 A - 1212

If you got this challenge right, it means you have a good understanding of the concept of object references.

3.5.2 Metal Gear Null Reference Challenge

In this challenge you will explore object references in more detail. You will begin by instantiating the MetalGearReference class, and then you will invoke the changeSoldierName method with the object reference and perform some actions. Your goal is to guess what the output of the following program is.

 1 public class MetalGearReference {
 2
 3 String name;
 4
 5 public static void main(String... doYourBest) {
 6 MetalGearReference solidSnake = new MetalGearReference();
 7 solidSnake.changeSoldierName(solidSnake, "Solid Snake");
 8
 9 MetalGearReference liquidSnake = new MetalGearReference();
10 liquidSnake.changeSoldierName(liquidSnake, "Liquid Snake");
11
12 System.out.println("1 soldier=" + solidSnake.name + " 2 soldier=" + liquidSn\
13 ake.name);
14 }
15
16 void changeSoldierName(MetalGearReference metalGearReference, String name) {
17 metalGearReference.name = name;
18 this.name = "Big Boss";
19
20 metalGearReference = null;
21 }
22
23 }

 	1 soldier=Solid Snake 2 soldier=Liquid Snake

 	1 soldier=Big Boss 2 soldier=Big Boss

 	1 soldier=null 2 soldier=null

 	1 soldier= 2 soldier=

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

The first point to make about this challenge is that passing the solidSnake instance to the instance method changeSoldierName is redundant. Because you’re using the keyword this inside the changeSoldierName method, you are already accessing the instance that invoked this method.

In the changeSoldierName method, you are first changing the solidSnake instance’s name to “Solid Snake”, then referencing the invoking instance, which in this context is solidSnake, with the keyword this. Therefore, the solidSnake instance will have the name "Big Boss" at this point.

Finally, you assign the metalGearReference variable the value null—but note that metalGearReference is only a reference variable, not the real object. Note also that you are not changing the object itself; you are assigning null directly to this local variable. Only the local variable will change, and nothing will happen to the real object in the memory heap.

Because the solidSnake instance is still accessible in the main method, the object is still alive. The last value assigned to the solidSnake object was "Big Boss", so solidSnake.name will have this value stored into it.

The same process will happen with the instance liquidSnake.

In conclusion, the final answer to this challenge is:

** B - 1 soldier=Big Boss 2 soldier=Big Boss**

3.6 Arrays are objects in Java

As you learned in the previous chapter, an array is a variable type that can store multiple values. An important concept to keep in mind is that arrays in Java are objects. This means that when you create an array you’re creating a reference to a real object stored in the JVM’s memory heap. When a method changes an array value, the change will be reflected in the real object because the real object was changed.

You can imagine an object in Java as a controller that has access to the real object. When you declare an array in Java the array variable is not an object itself; it’s a pointer to an object. Every variable that you instantiate as an object in Java is just a reference pointing to the real object in memory.

In the following example, we declare the array homerSweets and pass it to the changeFirstElementToPudding method. We then change the value of the first element of the array from "Chocolate" to "Pudding". Note that because we are working with an object, the change will be reflected even outside the changeFirstElementToPudding method:

 1 public class HomerSweets {
 2
 3 public static void main(String... homerEatsSweets) {
 4 String[] homerSweets = { "Chocolate", "Cake", "Ice Cream"};
 5 changeFirstElementToPudding(homerSweets);
 6 System.out.println(homerSweets[0]); // This will print "Pudding"
 7 }
 8
 9 static void changeFirstElementToPudding(String[] sweets) {
10 homerSweets[0] = "Pudding";
11 }
12
13 }

In this example, because the homerSweets array is pointing to an object in the memory heap, the value "Pudding" will be assigned to the real homerSweets object from the main method. Because the homerSweets object is still accessible in the main method and the real object was changed, the println instruction will print "Pudding".

3.6.1 Link’s Adventure Array Reference Challenge

In this challenge an array object with a size of 5 is created and populated, and then this array is assigned to another array variable and manipulated in a method. Can you guess what the output will be?

 1 public class LinkAdventure {
 2 public static void main(String... doYourBest) {
 3 int[] linkOcarinaOfTimeLevels = new int[5];
 4 linkOcarinaOfTimeLevels[0] = 0;
 5 linkOcarinaOfTimeLevels[1] = 2;
 6 linkOcarinaOfTimeLevels[2] = 4;
 7 linkOcarinaOfTimeLevels[3] = 6;
 8 linkOcarinaOfTimeLevels[4] = 8;
 9
10 int[] linkMajorasMaskLevels = linkOcarinaOfTimeLevels;
11
12 LinkAdventure linkAdventure = new LinkAdventure();
13 linkAdventure.slayMonsters(linkOcarinaOfTimeLevels);
14 linkAdventure.slayMonsters(linkMajorasMaskLevels);
15
16 for (int eachLinkLevel : linkOcarinaOfTimeLevels) {
17 System.out.print(eachLinkLevel + " ");
18 }
19 }
20 private void slayMonsters(int[] linkLevels) {
21 for (int i = 0; i < linkLevels.length; i++) {
22 linkLevels[i] = linkLevels[i] + 2;
23 }
24 }
25 }

 	2 4 6 8 10

 	0 2 4 6 8

 	0 0 0 0 0

 	4 6 8 10 12

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

The key to solving this challenge is to know that an array in Java is actually an object. When you instantiate an object and assign it to a variable, the object itself will be stored in the memory heap of the JVM; the variable will simply store a reference that the JVM will use to locate the object and retrieve it for the Java application.

As long as the object is still accessible in the application, it will remain alive in the memory heap. How do we know whether an object is still accessible? When there is a variable that is still able to access the object.

Let’s analyze the challenge step by step.

1 - First we declare an array of int variables, then we instantiate an array of int with a total size of 5, and finally we assign the new array object to the linkOcarinaOfTimeLevels variable. Then we populate the numbers 0, 2, 4, 6, and 8 into the array indexes from 0 to 4.

 int[] linkOcarinaOfTimeLevels = new int[5];

2 - The following line of code is another big key to this challenge. We are assigning the reference to the array object, linkOcarinaOfTimeLevels, to linkMajorasMaskLevels. This means that both variables will be pointing to the same object—they just have different names.

 int[] linkMajorasMaskLevels = linkOcarinaOfTimeLevels;

3 - Then we invoke the slayMonsters method and pass the linkOcarinaOfTimeLevels array to it. During the method invocation, we basically add 2 to each element in the array. Therefore, in this iteration the array values will be 2 4 6 8 10.

linkAdventure.slayMonsters(linkOcarinaOfTimeLevels);

4 - Finally, we invoke the slayMonsters method with the other array variable reference, linkMajorasMaskLevels, which points to the same object in the memory heap. Because both array variables are pointing to the same object, the effect of invoking the slayMonsters method twice will be to have 2 added to each element’s value twice. Therefore, we will have the values 4 6 8 10 12.

linkAdventure.slayMonsters(linkMajorasMaskLevels);

In conclusion, the correct alternative is:

 D - 4 6 8 10 12

3.7 Bank Deposit/Withdraw Challenge

Your goal in this challenge is to make use of the object-oriented programming concepts you’ve learned in this chapter. The challenge is based on a banking theme and is in two parts. First you will create an Account class and methods to withdraw and deposit funds in an Account instance. Then you will create a method to transfer money between Accounts.

3.7.1 Deposit Bank’s Money

Your first step is to create a class with the name Account, the attribute balance, and a constructor receiving the initial value from balance and initializing the balance instance variable.

Then you’ll create the deposit method, which will receive an amount to add to the balance. This method can’t receive a negative number—if that happens you have to print the message "Negative numbers are not accepted" and you can’t execute the deposit logic.

3.7.2 Withdraw Bank’s Money

Next, create a withdraw method that will receive an amount and subtract this amount from the balance. You have to make sure the available balance is large enough to withdraw the requested amount; if the amount is greater than the balance you must print "The amount exceeds the balance" and not perform the withdraw action.

You’ll also need to create a method called getBalance that will return the value of the balance variable.

Finally, create a class named AccountTest with a main method that performs the following steps:

 	1 Instantiate an Account object with a value of 1000 for the balance.

 	2 Print the value of the balance using the getBalance method.

 	3 Invoke the withdraw method, passing the value 100.

 	4 Print the balance value and make sure it’s 900.

 	5 Try to withdraw an amount of 1000.

 	6 Print the balance and make sure it’s 900 again, because it’s not possible to withdraw 1,000 from 900.

 	7 Invoke the deposit method with a negative number, -100.

 	8 Make sure the balance is still 900, because negative numbers are not accepted.

 	9 Try to withdraw an amount of 900.

 	10 Print the balance and make sure it is 0.

3.7.3 Transfer Bank’s Money

You can use the Account class from the first part of this challenge to complete this part. Your goal here is to develop the transfer method of the Account class. The transfer method will receive a transferAmount and another Account, the recipient, as parameters.

The logic of this method is to subtract the transferAmount from the current Account’s balance and add the transferAmount to the recipient Account’s balance.

If the transferAmount is greater than the balance of the origin Account (the current instance), print “The amount exceeds the balance” and do not perform the transfer action.

Finally, create a class named TransferTest with a main method that performs the following actions:

Instantiate an Account with the name origin, passing a balance of 1000 into the constructor.
Instantiate another Account with the name recipient, again passing a balance of 1000 into the constructor.

Invoke the origin Account’s transferAmount method, passing an amount of 100 and the recipient Account you created.

Print the balance of the origin Account and make sure it’s 900, then check the recipient Account to make sure its balance is 1100.

Invoke the transferAmount method again from the origin Account, passing 1000 and the recipient Account as parameters.

Make sure your validation message is printed and check that the balance of the origin Account is still 900 and the balance of the recipient Account is still 1100.

 Disclaimer

This chapter’s real-world challenge was purposefully designed in a simple way to test how well you’ve understood the concepts introduced here. In a real project you would likely have to add more validation checks, externalize these into different classes, and so on, but for now that’s not relevant.

You would also want to create unit tests to test the code and make sure nothing gets broken when, for example, you refactor it (make it cleaner and better). You could then simply run the automated test after making any changes to make sure everything still works. Another great benefit of using unit tests is that it encourages you to create better and more organized code from the outset, because you know you’ll be testing it later.

As a bonus, you can try to create your own unit test—it’s out of the scope of this chapter, but there is a unit test in the source code that you can check out. You’re basically doing the same as you did in the main methods; if you take a look at the test code you’ll understand.

Congratulations! You’ve completed a very important part of your Java education. Java relies strongly on object-oriented concepts, and by absorbing the concepts of classes, instances, attributes, and object references you’ve taken a crucial step in your software engineering career.

3.8 Summary

In this chapter you learned how to abstract the real world and transform it into code by using the object-oriented programming paradigm.

 	You know how to create classes with meaningful names.

 	You know how to create instances of those classes (objects), and how to manipulate the current instance by using the keyword this.

 	You practiced working with methods and learned that they accept parameters and return values (primitive types or objects) or perform actions (these methods are declared void).

 	You learned how to work with instance attributes and references.

 	You learned how to create flexible constructors in case you need a way to instantiate objects either with or without attributes by declaring a default constructor and a customized constructor, and you know how to make efficient use of constructors by initializing important attributes.

 	You also know that object variables are not really the objects themselves, but references pointing to the objects in the memory heap of the JVM.

4 Encapsulation access modifiers, and package structure

This chapter covers:

ach other.
The concept of encapsulation is vastly misunderstood by many software engineers.

If a class has too many responsibilities and does too many things, we would be also breaking the concept of encapsulation.

Understanding the concept of encapsulation is a game-changer for any software engineer. Just by using this concept

Restricting attributes and methods are not enough to create a well-encapsulated system.

Instead, it’s necessary to think carefully about the code structure and how different parts of the system will communicate with each other.

If a class has too many responsibilities and does too many things, we would be also breaking the concept of encapsulation.

Understanding the concept of encapsulation is a game-changer for any software engineer. Just by using this concept, the code gets very flexible and maintainable.

4.1 Programming to interfaces

Simply put, programming to interfaces is to program in such a way we will be communicating different classes through meaningful methods, so that when required code changes will be easier.

A real example of encapsulation is a car, we don’t need to know how a car works behind the scenes to drive one, instead, we should access the ‘interface’ (methods) from the car in order to drive, such as drive, switchGear, break, turnLeft, turnRight. We don’t need to know all the specific components of a car. We need to know what the car does and not, how the car works.

The parts of a car are already encapsulated and we only have to understand it in detail if we have to maintain or fix some specific part of the car.

In the object-oriented paradigm, we can use the same analogy, we shouldn’t expose an important attribute of a class, we should instead create an interface (meaningful methods) that will be clear on what is supposed to accomplish, not how it works.

The interface of a car is very intuitive, we know for example that if we access the accelerate method the car will move and if we access the turnRight method we will turn right as well.

By applying the same principles of hiding internal functionalities from a class and externalizing methods that are meaningful to other parts of the system, we will be using encapsulation.

Let’s see the example of the Car class in code then:

 1 public class Car {
 2
 3 // Attributes here, example: engine, wheels, radiator bean, fuel distribution pi\
 4 pe...
 5
 6 public void accelerate() {
 7 System.out.println("Accelerating..");
 8 }
 9 public void breakAcceleration() {
10 System.out.println("Breaking...");
11 }
12 public void turnLeft() {
13 System.out.println("Turning left...");
14 }
15 public void turnRight() {
16 System.out.println("Turning right...");
17 }
18
19 }

As you could see in the code above, we hid the attributes and only exposed the interface methods that we should interact with. And that should be enough, we shouldn’t need to know a class works behind the scenes but only know what it does.

4.2 What are and how to use getters and setters?

The use of getters and setters have the purpose of exposing private attributes to be read and written.

Using getters and setters for everything in real applications is in some way common and at the same time wrong because often developers are breaking the concept of encapsulation.

We are not supposed to create getters and setters for every attribute, instead, we should consider if it’s really necessary to expose.

Let’s see an example of a Customer class exposing all fields with getter and setter:

 1 public class Customer {
 2
 3 private String name;
 4 private String dateOfBirth;
 5 private String address;
 6
 7 public String getName() {
 8 return name;
 9 }
10
11 public void setName(String name) {
12 this.name = name;
13 }
14
15 public String getDateOfBirth() {
16 return dateOfBirth;
17 }
18
19 public void setDateOfBirth(String dateOfBirth) {
20 this.dateOfBirth = dateOfBirth;
21 }
22
23 public String getAddress() {
24 return address;
25 }
26
27 public void setAddress(String address) {
28 this.address = address;
29 }
30
31 }

Even better would be to make the Customer class more restrictive and not allow the use of setter methods and transform every attribute in final. For doing that, we have to pass the values on the constructor:

 1 public class MoreRestrictiveCustomer {
 2
 3 private final String name;
 4 private final String dateOfBirth;
 5 private final String address;
 6
 7 public MoreRestrictiveCustomer(String name, String dateOfBirth, String address) {
 8 this.name = name;
 9 this.dateOfBirth = dateOfBirth;
10 this.address = address;
11 }
12
13 public String getName() {
14 return name;
15 }
16
17 public String getDateOfBirth() {
18 return dateOfBirth;
19 }
20
21 public String getAddress() {
22 return address;
23 }
24
25 }

Note that the approach of passing values into the constructor is only a good one if we have at the maximum three parameters, more than that, it gets confusing.

Let’s see what approach we can adopt to create complex objects in the next section.

4.3 The Builder Design Pattern

For developing simple code, we don’t need too much sophistication but when code gets complex and connecting pieces get harder, then we need to use more elaborated techniques and one of the techniques that are very powerful is design patterns.

Design Patterns are common code patterns used to solve different code situations in an elegant way that is flexible and maintainable.

For solving the ‘ too many parameters in the constructor problem’ and many others, the Builder Design Pattern was created by highly experienced developers.

The Builder creational pattern is very famous and useful, in real-projects it’s vastly used. A powerful way to use the Builder pattern is by making the Object immutable, this means that once the object is created, the state (attributes) can’t be changed.

The advantages of using the Builder pattern are:

 	Immutability, there is no way to change the object values (To have setters in a data object may be a root-cause of bugs since it’s easy to change the value)

 	Readability, it’s far clearer to build a data object by using the builder pattern

 	Flexibility, we can easily change the builder structure since it’s encapsulated only in the data object we are using it.

4.3.1 When to use the Builder pattern?

When a data object is complex to build and requires a lot of initializations
When there is a constructor receiving more than 3 parameters
Where there are many setters in a data object.
When we don’t want data to be changed all over the system

Now that we know the advantages and when to use the builder pattern, let’s analyze a code example where we will see how the pattern works in practice.

In the following code, we will have a class named as BigBoss, with 5 attributes declared as private, then we will use a static inner class named as Builder with the same 5 attributes from BigBoss. Then we will create public methods into the Builder inner class that will take all the values, assign to the builder instance and then return ‘this’ builder instance.

After assigning values to the 5 Builder attributes, we will create the build method that will return and build the BigBoss object. To accomplish that in an immutable way, we need to create a private constructor into the BigBoss class that will receive the builder and then we will assign the values we received in the builder to the BigBoss object. Therefore, we will return an instance from BigBoss in the build method passing ‘this’ that is the current instance from the builder and we will finally have the Object fully created, ready to be used.

If the explanation is still a bit difficult to understand, by reading the code it will get easy:

 1 public class BigBoss {
 2
 3 private final String stealthCloth;
 4 private final String primaryWeapon;
 5 private final String secondaryWeapon;
 6 private final String meleeWeapon;
 7 private final String[] medicineItems;
 8
 9 public static class Builder {
10
11 private String stealthCloth;
12 private String primaryWeapon;
13 private String secondaryWeapon;
14 private String meleeWeapon;
15 private String[] medicineItems;
16
17 public Builder(String stealthCloth, String primaryWeapon) {
18 this.stealthCloth = stealthCloth;
19 this.primaryWeapon = primaryWeapon;
20 }
21
22 Builder withExtraWeapons(String secondaryWeapon, String meleeWeapon) {
23 this.secondaryWeapon = secondaryWeapon;
24 this.meleeWeapon = meleeWeapon;
25 return this;
26 }
27
28 Builder withMedicineItems(String[] medicineItems) {
29 this.medicineItems = medicineItems;
30 return this;
31 }
32
33 public BigBoss build() {
34 return new BigBoss(this);
35 }
36 }
37
38 private BigBoss(Builder builder) {
39 this.stealthCloth = builder.stealthCloth;
40 this.primaryWeapon = builder.primaryWeapon;
41 this.secondaryWeapon = builder.secondaryWeapon;
42 this.meleeWeapon = builder.meleeWeapon;
43 this.medicineItems = builder.medicineItems;
44 }
45
46 // Getters
47 }

In the following code, we will basically print the information we constructed by using the Builder pattern. Then, note that we are also using the printf method. If you are not familiar with this method yet, it will print a String where we use the placeholder %s and at the end of this method, you can see that the parameters have to be declared there.

 1 public class BuilderExecutor {
 2
 3 public static void main(String[] args) {
 4 BigBoss bigBoss = new BigBoss.Builder("Military uniform", "Mk22")
 5 .withExtraWeapons("AK-47", "CQC knife")
 6 .withMedicineItems(new String[] {"First Aid Kit"})
 7 .build();
 8
 9 System.out.printf("%s , %s , %s , %s , %s", bigBoss.getStealthCloth(),
10 bigBoss.getPrimaryWeapon(), bigBoss.getSecondaryWeapon(),
11 bigBoss.getMeleeWeapon(), bigBoss.getMedicineItems()[0]);
12 }
13
14 }

To exercise your knowledge about the Builder pattern, create a builder for the IronMan class with the following attributes, name, age, car and specialWeapon. Then create a static inner class Builder within it and follow the same process from the Builder above.

Then create another class named as IronManBuilderExecutor and make use of your builder. Try it out and if you want to check, this exercise will be in the source-code named as IronManBuilder, you can check it out also but it’s important that you practice it before.

 Note: Lombok
Alternatively, to create getters, setters, builder and other boiler-plate code for data objects you can use Lombok. With Lombok, you use annotations, e.g. @Getter, @Setter, @Builder, and the code you need will be generated during compilation time. For more about Lombok, check the following link: https://projectlombok.org/

4.4 Organizing Packages in a Real Project

The main purpose of packages in a project is to organize a group of classes into packages that are named with a clear name so classes can be found more easily.

Imagine if we had to put all classes in just one package, it would be terrible to find classes and understand how the system is structured. In real Java projects, it’s easy to find at least 100 classes and that’s why it’s so useful to create packages and organize our classes there.

4.4.1 Why packaging?

Packaging is extremely important because in big projects, it gets really hard to find classes without organization. Even in small projects it’s always a good practice to divide and organize the code in a clear way that is grouped in different sections where files can be easily found.

We can use the analogy of categories when we visit a blog website, if we look for categories, it’s far easier to find what we want. If we go to the javachallengers website for example and look for the category Java streams, we will find only posts that are related to Java streams. The same happens with packages, if we want to look for a service for example, we go to the service package.

4.4.2 How to name packages?

But how to name a package? The universal pattern for naming packages in Java is the following, the domain of a company reversed, the name of the project and then the name from the package to group classes:

 com.javachallengers.service

You must be wondering why do we have to use this extensive name? In Java, it’s very common to reutilize third-party libraries (a group of useful classes to solve specific necessities) and for this reason, it’s very likely that we will find classes with the same names. But if we use a domain name and the project name we should never find a duplicate class name, therefore there won’t be any class conflicts.

Let’s suppose we have to handle a library to handle special operations with dates and the operation with an external library such as Yoda Time and for coincidence there the classes names are the same from Java and the Yoda Time library, then what would happen? The code wouldn’t compile, there would be a conflict and the application wouldn’t work.

4.4.3 Creating packages structure in a real-project

In a real-world Java application usually we will have three main layers of abstraction. The resource layer that will have the API endpoints that will usually connect to the front-end layer.

Then the resource layer will invoke the service layer which contains the business requirements logic.

Finally the service that will interact with the database layer code, it’s commonly named as dao or repository.

Those three main packages that will have the core code in a Java application usually would be named as:

 1 com.company-name.domain-name.system-package
2
3 com.javachallengers.payment.resources
4 com.javachallengers.payment.services
5 com.javachallengers.payment.dao or
6 com.javachallengers.payment.repository

Then we would have other packages to assist our three main packages. Some of them are the config package which will configure a web application with initial values we need, it might load resources classes from our application, it will basically initialize the whole application.

Then we also need an exceptions package where we will declare our specific Exceptions for business requirements. We will go deep into exceptions in future chapters:

 com.javachallengers.payment.exceptions

The dtos (Data Transfer Object) package that are the objects used to pass data through the network. We send a dto to the front-end of our application:

 com.javachallengers.payment.dtos

The model layer that are the objects from requirements that represent how is the domain of our application or how the core business data is abstracted.

 com.javachallengers.payment.model

Another package that is common and useful in real-world projects is the util. Usually, in the util package we can create generic methods for services and avoid code repetition.

``com.javachallengers.payment.util`

The mentioned packages won’t be exactly the same for all projects. If we are working with micro-services for example sometimes the feature-name would be removed from the package name since the domain is the micro-service already, in other applications we would have the feature name after the system package. Let’s see how those variations would be:

 1 com.company-name.brief-project-name.system-package.domain-name
2 com.company-name.brief-project-name.system-package

I personally like the following package structure when we are using a micro-service that is responsible for only one domain:

 com.company-name.brief-project-name.system-package

The other option I like for projects with more than one domain is the following:

 com.company-name.brief-project-name.feature-name.system-package

If you’ve been working with Java, you have probably seen many similarities with your project, if you never seen a real-world Java application, now you know how it’s usually organized and that will help you to understand a real-world project.

4.5 Encapsulation Patterns

There are many important patterns that make good use of the encapsulation concept. Those patterns help to reduce coupling (how much classes know about each other) and enhance cohesion (how specialized is the class).

Let’s explore some of the main encapsulation concepts so that we can also learn how to create encapsulated code.

4.5.1 The MVC Architectural Pattern

The MVC pattern divides the code in three layers, Model which is the layer where there is the business data class, we can also say model class or even domain class. Then the View layer that is the front-end application which will have the user interface where the user will be able to interact with the system. Finally there is the Controller layer that is an intermediate between the View and Model layers which will orchestrate invocations.

Let’s analyze the following diagram to make the MVC pattern clear:

 [image:]

As you can see in the diagram above, we are using the MVC pattern that basically separates the application by different layers.

This is a great example of encapsulation, each layer is responsible for dealing with one responsibility, the view layer will interact with the user, the controller layer will orchestrate method invocations between the view and the model layer. The model layer will deal with the business logic and database interaction.

4.5.2 The use of DTO (Data Transfer Object)

When we are dealing with web projects, we have to send an Object via a network protocol, in current applications we very often use the HTTP protocol.

A network request and response is an expensive resource that we should pass only the necessary information to the front-end for example. We also don’t need to expose details from the business requirements to every screen of a system.

The DTO pattern solves this problem very well, we can pass an Object with the information we need to the screen all ready to be consumed. With a DTO, we shouldn’t include business requirements into it.

To summarize the use of a DTO, let’s suppose we have our domain Object named as Customer.

 1 public class Customer {
 2
 3 private String name;
 4 private String dateOfBirth;
 5 private String email;
 6 private String login;
 7
 8 private Product product;
 9 private Address address;
10 private PaymentAgreement paymentAgreement;
11
12 // Builder for constructing the object
13 // Getters
14
15 }

Then, let’s suppose we have a screen in the system that we need to only show the customer’s basic information but can you notice the amount of data we have in the Customer domain Object? We have a product, address and the paymentAgreement objects which will have a lot of unused information, we will also use a lot more network resources to traffic this object.

That’s why the DTO pattern is very handy to send information to the screen. On this case we just want to send the Customer’s basic information we can create the following object:

 1 public class CustomerDTO implements Serializable {
 2 private static final long serialVersionUID = 1L;
 3
 4 private String name;
 5 private String dateOfBirth;
 6 private String email;
 7 private String login;
 8
 9 // Builder for constructing the object
10 // Getters
11
12 }

As you can notice in the code above, we removed the extra information we don’t want and just kept the Customer basic information into the DTO.

 Object Serialization:
It’s also important to realize that when we send an object in the network, we need to implement Serializable. We won’t cover serialization in this book but keep in mind that you need to serialize a DTO. Notice also that we need to declare a serialVersionUID to avoid data inconsistency when changing the class structure.

4.6 Access Modifiers

In order to apply the concept of encapsulation, we need to learn how to use the access modifiers. There are 4 types of access modifiers:

public = It’s all opened, all classes can access another public class/method/attribute in the project

Let’s see a code example with the public modifier:

 1 // Notice the package name
 2 package com.javachallengers.encapsulation.accessmodifiers;
 3
 4 public class ThePublicModifier {
 5
 6 public String publicAttribute;
 7
 8 public void thisMethodIsOpenedToBeAccessed() {
 9 System.out.printf("Public method!");
10 }
11
12 }

Then we can use the class/method/attribute from another package since all of the members from ThePublicModier are public:

 1 // Notice that the package is different here
 2 package com.javachallengers.encapsulation.accessmodifiers.accesstopublic;
 3
 4 import encapsulation.accessmodifiers.ThePublicModifier;
 5
 6 public class ThePublicModifierTest {
 7
 8 public static void main(String[] args) {
 9 ThePublicModifier publicModifier = new ThePublicModifier();
10 publicModifier.thisMethodIsOpenedToBeAccessed();
11 System.out.printf(publicModifier.publicAttribute);
12 }
13 }

protected = The class/method/attribute is restricted to the package they are in and when there is inheritance, they can be accessed in other packages.

Let’s create a class that has a protected attribute and method to see in practice how that works in code:

 1 package com.javachallengers.encapsulation.accessmodifiers.accesstoprotected;
 2
 3 public class ProtectedModifier {
 4
 5 protected String protectedAttribute;
 6
 7 protected void print() {
 8 System.out.println("Protected method! This method is accessible in this pa\
 9 ckage or outside with inheritance");
10 }
11 }

In the following code as we are working in the same package of ProtectedModifier class, we can access everything.

 1 package com.javachallengers.encapsulation.accessmodifiers.accesstoprotected;
 2
 3 public class ProtectedModifierTest {
 4
 5 public static void main(String[] args) {
 6 ProtectedModifier protectedModifier = new ProtectedModifier();
 7 System.out.println(protectedModifier.protectedAttribute);
 8 protectedModifier.print();
 9 }
10 }
11
12 package com.javachallengers.encapsulation.accessmodifiers; // #1
13
14 import encapsulation.accessmodifiers.accesstoprotected.ProtectedModifier;
15
16 public class ProtectedModifierOutsidePackage extends ProtectedModifier { // #2
17
18 public static void main(String[] args) {
19 ProtectedModifier protectedModifier = new ProtectedModifier();
20 // protectedModifier.print(); // #3
21
22 // We are using inheritance here
23 ProtectedModifierOutsidePackage outsidePackage = new ProtectedModifierOutsi\
24 dePackage(); // #4
25 outsidePackage.print();
26 System.out.println(outsidePackage.protectedAttribute); // #5
27 }
28 }

 	#1: Notice we are in a different package

 	#2: We are using inheritance when we are extending the ProtectedModifier class

 	#3: We can’t access it here without inheritance

 	#4: Since we are using inheritance here, we have access to the method

 	#5: We also have access to the attribute

default or when we don’t specify one = The class/method/attribute will be only accessible in the package they are created.

 1 package com.javachallengers.encapsulation.accessmodifiers.accesstodefault;
 2
 3 public class DefaultModifier {
 4
 5 String defaultAttribute; // #1
 6
 7 void print() { // #2
 8 System.out.println("This method can only be accessed inside the accesstodefa\
 9 ult package");
10 }
11
12 }

 	#1: This attribute can only be accessed inside the accesstodefault package

 	#2: We don’t declare explicitly that we are using the default access modifier.If we are not using public, protected or private we are using the default access modifier.

Since we are in the same package, we can access everything:

 1 package com.javachallengers.encapsulation.accessmodifiers.accesstodefault;
 2
 3 public class DefaultModifierTest {
 4
 5 public static void main(String[] args) {
 6 DefaultModifier defaultModifier = new DefaultModifier();
 7 System.out.println(defaultModifier.defaultAttribute);
 8 defaultModifier.print();
 9 }
10 }
11
12 private = The class/method/attribute can be only accessed in its own class:
13
14 package com.javachallengers.encapsulation.accessmodifiers.accesstoprivate;
15
16 public class PrivateModifier {
17
18 private String privateAttribute; // #1
19
20 private void print() { // #2
21 System.out.println("This method can only be accessed inside the PrivateModif\
22 ier class");
23 }
24
25 }

 	#1: This attribute can only be used within the PrivateModifier class

 	#2: This method can only be accessed inside the PrivateModifier class

4.6.1 Less Restrictive Modifiers Challenge

In the following challenge, your goal is to make the classes compile and run successfully. We have the LessRestrictiveModifiers class which will have all the access modifiers in instance variables in one package and the LessRestrictiveModifiersExecutor class which will use the attributes.

Your goal is to replace the // Insert code here comment with code that will work and run successfully in the main method from the LessRestrictiveModifiersExecutor class using the attributes from the LessRestrictiveModifiers class.

Which of the following alternatives will compile and run? (More than one alternative might be correct)

 1 package com.javachallengers.encapsulation.challengers.access;
 2
 3 public class LessRestrictiveModifiers {
 4
 5 public String publicVariable = "public";
 6 protected String protectedVariable = "protected";
 7
 8 }
 9
10 package com.javachallengers.encapsulation.challengers;
11
12 import encapsulation.challengers.access.LessRestrictiveModifiers;
13
14 public class LessRestrictiveModifiersExecutor {
15
16 public static void main(String[] args) {
17 LessRestrictiveModifiers challenger = new LessRestrictiveModifiers();
18 // Insert code here
19 }
20 }

 	System.out.println(challenger.publicVariable);
System.out.println(challenger.protectedVariable);

 	Extend the LessRestrictiveModifiers in the LessRestrictiveModifiersExecutor class and insert the following code on the main method:

 1 System.out.println(challenger.publicVariable);
2 System.out.println(new LessRestrictiveModifiersExecutor().protectedVariable);

 	Move the LessRestrictiveModifiers class to the com.javachallengers.encapsulation.challengers package, rename the package declaration to the moved package and insert the following code on the main method:

 1 System.out.println(challenger.publicVariable);
2 System.out.println(challenger.protectedVariable);

 	Extend the LessRestrictiveModifiers in the LessRestrictiveModifiersExecutor class and insert the following code on the main method:

 1 System.out.println(challenger.publicVariable);
2 System.out.println(challenger.protectedVariable);

Let’s analyze first the incorrect alternatives, the alternative A is incorrect because we are trying to access our protectedVariable from another package without inheritance, therefore the code won’t compile. Also note that we are using the publicVariable which can be accessed everywhere in the project so we won’t have a compilation error with the public access modifier.

Then there is the alternative D that is tricky, the publicVariable will be accessed normally. The problem is the protectedVariable. Even though we are using inheritance, we are accessing the LessRestrictiveModifiers class directly so we are not even using inheritance in our code implementation. We are just declaring it in the LessRestrictiveModifiersExecutor but we are not using it at all.

Let’s now analyze the correct alternatives, the alternative B is correct. Again, when accessing the publicVariable will be all fine and the interesting point of this alternative is that we are making use of inheritance in the code implementation. Even though we are in a different package, we can use the protectedVariable because we are creating an instance from the class that extends the LessRestrictiveModifiers class, therefore we can access the protectedVariable with no problem.

Finally, the alternative C is also correct. The publicVariable will be accessed normally. The key point of this alternative is that we are moving the LessRestrictiveModifiersExecutor class to the same package of the LessRestrictiveModifiers class, therefore we will be able to access the protectedVariable normally.

4.6.2 Restrictive Modifiers Challenge!

In the following Java Challenge, we will have a private and default variables in the MoreRestrictiveModifiers class and then we will try to use those variables in the MoreRestrictiveModifiersExecutor and your goal is to figure out what code will compile by replacing it in the main method from the MoreRestrictiveModifiersExecutor class.

What of the code alternatives you can insert in the main method from the MoreRestrictiveModifiersExecutor class that will compile and run with no errors? (More than one alternative might be correct)

 1 package com.javachallengers.encapsulation.challengers.access;
 2
 3 public class MoreRestrictiveModifiers {
 4
 5 private String privateVariable = "private";
 6 String defaultVariable = "default";
 7
 8 public static void main(String[] args) {
 9 // Insert code here
10 }
11
12 }
13
14 package com.javachallengers.encapsulation.challengers;
15
16 import encapsulation.challengers.access.MoreRestrictiveModifiers;
17
18 public class MoreRestrictiveModifiersExecutor {
19
20 public static void main(String[] args) {
21 MoreRestrictiveModifiers challenger = new MoreRestrictiveModifiers();
22 // Insert code here
23 }
24 }

A) Insert the following code in the MoreRestrictiveModifiersExecutor class:
 System.out.println(challenger.defaultVariable);

 	Insert the following code in the MoreRestrictiveModifiersExecutor class:
System.out.println(challenger.privateVariable);

 	Change encapsulation.challengers to challengers.access from the MoreRestrictiveModifiersExecutor class and move it to the com.javachallengers.encapsulation.challengers package. Then insert the following code in the main method from MoreRestrictiveModifiersExecutor: System.out.println(challenger.defaultVariable);

 	Insert the following code in the MoreRestrictiveModifiers class:
System.out.println(challenger.privateVariable);

Explanation:

Let’s start with the wrong alternatives, in alternative A we are trying to access the defaultVariable from a different package from where defaultVariable was created. The default modifier only allows access in the same package.

The alternative B is also wrong because we are trying to access the most restricted access modifier in Java, the private one that can be only accessed within the class the variable was created. Therefore, when trying to access a private attribute from another class we will have a compilation error.

The alternative C is correct because first moving the MoreRestrictiveModifiersExecutor class to the same package as MoreRestrictiveModifiers and then we are accessing the defaultVariable which will be fine.

The alternative D is also correct because the privateVariable is being accessed within the class it was created, therefore it will compile and run successfully.

4.6.3 Main Takeaways of this section

The following table is organized from the less restrictive public to the more restrictive private.

Before looking at the table, let’s analyze each modifier concept.

The public access modifier can be accessed everywhere in the project.

The second less restrictive access modifier is protected because the protected modifier can be accessed outside its package with inheritance. The default modifier can’t, protected is less restrictive than default.

Then the default access modifier is more restricted than protected because we can only access members that are in the same package.

Finally, the private access modifier can only be accessed in the same class.

 	
 	public
 	protected
 	default
 	private
 	
 	
 	
 	
 	
 	

 	different package access
 	yes
 	yes, only with inheritance
 	no
 	no
 	
 	same package access
 	yes
 	yes
 	yes
 	no

 	In the same class
 	yes
 	yes
 	yes
 	yes
 	
 	
 	
 	
 	
 	

4.7 Inner Class

Nested classes represent a special type of relationship that is it can access all the members (data members and methods) of outer class including private.

When we want to use the concept of encapsulation effectively, inner classes are crucial to be understood. One example where inner classes are vastly used is with the builder pattern.

Sometimes we want to create fake data for our tests, and inner classes come in handy to accomplish this goal.

Let’s check the main types of inner classes:

When we want the enclosing class to be also instantiated when we want to utilize the instance inner class, then we should create an instance inner class. Let’s see an example of how to work with it:

 1 public class EnclosingInstanceInnerClass {
 2
 3 public static void main(String[] args) {
 4 EnclosingInstanceInnerClass enclosingInstanceInnerClass = new EnclosingInsta\
 5 nceInnerClass(); // #1
 6 enclosingInstanceInnerClass.new InstanceInnerClass().print(); // #2
 7 }
 8
 9 private void print() {
10 System.out.println("Text from the enclosing class");
11 }
12
13 class InstanceInnerClass {
14
15 public void print() {
16 new EnclosingInstanceInnerClass().print();
17 }
18
19 }
20
21 }

 	#1: We have to first create an instance from the enclosing class

 	#2: Then we are creating a new instance from the enclosing instance. We are using a strange syntax with EnclosingInstanceInnerClass.new but that’s how it is. We have to do that because we need a new instance from the enclosing class to access the instance inner class.

4.7.1 Local Inner class

The only difference from an instance inner class to a local inner class is that the local inner class will be created in a method and will die after this method is executed. Let’s then create an inner class inside a method:

 1 public class EnclosingLocalInnerClass {
 2
 3 public static void main(String[] args) {
 4 // new CustomPrinter(); It's not possible // #1
 5 // new LocalInnerClass().new CustomPrinter(); // #2
 6
 7 new EnclosingLocalInnerClass().print();
 8 }
 9
10 void print () {
11 class LocalInnerClass {
12 void customPrint() {
13 System.out.println("Customized print");
14 }
15 }
16
17 new LocalInnerClass().customPrint(); // #3
18 }
19 }

 	#1: We can’t access our CustomPrinter inner class since it’s only accessible within the print method.

 	#2: We can’t create an instance from our enclosing LocalInnerClass to access

 	#3: It’s only possible to access the inner class in the print method

A situation that can be useful to create an inner class in a method is when we want to rewrite or create a specific functionality, maybe only one method to accomplish one task and we don’t want to make it external in the class for example because this inner class should only be visible within this method.

4.7.2 Static inner class

The static inner class is vastly used in real-world projects, mainly with the builder design pattern. It’s a very useful inner class because it doesn’t depend on the enclosing class to be instantiated, since it’s static, we can instantiate it right away.

 1 public class EnclosingStaticInnerClass {
 2
 3 public static void main(String[] args) {
 4 StaticInnerClass staticInnerClass = new EnclosingStaticInnerClass.StaticInne\
 5 rClass(); // #1
 6 staticInnerClass.print(); // #2
 7 }
 8
 9 static class StaticInnerClass {
10 private void print() {
11 System.out.println("Static inner class");
12 }
13 }
14 }

 	#1: As you can see, we don’t need to create an instance from the EnclosingStaticInnerClass, we just need to reference the enclosing class to access the StaticInnerClass.

 	#2: Reinforcing that we can access private methods since it’s an inner class

4.7.3 Anonymous inner class

If we don’t want to specify an instance name for our inner class and just want to use some specific methods, a way to deal with this situation is by using an anonymous inner class.

Let’s see an example which we want to declare a new method and use it straight away:

 1 public class AnonymousInnerClass {
 2
 3 public static void main(String[] args) {
 4 new AnonymousInnerClass() { // #1
 5 private void printSomethingElse() { // #2
 6 System.out.println("Printing from the anonymous Inner class");
 7 }
 8 }.printSomethingElse(); // #3
 9
10
11 }
12
13 private void print() {
14 System.out.println("Print something");
15 }
16 }

 	#1: We are instantiating the AnonymousInnerClass object and then opening brackets to specify we are creating an anonymous inner class

 	#2: Then we are creating the printSomethingElse method in this anonymous inner class

 	#3: Finally, we are invoking the printSomethingElse() method and then it will print: “Printing from the anonymous Inner class”.

The biggest advantage of an anonymous inner class is that we don’t need to specify an object name nor externalize the class. Anonymous inner classes are handy when we want to use a few methods but don’t want to create a whole structure of a class.

We will explore the subject of anonymous inner class further in future chapters when we see inheritance and interfaces.

4.8 The static keyword

The purpose of the static keyword is to make classes/methods/attributes static in memory, this means that it’s not necessary to create an instance to make use of a static class, method or attribute.

Therefore, when we don’t want to instantiate a class and use attributes or methods straightaway we can declare our attributes and methods by using the static keyword.

Methods and attributes declared as static will be ready to be used only by referencing the enclosing class.

One simple and clear way to see the static keyword in Java is to see static attributes or methods as class attributes or class methods.

 1 public class StaticAttribute {
2
3 static String staticEnergy; // #1
4
5 public static void main(String... staticAttributes) {
6 StaticAttribute.staticEnergy = "Very Strong"; // #2
7 System.out.println(staticEnergy); // #3
8 }
9 }

 	#1: This attribute is already static in the memory-heap.

 	#2: It’s possible to use the staticEnergy variable straight away without the need of instantiating the StaticAttributes class. In this line we basically assign "Very Strong" to the staticEnergy variable.

 	#3: Then we will print "Very Strong".

A static method behaves in a very similar way from a static variable. We also don’t need to create an instance from a class to use a static method, we simply use it right away.

Let’s see then a code example where we can use a method instantly without the need of an instance by using a static method:

 1 public class StaticMethod {
 2
 3 public static void main(String... staticAttributes) {
 4 StaticMethod.print(); // #1
 5 }
 6
 7 static void print() { // #2
 8 System.out.println("Static method, no instance required");
 9 }
10 }

 	#1: We are invoking the static method right away, without the necessity of having an instance, that’s why a static method is also called as a class method

 	#2: We only need to specify the static keyword in the print method to make it static

4.8.1 Limitations of a static method

A static method can only access static members, this means that a static method can’t access the current instance by using the keyword this. This makes sense since a static method is a class method and not an instance class, therefore we can only access the class members.

Let’s see how above example works in code, when we try to execute the following code:

 1 public class StaticAccessToThis {
 2
 3 private String name;
 4
 5 public static void main(String[] args) {
 6 print();
 7 }
 8
 9 static void print() {
10 System.out.println(this.name); // #1
11 }
12 }

 	#1: There will be a compilation error at this line since we are trying to access the current instance in a static context. In a static context there is not any instance.

4.8.2 How to use an instance in a static context?

The only way to use an instance in a static method is to use an instantiated object. Since we are manipulating our instance, there is no need to have an instance context, we can simply use our instance.

In the following code we will see an example with a static method that will receive an object instance to demonstrate how we can use instances in a static method.

 1 public class InstanceInStaticContext {
 2
 3 String value;
 4
 5 public static void main(String[] args) {
 6 InstanceInStaticContext instance = new InstanceInStaticContext();
 7 instance.value = "It's an instance";
 8 print(instance);
 9 }
10
11 static void print(InstanceInStaticContext instance) {
12 System.out.println(instance.value);
13 }
14 }

4.8.3 Static attribute values are all the same for instances

Since a static attribute is actually a class attribute, when we create a new instance, there won’t be a specific value for this instance, instead, the static value will be the same for all instances.

As mentioned before a static variable or method are not connected to instances, therefore it doesn’t matter if we create a new instance or not.

Let’s see a code example where we create different instances and change a static value to see what will happen:

 1 public class StaticValuesWithInstances {
 2
 3 static String name;
 4
 5 public static void main(String[] args) {
 6 StaticValuesWithInstances staticValues1 = new StaticValuesWithInstances();
 7 staticValues1.name = "value1"; // #1
 8
 9 StaticValuesWithInstances staticValues2 = new StaticValuesWithInstances();
10 staticValues2.name = "value2"; // #2
11
12 System.out.println(staticValues1.name); // #3
13 System.out.println(staticValues2.name); // #4
14 }
15 }

 	#1: This sintax works but it’s not appropriate since we are not manipulating the instance values but the static value. The variable name will have the "value1" assigned

 	#2: The same case from above, since we are accessing a static variable, the name variable is actually being shared between instances.

 	#3: It will print "value2" since we are using a class attribute

 	#4: It will print "value2" too

It’s important to emphasize that we should never access a static member by using an instance, it’s confusing to read a code like this. We should only know that it’s possible to do that in Java but should never use this kind of syntax.

We should always reference the class name instead of the instance name when manipulating a static member like the following:

 1 ClassName.staticVariable;
2 ClassName.staticMethod();

By following the mentioned pattern, it’s very clear that we are dealing with static members. The code get more readable and easier to understand.

4.8.3 Main differences between instance and static

 	Instance methods can access instance attributes and instance methods in the current instance

 	Instance methods can access static variables and static methods

 	Instance variable values can only be used with a created instance

 	Instance methods can only be invoked with an instance

 	Static methods can only access static variables and methods directly

 	Static variable will share the same value to all instances

4.8.4 When to use a static attribute or method?

In a real-world project we usually use static attributes when we want to declare a constant attribute value. Since the value will be the same no matter if a new instance is created, it’s a common approach to see constant attributes declared as static:

 1 public class StaticAttributesRealWorld {
2 static final String USER_NAME = "javachallengers"; // #1
3
4 public static void main(String[] args) {
5 System.out.println(USER_NAME); // #2
6 }
7 }

 	#1: We used the Java Beans convention in the USER_NAME variable name and we are using the final keyword to specify it’s a constant value, it can’t be changed. Finally, it’s a static variable, it means there is no need to create an instance to access it.

 	#2: We used the static variable without an instance

4.8.4 Static Methods

Similarly to static attributes, static methods follow the same concept. A static method can be invoked without an instance.

In the following code, we will explore the invocation of a print static method. Note that we also don’t need to create an instance to invoke the static method:

 1 public class StaticMethod {
 2
 3 static void print() { // #1
 4 System.out.println("Static method, no instance required"); // #2
 5 }
 6
 7 public static void main(String... staticAttributes) {
 8 StaticMethod.print(); // #3
 9 }
10
11 }

 	#1: Declaring the static print method

 	#2: Printing a message

 	#3: Note that we are referencing the class name, this is a good practice because by looking at the code we can realize it’s a static method. Then we are invoking the print method and finally printing “Static method, no instance required”.

4.8.5 When to use static methods?

You can ask yourself, can this method be invoked without any instance variable state? Is this method simple enough? Only then you should make the decision of creating a static method.

One other very important point to consider about the use of static methods is that implementing Unit Tests gets harder. It’s harder to test methods in an isolated way when we are using static methods. Unit Tests are not in the scope of this book but it’s important to keep this principle in mind too so we can make the best decision.

There are many good JDK examples we can rely on. The Math class is a perfect example. Let’s see some of the methods in action:

 1 public class MathUsage {
 2
 3 public static void main(String[] args) {
 4 System.out.println(Math.pow(2, 2)); // #1
 5 System.out.println(Math.max(2, 7)); // #2
 6 System.out.println(Math.min(1, 7)); // #3
 7 System.out.println(Math.ceil(3.1)); // #4
 8 System.out.println(Math.floor(3.6)); // #5
 9 System.out.println(Math.decrementExact(2)); // #6
10 System.out.println(Math.random()); // #7
11 }
12
13 }

 	#1: We are applying the power of 2 with 2, therefore it will print 4

 	#2: We are verifying what number is greater, 2 or 7, therefore it will print 7`

 	#3: We are verifying what number is smaller 1 or 7, therefore it will print 1

 	#4: We are rounding the number 3.1 to the next, therefore it will print 4

 	#5: We are rounding the number 3.6 down, therefore it will print 3

 	#6: We are decrementing a exact number to 2, therefore it will print 1

 	#7: We are printing a random number

As you could see, in the examples of the Math class, we have simple and clear methods that don’t need any kind of object state, we simply pass the variable to each method and each method returns what we want. If we have a similar case such as the Math class, it’s a good idea to use static methods. Keep in mind that we will usually use static methods for creating utilitary methods.

This technique of looking at the JDK code is a great habit we can apply for the usage of anything we want in our application. We can learn a lot only by looking at the JDK code.

4.8.6 Static Simpson Java Challenge

In the following challenge we will explore the main principles from an instance and static variable. Can you guess what will be the output of the following challenge?

 1 public class StaticSimpson {
 2
 3 String name;
 4 static int age;
 5
 6 public static void main(String[] args) {
 7 StaticSimpson homer = new StaticSimpson();
 8 homer.name = "Homer";
 9 homer.age = 35;
10
11 StaticSimpson bart = new StaticSimpson();
12 bart.name = "Bart";
13 bart.age = 10;
14 bart.age++;
15
16 System.out.println(homer.name + bart.name);
17 System.out.println(homer.age + bart.age);
18 }
19 }

 	BartBart
45

 	HomerBart
45

 	HomerHomer
22

 	HomerBart
22

Explanation:

The important points of this challenge is that an instance value will belong to an instance and a static value will belong to the class.

Note that the name variable is an instance variable which means that the instance of homer will have the value of "Homer" and bart will have the value of "Bart" in the name.

In the age variable, we are dealing with a class variable, therefore when we change the age variable in homer and bart, it doesn’t matter, the static variable will be the same for all instances since it’s a class variable. Therefore, when we change the class variable age to 10, it will be 10 for every instance.

Just keep in mind that accessing a static variable with an instance variable is a bad practice, never do that when developing your code, this challenge was created like this to help you to understand the instance and static concepts. You should instead use a static variable like this, ‘StaticSimpson.age’.

The last detail of this challenge is that we are also adding one to the age variable and then it will be 11 for homer and bart.

In conclusion the correct alternative will be:

 1 D) HomerBart
2 22

4.9 Instance and static block

There are alternatives for initializing variables or executing logic in Java. With the use of instance and static blocks, we can easily do that.

4.9.1 Instance block

Instance blocks might be useful for initializing variables. This concept is not very used in real applications but it’s useful to know what and how to use it.

The instance block will be initialized when the instance is created.

Let’s see first the practical use of an instance block and after this, we will understand when to use it.

An instance block has a similar purpose of a constructor, the difference is that the instance block will be executed before the constructor.

In the following example we will invoke the print method from the instance block and only then initialize the name variable, note that the listing numbers are in execution order:

 1 class InstanceBlockPrint {
 2
 3 String name;
 4 { // #2
 5 this.print(); // #3
 6 } // #4
 7
 8 InstanceBlockPrint() { // #5
 9 name = "Challenger"; // #6
10 }
11
12 public static void main(String[] args) {
13 InstanceBlockPrint instanceBlock = new InstanceBlockPrint(); // #1
14 instanceBlock.print(); // #7 \
15
16 }
17
18 void print() {
19 System.out.println(name);
20 }
21
22 }

 	#1: The very first code execution is when we instantiate the InstanceBlockPrint class.

 	#2: Then what is going to be initialized is the instance block, the { means that we are initializing the instance block.

 	#3: We are invoking the print method that will print null here.

 	#4: We are closing the instance block with }.

 	#5: We are declaring our constructor, only now the constructor will be invoked.

 	#6: Only now we will initialize the name variable with the value of “Challenger”.

 	#7: Finally we invoke the print method and "Challenger" is printed.

4.9.2 When to use instance blocks?

Usually, constructors are used for initializing instance variables but very often we need to add complex logic before initializing variables into the constructor.

Instance block is very handy when we want to execute logic operations before the constructor execution, we can encapsulate better our logic execution by making good use of instance blocks.

4.9.3 Static Block

Static blocks have the same purpose of instance blocks, initializing variables or executing logic operations. But the main difference between both blocks is when the static block is loaded.

At the moment we access the class the static block will be executed. Differently than the instance block that will be only invoked if we create an instance.

The static block will be initialized before instantiation and the constructor invocation.

Let’s see a practical example of a static block. We will create a static block and will only access the class name in the main method, this will be enough to get the static block invoked.

 1 public class StaticBlockPrint {
 2
 3 static String name; // #1
 4
 5 static { // #2
 6 name = "Challenger"; // #3
 7 }
 8
 9 public static void main(String[] args) {
10 System.out.println(StaticBlockPrint.name); // #4
11 }
12 }

 	#1: Declaration of the name static variable.

 	#2: Declaration from the static block.

 	#3: Initializing the name variable with "Challenger".

 	#4: Printing the name variable, note that at the StaticBlockPrint class will be loaded at the moment we first access the class in some way. In our case we accessed the class variable which also triggered the variable declaration and then the static block execution. Therefore the output will be "Challenger".

4.9.4 Mario Bros Block Challenge

In the following challenge we will explore the concept of instance and static blocks when we are instantiating a new class. Your objective is to figure out what is the output of the following challenge when running the main method:

 1 public class MarioBrosBlockChallenge {
 2
 3 {
 4 System.out.print("instance ");
 5 }
 6
 7 static {
 8 System.out.print("static ");
 9 }
10
11 MarioBrosBlockChallenge() {
12 System.out.print("constructor ");
13 }
14
15 public static void main(String... args) {
16 System.out.print("Jump into ");
17 new MarioBrosBlockChallenge();
18 new MarioBrosBlockChallenge();
19 System.out.print("blocks.");
20 }
21 }

 	static Jump into instance constructor instance constructor blocks.

 	Jump into static instance constructor static instance constructor blocks.

 	Jump into static constructor instance constructor instance blocks.

 	static Jump into constructor instance static constructor instance blocks.

Explanation:

When we are working with a static block remember that it will be executed only for the class and not for each instance. Note also that the static block will be always the first code to be executed because the class has to be the first to be loaded, without a class it’s impossible to create an instance or even to invoke the main method. Therefore the first text to be executed will be static.

Then, after we get the MarioBrosBlockChallenge class loaded along with the static block, the first text from the main method is printed, then we get Jump into.
In the following line we are instantiating the MarioBrosBlockChallenge class which will invoke then our instance block printing instance.

After the instance block is executed, the constructor will be invoked therefore printing constructor.

Then we will create a MarioBrosBlockChallenge instance again and remember that the static block won’t be executed again since the class was already loaded, a class is loaded only once. Therefore only the instance block and the constructor will be executed and the following will be printed, instance and constructor.

In conclusion, the correct alternative for this challenge is:
A - static Jump into instance constructor instance constructor blocks.

4.10 Small Real-World Project Challenge

Your objective in this challenge is to create a small real-world application by using concepts of encapsulation.

Before starting this challenge, keep in mind that the following example is fictitious and depends on future concepts to be ‘perfect’ for the real-world. The main focus of this challenge is to make the concept of encapsulation clear to you not to necessarily create a ‘real-application’.

The key point of this challenge is to make you absorb the essence of a real application.

4.10.1 Step 1 Creating the Logic Classes:

You will create the three main layers we discussed in this chapter, com.javachallengers.resources, com.javachallengers.services and com.javachallengers.dao. Then you will create a CustomerResource, CustomerService and CustomerDao classes on their respectives directories.

4.10.2 Connecting the Logic Classes

Now that you have all the logic classes created, you need to connect them. You will accomplish that by using the dependency injection concept which means basically that you will receive an instance from the class you need in the constructor.

You will then create a constructor in the CustomerResource class that will receive the CustomerService instance and then you will store this CustomerService instance in an instance variable named as customerService.

Then you will create another constructor in the CustomerService class that will receive the CustomerDao instance dependency into the instance variable you will create named as customerDao.

4.10.3 Creating the Data Class

Now you need to create the class that will contain the information when you make a search in the database, this class will be Customer which we will create in the com.javachallengers.model. In the Customer class you will have the following attributes, id, name, birthDate, address, email, salary, login and passwordToken. Remember to use the Builder pattern in the Customer class.

Then we are going to create a CustomerDTO class in the com.javachallengers.dto package which will contain the information we want to expose to the User Interface. We don’t want to get the whole information from our domain Customer class, that’s why we will use a CustomerDTO class.

Then we will create the CustomerDTO class with the following attributes, name, birthDate, address, email and salary. It’s also recommended to use the Builder pattern here.

Finally, create a toCustomerDTO method that will receive a Customer, will populate the CustomerDTO attributes with the customer attributes and then will return a populated customerDTO object. Simply put, the goal of the toCustomerDTO method is to convert a Customer object to a CustomerDTO object.

4.10.4 Implementing the Logic Methods

Let’s start by the CustomerResource class, we will create the findById method whose method signature will return a CustomerDTO and will receive a customerId as an int type. In this method you will basically invoke the customerService.findById method by passing the customerId you are receiving. Then you will convert the customer returned from the findById method and will use the toCustomerDTO method from the CustomerDTO class to convert the customer object to a customerDTO object.

Then we will implement the findById method in the CustomerService layer returning a Customer and receiving again the customerId which will have a very simple logic. Keep in mind that the service layer is the one that should deal with programming logic and business requirements. Therefore create a logic where if the customerId greater than zero you will invoke our customerDao.findById method passing the customerId otherwise you will return an empty Customer which would be an instance of a Customer with no values assigned to the attributes.

Finally, you will implement the findById method in the CustomerDao class which will return a new Customer.

You don’t really need to implement anything sophisticated here, basically create a new Customer by using the Builder pattern, assign the customerId to the id field, then populate the other fields with the information you wish, remember that all fields must be populated.

4.10.5 Creating the Invoker Class

Now create a package named as com.javachallengers.invoker and then create a class named as CustomerLogicInvoker and you will create the main method that will invoke the CustomerResource class. In this class, you will chain the stantiation from the customer classes.

You will first instantiate the CustomerDao, then use the customerDao you created in the constructor of the CustomerService.

Then, you will instantiate the CustomerResource class which will take the customerService instance in the constructor.

Finally, you will invoke the findById method from the customerResource instance firstly passing
an id that is negative, then make sure the customerDTO instance is empty.

Then invoke the findById method again passing the id of 1 and make sure that the customerDTO instance you are returning has the information you were expecting, you can simply print the information to do so.

4.11 Summary

 	In this chapter you learned the core principles of encapsulation

 	You learned how to use getters and setters

 	You learned that we use encapsulation when we know what an Object does and not how

 	You learned the MVC (Model View Controller) pattern that helps to encapsulate and organize layers of the system

 	You learned the DTO (Data Transfer Object) pattern that encapsulates the data that should be used in the User Interface

 	You know how and how and when to use access modifiers from the more restrictive to the less restrictive, private, default, protected and public.

 	You learned how to use instance and static blocks

 	You learned the differences between static and instance

 	You learned how and when to use a static attribute or method

 	You learned that a static attribute is shared between instances

 	You also created a real-world challenge that contains the essence of a real-application divided in organized packages separated by responsibilities

5 Overloading

This chapter covers:

 	Changing and extending legacy methods without breaking the code

 	Creating flexible and easy-to-read APIs

 	Creating better method names

 	Creating concise and easy-to-use APIs and utility methods

 	Total of 4 Java code Challenges

Overloading refers to the ability to use the same method name with different parameters. It’s a way to make your methods more flexible in Java. Overloading is a widely used technique in object-oriented programming languages, and you can see it in action in many classes of the JDK. It enables us to extend the possibilities of methods without breaking existing code. In this chapter you’ll see several code examples that clarify the main concept and the details of this incredibly useful language feature.

5.1 Overloading basics

The following example is a simple illustration of method overloading. We are declaring the learnAbility method twice, with different parameters. In the second method invocation we receive the additional String parameter weapon:

 1 public class NeoOverloading {
 2
 3 public static void main(String... matrixTheme) {
 4 NeoOverloading neo = new NeoOverloading();
 5 neo.learnAbility("Kung-Fu", 1010101);
 6 neo.learnAbility("Taekwondo", 100010101);
 7 neo.learnAbility("CloseQuartersCombat", 11100101, "Uzi");
 8 neo.learnAbility("Specialized weapon training", 10101, "RPG");
 9 }
10
11 void learnAbility(String ability, int binaryCode) {
12 System.out.printf("Neo has learned %s with the code %s \n",
13 ability, binaryCode);
14 }
15
16 void learnAbility(String ability, int binaryCode, String weapon) {
17 System.out.printf("Neo has learned %s with a %s and the code %s \n",
18 ability, weapon, binaryCode);
19 }
20
21 }

We can thus invoke the method with either two or three parameters, depending on the situation.

Overloading is widely used in real systems, and the knowledge of how to apply this powerful concept improves code quality by simplifying the API that developers use. Method overloading prevents developers from having to remember multiple method names, because we can simply create different versions of a method with the same name for different purposes.

5.1.1 What can and can’t be done with overloading?

We can’t use overloading to change a method’s return type. This code won’t compile:

 1 public class MatrixNotWork {
2 void goToMatrix() {}
3 long goToMatrix() {}
4 }

Similarly, we can’t use overloading just to change variable names. This code won’t compile either:

 1 public class MatrixNotWork {
2 void goToMatrix(String neo) {}
3 void goToMatrix(String morpheus) {}
4 }

To overload a method, their argument lists must differ in one of three ways. We can change the number of parameters, their types, their order or even mix all those three ways altogether will also work.

 1 // Number of parameters:
 2 public class MatrixOverloading {
 3 	void performAction(int number1) { }
 4 	void performAction(int number1, int number2) { }
 5 }
 6
 7 // Type of parameters:
 8 public class MatrixOverloading {
 9 	void performAction(int number1, int number2) { }
10 	void performAction(float number1, float number2) { }
11 }
12
13 // Order of parameter types (Only valid if the variable types are different):
14 public class MatrixOverloading {
15 	void performAction(double number1, int number2) { }
16 	void performAction(int number2, double number1) { }
17 }

5.1.2 Type promotion with primitives

One of the most important concepts to keep in mind when working with overloading is the possibility of widening types, also known as type promotion. We can do this with any primitive type except boolean. Figure 5.1 shows the range of possibilities for type promotion, from left to right.

 [image:]

Figure 5.1.2 Type promotion possibilities in Java

A type can be widened to any other type that can accommodate its value without information loss (a “wider” type). For example, a byte can be widened to a short, int, long, float, or double, because all of those types can accommodate larger values. This means if we declare a variable of type double and we want to assign a byte into it, it will work.

But if we want to assign a double into a byte, we will instead need to use Java’s casting feature. This is a way of acknowledging to the compiler that you know you might be losing data on the conversion, and that you take full responsibility if that happens. It’s an explicit type assignment, made by specifying the target type in parentheses before the value.

Let’s take a look at some examples of widening and casting with primitives:

 1 public class KeyMaker {
 2
 3 public static void main(String... wideningAndCastingPrimitives) {
 4 char keyChar = 1;
 5 double keyDouble = keyChar;
 6 short keyShort = 1;
 7 float keyFloat = keyShort;
 8
 9 int keyInt = (int) keyDouble;
10 byte keyByte = (byte) keyDouble;
11 long keyLong = (long) keyFloat;
12 }
13
14 }

As you can see, it’s possible to assign a char to a double and a short to a float, but it’s not possible to directly assign a double to an int, a double to a byte, or a float to a long.

It’s important to understand type promotion in the context of method overloading because Java will promote types automatically when possible if the provided arguments don’t match the parameters lists of any of the defined methods. For example, suppose you define two performAction methods, as follows:

 1 public class MatrixOverloading {
2 	void performAction(int number1, int number2) { }
3 	void performAction(double number1, double number2) { }
4 }

If this method is called with a byte argument and an int argument, the method call will succeed because the byte value will automatically be promoted to an int. Similarly, if it’s called with two float values, both will be promoted to double.

5.1.3 Using hardcoded primitive types

When you provide a hardcoded argument without specifying its type, the JVM will take care of determining the type for you. Here are a few examples:

 1 public class MatrixHardcodedTypes {
 2
 3 public static void main(String... hardcodedPrimitiveTypes) {
 4 System.out.println(1); // It's an int
 5 System.out.println(1.0); // It's a double
 6 System.out.println('1'); // It's a char
 7 System.out.println(true); // It's a boolean
 8 }
 9
10 }

There is also the option of making numerical types explicit in hardcoded values to the JVM, to accomplish that we can use the correspondent type letters at the end of the numbers:

 1 public class MatrixExplicitHardcodedTypes {
 2
 3 public static void main(String... hardcodedPrimitiveTypes) {
 4 		System.out.println(1L); // It's a long
 5 		System.out.println(1l); // It's a long
 6 	System.out.println(1F); // It's a float
 7 System.out.println(1f); // It's a float
 8 System.out.println(1D); // It's a double
 9 	System.out.println(1d); // It's a double
10 }
11
12 }

The suffix L or l is used to designate a long. The lowercase 'l' is not recommended to use since it’s similar to the number '1', therefore, difficult to read. If we use F or f the number will be interpreted as a float, and D or d tells the compiler it’s a double. As a general rule it’s better to use capital letters if you need to do this, because lowercase letters are harder to read in the code.

An important detail about the char type is that when a char is converted to int or long, this is done by converting it to the ASCII table value of the provided character. For example, suppose we convert the char ‘1’ to an int, like this:

 1 char charMatrixConversion = '1';
2 int intMatrixConversion = charMatrixConversion;
3 System.out.println(intMatrixConversion);

The output will be 49 because the number 1 in the ASCII table is represented by 49. This same rule will be applied with any other character. For example, if we convert the char value 'a' to an int, the number that corresponds to a in the ASCII table will be assigned to the int variable and the output will be 97.

 Definition of the ASCII table
The ASCII acronym stands for American Standard Code for Information Interchange. Since computers can only understand numbers, the ASCII table will represent a character by a number, therefore enabling the computer to be able to read each character.

 You can consult further information from the ASCII table in the following link: http://www.asciitable.com/

Like type promotion, it’s important to understand this feature of the Java language in relation to method overloading. How the JVM interprets a method’s arguments has an effect on whether the code compiles, and understanding these concepts will help you analyze your own and other people’s code.

5.1.4 KeyMaker Overloading Challenge

The following challenge explores the concept of how primitive types are interpreted by the JVM when argument values are hardcoded. Can you figure out what will happen when this code is executed?

 1 public class KeyMakerOverloading {
 2
 3 public static void main(String... primitiveOverloading) {
 4 makeKey(1);
 5 makeKey(1F);
 6 makeKey('1');
 7 makeKey(1.0);
 8 }
 9
10 static void makeKey(short shortCode) {
11 System.out.println("short:" + shortCode);
12 }
13 static void makeKey(long longCode) {
14 System.out.println("long:" + longCode);
15 }
16 static void makeKey(float floatCode) {
17 System.out.println("float:" + floatCode);
18 }
19 static void makeKey(double floatCode) {
20 System.out.println("double:" + floatCode);
21 }
22 }

 	short:1
float:1.0
short:49
double:1.0

 	long:1
float:1.0
short:1
float:1.0

 	short:1
float:1.0
long:49
float:1.0

 	long:1
float:1.0
long:49
double:1.0

Explanation:

Let’s analyze the code. In the first invocation we pass the hardcoded value 1:

 makeKey(1);

int is the default type interpreted to non-decimal numbers that fit within this type’s range, so the JVM will convert this hardcoded number to int. But none of the overloaded methods takes an int, so the type will be promoted to a wider one. The first method the JVM finds that can accommodate this type is this one:

 static void makeKey(long longCode) { ... }

Therefore, the first output will be:

 long:1

In the second method invocation, we are passing an explicit float because we are using the letter F after the number:

 makeKey(1F);

As we already have a corresponding method for the float type, the output for this invocation will be:

 float:1.0

In the third method invocation we pass a char:

 makeKey('1');

There’s no method that takes a char, so type promotion will again be used here. As the diagram in figure 5.1 shows, a char can be promoted to an int, which as we’ve already seen will be promoted further to a long in this example. The char value will be converted to the corresponding number in the ASCII table, which is 49. Therefore, the output will be:

 long: 49

Finally, the number 1.0 will be automatically converted by the JVM to the type double, and then it will invoke the method that receives a double:

 double:1.0

Therefore, the final answer will be:

 1 D) long:1
2 float:1.0
3 long:49
4 double:1.0

5.2 Wrappers and autoboxing

As you know, in Java there are two kinds of types: objects and primitive types. But what if you want to use a primitive type as an object? Java has special classes that enable just that, known as wrapper classes. Each primitive type has a corresponding wrapper class: byte and Byte, short and Short, int and Integer, and so on.

Converting a primitive type into an object is called boxing. Before Java 1.5, we were obliged to box primitive types into wrapper types manually:

 1 int primitiveInt = 7;
2 Integer matrixInt = new Integer(primitiveInt);

Fortunately, since Java 1.5 we don’t need to do that anymore. We can just assign the primitive type directly into the wrapper type:

 1 int primitiveInt = 7;
2 Integer matrixInt = primitiveInt;

This feature in Java is called autoboxing. The JVM does the work for us, which is great because it means our code is cleaner and more concise. This is what happens behind the scenes:

 Integer matrixInt = Integer.valueOf(primitiveInt);

Auto-unboxing—converting in the other direction—works in the same way. We can write code like this:

 1 Integer matrixInt = 7;
2 int newMatrixInt = matrixInt;

And the JVM will create this code behind the scenes:

 1 Integer matrixInt = 7;
2 int newMatrixInt = matrixInt.intValue();

5.2.1 Things to be aware of when using wrappers

All wrapper objects are final, which means they are immutable—their attributes cannot be changed. Each time you assign a value to a wrapper type, the JVM will create a new wrapper object. This applies to autoboxing too: the JVM will create a new object in the memory heap every time, unless the wrapper type is cached.

Caching applies to the boolean values true and false and integer values in the range -128 to 127. For performance reasons, when we autobox an int type with a value in this range to the Integer wrapper type, the JVM will cache this value in the created instance. The same applies to autoboxing of byte, short, long, and char types (in the range \u0000 to \u007f, or 0 to 127). If we assign a value that is cached, a new object will not be created. Note that this caching occurs only with autoboxing, not when we use an explicit constructor to convert a primitive to a wrapper type.

You should also be aware that you can’t directly assign one wrapper type to another, which makes sense because there is no direct relationship between the wrapper classes. Let’s look at a few examples of these classes:

 1 public final class Double extends Number
2 implements Comparable<Double>, Constable, ConstantDesc { … }
3
4 public final class Integer extends Number
5 implements Comparable<Integer>, Constable, ConstantDesc { … }

As you can see, the wrapper classes are very similar. But even though they both extend Number (as do the other numeric types), we can’t assign a Double to an Integer or any other wrapper type. That’s because of the widening rule—a type can be widened only to another type (class) that it inherits from. If we try to do this, the second line won’t compile because Integer is not related to Double with inheritance:

 1 Integer matrixInt = new Integer(7);
2 Double matrixDouble = matrixInt;

On the other hand, we can assign a Double, Integer, or any other numeric wrapper type to a Number:

 1 Number matrixNumber = new Integer(7);
2 matrixNumber = new Double(7);

It’s also not possible to assign a primitive type directly to a non matching wrapper type. For example, you can’t assign an int type directly to a Double wrapper. The following code won’t compile:

 Double doubleMatrixNumber = 7;

The only way to accomplish this is by casting the value to the corresponding primitive type. Then the JVM will be able to auto-unbox it:

 Double doubleMatrixNumber = (double) 7;

Finally, you should be aware that autoboxing has a cost for the JVM—wrappers use more memory resources than primitive types. The more you can use primitive types the better, because your logic operations will be executed faster. But if you need your value to be null or you need to work with Java collections, for example, which can only store objects, you will have to use wrappers.

5.2.2 Matrix Wrappers Challenge

This challenge will test your understanding of the concept of type widening. See if you can guess the final output. If not, don’t worry; it’s a tricky one!

 1 import java.math.BigDecimal;
 2
 3 public class MatrixWrappers {
 4
 5 static String result = "";
 6
 7 public static void main(String... doYourBest) {
 8 wrapBullets(5, 5D);
 9 wrapBullets(1L, 5);
10 wrapBullets(new BigDecimal(4), 5D);
11 wrapBullets(5, 4);
12 wrapBullets((short) 5.0, 5.);
13
14 System.out.println(result);
15 }
16
17 static void wrapBullets(Integer integerWrapper, Double doubleWrapper) { \
18 result += "A";
19 }
20 static void wrapBullets(Short shortWrapper, Double doubleWrapper) { \
21 result += "B";
22 }
23 static void wrapBullets(Number numberWrapper, Double doubleWrapper) { \
24 result += "C";
25 }
26 static void wrapBullets(double doublePrimitive, int intPrimitive) { \
27 result += "D";
28 }
29 }

 	ADCDB

 	BCBAA

 	BCDAC

 	ACCAB

Explanation:

Let’s analyze the method invocations. In the first one we are passing an int and a double value (indicated by the D):

 wrapBullets(5, 5D);

Those two primitive types can’t be widened to a broader type in another method, so the JVM will auto-box them for us. The invoked method will be:

static void wrapBullets(Integer integerWrapper, Double doubleWrapper)

In the second method invocation we are passing a long primitive type and an int:

 wrapBullets(1L, 5);

The long can be widened to a double, so the JVM will do that rather than converting it to a wrapper type because widening consumes less memory resources. So in this case, it will invoke the following method:

 static void wrapBullets(double doublePrimitive, int intPrimitive) { ... }

In the third method invocation we are using the wrapper type BigDecimal and a double primitive type:

 wrapBullets(new BigDecimal(4), 5D);

BigDecimal is a Number, so this type can be widened to a Number, and the double will be autoboxed. The method invoked by the JVM is therefore:

 static void wrapBullets(Number numberWrapper, Double doubleWrapper) { ... }

In the fourth method invocation we are using two int types:

 wrapBullets(5, 4);

The strategy the JVM will choose is widening, so the following method will be invoked:

static void wrapBullets(double doublePrimitive, int intPrimitive)

Finally, in the fifth method invocation we are passing a double that is being cast to a short type, and another double (note that it’s possible to use a double value like this, without the 0 after the decimal point; it’s the same as 5.0):

 wrapBullets((short) 5.0, 5.);

The only strategy the JVM can choose here is autoboxing. The short primitive type will be autoboxed to Short and the double primitive type will be autoboxed to Double. Therefore, the invoked method will be:

 static void wrapBullets(Short shortWrapper, Double doubleWrapper) { ... }

In conclusion, the final answer will be:

 A) ADCDB

5.3 Varargs

Some methods need to take a variable number of arguments. In Java, the varargs (variable arguments) feature makes it possible to pass as many parameters as we want in a very flexible manner. Let’s see what this looks like in code. We define varargs using a standard type declaration followed by an ellipsis (…):

 1 public class AgentSmithClones {
 2
 3 public static void main(String... varargs) {
 4 createClones("smith1", "smith2", "smith3", "smith4");
 5 }
 6
 7 static void createClones(String... agentSmiths) {
 8 for (String agentSmith: agentSmiths) {
 9 System.out.printf(agentSmith);
10 }
11 }
12
13 }

There are some rules about using varargs:

 	Varargs can only be used as a method argument.

 	It can only be declared as a parameter once in a method.

 	When there is more than one method parameter, varargs must be the last argument in the list.

 	When the JVM is matching overloaded methods, methods with varargs have the lowest method invocation priority.

 	You can pass no arguments to a method with varargs (the equivalent of an empty array).

Let’s see some of these rules in action with overloading:

 1 public class OracleVision {
 2
 3 static String bits = "";
 4
 5 public static void main(String... varArgsOverloading) {
 6 visionOf(1, 1);
 7 visionOf(1.0, 1, 1);
 8 visionOf();
 9
10 System.out.println(bits);
11 }
12
13 static void visionOf(Integer neo, Integer morpheus) { bits += "A"; }
14 static void visionOf(double trinity, int... agentSmith) { bits += "B"; }
15 static void visionOf(int... keyMaker) { bits += "C"; }
16 }

What methods do you think are going to be invoked? If you followed the rules described previously, you probably got the answer right: it’s ABC.

In the first method invocation, where we are passing two int primitive types, the JVM will prefer autoboxing to varargs because it consumes less memory resources.

In the second method invocation we are passing a double and two int primitives, so the only available option is the method receiving a double and an int varargs.

In the third invocation we pass nothing. Remember that when we use varargs we can pass as many parameters as we want, including no parameters at all. In this case, the third method will be invoked because it’s the only method receiving one varargs type and nothing else.

 More about Varargs
If you have more than one method with only a varargs parameter, how does the JVM choose between them if nothing is passed in the method invocation? In this case, it chooses the method with the most specific signature, following the rules of type promotion. For example, int… would be chosen over double… because int is a more specific (less wide) type.

 Similarly, Exception… would be chosen over Object… because it’s a more specific type (Object is Java’s ultimate superclass, at the top of the class hierarchy tree—we’ll explore this topic in much more depth in the next chapter).

Varargs is the most costly option in terms of resource usage, so the JVM will always choose it last. It’s lazy and optimized to invoke the method that will consume the least memory. If multiple options are available, it will prefer (in this order):

 1 Widening
2 Autoboxing
3 Varargs

Now that you’ve learned the main principles of varargs, let’s try solving a challenge!

5.3.1 Neo Jump Overloaded varArgs Challenge

In this challenge you’ll explore the concepts of varargs, widening, and autoboxing. See if you can guess the final result.

 1 public class NeoJump {
 2
 3 static String finalResult = "";
 4
 5 public static void main(String... doYourBest) {
 6 jump(1, true);
 7 jump();
 8 jump(new int[]{1, 2, 3});
 9 jump(1L);
10 jump(1);
11 jump(Double.valueOf(1));
12
13 System.out.println(finalResult);
14 }
15
16 static void jump(Object o) { finalResult += "1"; }
17 static void jump(Object... o) { finalResult += "2"; }
18 static void jump(Exception... i) { finalResult += "3"; }
19 static void jump(Long l) { finalResult += "4"; }
20 static void jump(double d) { finalResult += "5"; }
21
22 }

 	322451

 	231551

 	231555

 	332455

Let’s analyze each of the method invocations in turn. First we pass an int and a boolean type:

 jump(1, true);

The only method capable of receiving these types and autoboxing is:

 static void jump(Object... o) { finalResult += "2";}

In the next method call we pass nothing:

 jump();

When we pass nothing, the varargs method with the most specific type will be invoked:

 static void jump(Exception... i) { finalResult += "3";}

On the next call we pass a new array of int:

 jump(new int[]{1, 2, 3});

Remember that an array in Java is an object, so in this case it’s easier for the JVM to widen the array to an Object instead of invoking the varargs method. The invoked method will be:

 static void jump(Object o) { finalResult += "1"; }

 **Varargs is an Array **
Varargs is an array behind the scenes. If there was a method receiving a varargs of int, it would be easier for the JVM to simply invoke it when passing an array of int. In this exceptional case using varargs would take priority over widening.

Next, we pass a long primitive type:

 jump(1L);

The easiest strategy for the JVM is to widen a long to a double primitive type. Therefore, the invoked method will be:

 static void jump(double d) { finalResult += "5";}

On the next invocation we pass an int:

 jump(1);

The quickest solution for the JVM is again to widen the int type to double, so the same method will be invoked:

 static void jump(double d) { finalResult += "5";}

Finally, we invoke the method passing a Double wrapper type:

 jump(Double.valueOf(1));

The best strategy for the JVM is to widen the Double wrapper type to an Object, so the last method invoked by the JVM will be:

 static void jump(Object o) { finalResult += "1"; }

In conclusion, the final output will be:

 B) 231551

5.4 Overloading Real-World Usage Challenge

There are three parts to this chapter’s real-world challenge, to test your understanding of the concept of method overloading.

5.4.1 Method overloading

Suppose you’re working on a financial project and you need to extend a Java method that can’t be changed directly. Fortunately, you know it’s possible to extend a method by using overloading without breaking the existing method.

Your goal is to overload the existing method with a new method that will receive an extra String parameter. This is the existing method:

 1 public class DiscountController {
2
3 boolean isDiscountAvailable(String customerId) {
4 return discountService.isDiscountAvailable(customerId);
5 }
6
7 // Implement the method with an extra String parameter here
8 }

You can use this simple DiscountService class for your implementation:

 1 public class DiscountService {
2
3 boolean isDiscountAvailable(String customerId) {
4 System.out.println("Discount available to " + customerId);
5 return true;
6 }
7
8 }

You need to implement a new business requirement where you must pass an extra String containing the userName to log information about which the user is executing this action. The solution is to implement a new method with the extra userName parameter, log the customerId and the userName, and finally invoke the existing method, reusing its functionality.

5.4.1 Inserting by Customer Name

Now suppose you receive a task where you are only receiving the customer name from a front-end application and you need to insert this information.

But you already have a method that is inserting the Customer so the idea is to reuse it utilizing the overloading concept.

Then you need to make your CustomerService class flexible enough to be able to receive only the customer name and transform it into a Customer and then reuse the existent insert method that is receiving the Customer class as a parameter.

You don’t want to pass the whole Customer object to the existing insert method you have on your CustomerService class.

Instead, you want to overload this method and pass in only a String with the customer name.

 1 public class CustomerService {
2
3 CustomerDao dao;
4
5 void insert(Customer customer) {
6 dao.insert(customer);
7 }
8
9 }

To solve this part of the challenge you can use this pre created CustomerDao class:

 1 public class CustomerDao {
2
3 void insert(Customer customer) {
4 System.out.println("Customer inserted");
5 }
6
7 }

And you can use this simple POJO (Plain Old Java Object) to pass the String into it:

 1 public class Customer {
 2
 3 String name;
 4
 5 public Customer(String customerName) {
 6 this.name = customerName;
 7 }
 8
 9 public String getName() {
10 return name;
11 }
12 }

How could you redesign the CustomerService class to meet your needs using the power of method overloading?

5.4.2 Flexible overloading

For this part of the challenge suppose that you’re working for a big retailer, and you need to create three methods that will receive either one, two, or three parameters: a customerId, an optional discountId, and an optional productId.

Your goal is to create a method, processCustomerProduct, that can be invoked with only a customerId or with a customerId and a discountId, or with a customerId, productId, and discountId.

The method that receives one or two parameters should invoke the method that receives three parameters, passing null for the missing values. This is a more efficient design than creating three methods with different names because the logic that must be used is very similar in each case, and instead of having this logic externalized, it’s better to have this intelligence encapsulated in the service. How can you do that?

Insert your overloaded methods in the following code:

 1 public class CustomerService {
 2
 3 // Variables and methods
 4
 5 void processCustomerProduct(String customerId) {
 6 // Invoke the next method here
 7 }
 8
 9 // Create the overloaded methods here
10 }

Don’t worry about the logic of the method that will receive three parameters; simply print the three attributes with a default message. The important point of this challenge is to use overloading.

The knowledge you’ve gained in this chapter will enable you to create flexible and extensible method APIs that are easy to maintain and understand. The more Java you learn the better your code gets, and the more capable you will be to solve complex code problems like these.

5.5 Summary

 	In this chapter you learned how to make effective use of method overloading to create flexible, reusable, and easy-to-read methods.

 	You learned the widening order for primitive and object types.

 	You learned how to use casting to convert a wider to lower types

 	You learned how the JVM interprets hardcoded numbers and how to explicitly declare them with a specific type.

 	You know how to make good use of wrappers with autoboxing, and you understand the drawbacks and tradeoffs of working with wrapper types.

 	You learned how to pass multiple parameters to a method in a clean way by using varargs.

 	You are now capable of using advanced overloading, and you know that the JVM is lazy and will choose the least memory-consuming method to invoke when different options are available (from widening to, autoboxing, and finally varargs).

6 Inheritance and Polymorphism

This chapter covers:

 	Developing code using inheritance and polymorphism, and overriding methods from a superclass

 	Understanding that every class in Java inherits from Object

 	Understanding access modifiers

 	Choosing between inheritance and composition

 	Inheriting from interfaces (an alternative option for multiple inheritance)

 	Developing flexible code by using the super keyword effectively, and invoking constructors with super

 	Casting objects with the use of inheritance

 	Preventing inheritance of classes and methods with the final keyword and the private modifier

 	The differences between normal and abstract classes, and how to create an abstract class design that makes sense in a system

 	Total of 5 Java code Challenges

Inheritance is a very powerful concept in object-oriented programming that greatly facilitates code reuse.
Inheritance in Java is a way to create new child classes, or subclasses, based on the features of existing parent classes, or superclasses. The subclass inherits the behavior (methods) and state (fields) of the superclass, and can modify them as needed without having to reimplement all of the underlying logic. When used wisely, this powerful concept will bring great benefits to your projects.

When we talk about inheritance, polymorphism comes hand-in-hand because it’s only possible to use it with inheritance. Poloymorphism gives a great amount of flexibility in code and helps developers to create clean concise code design. The Collections api makes great use of polymorphism, every Java class can make use of polymorphism. Whenever we override a method from a parent class, we are using polymorphism. The Collections Api has many examples, when we declare a List and instantiate it with an ArrayList we are already using polymorphism. Most of design patterns make use of polymorphism, therefore, it’s an extremely powerful feature to master in the Object-Oriented Programming paradigm.

Composition is another valuable code reuse mechanism, with lower coupling. With composition, one class can have an instance of another class as one of its fields—for example, a House can be composed of Bedrooms, a Kitchen, and so forth, and each of those component parts can be changed independently. This is an important concept in object-oriented programming, where our goal as developers is to abstract and translate real-world problems into code to develop solutions that will make people’s lives easier.

6.1 When to use inheritance

Inheritance can be massively beneficial when used in the right way—and massively problematic when used in the wrong way. It generates a high level of coupling, which means any changes in the parent class’s code may become a nightmare. It’s important, therefore, not to overuse inheritance in your code.

How can you tell whether inheritance will be beneficial in your code? Ask yourself whether there is an is-a relationship between the class you’re creating and the one you want to inherit from. If the answer to this question is no, it’s not a good idea to use inheritance.

Good examples of inheritance include:

 1 Car inherits from Vehicle (a Car is a Vehicle)
2 Dog inherits from Animal (a Dog is an Animal)
3 Gold inherits from Metal (Gold is a Metal)

Conversely, an inappropriate use of inheritance would be for Dog to inherit from Cat: it wouldn’t make sense to say “Dog is a Cat.”

Inheritance in Java is declared by using the extends keyword in the subclass’s definition. For example:

 1 public class Car extends Vehicle {
2 ...
3 }

It works the same way with both concrete classes and abstract classes, which are classes that cannot be instantiated. The Java API uses these extensively to encapsulate functionality and state. We’ll look at abstract classes in depth later in this chapter.

6.1.1 Overriding inherited methods

One of the most powerful features inheritance provides is the ability to override a behavior from the parent class. A parent class can have a default behavior, and the child classes can have specialized behavior appropriate to them. This concept of having many similar classes that are related to a parent class through inheritance is known as polymorphism.

The following code demonstrates polymorphism and method overriding with the generic class Hero and the specialized classes SpiderMan and Wolverine that inherit from and extend it. See if you can figure out why executing the HeroExecutor class’s main method produces the results it does:

 1 class Hero {
 2 void usePower() {
 3 System.out.println("The hero is going to use his power!");
 4 }
 5 }
 6
 7 class SpiderMan extends Hero {
 8 @Override
 9 void usePower() {
10 System.out.println("Hyper Web Throw");
11 }
12 }
13
14 class Wolverine extends Hero {
15 @Override
16 void usePower() {
17 System.out.println("Fatal Claw");
18 }
19 }
20
21 public class HeroExecutor {
22
23 public static void main(String... methodOverridingExample) {
24 Hero hero = new Hero();
25 hero.usePower(); 	 // #1
26
27
28 Hero spiderMan = new SpiderMan();
29 spiderMan.usePower(); // #2
30
31
32 Hero wolverine = new Wolverine();
33 wolverine.usePower(); 		 // #3
34 }
35 }

 	#1 This prints “The hero is going to use his power!”

 	#2 This prints “Hyper Web Throw”

 	#3 This prints “Fatal Claw”

When we instantiate only Hero, we get the behavior specified for that class. Then we instantiate Hero again with SpiderMan. This class overrides the usePower method, so a different message is printed ("Hyper Web Throw").Finally, we instantiate Hero with Wolverine. This class also overrides usePower, so the output from Wolverine is printed ("Fatal Claw").

 @Override
You may be wondering about the use of the @Override annotation in this example. This annotation indicates that the method is overriding a base class method. If there is no matching method in the base class (same name, parameter types, and so on), there will be a compilation error.

 It’s not required to use the @Override annotation, but it provides a useful check that your method overriding efforts will work correctly. Otherwise, in case of a mismatch the subclass method will simply behave as a new method, not an override of the existing method, possibly resulting in unexpected behavior.

6.1.2 Drink Beer Polymorphism Challenge

What Simpsons character drinks beer? Can you guess what will happen when this program is executed?

 1 public class DrinkBeerChallenge {
 2
 3 public static void main(String... doYourBest) {
 4 SimpsonCharacter bart = new Bart();
 5 drinkBeer(bart);
 6 drinkBeer(new Homer());
 7 drinkBeer(new SimpsonCharacter());
 8 }
 9
10 static void drinkBeer(SimpsonCharacter simpsonCharacter) {
11 simpsonCharacter.drinkBeer(simpsonCharacter);
12 }
13
14 }
15
16 class Homer extends SimpsonCharacter {
17 void drinkBeer(SimpsonCharacter simpsonCharacter) {
18 System.out.println("Homer drinks");
19 }
20 }
21
22 class Bart extends Homer {
23 void drinkBeer(SimpsonCharacter simpsonCharacter) {
24 System.out.println("Bart can't drink!");
25 }
26 }
27
28 class SimpsonCharacter {
29
30 void drinkBeer(SimpsonCharacter simpsonCharacter) {
31 System.out.println("A character is drinking beer");
32 }
33
34 }

 	Bart can’t drink!
Homer drinks
A character is drinking beer

 	A character is drinking beer
Homer drinks
A character is drinking beer

 	A character is drinking beer
A character is drinking beer
A character is drinking beer

 	Homer drinks
Homer drinks
A character is drinking beer

Explanation:

This challenge explores the concept of polymorphism, also known as virtual method invocation. When we override a parent class method in a subclass, the JVM will execute the version of the method defined in that subclass when instantiating it, enabling us to alter its behavior. This allows us to invoke methods in a flexible way.

Let’s analyze the code step by step. In the main method, we begin by creating an instance of the Bart class and assigning it to the variable bart, of type SimpsonCharacter. We then pass the instance of Bart to the drinkBeer method:

 1 SimpsonCharacter bart = new Bart();
2 drinkBeer(bart);

As a result the Bart class’s drinkBeer method will be invoked, printing:

 Bart can’t drink!

Next, we instantiate Homer and pass this instance to the method directly:

 drinkBeer(new Homer());

The Homer class’s version of the method will be executed in this case, so the output will be:

 Homer drinks

Finally, we invoke the drinkBeer method passing a SimpsonCharacter instance:

 drinkBeer(new SimpsonCharacter());

Its corresponding method will be invoked, printing:

A character is drinking beer

Therefore, the correct response is:

 1 A) Bart can't drink!
2 Homer drinks
3 A character is drinking beer

Note that we are not only using the power of inheritance here, but also polymorphism. Can you see how much flexibility we gain by just declaring the parent class in the method? The main method is responsible for providing the instance, which means that the drinkBeer method is flexible enough to receive any kind of SimpsonCharacter. If this method needs to be expanded in any way, it’s easier because we can manipulate its behavior in the main method.

Creating decoupled code is crucial for code quality: it makes it easier to make changes to the code, improves testability, and makes the code more flexible and reusable.

6.2 Every Class is an Object

Every Java class is an object, which means every class extends Object. Have you ever noticed that every class has the equals and hashCode methods? That’s not by coincidence—these methods are inherited from the Object class. It’s Java’s ultimate superclass, at the top of the tree.

Any new class you create will implicitly be extending Object. This means you’ll be able to invoke methods from the Object class in your class, as shown here:

 1 public class NewClassExtendsObject {
 2
 3 public static void main(String... thisClassExtendsObject) {
 4 NewClassExtendsObject newClassExtendsObject = new NewClassExtendsObject();
 5 newClassExtendsObject.equals("Test");
 6 newClassExtendsObject.hashCode();
 7 newClassExtendsObject.toString();
 8 // Other methods...
 9 }
10 }

You can also override any methods from the Object class in your classes, such as equals, hashCode, and toString. We will explore those methods more deeply in future chapters. For now, keep in mind that you can define the behavior you want for these Object methods.

6.2.1 SpiderMan Identity Checker Challenge!

This challenge explores the use of the Object class’s equals method. You don’t need to know exactly what this method does to solve it; you just need to know what a method override is and how it works. Look carefully at the code, then see if you can guess the output.

 1 public class SpiderManIdentityChecker {
 2
 3 public static void main(String... doYourBest) {
 4 System.out.println(new SpiderMan("Peter").equals(new SpiderMan("Peter")));
 5 System.out.println(new SpiderMan("Peter").equals(new SpiderMan("Parker")));
 6 }
 7 }
 8
 9 class SpiderMan {
10 String name;
11 SpiderMan(String name) {
12 this.name = name;
13 }
14
15 @Override
16 public boolean equals(final Object obj) {
17 return this.equals(obj);
18 }
19
20 }

 	true
false

 	false
false

 	java.lang.StackOverflowError

 	true
true

Explanation:

The key to this challenge is in the implementation of the equals method.

Notice that this method was overridden incorrectly—because we are pointing to the current instance by using the keyword this, we are invoking the same equals method and passing the obj. This is an infinite recursive method invocation (resulting when a method invokes itself), and to avoid the infinite loop the JVM will throw an java.lang.StackOverflowError.

In conclusion, the correct alternative is:

 C) java.lang.StackOverflowError

6.3 Checking the type of an object

Java’s instanceof keyword is a useful feature that enables us to check whether an object (instance) is of a given type. It comes in very handy when we are working with inheritance. If we want to develop logic that requires us to know the type of a class, we can use the instanceof keyword to verify it.

We can also use the instanceof keyword to check whether a subclass extends a particular parent class, implements an interface, even if a declared parent type has the instance of a subclass.

As usual, let’s examine some code to make these concepts clearer:

 1 public class InstanceofExample {
 2
 3 public static void main(String[] args) {
 4 Object xavier = new Xavier();
 5 System.out.println(new Venom() instanceof Object); // #1
 6 System.out.println(xavier instanceof Xavier && xavier instanceof Object); // #2
 7 System.out.println(new Wolverine() instanceof Hero); // #3
 8 System.out.println(new Hero() instanceof Wolverine); // #4
 9 }
10
11 }
12
13 class Hero {}
14 class Venom {}
15 class Xavier {}
16 class Wolverine extends Hero {}

 	#1: This prints true

 	#2: This prints true

 	#3: This prints true

 	#4: This prints false

Can you see how powerful the instanceof keyword is? Let’s analyze each of the statements in turn. First we instantiate Venom and check whether it is an Object:

 System.out.println(new Venom() instanceof Object);

All Java classes inherit from Object, so this returns true.

Next we instantiate Xavier and assign it to the variable xavier, of type Object. Then we check whether xavier is an instance of both Xavier and Object:

 Object xavier = new Xavier();

System.out.println(xavier instanceof Xavier && xavier instanceof Object);

Because of polymorphic inheritance xavier is an instance of both Xavier and Object, so this will print true.

Then we check instantiate Wolverine and check whether it is a Hero:

 System.out.println(new Wolverine() instanceof Hero);

The Wolverine class extends Hero, so this will also print true.

Finally, we check if a Hero is a Wolverine:

 System.out.println(new Hero() instanceof Wolverine);

The Hero class doesn’t know anything about the Wolverine class—only the opposite is true, because Wolverine extends Hero. Therefore, the result of this comparison is false.

6.2.3 Tricky Object Challenge

This challenge will test your understanding of the instanceof keyword, by presenting a series of class type checks. It also demonstrates the concept of inheritance.

 1 public class TheTrickyObjectClass {
 2
 3 public static void main(String... doYourBest) {
 4 System.out.print(new NoBeerException() instanceof Object ? "1" : "0");
 5 System.out.print(new Barney() instanceof Object ? "1" : "0");
 6 System.out.print(Barney.class instanceof Object ? "1" : "0");
 7 System.out.print(Class.class instanceof Object ? "1" : "0");
 8 }
 9
10 }
11
12 class NoBeerException extends Exception { }
13 class Barney extends Object {} // Line 13

 	1111

 	1100

 	0000

 	Compilation error at line 13

Explanation:

All Java classes extend Object with no exception, even the Class class is an object.

Note that we are using Barney.class which references a class literal. In other words, it means we are getting the class information such as class name, attributes names, types and the class metadata from Barney. Barney.class is the same as Barney.getClass().

Therefore the correct answer is:
A - 1111

6.4 The toString method

The goal of the toString method is to reveal the state of an object. By overriding this method, it’s possible to show the state of an object simply by printing the instance.

Let’s take a look at an example:

 1 public class SimpsonToString {
 2
 3 private String name;
 4 private String weight;
 5
 6 private SimpsonToString(String name, String weight) {
 7 this.name = name;
 8 this.weight = weight;
 9 }
10
11 public static void main(String... toStringExample) {
12 SimpsonToString homer = new SimpsonToString("Homer", "240");
13 System.out.println(homer);
14 }
15
16 @Override
17 public String toString() {
18 return "Simpson name:".concat(this.name).concat(", weight:").concat(weight);
19 }
20
21 }

The output of this program will be:

 Simpson name:Homer, weight:240

The toString method can be handy for logging, for example. Instead of creating specific methods for showing the attributes of the object, we can simply override the toString method with what we want.

An important detail of the toString method is that we can simply print the whole object that the information of the toString method will be simply printed, we don’t need to invoke the toString method explicitly.

6.5 Access modifiers and inheritance

You may have noticed the use of the keyword private in the previous example. Up to this point, all the classes and methods we’ve been working with have been public. These keywords are known as access modifiers, and they control the accessibility of classes and their members (instance variables, fields, and methods). The public access modifier means the members are accessible to all code, while the private modifier means they’re only visible within that class. Methods declared private in a superclass are hidden from subclasses and cannot be accessed directly.

In addition to these, Java provides the default (or package) and protected access modifiers. Default access is what’s provided if you don’t specify a modifier: this code is accessible within the class itself and any other classes in the same package (including subclasses, as long as they’re in the same package). protected access is similar but allows access to all subclasses regardless of what package they’re in.

When you’re overriding a method, you can’t use a more restrictive access modifier than was used in the superclass. If you do, there will be compilation errors. You can use a less restrictive modifier, though, such as public instead of protected.

Let’s see what’s possible and what isn’t with a code example:

 1 class Hero {
 2 void attack() {}
 3 public void jump() {}
 4 }
 5
 6 class Wolverine extends Hero {
 7 public void attack() {} // It's possible to use a more open access modifier
 8 public void jump() {} // It's possible to use the same access modifier
 9 // void jump() {} Compilation error, the default access modifier is more restric\
10 tive
11 // private void jump() {} Compilation error, the private access modifier is more\
12 restrictive
13 }

When overriding methods, keep in mind that they must have the same access restrictions as in the superclass or use a more open access modifier.

6.5.1 Inheritance Modifier Restriction Challenge

This challenge focuses on access modifiers. Can you guess what the output of this program is?

 1 public class TheHiddenModifier {
 2
 3 public static void main(String... doYourBest) {
 4 System.out.println(new TheHiddenModifier());
 5 var hiddenModifier = new TheHiddenModifier();
 6 System.out.println(hiddenModifier.equals(hiddenModifier));
 7 }
 8
 9 @Override
10 String toString() { 	 // Line 12
11 return "theHiddenModifier";
12 }
13
14 @Override
15 public boolean equals(Object obj) {
16 return this.equals(obj); // Line 18
17 }
18 }

 	theHiddenModifier true

 	theHiddenModifier false

 	Compilation error at line 12

 	Compilation error at line 18

Explanation:

The equals method works just fine since we are overriding it with the public access modifier.

However, let’s analyze the Object class’s toString method from the JDK code:

 1 public class Object {
2 public String toString() {
3 return getClass().getName() + "@" + Integer.toHexString(hashCode());
4 }
5 }

Notice that it’s public. This means it can’t be overridden with a weaker access modifier, like the default modifier used at this code challenge; it has to be public.

Since at line 12 the default access modifier is more restrictive than public from the Object class, we will get a compilation error.

Therefore, the final answer will be:
C) Compilation error at line 12

6.6 Object composition

Composition is an alternative to inheritance that is widely used in real projects. One of its main benefits is that it avoids the strong coupling of inheritance, which means it’s easier to make changes to the code.

When should we use composition? To determine this, you have to ask the question: is this object part of something? If the answer to that question is yes, it’s a good candidate for composition. Let’s take a look at a few examples:

 	A Heart is part of a Person (a Person can’t live without a Heart)

 	An Engine is part of a Car (a Car can’t run without an an Engine)

 	An Employee is part of a Company (a Company can’t function without Employees)

Note also that the relationship works both ways. A Heart can’t live outside of a Person (or similar entity), an Engine is no use without a Car to run, and an Employee needs to have a Company to employ them.

To better understand this type of relationship, consider the composition of a Person:

 1 public class CompositionExample {
 2 public static void main(String... personComposition) {
 3 new Person(new Brain(), new Heart() /* other elements */);
 4 // A Person is composed of a Brain, Heart, and many other elements
 5 }
 6 static class Person {
 7 Brain brain;
 8 Heart heart;
 9 Person(Brain brain, Heart heart) {
10 this.brain = brain;
11 this.heart = heart;
12 }
13 }
14 static class Brain { }
15 static class Heart { }
16 }

Composition enables code reuse by allowing you to define objects that are made up of other objects, but without you having to inherit all the methods of those objects in your class.

6.6.1 Object aggregation

Aggregation is a weaker type of object dependency. Simply put, it’s a type of object relationship in which both objects can survive by themselves. If we ask whether an object has an object and the answer is true, it’s a good candidate for aggregation. For example:

 	A Library has Books (Books will exist without a Library)

 	A Person has Clothes (Clothes will exist without a Person)

 	A Dog has a Collar (a Collar will exist without a Dog)

Here’s what this looks like in code:

 1 class Library {
2 List<Book> books = new ArrayList<>();
3 }
4 class Book { }

Note that composition and aggregation are abstract concepts. They depend on your point of view in the real world, and the rules you define for your system. In a real-world application you can simply use the term “composition”—you don’t need to define specifically if an object is a composition or an aggregation—but it’s still good to know the difference between them.

6.6.2 When to use composition instead of inheritance

The following is a really bad example of inheritance:

 1 import java.util.ArrayList;
 2
 3 public class SimpsonCharacterInheritance extends ArrayList<String> {
 4
 5 public static void main(String... badExampleOfInheritance) {
 6 SimpsonCharacterInheritance simpsonCharacters = new SimpsonCharacterInherita\
 7 nce();
 8 simpsonCharacters.add("Homer");
 9 simpsonCharacters.forEach(System.out::println);
10 }
11
12 }

Why? We’re creating a huge amount of coupling by extending ArrayList. If we ask if a SimpsonCharacter is an ArrayList, the answer is no, it definitely isn’t. We are inheriting every method from the ArrayList class into SimpsonCharacter, but a lot of those methods won’t be used.

This scenario would work much better with composition. Let’s see what it would look like if we were to instead compose the SimpsonCharacter class with an ArrayList:

 1 import java.util.ArrayList;
 2 import java.util.List;
 3
 4 public class SimpsonCharacterComposition {
 5
 6 static List<String> characters = new ArrayList<>();
 7
 8 public static void main(String... goodExampleOfComposition) {
 9 characters.add("Homer");
10 characters.forEach(System.out::println);
11 }
12 }

We get all the functionality we need, and none of the functionality we don’t.

6.7 Multiple inheritance in Java

Multiple inheritance refers to the scenario where a subclass inherits from more than one parent class. Unlike some languages, such as Python and C++, Java does not allow multiple inheritance with classes because it adds complexity—but we can simulate this behavior with interfaces. An interface in Java is a collection of abstract methods and fields that specify the behavior of a class. Interfaces don’t keep state, which means they can’t contain instance variables, only constants. We’ll study them in much more detail in the next chapter, but for now this is all you need to know.
If you attempt to inherit from multiple classes, like in the following example, the code won’t compile:

 1 class Hero { }
2 class MarvelCharacter { }
3 class SpiderMan extends Hero, MarvelCharacter { }
4 One solution would be to inherit the classes one by one:
5 class MarvelCharacter { }
6 class Hero extends MarvelCharacter { }
7 class SpiderMan extends Hero { }

Another solution is to replace the classes with interfaces:

 1 interface Hero { }
2 interface MarvelCharacter { }
3 class SpiderMan implements Hero, MarvelCharacter { }

6.7.1 Extending interfaces

What if we want to make an interface inherit methods from a parent interface? We can do that with Java! Here’s an example:

 1 public class InterfaceInheritance {
2
3 interface Human { void talk(); }
4 interface Hero { void rescue(Human human); }
5
6 interface Batman extends Hero, Human {}
7 }

In Java an interface can inherit from another interface just as a class can inherit from another class, so we can reuse the talk and rescue methods from the Human and Hero interfaces within the Batman interface. This is useful when we want to separate responsibilities into more generic interfaces and reuse them in a more effective way—we don’t need to declare those methods again, which makes our code easier to maintain.

6.8 Using super to access a parent class’s methods

It’s possible to access methods of a parent class by using the keyword super. This is a very handy feature to know about when designing your classes, and it’s widely used in design patterns. The super keyword gives amazing flexibility to our code because it enables us to reuse methods from the parent class. This is useful when a subclass contains members with the same names used in the parent class, and you want to distinguish between them.

In the following example, the class Homer invokes the move method from its superclass, Character:

 1 public class SuperMethodExample {
 2
 3 public static void main(String[] args) {
 4 new Homer().drinkBeer(); // It will print: Homer is walking...
 5 }
 6
 7 static class Character {
 8 void move(String name) {
 9 System.out.println(name.concat(" is walking..."));
10 }
11 }
12
13 static class Homer extends Character {
14 void drinkBeer() {
15 super.move("Homer");
16 }
17 }
18
19 }

6.8.1 Using the super keyword with constructors

Like superclass methods, we can invoke constructors from the superclass by using the super keyword. In the following example, the Moe class is invoking the super constructor from the Character class:

 1 public class SuperConstructor {
 2 public static void main(String[] args) {
 3 new Moe(); // This prints "Moe was created"
 4 }
 5
 6 static class Character {
 7 Character(String name) {
 8 System.out.println(name.concat(" was created"));
 9 }
10 }
11
12 static class Moe extends Character {
13 Moe() {
14 super("Moe");
15 }
16 }
17 }

The output of the main method in this example will be "Moe was created".

This is a particularly useful feature to be aware of because unlike other methods, constructors are not inherited by subclasses. There are circumstances where you might want to call a parent class’s constructor from a subclass, however; for example, if you want to reuse the initialization code with some customization to reduce code duplication.

We’ll consider other aspects of the relationship between constructors and inheritance in the next section.

6.9 Constructors and inheritance

Constructors are not members in Java, so they’re not inherited by child classes. This makes sense: a constructor is used to create an object of the class in which it’s defined, so each class should have its own constructor. A special case is the default constructor, as you’ll see next.

6.9.1 The default constructor

In chapter 3, you learned that the JVM will create a default constructor for a class if no constructor is defined. It will also invoke the superclass’s default constructor (the "super constructor") automatically whenever a subclass is instantiated. This is required because the superclass might have private fields that are initialized in its constructor.

Because every Java class extends Object, this means the Object class’s default constructor is implicitly invoked every time an object is instantiated. Imagine if we had to invoke the super constructor for all Java classes—remembering to do that would be a nightmare. That’s one of the reasons that the JVM invokes the super constructor automatically when no parameters are being passed. In effect, it includes the line super(); for you.

In the following example, the Magneto class will be invoking the super constructor of the Villain class with the default constructor created automatically by the JVM:

 1 public class DefaultConstructorInheritance {
 2 static class Villain {
 3 Villain() {
 4 System.out.println("A villain was created!");
 5 }
 6
 7 public static void main(String ...defaultSuperConstructorInvocation) {
 8 new Magneto();
 9 }
10 }
11
12 static class Magneto extends Villain {
13 // The JVM will create the default constructor invoking the parent class con\
14 structor
15
16 /* This is the default constructor:
17 public Magneto() { super(); } */
18 }
19 }

This means when we instantiate the Magneto class, the JVM will invoke automatically the super constructor and print the message "A villain was created!".

Keep in mind that when using inheritance, the first constructor to be executed will be the one from the topmost parent class. In our case, the constructor execution order will be Object, Villain, then Magneto.

6.9.2 Parameterized parent class constructors

When the parent class defines a constructor with one or more parameters, the subclass must invoke this constructor explicitly. Otherwise, you’ll get a compilation error. That’s because the JVM only creates a default constructor when there is no constructor in a class.

In the following code, the Moe class explicitly invokes the super constructor from the Character class. This is required, because otherwise the code won’t compile:

 1 public class CustomizedConstructorSuper {
 2
 3 public static void main(String... customizedConstructor) {
 4 new Moe();
 5 }
 6
 7 static class Character {
 8 Character(String name) {
 9 System.out.println(name + " was invoked");
10 }
11 }
12
13 static class Moe extends Character {
14 // We'll get a compilation error if we don't invoke the constructor explicit\
15 ly
16 Moe () {
17 super("Moe Szyslak");
18 }
19 }
20
21 }

Be aware that if there is another constructor defined in the parent class that does not receive any parameters, you don’t need to invoke the parent class constructor explicitly, as in this example. In the following code, we will see an example of overloaded constructors (constructors receiving different types of parameters). When there is a nontyped constructor in the parent class, we don’t need to add the invocation of the super constructor explicitly.

In this example the Character class has one constructor without any parameters, and another one that takes a String. In this case the Moe subclass will invoke the superclass’s nonparameterized constructor automatically, because the JVM will be able to create a default constructor invoking the super constructor with no parameters:

 1 public class NonParameterizedConstructorSuper {
 2
 3 public static void main(String... nonParameterizedConstructor) {
 4 new Moe();
 5 }
 6
 7 static class Character {
 8 Character() {
 9 System.out.println("A Character was created");
10 }
11
12 Character(String name) {
13 System.out.println(name + "was created");
14 }
15 }
16
17 static class Moe extends Character {
18 // It's not necessary to add super here since the JVM adds super automatical\
19 ly
20 // when there is a constructor with no parameters in the parent class
21 }
22
23 }

Keep in mind that the super keyword will be added by the JVM automatically only for parent class constructors that don’t take any parameters.

6.10 Class casting

When we need to convert a type to another one, we use the concept of casting. This is really useful when we want to deal with different compatible types. We saw some examples of casting with primitive types in the previous chapter, but it can also be done with classes and interfaces.

To illustrate this concept, let’s take a look at a code example where we try to invoke a method from a subclass. Do you think this will work?

 1 public class DrinkBeer {
 2
 3 public static void main(String... drinkBeer) {
 4 drinkBeer(new Homer());
 5 }
 6
 7 static void drinkBeer(Character character) {
 8 character.drinkBeer();
 9 }
10 }
11
12 class Character {
13 }
14
15 class Homer extends Character {
16 void drinkBeer() {
17 	System.out.println("Homer drinks a beer");
18 }
19 }

If you think this code will print "Homer drinks a beer", think again. We’re going to get a compilation error (a ClassCastException) because it’s impossible for the JVM to know at compilation time what the method from the instance is. The JVM will only know about the methods from the Character class, and because the Character class doesn’t have a drinkBeer method, it won’t be possible to invoke this method directly from that class.

The only way to make this happen is through class casting. This is like saying, “Hey JVM, I know what I’m doing, so please cast this class with this type.” When we do that explicitly, the JVM allows us to use the specific method from Homer, drinkBeer.

Let’s see how that works in code:

 1 public class DrinkBeer {
 2 public static void main(String... drinkBeer) {
 3 drinkBeer(new Homer());
 4 }
 5
 6 static void drinkBeer(Character character) {
 7 Homer homer = (Homer) character; // Cast Character to Homer
 8 homer.drinkBeer();
 9 }
10
11 static class Character {
12 }
13
14 static class Homer extends Character {
15 void drinkBeer() {
16 System.out.println("Homer drinks a beer");
17 }
18 }
19 }

This code will compile and produce the expected result—by using the power of casting, we can invoke the drinkBeer method from the Homer class. Bear in mind that you’ll have to use this technique in your code if a specific method exists only in the subclass. Casting from a parent class to a subclass like this is known as downcasting.

6.10.1 Casting a subclass to a superclass

If you want to cast a subclass to a superclass (known as upcasting), that’s perfectly possible:

 1 public class SubclassToSuperClass {
 2
 3 public static void main(String... args) {
 4 Barney barney = new Barney();
 5 Character characterBarney = barney; // This works perfectly
 6 }
 7
 8 static class Character { }
 9 static class Barney extends Character { }
10
11 }

This example works because the Barney class extends the Character class, and therefore the Barney class knows everything about Character. With that in mind, the JVM will not complain about casting the Barney object to Character: Barney is a Character.

6.11 Preventing inheritance

We’ve considered various aspects of inheritance in this chapter, and by now you should have a good understanding of how useful it can be. But what if you want to prevent inheritance of your classes or methods? Let’s take a look at the options.

6.11.1 The final keyword

Sometimes we don’t want a class to ever be extended by another class. A great example from the JDK is the String class:

 1 public final class String
2 implements java.io.Serializable, Comparable<String>, CharSequence,
3 Constable, ConstantDesc { ... }

Note that the String class is declared final. Can you guess why that is? String is an immutable class, which means that its main attributes will never be changed. The final keyword is used to ensure that this is the case—but that isn’t the whole point of this keyword. The main goal of using final is to not allow any other class to extend the String class.

Have you ever tried to extend this class? If you do this:

 class AnyClass extends String { }

the code won’t compile, because the String class is declared as final.

Another important point to mention about a final class is that it’s not possible to override any of its methods. This is because you can’t inherit from such a class. But what if you want to allow inheritance in your classes, but prevent just certain methods from being overridden? You can use the final keyword for that too.

6.11.2 Preventing specific methods from being overridden

If you want a class to be extendable but you don’t want certain methods of the class to be overridden, you can use the final keyword on those methods.

The following example shows what happens when you try to override a final method:

 1 class Character { final void performAction() { }}
2 class Homer extends Character {
3 void performAction() { }
4 }

This code won’t compile because it’s not possible to override a final method.

The only way to make it work is by removing the final keyword from the method declaration, like in the following code:

 1 class Character { void performAction() { }}
2 class Homer extends Character {
3 void performAction() { }
4 }

6.11.3 The private modifier with Inheritance

Another way to protect certain methods of a class is to use the private access modifier. As you learned earlier, private methods or fields won’t be visible to subclasses or any external classes. They are accessible only to the class in which they are defined.

In the following example, the Villain class declares some private members that we then attempt to use in the Joker subclass:

 1 class Villain {
 2 private int age;
 3 private void attack() {}
 4 }
 5
 6 class Joker extends Villain {
 7 void doTrick() {
 8 System.out.println(super.age);
 9 super.attack();
10 }
11 }

This code won’t compile, because the super.age variable and the super.attack method won’t be accessible in the subclass. The only way to make it work is by removing the private access modifier and using a less restrictive option, such as the default modifier:

 1 class Villain {
 2 int age;
 3 void attack() {}
 4 }
 5
 6 class Joker extends Villain {
 7 void doTrick() {
 8 System.out.println(super.age);
 9 super.attack();
10 }
11 }

The code will now work because we are no longer restricting access with the private modifier. Declaring these members protected (or public) would also work.

6.12 Abstract classes

As mentioned earlier, classes that can’t be instantiated directly are called abstract classes. They can contain a mix of concrete and abstract methods (methods with and without implementations). Many JDK classes use this concept, because it wouldn’t make sense to instantiate them. For example:

 1 public abstract class AbstractList<E> extends AbstractCollection<E> implements List<\
 2 E> { ... }
 3
 4 public abstract class AbstractCollection<E> implements Collection<E> { ... }
 5
 6 public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E>\
 7 { ... }
 8
 9 public abstract class AbstractMap<K,V> implements Map<K,V> { ... }
10
11 public abstract class Number implements java.io.Serializable { ... }

Let’s explore the abstract class Number. It doesn’t make sense to instantiate that class, because it’s too generic. Java is a strongly typed programming language, so instantiating the Number class won’t help developers to work with numbers. What’s this class good for, then? When we declare the Number class as abstract, it all makes sense!

We can reuse lots of code from Number in the Java wrapper classes. Here are some examples of JDK classes that extend this one:

 1 public final class Integer extends Number
 2 implements Comparable<Integer>, Constable, ConstantDesc { ... }
 3
 4 public final class Double extends Number
 5 implements Comparable<Double>, Constable, ConstantDesc { ... }
 6
 7 public final class Long extends Number
 8 implements Comparable<Long>, Constable, ConstantDesc { ... }
 9
10 public class BigDecimal extends Number implements Comparable<BigDecimal> { ... }

In fact, all the numeric wrapper classes extend Number. Note that they all pass the is a test: an Integer is a Number, as are a Double, Byte, and so on. All of these classes can reuse the methods declared in the Number class, providing their own implementations for the abstract ones—this is a perfect example of a good use of inheritance.

A good example to illustrate the use of an abstract method is the abstract class OutputStream because this class doesn’t make sense to be instantiated by itself.

Some of the concrete classes that extend OutputStream are FilterOutputStream, ByteArrayOutputStream, DataOutputStream, and others. Those classes can be instantiated and they also inherit the generic behaviours from OutputStream.

 1 public abstract class OutputStream implements Closeable, Flushable {
2 // Attributes and methods...
3
4 public abstract void write(int b) throws IOException;
5 }

Let’s take a look at some code with a customized example of an abstract method. Here, we’re exploring the wrong way to instantiate an abstract class:

 1 public class CustomizedAbstractMethods {
 2
 3 public static void main(String[] args) {
 4 // new Simpson().talk(); This doesn't compile, we can't instantiate abstract\
 5 classes
 6 new Homer().talk(); // The output will be "D'oh"
 7 }
 8
 9 }
10
11 abstract class Simpson { abstract void talk(); }
12 class Homer extends Simpson {
13 @Override
14 void talk() {
15 System.out.println("D'oh");
16 }
17 }

Abstract classes can’t be instantiated directly, but we can instantiate the Homer class, which will instantiate the Simpson abstract class and then print “D’oh”.

6.12.1 What happens if an abstract class extends another abstract class?

It is possible for one abstract class to inherit from another one. In this case, it isn’t necessary for the subclass to implement the abstract methods. This is only required when a concrete class extends an abstract class.

Let’s see how this works in code:

 1 abstract class Hero { abstract void usePower(); }
2 abstract class Marvel extends Hero {}
3
4 class SpiderMan extends Marvel {
5 @Override
6 void usePower() {
7 }
8 }

Note that in the Marvel abstract class, it’s not necessary to declare the usePower method. We only need to do so in the first concrete class in the inheritance chain, which in this case is the SpiderMan class. If we don’t declare this method in the SpiderMan class the code won’t compile.

6.12.2 Marvel Attack Polymorphism Challenge

The following challenge is based on the main topics covered in this chapter. In addition to the InheritanceFinalChallenge class that will run the program, we have the SpiderMan and IronMan classes that extend the abstract Character class.

There are many concepts at play in this challenge. If you get it right, it means you’ve really absorbed the contents of this chapter. If not, don’t worry; you’ll understand why when you run the code and do your own tests.

Therefore, what will happen when running the following code?

 1 public class InheritanceFinalChallenge {
 2 private static int damage;
 3 public static void main(String... doYourBest) {
 4 Character ironMan = new IronMan();
 5 ironMan.attack();
 6 ((IronMan)ironMan).protonCannon(); // Line 6
 7 Character character = new SpiderMan();
 8 character.attack();
 9 System.out.println(damage);
10 ((IronMan)character).protonCannon(); // Line 10
11 }
12 static abstract class Character {
13 Character() { damage++; }
14 abstract void attack();
15 }
16 static class IronMan extends Character {
17 Armor armor = new Armor();
18 void protonCannon() {
19 System.out.println("Boom!");
20 }
21 void attack() { armor.standingLight(); }
22 }
23 static class Armor {
24 void standingLight() { System.out.println("--->>>"); }
25 }
26 static class SpiderMan extends Character {
27 void attack() {
28 new SpiderMan();
29 System.out.println("Spider-Web!");
30 }
31 }
32 }

 	—>>>
Boom!
Spider-Web!
3
The ClassCastException will be thrown at line 10

 	—>>>
The ClassCastException will be thrown at line 6

 	2
The ClassCastException will be thrown at line 10

 	Boom!
Spider-Web!
3
Boom!

Explanation:

Let’s analyze what’s happening in the main method of this challenge. First, we create an instance of the IronMan class and assign it to the variable ironMan, of type Character. Then we invoke the attack method from IronMan (demonstrating the concept of polymorphism):

 1 Character ironMan = new IronMan();
2 ironMan.attack();

This method invokes the standingLight method from the Armor class. The resulting output will therefore be:

 1 --->>>

Next we invoke the protonCannon method, which is specific to the IronMan class. Note that this is only possible if we use casting, because the declared type we used is Character. The Character class doesn’t include this method, so there is no way for the JVM to know it exists at compilation time. We have to take responsibility for this and basically say to the JVM, “I know what I’m doing here, if something bad happens it’s my fault.” The JVM will then allow us to invoke the method:

 ((IronMan)ironMan).protonCannon();

The output from this is:

 Boom!

Next we have another example of polymorphism. Here, we instantiate SpiderMan and invoke the attack method from the SpiderMan class:

 1 Character character = new SpiderMan();
2 character.attack();

This prints:

 Spider-Web!

The damage variable count will be 3 at this point, because with each instantiation we invoke the default super constructor. Remember that the parent class’s constructor will always be invoked first when the child class is instantiated. (If you’re wondering why 3, note that another instance of SpiderMan is created inside the attack method.)

Finally, we invoke the protonCannon method again—but the SpiderMan instance doesn’t have this method, so a ClassCastException will be thrown:

 ((IronMan)character).protonCannon();

Therefore, the final answer will be:

 	—>>>
Boom!
Spider-Web!
3
The ClassCastException will be thrown at line 10

6.13 Factory Method Strategy Discount Real-world Challenge

Suppose you work for a financial company, and you’ve been tasked with calculating final product prices for customers in an exposed web service. An external system needs to invoke a specific method from your project to reuse some of the logic.

You have to create a method to calculate the prices and expose it as a REST service to the other system. You will receive a String called command in your method that indicates which of two types of discounts to apply ("NORMAL_DISCOUNT" or "VIP_DISCOUNT"), and a product ID that you will be able to use to get the original price of the produce from your system. That method has the goal of applying the appropriate discount to the product the customer is buying. The method will return the final price of the product with the discount applied.

If "NORMAL_DISCOUNT" is passed, you need to apply a 20% discount to the price of the received product. If "VIP_DISCOUNT" is passed you must apply a 50% discount.

Note that you can use polymorphism in this situation: you can encapsulate the logic for the "NORMAL_DISCOUNT" in a specialized class and the logic for the "VIP_DISCOUNT" in another class. To do this you will need a generic Discount class that can’t be instantiated (an abstract class) and that has a common method to give a 10% discount for every product on which you need to invoke it for each input you are receiving on your method.

As a bonus, create a unit test method that passes the following input data and make sure the output will be as it was defined in this situation.

This is the input data you will be receiving:

 1 "NORMAL_DISCOUNT", 1
2 "VIP_DISCOUNT", 2
3 "NORMAL_DISCOUNT", 3
4 "NORMAL_DISCOUNT", 4
5 "VIP_DISCOUNT", 5
6 "NORMAL_DISCOUNT", 6

Create a List populated with the following information in your Product POJO:

 1 Product(1, "Bat Mobile", 1000)
2 Product(2, "Flying Car", 2000)
3 Product(3, "PS10", 500)
4 Product(4, "Jetpack", 800)
5 Product(4, "Ultima Weapon Sword", 700)
6 Product(5, "Duff Beer", 10)

In your logic implementation, you should log the name of the product, the price without any discount, and the price with the discount, and then return the price with the appropriate discount applied.

6.14 Summary

In this chapter you learned how to make good use of inheritance, and when to choose composition over inheritance.

 	You also learned about overriding inherited methods and how to use the great power of polymorphism.

 	You now know that all Java classes use inheritance because they all extend Object, and that if you’ve ever overridden the toString, equals, or hashCode methods you already made use of polymorphism.

 	You understand how access modifiers work in relation to inheritance, and how to prevent inheritance of classes or methods with the final keyword or the private modifier.

 	Although Java doesn’t allow inheriting from multiple classes, you’ve seen how to simulate it by inheriting from interfaces.

 	You learned how to work with the super reserved word to access a parent class’s methods and constructors.

 	You also learned how to use abstract classes to design systems that are well organized and easy to maintain.

7 Interfaces

This chapter covers:

 	Developing flexible code that depends on interfaces, not instances, and designing interfaces that are reusable

 	Creating method implementations in interfaces by using default methods

 	Deciding whether to use interfaces or abstract classes

 	Using static methods in interfaces

 	Simulating multiple inheritance with default methods

 	Using private methods in interfaces

 	Total of 5 Java code Challenges

A great way to make Java code more flexible is by using interfaces. This reduces coupling in our code, making it easier to change and extend it when necessary.

An interface works like a contract. Any class that implements a given interface contract will have to implement all public abstract methods from that interface. With interfaces, we can apply the concept of polymorphism, which means that we can pass different implementations to the same interface. That’s a crucial concept for building code that’s easy to extend, because chances are that changes will be only necessary in the implementation of the interface parameter.

Many core Java classes use the concept of interfaces. For example, ArrayList implements List, HashSet implements Set, HashMap implements Map, ArrayDeque implements Deque, and so on.

7.1 Interfaces and Polymorphism

To demonstrate the flexibility that interfaces provide, let’s consider an example. Here, the addElement method takes the List interface as a parameter. That means we can pass this method an instance of any class that implements that interface:

 1 public class ListExample {
 2
 3 public static void main(String... usingListWithFlexibility) {
 4 addElement(new ArrayList());
 5 addElement(new LinkedList());
 6 addElement(new Vector());
 7 addElement(new CopyOnWriteArrayList());
 8 }
 9
10 static void addElement(List list) {
11 list.add("Adding elements with different types of lists.");
12 System.out.println(list + ":" + list.getClass().getSimpleName());
13 }
14
15 }

This is a powerful concept, because it means if you need to work with a different List you can simply send the type you need. Now imagine if you needed to implement this same logic without polymorphism—you would have to replicate this code with a specific method for each List type:

 1 import java.util.ArrayList;
 2 import java.util.LinkedList;
 3 import java.util.Vector;
 4 import java.util.concurrent.CopyOnWriteArrayList;
 5
 6 public class AddListElementWithoutPolymorphism {
 7
 8 public static void main(String... addingElementsWithoutPolymorphism) {
 9 addElement(new ArrayList());
10 addElement(new LinkedList());
11 addElement(new Vector());
12 addElement(new CopyOnWriteArrayList());
13 }
14
15 static void addElement(ArrayList list) {
16 list.add("Adding elements with different types of lists.");
17 System.out.println(list + ":" + list.getClass().getSimpleName());
18 }
19
20 static void addElement(LinkedList list) {
21 list.add("Adding elements with different types of lists.");
22 System.out.println(list + ":" + list.getClass().getSimpleName());
23 }
24
25 static void addElement(Vector list) {
26 list.add("Adding elements with different types of lists.");
27 System.out.println(list + ":" + list.getClass().getSimpleName());
28 }
29
30 static void addElement(CopyOnWriteArrayList list) {
31 list.add("Adding elements with different types of lists.");
32 System.out.println(list + ":" + list.getClass().getSimpleName());
33 }
34
35 }

Note the repetition—this code is far harder to read and will be much more difficult to maintain. It accomplishes the same thing as the previous version, but requires much more code. This should give you an idea of the power of polymorphism with interfaces.

7.2 Covariant return types

We know that when using polymorphism the method signature—that is, the method name, return type and parameters type—has to be the same. However, does a return type have to be always the same? A method’s return type can only be changed if there is an inheritance relationship between the classes, and the superclass has to have the most generic type. For example, if the return type in the superclass is Number, the return type in the subclass could be Integer because Integer inherits from Number. This idea that the return type in the subclass must be more specific than the one in the superclass (that is, must vary in the same direction as the subclass relationship) is known as covariance.

In the following example, we’re overriding the move method from Dinosaur in the subclass Pterodactyl and returning a String. This works because String is a child of Object. If we tried to use a primitive type in the subclass, for example, the code wouldn’t compile because a primitive type is not an Object:

 1 public class CovariantReturn {
 2
 3 public static void main(String... dinosaurs) {
 4 new Dinosaur().move();
 5 new Pterodactyl().move();
 6 }
 7
 8 }
 9
10 class Dinosaur {
11 Object move() {
12 return "The Dinosaur is moving";
13 }
14 }
15
16 class Pterodactyl extends Dinosaur {
17 @Override
18 String move() {
19 return "The Pterodactyl is moving in the air";
20 }
21 }

The return type from the child class has to be a child of the parent class’s return type. This technique won’t work with primitive types because there is no inheritance between them.

7.2.1 Jedi Covariant Polymorphism Challenge

In this challenge we have an abstract class and another class that extends it. The concept of covariant types is being used here. What do you think the output will be after the main method is compiled and run? Will the code compile?

 1 public class YodaForce {
 2 public static void main(String... covariantType) {
 3 System.out.println(new Yoda().useSaber());
 4 System.out.println(new Yoda().attack());
 5 System.out.println(new Yoda().lightForce); // Line 6
 6 }
 7 static abstract class LightForce {
 8 int lightForce;
 9 abstract Object useSaber();
10 abstract long attack();
11
12 LightForce() {
13 lightForce++;
14 }
15 }
16 static class Yoda extends LightForce {
17 String useSaber() {
18 return "useSaber";
19 }
20
21 long attack() {
22 return 99999;
23 }
24 }
25 }

 	useSaber
99999
3

 	Compilation error at line 6

 	useSaber
99999
1

 	RuntimeException

This code will compile and run fine. The concepts demonstrated here are mostly about polymorphism. In the first method invocation, we are simply invoking the overridden useSaber method:

 System.out.println(new Yoda().useSaber());

Note that we are using a covariant return type for the overridden method: the Yoda subclass’s useSaber method returns a String instead of an Object. This method prints “useSaber”.

In the second method invocation we are invoking another overridden method, attack:

 System.out.println(new Yoda().attack());

We can’t use a covariant type here because there is no inheritance between primitive types; both methods return a long. The output of this method call is 99999.

Finally, we print the lightForce variable that is incremented each time the LightForce class is instantiated:

 System.out.println(new Yoda().lightForce); // Line 6

Even though we instantiate the LightForce class three times, note that the lightForce variable is an instance variable. Therefore, the variable will be reset every time a new instance is created. We have three instantiations, but the result of this variable will be 1 for each of the three instances.

In conclusion, the correct alternative is:

 	useSaber
99999
1

7.3 Default methods

A problem had to be solved in Java 8. It was necessary to add many new methods in widely used interfaces such as List, Set, and Map because of the use of functional programming in the existing Collection api. Imagine if a public abstract methods were declared in the List interface—a lot of code would break because classes that implement that interface would not correctly implement the new methods, and if those methods had to be added to all those classes the code repetition would be immense.

Java is a language that values backward compatibility, so the decision was made to allow methods with implementations in interfaces. With these new methods, known as default methods, it’s possible to provide a default implementation in the interface so that each class is not required to provide its own implementation.

A great example of a default method that’s widely used in Java 8 and later is the forEach method implemented in the Iterable interface. This method goes through each element in a collection, performing the specified action. Let’s take a look at the method declaration (don’t worry too much about understanding what’s happening here now, we’ll explore functional programming in more depth in later chapters):

 1 public interface Iterable<T> {
2 // Other methods omitted
3 default void forEach(Consumer<? super T> action) {
4 		Objects.requireNonNull(action);
5 		for (T t : this) {
6 		action.accept(t);
7 		}
8 	}
9 }

We can also provide customized default methods in our own classes. Let’s see how that works:

 1 public class Yoda implements Jedi {
 2
 3 public static void main(String... defaultMethodExample) {
 4 new Yoda().useForce();
 5 }
 6
 7 }
 8
 9 interface Jedi {
10
11 default void useForce() {
12 System.out.println("Using the force!");
13 }
14
15 }

As you can see, we don’t need to implement the default method; we simply instantiate the Yoda class and use the useForce method. The output will be:

 "Using the force!"

7.4 Abstract classes vs. interfaces

You may be wondering whether interfaces are the same as abstract classes. The answer is no—there are many differences between them. One is that abstract classes can have instance variables that keep state, whereas interfaces can only have constants. Also, more than one interface can be implemented in a class, but just one abstract or concrete class can be extended. Finally, abstract classes have constructors but interfaces do not.

The following code illustrates the differences between an abstract class and an interface. The LightForce abstract class has a constructor and an instance variable, force. The DarkForce interface has a constant, FORCE, and a default method, useForce. In the main method of the program we invoke the constructor of the abstract class and the default method from the DarkForce interface:

 1 public abstract class LightForce {
 2 private int force;
 3 LightForce(int force) {
 4 this.force = force;
 5 System.out.println("The force is being used:" + this.force);
 6 }
 7
 8 public static void main(String... abstractClassesVsInterfaces) {
 9 new LukeSkywalker(1099);
10 new DarthVader().useForce();
11 }
12 }
13
14 interface DarkForce {
15 int FORCE = 999;
16
17 default void useForce() {
18 System.out.println("The force is being used:" + FORCE);
19 }
20 }
21
22 class LukeSkywalker extends LightForce {
23 LukeSkywalker(int force) {
24 super(force);
25 }
26 }
27 class DarthVader implements DarkForce {}

The output of this program will be:

The force is being used:1099
The force is being used:999

As you can see, even with default methods, interfaces are very different from classes. A default method can only receive a parameter as a variable, and if we declare a variable in the interface, it has to be a constant. Default methods are a great solution for avoiding code code repetition, however, and also a great feature that enables us to create more sophisticated interfaces with meaningful code.

7.4.1 Abstract Class VS Interface Challenge

In the following challenge, we have an interface and an abstract class. The interface has a default method, useSaber, and in the abstract class we implement the method attack. We are also using the concept of an anonymous inner class in the main method. What do you think will happen when this program is run?

 1 public class LightVsDarkSide {
 2
 3 public static void main(String... abstractVsInterface) {
 4 Object object = new ObiWan() {
 5 int attackPower = 99999;
 6 Object jump() {
 7 attackPower = 999999; // Line 7
 8 return attack(attackPower);
 9 }}.jump();
10
11 System.out.println(object);
12
13 DarthMaul darthMaul = new DarthMaul() {
14 int defencePower = 99999; // Line 14
15 public void useSaber() {
16 System.out.println("DarthMaul loses the saber and defends with the p\
17 ower of " + defencePower);
18 }
19 };
20
21 darthMaul.useSaber();
22 }
23
24 }
25
26 abstract class ObiWan {
27 Object attack(int attackPower) {
28 return "ObiWan attacks DarthMaul with the power of " + attackPower;
29 }
30 }
31
32 interface DarthMaul {
33 default void useSaber() {
34 System.out.println("DarthMaul uses the saber");
35 }
36 }

 	Compilation error at line 7

 	Compilation error at line 14

 	ObiWan attacks DarthMaul with the power of 999999
DarthMaul uses the saber

 	ObiWan attacks DarthMaul with the power of 999999
DarthMaul loses the saber and defends with the power of 99999

 Important: Remember, practice makes it perfect. Therefore, try out the Java Challenge before seeing the answer.

Explanation:

Let’s analyze the code to understand what is happening. In the first lines of the main method we are using the concept of anonymous inner classes. As explained before at chapter 4, an anonymous inner class is a class without a name intended to be used just once. It can define static members and class methods, extend another class, or implement an interface.

In our case, the anonymous inner class is extending ObiWan and then declaring the attackPower variable. It then overrides the Object class’s jump method, changing the value of attackPower to 999999. The last instruction in the method is the attack method invocation; we pass this the attackPower variable and it prints the String as normal.

Next, we use the same concept of an anonymous inner class to implement the DarthMaul interface. Notice that we are not instantiating an interface or an abstract class; we are using a class with no name that extends an abstract class or implements an interface. At the beginning of this anonymous inner class we declare a constant called defencePower. Then we override the default useSaber method, passing the defencePower variable into it. Finally, we invoke the useSaber method from DarthMaul.

In conclusion, the final result will be:

 	ObiWan attacks DarthMaul with the power of 999999
DarthMaul loses the saber and defends with the power of 99999

7.5 Static methods in interfaces

It’s possible to use static methods in interfaces, just as we do in normal classes. We simply use the interface name and invoke the static method, as shown here:

 1 public class StarWarsWarrior {
 2
 3 public static void main(String... staticMethodOnInterfaces) {
 4 Chewbacca.roar();
 5 }
 6
 7 }
 8
 9 interface Chewbacca {
10
11 static void roar() {
12 System.out.println("Roar!");
13 }
14 }

The output in this case will be "Roar!". Just remember that when you use an interface’s static or default methods you can’t use the access modifier protected; if you try this you’ll get a compilation error.

Another important thing to understand about static methods is that they can’t be overridden. Considering that a static method is a class method, not an instance method, that makes sense.

As the following example demonstrates, the only way to invoke a static method defined in an interface is by referencing the interface name and invoking the method. If you try to invoke the static method by the interface implementation instance, the code won’t compile:

 1 public class LukeSkyWalker implements Jedi {
 2
 3 public static void main(String... staticMethodShadowing) {
 4 Jedi anakinSkyWalker = new LukeSkyWalker();
 5 // anakinSkyWalker.useSaber(); This doesn't compile
 6 Jedi.useSaber();
 7 }
 8
 9 static void useSaber() {
10 System.out.println("Luke uses his saber");
11 }
12
13 }
14
15 interface Jedi {
16
17 static void useSaber() {
18 System.out.println("Anakin uses his saber");
19 }
20
21 }

The above code will print the following:
“Anakin uses his saber”

7.6 Simulating multiple inheritance with default methods

Have you ever wondered which interface method will be invoked if a class implements two different interfaces that define the same method? If you don’t include a specific method in the class that implements those two interfaces, the code won’t compile.

The following example demonstrates this. The Anakin class implements two interfaces, Jedi and Sith, that both declare the useSaber method:

 1 public class Anakin implements Jedi, Sith {
 2
 3 public static void main(String... defaultMethodMultipleInheritance) {
 4 new Anakin().useSaber();
 5 }
 6
 7 }
 8
 9 interface Jedi {
10 default void useSaber() {
11 System.out.println("Jedi's Saber slash");
12 }
13 }
14
15 interface Sith {
16 default void useSaber() {
17 System.out.println("Sith's Saber slash");
18 }
19 }

This code will produce the following compilation error:

Error:(3, 8) java: types Jedi and Sith are incompatible; class Anakin inherits unrelated defaults for useSaber() from types Jedi and Sith

What you need to do to make it work is provide an implementation of the useSaber method in Anakin that will remove the ambiguity for the compiler.

 1 public class Anakin implements Jedi, Sith {
 2
 3 public static void main(String... defaultMethodMultipleInheritance) {
 4 new Anakin().useSaber();
 5 }
 6
 7 @Override
 8 public void useSaber() {
 9 System.out.println("Anakin's Saber slash");
10 Jedi.super.useSaber();
11 Sith.super.useSaber();
12 }
13
14 }
15
16 interface Jedi {
17 default void useSaber() {
18 System.out.println("Jedi's Saber slash");
19 }
20 }
21
22 interface Sith {
23 default void useSaber() {
24 System.out.println("Sith's Saber slash");
25 }
26 }

The output of this program will be:

 1 Anakin's Saber slash
2 Jedi's Saber slash
3 Sith's Saber slash

This example also demonstrates how it’s possible to use the super keyword to reference a specific interface method. It’s important to mention that we can only do this if we’re implementing the interface. In conclusion, as mentioned in the previous chapter, although Java doesn’t actually support multiple inheritance there are some ways to simulate this behavior.

7.6.1 Chewbacca Default Attack Challenge

This challenge explores the concepts of polymorphism and static methods. Can you guess what will happen when this program is executed?

 1 public class ChewbaccaWarrior implements Warrior {
 2
 3 public static void main(String... doYourBest) {
 4 pilotShip();
 5 new ChewbaccaWarrior().attack();
 6 }
 7
 8 public void run() {
 9 System.out.println("Chewbacca is running");
10 }
11
12 static void pilotShip() {
13 System.out.println("Chewbacca pilots the ship");
14 }
15 }
16
17 interface Warrior extends Brave {
18 int attackForce = 99999;
19
20 default void attack() {
21 System.out.println("Warrior attack:" + attackForce);
22 run(); // Line 27
23 Brave.super.attack();
24 }
25
26 static void pilotShip() {
27 System.out.println("Warrior pilots the ship");
28 }
29
30 void run();
31 }
32
33 interface Brave {
34 default void attack() {
35 System.out.println("Brave attack");
36 }
37 }

 	Compilation error at line 4

 	Chewbacca pilots the ship
Warrior attack:99999
Chewbacca is running
Brave attack

 	Compilation error at line 5

 	Compilation error at line 27

 Important: Remember, to improve your programming skills you need to try out the Java Challenge before seeing the answer.

Explanation:

If you guessed that it will compile fine, you got this challenge right—congratulations! If not, don’t worry; you’ll learn why as we walk through the code.

The first method we invoke in the main method is the static method pilotShip:

 pilotShip();

The pilotShip method from the ChewbaccaWarrior class will be invoked in this case because we are not expliciting saying that we want to invoke the pilotShip method from another class or interface. The JVM will automatically add the class name of the enclosing class, like this:

 ChewbaccaWarrior.pilotShip();

Remember that it’s not possible to use polymorphism with static methods, so they always refer to classes, not instances.

Now we’re going to explore polymorphism. In the second line we invoke the attack method:

 new ChewbaccaWarrior().attack();

This method is declared in both the Warrior and Brave interfaces. The Warrior interface overrides the attack method from the Brave interface, so the Chewbacca class will use the Warrior attack method and not the Brave attack method.

Let’s take a closer look at the default attack method in the Warrior interface:

 1 default void attack() {
2 System.out.println("Warrior attack: " + attackForce);
3 run();
4 Brave.super.attack();
5 }

The first line simply prints the String "Warrior attack: 99999". Remember that the attackForce constant can’t be changed—interfaces don’t have state, so they can’t have instance variables that are mutable.

In the second line of the attack method, we invoke the run method. At first glance this seems strange, because it looks like we’re invoking a method without a body. Just remember that it’s impossible to invoke a default method without an instance, and to have an instance it’s necessary to have an implementation of the interface; thus, we can conclude that whenever we invoke this attack method we will always have an implementation for the run method. That’s exactly what is happening in our challenge. The ChewbaccaWarrior class is implementing the Warrior interface, and it’s also implementing the abstract run method. Consequently, the code implemented in the run method of the ChewbaccaWarrior class will be executed. So, this method invocation will print:

 "Chewbacca is running"

The last line of the Warrior interface’s attack method invokes the default attack method from the Brave interface. This will print:

 Brave attack

In conclusion, the right alternative is B.

7.7 Private methods in interfaces

Java 9 introduced the possibility of including private methods in interfaces, for the purpose of avoiding code repetition. Sometimes it’s necessary to have some code in the default methods, and it’s handy to be able to implement our logic in a private method.

Let’s take a look at an example where code repetition would be necessary for a default method:

 1 public interface HanSolo {
 2
 3 default void shootWithABlaster() {
 4 String weapon = "Blaster";
 5 System.out.println("Choose the weapon:" + weapon);
 6 System.out.println("Get the " + weapon);
 7 System.out.println("Aim the " + weapon);
 8 System.out.println("Shoot with the " + weapon);
 9 }
10
11 default void shootWithABowcaster() {
12 String weapon = "Bowcaster";
13 System.out.println("Choose the weapon:" + weapon);
14 System.out.println("Get the " + weapon);
15 System.out.println("Aim the " + weapon);
16 System.out.println("Shoot with the " + weapon);
17 }
18
19 }

There’s a lot of repetition here! Now let’s see what happens when we refactor that with the use of a private method. This example demonstrates why private methods are important for interfaces, and how to take advantage of this feature:

 1 public interface HanSolo {
 2 default void shootWithABlaster() {
 3 String weapon = "Blaster";
 4 shoot(weapon);
 5 }
 6 default void shootWithABowcaster() {
 7 String weapon = "Bowcaster";
 8 shoot(weapon);
 9 }
10 private void shoot(String weapon) {
11 System.out.println("Choose the weapon:" + weapon);
12 System.out.println("Get the " + weapon);
13 System.out.println("Aim the " + weapon);
14 System.out.println("Shoot with the " + weapon);
15 }
16 }

This is a far simpler and more reusable approach.

7.7.1 Private Jedi Jump Challenge

This challenge explores important concepts relating to private, static, and default interface methods and how to manipulate them. Can you guess what will happen when the main method is executed?

 1 public class JediAttack {
 2 interface Jedi {
 3 default int attack() {
 4 return jump() + useSaber() + useForce();
 5 }
 6
 7 private int jump() { return 1; }
 8 private static int useSaber() { return 3; }
 9 private int useForce() { return 5; }
10 }
11 public static void main(String... doYourBest) {
12 System.out.println(new Jedi() {
13 public int jump() { // Line 13
14 return 2;
15 }
16 }.attack() + Jedi.useSaber()); // Line 16
17 }
18 }

 	13

 	12

 	Compilation error at line 14

 	Compilation error at line 16

 Important: By analyzing and running the code in your mind, you will absorb the concepts of the Java Challenge.

Explanation:

The first point to analize is that we are instantiating an annonymous inner class from the Jedi interface, this means, an instance without a name.

Then we are trying to override the jump() method in the annonymous inner class. However, note that the jump() method declared in the Jedi interface is private. Therefore, it’s impossible to override this method, it’s not reacheable outside of this interface. The jump() method declared in the annonymous inner class will never be used since it wasn’t overridden.

Now, we are going to invoke the attack method which invokes the jump(), useSaber and useForce() methods. Let’s see what happens in the following invocations:

 	The jump() method invocation returns 1 since there is no overriding.

 	The useSaber() method returns 3, also note that this method is static. It’s possible to use static methods in interfaces since Java 8.

 	The useForce() method returns 5 which is another private method.

So far, we have the result of 9 by summing those method return values.

Finally, we will invoke the static useSaber() method that returns 3. Therefore, the final result will be:

 B) 12

7.8 Command Design Pattern Challenge

Are you familiar with the Command design pattern? With the knowledge you’ve gained in this chapter, you’ll be able to develop code that follows this pattern. The Thread class is a great example of the Command pattern—when we start a Thread, the logic from the run method will be executed. That’s the idea of this real-world challenge.

Your goal is to verify whether a product is eligible for a discount. You will receive a Product with a name, price, type, and quantity in your CommandExecutor and a List of three Commands to deal with different business requirements.

In one Command you will implement logic to verify that the product quantity is at least 2. In the second Command you will check that the price of the two products is at least 500. Finally, you will verify that the product type is robotics. If all those conditions are true, you will log a message:

The product $productName is eligible for a discount

7.9 Summary

With the knowledge you’ve gained in this chapter, you will be able to design your systems in a more loosely coupled and easily maintainable way by using interfaces together with the concepts of polymorphism and overriding methods. Polymorphism is one of the most important and difficult concepts to master in any object-oriented programming language, and understanding it will make it much easier to grasp other concepts.

 	You learned that it’s possible for an interface to extend another one, which will be helpful in designing your classes. Many classes from the JDK use this concept.

 	You know the differences between interfaces and abstract classes and when to use each one.

 	You also know how to use default, static, and private methods in interfaces and how to simulate multiple inheritance with default methods.

8 Exceptions

This chapter covers:

 	Understanding the difference between checked and unchecked exceptions and when to use each type

 	Using the stack trace to identify the root cause of an error

 	Handling or declaring checked exceptions in your code

 	Using the try, catch, finally flow effectively

 	Closing Java resources effectively by using the try-with-resources statement

 	Catching multiple exceptions in a single catch block

 	Creating customized exceptions that make sense for the application

 	Using the “throw early, catch later” principle for code quality

 	Total of 4 Java Code Challenges

Exceptions—unwanted or unexpected events that arise during execution of a program, disrupting the normal flow of the program’s instructions—are one of the most important concepts to master in Java. As a developer, you’ll need to handle them on a daily basis. When exceptions are handled in the wrong way, bugs are able to hide more easily. This causes developers a lot of stress, so it’s crucial to understand how to use exceptions effectively.

It’s common to see exceptions that won’t help developers when errors occur—for example, generic exceptions with poor log messages. Understanding the key concepts of exceptions and which types of exceptions are most suitable to use in different situations will make all the difference in the software you develop. Successfully absorbing the contents of this chapter will be a huge help to the professional Java developer who wants to deliver high-quality code.

8.1 Checked and unchecked exceptions

There are two main types of exceptions: checked and unchecked. Understanding the difference between them is crucial for handling exceptions effectively.

When we want a class to always handle or declare an exception, we should use a checked exception. These are conditions that are checked at compile time, so they can be handled and the program can continue executing. When we don’t want the application to recover or handle the exception, we should use an unchecked exception. These are checked at runtime and are usually conditions that are outside the control of the program and should cause execution to stop.

Just as Object is the superclass of all object types in Java, Throwable is the superclass of all exception types (both checked and unchecked). When an exception occurs in a method the method creates an object of type Throwable, hence the term “throwing” an exception.

With that basic introduction in mind, let’s take a closer look at the details of the different types of exception.

8.1.1 Checked exceptions

Checked exceptions cause a compilation error when thrown by a method, causing program execution to stop unless they are handled by another method. For that reason, many developers say that checked exceptions break the concept of encapsulation (the idea that data and methods that work on that data should be contained within a single unit, such as a class). And in a way they’re right, because the method that throws an exception will be know that the other method is throwing an exception within the logic.

In general, you should use checked exceptions when you are dealing with an important business requirement that has to be clear, or when you don’t have control over an external resource you are using in your application.

You can see many examples of checked exceptions when working with the well-known JDBC (database manipulation) API from the JDK. Suppose you’re working with an external database, and when you try to access it for some reason the database is not running. When the database is down, it makes sense to throw an exception that will let us know what is happening.

With a checked exception, you will know for sure that this exception is being thrown because the compiler will complain if you don’t handle the exception. You can also use a customized log message to make the error clear.

Let’s see an example of a checked exception in action:

 1 public static Connection getConnection() {
 2 Connection connection = null;
 3 try {
 4 connection = DriverManager.getConnection(
 5 "jdbc:postgresql://localhost:5432/anyDatabase", "user", "password");
 6 } catch (SQLException sqlException) {
 7 // Some logic here
 8 sqlException.printStackTrace();
 9 }
10
11 return connection;
12 }

There are several different strategies you could use to recover from this error. For example, you could return a Connection from another database, or you could wrap the sqlException in a more generic type. You could also use a generic exception to avoid throwing many different exceptions in a single method, like the InfrastructureException used here:

 1 public static Connection getConnection() {
2 try {
3 return connection = DriverManager.getConnection(
4 "jdbc:postgresql://localhost:5432/anyDatabase", "user", "password");
5 } catch (SQLException sqlException) {
6 throw new InfrastructureException (sqlException);
7 }
8 }

All checked exceptions inherit from Exception, which is a subclass of Throwable.

8.1.2 Unchecked exceptions

Unchecked exceptions are useful when you want to make the application stop working and don’t want to recover from the error condition. They are used for things that might go wrong during runtime of an application and do not result in compilation errors.

All unchecked exceptions inherit from RuntimeException, which is a subclass of Exception. There are only a few very specific situations where we should handle a RuntimeException . Instead, we should try to avoid them by using code logic.

The famous NullPointerException, which is widely used in the JDK code, is a great practical example of what a RuntimeException should be used. Consider the example of the toUpperCase method from the String class:

 1 public String toUpperCase(Locale locale) {
2 if (locale == null) {
3 throw new NullPointerException();
4 }
5 ...
6 }

Note that we simply throw the NullPointerException without handling it. The Locale class is crucial for the logic of this method; if there is no Locale (an Object representing a specific geographical, political, or cultural region), the intention of the programmer that implemented the toUpperCase method is to make the application crash.

Another well-known example is IllegalArgumentException, which should be thrown when an unexpected argument is passed to a method. The File class from the JDK uses IllegalArgumentException when the uniform resource identifier (URI) it’s passed is invalid, because there is no way to handle this condition programmatically:

 1 public File(URI uri) {
2 if (!uri.isAbsolute())
3 throw new IllegalArgumentException("URI is not absolute");
4 ...
5 }

8.1.3 JVM errors

Other than Exception and RuntimeException there is the Error. This is the most serious type of error that can happen and should never be handled. The various error types in Java all inherit from Error, which, like Exception, extends the class Throwable. An example is the StackOverflowError, which indicates that there was a problem with the memory stack. If that happens the application should crash right away.

We can make a StackOverflowError happen by creating a recursive method invocation. This method will keep calling itself indefinitely, eventually exhausing the memory resources of the system, if the problem is not caught:

 1 void pressButton(String employeeName) {
2 pressButton("Homer");
3 }

8.1.4 The exception hierarchy

Figure 8.1 illustrates the relationship between the various Exception and Error classes in Java. Note that these are only a few representative examples of the subclasses of the parent types (Exception, Error, RuntimeException, and so on). The important thing to understand is that all checked exceptions inherit from Exception, and all unchecked exceptions inherit from RuntimeException or Error.

 [image:]

Figure 8.1 The exception hierarchy in Java

As you can see, SQLException and FileNotFoundException are checked exceptions, whereas NullPointerException and StackOverflowError are both unchecked exceptions. The class at the top of the exception tree, Throwable, is also a checked exception.

8.2 Stack Trace

Perhaps the most important feature of an exception is the stack trace. With this information we can track down the root cause of the error (which method it occurred in), and then figure out what’s happening and how to fix it.

Consider the following example, where an exception will be thrown from the applyDiscount service method that is being invoked from a controller class (the class that connects with the frontend of an application):

 1 public class BillingController {
 2
 3 BillingService billingService;
 4
 5 BillingController(BillingService billingService) {
 6 this.billingService = billingService;
 7 }
 8
 9 public static void main(String... stackTrace) {
10 BillingController controller = new BillingController(new BillingService());
11 controller.applyDiscount("1");
12 }
13
14 void applyDiscount(String customerId) {
15 billingService.applyDiscount(customerId);
16 }
17 }
18
19 class BillingService {
20 void applyDiscount(String customerId) {
21 throw new RuntimeException();
22 }
23 }

When the main method is executed, a RuntimeException will be thrown and the stack trace will be printed to the console (this is the default behavior whenever an unhandled exception is thrown). In this case, the stack trace of the exception will be the following:

 1 Exception in thread "main" java.lang.RuntimeException
2 	at exceptions.stacktrace.BillingService.applyDiscount(BillingService.java:5)
3 	at exceptions.stacktrace.BillingController.applyDiscount(BillingController.java:17)
4 	at exceptions.stacktrace.BillingController.main(BillingController.java:13)

Note that the stack trace is a list of methods leading from the root method that threw the exception, which is applyDiscount, to the last method that received it, which is main.
More important exception methods
Other than the printStackTrace method there is the getMessage method that will inform what error has happened in the application. We can pass this message in the constructor to an Exception class or any customized exception.

 1 public class NoBeerException extends Exception {
 2
 3 NoBeerException(String message) {
 4 super(message);
 5 }
 6
 7 public static void main(String[] args) throws NoBeerException {
 8 throw new NoBeerException("All the beer is gone :(");
 9 }
10 }

Notice that we are passing the exception message into the constructor. That brings us a lot of power to make the error clear and easily fixable.

There is also the getCause method that will help you to find out what was the root cause of the exception.

8.3 Handling or Declaring Checked Exceptions

When we work with checked exceptions, we must either handle or declare them. If we don’t do that, the code won’t compile. There are many checked Exceptions in the JDBC API, for example. We are obliged to either handle the checked exceptions from the JDBC API by using try and catch or throw the exception in the method signature.

When we try to create a File, for example, without handling or declaring the FileNotFoundException, the code won’t compile:

 1 public static void main(String[] args) {
2 File file = new File("Simpsons.txt");
3 BufferedReader br = new BufferedReader(new FileReader(file));
4 }

Here we have two options. Either we handle it with try and catch blocks:

 1 public static void main(String[] args) {
2 File file = new File("Simpsons.txt");
3 try {
4 BufferedReader br = new BufferedReader(new FileReader(file));
5 } catch (FileNotFoundException e) {
6 e.printStackTrace();
7 }
8 }

Or we declare it in the method signature with a throws clause:

 1 public static void main(String[] args) throws FileNotFoundException {
2 File file = new File("Simpsons.txt");
3 BufferedReader br = new BufferedReader(new FileReader(file));
4 }

Remember that this is only necessary with checked exceptions. When we are working with RuntimeExceptions or unchecked exceptions we don’t need to do anything, because unchecked exceptions in theory shouldn’t be handled and instead should be avoided programmatically.

In the example where we handle the exception, note the use of the printStackTrace method:

 e.printStackTrace();

This method prints the exception and its stack trace to the standard error stream, which is very useful for debugging.

8.3.1 throws and throw new

We’ve just seen that the throws keyword is used to declare an exception. Related to this is the throw keyword, which we can use to throw a particular exception in a method. This is widely used in real applications where we want to wrap a more specific exception in a generic one. For example, in a financial application we might want to create a generic BusinessException and a more specific NoAccountBalanceException. Let’s see what these might look like.

First we’ll create the generic exception:

 1 class BusinessException extends Exception {
2
3 BusinessException() { }
4
5 BusinessException(Exception exception) {
6 super(exception);
7 }
8 }

Then we’ll create the more specific exception that will extend the generic exception:

 class NoAccountBalanceException extends BusinessException { }

If we have a BankAccountService class that implements the logic of a money withdrawal, we can then throw a NoAccountBalanceException when the account balance is insufficient to fulfill the withdrawal request:

 1 class BankAccountService {
2
3 void withdrawMoney(String accountNumber, double moneyAmount) throws NoAccountBal\
4 anceException {
5 // Perform logic
6 throw new NoAccountBalanceException();
7 }
8 }

Now consider the controller class that is using the service we created. In this class, we only want to throw the generic BusinessException. To make that happen, we need to wrap the NoAccountBalanceException in a BusinessException:

 1 public class BankAccountController {
 2
 3 BankAccountService bankAccountService;
 4 BankAccountController(BankAccountService bankAccountService) {
 5 this.bankAccountService = bankAccountService;
 6 }
 7
 8 void withdrawMoney(String customerId, double moneyAmount) throws BusinessExcepti\
 9 on {
10 try {
11 bankAccountService.withdrawMoney(customerId, moneyAmount);
12 } catch (NoAccountBalanceException noAccountBalanceException) {
13 throw new BusinessException(noAccountBalanceException);
14 }
15 }
16
17 }

Knowing how to use the keywords throw and throws make a great difference in code. Remember that throws will be used in a method signature and throw will be used directly in code logic.

8.4 try, catch, finally

There are three instructions that are crucial when dealing with exceptions: try, catch, and finally.

The try block should be used to define the logic that some exception or error might happen.

The catch block is where you provide code to handle the exception. This code is executed only if an exception of the specified type is thrown. You can include whatever logic is appropriate here, but typically the stack trace is printed so it’s easier to spot the error and take care of it. You can include more than one catch block to handle different exceptions, as you’ll see later in this chapter, or you can skip this clause and go straight to the finally block.

The finally block is always executed when the try block exits, as long as it exits normally. If an exception is thrown that’s handled by a catch clause, it executes after that block has finished executing.

An exception to this rule is if the try or catch block invokes the System.exit() method. In that case, the finally block will not be executed.

Including a finally block is also optional, but it’s a good place to perform cleanup or any other actions that you always want to take place, regardless of whether any exceptions are thrown.

Let’s look at a practical example with try, catch, and finally. Here, we’re executing simple logic in the try block and forcing a NullPointerException to be thrown because the remoteControl variable is null and we’re trying to use the equals method afterwards. The NullPointerException will be caught in the catch block, and at the end the finally block will be executed even though there was an exception:

 1 public class PokerWithTheJoker {
 2
 3 public static void main(String... tryCatchFinally) {
 4 try {
 5 System.out.println("Batman calls the BatMobile");
 6 String remoteControl = null;
 7 remoteControl.equals("BatMobile");
 8 } catch (Exception exception) {
 9 System.out.println("The BatMobile takes a long time to arrive");
10 exception.printStackTrace();
11 } finally {
12 System.out.println("Batman is late for playing poker with the Joker");
13 }
14 }
15
16 }

The output of this program will be:

 1 Batman calls the BatMobile
2 The BatMobile takes a long time to arrive
3 java.lang.NullPointerException
4 	at exceptions.trycatchfinally.PokerWithTheJoker.main(PokerWithTheJoker.java:9)
5 Batman is late for playing poker with the Joker

Earlier I mentioned that there is a way to avoid the finally block being executed, by calling the System.exit method. Let’s see that in action:

 1 public class OutlawJoker {
 2
 3 public static void main(String... avoidingFinallyExecution) {
 4 try {
 5 // Some logic
 6 System.exit(0);
 7 } finally {
 8 System.out.println("Is the Joker getting caught?");
 9 }
10 }
11
12 }

This causes the program execution to stop, no matter what, so the code in the finally block will not run. This example also demonstrates the use of try and finally without a catch. This can be useful, for example, if you want to close a specific resource in all cases, even if some unexpected error happens.

8.4.1 Going deeper into the catch block

How do we know whether a catch block will capture an exception or not? The most effective way to answer that that is to use the is-a question we explored in chapter 6. If the answer to that question is “yes,” then the exception should be caught. Let’s see some practical code examples:

 1 import java.io.IOException;
 2
 3 public class CatchThemAll {
 4
 5 public static void main(String... catchThemAll) {
 6 try {
 7 throw new NullPointerException();
 8 } catch (RuntimeException runtimeException) {
 9 runtimeException.printStackTrace();
10 }
11
12 try {
13 throw new IOException();
14 } catch (Exception exception) {
15 exception.printStackTrace();
16 }
17
18 try {
19 throw new StackOverflowError();
20 } catch (Error error) {
21 error.printStackTrace();
22 }
23 }
24
25 }

Note that the specialized types NullPointerException, IOException, and StackOverflowError are being caught by the more generalized types RuntimeException, Exception, and Error, respectively. This is because the is-a relationship holds in each case:

 	A NullPointerException is a RuntimeException.

 	An IOException is an Exception.

 	A StackOverflowError is an Error.

Be careful not to catch a more specific type of exception than you throw: if you throw a RuntimeException but catch an IllegalArgumentException, the more general exception will not be caught. In this case, the is-a relationship does not hold.

8.4.2 Ryu Shoryuken Error Challenge

Now that you know what the try, catch, and finally blocks are, let’s explore these concepts in a challenge! Can you guess what the output will be when the main method of this program is executed?

 1 public class RyuShoryukenException {
 2
 3 public static void main(String... doYourBest) {
 4 try {
 5 String ryu = null;
 6 ryu.contains("Shoryuken");
 7 } catch(Error error) {
 8 System.out.println("Akuma Secret Super Art");
 9 } finally {
10 System.out.println("Shinkuu Hadouken");
11 }
12
13 System.out.println("Isshun Sengiku");
14 }
15
16 }

 	Shinkuu Hadouken
Isshun Sengiku

 	java.lang.NullPointerException will be thrown
Shinkuu Hadouken

 	java.lang.NullPointerException will be thrown
Akuma Secret Super Art
Shinkuu Hadouken

 	java.lang.NullPointerException will be thrown
Akuma Secret Super Art
Shinkuu Hadouken
Isshun Sengiku

 Important: Play aroung with the Java Challenges code, make code changes, see what happens. More importantly, try out the Java Challenge and only then see the answer.

Explanation:

Let’s analyze the try block first. Note that we are trying to access a method of the null ryu variable, which causes the well-known NullPointerException to be thrown:

 1 try {
2 String ryu = null;
3 ryu.contains("Shoryuken");
4 }

In the next code block we have the catch statement, but remember that NullPointerException is not a subclass of Error. A NullPointerException is a RuntimeException, not an Error, so this catch block won’t be executed:

 1 catch(Error error) {
2 System.out.println("Akuma Secret Super Art");
3 }

What about the finally block? As you’ve learned, the finally block will almost always be executed, unless the System.exit method is invoked before it is reached. That’s not the case here, so even though a NullPointerException is thrown in the try block, the finally block will be executed normally:

 1 finally {
2 System.out.println("Shinkuu Hadouken");
3 }

In conclusion, the correct alternative is:

 	java.lang.NullPointerException will be thrown
Shinkuu Hadouken

8.6 try with resources

The try-with-resources statement was introduced in Java 7 to reduce the amount of boilerplate code needed to close resources. Before Java 7, we had to use the finally block for this purpose. Let’s take a look at a common example from the real world:

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.SQLException;
 4
 5 public class TryWithFinally {
 6
 7 public static void main(String... tryWithFinally) throws SQLException {
 8 Connection connection = null;
 9 try {
10 connection = DriverManager.getConnection("dbURL");
11 } catch (SQLException e) {
12 e.printStackTrace();
13 } finally {
14 connection.close();
15 }
16 }
17
18 }

Note that this code is fairly verbose. In addition to the finally block being required to close the connection, we had to declare the connection variable outside the try block for it to be accessible in the finally block. A less verbose option is to use the try-with-resources statement to solve this problem. Here’s the same example, making use of this feature:

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.SQLException;
 4
 5 public class TryWithResources {
 6
 7 public static void main(String... tryWithResources) {
 8 try (Connection connection = DriverManager.getConnection("dbURL")) {
 9 // Do the database logic
10 } catch (SQLException e) {
11 e.printStackTrace();
12 }
13 }
14 }

In this code we are ensuring that the database resource will be closed in the same way, but this version is much more compact—we can declare the resource in the try statement, and it will be closed automatically when we exit that block. This works with any resource that implements the AutoCloseable interface, as you’ll see shortly.

8.6.1 Changes in Java 9

A small but important change to the try-with-resources statement was introduced in Java 9. Now we can pass in a resource from outside the try block; we’re not required to declare and instantiate the variable inside the try block. Here’s an example:

 1 public class TryWithResourcesJava9 {
 2
 3 void executeAction(AutoCloseable closeable) {
 4 try (closeable) {
 5 // Perform your logic
 6 } catch (Exception e) {
 7 e.printStackTrace();
 8 }
 9 }
10
11 }

As you can see, it’s easy to extend this method because we’re passing an interface, and we can simply transfer the responsibility for instantiating the class to the code that is invoking this method.

8.6.2 Classes that can be used in the try-with-resources statement

The classes or interfaces that can be used in a try-with-resources statement are the ones that extend the Closeable or AutoCloseable interface. The Connection interface, for example, extends AutoCloseable interfaces:

 public interface Connection extends Wrapper, AutoCloseable { ... }

The OutputStream class is another example; it implements Closeable:

 public abstract class OutputStream implements Closeable, Flushable { ... }

Notice that Closeable extends AutoCloseable:

 1 public interface Closeable extends AutoCloseable {
2 	public void close() throws IOException;
3 }

Also note that there is a close method in both interfaces that must be implemented in the class that will have its resource closed.

You can also create your own AutoCloseable class. Let’s look at an example:

 1 public class TheClose {
 2
 3 public static void main(String... customAutocloseable) {
 4 try (Moe moe = new Moe(); Apu apu = new Apu()) { }
 5 }
 6
 7 static class Moe implements AutoCloseable{
 8
 9 public void close() {
10 System.out.println("Moe closes the Bar");
11 }
12 }
13
14 static class Apu implements Closeable {
15 public void close() {
16 System.out.println("Apu closes the shop");
17 }
18 }
19 }

Here we create one AutoCloseable class, Moe, and one Closeable class, Apu. Even though these classes implement different interfaces, the behavior will be the same; we can use both of them inside the try-with-resources statement.

One other important point to keep in mind about the try-with-resources statement is that the resource declared last will be closed first. It works like the Stack data structure, following the “last in, first out” principle. The objects are created in order from left to the right, and the close method is invoked from right to left.

8.6.3 Moe AutoCloseable Bar Challenge

In this challenge we have two POJO classes: Barney, which implements AutoCloseable, and Moe, which implements Closeable (and includes some logic operations). We pass both of those classes as parameters to the try-with-resources statement. Take a look at the code, and see if you can guess what happens when this program is executed.

 1 import java.io.Closeable;
 2 import java.io.IOException;
 3
 4 public class ClosingTheBar {
 5 static String whoClosedTheBar = "";
 6
 7 public static void main(String... marvel) {
 8 Moe moe = new Moe();
 9 executeAction(moe, new Barney());
10 System.out.println(whoClosedTheBar + moe.moeClosedBarCount);
11 }
12
13 private static void executeAction(Closeable moe, AutoCloseable barney) {
14 try (moe; barney) {
15 new Moe().close(); // Line 16
16 } catch (Throwable ignore) {
17 whoClosedTheBar += "?";
18 }
19 }
20
21 static class Barney implements AutoCloseable {
22 public void close() {
23 throw new StackOverflowError();
24 }
25 }
26
27 static class Moe implements Closeable {
28 int moeClosedBarCount = 0;
29 public void close() throws IOException {
30 moeClosedBarCount++;
31 if (moeClosedBarCount == 2) {
32 whoClosedTheBar += "moe";
33 throw new IOException();
34 }
35 }
36 }
37
38 }

 	moe?2

 	StackOverflowError will be thrown and the program will stop

 	?1

 	RuntimeException at line 16

 Important: Try out the Java Challenge code, make your code changes, see what happens. More importantly, try out the Java Challenge and only then see the answer.

Explanation:

Let’s examine the executeAction method, which is where the action is happening. Notice that we are passing moe as a Closeable instance and barney as AutoCloseable. The first close method to be executed will be the one at line 16—that’s because the close method is executed after the try block execution.

One important observation is that the try-with-resources statement will always close the resources from right to left, so barney will close first, then moe. This means barney’s close method will execute first, throwing a StackOverflowError, and then moe’s close method will be executed. Note that there is logic in this method:

 1 if (moeClosedBarCount == 2) {
2 whoClosedTheBar += "moe";
3 throw new IOException();
4 }

But note also that we are using different instances to invoke the close method. The value of the instance variable moeClosedBarCount will never reach 2, because each time an instance is created it will be reset.

The only value that will be concatenated will be “?”, and the value of moeClosedBarCount will be 1. In conclusion, the final answer to this challenge will be:

 C) ?1

8.7 Multi catch

In Java, a try block can be followed by multiple catch blocks. This feature is very useful when we want to have better control over error logs, to make it easier for developers to find out what has gone wrong in the application. It’s typically used when working with critical features with complex and unpredictable logic.

In the following example, we are getting a Connection from the database, then executing some complex logic. A RuntimeException could occur in the executeComplexLogic method, in which case the Exception catch block will catch it and we’ll need to log this information. Likewise, if an Error occurs the Throwable catch block will capture it and log what happened:

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.SQLException;
 4
 5 public class DatabaseConnection {
 6
 7 public static void main(String... multiCatchExample) {
 8 try {
 9 Connection connection = DriverManager.getConnection("DBURL");
10 executeComplexLogic();
11 } catch (SQLException e) {
12 e.printStackTrace();
13 } catch (Exception e) {
14 e.printStackTrace();
15 } catch (Throwable e) {
16 e.printStackTrace();
17 }
18 }
19
20 private static void executeComplexLogic() { }
21 }

Note that when we use multiple catch blocks, the classes we catch must have an inheritance relationship and we must start with the most specific class and proceed to the most generic one. For example, in the preceding code, note that SQLException extends Exception and Exception extends Throwable.

This code won’t compile, because Throwable does not extend Exception:

 1 catch (Throwable e) {
2 e.printStackTrace();
3 } catch (Exception e) {
4 e.printStackTrace();
5 }

Also keep in mind that it’s not necessary to extend a class directly, as long as the next class caught is at a higher inheritance level. For example, even though SQLException doesn’t directly extend the Exception class, this code will compile:

 1 catch (SQLException e) {
2 e.printStackTrace();
3 } catch (Exception e) {
4 e.printStackTrace();
5 }

There’s another way to capture exceptions that was introduced in Java 7. Like the try-with-resources statement, its goal is to reduce the boilerplate code. Instead of creating several catch blocks in the event that you might need to catch many different exceptions, it’s possible to create only one catch block that catches more than one type of exception.

In the following example, we will be catching the ArrayIndexOutOfBoundsException, NullPointerException, and StackOverflowError in the same catch block. Note that those exception classes don’t have any inheritance relationship, and that’s why this code compiles:

 1 public class MoeFrisk {
 2
 3 public static void main(String... multicatch) {
 4 try {
 5 String array[] = null;
 6 System.out.println(array[0].contains("shotgun"));
 7 } catch (ArrayIndexOutOfBoundsException | NullPointerException | StackOverfl\
 8 owError e) {
 9 e.printStackTrace();
10 }
11 }
12
13 }

If we use a class that is a parent class in a multi-catch statement, like in the following example, the code won’t compile:

 1 try {
2 String array[] = null;
3 System.out.println(array[0].contains("shotgun"));
4 } catch (ArrayIndexOutOfBoundsException | Exception | StackOverflowError e) {
5 e.printStackTrace();
6 }

In this case we’ll get the following compilation error:

 1 Error:(16, 51) java: Alternatives in a multi-catch statement cannot be related by su\
2 bclassing
3 Alternative java.lang.ArrayIndexOutOfBoundsException is a subclass of alternative \
4 java.lang.Exception

A subclass and parent class can’t appear together in a multi-catch statement.

8.7.1 Big Bang Theory Exception Chaos Challenge

This challenge explores the concept of catching multiple exception types, both in a multi-catch statement and in separate catch blocks. It will test your understanding of this useful Java feature, and of exception inheritance. Analyze the code carefully and see if you can guess the output.

 1 public class BigBangTheoryTryCatchFinally {
 2 static String s = "";
 3 public static void main(String... doYouBest) {
 4 try {
 5 throw new IllegalArgumentException();
 6 } catch (RuntimeException e) {
 7 try {
 8 throw new StackOverflowError();
 9 } catch (IllegalArgumentException | NullPointerException | IndexOutOfBou\
10 ndsException x) {
11 s += "Sheldon ";
12 } catch (Error error) {
13 s += "Penny ";
14 } finally {
15 s += "Leo ";
16 }
17 } finally {
18 s += "Howard ";
19 try {
20 throw new VirtualMachineError("Wrong experience formula") { };
21 } catch (Exception | StackOverflowError error) {
22 s += "Raj ";
23 } catch (Throwable error) {
24 s += "Melissa ";
25 }
26 }
27 System.out.println(s);
28 }
29 }

 	Sheldon Leo Howard Raj

 	Sheldon Howard Melissa

 	Penny Leo Howard Melissa

 	Sheldon Penny Leo Howard Melissa

 Important: Try out the Java Challenge before seeing the answer. That’s how you will get the best benefit of the Java Challenges.

Explanation:

Let’s examine the key points of this challenge. The first exception thrown is an IllegalArgumentException:

 throw new IllegalArgumentException();

IllegalArgumentException extends RuntimeException, so the RuntimeException catch block will capture this exception:

 1 catch (RuntimeException e) {
2 throw new StackOverflowError();
3 }

Then a StackOverflowError is thrown:

 throw new StackOverflowError();

None of the multi-catch exceptions will be able to capture it:

 catch (IllegalArgumentException | NullPointerException | IndexOutOfBoundsException x) { ... }

But the Error catch block will capture the StackOverflowError, because this class extends Error:

 1 catch (Error error) {
2 s += "Penny ";
3 }

Therefore, the first String to be concatenated will be "Penny ".

Then the inner finally block will be executed (recall that this happens even when an exception is thrown), and it will concatenate “Leo “.

The outer finally block will also be executed, and it will concatenate "Howard ".

Then a VirtualMachineError will be thrown:

 throw new VirtualMachineError("Wrong experience formula") { };

The first catch block won’t be able to capture this exception because there is no inheritance relationship:

 catch (Exception | StackOverflowError error) { ... }

But the second catch block will, because Throwable catches all exceptions:

 1 catch (Throwable error) {
2 s += "Melissa ";
3 }

Therefore, "Melissa " will be the last String to be concatenated.

In conclusion, the final answer will be:

 	Penny Leo Howard Melissa

8.8 Creating a customized exception

An effective way of helping developers identify exactly what error is occurring in your code is by creating meaningful customized exceptions. Some judgment is required here, though. You shouldn’t create a customized exception for every case; instead, you should analyze whether the business requirement is important enough to merit it. If you created a special exception for every case you would have an awful lot of classes to maintain, and that level of code complexity is not necessary.

So when might it be a good idea to create a custom exception? If there is a particular module that is highly important for your system, you might want to create an exception that is focused on it. This will make it easy to recognize problems that occur in this critical component.

If we have a module that handles billing information for a company, for example, we could create an exception called BillingException that will represent all other exceptions that might be thrown in this module:

 1 public class BillingException extends Exception {
2
3 public BillingException(String message, Throwable cause) {
4 super(message, cause);
5 }
6
7 }

We could also create a customized unchecked exception by extending RuntimeException:

 1 public class CalculationException extends RuntimeException {
2
3 public CalculationException(String message, Throwable cause) {
4 super(message, cause);
5 }
6
7 }

Notice that we are creating a constructor in the BillingException and CalculationException classes. That’s important, because it enables us to pass a clear message and cause relating to the exception, making it easier to track down and understand the error that occurred. For example:

 	BillingException

 1 try {
2 // do some logic
3 } catch (SomeException someException) {
4 throw new BillingException("The customer can't be billed.", someException);
5 }

 	CalculationException:

 1 try {
2 // do some logic
3 } catch (SomeException someException) {
4 throw new CalculationException("The sum operation has failed", someExcepti\
5 on);
6 }

We also could encapsulate the message into our exception, if we wanted to. Also we can even overload the CalculationException constructor if we want to pass a different message. For example:

 1 public class CalculationException extends RuntimeException {
 2 static final String message = "Calculation error";
 3 public CalculationException(Throwable cause) {
 4 super(this.message, cause);
 5 }
 6
 7 public CalculationException(String message, Throwable cause) {
 8 super(message, cause);
 9 }
10 }

When working with exceptions, we should aim to create clear and meaningful log messages that will make sense to developers.

As suggested earlier, we can structure our business exceptions. It’s a good idea to create a generic exception class that will be extended by all the other custom exception classes you need. You can then declare just the generic type in the throws clause instead of listing all the specific exceptions the method throws.

To show how this works, let’s suppose we have two more business exceptions:

 1 class NoDiscountException extends Exception { ... }
2 class NoAccountBalanceException extends Exception { ... }

And a method that contains some business logic:

 1 void calculateCustomerBilling() throws BillingException, NoDiscountException, NoAcc\
2 ountBalanceException {
3 // In the logic, this method will throw all three exceptions
4 }

Now imagine that this scenario is reproduced in various classes throughout the system. Handling all those different exceptions would be a pain, and the code would be complicated to read and difficult to maintain. It would be far better to create a generic exception type that aggregates all those business requirements—but how can this be done?

Fortunately, there is a solution for this problem: we can simply create a BusinessException class and make all the other business exceptions extend it, like this:

 1 class BusinessException extends Exception { ... }
2 class NoDiscountException extends BusinessException { ... }
3 class NoAccountBalanceException extends BusinessException { ... }
4 class BillingException extends BusinessException { ... }

Then we can remove all the specific exceptions from the throws clause in the previous example and throw only the BusinessException. This approach is far more concise and better organized:

 void calculateCustomerBilling() throws BusinessException { ... }

You can then write code to catch the various exceptions that might be thrown, ensuring that you’ll have a detailed and clear log of any exceptions that occur in the system.

8.8.1 No Beer Exception Challenge

This challenge explores several of the concepts introduced in this chapter, including try-with-resources, using multiple catch blocks, and creating custom exceptions. You can test your understanding of these useful Java features by analyzing the code and seeing if you can guess the output.

 1 public class NoBeerExceptionChallenge {
 2 static String finalResult = "";
 3
 4 public static void main(String... doYourBest) {
 5 try (NoBeerException exception = new NoBeerException()) {
 6 finalResult += "GetBeer";
 7 throw new NoAlcoholError();
 8 } catch (Exception exception) {
 9 finalResult += "NoWhiskey";
10 } catch (Error error) {
11 finalResult += "NoWine";
12 } finally {
13 try {
14 int i = 1 / 0;
15 } catch (NoBarException noBar) { finalResult += "NoBar";
16 } catch (RuntimeException exception) {
17 finalResult += "NoAlcohol";
18 }
19 }
20
21 System.out.println(finalResult);
22 }
23 static class NoBeerException extends Exception implements AutoCloseable {
24 public void close() {
25 finalResult += "BarClosing";
26 throw new NoBarException();
27 }
28 }
29 static class NoBarException extends RuntimeException {}
30 static class NoAlcoholError extends Error {}
31 }

 	GetBeerBarClosingNoWineNoAlcohol

 	BarClosingGetBeerNoWhiskeyNoBar

 	GetBeerNoWineNoAlcohol

 	GetBeerNoWhiskeyNoAlcohol

 Important: Our brain is like a muscle, the more you practice, the stronger you get. Therefore, try out the Java Challenge before seeing the answer.

Explanation:

The first part of the code demonstrates use of the try-with-resources statement. We have three custom exception classes: NoBeerException that extends Exception and implements AutoCloseable, NoBarException extending RuntimeException, and NoAlcoholError extending Error.

Remember that the try block will be executed first when using the try-with-resources statement. The first String to be concatenated will therefore be:

 GetBeer

Then the close method from NoBeerException will be invoked and the second String will be concatenated:

 BarClosing

Notice that a NoBarException is being thrown in the close method, but a NoAlcoholError was thrown as well. What happens here? When an exception is thrown and then the close method from an AutoCloseable, for example, throws another exception, the first one will be suppressed. In our case, the NoBarException will be suppressed by the NoAlcoholError.

If we print the getSuppressed method referencing the first position of the array, we will get the following result:

 1 catch (Error error) {
2 System.out.println(error.getSuppressed()[0]);
3 }

 ...NoBeerExceptionChallenge$NoBarException

The catch block that will be executed will therefore be:

 1 catch (Error error) {
2 finalResult += "NoWine";
3 }

And the third String that will be concatenated will be:

 NoWine

The finally block will always be executed, so next the calculation 1 / 0 will be performed. But when we try to divide a number by zero in Java, we get the following exception:

 java.lang.ArithmeticException: / by zero

We can conclude that this is a RuntimeException because this error could be avoided with an if statement.

NoBarException extends RuntimeException but has nothing to do with the ArithmeticException. Therefore, the RuntimeException catch block will catch this error and the final String to be concatenated will be:

 NoAlcohol

In conclusion, the final answer will be:

 A - GetBeerBarClosingNoWineNoAlcohol

8.9 Throw early, catch late

When we are working with business layers, the most suitable action we can take with regard to exceptions is to throw them early and catch them as late as possible, only then logging the error message. It’s much cleaner to follow this approach, rather than logging the error information in every layer of the call stack.

The following code prints log messages in the Repository and Service system layers. This makes it more difficult to track down the source of any error that occurs, and should be avoided:

 1 public class SimpsonRepository {
 2
 3 List<Simpson> findAll() throws SQLException {
 4 try {
 5 // Perform action to find all Simpsons
 6 } catch (SQLException sqlException) {
 7 sqlException.printStackTrace();
 8 throw sqlException;
 9 }
10 }
11
12 }
13
14 import java.sql.SQLException;
15 import java.util.List;
16
17 public class SimpsonService {
18
19 SimpsonRepository simpsonRepository = new SimpsonRepository();
20
21 public List<Simpson> findAllSimpsons() {
22 try {
23 return simpsonRepository.findAll();
24 } catch (SQLException sqlException) {
25 sqlException.printStackTrace();
26 }
27 }
28
29 }

Instead, it’s much better to follow the “throw early, catch late” principle. This will centralize the reporting on the errors that happened, making it easier to find out what went wrong and where. Let’s see what the same logic looks like when we apply this principle:

 1 import java.sql.SQLException;
 2 import java.util.List;
 3
 4 public class SimpsonRepository {
 5
 6 List<Simpson> findAll() throws SQLException {
 7 // Perform action to find all Simpsons
 8 }
 9
10 }
11
12 public class SimpsonService {
13
14 SimpsonRepository simpsonRepository = new SimpsonRepository();
15
16 public List<Simpson> findAllSimpsons() {
17 try {
18 return simpsonRepository.findAll();
19 } catch (SQLException sqlException) {
20 sqlException.printStackTrace();
21 }
22 }
23
24 }

This code is less verbose and easier to understand. We should try to centralize our exception-handling code as much as possible to facilitate debugging. .

8.10 Real World Exception Creation Challenge

Imagine you’re a developer at a financial company and you are given the task of elaborating an exception structure that will enable developers to track down errors more easily and with more clarity.

Your goal is to create a generic checked business exception and some more specific custom exceptions that extend it. Your customized exceptions should show clear error messages indicating the source of the problem when you print the stack trace.

You also need to pass the error code "NO_ACCOUNT_BALANCE" to the frontend application so it can show a clear message to the user.

The generic BusinessException class will have a constructor with an error message, Throwable cause, and error code (it can be an enum if you prefer). You’ll also create two specialized exception classes, NoAccountBalanceException and CentralBankServiceDownException, both extending BusinessException.

Finally, you’ll need to create a simple service class named AccountService that implements a method named withdrawAccountMoney receiving a customerId and moneyAmount. You don’t need to implement the logic in the withdrawAccountMoney method; you just need to throw the exceptions you created, catch them as BusinessExceptions, and then print the stack trace. That will be enough for this challenger. Over to you!

8.11 Summary

 	Exceptions are a crucial concept to master in Java. In this chapter you learned how to use the most suitable exception types for multiple situations, and how to structure your exception-handling code in try, catch, and finally blocks.

 	You learned the difference between checked and unchecked exceptions, and that all exception types in Java inherit from Throwable.

 	You know how to handle and declare exceptions, and how to wrap specific exceptions inside generic ones.

 	You learned that it’s possible to close Java resources by using the try-with-resources statement instead of using a finally block.

 	You understand the options Java provides for catching multiple types of exceptions, and the effects of inheritance on exception handling.

 	You learned how to create meaningful customized exceptions with clear log messages when appropriate.

 	You also learned how to apply good programming practices when working with exceptions, such as the “throw early, catch late” principle.

9 Lambdas and Functional Interfaces

This chapter covers:

 	Understanding why lambdas are important

 	Using one line concise functions with lambdas

 	Using one line coincide method references

 	Understanding when to use lambdas or method references

 	Main principles of functional programming

 	JDK Functional Interfaces

 	Total of 5 Java code Challenges

9.1 What is Lambda?

Lambdas, Functional interfaces, and method references are functional programming that helps us to avoid the boiler-plate code. When there wasn’t the possibility to use lambdas, we would have to use anonymous inner classes for example. As you might remember in the previous chapters, the syntax from an anonymous inner class is not so friendly.

With lambdas and method references, it’s also possible to make better use of Java APIs, such as Stream, Collections, Optional, Files, and so on. Usually, when we use lambdas, we use a one-line function. When we have to use more lines of code, then it’s suitable to use method references.

When starting working with lambdas and method references, it will be a bit difficult to fully absorb the concept. However, as we use it, the more familiar we get, and for sure the Java Challenges are a massive help to help you to accomplish that.

We can easily pass a one-line function to a functional interface with lambdas. Lambdas are also part of the functional programming paradigm. In Java, lambdas don’t completely follow the functional programming paradigm but still use it optimally.

In simple words, functional programming in its essence is a programming style that shouldn’t have any data mutation or side effects in programs. This means when we invoke a function with the same value many times, the same behavior or output is expected.

As mentioned above, anonymous classes are verbose. Let’s see how we were using that before with the Runnable interface:

 1 Runnable runnable = new Runnable() {
2 @Override
3 public void run() {
4 System.out.println("Running!!!");
5 }
6 };
7
8 runnable.run();

The output will be:
Running!!!

We can convert the above anonymous class code to lambdas in just one line! This is the power of lambdas, it makes the code more clear and easier to maintain:

 1 Runnable runnable = () -> System.out.println("Running!!!");
2 runnable.run();

The output will be the same:
Running!!!

Now that you know why lambdas are powerful, we can go deeper into them and understand how to use lambdas effectively.

9.1.1 Lambdas Shouldn’t Change External State

Lambdas in essence are not meant to change outside variables, however, in some cases this is possible. We can change instance or static variables as you can see in the following example:

 1 public class LambdaMutation {
 2 private int instanceNumber;
 3 private static int staticNumber;
 4
 5 public static void main(String[] args) {
 6 LambdaMutation lambdaMutation = new LambdaMutation();
 7 Runnable runnable = () -> System.out.println(
 8 ++lambdaMutation.instanceNumber + ":" + ++staticNumber);
 9 runnable.run();
10 }
11 }

When running the above code, the output will be:
1:1

As you could see in the code above, we can change instance or static variables in a lambda. As Java is not a purely functional programming language so this is acceptable.

9.1.2 Effective Final Variables

We can change instance and static variables in a Lambda, however, we can’t change a local variable. A lambda can only use an effective final local variable.

Effective final variables are variables that are initialized with a value and this value is never changed even though this variable is not final. Let’s see an example of an effectively final variable:

 1 int effectiveFinalVariable = 5;
2 System.out.println(effectiveFinalVariable);

We never changed the code above, therefore, effectiveFinalVariable is an effectively final variable.

Let’s see how is a non effective final variable now:

 1 int nonEffectiveFinalVariable = 5;
2 System.out.println(++nonEffectiveFinalVariable);

As you can see we changed the nonEffectiveFinalVariable, therefore it’s not an effective variable.

Of course, if we pass a local final variable to a lambda expression, it’s totally fine since we can’t change it. Ideally, we should prefer to use only explicitly final variables in a lambda as a good practice.

Now that you have a good understanding of how local variables work with lambdas, try out the next Java Challenge!

9.1.3 Mysterious Door Lambda Challenge

By running the following code, can you guess what will happen?

 1 import java.util.Arrays;
 2 import java.util.List;
 3
 4 public class MysteriousDoorLambdaChallenge {
 5
 6 public static void main(String... theDoors) {
 7 int doorNumber = 0;
 8 doorNumber++;
 9 List<String> doors = Arrays.asList("A", "B", "C");
10 doors.forEach(e -> {
11 System.out.println(e + doorNumber); // Line 11
12 });
13 }
14
15 }

 	A0
B1
C2

 	A1
B2
C3

 	Compilation Error at line 11

 	Unpredictable

 Important: Try out the Java Challenge before seeing the answer. The more Java Challenges you solve, the better you get.

Explanation:

Lambdas can only access variables that are final or effectively final. As mentioned above in its essence should access only immutable data from outside.

Note that the doorNumber variable is being changed when we increment it. Therefore, the doorNumber variable is not effectively final anymore from that moment. Simply put, effectively final variables are variables that when given a value, this value will be never changed.

In conclusion, in this challenge, there will be a compilation error at line 11 and the final answer will be:

 C) Compilation Error at line 11

9.2 Functional Interfaces

There are a couple of predefined functional interfaces in Java that will cover 95% of the cases. In simple words, a functional interface is an interface with only one abstract method. When you have that, then you can use the functional interface functionalities.

Let’s get started with the easiest functional interface, the Supplier. As the name suggests, the Supplier interface is responsible to return one value. It supplies one value.

 Supplier<String> supplier = () -> "Moe";

The only method we can invoke is get. Therefore, to get the “Moe” value we can do the following:

 System.out.println(supplier.get());

The output will be:
Moe

To make it clear for you what is a functional interface, you can take a look at how the JDK code defines it:

 1 @FunctionalInterface
2 public interface Supplier<T> {
3 T get();
4 }

If we want to use a Supplier that is specific for the int type, we can use the interface IntSupplier. Note that we don’t have to use the generic type here:

 1 IntSupplier supplier = () -> 777;
2 System.out.println(supplier.getAsInt());

The output will be:
777

Then we have the Consumer functional interface. In simple words, the purpose of the Consumer interface is to consume any value we pass.

 1 Consumer<Integer> consumer = (number) -> System.out.println(number);
2 consumer.accept(777);

The output will be:
777

9.2.1 Supplier Consumer Challenge

In the following challenge, we are using IntSupplier and Consumer, also we are increasing some numbers there. Can you guess what will happen when running the following code?

 1 import java.util.function.Consumer;
 2 import java.util.function.IntSupplier;
 3
 4 public class SupplierConsumerChallenge {
 5
 6 static int value;
 7 public static void main(String... doYourBest) {
 8 IntSupplier valueS = () -> value++; // Line 8
 9 Consumer<Object> oneMoreValue = (Object test) -> value++; // Line 9
10
11 oneMoreValue.accept(2);
12 System.out.println(value + " " + valueS.getAsInt());
13 }
14
15 }

Explanation:

 	Line 8 and 9 won’t compile

 	4 5

 	1 2

 	1 1

 Important: Try out the Java Challenge before seeing the answer. Run the Java code in your mind and get sharp with Java!

Explanation:

Although a lambda is not supposed to mutate any external state, we still can change a static variable. Therefore, there won’t be any compilation error. Lambdas are also lazy, which means that the value won’t be incremented unless we invoke the lambda methods accept or getAsInt in this case.

Then the only moment that the value variable will be incremented is when we invoke the following method. Note that even though we are passing ‘2’ to the accept method, we are not doing anything with this number. Therefore after invoking the following method, the value variable will be 1:

 oneMoreValue.accept(2);

Finally, when we print the variable value, it will print 1. Then when we invoke the valueS.getAsInt() method it will print 1 as well since the value variable is incremented with the post-increment operator. The value variable will be incremented only after we invoke the valueS.getAsInt(). After the valueS.getAsInt() invocation, the value variable will have the value of 2:

 System.out.println(value + " " + valueS.getAsInt());

Therefore the final output and the right alternative will be then:

 	1 1

9.2.2 Predicate Functional interface

If we want to use a function that returns a boolean and receives one parameter, the Predicate interface is the one!

Let’s see an example of how Predicate can be used:

 Predicate<String> isYodaJedi = (jedi) -> jedi.equals("Yoda");

Since we have our function ready to be invoked, now we can print what happens when we check if the String is equals to “Yoda” with the test method:

 System.out.println(isYodaJedi.test("Yoda"));

Output:
true

Using and with Predicate

Let’s now see the and method. This method joins two conditions and both of them have to be true to be fulfilled.

 1 Predicate<String> isYodaJedi = (jedi) -> jedi.equals("Yoda"); // #A
2 Predicate<String> isObiWanJedi = (jedi) -> jedi.equals("ObiWan");
3
4 Predicate<String> isJedi = isYodaJedi.and(isObiWanJedi); // #B
5
6 System.out.println(isJedi.test("Yoda")); // #C

Output:
false

Explanation:

 	#A: We prepare our Predicate conditions.

 	#B: We use join both Predicate conditions with and.

 	#C: We use the isJedi Predicate that will check the condition from Yoda and ObiWan. Since we are passing only Yoda to the test method, both conditions won’t be fulfilled. Therefore, the output will be false.

Using or with Predicate

There is also the ‘or’ method that operates just like the || operator in a condition:

 1 Predicate<String> isYodaJedi = (jedi) -> jedi.equals("Yoda");
2 Predicate<String> isObiWanJedi = (jedi) -> jedi.equals("ObiWan");
3
4 Predicate<String> isJedi = isYodaJedi.or(isObiWanJedi); // #A
5
6 System.out.println(isJedi.test("Yoda")); // #B

Output:
true

Explanation:

 	#A: Notice that here we are using the or operator.

 	#B: Then as we send Yoda to be tested, and since one of the conditions is true, the final result will be also true.

9.2.2 The Function Interface

The purpose of the Function interface is to receive one parameter with the generic type we defined and then return a value according to the generic type we defined.

 1 Function<String, Integer> transformIntoNumber = (number) -> Integer.parseInt(number);
2 System.out.println(transformIntoNumber.apply("7"));

The output will be:
7

We can also compose functions. Let’s suppose we want to first multiply a number by 2 and then add 2. We have two ways to do that in Java. We can either use the compose or the andThen function. Let’s see the example below:

 1 Function<Integer, Integer> times2 = (number) -> number * 2;
2 Function<Integer, Integer> add2 = (number) -> number + 2;
3
4 System.out.println(times2.compose(add2).apply(2));
5 System.out.println(times2.andThen(add2).apply(2));

The output will be:
8
6

Note that the difference between the compose and andThen functions are the order they are executed. In the compose, the add2 function will be executed and we will get the result of 4 first. Then the times2 function, therefore we have the result of 8.

Then when we invoke the andThen method, it’s the opposite. The times2 function will be executed giving us the result of 4 first. Then the add2 function will be invoked adding 2 and giving us the final result of 6.

9.2.3 BiFunction Interface

The BiFunction is very similar to the Function interface. As the name suggests, the BiFunction receives two parameters instead of one from the Function. Let’s see how that works in practice:

 1 BiFunction<Integer, Double, Double> addNumbers = (n1,n2) -> { return n1 + n2; };
2 System.out.println(addNumbers.apply(2, 2.5));

The output will be:
4.5

It’s also possible to compose a BiFunction with a Function as the following example demonstrates:

 1 BiFunction<Integer, Double, Double> addNumbers = (n1,n2) -> n1 + n2;
2 Function<Double, Number> times2 = (number) -> number * 2.0;
3 System.out.println(addNumbers.andThen(times2).apply(2, 2.5));

The output will be:
9.0

The order where the functions are executed in the above code example is the following: the addNumbers BiFunction will run first and then the times2 Function will get the result from the addNumbers BiFunction and multiply it by 2.0.

Considering the above explanation, what do you think will happen in the following code?

 1 BiFunction<Integer, Double, Double> addNumbers = (n1,n2) -> n1 + n2;
2 Function<Integer, Number> times2 = (number) -> number * 2.0;
3 System.out.println(addNumbers.andThen(times2).apply(2, 2.5));

When we try to compose a BiFunction that returns a Double as the result with a Function that receives an Integer as a parameter, the code won’t compile. That happens because a Double type can’t be transformed into Integer. Therefore, the times2 function can’t be composed with the addNumbers BiFunction.

This would be different if the times2 Function was receiving a Double as a parameter as the following code:

 Function<Double, Number> times2 = (number) -> number * 2.0;

9.2.4 The BiConsumer Functional Interface

The BiConsumer interface will be able to consume two parameters and will return void. Let’s see the code example:

 1 BiConsumer<Integer, Integer> biConsumer = (a, b) -> System.out.println(a + b);
2 biConsumer.accept(2, 2);

The output will be:
4

Similar to the other functional interfaces we can also compose functions with BiConsumer.

 1 BiConsumer<Integer, Integer> add = (a, b) -> System.out.println(a + b);
2 BiConsumer<Integer, Integer> subtract = (a, b) -> System.out.println(a - b);
3
4 add.andThen(subtract).accept(2, 2);

The output will be:

 1 0```
 2
 3 ### 9.2.5 BiFunction Consumer Challenge
 4
 5 Now that you learned more about the `Function`, `BiFunction`, and `BiConsumer` inter\
 6 faces, it's time to try out the Java Challenge! The following Java Challenge involve\
 7 s the operations add, subtraction, and multiplication executed with the above-mentio\
 8 ned interfaces!
 9
10 Can you guess what will be the output of the following Java Challenge?
11
12 ```java
13 import java.util.function.BiConsumer;
14 import java.util.function.BiFunction;
15 import java.util.function.Function;
16
17 public class BiFunctionConsumerChallenge {
18
19 public static void main(String... doYourBest) {
20 BiFunction<Integer, Integer, Integer> add = (a, b) -> a + b;
21 Function<Integer, Integer> sub = (a) -> a - 2;
22 Function<Integer, Integer> mult = (a) -> a * 3;
23
24 BiFunction<Integer, Integer, Integer> func =
25 add.andThen(sub).andThen(sub);
26
27 BiConsumer<Integer, Integer> consumer = (a, b)
28 -> System.out.println(a + 2 + b + 2);
29
30 int firstResult = func.apply(2, 2);
31 add.andThen(sub).andThen(mult);
32 int secondResult = add.apply(2, 2);
33
34 consumer.accept(firstResult, secondResult);
35 }
36
37 }

 	6

 	8

 	12

 	4

 Important: Try out the Java Challenge before seeing the answer. Stay consistent, stay solving the Java Challenges, and improving your Java skills.

Explanation:

Let’s analyze the part of the code where the action happens. Remember that the functions will only be invoked when we use the apply method.

The firstResult variable will have the value of 0 at this moment because we invoked the subtraction functions:

 int firstResult = func.apply(2, 2);

The tricky part of this challenge is the following code because note that we are assigning or doing anything with those functions. Therefore, nothing will happen when the following code is executed:

 add.andThen(sub).andThen(mult);

Then when we invoke the following code, we will add 2 to 2 which will give us the result of 4:

 int secondResult = add.apply(2, 2);

Finally, the last piece of code is the consumer, which will receive the firstResult and secondResult variables and will sum them. In the consumer, we are also adding 2 to each of the variables, giving us the result of 8.

 consumer.accept(firstResult, secondResult)

In conclusion, the correct answer for this Java Challenge is:

 	8

9.2.6 The UnaryOperator Functional Interface

The UnaryOperator functional interface is very similar to the Function interface. The main difference is that the UnaryOperator will have to receive a value type and return this same value type. Let’s see the code example:

UnaryOperator<Integer> unaryOperator = (n) -> n + 2;`

As you can see in the code above, we can only set one generic type, which in this case is Integer. Therefore, we can only receive an Integer parameter and only return an Integer value.

Now when we invoke the above function:

 System.out.println(unaryOperator.apply(2));

The output will be:
4

9.2.7 The BinaryOperator Functional Interface

The BinaryOperator interface is similar to BiFunction. The main difference is that BinaryOperator takes the same type as parameters and as a return. In the BiFunction we can pass different types for parameters and the return value if we wish to.

Notice that it’s possible to pass only one generic type to the BinaryOperator interface since it works with only one type:

 1 BinaryOperator<Integer> addNumbers = (x,y) -> { return x + y;};
2 System.out.println(addNumbers.apply(2, 2));

The output will be:
4

9.2.8 Custom Functional Interface

There is also a way to create customized functional interfaces. First, we create the functional interface with the @FunctionalInterface annotation to make sure this interface has only ONE public abstract method:

 1 @FunctionalInterface
2 interface Duke {
3 void dance(String song);
4 }

Then we invoke the dance method from Duke:

 1 Duke duke = d -> System.out.println("Duke is dancing: " + d);
2 duke.dance("tango");

Note that it’s also possible to add a private, default, or static method in a functional interface. That’s because the compiler will assume we just have to override the only public abstract method. The other methods are there to support the interface. Take a look at the following code:

 1 @FunctionalInterface
 2 interface Duke {
 3 void dance(String song);
 4
 5 private void jump() {
 6 System.out.println("Duke is jumping!");
 7 }
 8
 9 default void fly() {
10 System.out.println("Duke is flying!");
11 }
12
13 static void playGame() {
14 System.out.println("Duke is playing Metal Gear!");
15 }
16
17 }

Remember that in a functional interface, the limitation we have is that we can’t have more than ONE public abstract method. Therefore the following code won’t compile:

 1 @FunctionalInterface
2 interface Duke {
3 void dance(String song);
4 void fly();
5 }

Note also that what makes the above code not compile is the @FunctionalInterface. It’s a good practice to use the @FunctionalInterface annotation so we can make it very clear that the interface is functional.

Other important points are that public default and public static were only available in Java 8. Also, private and private static were first introduced in Java 9.

9.2.9 JDK Functional Interfaces

We also have some functional interfaces even before Java 8. The Runnable and Comparator interfaces are great examples:

 1 @FunctionalInterface
2 public interface Runnable {
3 public abstract void run();
4 }

Let’s see now how to use Runnable as a functional interface:

 1 Runnable runnable = () -> System.out.println("Running!");
2 runnable.run();

The output will be:
Running!

We can also use a method reference:

 1 public class RunnableMethodReference {
 2 void runWithMethodReference() {
 3 System.out.println("Method Reference Run!");
 4 }
 5
 6 public static void main(String... runnableMethodReference) {
 7 Runnable runnable = new MethodReferenceChallenge()::runnableMethodReference;
 8 runnable.run();
 9 }
10 }

The output of the program above will be:
Method Reference Run!

 1 @FunctionalInterface
2 public interface Comparator<T> {
3 int compare(T o1, T o2);
4 // Other methods
5 }

To use the Comparator interface as a lambda:

 1 Comparator<Integer> comparator = (s1, s2) -> s1.compareTo(s2);
2 System.out.println(comparator.compare(2, 1));

The output will be:
1

We can do even better, we can use a method reference making the code cleaner and more concise. The lambda above and the following method reference produce the same result:

 1 Comparator<Integer> comparator = Integer::compareTo;
2 System.out.println(comparator.compare(2, 1));

The output will be:
1

9.3 Method Reference

When we master the use of method references, we can make the code a lot cleaner and readable. The idea of method reference is a syntax sugar that reduces boiler-plate code.

There are four kinds of method references:

 	Reference to a static method

 	Reference to an instance method

 	Reference to an instance method

 	Reference to a constructor

9.3.1 Reference to a static method

Let’s get started with the static method reference. We can explore the famous String.valueOf static method. Notice that the valueOf method fits into a Function because a Function receives one parameter and returns one value. That’s exactly the contract of the valueOf Method:

public static String valueOf(Object obj)
Therefore, let’s assign our method reference to a Function:
Function<Object, String> valueOfFunction = String::valueOf;
System.out.println(valueOfFunction.apply(7));

The output will be:
"7"

We could use a lambda expression in the case above too:

 1 Function<Object, String> valueOfFunction = o -> String.valueOf(o);
2 System.out.println(valueOfFunction.apply(7));

The output will be the same:
"7"

9.3.2 Reference to an instance method

There are some important differences between the static and instance method references. In this section, we will deconstruct how that works.

The Predicate functional interface needs to get a parameter and return a boolean value. As you can see this is the test method from Predicate:

 boolean test(T t);

Now, we will use the isEmpty String instance method to match this predicate interface. However, note that the isEmpty method doesn’t receive any parameter, but how is it possible to match the Predicate interface then?

 public boolean isEmpty() { … }

Remember one important detail, an instance method can only be invoked with an instance. Therefore, we have to pass an instance of a String to the Predicate method reference anyway.
Let’s see the following example:

 1 Predicate<String> isEmpty = String::isEmpty;
2 System.out.println(isEmpty.test("Challengers"));

The output will be:
false

To make this concept even more clear, let’s see how instance method reference works with a BiFunction. It’s the same fundament, we have to match an instance, how many parameters are received, and the return value.

This is the compareTo method from the JDK, and notice this method only receives one parameter and return an int value:

 public int compareTo(Integer anotherInteger) { … }

Let’s see how we can match this method to a BiFunction:

 1 BiFunction<String, String, Object> compareToBiFunction = Integer::compareTo
2 System.out.println(compareToBiFunction.apply(7, 1));

Since 7 is greater than 1 the output from the code above will be:
1

Note in the code above that we are matching the compareTo method that receives only one parameter. Therefore, we have to pass this Integer instance when we invoke the apply method.

Also, notice that the number 7 is the Integer instance that will invoke the compareTo method. The key to understanding this concept is that every time we are using instance method reference, we have to pass the instance as the first argument:

 compareToBiFunction.apply(7, 1);

9.3.3 Reference to a Constructor

We are creating a class with a constructor that receives two parameters:

 1 class Simpson {
2 String name;
3 int age;
4
5 public Simpson(String name, int age) {
6 this.name = name;
7 this.age = age;
8 }
9 }

Then, we are using the method reference to a constructor matching a BiFunction. This works because in the BiFunction we can receive also two parameters and return a type that in our case is Simpson:

 1 BiFunction<String, Integer, Simpson> biFunctionSimpson = Simpson::new;
2 Simpson simpson = biFunctionSimpson.apply("Homer", 35);
3 System.out.println(simpson.name);

The output of the code above will be:
Homer

We could also use a lambda in the example above as the following:

 1 BiFunction<String, Integer, Simpson> biFunctionSimpson = (n, a) -> new Simpson(n, a);
2 Simpson simpson = biFunctionSimpson.apply("Homer", 35);
3 System.out.println(simpson.name);

 1 The result would be the same:
2 Homer

9.3.4 Burns Medicine Lambda Challenge

In the following Java Challenge, we will explore how method references behave with constructors. Also, we are creating a customized functional interface to be used with a method reference. Can you guess what will happen when running the following code?

 1 public class MisterBurnsGetsMedicine {
 2 public static void main(String... doYourBest) {
 3 MedicineSupplier medicine = Smithers::new;
 4 short shortMedicine = 3;
 5 medicine.provideMedicine(1);
 6 medicine.provideMedicine(shortMedicine);
 7 medicine.provideMedicine(Integer.valueOf(1));
 8 }
 9 static class Smithers {
10 Smithers(int any) {
11 System.out.printf("Smithers gives:%s to Mister Burns with int \n", any);
12 }
13 Smithers(short any) {
14 System.out.printf("Smithers gives:%s to Mister Burns with short \n", a\
15 ny);
16 }
17 Smithers(Integer any) {
18 System.out.printf("Smithers gives:%s to Mister Burns with Integer \n", a\
19 ny);
20 }
21 }
22 @FunctionalInterface
23 private interface MedicineSupplier {
24 Smithers provideMedicine(int quantity);
25 boolean equals(Object obj); // #1
26 }
27 }

 	Smithers gives:1 to Mister Burns with int
Smithers gives:3 to Mister Burns with short
Smithers gives:1 to Mister Burns with Integer

 	Smithers gives:1 to Mister Burns with int
Smithers gives:3 to Mister Burns with int
Smithers gives:1 to Mister Burns with int

 	It won’t compile at // #1

 	Smithers gives:1 to Mister Burns with short
Smithers gives:3 to Mister Burns with short
Smithers gives:1 to Mister Burns with int

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

Let’s analyze the code:

Let’s first analyze the equals method in the MedicineSupplier interface. In a functional interface, we have the rule of having only one public abstract method. However, when we declare the equals method, we are only overriding from the Object class. Therefore, we can have those methods declared in the MedicineSupplier interface.

Now let’s go to the main part of the code. The following method reference only works because the provideMedicine method matches exactly with one of the constructors from the Smithers class. Let’s see it:

 MedicineSupplier medicine = Smithers::new;

As mentioned, in the following code you will notice that both methods receive an int and return Smithers:

 1 static class Smithers {
2 Smithers(int any) { System.out.printf("Smithers gives:%s to Mister Burns wit\
3 h int \n", any); }
4 // Other constructors...
5 }
6
7 private interface MedicineSupplier {
8 Smithers provideMedicine(int quantity);
9 }

As you can see in the code above, method references are intelligent enough to match the right constructor to the provideMedicine method. Since the method reference will match only one constructor, only the following constructor will be invoked:

 1 Smithers(int any) {
2 System.out.printf("Smithers gives:%s to Mister Burns with int \n", any);
3 }

Therefore all invocations from provideMedicine will execute the Smithers(int any) { … } constructor. The result is the following:

 	Smithers gives:1 to Mister Burns with int
Smithers gives:3 to Mister Burns with int
Smithers gives:1 to Mister Burns with int

9.3.5 Method References VS Lambda

Whenever possible, it’s better to use method references to avoid boilerplate code. Lambdas will be better for more specific cases where we need a bit more freedom in the code.

There are also some interesting differences between Lambdas and Method References. A very important difference is that the constructor of a lambda is invoked the number of times the lambda method is invoked.

A method reference constructor is invoked only once when we assign the method reference to a variable.

Let’s see a code example about this case:

 1 class Morpheus {
 2 public Morpheus() {
 3 System.out.println("Free your mind");
 4 }
 5
 6 public String learnKungFu() {
 7 return "Downloaded Kung Fu";
 8 }
 9 }
10
11 Supplier methodReferenceSupplier = new Morpheus()::learnKungFu;

The output will be:
Free your mind

If we use lambda instead:

 Supplier lambdaSupplier = () -> new Morpheus().learnKungFu();

There will be no output. This happens because lambdas are lazy by essence. Therefore, the Morpheus constructor will be only invoked if we execute the following code:

 lambdaSupplier.get();

Then the output will be:
Free your mind

There are also a few caveats about this difference:

 	If we invoke the get method with lambdas more times, the constructor will be invoked again

 	If we invoke the get method with method reference more times the constructor will not be invoked again

 	If we use a constructor method reference, the constructor won’t be invoked

Now that we explored the differences between lambdas and method references, it’s time for action!

9.3.6 Lambda VS Method Reference Challenge

In the following code, we are using lambda and a method reference. Your goal is to figure out what is the difference when using lambda or method reference. Therefore, what will be the output of the following code?

 1 public class LambdaVSMethodReferenceChallenge {
 2 public static void main(String... doYourBest) {
 3 Runnable universeImpactRunnable = () -> new ChuckNorris().roundHouseKick();
 4 Runnable galaxyImpactRunnable = new ChuckNorris()::roundHouseKick;
 5 System.out.print("The galaxy is finished = ");
 6 universeImpactRunnable.run();
 7 universeImpactRunnable.run();
 8 galaxyImpactRunnable.run();
 9 galaxyImpactRunnable.run();
10 }
11 static class ChuckNorris {
12 private static int numberOfKicks;
13 private int galaxyDamage;
14 ChuckNorris() {
15 this.galaxyDamage = numberOfKicks++;
16 }
17 void roundHouseKick() {
18 System.out.print(this.galaxyDamage);
19 }
20 }
21 }

 	The galaxy is finished = 1234

 	The galaxy is finished = 0123

 	The galaxy is finished = 0100

 	The galaxy is finished = 1200

 Important: Try out the Java Challenge before seeing the answer.

Explanation:

Let’s analyze the code:

 1 Runnable universeImpactRunnable = () -> new ChuckNorris().roundHouseKick();
2 Runnable galaxyImpactRunnable = new ChuckNorris()::roundHouseKick;

There is a crucial difference between lambda and method reference. Lambdas are lazy and they will invoke the class constructor only when the method is invoked. On the other hand, with method reference, the constructor will be invoked right away only where the method reference is assigned, not on the method invocation.

So, at this line the constructor is not invoked:

 Runnable universeImpactRunnable = () -> new ChuckNorris().roundHouseKick();

And, at this line the constructor is invoked:

 Runnable galaxyImpactRunnable = new ChuckNorris()::roundHouseKick;

With that in mind, let’s analyze the invoked methods:

 1 universeImpactRunnable.run();
2 universeImpactRunnable.run();

With lambdas, every time the run method is invoked, the constructor will be invoked, which means that the numberOfKicks variable will be increased. So the value from galaxyDamage will be:
12

Then when we invoke those methods:

 1 galaxyImpactRunnable.run();
2 galaxyImpactRunnable.run();

The value will be 0 because remember that the constructor will be only invoked one and it was already invoked at the moment of the method reference declaration.

By knowing that, and also remembering that the post ++ operator increases a value after the line being processed. Then the values will be:
00

The final result will be then:
D) The galaxy is finished = 1200

9.4 Lambda Method Reference Matcher Challenge:

Now that we covered most of the lambda and method reference concepts. We can have the last Java Challenge to help you fully absorb those concepts.

This last challenge is all about you matching lambdas and method references to the main functional interfaces.

Let’s complete each of the functional interfaces with lambdas and method references then:

1 - Supplier<String> vaderSupplier = // Complete with A or B
A) () -> "DarthVader";
B) () -> System.out.println("Darth Vader");

2 - Supplier<String> methodReferenceSupplier = // Complete with A or B

 	String::toString;

 	String::new;

3 - Predicate<String> jediPredicate = // Complete with A or B

 	(jedi) -> jedi.equals("jedi");

 	(jedi) -> { return new Object(); }

4- Predicate<String> methodReferencePredicate = // Complete with A or B

 	String::isEmpty;

 	String::contains;

5 - Consumer<String> beerConsumer = // Complete with A or B

 	(saber) -> "Moe uses the " + saber;

 	(saber) -> System.out.println("Moe uses the " + saber);

6 - Consumer<Integer> methodReferenceConsumer = // Complete with A or B

 	System.out::printf;

 	System.out::println;

7 - Function<String, String> jediFunction =// Complete with A or B

 	(jedi) -> jedi.concat(jedi);

 	(jedi, simpson) -> jedi.concat(simpson);

8 - Function<String, String> methodReferenceFunction = // Complete with A or B

 	new String()::valueOf

 	String::toString;

9 - BiFunction<String, String, Object> jediBiFunction = // Complete with A or B

 	(jedi, sith, naboo) -> jedi + sith + naboo;

 	(jedi, sith) -> jedi + sith;

10 - BiFunction<Integer, Integer, Object> methodReferenceBiFunction = // Complete with A or B

 	Integer::compareTo;

 	new Integer()::equals;

11 - UnaryOperator<String> simpsonUnaryOperator = // Complete with A or B

 	(homer) -> homer.concat("Marge");

 	(marge) -> homer.hashCode() + 7;

12 - UnaryOperator<Integer> methodReferenceUninaryOperator = // Complete with A or B

 	Integer::valueOf;

 	String::isBlank;

13 - BinaryOperator<String> moeBiOperator = // Complete with A or B

 	(moe, homer, beer) -> moe + "gives the beer:" + beer + "to:" + homer;

 	(moe, beer) -> moe + "gives the beer:" + beer;

14 - BinaryOperator<Double> methodReferenceBiOperator = // Complete with A or B

 	Double::max;

 	new Double()::max;

9.4.1 Explanation

1 - The answer is A, Supplier<String> vaderSupplier = () -> “DarthVader”; because when we are using a Supplier, we need to return the value we defined in the generic type. In this case, we need to return a String value. Note that we don’t need to use the keyword return in a lambda when we have only one line of code.

2 - The answer is B, String::new because we are supplying a String value, which means we are returning a String. Therefore the String constructor fits in this situation. The toString method won’t work because we need an instance to invoke the String::toString method. If we used the following new String()::toString(); then it would work.

3 - The answer is A. Since we are using a Predicate that receives a String and returns a boolean, (jedi) -> jedi.equals("jedi"); will work just fine. The following (jedi) -> { return new Object(); } won’t work because we are returning an Object instead of a boolean.

4 - The answer is A. That’s because we need an instance to be able to invoke the isEmpty method. Also, since the Predicate is expecting a String as a parameter, the isEmpty method will receive an object instance and then return a boolean value.

The String::contains; method would only work if it was static or if we had an instance. The following code would work, "anyString"::contains because then we just have to pass a parameter and return a boolean just like the contains method is expecting.

5 - The answer is B. The reason is that the following code (saber) -> System.out.println("Moe uses the " + saber); is only consuming saber and not returning any value. Which matches the Consumer contract. However, the following code (saber) -> "Moe uses the " + saber; is returning a value, therefore, it doesn’t match the Consumer contract.

6 - The answer is B. Because the println method only consumes a parameter and returns void. The printf method won’t work because there are ambiguous overloaded methods within it. Therefore, the method reference can’t guess what method to use.

7 - The answer is A. The following code (jedi) -> jedi.concat(jedi); matches the contract of a Function because it receives a value and returns a value too. The following code (jedi, simpson) -> jedi.concat(simpson); doesn’t match the Function contract because it’s receiving two parameters.

8 - The answer is B. Even though the toString method doesn’t receive a parameter, it needs an instance to be invoked. Therefore the following code String::toString; will work because we need to pass the String instance and then the toString method will return a String. The following code new String()::valueOf won’t work because we are passing an instance to the String. If we were doing the following, String::valueOf, then this would work just like String::toString.

9 - The answer is B. Since in a BiFunction we receive two parameters and return one value, the following code is valid, (jedi, sith) -> jedi + sith. The following code (jedi, sith, naboo) -> jedi + sith + naboo; is not valid because there are three parameters in this lambda.

10 - The answer is A. The compareTo method receives only one parameter but needs an instance to be invoked. Therefore, when we invoke the method reference, we need to pass two parameters, which makes the following code Integer::compareTo; match the BiFunction. The equals method also receives only one parameter but we are already instanting a String. Therefore, in the following code new Integer()::equals; we need to pass only one value when invoking the method reference. To conclude, the new Integer()::equals; doesn’t match a BiFunction.

11 - The answer is A. This is because (homer) -> homer.concat(“Marge”); receives a String and returns a String, which matches a UnaryOperator. The following code (marge) -> homer.hashCode() + 7; is returning an int instead of a String, which breaks the following contract UnaryOperator<String> simpsonUnaryOperator.

12 - The answer is A. The following method reference Integer::valueOf; receives an Integer and returns an Integer, therefore, it matches the UnaryOperator contract. The other method reference String::isBlank; doesn’t match the contract because it receives a String and returns a boolean value.

13 - The answer is B. The following lambda (moe, beer) -> moe + “gives the beer:” + beer; receives two String parameters and returns one String, therefore, it matches the BinaryOperator<String> moeBiOperator contract. The following code (moe, homer, beer) -> moe + “gives the beer:” + beer + “to:” + homer; doesn’t match the contract because it’s receiving three parameters.

14 - The answer is A. The max method receives two parameters, also notice that this is a static method, therefore, there is no need for an instance. For this reason it matches the BinaryOperator<Double> methodReferenceBiOperator contract. The following code new Double()::max; won’t work because we can’t use a static method reference with an instance.

9.5 Summary

 	You learned why lambdas and method references are important.

 	You know when to use lambdas and method references for their appropriate reasons.

 	You learned the lambda and method references syntax.

 	You know how to use lambdas with the correspondent functional interfaces.

 	You know how to match lambdas and method references to functional interfaces.

 	You learned what is an effective final variable.

 	You know how to create customized functional interfaces.

 	You know how to use older Java classes as functional interfaces.

 	You solve many Java Challenges to fix and absorb the concepts of this chapter.

Congratulations, you’ve finished the Lambdas and Functional Interfaces chapter! Now you understand better how to use the benefits of functional programming in Java! Those concepts will massively improve your code quality!

10 Optional

 This chapter covers

 	Understanding how to use Optional avoiding NullPointerException

 	Wrapping values into an Optional

 	Handling Exception with Optional

 	Manipulating a present and not present value

 	Anti-Patterns from Optional

 	Filtering data with Optional

 	Transforming data with Optional

 	Total of 4 Java code Challenges

The Optional class helps Java developers to avoid the annoying NullPointerException when used correctly. It also helps developers to create more readable code with less code. Instead of using null checks, we can create elegant code by using Optional and achieve more.

According to the [Optional class documentation]:(https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Optional.html)

Optional is primarily intended for use as a method return type where there is a clear need to represent “no result,” and where using null is likely to cause errors.

10.1 Wrapping a value into Optional

To wrap a value into an Optional, we can use the static method Optional.of:

 1 String snakeEaterOps = "Secret info";
2 System.out.println(Optional.of(snakeEaterOps).isPresent());

Since there is value in the snakeEaterOps variable, the isPresent method returns:
true

Note that the Optional.of method can throw a NullPointerException if a null value is passed to it:

 1 String snakeEaterOps = null;
2 Optional<String> optSnakeEaterOps = Optional.of(snakeEaterOps);

The above method will throw:

 1 Exception in thread "main" java.lang.NullPointerException
2 at java.base/java.util.Objects.requireNonNull(Objects.java:208)

Notice that the Exception is throw in the following method Objects.requireNonNull(Objects.java:208) from the JDK code. That’s because the Optional.of method has a null check for null objects:

 1 public static <T> T requireNonNull(T obj) {
2 if (obj == null)
3 throw new NullPointerException();
4 return obj;
5 }

Therefore, whenever we pass a null value to the Optional.of method, the requireNonNull check will throw a NullPointerException.

 Note: Read the JDK code often
It’s a very good practice to read the JDK code often so you become better with Java. A few minutes a day consistently will lift your Java skills to a whole new level.

10.1.1 Using Optional.empty

To avoid passing null to a method we have the option to create an empty Optional:

 1 Optional<String> emptyOpt = Optional.empty();
2 System.out.println(emptyOpt);

It prints:
Optional.empty

There is also the option of using the Optional.ofNullable method which avoids NullPointerException in case a null value is wrapped to it:

 1 String metalGearName = null;
2 Optional<String> emptyOpt = Optional.ofNullable(metalGearName);
3 System.out.println(emptyOpt);

The code above will print:
Optional.empty

Therefore, whenever you think the value you want to handle might be null use Optional.ofNullable instead of Optional.of.

10.2 isPresent and isEmpty

To check if a value is present with an Optional we can do the following:

 1 Optional<String> optional = Optional.of("Challenger");
2 System.out.println(optional.isPresent()));

It prints:
true

Let’s see what happens when we wrap null in an Optional.ofNullable now:

 1 Optional<String> optional = Optional.ofNullable(null);
2 System.out.println(optional.isPresent()));

When we wrap a null value in an Optional.ofNullable method, the optional variable will wrap the value of Optional.empty. Therefore the output will be:
false

Since Java 11, we can also use the isEmpty method which as the name suggests, it checks if the value is Optional.empty:

 1 Optional<String> optional = Optional.of("Challenger");
2 System.out.println(optional.isEmpty()));

It prints:
false

Let’s see what happens when we wrap null in an Optional.ofNullable now:

 1 Optional<String> optional = Optional.ofNullable(null);
2 System.out.println(optional.isEmpty()));

It prints:
true

 Note
You might be wondering why the isEmpty method exists since we could just negate the optional.isPresent(). However, in terms of code design, it’s more readable to have an explicit method name instead of negating the isPresent method. By reading the isEmpty method you know right away that you are checking if the value is empty.

10.2.1 OfNullable Spartan Warrior Challenge

The following Java Challenge will focus on the concepts we explored such as the creational Optional methods, Optional.of and Optional.ofNullable. Then we will also explore the isPresent and isEmpty methods.

Therefore, what will happen when running the following code?

 1 import java.util.Optional;
 2
 3 public class OfNullableSpartanWarriorChallenge {
 4
 5 public static void main(String ... doYourBest) {
 6 boolean isWarriorPresent = getOfWarrior("Kratos").isPresent();
 7
 8 Optional<Object> spartanGhost = Optional.empty();
 9 Optional<String> ofNullableWarrior = getOptWarrior();
10 Optional<Object> emptyWarrior = Optional.of("");
11
12 System.out.printf("%s %s %s %s", isWarriorPresent,
13 spartanGhost, ofNullableWarrior, emptyWarrior.isEmpty());
14 System.out.println(getOfWarrior(null));
15 }
16
17 static Optional<String> getOfWarrior(String name) {
18 return Optional.of(name);
19 }
20 static Optional<String> getOptWarrior() {
21 return Optional.ofNullable(null);
22 }
23 }

A) true
 Exception in thread “main” java.lang.NullPointerException will be thrown

B) false null Optional.empty true
 Optional.empty

 	true Optional.empty Optional.empty true
Optional.empty

 	true Optional.empty Optional.empty false
Exception in thread “main” java.lang.NullPointerException will be thrown

Explanation:

At the first line of the main method, we will pass “Kratos” to the getOfWarrior method. Then, the Optional.of method will return an Optional with the "Kratos" value. As a result, the isPresent method will return true.

Then, we assign Optional.empty to spartanGhost.

Invoke the getOptWarrior that returns an Optional.empty since we are using the ofNullable method.

Finally, we pass an empty String to the Optional.of method. Remember that an empty String is different than an empty Optional. Therefore, the emptyWarrior variable will have an empty String in it but will not be an Optional.empty.

Therefore, when printing the values:

 	isWarriorPresent will be true.

 	spartanGhost will be Optional.empty

 	ofNullableWarrior will be Optional.empty

 	emptyWarrior.isEmpty() will be false because there is an empty String in this Optional.

In conclusion, the correct alternative is:

 1 D) true Optional.empty Optional.empty false
2 Exception in thread "main" java.lang.NullPointerException will be thrown

10.3 Optional Antipatterns

Using Optional in the wrong way will make the code confusing. Therefore, it’s important to understand what are the anti-patterns so that we can avoid them.

10.3.1 Never Use Optional as a Parameter

To pass a parameter that will receive an Optional is in essence an antipattern. That’s because we are making explicit that our method is expecting to receive a value or a null value. When we do that, we are automatically putting more than one responsibility in our method which makes the method not cohesive.

 1 void processValue(Optional<String> optValue) {
2 if (optValue.isPresent()) {
3 System.out.println("Do some logic with the value present");
4 } else {
5 System.out.println("Do some other logic with the value not present");
6 }
7 }

Notice that there are two main responsibilities in the method above. We will have to create a test flow for each case, when there is a value present and when there isn’t. This makes the code confusing.

Instead, it’s better to remove the Optional type from the method parameter and handle this edge-case scenario wherever this processValue method is being invoked:

 1 void processValue(String value) {
2 System.out.println("Do some logic with the value present");
3 }

Wherever we invoke the processValue method, we can do the following:

 1 Optional.ofNullable("value").ifPresentOrElse(this::processValue,
2 	() -> System.out.println("Process logic when there is no value..."));

Observe in the method above that we are making clear there are two method flows when there is a value and when there isn’t. By doing that, we don’t hide features in a method, we make it explicit. Therefore, other programmers will be able to understand the code more easily.

10.3.2 Overloading the Method

When there is more than one parameter in a method and one of those parameters might not have a value, it’s also a bad idea to use an Optional parameter:

 1 public void saveSimpson(String parentName, Optional<Child> optChild) {
2 Child child = optChild.orElseGet(Child::new);
3 // Apply some logic...
4 simpsonDao.save(name, child);
5 }

Now, let’s suppose a developer invokes the above method passing null in the Optional<Child> child parameter:

 1 saveSimpson("Homer", null);

You probably guessed it, a NullPointerException will be thrown! Therefore, it completely defeats the purpose of the Optional class.

To manage this situation better, we can remove the Optional parameter and handle the null value:

 1 public void saveSimpson(String parentName, Child child) {
2 Child childToPersist = child != null ? child : new Child();
3 // Apply some logic...
4 simpsonDao.save(name, child);
5 }

Another way to handle this situation is to overload the saveSimpson method:

 1 public void saveSimpson(String parentName) {
 2 doSaveSimpson(parentName, new Child("No child"));
 3 }
 4
 5 public void saveSimpson(String parentName, Child child) {
 6 Child childToPersist = child != null ? child : new Child("No child");
 7 doSaveSimpson(name, child);
 8 }
 9
10 private void doSaveSimpson(String parentName, Child child) {
11 // Apply some logic...
12 simpsonDao.save(name, child);
13 }

By following the above approach, we make our API very clear. Therefore, whoever is using the API will immediately notice the method that only receives the parentName. It will be also much easier to test both of the methods.

10.3.3 Don’t Use Optional as Serializable

An Optional object is not Serializable because it’s not meant to be used as attributes. Instead, an Optional is meant to be used as a return type where we can manipulate actions when the value is present or absent.

Also, if we use an Optional as a Serializable, we would have to unbox the value of each attribute in a class which is quite expensive in terms of performance. Another good reason to make Optional not Serializable is that we can avoid the following:

 Map<Optional<List<String>>

In real projects, we have data objects everywhere and if we have the attributes of those classes declared as Optional, the code would easily become a mess.

For more information, you can check the notes from Brian Goetz at the following link:
(http://mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-May/001814.html)[http://mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-May/001814.html]

10.3.4 Using isPresent and get

The get method defeats the purpose of the Optional class because if the value is not present, a NullPointerException will be thrown:

 1 String javaMascot = null;
2 Optional<String> optJavaMascot = Optional.ofNullable(javaMascot);
3 String result = optJavaMascot.get(); // NullPointerException here

As you can see in the code above, when we have a null value in the Optional and we use the get method, we will get a NullPointerException.

To avoid it, we can use the isPresent method to check the value first:

 1 String javaMascot = null;
2 Optional<String> optJavaMascot = Optional.ofNullable(javaMascot);
3 if (optJavaMascot.isPresent()) {
4 System.out.println(optJavaMascot.get());
5 } else {
6 System.out.println("No value");
7 }

Still, the code above is not optimal, it doesn’t add the real benefit of an Optional.

Much better would be to use either the ifPresent method because we can do the same as above with less and more readable code:

 1 String javaMascot = "Duke";
2 Optional<String> optJavaMascot = Optional.ofNullable(javaMascot);
3 optJavaMascot.ifPresent(System.out::println);

If you need to handle the case of having an absent value, you can use the Java 9 method ifPresentOrElse:

 1 String javaMascot = null;
2 Optional<String> optJavaMascot = Optional.ofNullable();
3 optJavaMascot.ifPresentOrElse(System.out::println,
4 () -> System.out.println("No value"));

10.3.5 Takeaways

To summarize the most important points of the Optional anti-patterns, let’s check the main points:

 	Don’t use Optional as a parameter

 	Don’t use an attribute with the Optional type

 	Using elements of a Collection as Optional, e.g List<Optional<String>>. It gets difficult to manipulate data and read code.

 	Avoid using isPresent and then the get method

10.4 ifPresent and ifPresentOrElse

Before the Optional and ifPresent methods was introduce in the Java language, we would have to check if the value is null and only then execute our logic:

 1 if (javaMascot != null) {
2 System.out.println(javaMascot.concat(" Rocks"));
3 }

To avoid NullPointerException, we are doing a null check. With Optional we can make it easier. We can use a lambda to do the same as above:

 1 Optional<String> opt = Optional.ofNullable("Duke");
2 opt.ifPresent(javaMascot -> System.out.println(javaMascot.concat(" Rocks")));

The output of both code examples is:
Duke Rocks

When we want to program the case where the value is not present with a lambda, we can use the ifPresentOrElse method. The method signature of the ifPresentOrElse method is the following:

 1 public void ifPresentOrElse(Consumer<T> action, Runnable emptyAction)

As you can see in the method above, we are receiving a Consumer which means that we consume the Optional value and perform an action. Otherwise, we run a code action in case the Optional value is null:

 1 Optional<String> opt = Optional.ofNullable("Duke");
2
3 opt.ifPresentOrElse(
4 (value) -> System.out.println("The Java mascot is: " + value),
5 () -> System.out.println("No Java Mascot")
6);

The output is:
The Java mascot is: Duke

As mentioned above, we are consuming the value of javaMascotOpt in the Consumer and printing it. In the Runnable we print that there is "No Java Mascot".

When the Optional value is empty the orElse Runnable will be executed:

 1 Optional<String> javaMascotOptEmpty = Optional.ofNullable(null);
2
3 javaMascotOptEmpty.ifPresentOrElse(
4 System.out::println,
5 () -> System.out.println("No Java Mascot")
6);

The output is:
No Java Mascot

10.5 orElse and orElseGet

In simple words, the orElse method will return the value of an Optional if the value is present, otherwise, it returns the value from the orElse method. This is the implementation of the orElse method in the JDK code:

 1 public T orElse(T other) {
2 return value != null ? value : other;
3 }

Let’s see the case scenario when we have a value in the Optional:

 1 Optional<String> optYoshiFood = Optional.of("Apple");
2 String yoshiFood = optYoshiFood.orElse("No food :(");
3 System.out.println(yoshiFood);

The output is:
Apple

If the Optional value is absent, the value we put in the orElse method will be returned:

 1 Optional<String> optYoshiFood = Optional.empty();
2 String yoshiFood = optYoshiFood.orElse("No food :(");
3 System.out.println(yoshiFood);

The output is:
No food :(

In the case of the orElseGet method, instead of returning a value, it returns the Supplier functional interface as the JDK code shows:

 1 public T orElseGet(Supplier<? extends T> supplier) {
2 return value != null ? value : supplier.get();
3 }

Therefore, instead of only returning a value as the orElse method, we can use some logic with a lambda expression:

 1 public class OrElseGet {
 2
 3 static void printYoshiFoodIfPresent() {
 4 Optional<String> optYoshiFood = Optional.empty();
 5 String yoshiFood = optYoshiFood.orElseGet
 6 (OrElseGet::askFoodWhenNoFoodForYoshi);
 7 System.out.println(yoshiFood);
 8 }
 9
10 static String askFoodWhenNoFoodForYoshi() {
11 String noFoodForYoshi = "No food :(";
12 String askMoreForMario = " Mario needs to get more food!";
13 return noFoodForYoshi.concat(askMoreForMario);
14 }
15
16 }

The output is:
No food :(Ask Mario for more

As you can see in the code above, by using a lambda expression we can use some logic in the Supplier if we need to. But this is not the only difference between the orElse and the orElseGet methods.

 Prefer using Method Reference when a lambda code has more than one line:
It is a good practice to use a method reference in a functional interface when the code has more than one line. If we used a in place lambda, the code would get confusing. We need to use good judgement whenever we want to use more than one line of code in a lambda expression.

10.5.1 orElseGet is Lazy and orElse is Not

The orElseGet method is lazy because we are using the functional interface Supplier. Therefore, in the case the value is present in the Optional object, the printJavaMascot method won’t be executed at all:

 1 import java.util.Optional;
 2
 3 class JavaMascotOrElseOrElseGet {
 4 public static void main(String[] args) {
 5 Optional<String> optJavaMascot = Optional.ofNullable("Duke");
 6 optJavaMascot.orElseGet(JavaMascotOrElseOrElseGet::printJavaMascot);
 7 }
 8
 9 static String printJavaMascot() {
10 System.out.println("Duke gets prepared...");
11 return "Duke";
12 }
13 }

Nothing will be printed in the output of the program above.

 Can the lazyness of the orElseGet method be useful?
If we are dealing with operations that takes a lot of resources, such as database interactions, the orElseGet method is a better option than orElse.

The orElse method will be always executed no matter if the value is present or absent:

 1 import java.util.Optional;
 2
 3 class JavaMascotOrElse {
 4 public static void main(String[] args) {
 5 Optional<String> optJavaMascot = Optional.ofNullable("Duke");
 6 optJavaMascot.orElse(printJavaMascot());
 7 }
 8
 9 static String printJavaMascot() {
10 System.out.println("Duke gets prepared...");
11 return "Duke";
12 }
13 }

The output is:
Duke gets prepared…

As you can see in the code above, the printJavaMascot method will be executed even if the Optional has a value. Therefore, the orElse method is more suitable for simpler operations that don’t consume much resources.

10.5.2 orElse and orElseGet Java Challenge

In the following challenge, we will explore how the orElse and orElseGet methods behave and your goal is to find out what will is the output of the following program when running the main method. Therefore, which of the following alternatives you think it’s the right one?

 1 import java.util.Optional;
 2
 3 public class VisionFromOracleChallenge {
 4
 5 static String finalZionValue = null;
 6 static int matrixCount = 0;
 7
 8 public static void main(String... matrix) {
 9 Optional<String> optFromMatrix = Optional.ofNullable(finalZionValue);
10 var agentSmith = "Virus";
11
12 finalZionValue = finalZionValue + Optional.ofNullable(agentSmith).orElse(getVisi\
13 onFromOracle());
14 finalZionValue += optFromMatrix.orElseGet(VisionFromOracleChallenge::getVisionFr\
15 omOracle);
16
17 finalZionValue += matrixCount;
18
19 System.out.println(finalZionValue);
20 }
21
22 static String getVisionFromOracle() {
23 matrixCount++;
24 finalZionValue += "KeyMaker";
25 return "Architect";
26 }
27 }

 	nullVirusArchitect1

 	nullVirusKeyMakerArchitect1

 	nullVirusArchitect2

 	nullKeyMakerVirusKeyMakerArchitect2

Explanation:

The first action we take is to wrap the finalZionValue variable in the optFromMatrix. Then we assign the "Virus" String to the agentSmith variable.

Then, we concatenate the finalZionValue that has the value of null and encapsulate the agentSmith variable in an Optional. However, remember that the orElse method will be invoked anyway even if the Optional value is not null. Therefore, the getVisionFromOracle method will be invoked and will increment the matrixCount variable, will concatenate with "KeyMaker" and will return “Architect” to nothing.

Notice that the finalZionValue is receiving a new value because we are using =, therefore, even though we concatenated "KeyMaker" in the finalZionValue, this value will be replaced with the value of agentSmith. This occurs because finalZionValue + Optional.ofNullable(agentSmith) will be concatenated first!

Therefore, value of the finalZionValue at this moment is nullVirus.

In the second action, we are using the optFromMatrix that is actually empty. Remember that String in Java is immutable. Therefore, even though we changed the finalZionValue it doesn’t matter for the wrapper optFromMatrix. Since the optFromMatrix is empty, the orElseGet method will be invoked. It’s important to keep in mind that if optFromMatrix wasn’t empty, the orElseGet method would not be invoked.

Then the matrixCount variable will be incremented to 2. The finalZionValue will be concatenated again, and this time "Architect" will be returned.

Note that the following code:
finalZionValue += optFromMatrix.orElseGet(VisionFromOracleChallenge::getVisionFromOracle);

Is the same as the following:
finalZionValue = finalZionValue + optFromMatrix.orElseGet(VisionFromOracleChallenge::getVisionFromOracle);

Therefore, even though the finalZionValue is concatenated in the getVisionFromOracle method, the finalZionValue will be concatenated with the current value of nullVirus first! Notice that the "KeyMaker" will be lost because of the Java concatenation execution order.

In conclusion, the final answer will be:
C) nullVirusArchitect2

10.6 Handling Exceptions with orElseThrow

Sometimes we want to simply throw an Exception when we receive a null value. For that purpose, we have the orElseThrow method that will throw an Exception in case a value is null in the Optional class.

Notice that the orElseThrow method receives a Supplier, therefore we can use a lambda method that returns or supplies a value.

 1 String noBeerForHomer = null;
2 Object homer = Optional.ofNullable(noBeerForHomer)
3 .orElseThrow(() -> new IllegalArgumentException("D'oh!"));

We can also use a constructor method reference for the IllegalArgumentException since it matches the contract of the Supplier interface. The IllegalArgumentException constructor returns a value and this is exactly what a Supplier needs:

 1 Object homer = Optional.ofNullable(noBeerForHomer)
2 .orElseThrow(IllegalArgumentException::new);

As you see in the code above the trade-off of using a method reference is that we can’t pass a parameter like we did when we used a lambda. However, if you really want to have a specific Exception message you could create a specific Exception as the following:

 1 class NoBeerException extends RuntimeException {
2 public NoBeerException() {
3 super("D'oh!");
4 }
5 }

Let’s use the NoBeerException now as a method reference:

 1 Object homer = Optional.ofNullable(noBeerForHomer)
2 .orElseThrow(NoBeerException::new);

Since we are passing "D'oh!" to the RuntimeException constructor, now we will see our specific message "D'oh!".

10.6.1 Java 10 orElseThrow() method

Java 10 has a handy method to throw an Exception when you don’t mind about a specific Exception or message. This method will always throw the following when the value is null:

 throw new NoSuchElementException("No value present");

Let’s use this method then:

 1 Object homer = Optional.ofNullable(noBeerForHomer).orElseThrow();

The output will be:

 Exception in thread "main" java.util.NoSuchElementException: No value present

10.6.2 OrElseThrow Lol Challenge

The following Java Challenge explores Exception handling with Optional. We are making use of the orElseThrow method inside the catch clause. Therefore, by running the code below, can you guess what will happen?

 1 import java.util.Optional;
 2
 3 public class OrElseThrowLolChallenge {
 4
 5 public static void main(String... doYourBest) throws Throwable {
 6 String finalOpt = "finalLol";
 7 Optional<String> opt = null;
 8
 9 try {
10 opt = Optional.of(null);
11 } catch (RuntimeException exception) {
12 System.out.println(opt.orElseThrow(() -> new Throwable())); // Line 12
13 } catch (Throwable error) {
14 finalOpt = opt.orElse("lol");
15 }
16
17 System.out.println(finalOpt);
18 }
19
20 }

 	lol

 	null

 	
NullPointerException will be throw at line 12

 	finalLol

Explanation:

In the try block, we start trying to encapsulate null into an Optional. When we use the Optional.of method, a NullPointerException will be thrown.

Considering that NullPointerException is a RuntimeException, this catch statement will catch the NullPointerException.

Then, notice that we are trying to access the orElseThrow method from the opt variable but the opt variable never got initialized. Therefore, another NullPointerException will be thrown. However, pay attention that we are don’t have another try for this code line. As a result, the NullPointerException will be break the program execution at line 12.

In conclusion, the correct alternative is:
C) NullPointerException will be throw at line 12

10.6.3 Filtering Optional Data

It’s also possible to filter data in an Optional and then check the values in it. Instead of creating an if to check if the value is there, we can simply use the filter method followed by isPresent or isEmpty:

 1 String simpsonName = "Homer";
2 Optional<String> optSimpsonName = Optional.of(simpsonName);
3
4 boolean isHomer = optSimpsonName.filter(s -> s == "Homer").isPresent();
5 System.out.println(isHomer);
6
7 boolean isMarge = optSimpsonName.filter(s -> s == "Marge").isEmpty();
8 System.out.println(isMarge);

It will print:

 1 true
2 false

We can also do more sophisticated filtering with Optional. Let’s see the following code example without Optional:

 1 public static boolean isHomerWithoutOptional(Simpson simpson) {
 2 boolean isHomer = false;
 3 if (simpson != null && simpson.name.equals("Homer")
 4 && simpson.age >= 34 && simpson.age <= 39) {
 5 isHomer = true;
 6 }
 7 return isHomer;
 8 }
 9
10 public static void main(String[] args) {
11 System.out.println(isHomer(new Simpson("Bart", 10)));
12 }

The output is:
false

As you can see, the code above is verbose. With the map and filter methods from Optional we can do the same as the code above with less code.

In the following code, we will first encapsulate the value of simpson into an Optional. Then we will filter the Optional to have only "Homer". We map Simpson to return the age with the method reference Simpson::getAge. Then in the filter method, we will be manipulating the age, therefore, we check if the age is between 34 and 39.

Finally, we check if the value is present.

 1 public static boolean isHomerWithOptional(Simpson simpson) {
 2 Optional<Simpson> optSimpson = Optional.ofNullable(simpson);
 3
 4 return optSimpson.filter(s -> s.getName().equals("Homer"))
 5 .map(Simpson::getAge)
 6 .filter(age -> age >= 34 && age <= 39)
 7 .isPresent();
 8 }
 9
10 public static void main(String[] args) {
11 System.out.println(isHomerWithOptional(new Simpson("Homer", 34)));
12 System.out.println(isHomerWithOptional(null));
13 }

The output is:
true
false

10.7 Transforming Optional Data

When we want to tranform an Optional data, we want to use map method. Otherwise, we would have to retrieve a value from an Optional by using the get method and handle the data with a null check like the following:

 1 Optional<String> simpsonName = Optional.ofNullable("Homer");
2 if (simpsonName.get() != null) {
3 System.out.println(simpsonName.get().concat(" Simpson");
4 } else {
5 System.out.println("No Value");
6 }

As you can see in the code above, the code looks verbose. Now, let’s see how to concatenate a String from an Optional with the map method:

 1 Optional<String> simpsonName = Optional.ofNullable("Homer");
2 String result = simpsonName.map(s -> s.concat(" Simpson")).orElse("No value");
3 System.out.println(result);

The output is:
Homer Simpson

Notice that the code is cleaner with the map method. Also, we are using the orElse method which gives us the possibility to return the value or something else when the value is null:

 1 Optional<String> simpsonName = Optional.ofNullable(null);
2 String result = simpsonName.map(s -> s.concat(" Simpson")).orElse("No value");
3 System.out.println(result);

The output is:
No value

We can also encapsulate a List into an Optional and use the map method to transform data. Notice in the following code that we are using the Collection Factory method from Java 9, which is a handy way to create a Collection. Then, we are using the map method that will return the size of the List. If the List is empty, 0 will be returned.

 1 List<String> simpsonNames = List.of(
2 "Homer", "Marge", "Bart", "Maggie", "Lisa");
3 Optional<List<String>> simpsons = Optional.of(simpsonNames);
4
5 int size = simpsons
6 .map(List::size)
7 .orElse(0);

The output is:
5

It’s also possible to chain a map and a filter with an Optional. In the following code, we will map "homer simpson" to upperCase by using the method reference String::toUpperCase. Then we will filter the simpsonName to only "HOMER SIMPSON". When invoking the isPresent method we will have the value there:

 1 Optional<String> optSimpson = Optional.of("homer simpson");
2
3 boolean isHomerSimpson = optSimpson
4 .map(String::toUpperCase)
5 .filter(simpsonName -> simpsonName.equals("HOMER SIMPSON"))
6 .isPresent();
7
8 System.out.println(isHomerSimpson);

The output is:
true

10.7.1 map vs flatMap

What happens when we want to change a value from an Optional inside an Optional? Consider the following data class:

 1 public class Yoshi {
2 private Integer eatenApples;
3 public Yoshi(Integer eatenApples) { this.eatenApples = eatenApples; }
4
5 public Optional<String> getEatenApples() {
6 return Optional.ofNullable(eatenApples);
7 }
8 }

Let’s try to change the value of the getEatenApples with the map method. Notice that the map method is meant to manipulate the first Optional layer, not the second one:

 1 public <U> Optional<U> map(Function<? super T, ? extends U> mapper) {
2 Objects.requireNonNull(mapper);
3 if (!isPresent()) {
4 return empty();
5 } else {
6 return Optional.ofNullable(mapper.apply(value));
7 }
8 }

As you can see in the code above, the else statement is encapsulating the Optional value inside an Optional.ofNullable. Therefore, if we try to handle a value that is an Optional, we will have something weird like Optional<Optional<Integer>>. Let’s see that happening in the following code:

 1 Yoshi yoshi = new Yoshi(7);
2 Optional<Optional<Integer>> optEatenApples = Optional.of(yoshi)
3 .map(Yoshi::getEatenApples);
4 System.out.println(optEatenApples);

The output is:
Optional[Optional[7]]

Pay attention that the map method is not meant to handle an Optional inside Optional value. Remember that the getEatenApples method returns an Optional and the map method has an Optional.ofNullable encapsulating the value. Therefore, we end up having this odd result: Optional[Optional[7]].

To retrieve the value of getEateanApples we would have to use this terrible code:

 1 Integer eatenApples = optEatenApples.orElseThrow().orElse(0);
2 System.out.println(eatenApples);

The code above is confusing and messy. That’s because the map method shouldn’t manipulate a value from an Optional inside an Optional.

10.7.2 Optional inside an Optional With flatMap

Fortunately the flatMap method is meant to manipulate data when there is an Optional inside another Optional.

Take a brief look into the following JDK code and then check the explanation below:

 1 public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> \
 2 mapper) {
 3 Objects.requireNonNull(mapper);
 4 if (!isPresent()) {
 5 return empty();
 6 } else {
 7 @SuppressWarnings("unchecked")
 8 Optional<U> r = (Optional<U>) mapper.apply(value);
 9 return Objects.requireNonNull(r);
10 }
11 }

Notice the else statement of the code above. We are not encapsulating the value again into an Optional as the map method. Instead, we are transforming the data and then returning the value of the Optional:
Optional<U> r = (Optional<U>) mapper.apply(value);

The following code is a good example of the flatMap purpose. We have the Yoshi class with the Optional getEatenApples method:

 1 Yoshi yoshi = new Yoshi(7);
2 Integer eatenApples = Optional.of(yoshi)
3 .flatMap(Yoshi::getEatenApples).orElse(0); // #A \
4
5 System.out.println(eatenApples);

The output is:
Optional[7]

 	#A: Notice we are encapsulating yoshi into an Optional, then there is the getEatenApples that also returns an Optional. Therefore, we have what we need, an Optional inside an Optional. Then we can manipulate the value of getEatenApples directly avoiding NullPointerException in case yoshi is null.

In the code above, we could return the value of the getEatenApples directly as an Optional. Therefore, to get the value of getEatenApples we just need to use a getter method for our Optional:

 System.out.println(eatenApples.orElse(0));

The output is:
7

10.7.3 Soprano Nullable Gun Challenge

This Java Challenge explores data mapping, filtering, and condition handling with Optional. By analyzing the following code can you guess what will happen when the code is executed?

 1 import java.util.Optional;
 2
 3 public class SopranoNullableGunChallenge {
 4 	public static void main(String... args) {
 5 		Soprano soprano = new Soprano();
 6
 7 		Optional.of(soprano)
 8 				.map(Soprano::getName)
 9 				.map(String::toUpperCase)
10 				.filter(n -> n.contains("Tony"))
11 				.ifPresentOrElse(System.out::println,
12 				() -> System.out.println("No value!"));
13
14 		String sopranoGun = Optional.of(soprano)
15 				.flatMap(Soprano::getGun)
16 				.map(String::toLowerCase)
17 				.filter(g -> g.equals("Beretta"))
18 				.or(Optional::empty)
19 		.orElse("Colt");
20
21 		System.out.println(sopranoGun);
22 	}
23
24 	static class Soprano {
25 		String name = "Tony";
26 		String gun = "Beretta";
27 		public String getName() { return name; }
28 		public Optional<String> getGun() { return Optional.of(gun); }
29 	}
30
31 }

 	Tony
Beretta

 	No value!
Colt

 	No value!

 	Tony
Colt

Explanation:

The first detail to pay attention is that we have the static inner class Soprano that has a getter to a String name and a another one to an Optional<String> for gun`.

Then, we encapsulate the String name into an Optional:
Optional.of(soprano)

We map the soprano object to the getName method which means that we will manipulate the getName value instead of the sopranos value:
.map(Soprano::getName)

Now we transform the name "Tony" to "TONY":
.map(String::toUpperCase)

Then, we filter the value of name of "TONY" to "Tony" which considering that Java is case-sensitive, the contains method will return false. Therefore, the filter method returns Optional.empty:
.filter(n -> n.contains("Tony"))

Now, we invoke the ifPresentOrElse method that returns "Tony" in case the value is present, or "No value!" in case the Optional is empty. Considering that the previous filter method returned Optional.empty, "No value!" will be printed:

 1 .ifPresentOrElse(System.out::println,
2 () -> System.out.println("No value!"));

In the second Optional statement, we also encapsulate the soprano object. Then we use the flatMap method. Notice that we are getting only the getGun Optional layer. This is only possible to accomplish with the flatMap method:
.flatMap(Soprano::getGun)

Now we map the value of the Optional<String> getGun() from "Beretta" to lowercase, as a result, it will transform it to "beretta":
.map(String::toLowerCase)

Then, we filter "beretta" to "Beretta" which returns Optional.empty:
.filter(g -> g.equals("Beretta"))

We use the or method, it returns the Optional value if the value is present. Otherwise, it returns the logic we implemented in the Supplier we are passing, in this case, Optional::empty:
.or(Optional::empty)

Considering that the previous or statement received an Optional.empty, the orElse statement will be invoked:
.orElse("Colt");

Therefore, the value of sopranoGun will be Colt and the right answer is:

 	No value!
Colt

10.8 Final Yoshi Food Optional Challenge

This is the final Java Challenge of this chapter. We will explore the concepts of each topic we saw. The topics are, Optional creation, Exception handling, retrieving data, data filtering, and data transform.

Are you ready for this challenge? So, what will happen when running the following main method?

 1 import java.util.Optional;
 2
 3 public class YoshiFoodOptionalChallenge {
 4
 5 public static void main(String... yoshiFood) {
 6 Integer yoshiFoodCount;
 7 Object isYoshiFoodEmpty;
 8 Optional<Integer> optYoshi = Optional.ofNullable(0);
 9
10 try {
11 yoshiFoodCount = optYoshi.orElseThrow();
12 } finally {
13 isYoshiFoodEmpty = Optional.ofNullable(null)
14 .filter(y -> y == null).orElse(Boolean.FALSE);
15 }
16
17 boolean isApple = Optional.of("Apple").flatMap(a -> Optional.of("APPLE"))
18 .equals(Optional.of("APPLE"));
19
20 optYoshi.ifPresentOrElse(System.out::print,
21 Optional.ofNullable(null)::get);
22 System.out.printf("%s %s %s", yoshiFoodCount, isYoshiFoodEmpty, isApple);
23 }
24
25 }

 	
NoSuchElementException will be thrown at // #A

 	Optional[0] NoSuchElementException

 	00 false true

 	00 true false

Explanation:

First, we create an Optional encapsulating the value of 0:
Optional<Integer> optYoshi = Optional.ofNullable(0);

Then, we get the value from optYoshi since there is a value there of 0:
yoshiFoodCount = optYoshi.orElseThrow();

Now in the finally statement, we will encapsulate the value of null into the Optional. Notice that we are encapsulating the value of null into the Optional. The filter method has a check for a null value. If the value is null, the condition won’t be even checked.

Therefore, the logic we passed into the filter method will be ignored and the orElse method will return false instead:

 1 isYoshiFoodEmpty = Optional.ofNullable(null)
2 .filter(y -> y == null).orElse(Boolean.FALSE);

In the following code, we encapsulate "Apple" in the Optional. Notice that when we use the flatMap method we will make the Optional flat, this means, instead of having an Optional of an Optional, we will return only one Optional with the value of "APPLE". Therefore, it will be equals to the Optional.of("APPLE") and will return true.

 1 boolean isApple = Optional.of("Apple").flatMap(a -> Optional.of("APPLE"))
2 .equals(Optional.of("APPLE"));

To conclude, the right alternative is:
C) 00 false true

10.9 Summary

By reading this chapter, now you can to the following:

 	Encapsulate a value into an Optional

 	Test if a value is present or not with Optional

 	Consume a value or get another with Optional

 	Consume a value or throw an Exception

 	Avoid anti-patterns with an Optional

 	Filter an Optional value

 	Transform an `Optional value

Congratulations! By knowing the Optional concepts you are now far more prepared to create high-quality code and deal better with NullPointerException. Now it’s your time to apply this knowledge in a real-world project!

11 Generics and Object Comparison

This chapter covers:

 	Comparing objects with equals and hashCode

 	Easy usage of equals and hashCode on Lombok

 	Why the use of generics is important

 	Type-inference generics

 	Upper and Lower Bound Generics

 	Wildcard Generics

 	Total of 5 Java Code Challenges

Generics and Collections are one of the most used concepts in Java. Very commonly we will have to deal with arrays of data. List, Set and Map are interfaces that are present in our day-to-day work very often. Therefore, understanding how we can use those Collections effectively makes all the difference to create high-quality code.

11.1 Comparing objects with equals and hashcode

The equals and hashCode are the methods that will check if an Object is equals to another one. In day-to-day work, we use those two methods very often. Many important core Java classes make use of the equals and hashcCode concept.

The equals and hashCode methods are declared in the Object class in Java. This means that every class we create will inherit the equals and hashCode methods. However, the implementation of the equals and hashCode methods in the Object class are pretty raw:

 1 public class Object {
 2 // Other methods ...
 3
 4 @IntrinsicCandidate
 5 public native int hashCode();
 6
 7 public boolean equals(Object obj) {
 8 return (this == obj);
 9 }
10 }

 native modifier:
Notice that the Object class uses the native modifier in the hashCode method. This modifier indicates that the method implementation will use native code and JNI (Java Native Interface). This modifier is used for lower-level interaction (machine, memory level). When using the native keyword, we can implement Java methods using C or C++. One of the main motivations to use the native operator is to obtain more performance.

Considering the raw implementation of the equals and hashCode methods, when we create a custom class, we will have to override those methods. Otherwise, we will be comparing the object instance instead of the object values.

Keep in mind the golden rule that whenever we override the equals method, always override the hashCode method too. Remember, the equals and hashCode methods must be always together.

In the following code example, we will override the equals method comparing the current instance attribute with the object that is being passed in the equals method. In the hashCode method we are generating a unique hashCode based on the fields of the SpiderMan class:

 1 import java.util.List;
 2 import java.util.Objects;
 3
 4 public class SpiderMan {
 5
 6 String armorName;
 7 String webGadget;
 8 List<String> skills;
 9
10 @Override
11 public boolean equals(Object o) {
12 if (this == o) { // #A
13 return true;
14 }
15 if (o == null || getClass() != o.getClass()) { // #B
16 return false;
17 }
18 SpiderMan spiderMan = (SpiderMan) o; // #C
19 return Objects.equals(armorName, spiderMan.armorName) && Objects
20 .equals(webGadget, spiderMan.webGadget) && Objects.equals(skills, spiderMan.\
21 skills); // #D
22 }
23
24 @Override
25 public int hashCode() {
26 return Objects.hash(armorName, webGadget, skills); // #E
27 }
28
29 }

 	#A: The first check we make in the equals method is if both objects are pointing to the same object reference. If this is true, we will be sure the attributes will be also the same considering it’s the same object.

 	#B: Then we will check if the passed object is null, if this is true, for sure the objects won’t be equals. This is because to invoke the equals method it’s necessary to create an instance, otherwise, it’s impossible to invoke the equals method. The second condition checks if the objects have different class type. If one of those conditions are true then the objects are different.

 	#C: We cast the passed object to SpiderMan.

 	#D: Notice we are using the Objects.equals method from the java.util package that basically avoids NullPointerException in case an attribute is null:

 1 public final class Objects {
2 // Other methods
3 public static boolean equals(Object a, Object b) {
4 return (a == b) || (a != null && a.equals(b));
5 }
6 }

If we were not using the Objects.equals method, we would have to do the null checks for each attribute, making the code verbose and confusing. Notice other important point that the equals method is meant to check the total equality of objects, therefore, we are supposed to check the equality of every attribute.

 	#E: Whenever we override the equals method, we must also override the hashCode method. This is a good practice because it’s far more expensive in terms of performance to check the equality of every single attribute, rather than checking the hashCode of attributes.

11.1.1 hashCode method

The purpose of the hashCode method is to return an int number that represents an identity for the object. We can create very sophisticated algorithms for the hashCode but in real-world projects, we usually create a hashCode based on the attributes of an object.

The great advantage of the hashCode method is to get performance. Since the hashCode method should use less memory resources than the equals method, it will be very helpful to check the equality of the hashCode method before checking the equals method.

 1 import java.util.List;
 2 import java.util.Objects;
 3
 4 public class SpiderMan {
 5
 6 private String suit;
 7 private List<String> skills;
 8 private int age;
 9
10 // equals method...
11
12 @Override
13 public int hashCode() { // #A
14 return Objects.hash(suit, skills, age); // #B
15 }
16
17 }

 	#A: Notice that the hashCode method simply returns an int number. We don’t receive another object to be compared like the equals method.

 	#B: We are using the handy Objects.hash method from the java.util.Objects package. It’s better to use this method because then we don’t need to replicate the code below, we just reuse it:

 1 public final class Objects {
 2
 3 // Other methods...
 4 public static int hash(Object... values) {
 5 return Arrays.hashCode(values);
 6 }
 7 }
 8
 9 public class Arrays {
10
11 // Other methods...
12 public static int hashCode(Object a[]) {
13 if (a == null)
14 return 0;
15
16 int result = 1;
17
18 for (Object element : a)
19 result = 31 * result + (element == null ? 0 : element.hashCode());
20
21 return result;
22 }
23 }

In a real-world project, this is what we will usually do. We will generate the hashCode based on the state of the object.

11.1.2 Guidelines for using equals() and hashCode()

You should only execute an equals() method for objects that have the same unique hashcode ID. You should not execute equals() when the hashcode ID is different.

 	Table 1. Hashcode comparisons
 	

 	If the hashcode() comparison …
 	Then …

 	—
 	—

 	returns true
 	execute equals()

 	returns false
 	do not execute equals()

This principle is mainly used in Set or Hash collections for performance reasons.

11.1.3 Rules for object comparison

When a hashcode() comparison returns false, the equals() method must also return false. If the hashcode is different, then the objects are definitely not equal.

 	Table 2. Object comparison with hashcode()
 	

 	When the hashcode comparison returns …
 	The equals() method should return …

 	true
 	true or false

 	false
 	false

When the equals() method returns true, it means that the objects are equal in all values and attributes. In this case, the hashcode comparison must be true as well.

 	Table 3. Object comparison with equals()
 	

 	When the equals() method returns …
 	The hashcode() method should return …

 	true
 	true

 	false
 	true or false

We can also return a constant int number that will be always the same. However, by doing that, we won’t get the benefit of the hashCode method.

11.1.4 Easy equals and hashCode with Lombok

The Lombok library dramatically reduces the boiler-plate code. To generate the equals and hashCode methods automatically, if you are using the Lombok library, you can simply annotate your data object with @EqualsAndHashCode as the following:

 1 @EqualsAndHashCode
2 public class SpiderMan { ... }

As you can see in the code above, it’s very easy and simple to implement the equals and hashCode methods with Lombok. Lombok is also very flexible, that means that you can customize the way you use the equals and hashCode methods the way you prefer.

11.1.5 SpiderMan equals & hashCode Challenge

In the following Java Challenge we will explore how the equals and hashCode method should work fundamentally. As dicussed before, the aim of those methods is to assure equality of the state of two objects. We are creating four objects and comparing them. Therefore, what do you think it will be the output?

 1 public class SpiderEqualChallenge {
 2 static int equalsCount = 0;
 3 public static void main(String... doYourBest) {
 4 System.out.println(areEquals(new SpiderMan("Peter"), new SpiderMan("Peter")));
 5 SpiderMan symbiote = new SpiderMan("Symbiote") {
 6 public int hashCode() { return 43 + 777 + 1; }
 7 };
 8 System.out.println(areEquals(symbiote, new SpiderMan("Symbiote")));
 9 System.out.println(equalsCount);
10 }
11 static boolean areEquals(SpiderMan spiderMan1, SpiderMan spiderMan2) {
12 return spiderMan1.hashCode() == spiderMan2.hashCode()
13 && spiderMan1.equals(spiderMan2);
14 }
15 static class SpiderMan {
16 String name;
17 SpiderMan(String name) {
18 this.name = name;
19 }
20 public boolean equals(Object obj) {
21 final var spiderMan = (SpiderMan) obj;
22 equalsCount++;
23 return name.equals(spiderMan.name);
24 }
25 public int hashCode() {
26 return (43 + 777);
27 }
28 }
29 }

 	false
true
2

 	true
false
1

 	false
false
0

 	true
true
2

Explanation:

Notice that the areEquals method is doing what it’s supposed to be done when two objects are being compared with Java. First, there is a comparison with hashCode followed by the equals check of two objects.

The data class SpiderMan that has the equals and hashCode methods overridden.

Another important point to pay attention is the static equalsCount variable that counts how many times the equals method was invoked.

Then, in the main method, we are invoking the areEquals method passing two SpiderMan objects with the name of "Peter". Since the value of both objects are the same, the areEquals method will return true. Notice also that the equalsCount variable is being incremented by 1.

In the following statement, we are instantiating another SpiderMan with the "Symbiote" name. However, we are also overriding the hashCode method passing a different value. Therefore, when we invoke the areEquals method, the hashCode will be different between the other "Symbiote" object.

When the hashCode is different from another object, there is no point to execute the equals method. That’s because if the hashCode method is different from the other object’s hashCode, the equals method has to return false as well. Therefore, the equalsCount variable won’t be incremented.

Considering that the hashCode from both objects are different, the result from the areEquals method will be false.

The last statement will print 1 as the equalsCount.

To conclude, the right answer is:

 	true
false
1

11.1.6 Takeaways from equals and hashCode

 	When overriding the equals method, always override the hashCode method as well. The equals and hashCode method complement each other and should be always together.

 	The equals method is responsible to check the full equality of two objects’ attributes.

 	The hashCode method should execute quicker than the equals method.

 	If the equals method returns true, the hashCode method must also return true.

 	When creating a data object, always override the equals and hashCode methods.

11.2 Generics

I know that explaining Generics before Collections is not the standard of most Java books. Most books will explain Collections first and then Generics but when I was learning Collections I was confused by the symbol <>. I was using it with Collections but I didn’t know what was that exactly.

That’s why I decided to not follow what most Java books do and before going through Collections, you can first understand the Generics concept. Then the <> symbol will make sense when using Collections.

As mentioned when we use Collections, we are most of the time also using Generics. The generic type of a Collection is the type between the <>. The generics concept was introduced in Java 1.5.

There is a great definition of Generics in the Java documentation:

 In a nutshell, generics enable types (classes and interfaces) to be parameters when defining classes, interfaces and methods.

This means we can define a type of a parameter in a class or interface in a dynamic way. By using generics, we get the benefit of strongly type a parameter dynamicaly so that we can have more control over the code.

It’s far easier for bugs to come up in an application when we don’t strongly type our code. Generics make code strongly-typed and secure during compile-time since we don’t need to make use of casting for example.

To make the concept of generics clear, let’s see some code examples.

11.2.1 List Without Generics

Generics is commonly used with a Collection because you are able to control what type will be manipulated in it. The most common Collection type is a List with the ArrayList implementation.

Let’s see the code example with a List without using generics:

 1 List list = new ArrayList(); // #A
2 list.add("Duke"); // #B
3 list.add(777); // #C
4 list.add(new Object());
5 list.add(true);
6
7 Integer luckyNumber = (Integer) list.get(1); // #D
8 System.out.println(luckyNumber);

Output:
777

Let’s analyze the code:

 	#A: We instantiate our List without a generic type, this means that we can add any element type into our List.

 	#B: We add a String.

 	#C: We add an int number that will be auto-boxed and wrapped into an Integer type.

 	#D: When we need to get an array element, we need to cast the type to what we are expecting. That happens because there is no way for the compiler to know what type we inserted in the List. In this case, we are getting the second element that contains an Integer number 777 and adding it to the list.

Adding any type to the List is not good because it’s very easy to have the wrong data type in the List and cause bugs will be difficult to be tracked.

11.2.2 List With Generics

To avoid the type casting as seen in the code above, we can use generics! Fortunately, we can pass a generic type to the List interface as we can see in the following code:

 public interface List<E> extends Collection<E> { ... }

Basically, the <E> is the type of the List element. Therefore, when using the List we need to pass the element’s type when instantiating it:

 1 List<String> list = new ArrayList<>(); // #A
2 list.add("Duke"); // #B
3
4 String duke = list.get(0); // #C
5 System.out.println(duke);

Output:
Duke

 	#A: Notice that now we are passing the generic type of <String>, therefore, we can only add objects that are typed as String into the List.

 	#B: We are adding a String type to the List. Notice that if we try to add the following list.add(777); the code wouldn’t compile because the List is expecting only String.

 	#C: Finally, we retrieve the the first element of the List by the index. Note that we are not using casting because the compiler knows this List will only accept String elements.

 <> operator:
Before Java 7 we would have to repeat the generic type on the instantiation like the following : List<String> list = new ArrayList<String>(); which is verbose and unnecessary. Fortunately, since Java 7 we can ommit the generic type of the instantiation as the following: List<String> list = new ArrayList<>(); having the same effect.

11.2.3 Generics don’t accept primitive types

If we try to do the following:

 List<int> listOfInts = new ArrayList<>();

The code won’t compile, so be aware that we can only use a class type. Another important detail is that if we try the following, the code will work:

 1 int number = 7;
2 List<Integer> list = new ArrayList<>();
3
4 list.add(number); // This works because of the auto-boxing concept

As we saw in previous chapters, Java has a concept of auto-boxing. Therefore, when we add an int type to a List<Integer>, actually, the int type will auto-boxed to Integer implicitly by the compiler.

The same will happen with the other primitive types.

11.2.4 Spider Man Villains Without Generics Challenge

We will explore the use of a List without generics in this challenge.

Your goal in this code challenge is to replace code in the ##REPLACE## area so that it will print "Venom".

Note that more than one alternative might be correct.

 1 import java.util.ArrayList;
 2 import java.util.List;
 3
 4 public class CollectionWithoutGenericsChallenge {
 5
 6 public static void main(String[] args) {
 7 List list = new ArrayList();
 8 list.add("Venom");
 9
10 // ##REPLACE##
11
12 System.out.println(superVillain);
13 }
14
15 }
16 ````
17
18 A) String superVillain = list.get(0);
19
20 B) Object superVillain = list.get(0);
21
22 C) var superVillain = list.get(0);
23
24 D) String superVillain = (String) list.get(0);
25
26 **Explanation**:
27
28 In alternative `A`, we can't use the code `String superVillain = list.get(0);` becau\
29 se we are not using casting. Note that there is no way for the compiler to guess wha\
30 t is the variable type since we can put anything into the `list`.
31
32 In alternative `B`, we can use `Object superVillain = list.get(0);` because we are p\
33 utting the `list` value into an `Object` since it can receive any type.
34
35 In alternatice `C` we can use `var superVillain = list.get(0);` also because a `var`\
36 can store any type.
37
38 In alternative `D`, we can use `String superVillain = (String) list.get(0);` because\
39 we are casting the type to `String`.
40
41 Therefore, the correct alternatives are:
42 **B) Object superVillain = list.get(0);**
43 **C) var superVillain = list.get(0);**
44 **D) String superVillain = (String) list.get(0);**
45
46 ## 11.3 Generic Type Inference
47
48 We also have the possibility to create our own generic types. When we want to create\
49 code that is highly reusable and have more control in the data type, we can use gen\
50 erics.
51
52 Let's see the example of using generics in a `class`:
53
54 ```java
55 public class GenericClass<T> { // #A
56
57 public T doSomething(T type) { // #B
58 System.out.println(type.getClass()); // #C
59 return type;
60 }
61
62 public static void main(String[] args) {
63 GenericClass<StringBuilder> genericClass = new GenericClass<>(); // #D
64 genericClass.doSomething(new StringBuilder("Generic Builder")); // #E
65
66 new GenericClass<>().doSomething("Generic String"); // #F
67 Integer genericNumber = new GenericClass<Integer>().doSomething(7); // #G
68 System.out.println(genericNumber);
69 }
70
71 }

Output:
class java.lang.StringBuilder
class java.lang.String
class java.lang.Integer
7

Code Analysis:

 	#A: This is the syntax to use a generic type at a class level. We use the <T> after the class name. Notice that the generic type name can be anything. T is commonly used because it’s a T for Type.

 	#B: Once we have the <T> generic type declared in the class declaration, we can use the generic type in this class. Notice that we are using the generic type T as a return type. We are also using the T as the parameter type.

 	#C: We print the class type of the generic type.

 	#D: We instantiate the GenericClass with the generic type of StringBuilder.

 	#E: Notice that we already passed the StringBuilder type to GenericClass, this means that the generic type is already set for StringBuilder. Therefore, when invoking the doSomething method, we can only use the StringBuilder type. If we try to pass something else as argument, there will be a compilation error.

 	#F: We are instanting the GenericClass again, but now passing a String as a parameter. Notice that we are not passing anything in the <>, therefore, the generic type applied by default will be Object, not String.

 	#G: We are passing the generic type of Integer when we instantiate the GenericClass. Therefore, T will be Integer and we won’t have to cast this type. Therefore, we can return the value of the doSomething method and print it with no complications.

11.3.1 Generic Type Inference in a Method

If you don’t want to declare the generic type in a class level, you can also use it directly in a method:

 1 public class GenericsMethod {
 2
 3 public <T> T doSomething(T type) { // #A
 4 System.out.println(type.getClass());
 5 return type;
 6 }
 7
 8 public static void main(String[] args) {
 9 GenericsMethod genericsMethod = new GenericsMethod();
10 String result = genericsMethod.doSomething("Generics Method"); // #B
11 System.out.println(result);
12
13 result = genericsMethod.<String>doSomething("Method with Generics"); // #C
14 System.out.println(result);
15 }
16
17 }

Output:
class java.lang.String
Method with Generics
class java.lang.String
Method with Generics

Code Analysis:

 	#A: Note that instead of declaring the generic type at class level, we are declaring it after the public modifier. Therefore, we will be able to use a generic type as a parameter in the method.

 	#B: We are passing the type of String to the T generic type. Notice that since we are using generics at a method level, when we pass a String as a parameter, T will be inferred as String automatically.

 	#C: Notice that if we want, we can also pass the method generic type when invoking the method. It’s not necessary though since the type we pass as parameter will be already inferred as the generic type. It works but it’s redundant.

11.3.2 Generic Type Inference Instance Variable

It’s possible to define an instance variable with a generic type. To do so, we need to pass the generic type in the instantiation GenericInstanceVariable, then we pass the value in the constructor:

 1 public class GenericInstanceVariable<T> { // #A
 2
 3 T t; // #B
 4
 5 public GenericInstanceVariable(T t) { // #C
 6 this.t = t;
 7 }
 8
 9 public static void main(String[] args) {
10 GenericInstanceVariable<String> genericInstance =
11 new GenericInstanceVariable<>("T type"); // #D
12
13 String tString = genericInstance.t; // #E
14 System.out.println(tString);
15 }
16
17 }

Output:
T type

Code Analysis:

 	#A: Notice that we need to declare the generic type at class level to be able to use it as an instance variable. Another important point is that the T type can be used as a constructor or method parameter.

 	#B: Since we declared the T generic type in the class, we can use T as an instance type.

 	#C: We can pass the value of our generic type here and then assign to the instance variable.

 	#D: It’s important to notice here that we are passing the generic type when we use the following <String>. If we don’t provide the type here, the T type can’t be inferred when we only pass a value. That’s because when we declare the generic type in a class level, the type is supposed to be the same for the whole class.

 	#E: We can return the t value as a String because we defined that in the generic type. That’s one of the greatest advantages of using generics, to define a return type during runtime.

11.3.3 Mystique Generic Type Inference Challenge

In the following Java Challenge, we will explore generics at a class, instance variable, constructor and method level. Can you guess what will happen after running the main method?

 1 public class GenericMystiqueChallenge<T> {
 2 T t;
 3 public GenericMystiqueChallenge(T t) {
 4 this.t = t;
 5 }
 6 public<K> K mystiqueTransform(K k) {
 7 return k;
 8 }
 9 public <T> T mystiqueAttackPower(T t) {
10 return t;
11 }
12 public static void main(String... doYourBest) {
13 GenericMystiqueChallenge<String> genericMystique = new GenericMystiqueChallenge<\
14 >("Raven");
15
16 String realName = genericMystique.t; // #A
17 String transformed = genericMystique.mystiqueTransform("Wolverine"); // #B
18 Integer normalForm = genericMystique.mystiqueAttackPower(7); // #C
19
20 System.out.printf("%s %s %s", transformed, realName, normalForm);
21 }
22
23 }

 	Compilation error at line // #A

 	Compilation error at line // #B

 	Wolverine Raven 7

 	Compilation error at line // #C

Explanation:

In this Java Challenge we are exploring generics at class, constructor, and method level.

When we instantiate GenericMystiqueChallenge we are passing the <String> generic type. When we do that, we will pass the String type to T.

Also note that we are passing "Raven" in the constructor. If we tried to pass anything else there would be a compilation error since we already defined the type of T to be String.

Therefore, it will be fine to retrieve the t variable as String since the T generic type is String.

Then we invoke the mystiqueTransform method passing "Wolverine". Notice that the mystiqueTransform method receives the generic type of K. Since the K generic type is being declared at a method level, the type will be inferred without the need of the <> operator. Therefore, the variable transformed will have the value of "Wolverine".

Finally, notice that we are using a generic type shadowing. We already have the T type declared at class level but we are declaring it again in the mystiqueAttackPower method signature since we are using <T>.

In conclusion, the correct answer is:

 C) Wolverine Raven 7

11.3.4 Declaring Many Generic Types

It’s possible to declare as many generics we want, also there is no restrictions for the generics names. There are many good examples in the JDK code with multiple generic types. Let’s see some of them:

 public interface Map<K, V> { ... }

 1 public class HashMap<K,V> extends AbstractMap<K,V>
2 implements Map<K,V>, Cloneable, Serializable {

 public interface BiFunction<T, U, R> { ... }

 public interface BiConsumer<T, U> { ... }

Notice the BinaryOperator that it’s possible to extend BiConsumer and override the generic types with another generic type:

 public interface BinaryOperator<T> extends BiFunction<T, T, T> {

As you can see in the above examples, there are plenty of interfaces and classes in the JDK that use multiple generics.

Let’s create our own interface that has many generic types:

 1 public class MultiMapExample {
 2
 3 interface MultiMap <K,V, R> { // #A
 4 R put(K k, V v); // #B
 5 }
 6
 7 public static void main(String[] args) {
 8 MultiMap<Integer, Double, String> multiMap = (key, value) -> String.va\
 9 lueOf(key + value); // #C
10 System.out.println(multiMap.put(1, 2.0)); // #D
11 }
12 }

Output:
3.0

Code Analysis:

 	#A: We are declaring the generic types into the interface, K, V and R.

 	#B: Then we are using the generic types in the put method.

 	#C: We are passing the type Integer to K, Double to V, and String to R. Then we are passing a lambda expression, basically definining the body of the put method.

 	#D: Finally, we invoke the put method passing an Integer 1, Double 2.0 and returns a String which matches exactly the generic types we passed to the MultiMap interface.

11.4 Upper and Lower Bound Generics

To restrict the use of generics, we can define what type it should extend, this is also called as upper bounds generics. To retrict generics to super types we use the concept of lower bound generics.

In the following code, let’s see an example where we define the genericy type T that extends String:

 1 public class UpperBoundGenerics {
 2
 3 public static void main(String[] args) {
 4 String upperBound = concatString("upperBound");
 5 System.out.println(upperBound);
 6 }
 7
 8 static <T extends String> String concatString(T t) { // #A
 9 return t.concat("Generics"); // #B
10 }
11
12 }

Output:
upperBoundGenerics

Code Analysis:

 	#A: Notice the syntax of the upper bound generic type. We are declaring T as the generic type and we are also extending String. This means that we can receive any type that is or extends a String.

 	#B: Another important point is that we are using the specific concat method from the String class. This is only possible because we are making explicit to the compiler that T extends String, therefore, the concat method will be on t.

11.4.1 Unbounded Wildcard

When we don’t need to store or infer a generic type we can use the unbounded wildcard with ?.

Unbounded wildcard is useful to create flexible, robust APIs and if you notice, the JDK code has plenty of examples. Let’s check the Files class from the nio package:

 1 public static Path walkFileTree(Path start, FileVisitor<? super Path> visitor){... }
2
3 public static Path write(Path path, Iterable<? extends CharSequence> lines,
4 Charset cs, OpenOption... options)

Therefore, if you want to create powerful and robust APIs, unbounded generics will be a great help for you.

When we use ?, we can use the upper bound or lower bound generic type.

Let’s see how unbounded type, lower and upper bounds generics work in the following code:

Unbounded type: we can pass a list with any type. ? will be erased at runtime and will be substituted by the type we are passing:

 1 List<?> stringList = new ArrayList<String>();
2 List<?> exceptionList = new ArrayList<Exception>();
3 List<?> booleanList = new ArrayList<Boolean>();
4 List<?> consumerList = new ArrayList<Consumer>();

Lower bounds generics: we can pass a list that is Double or any super type of Double:

 1 List<? super Double> doubleList = new ArrayList<Double>();
2 List<? super Double> numberList =`new ArrayList<Number>();

Upper bounds generics: we can pass a list that is Number or any sub type of Number:

 1 List<? extends Number> numberList = new new ArrayList<Number>();
2 List<? extends Number> doubleList = new ArrayList<Double>();

11.4.2 Wildcard Lower Bound Generics

The lower-bounds generic type is more suitable to be used when we will use data as output, that means when data will be returned by a method in some way.

If we want to pass a generic type that is the super type of another, then we can use the following code:

 1 import java.util.ArrayList;
 2 import java.util.List;
 3
 4 public class LowerUnboundedGenerics {
 5 public static void main(String[] args) {
 6 List<Number> numbers = new ArrayList<>();
 7 numbers.add(7.0);
 8 numbers.add(3.0);
 9 List<? super Double> result = addNumbers(numbers);
10 System.out.println(result);
11 }
12
13 static List<? super Double> addNumbers(List<? super Double> numbers) { // #A
14 numbers.add(1.0); // #B
15 return numbers;
16 }
17 }

Output:
[7.0, 3.0, 1.0]

Code Analysis:

 	#A: Notice that it’s only possible to use lower bound generic type with the unbounded wildcard. Therefore, we can’t declare an unbounded generic type, we can only pass it as a type to an existent generic type.

 	#B: Another important point is that we can add a Double as a type to the list. We can’t add an Integer, Float or any other type to this generic type.

11.4.3 Upper and Lower Bounds God Warriors Challenge

This is a Java code challenge about upper and lower bounds generics.

Your objective is to replace ##REPLACE## by one of the code alternatives so that the code will compile and print "Everything went fine!".

Which alternatives are correct? Note that more than one alternative may be correct.

 1 public class UpperLowerBoundGenericChallenge {
 2 	
 3 		interface Zeus {}
 4 		interface Kratos extends Zeus { }
 5 		interface Atreus extends Kratos { }
 6 		static class Warrior<T> {}
 7
 8 		public static void main(String ... doYourBest) {
 9 			Warrior<Kratos> kratos = new Warrior<>();
10 			Warrior<Zeus> zeus = new Warrior<>();
11 			Warrior<Atreus> atreus = new Warrior<>();
12
13 // ##REPLACE##
14
15 			System.out.println("Everything went fine!");
16 		}
17
18 	static void fight(Warrior<? extends Zeus> warrior1, Warrior<? super Kratos> warrior\
19 2) {}
20
21 }

 	fight(kratos, zeus);

 	fight(atreus, new Warrior<>());

 	fight(kratos, atreus);

 	fight(zeus, kratos);

Explanation:

The code in alternative A will compile fine since kratos extends Zeus and zeus is super of kratos.

The code in alternative B will also compile fine since atreus extends zeus and new Warrior<>() will infer the generic type of Kratos.

The code in alternatice C won’t compile because the second atreus argument is not super of Kratos.

The code in alternative D works fine since the type we see in the wildcard either for extends or super will always work. For example, in the first warrior we use <? extends Zeus>, therefore, zeus will work. For Warrior<? super Kratos> kratos also works fine.

In conclusion, the correct alternatives are:

 A) fight(kratos, zeus);

 B) fight(atreus, new Warrior<>());

 D) fight(zeus, kratos);

11.4.4 Upper Bounds Generics

The upper bounds generics is pretty much the opposite of the lower bounds generics. The upper bounds generic is more suitable to be used when you are performing logic within a method and don’t want this variable to be used outside of your method.

Let’s see how it works in code:

 1 import java.math.BigDecimal;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4
 5 public class UpperUnboundedGenerics {
 6 public static void main(String[] args) {
 7 List<Integer> intNumbers = new ArrayList<>();
 8 intNumbers.add(7);
 9 printNumbers(intNumbers); // #A
10
11 List<BigDecimal> decimalNumbers = new ArrayList<>();
12 decimalNumbers.add(BigDecimal.TEN);
13 printNumbers(decimalNumbers); // #B
14 }
15 static void printNumbers(List<? extends Number> numbers) { // #C
16 numbers.forEach(System.out::println);
17 }
18 }

 	#A: We pass a List of Integer to the printNumbers method. This is fine since we are receiving any List that extends Number in the gneric type.

 	#B: Here we pass a List of BigDecimal and that’s one of the benefits of using the upperbound generic type, we can pass a whole List to a method with some flexibility in the type. We can pass a List with any generic type that is a Number.

 	#C: We are receiving here List<? extends Number> numbers which enables us to pass a List with a flexible Number type. Therefore, we can print any Number in this method.

11.4.5 No Polymorphism with Generics

If you try to do the following:
List<Number> list = new ArrayList<Integer>();

The code won’t compile, this is because we can’t use polymorphism with generics. To fix the code above we have to use the following:
List<Number> list = new ArrayList<>();

We can simulate the effect of polymorphism by using bounded generics though. We could also create a method that receives a List<? extends Number>:

 1 import java.util.ArrayList;
 2 import java.util.List;
 3
 4 public class NoPolymorphismGenerics {
 5 public static void main(String[] args) {
 6 List<Integer> intNumbers = new ArrayList<>();
 7 intNumbers.add(7);
 8 printNumbers(intNumbers);
 9 }
10 public static void printNumbers(List<? extends Number> numbers) { // #A
11 numbers.forEach(System.out::println); // #B
12 }
13 }

 	#A: We are using a wildcard ? here which gives us the flexibility to pass a List that has the generic type of any Number.

 	#B: We iterate over the List of Number and print the elements.

Another way to use polymorphism is by adding element by element. If we create a List<Number> and add Integer, BigDecimal, Long the code will work:

 1 List<Number> numbers = new ArrayList<>();
2 numbers.add(Integer.valueOf("7"));
3 numbers.add(BigDecimal.TEN);
4 numbers.add(Long.valueOf("7"));
5 numbers.add(Double.valueOf("7"));

Notice that we still can use polymorphism in the element level. That’s why we can add any Number to the List. However, if we want to use polymorphism at the Collection level as the previous example, then we have to use bounded generics.

11.4.6 UpperUnbounded MiniMog Generic Challenge

It’s time for you to consolidate the concepts of bounded wildcard generics! In the following code challenge, the addInto method will be invoked many times with many Lists that have different generic types.

What will happen when running the following code?

 1 import java.math.BigDecimal;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4
 5 public class MiniMogWildcardChallenge {
 6 public static void main(String... doYourBest) {
 7 List<Integer> miniMogHitDamage;
 8
 9 List<Integer> intDamage = new ArrayList<>();
10 intDamage.add(10);
11 miniMogHitDamage = addInto(intDamage); // #A
12
13 List<Long> longDamage = new ArrayList<>();
14 miniMogHitDamage.addAll(addInto(longDamage)); // #B
15
16 List<BigDecimal> bigDecimalDamage = new ArrayList<>();
17 bigDecimalDamage.add(BigDecimal.ZERO);
18 miniMogHitDamage.addAll(addInto(bigDecimalDamage));
19
20 miniMogHitDamage.forEach(System.out::println); // #C
21 }
22 static List addInto(List<? extends Number> list) {
23 List<Number> resultList = new ArrayList<>();
24 resultList.addAll(list);
25 return resultList;
26 }
27 }

 	Exception in thread “main” java.lang.ClassCastException: class java.math.Integer cannot be cast to class java.lang.Number at line // #A

 	10
Exception in thread “main” java.lang.ClassCastException: class java.math.Long cannot be cast to class java.lang.Integer at line // #B

 	10
0

 	10
Exception in thread “main” java.lang.ClassCastException: class java.math.BigDecimal cannot be cast to class java.lang.Integer at line // #C

Explanation:

We first invoke the addInto method with the intDamage Integer List. Then we add all the Integer elements into the resultList. This works because Integer extends Number.

Then we invoke the addInto method again with the longDamage list. It works fine again because Long also extends Number.

We invoke the addInto method for the last time passing the bigDecimalDamage list. It also works fine because BigDecimal extends Number.

Finally, we try to iterate in the List<Integer> but there is a problem, we added an Integer and BigDecimal elements into it. Therefore, when we try to iterate the elements of this array, we will get a ClassCastException because we can’t use a BigDecimal type in an Integer List.

In conclusion, the final answer will be:

 	10
Exception in thread “main” java.lang.ClassCastException: class java.math.BigDecimal cannot be cast to class java.lang.Integer at line // #C

11.5 Summary

Generics will help you understand better the Java API and will help you design better APIs when needed.

In this chapter, you learned that:

 	It makes a generic object strongly typed avoiding type casting.

 	It’s commonly used to build robust and flexible APIs.

 	It organizes code in a way that the object type of a Collection is reliable during runtime.

 	It’s widely used in the JDK code, you will see generics in the Collection api, functional interfaces, Comparable interface, and so on.

 	Generics can be used at a class, variable, constructor or method level.

 	A generic type can be declared at a class, constructor, method or instance variable level.

 	Only objects can be passed to a generic type, primitive variables are not allowed.

12 Collections

This chapter covers:

 	The common uses of a List

 	The List implementations such as ArrayList, LinkedList and Vector

 	Finding and Sorting elements in a List using Collections

 	Using Queue, Stack, Deque, ArrayDeque

 	Avoiding ConcurrentModificationException with CopyOnWriteArrayList

 	Using unique elements with Set

 	The Set implementations such as HashSet, TreeSet, and LinkedHashSet.

 	Using key value data with Map

 	Using HashMap, LinkedHashMap, Hashtable, TreeMap, and ConcurrentHashMap

 	Searching elements in an array

 	Total of 8 Java code Challenges

12.1 Collections API

In the following sections, we will explore the most used Collections api.

We will explore List, Set, Queue, Deque and their implementations. To give you a macro-view of them, check out the following diagram:

 [image:]
 Figure 11.1 Collections API Diagram

Now that you have a brief understanding of the Collections api, let’s explore their concepts more deeply and of course do some Java code challenges!

12.2 List

The List interface is the most used Collection interface in the day-to-day work of a Java developer. As the name suggests, we can add many elements in the list, we can access elements quickly by index and elements are ordered in the way they are inserted.

Note that we will also use ArrayList as an implementation of List here but we will explore it further after List.

Let’s analyze the following code to see a List in practice:

 1 import java.util.ArrayList;
2 import java.util.List;
3
4 List<String> heroes = new ArrayList<>(); // #A
5 heroes.add("Batman"); // #B
6 heroes.add("Spider-Man");
7 heroes.add("Iron Man");
8
9 System.out.println(heroes); // #C

Output:

 1 [Batman, Spider-Man, Iron Man]

Code Analysis:

 	#A: Note that we are instantiating the List with ArrayList. By doing that we are using polymorphism. ArrayList is the most used Collection in real Java projects. We are also passing the generic type of String to the list, which means we can only add String to it.

 	#B: We are adding String elements in the list here.

 	#C: We are printing the toString method from the List. Notice that it’s nicely formatted. We can easily see all the list elements. Out of curiosity, the toString is implemented in the AbstractCollection class:

 1 // You don't need to fully understand the following code, don't worry!
 2
 3 public abstract class AbstractCollection<E> implements Collection<E> {
 4 // Ommitted other methods...
 5 public String toString() {
 6 Iterator<E> it = iterator();
 7 if (! it.hasNext())
 8 return "[]";
 9
10 StringBuilder sb = new StringBuilder();
11 sb.append('[');
12 for (;;) {
13 E e = it.next();
14 sb.append(e == this ? "(this Collection)" : e);
15 if (! it.hasNext())
16 return sb.append(']').toString();
17 sb.append(',').append(' ');
18 }
19 }
20 }

12.2.1 Iterating over a List with index

One of the greatest advantages of a list is to access elements by index. Therefore, let’s see how we can create a for looping accessing the index of each element:

 1 // Omitted imports and list adding of Batman, Spider-Man, and Iron Man
2 for (int i = 0; i < heroes.size(); i++) // #A
3 System.out.println(heroes.get(i)); // #B

Output:
Batman
Spider-Man
Iron Man

Code Analysis:

 	#A: We create a for looping iterating up until the list size and keep incrementing the i variable.

 	#B: Then we get each element by index printing then all the characters.

12.2.2 Iterating over a List with Iterator

Iterating elements of a List with Iterator is quite verbose.

However, using Iterator might be useful when we need to use a while looping asking if the next element is present. Iterator

Let’s see an example of Iterator:

 1 // Omitted imports and list adding of Batman, Spider-Man, and Iron Man
2
3 // Iterator to traverse the list
4 Iterator iterator = heroes.iterator(); // #A
5
6 // Verifies if there is a next element in the iterator
7 while (iterator.hasNext()). // #B
8 System.out.print(iterator.next() + " "); // #C

Output:
Batman Spider-Man Iron Man

Code analysis:

 	#A: Notice that the List has the iterator method which returns an iterator object capable of iterating over a list.

 	#B: Then we put the iterator in a while looping and invoke hasNext() to check if there is a next element.

 	#C: Finally, we use the next method that will effectively get the list element and will pass the pointer to the next element.

12.2.3 Iterating over a List with forEach

To do the same as mentioned above, we can use the forEach or enhanced looping concept. This looping will literally do the same as the Iterator but that will happen behind the scenes.

When we decompile the code, we can see that it did the same as above:

 1 Iterator var2 = heroes.iterator();
2
3 while(var2.hasNext()) {
4 String hero = (String)var2.next();
5 System.out.print(hero + " ");
6 }

Therefore, if you don’t need any specific feature from the Iterator class, you can use the forEach statement instead.

Let’s see how that works:

 1 // Omitted imports and list adding of Batman, Spider-Man, and Iron Man
2 for (String hero : heroes) System.out.print(hero + " "); // #A

Output:
Batman Spider-Man Iron Man

Code analysis:

 	#A: It retrieves String from heroes and puts each of them into a String variable.

12.2.4 Iterating over a List with lambda

To iterate elements with less code, we can also use a lambda expression. In Java 8, the forEach method was added in the List interface as a default method as you can see in the following code:

 1 default void forEach(Consumer<? super T> action) {
2 Objects.requireNonNull(action);
3 for (T t : this) {
4 action.accept(t);
5 }
6 }

Note that we receive a Consumer in the forEach method. So, if we want to print all elements using a lambda, we can do the following:

 1 // Omitted imports and list adding of Batman, Spider-Man, and Iron Man
2 list.forEach(e -> System.out.println(e));

Output:
Batman
Spider-Man
Iron Man

To make the code above even better, we can use a method reference to print the elements from the list:

 list.forEach(System.out::println); // The output will be the same as above

12.2.5 List Removing Elements from a List

If we want to remove an element, we can use the following code:

 1 heroes.remove(0); // #A By index
2 heroes.remove("Iron Man"); // #B By object
3 System.out.println(heroes);

Output:
[Spider-Man]

Code analysis:

 	#A: We remove the element by the index. Therefore, we remove the first element that is Batman in that case.

 	#B: We remove the element by object value. This means we will remove the "Iron Man", the last element.

12.2.6 Changing Elements from a List

We can also change an element value with the following code:

 1 heroes.set(0, "Wolverine"); // #A
2 System.out.println(heroes);

Output:
Wolverine

Code analysis:

 	#A: It changes the element located at the index we are passing. In that case, the index 0 is changed from Spider-Man to Wolverine.

12.2.7 Important Methods of a Collection

Let’s see the most used method from the List and Collection interfaces in detail:

Collection:

 	
boolean add(E e): Adds an element to a Collection

 	
boolean remove(Object o): Removes an object from a Collection

 	
boolean contains(Object o): Checks if an element is contained in the collection

 	
default boolean removeIf(Predicate<? super E> filter) { ... }: Removes an element based on a condition we pass in the Predicate functional interface

 	
default Stream<E> stream(): It’s possible to manipulate elements from a collection with a sequential stream. The stream concept is vast and will be covered with more details in the next chapter

12.2.8 Important Methods of a List

List:

 	
void add(int index, E element): Adds an element based on the index we pass

 	
E get(int index): Retrieves an element by the index

 	
boolean isEmpty();: Verifies if the list is empty

 	
<T> T[] toArray(T[] a): Transforms the list to an array

 	
boolean containsAll(Collection<?> c): Checks if the elements of a Collection is contained in the list

 	
boolean addAll(Collection<? extends E> c): Adds all elements from another collection into the list

 	
void clear();: It clears the list, it removes all the elements

 	
int indexOf(Object o): Gets the index of an object of the list

 	
int lastIndexOf(Object o): Gets the last index of an object. If there are more than one objects that are the same in the list, the last index will be retrieved.

 	
static <E> List<E> of(E... elements): Creates an unmodifiable list with multiple elements. This method was added in Java 9.

12.3 ArrayList

As mentioned before, the most used implementation of List in real projects is certainly ArrayList. ArrayList is has good performance to accessing data with the get and set methods because elements are indexed.

Also, behind the scenes an ArrayList actually stores an array of objects as you can see in the variable elementData in the JDK code:

 1 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAcce\
 2 ss, Cloneable, java.io.Serializable {
 3 @java.io.Serial
 4 private static final long serialVersionUID = 8683452581122892189L;
 5 private static final int DEFAULT_CAPACITY = 10;
 6 private static final Object[] EMPTY_ELEMENTDATA = {};
 7 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
 8
 9 transient Object[] elementData;
10 private int size;
11 // Other methods...
12 }

An array in any programming language has to have pre-allocated size in memory. Since behind the scenes in the ArrayList we use the type Object[] elementData, we also have to have an initial capacity. In the case of ArrayList, the DEFAULT_CAPACITY is used. Therefore, whenever you add more elements than the array’s capacity, a new array with the double of the capacity will be created since it’s not possible to change an existing array’s capacity.

To add elements in an array while the defined capacity is not reached is quick but when the capacity is reached then it’s necessary to copy the existing array elements into a new array which makes it a bit slow.

ArrayList is not synchronized, which means that it’s not safe to use in a multi-thread environment because you might have data colision. However, because ArrayList is not synchronized, it’s also more performant.

12.3.1 Time Complexity with ArrayList (Big-O Notation)

In programming and algorithms, there is the concept of time-complexity where we can understand how performant is our algorithms.

We won’t go in much details about what is Big-O notation but we will address what is the complecity of each Collection object:

 	Method
 	Complexity
 	Worst Case Scenario
 	Explanation

 	add()
 	O(1)
 	O(n) when a new array is created with all elements
 	

 	get()
 	O(1)
 	O(1)
 	It’s always constant time because of how the array datastructure is defined in memory

 	remove()
 	O(n)
 	O(n)
 	We have to check element by element to remove it

 	indexOf()
 	O(n)
 	O(n)
 	Runs in linear time, checking each element

 	contains()
 	O(n)
 	O(n)
 	Checks each element until finds the value

12.3.2 Immutability with ArrayList

The concept of immutability is very important because the less point of changes in code, the fewer points of bugs. Bugs are stressful and make developers’ life miserable. To create immutable objects, this means, objects that don’t change state makes your application easier to handle.

Fortunatelly, there are some ways to create a List that is immutable.

12.3.3 List.of

In Java 9, there is the handy List.of method that makes our lives easier when creating an array. However, note that it creates an immutable list as you will see in the following example:

 1 List<String> heroes = List.of("Batman", "Super Man", "Wonder Woman");
2 heroes.add("Robin");

When we try to add "Robin" to the heroes list, we will get the folowing Exception:

 Exception in thread "main" java.lang.UnsupportedOperationException

Therefore, whenever we have an immutable Collection, we can’t add, delete or change the list object in any way. If we really need to change the data we would need to create another ArrayList object:

 1 List<String> heroes = List.of("Batman", "Super Man", "Wonder Woman");
2
3 heroes = new ArrayList<>(heroes);
4 heroes.add("Robin");
5 heroes.forEach(System.out::println);

12.3.4 Arrays.asList

The Arrays.asList method is similar to the List.of method and has the same behaviour. It will add elements to it and will return an immutable List.

Let’s see the following code example:

 1 List<String> otherHeroes = Arrays.asList("Batman", "Super Man", "Wonder Woman");
2 otherHeroes.add("Robin");

We will get the same Exception from the List.of method:

 Exception in thread "main" java.lang.UnsupportedOperationException

12.3.5 Collections.unmodifiableList

It’s usual to see lists in real Java projects being returned as unmodifiable lists in data objects. This is useful because that prevents programmers to change data when it’s not suitable.

Let’s see a code example:

 1 import java.util.ArrayList;
 2 import java.util.Collections;
 3 import java.util.List;
 4
 5 public class UnmodifiableList {
 6 private static List<String> villains = new ArrayList<>();
 7 public static void main(String[] args) {
 8 villains.add("Magneto");
 9 villains.add("Venom");
10 villains.add("Dr. Octopus");
11
12 villains = getUnmodifiableVillains();
13 villains.add("Carnage"); // #B
14 }
15
16 public static List<String> getUnmodifiableVillains() {
17 return Collections.unmodifiableList(villains); // #A
18 }
19 }

 	#A: We use the Collections.unmodifiableList method that will return an immutable list. Note that we pass the list as a parameter.

 	#B: When we try to add an element to our list, we will get the following Exception:

 Exception in thread "main" java.lang.UnsupportedOperationException

When we work with an immutable list, we can’t add or delete elements.

12.3.6 List.of Java Challenge

In the following Java Challenge, you will see the List.of method introduced on Java 9. With this method, it’s possible to add many elements into a list in just one line. Do you know what will happen after running the following code?

 1 import java.util.List;
 2
 3 public class ListChallenge {
 4
 5 public static void main(final String... doYourBest) {
 6 final List<String> soldiers = List.of("Tyrion", "Arya", "John");
 7
 8 if (soldiers.size() > 3) {
 9 soldiers.add("Cersei");
10 } else {
11 soldiers.add("Bran");
12 }
13
14 System.out.println(soldiers);
15 }
16
17 }

 	[Tyrion, Arya, John, Bran]

 	[Tyrion, Arya, John, Cersei]

 	java.lang.UnsupportedOperationException will thrown

 	[Tyrion, Arya, John]

There is a crucial concept in the List.of method which is immutability. This means that we can’t add, change or remove any element from the List when we use the List.of() method. Immutable objects make code more reliable and less susceptible to bugs.

Therefore, in the if statement we are checking if the list has more than three elements which is false.Then the else statement will be executed:
soldiers.add(“Bran”);

However, since we are trying to add an element to an immutable list, the following Exception will be thrown:

 java.lang.UnsupportedOperationException

In conclusion, the correct alternative is:
C) java.lang.UnsupportedOperationException will thrown

12.4 Vector

The Vector class is very similar to ArrayList with the difference that it is thread-safe. If you are working in a multi-thread environment and you don’t want data collision with other thread processes then Vector can be a better option.

Since Vector is synchronized, it’s also less performant than ArrayList. Vector also implements List which means that we can use polymorphism at the same way as an ArrayList.

Let’s see a code example with Vector:

 1 import java.util.List;
 2 import java.util.Vector;
 3
 4 public class VectorExample {
 5 public static void main(String[] args) {
 6 List<String> vector = new Vector<>(); // #A
 7 vector.add("Batman");
 8 vector.add("Joker");
 9 vector.add("Robin");
10 vector.add("Joker");
11
12 int indexOfJoker = vector.indexOf("Joker"); // #B
13 int lastIndexOfJoker = vector.lastIndexOf("Joker"); // #C
14
15 System.out.println(lastIndexOfJoker);
16 System.out.println(indexOfJoker);
17 }
18 }

Output:
1
3

 	#A: We are instantiating the List with a Vector making use of polymorphism.

 	#B: Then we are using the indexOf method that will return the first found element’s index number. In our case, the first "Joker" is found at the index 1.

 	#C: The lastIndexOf method is passing "Joker" and will return 3 because the last position "Joker" is found.

12.5 Deque & Stack

The Deque interface has all the capabilities of the legacy Stack class from Java 1.0. It’s also recommended to use Deque instead of Stack whenever you need to use Stack functionalities.

The concept of stack is easy to absorb if we literally make an analogy of a stack of plates. Let’s imagine you are piling up plates, it’s much easier to put one plate on the top of the other, right? It’s also easier to remove the first plate.

Just imagine how you would pile up your plates in your kitchen one on the top of the other, getting the easiest accessible plate from the pile (Last-in First-out):

_/ <- Put the last plate on the top (Last-in)
_/
__/

_/ _/ <- Remove the first plate (First-out)
__/

As the name suggests, a Deque has the behaviours of a double ended queue, which means that we can use it as a stack or a queue. In other words, we can add or delete the first or the last element.

Let’s see first how to use a Deque with stack capabilities (Last-in First-out):

 1 import java.util.Deque;
 2 import java.util.LinkedList;
 3
 4 public class DequeLinkedList {
 5
 6 public static void main(String[] args) {
 7 Deque<String> deque = new LinkedList<>(); // #A
 8 deque.push("Wolverine");
 9 deque.push("Storm");
10 deque.push("Xavier");
11 deque.push("Juggernaut"); // #B (Last-in)
12 deque.pop(); // #C (First-out)
13 System.out.println(deque);
14 }
15 }

Output:
[Xavier, Storm, Wolverine]

 	#A: Notice we are using the Deque interface as the type of the LinkedList implementation. By doing that, the LinkedList will have capabilities to work as a double-linked stack or queue.

 	#B: The push method will insert the element at the top of the stack and also follows the Last-in principle. The push method does the same as the addFirst method. At this point of the code, this is how the deque will be:

 [Juggernaut, Xavier, Storm, Wolverine]

 	#C: The pop method follows the First-out behaviour which means that it will remove the first element of the stack. The pop method does the same as the removeFirst() method.

12.5.1 Methods Mapping from Deque and Stack

The Deque interface has methods that has different names from Stack but do the same thing. That happened because Stack is a legacy class. To not confuse their use, let’s explore them here:

 	Stack
 	Deque
 	Explanation

 	push(e)
 	addFirst(e)
 	Adds an element to the top of the stack

 	pop()
 	removeFirst()
 	Removes the first element of the stack

 	peek()
 	getFirst()
 	Gets the first element of the stack

You can use all of the above-mentioned methods in the Deque interface to keep retro-compatibility with Stack but it’s recommended to use the newer methods from Deque instead.

12.5.2 Queue & ArrayDeque

We can use all methods of a Queue when working with a Deque. However, if our intention is to only use Queue capabilities, it’s better to make it explicit by declaring our list with Queue.

A Queue is easy to understand if we make the analogy of queue of people in a bank. The first person that will be attended will be the first to get out. It follows the FIFO (First-in First-out) principle as you can see in the following illustration:

😩 😑 😐 | Bank |
/|\ /|\ /|\ | |
/ \ / \ / \ | |

 ↑
 First-in

 😩 😐 | Bank |
 /|\ /|\ | |
 / \ / \ | |

 😀
 /|\
 / \
 ↑
 First-out

Now that you understand the principles of a queue let’s see the code example with the ArrayDeque implementation. ArrayDeque is not thread-safe and it’s faster than LinkedList to use queue capabilities:

 1 import java.util.ArrayDeque;
 2 import java.util.Queue;
 3
 4 public class QueueLinkedList {
 5
 6 public static void main(String[] args) {
 7 Queue<String> heroesQueue = new ArrayDeque<>(); // #A
 8 heroesQueue.offer("Wolverine"); // First-in // #B
 9 heroesQueue.add("Storm"); // #C
10 heroesQueue.offer("Xavier");
11 System.out.println(heroesQueue);
12 heroesQueue.remove(); // First-out // #D
13 heroesQueue.poll(); // #E
14 System.out.println(heroesQueue);
15 }
16 }

Output:

 1 [Wolverine, Storm, Xavier]
2 [Xavier]

 	#A: We can use LinkedList as the implementation if we wish to but for the case of a Queue, ArrayDeque is faster.

 	#B: We are using the offer method that will simply add an element to the tail, in other words, to the end of the queue. It returns true in case the element was inserted in the queue and false otherwise depending in the queue elements’ capacity.

 	#C: We are also using the add that will add an element to the tail of the queue similarly to the offer method. The difference of the add method is that it will throw IllegalStateException in case there is no available elements’ capacity in the queue.

 	#D: The remove method will retrieve and remove the head element of the queue, in other words, it removes the first element. It throws NoSuchElementException in case the queue is empty. In this case, it will remove "Wolverine".

 	#E: The poll method will retrieve and remove the head element of the queue, in other words, the first element. The poll method doesn’t throw IllegalStateException as the remove method. Instead, it returns null in case the queue is empty. In this method invocation, "Storm" will be removed.

To summarize the most important methods of a Queue:

 	Queue
 	Explanation
 	Throws Exception due to capacity restrictions?

 	offer(e)
 	Adds an element to the tail of the queue

 	No

 	add(e)
 	It’s similar to offer

 	Yes

 	poll()
 	Removes the first element (head) of the queue

 	No

 	remove()
 	It’s similar to poll

 	Yes

 	peek()
 	Retrieves the first element without removing it
 	No

 	element()
 	It’s similar to peek

 	Yes

12.5.3 Big-O of a Stack and Queue

Since the operations from a Stack and a Queue have the same time-complexity, let’s check them together:

 	Operation
 	Average and worst case time Complexity
 	Explanation

 	add
 	O(1)
 	Adds element to the to the tail of the queue

 	delete
 	O(1)
 	Deletes the last stack’s element node

 	access first/last
 	O(1)
 	Retrieves the first/last stack’s element node

 	access an element
 	O(n)
 	Traverses node by node until the element is found

 	search a value
 	O(n)
 	Traverses node by node until the element’value is found

The space complexity, that means how much space in memory a stack will occupy in average is O(n)

12.5.4 Star Trek Deque Challenge

In the following Java code, we will explore the most common methods from a deque with Java. Can you guess what will be the output when running the following main method?

 1 import java.util.Deque;
 2 import java.util.LinkedList;
 3
 4 public class StarTrekDequeChallenge {
 5
 6 public static void main(String... confusedCrew) {
 7 Deque<String> crew = new LinkedList<>();
 8 crew.addFirst("Worf");
 9 crew.push("Odo");
10 crew.addLast("Scott");
11
12 System.out.println(crew.remove());
13 System.out.println(crew.peek());
14 System.out.println(crew.pop());
15 System.out.println(crew.poll());
16 }
17
18 }

 	Scott
Worf
Worf
Odo

B)Scott
 Odo
 Odo
 Worf

 	Worf
Odo
Odo
Scott

 	Odo
Worf
Worf
Scott

Explanation:

The addFirst method will add the element "Worf" as the first element of the Deque.

The push method does the same as the addFirst method, it will add the "Odo" element to the first position and will push the other element to the second position. Therefore, we have "Odo" and "Worf".

The addLast method will add the element to the last position. Therefore, we have no "Odo", "Worf", and "Scott".

Then we will invoke the remove method that will remove the first element, we will also print "Odo".

The peek method will retrieve the first element but it won’t remove it. We will then show the value of "Worf" without removing it.

Then we will invoke the pop method showing and removing the first element. Therefore, we will show and remove "Worf".

Finally, we will invoke the pop method that removes and return the last element of the deque. Then, the element "Scott" will be printed.

In conclusion the correct answer is:

 	Odo
Worf
Worf
Scott

12.5.5 LinkedList

The LinkedList class is doubly-linked list that is faster to insert and delete elements and slower to iterate than ArrayList. The LinkedList data structure is also a graph because it stores data in the first and last Node pointers:

 1 public class LinkedList<E> extends AbstractSequentialList<E>
 2 implements List<E>, Deque<E>, Cloneable, java.io.Serializable {
 3 transient int size = 0;
 4
 5 /** Pointer to first node. */
 6 transient Node<E> first;
 7
 8 /** Pointer to last node. */
 9 transient Node<E> last;
10 // More attributes and methods...
11 }

LinkedList is a Deque (double ended queue) and is a Queue, therefore, we can also use the same capabilities of a Queue. A Deque can be used at the same way of a Stack, it’s even recommended to use Deque instead of the legacy Stack class. Which means that we can use the LinkedList class as a Stack that follows the LIFO (Last-in first-out) principle. We also can use a LinkedList as a Queue that follows the FIFO (First-in first-out) principle.

12.6 ConcurrentModificationException

If we use the ArrayList implemention and try to add or remove elements while iterating over it, we will have the ConcurrentModificationException.

That happens because the ArrayList, Vector, or LinkedList have a fail-fast mechanism that will prevent data colision when multiple threads are accessing the same list Iterator. Instead of taking the risk of causing a bug very difficult to identify, the JDK code will throw ConcurrentModificationException to be deffensive.

Therefore, whenever we try to add or remove elements with one of the above mentioned list implementations when iterating elements we will get this ConcurrentModificationException.

Let’s see what happens if we try to remove an element from an ArrayList first:

 1 import java.util.ArrayList;
 2 import java.util.List;
 3
 4 public class RemoveListElement {
 5
 6 public static void main(String[] args) {
 7 List<String> villains = new ArrayList<>();
 8 villains.add("Joker");
 9 villains.add("Magneto");
10 villains.add("Venom");
11
12 var villainToRemove = "Venom";
13
14 for (String eachVillain: villains) {
15 if (eachVillain.equals(villainToRemove)) {
16 villains.remove(villainToRemove);
17 }
18 }
19
20 System.out.println(villains);
21 }
22 }

Output:
Exception in thread "main" java.util.ConcurrentModificationException

The same would happen if we instantiate our List with a Vector, LinkedList. Therefore, we should avoid the above actions if we are using any of those List implementations.

12.6.1 Preventing ConcurrentModificationException with CopyOnWriteArrayList

The CopyOnWriteArrayList completely avoids thread collisions because on every mutative operation such as (add, set, and others) it will make a fresh copy of the underlying array. Therefore it’s impossible to get a ConcurrentModificationException when using CopyOnWriteArrayList:

 1 // Method add from CopyOnWriteArrayList
 2 public boolean add(E e) {
 3 synchronized (lock) {
 4 Object[] es = getArray();
 5 int len = es.length;
 6 es = Arrays.copyOf(es, len + 1); // Creates a copy of the array
 7 es[len] = e;
 8 setArray(es);
 9 return true;
10 }
11 }

CopyOnWriteArrayList is too costly for common operations, however, it might be better when we want to use many operations such as add or delete while traversing the array than only mutating the array’s element.

Let’s see now a code example with CopyOnWriteArrayList:

 1 // Omitted imports
 2 public class CopyOnWriteArrayListHeroes {
 3 public static void main(String[] args) {
 4 List<String> heroes = new CopyOnWriteArrayList<>();
 5 heroes.add("Iron Man");
 6 heroes.add("Spider Man");
 7
 8 var heroToRemove = "Iron Man";
 9 for (String eachHero: heroes) {
10 if (eachHero.equals(heroToRemove)) {
11 heroes.remove(heroToRemove);
12 heroes.add("Batman");
13 }
14 }
15 System.out.println(heroes);
16 }
17 }

Output:
[Spider Man, Batman]

As you can see in the example above, we can add and delete elements when iterating the list and nothing will happen. As explained before, this happens because in the add or delete methods a new array copy will be created preventing data colision.

12.6.2 Preventing ConcurrentModificationException with removeIf

The easiest way to delete an element from a list given a condition is to use the removeIf method.

If you don’t need to implement a very complex logic while iterating elements from your array, the removeIf method will be usually the best option:

 1 // Omitted imports
 2 public class RemoveIfListElement {
 3
 4 public static void main(String[] args) {
 5 List<String> villains = new ArrayList<>();
 6 villains.add("Joker");
 7 villains.add("Magneto");
 8 villains.add("Venom");
 9
10 villains.removeIf(e -> e.equals("Venom"));
11 System.out.println(villains);
12 }
13 }

Output:
[Joker, Magneto]

As you can see the code above is more succint and does the same as the previous examples. Therefore, if you only want to remove an element given a condition, use the removeIf method.

12.7 Using Comparable

When we want to sort the elements of a Collection we can implement the Comparable interface in the element’s object.

The Comparable interface is already implemented in most of the JDK important classes, such as, String, StringBuilder, Integer, Double, BigDecimal, and many others. This means that whenever we create a Collection with the above-mentioned types, we have the Comparable implementation for free.

Let’s see how to sort elements of List of String:

 1 List<String> heroes = new ArrayList<>();
2 heroes.add("Spider Man");
3 heroes.add("Iron Man");
4 heroes.add("Doctor Strange");
5
6 Collections.sort(heroes);
7
8 System.out.println(heroes);

Output:
[Doctor Strange, Iron Man, Spider Man]

Notice in the code above that we are using the java.util.Collections class to sort the list’s elements. Another important point is that we could sort the elements from many other JDK classes and we would get the elements sorted.

Let’s now analize the method signature from the sort method:

 public static <T extends Comparable<? super T>> void sort(List<T> list) {}

As you can see, the sort method can only receive objects that implements Comparable. Therefore, if we want to do the following, the code would not compile when we try to invoke the sort method:

 1 List<Object> heroes = new ArrayList<>();
2 heroes.add("Hulk");
3 heroes.add("Captain America");
4 heroes.add("Thor");
5
6 Collections.sort(heroes);

As you can see, the Object class doesn’t implement Comparable:

 public class Object { ... }

12.7.1 Implementing Comparable

What if we want to create our own Comparable rules? We can do that for any new class we create so that we can easily sort elements.

In the following code, we are creating a List with HeroComparable elements and then sorting the elements from it.

Now, let’s check the code:

 1 import java.util.ArrayList;
 2 import java.util.Collections;
 3 import java.util.List;
 4
 5 public class HeroComparable implements Comparable<HeroComparable> { // #A
 6
 7 private String name;
 8 private String power;
 9
10 public HeroComparable(String name, String power) {
11 this.name = name;
12 this.power = power;
13 }
14
15 public static void main(String[] args) {
16 List<HeroComparable> heroes = new ArrayList<>();
17 heroes.add(new HeroComparable("Iron Man", "Repulsor Ray"));
18 heroes.add(new HeroComparable("Spider Man", "Webball"));
19 heroes.add(new HeroComparable("Iron Man", "Laser Beam"));
20 heroes.add(new HeroComparable("Hulk", "Monstrous Swipe"));
21 Collections.sort(heroes);
22 System.out.println(heroes);
23 }
24
25 @Override
26 public int compareTo(HeroComparable o) { // #B
27 int i = name.compareTo(o.name); // #C
28 if (i != 0) return i; // #D
29
30 return power.compareTo(o.power); // #E
31 }
32
33 @Override
34 public String toString() {
35 return "{name='" + name + "' , power='" + power + "'}";
36 }
37 }

Output:
HeroComparables:[{name='Hulk' , power='Monstrous Swipe'}, {name='Iron Man' , power='Laser Beam'}, {name='Iron Man' , power='Repulsor Ray'}, {name='Spider Man' , power='Webball'}]

 	#A: The first important point to notice is that we are implementing the Comparable interface. This is required to be able to sort elements by using the Collections.sort method.

 	#B: The compareTo method implementation from the Comparable interface.

 	#C: We are using the compareTo method from the String name. It returns 1 if name is greater than o.name, 0 if they are equal or -1 if name is lower than o.name.

 	#D: We just want to return a value here if i is different than 0 because then we won’t need to compare the next field. If the comparison returns 0 though we will move to the next field comparison.

 	#E: We return the comparison from power and o.power only if the name comparison returns 0.

12.7.2 Easier way to Compare Objects with Google Guava

If we want to rewrite our compareTo method with the library Google Guava the code would be that simple:

 1 @Override
2 public int compareTo(HeroComparableGuava o) {
3 return ComparisonChain.start()
4 .compare(name, o.name, Ordering.natural(). nullsLast())
5 .compare(power, o.power, Ordering.natural().nullsLast()).result();
6 }

Notice the important detail that we can also handle the edge-case of having a null field value with Guava. We have to make it explicit though, we have to add the third parameter to the compare method Ordering.natural(). nullsLast(), then a null field won’t cause a NullPointerException.

12.7.3 Another easy way to compare objects with Apache Commons

Very similarly from the Guava's ComparisonChain class, we have the CompareToBuilder in the Apache Commons library:

 1 public int compareTo(HeroComparableApacheCommons o) {
2 return new CompareToBuilder().append(name, o.name)
3 .append(power, o.power).toComparison();
4 }

The ApacheCommons library handles null fields values automatically, we don’t need to make it explicit. By default, the CompareToBuilder will sort a null value first.

Now it’s up to you to decide what is the best way for you to sort your data.

12.7.4 Using Comparator

When you don’t want to force a contract in your data object, you can use a Comparator. A Comparator is a handy way for you to sort elements without a need to implement the compareTo directly in your data object. It’s also useful to use Comparator when you want to sort elements in more than one way. Another good reason to use Comparator is when you need to order your array by one field.

Let’s see the classic way to use Comparator with an annonymous inner class:

 1 import java.util.ArrayList;
 2 import java.util.Comparator;
 3 import java.util.List;
 4
 5 public class HeroComparator {
 6 private String name;
 7 private String power;
 8
 9 public HeroComparator(String name, String power) {
10 this.name = name;
11 this.power = power;
12 }
13
14 public static void main(String[] args) {
15 List<HeroComparator> heroes = new ArrayList<>();
16 heroes.add(new HeroComparator("SpiderMan", "Web ball"));
17 heroes.add(new HeroComparator("Iron Man", "Laser Beam"));
18 heroes.sort(new Comparator<HeroComparator>() { // #A
19 @Override
20 public int compare(HeroComparator o1, HeroComparator o2) { // #B
21 return o1.name.compareTo(o2.name);
22 }
23 });
24 for (var hero: heroes) { System.out.println(hero.name); }
25 }
26 }

Output:
Iron Man
SpiderMan

 	#A: It’s important to notice that we are using the sort method from the list interface. Also, we are using the Comparator interface as an annonymous inner class, this means that we have an instance without a name implementing the compare method. We are also passing the HeroComparator as a generic type so we can use this type in the compare method.

 	#B: The compare method has two parameters instead of one of the compareTo method from Comparable. In essence the compare method is very similar to the compareTo method, it also returns an int number.

12.7.5 Comparator with Lambdas

In the code above, you probably noticed that using an annonymous inner class with the Comparator is very verbose.

Comparator is a functional interface though:

 1 @FunctionalInterface
2 public interface Comparator<T> { ... }

That means we can use lambdas! We can make the above code much simpler with the same effect:

 heroes.sort((o1, o2) -> o1.name.compareTo(o2.name));

We reduced the code of six to one line! That’s the power of lambdas in Java.

But we can make it even better, we can use the helper comparing method from Comparator:

 1 public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
2 Function<? super T, ? extends U> keyExtractor)
3 { ... }

The code gets even shorter:

 heroes.sort(Comparator.comparing(o -> o.name));

An important detail to notice when using a lambda is that if you have a null field value, you will get a NullPointerException. Therefore, you will have to handle this edge-case scenario.

12.7.6 Handling null Values with Comparator

If we want to handle null values with Comparator, there is the Comparator.nullsFirst method for that:

 1 Comparator<HeroComparatorNullValue> employeeNameComparator
2 = Comparator.comparing(HeroComparatorNullValue::getName,
3 Comparator.nullsFirst(String::compareTo));

By using the above code, we can pass a null value to the field we are comparing and avoid a NullPointerException.

12.7.7 Comparator Java Challenge

In the following challenge, we will explore the use of a comparator with a list using method reference and lambdas. As we’ve seen before, we can make code more succinct by using the comparing method with lambdas and method references. Therefore, it’s time to try out the following challenge and consolidate your knowledge!

By analyzing the following code, what do you think will be the output?

 1 import java.util.ArrayList;
 2 import java.util.Comparator;
 3 import java.util.List;
 4
 5 public class JediComparatorChallenge {
 6 public static void main(String... doYourBest) {
 7 List<Jedi> jediList = new ArrayList<>();
 8 jediList.add(new Jedi("Anakin", 10));
 9 jediList.add(new Jedi("Luke", 5));
10 jediList.add(new Jedi("Luke", 6));
11 jediList.add(new Jedi("Obi Wan", 7));
12
13 Comparator<Jedi> comparator = Comparator
14 .comparing(Jedi::getName)
15 .thenComparing((a1,a2) -> a2.age.compareTo(a1.getAge()));
16
17 jediList.sort(comparator);
18 jediList.forEach(j -> System.out.println(j.name + ":" + j.age));
19 }
20 static class Jedi {
21 String name;
22 Integer age;
23 public Jedi(String name, Integer age) { this.name = name; this.age = age; }
24 public String getName() { return name; }
25 public Integer getAge() { return age; }
26 }
27 }

 	Anakin:10
Luke:5
Luke:6
Obi Wan:7

 	Anakin:10
Luke:6
Luke:5
Obi Wan:7

 	Obi Wan:7
Luke:6
Luke:5
Anakin:10

 	Luke:6
Luke:5
Obi Wan:7
Anakin:10

Explanation:

Let’s analyze the following code:

 1 Comparator<Jedi> comparator = Comparator
2 .comparing(Jedi::getName).thenComparing((a1,a2) -> a2.age
3 .compareTo(a1.getAge()));

Note in the first comparison that we are passing a method reference for the getName method that will a Jedi sort by name.

Then we use the thenComparing method that will also sort the age of a Jedi. However, notice that we are using a lambda that is sorting the age in the reverse:
a2.age .compareTo(a1.getAge())

Since we are positioning a2 first, we will also revert the sorting order.

Therefore, the final answer will be:

 	Anakin:10
Luke:6
Luke:5
Obi Wan:7

12.8 Set

The main purpose of the Set interface is to have unique elements in a Collection. Another crucial point of a Set is that the elements are not ordered, this means that the elements won’t be in the same ordered as they are added.

The Set interface will heavily rely on the equals and hashcode methods to decide if elements are the same.

12.9 HashSet

The main implementation of the Set interface is the HashSet class. Behind the scenes a HashSet actually contains a HashMap as you can see in the following JDK code:

 1 public class HashSet<E> extends AbstractSet<E>
 2 implements Set<E>, Cloneable, java.io.Serializable {
 3 @java.io.Serial
 4 static final long serialVersionUID = -5024744406713321676L;
 5
 6 private transient HashMap<E,Object> map;
 7
 8 // Dummy value to associate with an Object in the backing Map
 9 private static final Object PRESENT = new Object();
10
11 /**
12 * Constructs a new, empty set; the backing {@code HashMap} instance has
13 * default initial capacity (16) and load factor (0.75).
14 */
15 public HashSet() {
16 map = new HashMap<>();
17 }
18 // Omitted methods
19 }

The main purpose of a Set is to add unique elements. We can’t also forget that to make it work we need to remember to override the equals and hashCode methods from the element we are working on.

A HashSet offers a constant time performance for the add method (it uses a HashMap behind the scenes). Assuming the size of some arrray is m - the overall time complexity is Big O(m) (Algorithm time complexity).

Another important point of a HashSet is that it stores elements in a non-ordered way, which means that the order of insertion will be always random.

Let’s see HashSet in action:

 1 import java.util.HashSet;
 2 import java.util.Set;
 3
 4 public class HashSetInAction {
 5 public static void main(String[] args) {
 6 Set<String> heroes = new HashSet<>(); // #A
 7 heroes.add("Batman"); // #B
 8 heroes.add("Batman"); // #C
 9 heroes.add("Doctor Strange");
10 heroes.add("Wolverine");
11
12 System.out.println(heroes); // #D
13 }
14 }

Output:
[Wolverine, Batman, Doctor Strange]

Let’s explore the code above:

 	#A: Note that we are instantiating our Set with HashSet. Remember that this is a preferable approach since it decouples the HashSet class from the Set declaration. Because then we are able to use any Set implementation more easily which means the code will be easier to maintain.

 	#B: We are adding "Batman" to the HashSet. This works fine since the String class implements the equals and hashCode methods. Remember that the HashSet class will check if the object is the same by using the equals and hashCode methods as you can see in the add implementation of the HashSet.

 	#C: Notice that we are trying to add the same String "Batman" but this value will replace the old "Batman". Therefore, we won’t have a duplication of "Batman".

 	#D: Another crucial point is that a HashSet is not ordered, therefore, the order of insertion is not guaranted. The result order will be random, it can be any of the following:

[Wolverine, Batman, Doctor Strange]
[Batman, Wolverine, Doctor Strange]
[Doctor Strange, Batman, Wolverine] …

12.9.1 Borat HashSet equals hashCode Challenge

In this Java code challenge we will explore how the equals and hashCode are used internally in a HashSet. Keep in mind that a HashSet will use the essencial concepts of the equals and hashCode methods to make elements insertion more performant.

By knowing that, can you guess what will happen when running the following code?

 1 import java.util.HashSet;
 2 import java.util.Set;
 3
 4 public class BoratHashSetChallenge {
 5 public static void main(String... doYourBest) {
 6 Set<Borat> borats = new HashSet<>();
 7 borats.add(new Borat(1, "Kazakhstan"));
 8 borats.add(new Borat(2, "USAndA"));
 9 borats.add(new Borat(2, "England"));
10 borats.forEach(b -> System.out.print(b.id + " " + b.country + " "));
11 }
12 static class Borat {
13 int id;
14 String country;
15 Borat(int id, String country) { this.id = id; this.country = country; }
16
17 public int hashCode() {
18 System.out.println("hashCode:" + this.id + this.country);
19 return this.id;
20 }
21 public boolean equals(Object obj) {
22 System.out.println("equals:" + this.id + this.country);
23 return ((Borat) obj).country.equals(this.country);
24 }
25 }
26 }

 	hashCode:1Kazakhstan
equals:1Kazakhstan
hashCode:2USAndA
equals:2USAndA
hashCode:2England
equals:2England
1 Kazakhstan 2 USAndA 2 England

 	hashCode:1Kazakhstan
hashCode:2USAndA
1 Kazakhstan 2 USAndA

 	hashCode:1Kazakhstan
hashCode:2USAndA
hashCode:2England
equals:2England
1 Kazakhstan 2 USAndA 2 England

 	hashCode:1Kazakhstan
hashCode:2USAndA
hashCode:2England
1 Kazakhstan 2 USAndA 2 England

Explanation:

The key concept of this challenge is that the HashSet class relies on the equals and hashCode methods to decide if an element is the same or not.

Remember that the hashCode method will use less memory resources, therefore, it will be compared first. If the hashCode of objects are different, there is no necessity to check the equals method as well. Then when we insert "Kazakhstan" the hashCode method will be invoked but not the equals method. This will happen because the hashCode from the first and second element insertion are different.

At the third element insertion, note that the id is the same. This means that the equals method will have to be invoked to make sure if the objects are the same or not. So when we insert the third element, the hashCode and equals method will be invoked and since the equals method will return false, the third element will be inserted.

In the end we will print all the inserted elements. In conclusion, the right alternative is:

 	hashCode:1Kazakhstan
hashCode:2USAndA
hashCode:2England
equals:2England
1 Kazakhstan 2 USAndA 2 England

12.10 LinkedHashSet

What if we want to work with unique and ordered elements? Then we can use the LinkedHashSet implementation.

To talk details, the LinkedHashSet documentation says that the performance is likely to be a bit below than HashSet because the added expense of a LinkedList. There is one exception though, iteration over a LinkedHashSet requires time proportional to the size of a set regardless of its capacity.

Iteration over a HashSet is likely to be more expensive, requiring time proportional to its capacity.

A linked hash set has two parameters that affect its performance: initial capacity and load factor. They are defined precisely as for HashSet.

LinkedHashSet is also not synchronized, therefore thread synchronization must be done mannualy. It’s also possible to wrap the LinkedHashSet with Collections.synchronizedSet to make it thread-safe.

Note that LinkedHashSet extends HashSet:

 1 public class LinkedHashSet<E> extends HashSet<E>
2 implements Set<E>, Cloneable, java.io.Serializable { ... }

Let’s see an example with LinkedHashSet:

 1 import java.util.LinkedHashSet;
 2 import java.util.Set;
 3
 4 public class LinkedHashSetInAction {
 5 public static void main(String[] args) {
 6 Set<String> heroes = new LinkedHashSet<>(); // #A
 7 heroes.add("Batman");
 8 heroes.add("Batman"); // #B
 9 heroes.add("Doctor Strange");
10 heroes.add("Wolverine");
11 heroes.add("Spider Man");
12
13 System.out.println(heroes); // #C
14 }
15 }

Output:
[Batman, Doctor Strange, Wolverine, Spider Man]

 	#A: We are instanting our Set with LinkedHashSet which gives us the ability of adding elements in the order of insertion.

 	#B: The LinkedHashSet will replace the value of "Batman" to the new one since it’s the same.

 	#C: The order is guaranteed to be always the insertion order.

12.10.1 Big-O of a HashSet & LinkedHashSet

The elements of a HashSet and LinkedHashSet are stored in an internal map manipulated by hash. Thanks to that, we get a constant time complexity when performing the following operations:

 	Method
 	Complexity Average/Worst Case Scenario
 	Explanation

 	add(e)
 	O(1)
 	Adds an element into a node

 	contains(e)
 	O(1)
 	Finds an element by hash in a HashSet’s map

 	remove(e)
 	O(1)
 	Removes an element by hash in the HashSet’s map

To summarize, HashSet and LinkedHashSet are fast to insert, remove, and search for elements. But we can’t access an element by index like the ArrayList.

12.11 TreeSet

To use unique elements that will be automatically sorted we can use TreeSet.

The TreeSet will also use the hashCode and equals methods to verify if objects are the same to insert unique elements. The great difference between HashSet and TreeSet is that the TreeSet will rely on the compareTo method to sort the elements. Also, the TreeSet only accepts Comparable objects, therefore whenever we try to add an element that isn’t Comparable we will get a java.lang.ClassCastException.

The TreeSet class is also not thread-safe and it has the fail-fast check if we try to modify the set while iterating over. It also throws ConcurrentModificationException.

Now let’s see what happens when we don’t implement Comparable in the data class and try to add elements into a TreeSet:

 1 import java.util.Set;
 2 import java.util.TreeSet;
 3
 4 public class TreeSetNonComparable {
 5 public static void main(String... args) {
 6 Set<Simpson> set = new TreeSet<>(); // #A
 7 set.add(new Simpson("Homer ")); // #B
 8 }
 9 static class Simpson {
10 String name;
11 public Simpson(String name) { this.name = name; }
12 public String toString() { return this.name; }
13 }
14 }

Output:
java.lang.ClassCastException

 	#A: There is a warning at this line of code because the Simpson class doesn’t implement Comparable. The restriction to not use an object that is not Comparable is not in the instantiation though, so this piece of code will work.

 	#B: When we try to add "Homer" we will get a java.lang.ClassCastException. This happens because the add method implementation will verify if the element implements Comparable, and when it doesn’t it throws the Exception.

12.11.1 Big-O of TreeSet

The TreeSet has O(log(n)) time complexity for its operations since the nature of this collection is to keep elements sorted. As mentioned before, the algorithm of a TreeSet is the red-black tree.

Let’s see the time-complexity of a TreeSet in the following table:

 	Method
 	Complexity Average/Worst Case Scenario
 	Explanation

 	add
 	O(log n)
 	Adds an element and sorts TreeSet

 	contains
 	O(log n)
 	It’s necessary to traverse the Tree

 	next
 	O(log n)
 	It’s necessary to traverse the Tree

12.11.2 Using a Comparable object with TreeSet

Things will be different if we implement Comparable in our data class. By doing so, whenever we add an element into the TreeSet, the elements will be sorted according to what we programmed in the compareTo method:

 1 import java.util.Set;
 2 import java.util.TreeSet;
 3
 4 public class TreeSetComparable {
 5 public static void main(String... doYourBest) {
 6 Set<Simpson> set = new TreeSet<>(); // #A
 7 set.add(new Simpson("Homer ")); // #B
 8 set.add(new Simpson("Bart "));
 9 set.add(new Simpson("Maggie "));
10
11 System.out.println(set);
12 }
13 static class Simpson implements Comparable<Simpson> { // #C
14 String name;
15 public Simpson(String name) { this.name = name; }
16 public String toString() { return this.name; }
17
18 @Override
19 public int compareTo(Simpson o) { // #D
20 return this.name.compareTo(o.name);
21 }
22 }
23 }

Output:
[Bart , Homer , Maggie]

 	#A: We are instanting the TreeSet object with a Comparable Simpson this time, therefore, there won’t be any warning informing otherwise.

 	#B: The add method will work fine now that we are implementing Comparable in the Simpson class.

 	#C: Notice that we are implementing Comparable in the Simpson data class which enables us to sort and compare this data object.

 	#D: We are overriding the compareTo method comparing the Simpson's name.

To summarize, you want to use TreeSet when you want a Collection with:

 	Unique elements

 	Sorted elements

12.11.3 Sort Comparable Simpson Challenge

In the following Java code challenge, you will see the Set interface with the TreeSet implementation. The core purpose of a TreeSet is to sort unique elements according to what is implemented in the compareTo method of an Object. Note that we are also using the reverse method.

Therefore, what will be the output of the following code when running the main method?

 1 import java.util.*;
 2
 3 public class SortComparableChallenge {
 4 public static void main(String... doYourBest) {
 5 Set<Simpson> set = new TreeSet<>();
 6 set.add(new Simpson("Homer "));
 7 set.add(new Simpson("Marge "));
 8 set.add(new Simpson("Lisa "));
 9 set.add(new Simpson("Bart "));
10 set.add(new Simpson("Maggie "));
11
12 List<Simpson> list = new ArrayList<>(set);
13 Collections.reverse(list);
14 for (Simpson simpson : list)
15 System.out.print(simpson);
16 }
17
18 static class Simpson implements Comparable<Simpson> {
19 String name;
20 public Simpson(String name) { this.name = name; }
21
22 public int compareTo(Simpson simpson) {
23 return simpson.name.compareTo(this.name);
24 }
25
26 public String toString() { return this.name; }
27 }
28 }

 	Bart Homer Lisa Maggie Marge

 	Marge Maggie Lisa Homer Bart

 	Maggie Bart Lisa Marge Homer

 	Homer Marge Lisa Bart Maggie

Firstly in this Java Challenge we are adding elements into an instance of a TreeSet. When we do that, we will sort the elements according to what was implemented in the compareTo method.

At the moment we added all the elements in the TreeSet, the elements will be already inverted as the following:

 Marge Maggie Lisa Homer Bart

You might be wondering why the elements were inverted after adding elements in the TreeSet. However, note that in the compareTo method from the Simpson class, we are inverting the comparison. We are using first the simpson parameter, invoking the compareTo method and then passing the current instance name. This means that we are actually inverting the sorting of the TreeSet elements.

In the following code, we are encapsulating our set into a list because we want to invoke the reverse method:

 List<Simpson> list = new ArrayList<>(set);

Then, when we invoke the reverse method from the List, we will reverse what is already reversed:

 Collections.reverse(list);

Which means that the order of the elements after we print will be the ascending order as the following:

 Bart Homer Lisa Maggie Marge

Therefore, the correct alternative of this Java Challenge is:

 A) Bart Homer Lisa Maggie Marge

12.12 Map

Very often in the day-to-day work of a Java developer, it will be necessary to work with a key-value Collection. To accomplish that there is the Map interface.

The main implementations of the Map interface are HashMap, LinkedHashMap, and TreeMap.

To have a macro-view of the Map hierarchy, let’s explore the following diagram:

 [image:]
 Figure 11.2 Map diagram

12.13 HashMap

The most used Map in Java is the HashMap. It has the capability of adding key value elements and it’s also not ordered.

Keep in mind also that a map is a graph under the hood. A HashMap will store data into a Node as you can see in the JDK code:

 1 public class HashMap<K,V> extends AbstractMap<K,V>
2 implements Map<K,V>, Cloneable, Serializable {
3 // Omitted other attributes and methods
4 transient Node<K,V>[] table;
5 }

12.13.1 Adding and removing Map elements

Let’s see the basic usage of a HashMap with Java:

 1 import static java.lang.System.out;
 2 import java.util.HashMap;
 3 import java.util.Map;
 4
 5 public class HashMapPutRemove {
 6 public static Map<Integer, String> getFinalFantasyCharacters() {
 7 Map<Integer, String> map = new HashMap<>(); // #A
 8 map.put(1, "Cloud"); // #B
 9 map.put(2, "Tifa");
10 map.put(3, "Barret");
11 return map;
12 }
13 public static void main(String[] args) {
14 Map<Integer, String> map = getFinalFantasyCharacters();
15
16 out.println(map.remove(2)); // #C
17 out.println(map.putIfAbsent(2, "Vincent")); // #D
18 out.println(map.keySet()); // #E
19
20 for (Map.Entry<Integer,String> entry : map.entrySet()) // #F
21 System.out.println("Key=" + entry.getKey() + // #G
22 ", Value = " + entry.getValue());
23 }
24 }

Output:
Tifa
null
[1, 2, 3]
 Key:1 Value:Cloud Key:2 Value:Vincent Key:3 Value:Barret

Code Analysis:

 	#A: Instantiate our Map with a HashMap. We could instantiate this Map with any other Map implementation.

 	#B: Puts into the map the key of 1 and value of "Cloud".

 	#C: Remove the second key value of the map. In this case, 2 and “Tifa”.

 	#D: Put an element if the key is not existent in the map. Since we removed the element 2, this method will put the key of 2 and the value of "Vincent". It also returns null because there isn’t any element with the key of 2. Therefore, it will also print null.

 	#F: The map has the entrySet method that will return the key and value to the Map.Entry. Therefore, we can use the for looping to get each entrySet of the map. This way to iterate a map is a bit verbose though but in the next session we will see a concise way to do so with lambdas.

 	#G: We can access the key and value from the current entrySet.

12.13.2 Putting All and Clearing Elements

In case we need to put all elements from a map into another map and clear elements, we have methods to accomplish that.

Let’s see a code example:

 1 public static void main(String[] args) {
 2 Map<Integer, String> ffCharacters = new HashMap<>();
 3 ffCharacters.put(1, "Cloud");
 4 ffCharacters.put(2, "Tifa");
 5 Map<Integer, String> moreFFCharacters = new HashMap<>();
 6 moreFFCharacters.put(2, "Sephiroth"); // #A
 7 moreFFCharacters.put(3, "Zack");
 8 moreFFCharacters.put(4, "Aerith");
 9
10 ffCharacters.putAll(moreFFCharacters); // #B
11 ffCharacters.forEach((k, v) -> out.print(" Key: " + k + " Value: " + v));
12
13 ffCharacters.clear(); // #C
14 ffCharacters.forEach((k, v) -> out.print(" Key: " + k + " Value: " + v));
15 }

Output:
 Key: 1 Value: Cloud Key: 2 Value: Sephiroth Key: 3 Value: Zack Key: 4 Value: Aerith

Code Analysis:

- #A: Adding "Sephiroth" to the key 2. When we put the same key into a map the value will be replaced. In this case, "Tifa" will be replaced with "Sephiroth".

 	#B: Then we use the putAll method that will put all the elements into the ffCharacters map. Therefore, we will have all the elements from ffCharacters and moreFFCharacters in the ffCharacters map.

 	#C: As the name suggests, the clear method will remove all the elements from a map. Therefore, when we try to print the values, nothing will be printed.

12.13.3 Getting values from a Map

We can’t do much with a map if we can’t access its values. Therefore, let’s explore the most important methods to retrieve data from a map. In the following code, we will see how to get a value by key, all values, and all keys:

 1 // Omitted imports and getFinalFantasyCharacters()
 2 public class HashMapGetKeyValue {
 3 public static void main(String[] args) {
 4 Map<Integer, String> map = getFinalFantasyCharacters();
 5
 6 out.println(map.get(1)); // #A
 7 out.println(map.getOrDefault(4, "Vincent")); // #B
 8 out.println(map.values()); // #C
 9 out.println(map.keySet()); // #D
10 }
11 }

Output:
Cloud
Vincent
[Cloud, Tifa, Barret]
[1, 2, 3]

Code Analysis:

 	#A: Retrieve the value of the key of 1. Therefore, it returns "Cloud".

 	#B: Returns the default value we pass in case the key is not existent in the map. Therefore, it will return "Vincent".

 	#C: We will print all the values contained in the map.

 	#D: It will print the keySet of the map. Therefore, the output will be: [1, 2, 3]

12.13.4 Checking if a value is existent in a Map

When we are working with a map, we often will want to check if a value or key is existent. To do so we can use the contains methods. We can also retrieve values with the get method. Let’s see how to do those actions in the following code:

 1 // Omitted imports and getFinalFantasyCharacters()
2 public class HashMapContainsKeySet {
3 public static void main(String[] args) {
4 Map<Integer, String> map = getFinalFantasyCharacters();
5
6 out.println(map.containsKey(3)); // #A
7 out.println(map.containsValue("Cloud")); // #B
8 }
9 }

Output:
true
true

Code Analysis:

 	#A: Check if the map has the key of 3. In this case, the key of 3 is there. Therefore it returns true.

 	#B: Check if the value of "Cloud" is present in the map object. In this case, "Cloud" is there. Therefore it returns true.

12.13.5 Iterating over a HashMap

There are many ways to iterate over a map, even though we don’t need to use all of them it’s good to at least know they exist. Therefore, let’s see some of the main ways to iterate over a map.

12.13.6 Iterating with Map.Entry and iterator

The most verbose way to iterate over a map is by using iterator explicitly. Note that a map under the hood stores the key values into a Set as you can see in the code below:

 1 public class HashMap<K,V> extends AbstractMap<K,V>
2 implements Map<K,V>, Cloneable, Serializable {
3
4 // Omitted attributes and methods
5 transient Set<Map.Entry<K,V>> entrySet;
6
7 }

Since we are using a Set to store the keys of the HashMap, we have access to the iterator method since a Set implements Iterator. Take a look at the hierarchy from Set up until Iterator:

 1 public interface Set<E> extends Collection<E> { ... }
2 public interface Collection<E> extends Iterable<E> { ... }
3 public interface Iterable<T> { ... }

Let’s see now how we use the iterator with map elements:

 1 Map<Integer, String> avalanche = new HashMap<>();
 2 avalanche.put(1, "Cloud");
 3 avalanche.put(2, "Barret");
 4 avalanche.put(3, "Tifa");
 5
 6 Iterator<Entry<Integer, String>> it = avalanche.entrySet().iterator(); // #A
 7 while (it.hasNext()) { // #B
 8 Map.Entry<Integer, String> entry = it.next(); // #C
 9 System.out.println("Key: " + entry.getKey() + // #D
10 "Value: " + entry.getValue());
11 }

Output:
Key: 1 Value: Cloud
Key: 2 Value: Barret
Key: 3 Value: Tifa

 	#A: We access the entrySet from the map and then the iterator. Note that we receive this iterator typed as <Entry<Integer, String>>.

 	#B: Then once we have the iterator elements, now we can iterate. To accomplish that we can use the hasNext method in a while loop. This is what the compiler does behind the scenes when we use the enhanced for statement as well.

 	#C: We get the next element with the next method from the iterator.

 	#D: Finally, we print the key and value from the entry object.

12.13.7 Iterating with foreach and Map.Entry

We can improve the code above by using the enhanced for looping. Instead of accessing the iterator object explicitly, we can do that implicitly by using the following code:

 1 // Omitted the adding of elements in the map
2 for (Map.Entry<Integer, String> entry : avalanche.entrySet()) { // #A
3 System.out.println("Key:" + entry.getKey() + // #B
4 " Value: " + entry.getValue());
5 }

Output (Same as above)

 	#A: By using the enhanced for looping we use the iterator implicitly. When compiling this code though, the iterator will be used behind the scenes. To make it clear, this is the code that will be actually used when compiling this code:

 1 String result = "";
2 Iterator var2 = avalanche.entrySet().iterator();
3 while(var2.hasNext()) {
4 Entry<Integer, String> entry = (Entry)var2.next();

 	#B: We print the values as above.

12.13.8 Iterating Map with keys

This is another handy way to iterate a Map, we return the set of keys and get the value associated with the key.

Let’s see this example in code:

 1 // Omitted the adding of elements in the map
2 for (int key : avalanche.keySet()) { // #A
3 System.out.println("Key:" + key + " Value:" + avalanche.get(key)); // #B
4 }

 	#A: We get the set of keys of the map by using the keySet method.

 	#B: We print the key directly and then retrieve the value of each key by using the avalanche.get(key) method.

Keep in mind to use the keySet iteration when you are using only the key, otherwise the entrySet method is more efficient in terms of performance.

12.13.9 Iterating with forEach from Java 8

The most sucint way to iterate over a map is by using the forEach method. That’s because we can use a lambda expression and if we have a one-liner logic, for sure this option will be the best.

It’s not so recommended to use more than one line of code in a lambda but you still can do that depending on the situation.

Let’s see how to use a one-liner forEach:

 1 // Omitted the adding of elements in the map
2 avalanche.forEach((k, v) -> System.out.println("Key:" + k + " Value: " + v));

Output (Same as above)

This is how the forEach method is declared in the Map interface:

 1 default void forEach(BiConsumer<? super K, ? super V> action) { ... }

Note that we receive a BiConsumer that enables us to pass two parameters of any type and do some logic without returning any value. That’s why in our lambda we pass two parameters, we consume two values on each iteration of the looping.

12.13.10 Computing Map Values

If we want to manipulate a value in a map by key and using lambda, we can use the compute method. The compute method is handy because we can access an specific key of the map and apply a logic we want:

 1 // Omitted imports and getFinalFantasyCharacters()
 2 public class HashMapCompute {
 3 public static void main(String[] args) {
 4 Map<Integer, String> ffCharacters = getFinalFantasyCharacters();
 5 ffCharacters.compute(1, (k,v) -> // #A
 6 Optional.ofNullable(v).filter(e -> e.equals("Cloud")) // #B
 7 .map(e -> e + " with Ultima Weapon").orElse("No weapon")); // #C
 8 out.println(ffCharacters.get(1));
 9 }
10 }

Output:
Cloud with Ultima Weapon

 	#A: Notice that we are computing the key and value of ffCharacters from of the key 1`.

 	#B: We encapsulate the possibly null value we are receiving in the compute method. Then we filter the map value to "Cloud" only.

 	#C: If the value from the map is "Cloud" we concatenate " with Ultima Weapon", otherwise, "No weapon".

12.13.11 merge method

To merge two maps having more control over it, we can use the merge method introduced in Java 8. This method is useful because we can apply some logic on each element even if they are duplicated.

Notice that the merge method will be only invoked if the key of the maps are the same. If the keys are different, the key and value from the other map will be put into the merger map:

 1 import java.util.HashMap;
 2 import java.util.Map;
 3
 4 // Omitted imports
 5 public class HashMapMerge {
 6
 7 public static void main(String[] args) {
 8 Map<Integer, String> ffSummons = new HashMap<>();
 9 ffSummons.put(1, "Ifrit");
10 ffSummons.put(2, "Bahamut");
11 ffSummons.put(3, "Knights of Round");
12
13 Map<Integer, String> ffParty = new HashMap<>();
14 ffParty.put(1, "Cid");
15 ffParty.put(2, "Yuffie");
16 ffParty.put(4, "Zack");
17
18 ffSummons.forEach((k, v) -> // #A
19 ffParty.merge(k, v, (fighter, summon) // #B
20 -> fighter +" invokes " + summon)); // #C
21
22 System.out.println(ffParty);
23 }
24 }

Output:

 	#A: We iterate over the elements of ffSummons, giving us access to the key and value from them.

 	#B: On each iteration we invoke the merge method in the ffParty map. We pass the key and value from ffSummons and the last parameter is a BiConsumer where we can pass the value from ffParty and ffSummons. If the key we are passing is existent, then the merge method is invoked. Otherwise, the key and value of ffSummons will be put into the ffParty map.

 	#C: We perform the logic of our BiConsumer. In this case, we are basically concatenating the value of ffParty with ffSummons.

12.13.12 Lannister HashMap Java Challenge

The data structure of a HashMap is very important to handle key-value elements. To absorb this concept well, we will explore a Java code challenge where we make use of the equals and hashCode methods.

Therefore, do you know what happens when we put elements into a HashMap?

 1 import java.util.HashMap;
 2 import java.util.Map;
 3
 4 public class LannisterMapChallenge {
 5 	static int hashCodeCount = 0;
 6 	static int equalsCount = 0;
 7
 8 public static void main(String[] doYourBest) {
 9 			Map<Lannister, String> m = new HashMap<>();
10 			m.put(new Lannister("Tyrion"), "I understand the way this game is played");
11 			m.put(new Lannister("Jaime"), "The things I do for love...");
12 			m.put(new Lannister("Cersei"), "When you play the game of thrones, you win "
13 				+ "or you die. There is no middle ground.");
14 			m.put(new Lannister("Tywin"), "Any man who must say, 'I am the king' is no true k\
15 ing.");
16
17 			System.out.printf("Size: %s equalsCount: %s hashCodeCount: %s", m.size(), equalsC\
18 ount, hashCodeCount);
19 }
20
21 static class Lannister {
22 			String name;
23 			public Lannister(String name) {this.name = name;}
24 			public boolean equals(Object obj) {
25 				equalsCount++;
26 				return (name.equals(name));
27 			}
28 			public int hashCode() {
29 				hashCodeCount++;
30 				return 1 + 8 * 453453 / 77 + 40340403 - 3000000;
31 			}
32 }
33 }

 	Size: 2 equalsCount: 2 hashCodeCount: 4

 	Size: 1 equalsCount: 3 hashCodeCount: 4

 	Size: 4 equalsCount: 4 hashCodeCount: 3

 	Size: 3 equalsCount: 1 hashCodeCount: 3

Explanation:

Notice that when we are inserting a key to a HashMap, it will rely on the hashCode and equals methods to define whether or not a key will be inserted or replaced.

Also, notice that the hashCode method in the Lannister class is always returning the same value. This means that every key in this HashMap will have the same hashCode. The equals method is comparing the same name from Lannister, we are not using the obj passed by parameter.

The hashCode method returns the same number and the equals method will always return true, which means that the elements in the HashMap will be replaced.

Also, when we put "Tyrion" in the HashMap, note that only the hashCode method will be invoked because this value is used when inserting the key. However, the equals method will not be invoked because there isn’t any other object to be compared at the moment.

Then, when we put "Jaime" the hashCode method will be invoked but also the equals method since we have more than 1 element in the HashMap. The same will happen for "Cersei" and "Tywin".

In conclusion, the correct alternative is:

 	Size: 1 equalsCount: 3 hashCodeCount: 4

12.14 Hashtable

The Hashtable class behaves very similary from a HashMap with the main difference that is synchronized, this means it can be used in a multi-thread environment safely.

Notice also that a Hashtable doesn’t allow null values as key. If you pass a null value like the following:

 1 Map<String, String> map = new Hashtable<>();
2 map.put(null, "value");

The output will be:

 1 Exception in thread "main" java.lang.NullPointerException
2 	at java.base/java.util.Hashtable.put(Hashtable.java:476)

Another important difference is that Hashtable extends an obsolete abstract class Dictionary. This means we should declare the type of a Hashtable as a Map and not as a Dictionary.

12.15 LinkedHashMap

If you want to use an ordered map, the LinkedHashMap implementation will do this job for you. This means that the elements will be ordered as they are inserted.

The LinkedHashMap maintains a doubly-linked list running through all of its entries. It’s also slightly less performant than a HashMap.

Another important point is that the LinkedHashMap is not synchronized or thread-safe. This means that data collision may happen when different thread executions are changing data from a LinkedHashMap.

The LinkedHashMap also has a fail-fast mechanism in case we change modify values while iterating in a loop. That’s a deffensive approach to prevent hard to track bugs due to data loss.

Another important detail from the LinkedHashMap class is that it extends the HashMap class and implements a Map:

 1 public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>
2 { ... }

Let’s see the LinkedHashMap in action:

 1 import java.util.LinkedHashMap;
 2 import java.util.Map;
 3
 4 // Omitted imports
 5 public class LinkedHashMapInAction {
 6 public static void main(String[] args) {
 7 Map<Integer, String> map = new LinkedHashMap<>(); // #A
 8
 9 for (var i = 0; i <= 100000; i++) { // #B
10 map.put(i, "Element:" + i);
11 }
12 out.println(map);
13 }
14 }

 Output

 	#A: We can declare a LinkedHashMap with the Map interface and make use of polymorphism. The benefit of using polymorphism is the flexibility you have in your code to pass the implementation you find more suitable.

 	#B: Notice that we are iterating from 0 to 100000 and the output will be guaranteed in insertion order. If you need your elements to be in insertion order, use LinkedHashMap.

12.15.1 Big-o of HashMap, LinkedHashMap, Hashtable, and ConcurrentHashMap

When we use hash functions, we can rapidly put, access, remove, and search elements. However, if there is hash collision the time-complexity will be O(n).

Let’s see the time-complexity of HashMap, LinkedHashMap, and ConcurrentHashMap in more details:

 	Method
 	Complexity
 	Worst Case Scenario
 	Explanation

 	put()
 	O(1)
 	O(n)
 	O(n) when there is hash collision

 	get()
 	O(1)
 	O(n)
 	O(n) if there is hash collision

 	remove()
 	O(1)
 	O(n)
 	O(n) if there is hash collision

 	contains()
 	O(1)
 	O(n)
 	O(n) if bad hash function is being used

12.16 TreeMap

To have the keys of your map sorted in natural, you can use the TreeMap.

A TreeMap uses the Red-black tree algorithm based on the NavigableMap implementation. The keys of a TreeMap must implement Comparable, in case we don’t do that, we will get an Exception.

The TreeMap also has the following direct hierarchy:

 1 public class TreeMap<K,V> extends AbstractMap<K,V>
2 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
3 { ... }

A TreeMap is also not synchronized, therefore, it will throw ConcurrentModificationException in case the map is changed during an iteration as a fail-safe mechanism. However, it’s also possible to use a TreeMap as a thread-safe object by wrapping in the Collections.synchronizedSortedMap method.

Now let’s see a common use of a TreeMap adding Comparable elements and then making sure they were sorted in their natural order:

 1 import java.util.Map;
 2 import java.util.TreeMap;
 3
 4 public class TreeMapInAction {
 5 public static void main(String[] args) {
 6 Map<Integer, String> ffSummons = new TreeMap<>();
 7 ffSummons.put(3, "Shiva"); // #A
 8 ffSummons.put(2, "Cactuar"); // #B
 9 ffSummons.put(1, "Siren");
10
11 System.out.println(ffSummons);
12 }
13 }

Output:

 	#A: The first important to notice is that the key has to implement Comparable. As we are passing the key as a primitive int number, it will be autoboxed to Integer that implements Comparable as you can see in the Integer class definition:

 1 public final class Integer extends Number
2 implements Comparable<Integer>, Constable, ConstantDesc { ... }

The value doesn’t need to implement Comparable since values are not sorted, only keys.

 	#B: When we put the key of 2, the TreeMap will automatically sort the elements in the natural order. Therefore, at that moment we have:.

12.16.1 Reversing the natural order with TreeMap

 1 import java.util.Comparator;
 2 import java.util.Map;
 3 import java.util.TreeMap;
 4
 5 public class TreeMapReverse {
 6 public static void main(String[] args) {
 7 Map<Integer, String> ffSummons =
 8 new TreeMap<>(Comparator.reverseOrder()); // #A
 9 ffSummons.put(1, "Siren"); // #B
10 ffSummons.put(2, "Cactuar");
11 ffSummons.put(3, "Shiva");
12
13 System.out.println(ffSummons);
14 }
15 }

Output:

 	#A: If we use the Comparator.reverseOrder() instance, we will invert the order of the Comparable objects comparison as you can see in the following JDK code:

 1 private static class ReverseComparator
2 implements Comparator<Comparable<Object>>, Serializable {
3 public int compare(Comparable<Object> c1, Comparable<Object> c2) {
4 return c2.compareTo(c1);
5 }
6 }

Therefore, the results will be returned with the key order sorted in the reverse order from the Integer natural order.

 	#B: Then, whenever we add an element to the TreeMap they will sorted in the reverse order.

Output:

12.16.2 Exception Cases with Non-comparable Objects with TreeMap

Be aware that if you use an object that is not Comparable you will get an Exception. This happens because as explained before, the TreeMap will use the compareTo method from Comparable to sort the map.

Let’s see what happens when the object doesn’t implement Comparable:

 1 import java.util.Map;
 2 import java.util.TreeMap;
 3
 4 public class TreeMapExceptionCase {
 5 public static void main(String[] args) {
 6 Map<Summon, Integer> ffSummons = new TreeMap<>(); // #A
 7 ffSummons.put(new Summon("Carbuncle"), 1); // #B
 8 ffSummons.put(new Summon("MiniMog"), 2);
 9 ffSummons.put(new Summon("Tonberry"), 3);
10
11 System.out.println(ffSummons);
12 }
13 }
14
15 class Summon { // #A
16 private String name;
17 public Summon(String name) { this.name = name; }
18 }

Output:

 1 Exception in thread "main" java.lang.ClassCastException: class com.javachallengers.c\
2 ollections.map.Summon cannot be cast to class java.lang.Comparable (com.javachalleng\
3 ers.collections.map.Summon is in unnamed module of loader 'app'; java.lang.Comparabl\
4 e is in module java.base of loader 'bootstrap')...

 	#A: We are passing the Summon class that doesn’t implement Comparable to the TreeMap key. If you are using the Intellij IDE you will probably see a warning informing that the key is not a Comparable object.

 	#B: When we try to add the first element to the TreeMap we will get the java.lang.ClassCastException since the put method will try to use a Comparable key but it won’t succeed.

12.16.3 Using Customized Comparable Objects with TreeMap

 1 import java.util.Map;
 2 import java.util.TreeMap;
 3
 4 public class TreeMapCustomizedComparable {
 5 public static void main(String[] args) {
 6 Map<Summon, String> ffSummons = new TreeMap<>(); // #A
 7 ffSummons.put(new Summon("Tonberry"), "Guardian Force"); // #B
 8 ffSummons.put(new Summon("MiniMog"), "Guardian Force");
 9 ffSummons.put(new Summon("Carbuncle"), "Guardian Force");
10
11 System.out.println(ffSummons);
12 }
13
14 static class Summon implements Comparable<Summon> { // #C
15 private String name;
16 public Summon(String name) {
17 this.name = name;
18 }
19
20 public int compareTo(Summon o) { // #D
21 return this.name.compareTo(o.name);
22 }
23 public String toString() {
24 return "Summon{" + "name='" + name + '\'' +'}';
25 }
26 }
27 }

Output:

 	#A: There won’t be any warning here since the Summon class now implements Comparable.

 	#B: Notice that on each time we put elements into ffSummons, the comparaTo method will be invoked to sort the map keys.

 	#C: We are implementing Comparable now in the Summon class. Notice that we are also using the generic type of Summon in the Comparable. This is because then we can use Summon in the comparaTo method implementation.

 	#D: Here we compare the current instance with another one that is received by parameter. This method will be invoked by the TreeMap on every put invocation. Our logic is quite simple here, we are comparing the name of the current instance with the other Summon object.

12.16.4 Big-O of a TreeMap

A TreeMap will sort the keys of a map when elements are inserted. Therefore, the time-complexity is more costly than a HashMap for example. The time-complexity for operations with a TreeMap is O(log n) which means it’s less efficient than constant time O(1).

The underlying algorithm used in a TreeMap is the Red-Black Tree, the same as used in a TreeSet.

Let’s see the time-complexity table of a TreeMap:

 	Method
 	Complexity
 	Worst Case Scenario

 	put()
 	O(log n)
 	O(log n)

 	get()
 	O(log n)
 	O(log n)

 	remove()
 	O(log n)
 	O(log n)

 	contains()
 	O(log n)
 	O(log n)

12.16.5 Stark Map equals Challenge

In the following Java Code Challenge, you will see a Map instantiated with a LinkedHashMap. Then we will add some elements, a Stark as a key and a number as a value. Note that the Stark class has the equals and hashcode methods overridden.

What will happen when running the following code?

 1 public class StarkEqualsChallenge {
 2 	public static void main(String... doYourBest) {
 3 		Map<Stark, String> map = new LinkedHashMap<>();
 4 		
 5 		map.put(new Stark("Arya"), "1"); map.put(new Stark("Ned"), "2");
 6 		map.put(new Stark("Sansa"), "3"); map.put(new Stark("Bran"), "4");
 7 		map.put(new Stark("Jaime"), "5");
 8 		
 9 		map.forEach((k, v) -> System.out.print(v));
10 	}
11 	static class Stark {
12 		String name;
13 		Stark(String name) {this.name = name;}
14
15 		public boolean equals(Object obj) {
16 			return ((Stark)obj).name.length() == this.name.length();
17 		}
18
19 		public int hashCode() { return 4000 << 2 * 2000 / 10000; }
20 	}
21 }

 	123

 	12345

 	245

 	425

Explanation:

Note that in this Java Challenge we are overriding the equals and hashcode methods, therefore the Map implementations will behave accordingly to what was implemented on those methods.

Another important point to note is the hashCode method that even though it’s a bit complex, it’s returning always the same value:

 public int hashCode() { return 4000 << 2 * 2000 / 10000; }

Pay attention that the equals method is actually comparing the length of the String. So, objects are going to be the same if the String length is the same.

 1 Arya has 4 characters - it will be inserted
2 Ned has 3 characters - it will be inserted
3
4 Sansa has 5 characters - it will be inserted
5 Bran has 4 characters - it will replace Arya
6
7 Jaime has 5 characters - it will replace Sansa

As Bran has 4 characters and it was the last one to be inserted, it will replace Arya. Therefore the first value is 4.
As Ned is the only one with 3 characters, his value will be printed that is 2.

Then, Sansa has 5 characters, it will be inserted and then Jaime will replace Sansa’s value with 5.

Therefore, the correct alternative is:
D) 425

12.17 Elements Searching

What if we want to search for an element in an array? There is a very famous algorithm that does that for us, and this is the binary search algorithm. Most programming languages have this algorithm already implemented and in Java this is not different.

An important thing to keep in mind is that the elements must be sorted if we want to use the binary search algorithm. That’s because the binary search algorithm will break the array in two and will verify in what side is the searched element.

12.17.1 Searching elements with a non-sorted List

Let’s see a code example where we use the binarySearch method without sorting the List:

 1 import java.util.Collections;
 2 import java.util.List;
 3
 4 public class BinarySearchNotSorted {
 5 public static void main(String[] args) {
 6 List<String> ff8Fighters = List.of("Squall", "Zell", "Quistis");
 7 int searchIndex = Collections.binarySearch(ff8Fighters, "Quistis");
 8 System.out.println(ff8Fighters.get(searchIndex));
 9 }
10 }

Output:
Exception in thread “main” java.lang.IndexOutOfBoundsException: Index -1 out of bounds for length 3

As you can see in the code above, we got an Exception because we didn’t sort our array. Therefore, the search result is inconsistent and it might not work properly.

12.17.2 Searching elements with a sorted List

As mentioned before, the binarySearch method is supposed to work with a sorted list. Therefore, by sorting the list before invoking the binarySearch method then we will find the element consistently.

Let’s see a code example when we sort the List first:

 1 // Omitted imports
 2 public class BinarySearchSorted {
 3 public static void main(String[] args) {
 4 List<String> ff8Fighters =
 5 new ArrayList<>(List.of("Squall", "Zell", "Quistis")); // #A
 6 Collections.sort(ff8Fighters); // #B
 7 int searchIndex = Collections.binarySearch(ff8Fighters, "Quistis"); // #C
 8 System.out.println(ff8Fighters.get(searchIndex));
 9 }
10 }

Output:
Quistis

 	#A: Notice that the List.of method returns an immutable list which means that we can’t change the list. That’s why we are wrapping the result of List.of into the constructor of an ArrayList. Then we can change our array.

 	#B: We pass our mutable array to the Collections.sort method. Notice that the elements will be sorted in the object reference which means that we don’t need to return anything, the sort method will change the ff8Fighters list and sort the elements.

 	#C: We invoke the binarySearch now with the list already sorted and we retrieve the searchIndex successfully.

12.17.3 Marvel Binary Search Challenge

The the following Java code challenge, we will explore how the binarySearch method works in Java when an element is found and not found.

Can you guess what will happen when running the following code?

 1 import java.util.Arrays;
 2
 3 public class MarvelSearchChallenge {
 4
 5 static String[] marvel = {"Spider-man", "Venom", "Carnage", "Mysterio"};
 6
 7 public static void main(String[] args) {
 8 Arrays.sort(marvel);
 9
10 System.out.print(Arrays.binarySearch(marvel, "Xavier") + " ");
11 System.out.print(marvel[Arrays.binarySearch(marvel, "Carnage")] + " ");
12 System.out.print(Arrays.binarySearch(marvel, "Lizard") + " ");
13 System.out.print(Arrays.binarySearch(marvel, "Spider-man"));
14 }
15 }

 	-1 Carnage -1 0

 	-4 2 -1 0

 	-5 Carnage -2 2

 	-4 Carnage -1 2

Explanation:

The first important point of this challenge is that the array must be sorted. If it wasn’t sorted, we would have the ArrayIndexOutOfBoundsException.

Therefore, the array is like this at this point:
[Carnage, Mysterio, Spider-man, Venom]

So, when we look for Xavier, it returns -5. That’s because Xavier is compared with the other elements in natural order. Since Xavier comes after all elements alphabetically, it’s therefore the fifth element. Notice also that when the element is not found, it doesn’t start counting from 0. It starts from -1 instead.

Then, we find Carnage in the array and we get back the index that is 0. When we access this index with the marvel array, Carnage will be printed.

When we try to look for Lizard, it returns -2. That’s because Lizard would come after Carnage, therefore, the second element.

Finally, we retrieve the index from Spider-man, which in our sorted array is the third position. Therefore, it translates to index 2.

In conclusion, the final answer of this Java Challenge is:
C) -5 Carnage -2 2

12.18 Summary

In this chapter we explored the most important concepts in the Collections api to enable you to manipulate array, set, map, queue and stack.

In every real-world system you will have to deal with data all the time, therefore, by knowing the main Collection objects in Java will massively help you to create high-quality code and not reinvent the wheel.

In this chapter your learned to use:

- equals and hashCode methods to check if objects have the same values or not.

 	
List to use as a type of ArrayList, Vector, LinkedList and CopyOnwriteArrayList.

 	
ArrayList for most common use of arrays. Stores an array of objects behind the scenes and it’s going to grow the array dinamically.

 	
Vector when you want your array to have synchronized data in a multi-thread environment.

 	
CopyOnwriteArrayList when you want to manipulate the array as you wish while traversing it. You won’t get ConcurrentModificationException.

 	Prevent ConcurrentModificationException with effective techniques.

 	Comparing and sorting data from a List.

 	
Deque as a type to use functionalies of a Stack and Queue.

 	
LinkedList when you want to make use of Stack and Queue functionalities.

 	
Set to be used as a type for HashSet, and LinkedHashSet, and TreeSet. Also will make elements unique.

 	
HashSet, it is the most basic implementation of a Set. It uses a map behind the scenes to store data. Also inserts unique elements and the elements are not ordered as they are inserted.

 	
LinkedHashSet, it is very similar to HashSet but has the difference that elements will keep the order as they are inserted.

 	
TreeSet, it inserts unique elements and also sorts them depending on what you configured on your compareTo method.

 	
Map, used to implement key-value data structures.

 	
HashMap is the most common implementation of a Map. It stores key-values, it accepts null as a key and elements are not ordered.

 	
LinkedHashMap is similar to HashMap but elements are ordered as they are inserted.

 	
Hashtable, it is synchronized which means it can be used in a thread-safe environment and can’t use a null value as a key.

 	
TreeMap will use the compareTo method to sort elements as they are inserted.

 	Binary search methods to find elements in a sorted array.

13 Streams

This chapter covers:

 	Basic principles from Streams

 	Lazy stream behaviour

 	Creating a stream from a list, array

 	Creating an empty stream

 	Generating a looping with numbers using stream

 	Creating a stream of Strings

 	Generating a stream with random numbers

 	Intermediate operation methods

 	Terminal operation methods

 	Total of 6 Java code Challenges

13.1 Streams Basic Principles

Streams will help you to manipulate data of a Collection in a functional, concise and fluid way. You will be able to significantly reduce code if you use streams effectivelly.

Streams is one of the big features from Java 8, it’s not so easy to master it but if you know the most important functionalities of a stream you will be able to be very dangerous.

That’s the goal of this chapter, to explore the most used features of a stream so you can use it in your day-to-day work.

Imagine streams to be a stream of data. When you use streams, you want to manipulate the data the way you need so that you can do something useful with it.

In the following image, we have an array of [1, 2, 3, 4, 5, 6] and then we perform some filter operations. When we perform the following filter(n -> n > 3), we will have only [4, 5, 6] in the array. Then we filter again with filter(n -> n > 4), we will have [5, 6] in the end:

 [image:]
 Stream Pipeline

This is just a small example of the power of a stream! We can do much more such as transform a collection to another one, transform a data type, get the sum, average, group data, parallelize processes, and the list goes on!

13.1.1 Streams are Imutable

As mentioned before, the concept of streams is connected to functional programming. One of the principles of functional programming is imutability. That means, data should not be mutated when we use streams.

Let’s see this concept in practice:

 1 List<String> originalList = List.of("Homer", "Marge", "Bart", "Maggie");
2
3 List<String> newList = originalList.stream() // #A
4 .filter(e -> e.equals("Moe")) // #B
5 .toList(); // #C
6
7 System.out.println(originalList); // #D
8 System.out.println(newList); // #E

Output:
[Homer, Marge, Bart, Maggie]
[]

Code analysis:

 	#A: We invoke the stream method from our originalList to get a stream of data from this list. This means, we can iterate over the elements "Homer", "Marge", "Bart", "Maggie".

 	#B: We filter the elements from originalList to "Moe". The problem is that we don’t have any "Moe" in the list. Therefore, the stream will be empty.

 	#C: We collect a new list with the changes we’ve made in the stream. Now we have two lists, newList and originalList.

 	#D: Notice now that we show the originalList values that it will contain the same values as before. That’s because when we use stream operations, we will use a copy from the originalList, not the real one. Therefore, all the elements will be there.

 	#E: Even though stream won’t mutate the originalList, we can collect the changes we made in a newList. That’s why we have no elements in the newList.

13.1.2 Streams are lazy

The stream api was implemented in such a way where only the necessary operation will be processed. That means that if we have an array of 100 elements but we only need to process 2 of them, the stream api will process only 2.

Let’s see this in practice:

 1 List<String> breakingBadCharacters = List.of("Heisenberg", "Jesse",
2 "Gus", "Saul");
3
4 breakingBadCharacters.stream()
5 .filter(e -> e.equals("Heisenberg"))
6 .peek(System.out::println);

Output
Nothing will be printed…

Notice in the code above that we didn’t use any terminal operation method. We used only filter and the peek methods that are intermediate operation methods. Therefore, nothing will be processed or printed for this stream operation.

13.2 Creating a Stream

There are several ways to create a stream. We can create a stream from a list, set, map, empty stream…

Let’s see the ways we can create a stream in the following topics.

13.2.1 Creating a stream from a List

The Java Collection objects are all prepared to be converted to a stream. In the following code, we can see that we can easily convert a list to a stream by invoking the stream method:

 1 import java.util.List;
2 import java.util.stream.Stream;
3
4 List<String> mavericks = List.of("X ", "Zero ", "Axl ", "Protoman ");
5 Stream<String> maverickStream = mavericks.stream();
6 maverickStream.forEach(System.out::print);

Output:
X Zero Axl Protoman

13.2.2 Creating a stream from an Array

Streams are versatile and flexible. We can convert an array to a stream by using the Stream.of method:

 1 // Omitted imports
2 String[] mavericks = new String[]{"X ", "Zero ", "Axl ", "Protoman "};
3 Stream<String> maverickStream = Stream.of(mavericks);
4 maverickStream.forEach(System.out::print);

Output:
X Zero Axl Protoman

Alternatively, we can also use the Arrays.stream method to have the same output as above:

 1 // Ommitted imports and array creation
2 Stream<String> maverickStream = Arrays.stream(mavericks);
3 maverickStream.forEach(System.out::print);

13.2.3 Creating an empty Stream

When we don’t want to return a null stream, we can use the Stream.empty() method as the following:

 1 Stream<String> stream = Stream.empty();

13.2.4 Creating a Stream with a Builder

To create streams without the need of a Collection or array, we can build our stream in the way we want by using the Stream.builder method:

 1 Stream<String> maverickStream =
2 Stream.<String>builder().add("X ").add("Zero ").add("Axl ").build();
3 maverickStream.forEach(System.out::print);

Output:
X Zero Axl

13.2.5 Creating a Stream with generate

It’s possible to generate an infinite stream with the generate method:

 1 Stream<String> maverickStream =
2 Stream.generate(() -> "X ");
3 maverickStream.forEach(System.out::print);

Output:
 X …

As you can see, the code above prints X forever and that doesn’t make much sense. To make the generate method more useful, we need to limit the stream to not print elements forever:

 1 Stream<String> maverickStream =
2 Stream.generate(() -> "X ").limit(5);
3 maverickStream.forEach(System.out::print);

Output:
X X X X X

13.2.6 Creating a Stream with iterate

To iterate over numbers we want, we can use the iterate method. Notice in the following code that we have 0 as the initial number, a lambda function adding 1 to each iteration and the limit method to avoid adding elements to the infinity:

 1 Stream<Integer> iterateStream = Stream.iterate(0, n -> n + 1).limit(10);
2 iterateStream.forEach(System.out::print);

Output:
0123456789

13.2.7 Creating a stream for int, long, and double

To avoid auto-boxing primitive elements to wrappers when using a Stream<T> we can use specific stream classes IntStream, LongStream, and DoubleStream.

The IntStream and LongStream classes are also useful because they have the range and rangeClosed methods which allows us to create a stream within a specific range of numbers.

Let’s see how to use the range method, notice that the last argument 5 is exclusive:

 1 IntStream intStream = IntStream.range(1, 5);
2 intStream.forEach(System.out::print);

Output:
1234

If we want the second argument of the range method to be inclusive, we have the rangeClosed method to do that:

 1 IntStream intStream = IntStream.rangeClosed(1, 5);
2 intStream.forEach(System.out::print);

Output:
12345

We can also use DoubleStream to generate double numbers as we want:

 1 DoubleStream.iterate(0.0, i -> i + 1.5).limit(3)
2 .forEach(n -> System.out.print(n + " "));

Output:
0.0 1.5 3.0

13.2.8 Creating a stream of a String

There is an interesting concept when we are working with String that is tokenization. Tokenization is useful to separate a String in a determined pattern. We can break a String by a , or by a space, whatever you think it makes sense to break down your String.

In the following example we will use the Pattern.compile method to configure the pattern we want to tokenize. Then, we are invoking the splitAsStream method, therefore we will split the String X, Zero, Axl, Sigma by the ,. Then we will have access to each element in separate Strings.

 1 Pattern.compile(",").splitAsStream("X, Zero, Axl, Sigma")
2 .forEach(System.out::print);

Output:
X Zero Axl Sigma

13.2.9 Generating a stream with random numbers

To generate a stream with random numbers, the Random class provide a method out of the box where we can reuse this functionality.

In the following code, we will set a range from 1 to 10 and then will print them randonly:

 1 new Random().ints(0,10).limit(10).
2 forEach(n -> System.out.print(n + " "));

Output:
3 7 3 7 4 9 8 1 8 5 (Randomly)

13.3 Intermediate VS Terminal Operation Methods

Streams have many useful methods so we can easily manipulate data from a Collection. Those methods are separated in two categories, intermediate and terminal operation methods:

Intermediate Operation Method: methods that will manipulate data in way it will suit our needs. It requires a terminal operation method to perform any action.

Let’s see the list of the intermediate operation methods:

 	Intermediate Operation Methods

 	filter

 	limit

 	sorted

 	peek

 	distinct

 	map

 	flatMap

 	skip

 	limit

 	takeWhile

 	dropWhile

Terminal Operation Method: methods that will effectively perform an action with what was programmed with the intermediate operation methods. For example, we can collect a list, sum, group elements, get the average, and so on. We can also only use a terminal operation once per stream operation.

Another crucial point to remember when using a terminal method operation is that it can only be used once per stream. If we use a terminal operation method more than once for the same stream object, we will get an IllegalStateException.

Let’s check the list of the terminal operation methods:

 	Terminal Operation Methods

 	findFirst

 	forEach

 	forEachOrdered

 	collect

 	reduce

 	count

 	sum

 	min

 	max

 	toArray

 	findFirst

 	findAny

 	anyMatch

 	allMatch

 	noneMatch

Now that you have a macro view of the streams api, it will be easier to explore all of the intermediate and terminal operation methods in detail in the next sections of this chapter.

13.4 Intermediate Operations

As seen previously, we can manipulate the data by using the intermediate operations. We can peek, limit, skip, map, sort and much more.

Let’s see how those methods work in practice.

13.4.1 Filtering Data with filter()

As the name suggests, the filter method will filter the elements of the stream accordingly. We can filter our elements in the way we want by having a data condition.

Let’s see some examples to make it clear. Let’s see the class we will work on:

 1 class Maverick {
2 private String name;
3 private double power;
4
5 // Omitted constructor initializing name and power
6 // Omitted toString method
7 }

Now, let’s see an example where we will filter the mavericks who have the power greater than 8:

 1 var mavericks = List.of(new Maverick("X", 9), new Maverick("Zero", 10),
2 new Maverick("Axl", 8));
3 mavericks.stream()
4 .filter(m -> m.power > 8)
5 .forEach(m -> System.out.println(m.name));

Output:
X
Zero

We can also filter elements of a stream with different conditions. We can filter by name and power, let’s see how that works in code:

 1 mavericks.stream()
2 .filter(m -> m.name.equals("X") && m.power > 8)
3 .forEach(m -> System.out.println(m.name));

Output:
X

Reinforcing the point that streams are imutable, notice that when we use the filter method, we are not changing the real mavericks array. We are only filtering it within the stream but there will be no changes in the real array. Therefore, if we print our mavericks array, it will have the same information as it was not filtered:

 1 System.out.println(mavericks);

Output:
[X, Zero, Axl]

13.4.2 Transforming Data with map()

When we want to transform data in a stream, we can use the map method. We can transform data to another type, we can add numbers, concatenate Strings, we can do many things.

Let’s see an example when we want to concatenate another String for each element:

 1 List<String> bojackCharacters = List.of("Bojack", "Diane", "Todd");
2
3 bojackCharacters.stream()
4 .map(b -> b.concat(" and Mr. Peanutbutter"))
5 .forEach(System.out::println);

Output:
Bojack and Mr. Peanutbutter
Diane and Mr. Peanutbutter
Todd and Mr. Peanutbutter

13.4.3 Using map to convert data

It’s also possible to convert a String to int if we want to. Then we can manipulate the int value in the stream.

The map method receives a Function and returns a Stream as you can see on its method signature:

 <R> Stream<R> map(Function<? super T, ? extends R> mapper);

In the following code, we will create a stream from a list, then we will map it to the length of the String, will filter to the Strings with 5 or more characters, finally we will print the data.

Let’s see the code then:

 1 List<String> bojackCharacters = List.of("Bojack", "Diane", "Todd");
2
3 bojackCharacters.stream()
4 .map(b -> b.length())
5 .filter(l -> l >= 5)
6 .forEach(System.out::println);

Notice that in the code above we used a lambda expression in the .map(b -> b.length()) method instead of a method reference. To simplify the code above, we can use method reference:

 1 // Same code as above with a method reference:
2 .map(String::length)

Output:
6
5

We can also map a String to uppercase:

 1 List<String> bojackCharacters = List.of("Bojack", "Diane", "Todd");
2 bojackCharacters.stream()
3 .map(String::toUpperCase)
4 .forEach(bojackCharacter -> System.out.print(bojackCharacter + " "));

Output:
BOJACK DIANE TODD

As you can see we can transform data as we wish. However, it’s important to see how the most common examples work, we can sum, multiply, divide, subtract, get the mod number… But to be practical let’s see only the multiply operation in code because the other operations will be very similar:

 1 List<Integer> numbers = List.of(1, 2, 3, 4);
2
3 numbers.stream()
4 .map(n -> n * 2)
5 .forEach(n -> System.out.print(n + " "));

Output:
2 4 6 8

You can get the code above and do your own tests to map a number in the way you like. Remember that your practice is key for your learning.

13.4.4 Converting an Object to a DTO (Data Transfer Object) with map

A common use of a map in a real world project is to convert a data model (usually data that comes from the Database) to a data transfer object (an object that can be transfered over the network usually to the front-end).

Let’s create a simple DTO then:

 1 class ItemDTO {
2 long id;
3 String description;
4 BigDecimal price;
5
6 // Omitted constructor and toString creation
7 }

Now let’s create our data object domain:

 1 class Item {
2 long id;
3 String description;
4 BigDecimal price;
5
6 // Omitted constructor creation
7 }

We need now a mapper that will convert an Item into an ItemDTO:

 1 class ItemMapper {
2 static ItemDTO toDTO(Item item) {
3 return new ItemDTO(item.id, item.description, item.price);
4 }
5 }

Then let’s simulate we are getting a list of items from the “database”:

 1 class ItemRepository {
2 List<Item> findAll() {
3 return List.of(new Item(1L, "PS5", new BigDecimal("650")),
4 new Item(2L, "Xbox Series X", new BigDecimal("600")));
5 }
6 }

We have everything now to use the map method and convert our list of Item to a a list of ItemDTO. Let’s see how this orchestration works in the following code:

 1 import java.math.BigDecimal;
 2 import java.util.List;
 3
 4 public class MapRealExample {
 5
 6 public static void main(String[] args) {
 7 ItemRepository itemRepository = new ItemRepository();
 8 final List<ItemDTO> itemDtoList = itemRepository
 9 .findAll() // #A
10 .stream() // #B
11 .map(ItemMapper::toDTO) // #C
12 .toList(); // #D
13
14 System.out.println(itemDtoList);
15 }
16 }

Output:
[ItemDTO, ItemDTO]

Code analysis:

 	#A: We findAll of the domain items and get a list of Item.

 	#B: Transform the list of item into a stream.

 	#C: Use a method reference to get each Item of the list and convert it into an ItemDTO using the toDTO method from ItemMapper. Notice that to use method reference, the method signature has to match the following: Function<? super Item, ? extends ItemDTO> mapper in our case.

 	#D: We collect the result as a list of ItemDTO.

13.4.5 Jedi Filter Map Challenge

In the following Java challenge we have a POJO class Jedi and we will explore the use of the filter and map methods.

What will happen when running the following code?

 1 import java.util.List;
 2
 3 public class JediFilterMapChallenge {
 4 public static void main(String... doYourBest) {
 5 List<Jedi> jediList = List.of(new Jedi("Luke", 20),
 6 new Jedi("ObiWan", 30), new Jedi("QuiGon", 40));
 7
 8 jediList.stream()
 9 .filter(jedi -> jedi.name.startsWith("Obi") || \
10 jedi.name.startsWith("Luke"))
11 .filter(jedi -> jedi.name.startsWith("QuiGon"))
12 .map(Jedi::getAge)
13 .filter(age -> age > 10)
14 .forEach(System.out::println);
15 }
16
17 static class Jedi {
18 private String name;
19 private int age;
20 public Jedi(String name, int age) {
21 this.name = name;
22 this.age = age;
23 }
24 public String getName() { return name; }
25 public int getAge() { return age; }
26 }
27 }

 	40

 	20
30

 	Nothing will be printed

 	20
30
40

Explanation:

We firstly create the list of Jedi and then we create a stream from them.

Then we filter the elements names that start with "Obi" or "Luke". At that moment we have the following elements:
[Jedi(“ObiWan”, 30), Jedi(“Luke”, 20)]

Now we try to filter only the elements names that start with "QuiGon", since we don’t have "QuiGon", the list will be cleared.

When we use the map(Jedi::getAge) operation we will transform the stream element to return the jedi age. Then we will filter again to get jedis who are older than 10. However, we have nothing in the stream data already.

In conclusion, when we print the values of the stream we will have nothing. Therefore, the correct alternative is:

 C) Nothing will be printed

13.4.6 Deduplicating Results with distinct()

Simply put, the distinct function will remove duplicate elements from the stream. Let’s see how that works in code:

 1 List<Integer> numbers = List.of(1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4);
2 numbers.stream().distinct().forEach(n -> System.out.print(n + " "));

Output:
1 2 3 4

Let’s see now how the distinct method will behave when we create our own object:

 1 class BojackCharacter {
2 private String name;
3
4 public BojackCharacter(String name) {
5 this.name = name;
6 }
7 }

Let’s see what happens when we use the above object in the distinct function:

 1 List<BojackCharacter> bojackCharacters = List.of(
2 new BojackCharacter("Bojack"), new BojackCharacter("Bojack"),
3 new BojackCharacter("Diane"), new BojackCharacter("Diane"));
4
5 bojackCharacters.stream().distinct()
6 .forEach(b -> System.out.print(b.name + " "));

Output:
Bojack Bojack Diane Diane

Notice that the elements didn’t get distincted. That’s because the distinct function relies on the equals and hashCode methods. Therefore, if we implement those methods in the BojackCharacter class, then the elements will be distincted:

 1 class BojackCharacter {
 2 // Omitted field name and constructor
 3
 4 @Override
 5 public boolean equals(Object o) {
 6 if (this == o) return true;
 7 if (o == null || getClass() != o.getClass()) return false;
 8 BojackCharacter that = (BojackCharacter) o;
 9 return Objects.equals(name, that.name);
10 }
11
12 @Override
13 public int hashCode() {
14 return Objects.hash(name);
15 }
16 }

Now, if we try to run the same code as above, then the elements will be distincted:

 1 // Omitted List creation
2 bojackCharacters.stream().distinct()
3 .forEach(b -> System.out.print(b.name + " "));

Output:
Bojack Diane

13.4.7 Debugging a stream with peek() and IDEs

The peek function is used for debugging what is going on in a stream. It’s also possible to debug a stream by adding a breakpoint where you wish. This works for Eclipse and Netbeans. However, if you want a more sophisticated experience to debug streams, you can also use the Java Stream Debugger plugin from IntelliJ.

But worry not, the peek method will do the work very well, so you don’t really need a sophisticated tool for debugging your streams.

The peek method will simply log data when you need, this means that it will show the data you want as the stream goes on. Let’s see how to use the peek method then:

 1 List<String> bojackList = List.of("Bojack", "Diane", "Todd");
2 bojackList.stream().peek(System.out::println);

Output:
Nothing will be printed here…

Why is that? That’s because the peek method is an intermediate operation method, this means that nothing will happen unless a terminal operation method is invoked.

It’s important to remember that streams are lazy, therefore, something will only happen when there is a method that will effectively do something with the stream.

 1 List<String> bojackCharacters = Stream.of("BOJACK", "DIANE", "TODD")
2 .map(String::toLowerCase)
3 .peek(e -> System.out.println("Lower Case Elements: " + e))
4 .filter(e -> e.equals("bojack"))
5 .peek(e -> System.out.println("Filtered to bojack: " + e))
6 .collect(Collectors.toList());
7
8 System.out.println(bojackCharacters);

Output:
Lower Case Elements: bojack
Filtered to bojack: bojack
Lower Case Elements: diane
Lower Case Elements: todd
[bojack]

Code analysis:

Notice that the map method will transform the String to lowercase and then will print the information of the current element in the stream pipeline:
Lower Case Elements: bojack

Then, the filter method will be invoked filtering a String that is equals to bojack. In that case, this condition will be true, therefore, the following will be printed:
Filtered to bojack: bojack

The String DIANE will also be transformed to lowercase. Therefore, the peek method will print the following:
Lower Case Elements: diane

However, notice that diane will not be equals to bojack, therefore, the next peek method will have nothing to print. The same will happen to TODD and the following will be printed:
Lower Case Elements: todd

13.4.8 Summary of the peek method

As we could see in the code above, the peek method will show the value of the current element passing by the stream pipeline. If the element is not present at the point the peek method was invoked, then nothing will be printed as we just saw.

If you are unsure about what is going on in your stream pipeline, you can use the peek method to check the current pipeline value.

13.4.9 Limiting Results with limit()

To limit how many elements we want to see in a stream, we can use the limit method.

 1 Stream.of("Bojack", "Peanutbutter", "Todd", "Diane")
2 .limit(2)
3 .forEach(System.out::println);

Output:
Bojack
Peanutbutter

As you can see in the code above, the limit method will limit the stream to two elements.

13.4.10 Matrix Stream Peek Order Challenge

In the following code challenge, we will explore how the intermediate and terminal operation methods will behave.

Therefore, what do you think will be printed after running the following code?

 1 import java.util.List;
 2
 3 public class MatrixPeekOrder {
 4 public static void main(String... crewOrder) {
 5 List<String> crew = List.of("Neo ", "Trinity ", "Morpheus ");
 6
 7 crew.stream()
 8 .peek(e -> System.out.print(e + "peek "))
 9 .limit(1)
10 .forEach(e -> System.out.print(e + "forEach "));
11 }
12 }

 	Neo forEach Neo peek Trinity forEach Trinity peek Morpheus forEach Morpheus peek

 	Neo forEach Neo peek

 	Neo peek Neo forEach

 	Neo Neo Trinity Trinity Morpheus Morpheus

Explanation:

The key concept to focus on this code challenge is that streams are lazy in Java to optimize performance. Which means that only the elements we instructed in our stream pipeline will be processed.

For example, we used the intermediate method peek that only shows what element we are traversing. But we also used the limit method that will limit(1) the elements to 1. Therefore, we don’t need to traverse the three elements from the list, this would be a waste of computer resources.

Considering that only the elements we programmed with our intermediate operation methods will be processed, the following will happen:

 	The intermediate operation methods peek and limit will be processed but not executed.

 	The terminal operation method forEach will be read and only then peek and limit will be effectively invoked.

As a consequence, only Neo will be printed because the method execution starts from the order we instructed our stream. Therefore, the right alternative is:

**C) Neo peek Neo forEach **

13.4.11 Skipping an element with skip()

The skip method will skip as many elements as you want in a stream. You can use skip with the filter method as you can see in the following code:

 1 Stream.of("Bojack", "Todd", "Peanutbutter", "Princess Carolyn", "Diane")
2 .filter(e -> e.length() > 4). // #A
3 .skip(2). // #B
4 .forEach(e -> System.out.print(e + " "));

Output:
Princess Carolyn Diane

 	#A: Filtering only the Strings that have more than 4 characters.

 	#B: Skips 2 elements that fulfill the filter condition. In this case Bojack and Peanutbutter are skipped.

13.4.12 Sorting Elements with sorted()

To easily sort elements in a stream you can use the sorted method. Just remember that the object you are using have to implement Comparable so the sorted method can work.

In the following code, we will use a String that already implements Comparable. Therefore, when running the following code, the elements will be sorted in the natural order:

 1 List<String> zodiacKnights = Arrays.asList("Shaka", "Kanon", "Aldebaran", \
2 "Seya", "Ikki");
3 zodiacKnights.stream().sorted().forEach(e -> System.out.println(e + " "));

Output:
Aldebaran Ikki Kanon Seya Shaka

13.4.13 Sorted Heroes Stream Challenge

In the following Java challenge we have the Hero class which will be used in the sorted() method of the stream(). Therefore, what will happen in the following code when running it?

 1 import java.util.List;
 2
 3 public class SortedHeroesStreamChallenge {
 4
 5 public static void main(String... doYourBest) {
 6 List<Hero> heroesList = List.of(new Hero("Spider Man"),
 7 new Hero("Wolverine"), new Hero("Batman"),
 8 new Hero("Iron Man"), new Hero("Beast"));
 9
10 heroesList.stream()
11 .sorted() // #A
12 .forEach(h -> System.out.print(h.name + " ")); // #B
13 }
14
15 static class Hero {
16 private String name;
17 Hero(String name) {
18 this.name = name;
19 }
20 }
21
22 }

 	Spider Man Wolverine Batman Iron Man Beast

 	Batman Beast Iron Man Spider Man Wolverine

 	
java.lang.IllegalArgumentException will be thrown at // #A

 	
java.lang.ClassCastException will be thrown at // #B

Explanation:

The key point of this Java Challenge is that whenever we are using a sorting method in Java, we need to implement Comparable. Or at least inform what is the sorting strategy with Comparator. In the code above we are doing neither of those. We are passing the Hero object that doesn’t implement Comparable. Therefore, it’s impossible to the sorted() function to guess what is the sorting strategy. For this reason, in the terminal operation method foreach the java.lang.ClassCastException will be thrown.

In conclusion, the correct alternative is:

**D) java.lang.ClassCastException will be thrown at // #B **

13.4.14 Reversing Sorting Order with reverseOrder()

To reverse the order when using the sorted method in a stream, we can pass Comparator.reverseOrder() in the sorted method.

Also, remember that the Comparator.reverseOrder() will only work if your class implements Comparable:

 1 List<String> zodiacKnights = Arrays.asList("Aldebaran", "Seya", "Shaka", \
2 "Ikki", "Kanon");
3 zodiacKnights.stream().sorted(Comparator.reverseOrder())
4 .forEach(e -> System.out.print(e + " "));

Output:
Shaka Seya Kanon Ikki Aldebaran

13.4.15 Reading a list of a list with flatMap()

The main goal of the flatMap is to flatten elements when there is a collection within another collection. Which means that we are able to iterate and manipulate a list of a list for example.

Let’s see how we would do that without the flatMap function, notice that it’s quite verbose. In the following code we will create a list of elite soldiers and a list of weapons. Lastly we will do some operations with the elite soldiers list:

 1 List<String> snakeWeapons = List.of("PSG1", "SOCOM", "Nikita");
 2 EliteSoldier solidSnake = new EliteSoldier("Solid Snake", snakeWeapons);
 3
 4 List<String> liquidWeapons = List.of("REX", "M60", "FGM-148 Javelin");
 5 EliteSoldier liquidSnake = new EliteSoldier("Liquid Snake", liquidWeapons);
 6
 7 List<String> revolverWeapons = List.of("Colt", "Glock 18");
 8 EliteSoldier revolverOcelot = new EliteSoldier("Revolver Ocelot", revolverWeapons);
 9
10 List<EliteSoldier> eliteSoldiers = List.of(solidSnake, liquidSnake, revolverOcelot);
11
12 List<String> weapons = new ArrayList<>();
13 for (EliteSoldier soldier : eliteSoldiers) {
14 if (soldier.name.contains("Snake")) {
15 for (String weapon : soldier.getWeapons()) {
16 weapons.add(weapon.toLowerCase());
17 }
18 }
19 }
20
21 System.out.println(weapons);

Output:
[psg1, socom, nikita, rex, m60, fgm-148 javelin]

As you could see in the example above, the code gets quite verbose to do operations from a list of a list. Fortunately, that’s the problem the flatMap function solves. We can do the same as the above code using less and more understandable code. We can also more easily manipulate the list the way we want.

In the following code, we will perform the same operations as the code above using flatMap. We will stream on the eliteSoldiers list, filter the soldier name to “Snake”, we will stream on the weapons list, map it to lowerCase and finally collect it as a list:

 1 // Omitted the creation of the eliteSoldier and weapons list
2
3 List<String> weapons = eliteSoldiers.stream()
4 .filter(e -> e.name.contains("Snake"))
5 .flatMap(e -> e.getWeapons().stream())
6 .map(String::toLowerCase)
7 .toList();
8
9 System.out.println(weapons);

Output:
[psg1, socom, nikita, rex, m60, fgm-148 javelin]

13.4.16 Transforming a primitive Array with flatMap

With flatMap, it’s possible to transform a stream of an array of primitive type to a stream of primitive type.

In the following code example we will create a stream double numbers array, then we will convert it to a DoubleStream:

 1 Stream<double[]> streamLongArray = Stream.of(new double[] {1.0, 1.5, 2.0});
2 DoubleStream doubleStream = streamLongArray.flatMapToDouble(Arrays::stream);
3 doubleStream.forEach(n -> System.out.print(n + " "));

Output:
1.0 1.5 2.0

Similarly from DoubleStream, we can also convert an array of int to IntStream, or an array of long to LongStream.

13.4.17 Using a Customized Object with flatMap

In a real project, it’s more common to do operations with a flatMap with customized objects. The principle is the same but it’s still important to be covered in this book.

First, let’s create the data objects:

 1 class FootballClub {
 2 String name;
 3 List<Player> players;
 4
 5 // Omitted the constructor and getter methods
 6 }
 7
 8 class Player {
 9 String name;
10 int age;
11 int goalsCount;
12
13 // Omitted the constructor, getter and toString methods
14 }

Now we are able to implement our code example by using flatMap with customized objects:

 1 List<Player> psgPlayers = List.of(
 2 new Player("Lionel Messi", 34, 679),
 3 new Player("Neymar", 30, 401));
 4 List<Player> manchesterUnited = List.of(
 5 new Player("Cristiano Ronaldo", 37, 801),
 6 new Player("Jadon Sancho", 21, 50));
 7
 8 List<FootballClub> footballClubs = List.of(
 9 new FootballClub("Paris Saint-Germain", psgPlayers),
10 new FootballClub("Manchester United", manchesterUnited));
11
12 footballClubs.stream()
13 .map(FootballClub::getPlayers) // #A
14 .flatMap(List::stream) // #B
15 .filter(p -> p.getGoalsCount() > 500) // #C
16 .forEach(System.out::println);

Output:
Player
Player

Code Analysis:

 	#A: The map function is a perfect candidate for a method reference. That’s because it receives a Function. Therefore, it must receive a parameter that is our footballClub object and it returns a list of Player. We could also use a lambda expression: f -> f.getPlayers() to have the same effect of the method reference.

 	#B: Now we have the List<Player> mapped in the stream. That enables us to invoke the stream method from the List interface. The flatMap method will give us access to the stream of the List<Player>.

 	#C: Let’s now filter the players who scored more than 500 goals. Notice that with flatMap we can make the code concise and easy to read.

A last thing to notice in the flatMap method is that it receives a Function that takes the current element of the stream and has to return a Stream:

 1 <R> Stream<R> flatMap(
2 Function<? super T, ? extends Stream<? extends R>> mapper);

That’s why the flatMap method is perfect to flatten elements from multiple collections. It’s made to return a stream of data given an object.

Now that you know the main concept of a flatMap, it’s very important for you to make some changes in the example above and see what happens. By doing that you will absorb this concept!

13.4.18 Taking Elements with takeWhile()

The takeWhile method will take elements when the condition we created is true. When the condition is false, the iteration will stop.

Let’s see a practical example:

 1 List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6, 7);
2
3 numbers.stream()
4 .takeWhile(e -> e < 5)
5 .forEach(e -> System.out.print(e + " "));

Output:
1 2 3 4

Let’s change the order of the numbers now to see what will be the result:

 1 List<Integer> numbers = List.of(1, 2, 7, 6, 4, 5, 3);
2
3 numbers.stream()
4 .takeWhile(e -> e < 5)
5 .forEach(e -> System.out.print(e + " "));

Output:
1 2

Notice that the takeWhile method will continue the iteration only if the condition is true. Since the number 7 is not lower than 5, the takeWhile method will stop it’s iteration. Therefore, that’s why we only get number 1 and 2 and number 3 and 4 are ignored.

13.4.19 Dropping Elements with dropWhile()

The dropWhile method is pretty much the opposite from the takeWhile method. The elements will be dropped while the condition we set is true. Let’s see a practical example:

 1 List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6, 7);
2
3 numbers.stream()
4 .dropWhile(e -> e < 5)
5 .forEach(e -> System.out.print(e + " "));

Output:
5 6 7

As you can see in the code above, the elements that were lower than 5 were dropped.

Now let’s change the order of the numbers and see what happens:

 1 List<Integer> numbers = List.of(1, 2, 7, 6, 4, 5, 3);
2
3 numbers.stream()
4 .dropWhile(e -> e < 5)
5 .forEach(e -> System.out.print(e + " "));

Output:
7 6 4 5 3

Similarly to the takeWhile method, the dropWhile method will only drop the elements if the condition is true. Considering that 7 is greater than 5, the dropWhile method will stop comparing the remainning elements. Therefore, even numbers lower than 5 will still be in the list.

13.4.20 Take Drop While Challenge

In the following challenge, we will explore the limit, skip, dropWhile, sorted and takeWhile intermediate operation methods.

Therefore, what will happen when running the following code?

 1 import java.util.stream.IntStream;
 2
 3 public class TakeDropWhileChallenge {
 4
 5 public static void main(String... doYourBest) {
 6 IntStream.iterate(10, i -> i - 2)
 7 .limit(5)
 8 .skip(1)
 9 .dropWhile(i -> i < 6)
10 .sorted()
11 .takeWhile(i -> i > 2)
12 .forEach(System.out::print);
13 }
14 }

 	864

 	68

 	468

 	None of the above alternatives. Nothing will be printed.

Explanation:

Let’s deconstruct the pipeline of this IntStream. Let’s see what happens on each line of the code:

IntStream.iterate(10, i -> i - 2): we are starting an iteration from 10 and subtracting 2 on each iteration.

limit(5): we limit the iteration amount to 5 so we avoid infinite looping. At that moment we have the following elements: 10, 8, 6, 4, and 2.

skip(1): we skip one element, therefore, we will have the following elements now: 8, 6, 4, and 2.

dropWhile(i -> i < 6): note that the first element of the list 8 is not lower than 6, therefore, no elements will be dropped here.

sorted(): we sort the elements in the natural order, therefore, the elements will be sorted as the following: 2, 4, 6, and 8.

takeWhile(i -> i > 2): finally, we take only elements that are greater than 2, in our case, the first number of the list is not greater than 2. Therefore, no elements will be taken leaving the stream with no values.

forEach(System.out::print): when showing the elements here, nothing will be printed since the list is empty.

In conclusion, the correct alternative is:
D) None of the above alternatives. Nothing will be printed.

13.5 Terminal Operations

To finalize the stream pipeline and perform an action with the stream data, we can use the terminal operation methods. Those are methods that will find, match, count, reduce, collect, group data so you do something meanningful for your application.

An action will only happen in a stream if a terminal operation method is present. Therefore, a stream without a terminal operation method doesn’t make sense.

As mentioned before, also remember that a terminal method can be used only once per stream object.

13.5.1 Finding Any Element with findAny()

The findAny method will find any element in the stream, without a particular order:

 1 List<String> metalGearCharacters = Arrays.asList("Snake", "Ocelot", "Cipher");
2 Optional<String> anyMetalGearCharacter = metalGearCharacters.stream()
3 .findAny();
4 System.out.println(anyMetalGearCharacter.orElse(""));

Output:
It’s not deterministic, it may vary since any element can be found. However, the output will be mostly the first element since we are not working with parallel streams.

13.5.2 Finding First Element with findFirst()

As the name suggests, the findFirst method will find the first element within what was instructure in the stream pipeline:

 1 List<String> metalGearCharacters = Arrays.asList("Snake", "Ocelot", "Cipher");
2 Optional<String> firstCharacter = metalGearCharacters.stream().findFirst();
3 System.out.println(firstCharacter.get());

Output:
Snake

If we perform operations to filter data in the stream, then the elements will be filtered first and then the first element will be found:

 1 List<String> metalGearCharacters = Arrays.asList("Snake", "Ocelot", "Otacon");
2 Optional<String> firstCharacter = metalGearCharacters.stream()
3 .filter(e -> e.startsWith("O")).findFirst();
4 System.out.println(firstCharacter.orElse(""));

Output:
Ocelot

 parallel and findFirst: Notice that if we are working with a parallel stream that are not ordered, the findFirst method will still make sure the first element will be retrieved.

13.5.3 Matching any Element with anyMatch()

The anyMatch method will check if any of the stream elements match the condition you want. It returns true if the condition is fulfilled:

 1 Stream<String> knights = Stream.of("Milo", "Aiolos", "Shiryu", "Ikki");
2 boolean anyMatch = knights.anyMatch(s -> s.startsWith("S"));
3 System.out.println(anyMatch);

Output:
true

Since Shiryu starts with ‘S’, the anyMatch condition will be fulfilled, therefore, it will return true.

13.5.4 Matching All Elements with allMatch()

The allMatch method will compare all elements values of the stream. Therefore, all values need to fulfill the condition:

 1 Stream<String> knights = Stream.of("Saori", "Shaka", "Shiryu", "Seya");
2 boolean allMatch = knights.allMatch(s -> s.startsWith("S"));
3 System.out.println(allMatch);

Output:
true

Because all names from the stream knights start with S, the code above returns true. However, if we change one name of the stream the output will be false:

 1 Stream<String> knights = Stream.of("Ikki", "Shaka", "Shiryu", "Seya");
2 boolean allMatch = knights.allMatch(s -> s.startsWith("S"));
3 System.out.println(allMatch);

Output:
false

13.5.5 Matching None Elements with noneMatch()

The noneMatch method will check if the condition doesn’t match all of the elements. It’s pretty much the opposite from the allMatch method:

 1 Stream<String> knights = Stream.of("Saori", "Shaka", "Shiryu", "Seya");
2 boolean noneMatch = knights.noneMatch(s -> s.startsWith("B"));
3 System.out.println(noneMatch);

Output:
true

Since none of the above elements start with B, the noneMatch method will return true. If we pass S instead, the output will be false:

 1 Stream<String> knights = Stream.of("Shun", "Shaka", "Shiryu", "Seya");
2 boolean noneMatch = knights.noneMatch(s -> s.startsWith("S"));
3 System.out.println(noneMatch);

Output:
false

13.5.6 noneMatch Java Challenge

Let’s explore how the IntStream.range and noneMatch methods behave in the following Java challenge.

In the following code, your goal is to carefully analize the code and choose one of the alternatives:

 1 import java.util.stream.IntStream;
 2
 3 public class IsPrimeNoneMatch {
 4
 5 public static void main(String... doYourBest) {
 6 System.out.println(isPrime(6));
 7 System.out.println(isPrime('1')); // Line #A
 8 }
 9
10 static boolean isPrime(final int number) {
11 return number > 1 && IntStream.range(2, number)
12 .noneMatch(index -> {
13 boolean lol = number % index == 0;
14
15 return false;
16 });
17 }
18
19 }

 	false
true

 	true
false

 	Compilation error at // Line #A

 	true
true

Explanation:

Let’s analize the code, let’s start from the first invocation isPrime(6):

 	We check if 6 is greater than 1 which is true

 	We create a stream from 2 to 5 because the second parameter from the range method is not inclusive

 	Then we invoke the noneMatch method and notice we are not comparing any object there. We are only returning false. Therefore, we similate that no elements were found in this method. For this reason, the noneMatch method will return true.

In the second invocation isPrime('1'), notice that we are using a char with '1' which translates to 49 since we are passing it to an int type. You can take a further look at the ASCII table here. Therefore, the same as the above will happen with the difference that the looping will go until 48 but still will return true.

In conclusion, the correct alternative is:

 	true
true

13.5.7 Counting Elements with count()

As the name suggests, the count method will count how many elements the stream has after the the pipeline process is finished. In the following example, we will have an IntStream with numbers from 1 to 7 and we will filter it to only odd numbers. In the end we will count. Let’s see what is the result:

 1 var oddCount = IntStream.of(1, 2, 3, 4, 5, 6, 7)
2 .filter(i -> i % 2 == 1)
3 .count();
4
5 System.out.println(oddCount);

Output:
4

Since the number 1, 3, 5, and 7 are odd, the count result will be 4.

It’s also possible to count String elements:

 1 var saiyanCount = Stream.of("Goku", "Frieza", "Goten", "Gohan")
2 .filter(e -> e.startsWith("Go"))
3 .count();
4
5 System.out.println(saiyanCount);

Output:
3

The output is 3 because we are filtering the elements that starts with Go.

13.5.8 Getting the Minimum Number with min()

The min method of the stream will find the minimum element based on the Comparator rule passed on it. Let’s see an example:

 1 List<Integer> numbers = Arrays.asList(40, 10, 1, 5, 7, 99);
2 Optional<Integer> min = numbers.stream()
3 .min((i, j) -> i.compareTo(j));
4
5 System.out.println(min.get());

Output:
1

To make the above code simpler we can use method reference:

 1 // Omitted numbers and min declaration
2 min = numbers.stream().min(Integer::compareTo);
3 System.out.println(min.get());

Output:
1

13.5.9 Getting the Maximum Number with max()

The max function is very similar to the min function but instead of returning the minimum number, it will return the max number:

 1 List<Integer> numbers = Arrays.asList(40, 10, 1, 5, 7, 99);
2 Optional<Integer> max = numbers.stream()
3 .max(Integer::compareTo);
4 System.out.println(max.get());

Output:
99

13.5.10 Min Max Challenge

In the following Java code challenge we will explore the behavior of a stream dealing with the terminal operation methods min and max. Therefore, what do you think it will happen when running the following code?

 1 import java.util.OptionalInt;
 2 import java.util.stream.IntStream;
 3 import java.util.stream.Stream;
 4
 5 public class MinMaxChallenge {
 6
 7 public static void main(String... doYourBest) {
 8 IntStream intStream1 = Stream.of(1, 2, 3, 4, 5, 6).mapToInt(n -> n);
 9 IntStream intStream2 = intStream1;
10
11 OptionalInt optIntMin = intStream1.min();
12 OptionalInt optIntMax = intStream2.max();
13
14 int sum = optIntMax.orElse(5) + optIntMin.orElse(5);
15 System.out.println(sum);
16 }
17
18 }

 	11

 	7

 	10

 	
java.lang.IllegalStateException will be thrown at line 12

Explanation:

Firstly in this code challenge we convert an array of number to an IntStream and then we assign it to intStream1. Then we assign intStream1 to intStream2 which is a problem here.

Remember that a terminal method operation can be used only once per stream object. Notice also that we are using the same IntStream object to use the min and max operation methods. Therefore, we will have a problem once we try to use this same IntStream object to collect the max number. When we try to use a terminal operation method twice with a stream, we get the java.lang.IllegalStateException.

The sum operation won’t even happen because of the java.lang.IllegalStateException thrown in the max method. If we were using two streams objects the result would be 7.

In conclusion, the correct alternative is:

 	
java.lang.IllegalStateException will be thrown at line 12

13.5.11 Combining Elements reduce()

The reduce function allows us to combine or accumulate multiple values from a collection of elements and then reduce those values to a final result. It’s possible to sum numbers, concatenate strings, it’s also useful to calculate operations in parallel when performance is needed.

Before seeing the reduce method in action, let’s see how is the method signature from the reduce method:

 T reduce(T identity, BinaryOperator<T> accumulator);

Let’s see what is the purpose of each parameter:

 	return type T: it’s the generic type that will be returned based on the identity and accumulator type we are passing.

 	T identity: it’s the initial value of the reduce method. If we pass 0 to the identity for example, the reduce operation would start from 0.

 	BinaryOperator<T> accumulator: It’s a function that receives two values of the same type and perform a logic you want when combining the values.

Now that we know the reduce method signature, let’s see a simple and practical example of the reduce method:

 1 List<Integer> numbersList = List.of(2, 2, 4, 7);
2 int result = numbersList
3 .stream()
4 .reduce(0, (accumulator, eachNumber) -> accumulator + eachNumber);
5
6 System.out.println(result);

Output:
15

Notice in the code above that the numbers of numbersList were summed. You can see that it’s very easy to combine values using the reduce method. It can get even easier by using a method reference:

 1 // Omitted the creation of numbersList and result
2 result = numbersList.stream().reduce(0, Integer::sum);
3
4 System.out.println(result);

Output:
15

13.5.12 Combining String values

Since the reduce method purpose is to combine values, we can do the same with a String. In the following example, we will combine words to form the sentence java rocks:

 1 List<String> words = List.of("va", " ", "ro", "cks");
2 String result = words
3 .stream()
4 .reduce("ja", (accumulator, eachString) -> accumulator + eachString);
5 System.out.println(result);

Output:
java rocks

Notice in the code above that we passed "ja" to the identity parameter. Therefore, the reduce operation started with "ja" and then concatenated with "va", "ro" and "cks".

13.6 Parallelizing Data Processing with parallel()

When you need to process large amount of data, using parallel streams might be a good idea for performance. By doing that, you can use multiple processor cores of your machine to process data more quickly. Just remember that if you try to use a parallel stream when you are processing a small amount of data, you might lose in performance. That happens because it’s costly to manage threads.

13.6.1 Processing Order of parallel

It’s important to keep in mind that when you use parallel streams, the order won’t be guaranteed.

Let’s see a parallel stream in code:

 1 IntStream numbersStream = IntStream.rangeClosed(0, 15);
2 numbersStream.parallel().forEach(e -> System.out.print(e + " "));

Output (Random order):
15 2 5 10 1 8 11 7 0 12 9 14 3 13 4 6

13.6.2 forEachOrdered and parallel

There is a way to keep the order of the elements when using parallel. We can use the forEachOrdered method to accomplish that consistently:

 1 IntStream numbersStream = IntStream.rangeClosed(0, 15);
2 numbersStream.parallel().forEachOrdered(e -> System.out.print(e + " "));

Output:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13.6.3 Non-parallel Stream Thread Names

You can see the name of the main thread when you use a non-parallel stream. Notice that only the main thread will be used:

 1 List<String> letters = Arrays.asList("a", "b", "c", "d", "e");
2 letters.forEach(letter -> System.out.printf("%s Thread: %s ", letter,
3 Thread.currentThread().getName()));

Output:
a Thread: main b Thread: main c Thread: main d Thread: main e Thread: main

13.6.4 Parallel Stream Thread names

If you use a parallel stream, you will see different threads being used:

 1 List<String> letters = Arrays.asList("a", "b", "c", "d", "e", "f", "g", "h");
2 letters.parallelStream()
3 .forEach(letter -> System.out.printf("%s Thread: %s ", \
4 letter, Thread.currentThread().getName()));

Output (Random order):
f Thread: main
d Thread: ForkJoinPool.commonPool-worker-7
b Thread: ForkJoinPool.commonPool-worker-3
a Thread: ForkJoinPool.commonPool-worker-6
g Thread: ForkJoinPool.commonPool-worker-5
e Thread: ForkJoinPool.commonPool-worker-4
h Thread: ForkJoinPool.commonPool-worker-2
c Thread: ForkJoinPool.commonPool-worker-1

As you can see in the output of the code above, when we are working with parallel streams, we can see different threads processing data.

13.6.5 Performance Tests with parallel

Using parallel not always will make performance better since there is a cost to handle Threads behind the scenes. When we are dealing with a few elements, it’s usually better to not use parallel.

The parallel will also use multiple cores so the performance will be better if your machine has good configuration.

My machine has the following configuration:

 1 MacBook Pro Processor 2.6 GHz 6-Core Intel Core i7
2 Memory 32 GB 2667 MHz DDR4

Let’s first see an example with 100 elements to check which performance will be better:

 1 long timeMillis = System.currentTimeMillis();
2 OptionalInt max = IntStream.rangeClosed(0, 100)
3 .map(e -> e + 1)
4 .parallel()
5 .max();
6
7 long processingTime = System.currentTimeMillis() - timeMillis;
8 System.out.printf("Processing time in milliseconds: %s and max: %s", processingTime,\
9 max.orElse(0));

Output: (The processing time may vary)
Processing time in milliseconds: 6 and max: 101

If we remove the parallel from the code above, the performance will vary from 1 to 2 milliseconds, therefore, in this case not using parallel is better.

Let’s see what happens when we have 100_000_000 elements to iterate. In this case using parallel will significantly improve performance:

 1 long timeMillis = System.currentTimeMillis();
2 OptionalInt max = IntStream.rangeClosed(0, 100_000_000)
3 .map(e -> e + 1)
4 .parallel()
5 .max();
6
7 long processingTime = System.currentTimeMillis() - timeMillis;
8 System.out.printf("Processing time in milliseconds: %s and max: %s", processingTime,\
9 max.orElse(0));

Output: (The processing time may vary)
Processing time in milliseconds: 61 and max: 100000001

If we remove the parallel, the performance will be something between 171~173 milliseconds. Which means that in this case, using parallel is almost 3 times faster.

13.6.6 Parallelizing with reduce

One of the greatest benefits of the reduce method is that we can easily parallelize the combination of a massive amount of data which greatly improves performance.

Let’s create a simple benchmark to see how the parallel method improves performance. We will first reduce numbers from 1 to 1_000_000_000 without parallelization and then we will use parallelization. We will check how long each operation will take in milliseconds:

 1 var startMillis = System.currentTimeMillis();
2 LongStream longStream = LongStream.rangeClosed(1, 1_000_000_000);
3
4 var result = longStream.reduce(0, Long::sum);
5
6 System.out.println(result);
7 System.out.println(System.currentTimeMillis() - startMillis + " milliseconds");

Output:
500000000500000000
1311 milliseconds

To sum numbers from 1 to 1_000_000_000 without parallelization takes 1311 milliseconds! It’s a lot of time!

Let’s improve this by using the parallel method and let’s see what is the result:

 1 // Omitted the startMillis, longStream and result variable declarations...
2
3 result = longStream
4 .parallel()
5 .reduce(0, Long::sum);
6
7 System.out.println(result);
8 System.out.println(System.currentTimeMillis() - startMillis + " milliseconds");

Output:
500000000500000000
78 milliseconds

The difference is astonishing! When we use the reduce method with the parallel method we get 16 times improve in performance. Rather than spending 1311 milliseconds, we used only 78 milliseconds by parallelizing the reduce operations!

Keep in mind though that there will be only improvement in performance if you have more than one processor core in your machine, otherwise the parallelization won’t help.

The machine I used for those operation is:

 1 MacBook Pro (16-inch, 2019)
2 Processor 2.6 GH` 6 Core Intel Core i7
3 Memory 32 GB 2667 MHz DDR4
4 Graphics AMD Radeon Pro 5300M 4 GB

Also, remember that it’s only worth it to use the parallel reduce operation when we are dealing with heavy processing and/or a large amount of elements. That happens because it takes time for the compiler to create a new thread, allocate it in memory, manage it and so on.

For example, for the above operation I tried on my machine with a closed range from 1 to 10_000_000 without parallel and with parallel:

I got the following time processing:

 	Without parallel: 25 millisecondss

 	With parallel: 42 milliseconds

Keep in mind though that the above operation is a light one, therefore, it’s only worth it to use parallel for at approximately at least 100_000_000 elements. Then the results would be the following:

 	Without parallel: 138 milliseconds

 	With parallel: 64 milliseconds

13.6.7 Parallel Sorted Simpsons Age Challenge

Now it’s time to see a parallel stream in action! In the following code, we will handle two parallel streams and then print the elements. What do you think will happen after running the following code?

 1 import java.util.List;
 2
 3 public class ParallelSortedSimpsonsAgeChallenge {
 4 public static void main(String... doYourBest) {
 5 List<Integer> simpsonAges = List.of(38, 36, 10, 8, 1);
 6
 7 simpsonAges.stream().parallel()
 8 .filter(s -> s > 1)
 9 .map(s -> s + " ")
10 .forEachOrdered(System.out::print);
11
12 System.out.println();
13
14 simpsonAges.stream().parallel()
15 .filter(s -> s > 1)
16 .map(s -> s + " ")
17 .forEach(System.out::print);
18 }
19 }

 	38 36 10 8

(Random numbers will be printed)

 	8 10 36 38

(Random numbers will be printed)

 	38 36 10 8
10 38 8 36

 	38 36 10 8
38 36 10 8

Explanation:

The key point of this code challenge is that the parallel method won’t keep the order of the elements.

In the first stream of this code challenge, we are using the forEachOrdered method which will guarantee the order of the elements even using parallel. Therefore, the output here will be always: 38 36 10 8.

However, when we use parallel with only forEach, the elements will be in a random order. So it’s impossible to predict or rely on the order of the elements when we use parallel without forEachOrdered.

In conclusion, the correct answer is:

 	38 36 10 8

(Random numbers will be printed)

13.7 Collecting Data with collect()

In the previous examples of the book we didn’t collect data after applying streams operations. On this section, we will see how we can collect data so that we can manipulate it the way we want.

13.7.1 Collecting a list from a stream

The simplest way to collect data in a list using streams is with the toList method. Notice that we will use the java.util.stream.Collectors to collect the data from the streams:

 1 List<String> list = List.of("Atreus", "Athena", "Kratos");
2 List<String> newList = list.stream().filter(e -> e.startsWith("At"))
3 .collect(Collectors.toList());
4
5 System.out.println(newList);

Output:
[Atreus, Athena]

If we don’t want anyone to make a change in the collected list, we can use the Collectors.toUnmodifiableList() method. If we try to add, change or remove an element from newList we will get an UnsupportedOperationException:

 1 List<String> list = List.of("Atreus", "Athena", "Kratos");
2 List<String> newList = list.stream().filter(e -> e.startsWith("At"))
3 .collect(Collectors.toUnmodifiableList());
4
5 newList.add("Minotaur");

Output:
java.lang.UnsupportedOperationException...

In Java 16, we can make the same as above in a simpler way obtaining the same result by using the toList method. Just keep in mind that the toList method will also return an unmodifiable list.

 1 List<String> list = List.of("Atreus", "Athena", "Kratos");
2 List<String> newList = list.stream().filter(e -> e.startsWith("At")).toList();
3
4 System.out.println(newList);

Output:
[Atreus, Athena]

13.7.2 Collecting a set from a stream

To retrieve unique elements from a stream, we can use the Collectors.toSet method. Let’s see a simple example where we have a list with repeated elements and then we transform it to a set:

 1 List<String> list = List.of("Kratos", "Kratos", "Kratos", "Atreus");
2 Set<String> newSet = list.stream().filter(e -> e.startsWith("Kr"))
3 .collect(Collectors.toSet());
4
5 System.out.println(newSet);

Output:
[Kratos]

As you can see in the example above, the String Kratos was deduplicated. Therefore, the output from our set is only Kratos. Also, Atreus was filtered out of the list.

If we want to restrict usage of our set, we are also able to collect an unmodifiableSet as we can see in the following code:

 1 List<String> list = List.of("Kratos", "Kratos", "Kratos", "Atreus");
2 Set<String> newSet = list.stream().filter(e -> e.startsWith("Kr"))
3 .collect(Collectors.toUnmodifiableSet());
4
5 newSet.add("Athena");

Output:
java.lang.UnsupportedOperationException

Since we can’t add, change or delete elements from an unmodifiable set, we will get the UnsupportedOperationException.

13.7.3 Collecting a specific collection from a stream

Notice that in the previous examples we couldn’t collect a specific List or Set implementation. This might be a problem if we want an ordered set for example. That’s because we can only get an ordered set by using LinkedHashSet. We might need to use LinkedList or Vector also.

Therefore, let’s see how to collect a LinkedHashSet for example:

 1 List<String> list = List.of("Atreus", "Athena", "Atreus", "Kratos");
2 Set<String> newLinkedHashSet = list.stream().filter(e -> e.startsWith("At"))
3 .collect(Collectors.toCollection(LinkedHashSet::new));
4
5 System.out.println(newLinkedHashSet);

Output:
[Atreus, Athena]

13.7.4 Collecting a map from a stream

We can also collect a key and value from a collection of data by using the Collectors.toMap method. The Collectors.toMap is very useful to transform data from a list of object to a map so we can manipulate data in the way we want.

In the following sessions we will explore some code examples where we will make use of toMap. We will also use the following data class:

 1 class MarvelHero {
2 private String name;
3 private int age;
4
5 // Omitted constructor, equals and hashCode, getters, and toString.
6 }

Now that we have our data class, let’s see code example example where we transform a stream of a heroes’ list into a map. We will also filter only heroes that are older than 30 years old in the following code.

 1 List<MarvelHero> heroes = List.of(new MarvelHero("Spider-man", 21),
2 new MarvelHero("Iron Man", 48),
3 new MarvelHero("Doctor Strange", 36));
4
5 Map<String, Integer> olderHeroes = heroes.stream()
6 .filter(h -> h.getAge() >= 30)
7 .collect(Collectors.toMap(MarvelHero::getName, MarvelHero::getAge));
8
9 System.out.println(olderHeroes);

Output:

The signature of this toMap method is:

 1 public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
2 Function<? super T, ? extends K> keyMapper,
3 Function<? super T, ? extends U> valueMapper) { ... }

Let’s explore the signature above, notice that it returns a Collector so that the stream can execute its operations to transform our data into a map.

It receives a Function as a keyMapper which enables us to implement some logic to retrieve a key value for our map. The valueMapper is similar, it also receives a Function but it will be the value of our map.

13.7.5 Showing the input Collector value

If we want to show the value of each object stored in the stream, we can use the identity method.

Notice that we have a list of heroes in the stream we are manipulating. Therefore, if we use the Function.identity method, we will see the String of the toString method since that represents the identity of the object:

 1 // Omitted list creation...
2 Map<String, MarvelHero> mapHeroes = heroes.stream()
3 .collect(Collectors.toMap(MarvelHero::getName, Function.identity()));
4
5 System.out.println(mapHeroes);

Output:

As you can notice in the code above, we are showing the name of the hero and then its whole identity. Keep in mind that we are showing the toString method information from the MarvelHero object.

13.7.6 Key Map Collision on toMap

If we have duplicate key, we will have key collision. As we’ve seen before in the Collections chapter, a map can’t contain duplicate keys.

When we use the toMap method, we can’t have a duplicate key also. Also, keep in mind that if there is duplicate key, an Exception will be thrown.

Let’s see a code example showing this process:

 1 List<MarvelHero> heroes = List.of(new MarvelHero("Spider-man", 21),
2 new MarvelHero("Spider-man", 21),
3 new MarvelHero("Doctor Strange", 36));
4
5 Map<String, MarvelHero> mapHeroes = heroes.stream()
6 .collect(Collectors.toMap(MarvelHero::getName, Function.identity()));
7
8 System.out.println(mapHeroes);

Output:
java.lang.IllegalStateException: Duplicate key Spider-man…

13.7.7 Using distinct to avoid key Collision

Fortunately there are some ways to solve the problem above. We can use the distinct method in our stream to avoid the IllegalStateException.

Notice that the distinct method will only work if we implemented the equals and hashCode methods in the MarvelHero object.

Let’s see the code now:

 1 List<MarvelHero> heroes = List.of(new MarvelHero("Spider-man", 21),
2 new MarvelHero("Spider-man", 21),
3 new MarvelHero("Doctor Strange", 36));
4
5 Map<String, MarvelHero> mapHeroes = heroes.stream().distinct()
6 .collect(Collectors.toMap(MarvelHero::getName, Function.identity()));
7
8 System.out.println(mapHeroes);

Output:

13.7.8 Merging a map

There is a handy way to merge values from the duplicate elements by using one of the overloaded methods from Collectors.toMap.

To see the merge function in action, we will have the Spider-man element duplicated and then we will merge the values from them:

 1 List<MarvelHero> heroes = List.of(new MarvelHero("Spider-man", 21),
 2 new MarvelHero("Spider-man", 21),
 3 new MarvelHero("Doctor Strange", 36));
 4
 5 Map<String, Integer> mergedMapValues = heroes.stream()
 6 .collect(Collectors.toMap(MarvelHero::getName, MarvelHero::getAge,
 7 (value1FromDuplicate, value2FromDuplicate) ->
 8 value1FromDuplicate + value2FromDuplicate)
 9);
10 System.out.println(mergedMapValues);

Output:

As you can see in the example above, the age from the duplicate Spider-man was summed, therefore, we have 42 as a result.

To make the example above a bit simpler, we can also use a method reference Integer::sum and the result will be the same:

 1 Map<String, Integer> mergedMapValues = heroes.stream()
2 .collect(Collectors.toMap(MarvelHero::getName,
3 MarvelHero::getAge, Integer::sum)
4);

The method signature from the operation we did above is the following:

 1 public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
2 Function<? super T, ? extends K> keyMapper,
3 Function<? super T, ? extends U> valueMapper,
4 BinaryOperator<U> mergeFunction) {

Notice that the only difference from the previous toMap examples is the BinaryOperator<U> mergeFunction that will merge the duplicate elements values.

13.7.9 Returning a LinkedHashMap with toMap

Notice that in the previous examples the default implementation from the toMap method was a HashMap. However, what do we do if we want to use a LinkedHashMap to preserve the order of our objects? Fortunatelly, there is the last overloaded method that allows us to pass the map implementation we want.

So, let’s see how we can guarantee to retrieve elements on the insertion by using a LinkedHashSet as a Supplier:

 1 List<MarvelHero> heroes = List.of(new MarvelHero("Spider-man", 21),
 2 new MarvelHero("Xavier", 60),
 3 new MarvelHero("Ant-Man", 25));
 4
 5 Map<String, Integer> linkedHashMap = heroes.stream()
 6 .collect(Collectors.toMap(MarvelHero::getName,
 7 MarvelHero::getAge, Integer::sum,
 8 LinkedHashMap::new
 9));
10 System.out.println(linkedHashMap);

Output:

13.7.10 Returning a TreeMap with toMap

It’s also possible to use a TreeMap as the map implementation and get the elements’ results sorted in their natural order.

In the following code, notice that we will sort elements by the key we are passing. In our case, it will be the hero’s name:

 1 // Omitted the creation of the List
2 Map<String, Integer> treeMap = heroes.stream()
3 .collect(Collectors.toMap(MarvelHero::getName,
4 MarvelHero::getAge, Integer::sum,
5 TreeMap::new
6));
7 System.out.println(treeMap);

Output:

13.7.11 Collecting a List from a Map

To transform a map into a List we can use a stream of keys or values and then collect it as a List.

Let’s see how that works in code:

 1 Map<Integer, String> map = Map.of(1, "Homer", 2, "Marge", 3, "Bart", 4, "Lisa");
2
3 List<Integer> keyList = map.keySet().stream().toList();
4 System.out.println(keyList);
5
6 List<String> valueList = map.values().stream().toList();
7 System.out.println(valueList);

Output:
[1, 2, 3, 4]
[Homer, Marge, Bart, Lisa]

As you could see in the code above we easily transformed a map to a list by using streams.

13.8 Collectors.groupingBy

Very often we need to group data from a map, to accomplish that we can use the groupingBy method. We can group data from the key and do specific operations with the values.

13.8.1 Average per Group

Another useful function we can use in streams is the average. As the name suggests, we can get the average number from elements. Let’s see a practical code example:

 1 List<Hero> heroes = List.of(new Hero("Batman", 10, "DC"),
 2 new Hero("Iron Man", 10, "Marvel"), new Hero("Wolverine", 12, "Marvel"),
 3 new Hero("Spider-Man", 9, "Marvel"), new Hero("Superman", 10, "DC"),
 4 new Hero("Wonder Woman", 8, "DC"));
 5
 6 Map<String, Double> averagePowerByStudio = heroes.stream()
 7 .collect(groupingBy(Hero::getStudio, averagingInt(Hero::getFightPower))
 8);
 9
10 System.out.println(averagePowerByStudio);

Output:

13.8.2 Sum per Group

It’s possible to count the number of elements you have on your list stream by using the Collectors.groupingBy combined with the Collectors.counting().

Let’s see how that works in code:

 1 List<String> heroes = List.of("Batman", "Iron Man", "Batman",
2 "Spider-Man", "Spider-Man", "Spider-Man");
3
4 Map<String, Long> productsCount = heroes.stream().collect(
5 Collectors.groupingBy(String::valueOf, // #A
6 Collectors.counting()) // #B
7);
8
9 System.out.println(productsCount);

Output:

Code Analisis:

 	#A: The Collectors.groupingBy method will group the elements by the String name using the method reference String::valueOf. Notice that here we could also use: e -> e or Function.identity which would return the String instance.

 	#B: The Collectors.counting() will count how many elements there are for each hero.

13.8.3 Sum the Heroes fightPower

In the following code we will group the list of heroes by studio and will sum what is the total fightPower of each studio:

 1 List<Hero> heroes = List.of(new Hero("Batman", 10, "DC"),
 2 new Hero("Iron Man", 10, "Marvel"),
 3 new Hero("Wolverine", 12, "Marvel"),
 4 new Hero("Spider-Man", 9, "Marvel"),
 5 new Hero("Superman", 10, "DC"),
 6 new Hero("Wonder Woman", 8, "DC"));
 7
 8 Map<String, Integer> sumOfFightPowerByStudio = heroes.stream().collect(
 9 Collectors.groupingBy(Hero::getStudio,
10 Collectors.summingInt(Hero::getFightPower)));
11
12 System.out.println(sumOfFightPowerByStudio);

Output:

13.8.4 Counting Object Elements with groupingBy

In the following code we will group the heroes by their studio and we will count how many heroes there are by studio:

 1 // Omitted list of heroes creation
2 Map<String, Long> counting = heroes.stream().collect(
3 Collectors.groupingBy(Hero::getStudio, Collectors.counting()));
4
5 System.out.println(counting);

Output:

13.8.5 Grouping Heroes by Studio Showing the Hero Object

In the following example, we will show the heroes grouped in their own studio:

 1 // Omitted list of heroes creation
2 Map<String, List<Hero>> groupByHero =
3 heroes.stream().collect(Collectors.groupingBy(Hero::getStudio));
4
5 System.out.println(groupByHero);

Output:
,

 Hero,
 Hero],

DC=[Hero,

 Hero,
 Hero]}

13.8.6 Grouping Heroes by Studio Showing Only the Name

If we want to show only the name of the heroes, we can use the following code:

 1 // Omitted list of heroes creation
2 Map<String, List<String>> heroesNamesByStudio =
3 heroes.stream().collect(Collectors.groupingBy(Hero::getStudio,
4 Collectors.mapping(Hero::getName, Collectors.toList())
5)
6);
7
8 System.out.println(heroesNamesByStudio);

Output:

13.8.7 Grouping Heroes by Studio Deduplicating Names By Studio

What if we have duplicated names and we want to deduplicate them? In that case, we can use the Collectors.toSet method. In the following example, we have the name Batman duplicated in both studios. Notice that the deduplication will happen by studio, therefore, we will have one Batman on each studio as you can see in the following code:

 1 List<Hero> heroes = List.of(new Hero("Batman", 10, "DC"),
 2 new Hero("Iron Man", 10, "Marvel"), new Hero("Batman", 12, "Marvel"),
 3 new Hero("Batman", 9, "Marvel"), new Hero("Batman", 10, "DC"),
 4 new Hero("Wonder Woman", 8, "DC"));
 5
 6 Map<String, Set<String>> deduplicatedNamesByStudio =
 7 heroes.stream().collect(Collectors.groupingBy(Hero::getStudio,
 8 Collectors.mapping(Hero::getName, Collectors.toSet())
 9)
10);
11
12 System.out.println(deduplicatedNamesByStudio);

Output:

13.8.8 Sorting map elements

It’s also possible to sort elements by value in our map. In the following code we will create a map of hero name as key and fightPower as value and will sort the heroes by the highest fightPower:

 1 List<Hero> heroes = List.of(new Hero("Batman", 10, "DC"),
 2 new Hero("Iron Man", 10, "Marvel"), new Hero("Wolverine", 12, "Marvel"),
 3 new Hero("Spider-Man", 9, "Marvel"), new Hero("Superman", 11, "DC"),
 4 new Hero("Wonder Woman", 9, "DC"));
 5
 6 Map<String, Integer> heroesNamesByStudio = heroes.stream().collect(// #A
 7 Collectors.groupingBy(Hero::getName,
 8 Collectors.summingInt(Hero::getFightPower)));
 9
10 Map<String, Integer> highestHeroesFightPower = new LinkedHashMap<>(); // #B
11 heroesNamesByStudio.entrySet().stream()
12 .sorted(Map.Entry.<String, Integer>comparingByValue().reversed()) // #C
13 .forEachOrdered(e -> highestHeroesFightPower.put(e.getKey(),
14 e.getValue())); // #D
15
16 System.out.println(highestHeroesFightPower);

Output:

Code Analisis:

 	#A: We collect a map with the heroes’ names and fightPower.

 	#B: We create a LinkedHashMap to make sure we keep the order or our map. If we use HashMap here, the sorting won’t work.

 	#C: We pass the static method comparingByValue() from the Map interface with the logic to compare the values of our map as you can see in the following JDK code:

 1 public static <K, V extends Comparable<? super V>>
2 Comparator<Map.Entry<K, V>> comparingByValue() {
3 return (Comparator<Map.Entry<K, V>> & Serializable)
4 (c1, c2) -> c1.getValue().compareTo(c2.getValue());
5 }

Then after getting a Comparator object, we can use the reversed() method to reverse the natural sorting of our map values.

 	#D: With the sorted results of our stream pipeline, then we populate our highestHeroesFightPower map with the key and value.

13.9 Summary

Congratulations! In this chapter you learned the main principles of streams that will help you build much better code by using the power of streams such as:

 	Streams are a pipeline with data

 	Streams are imutable

 	Streams are lazy and performance efficient

 	Intermediate Operation methods will do nothing without a terminal operation method

 	Terminal Operation method can be used only once per Stream object

You also learned the most important methods to use with a stream which will cover the vast majority of use cases in a real-world Java project.

To recap, in this chapter you learned to use:

 	Intermediate Operation Methods

 	
filter to filter elements’ data in a stream

 	
limit to limit the amount of elements in a stream

 	
sorted to sort elements in a stream

 	
peek to debug elements in a stream

 	
distinct to deduplicated elements within a stream

 	
map to transform data with streams

 	
flatMap to read and manipulate an array within an array

 	
skip to skip elements while traversing in a collection

 	
takeWhile to take elements in a stream while a condition is true

 	
dropWhile to drop elements in a stream while a condition is true

 	Terminal Operation Methods

 	
forEach to iterate and perform action over each element

 	
forEachOrdered to iterate and perform action over ordered elements

 	
collect to collect a list, set, map, array from a stream

 	
reduce to combine data with and without parallel for performance

 	
count to count how many elements there are in the stream

 	
sum to sum numbers from elements in a stream

 	
min to get the minimum number in a stream

 	
max to get the maximum number in a stream

 	
toArray to transform elements from a stream into an array

 	
findFirst to find the first element in a stream

 	
findAny to find any element in a stream

 	
anyMatch to use a condition where any element can match

 	
allMatch to use a condition where all elements have to match

 	
noneMatch to use a condition where none elements have to match

14 Newest Features of Java

This chapter covers:

 	Java release strategy

 	Modules

 	Type-reference with var

 	Lambda switch case statement

 	Pattern Matching

 	records

 	Sealed Classes

 	Text-blocks

 	Total of 7 Java code Challenges

14.1 Java Release Strategy

Since Java 10, new Java versions are released every 6 months which enables Java to release new features more quickly.

Before going deeper into the new Java version releases, let’s see what are the most important Java vendors:

 	Oracle (Oracle JDK), free for personal use but not free for comercial use

 	AdoptOpenJDK, free for comercial use

 	Amazon (Corretto)

 	Red Hat

 	Azul

 	Alibaba

 	BellSoft (Liberica)

 	SAP (SapMachine)

There are two types of release versions in Java:

 	Short-Term Version: This version won’t be supported by Java providers such as Oracle, Azul, Amazon and so on. That means that patches for security or updates won’t be created.

 	Long-Term Version: The Java vendors will maintain and support this version for longer, usually for example the latest LTS version is Java 17 released in 2021 and it will be supported until September 2026 and possibly extended until September 2029.

Another important concept regarding the new releases of Java is that now we have preview features and standard features:

 	
preview: since a new Java versions are now released every 6 months it’s more difficult to add new features as standard. Therefore, features added to Java will usually be considered preview. Simply put, a preview feature is a feature that might be changed in next releases, this means that, it’s not a good idea to use a preview feature in production for example.

 	
standard: when a feature is standard, this means there are no plans to change a keyword or anything like that. Therefore, it can be safely used in production.

Finally, to make a good decision for which Java version to use it’s very important to choose a long-term support one because of the security patches and support Java vendors will provide. That’s because you won’t need to change the Java version every 6 months.

14.2 Introduction to Modules

The very important feature Jigsaw or JPMS (Java Platform Module System) was introduced in Java 9! Put simply, it’s basically the concept of modules and now the concept is called as Java modules which is more concise and simple.

To build a light-weight application and have real encapsulation in a Java application, the use of modules is crucial. Why real encapsulation? That’s because with modules it’s possible to restrict the use from only the packages we want to expose. Other than that it’s also possible to restrict reflection access from private members.

With modules, it’s also possible to explicitly declare what is being exposed and what is being used from other modules so that the application is easier to maintain. The reason is simple, the more we restrict code that shoudln’t be exposed the more control we gain over the code.

Before Java 9 the Java source code was a big monolith making it difficult to maintain or add features. With the modules feature, the JDK was broken into modules so that it’s easier also to scale Java with new features.

Besides that, we can also make our own Java application modularized. Therefore, we don’t need to use the whole Java ecosystem anymore for every Java project and we can control what code will be exposed to other modules.

Before modules, we had a huge classpath file where we would organize all dependencies in a Java project. The classpath is usually daunting and confusing for big Java applications. There is no need to use classpath anymore when working with modules.

To explain modules concisely, we can think it’s a way to share multiple packages in an organized and controlled way. This will be clearer in the next sections of this chapter.

14.2.1 Jar file is != than a Module

Even though we can add jars to the classpath of a Java application, this doesn’t make it a module.

With modules from Java 9, we can have real control over packages or allow what module can use it. We can import a module, export a package, allow reflection access to private members of the module to a specific module if needed.

There are build automation tools such as Maven and Gradle but they don’t really solve the problem of having internal control to enable or disable access from specific packages in the Java code. Those are tools built on top of Java, therefore, they don’t give us granular control to export or import code within a Java application.

14.3 Java JDK Base Modules

The JDK was a big monolith prior to the Java 9 version. It was difficult to add new features that way. To simplify and break down the JDK into smaller pieces, now we have many cohesive modules that enables us to have only the modules we use in our application.

The java.base modules is the essential one that contains the most used Java classes. When downloading the JDK, it’s possible to see what classes are used in each Java module. Notice that there is a compressed file named as src in the following folder in Java 17 (the path may vary depending on the JDK version you download):

On MacOS:
Java/JavaVirtualMachines/17.0.1/Contents/Home/lib

On Windows:
/jdk-17.0.2/lib

Those are the modules that are accessible when using java.base:

io, util, lang, math, net, nio, security, text, time, util.

14.3.1 Java Modules Graph

We can also see how the Java modules are orgaznized by analizing the following graph from the official Java docs:

 [image:]
 Java SE Graph

Note that in the above graph all dependencies use java.base indirectly or in a transitive way.

The above graph was extracted from the Java docs in the following link:
https://docs.oracle.com/javase/9/docs/api/java.se-summary.html

To see all the other modules from the JDK since Java 9 we can use the following command on your terminal:

 java --list-modules

Note that the Java version you are using will be shown after the module name, therefore the output will be the following:

 1 java.base@17.0.1 jdk.internal.jvmstat@17.0.1
 2 java.compiler@17.0.1 jdk.internal.le@17.0.1
 3 java.datatransfer@17.0.1 jdk.internal.opt@17.0.1
 4 java.desktop@17.0.1 jdk.internal.vm.ci@17.0.1
 5 java.instrument@17.0.1 jdk.internal.vm.compiler@17.0.1
 6 java.logging@17.0.1 jdk.internal.vm.compiler.management@17.0.1
 7 java.management@17.0.1 jdk.jartool@17.0.1
 8 java.management.rmi@17.0.1 jdk.javadoc@17.0.1
 9 java.naming@17.0.1 jdk.jcmd@17.0.1
10 java.net.http@17.0.1 jdk.jconsole@17.0.1
11 java.prefs@17.0.1 jdk.jdeps@17.0.1
12 java.rmi@17.0.1 jdk.jdi@17.0.1
13 java.scripting@17.0.1 jdk.jdwp.agent@17.0.1
14 java.se@17.0.1 jdk.jfr@17.0.1
15 java.security.jgss@17.0.1 jdk.jlink@17.0.1
16 java.security.sasl@17.0.1 jdk.jpackage@17.0.1
17 java.smartcardio@17.0.1 jdk.jshell@17.0.1
18 java.sql@17.0.1 jdk.jsobject@17.0.1
19 java.sql.rowset@17.0.1 jdk.jstatd@17.0.1
20 java.transaction.xa@17.0.1 jdk.localedata@17.0.1
21 java.xml@17.0.1 jdk.management@17.0.1
22 java.xml.crypto@17.0.1 jdk.management.agent@17.0.1
23 jdk.accessibility@17.0.1 jdk.management.jfr@17.0.1
24 jdk.attach@17.0.1 jdk.naming.dns@17.0.1
25 jdk.charsets@17.0.1 jdk.naming.rmi@17.0.1
26 jdk.compiler@17.0.1 jdk.net@17.0.1
27 jdk.crypto.cryptoki@17.0.1 jdk.nio.mapmode@17.0.1
28 jdk.crypto.ec@17.0.1 jdk.random@17.0.1
29 jdk.dynalink@17.0.1 jdk.sctp@17.0.1
30 jdk.editpad@17.0.1 jdk.security.auth@17.0.1
31 jdk.hotspot.agent@17.0.1 jdk.security.jgss@17.0.1
32 jdk.httpserver@17.0.1 jdk.unsupported@17.0.1
33 jdk.incubator.foreign@17.0.1 jdk.unsupported.desktop@17.0.1
34 jdk.incubator.vector@17.0.1 jdk.xml.dom@17.0.1
35 jdk.internal.ed@17.0.1 jdk.zipfs@17.0.1

Notice that in front of each module there is a number @17.0.1. However, this is not a version of the module. It’s actually the version of the JDK.

It’s also possible to show details of a specific module by using the following command:

 java describe-module java.sql

Output:

 1 java.sql@17.0.1
2 exports java.sql
3 exports javax.sql
4 requires java.xml transitive
5 requires java.logging transitive
6 requires java.transaction.xa transitive
7 requires java.base mandated
8 uses java.sql.Driver

14.4 Named application module

A named module is a Java code that has its modules described explicitly by a module-info.java. The module-info.java file should be declared in the root of your source code.

In a normal Java project, the following should be the path where you place the module-info.java file:

 1 -- javachallengersbook
2 -- hello-module
3 -- src
4 -- hellomodule
5 -- HelloModule.java
6 -- module-info.java

If you are using Maven, the following should be the place where you will use it:

 1 -- javachallengersbook
2 -- hello-module
3 -- src
4 -- main
5 -- java
6 -- hellomodule
7 -- HelloModule.java
8 -- module-info.java

Notice that we have the HelloModule.java class above and after compiling the hello-module we will see the output from it:

 1 package hellomodule;
2
3 public class HelloModule {
4
5 public static void main(String[] args) {
6 System.out.println("Hello module!");
7 }
8
9 }

14.4.1 Compiling a Module

Even though nowadays IDEs such as Intellij and Netbeans are mature to help us using modules, it’s very important to know how to run a module via command line. That’s because if something goes wrong in your IDE, then you will know what is going on.

Let’s start compiling a module. We can use a command informing the following:

 	Name of the destination folder for the .class files

 	Path of the code package or specific class

 	Path of the module-info.java file

To use the command, go to the root of the hello-module and use the following:

 javac -d out src/main/java/hellomodule/*.java src/main/java/module-info.java

 Notice in the command above that we are passing all classes by using the wildcard *.java.

By running the above command sucessfully you will see the .class files in the out folder of the hello-module.

Now we are able to run the compiled module class from out by running the following command from the root of hello-module:

 java -p out -m helloModule/hellomodule.HelloModule

Notice that we are using shortcut commands with -p and -m.

-p is the shortcut for:
--module-path

-m is the shortcut for:
--module

Output:
Hello module!

Notice that we don’t need to use the classpath to run the class but instead we can use the fully qualified module class name.

It’s possible to create a jar file based on the generated .class files by using the following command from the root of hello-module:

 jar --create --file=hello-module.jar -C out/ .

Once we have the hello-module.jar file created, now we can inspect it to see what modules it’s using with the following command from the root of hello-module:

 jar --describe-module --file=hello-module.jar

Output:
requires java.base mandated
contains hellomodule

14.4.2 Automatic module

The purpose of an automatic module is to maintain retro-compatibility with previous Java version projects that weren’t using the modules feature. Otherwise, every project that is not using modules would have to be fully explicitly converted to support modules.

To solve this issue the JVM will create a module automatically from a jar for retro-compatibility. That will only happen when we don’t explicitly declare a module descriptor.

Automatic modules export, open all packages and read all other modules including unnamed modules. It keeps the jar name as a module which might cause collisions. It’s also possible to set name to the automatic module jar file.

The name of the module can be defined in a manifest file of the project.

14.4.3 Creating an Automatic Module

Let’s see a real example in practice. Consider the following structure for the automatic-module project:

 1 -- automatic-module
2 -- src
3 -- main
4 -- java
5 -- util
6 -- Automatic.java

Notice in the above structure that we don’t have a module-info.java file. In the root from the automatic-module, run the commands:

Let’s take a look at the Automatic.java class:

 1 package util;
2
3 public class Automatic {
4 public void hello() {
5 System.out.println("Hello Automatic Module!");
6 }
7 }

Let’s run the command to compile the Automatic class from the root of the automatic-module project and put it into the out folder:

 javac -d out src/main/java/util/Automatic.java

Now let’s create a jar file from the compiled class:

 jar --create --file automatic.jar -C out .

14.4.4 Using the Automatic Module

Let’s see the structure from the module that will use the automatic module we just created:

 1 -- use-automatic-module
2 -- src
3 -- main
4 -- java
5 -- use
6 AutomaticModuleUse.java
7 module-info.java

Let’s first see the module-info.java file:

 1 module useAutomaticModule {
2 requires automatic;
3 }

Now the class that uses the automatic module:

 1 package use;
 2
 3 import util.Automatic;
 4
 5 public class AutomaticModuleUse {
 6
 7 public static void main(String[] args) {
 8 Automatic automatic = new Automatic();
 9 automatic.hello();
10 }
11 }

Notice in the above class that we are using the Automatic class from the automatic module.

To use the automatic module, the first step is to create a lib folder in the root of use-automatic-module:

 mkdir use-automatic-module\lib

Let’s now move the jar we created for the automatic module:

Mac:
mv automatic-module/automatic.jar use-automatic-module/lib

Windows:
move automatic-module/automatic.jar use-automatic-module/lib

From javachallengersbook/use-automatic-module, let’s compile the AutomaticModuleUse.java class referencing our automatic module:

 javac --module-path lib -d out src/main/java/module-info.java src/main/java/use/AutomaticModuleUse.java

Finally, let’s run the AutomaticModuleUse class with the following command:

Mac:
java --module-path ./out:./lib --module useAutomaticModule/use.AutomaticModuleUse

Windows:
java --module-path out;lib --module useAutomaticModule/use.AutomaticModuleUse

Now we should see the following output:
Hello Automatic Module!

14.4.5 Showing the Automatic Module Metadata

To see the metadata from the automatic module, let’s create the ModuleMetadata class:

 1 package use;
 2
 3 import util.Automatic;
 4
 5 public class ModuleMetadata {
 6
 7 public static void main(String[] args) {
 8 Automatic automatic = new Automatic();
 9 showModuleMetadata(automatic);
10 }
11
12 static void showModuleMetadata(Automatic automatic) {
13 Module module = automatic.getClass().getModule();
14 System.out.println("Module Name: " + module.getName());
15 System.out.println("Module Descriptor: " + module.getDescriptor());
16 System.out.println("Is Automatic: " + module.getDescriptor().isAutomatic());
17 }
18
19 }

Let’s compile the above class:

 javac --module-path lib -d out src/main/java/module-info.java src/main/java/use/ModuleMetadata.java

Now let’s run it:

Mac:
java --module-path ./out:./lib --module useAutomaticModule/use.ModuleMetadata

Windows:
java --module-path out;lib --module useAutomaticModule/use.ModuleMetadata

Output:
Module Name: automatic
Module Descriptor: module
Is Automatic: true

14.4.6 Summary from Automatic Module

 	Exports and requires all modules

 	Reads code from unnamed modules

 	Opens classes for reflection access

 	The automatic module name is based on the jar name

14.5 Unnamed module

To help legacy Java projects below Java 9 to work, the concept of unnamed modules was created. This means that Java 8 or previous versions projects can work with fully modularized Java 9 (or higher) projects without the necessity of declaring a module on it.

It’s important to remember that the old way to deal with different modules or jars with Java by using the classpath is still in use with unnamed modules. That helps to maintain retrocompatibility with older Java applications drastically decreasing complexity to migrate them. This means that the classpath is still in use in Java 9 or higher versions and it will probably stay there for while.

As the name suggests, an unnamed module is a module that has no name, in other words, has no module-info.java file.

Important characteristics of an unnamed modules are:

 	It exports and opens all packages automatically

 	It requires all modules from named modules automatically

 	Named modules can’t require an unnamed module

 	Unnamed modules can only be used by another unnamed module

 	It uses the classpath

14.5.1 Unnamed Modules Code Metadata

Notice that it’s possible to use an unnamed module even using Java 9 or higher versions. We just need to not create the module-info.java file.

Let’s see how that works with code metadata, in other words, using reflection:

 1 package com.javachallengers.newfeatures;
 2
 3 public class ModuleExamples {
 4
 5 public static void main(String[] args) {
 6 Module module = ModuleExamples.class.getModule();
 7
 8 System.out.println("Module Object: " + module);
 9 System.out.println("Module Name: " + module.getName());
10 System.out.println("Module Descriptor: " + module.getDescriptor());
11 }
12
13 }

Output:

Module Object: unnamed module @6b884d57
Module Name: null
Module Descriptor: null

Since the code above has no module-info.java declared, we will have the output of an unnamed module.

14.6 Exporting Packages from Module

When working with modules, we can export specific packages. That’s one of the greatest benefits of using modules because we can export only what is necessary to the module we want. Therefore, we will have strong encapsulation because the packages we didn’t declare won’t be accessible.

This is the current package structure we have:

 1 --dao-module // Root of the Module
2 --src // Source package
3 --main // Main source code
4 --java // Java code
5 --dao // dao package
6 --CustomerDAO // CustomerDAO class
7 --module-info.java // Module descriptor file

Notice that in the code above I am using the Maven package structure. Simply put, currently Maven is the most popular build automation tool, roughly it helps to declare project dependencies, build and test a project. We could also create a normal Java project in the example above though.

Before seeing the module-info.java file, let’s see what we have in the CustomerDAO class:

 1 package dao;
2
3 public class CustomerDAO {
4 public String getCustomer() {
5 return "customer_duke";
6 }
7 }

Now let’s see how we can export the dao package in the module-info.java file:

 1 module daoModule {
2 exports dao;
3 }

If we want, we can restrict the package export to only one module as the following. For now pretend we have the serviceModule created:

 1 module daoModule {
2 exports dao to serviceModule;
3 }

In the module descriptor above, we can only use the code from the module dao in the serviceModule. If we try to use the code by another module we won’t have access to it.

Another important point is that exporting the dao package to the serviceModule will create coupling with serviceModule.

If we want to export the module to more specific modules we can add more modules using , after serviceModule:

 1 module daoModule {
2 exports dao to serviceModule, viewModule;
3 }

14.6.1 Limitations of exports

When a package is exported it does not export the subpackages. For example, let’s create a subpackage into the dao package named as util with a simple class as follows:

 1 package dao.util;
2
3 public class JavaMascotUtils {
4
5 public String getMascotItem() {
6 return "Java wand";
7 }
8 }

The above class will not be accessible to other modules even if we are exporting the dao module! That’s because, it’s necessary to export a submodule explicitly to have access to a submodule.

The class above will only be accessible to other modules if we make it explicit as the following:

 1 module daoModule {
2 exports dao to serviceModule;
3 exports dao.util to serviceModule;
4 }

Now if we try to use the JavaMascotUtils in the serviceModule it will be accessible.

Lastly, it’s not possible to export many packages from a module by using a wildcard or any other trick. In the modules feature, we have to export package by package, otherwise, it defeats the purpose of it.

14.6.2 Summary of module exports

 	Only packages from a module can be exported

 	Subpackages are not exported transitively, only explicitly

 	It’s possible to export a package to all modules

 	It’s possible to export a package to specific modules

 	Packages have to be exported one by one

 	No wildcard is allowed to export many packages

14.7 Requiring a Module

Now that we exported the daoModule package dao, we can require it and use the CustomerDAO class. Without requiring a module, we won’t have access to anything within the daoModule. Therefore, let’s see how that works:

 1 module serviceModule {
2 requires daoModule;
3 }

Ok, all set for the modules. Notice though that I am using Maven in this example, therefore, before requiring the module from the other project, it’s necessary to declare the dependency first in the Maven configuration file known as pom.xml file. If we were using a normal Java project we would be able to use modules immediately.

Now that we are requiring the daoModule we will have access to the CustomerDAO and JavaMascotUtils classes in the serviceModule since we exported the packages dao and dao.util. Let’s see that in code:

 1 package service.impl;
 2
 3 import dao.CustomerDAO;
 4 import dao.util.JavaMascotUtils;
 5 import service.CustomerService;
 6
 7 public class DukeCustomerServiceImpl implements CustomerService {
 8
 9 public void chargeCustomer() {
10 CustomerDAO customerDAO = new CustomerDAO();
11 JavaMascotUtils javaMascot = new JavaMascotUtils();
12 System.out.println("Charging customer:" + customerDAO.getCustomer() + " \
13 with " + javaMascot.getMascotItem());
14 }
15 }

As you can see in the above code, we are only able to access the CustomerDAO class because we used the requires clause in our module descriptor. Otherwise, we would have a compilation error.

14.7.1 requires transitive

The concept of transitive dependency is similar from what we had with jar files but with the difference that we have stronger encapsulation.

Notice in the following diagram that the dao-module requires the cache-module explicitly (solid arrow line). Also note that the service-module requires dao-module explicitly and cache-module in a transitive way (dotted arrow line).

 [image:]
 Transitive dependency diagram

In the cache-module we will have a simple SpecialCache class:

 1 package cache;
 2
 3 public class SpecialCache {
 4
 5 private String cachedString;
 6
 7 public String getCachedString() {
 8 return cachedString;
 9 }
10
11 public void setCachedString(String anyString) {
12 cachedString = anyString;
13 }
14 }

This is the module-info.java:

 1 module cacheModule {
2
3 exports cache;
4
5 }

In the CustomerDAO class from the dao-module, let’s add a method that returns the SpecialCache from the cache-module:

 1 package dao;
 2
 3 import cache.SpecialCache;
 4
 5 public class CustomerDAO {
 6
 7 // Omitted code...
 8
 9 public SpecialCache getCachedCustomer() {
10 if (specialCache.getCachedString() == null) {
11 specialCache.setCachedString(getCustomer());
12 }
13
14 return specialCache;
15 }
16 }

14.7.2 Using a transitive dependency

The key to be able to use the SpecialCache class in the module that will use the dao-module is to use the keyword transitive in the module-info.java as follows:

 1 module daoModule {
2 requires transitive cacheModule;
3 // Omitted code...
4 }

Now we can use the SpecialCache class in the service-module since we require the dao-module. Remember that this will only work if the dao-module requires the cache-module with the transitive keyword.

Notice that we have to require only the dao-module in the service-module:

 1 module serviceModule {
2 requires daoModule;
3 // Omitted code...
4 }

We already have the cache-module required for the service-module transitively. Now we just need to use it:

 1 package service.impl;
 2
 3 import cache.SpecialCache;
 4 import dao.CustomerDAO;
 5 import service.CustomerService;
 6
 7 public class DukeCustomerServiceImpl implements CustomerService {
 8
 9 // Omitted code
10
11 public void logCustomer() {
12 CustomerDAO customerDAO = new CustomerDAO();
13 SpecialCache specialCache = customerDAO.getCachedCustomer();
14 System.out.println(specialCache.getCachedString());
15 }
16 }

The code above will compile sucessfully and if logCustomer was invoked, we would have the output of: customer_duke

14.7.3 Summary from requires

 	It can only require the whole module

 	It doesn’t give reflective access for private members

 	A module with a transitive dependency will expose it to other modules

14.8 Exporting a service with provides with

Enables another module to instantiate a class during runtime by using the Java 6 ServiceLoader class.

The ServiceLoader is useful to load an instance that was provided by another module, this concept is also known as SPI (Java Service Provider Interface). It’s possible to provide multiple instances to another module in a decoupled way. This concept is used in some JDK classes, for example:

 1 LocaleNameProvider: provides basic localization information based on your machine's \
2 configuration.
3 CurrencyNameProvider: provides the correct currency based on your machine's configur\
4 ation.

Before Java 9 we would have to declare the instance we want to use with the ServiceLoader in a META-INF/services file which is not a nice approach. With modules we can simply use the provides clause eliminating the necessity of declaring instances into META-INF/services.

Let’s see a practical example of how it works on code. Let’s create an interface CustomerService for our services implementations:

 1 package service;
2
3 public interface CustomerService {
4 void chargeCustomer();
5 }

Let’s create an implementation for the CustomerService in the serviceModule and package service.impl:

 1 package service.impl;
2
3 public class JuggyCustomerImpl implements CustomerService {
4 public void chargeCustomer() {
5 System.out.println("Charging customer: Juggy");
6 }
7 }

Let’s create another implementation for CustomerService in the serviceModule and package service.impl:

 1 package service.impl;
 2
 3 import dao.CustomerDAO;
 4 import service.CustomerService;
 5
 6 public class DukeCustomerServiceImpl implements CustomerService {
 7
 8 public void chargeCustomer() {
 9 CustomerDAO customerDAO = new CustomerDAO();
10 System.out.println("Charging customer:" + customerDAO.getCustomer());
11 }
12 }

Now let’s provide the interface and implementations in the module-info.java file from the serviceModule:

 1 import service.CustomerService;
 2 import service.DukeCustomerServiceImpl;
 3 import service.JuggyCustomerImpl;
 4
 5 module serviceModule {
 6
 7 requires daoModule;
 8 exports service;
 9 provides CustomerService with DukeCustomerServiceImpl,
10 JuggyCustomerImpl;
11
12 }

One very important detail to notice is that the service.impl package is not being exported to other modules. This means that DukeCustomerServiceImpl and JuggyCustomerImpl can only be accessed through a ServiceLoader which means strong encapsulation!

Also note that the exports service clause will only export the service package classes, not the subpackages, in this case, impl.

Notice that only the exports service clause wouldn’t work if we want to use the ServiceLoader. We need to explicitly use the provides statement.

14.8.1 Using a Service with uses

The uses clause has the purpose of using a class or interface implementation through a ServiceLoader.

Let’s now create a view-module to make use of the CustomerService implementations through the ServiceLoader. Notice that this will only work if and only if we explicitly declare the uses clause in the module-info.java file as the following:

 1 import service.CustomerService;
2
3 module viewModule {
4 requires serviceModule;
5 uses CustomerService;
6 }

Notice in the module-info.java file above that we need to require the serviceModule to be able to use the CustomerService. Otherwise, we won’t have access to the CustomerService interface.

Now we can access both instances DukeCustomerServiceImpl and JuggyCustomerImpl through a service loader in a view-module class:

 1 package view;
 2
 3 import service.CustomerService;
 4 import java.util.ServiceLoader;
 5
 6 public class CustomerView {
 7
 8 public static void main(String[] args) {
 9 ServiceLoader<CustomerService> serviceLoader =
10 ServiceLoader.load(CustomerService.class); // #A
11 serviceLoader.stream().forEach(e -> e.get().chargeCustomer()); // #B
12 }
13
14 }

Code analisis:

 	#A: We load the services instances from the CustomerService.class.

 	#B: We iterate over the instances we provided in our provides clause from the serviceModule. Notice that we don’t even need to declare the instances in the code above. We have access to them during runtime which is useful to decouple the implementation from the parent class or interface.

14.8.2 Summary of provides and uses

 	
provides can provide a class or interface with one or many implementations

 	
provides will provide a class or interface to be used via SPI (Java Service Provider Interface) through ServiceLoader

 	It’s necessary to export the package from your provided classes

 	
uses is necessary to make use of the provided classes through ServiceLoader

 	It’s necessary to require the module you need to make use of a provided class through ServiceLoader.

14.9 Module Reflection Access

Reflection access to private member from another module is not allowed by default.

To see that in practice, let’s create a new class in the serviceModule with a private attribute first:

 1 package service;
2
3 public class CurrencyUtil {
4
5 private String currency = "$";
6
7 }

Now, let’s try to access the currency field in the viewModule:

 1 // Omitted imports
 2 public class CustomerView {
 3
 4 public static void main(String[] args) throws NoSuchFieldException,
 5 IllegalAccessException {
 6 // Omitted ServiceLoader code
 7
 8 Field field = CurrencyUtil.class.getDeclaredField("currency"); // #A
 9 field.setAccessible(true); // #B
10 System.out.println("The currency is: " + field.get(new CurrencyUtil()));
11 }
12 }

 	#A: We access the metadata from the CurrencyUtil class and get the declared field currency.

 	#B: To be able to access a private member, it’s necessary to set the setAcessible method to true. However, when this method is invoked an Exception will be thrown with the following message:

 1 Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to \
2 make field private java.lang.String service.CurrencyUtil.currency accessible: module\
3 serviceModule does not "opens service" to module viewModule

As you can see, by using modules we have real encapsulation. If we don’t explicitly open the package to be used via reflection we will have the same Exception as above. Fortunately, there is a way to open the packages we want to access via reflection and this is what we will see in the next section.

14.9.1 Opening Module for Reflection Access with open

Before modules it was possible break encapsulation by accessing private classes, methods and attributes via reflection. With modules we have control over that. This means that we can specifically say what will be exposed to be accessed via reflection.

The open clause is a pragmatic approach to open all module packages for reflection access. The cons of using this approach is that you lose the possibility to give access just to specific packages.

Let’s see how that works in code, first let’s open the serviceModule:

 1 // Omitted imports...
2 open module serviceModule { // Open the module for reflection access
3 exports service;
4 // Omitted other module statements
5 }

Notice in the code above that we are oppening everything from the serviceModule when we use the open clause at the start of the module descriptor.

Now if we try to access the private currency member via reflection in the viewModule that will work with no issues:

 1 // Omitted imports
 2 public class CustomerView {
 3
 4 public static void main(String[] args) throws NoSuchFieldException,
 5 IllegalAccessException {
 6 // Omitted ServiceLoader code
 7
 8 Field field = CurrencyUtil.class.getDeclaredField("currency");
 9 field.setAccessible(true);
10 System.out.println("The currency is: " + field.get(new CurrencyUtil()));
11 }
12 }

Output:
The currency is: $

14.9.2 Opening Access to Specific Modules with opens to

What if we want to use the full power of encapsulation with modules by openning just a package instead of the whole module? We can also use the opens to statement to open only the packages we want.

Let’s see that in code:

 1 // Omitted imports
2 open module serviceModule {
3
4 exports service;
5 opens service to viewModule; // Compilation error
6 // Omitted other module statements
7 }

Notice in the above code that it’s not possible to open the whole module and a package since it’s redundant. Instead, we have to remove the open clause from the module declarion and leave only opens with the package we want:

 1 // Omitted imports
2 module serviceModule {
3 exports service;
4 opens service to viewModule;
5 // Omitted other module statements
6 }

Now we will be able to access the service package from the viewModule via reflection to private members. If we try to run the same code as above accessing the currency field, we will be able to accomplish that. If we try to access currency from another module other than viewModule, it won’t work.

14.9.3 Opening Package Access with opens

In the opens clause we can either open the package to a specific module or to all modules. To open the packages to any module we remove the to clause as the following:

 1 // Omitted imports
2 module serviceModule {
3 exports service;
4 opens service;
5 // Omitted other module statements
6 }

Now we can access the currency field from the service package in any module using reflection.

14.10 Star Trek Planets Module Special Challenge

In the following Java code challenge, we have two modules vulcan and risa. The vulcan module will be used by risa.

Let’s explore first how the vulcan module if composed with.

We have a Captain interface to be implemented by Spock:

 1 package com.defiant;
2
3 public interface Captain {
4
5 void attack(String shipName);
6 }

We have the Spock class implementing Captain and notice also the private method doh:

 1 package com.defiant;
 2
 3 public class Spock implements Captain {
 4
 5 public void attack(String shipName) {
 6 if (shipName.equals("reliant"))
 7 System.out.println("The ship is destroyed");
 8 else {
 9 throw new StackOverflowError("Non-existent ship");
10 }
11 }
12
13 private void doh() {
14 System.out.println("Hey, this is from the Simpsons!");
15 }
16
17 }

This is the vulcan module-info.java`:

 1 import com.defiant.Spock;
2 import com.defiant.Captain;
3
4 module vulcan {
5
6 exports com.defiant to risa;
7 provides Captain with Spock;
8 }

Let’s see now how the risa module is composed with.

We have the Executor class which will execute code from the risa module. We invoke the attack and doh methods in the following code:

 1 package com.reliant;
 2
 3 import com.defiant.Captain;
 4 import com.defiant.Spock;
 5 import java.lang.reflect.InvocationTargetException;
 6 import java.lang.reflect.Method;
 7 import java.util.ServiceLoader;
 8
 9 public class Executor {
10 public static void main(String... doYourBest) throws NoSuchMethodException,
11 InvocationTargetException, IllegalAccessException {
12 Captain captain = ServiceLoader.load(Captain.class).findFirst().get();
13 captain.attack("reliant");
14
15 Method method = Spock.class.getDeclaredMethod("doh");
16 method.setAccessible(true);
17 method.invoke(new Spock());
18 }
19 }

risa module-info.java:

 1 import com.defiant.Captain;
2
3 module risa {
4
5 requires vulcan;
6 uses Captain;
7 }

When running the Executor main method from the risa module, what will happen?

 	Exception in thread “main” java.lang.StackOverflowError: Non-existent ship…

 	The ship is destroyed
Exception in thread “main” java.lang.reflect.InaccessibleObjectException: Unable to make private void com.defiant.Spock.doh()…

 	The ship is destroyed
Hey, this is from the Simpsons!

 	Compilation error at line 12

Explanation:

There are key points to notice in the vulcan module descriptor. The first one is that we are providing the Captain interface with the implementation of Spock to be used in the risa module via ServiceLoader.

The second one is that we are not oppening any package to be accessed via reflection.

Other than that we are also exporting the com.defiant package to the module risa.

Notice in the module descriptor from risa that we are using the requires statement to import the vulcan module. We are also using the uses clause to use the Captain interface in a ServiceLoader.

Therefore, in the Executor class we will be able to access Captain with the implementation of Spock with the ServiceLoader. However, we won’t be able to access the doh method via reflection since the vulcan method didn’t use the open clause.

In conclusion, the correct alternative is:

 	The ship is destroyed
Exception in thread “main” java.lang.reflect.InaccessibleObjectException: Unable to make private void com.defiant.Spock.doh()…

14.11 Reserved word var

The var feature, enables developers to use the type-inference technique, that means we don’t need to give a specific type to a variable.

Let’s see a practical example:

 1 var product = "Playstation 5";
2
3 System.out.println(product.toUpperCase());
4 System.out.println(product.getClass());

Output:
PLAYSTATION 5
class java.lang.String

Notice in the code above that a var type is inferred in compilation time and that enables use to use an auto-complete feature from an IDE gracefully.

As you can see in the code output above, we assigned the String “Playstation 5” to product. Then there was a process of type-inference where the product var was transformed to String.

The var feature also infers types with generics. If we want to infer an ArrayList of String, this is possible:

 1 var products = new ArrayList<>();
2 products.add("Playstation 5");
3 products.add("Nintendo Switch");
4 System.out.println(products);

Output:
[Playstation 5, Nintendo Switch]

We can infer a List.of array creation:

 1 var products = List.of("Playstation 5", "Nintendo Switch");
2 System.out.println(products);

Output:
[Playstation 5, Nintendo Switch]

14.11.1 Using Anonymous Inner class with var

It’s possible to assign an anonymous inner class to a var type as you can see in the following code:

 1 var runnableVar = new Runnable() {
2 public void run() {
3 System.out.println("run!");
4 }
5 };
6 runnableVar.run();

Output:
run!

14.11.2 Using var in the try with resources feature

Instead of declaring the specific type in the try with resources feature, we can simply use var within the try block:

 1 var path = Paths.get("customer_purchases.txt");
2 try (var lines = Files.lines(path)){ ... }

14.11.3 Using var in a Lambda Expression

Sometimes it’s useful to validate a data type in the parameter of a lambda using an annotation such as @Nonnull. To do so, we need to specify some kind of type. If we try the following:

 1 Function<String, String> products = (@Nonnull product) -> // Compilation error
2 product.toUpperCase();
3 System.out.println(products.apply("Playstation 5"));

Output:
java: illegal start of expression

To solve this problem, in Java 11 we can use the var keyword within a lambda expression parameter. This will reduce the boiler-plate code because we won’t have to write the specific variable type for each lambda parameter:

 1 Function<String, String> products = (@Nonnull var product) -> product.toUpperCas\
2 e();
3 System.out.println(products.apply("Playstation 5"));

Output:
PLAYSTATION 5

Keep in mind that if we declare the type of one lambda parameter as var we have to do the same with the other ones. If we try to do the following, the code won’t compile:

 1 BinaryOperator<String> products = (@Nonnull var product, String price)
2 -> product + " " + price;

Output:
java: invalid lambda parameter declaration
 (cannot mix ‘var’ and explicitly-typed parameters)

Another important point to notice is that the var keyword can still be used as a class/method/variable name. This happens with all new keywords after Java 8 to avoid retro-compatibility problems with previous Java versions. Therefore, the following is valid but not recommended to use since the var name doesn’t describe much what is the variable:

 1 void var() {
2 var var = "Var";
3 }

14.11.4 Restrictions of var

It’s not possible to use var as an instance variable or a parameter. If we try to do the following the code won’t compile:

 1 public class VarFeature {
2 private var anyVariable = ""; // Compilation error here
3 }

Output:
java: ‘var’ is not allowed here

It’s not possible to change the type of the variable after it’s created with a var. The following code won’t compile:

 1 var ferrariYearFoundation = 1939;
2 ferrariYearFoundation = "1939";

Output:
java: incompatible types: java.lang.String cannot be converted to int

We can’t also use a var as a parameter, if we try so we will have a compilation error:

 1 void doSomething(var action) { ... } // Compilation error here

Output:
java: ‘var’ is not allowed here

A var type can’t be used as a return type, if we try the following the code won’t compile:

 1 var doSomething() { ... } // Compilation error here

Output:
java: ‘var’ is not allowed here

A var type has to be initialized as it is declared, otherwise, we will have a compilation error as the following code:

 1 var product; // Compilation error here
2 System.out.println(product);

Output:
java: cannot infer type for local variable product
 (cannot use ‘var’ on variable without initializer)

A var type can’t infer a lambda type:

 1 var product = () -> "";

Output:
Cannot infer type: lambda expression requires an explicit target type

The lambda code above will only work if we use a Supplier explicitly:

 1 Supplier<String> product = () -> "Playstation 5";
2 System.out.println(product.get());

Output:
Playstation 5

A null value can’t be assigned to a var. If we try the following, the code won’t compile:

 1 var var = null;

Output:
Cannot infer type: variable initializer is ‘null’

Since var is a type inference, we can’t use [] or <> in the var type as you can see in the following code:

 1 var cars[] = new String[] {"Ferrari", "Porsche", "Lamborghini"};

Output:
java: ‘var’ is not allowed as an element type of an array

By removing the [] from cars, the code above works fine.

When we try to use generics in a var type the code won’t also compile:

 1 var<String> cars = new ArrayList<>();

Output:
java: illegal reference to restricted type ‘var’

If we remove <String> from var the code above will compile. Since var is a type inference, we don’t need to specify that a var is an array or a generic type, we just need to assign the value to a var.

14.11.5 Var Intruder Java Challenge

In the following Java code challenge we will explore key features from var with variable assigning, lambdas, anonymous inner class and more. Therefore, what do you think it will happen when running the following code?

 1 import javax.annotation.Nonnull;
 2 import java.util.ArrayList;
 3 import java.util.Arrays;
 4
 5 public class TurnAboutIntruderChallenge {
 6 public static void main(String... awayTeam){
 7 var var = new Var() { public String collide(String c1, String c2)
 8 { return c1 + c2; }};
 9 var drLester = (Var) null;
10 drLester = var;
11
12 Var reliantMistake = (@Nonnull var s1, final var s2) ->
13 String.join(";", s1, s2, "Darth Vader");
14
15 var numbers = new ArrayList<>(Arrays.asList(3, 2, 1));
16 numbers.remove(Integer.valueOf(2));
17
18 System.out.println(var.collide("Kirk", "Spock"));
19 System.out.println(reliantMistake.collide("Khan", "Borg"));
20 System.out.println(drLester.getClass().getName());
21 System.out.println(numbers);
22 }
23
24 private interface Var { String collide(String c1, String c2); }
25 }

 	Compilation error at line 9

 	SpockKirk
Khan;Borg;Darth Vader
TurnAboutIntruderChallenge$1
[3, 2]

 	KirkSpock
;KhanBorgDarth Vader
Var
[2, 1]

 	KirkSpock
Khan;Borg;Darth Vader
TurnAboutIntruderChallenge$1
[3, 1]

Explanation:

Notice that we have a private interface Var created in the bottom of this Java code challenge which will be used in the main method implementation. The interface name Var can be used without a problem also.

In the first statement of the main method, we assign an anonnymous inner class of Var implementing the collide method by concatenating two Strings.

Another important point is that we are using var as a variable name which is possible. That happens because since Java 9, the Java language won’t contain a keyword that can’t be used as a class, method or variable. This aligns with the principle of retro-compatibility the Java language has.

Then notice we are assigning a null value to the var type which works when we use casting. This will cast the type to the Var class type not to a null value.

We assign the value from var to drLester.

Then we assign a lambda expression to Var following the contract of String collide(String c1, String c2);. Notice also that we are using var in the lambda parameter with @Nonnull and final which is only possible since Java 11. The method implementation will concatenate the Strings Khan;Borg;Darth Vader.

We initialize the var numbers with Arrays.asList(3, 2, 1).

Then we have a tricky part, we remove the value of 2 not the index. That happens because the remove method from the ArrayList is overloaded with the following:

 1 // Removes element by object
2 public boolean remove(Object o) { ... }
3
4 // Removes element by index
5 public E remove(int index) { ... }

Since we are using the Integer.valueOf(2) we return a wrapper Integer, therefore, the public boolean remove(Object o) will be invoked. Therefore, the element with value of 2 will be removed from the array.

Therefore, the correct alternative is:

 	KirkSpock
Khan;Borg;Darth Vader
TurnAboutIntruderChallenge$1
[3, 1]

14.12 New switch case statement

To make it easier to use the switch case statement, it’s possible to use a lambda expression to return a value. This means that we don’t need to use the break keyword anymore to get off the switch statement.

The new switch case statement was firstly introduced on Java 12 as a preview feature and became standard on Java 14.

Let’s see how different the old way and the new way of using the switch case statement are:

 1 int formulaNumber = 7;
 2 String heisenbergElement = "";
 3
 4 switch (formulaNumber) {
 5 case 5:
 6 heisenbergElement += "H";
 7 break;
 8 case 7:
 9 heisenbergElement += "N";
10 break;
11 default:
12 heisenbergElement += "He";
13 }
14
15 System.out.println(heisenbergElement);

Output:
N

As you can see above, the code is verbose and we need to add the break keyword on each case statement. We can accomplish the same thing as above by using the new switch case statement:

 1 int formulaNumber = 7;
 2 String heisenbergElement = "";
 3
 4 switch (formulaNumber) {
 5 case 5 -> heisenbergElement += "H";
 6 case 7 -> heisenbergElement += "N";
 7 default -> heisenbergElement += "He";
 8 }
 9
10 System.out.println(heisenbergElement);

Output:
N

By using lambdas on each case stament we reduce a lot of the boiler-plate code and make it more readable.

Notice that the code above with a lambda expression can only be used like that if it’s a one liner. If there is more than one line we must use the yield keyword:

 1 int elementNumber = 92;
 2 String heisenbergElement = "";
 3
 4 var chemicalElement = switch (elementNumber) {
 5 case 7 -> {
 6 heisenbergElement += "N";
 7 yield heisenbergElement;
 8 }
 9 case 5 -> {
10 heisenbergElement += "H";
11 yield heisenbergElement;
12 }
13 default -> {
14 heisenbergElement = "He";
15 yield heisenbergElement;
16 }
17 };
18
19 System.out.println(chemicalElement);

Output:
He

Notice in the code above that in the new switch case statement it’s possible to return a value also. Note also that to return a value when there is more than one line in our lambda, we need to use the keyword yield. The yield keyword will break the switch case process and return the value. In our case, the value will be returned to the chemicalElement variable. Therefore, He will be printed.

14.12.1 Beer Rescue Switch Case Challenge

In the following Java code challenge, we will explore the use of the new switch case statement with lambdas. Also notice we are using some type comparisons with wrappers and String. Without further ado, what do you think it will happen when running the following code?

 1 public class BeerRescueSwitchCaseChallenge {
 2
 3 public static void main(String... beersRescue) {
 4 Object homerBeers = getBeers("Homer");
 5 Object carlBeers = getBeers("Carl");
 6 Object barneyBeers = getBeers("Barney");
 7
 8 System.out.println("" + homerBeers + carlBeers + "\n" + barneyBeers);
 9 }
10
11 static Object getBeers(String character) {
12 return switch (character) {
13 case "Homer" -> {
14 System.out.print("Every day is a beer day. ");
15 yield (Integer.valueOf(129) == 129 ? 10 : 7) + " beers for Homer. ";
16 }
17 case "Carl" -> "Lenny" == new String("Lenny") ? 2 : 4 +
18 " beers for Carl.";
19 default -> new NumberFormatException("9999 beers. Not enough beers for Barney!\
20 ");
21 };
22 }
23 }

 	Every day is a beer day. 10 beers for Homer. 4 beers for Carl.
java.lang.NumberFormatException: 9999 beers. Not enough beers for Barney!

 	Compilation error at line 12

 	Every day is a beer day. 7 beers for Homer. 2 beers for Carl.
java.lang.NumberFormatException is thrown

 	Compilation error at line 19

Explanation:

The purpose of this Java code challenge is to help you fixate the syntax from the new switch case. The first case statement is for “Homer”, therefore “Every day is a beer day. “ will be printed followed by the result of Integer.valueOf(129) == 129. The valueOf method returns a new Integer() object but since we are comparing it with a primitive type 129 it will return true because of thre will be a conversion from the wrapper to a primitive type. When we compare primitive types we are comparing values and not an object, therefore it returns true. Next then we will print: “10 beers for Homer.”.

In the “Carl” case statement we have the comparison a String “Lenny” with a new String(“Lenny”). Remember that when we create a new String() we are forcing the creation of a new object in the memory heap. Therefore, “Lenny” and new String(“Lenny”) are different objects. Then “4 beers for Carl.” will be printed.

Lastly, notice that the new NumberFormatException("9999 beers. Not enough beers for Barney!") is not being thrown, it’s being returned instead. Therefore, the toString method from the NumberFormatException object will be printed: java.lang.NumberFormatException: 9999 beers. Not enough beers for Barney!

In conclusion, the correct alternative is:

 	Every day is a beer day. 10 beers for Homer. 4 beers for Carl.
java.lang.NumberFormatException: 9999 beers. Not enough beers for Barney!

14.13 Using Pattern Matching Type Checks Java 15

With the goal of reducing boiler-plate code, we have the pattern matching feature that will implicitly cast a variable type when using the instanceof operator.

Let’s see how we used to do that before:

 1 Object simpson = "Homer";
2
3 if (simpson instanceof String) {
4 String stringSimpson = (String) simpson;
5 System.out.println(stringSimpson.getClass());
6 }

Output:
class java.lang.String

Let’s see now how we can do the same as the above code using the pattern matching feature:

 1 Object simpson = "Homer";
2
3 if (simpson instanceof String stringSimpson) {
4 System.out.println(stringSimpson.getClass());
5 }

Output:
class java.lang.String

As you can see, the pattern matching feature is a syntax sugar that will do the type casting implicitly. It also makes the code more legible.

14.13.1 Using && and || with Pattern Matching

It’s possible to reuse the pattern matching variable in further conditions when using &&. That’s because the second condition will be only executed if the first condition is true. Therefore, we will always have our pattern matching variable in the following case:

 1 Object simpsonCharacter = "Homer";
2 if (simpsonCharacter instanceof String s && s.length() > 3) { }

The || operator, on the other hand, can execute the second condition even if the first condition is false. Therefore, we have the possibility that the pattern matching variable won’t be created. For that reason, we will have a compilation error in the following code:

 1 Object simpsonCharacter = "Homer";
2 if (simpsonCharacter instanceof String s || s.length() > 3) { }

Output:
java: cannot find symbol
 symbol: variable s

14.13.2 Scope of Pattern Matching

The premise for the pattern matching variable scope is that the if statement has to be true. In the following example, we have an if statement and notice that the pattern variable s can be used outside of the if statement. Keep in mind though that this is only possible in a method that returns a value:

 1 static boolean scopePatternMatchingMethodReturnsValue() {
2 Object simpsonCharacter = "Homer";
3 if (!(simpsonCharacter instanceof String s)) {
4 return true;
5 }
6 return s.length() > 5; // It works fine
7 }

In a void method, the same as above won’t work:

 1 static void scopePatternMatchingMethodDontReturnValue() {
2 Object simpsonCharacter = "Homer";
3 if (!(simpsonCharacter instanceof String s)) {
4 System.out.println("Not instance of String");
5 }
6 System.out.println(s); // Compilation error
7 }

If the compiler already knows that the if statement will be false we won’t be able to access the pattern variable also as the following:

 1 Object simpsonCharacter = "Homer";
2 if (!(simpsonCharacter instanceof String s)) {
3 System.out.println(s); // Compilation error
4 }

Since the compiler knows simpsonCharacter is a String, we won’t be able to use the pattern variable s in the if statement. Therefore, we will get a compilation error.

14.13.3 Space Weapons Pattern Matching Challenge

In the following Java code challenge we will explore the use of the pattern matching feature. Also, notice that there is a number that is unusual in one of the shoot method invocations. Then we will explore some concepts about overloading, inheritance, and explicit type casting.

Without further ado, what will happen when running the following code?

 1 import java.io.Serializable;
 2
 3 public class SpaceWeaponsPatternMatchingChallenge {
 4 public static void main(String... doYourBest) {
 5 shoot(1l + "Type-1 Phaser");
 6 shoot(true);
 7 shoot(new StringBuffer("Plasma cannon").toString());
 8 shoot(new RuntimeException("Disruptor"));
 9 }
10
11 static void shoot(Object object) {
12 if (object instanceof StringBuffer) {
13 System.out.println(((StringBuffer) object).append(":buffer"));
14 } else if (object instanceof Comparable comparable) {
15 System.out.println(comparable.equals(11 + "Type-1 Phaser"));
16 } else if (object instanceof Serializable s && s instanceof Throwable) {
17 System.out.println(s + ":serializable");
18 }
19 }
20 }

 	true
true:serializable
Plasma cannon:buffer
false

 	false
Plasma cannon:serializable
java.lang.RuntimeException: Disruptor:serializable

 	false
false
false
java.lang.RuntimeException: Disruptor:serializable

 	true
true:serializable
false

Explanation:

In the first shoot method invocation we are passing the number 1 and an l to indicate it’s a long type, it’s not 11. The long number 1 will become a String though since we concatenate with "Type-1 Phaser". A String is instance of a Comparable as you can see:

 1 public final class String implements java.io.Serializable, Comparable<String>, CharS\
2 equence, Constable, ConstantDesc { ... }

However, 11 + "Type-1 Phaser" is different than 1l + "Type-1 Phaser", therefore, the output here is false.

Then we pass the primitive value of true. Remember that when we pass a primitive value to an Object this value will be autoboxed to a wrapper, in this case, Boolean so that it can fit into an Object. A Boolean type is also Comparable:

 1 public final class Boolean implements java.io.Serializable,
2 Comparable<Boolean>, Constable {

Therefore, since true is different than 11 + "Type-1 Phaser", we will also get false as an output.

Now we pass a new StringBuffer("Plasma cannon").toString() in the shoot method. Notice that we are converting the StringBuffer into a String. Therefore the Comparable if will be executed again and "Plasma cannon" is not equals to 11 + "Type-1 Phaser", therefore, we will get false here too as an output.

Finally, we pass a RuntimeException class that is actually Serializable as you can see in the following class hierarchy:

 1 public class Throwable implements Serializable { ... }
2 public class Exception extends Throwable { ... }
3 public class RuntimeException extends Exception { ... }

Therefore, the toString method from the RuntimeException will be printed with ":serializable".

In conclusion, the correct alternative is:

 	false
false
false
java.lang.RuntimeException: Disruptor:serializable

14.13.4 Using Pattern Matching in switch case

In Java 17 there is a preview feature that enables us to use pattern matching in a switch case statement. A preview feature means that it’s a feature that is might be changed in future Java versions.

It’s possible to verify if an object is instanceof the types we want with a switch case expression and we can also use a pattern matching variable.

 1 Object anyObject = 1;
 2
 3 String numberType = switch(anyObject) {
 4 case Byte b -> b.getClass().toString();
 5 case Integer i -> i.getClass().toString();
 6 case BigDecimal b -> b.getClass().toString();
 7 case Object o -> o.getClass().toString();
 8 };
 9
10 System.out.println(numberType);

Output:
class java.lang.Integer

We can also use pattern matching in a switch case statement without a lambda expression:

 1 Object getObjectTypeSwitchStatement() {
 2 Object anyObject = 1;
 3
 4 switch(anyObject) {
 5 case Byte b: return b.getClass().toString();
 6 case Integer i: return i.getClass().toString();
 7 case BigDecimal b: return b.getClass().toString();
 8 case Object o: return o.getClass().toString();
 9 }
10 }

Output:
class java.lang.Integer

14.14 Using record

 	preview feature
 	standard feature

 	—
 	—

 	Since Java 14
 	Since Java 16

With the objective of reducing the boiler-plate code with the Java language, the record feature was introduced. Simply put, by creating a record we have an immutable data object with constructor, getters, toString, equals and hashCode implemented for free.

The record feature was introduced on Java 14 and became standard on Java 16.

Let’s see that in practice creating a data object without a record and then using record:

 1 class CarWithoutRecord {
 2
 3 private String brand;
 4 private String model;
 5 private int year;
 6
 7 public CarWithoutRecord(String brand, String model, int year) {
 8 this.brand = brand;
 9 this.model = model;
10 this.year = year;
11 }
12
13 public String getBrand() {
14 return brand;
15 }
16
17 public String getModel() {
18 return model;
19 }
20
21 public int getYear() {
22 return year;
23 }
24
25 @Override
26 public boolean equals(Object o) {
27 if (this == o) return true;
28 if (o == null || getClass() != o.getClass()) return false;
29 CarWithoutRecord car = (CarWithoutRecord) o;
30 return year == car.year && Objects.equals(brand, car.brand) && Objects.equals(mo\
31 del, car.model);
32 }
33
34 @Override
35 public int hashCode() {
36 return Objects.hash(brand, model, year);
37 }
38
39 @Override
40 public String toString() {
41 return "CarWithoutRecord[" +
42 "brand='" + brand + '\'' +
43 ", model='" + model + '\'' +
44 ", year=" + year +
45 ']';
46 }
47 }
48
49 CarWithoutRecord carWithoutRecord = new CarWithoutRecord("Lamborghini", \
50 "Aventador", 2022);
51 System.out.println(carWithoutRecord.getBrand());
52 System.out.println(carWithoutRecord);

Output:
Lamborghini
CarWithoutRecord[brand=’Lamborghini’, model=’Aventador’, year=2022]

As you can see, there is a lot of code in the code above. Now let’s see the same as above using record:

 1 record CarRecord(String name, String brand, int year) { }
2
3 CarRecord carRecord = new CarRecord("Ferrari", "Portofino", 2022);
4 System.out.println(carRecord.brand());
5 System.out.println(carRecord);

Output:
Ferrari
CarRecord[brand=Ferrari, model=Portofino, year=2022]

As you could see, we reduced 46 lines of code to 1 which is a huge difference. Another important difference is that the getters from a record doesn’t have the prefix get, we just use the variable name like the following example: brand().

14.14.1 Validating Data with a Compact Constructor

There is a different way to use constructor with records. We can validate data by using a compact constructor. Let’s see how that works in practice:

 1 record Car(String brand, String model) {
2 Car{ // #A
3 if (brand == null || model == null) { // #B
4 throw new NullPointerException("null values are not accepted.");
5 }
6 }
7 }
8
9 Car car = new Car("Ferrari", null);

Output:
Exception in thread “main” java.lang.NullPointerException: null values are not accepted…

Code analysis:

 	#A: Note that we don’t have the parenthesis () in the compact constructor. This constructor will be executed after the main record constructor. It’s suitable to validate data from a record.

 	#B: We make a simple validation checking if the field brand or model are null. If one of them are null a NullPointerException is thrown.

14.14.2 Further Possibilities with record

To summarize what can be done in a record, let’s analyze the following list. A record can:

 	Implement interfaces

 	Use generics

 	Use compact constructors

 	Overload constructors

 	Use static methods

 	Use static variables

 	Use instance and static blocks

 	Override the getters, toString, equals and hashCode methods

 	Use static or instance inner classes within it

 	Use annotations within it

 	Be used as an inner class

14.14.3 Limitations from record

Notice that a record only creates immutable objects, which means, once the object is created it can’t be changed. That’s different from a normal data class where you can create getters and setters.

Immutability is preferable though to restrict your code from possible bugs sources, so use immutable objects whenever possible.

A record behind the scenes is a final class that extends the abstract class java.lang.Record:

 1 // Omitted the comments of this class
 2 package java.lang;
 3
 4 public abstract class Record {
 5
 6 protected Record() {}
 7
 8 @Override
 9 public abstract boolean equals(Object obj);
10
11 @Override
12 public abstract int hashCode();
13
14 @Override
15 public abstract String toString();
16 }

Therefore, the restrictions of a record will be pretty much the same as an abstract class. Let’s see a list of the restrictions to reinforce them, a record can not:

 	Extend another class since it’s a final class

 	Have an instance variable

 	Use the abstract keyword since it’s already an abstract class

14.14.4 Star Trek Commander Record Challenge

In the following code challenge, we will explore the possibilities of a record along with important principles of the Java language.

Therefore, by running the following code, what do you think it will happen?

 1 import java.io.Serializable;
 2
 3 public class CommanderRecordChallenge {
 4
 5 record Commander<T>(T ship, String name, String planet) {
 6 public Commander {
 7 if (!(ship instanceof Serializable))
 8 throw new RuntimeException();
 9 }
10 public String name() {
11 return "Worf";
12 }
13 public boolean equals(Object obj) {
14 return (obj instanceof Commander commander) &&
15 (commander.name.equals(this.name));
16 }
17 }
18
19 public static void main(String[] args) {
20 Commander<String> commander = new Commander<>("V-ger", "Spock", "Vulcan");
21
22 record NewString(String ship) implements Serializable { }
23
24 System.out.println(commander.name());
25 System.out.println(commander.equals(new Commander<>(new NewString("V-ger") \
26 , "Spock", "Kronos")));
27 }
28 }

 	Worf
true

 	Spock
java.lang.RuntimeException will be thrown

 	Line 5 won’t compile

 	Worf
false

Explanation:

There are many important points to be observed in this code challenge. The first one is that we are using the Commander record as an inner class. We are also using a generic type <T> for the ship variable.

Then we use the compact constructor and we validate if the ship variable is instance of Serializable.

Then, we override the name() and equals() methods.

In the main method, we instantiate the Commander record passing the Strings "V-ger", "Spock", "Vulcan".

Then we create another inner record NewString and note we are implementing Serializable.

Then we print the value from commander.name() and remember we overrode this value with “Worf”, therefore, “Worf” will be printed.

Finally, we use the equals method we overrode with the commander and a new Commander. Notice that we are passing the NewString record we created and that’s totally fine since the first parameter from Commander receives a generic type. NewString is also Serializable which means the RuntimeException won’t be thrown.

There is a trick in the equals method though, notice that we are not using the name() method in the comparison. Instead, we are using the name variable. Therefore, since the name passed is also “Spock”, the result from the equals method will be true. Another detail is that we are using the concept of pattern matching for the instanceof operation.

In conclusion, the correct alternative is:

 	Worf
true

14.15 Using Sealed classes Java 15

Sealed classes is a concept to help developers in code design. Simply put, it’s a way to restrict inheritance of a class or interface. So that only the classes we want can inherit a sealed class or interface.

An example is if we have an Aircraft class and we only want Airplane and Helicopter to inherit Aircraft. This is useful because if another developer creates another class named as Jet that is not supposed to inherit Aircraft, that will be clear in the code.

Let’s see a practical example with Aircraft being the sealed class allowing only Airplane and Helicopter to be extended:

 1 sealed class Aircraft permits Airplane, Helicopter { }
2
3 final class Airplane extends Aircraft { }
4
5 non-sealed class Helicopter extends Aircraft { }

There are a couple of details to notice in the code above:

1 - Only a sealed class can permit classes to extend it.

2 - Every class that extends a sealed class must be either final, sealed or non-sealed. Otherwise, the code won’t compile.

14.15.1 Extending a non-sealed Class

A final class in Java can nott be extended but a non-sealed one on the other hand can:

 1 sealed class Aircraft permits Airplane, Helicopter { }
2
3 non-sealed class Helicopter extends Aircraft { }
4
5 final class BellAH1Cobra extends Helicopter { }

14.15.2 Limitations of a sealed Class

A sealed class only makes sense with the permits clause. Therefore, if we declare a sealed class without it, the code won’t compile:

 1 sealed class Car { } // Compilation error

Output:
Sealed class must have subclasses

A sealed class can’t be extended by a normal class. The following code won’t compile:

 1 sealed class Car permits Ferrari { } // Compilation error
2
3 class Ferrari extends Car { } // Compilation error

Output:
All sealed class subclasses must either be final, sealed or non-sealed

We can’t use annonymous inner classes in a sealed class or interface. Let’s see what happens when we try to use it with the above sealed class Car:

 1 new Car() { }; // Compilation error

Output:
Anonymous classes must not extend sealed classes

14.15.3 Sealed Classes and Modules

A permitted subclass must belong to the same module as the sealed class. Otherwise, the code won’t compile.

14.15.4 Sealed Interfaces

The same way we can have sealed classes, we can have also sealed interfaces, the rules are the same:

 1 sealed interface Car permits Ferrari, Porsche { }
2
3 non-sealed class Ferrari implements Car { }
4
5 final class Porsche implements Car { }

14.15.5 Sealed with record

To restrict the usage of our interface to a record we can use the following code:

 1 sealed interface Car permits Ferrari { }
2
3 record Ferrari() implements Car {}

Notice that a record is implicitly a final class. Therefore, there is no need to declare it explictly. Since record is implicitly final it can’t be also sealed or extend another class:

 1 sealed class Car permits Ferrari { }
2
3 record Ferrari() extends Car { } // Compilation error, final can't extend

14.15.6 Sealed Classes Reflection Methods

It’s possible to know if a class is sealed by using the reflection api from Java. Reflection is useful to collect metadata from code, for example, to know if a class has an annotation, or has private fields, or is an enum, or extends a superclass. Reflection is vastly used in frameworks usually to scan classes and verify if it has an annotation.

In Java 17, we can also verify if a class is sealed or not by using the following methods:

 1 System.out.println(Car.class.isSealed());
2 System.out.println(Arrays.toString(Car.class.getPermittedSubclasses()));

Output:
true
[Ferrari, §Porsche]

14.15.7 Sealed Classes with Pattern Matching

When using pattern matching with sealed classes, we don’t need to include a default clause. That’s because the compiler knows the classes that can inherit from the sealed class since we declare them:

 1 Car car = new Ferrari();
2 switch (car) {
3 case Ferrari f -> System.out.println(f.getClass().getSimpleName());
4 case Porsche p -> System.out.println(p.getClass().getSimpleName());
5 }

Output:
Ferrari

14.15.8 Sealed Star Trek Challenge

The following Java challenge will cover many of the concepts we explored in this section. We will explore the use of a sealed interface, permitted non-sealed class, record, reflection and anonymous inner classes.

What do you think it will happen when running the following code?

 1 public class SealedStarTrekChallenge {
 2
 3 sealed interface Captain permits Spock, Saru, Janeway { // #A
 4 default void giveOrder() {
 5 System.out.println("Attack!");
 6 }
 7 }
 8 static non-sealed class Saru implements Captain {}
 9 static class Janeway {}
10
11 record Spock(String planetName) implements Captain { // #B
12 public void giveOrder() {
13 System.out.println("Let's go to:" + planetName);
14 }
15 }
16
17 public static void main(String... doYourBest) {
18 Captain captain = new Spock("Vulcan");
19 captain.giveOrder();
20 System.out.println(captain.getClass().getSuperclass().isSealed());
21 new Saru().giveOrder();
22 new Captain() { }.giveOrder(); // #C
23 }
24 }

 	Line #A and #B won’t compile

 	Line #A, #B and #C won’t compile

 	Let’s go to:Vulcan
true
Attack!
Attack!

 	Line #A and #C won’t compile

Explanation:

There is a compilation error on #A and that’s because the Janeway class is not sealed, non-sealed or final. Therefore, it’s not possible to permit Janeway.

To have a default method in a sealed interface is fine though.

The non-sealed class Saru can implement Captain with no issues.

The record Spock can also implement the interface Captain because as mentioned before a record is a final class implicitly. Overriding the giveOrder method is also ok in a record.

Then we create an instance of Spock:
Captain captain = new Spock("Vulcan");

Invoke the giveOrder method from the record and that should print Let's go to:Vulcan if there wasn’t a compilation error:
captain.giveOrder();

Then we use the getClass and then getSuperclass methods in the Captain instance. However, notice that we are not getting the interfaces, instead we are getting the class. In the following case the getSuperclass method actually returns a record. Therefore, the following code would return false if there wasn’t a compilation error:

 System.out.println(captain.getClass().getSuperclass().isSealed());

Then we invoke the giverOrder method on Saru that will print the default implementation from Captain:

 new Saru().giveOrder();

Finally, we try to use an anonymous inner class on Captain which will cause a compilation error since a sealed class or interface can’t do that:

new Captain() { }.giveOrder(); // Compilation error

In conclusion, the correct alternative is:

 D) Line #A and #C won’t compile

14.16 Text Blocks Java 15

Text blocks solve the problem when we have a big String such as a SQL query concataneted with mutiple + and " making the code verbose.

Let’s see how was the old way to use a String in Java:

 1 String customerProductSQL =
2 "select product.name, customer.name, address.city " +
3 " from product " +
4 " inner join customer on customer.product_id = product.id " +
5 " inner join address on customer.address_id = address.id";

As you can see in the above code, there are " and + for each String line which makes the code more difficult to read and verbose. Now with the text block feature this is different. We can use now """ to store a big String. Let’s see how we can use text blocks:

 1 String customerProductSQL = """
2 select product.name, customer.name, address.city
3 from product
4 inner join customer on customer.product_id = product.id
5 inner join address on customer.address_id = address.id
6 """;

It’s also possible to use " or ' without the necessity of escaping it as a literal String:

 1 String someText = """
2 ""Some text here... Test... Test...Some text here...'`'"" // Compiles fine
3 """;

Keep in mind we don’t need to escape a " if we are not using three double quotes ("""). That’s because the compiler will understand that as the end of the text block. To workaround that, we can escape the last \":

 1 String someText = """
2 ""\" Some text here... Test... Test...Some text here... ""\"
3 """;
4 System.out.println(someText);

Output:
“”” Some text here… Test… Test…Some text here… “””

14.16.1 Syntax Limitations

There are some ways to use text blocks that won’t work. For example, if we store the String right after the first """ the code won’t compile:

 1 String someText = """ Big text here... Test... // Compilation error here
2 Big text here... Test... Test... Test...
3 """;

There is no way to use a text-block in one line as the following:

 1 String someText = """ Some text here... Test..."""; // Compilation error here

It’s only possible to use a one-line text block as the following:

 1 String someText = """
2 Some text here... Test... Test...Some text here... // Compiles fine
3 """;

14.16.2 Indentation Spacing Text Blocks

When declaring and assigning a text to a text block, we don’t want the initial indentation space to be treated as a space. For this reason, the initial identation space will be ignored depending on the way you use text blocks. Let’s see how that works in the following code:

 1 String someText = """
2 Some text here... Test... Test...Some text here...
3 Lorem Ipsum has been the industry's standard dummy text
4 ever since the 1500s, when an unknown printer took a galley
5 of type and scrambled it to make a type specimen book.
6 """;
7 System.out.println(someText);

Output:
Some text here… Test… Test…Some text here…
Lorem Ipsum has been the industry’s standard dummy text
ever since the 1500s, when an unknown printer took a galley
of type and scrambled it to make a type specimen book.

If we want to see spaces in a String text block output we need to put the String ahead of the last """ as you can see in the following example:

 1 String someText = """
2 Some text here... Test... Test...Some text here...
3 Lorem Ipsum has been the industry's standard dummy text
4 ever since the 1500s, when an unknown printer took a galley
5 of type and scrambled it to make a type specimen book.
6 """;
7 System.out.println(someText);

Output:

 Some text here… Test… Test…Some text here…
 Lorem Ipsum has been the industry’s standard dummy text
 ever since the 1500s, when an unknown printer took a galley
 of type and scrambled it to make a type specimen book.

If we use the """ at the end of the text, then the text that is at the most left will be the reference for the rest of the text. Those “incidental” spaces” that comes before the text at the most left will be ignored:

 1 String someText = """
2 apiVersion: v3
3 kind: Service
4 metadata:
5 labels:
6 run: customer-registration-service-dev""";
7
8 System.out.println(someText);

Output:
apiVersion: v3
kind: Service
metadata:
 labels:

 run: customer-registration-service-dev

To use explicitly indent the code we can use the indent method as the following:

 1 String someText = """
2 apiVersion: v3
3 kind: Service
4 metadata:
5 labels:
6 run: customer-registration-service-dev""".indent(4);
7
8 System.out.println(someText);

Output:

 apiVersion: v3
 kind: Service
 metadata:
 labels:
 run: customer-registration-service-dev

14.16.3 Indenting Text Blocks

When we have an instance variable with a text block, it’s not recommended to indent the text right after the variable declaration as the following:

 1 public final String badIndentation = """
2 Some text here... Test...
3 Lorem Ipsum has been the
4 ever since the 1500s, when an unknown
5 of type and scrambled it to make a...
6 """;

As you can see in the example above, we lose a lot of space. It’s much better to use the following indentation instead:

 1 public final String goodIndentation = """
2 Some text here... Test... Test...Some text here...
3 Lorem Ipsum has been the industry's standard dummy text
4 ever since the 1500s, when an unknown printer took a galley
5 of type and scrambled it to make a type specimen book.
6 """;

In the above code we save plenty of space and the text gets easier to read.

One other thing that makes code reading difficult is line wrapping or horizontal scrolling. Therefore, when we have nested code and we need to store big texts, the following is not recommended:

 1 final String chuckNorrisBadIndentation = """
 2 Carlos Ray "Chuck" Norris (born March 10, 1940) is an American martia\
 3 l artist and actor. He is a black belt in Tang Soo Do,
 4 Brazilian jiu jitsu and judo.[1] After serving in the United States A\
 5 ir Force, Norris won many martial arts championships
 6 and later founded his own discipline Chun Kuk Do. Shortly after, in H\
 7 ollywood, Norris trained celebrities in martial arts.
 8 Norris went on to appear in a minor role in the spy film The Wrecking\
 9 Crew (1969). Friend and fellow martial artist Bruce Lee
10 invited him to play one of the main villains in Way of the Dragon (19\
11 72).
12 """;

It’s not possible to see the horizontal scroll bar here but on your development IDE that would be seen. To make the above code indentation better, we can take the text to the further left:

 1 void chuckNorrisGoodIndentation() {
 2 final String chuckNorrisGoodIndentation = """
 3 Carlos Ray "Chuck" Norris (born March 10, 1940) is an American martial artist and ac\
 4 tor. He is a black belt in
 5 Tang Soo Do, Brazilian jiu jitsu and judo.[1] After serving in the United States Air\
 6 Force, Norris won many martial arts championships and later founded his own discipl\
 7 ine Chun Kuk Do. Shortly after,
 8 in Hollywood, Norris trained celebrities in martial arts. Norris went on to appear i\
 9 n a minor role in the spy film
10 The Wrecking Crew (1969). Friend and fellow martial artist Bruce Lee invited him to \
11 play one of the main villains
12 in Way of the Dragon (1972).
13 """;
14 }

Also remember, when indenting text blocks with a big text within a code expression such as stream or lambda, the recommendation in this case is to store the text block in a variable and then use it in the code expression. Otherwise, the code will get difficult to read.

14.16.4 Jedi Text Block Challenge

In the following code challenge, we will explore the previous way to store a big text and the new way with text blocks. Then we will also expore the syntax of text blocks, indentation and incidental spaces.

Can you guess what will happen when running the following code?

 1 public class JediTextBlockChallenge {
 2
 3 public static void main(String... doYourBest) {
 4 String jediWithoutTextBlock = ""
 5 + "<html>\n"
 6 + " <head>Master Yoda</head> %s\n"
 7 + "</html>"
 8 .strip().formatted("Luke");
 9
10 String jediWithTextBlock = """
11 <html>
12 <head>Master Yoda</head> %s
13 </html>""".strip().formatted("Luke");
14
15 System.out.println(jediWithoutTextBlock.equals(jediWithTextBlock));
16 System.out.println(jediWithoutTextBlock.formatted("Luke")
17 .equals(jediWithTextBlock));
18 }
19 }

 	false
true

 	true
true

 	true
false

 	false
false

Explanation:

The first jediWithoutTextBlock String is going to receive a literal String. A literal String behaves differently than a text block when we have many lines. In that case, each line we create is a new String object.

Notice that we are using the strip method to remove trailling spaces and then we invoke the formatted method. When we invoke formatted the whole String won’t be concatenated. That happens because the Java compiler will prioritize invoking a method first and then concatenate the String. Therefore, the formatted method will only consider the last String: "</html>", and the substitution won’t happen. The stored String from jediWithoutTextBlock will be:

 1 <html>
2 <head>Master Yoda</head> %s
3 </html>

Then we use text blocks in the jediWithTextBlock variable. In a text block, there is only one String, therefore, the substitution with formatted happens successfully.

Notice another detail that the spaces on the left are being ignored. That’s because of the way we used text blocks. To close the text blocks we are using """ on the right of the last text. Which means that the text that is at the most left will be the margin for all the rest. In that case, the left spaces will be ignored. This will be what we will have stored in the String:

 1 <html>
2 <head>Master Yoda</head> Luke
3 </html>

When printing the following, false is printed since the texts are different:
System.out.println(jediWithoutTextBlock.equals(jediWithTextBlock));

In the following condition we use the formatted method again that will now substitute the text successfully. That’s because the String is already fully concatenated. Therefore, the output here is true.

In conclusion, the correct alternative is:

 	false
true

14.17 Summary

In this chapter we explored the newest Java features that will help us to create better reliable easier to maintain code. Notice that many of the features were created to reduce the boiler-plate code. Java is a very explicit language, therefore, it might be considered verbose but the new features are certainly helping reducing that.

In this chapter you learned how to use:

 	
named modules using the module-info.java

 	
automatic modules generating a jar and including it in the module path

 	
unnamed modules in the class path

 	
requires to import other modules

 	
requires transitive to import transitive modules

 	
exports to export modules packages to other modules

 	
provides to export a service via ServiceLoeader

 	
opens to open reflection access from private members to other modules

 	
var as local variables

 	
new switch case statement with a lambda avoiding the break keyword

 	
pattern matching to cast an object type implicitly

 	
record to create data objects with constructor, getters, equals and hashCode methods for free

 	
sealed classes or interfaces to restrict inheritance

 	
text blocks to easily create a block of String avoiding concatenation

Congratulations! You learned how to use the main new Java features and got prepared to choose the right Java version for your project!

15 Concurrency Fundamentals

This chapter covers:

 	Fundamenstals of concurrency

 	Concurrency vs parallelism

 	States of a Thread

 	Creating Threads

 	Using Runnable in a Thread

 	Using the sleep method to temporarily stop a thread

 	Using the join method to join thread executions

 	non-daemon and daemon threads to have control on when the thread dies

 	Using the interrupt method to stop a thread execution

 	Understanding race condition to avoid unexpected results from threads

 	Mutual exclusion to synchronize threads (Mutex)

 	Object synchronization

 	Using the wait and notify methods in a thread

 	Total of 4 Java code Challenges

To enhance throughput, performance and time-processing the concurrency technique must be applied. Concurrency is used all the time when we use our computers. Even before multi-processors concurrency was used.

For example, how do you think multiple applications can be openned simultaneously even at the ages of Windows 95? How does a web browser and the music app were running? This is because tasks were processed concurrently, not necessarily at the same time but interruptedly giving the illusion they were being run at the same time.

This is a very fundamental and important concept on computer science that has to be mastered for you to become a highly-skilled software engineer!

15.1 Fundamentals of Concurrency

Concurrency does not really process tasks at the same time but instead, creates the illusion of that. There is no need for more than one CPU with concurrency because what will happen is that multiple tasks will be executed with context switching.

There is a confusion with the word concurrency because the following is the meaning in the dictionary:

 The fact of two or more events or circumstances happening or existing at the same time.

As mentioned before, concurrency in computer science is not the same as in the dictionary. To absorb this concept, think of interruptibility. This means that a task will be interrupted so the other can continue using the same CPU.

15.1.1 Practical Concurrency Example

Let’s suppose you have the following tasks to accomplish in the time-frame of 3 hours:

 	Get a visa (Takes around 2 hours)

 	Finish a coding task from work (Takes around 2 hours)

Non-concurrent mode:

To get a visa in average you will wait at least 2 hours in the queue. So you wait the two hours get your visa. Only then you start doing your coding task from work but that takes around 2 hours and you are not able to complete it on time. Finally, your annoying final task is to explain to your boss why you couldn’t complete your task.

Concurrent mode (the smart way):

You can use the powerful concept of concurrency here! You plan ahead of time that you will be waiting in the queue for 2 hours and then you take your laptop with you! When you get in the queue to get your visa, you interrupt the task to get the visa and start working on your coding task. After waiting for 2 hours in the queue, you have your coding task done and get your visa! Finally, you can tell your boss how good you are to finish the task and get the visa!

15.1.2 Parallelism

Parallelism actually runs tasks at the same time which makes it faster than concurrency. This means that if there are multiple tasks that need to be run, they will run simultaneously. Parallelism uses more than one CPU to process its tasks. When talking about parallelism remember of tasks running independently.

15.1.3 Practical Parallelism Example

Now let’s suppose you have the following taks to accomplish in 6 hours:

 	Go to a party of your best friend (Takes 6 hours)

 	Finish your conference presentation (Takes 4 hours)

Since you are going to the party of your best friend, you decide that you want to be present there and not work on your presentation. However, you also need to complete your presentation you will give a talk. Then you have the awesome idea of hiring a highly skilled software engineer to do the presentation for you. Your friend accepts the idea and the beauty of parallelism happens.

While you are enjoying your time on your best friend’s party, your presentation will be done by the highly-skilled software engineer at the same time!

To make an analogy in this situation, imagine you are one CPU and the highly-skilled sofware engineer is another CPU who are working on two tasks simultaneously.

15.1.4 States of a Thread

Before exploring threads in practice, it’s important to know what states they can be.

Let’s take a look at the following diagram to explore that:

 [image:]
 Thread states

New: When a thread is instantiated but not started for execution.

Runnable: a thread is in Runnable state when the start method is invoked. When a thread is ready to run or running. The thread scheduler will decide if a thread will be running or not, remember that a thread might suddenly stop its execution for other threads. The CPU plays a role on that too, the thread will need resources to run.

Blocked: When a thread is waiting for a monitor lock. This means, when another thread got a lock and other threads want to access this lock but it’s blocked since the other thread has to finish its execution first.

Simply put, a thread will be blocked when it’s waiting for indeterminate time, most times until other threads finish their executions.

Timed Waiting: It’s a more predictable way to wait. Therefore, it’s when we specify how much time the thread will wait to be executed. As per Java doc, those are the invoked methods:

Thread.sleep(time)
Object.wait(timeout)
Thread.join(timeout)
LockSupport.parkNanos(time)
LockSupport.parkUntil(time)

Terminated state: When a thread finishes its execution normally. There is also the case where there is an error and the thread gets terminated.

15.2 Thread

The most fundamental class to work with concurrency in Java is the Thread class. A Thread in Java is the smallest process that can be run in parallel. When creating even the simplest program in Java we will be dealing with Threads, and that’s because the main method has a main Thread.

We can create many Threads and run them in parallel. Depending on the situation, we can have a huge gain in performance. Since when working in a multi-thread environment code will be executed at the same time or concurrently, maintaining it is more challenging.

There is a special method Thread.currentThread() where we can get the current thread and then see its attributes:

 1 package com.javachallengers.concurrency;
2
3 public class MainThread {
4
5 public static void main(String[] args) {
6 System.out.println(Thread.currentThread().getName());
7 }
8 }

Output:
main

15.2.1 Extending the Thread class

Java gives us the possibility to create our own Thread implementation. The most basic way to do so is by instantiating the Thread class and starting it as you can see in the following code:

 1 package com.javachallengers.concurrency;
2
3 public class ThreadStart {
4
5 public static void main(String[] args) {
6 Thread thread = new Thread();
7 thread.start();
8 }
9 }

In the code above we started a new Thread but we didn’t override the run method. Therefore, there was no output.

Now, let’s override the run method to see some action happening:

 1 package com.javachallengers.concurrency;
 2
 3 public class ThreadStartImplemented {
 4
 5 public static void main(String[] args) {
 6 System.out.println(Thread.currentThread().getName());
 7 Thread thread = new ThreadRunner();
 8 thread.start();
 9 }
10 }
11
12 class ThreadRunner extends Thread {
13 @Override
14 public void run() {
15 System.out.println(Thread.currentThread().getName() + " is running...");
16 }
17 }

Output:
main
Thread-0 is running…

Notice that a thread will be only started by invoking the start method.

15.2.2 Thread run vs start

A very common mistake for developers who are starting working with threads is to invoke the run method thinking we will get the benefit of concurrency. However, that’s not what happens, when we invoke the run method only a method will be invoked.

Let’s see what happens when running the run methods from two different thread objects:

 1 public class ThreadRun {
 2
 3 public static void main(String[] args) {
 4 Thread thread1 = new Thread(() -> System.out.println("Run Method 1: " + \
 5 Thread.currentThread().getName()));
 6 Thread thread2 = new Thread(() -> System.out.println("Run Method 2: " + \
 7 Thread.currentThread().getName()));
 8
 9 thread1.run();
10 thread1.run();
11 thread2.run();
12 }
13 }

Output:

Run Method 1: main
Run Method 1: main
Run Method 2: main

Notice in the code above that even though we are using a thread object we are not actually starting a new thread. We are only invoking the run method. That’s why when we print the thread name, we see only main.

15.2.3 Heisenberg Start Challenge

In the following Java code challenge we will explore the creation of a new thread and its execution. By running the following code, what do you think it will happen?

 1 public class HeisenbergStartChallenge {
 2
 3 public static void main(String... doYourBest)
 4 throws InterruptedException {
 5 Thread heisenberg = new Heisenberg();
 6
 7 heisenberg.start();
 8 heisenberg.run();
 9 heisenberg.run();
10 heisenberg.start();
11 }
12
13 static class Heisenberg extends Thread {
14 public void run() {
15 System.out.println("I am the danger! "
16 + Thread.currentThread().getName());
17 }
18 }
19 }

 	The first thread will be executed in a random order
The run methods will be executed in parallel with the first thread
java.lang.IllegalThreadStateException is thrown

 	I am the danger! Thread-0
I am the danger! main
java.lang.IllegalThreadStateException is thrown

 	I am the danger! Thread-0
I am the danger! main
I am the danger! main
java.lang.IllegalThreadStateException is thrown

 	I am the danger! Thread-0
java.lang.IllegalThreadStateException is thrown

Explanation:

The key to get this Java code challenge right is to understand the difference between running an actual thread or just a method.

We will only start a thread by running the start method. The run method is just the action a thread will perform when started.

First, notice that we have the Heisenberg class that extends Thread and also overrides the run method. Therefore, this class is ready to be started as a Thread.

In the main method, we effectively start a thread by invoking the start method with the heisenberg variable. Therefore, we get the output from the run method here. However, notice that this is a new thread getting started so there is no guarantee of order of execution.

Then, we invoke the run method that does not really start a new thread. The run method is just a method. As a result, we have the output from the run method twice.

Now, when we try to invoke the start method with the same thread instance we get an java.lang.IllegalThreadStateException. That happens because we can never start a thread twice with the same thread instance.

In conclusion, the correct alternative is:

 	The first thread will be executed in a random order
The run methods will be executed in parallel
java.lang.IllegalThreadStateException is thrown

15.2.4 Using Runnable

A better way to use threads is by passing a Runnable action. That’s because that way we don’t couple the action from the run method directly in the Thread class:

 1 Runnable runnable = new Runnable() { // #A
2 public void run() { // #B
3 System.out.println("Running a Runnable!");
4 }
5 };
6
7 Thread thread = new Thread(runnable); // #C
8 thread.start();

Output:
Running a Runnable!

Code analisis:

 	#A: Using an anonymous inner class. An anonymous inner class is an unnamed class that implements the Runnable interface and overrides the run method.

 	#B: Overriding the run method to use it in the Thread.

 	#C: We pass the runnable we created to the Thread.

15.2.5 Implementing Runnable with Lambda

Notice that the Runnable interface is a functional interface:

 1 package java.lang;
2
3 @FunctionalInterface
4 public interface Runnable {
5
6 public abstract void run();
7
8 }

Therefore the Runnable interface can be used with lambdas! This means we can save lots of code and have the same output as you can see in the following code:

 1 Runnable runnable = () -> System.out.println("Running a Runnable!");
2
3 Thread thread = new Thread(runnable);
4 thread.start();

Output:
Running a Runnable!

15.2.6 Resident Evil Runnable Challenge

In the following challenge we will further explore how to use a Runnable for the run method of a Thread.

By running the following code, what do you think it will happen?

 1 public class ResidentEvilRunnableChallenge {
 2
 3 public static void main(String[] args) {
 4 Thread leonThread = new Thread(() -> System.out.println(
 5 "Shoots Super Tyrant"));
 6 Thread claireThread = new Thread(() -> System.out.println("Shoots G4"));
 7
 8 leonThread.start();
 9 claireThread.start();
10 Thread chrisThread = claireThread;
11 chrisThread.start();
12 }
13
14 }

 	Shoots G4
Shoots Super Tyrant
java.lang.IllegalThreadStateException is thrown

 	Shoots Super Tyrant
Shoots G4
java.lang.IllegalThreadStateException is thrown

 	Shoots Super Tyrant
java.lang.IllegalThreadStateException is thrown

 	
leonThread and claireThread will be executed in a random order
 Then java.lang.IllegalThreadStateException is thrown

 Explanation

One important rule when working with Threads is that they are unpredictable. Therefore, there is no way to know which thread is executed first between leonThread and claireThread. The implementation of the JVM will decide that, but by rule remember that thread execution is always unpredictable unless it’s manipulated with special methods that we will see in future sections.

This means that leonThread and claireThread will be executed in a random order.

Then notice that we pass the instance reference from claireThread to chrisThread. However, remember that claireThread already gave the command to start a new thread. Therefore, when we try to start another thread with the same instance with the chrisThread variable the java.lang.IllegalThreadStateException will be thrown.

In conclusion the correct alternative is:

 	
leonThread and claireThread will be executed in a random order
 Then java.lang.IllegalThreadStateException is thrown

15.3 Using Thread sleep

The sleep method will put a thread in the inactive state. Simply put, it will stop a thread execution for a determined amount of time as you can see in the following code:

 1 public class ThreadSleep {
 2
 3 public static void main(String[] args) throws InterruptedException {
 4 long beforeSleep = System.currentTimeMillis();
 5 Thread.sleep(5000);
 6 long totalSleepTime = System.currentTimeMillis() - beforeSleep;
 7 System.out.println(Thread.currentThread().getName()
 8 + " thread slept for: " + totalSleepTime);
 9 }
10 }

Output:

main thread slept for: 5000

Code Explanation:

As you can see in the code above, we get the currentTimeMillis and store it into the beforeSleep variable.

Then we invoke the Thread.sleep method passing 5000 as milliseconds. Notice that the sleep method throws the InterruptedException in case this thread execution is interrupted by other threads (this will be further explored in further sections).

Now we subtract the currentTimeMillis with the beforeSleep variable

15.4 Using join

When we run two threads at the same time, the processes will be executed in parallel. Therefore, we can’t really rely on execution order. However, we can use the join method to orchestrate that for us.

Let’s see an example with two threads:

 1 import java.util.stream.IntStream;
 2
 3 public class NoJoinExample {
 4
 5 public static void main(String[] args) {
 6 Thread thread1 = new Thread(() -> IntStream.rangeClosed(1, 5)
 7 .forEach(System.out::print));
 8 Thread thread2 = new Thread(() -> IntStream.rangeClosed(6, 10)
 9 .forEach(System.out::print));
10
11 thread1.start();
12 thread2.start();
13 }
14 }

Random Output:
67891012345

As you can see in the output above, the order of execution is randomic. There is no way to predict how the output will be. The numbers from 1 to 10 can be printed in any order.

It’s possible to use the join method though to guarantee the order of execution of both threads. Let’s see the same example as the code above using the `joing method:

 1 import java.util.stream.IntStream;
 2
 3 public class JoinExample {
 4
 5 public static void main(String[] args) {
 6 Thread thread1 = new Thread(() -> IntStream.rangeClosed(1, 5)
 7 .forEach(System.out::print));
 8 Thread thread2 = new Thread(() -> IntStream.rangeClosed(6, 10)
 9 .forEach(System.out::print));
10
11 thread1.start();
12 thread1.join();
13 thread2.start();
14 thread2.join();
15 }
16 }

Output:
12345678910

Notice that the output above will be always the same since we use the join method right after we start each thread.

Simply put, the join method will join the thread execution with the current running thread and will wait until the end of the execution.

15.5 non-daemon and daemon Thread

The concept of non-daemon and daemon threads is related to the rules threads support each other. A non-daemon thread doesn’t depend on other threads to be alive. A daemon thread, on the other hand, depends on another non-daemon thread to be still running.

Let’s go in details on each one of those concepts in the following sections.

15.5.1 non-daemon thread

The main thread is a great example of non-daemon thread. Notice that every time we run the main method in Java, this execution goes until the end.

Any new thread we create is non-daemon by default. This means that it will be executed until the end. Let’s see a code example for that:

 1 import java.util.stream.IntStream;
 2
 3 public class NonDaemonWithNonDaemon {
 4
 5 public static void main(String[] args) {
 6 System.out.println(Thread.currentThread().getName() + " is running..." +
 7 " isDaemon:" + Thread.currentThread().isDaemon()); // #A
 8
 9 Thread nonDaemonThread = new Thread(() -> IntStream.rangeClosed(1, 10)
10 .forEach(i -> System.out.print(Thread.currentThread().getName() + \
11 " count is: " + i + " | "))); // #B
12
13 System.out.println("Is daemon: " + nonDaemonThread.isDaemon()); // #C
14 nonDaemonThread.start(); // #D
15 }
16 }

Output:
main is running… isDaemon:false
Thread-0 count is: 1 | Thread-0 count is: 2 | Thread-0 count is: 3 | Thread-0 count is: 4 | Thread-0 count is: 5 | Thread-0 count is: 6 | Thread-0 count is: 7 | Thread-0 count is: 8 | Thread-0 count is: 9 | Thread-0 count is: 10 |

Code analisis:

 	#A: As mentioned before, notice that the main method is also a non-daemon thread. Therefore, it’s guaranteed that whatever is programmed within it will be executed until the end.

 	#B: We are creating a thread with a simple logic in the run method. We are iterating from 1 to 10, printing the current thread name and the current count from the iteration.

 	#C: Notice that a new thread we create is by default non-daemon. Therefore, the isDaemon method will return false.

 	#D: Finally, we start the non-daemon thread we created and notice that this thread will be executed until the end. Therefore, we will always get the count from 1 to 10 printed.

15.5.2 daemon Thread

A daemon thread, on the other hand, is a thread that might not be executed until the end if the non-daemon thread finishes first.

Let’s see a code example where we have the main non-daemon thread running with a daemon thread. Notice that the daemon thread won’t finish its execution:

 1 import java.util.stream.IntStream;
 2
 3 public class NonDaemonWithDaemon {
 4
 5 public static void main(String[] args) throws InterruptedException {
 6 Thread daemonThread = new Thread(() -> IntStream.rangeClosed(1, 100) // #A
 7 .forEach(i -> System.out.println(Thread.currentThread().getName() \
 8 + " count is: " + i)));
 9 daemonThread.setDaemon(true); // #B
10
11 daemonThread.start(); // #C
12 Thread.sleep(1); // #D
13 }
14 }

Output (Notice that the following output will vary):

main is running… isDaemon:false
Thread-0 count is: 1
Thread-0 count is: 2
Thread-0 count is: 3

Code analisis:

 	#A: Then we create a Thread here with a simple logic in the run method. We basically iterate from 1 to 100 and print the currentThread name with the current count number.

 	#B: A thread is created by default as a non-daemon thread. If we want to make it daemon, we have to do that explicitly by invoking the setDaemon method passing true to it.

 	#C: We are starting our daemon thread here.

 	#D: To have better chances that there will be some output, there is the sleep method with 1 millisecond so that at least the count until three is done. The important thing to realize here is that the daemon thread will live whenever there is another non-daemon thread still running. If there isn’t any the daemon thread will die.

15.5.3 Daemon Non Daemon Barney Beer Challenge

Let’s further explore the use of daemon and non-daemon threads in the following Java Challenge! By reading carefully the following code, what do you think it will happen?

 1 public class DaemonNonDaemonBarneyBeerChallenge {
 2 		static int barneyBeerCount;
 3
 4 		public static void main(String... doYourBest)
 5 throws InterruptedException {
 6 			Thread thread1 = new Thread(() -> barneyBeerCount++);
 7 			thread1.setDaemon(true);
 8 			thread1.start();
 9
10 			Thread thread2 = new Thread(() -> barneyBeerCount++);
11 			thread2.setDaemon(true);
12 			thread2.start();
13
14 			thread1.join();
15 			thread2.join();
16
17 			new Thread(() -> {
18 				for (;;) {
19 					barneyBeerCount++;
20 				}
21 			}).start();
22
23 			System.out.println(barneyBeerCount);
24 		}
25 }

 	Any value from 2 onwards will be printed

 	2
StackOverflowError will be thrown

 	2
Then the for looping will run forever

 	
StackOverflowError will be thrown

Explanation:

The key to solve this challenge is to master the use of a daemon thread. Notice that we are using the join method on each daemon thread. Therefore, each daemon thread will join its execution with the main thread. That also means that both daemon` threads will execute until the end.

Then we start another non-daemon thread with the following command for (;;) that actually means infinite looping. Therefore, since a non-daemon thread needs to be executed until the end, the for looping will be executed forever.

In conclusion, the correct alternative is:

 	2
Then the for looping will run forever

15.6 Using interrupt

Simply put, the interrupt method will change the interrupted flag to true when invoked. Therefore, we have control of this flag in the thread execution.

Let’s see how this idea works in code:

 1 public class InterruptSimpleExample {
 2
 3 public static void main(String[] args) throws InterruptedException {
 4 Thread thread = new Thread(() -> {
 5 while (true) {
 6 if (Thread.interrupted()) {
 7 System.out.println("Interrupting thread...");
 8 break;
 9 }
10 }
11 });
12 thread.start();
13 thread.interrupt();
14 }
15
16 }

Output:
Interrupting thread…

As you can see in the code above, the Thread.interrupted will check the interrupted flag from the current running thread. Since we invoked the interrupt method, this will change the current running thread interrupted flag to true. Therefore, the if condition will be fulfilled and this thread will be interrupted.

Notice that when we use the sleep method, we have to handle the InterruptedException. That happens because if we use the interrupt method while a thread is sleeping, this Exception will be thrown.

Let’s see how that works in code:

 1 public class InterruptSleepExample {
 2
 3 public static void main(String[] args) {
 4 Thread thread = new Thread(() -> {
 5 try {
 6 Thread.sleep(2000);
 7 } catch (InterruptedException e) {
 8 System.out.println("The Interrupted Exception was caught...");
 9 }
10 });
11 thread.start();
12 thread.interrupt();
13 }
14
15 }

Output:
The Interrupted Exception was caught…

The wait method also throws the InterruptedException if the interrupt method is invoked to the thread. In the following code example, we will invoke the wait method for the interruptWaitExample instance and then we will interrupt this thread:

 1 public class InterruptWaitExample {
 2 synchronized void waitThread() {
 3 try {
 4 this.wait();
 5 } catch (InterruptedException e) {
 6 System.out.println("The Interrupted Exception was caught...");
 7 }
 8 }
 9
10 public static void main(String[] args) {
11 InterruptWaitExample interruptWaitExample = new InterruptWaitExample();
12 Thread thread = new Thread(interruptWaitExample::waitThread);
13 thread.start();
14 thread.interrupt();
15 }
16 }

Output:
The Interrupted Exception was caught…

As you can see in the code above, by interrupting the thread in the waiting state it will also throws the InterruptedException. That’s why the InterruptedException is a checked Exception.

15.7 Race Condition

Dealing with multiple threads is complicated by itself. When sharing the same data then things get even more complicated.

When multiple threads share the same data, chances are that there will be data inconsistency if not handled appropriately. This problem is known as race condition.

To understand this situation better, let’s see a code example:

 1 import java.util.stream.IntStream;
 2
 3 public class RaceConditionMultipleThreads {
 4
 5 private int counter = 0;
 6
 7 public void incrementCounter() {
 8 try {
 9 Thread.sleep(10); // #E
10 counter++; // same as: counter = counter + 1;
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 }
15
16 public int getCounter() {
17 return counter;
18 }
19
20 public static void main(String... args) {
21 RaceConditionMultipleThreads raceCondition = new \
22 RaceConditionMultipleThreads(); // #A
23 IntStream.rangeClosed(1, 5).forEach(i -> { // #B
24 Thread thread = new Thread(() -> { // #C
25 raceCondition.incrementCounter(); // #D
26 System.out.println(Thread.currentThread().getName() + ":" + \
27 raceCondition.getCounter()); // #F
28 });
29
30 thread.start(); // #G
31 });
32 }
33
34 }

Output (Random):

Thread-0:1
Thread-3:4
Thread-4:4
Thread-1:2
Thread-2:2

Code Analisis:

An important point to pay attention is that a race condition will only happen if there is data being shared.

 	#A: Create only one instance from RaceConditionExample, therefore, the instance variable counter is being shared.

 	#B: Create a looping from 1 to 5 with the IntStream.

 	#C & #D: Create 5 Threads invoking the incrementCounter method.

 	#E: Invoke Thread.sleep with 10 milliseconds to cause a race condition more easily.

 	#F: Print the name of the current thread and then the counter.

 	#G: Start 5 threads. However, those threads will be invoked at the same time, therefore, there will be conflict with the data processing. Remember that a thread execution time is unpredictable, so the output will be random and also unpredictable.

15.7.1 Race Condition Between Two Threads Count

Let’s see now a race condition happening between two threads. Now we have a looping from 1 to 5 incrementing the counter for two threads. Let’s see what happens when running the following code:

 1 import java.util.stream.IntStream;
 2
 3 public class RaceConditionForTwoThreads {
 4
 5 private int counter = 0;
 6
 7 public void incrementCounter() {
 8 try {
 9 Thread.sleep(10);
10 counter++;
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 }
15
16 public int getCounter() {
17 return counter;
18 }
19
20 public static void main(String... args) {
21 RaceConditionForTwoThreads raceCondition =
22 new RaceConditionForTwoThreads();
23 runThread(raceCondition);
24 runThread(raceCondition);
25 }
26
27 private static void runThread(RaceConditionForTwoThreads raceCondition) {
28 Thread thread = new Thread(() -> IntStream.rangeClosed(1, 2)
29 .forEach(i -> {
30 raceCondition.incrementCounter();
31 System.out.println(Thread.currentThread().getName() + ":"
32 + raceCondition.getCounter());
33 }));
34
35 thread.start();
36 }
37
38 }

Output (Random):

Thread-1:1
Thread-0:1
Thread-1:2
Thread-0:2

Code Analisis:

As you can see the code above is similar to the previous race condition example. The difference is that there are only two threads and the looping is inside the Thread run method.

Notice in the output that we have only two threads, Thread-0 and Thread-1. Note also that the race condition is very likely to happen, since we are not using any mechanism to synchronize values they will repeat very often.

15.8 Mutual Exclusion (Mutex)

The code example above demonstrates the problems of using multiple threads concurrently sharing the same data. But fortunately there is a way to fix this problem with mutual exclusion, also called as thread synchronization.

Thread synchronization is the technique used to make sure a critical section (code that might cause data conflict between threads) of the code will always run in isolation from the other threads.

A simple analogy to a synchronized block with Threads is to imagine that the critical code section is a bathroom and the lock is the bathroom’s door lock. Imagine the thread are the people that will go to the bathroom. When a person goes to the bathroom and locks the door, other people won’t be able to enter the bathroom. They will have to wait until the lock is opened. Once the door is opened then the other person will be able to enter.

Let’s see how that works if we fix the code above to avoid data conflict and race condition:

 1 import java.util.stream.IntStream;
 2
 3 public class RaceConditionMultipleThreadsSync {
 4
 5 private int counter = 0;
 6
 7 public synchronized int incrementAndGet() { // #A
 8 try {
 9 Thread.sleep(10);
10 counter++;
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 return counter;
15 }
16
17 public static void main(String... args) {
18 RaceConditionMultipleThreadsSync raceCondition = \
19 new RaceConditionMultipleThreadsSync();
20 IntStream.rangeClosed(1, 5).forEach(i -> {
21 Thread thread = new Thread(() -> {
22 System.out.println(Thread.currentThread().getName() + ":" +
23 raceCondition.incrementAndGet()); // #B
24 });
25
26 thread.start();
27 });
28 }
29
30 }

Output (Thread execution order may vary):

Thread-0:1
Thread-4:2
Thread-3:3
Thread-2:4
Thread-1:5

Code Analisis:

 	#A: Notice that we are using the synchronized keyword which means that this method will be executed in isolation with each Thread.

 	#B: To be able to get the same value for each thread, we have to make the increment operation atomic. An atomic operation means that the counter variable will be incremented and returned at the same code block. It’s the concept of all or nothing.

Notice in the output of the code above that we don’t have any repated value and that’s because now we are synchronizing the values.

15.8.1 Internal Concurrency Behaviours

The fundamental concurrency concept behind the scenes when using thread synchronization is also known as monitor lock or intrinsic lock.

In Java, this concept is known as simply “monitor”.

Every Java object has an intrinsic lock associated with it. Once an intrinsic lock is acquired by an object, it will be associated with the current thread. Another thread can acquire the lock only when the current thread realeases the lock.

For further information, check out the Java docs:
(https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html)[https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html]

15.8.2 Synchronizing the Race Condition for Two Threads

Let’s now fix the race condition for the two threads. To do so is easy, we just need to synchronize the incrementCounter method and that will avoid the count repetition as you can see in the following code:

 1 import java.util.stream.IntStream;
 2
 3 public class RaceConditionForTwoThreadsSync {
 4
 5 private int counter = 0;
 6
 7 public synchronized int incrementAndGetCounter() {
 8 try {
 9 Thread.sleep(10);
10 counter++;
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 return counter;
15 }
16
17 public static void main(String... args) {
18 RaceConditionForTwoThreadsSync raceConditionSync =
19 new RaceConditionForTwoThreadsSync();
20 runThread(raceConditionSync);
21 runThread(raceConditionSync);
22 }
23
24 private static void runThread(RaceConditionForTwoThreadsSync \
25 raceConditionSync) {
26 Thread thread = new Thread(() -> IntStream.rangeClosed(1, 2)
27 .forEach(i -> {
28 System.out.println(Thread.currentThread().getName() + ":"
29 + raceConditionSync.incrementAndGetCounter());
30 }));
31
32 thread.start();
33 }
34
35 }

 Output (Thread execution may vary)

Thread-0:1
Thread-1:2
Thread-0:3
Thread-1:4

Code Analisis:

Notice that we changed theincrementCounter method to incrementAndGetCounter. This means that the increment to the counter variable will happen and then we will get the counter in the same method. We are doing that because this operation has to be atomic, this means all or nothing.

Another important point is that we are synchronizing the incrementAndGetCounter method so threads don’t access this method at the same time possibly causing data collision.

15.8.3 Block synchronization

It’s also possible to synchronize a block of code. This is useful when we don’t want to synchronize the whole method but just a specific part.

Let’s suppose we have a similar code from above but we have a lot of code in the incrementAndGetCounter method that we don’t need to synchronize. Then let’s only synchronize the critical section of the code that might have data collision between threads:

 1 public class SynchronizeBlock {
 2
 3 private int counter = 0;
 4
 5 public int incrementCounter() {
 6 // Extra logic here...
 7
 8 synchronized (this) { // #A
 9 try {
10 Thread.sleep(10);
11 counter++;
12 return counter;
13 } catch (InterruptedException e) {
14 e.printStackTrace();
15 }
16 }
17
18 return 0;
19 }
20
21 // Omitted main method since it's similar from the previous example
22
23 }

Code analisis:

 	#A: Notice that we are synchronizing the instance of the SynchronizeBlock class which is bounded to the thread. As seen before this means the current instance being executed. As mentioned before, the synchronize block is useful to synchronize part of a method code.

15.8.4 Object synchronization

Now imagine the situation where we want to synchronize two critical sections of the code but there is no dependency on each other. In other words, in the following code, we don’t want to block both methods increment1 and increment2 at the same time.

If we were using the previous approach only using this, we wouldn’t be able to accomplish that. The only way to synchronize increment1 and increment2 separately is to create two lock objects.

Notice in the following code that if the method increment1 acquired the lock, the increment2 method will be allowed to be executed by another thread normally:

 1 public class SynchronizeBlockObjectLock {
 2
 3 private int counter1;
 4 private int counter2;
 5
 6 private final Object lock1 = new Object();
 7 private final Object lock2 = new Object();
 8
 9 public void increment1() {
10 synchronized(lock1) {
11 counter1++;
12 }
13 }
14
15 public void increment2() {
16 synchronized(lock2) {
17 counter2++;
18 }
19 }
20 }

Code analisis:

As per the Java docs, use the above technique very cautiously since this might cause a race condition if not used properly.

To summarize, only use the technique above when methods don’t share the same data and there is no need to synchronize those methods at the same time. This will allow one thread to execute the increment1 method and the other to execute the increment2 method at the same time. Therefore, performance will be enhanced.

15.9 Using wait and notify

To orchestrate thread execution at a low level, there are the methods wait and notify. The wait method will pause a thread execution and the notify method will wake up the thread to continue the execution.

Let’s start exploring how the wait method works.

15.9.1 wait in practice

Now that we know the basics of the synchronized keyword or intrinsic locks, we can take a look at the wait method from the Object class.

It’s important to remember that the wait method can only be used within a synchronized method or block:

 1 public class NoMonitorWaitExample {
 2
 3 public static void main(String[] args) {
 4 new NoMonitorWaitExample().tryToUseWait();
 5 }
 6
 7 void tryToUseWait() {
 8 try {
 9 wait();
10 } catch (InterruptedException e) {
11 e.printStackTrace();
12 }
13 }
14
15 }

Output:
Exception in thread “main” java.lang.IllegalMonitorStateException: current thread is not owner…

To fix that, we can add the synchronized keyword in the tryToUseWait method as the following:

 1 public class WaitWithMonitorExample {
 2
 3 public static void main(String[] args) {
 4 new WaitWithMonitorExample().tryToUseWait();
 5 }
 6
 7 synchronized void tryToUseWait() {
 8 try {
 9 System.out.println(Thread.currentThread().getName() +
10 " thread will be in the non-runnable state...");
11 wait();
12 System.out.println("This text will never be reached...");
13 } catch (InterruptedException e) {
14 e.printStackTrace();
15 }
16 }
17 }

Output:
main thread will be in the non-runnable state…
The program will run forever

In the code above, the wait() method from the NoMonitorWaitExample instance will put the main thread in the non-runnable state. In other words, the main thread will stop its execution but will remain alive.

Threfore, the program above will be running forever and the following code after the wait method will never be reached.

15.9.2 Using timeoutMillis with wait

There is also a way to wake up a thread with timeoutMillis if the thread is not awakened before by a notify. To do so, we can pass a timeout to the wait method. Let’s see how that works in code:

 1 public class WaitTimeoutMillisExample {
 2
 3 public static void main(String[] args) {
 4 new WaitTimeoutMillisExample().waitWithTimeoutMillis();
 5 }
 6
 7 synchronized void waitWithTimeoutMillis() {
 8 try {
 9 System.out.println(Thread.currentThread().getName()
10 + " thread will be in the non-runnable state...");
11 wait(1000);
12 System.out.println("This text will be printed after 1 second...");
13 } catch (InterruptedException e) {
14 e.printStackTrace();
15 }
16 }
17
18 }

Output:
main thread will be in the non-runnable state…
This text will be printed after 1 second…

As you can see in the above output, even though the main thread wasn’t notified by any other thread it awakes after the timeout of 1 second.

15.9.3 notify

As we saw in the code example above, when a thread invokes the wait method it keeps on waiting forever. To solve this issue, we can use the notify method from another thread and then change the non-runnable thread to runnable.

Notice that the notify method is another one from the Object class.

Just like the wait method, the notify also has to have the lock. In other words, it has to be synchronized. If that doesn’t happen an IllegalMonitorStateException will be thrown as you can see in the following code:

 1 public class NoMonitorNotifyExample {
 2
 3 public static void main(String[] args) {
 4 new NoMonitorNotifyExample().tryToUseNotify();
 5 }
 6
 7 void tryToUseNotify() {
 8 notify();
 9 }
10 }

Output:
Exception in thread “main” java.lang.IllegalMonitorStateException: current thread is not owner

Just like the wait method, if we add the synchronized keyword in the tryToUseNotify method, then it will run ok:

 1 public class NotifyMonitorExample {
 2
 3 public static void main(String[] args) {
 4 new NotifyMonitorExample().tryToUseNotify();
 5 }
 6
 7 synchronized void tryToUseNotify() {
 8 notify();
 9 System.out.println("Runs fine when there is lock...");
10 }
11 }

Output:
Runs fine when there is lock…

The notify method will only notify other thread to change the state from non-runnable to runnable. Therefore, the program above runs normally until the end. If there isn’t a thread to notify, that’s also totally fine.

15.9.4 Changing a thread from non-runnable to runnable with notify

Now let’s solve the problem when a thread is in the non-runnable state and let’s change it to runnable with the notify method in code:

 1 public class WaitNotifyExample {
 2
 3 public static void main(String[] args) {
 4 WaitNotifyExample waitNotifyExample = new WaitNotifyExample();
 5 new Thread(waitNotifyExample::waitForNotification).start();
 6 new Thread(waitNotifyExample::notifyOtherThread).start();
 7 }
 8
 9 synchronized void waitForNotification() {
10 try {
11 System.out.println(Thread.currentThread().getName() + " is waiting...");
12 this.wait();
13 System.out.println(Thread.currentThread().getName() + " is notified!");
14 } catch (InterruptedException e) {
15 e.printStackTrace();
16 }
17 }
18
19 synchronized void notifyOtherThread() {
20 System.out.println(Thread.currentThread().getName() +
21 " will notify other thread...");
22 this.notify();
23 }
24 }

Output:
Thread-0 is waiting…
Thread-1 will notify other thread…
Thread-0 is notified!

Code Analisis:

Notice now that the program is being finalized normally. In the waitForNotification we will invoke the wait method and in the notifyOtherThread method we will notify the other thread, therefore, it will always change the state from non-runnable to runnable.

15.9.5 Possible Issues with wait

A thread that invokes the wait method might be awaken at any moment. This problem has the name of spurious wake-ups. Which in other words a thread that invoked wait might wake up without a notify invocation`. For this reason, it’s a good practice to always add a while looping with a control flag so that this doesn’t happen.

Let’s see how we can apply that in code with the following example where we will wait to receive a message and then show it:

 1 class MessageSender {
 2 private boolean messageSent = false;
 3 private String message;
 4
 5 public synchronized void receiveMessage() {
 6 while(!messageSent){
 7 try {
 8 wait();
 9 } catch (InterruptedException e) { e.printStackTrace(); }
10 }
11 System.out.println(message);
12 }
13
14 public synchronized void sendMessage() {
15 message = "Hello!";
16 this.messageSent = true;
17 notify();
18 }
19
20 public static void main(String[] args) {
21 MessageSender messageSender = new MessageSender();
22 new Thread(messageSender::receiveMessage).start();
23 new Thread(messageSender::sendMessage).start();
24 }
25 }

Output:
Hello!

Notice that the receiveMessage has a while looping checking if the message was not sent, it must wait. This check will ensure that once the thread that runs the receiveMessage will wait for the message even it it awakes suddenly.

15.9.6 notifyAll

The notifyAll method will awake all threads that are in the non-runnable state. It’s also another method from the Object class.

In the following code example, we will see three threads invoking the wait method and changing state from runnable to non-runnable. Then we will use the notifyAll method to awake all of those threads:

 1 public class NotifyAllExample {
 2
 3 public static void main(String[] args) throws InterruptedException {
 4 NotifyAllExample notifyAllExample = new NotifyAllExample();
 5 Thread thread1 = new Thread(notifyAllExample::waitNotification); // #A
 6 Thread thread2 = new Thread(notifyAllExample::waitNotification);
 7 Thread thread3 = new Thread(notifyAllExample::waitNotification);
 8
 9 thread1.start(); // #B
10 thread2.start();
11 thread3.start();
12 Thread.sleep(1000); // #C
13 notifyAllExample.notifyAllThreads(); // #D
14 }
15
16 private synchronized void waitNotification() {
17 System.out.println(Thread.currentThread().getName()+ " starts");
18 try {
19 this.wait();
20 } catch (InterruptedException e) { e.printStackTrace(); }
21 System.out.println(Thread.currentThread().getName() + " notified");
22 }
23
24 private synchronized void notifyAllThreads() {
25 this.notifyAll();
26 }
27 }

Output:

Thread-0 starts
Thread-2 starts
Thread-1 starts
Thread-0 notified
Thread-1 notified
Thread-2 notified

Code analisis:

 	#A: We use a method reference here because the method waitNotification matches the contract from Runnable. It’s also a void method. Also, we wait using the notifyAllExample instance. We do the same for three threads.

 	#B: We start the three Threads we created.

 	#C: Wait 1 second just to make sure all three threads already started and waiting for the notifyAll method.

 	#D: We invoke the notifyAllThreads using the instance of notifyAllExample to notify the three threads.

15.9.7 Important points from wait, notify and notifyAll

 	
wait, notify, and notifyAll can be only used within a synchronized method or block

 	
wait, notify, and nofifyAll are methods from the Object class, this means that every Java class has those methods.

 	when using the wait method

 	the thread will go to the state non-runnable

 	the thread might wake up suddenly, also called as spurious wake-ups

 	
wait, notify, and notifyAll will be always used by an object

Notice that it’s not that simple to use the wait, notify, and notifyAll methods. In real applications it’s even more complicated since we will be dealing with more complex requirements.

However, it’s crucial for every Java developer to know how to use it. Once you know how to use it, it’s recommended to use higher-level classes from the java.util.concurrent package.

To reinforce this point, Josh Bloch also emphasasis in his excellent book which I recommend for every Java developer. It’s the Effective Java 2nd Edition book in the Item 69: Prefer concurrency utilities to wait and notify.

15.9.8 Duke Sync Wait Notify Java Challenge

In the following code challenge, let’s further explore the use of the wait and notify methods.

By analising the following code, what do you think it will happen?

 1 public class DukeSyncChallenge {
 2 public synchronized static void main(String[] args)
 3 throws InterruptedException {
 4 Thread thread = new Thread(() -> {
 5 System.out.println("Duke Will Do it!");
 6 try {
 7 Thread.currentThread().wait();
 8 System.out.println("Duke Did it!");
 9 } catch (InterruptedException e) {
10 e.printStackTrace();
11 }
12 });
13
14 thread.start();
15 thread.notify();
16 }
17 }

 	Duke Will Do it!
But “Duke Did it!” might not be printed

 	Duke Will Do it!
Duke Did it!

 	IllegalMonitorStateException will be thrown at lines 7 and 16
Duke Will Do it! (Not exactly in the same order)

 	There is no guarantee, nothing or “Duke Will Do it!” and “Duke Did it!” might be printed.

Explanation:

The trick of this code challenge is that even though we are synchronizing the main method, we are not actually using the wait and notify methods for the main method. Instead, we are trying to invoke the wait method from the current thread which actually does not hold the lock.

That means, we are not synchronizing the current thread object at all!

Therefore, when trying to invoke the wait method from the currentThread we will get an IllegalMonitorStateException. The same will happen when invoking the notify method from the thread object since there is no lock for it.

As a rule of thumb, always synchronize the object you want to use the wait, notify, and notifyAll methods. Also remember that every Object can invoke those methods.

15.10 Summary

This was an extensive chapter but a very important one. Knowing how to write multi-thread code is a fundamental skill for every software engineer.

In this chapter you learned how to use:

 	Thread class to create the smallest process in your computer

 	
run method to implement the Thread behaviour

 	
start method to effectively start a thread

 	
Runnable to encapsulate the behaviour from the run method

 	
sleep to temporally stop a thread execution

 	
join to join a thread execution to another thread

 	
non-daemon threads to wait until the process is finished

 	
daemon threads to not wait until the process is finished

 	
interrupt to interrupt a thread usually in case of error

 	the right multi-thread code to avoid race condition

 	Mutual exclusion (Mutex) to invoke a multi-thread method in isolation

 	synchronize method and code block

 	Custom Object synchronization

 	Putting a thread in the wait state

 	
notify and nofifyAll threads that are in the wait state

16 Advanced Concurrency

This chapter covers:

 	Synchronizing threads with ReentrantLock

 	Using atomic variables

 	Java memory model

 	What is a volatile variable in a multi-thread environment

 	Creating asynchronous code with CompletableFuture

 	Using Thread Pools to optimize performance

 	Using concurrent objects

 	Total of 3 Java code Challenges

When dealing with concurrency and parallelism in Java, we must give preference to the already existing powerful APIs to not reinvent the wheel.

This is key to creating robust and reliable high-quality software. By knowing the available tools in Java, there will be no need to create complex concurrent code.

Therefore, let’s then explore the most important and powerful classes from the amazing concurrent API Java provides to us.

16.1 ReentrantLock Basics

The ReentrantLock class is a more sophisticated way to synchronize code. It’s possible to lock and unlock passing it via parameter, also only write or read operations, control the way the lock will happen.

To start, let’s see the simplest use case for the ReentrantLock with lock and unlock:

 1 Lock lock = new ReentrantLock();
2
3 try {
4 lock.lock();
5 // Critical section code
6 } finally {
7 lock.unlock();
8 }

Notice in the code above that we used the lock method within a try block and a the unlock method in a finally block. This is because in case any Exception happens the unlock method must be invoked.

Another great advantage from the ReentrantLock class is that it can be passed via parameter:

 1 static void doLock() {
 2 Lock lock = new ReentrantLock();
 3
 4 try {
 5 lock.lock();
 6 // Critical section code
 7 } catch (Exception exception) {
 8 // Handle exception
 9 } finally {
10 doUnlock(lock);
11 }
12 }
13
14 static void doUnlock(Lock lock) {
15 // Critical section code
16 lock.unlock();
17 }

The lock can be also shared between two methods:

 1 static Lock lock = new ReentrantLock();
 2
 3 static void doLock() {
 4 try {
 5 lock.lock();
 6 // Critical section code
 7 } catch (Exception exception) {
 8 // Handle exception
 9 } finally {
10 doUnlock();
11 }
12 }
13
14 static void doUnlock() {
15 // Critical section code
16 lock.unlock();
17 }

16.1.1 ReadWriteLock Operations

A great feature from ReentrantLock is to be able to lock only read or write operations. Depending on the use case, this feature might increase performance significantly.

Simply put, when a thread is reading a shared resource, the others can’t write. Also, many threads can acquire the read lock at the same time.

When a thread acquires the write lock, other threads can’t acquire both read and write locks.

Let’s see how that works in code by using ReadWriteLock:

 1 public class ReadWriteLockEx {
 2
 3 private static ReadWriteLock lock = new ReentrantReadWriteLock();
 4 private static int counter = 0;
 5
 6 public static void main(String[] args) {
 7 ExecutorService executor = Executors.newFixedThreadPool(5);
 8 Runnable writeTask = () -> {
 9 lock.writeLock().lock();
10 System.out.println("Start writing: " + counter);
11 counter++;
12 System.out.println("Finish writing: " + counter);
13 lock.writeLock().unlock();
14 };
15 Runnable readTask = () -> {
16 lock.readLock().lock();
17 String threadName = Thread.currentThread().getName();
18 System.out.println(threadName + " Start reading: " + counter);
19 System.out.println(threadName + " Finish reading: " + counter);
20 lock.readLock().unlock();
21 };
22
23 IntStream.rangeClosed(1, 4).forEach(e -> {
24 executor.execute(writeTask);
25 executor.execute(readTask);
26 });
27
28 executor.shutdown();
29 }
30 }

Output:
Start writing: 0
Finish writing: 1
pool-1-thread-2 Start reading: 1
pool-1-thread-1 Start reading: 1
pool-1-thread-4 Start reading: 1
pool-1-thread-2 Finish reading: 1
…

By analizing the output above, notice that when a thread holds the write lock, other threads will not be able to acquire the write and read locks.

That’s why in the output above, you will always see the following together:
Start writing: 0
Finish writing: 1

The read lock behaves differently. The read lock will wait for any write operation until it’s able to read. Also, multiple threads can read the same resource at the same time and that’s why we see the following output:
pool-1-thread-2 Start reading: 1
pool-1-thread-1 Start reading: 1
pool-1-thread-4 Start reading: 1
pool-1-thread-2 Finish reading: 1

16.1.2 ReadWriteLock Summary

Read Lock: Many threads can acquire the read lock at the same time. However, threads can’t acquire the read lock while the write lock is acquired.

Write Lock: One write lock can be acquired at a time. A write lock can’t also be acquired if the read lock was acquired.

16.2 Atomic Variables

Another way to synchronize values and make an application thread-safe is to use atomic values. There are many atomic types in the JDK, such as AtomicInteger, AtomicBoolean, AtomicLong, AtomicLongArray from the package java.util.concurrent.atomic.

Those variable types will avoid race condition because they are obviously atomic. This means that the write and read operations are done together, it’s all or nothing. The variable behind the scenes of an atomic variable is also volatile which we will explore it further in next sections.

 1 import java.util.concurrent.atomic.AtomicInteger;
 2
 3 class AtomicCounter {
 4 private AtomicInteger atomicCounter = new AtomicInteger(0);
 5
 6 public void increment() {
 7 atomicCounter.incrementAndGet();
 8 }
 9
10 public void decrement() {
11 atomicCounter.decrementAndGet();
12 }
13
14 public int getValue() {
15 return atomicCounter.get();
16 }
17
18 }

The above approach will make the code thread-safe. Also, this approach is recommended when the code we have to make thread-safe is complex enough. By using an atomic variables we don’t need to synchronize a method or a block.

For further details, check the Java docs:
(https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html)[https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html]

16.2.1 AtomicReference

To atomically change a value from any Object we want, we can use the AtomicReference class. This class is useful in a multi-thread environment since it will avoid data collision between threads.

 1 import java.util.concurrent.atomic.AtomicReference;
 2
 3 public class AtomicReferenceEx {
 4 public static void main(String[] args) {
 5 AtomicReference<Object> atomicReference = new AtomicReference<>();
 6 String initialValue = "NoChallenger";
 7 atomicReference.set(initialValue);
 8
 9 System.out.println(atomicReference.get());
10 Object newValue = "JavaChallenger";
11 boolean valueUpdated = atomicReference
12 .compareAndSet(initialValue, newValue);
13
14 System.out.println(atomicReference + ", " + valueUpdated);
15 }
16 }

Output:
NoChallenger
JavaChallenger, true

Therefore, if you need to change a value of an Object you created and want it to be thread-safe, the AtomicReference class is a great choice.

16.3 The volatile keyword

Before exploring what is the problem that the volatile keyword solves, it’s very important to understand a little bit of the Java memory model.

 [image:]
 Java Memory Model

JVM: the Java Virtual Machine at a high-level is responsible to transform bytecode into machine code and it’s also part of the Java Runtime Environment(JRE).

Jit Compiler: Just-in-time compiler that performs optmizations when compiling the byte code to native machine code during runtime. It’s possible to pass special instructions to enable an important concept called happens-before which will manage variable values where its write and subsequent read are always consistent. We will see more details in the next sections.

Notice that in the Java memory model there are the L2 and L3 caches. To make the program execution more performant, the JVM implements optimization strategies. One of those are the order of execution which means that the code will be executed in an optmized way and this sometimes will cause data inconsistency in a multi-thread environment.

The other strategy is that when the JVM finds suitable it will cache values which in most cases this behaviour will be benefitial. However, the variable value caching might cause data inconsistency between threads.

The volatile keyword will will solve this caching problem. With volatile we will ensure that the latest value will be available to be read after modification between threads. The volatile keyword will ensure that the data will be always available in the main memory.

Another great way to explain what the volatile keyword does is the following:

 “…the volatile modifier guarantees that any thread that reads a field will see the most recently written value.” - Josh Bloch

16.3.1 The Problem volatile Solves

Let’s see a code example without volatile:

 1 public class WithoutVolatileProblem {
 2
 3 private static boolean ready = false;
 4 public static void main(String[] args) {
 5 new Thread(() -> {
 6 for (int i = 1; i <= 5; i++){
 7 System.out.println("First thread - Value of i: " + i);
 8 }
 9 ready = true;
10 System.out.println("Changed ready flag: " + ready);
11 }).start();
12
13 new Thread(() -> {
14 int i = 1;
15 while (!ready) {
16 i++;
17 }
18 System.out.println("Second thread - Value of i: " + i);
19 }).start();
20 }
21 }

Output:

First thread - Value of i: 1
First thread - Value of i: 2
First thread - Value of i: 3
First thread - Value of i: 4
First thread - Value of i: 5
Changed ready flag: true
The program never ends…

Code analisis:

Notice that we have an issue in the code above, the program will never end! This happens because the JVM will use its optmization strategies. Therefore, since the variable ready is being used more in the second thread

Notice that the JVM will use its optmization strategies in the code above and will put the variable value into a cache. This means that even though the first thread changes the value from ready true, the second thread will read cached value false.

16.3.2 Solving Multi-Thread Variable Visibility Problem with volatile

Let’s see now what happens when we use the volatile keyword in the same code as above:

 1 public class WithVolatileSolution {
2
3 private static volatile boolean ready = false;
4 // Same code as above...
5 }

Output:
First thread - Value of i: 1
First thread - Value of i: 2
First thread - Value of i: 3
First thread - Value of i: 4
First thread - Value of i: 5
Second thread - Value of i: 10375341
Changed ready flag: true

Notice that the code above is finished normally. That’s because when we use the volatile keyword the variable value will be always in the main memory. Therefore, the program above is guaranteed to be finished since the ready variable value will always be updated and visible between threads.

16.3.3 Volatile Counter Java Challenge

In the following code challenge, we will explore the use of a volatile variable with a counter shared between two threads. Therefore, what do you think it will happen in the following code?

 1 import java.util.stream.IntStream;
 2
 3 public class VolatileCounterChallenge {
 4 private static volatile int counter = 0;
 5
 6 public static void main(String[] args) {
 7 incrementCounterWithNewThread();
 8 incrementCounterWithNewThread();
 9 System.out.println("Last: " + counter);
10 }
11
12 private static void incrementCounterWithNewThread() {
13 Runnable runnableTask = () -> IntStream.range(0, 2).forEach((a) -> {
14 incrementCounter();
15 });
16 new Thread(runnableTask).start();
17 }
18
19 static void incrementCounter() {
20 try {
21 Thread.sleep(10);
22 System.out.print(++counter);
23 } catch (InterruptedException e) {}
24 }
25 }

 	Last:0 might be printed first
The numbers will be in a random order and won’t have repeated numbers

 	1234
Last:4

 	Last:0
1234

 	Last:0 might be printed first
The numbers will be in a random order and might have repeated numbers

Explanation:

The important point to realize regarding the volatile operator is that it doesn’t synchronize threads. The main purpose of the volatile operator is to use the latest updated value from a variable, handle happens-before principles.

Therefore, if the variable is not atomic, chances are that the value will be repeated because the threads will increment the shared variable at the same time in the code above.

Keep in mind that the volatile keyword won’t also synchronize your code. It will keep the latest updated value and will help you with the happens-before rule.

With that in mind, the correct alternative is:

 	Last:0 might be printed first
The numbers will be in a random order and might have repeated numbers

16.3.4 Summary from volatile

 	It guarantees that the variable will be read from the main memory, not from the cache.

 	The happens-before rule take action with volatile. Which means that if two threads are sharing the same resource, the write will happen before the read.

 	It doesn’t synchronize threads, therefore, if a processes have to be executed in isolation (mutual exclusion), the volatile keyword won’t do that.

 	Using volatile will avoid the use of a CPU cache, therefore, only use it when necessary.

16.4 The happens-before Rule

There is also a very important rule called happens-before. When code are executed in a multi-thread environment the compiler and CPU will reorder code statements for performance optimization.

There are a set of rules from the compiler to guarantee that a code execution happens-before another code execution. Usually, the code reordering happens when the compiler knows that it won’t impact the code logic process.

Let’s see a simple code example that assigns values to variables that are not volatile and then assigns a value to a volatile variable:

 1 int number1 = 7; // Will always happen before the volatile assigning
2 int number2 = 8; // Will always happen before the volatile assigning
3 volatile int number3 = 9;

The variable assigning from number1 and number2 might be reordered since there is no impact in the code. However, the volatile variable assigning from number3 is guaranteed to not be reordered with number1 and number2. It will always be assigned after number1 and number2 because number1 is a volatile variable.

The compiler could execute the above code as follows:

 1 int number2 = 8; // Might be reordered but will always happens before volatile
2 int number1 = 7; // Might be reordered but will always happens before volatile
3 volatile int number3 = 9;

There are more situations for the happens-before rule. However, in the day-to-day work it’s not really necessary to know all of the rules.

The important thing is for you to know that there is such a concept and if you really need to implement asynchronous code at that level then you know that this concept is there and you can go into more details in the Java docs:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html

16.5 CompletableFuture

The CompletableFuture api is an upgrade from the Future api introduce in Java 5. The CompletableFuture interface is capable of executing code in parallel, handle exceptions, and combine values in order.

16.5.1 supplyAsync

The supplyAsync method uses the functional interface Supplier which basically returns a value.

Therefore, let’s return a String value from the supplyAsync method:

 1 CompletableFuture<String> completableFuture
2 = CompletableFuture.supplyAsync(() -> "Challenger supply!");
3
4 System.out.println(completableFuture.get());

Output:
Challenger supply!

Notice in the code above that the completableFuture.get() will wait if necessary until the computation from the supplyAsync is done.

16.5.2 Composing Futures

One of the greatest motivations to have the CompletableFuture api was to compose the computing processing together.

With the Future interface that wasn’t possible. Let’s see how to do that in the simplest form with CompletableFuture:

 1 CompletableFuture<String> completableFuture =
2 CompletableFuture.supplyAsync(() -> "Java");
3
4 CompletableFuture<String> combinedFuture =
5 completableFuture.thenApply(previousResult ->
6 previousResult + " Challenger");
7
8 System.out.println(combinedFuture.get());

Output:
Java Challenger

Notice in the code above that firstly declare a CompletableFuture, then we implement the supplyAsync method and return “Java”.

Notice that the thenApply receives the Function funtional interface which receives and returns a value. Then, we use the thenApply method that receives the result from the first completableFuture and then we combine the result with the combinedFuture.

16.5.3 thenCompose

The thenCompose method combines CompletableFutures. This is useful if we want to have more robustness in the pipeline from the CompletableFuture.

The thenCompose method signature is the following:

 1 public <U> CompletableFuture<U> thenCompose(
2 Function<? super T, ? extends CompletionStage<U>> fn) { ... }

As you can see in the code above, this method receives a Function that gets the parameter from the CompletableFuture and returns a CompletableStage that will be basically a CompletableFuture since it extends CompletableStage as you can see in the following code:

 1 public class CompletableFuture<T> implements Future<T>, CompletionStage<T> { }

Therefore, we are passing a method reference that receives as a parameter a String and returns a CompletableFuture.

 1 CompletableFuture<String> completableFuture
 2 = CompletableFuture.supplyAsync(() -> "Java");
 3
 4 CompletableFuture<String> combinedFuture =
 5 completableFuture.thenCompose(SupplyAsyncCompose::composeFutures);
 6
 7 System.out.println(combinedFuture.get());
 8
 9 private static CompletableFuture<String> composeFutures(String supplyString) {
10 System.out.println(supplyString + " Composing...");
11
12 return CompletableFuture.supplyAsync(() -> "Challenger");
13 }

We could also pass the method implementation directly to the thenCompose method also but the code would get confusing as you can see:

 1 // Same code as above
2 CompletableFuture<String> combinedFuture =
3 completableFuture.thenCompose((supplyString) -> {
4 System.out.println(supplyString + " Composing...");
5
6 return CompletableFuture.supplyAsync(() -> "Challenger");
7 });

16.5.4 thenRun

To only run some code after another CompletableFuture, we can use the thenRun method.

As you can see, the thenRun method receives a Runnable:

 1 public CompletableFuture<Void> thenRun(Runnable action) { ... }

Therefore, we can use a lambda expression that runs code without returning a value and receiving a parameter:

 1 CompletableFuture<Integer> completableFuture
2 = CompletableFuture.supplyAsync(() -> i++);
3
4 CompletableFuture<Void> combinedFuture =
5 completableFuture.thenRun(() -> System.out.println("Challenger"));
6
7 System.out.println(combinedFuture.get());
8 System.out.println(i);

Output:

Challenger
null
1

Notice that even though the get method returns null and the thenRun method does nothing with the result from the first CompletableFuture, still it gets executed. This is very clear since the value from the static variable i is being incremented when we execute the following combinedFuture.get().

The thenRun method is useful to run some code whenever the result from the previous CompletableFuture is not relevant.

16.5.5 thenAccept

The thenAccept method receives a Consumer in its method signature as you can see in the following code:

 1 public CompletableFuture<Void> thenAccept(Consumer<? super T> action) { ... }

As seen before in the lambda chapter, a Consumer only consumes a value but doesn’t return anything.

Therefore, it will receive the result from the previous CompletableFuture and will process it but won’t be a return value:

 1 CompletableFuture<String> completableFuture
2 = CompletableFuture.supplyAsync(() -> "Java");
3
4 CompletableFuture<Void> combinedFuture =
5 completableFuture.thenAccept(previousResult
6 -> System.out.println(previousResult + " Challenger"));
7
8 System.out.println(combinedFuture.get());

Output:
Java Challenger
null

Notice also that it returns a CompletableFuture<Void>, this means that the generic type value can’t be returned. That’s why when we print the information from combinedFuture, we get the output of null.

16.5.6 thenApply

The thenApply method is simpler than the thenCompose method. Instead of having to return a CompletableFuture we simply return the generic type from the CompletableFuture.

 1 CompletableFuture<String> completableFuture
2 = CompletableFuture.supplyAsync(() -> "Java");
3
4 CompletableFuture<String> combinedFuture = completableFuture.thenApply \
5 (previousResult -> previousResult + " Challenger");
6
7 System.out.println(combinedFuture.get());

Output:
Java Challenger

As you can see in the above code we can simply return the generic type declared in the second CompletableFuture.

16.5.7 San Francisco Adventure Completable Future Challenge

In the following Java code challenge we will further explore the use of CompletableFuture with the completeAsync, thenCompose and thenAccept methods. We will be also using thread pools, streams and lambdas!

Can you guess what will happen when running the following code?

 1 import java.util.List;
 2 import java.util.concurrent.CompletableFuture;
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.function.Supplier;
 6 import java.util.stream.Collectors;
 7
 8 public class SanFranCompletableFutureChallenge {
 9 static ExecutorService executor = Executors.newCachedThreadPool();
10
11 public static void main(String... sanFranciscoAdventure) {
12 CompletableFuture<List<String>> adventureStart =
13 new CompletableFuture<>();
14
15 Supplier<List<String>> sanFranSightSupplier = () ->
16 List.of("Alcatraz", "Cable Car", "Golden Gate", "Lombard Street");
17
18 adventureStart.completeAsync(sanFranSightSupplier, executor)
19 .thenCompose(sights -> CompletableFuture.supplyAsync(() -> \
20 sights.stream()
21 .map(String::length)
22 .collect(Collectors.toList())))
23 .thenAccept(ratings -> {
24 var rating = ratings.stream()
25 .dropWhile(sightRating -> sightRating <= 12)
26 .findFirst()
27 .orElse(0);
28 System.out.print("Rating: " + rating + " ");
29 });
30 System.out.print("time to go home :(");
31 }
32 }

 	time to go home :(Rating: 0
& the jvm terminates

 	time to go home :(Rating: 14
& the jvm terminates

 	time to go home :(Rating: 14
& the jvm does not terminate

D)Rating: 14 time to go home :(
 & the jvm does not terminate

Explanation:

Notice that when we the completeAsync method is invoked, we are also passing a thread pool. Then we pass a newCachedThreadPool() to it.

Now we start composing actions with the thenCompose method. Then we pass a lambda with CompletableFuture.supplyAsync. Then we get a stream of data from sights, transform it to the lenght of each String and collect it as a list.

Then we use the thenAccept method that receives a Consumer and returns nothing. We use the dropWhile method that will drop elements until the condition is true. Considering that only "Lombard Street" has the lenght of greater than 12, that’s the element that will remain in the list. Then, the first element will be found.

Another very important detail is that we are not doing a shutdown in the threadpool we passed to the CompletableFuture. Since we passed it manually, we have to also shutdown it manually if we want the program to be finalized normally.

Therefore the output will be the following:

 	time to go home :(Rating: 14
& the jvm does not terminate

16.5.8 Handling Exceptions

One other great advantage and motivation of introducing the CompletableFuture api is the possibility to handle Exceptions.

Therefore, if something wrong happens during the computation of the CompletableFuture, we are able to handle the Exception.

Let’s see how that works in code:

 1 CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> 1 / 0 \
2 + "Causing ArithmeticException!");
3
4 CompletableFuture<String> errorHandling = future.exceptionally(ex ->
5 "There was an error: " + ex.getMessage());
6
7 System.out.println(errorHandling.get());

Output:
There was an error: java.lang.ArithmeticException: / by zero

Notice in the code above that we are causing the ArithmeticException to be thrown. Then in the following CompletableFuture errorHandling, we are logging the error message. This is very useful to debug what happened in a CompletableFuture process.

The last point to observe is that by using the exceptionally method, we can encapsulate what we want for the Exception handling.

If no Exception happens, the `exceptionally method won’t be even invoked. Let’s see a code example:

 1 CompletableFuture<String> future
2 = CompletableFuture.supplyAsync(() -> "Not causing Exception!");
3
4 CompletableFuture<String> errorHandling =
5 future.exceptionally(ex -> "There was an error: " + ex.getMessage());
6
7 System.out.println(errorHandling.get());

Output:
Not causing Exception!

Note that since in the above code we are not causing an Exception, the value from the supplyAsync method will be printed successfully.

16.6 Threadpool with Executors

Creating threads is a quite expensive operation in terms of performance. Therefore, Java has an API ready to create a pool of threads where the threads are created in the background and they just need to be reused.

Notice that creating a thread pool is not always the best solution and you will have to consider to use it depending on the problem you are facing. To make this decision, think if tasks will be running very often, and if so, it might be better to use a thread pool because of the overhead of creating a new thread several times. The advantage of using a thread pool is that the threads will be already created. Therefore, no overhead on threads creation. Threads will be reused in a thread pool.

The simplest way to create a thread pool in Java is by using the Executors class:

 ExecutorService executor = Executors.newFixedThreadPool(2);

In the above code, we have a thread pool with 2 threads. Now let’s make use of those threads by using the submit method:

 1 ExecutorService executor = Executors.newFixedThreadPool(2);
2
3 Runnable runnableTask = () -> System.out.println(Thread.currentThread() \
4 .getName());
5
6 executor.submit(runnableTask);
7 executor.submit(runnableTask);
8 executor.submit(runnableTask);

Output:
pool-1-thread-1
pool-1-thread-2
pool-1-thread-1
The program execution continues…

Notice in the code above that the submit method receives a Runnable object and process them in the thread pool.

Another important detail is that in the output, we can see one thread pool (pool-1) and two threads (thread-1 and thread-2). As mentioned before, thread pools are useful when it’s necessary to run tasks very often, because then performance is optimized significantly.

Also note that the program execution continues forever. Unless we say explicitly to the executor to shutdown the program will keep running.

16.6.1 Using Callable

The Runnable contract is a void method and doesn’t return any value. But how about if we want to return a value when running an Executor task? Fortunately there is the Callable interface that does that for us.

Before using the Callable, let’s see how this interface is defined:

 1 @FunctionalInterface
2 public interface Callable<V> {
3 V call() throws Exception;
4 }

Notice that Callable is a functional interface and has the call method returning a generic value of V, this means any type passed via generics.

Now that we know how the Callable interface is, let’s see how a Callable works in code:

 1 ExecutorService executor = Executors.newFixedThreadPool(1);
 2 Callable<String> callableTask = () -> Thread.currentThread().getName();
 3
 4 Future<String> future1 = executor.submit(callableTask);
 5 Future<String> future2 = executor.submit(callableTask);
 6
 7 System.out.println(future1.isDone());
 8 System.out.println(future1.get());
 9 System.out.println(future1.isDone());
10
11 System.out.println(future2.get());

Output:
false
pool-1-thread-1
true
pool-1-thread-1

Notice that the overloadead submit method returns a Future in the following method signature:

 1 public interface ExecutorService extends Executor {
2 <T> Future<T> submit(Callable<T> task);
3 }

It returns the same generic type passed in the Callable. Once we have the Future object then we can use the get method. Simply put, the get waits for the computation to be complete and returns the Callable value.

16.6.2 ExecutorService invokeAny

The invokeAny method from ExecutorService will invoke multiple tasks and the first task that finishes its execution will return a value.

This is useful when we want to sort arrays for example but we are dealing with complex data and we start multiple tasks to do the sorting. Then the fastest algorithm will return the sorted algorithm.

Let’s see a simple example demonstrating the use of the invokeAny method:

 1 import java.util.ArrayList;
 2 import java.util.Collections;
 3 import java.util.List;
 4 import java.util.Random;
 5 import java.util.concurrent.Callable;
 6 import java.util.concurrent.ExecutionException;
 7 import java.util.concurrent.ExecutorService;
 8 import java.util.concurrent.Executors;
 9
10 public class SortingInvokeAny {
11
12 public static void main(String[] args) throws ExecutionException,
13 InterruptedException {
14 List<String> heroes = new ArrayList<>(List.of("Spider-Man",
15 "Batman", "Iron-Man"));
16
17 Callable<List<String>> naturalSort = () -> { // #A
18 System.out.println("Natural Sort");
19 Thread.sleep(new Random().nextInt(500)); // #B
20 heroes.sort(String::compareTo);
21 return heroes;
22 };
23
24 Callable<List<String>> revertSort = () -> { // #C
25 System.out.println("Revert Sort");
26 Thread.sleep(new Random().nextInt(500));
27 heroes.sort(Comparator.reverseOrder());
28 return heroes;
29 };
30
31 List<Callable<List<String>>> taskList = List.of(naturalSort, revertSort);
32 ExecutorService executor = Executors.newCachedThreadPool(); // #D
33
34 try {
35 List<String> sortedArray = executor.invokeAny(taskList); // #E
36 System.out.println(sortedArray);
37 executor.shutdown();
38 } catch (ExecutionException e) {
39 e.printStackTrace();
40 }
41 }
42
43 }

Output (Random):
Revert Sort
Natural Sort
[Spider-Man, Iron Man, Batman]

Code Analisis:

Notice that the above output may vary because the naturalSort might be faster than revertSort and vice-versa. That’s the whole point of using the invokeAny method.

Let’s now see the highlighted areas of the code:

 	#A: Callable that returns a List<String> is created here and returns a list sorted in the natural order.

 	#B: To simulate processing, a Thread.sleep method is invoked at a random time. So that we can more easily see a random output.

 	#C: A similar Callable from the above one but this time it will return the list in the reverse order.

 	#D: A CachedThreadPool is created to invokeAny of the Callables.

 	#E: We invoke both Callables, we can see clearly that this is happening by looking at the output:

Revert Sort
Natural Sort

Then, the first Callable to return the value will be the one effectively used.

16.6.3 ExecutorService invokeAll

As the name suggests, the invokeAll method will invoke all methods within a thread pool.

An important point to remember when using the ExecutorService with the invokeAll method is that the tasks will be completed in the order as they are included. It doesn’t matter if the last task will be finished first, ther order will be always followed.

Let’s see how that works in code:

 1 import java.util.List;
 2 import java.util.Random;
 3 import java.util.concurrent.Callable;
 4 import java.util.concurrent.ExecutionException;
 5 import java.util.concurrent.ExecutorService;
 6 import java.util.concurrent.Executors;
 7 import java.util.concurrent.Future;
 8
 9 public class RandomNumberInvokeAll {
10
11 public static void main(String... invokeAll) throws InterruptedException {
12 ExecutorService executor = Executors.newFixedThreadPool(2);
13 Callable<String> delayedRandomNumberTask = () -> {
14 Thread.sleep(1000);
15 return "Delayed: " + new Random().nextInt(1000);
16 };
17 Callable<String> nonDelayedRandomNumberTask = () -> "Non-delayed: "
18 + new Random().nextInt(1000);
19
20 List<Callable<String>> taskList = List.of(delayedRandomNumberTask, \
21 nonDelayedRandomNumberTask);
22 List<Future<String>> resultList = executor.invokeAll(taskList);
23
24 executor.shutdown();
25
26 resultList.forEach(e -> {
27 try {
28 System.out.println(e.get());
29 } catch (InterruptedException | ExecutionException ex) {
30 ex.printStackTrace();
31 }
32 });
33 }
34
35 }

Output (Random):
Delayed: 945
Non-delayed: 658

As you can see in the code above, even though the delayed random number task takes longer than the non-delayed to be executed, the order will be delayed and then non-delayed.

16.6.4 Using shutdown

An Executor task will be running forever unless we use the shutdown method. The shutdown method will stop thread executions gracefully. This means that the shutdown method will wait until threads that started its execution to finish. It won’t wait for threads that submitted their tasks but didn’t start its execution though:

 1 ExecutorService executor = Executors.newFixedThreadPool(1);
2 Runnable callableTask = () -> System.out.println(Thread.currentThread() \
3 .getName());
4
5 executor.submit(callableTask);
6 executor.submit(callableTask);
7
8 executor.shutdown();

Output:
pool-1-thread-1
pool-1-thread-1

Notice in the program above that the application will be finished.

If we want to wait until tasks that are submitted to be finished, we have to use the awaitTermination method:

 1 // Same code as above
2 executor.awaitTermination(500, TimeUnit.MILLISECONDS);
3 executor.shutdown();

Notice that in the awaitTermination method if the tasks in execution take long to finish the await will finish after the timeout of 500 milliseconds.

16.6.5 Using shutdownNow

The shutdownNow method will do a hard stop on threads that are being executed. Also returns the list of tasks that couldn’t be finished.

If we want to wait for tasks to be finished we can use the awaitTermination method. It’s important to remember that not always the shutdownNow method will stop a thread execution. If the thread task doesn’t respond to Thread.interrupt for example, nothing will happen.

Since the shutdownNow method doesn’t really guarantee the termination of the thread pool, Oracle recommends the following code practice:

 1 executor.shutdown(); // Terminates tasks after execution
 2 try {
 3 // Awaits until tasks in execution finish
 4 if (!executor.awaitTermination(50, TimeUnit.SECONDS)) {
 5 executor.shutdownNow(); // Try to terminate executing tasks
 6 if (!executor.awaitTermination(50, TimeUnit.SECONDS))
 7 System.err.println("Thread pool is not terminated");
 8 }
 9 } catch (InterruptedException ie) {
10 executor.shutdownNow();
11 }

16.6.6 SingleThreadExecutor

As the name suggests, the SingleThreadExecutor will create one thread and will guarantee that tasks will be executed in sequentially. Since there is only one thread, only one task will be active per thread execution.

Also, if there is any error in the thread, the task will be executed again.

 1 ExecutorService executor = Executors.newSingleThreadExecutor();
2 Runnable runnableTask = () -> System.out.println(Thread.currentThread() \
3 .getName());
4
5 executor.submit(runnableTask);
6 executor.submit(runnableTask);
7 executor.submit(runnableTask);
8
9 executor.shutdown();

Output:
pool-1-thread-1
pool-1-thread-1
pool-1-thread-1

As you can see in the above output, the three tasks were executed in the same thread-1. The program was also terminated because of the shutdown method.

16.6.7 newFixedThreadPool

Notice that we already used the newFixedThreadPool method that returns a thread pool that represents a FixedThreadPool in previous examples but didn’t explain it in detail.

Simply put, the FixedThreadPool will create a fixed amount of threads to execute needed tasks. All threads will be active and ready to receive tasks. In case all threads are in use, the tasks will be waiting in a LinkedBlockingQueue until a thread is available.

If there is an error in any of the threads, there will be a mechanism to create and replace them. The threads will be shutdown only if we do that explicitly.

Let’s first explore the factory method newFixedThreadPool:

 1 public static ExecutorService newFixedThreadPool(int nThreads) {
2 return new ThreadPoolExecutor(nThreads, nThreads,
3 0L, TimeUnit.MILLISECONDS,
4 new LinkedBlockingQueue<Runnable>());
5 }

Notice that the only argument we pass is the number of threads. Also, notice that we are instantiating a ThreadPoolExecutor actually. Let’s see what the ThreadPoolExecutor is expecting in its constructor:

 1 public ThreadPoolExecutor(int corePoolSize,
2 int maximumPoolSize,
3 long keepAliveTime,
4 TimeUnit unit,
5 BlockingQueue<Runnable> workQueue) { ... }

By invoking the factory method newFixedThreadPool() we have only one argument we have control that is the number of threads. Also, we don’t have any control over the amount of elements we can put into the LinkedBlockingQueue. This means that we will be able to put 2147483647 tasks in the queue since this is the default max elements from this queue. This might hide a serious issue in your application.

Let’s see how this limit works in the LinkedBlockingQueue works in practice in code:

 1 ExecutorService executor = new ThreadPoolExecutor(100, 100, 0L, \
2 TimeUnit.MILLISECONDS, ew LinkedBlockingQueue<>(100));
3
4 for (int i = 1; i < 1000; i++) {
5 Runnable runnableTask = () -> System.out.println(Thread.currentThread() \
6 .getName());
7 executor.submit(runnableTask);
8 }

Output:

java.util.concurrent.RejectedExecutionException…

As you can see in the code above we will have the RejectedExecutionException. That’s because we created the LinkedBlockingQueue with the limit of 100 elements but in the for looping we are executing more than 1000 tasks.

16.6.8 SingleThreadScheduledExecutor

The SingleThreadScheduledExecutor will create one thread and will delay the next task execution by the configured time:

 1 ScheduledExecutorService executor = Executors
2 .newSingleThreadScheduledExecutor();
3
4 Runnable task = () -> System.out.println(Thread.currentThread().getName());
5
6 executor.schedule(task, 500, TimeUnit.MILLISECONDS);
7 executor.schedule(task, 1000, TimeUnit.MILLISECONDS);
8
9 executor.shutdown();

Output:
pool-1-thread-1
pool-1-thread-1

The executor from the code above receives the task, delay time and time unit. This means that when the task is executed, there will be a delay of 500 milliseconds and then the next task is executed. Notice also that only one thread is created with the newSingleThreadScheduledExecutor.

16.5.9 CachedThreadPool

The CachedThreadPool is meant to execute short-timed tasks. Therefore, if you have tasks that will take a long time to execute it’s better to avoid the use of aCachedThreadPool.

The threads from CachedThreadPool will be kept alive for 60 seconds when idle. After that, the thread will be terminated. Ideally, threads from CachedThreadPool should be executing tasks as often as possible.

Before seeing how to use the CachedThreadPool factory method. Let’s see how is its implementation:

 1 public static ExecutorService newCachedThreadPool() {
2 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
3 60L, TimeUnit.SECONDS,
4 new SynchronousQueue<Runnable>());
5 }

Notice that in the code above we don’t even pass the number of threads which means that threads will be created on demand.

Let’s see a code example with CachedThreadPool:

 1 ExecutorService executor = Executors.newCachedThreadPool();
2 for (int i =1; i < 1000; i++) {
3 Runnable runnableTask = () -> System.out.println(Thread.currentThread() \
4 .getName());
5 executor.submit(runnableTask);
6 }

Output (Random):
…
pool-1-thread-165
pool-1-thread-106

Notice a limitation when working with the newCachedThreadPool method which is that we can’t control the number of threads we will create. This means that 2147483647 threads might be created depending on the number of tasks. This might become a bottleneck for your software. Therefore, it’s better to use this thread pool for short-lived tasks so the thread cache can be used effectively.

In the code above, we are creating a CachedThreadPool and then we create 1000 tasks printing the thread pool followed by the thread number. Then we submit all of them to the CachedThreadPool.

Another important point is that in the output, the CachedThreadPool created multiple threads. The thread number 165 was created for example.

16.6.10 ScheduledThreadPool

The ScheduledThreadPool is usually used to execute tasks in a short interval period of time.

 1 ScheduledThreadPoolExecutor threadPool = new ScheduledThreadPoolExecutor(2);
2
3 Runnable task = () -> System.out.println(Thread.currentThread().getName());
4 for (int i = 0; i < 5; i++) {
5 threadPool.schedule(task, 1, TimeUnit.SECONDS);
6 }
7
8 threadPool.shutdown();

Output:
pool-1-thread-2
pool-1-thread-1
pool-1-thread-2
pool-1-thread-1

Notice in the code above that the scheduled thread pool will wait 1 second and then will start executing each task.

16.6.11 scheduleAtFixedRate

The scheduleAtFixedRate method will invoke tasks at a fixed time interval considering the time that the task will take.

For example, if the fixed rate time is 1 second and the task takes half second to be finished, the next task will be executed after 1 second.

If the task takes more than 1 second, then the next task will be executed right after the task is finished. There is no extra delay, only a fixed rate.

Let’s see first how is the method signature from scheduleAtFixedRate:

 1 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
2 long initialDelay,
3 long period,
4 TimeUnit unit);

The first parameter is the task itself which is basically the implementation of the run method with the Runnable interface.

The initialDelay is the time it will take until the first task starts running.

The period means the interval time between tasks whenever they finish.

TimeUnit is the time configuration, it can be all of the following: NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS, and DAYS.

Now that we know the the scheduleAtFixedRate method signature. Let’s see a code example to understand it more clearly:

 1 ScheduledExecutorService executor = Executors.newScheduledThreadPool(5);
2 Runnable task = () -> {
3 System.out.println("Never stop learning! " + LocalDateTime.now());
4 try { Thread.sleep(1000); } catch (InterruptedException e) {}
5 };
6 executor.scheduleAtFixedRate(task, 1, 1, TimeUnit.SECONDS);

Output:

Never stop learning! 2022-06-30T14:16:12.650819
Never stop learning! 2022-06-30T14:16:13.660476
Never stop learning! 2022-06-30T14:16:14.661136

16.6.12 scheduleWithFixedDelay

The scheduleWithFixedDelay on the other hand will wait until the task is finished and will add a delay time on top of that.

This means that if a task takes 1 second to be finished and there is a delay of 1 second, the next task will take 2 seconds to start.

Before seeing the code in action, let’s see how is the method signature from the scheduleWithFixedDelay method:

 1 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
2 long initialDelay,
3 long delay,
4 TimeUnit unit);

Notice that it’s very similar to the scheduleAtFixedRate method. The difference is the delay though. Let’s see that in code:

 1 ScheduledExecutorService executor = Executors.newScheduledThreadPool(3);
2 Runnable task = () -> {
3 System.out.println(LocalDateTime.now());
4 System.out.println(Thread.currentThread().getName());
5 try { Thread.sleep(1000); } catch (InterruptedException e) { }
6 };
7 executor.scheduleWithFixedDelay(task, 1, 1, TimeUnit.SECONDS);

Output:
Never stop learning! 2022-07-01T15:21:24.643794
Never stop learning! 2022-07-01T15:21:26.654136
Never stop learning! 2022-07-01T15:21:28.660036

Notice the time difference between each task to run. The Runnable task takes 1 second to run and since we passed 1 second to the scheduleWithFixedDelay the next task will take 2 seconds to run.

16.6.13 CountdownLatch

The CountdownLatch class is useful to await the execution of threads to take some action.

It counts down how many times a task should be executed and helps in the orchestration of threads execution.

Let’s see a code example where we will create a CountDownLatch receiving the count of 3 in the constructor. So we can count and control how many times the ScheduledThreadPool will be executing:

 1 CountDownLatch countDownLatch = new CountDownLatch(3); // #A
 2
 3 ScheduledExecutorService executor = Executors.newScheduledThreadPool(2); // #B
 4 Runnable task = () -> {
 5 System.out.println("Never stop learning! " + LocalDateTime.now());
 6 countDownLatch.countDown(); // #C
 7 };
 8 executor.scheduleAtFixedRate(task, 1, 1, TimeUnit.SECONDS); // #D
 9
10 countDownLatch.await(); // #E
11 executor.shutdown(); // #F

Output:
Never stop learning! 2022-07-01T16:51:33.944476
Never stop learning! 2022-07-01T16:51:34.930132
Never stop learning! 2022-07-01T16:51:35.929230

Process finished with exit code 0

Code analisis:

 	#A: Creates a CountDownLatch with the count of 3.

 	#B: Creates a newScheduledThreadPool with two threads.

 	#C: countDown each time the task is executed. Therefore, it will decrease the counter everytime it’s invoked.

 	#D: Schedules a task at a fixed rate of 1 second.

 	#E: The main thread awaits until the countDownLatch reaches to 0.

 	#F: The ScheduledThreadPool is shutdown.

Another great benefit from CountDownLatch is that it’s possible to pass it around via method parameter or constructor. This is something the Thread.sleep method can’t do for example.

16.6.14 Thread Delay Challenge

The following Java code challenge will test your knowledge regarding the scheduledThreadPool classes to schedule processes. Also, you will learn more about the CountDownLatch to control how many times a process will be executed.

Therefore, there is only one alternative that can be the answer. Pretend now is 05:00:00 for the challenge. Can you guess which is the right alternative?

 1 import java.time.LocalTime;
 2 import java.time.format.DateTimeFormatter;
 3 import java.util.concurrent.CountDownLatch;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.ScheduledExecutorService;
 6 import java.util.concurrent.TimeUnit;
 7
 8 public class ThreadDelayChallenge {
 9
10 public static void main(String[] args) throws InterruptedException {
11 CountDownLatch countDownLatch = new CountDownLatch(3);
12 Runnable fixedRateTask = createScheduledTask(countDownLatch,
13 "Fixed rate task: ");
14 Runnable fixedDelayTask = createScheduledTask(countDownLatch,
15 "Fixed delay task: ");
16
17 ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
18
19 executor.scheduleAtFixedRate(fixedRateTask, 1, 1, TimeUnit.SECONDS);
20 executor.scheduleWithFixedDelay(fixedDelayTask, 1, 1, TimeUnit.SECONDS);
21 countDownLatch.await();
22 executor.shutdown();
23 }
24
25 private static Runnable createScheduledTask(CountDownLatch countDownLatch, \
26 String message) {
27 return () -> {
28 try {
29 Thread.sleep(1000);
30 countDownLatch.countDown();
31 var count = countDownLatch.getCount();
32 System.out.println("Count: " + count + " - " + message +
33 LocalTime.now().format(DateTimeFormatter.ofPattern("HH:mm:ss")));
34 } catch (InterruptedException e) {
35 e.printStackTrace();
36 }
37 };
38 }
39 }

 	Count: 1 - Fixed delay task: 05:00:00
Count: 1 - Fixed rate task: 05:00:00
Count: 0 - Fixed rate task: 05:00:01
Count: 0 - Fixed delay task: 05:00:02

 	Count: 1 - Fixed delay task: 05:00:00
Count: 2 - Fixed rate task: 05:00:00
Count: 0 - Fixed rate task: 05:00:02

 	Count: 3 - Fixed delay task: 05:00:00
Count: 2 - Fixed rate task: 05:00:00
Count: 1 - Fixed rate task: 05:00:01

 	Count: 1 - Fixed delay task: 05:00:00
Count: 1 - Fixed rate task: 05:00:00
Count: 0 - Fixed delay task: 05:00:01

Explanation:

One part of the puzzle on this code challenge is the CountDownLatch class. This class has the purpose of counting how many times a task should be executed.

In the case of this challenge, we are setting the count to 3. However, notice that we are creating two threads in our ThreadPool. This means that there will be parallel processing in the createScheduledTask method.

Notice also that we have the following code in this method:

 1 Thread.sleep(1000);
2 countDownLatch.countDown();

What will happen here is that two threads will be sleeping for 1 second and only then the countDown will be executed.

Notice also that the counter will start with 3. Therefore, it’s possible that one thread will decrease the value to 2 and the other to 1. Then, both threads will read the same value of 1.

Therefore, the following first part of result is possible:

 1 Count: 1 - Fixed delay task: 05:00:00
2 Count: 1 - Fixed rate task: 05:00:00

The same logic might happen for the countdown of 0 with the difference that when it’s 0 it won’t be possible to decrease the countDown number anymore. However, the tasks will stop their execution since the countDown reached to 0.

Therefore, the following last part of the result is also possible:

 1 Count: 0 - Fixed rate task: 05:00:01
2 Count: 0 - Fixed delay task: 05:00:02

We are also exploring the mechanism from the scheduleAtFixedRate and scheduleWithFixedDelay. Notice that the scheduleAtFixedRate method will not add an extra delay to the task execution. Therefore, the interval between a fixedRate task from the other will be of 1 second even with the Thread.sleep of 1 second within the createScheduledTask.

The scheduleWithFixedDelay method behaves differently because this one will add a delay between another delay task. Therefore, considering that we have a delay of 1 second and we have a Thread.sleep of 1 second in the task process, we will have 2 seconds interval between two tasks.

For those reasons, alternative B and D can’t be right.

Alternatice C can’t also be right because the CountDownLatch starts from 3, not from 4.

In conclusion, the correct alternative is:

 	Count: 1 - Fixed delay task: 05:00:00
Count: 1 - Fixed rate task: 05:00:00
Count: 0 - Fixed rate task: 05:00:01
Count: 0 - Fixed delay task: 05:00:02

16.7 ConcurrentHashMap

The ConcurrentHashMap class is useful to avoid data collision when working with a Map. Therefore, whenever you are working with Map in a multi-thread environment, it’s recommended to use the ConcurrentHashMap.

Let’s see the issues that might happen when not using HashMap instead of a ConcurrentHashMap:

 1 Map<Integer, String> map = new HashMap<>(Map.of(1, "Duke", 2, "Juggy"));
2
3 for (int key : map.keySet()) {
4 map.remove(1);
5 }
6
7 System.out.println(map);

Output:
java.util.ConcurrentModificationException…

Notice in the code above that we have a ConcurrentModificationException when trying to remove an element from the HashMap in a looping. This happens because of a fail-fast mechanism of this class attempting to avoid tricky data collisions. Which means that when the structure from the HashMap is modified within a loop, it’s very likely that the ConcurrentModificationException will be thrown.

It’s also not possible to rely on the ConcurrentModificationException because it might not be thrown sometimes.

Now, if we want to guarantee that the ConcurrentModificationException will not be thrown, we can use the ConcurrentHashMap class:

 1 Map<Integer, String> map = new ConcurrentHashMap<>(Map.of(1, "Duke", 2, "Juggy"));
2
3 for (int key : map.keySet()) {
4 map.remove(1);
5 }
6
7 System.out.println(map);

Output:

In the code above, it’s guaranteed that the ConcurrentModificationException will not be thrown. Therefore, it’s safe to modify the structure of the Map within the loop. As a rule of thumb, use the ConcurrentHashMap only when working on a multi-thread environment.

If you want to only remove elements from a map without having ConcurrentModificationException it’s better to use the removeIf method as you can see in the following code:

 1 Map<Integer, String> map = new ConcurrentHashMap<>(Map.of(1, "Duke",
2 2, "Juggy"));
3 map.keySet().removeIf((k) -> k == 1);
4 System.out.println(map);

Output:

As you can see in the code above, the removeIf method will remove the first element without any issue. This way is preferable to handle an element removal from a Collection.

The same principle as above can be used for a List or a Set. We can also use the removeIf method with those Collections.

16.8 ConcurrentSkipListMap

This ConcurrentSkipListMap class behaves similarly to the TreeMap with the difference of being thread-safe. Since we already went through a TreeMap, let’s see the basics of this class:

 1 ConcurrentNavigableMap<Integer, String> xmen = new ConcurrentSkipListMap<>();
2 xmen.put(3, "Xavier");
3 xmen.put(2, "Wolverine");
4 xmen.put(1, "Cyclops");
5
6 xmen.forEach((k, v) -> System.out.println(k +" : " + v));

Output:
1 : Cyclops
2 : Wolverine
3 : Xavier

As you can see in the code above, only the key will be sorted according to what is implemented in the compareTo method, in this case, the natural order.

Reinforcing the crucial point of this collection class, is that it can be safely used in a multi-thread environment and data collision will be avoided.

16.8 ConcurrentSkipListSet

This class is similar to TreeSet but the difference is that it is thread-safe. The ConcurrentSkipListSet class will also sort elements based on the compareTo method implementation.

Let’s see a code example:

 1 NavigableSet<String> simpsons = new ConcurrentSkipListSet<>();
2 simpsons.add("Homer");
3 simpsons.add("Bart");
4 simpsons.add("Marge");
5
6 simpsons.forEach(System.out::println);

Output:
Bart
Homer
Marge

16.9 Producer Consumer with BlockingQueue

The BlockingQueue interface is great for adding elements in a multi-thread environent safely. This means that the BlockingQueue inserts elements in a synchronized way.

The data structure queue is effective for adding or removing elements from the head of the queue.

 1 import java.util.Random;
 2 import java.util.concurrent.*;
 3
 4 public class ProducerConsumer {
 5
 6 public static void main(String[] args) throws InterruptedException {
 7 BlockingQueue<Integer> blockingQueue = new LinkedBlockingQueue<>(); // #A
 8
 9 Runnable producerTask = () -> {
10 try {
11 int i = new Random().nextInt(100);
12 blockingQueue.put(i); // #B
13 System.out.println("Produced: " + i);
14 } catch (InterruptedException e) {
15 e.printStackTrace();
16 }
17 };
18 Runnable consumerTask = () -> {
19 try {
20 System.out.println("Consumed : " + blockingQueue.take()); // #C
21 } catch (InterruptedException ex) {
22 ex.printStackTrace();
23 }
24 };
25
26 ScheduledExecutorService executor = Executors.newScheduledThreadPool(5);
27 executor.scheduleAtFixedRate(producerTask, 0, 1000, TimeUnit.MILLISECONDS);
28 executor.scheduleAtFixedRate(consumerTask, 0, 500, TimeUnit.MILLISECONDS);
29 }
30 }

Output (Random):
Produced: 45
Consumed : 45
Produced: 88
Consumed : 88
…

Code analisis:

 	#A: The BlockingQueue interface is effective to synchronizely add and remove elements from a queue. Therefore, instead of using a synchronized block or a ReentrantLock, we can use a BlockingQueue to handle a collection of data.

 	#B: The put method is will put elements in order and is going to use a ReentrantLock on its implementation as you can see:

 1 public class LinkedBlockingQueue<E> extends AbstractQueue<E>
 2 implements BlockingQueue<E>, java.io.Serializable {
 3
 4 public void put(E e) throws InterruptedException {
 5 if (e == null) throw new NullPointerException();
 6 final int c;
 7 final Node<E> node = new Node<E>(e);
 8 final ReentrantLock putLock = this.putLock;
 9 // ...
10 }
11 }

Therefore, there is no need to synchronize the put method again manually.

 	#C: The take method will wait until there is at least one element in the queue and then the value will be taken. Similarly to the put method, the take method is also synchronized or holds the monitor lock with the ReentrantLock class:

 1 // ...
 2 public E takeFirst() throws InterruptedException {
 3 final ReentrantLock lock = this.lock;
 4 lock.lock();
 5 try {
 6 E x;
 7 while ((x = unlinkFirst()) == null)
 8 notEmpty.await();
 9 return x;
10 } finally {
11 lock.unlock();
12 }
13 }

As you can see in the above code, it’s very important to know the available tools in the Java language. Otherwise, it’s easy to reinvent the whell and implement all this logic of the producer and consumer manually.

For the vast majority of the day-to-day problems you can be sure that there is something ready for the Java language. Therefore, try to be up to date with the tools Java has to offer so you can reuse them.

16.10 Summary

 	Locking a thread monitor with more sophistication using ReentrantLock

 	Locking only read and write oprations with ReadWriteLock

 	Using thread-safe objects with atomic variables

 	Making sure to use shared data always with the updated value with volatile

 	Executing methods and handling Exceptions concurrently with the powerful CompletableFuture API

 	Creating threadpools with Executors

 	Creating tasks with Callable to process and return a value

 	Using shutdown in the threadpool

 	Creating a thread pool with a single thread using SingleThreadExecutor

 	Caching threads in the threadpool with CachedThreadPool to execute many proccesses

 	
ScheduledThreadPool to run tasks and workers in a pre-configured delay

 	
CountdownLatch to count how many times a process should run

 	
ConcurrentHashMap to use key-value thread-safe object

 	
ConcurrentSkipListMap to use sorted in the natural order thread-safe key-value object

 	
ConcurrentSkipListSet to use sorted in the natural order thread-safe key-value object

 	
BlockingQueue to create an optimized producer consumer

17 Next Steps

Congratulations! You finished the Java Challengers book, that’s not an easy task! By absorbing all the content of this book now you have an incredible foundation to deliver high-quality code. Also, it’s much easier now to learn a new programming language since you mastered the fundamentals of Java.

Now it’s time to put your knowledge in practice, work on an amazing project or even make a project code amazing so you don’t need to deal with bad code and bugs on your day-to-day job.

One action that makes you a better software engineer is to learn a new programming language, what about picking one that you like and learn it?

17.1 Other important Java features

It wasn’t possible to address every Java feature in this book. Otherwise, this book would easily have more than 2000 pages. The good news is that we don’t really have to know how to use all of them, we need to know instead that they exist so whenever necessary we can check how to use them in the docs and use those features.

Let’s see some of the features we need to be aware of in case it’s necessary. Also remember that the following features are available in other programming languages:

 	Date API: In almost every real Java project we will need to handle dates. We will need to create and compare date and time very often. Fortunately, Java has a very powerful API to work with dates. The old classes before Java 8 such as Date and Calendar should be avoided because the code will get more complicated and it’s not thread-safe. To solve those problems, since Java 8 we have the LocalDate, LocalTime and LocalDateTime classes that will easily handle any date and time problem we have. For more, check the following link: https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html

 	File handling: It’s a feature that is quite rare to be used in real applications but still it’s useful to know it exists since in some situations we will need to know it. The most effective Java API to handle files is the java.nio.file. Basically, we can easily create, update, delete, read, and process a file with this API. For more, check the following documentation: https://docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html

 	Tokenization: To break down a String we can use any token such as, , | _, this means any character. This is useful when it’s necessary to search a specific String in a big text. There is an interesting class to achieve that which is the StringTokenizer. For more information, check the following link: https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html

 	Regex: To search a specific pattern from a String, we can use the regex patterns. The regex patterns are universal for every programming language, and simply put, regex is a set of pre-defined and sophisticated patterns that enables developers to search specific String by controlling, only characters, only numbers, size of text, beggining and end of line or text, text repetition, and the possibilities go on and on! For more information, check it out the following link: https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

 	Serialization: To transfer objects as bytes through the network we can use the serialization technique. We don’t really need to do low-level implementation in the day-to-day work but it’s important to know that this concept is available in Java. For more, check the following documentation:

 https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html

 	Virtual Threads (Coroutines): Programming languages such as Go and Kotlin have the concept of coroutines for a while already. Coroutines is actually a quite old concept invented in 1958. To deal with a massive amount of threads, the virtual threads concept is really powerful. This happens because virtual threads are really suspended when not needed. Therefore, if you are dealing with 100k threads, for example, the processing time will be dramatically reduced. For more information, check the following documentation:

 https://openjdk.org/jeps/425

 	Pattern Matching: This is a concept that will improve your code design with Java. Simply put, by fully using the benefits of pattern matching, you will be able to save code and have more control over your code. That’s because you will be able to use

17.2 Practicing Clean Code

You probably heard of the Clean Code book, right? Now that you know Java very well, it’s your duty as a professional developer to do your very best to produce high-quality code.

You already took a great step, you now know the most important Java APIs, that enables you to not reinvent the wheel.

Now there are principles to be mastered that will take your code to the next level such as:

 	Code naming

 	SOLID

 	Design Patterns

 	Separation of concerns

 	Low coupling

 	High cohesion

 	Object Oriented Programming

 	Functional Programming

17.3 Tendencies of the market

Nowadays, Microservices are the new normal of the market. According to statics and researches more than 80% of the companies are making use of microservices.

Therefore, it’s important to know the technology around the Microservices architectures. Let’s see what are the most important ones:

 	Microservices Design Patterns: you will face many challenges with Microservices. Applications will fail and you will have to build resilient code. The most common patterns are: Service Discovery, API Gateway External Configuration, Health Check, Circuit Breaker, Database per Service, Blue-Green Deployment, Saga Pattern, CQRS…

 	Continuous Integration Continuous Delivery CICD (Jenkins, Github Actions): it’s crucial to integrate software often by using Git for example and then run your pipeline. In the process of continuous integration, you need to be able to integrate your code, build and test it. In the delivery side, you need to deploy it do multiple environments, such as dev, qa, staging and production. All of this need to be automated.

 	Container (Docker): containerizing an application is one very common skill. The goal is to have everything you need encapsulated in a container with your application so you can run it anywhere. Also, by using containers, you will end the “works in my machine” problem. Since once you are able to run your application in the container, for sure you can run it anywhere.

 	Event Driven Architecture: Kafka, SQS, RabbitMQ are popular tools nowadays. They enable Microservices to communicate asynchronously via messages. This architecture helps to decouple Microservices and make them resilient to failure.

 	Version Control System: the most popular is definitely Git. It’s crucial and necessary skill to have as a software engineer since the vast majorty (if not every companies) are using it. Simply put, Git will integrate your code in a centralized server, it will create versions of the code and will enable you to work on your features separately.

 	Infrastructure as a Service - IAAS (AWS, Azure, GCP): developers don’t need to be specialists on a cloud vendor but it’s important to know it enough to be able to solve problems. You need to need at least the basic services so you are able to put an application in the cloud up and running.

 	Microservices 12 factors: those are principles to make your Microservice application robust and resilient. Those factors are Codebase, Dependencies, Config, Backing services, Build, release, run, Processes, Port binding, Concurrency, Disposability, Dev/prod parity, Logs, Admin processes. For more go to https://12factor.net/.

 	Platform as Service - PaaS (Heroku, Pivotal Cloud Foundry): a platform as a service does most of the hard work for you. It’s much easier to deploy your application with Heroku or Pivotal Cloud Foundry. That’s because the internal configurations such as scaling, load balancing, routes will be automatically created. The disavantages of using PaaS is that you don’t have so much control.

 	Software as a Service - SaaS (Sales Force, Stripe): those are entire applications running in the cloud. In simple words you consume the endpoints of a service in the cloud. In this case, you don’t need to take care of infrastructure or anything. You just need to use the service directly.

 	Infrastructure as Code (Terraform, Pulumi, Chef): of course you don’t need to know all those tools but the principles of infrastructure as code. The idea is to have all your infrastructure written in code where you can easily replicate and recreate your whole environment. Another advantage is that the truth of your environment is in the code.

 	Monitoring (Datadog, Prometheus): the complexity of Microservices archictures increase a lot. So, it’s necessary to monitor what is happening on them by measuring their time-response, requests amount, errors, tracing between Microservices and more…

17.4 Getting prepared for interviews

The game in interviews can change from time to time but I will do my best to explain to you what they are asking for at the moment. I’ve done many interviews in Europe and I do have a good idea of what the market is asking for.

There are two types of interviews, the one that will be more focused on Java and the other will be more focused on algorithms.

If the interview is more related to Java, you are good. You will use everything from this book, you will ace the interview.

They will ask about your experiences and the key here is to tell your greatest achievements. Remember, you are selling yourself in the interview and you are the product.

Other than Java questions, they will definitely ask you about SQL,Microservices concepts, architecture and System Design. They will also want to know how you deal with conflicts, if you are good team player, if you communicate clearly.

Most companies are following the pattern from the big companies interviews such as Google. They will give you an algorithm, therefore, it’s important for you to be sharp with them. They will ask you about data structures, graphs, queues, they will want you to solve an algorithm, communicate your thoughts so that they understand how you think.

To get prepared for that there are a couple of websites:

 https://leetcode.com

 hackerrank.com

Getting good with algorithms takes time, so developing the habit of solving at least one of them a week is a great idea! You can even learn a new programming language while getting sharp with algorithms!

With algorithms it’s important to master data structures such as queue, stack array and graphs, sorting algorithms, algorithms patterns. The more algorithms you do the better you get.

17.5 Strategies to Stay Sharp

Software development is hard and no technology will be learned overnight. Instead, it will take time and practice, it’s not for no reason that our profession is highly-paid.

With that in mind, it’s important for you to have a plan for your studies. Your goal is to decide ahead of time what will be your studying plan. Once you decided, you write it down. You can use any tool you want, a Google Sheet,notepad, Trello, white board, whatever works best for you.

For example, if your plan is to get good with microservices, you can start by learning the 12 factors from microservices. It’s also important to know why you are learning something. It can be because you want to get a better job, get promoted, work abroad. The why will motivate you to keep it up.

To be consistent is to be able to do what you need to do even when you don’t feel like it. Therefore, if you decide you will get good with Microservices, you need to take action even in the days you don’t really want to. It’s also very good if you can set a goal for you to create an application applying the concepts you learned because then it’s much easier to absorb the concepts.

17.6 Learn more about negotiation

Negotiation is a skill we use very often. When we need to get a new job, get a promotion, find a partner, purchase a property, sell a property and the list goes on. Therefore, it’s a skills that can not be ignored!

Negotiation will also affect directly in your career growth because it doesn’t matter if you are a very good developer, if you don’t know how to negotiate, you won’t earn the salary you deserve.

A very important point when negotiating is to know how much to ask. This is related to how well you know the market. There are a couple of techniques to figure this out:

 	You can directly ask a close friend

 	You can ask a recruiter (be aware that they might not give you accurate information since they will potentially negotiate with you)

 	You can take a look at http://glassdoor.com (Keep in mind that the salaries there are not accurate - it’s in average from 20% - 40% less than the real salary)

 	You can check the https://www.levels.fyi website to be aware of how much the big companies such as Google, Amazon, Microsoft are paying.

 	You can use brute force by giving a big number to the company or recruiter. If they accept it you are good, otherwise, you will know that the salary you asked is unrealistic.

Once you know how much to ask, then it’s time to start the negotiation process. One very important rule is to not disclose your current salary information.

This is even more important when you know that your salary is low. That’s because even if you know you are being underpaid the company you are negotiating with won’t usually care about it.

What will happen is that your whole negotiation process will be based on your last salary. As a consequence, usually you will get something between 15% raise other than potentially making the double of your salary.

There are much more to go into about negotiation but that’s an introduction to open your eyes and make you aware of how important it is. There are several books and I also prepared a course that has much more information about negotation to help you get a much better salary!

17.7 Do you want more?

Congratulations, now you are officially a Java Challenger!

Like I said before, there is more that will help you to be an awesome software engineer.

I prepared the Challenger Developer course to help you get a highly-paid job as a software engineer more easily. This means that instead of trying out and figuring out yourself, I will give YOU the guidance so you can get your dream job with a high salary!

Go to the following link and get the course now:
https://javachallengers.com/challenger-developer-course

I want to thank you to going until the end of the Java Challengers book and I hope to see you again very soon, in the Challenger Developer course, on social media, conferences! Let’s keep in touch, and remember that now you are a Java Challenger!

OEBPS/resources/leanpub_bug.png

OEBPS/resources/leanpub_question-circle.png

OEBPS/resources/leanpub_pencil.png

OEBPS/resources/leanpub_comments.png

OEBPS/resources/leanpub_info-circle.png

OEBPS/resources/leanpub_warning.png

OEBPS/resources/leanpub_key.png

OEBPS/resources/collections_api_diagram.png
Interface
Iterable<E>

A

Interface

Interface

V| Collection<E>

T

Interface
List<E>

JA

‘ AbstraciList<E> ‘

1

Interface
Deque<E>

=

Queue<E> -

AbstractSequentialList<E>

ArrayList<E> Vector<E>

A

‘ LinkedList<E> ‘

Interface
LV Set<E>
A
‘ AbstractSet<E> ‘ Interface
A SortedSet<E>
A
‘ HashSet<E> ‘ Interface
A NavigableSet<E>
JA\

‘LinkedHashSet<E>‘ ‘ TreeSlet<E>

‘ AbstractQueue<E> ‘
A

‘ PriorityQueue<E> ‘

OEBPS/resources/map_diagram.png
Dictionary<K, V>

A

\

Hashtab

le<K, V>

A

\

Interface

Map<K, V>

1

\

AbstractMap<K, V>

A

A

HashMap<K, V>

\

Interface
SortedMap<K, V>

A

Interface
NavigableMap<K, V>

A

£

Properties<K, V>

LinkedHashMap<K, V>

TreeMap<K, V>

OEBPS/resources/stream_pipeline.png
11,2,3,4,56] [4,56] Q/

e - s @
t 1 1

filter(n ->n>3) filter(n->n>4) toList()

OEBPS/resources/class_instance_car_diagram_.png
Class

Blueprint / Factory

Car

Car porsche = new Car();

Living Copy

Instance

porsche

+ double: milesPerHour

+ brand: String

Car ferrari = new Car();

ferrari

OEBPS/resources/mvc_diagram.png
View

Interacts with the User

Controller

Deals with
methods orchestration

e

Model

N

Implements the business requirements logic

CustomerDao

Customer

Front-end Application

£]

CustomerResource

CustomerService

P
-

OEBPS/resources/overloading_types_diagram.png
double

OEBPS/resources/exceptions_hierarchy_diagram.png
Unchecked
Exceptions

hi

RuntimeException VirtualMachineError

NullPointerException StackOverflowError

OEBPS/resources/basic_oo_procedural_diagram.png
Main Program

A 4

function_1

A 4

function_2

A 4

function_3

vy

A 4

A 4

function_4

function_5

function_6

v v

function_7

OEBPS/resources/basic_oo_object_diagram.png
Object A

Data
function
Object B Object C
Data Data
function function
Object D
——— > Data L

function

OEBPS/resources/class_instance_person_diagram.png
Class Living Copy

Blueprint / Factory Instance

jamesGosling

Person jamesGosling = new Person();

Person >

+ name: String

Person robertCecil = new Person(); R

+ birthDate: String

robertCecil

OEBPS/resources/leanpub-logo.png
[

Leanpub

OEBPS/resources/title_page.png

OEBPS/resources/EF3AD8C9162C4EA3A937979C1DA22069.png
javase

N—

java.sql.rowset javaxml.crypto

java.naming java.logging java.scripting javaxml

java.management mi java.security.sasl

javadesktop

java.management java.prefs java.security.jgss

java.datatransfer java.compiler java.instrument java.rmi

javabase

OEBPS/resources/transitive_dependency.png
cache-module

!

dao-module [SS| service-wodule

OEBPS/resources/thread_states.png
Wodting

Acquiﬁmj
wonitor lock

Wod‘ting
inde_{-‘mite.ll/

Runnable

Wox?ting
with o timeout

Timed
WoJ‘t?ng

Terminated

OEBPS/resources/java-memory-model.png
CPU/Processor

Core

L1 Cache ‘
Data Cache l

L2 Coache |
e —_— |

Instructions

‘_ Core

I L1 Cache |
Data Cac |

| Instruction Cache

| L2 cacke

JIT
Compi ler

Java

Bytecode

L3 Cache

l RAM (Main Memory) N

