

 [image: Epic Python Coding: Interactive Coding Adventures for Kids]

 Epic Python Coding: Interactive Coding Adventures for Kids

 Mike Gold

 This book is for sale at http://leanpub.com/pythonplaygroundinteractivecodingadventuresforkids

 This version was published on 2024-01-02

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2024 Mike Gold

 Dedicated to my son, who likes to learn, but won't admit it.

Table of Contents
	Epic Python Coding: Interactive Coding Adventures for Kids
	Chapter 1: Setting Up Your Adventure
	Chapter 2: Discovering Python Basics
	Chapter 3: Fun with Lists and Loops
	Chapter 4: Making Decisions with Python
	Chapter 5: Creative Colors and Shapes
	Chapter 6: Python Magic Tricks: Fun with Functions
	Chapter 7: Making Games in Python
	Chapter 8: Python in the World
	Appendices	Accessing the Source Code for “Epic Python Coding”
	1. Glossary of Terms
	2. Extra Python Challenges
	Resources

 Guide

 	
 Cover

Epic Python Coding: Interactive Coding Adventures for Kids

[image: Python Programmer]Figure 1. Python Programmer

Introduction to “Epic Python Coding”

Welcome to the Amazing World of Python Programming!

Hey there, future programmer! Are you ready to embark on an exciting adventure into the world of Python programming? If you love solving puzzles, creating stories, or just learning super cool new things, then you are in the right place!

What is Python? No, we’re not talking about snakes here! Python is a special tool that computer experts use to tell computers what to do. Just like you use words to tell a story, programmers use a language called Python to give instructions to computers. And the best part? Python is easy and fun to learn!

Why Python? Python is like the friendly, easy-to-understand language of the computer world. It’s perfect for beginners like you. It’s used all over the world to do amazing things like building video games, solving math problems, drawing pictures, and even helping scientists learn about space!

In this book, we’re going to explore Python together. You’ll learn how to make the computer do cool things like:

	
Solve math puzzles

	
Play with words and sentences

	
Draw colorful shapes and patterns

	
And even create your very own computer game!

You don’t need to be a computer genius to start. All you need is your curiosity and excitement to learn. So, grab your explorer’s hat and let’s dive into the wonderful world of Python programming. Your adventure is just about to begin, and who knows what amazing things you’ll create!

Are you ready? Let’s go! 🚀🐍🌟

Chapter 1: Setting Up Your Adventure

Installing Python

Welcome to your first step in becoming a young Python programmer! Before we start creating cool stuff, we need to set up Python on your computer. Don’t worry, it’s easy, and I’ll guide you through each step!

1. Visit the Python Website:

	
Ask an adult to help you open your web browser (like Chrome, Firefox, or Safari).

	
Type in the website address: www.python.org.

	
You’ll see a screen like this:

[image: Website Screenshot of Python.org]Figure 2. Website Screenshot of Python.org

2. Download Python:

	
Click on the “Downloads” tab.

	[image: Download menu]Figure 3. Download menu

	
Python knows what kind of computer you have, so it will suggest the best version for you. It will look something like this:

[image: Download Button on Python.org]Figure 4. Download Button on Python.org

	
Click the download button. A file will start downloading. Once it’s done, click on it to open it.

3. Install Python:

	
A window will pop up to start the installation. Make sure to check the box that says “Add Python to PATH” – this is super important!

	
Then, click “Install Now” and wait for the magic to happen!

[image: Python Installation Window]Figure 5. Python Installation Window

Congratulations! You’ve just installed Python!

Your First Python Program

Now, let’s write your very first Python program. We’re going to make the computer display a message. It’s like teaching your computer to talk!

1. Open Python:

	
Search for Python in your computer’s search bar.

	
Click on the Python application – it’s usually called “IDLE” (Python’s editor).

2. Write Your Program:

	
A window will open where you can type your code.

	
Type exactly this: print("Hello, Python World!")

3. Run Your Program:

	
Click on “Run” in the menu, then select “Run Module”.

	
Look! The computer says hello back to you in the output window!

[image: Python IDLE with Hello World Program]Figure 6. Python IDLE with Hello World Program

You just wrote your first program!

Understanding the Python Shell

The place where you wrote your program is called the Python Shell. It’s like a playground for your code. You can write instructions here, and Python will respond. Try typing print("I'm a Python programmer!") in the shell and see what happens!

[image: I’m a Python Programmer]Figure 7. I’m a Python Programmer

In this chapter, we learned how to set up Python and wrote our first program. You’re now on your way to becoming a great Python programmer. Keep up the great work!

Chapter 2: Discovering Python Basics

[image:]Figure 8

Playing with Numbers

Welcome to the world of numbers in Python! Did you know that Python is really good at math? Let’s play with some numbers and see what we can do.

1. Simple Math Operations:

	
Open Python’s IDLE, just like we did before.

	
Let’s start with something simple. Type 3 + 4 and press Enter.

[image: Adding in Python]Figure 9. Adding in Python

	
Wow, Python can add!

	
You can try other operations too:

	
For subtraction, use - (like 5 - 2).

	
For multiplication, use * (like 3 * 4).

	
For division, use / (like 10 / 2).

[image: Other Math Functions in Python]Figure 10. Other Math Functions in Python

2. Introducing Variables:

	
Think of variables like little boxes where you can store things. In Python, you can store numbers in these boxes.

[image: variable number in a box]Figure 11. variable number in a box

	
Let’s create a variable. Type my_age = 10 and press Enter. You just told Python that your age is 10!

	
Now, type my_age and press Enter. Python remembers it’s 10!

[image: Storying my age in a variable]Figure 12. Storying my age in a variable

Doing Math with Variables

Great job learning about numbers and variables! Now, let’s see how we can use variables to do math. Remember my_age? Let’s use it in some math operations.

1. Adding to a Variable:

	
First, let’s remind Python how old you are. Type my_age = 10 and hit enter.
[image: Setting my_age variable]Figure 13. Setting my_age variable

	
What if we want to know how old you’ll be in 3 years? We can add 3 to your age.

	
Type future_age = my_age + 3. This tells Python to add 3 to your current age and save the answer in a new variable called future_age.

[image: Creating a future age variable]Figure 14. Creating a future age variable

	
Now, type print(future_age). Python will show you how old you’ll be in 3 years!

[image: Printing the future age variable]Figure 15. Printing the future age variable

2. More Math with Variables:

	
You can do all kinds of math with variables. Let’s try more.

	
Half your age: Type half_my_age = my_age / 2 and then print(half_my_age).
[image: Compute half my age]Figure 16. Compute half my age

	
Double your age: Type double_my_age = my_age * 2 and then print(double_my_age).
[image: Double my age]Figure 17. Double my age

	
Subtracting years: Type younger_age = my_age - 2 and then print(younger_age).
[image: Younger age]Figure 18. Younger age

3. Changing the Variable:

	
Variables can change. Remember a variable is like a box, you can take the old number out of the box and put a new number in it! If you have a birthday and you’re now 11, just update it!

	
Type my_age = 11 and hit the enter key. Now my_age has a new value.
[image: Changing my_age to 11]Figure 19. Changing my_age to 11

	
If you do print(future_age) again, it still shows your future age as if you were 10.
[image: Future age not updated]Figure 20. Future age not updated

That’s because future_age was calculated with your old age. To update it, you need to calculate it again with your new age.
[image: Future age recalculated]Figure 21. Future age recalculated

Look at you, doing math with Python like a pro! Variables are super handy in programming, and you’re using them like a champ. Keep practicing, and soon you’ll be able to solve all sorts of cool problems with Python!

Python Example: Calculating and Sharing Your Future Age in One Go

What Are We Doing?
We’re going to tell Python how old you are and then ask Python to calculate hand print how old you’ll be in 5 years. We will do this all in just two lines of code!

Step-by-Step:

	
First, We Tell Python Your Age:

	
To Review: When you type my_age = 10, you’re like saying to Python, “Hey, my age is 10 years old!” Think of my_age as a box where you keep your age.

	
Next, We Do Some Math and Print at the Same Time:

	
Now, the fun part! When you type print("In five years, I will be", my_age + 5), you’re asking Python to do two things:

	
Add to Your Age: Python takes the number in your my_age box (which is 10) and adds 5 to it. It’s like saying, “What’s 10 plus 5?”

	
Print a Message: The print part tells Python to write out a message. The message starts with the words "In five years, I will be". Then, Python adds the answer to “10 plus 5” right after those words.

What Happens When You Run the Code:

	
Python will think, “Okay, 10 plus 5 is 15,” and then it will show on the screen: In five years, I will be 15.

[image: Alt text]Figure 22. Alt text

Why It’s Cool:

	
You just told Python to remember your age and do math with it! And Python did all of that and even wrote a sentence for you. That’s pretty awesome, right?

What if You Get an Error?

Common Mistake: Forgetting to Define a variable

	
Suppose you accidentally typed print("In five years, I will be", age + 5) instead of using my_age.

Python’s Response:

	
Python will say something like: NameError: name 'age' is not defined

[image: Error in code]Figure 23. Error in code

Why Did This Happen?

	
This error means Python is confused because it doesn’t know what age is. You told Python about my_age, but not age.

How to Fix It:

	
Read the Error Message:

	
It tells you that age is not defined.

	
Check Your Code:

	
Look at your code and compare it to the instructions. Do you see the difference?

	
Make Corrections:

	
Change age to my_age in your print statement.

	
Try Again:

	
Run your code once more.

Learning from Mistakes:

	
Now you know how to fix a NameError! Remember, it’s okay to make mistakes. Fixing them is how you learn to be a great programmer!

Creating a Story with Words

Now let’s play with words, or as programmers call them, “strings.”

1. String Basics:

	
Strings are just groups of letters in Python. But, you have to tell Python it’s a string by using quotes.

	
Try typing print("I love Python!"). See how Python shows your message?
[image: Print Python message]Figure 24. Print Python message

2. Combining Words and Sentences:

	
You can make Python talk even more. Let’s combine two strings.

	
Type greeting = "Hello" + " there!" and press Enter.

	
Now type print(greeting). Python just combined the words to say “Hello there!”

[image: Combining strings]Figure 25. Combining strings

You’re doing great! Now you know how to do basic math and create stories with words in Python. Keep practicing, and you’ll be a Python pro in no time!

Chapter 3: Fun with Lists and Loops

[image: Python Train]Figure 26. Python Train

Making Lists

Welcome to a super fun part of Python – Lists and Loops! Let’s start with lists.

What are Lists?

	
Think of a list in Python like your backpack where you can keep lots of different things. Just like you might have a list of your favorite toys, Python can keep a list of things you tell it, like numbers, words, or even other lists!

How to Create and Use Them:

	
Creating a List:

	
Open Python’s IDLE.

	
Let’s make a list of your favorite fruits. Type this:

Figure 271 my_fruits = ["apple", "banana", "cherry"]

	
You just told Python, “Here’s a list of my favorite fruits!”

	
Using the List:

	
Want to see your list again? Just type print(my_fruits) and press Enter.

	
Python will show: ['apple', 'banana', 'cherry']

	
Each item in your list is kept in order, like they are in your backpack.

[image: List of Fruits]Figure 28. List of Fruits

Looping Around

Now, let’s have some fun with loops! A loop is like a superpower in Python that lets you do something over and over again without getting tired.

Introduction to For-Loops:

	
A for-loop in Python goes through each item in your list, one by one, and does something with it.

1. Printing items in a List with a For-Loop:

	
Let’s go through each fruit in the list one at a time. Type this:

Figure 291 for fruit in my_fruits:
2 print(fruit)

	
This is like telling Python: “For every fruit in my list of fruits, say the name of the fruit.”

2. What Happens When You Run It:

	
Python will print each fruit’s name, one by one:

Figure 301 apple
2 banana
3 cherry

	
It’s like Python is taking each fruit out of your backpack and showing it to you.

3. Looping for a Number Game:

	
Let’s play a game with numbers. First, make a list of numbers:

Figure 311 my_numbers = [1, 2, 3, 4, 5]

	
Now, let’s add 10 to each number using a loop:

Figure 321 for number in my_numbers:
2 print(number + 10)

	
This tells Python: “For each number in my list, add 10 and then tell me the new number.”

4. See the Magic:

	
Python will show you:

Figure 331 11
2 12
3 13
4 14
5 15

	
Isn’t that cool? You just did math on a whole list of numbers, super fast!

[image: Adding 10 to numbers in a list]Figure 34. Adding 10 to numbers in a list

More Fun with Loops: Creating a Story!

Let’s try something really cool with loops. We can use a loop to take a bunch of words and put them together to make a sentence. It’s like building a train where each word is a train car!

Making a Sentence from Words:

	
First, Make a List of Words:

	
Let’s make a list of words that will become our sentence. How about making a silly sentence? Type this:

Figure 351 silly_words = ["My", "dog", "ate", "my", "homework",
2 "yesterday"]

	
You just created a list of words for our silly sentence!

	
Using a Loop to Build the Sentence:

	
Now, we’ll use a loop to go through each word and add them together to make a sentence. Type this:

Figure 361 sentence = ""
2 for word in silly_words:
3 sentence = sentence + word + " "
4 print(sentence)

	
Here’s what you’re telling Python: “For each word in my list of silly words, add it to my sentence, and put a space after it.”

	
Watch the Magic Happen:

	
When you run this code, Python will show:

Figure 371 My dog ate my homework yesterday

	
You just made a whole sentence by looping through your words!

What Just Happened?

	
You started with an empty sentence (sentence = "").

	
Then, the loop went through each word in your list (for word in silly_words), adding it to your sentence.

	
The " " part added a space after each word, so they didn’t all squish together.

	
Finally, you used print(sentence) to see your silly sentence!

[image: Building a sentence with loops]Figure 38. Building a sentence with loops

Isn’t it amazing how you can take some words, loop through them, and make a whole sentence? You’re becoming a real Python wizard! Keep practicing, and soon you’ll be able to create all sorts of fun stories with your Python skills!

And that’s how you make lists and use loops in Python! It’s like having a magic wand to sort through your backpack, play number games, or make sentences. Keep practicing, and soon you’ll be able to do even more magical things with Python!

Chapter 4: Making Decisions with Python

[image:]Figure 39

Starting Your Python Adventure with IDLE Files

Before getting started on decisions in Python, let’s talk about a cool tool called the IDLE Python file. It’s like your magic notebook for writing and saving your Python adventures!

Saving and Running Your Code in Python IDLE

So far, you been typing your Python adventures directly in IDLE’s command line. That’s a great start! But did you know you can also write your code in a Python file and save it to run later? It’s like writing a story in a notebook and then reading it whenever you want!

Here’s How You Do It:

	
Open a New File:

	
In Python’s IDLE, go to File in the top menu and choose New File. This opens a new window where you can write your code, just like typing in a big, blank page.

[image: Opening a Python File]Figure 40. Opening a Python File

	
Write Your Python Story:

	
Type your code into this new window. You can write all sorts of things, like your variables, if-statements, loops, and lists.

	
Save Your Adventure:

	
To save your code, go to File and then Save or Save As. Choose a place on your computer to save it, like a special folder for your Python adventures. Give it a name ending in .py, like my_adventure.py.

	
Run Your Code:

	
After saving, you can run your code to see it in action. Just click Run and then Run Module, or simply press F5 on your keyboard. Watch as Python brings your written code to life in the IDLE shell window!

By saving your code in a file, you can come back to it anytime and make changes or try new things. It’s like having a diary of all your coding adventures that you can read and add to whenever you want!

If This, Then That

Get ready for some fun because we’re going to learn how to make decisions in Python! Just like you decide every day what to wear or what to eat, we can teach Python to make decisions using something called “if-statements.”

Understanding If-Statements:

	
An “if-statement” is Python’s way of choosing between different options. It’s like saying, “If this is true, then do that; otherwise, do something else.”

1. Your First If-Statement:

	
Let’s start with something simple. What if we want Python to say “Good morning” if it’s morning and “Good night” if it’s night? We can do that with an if-statement!

	
First, we’ll decide it’s morning. Type the following into your IDLE file and save the file in a folder. :

Figure 411 is_morning = True
2 if is_morning:
3 print("Good morning!")

	
Here, is_morning = True is like telling Python, “It’s morning time.” And the if-statement says, “If it’s morning (if is_morning), then say ‘Good morning!’”

2. Run Your Code:

	
Run the code by either hitting the F5 key on your keyboard or by choosing Run —> Run Module from the menu. When you run this code, Python sees that is_morning is True, so it follows the instruction and says Good morning!

[image: Running the decision code in a IDLE File]Figure 42. Running the decision code in a IDLE File

3. Adding More Choices:

	
But what if it’s not morning? We can add another part, called an “else” part, to tell Python what to do if it’s not morning.

	
Let’s add to our code:

Figure 431 is_morning = False
2 if is_morning:
3 print("Good morning!")
4 else:
5 print("Good night!")

	
Now, because is_morning is False, Python will skip the “Good morning” part and go straight to the else part, saying Good night!

[image: Else case in greeting]Figure 44. Else case in greeting

Simple Choice-Based Program:

	
Creating a Small Game:

	
Let’s make a mini-game! We’ll ask Python to decide if a number is big or small.

	
Type this game code:

Figure 451 number = 5
2 if number > 10:
3 print("That's a big number!")
4 else:
5 print("That's a small number!")

	
Here, Python checks if the number is greater than 10. If it is, it says it’s big. If not, it says it’s small.

[image: Checking if a number is big or small]Figure 46. Checking if a number is big or small

	
Try Changing the Number:

	
Change number = 5 to different numbers like 12, 8, or 20 in your IDLE file, and see what Python says each time.

You just learned how to make decisions with Python! Isn’t it cool how you can tell Python to choose between different things? Remember, programming is all about giving instructions and making decisions. Keep practicing, and you’ll be a decision-making expert in no time!

Beware of the Sneaky Indentation Errors in Python!

Hey awesome coder! Now that you’re saving your Python adventures in a file, there’s something tricky called indentation errors you should know about. Don’t worry, they’re easy to handle once you know what to look for!

What is an Indentation Error?

	
In Python, the spaces at the beginning of a line of code are super important. They’re like the secret code that tells Python which instructions belong together. This is called “indentation.” If Python gets confused about the spaces, it will give you an “Indentation Error.”

Example of an Indentation Error:

Let’s look at your if statement code again about deciding if a number is big or small:

Figure 471 number = 5
2 if number > 10:
3 print("That's a big number!")
4 else:
5 print("That's a small number!")

This code works perfectly because the spaces at the beginning of the lines under if and else are lined up just right. But what if they weren’t? Let’s make a sneaky indentation error and see what happens:

Figure 481 number = 5
2 if number > 10:
3 print("That's a big number!")
4 else:
5 print("That's a small number!")

Can You Spot the Mistake?

	
The line print("That's a big number!") should have spaces at the start, just like the print line under else. But it doesn’t!

What Does Python Say?

	
Python will see this and get confused. It will give you an error message like this:

Figure 491 IndentationError: expected an indented block

How to Fix It:

	
Just add spaces (or press Tab) at the beginning of the print("That's a big number!") line so it lines up with the print under else:

Figure 501 number = 5
2 if number > 10:
3 print("That's a big number!")
4 else:
5 print("That's a small number!")

Now It’s Perfect!

	
With the spaces all lined up, Python understands your code and can decide if the number is big or small without any trouble!

Remember, keeping your lines neat and in line is key to keeping Python happy!

How to Avoid Indentation Errors:

	
Keep Your Spaces Consistent:

	
When you write code under things like if statements or for loops, make sure to start each line in the same place. It’s like lining up your toys neatly in a row.

	
Use the Tab Key:

	
A handy trick is to press the Tab key on your keyboard to create spaces. This keeps your indentation nice and tidy.

	
Check Your Code:

	
If Python tells you there’s an indentation error, don’t fret! Just check your code to see if some lines start in different places and straighten them up.

	
Ask for Help if You’re Stuck:

	
Sometimes finding these little errors can be like looking for hidden treasure. If you’re stuck, ask someone to help you spot the misplaced spaces.

Remember: Keeping your code neat is like keeping your room tidy - it helps you find and fix problems faster, and it’s a super important part of being a great programmer!

Happy coding and watch out for those sneaky indentation errors!

Chapter 5: Creative Colors and Shapes

)

Drawing with Python

Get ready for some colorful fun! Did you know that Python can be used to create art? Yes, with Python, you can draw shapes and color them in. We’ll use something called Turtle graphics. It’s like having a little turtle that draws on your screen as it moves around!

Using Turtle Graphics to Draw Shapes:

	
Turtle graphics is a cool way in Python to make drawings. The ‘turtle’ is like a little artist that follows your commands to move and draw.

1. Setting Up Your Turtle:

	
First, let’s get your turtle ready. Open a new file in Python’s IDLE, and type this at the top:

Figure 511 import turtle
2 my_turtle = turtle.Turtle()

	
This tells Python, “I want to use the turtle, and let’s call it my_turtle.”

2. Moving Your Turtle to Draw:

	
Now, let’s make your turtle draw a square. Add these lines to your code:

Figure 521 for _ in range(4):
2 my_turtle.forward(100)
3 my_turtle.right(90)

	
This tells your turtle to move forward and then turn right, making each side of the square.

	
Save your file with a .py at the end, like my_square.py.Run the code by hitting F5 and you’ll see the square being drawn by the turtle!

[image: Drawing the Square]Figure 53. Drawing the Square

3. Adding Some Color:

	
Let’s give your square some color. Before the loop, add this line:

Figure 541 my_turtle.fillcolor("blue")
2 my_turtle.begin_fill()

	
And after the loop, add:

Figure 551 my_turtle.end_fill()

	
Now your square will be filled with blue!

4. Running Your Code:

	
Save your file again by hitting Save in the IDLE File menu`.

	
Press F5 to run it, and watch your turtle draw a blue square!

[image: Turtle drawing blue square]Figure 56. Turtle drawing blue square

Basic Color and Shape Commands:

	
You can make your turtle draw different shapes and colors. Here is one idea:

	

	
Change my_turtle.fillcolor("blue") to another color like "red", "green", or "yellow".

	
To draw a triangle, change the range(4) in the loop to range(3) and my_turtle.right(90) to my_turtle.right(120).

[image: Drawing a red triangle]Figure 57. Drawing a red triangle

Taking Your Turtle Art to the Next Level

Wow, you did an awesome job drawing and coloring shapes with your Python turtle! Are you ready for something even more exciting? Let’s make your turtle draw a super cool spiral with lots of colors. This isn’t just any spiral – it’s a rainbow spiral that grows bigger and bigger!

Creating a Colorful Spiral:
Just like you learned to draw squares and triangles, now we’re going to use a loop to make a spiral. But this time, we’ll add different colors to make it look like a rainbow. It’s like telling your turtle to dance in a pattern while changing its colors!

By doing this, you’ll see how changing a few simple instructions can create something totally new and amazing on your screen. Let’s dive in and make your Python turtle create a beautiful, colorful spiral!

Steps to Create the Colorful Spiral:

	
Set Up Your Turtle:

	
Start with the basic setup for Turtle:

Figure 581 import turtle
2 my_turtle = turtle.Turtle()
3 my_turtle.speed(0) # This makes your turtle draw fast

	
Choose Your Colors:

	
Let’s pick some colors for the spiral. Add the following list of colors:

Figure 591 colors = ["red", "orange", "yellow", "green", "blue", "pu\
2 rple"]

	
Drawing the Spiral:

	
Now, let’s create the spiral with a loop. We’ll make the turtle turn a little more each time and change colors. Add this code:

Figure 601 for i in range(50):
2 my_turtle.color(colors[i % 6]) # Changes color each \
3 time
4 my_turtle.forward(i * 5) # Move forward by a gr\
5 owing distance
6 my_turtle.right(60) # Turn right by 60 de\
7 grees

	
Running Your Code:

	
Save your file with a name like colorful_spiral.py.

	
Press F5 to run your code and watch as your turtle creates a beautiful spiral!

[image: Drawing a spiral with turtle]Figure 61. Drawing a spiral with turtle

What Happens in the Code:

	
The for i in range(50) loop makes the code inside run 50 times.

	
my_turtle.color(colors[i % 6]) changes the color each time. The % 6 makes sure the color index stays between 0 and 5 (since we have 6 colors).

	
my_turtle.forward(i * 10) makes the turtle move forward. The i * 10 makes each line longer than the last, creating the spiral effect.

	
my_turtle.right(60) turns the turtle by 60 degrees to the right.

And that’s how you create amazing filled shapes and colorful spirals with Turtle in Python! Just like how a painter uses different brushes and colors to create a beautiful painting, you can use Turtle’s commands to draw your own digital art. Remember, you can choose any color you like for your shapes, and by repeating simple steps in a pattern, you create stunning spirals. Isn’t it fun to see how your computer can turn into a canvas for your imagination? Keep experimenting with different shapes and colors, and you’ll be a Turtle Python artist in no time!

Chapter 6: Python Magic Tricks: Fun with Functions

[image:]Figure 62

Creating Your Own Functions

Get ready for a new adventure in Python – learning about functions! Functions are like magic spells in coding. You create them once, and then you can use them over and over again to do cool things. Let’s find out what functions are and how you can create your own!

What are Functions?

	
Think of a function like a recipe in a cookbook. Each recipe tells you how to make a certain dish. In Python, a function is a set of instructions that tells the computer how to do something. Once you write a function, you can tell Python to follow those instructions whenever you want.

Why are Functions Useful?

	
Functions are super useful because they help you avoid writing the same code again and again. If you find yourself doing the same thing multiple times, you can put that into a function and just call the function instead!

Writing Simple Functions:

	
Your First Function:

	
Let’s write a function that says hello. In your Python file, type this:

Figure 631 def say_hello():
2 print("Hello, Python World!")

	
def is a special word that tells Python you’re making a new function. say_hello is the name of your function. The empty () means this function doesn’t need any extra information to work.

	
Using Your Function:

	
Just writing the function doesn’t make it do anything yet. You have to tell Python to use it. Underneath your function, type:

Figure 641 say_hello()

	
This is like saying, “Hey Python, do the instructions I wrote in say_hello!”

	
See What Happens:

	
Save your file and press F5 to run it. You’ll see Hello, Python World! on the screen. Your function worked!

[image: Your first function]Figure 65. Your first function

	
Creating a Counting Function:

	
Now, let’s make a function that counts to three. Type this new function:

Figure 661 def count_to_three():
2 for number in range(1, 4):
3 print(number)

	
Then call your function by typing count_to_three() below it and run your code.

[image: Count to three with a function]Figure 67. Count to three with a function

Let’s talk about the count_to_three function we just created. It’s a cool little piece of code that tells Python to count from 1 to 3. Let’s break it down to see how it works!

The Recipe for Counting:

	
Think of count_to_three as a recipe that tells Python how to count to three. Here’s the code again:

Figure 681 def count_to_three():
2 for number in range(1, 4):
3 print(number)

What Each Part Does:

	
Starting the Recipe (def count_to_three()):

	
def count_to_three(): is like the title of the recipe. It tells Python, “Here’s how you count to three.”

	
def means you’re defining a new function, and count_to_three is the name you’re giving it.

	
The Counting Instructions (for number in range(1, 4)):

	
Inside the function, we have a loop: for number in range(1, 4).

	
This is like saying, “For each number in the list of 1, 2, 3, do the following…”

	
Why 1 to 4, not 1 to 3? In Python, the range starts at the first number but stops just before the last number. So range(1, 4) includes 1, 2, and 3.

	
Telling Python What to Do (print(number)):

	
print(number) is the action part of our recipe. It tells Python to show each number on the screen.

	
So, Python will print 1, then 2, then 3, each on its own line.

Using the Function:

	
Just writing the function isn’t enough. We have to tell Python to use it. That’s why we write count_to_three() after the function. It’s like saying, “Okay, Python, now follow the recipe to count to three.”

Seeing It in Action:

	
When you run this code, Python reads the recipe and follows the steps, counting 1, 2, 3 out loud for you to see!

[image: Counting to three in a function]Figure 69. Counting to three in a function

So, that’s how your count_to_three function works! It’s like a mini-adventure where Python gets to count out loud. By writing this function, you’ve just taught Python a new trick. Great job!

Adding a Twist: Using Parameters in Functions

Great job learning about functions! Now, let’s add a little twist by using something called “parameters.” Parameters are like special clues you give to a function to tell it what to do differently each time.

What are Parameters?

	
Think of a parameter like a secret code you pass to a function to change what it does. It’s like when you play a game, and the rules change a little bit each time.

Creating a Function with a Parameter:

	
Making a Greeting Function:

	
Let’s write a function that says hello in different ways. We’ll use a parameter to tell the function who to say hello to.

	
Type this code:

Figure 701 def say_hello_to(name):
2 print("Hello, " + name + "!")

	
Here, name is the parameter. It’s like a placeholder for the name you want to use when you call the function.

	
Using Your Function with Different Names:

	
Now let’s use this function. Below your function, type:

Figure 711 say_hello_to("Emily")
2 say_hello_to("Carlos")

	
Each time you call say_hello_to, you can give it a different name. Python will then use that name in the greeting.

	
What Happens When You Run It:

	
When you run this code, Python will say hello to Emily and then to Carlos:

Figure 721 Hello, Emily!
2 Hello, Carlos!

[image: Running greetings function]Figure 73. Running greetings function

Why Are Parameters Useful?

	
Parameters make functions more flexible and fun. You can use the same function to do slightly different things – like saying hello to different people.

Another Fun Example:

	
How about a function to add any two numbers? Let’s try it:

Figure 741 def add_numbers(number1, number2):
2 total = number1 + number2
3 print("The total is:", total)

	
Here, number1 and number2 are parameters. You can use add_numbers(5, 3) or add_numbers(10, 20) to add different numbers together.

[image: Add Numbers in a function]Figure 75. Add Numbers in a function

Using parameters in functions is like giving your functions superpowers. They can do more things and be even more helpful. Try making your own functions with parameters and see what cool things you can make Python do!

You just learned how to write your own functions in Python! Functions are like little helpers that make your coding easier and more fun. Remember, whenever you find yourself doing the same thing many times, a function might be just what you need. Keep experimenting with different functions and see what amazing things you can make Python do!

Chapter 7: Making Games in Python

[image:]Figure 76

Building a Simple Game

Guess what? You can make your own games with Python! Let’s dive into the magic of game-making. We’ll start by creating a simple “Guess the Number” game. It’s fun and easy, and you’ll learn more cool things about Python!

Designing Our Guess the Number Game:

	
In this game, Python will think of a number, and you have to guess what it is. Python will tell you if your guess is too high, too low, or just right!

1. Setting Up the Game:

	
First, let’s set up our game in a new Python file. We’ll need to tell Python to choose a random number. At the top of your file, type:

Figure 771 import random
2 secret_number = random.randint(1, 10)

	
This code lets Python pick a random number between 1 and 10.

2. Guessing the Number:

	
Now, let’s ask the player (that’s you!) to guess the number. Add this code:

Figure 781 print("I am thinking of a number between 1 and 10.")
2 guess = int(input("Can you guess it? "))

	
This tells Python to ask for a guess and wait for your answer.

3. Checking the Guess:

	
Next, we’ll use an if-statement to see if the guess is correct, too high, or too low. Add this:

Figure 791 if guess == secret_number:
2 print("You got it!")
3 elif guess < secret_number:
4 print("Your guess is too low.")
5 else:
6 print("Your guess is too high.")

	
These lines check your guess against the secret number and tell you how you did.

4. Running Your Game:

	
Save your file as something like guess_the_number.py.

	
Press F5 to run your game and try guessing the number!

[image: The number guess game]Figure 80. The number guess game

Playing Again and Again:

	
Right now, you can only guess once. But you can add a loop to let you keep guessing until you get it right. That’s a bit trickier, but super fun to try!

Making Our Game Even More Fun with a Loop!

Let’s go ahead and add a loop to our game. Remember, a loop is like a repeating path; it lets you do something over and over again until you want to stop.

Adding a Loop to Keep Guessing:

	
We’ll use a special kind of loop called a while loop. This loop keeps working until a certain condition is met. In our game, the loop will keep going until you guess the number correctly.

Here’s How to Add the Loop:

	
Start with a while Loop:

	
Right before where you ask for a guess, let’s add a while True: line. It will look like this:

Figure 811 while True:
2 guess = int(input("Can you guess it? "))
3 ...

	
while True: tells Python to keep repeating everything indented under it until we say stop.

	
Check the Guess Inside the Loop:

	
We’ll keep the if-statement inside the loop. If your guess is wrong, Python will go back to the start of the loop and ask for another guess.

	
If your guess is right, we need to tell the loop to stop.

	
Stopping the Loop When You Guess Right:

	
When you guess the number, we want to congratulate you and then stop the loop. We do this with a command called break. Add break under the “You got it!” print statement, like this:

Figure 821 if guess == secret_number:
2 print("You got it!")
3 break

The Complete Looping Game Code:
Here’s how your game code should look now:

Figure 83 1 import random
 2 secret_number = random.randint(1, 10)
 3
 4 print("I am thinking of a number between 1 and 10.")
 5
 6 while True:
 7 guess = int(input("Can you guess it? "))
 8 if guess == secret_number:
 9 print("You got it!")
10 break
11 elif guess < secret_number:
12 print("Your guess is too low.")
13 else:
14 print("Your guess is too high.")

Running Your New Looping Game:

	
Save your file and run it again.

	
Now you can keep guessing until you find the right number. Each time you guess, Python tells you if you’re too high or too low and then lets you guess again.

[image: Alt text]Figure 84. Alt text

With this loop in your game, you can have even more fun trying to guess the secret number. Remember, loops are super useful in coding, especially in games. They let you repeat something without having to write it out every single time. Happy guessing!

And there you go! You just made your very own “Guess the Number” game with Python. Isn’t it amazing how you can turn your ideas into a fun game? Remember, with programming, you can build all kinds of games, so keep experimenting and playing with your code!

Now that we have one game under our belt, let’s use some of the same concepts to build another fun game!

Embarking on a Python Adventure in the Forest

Welcome, young explorers! Today, we’re going to dive into a new Python game called “The Looping Forest Adventure.” In this game, you’ll wander through a magical forest in search of hidden treasure. You’ll make choices that lead you down different paths, and the adventure will keep going until you find the treasure or decide to take a break. Let’s discover how this game works and learn more about Python coding along the way!

Understanding the Game:

When you start the game, you’ll be in a dense forest. You can choose to go left or right. If you go left, you might find a cave, and if you go right, you might come across a river. Each choice leads to new decisions, like entering the cave or crossing the river. The game continues until you find the treasure.

Let’s create the code one step at a time:

Step-by-Step: Crafting Your Python Treasure Hunt

Hello, young coders! Ready for an exciting adventure? Today, we’re going to create a game called “The Looping Forest Adventure” using Python. This game is a treasure hunt in a mysterious forest, where you make choices to find hidden treasure. Let’s build this game together, step by step!

1. Setting the Scene:

	
First, we need to tell the player what the game is about. We do this with print statements. Type these lines in your Python editor:

Figure 851 print("Welcome to the Looping Treasure Hunt Adventure!")
2 print("You are in a dense forest, searching for the
3 hidden treasure.")

	
These lines are like the opening pages of our adventure story. They introduce you to the game.

2. Preparing for the Loop:

	
Before we start our adventure, we need to set up a way to keep track of whether we’ve found the treasure. Type this line:

Figure 861 treasure_found = False

	
This is like having a treasure map with a big question mark. It means, “We haven’t found the treasure yet.”

3. Starting the Adventure Loop:

	
Now, let’s create a loop that keeps our adventure going. Type this:

Figure 871 while not treasure_found:

	
This while loop will keep repeating our adventure steps until we find the treasure.

4. Making the First Choice:

	
Inside our loop, let’s ask the player if they want to go left or right. Type these lines:

Figure 881 choice = input("Do you want to go left or right?
2 (left/right) ")

	
This is where the adventure starts to branch out. Your decision will lead to different paths.

5. Exploring the Left Path:

	
Let’s see what happens if the player chooses left. Add these lines:

Figure 891 if choice == "left":
2 print("You've stumbled upon a hidden cave!")
3 choice = input("Do you dare to enter the cave?
4 (yes/no) ")

	
Here, if you choose left, you find a cave! Then you decide whether to go inside.

6. Finding the Treasure in the Cave:

	
If you decide to enter the cave, maybe you’ll find the treasure! Add this:

Figure 901 if choice == "yes":
2 print("Inside the cave, you found the treasure!
3 Congratulations!")
4 treasure_found = True

	
These lines check if you chose to enter the cave. If you did, you might find the treasure, and the game will end.

7. Exploring the Right Path:

	
What if you choose to go right? Let’s write that part. Add these lines:

Figure 911 elif choice == "right":
2 print("You come across a swiftly flowing river.")

	
This part starts the adventure on the right path, where you find a river.

8. Deciding at the River:

	
At the river, you have to make another decision. Add these lines:

Figure 921 choice = input("Do you wish to swim across or follow
2 the river? (swim/follow) ")

	
Now you choose: swim across the river or follow it to see where it leads.

9. The Outcomes of the River Path:

	
Let’s add what happens for each choice at the river. Add this for swimming:

Figure 931 if choice == "swim":
2 print("Bravely swimming across, you reach a
3 deserted beach, but no treasure here.")

	
And this for following the river:

Figure 941 else:
2 print("Following the river, you find a bridge
3 leading to a mysterious temple.")

10. The Mysterious Temple:

	
If you follow the river and find the temple, you have one more choice. Add this:

Figure 951 choice = input("Do you cross the bridge?
2 (yes/no) ")
3 if choice == "yes":
4 print("In the temple, you find the hidden
5 treasure! Your quest is complete!")
6 treasure_found = True

	
This is the final decision: if you cross the bridge and enter the temple, you might just find the treasure!

Putting it all together

Great job following along with each step! Now that we’ve explored the individual parts of our game – setting the scene, creating choices, and imagining the different paths – it’s time to put it all together. By combining these elements, we’ll see how our choices intertwine and lead us through the exciting twists and turns of our Looping Forest Adventure. Let’s bring our adventure to life and see how all these pieces form a complete, fun-filled treasure hunt game in Python. Ready to see your coding work in action? Let’s dive in and assemble our game!

Figure 96 1 treasure_found = False
 2 while not treasure_found:
 3 choice = input("Do you want to go left or right?\
 4 (left/right) ")
 5
 6 if choice == "left":
 7 print("You've stumbled upon a hidden cave!")
 8 choice = input("Do you dare to enter the cave? \
 9 (yes/no) ")
10 if choice == "yes":
11 print("Inside the cave, you found the \
12 treasure! Congratulations!")
13 treasure_found = True
14 else:
15 print("You chose to stay outside. The \
16 forest awaits your next move.")
17 elif choice == "right":
18 print("You come across a swiftly flowing river.")
19 choice = input("Do you wish to swim across or \
20 follow the river? (swim/follow) ")
21 if choice == "swim":
22 print("Bravely swimming across, you reach a \
23 deserted beach, but no treasure \
24 here.")
25 else:
26 print("Following the river, you find a \
27 bridge leading to a mysterious \
28 temple.")
29 choice = input("Do you cross the bridge? \
30 (yes/no) ")
31 if choice == "yes":
32 print("In the temple, you find the \
33 hidden treasure! Your quest \
34 is complete!")
35 treasure_found = True
36 else:
37 print("You decide not to cross. The river\
38 path stretches endlessly before \
39 you.")
40 else:
41 print("Lost in the forest, you decide to stop \
42 and rest. Maybe try another \
43 path next time.")

Your Adventure Awaits

Now that we’ve written our game, it’s time to play! Save your Python script and run it. Each decision you make leads you on a different path in the forest. Will you find the treasure, or will you discover other exciting adventures? It’s all up to you!

[image: Playing the Treasure Hunt Game]Figure 97. Playing the Treasure Hunt Game

Chapter 8: Python in the World

[image:]Figure 98

You’ve learned so much about Python already! But did you know Python is used by people all over the world to do amazing things? Let’s discover some cool ways Python is used in real life and try a simple project to see Python’s magic at work!

Python in Action Around Us:

Space Explorations: Reaching for the Stars with Python

	
Did you know that space agencies like NASA use Python for their space missions? Python helps them control spacecraft and analyze data from other planets and stars. For example, Python was used in the development of a software system that captured stunning images of a black hole! This is like using Python as a cosmic camera!

Movie Magic: Creating Wonders on Screen

	
In the world of movies, Python is a real superstar. It’s used to create those breathtaking special effects that make dragons fly and superheroes leap across buildings. An interesting fact: the movie studio behind some of the Harry Potter films used Python to help make those magical scenes come to life. Python helped them animate the enchanting movements of magical creatures!

Gaming Adventures: Building Exciting Worlds

	
Many of your favorite video games are powered by Python. Game developers use Python to design levels, create characters, and even make them move and interact. It’s like Python is the secret ingredient that brings the gaming world to life. Imagine using Python to create your own game world one day!

Science Discoveries: Unraveling Nature’s Mysteries

	
Python is a tool for scientists to learn more about our planet and beyond. They use it to predict the weather, study how plants grow, and even explore the mysteries of the ocean. For instance, Python helps scientists understand how climate change affects different ecosystems. It’s like Python is a detective solving nature’s biggest puzzles!

Isn’t it amazing how Python is used in so many exciting ways? From exploring outer space to creating movie magic and video game adventures, Python is everywhere. And scientists rely on it to make important discoveries about our world. Every time you code in Python, you’re learning skills that can help you do incredible things too!

Your Project: Create Your Weather Program:

Now, let’s use Python to make your very own weather program!

	
Getting Ready:

	
Open a new Python file. This time, you’ll ask someone to tell you the weather, and then your program will respond!

	
Writing the Weather Program:

	
Start by typing this code:

Figure 99 1 weather = input("What is the weather like today? \
 2 (sunny, rainy, snowy) ")
 3 if weather == "sunny":
 4 print("It's a sunny day! Don't forget your \
 5 sunglasses.")
 6 elif weather == "rainy":
 7 print("It's raining. You'll need an umbrella!")
 8 elif weather == "snowy":
 9 print("Wow, it's snowing! Bundle up in your warmest \
10 clothes.")
11 else:
12 print("Hmm, I don't know that weather. Sounds like \
13 an adventure!")

	
This program asks for the weather and gives a response based on what you type.

	
Trying Out Your Weather Station:

	
Run your program and type in different weather conditions like “sunny,” “rainy,” or “snowy” and see what your program says.

[image: The weather app in action]Figure 100. The weather app in action

Roll Call with Python - Building an Attendance Tracker Step by Step

Introduction to Our Python Project

Hey there, young coders! Have you ever thought about how teachers keep track of who’s in class? Today, we’re going to create our own Attendance Tracker using Python! We’ll build it step by step, learning about lists, loops, and counting. In the end, we’ll put all our pieces together to make a cool program. Let’s get started!

1. Creating a List of Students:

First, we need a list of students for our roll call. In Python, we make a list using square brackets [], and we put names inside it, separated by commas.

Imagine we have five friends: Alice, Bob, Charlie, David, and Eva. Our list will look like this:

Figure 1011 students = ["Alice", "Bob", "Charlie", "David", "Eva"]

2. Setting Up Counters for Attendance:

Next, we need two counters: one for students who are present and one for those who are absent. We’ll start them both at 0 because we haven’t counted anyone yet.

Figure 1021 present_count = 0
2 absent_count = 0

3. Asking About Each Student:

Now we’re going to ask if each student is here. We use a loop for this. As we talked about, a loop is like going around in a circle, doing the same thing for each item in our list.

We’re going to use a for loop, which lets us do something for each student in our students list.

Figure 1031 students = ["Alice", "Bob", "Charlie", "David", "Eva"]
2
3 # Variables to keep track of attendance
4 present_count = 0
5 absent_count = 0
6
7 # Loop through each student in the list
8 for student in students:
9 # ask each student if they are present

4. Checking if a Student is Present:

Inside our loop, we’ll ask if each student is present. We wait for an answer, and if the answer is ‘yes’, we add 1 to our present_count variable. If the answer is ‘no’, we add 1 to our absent_count variable.

We use an if statement to choose whether or not to mark a student absent or present in the total. An if statement lets us choose what to do based on the answer.

Figure 104 1 # determine if a student is present
 2 response = input(f"Is {student} present? (yes/no): ")
 3 .lower()
 4
 5 # Check if the student is present
 6 if response == "yes":
 7 print(f"{student} is present.")
 8 present_count += 1
 9 else:
10 print(f"{student} is absent.")
11 absent_count += 1

We want an easy way to ask the user if each student is present. That is where we use a fancy Python trick called String Interpolation.

Understanding String Interpolation with a Fun Example

We need a way for our Attendance Tracker asks questions like, “Is Alice present? (yes/no): “? It needs to know how to change the name for each student, right? That’s where string interpolation comes in. It sounds like a big term, but it’s actually pretty simple and cool!

Imagine you have a sentence written on a piece of paper: “Is _____ present?” Now, imagine you have stickers with names on them. You can stick a name into that blank spot to ask about different students. In Python, we do something similar with our code!

What is String Interpolation?

	
String: This is just a fancy word for text in Python.

	
Interpolation: This means putting something in the middle of something else.

So, string interpolation is like putting a piece of information (like a name) into the middle of a string (a sentence or text) in Python.

How We Use It in Our Program:

Here is the code for string interpolation used on each student name f"Is {student} present? (yes/no): ", we are telling Python to make a special kind of string (that’s what the f before the quotes is for). The {student} part is like a blank space where Python can put each student’s name.

For each student in our list, Python replaces {student} with the actual name, just like we might use stickers to fill in the blank space on our paper.

Example:

	
When Python sees f"Is {student} present? (yes/no): " and student is “Alice”, it turns into: “Is Alice present? (yes/no): “

	
Then when the student is “Bob”, it turns into: “Is Bob present? (yes/no): “

	
And so on for each student!

Summing Things Up

Once we’ve finished taking attendance, we get to share what we found. We’ll use what we learned earlier to write a message that tells everyone how many students are here and how many are not. It’s like putting the final pieces of our puzzle together to see the whole picture! Did you catch that we are using string interpolation again to help display the results?

Figure 1051 # Print the total number of students present and absent
2 # Again we are using string interpolation
3 print(f"\nTotal Present: {present_count}")
4 print(f"Total Absent: {absent_count}")

5. Putting It All Together:

Let’s put all these pieces together to make our complete Attendance Tracker. Here’s what our whole program will look like:

Figure 106 1 # List of students in the class
 2 students = ["Alice", "Bob", "Charlie", "David", "Eva"]
 3
 4 # Variables to keep track of attendance
 5 present_count = 0
 6 absent_count = 0
 7
 8 # Loop through each student in the list
 9 for student in students:
10 # use string interpolation to prompt
11 # a particular student
12 response = input(f"Is {student} present? (yes/no): ")
13 .lower()
14
15 # Check if the student is present
16 if response == "yes":
17 print(f"{student} is present.")
18 present_count += 1
19 else:
20 print(f"{student} is absent.")
21 absent_count += 1
22
23 # Print the total number of students present and absent
24 # Again we are using string interpolation
25 print(f"\nTotal Present: {present_count}")
26 print(f"Total Absent: {absent_count}")

Understanding How We Count Students in Our Program

In our Attendance Tracker, we keep track of how many students are present and how many are absent. To do this, we use a special trick in Python. You might have seen present_count += 1 in our code. Let’s break that down to understand what it does.

What Does present_count += 1 Mean?

	
Think of present_count as a jar where we keep marbles. Each marble represents one student who is present.

	
The += 1 part is like adding one more marble to the jar.

	
So, every time we say present_count += 1, we’re adding a marble to the “present” jar because another student is here.

Example:

	
Imagine the jar is empty in the beginning (present_count = 0).

	
When Alice is present, we add a marble. Now, there’s 1 marble (present_count = 1).

	
If Bob is also present, we add another marble. Now, there are 2 marbles in the jar (present_count = 2).

	
This keeps going for each student who is present.

What About absent_count += 1?

	
We do the same thing for absent_count. This is another jar, but for students who are absent.

	
Each time a student is absent, we add a marble to this “absent” jar.

So, present_count += 1 and absent_count += 1 are our ways of keeping count of how many students are present and how many are absent. It’s like adding marbles to two different jars to keep track of who’s here and who’s not. This makes our Attendance Tracker smart and helpful!

6. Running Our Program:

After typing in the final code, save it, and run it using F5. Your computer will start asking you about each student. Type ‘yes’ if they are present, and ‘no’ if they are not. In the end, you’ll see how many are present and how many are absent.

[image: Taking Attendance]Figure 107. Taking Attendance

Great job! You just made a program that can help teachers with roll call.

Python can be used for so many cool things, like finding out about the weather or taking attendance in class! By making this weather program and attendance taker, you’re learning to use Python just like real-world scientists and programmers. Keep exploring and having fun with Python – there’s so much more to discover!

Conclusion: Your Python Journey Continues

[image: Graduation)]Figure 108. Graduation)

Congratulations on Your Amazing Python Adventure!

Wow, you’ve learned so much about Python! From drawing shapes with Turtle to making your own games, you’re now a real Python explorer. But guess what? Your adventure doesn’t stop here. There’s still so much more to learn and explore with Python. Let’s talk about your next steps and how you can continue your exciting journey.

Next Steps in Learning Python:

	
Keep Practicing:

	
The best way to get better at Python is to keep practicing. Try changing the games you made, or maybe even create new ones. Remember, practice makes perfect!

	
Find More Python Projects:

	
There are lots of fun Python projects online that are perfect for beginners. You can make things like calculators, simple chatbots, or even a small website.

	
Join a Coding Club:

	
Many schools and communities have coding clubs where you can learn with other kids. It’s a fun way to learn new things and make friends who also love coding.

	
Check Out Books and Websites:

	
There are many cool books and websites that can help you learn more about Python. Some websites even have interactive Python exercises and puzzles!

Resources for Further Learning:

	
Websites:

	
Code.org and Scratch are great websites to practice coding with fun projects.

	
Python.org has lots of resources and is where you can download the latest version of Python.

	
Books:

	
Look for books that are made for kids learning Python. They usually have fun examples and easy-to-understand instructions. When you become more advanced and want to use python to create real video games, check out Creating Video Games using PyGame. PyGame is a library that makes it easy to create games in python!

Encouragement to Keep Exploring:

	
Remember, learning to code is like going on a treasure hunt. Sometimes it’s challenging, but it’s always exciting. And the more you learn, the more treasures you’ll find. Python is a language that can help you create amazing things, solve problems, and have a lot of fun.

	
Don’t be afraid to try new things and make mistakes. That’s how you learn and grow. You’re already on your way to becoming a great programmer!

Your Python journey is just beginning, and there are endless possibilities waiting for you. Keep exploring, keep learning, and most importantly, keep having fun with Python. You’re going to do amazing things!

Appendices

Accessing the Source Code for “Epic Python Coding”

Find All the Code You Need Online!

Did you have fun learning Python with “Epic Python Coding”? Want to dive deeper and play around with the code from the book? Great news! All the source code for the projects and examples in this book is available online. You can find, download, and even modify the code to try your own ideas!

Where to Find the Code:

	
GitHub Repository: All the source code is hosted on GitHub, a website where programmers share their code. You can visit our special repository (a place where we keep all our code) to find everything you need.

	
URL: To access the code, simply go to Epic Python Coding Source on GitHub.

How to Use the Repository:

	
Visit the Link: Click on the link or type it into your web browser.

	
Explore the Files: You’ll see a list of files, each named after a chapter or a specific project from the book.

	
View or Download Code: Click on a file to view the code. You can also download the files to your computer.

Experiment with the Code:

	
Feel free to play with the code! You can try changing it and see what happens. This is a great way to learn more and have fun with Python.

	
If you’re not sure how to do something, ask a parent, teacher, or friend for help.

Keep Coding and Exploring:

	
Remember, the more you practice, the better you’ll get. Use the code from the book as a starting point for your own Python adventures.

We hope that having access to the source code helps you on your journey in learning Python. Keep exploring, keep experimenting, and most importantly, keep enjoying the magic of coding!

1. Glossary of Terms

	
Variable: A storage space in programming where data (like numbers or text) is kept.

	
String: A string is like a word or a sentence. It’s just a bunch of letters, numbers, or other symbols stuck together. In Python, you show you’re using a string by putting it in quotes.

	
Number: Numbers in Python are just like numbers you use in math class. They can be whole numbers (like 1, 2, 3) or numbers with decimals (like 1.5 or 2.75).

	
Function: A block of code that performs a specific task and can be reused.

	
Loop: A sequence of instructions that repeats until a certain condition is met.

	
Conditional Statement: A command that performs different actions depending on whether a condition is true or false.

	
Algorithm: Like a recipe for solving a problem. It gives step-by-step instructions on what to do.

	
List: A line of boxes in your computer, where each box holds something like a number or a word.

	
Bug: A mistake in a computer program that makes it act weird or wrong.

	
Class: A blueprint for making objects in computer programming. It tells the computer what information and actions an object should have.

	
Comment: In a computer program, comments are like little notes that help explain what the code is doing. They are just for people to read and don’t affect how the program runs. In Python, if you want to write a comment, you start it with the # symbol. Anything after the # on that line is a comment.

	
Data Type: A kind of information that a program can use or change. It can be numbers, decimal numbers, or words.

	
Exception: A kind of mistake that happens while the computer is running a program, like trying to divide a number by zero.

	
IDE (Integrated Development Environment): This is like a big box of tools that helps you write and fix your computer code. Think of it as a special kind of computer program where you can write code, test it, and make sure it works right. A good example of an IDE is IDLE, which you get when you install Python. It’s like having a helpful assistant for coding!

	
Library: A collection of ready-made code that makes it easier to do common things in programming without starting from scratch. For instance, in Python, the random library is used to generate random numbers.

	
Object: Something created in programming that can store information and do actions. It’s made using a class as a blueprint.

	
Operator: A symbol that tells the computer to do math or make decisions. Like + for adding.

	
Syntax: The rules for writing code that the computer understands. It’s like grammar for programming.

	
Variable Scope: Where in a program a piece of information (a variable) can be used. Some information can be used everywhere (global) and some only in specific places (local).

	
While Loop: A part of a program that keeps doing the same thing over and over as long as a certain condition is true.

2. Extra Python Challenges

Below are several engaging project ideas to help enhance your Python programming skills:

	
Basic Calculator: Create a simple calculator that can add, subtract, multiply, and divide.

	
Story Generator: Write a program that randomly generates funny stories by mixing up user input.

	
Weather Forecaster: Create a program that asks for the user’s city and then uses an API to display the current weather in that city.

	
Mad Libs Game: Similar to the Story Generator, but this time, the program asks the user for specific types of words (like a noun, verb, adjective) and fills them into a pre-written story template.

	
Rock, Paper, Scissors Game: A program where the user can play the classic rock, paper, scissors game against the computer.

	
Simple Quiz Game: Write a program that asks the user a set of multiple-choice questions and then scores them at the end.

	
Turtle Race: Using the Turtle graphics library, create a simple animation where multiple turtle objects race across the screen.

	
Times Table Tester: A program that quizzes the user on multiplication tables.

	
Word Counter: A tool that takes a block of text (like a paragraph) and counts how many times each word appears.

	
Alarm Clock: A simple alarm clock where the user can set a time, and the program alerts them when it’s reached.

	
Currency Converter: A program that converts amounts from one currency to another using real-time exchange rates from an API.

Resources

Websites:

	
CodeCombat: This is an interactive gaming website where kids learn Python by writing code to navigate through different levels in a game.

	
Trinket.io: A simple online Python editor perfect for beginners. It allows kids to write Python code and see the results immediately.

	
Python for Beginners: Although not exclusively for kids, this website has very straightforward Python tutorials that are easy to understand.

Parent/Teacher Guide

Python is an excellent programming language for children to learn due to its readability and versatility. As a parent or teacher, your support is crucial in nurturing a child’s interest and skills in programming. This guide offers strategies and tips to facilitate children’s learning of Python programming effectively.

Understanding Python

Before assisting children, it’s helpful to have a basic understanding of Python yourself. Python is known for its simplicity and readability, making it a great first language for children. Familiarize yourself with basic concepts like loops, variables, and functions.

Tips and Strategies

1. Start with the Basics

	
Simplify Concepts: Break down programming concepts into simple terms. Compare loops to everyday tasks, like brushing teeth daily, or variables to boxes that hold different things.

	
Use Visual Aids: Diagrams, flowcharts, and visual programming tools can make abstract concepts more concrete.

2. Encourage Exploration

	
Project-Based Learning: Encourage building small projects, like a simple calculator or a basic game. This makes learning more engaging and practical.

	
Encourage Questions: Prompt them to ask ‘why’ and ‘how’ questions, fostering a deeper understanding and curiosity.

3. Foster Problem-Solving Skills

	
Debugging Exercises: Teach them to identify and fix errors in simple pieces of code. This develops critical thinking and resilience.

	
Step-by-Step Approach: Encourage them to tackle problems one step at a time, rather than getting overwhelmed by the bigger picture.

4. Keep the Learning Fun and Interactive

	
Gamify Learning: Use programming games and challenges. Platforms like CodeCombat or Scratch offer interactive ways to learn Python.

	
Relatable Examples: Use examples and projects related to their interests, whether it’s sports, art, or video games.

5. Encourage Regular Practice

	
Consistency Over Intensity: Short, regular coding sessions are more effective than infrequent, long ones.

	
Real-World Applications: Show them how Python is used in the real world, like in developing video games or in scientific research.

6. Provide Support and Encouragement

	
Celebrate Achievements: Acknowledge their progress, no matter how small.

	
Be Patient: Understand that everyone learns at their own pace. Offer encouragement and support rather than pressure.

7. Use Resources Wisely

	
Online Courses and Tutorials: Utilize free online resources and tutorials that are designed for children.

	
Books and Educational Kits: Consider age-appropriate books and Python learning kits.

8. Create a Collaborative Environment

	
Group Learning: If possible, arrange for them to learn with peers. This encourages collaboration and idea-sharing.

	
Parent-Child Coding Sessions: Engage in coding activities together. This not only helps in learning but also strengthens your bond.

Your involvement in a child’s journey in learning Python can be incredibly rewarding. By using these strategies, you can help them develop not only programming skills but also critical thinking, problem-solving, and a lifelong love for learning. Remember, the goal is to foster curiosity and enjoyment in the world of programming.

 EPUB/resources/image-31.png
[@ parameters_in_python.py - C:/temp/parameters_in_python.py (3.7.9)

File Edit Format Run Options Window Help

def say_hello_to(name):
print("Hello, " + name + "!")

say_hello_to ("Emily")
say_hello_to("Carlos")

Ln: 8 Col: 0

il (m] X

[& Python 3.7.9 Shell

File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020,
(AMD64)] on win32

Type "help", "copyright",
>>>

16:30:00) [MSC v.1900 64 bit a
"credits" or "license()" for more information.

RESTART: C:/temp/parameters_in_python.py
Hello, Emily!

Hello, Carlos!

>>>

EPUB/resources/image-40.png
[@ take_attendance.py - C:\Repos\Python For Beginners\Source\Chapter 8\take_attendance.py (.. — [m] X

File Edit Format Run Options Window Help

List of students in the class -
students = ["Alice", "Bob", "Charlie", "David", "Eva"

Variables to keep track of attendance
present_count = 0
absent_count = 0

Loop through each student in the list

for student in students:

response = input (f"Is {student} present? (yes/no): ") \
.lower ()

Check if the student is present
if response == "yes":
print (£"{student} is present.")
present_count += 1
else:
print (£"{student} is absent.")
absent_count += 1

Print the total number of students present and absent

print (£"\nTotal Present: {present_count}")
print (£"Total Absent: {absent_count}")

Ln: 1 Col: 0

[@ Python 3.7.9 Shell - [m] X

File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

RESTART: C:\Repos\Python For Beginners\Source\Chapter 8\take_attendance.py ==
Is Alice present? (yes/no): yes
Alice is present.

Is Bob present? (yes/no): no

Bob is absent.

Is Charlie present? (yes/no): no
Charlie is absent.

Is David present? (yes/no): yes
David is present.

Is Eva present? (yes/no): yes
Eva is present.

Total Present: 3
Total Absent: 2
>>> -

Ln: 18 Col: 4

EPUB/resources/image-23.png
& Python 3.7.9 Shell — [m] X

File Edit Shel Debug Options Window Help

N Ctrl+N :13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
Open... Giik® "credits" or "license()" for more information.

Open Module.. Alt+M

Recent Files >

Module Browser Alt+C
Path Browser

Save Ctrl+s
Save As.. Ctrl+Shift+S
Save Copy As.. Alt+Shift+S

Print Window Ctrl+P

Close Alt+F4
Exit Ctrl+Q

Ln:3 Col:4

EPUB/resources/image-14.png
>>> future_age = age + 3
Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
future_age = age + 3
NameError: name 'age' is not defined

EPUB/resources/image_6.png

EPUB/resources/image-9.png
>>> double_my_age = my_age * 2
>>> print (double_my_age)
20

EPUB/resources/image-30.png
[& countToThree.py - C:/temp/countToThree.py (3.7.9) - [m] X

File Edit Format Run Options Window Help
def count_to_three () :
for number in range(l, 4):
print (number)

count_to_three ()
Ln:7 Col:0

[@ Python 3.7.9 Shell — [m] X

File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 &
64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.
>>>

RESTART: C:/temp/countToThree.py

1
2
3
>>> .

Ln: 8 Col: 4

EPUB/resources/image-39.png
[@ treasure_hunt_game.py - C:/Repos/Epic Python Coding Source/Chapter 7/treasure_hunt_game.py (3.7.9) - [m] X

File Edit Format Run Options Window Help

print ("Welcome to the Looping Treasure Hunt Adventure!") -
print("You are in a dense forest, searching for the hidden treasure.")

treasure_found = False
while not treasure_found:
choice = input("Do you want to go left or right? (left/right) ")

if choice == "left":
print ("You've stumbled upon a hidden cave!")
choice = input("Do you dare to enter the cave? (yes/no) ")
if choice == "yes":
print ("Inside the cave, you found the treasure! Congratulations!")
treasure_found = True
else:
print ("You chose to stay outside. The forest awaits your next move.")
elif choice == "right":
print ("You come across a swiftly flowing river."
choice = input("Do you wish to swim across or follow the river? (swim/follow) ")
if choice == "swim":
print ("Bravely swimming across, you reach a deserted beach, but no treasure here."
else:
print ("Following the river, you find a bridge leading to a mysterious temple.")
choice = input("Do you cross the bridge? (yes/no) ")
if choice == "yes":
print ("In the temple, you find the hidden treasure! Your quest is complete!")
treasure_found = True
else:
print ("You decide not to cross. The river path stretches endlessly before you."
else:
print("Lost in the forest, you decide to stop and rest. Maybe try another path next time."

v

Ln: 5 Col: 16
[B python 3.7.9 shell - o x
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit (AMD64)] on win32 o
Type "help”, "copyright", "credits" or "license()" for more information.
>>>

== RESTART: C:/Repos/Epic Python Coding Source/Chapter 7/treasure_hunt_game.py =
Welcome to the Looping Treasure Hunt Adventure!
You are in a dense forest, searching for the hidden treasure.
Do you want to go left or right? (left/right) right
You come across a swiftly flowing river.
Do you wish to swim across or follow the river? (swim/follow) swim
Bravely swimming across, you reach a deserted beach, but no treasure here.
Do you want to go left or right? (left/right) left
You've stumbled upon a hidden cave!
Do you dare to enter the cave? (yes/no) no
You chose to stay outside. The forest awaits your next move.
Do you want to go left or right? (left/right) left
You've stumbled upon a hidden cave!
Do you dare to enter the cave? (yes/no) yes
Inside the cave, you found the treasure! Congratulations!
>>>
v

Ln: 19 Col: 4

EPUB/styles/resources/leanpub_question-circle.png

EPUB/resources/image-1.png
& Python 3.7.9 Shell - [m] X

File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1l a
900 64 bit (AMD64)] on win32 -
Type "help”, "copyright", "credits" or "license()" for more informati
on.

>>> 3 + 4

7

>>> |

Ln:5 Col: 4

EPUB/resources/image_3.png
25 python.org/downloads/ * T @ 90 9 :

essactnacom/ @) (@) Subjects M Inbox (1) - mgold@seamge.. [Amy Tyler » | [All Bookmarks

PyPI Community

'e pg’[hon Qy search 60 socialize

About Downloads Documentation

Community Success Stories News Events

Download the latest version of Python

Download Python 3.12.1

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python 3.13? Prereleases,

Docker images

EPUB/resources/image-13.png
>>> future_age = my_age + 3
>>> print (future_age)
14

EPUB/resources/image-3.png
& Python 3.7.9 Shell = [u] X

'Fle Edit Shell Debug Options Window Help

900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more informati
on.

>>> 3 + 4

7

>>> 5 - 2

3

>>> 3 * 4

12

>>> 10 / 2

5.0

>>>

Ln: 11 Col: 4,

EPUB/resources/python-magician.png

EPUB/resources/image-17.png
>>> greeting = "Hello” + © there:."
>>> print (greeting)
Hello there!

EPUB/styles/resources/leanpub_warning.png

EPUB/resources/weather-python.png

EPUB/resources/image-20.png
>>> my_numbers = [1,2,3,4,5]
>>> for number in my_numbers:
print (number + 10)

11
12
13
14
15

EPUB/styles/resources/leanpub_comments.png

EPUB/resources/image-33.png
[@ guess_the_number_once.py - C:/temp/guess_the number once.py (3.7.9)

File Edit Format Run Options Window Help

import random
secret_number = randem.randint (1, 10)

print ("I am thinking of a number between 1 and 10.")
guess = int (input("Can you guess it? "))

if guess == secret_number:

print ("You got it!")

21if guess < secret_number:

print ("Your guess is too low.")

else:
print ("Your guess is too high.")
Ln: 11 Col: 0}

[@ Python 3.7.9 shell - o x
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

===========———————- RESTART: C:/temp/guess_the_number_once.py
I am thinking of a number between 1 and 10.
Can you guess it? 4
Your guess is too low.
>>>

v
Ln:8 Col:4

EPUB/resources/image-34.png
[@ guess_number_multiple.py - C:/temp/guess_number_multiple.py (3.7.9) - [m] X

File Edit Format Run Options Window Help

import random -
secret_number = random.randint (1, 10

print ("I am thinking of a number between 1 and 10.")

while True:
guess = int (input("Can you guess it? "))

if guess == secret_number:
print ("You got it!")
break

21if guess < secret_number:
print ("Your guess is too low."
else:
print ("Your guess is too high."

v

Ln: 12 Col: 0

[@ Python 3.7.9 shell - o x|

File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

=================== RESTART: C:/temp/guess_number_multiple.py
I am thinking of a number between 1 and 10

Can you guess it? 5

Your guess is too low.

Can you guess it? 10

Your guess is too high.

Can you guess it? 7

Your guess is too low.

Can you guess it? 8

Your guess is too low.

Can you guess it? 9

You got it!

>>> o

Ln: 16 Col: 4

EPUB/resources/image-21.png
>>> silly words = ["My", "dog", "ate", "my", "homework", "yesterday"
>>> sentence = ""
>>> for word in silly_words:

sentence = sentence + word + " "

>>> print (sentence)
My dog ate my homework yesterday

EPUB/resources/image-16.png
>>> print ("I love Python!")
I love Python!

EPUB/resources/image-4.png
& Python 3.7.9 Shell

 File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020,
64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information. |
>>> my_age = 10

>>> my_age

10

>>> ‘

16:30:00) [MSC v.1900 o

EPUB/resources/image-29.png
[& sayhello.py - C/temp/sayhello.py (3.7.9) - [m] X
File Edit Format Run Options Window Help

def say_hello(): -
print ("Hello, Python World!")

say_hello()

v

Ln:5 Col: 11

[@ Python 3.7.9 Shell - [m] X
File Edit Shell Debug Options Window Help

V.I9UU ©4 DIT (AMUG4) | OR WINSZ
Type "help", "copyright", "credits" or "license()" for more inform
ation.

>>>

RESTART: C:/temp/sayhello.py

Hello, Python World!
>>>

Ln:6 Col:4

EPUB/resources/image_4.png
S Python 3.12.1 (64-bit) Setup — X

Setup was successful

New to Python? Start with the online tutorial and
documentation. At your terminal, type “py” to launch Python,
or search for Python in your Start menu.

See what's new in this release, or find more info about using
hon on Windows.

% Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

EPUB/resources/image-32.png
[® adding_numbers.py - C:/temp/adding_numbers.py (3.7.9)

File

Edit

Format

Run Qptions Window Help

def add_numbers (numberl, number2):

total = numberl + number2
print ("The total is:", total)

add_numbers (5, 3)
add_numbers (10, 20)

Ln:4 Col: 0

File

([@ Python 3.7.9 Shell

Edit Shell

Debug Options Window Help

(m]

X

>>>

The
The
>>>

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Aug 17 2020,
(AMD64)] on win32
Type "help",

total is:
total is:

“copyright", "credits" or "license()" for more information.

RESTART: C:/temp/adding_numbers.py
8
30

16:30:00) [MSC v.1900 64 bit a

Ln:7 Col-4

EPUB/media/resources/title_page.png
Epic Python Coding

Interactive Coding Adventures

For Kids

By Mike Gold

EPUB/resources/image-15.png
>>> my_age = 10
>>> print("In five years, I will be", my_age + 5)
In five years, I will be 15

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

EPUB/resources/image-28.png
[& spiral.py - C/temp/spiral.py (3.7.9)

File Edit Format Run Options Window Help
import turtle a

my_turtle = turtle.Turtle()
This makes your turtle draw fast ‘

my_turtle.speed(0)
colors = ["red", "orange", "gold", "green", "blue", "purple"]
for i in range(50):
my_turtle.color (colors[i % 6]) # Changes color each time
my_turtle.forward(i * 5) # Move forward by a growing distance
my_turtle.right (60) # Turn right by 60 degrees
v
Ln: 1 Cok: 13
- (m] X

¢ Python Turtle Graphics

EPUB/resources/image_5.png
& Python 3.7.9 Shell — [m} X

File Edit Shell Debug Qptions Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 &
bit (AMD64)] on win32

"credits" or "license()" for more information.

Type "help", "copyright",
>>> print ("Hello, Python World!")
Hello, Python World!

>>> |

EPUB/resources/image-36.png
[@ is_morning_false.py - C:/temp/is_ moring_false.py (3.7.9)

File Edit Format Run Options Window Help
is _morning = False a
if is_morning:
print ("Good morning!")
else:
print ("Good night!")
v
Ln:3 Col: 0
[@ Python 3.7.9 Shell - [m] X
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 a
64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
RESTART: C:/temp/is_morning_false.py

Good night!
>>>

Ln:6 Col:4

EPUB/resources/image-10.png
>>> younger_age = my_age - 2
>>> print (younger_age)
8

EPUB/resources/python-list-train.png

EPUB/resources/python_graduation.png

EPUB/resources/image-6.png
& Python 3.7.9 Shell = =] X
Fle Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020,
64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.
>>> my_age = 10

>>> future_age = my_age + 3
>>> |

16:30:00) [MSC v.1900 o

Ln:5 Col: 4

EPUB/resources/image-27.png
[mysample.py - C:/temp/mysample.py (3.7.9) - [m] X
File Edit Format Run Options Window Help

TMpUTT Curcre

my_turtle = turtle.Turtle()

my_turtle.fillcolor ("red")

my_turtle.begin_£ill()

for _ in range(3):
my_turtle.forward (100)
my_turtle.right (120)

my_turtle.end_f£ill()

Ln: 7 Col: 0

¢ Python Turtle Graphics - [m] X

EPUB/resources/image-18.png
>>> my_fruits = ["apple"”, "banana", "cherry"]
>>> print (my_fruits)
['apple', 'banana', 'cherry']

EPUB/resources/python-decision.png

EPUB/resources/image-35.png
[@ weather_app_chapter 8.py - C:/temp/weather app_chapter 8.py (3.7.9) - [m] X
File Edit Format Run Options Window Help

weather = input ("What is the weather like today? (sunny, rainy, snowy) ") -
if weather == "sunny":
print("It's a sunny day! Don't forget your sunglasses.")
elif weather == "rainy":
print ("It's raining. You'll need an umbrella!")
elif weather == "snowy":

print ("Wow, it's snowing! Bundle up in your warmest clothes.")
else:
print ("Hom, I don't know that weather. Sounds like an adventure!")

v

Ln: 10 Col: 0

[@ Python 3.7.9 Shell - [m] X

File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

================—== RESTART: C:/temp/weather_app_chapter_8.py
What is the weather like today? (sunny, rainy, snowy) snowy
Wow, it's snowing! Bundle up in your warmest clothes.

>>>

Ln:7 Col:4

EPUB/resources/python-playing-game.png

EPUB/resources/python-programmer.png

EPUB/styles/resources/leanpub_pencil.png

EPUB/resources/image.png
& Python 3.7.9 Shell
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 &
bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>> print ("Hello, Python World!")

Hello, Python World!

>>> print("I'm a Python programmer!") |
I'm a Python programmer!
>>>

Ln: 6 Col: 24

EPUB/resources/image-26.png
[mysample.py - C:/temp/mysample.py (3.7.9)

File Edit Format Run Options Window Help

import turtle

my_turtle = turtle.Turtle()
my_turtle.fillcolor ("blue")
my_turtle.begin_£ill()

for _ in range(4):
my_turtle.forward (100)
my_turtle.right (90)
my_turtle.end_f£ill()

Ln:9 Col: 20
¢ Python Turtle Graphics [m] X
a
v
»

EPUB/resources/python-teacher.png

EPUB/resources/image-5.png
& Python 3.7.9 Shell - [m} X

File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 a
64 bit (AMD64)] on win32
Type "help”, "copyright", "credits" or "license()" for more information.
>>> my_age = 10
>>> |

v

Ln:4 Col: 4

EPUB/resources/image-25.png
[mysample.py - C:/temp/mysample.py (3.7.9)
File Edit Format Run Options Window Help

import turtle

my_turtle = turtle.Turtle()

for _ in range(4):
my_turtle.forward (100)
my_turtle.right (90)

Ln:6 Col: 23

¢ Python Turtle Graphics

[m] X

EPUB/resources/image-8.png
>>> my_age = 10

>>> half_my_age = my_age/2
>>> print (half_my_age)

5.0

EPUB/resources/python-artist.png

EPUB/resources/image_2.png
@, Welcome to Python.org

C 25 python.org) D i | a

etnacon/ @ @ Subjects nb -m y Tyle [Al Bookmarks

Python PSF Docs PyPI Jobs Community

'e pgthon Qy search 60 socialize

About Downloads Documentation
‘ Community Allreleases News Events
Source code
Windows

macOS

Other Platforms

0.5

License
8 Alternative Implementations
5.666666666666667

https://www.python.org/downloads/

EPUB/resources/image-38.png
[& count_to_three.py - C:/temp/count_to_three.py (3.7.9) - [m] X
File Edit Format Run Options Window Help

def count_to_three():
for number in range(l, 4):
print (number)

count_to_three ()

Ln:5 Col: 0

[@ Python 3.7.9 Shell — [m] X
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit a
(AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
RESTART: C:/temp/count_to_three.py

EPUB/resources/image-12.png
>>> print (future_age)
13

EPUB/styles/resources/leanpub_bug.png

EPUB/resources/image-24.png
[mysample.py - C:/temp/mysample.py (3.7.9) - o e

File Edit Format Run Options Window Help
is_morning = True -
if is_morning:

print ("Good morning!")

Ln:3 Col: 0
[@ Python 3.7.9 Shell - [m] X

File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Aug 17 2020, 16:30:00) [&
MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more in
formation.

>>>

.

RESTART: C:/temp/mysample.py

Good morning!
>>>

Ln:6 Col: 4

EPUB/resources/image-37.png
[@ small_number_game.py - C:/temp/small_number_game.py (3.7.9)
Options Window Help
-

File Edit Format Run

number = 5

if number > 10:
print ("That's a big number!")

else:
print ("That's a small number!")
v
Ln:5 Col: 35
[@ Python 3.7.9 Shell - [m] X
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 6 a

4 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.
>>>

=========—==—==—————= RESTART: C:/temp/small_number_ game.py

That's a small number!
>>>
v
Ln:6 Col:4

EPUB/styles/resources/leanpub_info-circle.png

EPUB/resources/image_1.png
v f" Welcome to Python.org

C 25 python.org) D i | ﬁ

@ @ subjects nbox (y Tyle [Al Bookmarks

Python PSF Docs PyPI Jobs Community

'e pgthon Qy search 60 socialize

About Downloads Documentation

Community Success Stories News Events

>_ Launch Interactive Shell

Hello, I'm Python!

What is your name?
Python

& Hi Pvthon -

EPUB/resources/image-11.png
>>> my_age = 11
>>> print (my_age)
11

EPUB/resources/image-7.png
& Python 3.7.9 Shell
File Edit Shell Debug Options Window Help
64 bit (AMD64)] on win32 -
Type "help”, "copyright”, "credits” or "license()" for more information.
>>> my_age = 10

>>> future_age
>>> print (future_age)

= my age + 3

Col: 0

13
p>>

