
[image: image]

Table of Contents

Chapter 1: VBA Primer

Chapter 2: Making Use of Data from Excel

Chapter 3: If/Then Statements and Variables

Chapter 4: Looping

Chapter 5: Understanding Strings

Introduction

Chapter 7: Easy Mistakes to Make

Conclusion
© Copyright 2018 by Peter Bradley All rights reserved.

The follow eBook is reproduced below with the goal of providing information that is as accurate and reliable as possible. Regardless, purchasing this eBook can be seen as consent to the fact that both the publisher and the author of this book are in no way experts on the topics discussed within and that any recommendations or suggestions that are made herein are for entertainment purposes only. Professionals should be consulted as needed prior to undertaking any of the actions endorsed herein.

This declaration is deemed fair and valid by both the American Bar Association and the Committee of Publishers Association and is legally binding throughout the United States.

Furthermore, the transmission, duplication or reproduction of any of the following work including specific information will be considered an illegal act irrespective of whether it is done electronically or in print. This extends to creating a secondary or tertiary copy of the work or a recorded copy and is only allowed with express written consent from the Publisher. All additional rights reserved.

The information in the following pages is broadly considered to be a truthful and accurate account of facts and as such any inattention, use or misuse of the information in question by the reader will render any resulting actions solely under their purview. There are no scenarios in which the publisher or the original author of this work can be in any fashion deemed liable for any hardship or damages that may befall them after undertaking information described herein.

Additionally, the information in the following pages is intended only for informational purposes and should thus be thought of as universal. As befitting its nature, it is presented without assurance regarding its prolonged validity or interim quality. Trademarks that are mentioned are done without written consent and can in no way be considered an endorsement from the trademark holder.

	[image: image]
	 	[image: image]

[image: image]

Introduction

[image: image]

Congratulations on downloading Excel VBA: A Step-By-Step Tutorial For Beginners To Learn Excel VBA Programming From Scratch

and thank you for doing so. Despite the fact that most people don’t know all that much about it, Excel is an extremely useful and versatile tool and taking this first step towards utilizing it to the fullest is sure to pay serious dividends in the future.

In order to ensure you have all the tools you need at your disposal, the following chapters will discuss everything you need to know about VBA, starting with the basics including accessing this feature in modern spreadsheets. Next, you will learn how to make the most of macros by using existing Excel data. You will then learn about the many ways both variables as well as If/Then statements can be used to take your macros to the next level.

From there, you will learn about some more complicated concepts include looping, as well as a number of additional tools that are sure to prove useful from time to time. You will then learn about common errors to watch out for while debugging and some additional tips for success to keep in mind while working with VBA to ensure you get started on the right foot.

There are plenty of books on this subject on the market, thanks again for choosing this one! Every effort was made to ensure it is full of as much useful information as possible, please enjoy!

	[image: image]
	 	[image: image]

[image: image]

Chapter 1: VBA Primer

[image: image]

While you can manipulate Excel to a fair degree through the use of formulas alone, there are always going to be tasks that require you to move and sort data in ways that are limited through the use of this knowledge alone. In these situations, it will generally be much more efficient time-wise to just create a program that can automate the task you are attempting. In Excel, these programs are known as Macros and Excel offers an easy means of creating your own through its own programming language known as Visual Basic for Applications or VBA for short.

The language operates via Visual Basic 6 which was a programming language in vouge before Microsoft standardized things with the .NET languages. While it was once quite popular, these days VBA is the last place most people will encounter it and even then in newer versions of Excel you have to manually activate the feature to even get a peek at it. If you pursue it, however, you will find that once you get used to it you will be able to easily create macros that will easily complete a wide variety of different functions.

While the language struggles with more complicated actions, as long as you don’t push the limits of what’s possible you will find that a little bit of studying will help to save a significant amount of time in the long-run. VBA can be found throughout the Microsoft Office suite of programs as well which means your new skill can have a wide variety of uses indeed.

First thing’s first

If you are using a version of Excel from 2010 or later, you will need to enable VBA functionality before you can get started. This is due to the fact that some macros could, hypothetically, lead to security issues so Microsoft puts the responsibility of enabling it on the user. Luckily, the process to do so isn’t difficult, all you need to do is go to FILE, then OPTIONS and choose the option for CUSTOMIZE RIBBON. From the resulting screen, you will then want to find the box marked DEVELOPER as doing so will provide a space for developer icons to appear on the main screen.

This won’t do you any good on its own, however, as you have to use a separate option to allow Macros to be run within Excel. Specifically, you will want to select FILE, then OPTIONS, then TRUST CENTER and finally TRUST CENTER SETTINGS. From the resulting screen, you will then want to choose the option for MACROS SETTINGS. Finally, you will want to check the box marked ENABLE ALL MACROS.

Assuming you have followed these steps correctly you should now see the space for developer tools on the main screen and also run a program. If you can’t do both successfully then you will know that you need to repeat the steps above.

Write your first program

If you have ever programmed something before then you likely know what is coming next. This is due to the fact that programming tradition demands that the first program you write is one that causes the message “Hello world” to appear on the screen. While this isn’t the most useful program to run multiple times, creating it will help to get you used to the basics of VBA while at the same time ensuring you don’t get into anything too complex which can make it difficult to determine where any errors might have come from.

In order to write your first VBA program, however, you will need to operate in something outside of the standard worksheet interface. You will be working in what’s commonly referred to as a module which is a special type of workbook page. To get started you will want to locate the VBA icon in the newly visible developer tab.

To start creating your program you are going to want to use the command INSERT MACRO MODULE which will create an entirely blank page. Once you click on this option you will also find a new set of options near the arrows for REDO and UDNO. These new options include stop, play and pause and they will work just as you expect them to. Each module is also automatically named, starting with Module1. In order to change the name to something more descriptive, all you need to do is to locate the PROPERTIES box in the lower left corner of the screen and change the name you find there.

While working with modules, it is important to understand that they operate quite differently than your more run of the mill spreadsheet. The biggest differences you will notice right away is that the new page won’t contain any cells and it also won’t automatically calculate provided formulas. When you start typing what you will see are more traditional lines of text that you can then use the traditional paste, copy and cut functionality that you would expect from a Microsoft product. The module will save normally when you save the workbook as a whole.

One of the most important differences you will notice about the module is that it seems to complain about the text you type, regardless of whether or not what you are typing is grammatically correct. This is because the module isn’t checking for spelling or grammar mistakes, it is checking for accurate VBA commands. This tool will be invaluable during the early days of your time with VBA when mistakes are likely to be far more common.

In order to ensure that you create a program that the module is sure to read, you will need to start the first line of every program in the same fashion by typing:

Sub name () with the name of your program replacing name. To create the program discussed above you will want to begin by typing Sub hell () which will serve to tell the module that the name of the program in question is hello. When you are finished creating a program you will want to ensure the final line of your program reads: End Sub. Without this line, Excel will assume that it is waiting for additional input.

You will be able to tell if you have entered a command correctly because it will automatically turn blue. This process will also include proper capitalization if you did not provide it as well. This will occur with any VBA keyword, which is a fixed set of commands that the VBA is programmed to automatically recognize. Luckily, the VBA is also programmed to recognize and correct common errors, such as failing to include the bracket in Sub hell () or forgetting to end the program with End Sub. It is important to be aware that this is the case as otherwise, you may end up creating even more errors by accidentally fixing errors twice. As you get more used to the language and what can be added via a module you are sure to find that it speeds things up a great deal.

Once you have the name, as well as the end and start point of the program, all that you are left with now is filling in the remaining middle bits. When working on a VBA program it is useful to think about what you are doing in terms of creating a list of instructions for the program to follow. As such, if your goal is to create a greeting at the top of the page then you need to give it an instruction to create a message box as well as what to fill it with. The easiest way to create a message box is via the MsgBox command. This command signals the module that you want to create a message box meanwhile following the MsgBox command with text in quotation marks like so MsgBox “message” will display the message in question in the message box.

With all of the pieces now in play, the process of display a message box that says hello becomes relatively straightforward. The program would look like so:

Sub hell ()

MsgBox “Hello World”

End Sub

In order to double check that the program is going to run successfully, all you will need to do is to click on the play button on the toolbar. If this part of the toolbar isn’t immediately visible, you will need to check that it has been turned on. You can find the relevant option by selecting VIEW, then TOOLBARS, then VBA. You can also get the program going by using the command RUN, Start.

Assuming everything works as it should, you should now see a dialog box appear that will show you all of the programs you can run from within the current module. All you need to do is select the hello program and then select the RUN option. Assuming everything is working properly this will now cause the Hello World message to be displayed. You can then click on OK to dismiss the message and also end the program. However, if you had instead entered additional details after the first message, hitting OK would have brought up the next part of the message instead. However, if despite your best efforts, no message is displayed, then you will want to go back and retry the steps outlined above as well as check your code to ensure it doesn’t contain any extra spaces.

Additional input

Once the starter program is up and running, the next thing you will want to do is to create a means for the user to interact with the program so they can add information as needed. To do so, you will need to use the VBA command InputBox which is similar to a message box just more complex.

The command for the InputBox is A = InputBox (“message). This will cause the input box to ask a question (“message”) and also allow the user to generate their own response. The answer to the question needs to be numerical, however, something like “what is the number of pets you have”. Any answer is then going to be confirmed via the Enter key. Based on the above command, the number given as the answer would then be saved as variable A, if it was written a B = InputBox then the variable would be saved as B.

Variables are an extremely important part of most macros and you can think of each as operating in much the way that a named cell operates. The biggest difference here, however, is the fact that the VBA variable isn’t tied to one worksheet as it will work throughout the full workbook.

When creating a VBA variable, the module will automatically track and store any details without you having to issue any additional commands. You can name a variable anything you like, though letters are used most commonly in situations where a full name is impractical. Once you have stored a value, you can then return to it again from any module in the workbook and it will be recognized.

As an example, if you were interested in finding out how many pets the user owns you would write the program as:

Sub hello()

Pets = InputBox("How many pets do you have")

MsgBox Pets

End Sub

When run, this will generate a message asking the user to indicate the number of pets they have before saving the results under the variable labeled “pets”. While this might seem pretty basics on the surface, the truth of the matter is that it requires several things to happen at the same time. For starters, the MSgBox isn’t displaying the word Pets and is instead displaying the number that was saved as the pets variable. This distinction is similar to adding a number to the A1 cell and then referring to it after the fact.

Taking things up a notch

While being able to generate simple avenues for output and input is certainly enough to allow you to create a wide variety of macros, it is still really just scratching the surface when it comes to everything VBA can do. The real fun will begin in the way it interacts with Excel directly, which you will learn more about in future chapters. Nevertheless, there is still more you can do with what you have already learned.

One prime example of this is a solution to the problem that arises when it comes to generating numerous sheets at once and making sure everyone using then understand what types of data need to go where. This is where a particularly useful feature of VBA, creating prompts, comes into play as it will generate a prompt at each place when someone needs to enter specific data.

With the following example, you will notice that the code has been simplified by ignoring the component that would involve the spreadsheet.

Sub loan()

MsgBox "This program works

out the total cost of the interest on a home loan."

Amount = InputBox("The amount you will be borrowing from the bank ")

Interest = InputBox("What is the amount you will pay in interest each month")

Months = InputBox("What is the length of the loan")

pay = Application.Pmt (Interest, Months, -Amount)

MsgBox "Your total interest will be " & pay

End Sub

While these lines are written normally for the sake of legibility, while typing them into the module you may very well find yourself at the end of a specific line without finishing a specific command. If this happens you will then need to continue the command on the following line to ensure it is read properly by the module when the time comes.

If you have set everything up properly to this point then when you run the above program you should see a message box that shows the goal of the program along with a series of boxes for inputs as well as the rest of the important information. You should also receive an answer once all the boxes have been filled in. You should not, however, just copy and paste the above code for use in a real-world scenario as it is missing check that makes sure users put in realistic values.

The important new feature in this example is the PMT function that is used to accurately figure out the full amount of the loan. This function also needs to be written as follows: Application.pmt (. This allows the VBA to understand that the listed function is generated via a spreadsheet as opposed to a command that came from within the VBA.

While this is a simple example, it serves to show an example of what a VBA macro can accomplish. What’s more, it will make it possible for you to more likely accurately determine what is going to happen as well as what will cause it.

	[image: image]
	 	[image: image]

[image: image]

Chapter 2: Making Use of Data from Excel

[image: image]

Once you start working in VBA successfully, you will find that it becomes far easier to understand all of the possibilities of doing so. The trouble can being, however, if you find that you are having a hard time accessing information found elsewhere in the workbook. This works in stark contrast to a majority of traditional workbook functions where finding specific data is an extremely easy task.

Typically this process can be completed by typing something simple like =B4+B5 into a given cell and letting the worksheet sort out the rest. If you try this same approach in the module, however, you will find that the way this process works in the VBA is a remnant of its roots as a programming language. Thus, while its commands aren’t quite as simple, they can be used in a wider variety of scenarios.

Locating data within a given cell

The easiest way to determine how these processes work is to start by referring to data that is stored in specific cells in a way that the VBA will understand. It is important to keep in mind, however, that there are going to be easier ways of reaching this data in the end, which makes this portion more of a thought exercise. In the following example, it is assumed that you were interested in accessing whatever is in Workbooks 2, cell G2 of Sheet 17.

temp= Application.Workbooks("Book2"). _

Worksheets("Sheet17"). _

Range("G2").Value

While this can be a lot of work to access the data in a single cell, it serves to illustrate how the code works as a type of address, starting with the most general information and getting more specific as it progresses. You will see this same type of pattern repeated numerous times as you work with VBA. It is also important to keep in mind the fact that various parts of the address are separated by a period while at the same time being read left to right as you might expect. To read the above address you would look at the application, which is Excel in this case, before finding the active workbook number, which is crucial when telling the program what to limit its search too. Finally, each workbook can then have any number of worksheets as well as cells within those sheets so the remaining information is honed in on even more easily.

You will also need to take note of the underscores that are placed at the end of certain lines of the code. These are simply used as a means of ensuring that the module reads the two lines of code as one complete thought. If you need to split a command between two lines splitting them with an underscore and a space is recommended. Underscores are what is known as a continuation character which means they indicate if a given instruction is spread across more than one line. While the module will most likely read the code properly regardless, it is often easier to insert these line breaks yourself to ensure everything remains nice and clear.

There are also a variety of different properties for cells that can be utilized, including color, height, width and more which is why Value is necessary in order to guarantee you end up with the correct value when everything is said and done. While all of this will certainly be useful as the groundwork for additional information, later on, it is only going to be needed in its entirety in very rare occasions.

Objects and properties

While this approach to finding the data in a specific cell can feel cumbersome to start, it is actually inline with a variety of modern programming languages so it certainly bears learning, even if you won’t be using it all that frequently at the moment. The basic idea is that when working in VBA you will be working with Objects and these objects all have Properties. For example, if a specific cell in a spreadsheet is an object, and the properties within that cell are its values which means that the range B2 applies specifically to a cell that is also an object named B2 as well as the range (“B2”). Value can then be used to tell you if the value has a specific property.

While this is fairly straightforward to start, it can quickly become more and more complicated based on the fact that objects can also have other objects as properties as well. For example, if you are looking for an Application as an object then it can include a variety of different workbooks which are also objects in their own right while still being part of the Application’s associated properties. Each of these workbooks could then contain a variety of worksheets which are then objects in their own right even though they contain cells which are objects as well.

This nestled functionality goes by the name object hierarchy and it goes application, workbook, worksheet, cell range. Each cell could also have additional objects associated to its properties though it is rare you will need to get that granular with anything. While this system might seem cumbersome at first, it is important to persevere as once you get a better feel for the arrangement of most objects your speed is bound to increase. VBA also features an object viewer that will allow you to easily view the hierarchies that exist within your module while also choosing objects from the list if you prefer. This will, as an example, make it possible for you to press F2 to look at the range for a given worksheet.

Simplify: After you are familiar with the general principles at play within the object hierarchy, you can then simplify things, even more, starting with the process for finding specific detail more quickly. To begin you will want to write your references with a specific set of properties so that you don’t need to write out full names as you can count on several factors to be included automatically. These default phrases will naturally relate to the object of the required type that is currently active.

As an example, if you were to start out: temp = Worksheets("Sheet4"). _

Range("B4").Value

This would tell the module that Excel is the application that is currently active and it would remember that fact moving forward. The same can be said if you use the VBA in other Office products like Word. The same level of assumption can be applied to workbooks that are currently active, assuming it is part of the same module. You can also let the worksheet autofill but this can be tricky in certain instances as it can become difficult to determine which sheet is currently active in a given model.

If you want to remove the need for a given worksheet reference you can write it as such: = Range("B1").Value. You will then want to ensure you runt eh code at least once to watch everything work properly. As you do so, it is important to watch and make sure the correct sheet is picked up. This will require to use the Activate method. Beyond properties, a majority of objects have methods as well. A method is simply something an object is asked to do. For example: worksheets (“Sheet4”).Activate. This would, in turn, give the fourth sheet the activate method which would set it to the active sheet. This will be the fourth sheet in the current workbook, however, so it is important to set the workbook accordingly as well.

When it comes to creating something entirely new, you would include it like so:

––––––––
[image: image]

ub newvalue()

Worksheets("Sheet2").Activate

temp = Range("C2").Value

MsgBox temp

End Sub

This will then help to ensure that things work as expected and that you are leaving nothing to chance as a result. This will ensure you see the contents of the specific cell on the specific sheet no matter what the state of things happened to be prior to starting the module. A side effect of this is that if you happen to close the module you will find that the sheet you indicated is now the active sheet.

The same overall process can be used to generate the correct workbook and would look something like this:

Sub findvalue()

Workbooks("Example1").Activate

Worksheets("Sheet2").Activate

temp = Range("C2").Value

MsgBox temp

End Sub

This will, in turn, help to ensure that the workbook with the given name is active, before then activating its second worksheet and then circling in on the cell C2.

With

After you have worked to make sure the module is looking for the specified data in the right place, you will then be able to go ahead and leave out those references moving forward as you can count on the module to fill them in automatically. This will not be the case, however, if you go ahead and reference several different workbooks or worksheets in short order. Luckily, as taking the time to switch them all over on your own can be extremely time consuming, you can do it without having to write out entire names. This involves the use of the command With – End With.

The goal here is that you can successfully quote a long string of names that you will eventually be using at the very start with a list inside a block. Doing so would look something like this:

Sub findvalue()

With Worksheets("Sheet3")

temp = .Range("C3").Value

End With

MsgBox temp

End Sub

After the "with" the reference

.Range(“C3”).Value

is expanded to

Worksheets(“Sheet3”).Range(“C3”).Value

From there, any reference that is placed between the With and the End With commands will need to be proceeded by a “.” they can then be expanded upon in much the same way. The “.” works as a type of invitation for the WITH command to include the rest of the name. it is also important to keep in mind that the above example takes advantage of the workbook that is currently active. You can then further specify the object that you want to focus on by using the With-End With command. For example, you would be able to indicate that Workbook3 and Sheet3 are the defaults for future With-End With instructions like so:

Sub getvalue()

With Workbooks("Book3").Worksheets("Sheet3")

temp = .Range("C3").Value

End With

MsgBox temp

End Sub

This can then be used with any object that is going to be considered the default With object...End With statement.

Using it: With this option on the table, you should now have a general idea of the best way to get at any of the values that you may have already added to a specific worksheet which means you are now ready to begin thinking about the many ways in which VBA and Excel can successfully work together. In most scenarios where you are choosing whether to implement what happens with the VBA or if a spreadsheet can do the job more quickly, some things are always going to need to remain on the spreadsheet in order to truly be effective.

One such instance is with the starter program discussed in the first chapter. It utilized inputs as well as a message box in order to utilize data entered by the user who was asked to provide an answer. The process was then taken care of by the VBA program and the data didn’t actually utilize a spreadsheet in a meaningful fashion. As such, it could have been created in much the same way using any other programing language. Often, however, you will find that you are working with specifics that deal with Excel far more directly.

Back to the starter program, it could have been altered in such a way that it utilized data that was originally stored in the spreadsheet and had its calculations done directly through the spreadsheet as well. To do this all you would have needed to do was to create a new workbook before opening up the module and then using the INSERT command, then MACRO and MODULE before using the following:

Sub loan()

MsgBox "This program works out the interest paid on a loan."

With Workbooks("Book3").Worksheets("Sheet3")

.Range("C3") = InputBox(_

"The amount you will be borrowing ")

.Range("C1") = InputBox(_

"Monthly interest")

.Range("C2") = InputBox(_

“How long is the loan for")

.Range("C4") = "=Pmt(C2, C1, -C3)"

.Activate

MsgBox "Monthly repayments " & .Range("C4")

End With

End Sub

As written, this program does much the same thing as the program found in Chapter 1, except that it now uses values that were input from the cells in the relevant sheet and book. It is also important to take note of the With command in this scenario; generally speaking, it will be used to indicate specific books and sheets to act as defaults for any future references, here, however, the .Activate line helps to ensure the proper sheet is currently active. Finally, the message box displays any relevant information.

You should also be aware of the .Range command as it is useful when it comes to placing a full formula into a specific cell. Doing so successfully requires a bit of work, however, as the formula will need to be written with quotation marks to help ensure the VBA doesn’t work to solve prior to placing the details in the specific cell. With this done, you can then switch to the worksheet and you will see the formula in question in the appropriate cell, just as you initially entered it.

You can get the same effect by adding the formula you wish to use to the cell manually, prior to opening the module. This will then require that the module make a handful of assumptions about the things that are stored in the worksheet, but certainly no more than most programs. In most instances, the module will begin by building as much of the automation for the given spreadsheet as possible right from the start prior to writing the part of the program that will require its functionality to be extended to an even greater degree.

The greatest advantage of this course of action is doing things in this fashion is that once a program has been properly executed you can still access the formula or data from the spreadsheet as normal which means you are free to change variables on the fly before running the program again to see what’s changed as a result. This is where much of the true power of the spreadsheet comes from and where it provides a significant advantage when compared to utilizing pure VBA functionality.

If the program outlined above were written in its final form then it would have included additional titles and formatting to the spreadsheet side of things to help present all of the available information as effectively as possible. It would almost certainly have pre-included the secondary formula as well which means the macro would have been able to simply pull the data and show the results. In fact, these are two of the more commonly used roles that VBA programs play when it comes to working with spreadsheets that have a more complicated agenda. This doesn’t mean that guiding the user isn’t an important function, however, and you can easily use the VBA to provide relevant values and also check to ensure they are added properly to the worksheet.

Utilizing Ranges

Range object: The range object is arguably the main object you’ll be using to interact with ranges. When you record macros in VBA and select a range of cells, Excel uses the range object. So if you selected cell A1 while recording a macro, Excel would record the action like so:

Range(“A1”).select

In this example, range is the object. The parameter (argument) we’re providing to this object is a valid cell reference (A1 in this case) which is provided as a string (i.e. in double quotes.) And the method (action) we’re performing is “select” to select the cell, or range of cells, that was provided as a parameter to the range object. So we’re telling Excel to find the range A1 in the worksheet (in this case, in the activesheet) and select that cell.

If you selected a range of cells while recording a macro, say the cells in the A1 through C3, Excel would record the action like so:

Range(“A1:C3”).select

In addition to selecting a cell, or a range of cells, you can also select a range of non-continuous cells. For example, you can select cells A1, B4, and D8 like so:

Range(“A1,B4,D8”).select

In addition to passing ranges, you can also pass variables that contain valid range references like so:

Dim addy as string

Addy = “A1,B4,D8”

Range(addy).select

All of these examples have shown the range object taking one parameter (a range of cells). However, the range object can take up to two parameters. The previous example of selecting cells A1:C3 can be written like so:

Range(“A1”,”C3”).select

You may be wondering why you would want to do this over the previous example since it requires more typing. In this example, the first approach would make more sense. But this flexibility can be useful as you’ll see later when I discuss the current region property.

It is important to note in all of these examples the select method has been consistently used. This is how you typically work in the Excel worksheet. You select the cell, or range of cells, you’d like to work with, and then you perform some action on that range (e.g. insert a value, insert a formula, etc.) Because this is how you work in Excel, people typically bring this line of thinking when they start working in VBA. However, it is not necessary to select ranges to work with them in VBA.

Because it is not necessary, selecting cells is actually discouraged when writing VBA code unless it’s absolutely necessary (unnecessarily selecting cells will slow down your macros.) Let’s look at the previous example, but instead of selecting those cells, let’s give them the value of 5. A property we can use to assign values to a cell, or range of cells, is the value property. So if we wanted to assign a value of 5 to all of those cells, we could write the example like so:

Range(“A1,B4,D8”).value = 5

This will input the value of 5 into cells A1, B4, and D8 without doing any selecting. Since no selecting is done, this macro is faster than a macro that does do selecting since it has less instructions to execute.

Cell property: The cells property is similar to the range object in that it can be used to interact with cells in a worksheet. The cells property is not an object like the range object. It's actually a property of the worksheet object. One big difference between the cells property and the range object is that the cells property can only interact with one cell at a time. Another difference is how the cell reference is provided. The cells property has two arguments: One argument is required for the row, and another is required for the column. Selecting cell B3 in a range would be done like so:

cells(3,2).value = 5

In this example, the row parameter is provided first (3 in this case), and then the column parameter is provided a second (2 in this case.) Alternatively, the second argument in the cells property can use a column letter that’s provided as a string. Here’s the previous example, rewritten using a column letter:

Cells(3,”B”).value = 5

Used range property: The used range property is useful for determining the range of non-empty cells in a worksheet. Unlike many of the previous examples we’ve discussed, it is not a property of the range or activecell objects, but of a sheet object. So, you can see the usedrange property of the worksheet Sheet1 like so:

Msgbox Worksheets("Sheet1").UsedRange.Address

The used range of a particular worksheet is determined by the upper-leftmost non-empty cell to the lower-rightmost non-empty cell. So, if you ran the previous macro, and only two cells in that sheet had values (e.g. A1 and E5) the previous macro would return A1:E5 in a messagebox.

When you want to use the usedrange property though, you can also invoke it on the activesheet object like so:

Msgbox activesheet.usedrange.address

If you used the activesheet object, one thing to note is that Excel does not provide intellisense whereas it does for the worksheets object. This is because Excel does not know what type of sheet the activesheet will be referring to until runtime. This is because the activesheet does not need to refer to a worksheet. The activesheet can also refer to a chart sheet for example. If that were the case, the previous macro would fail whereas it would not with worksheets.

One last thing to note is that, even though the cells between a used range may be empty, they’re still included as cells in the range. In the previous example, using only cells A1 and E5 with values in the used range, only two cells have values. However, if you ran this macro:

Msgbox activesheet.usedrange.count

You’d see that it says that 25 cells are included in the used range. So, if you run a macro that processed all of the cells in a used range, it would be processing a lot of empty cells. This may not be an issue for a small group of cells like in this example. But let’s say you had a used range with tens or hundreds of thousands of cells to process, with many of the cells being empty. In that case, using the used range would be very inefficient and the macro would likely be slow. There are a few strategies you can use to make the range in the used range more precise.

	[image: image]
	 	[image: image]

[image: image]

Chapter 3: If/Then Statements and Variables

[image: image]

Variables

The goal of this chapter is to teach you the easiest ways to initialize, declare and display different variables in VBA. Declaring a variable is the way you indicate to a given system that it should pay special attention to a given variable. Initializing is the name given to the process that assigns a primary value to a specific variable.

Naming variables: You’re given freedom on how to name your variables, but there are some restrictions:

	The first character in a variable name must be alphabetic

	You can use alphabetic, numeric, and certain punctuation characters in VBA code

	Variable names can be no longer than 254 characters

	Certain words are classified as keywords and are not capable of being used as variable names.

Although these are not restrictions, here are a few other things to note about naming variables:

You can’t write two different variables in VBA that differ only by case. If you create a variable named hw, and then later create a variable named HW, these variables will have the same value. This is important to note because some other languages allow this (e.g. C#).

Function names in VBA are not reserved keywords. So you can use the “left” name for the left function as a variable in VBA. It’s recommended that you don’t do this. If you do, you’ll have to use vba.left to access the left function.

While you don't need to name your variables anything in particular, it's good practice to try to name them something appropriate for their purpose in your code so that others, or even yourself, can understand why you created them if they read your code. For example, assume you want a variable to represent the number 24. You can call this variable "b", but b in no way indicates why it's representing the value 24. You could also call it "hoursInADay" which is much more descriptive. This tells you that you're creating this variable because you want to represent the hours in a day.

Variable data types: All variables in VBA have a data type. VBA is known as a dynamically typed language. This means that you can either declare your own datatype or have VBA do it for you. If you don’t declare a datatype, VBA will declare the datatype as variant and will try to make its best guess as to what datatype to assign it if a more specific one is available. However, this is not recommended for a few reasons:

By explicitly assigning a datatype, you can put restrictions on the types of data a variable will store. If you don’t do this, the value of the datatype can be one you did not expect which can lead to bugs in your code.

One of the datatypes that VBA may try to use is the variant data type. The variant datatype is one of the largest datatypes in terms of bytes used in VBA. The variant datatype is large because it has the ability to handle any type of data. However, large use of the variant datatype can lead to poor performance. It’s generally recommended NOT to use the variant datatype unless it’s explicitly needed. (e.g. in variant arrays)

VBA supports several datatypes including the following categories:

Boolean: The Boolean (1 byte) datatype is a datatype that can store one of two values: True or False

Numeric: VBA supports a number of numeric datatypes such as Integer (2 bytes), Long (4 bytes), Single (4 bytes), and Double (8 bytes). These numeric datatypes differ by the range of values they can store. In these datatypes, an integer has the smallest range whereas double has the largest range. It's generally recommended that you use the smallest filesize capable of handing the range of numbers you want to use (or one above it.)

String: The string (10 bytes + string length) datatype can store text. So you can use the string datatype to store values like “Hello world”

Object: The object datatype is capable of storing any object reference

Variant: The variant (varies) datatype is capable of supporting many different values types, like string, numeric, etc.

Declaring a variable and assigning a type: To declare your variables, start by writing the “Dim” statement. You can write this anywhere in your procedure, but I tend to write mine on the first line in the procedure. To declare a datatype, you simply use the dim statement and the variable name like so:

Dim hw

Although this variable is declared, it has not been given an explicit datatype. To give it an explicit datatype, you use the “as” statement and then its datatype like so:

Dim hw as string

You only need one dim statement per line for your variable declarations. All variable datatypes in VBA must be explicitly named. VBA does not support declaring multiple variables with one datatype like so:

Dim a, b, d as string

Although all of these variables are declared, only d is given the datatype of string. The a and b variables have a datatype of variant. So to properly declare all of these variables as string, you have to write the procedure like so:

Dim a as string, b as string

Dim c as string

Forcing variable declaration (option explicit): VBA allows you to use variables and assign them values without declaring them. However, this is considered poor practice as it can lead to bugs in your code. It’s generally recommended to turn on option explicit to force you to declare all of your variables. You can do this in the visual basic editor by going to Tools, options, and checking “Require variable declaration”. If you turn this on, whenever you create a new module, the words “option explicit” will appear at the very top. You will get an error if you try to use any variable that you have not explicitly declared.

Determining a variable's type: Sometimes, it's useful to know what the type of a variable is. This can be very useful for both debugging and for using it in conditional execution statements. To find the datatype of a variable, you use the typename function and the variable name like so:

Dim a as string

Typename(a)

This will return the type of the variable (in this case, string)

Command button: The first thing you need to understand is that this process uses a command button which means in order for it to work properly you will need to insert one in your worksheet. To start, you will need to go to the Developer Tab prior to clicking on the Insert option. Next, you will need to locate the AcitveX control options prior to clicking on the selection titled Command Button. You can then drag the resulting button anywhere on the worksheet that you like.

At this point, the button won’t be connected to a specific macro which means that it won’t actually do much of anything. To link it to a given macro you will need to activate Design Mode. From there, you will want to right-click on the command button and then chose the option to View Code. Assuming this has been done correctly, this command should then open the Visual Basic Editor directly to the secion of code regarding the button. Next, you will need to locate the line that starts with Private Sub CommandButton1-Click () EndSub. In that space, you will want to enter the following: Range (“A1”) .Value = “Hello:

Now, when you open the VBE a second window should also open that provides you with a variety of additional sheet names. This window is called Project Explorer and it will make it easier for you to see what sheet you are adding code to. If Project Explorer isn’t automatically visible, you can find it in the view option by selecting the option for Project Explorer.

After you have entered the code you can then close the VBE, though you will need to save manually before doing so. The next step is to clear Design Mode and then click on the command button. Assuming the code was entered correctly the word Hello should now appear in the A1 cell of the current worksheet. Assuming everything worked properly that means you are now ready to move on to using more complex variables.

Integer variables: In order to store a variety of numbers for use at a later point you can use this code:

Dim x As Integer

z = 8

Range("B2").Value = z

––––––––
[image: image]

The code above would then place the number 8 into the B2 cell. More specifically, the primary line of the code indicates a precise variable called Z in addition to the number 8. With that done, it will then initialize the value of x which is 6 as well as determine the location of the resulting equation which was A1. This means you will be able to change the range, integer, or value as needed. At the same time, an even more complicated formula for the button to solve could be included as well as variables from numerous cells as opposed to just one. You can also then add further variables as the need arises.

String variables: String variables come in handy when you need to store text instead of integers. Using the following code, for example:

Dim book As String

dog = "Labradoodle"

Range("A1").Value = dog

Would then add the word dog to A1. Additionally, if you had already used the word dog in a cell it would then be changed to Labradoodle. When you use this code you are declaring the first line which includes the string variable. The second line then indicates the variable as well as the additional change. When creating string variables it is important to keep in mind that quotation marks around the word are important. The final line will then indicate the new location for the variable in question.

Adding another variable: Doubling up on variables is useful when you need something more accurate than a single integer as it can store additional numbers after the decimal point. An example of this type of code would be:

Dim x As Integer

x = 6=2

MsgBox "value is " & z

Using this code would cause Excel to generate a dialogue box which will display the selected value of 6. This is not the correct answer, of course, which is why you need the double variable type beyond the standard integer type. To further make sure you generate the correct answer in this scenario you would want to write the code as:

Dim x As Double

x = 6.2

MsgBox "value is " & z

This code will let Excel know that it needs to check for a decimal place in addition to the primary integer and return the proper answer of 6.2. If you are looking to go past the first decimal point then you will need to use a long variable to do so. It is important that you use variables that are always of the right length in order to help your code run as smoothly as possible.

Boolean variable: In order to indicate a variable that can either be true or false, you will want to use a Boolean variable. An example of this type of code looks like:

Dim continue As Boolean

continue = True

If continue = True Then MsgBox "Boolean variables are cool"

Assuming it is written correctly, this code will then create a dialog box that expresses the proven fact that Boolean variables are cool. The first like of this code declares a Boolean Variable which is then initialized with a true value and the only Boolean variable is then utilized to help display the message correctly assuming the variables is considered true.

Statement types

If/then statements: An if/then statement is especially useful if you want a given line of code to activate only when specific conditions are met. In order to ensure this happens successfully, you will want to start by creating a button before then connecting it to the following code.

Dim score As Integer, result As String

score = Range("B3").Value

If score >= 70 Then result = "pass"

Range("B3").Value = result

The end result here is that if the score ends up being 70 or above it will be automatically labeled as a pass. This means if the integer in the first cell is 80 then pressing the button will add the word pass to the next cell over. As written the cells that are less than 70 would remain blank, though you can add an additional result written as < 60 = fail to have the word fail be displayed by those that did not pass.

Else statements: While secondary results can be added using the method above, an even easier way of doing so is by using an else statement which looks like so:

Dim score As Integer, result As String

score = Range("A1").Value

If score >= 70 Then

result = "pass"

Else

result = "fail"

End If

Range("B1").Value = result

This will, in turn, make it possible to assign a value of pass to the appropriate cells in the range that are above the determined value and a value of fail to the rest. It is important to keep in mind that this will only really work if there is an additional line of code after the portion of the statement and also if the statement doesn’t contain any additional Else sections. If this ends up being the case then you can successfully add code to the line directly beneath the then statement as well as omit the End If line. This will, however, require that you start on a new line after the Else and then and also make sure you place the End line in the new appropriate location.

	[image: image]
	 	[image: image]

[image: image]

Chapter 4: Looping

[image: image]

Looping is an immensely useful programming technique that will make it possible for you to run through several ranges quickly while only requiring the addition of a small amount of extra code.

Single loop: The first type of loop, the single loop, can be sued to easily move through ranges of cells that are one-dimensional. An example of this can be connected to the command button with the following code:

Dim i As Integer

For j = 2 To 7

Cells(j, 1).Value = 75

Next i

Assuming everything is written properly, pressing the button at this junction will place the integer (75) in J2 – J7. This occurs because the line of code between For and Next is then executed five additional times. The first time that J = 1, the VBA knows to place the integer 75 into the cell where the column and row meet one another. From there, you will need for the VBA to hit the second j in order to increase the amount by 1 and thus reset everything to the For statement. Next, when j = 2, the VBA then provides a value in the form of 75 into the cell that exists at the next point where the row and column intersect. This then continues for all of the various cells and rows between 2 and 7. While this is not expressly required, with this type of code you are going to need to be in the habit of indenting to keep things as legible as possible. Specifically, this will comes into play between the words For and Next as this should make things easier to read when it comes time to find errors.

Double loop: A double loop is, as the name implies, a loop that makes a movement through a full two-dimensional cell range. In order to use one, you can use the following code and attach it to your command button:

Dim j As Integer, k As Integer

For j = 2 To 7

For k = 1 To 2

Cells(j, k).Value = 75

Next k

Next j

Assuming everything has been done correctly you will then find that this fills rows 2 – 7 of the columns k and j with the number 75. This code can then tell the VBA that when j = 2 and k =1 then it needs to enter 75 wherever the two meet initially, from there, it increases by 1 before returning to For in the k statement. Next, when j = 2 and k =2 then VBA knows to place 75 where they intersect again. Based on the code, the VBA will then ignore j moving forward as it will only be running between 1 and 2. This is then repeated until the VBA has run through all of the j columns that meet the desired criteria.

Triple loop: A triple loop is much the same as a double loop with the exception that it works across numerous worksheets. In order to use one effectively, you can use the following code:

Dim d As Integer, j As Integer, k As Integer

For d = 2 To 4

For j = 2 To 7

For k = 2 To 3

Worksheets(d).Cells(j, k).Value = 75

Next k

Next j

Next d

When comparing this to the double loop code, the biggest difference you should see comes in the form of the variety of worksheets being used thanks to (Worksheets(c)). It is important to place it before Cells in order to properly ensure the first sheet has a two-dimensional range when it comes to c = 1, c = 2 for the second sheet and c = 4 on the third.

Do while loop: The loops listed above are what are known as For Next loops, another type of loop is the Do While Loop which can be used to make a given action repeat indefinitely as long as the process as a whole remains true. You can try one yourself like so:

Dim i As Integer

J = 2

Do While j < 7

Cells(j, 2).Value = 25

j = j + 1

Loop

With the code inserted properly into the command button, you will find that the number 25 is placed in the cells of the given rows. This works by looking for a j that is less than 7, in any instance where this is the case then the VBA will know to place 25 in the cell instead. When working with VBA, the = symbol means “becomes” rather than “equals”. This means that j = j +1 is akin to the point where j becomes j + 1 or if the value of j is increased by 1. For example, if j = 1, j really becomes 1 + 1 = 2. This means that integer 25 will be adding into the column as many times as possible until j equals 7.

Now for a more advanced example, assume that you entered the integers 27, 35, 56, 59, 85 and 84 into the first six cells of column A. Next, place the following code into your command button:

Dim i As Integer

j = 1

Do While Cells(j, 1).Value <> ""

Cells(j, 2).Value = Cells(j, 1).Value + 10

j = j + 1

Loop

When done properly this should generate date within the first six lines of the column in question using the number 94, 69, 95, 66, 45, 37. The reason that this is the case is that for the length of time that the j and 1 cells value is not empty (<> is short for not equal to(, then the VBA will enter the value into the cell at the point where the column and the various rows intersect. The number that is entered is then ultimately going to be greater than 10 above the value of the cell at the relative point on the column/row intersection. Furthermore, the VBA will then stop auto-filling when j equals 7 as this is where the future cells will begin to empty. This process can then be used to generate a loop that is used for generating an almost limitless number of rows for a specific worksheet.

	[image: image]
	 	[image: image]

[image: image]

Chapter 5: Understanding Strings

[image: image]

To understand what makes strings so useful, it may help if you think of them as you would this sentence, comprised of individual parts but still a complete whole. Using strings correctly is a crucial part of expediating the VBA process and makes a wide variety of processes possible that would be otherwise too time consuming to use on a regular basis.

This includes things like extracting certain parts from a specific string, comparing different strings, converting lists of numbers to a string, formatting dates in such a way that they include the day of the week, finding a specific character in a string, removing blanks and parsing an array to name just a few. Luckily, VBA comes equipped with a variety of functions that make these tasks easier to perform than they would otherwise be.

When working with strings it is important to keep in mind that VBA string functions do not alter the primary string you may be looking for. Rather, they create a new string that contains only the elements that are specifically requested by the terms of the search. In order to use these process to actually alter the initial string you will also have to give the new string a new location so that VBA knows to save it to the place where the original string was first stored.

Join strings together: Combining two strings together is known as concaternation and it looks something like this:

Dim strFirstName As String = "Diane"

Dim strLastName As String = "Troy"

Dim strTitle As String = 'Mrs."

Dim strSalutation As String

strSalutation = strTitle & " " & strFirstName & " " & strLastName

Concaternation can be used for more than just variables, it is also a useful way to work with string literals which is any text string that falls between a pair of quotation marks. It would look something like this:

Dim strFirstName As String = "Diane"

Dim strLastName As String = "Troy"

Dim strTitle As String = 'Mrs."

Dim strSalutation As String

strSalutation = "Hello" & strTitle & " " & strFirstName & " " & strLastName

Determining the length of an existing string: Another task you will have to perform regularly is having to look up a number of specific characters within a prolonged string. As such, there are multiple options when it comes to determining lengths for string variables as well as string literals. The function Len() makes it easy to find out how long a string literal is. It works by looking at the string as an argument in order to determine its length through a process that looks like so:

Dim decLength As Decimal

decLength = Len("This is the literal string")
This technique is also useful for dealing with string variables:

Dim decLength As Decimal

Dim strMyString As String = "This is the value of the String Variable"

decLength = Len(strMyString)

Compare two strings: Strings can be compared using several functions including StrComp() and Instr(), but in order to do so you will first need to properly set up the relevant optional compare parameter. If you are using vbTextCompare in this instances then it won’t matter if the text is written with capital letters or not, it will be processed in the same way. This is not the case if you are using vbBinaryCompare as in this case words that are lower case and those that are upper case will both be considered differently even if they are classified as the same in other scenarios. You can compare two strings using the following code:

Sub Comp1()

' Prints 0 : Strings match

Debug.Print StrComp("XYZ", "xyz", vbTextCompare)

' Prints -1 : Strings do not match

Debug.Print StrComp("XYZ", "xyz", vbBinaryCompare)

End Sub

The module outlined above shows how it is possible to make use of the Option Compare setting as opposed to adjusting this parameter each and every time that the Option Compare command is used to start a module. When this occurs each function then takes on the advantage of the compare parameter which will then adopt this new setting as the default. The command for Option compare can be used in two main ways. The first of these is the command to Compare Option Text which will change the way vbTextCompare compares the argument by default. It loos like so:

Option Compare Text

Sub Comp2()

' Strings match - uses vbCompareText as Compare argument

Debug.Print StrComp("XYZ", "xyz")

Debug.Print StrComp("ABC", "abc")

End Sub

Alternately, the Compare Binary options alters the compare argument so it reads vbBinaryCompare like so:

Sub Comp2()

' Strings do not match - uses vbCompareBinary as Compare argument

Debug.Print StrComp("ABC", "abc")

Debug.Print StrComp("DEF", "def")

End Sub

Option Compare Binary is the default style of Option Compare that is used if another Option Compare command is not used instead. Once you have access to these two points you will be able to consider how several other string functions are working.

Appending strings: Using an ampersand as an operator you can append strings as well using several methods including:

Sub Append()

Debug.Print "XYZ" & "ABC”

Debug.Print "John" & " " & "Francis"

Debug.Print "Short " & 17

Debug.Print "Triple " & $5.40

Debug.Print "Date " & #11/11/1988#

End Sub

These examples should make it clear the ways in which different categories of information can all be stored in the string. You will find that turning dates and numbers into strings from the start makes it easier to use VBA to interact with them. Some code may also use the plus sign as an operator in some scenarios to make appending strings easier. It doesn’t work with all types of strings, however, and if you receive the following error then a plus sign is likely the cause:

"Type Mismatch"

Debug.Print "Short " + 21

Pulling out part of a specific string: Some functions make it much easier to extract specific sections of data from a string. If your desired extraction is too complicated, however, you will want to use something besides VBA InStr. The Mid, Right and Left functions are all used to extract a small section of a given string and work as you would expect. Meanwhile, the Mid function starts searching the string from a point you determine while the Left and Right functions both start on the given side of the string.

Sub UseLeftRightMid()

Dim sCustomer As String

sCustomer = "Paul Rykert Anderson"

Debug.Print Left(sCustomer, 1) ' Prints: Paul

Debug.Print Right(sCustomer, 5) ' Prints: Anderson

Debug.Print Left(sCustomer, 10) ' Prints: Paul Rykert

Debug.Print Right(sCustomer, 11) ' Prints: Paul Anderson

Debug.Print Mid(sCustomer, 2, 5) ' Prints: Paul

Debug.Print Mid(sCustomer, 7, 7) ' Prints: Rykert

Debug.Print Mid(sCustomer, 14, 6) ' Prints: Anderson

End Sub

While using these functions it is important to keep in mind that doing so is not going to alter the primary string by default. For example, in the following you will see that the string is not changed even after the Left function is used:

Sub UsingLeftExample()

Dim Given Name As String

Given Name = "Jane Larson"

Debug.Print "Firstname is: "; Left(Givenname, 3)

' Original string has not changed

Debug.Print "Givenname is: "; Givenname

End Sub

If you find yourself in this situation then if you end up changing the primary string at a later data as well by changing where the return value falls within the function:

Sub ChangingString()

Dim name As String

name = "Jane Larson"

' Assign return string to the name variable

name = Left(name, 3)

Debug.Print "Name is: "; name

End Sub

Search inside a string: InStr and InStrRev are two important VBA functions that come in handy when searching in a string for a given substring. If the search is successful, then the relevant substring will be displayed, starting with its internal string location. If the search then fails to find the substring the result will be displayed as 0 or null depending. InStr parameters look like so:

	Start As Long [Optional – Default is 1]: This is the number that determines where the search begins

	String1 As String: This is the string that will be searched

	String2 As String: This is what is being searched for

Generally speaking, you can expect InStr to return a position in a given string if the specific substring is found to be completely intact.

Chapter 6: Errors to Watch out for While Debugging

––––––––
[image: image]

You might find some problems with your VBA code, but how can you debug the error? There are cases that your VBA code may require you to debug. Error handling refers to a code that you write to handle some of these errors when your application is running. These errors can occur as a result of missing a file, invalid data, a missing database, and many other reasons.

If you have a feeling that an error may occur at a given point in your code, it is advised to write a specific code that can handle the error when it shoots up.

Other VBA errors one can apply a generic code to handle them. This the time when the VBA error handling statement is important. It will enable an application to handle any error that is not expected.

To understand how to debug VBA errors, one must first know the different types of errors that exist in VBA.

Errors in VBA

The three types of errors in VBA include:

1. Compilation errors

2. Runtime errors

3. Syntax errors

Error handling is used to debug runtime errors. Let’s now discuss each of these errors so that it becomes clear to everyone what a runtime error is.

Syntax errors

In VBA programming, if you type a line and press return, VBA will determine the syntax and in case it is not correct it will show an error message. For instance, when a user types an if statement and forgets to include the Then keyword, VBA will show the following error message.

[image: image]

Other examples of syntax errors include:

• Missing a right parenthesis i.e. c = left (“ABCD”, 1)

• Missing an equal after I i.e. For i 4 to 8

Syntax errors are associated with one line alone. It occurs when the syntax of one-line is wrong. However, if you don’t want to see the syntax errors, you can still switch off the Syntax error dialog box by navigating to Tools>Options and check off “Auto Syntax Check”. This means that the line with a syntax error will appear red but the dialog box won’t show up.

Compilation errors

Compilation errors will happen in multiple lines. The syntax is correct on a single line but wrong when the entire code is examined. Some examples of compilation errors include:

• A For without Next

• Calling a Function that does not exist

• Calling a Function using the wrong parameters

• Assigning a Function similar name to a module

• An if statement that does not have an End If statement

• Undeclared variables appearing at the top of a module

The screenshot below demonstrates a compilation error when a For loop does not have a matching Next statement.

[image: image]

––––––––
[image: image]

The Debug> Compile

If you want to identify compilation errors, the Debug > Compile VBA Project from the Visual Basic menu is important.

Once you select Debug>Compile, VBA will show the first error that it comes across. If the error is fixed, run the Compile again for VBA to determine the next error.

The Debug> Compile also has a syntax error in its search that is very important.

If there are no more errors left when the Debug> Compile runs, it might look like nothing has happened. But “Compile” will show up in the Debug menu. In this case, the application does not have compilation errors at the current time.

The Debug> Compile Usage

It is a good practice to always use the Debug>Compile before you can run your code. This will make sure that your code does not have compilation errors when you run it.

However, failing to run Debug>Compile means that VBA might come across compile errors when it runs. Don’t confuse this with Runtime errors.

Runtime errors

As the name suggests, runtime errors happen when the application is running. These are the type of errors which you have no control. Runtime errors occur as a result of errors in your code.

For instance, assume that your application is going to read from an external workbook. If this file is deleted, VBA will shoot up an error when the code attempts to open it. Other examples of runtime errors include:

• A user typing invalid data

• A cell with a text instead of a number

• A missing database

Expected and Unexpected Errors

When you have a feeling that a runtime error may occur, it is important to write a code in place to handle it. For example, a code is always written to deal with a missing file. The code below first determines if the code is available before it opens it. If the file is missing, a message is displayed to the user before the code exits.

[image: image]

Therefore, if you think that an error is likely to happen at some point, it is advised to add a code to deal with the situation. This kind of errors is referred to as expected errors. If there is no specific code that can deal with the error, it is considered an unexpected error. VBA error handling statements are important to use to deal with the errors.

The On Error Statement

So far you have learned the two ways you can treat runtime errors.

1. Write specific code to handle expected errors

2. Use VBA error handling statements to deal with unexpected errors

The VBA On Error statement is important to use to handle errors. This statement shoots a response when an error appears during runtime.

There are four different ways that one can use this statement

1. The On Error Resume Next. This code moves to the next line. There is no error message that appears.

2. The On Error Goto-1. This will clear the current error.

3. The Error Goto 0- This code will stop at the line with the error and display a message.

4. The On Error Goto[label]-This code moves to a particular line or label.

There is no error message that is displayed. This is mostly used for error handling.

Let’s examine each of the above statements briefly

On Error Goto 0

This is the default response of VBA. Anyone who doesn’t use On Error will see this response.

Once an error has happened, VBA will stop on the line that has the error and display the error message. Therefore, the application will need some user interaction with the code before it can resume. This may involve fixing the error or restarting the application. In this case, there is no error handling that happens.

Let’s now look at an example:

In the code shown below, there is no On Error line applied. This means that VBA is going to use On Error Goto O response by default.

––––––––
[image: image]

[image: image]

The second assignment line is a divide by zero error. If this code runs, an error message will show up on the screen as shown below:

[image: image]

When this error shows up, you can either choose to end or debug. If you click End, the application terminates. On the other hand, if you click Debug, the application highlights the error line as shown below:

[image: image]

This type of response is good when you are writing your VBA code because it highlights the exact line with an error. However, this is not suitable for applications that are created for users. They appear unprofessional and make an application unsuitable. This kind of error results in the application crashing. A user cannot continue without first restarting the application. In this case, users will not be able to use the application until the error is fixed.

But using the On Error [label] gives the user a more controlled error message. Furthermore, it prevents the application from stopping. This means that it is possible to force the application to behave in a given way.

The On Error Resume Next

The On Error Resume Next makes the VBA ignore the error and continue.

There are certain occasions when this is important. In most cases, you need to avoid using it. Adding Resume Next in the previous example causes VBA to ignore the divide by zero error.

[image: image]

Even though this makes VBA ignore the divide by zero, it is not advised to do this. If you choose to ignore the error, then the response may be unpredictable. The error is likely to affect the application in many different ways. Therefore, you could end up with the wrong data. Another thing is that you will not be aware that something has gone wrong because of suppressing the error.

The On Error Go to [label]

This is the correct way to handle errors in VBA. It is equivalent to Try and Catch function in C# and Java language. If an error happens, the error is sent to a specific label. This often appears at the bottom of the sub. Let’s use this in the example:

[image: image]

Below is what happens when an error takes place.

[image: image]

VBA shifts to eh because it has been specified in the On Error Goto line.

Note

	The label that you apply in the On...Goto statement should be in the current Function. If it misses, a compilation error will occur.

2. If an error happens when the On Error Goto[label] is applied, the error handling picks up the default behavior. The code will remain on the line with the error and show the error message.

The On Error Goto-1

This is a different statement from the ones discussed previously. Usually, it clears the current error instead of setting a particular behavior.

When an error happens while using On Error Goto[label], the error handling routine returns to the default response. This means that when a different error happens, the code will appear on the current line.

This response only happens to the current sub. The moment the sub is exited; the error is automatically cleared.

Using On Error

So far you have learned that VBA will perform any of the following three things when an error happens.

1. Jump to a specific line

2. Ignore the error and continue

3. Stop and show the error

VBA will always assume any of the above situations. If you use On Error, VBA will change to the behavior that you specified and forget any previous action.

The Err Object

When an error takes place, you can review the details of the error using the Err object. If a runtime error happens, VBA will automatically fill the Err object with the details. To debug an error using Err. Study the screenshot below:

[image: image]

Err. Description: This contains the details of the error. This is the text that you will see when an error happens.

Err. Number: This is the ID number of the error. The time that you need this is when you are searching for a specific error.

Err. Source: The source will display the object name.

Get a Line number

The Erl function is perfect for displaying the number where the error happened. In the code below, Erl will return zero.

[image: image]

There are no line numbers in this code, and that is why it displays zero. Many people aren’t aware that with VBA, you can use line numbers.

The Err. Raise

This will allow one to create errors. You can use it to define custom errors for the application. It is similar to the Throw statement in Java and C#.

It has the following format:

[image: image]

The Err. Clear

This is used to clear text and numbers from the Err. Object. In short, it clears the number and description. It is rare that you may need to use this in your VBA.

Simple Debugging Strategy in VBA

VBA has countless ways that you can debug an error. This means that it is easy to get confused about the type of error handling to apply in VBA. This section provides you with a simple error debugging strategy that you can apply in all your applications.

A basic implementation

1. Place the On Error Goto Label line at the beginning of the top sub

2. Place the Error Handling Label at the end of the top Sub

3. When an expected error happens, handle it and continue.

4. If the application cannot continue, use Err. Raise and jump to the error handling label

5. When an unexpected error happens, the code will jump to the error handling label.

The flowchart below shows how this happens:

[image: image]

	[image: image]
	 	[image: image]

[image: image]

Chapter 7: Easy Mistakes To Avoid

[image: image]

When you program with VBA, it is easy to find yourself making mistakes. Most of these mistakes can cost you a lot. You will lose a lot of time as well as get frustrated. There are a lot of mistakes made in VBA code. If you go to forums such as CodeReview and StackOverflow, you will see many incidences of VBA code with mistakes. Usually, these mistakes are the same but committed with different people. Below are some of the common mistakes made by VBA programmers.

	Use. select/. Activate

Did you know that it is not a must to apply? Select or. Activate? In fact, the reason why people use it is that they see it produced when you use the Macro Recorder. But, 99.9% it is not important to use it. Why? Here are two reasons why?

	It causes the workbook to repaint the screen. If you write Sheets (“Sheet1”). Activate, suppose Sheet1 is not the active worksheet, it means that Excel will have to make it so. This will result in Excel redrawing the screen to display Sheet1. This is inefficient and might result in a slower macro.

	It makes the user to get confused because they manipulate the workbook while they use it. Other users can think that they are getting hacked.

The only moment and occasion when you may need to use. Select or. Activate is when you want to direct your user to a particular worksheet. If not, delete any line of code that has these. It is doing more harm than good.

	Failing to use Application. ScreenUpdating=False

When you make changes to a cell, Excel has to update/repaint the screen to display the changes. This can definitely slow down your macro than the way it is supposed to be. The next time you are creating a macro, try and add the following VBA lines:

[image: image]

	Failing to Qualify a Range Reference

One of the most popular bugs that people find that can be very painful to debug happens when the VBA code does not fully qualify the range reference. To understand what tot qualifying a range reference means, consider this code Range(“A1”). What worksheet does it refer to?

Well, it points to the ActiveSheet. This is the worksheet that is currently seen by the user.

In most cases, this is harmless. But as time goes, you add more features into your VBA code and it takes a longer time to process. This means that when you run the code and click on a different worksheet, you will find unexpected behavior. This example may look contrived, but it demonstrates the point.

[image: image]

If you use Range () and forget to highlight the worksheet, Excel will assume it is the active sheet. So, the way to avoid this is by fully qualifying the worksheet. You can change this part of the code:

Range (Cell. Address) = cell. Address to Data. Range (cell. Address) = cell. Address

	Use the Variant Type

Another common VBA mistake is thinking that you are using one Type but the truth is that you have another one. If you look at the code below, would you say that a, b, and c belong to type Long?

Dim a, b, c, as Long

However, they aren’t. In fact, a and b are of type Variant. This means that they can be of any type as well as a change from one type to another.

Any variable of type Variant is risky because it has been found to make it difficult to debug an application in VBA. It is important to avoid using Variant variables so that you don’t make critical mistakes. There are certain functions which need Variant and you may not have any other option but to use them. However, if you can avoid using Variant types, it will save you time and cost to debug.

	Reference a worksheet name using a String

It is normal to see people making a reference to a worksheet name in VBA by using a string. You can take a look at the following code:

[image: image]

It looks like it has no issues, right?

Well, let’s now assume that you submit your workbook to an accountant. The accountant decides to change the “Sheet1” to give it a more meaningful name such as “Report”. Once the worksheet name is changed, the accountant attempts to run the macros using Sheets(“Sheet1”) and they find out that it doesn’t work.

A simple way to fix this problem is to reference the sheet via the object directly, instead of doing it via Sheets collection. If you look in the VBE project window, you will see worksheets and correct names.

[image: image]

––––––––
[image: image]

The name of the sheet that people see in Excel is “Report” and the name of the object that you can reference in VBA is Sheet1. Let’s now update this code.

Now the sheet name is updated. What you can use is Sheet1 instead of Sheets(“Sheet1”).

But, what if one wants to make the name look meaningful? What if you want sheet1 to describe its action? Once Sheet1 was renamed to Report, it is a requirement to update the VBA code.

	Make your Sub / Function Very Long

One rule of thumb is that if your function is very long such that one must scroll to see it, then you need to organize your VBA code. It is important to ensure that both the Sub and Function are short by creating sub procedures and helper functions.

7. Move Down the nested for / If Rabbit Hole

It is not a good practice to have a longer nesting. More than 3+ levels of nesting are considered long.

Whether you are a VBA guru who develops dashboards in Excel, or new to VBA, you only know how to write simple scripts that perform basic cell calculations, by learning the above mistakes increases the odds of writing a clean and bug-free code.

	[image: image]
	 	[image: image]

[image: image]

Conclusion

[image: image]

Thanks for making it through to the end of Excel VBA: A Step-By-Step Tutorial For Beginners To Learn Excel VBA Programming From Scratch, let’s hope it was informative and able to provide you with all of the tools you need to achieve your goals, whatever it is that they may be. Just because you’ve finished this book doesn’t mean there is nothing left to learn on the topic, and expanding your horizons is the only way to find the mastery you seek.

While much of what you have read in the proceeding chapters likely seems confusing now, never fear, with practice your skill with VBA will grow and you will find that you are able to automate a wide variety of useful tasks with ease. Don’t forget, there is a reason that VBA is called a programming language as like any other language it is important to start slowly and take things one step at a time. As such, learning VBA is much like a marathon as opposed to a sprint which means slow and steady win the race every time.

Finally, if you found this book useful in anyway, a review on Amazon is always appreciated!

 Don't miss out!

 Click the button below

 and you can sign up to receive emails whenever Peter Bradley publishes a new book. There's no charge and no obligation.

 [image: Sign Me Up]

 https://books2read.com/r/B-A-IDNI-KLYZ

 [image: books2read]

 Connecting independent readers to independent writers.

d2d_images/chapter_title_above.png

d2d_images/chapter_title_corner_decoration_left.png

d2d_images/cover.jpg
A STEP-BY-STEP TUTORIAL FOR
BEGINNERS TO LEARN EXCEL VBA
PROGRAMMING FROM SCRATCH

PETER BRADLEY

d2d_images/image012.png
Sub UsingErr()

On Error Goto eh

Dim total As Long

total = "aa"
Done:
Exit Sub
eh:
Debug.Print "Error number: * & Err.Number _
& " " & Err.Description

End Sub

d2d_images/chapter_title_corner_decoration_right.png

d2d_images/image013.png
Err.Raise [error number], [error source], [error description]

d2d_images/image010.png
Public Sub MakeCodeFaster()
Application.ScreenUpdating = False

' do some stuff

* Aluays remember to reset this setting back!
Application.ScreenUpdating = True
End Sub

d2d_images/image011.png
Microsoft Visual Basic for Applications X

A, Comviesror

Expected: Then or GoTo

| e ||

d2d_images/chapter_title_below.png

d2d_images/image016.png
Public Sub FullyQualifyReferences()
Dim fillRange As Range

Set fillRange = Range("A1:B5")

Dim cell As Range

For Each cell In fillRange
Range(cell.Address) = cell.Address
Application.Wait (Now + TimeValue("0:00:01"))
DoEvents

Next cell

End Sub

d2d_images/image017.png
Public Sub SheetReferenceExample()
Dim ws As Worksheet

Set ws = Sheets("Sheet1")
Debug.Print ws.Name
End Sub

d2d_images/image014.png
[(Genera)

Option Explicit

Sub UsingDefault ()

Dim x As Long, y As Long

d2d_images/image015.png
Sub UsingResumeNext ()

On Error Resume Next

Dim x As Long, y As Long

"
S

6/8

End Sub

d2d_images/image001.png
HEY » @ mocos Piruae
Fools Add-ns Window Help
BRI EIRE

| [(General)

Other Utilities ~ ?l

| option Explicit

Sub ForLoop ()

Dim i As Long, x As Long
For i = 1 To 10
x =6

Microsoft Visual Basic for Applications X

A e

For without Next

e | =

d2d_images/b2r_image.png
BOOKS 7)) READ

d2d_images/new_release_sign_up_button.png
Sign Me Up!

d2d_images/image002.png
[JON)
v % VBAProject (Workbook1)
¥ i Microsoft Excel Objects
) MyWorkbook

{1 Sheet1 (Report)

v [Modules

d2d_images/image000.png
Sub OpenFile()

Dim sFile As String
sFile = "C:\docs\data.xlsx"

* Use Dir to check if file exists
If Dir(sFile) = "" Then

' if file does not exist display message
MsgBox "Could not find the file " & sFile
Exit Sub

End If

* Code will only reach here if file exists

Workbooks.Open sFile

End Sub

d2d_images/image005.png
Sub UsingDefault()

Dim x As Long, y As Long

"
S

6/8

End Sub

d2d_images/image006.png
[iGoneran =] [veinaGorotine.

option Explicit

Sub UsingGstoline ()
on Error Goto sh

Dim x As Long, y As Long

7 o < o occurs e

Exit_cub

y

Code jumps to here when error occurs
lisgBoR "The following error sccurred: * & Err.Description
Ena sun

d2d_images/image003.jpg
A STEP-BY-STEP TUTORIAL FOR
BEGINNERS TO LEARN EXCEL VBA
PROGRAMMING FROM SCRATCH

PETER BRADLEY

d2d_images/image004.png
Sub UsingGotoLine()

On Error Goto eh

Dim x As Long, y As Long

-6
-6/0
x=7
Done:
Exit Sub
eh:
MsgBox "The following error occurred: " & Err.Description

End Sub

d2d_images/image009.png
Sub UsingErr()

On Error Goto eh

Dim val As Long

val = "aa

Done:
Exit Sub
eh:
Debug.Print Erl
End Sub

d2d_images/scene_break.png

d2d_images/image007.jpg
Public Sub Topmosti)

On Error Goto eh sust
Subl —r
sub2 R
Sub3
-
s i If error-

Msgbox Err.Description +—{

End Sub

+

if error

If error

d2d_images/image008.png
Microsoft Visual Basic

Runtime error 11

Divson by 2010

Contiue.

b

