[image:]
Linkerd: Up and Running

A Guide to Operationalizing a Kubernetes-Native Service Mesh

Jason Morgan and Flynn

 Linkerd: Up and Running

 by
 Jason
 Morgan
 and

 Flynn

 Copyright © 2024 Jason Morgan and Kevin Hood. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: John Devins

 	
 Development Editor: Angela Rufino

 	
 Production Editor:
 Gregory Hyman

 	
 Copyeditor:
 Penelope Perkins

 	
 Proofreader:
 Rachel Head

 	
 Indexer:
 Sue Klefstad

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 April 2024:
 First Edition

 Revision History for the First Edition

 	
 2024-04-11:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098142315
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Linkerd: Up and Running, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 This work is part of a collaboration between O’Reilly and Buoyant. See our statement of editorial independence.

 978-1-098-14231-5

 [LSI]

Preface

Service meshes need a little reputational rehab.

Many cloud native practitioners seem to have in mind that meshes are
frightening, complex things, things to be avoided until examined as a last
resort to save a dying application. We’d love to change that: service meshes
are incredible tools for making developing and operating cloud native
applications dramatically easier than it would otherwise be.

And, of course, we think Linkerd is the best mesh out there at making things
easy for people.

So if you’ve been tearing your hair out trying to understand a misbehaving
application based just on its logs, or if you’ve spent months trying to get
some other mesh running and you just want things to work, or if you’re
trying to explain to yet another developer why they really don’t need to worry
about coding retries and mTLS into their microservice…​you’re in the right
place. We’re glad you’re here.

Who Should Read This Book

This book is meant to help anyone who thinks it’s easier to get things
done when creating, running, or debugging microservices applications, and is
looking to Linkerd to help with that. While we think that the book will
benefit people who are interested in Linkerd for its own sake, Linkerd—like computing itself—is ultimately a means,
not an end. This book reflects that.

Beyond that, it doesn’t matter to us whether you’re an application developer,
a cluster operator, a platform engineer, or whatever; there should be something in
here to help you get the most out of Linkerd. Our goal is to give you
everything you need to get Linkerd up and running to help you get things done.

You’ll need some basic knowledge of Kubernetes, the overall concept of running
things in containers, and the Unix command line to get the most out of this
book. Some familiarity with Prometheus, Helm, Jaeger, etc. will also be
helpful, but isn’t really critical.

Why We Wrote This Book

We’ve both worked in the cloud native world for years and in software for many more
years before that. Across all that time, the challenge that has never gone away is
education; the coolest new thing on the block isn’t much good until people
really, truly understand what it is and how to use it.

Service meshes really should be pretty well understood by now, but of course
every month there are people who need to sort out the latest and greatest
changes in the meshes, and every month there are more people migrating to what
is, to them, the entirely new cloud native world. We wrote this book, and
we’ll keep updating it, to help all these people out.

Navigating This Book

Chapter 1, “Service Mesh 101”, is an introduction to service meshes: what they
do, what they can help with, and why you might want to use one. This is a
must-read for folks who aren’t familiar with meshes.

Chapter 2, “Intro to Linkerd”, takes a deep dive into Linkerd’s architecture
and history. If you’re familiar with Linkerd already, this may be mostly
recap.

Chapter 3, “Deploying Linkerd”, and Chapter 4, “Adding Workloads to the Mesh”, are all about
getting Linkerd running in a cluster and getting your application working
with Linkerd. These two chapters cover the basic nuts and bolts of actually
using Linkerd. Chapter 5, “Ingress and Linkerd”, continues by talking about the
ingress problem, how to manage it, and how Linkerd interacts with ingress
controllers.

Chapter 6, “The Linkerd CLI”, talks about the linkerd CLI, which you can use to
control and examine a Linkerd deployment.

Chapter 7, “mTLS, Linkerd, and Certificates”, dives deep into Linkerd mTLS and the way it uses
X.509 certificates. Chapter 8, “Linkerd Policy: Overview
and Server-Based Policy”, and Chapter 9, “Linkerd Route-Based Policy”, continue
by exploring how Linkerd can use those mTLS identities to enforce policy in
your cluster.

Chapter 10, “Observing Your Platform with Linkerd”, is all about Linkerd’s application-wide observability
mechanisms. Chapter 11, “Ensuring Reliability with Linkerd”, in turn, covers how to use Linkerd to
improve reliability within your application, and Chapter 12, “Multicluster Communication with Linkerd”, talks
about extending a Linkerd mesh across multiple Kubernetes clusters.

Chapter 13, “Linkerd CNI Versus Init Containers”, addresses the thorny topic of how, exactly,
you’ll have Linkerd interact with the low-level networking configuration of
your cluster. Unfortunately, this may be a necessary topic of discussion as
you consider taking Linkerd to production, which is the topic of
Chapter 14, “Production-Ready Linkerd”.

Finally, Chapter 15, “Debugging Linkerd”, discusses how to troubleshoot Linkerd
itself, should you find things misbehaving (even though we hope you won’t!).

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://oreil.ly/linkerd-code.

If you have a technical question or a problem using the code examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Linkerd: Up and Running by Jason Morgan and Flynn (O’Reilly). Copyright 2024 Jason Morgan and Kevin Hood, 978-1-098-14231-5.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-889-8969 (in the United States or Canada)

 	707-827-7019 (international or local)

 	707-829-0104 (fax)

 	support@oreilly.com

 	https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/linkerd-up-and-running.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

Many, many thanks to the fine folks who helped us develop this book, including
(but not limited to!):

	
Our editor, Angela Rufino

	
Technical reviewers Daniel Bryant, Ben Muschko, and Swapnil Shevate, who
provided amazing feedback that made the book worlds better

	
The unsung heroes at O’Reilly who got everything into publishable shape

	
Last but very much not least, the Linkerd maintainers and the fine folks at
Buoyant who created the thing that we’re writing about

From Flynn, a big shout out to SC and RAH for putting up
with him during the year it took to put this together. Many, many thanks.

Chapter 1. Service Mesh 101

Linkerd is the first service mesh—in fact, it’s the project that coined
the term “service mesh.” It was created in 2015 by Buoyant, Inc., as we’ll
discuss more in Chapter 2, and for all that time it’s been
focused on making it easier to produce and operate truly excellent
cloud native software.

But what, exactly, is a service mesh? We can start with the definition from
the CNCF Glossary:

In a microservices world, apps are broken down into multiple smaller
services that communicate over a network. Just like your wifi network,
computer networks are intrinsically unreliable, hackable, and often slow.
Service meshes address this new set of challenges by managing traffic (i.e.,
communication) between services and adding reliability, observability, and
security features uniformly across all services.

The cloud native world is all about computing at a huge range of scales, from tiny clusters running on your laptop for development up through the kind of massive infrastructure that Google and Amazon wrangle. This works best when applications use the microservices architecture, but the microservices architecture is inherently more fragile than a monolithic architecture.

Fundamentally, service meshes are about hiding that fragility from the
application developer—and, indeed, from the application itself. They do
this by taking several features that are critical when creating robust
applications and moving them from the application into the infrastructure.
This allows application developers to focus on what makes their applications
unique, rather than having to spend all their time worrying about how to
provide the critical functions that should be the same across all
applications.

In this chapter, we’ll take a high-level look at what service meshes do, how
they work, and why they’re important. In the process, we’ll provide the
background you need for our more detailed discussions about Linkerd in the
rest of the book.

Basic Mesh Functionality

The critical functions provided by services meshes fall into three broad categories: security, reliability, and observability. As we examine these three categories, we’ll be comparing the way they play out in a typical monolith and in a microservices application.

Of course, “monolith” can mean several different things. Figure 1-1 shows a diagram of the “typical” monolithic application that we’ll be considering.

[image: luar 0101]
Figure 1-1. A monolithic application

The monolith is a single process within the operating system, which means that
it gets to take advantage of all the protection mechanisms offered by the
operating system; other processes can’t see anything inside the monolith, and
they definitely can’t modify anything inside it. Communications between
different parts of the monolith are typically function calls within the
monolith’s single memory space, so again there’s no opportunity for any other
process to see or alter these communications. It’s true that one area of the
monolith can alter the memory in use by other parts—in fact, this is a huge
source of bugs!—but these are generally just errors, rather than attacks.

Multiple Processes Versus Multiple Machines

“But wait!” we hear you cry. “Any operating system worthy of the name can provide protections that do span more than one process! What about memory-mapped files or System V shared memory segments? What about the loopback interface and Unix domain sockets (to stretch the point a bit)?”

You’re right: these mechanisms can allow multiple processes to cooperate and
share information while still being protected by the operating system.
However, they must be explicitly coded into the application, and they only
function on a single machine. Part of the power of cloud native
orchestration systems like Kubernetes is that they’re allowed to schedule Pods
on any machine in your cluster, and you won’t know which machine ahead of
time. This is tremendously flexible, but it also means that mechanisms that
assume everything is on a single machine simply won’t work in the
cloud native world.

In contrast, Figure 1-2 shows the corresponding microservices
application.

[image: luar 0102]
Figure 1-2. A microservices application

With microservices, things are different. Each microservice is a separate
process, and microservices communicate only over the network—but the
protection mechanisms provided by the operating system function only inside
a process. These mechanisms aren’t enough in a world where any information shared
between microservices has to travel over the network.

This reliance on communications over the unreliable, insecure network raises a
lot of concerns when developing microservices applications.

Security

Let’s start with the fact that the network is inherently insecure. This gives
rise to a number of possible issues, some of which are shown in
Figure 1-3.

[image: luar 0103]
Figure 1-3. Communication is a risky business

Some of the most significant security issues are eavesdropping, tampering,
identity theft, and overreach:

	Eavesdropping

	
Evildoers may be able to intercept communications between two microservices, reading communications not intended for them. Depending on what exactly an evildoer learns, this could be a minor annoyance or a major disaster.

The typical protection against eavesdropping is encryption, which scrambles the data so that only the intended recipient can understand it.

	Tampering

	
An evildoer might also be able to modify the data in transit over the network. At its simplest, the tampering attack would simply corrupt the data in transit; at its most subtle, it would modify the data to be advantageous to the attacker.

It’s extremely important to understand that encryption alone will not protect against tampering! The proper protection is to use integrity checks like checksums; all well-designed cryptosystems include integrity checks as part of their protocols.

	Identity theft

	
When you hand off credit card details to your payment microservice, how do you know for certain that you’re really talking to your payment microservice? If an evildoer can successfully pretend to be one of your microservices, that opens the door to all manner of troublesome possibilities.

Strong authentication is critical to protect against this type of attack. It’s the only way to be sure that the microservice you’re talking to is really the one you think
it is.

	Overreach

	
On the flip side of identity theft, an evildoer may be able to take advantage
of a place where a microservice is allowed to do things that it simply
shouldn’t be allowed to do. Imagine, for example, an evildoer finding that the
payment microservice is perfectly happy to accept requests from the
microservice that should merely be listing things for sale.

Careful attention to authorization is the key here. In a perfect world, every microservice will be able to do exactly what it needs, and no more (the principle of least privilege).

Reliability

Reliability in the monolith world typically refers to how well the monolith functions: when the different parts of the monolith communicate with function calls, you don’t typically have to worry about a call getting lost or about one of your functions suddenly becoming unresponsive! But, as shown in Figure 1-4, unreliable communications are actually the norm with microservices.

[image: luar 0104]
Figure 1-4. Unreliable communications are the norm

There are quite a few ways microservices can be unreliable, including:

	Request failure

	
Sometimes requests made over the network fail. There may be any number of possible reasons, ranging from a crashed microservice to a network overload or partition. Either the application or the infrastructure needs to do something to deal with the request that failed.

In the simplest case, the mesh can simply manage retries for the application: if the call fails because the called service dies or times out, just resend the request. This won’t always work, of course: not all requests are safe to retry, and not every failure is transient. But in many cases, simple retry logic can be used to great effect.

	Service failure

	
A special case of request failures comes up when it isn’t just a single instance of a microservice that crashes, but all instances. Maybe a bad version was deployed, or maybe an entire cluster crashed. In these cases the mesh can help by failing over to a backup cluster or to a known-good implementation of the service.

Again, this can’t always happen without application help (failover of stateful services can be quite complex, for example). But microservices are often designed to manage without state, in which case mesh failover can be a huge help.

	Service overload

	
Another special case: sometimes the failure happens because too many requests are piling onto the same service. In these cases, circuit breaking can help avoid a cascade failure: if the mesh fails some requests quickly, before dependent services get involved and cause further trouble, it can help limit the damage. This is a bit of a drastic technique, but this type of enforced load shedding can dramatically increase the overall reliability of the application as a whole.

Observability

It’s difficult to see what’s going on in any computing application: even a
slow machine, these days, operates on time scales a billion times faster than
the one we humans live by! Within a monolith, observability is often handled
by internal logging or dashboards that collect global metrics
from many different areas of the monolith. This is much less feasible with a
microservices architecture, as we see in Figure 1-5—and even
if it were feasible, it wouldn’t tell the whole story.

[image: luar 0105]
Figure 1-5. It’s hard to work in the dark

In the microservices world, “observability” tends to focus more on the call graph and the golden metrics:

	The call graph

	
When looking at a microservices application, the first critical thing is
usually knowing which services are getting called by which other services.
This is the call graph, shown in Figure 1-6, and a critical thing that a
service mesh can do is to provide metrics about how much traffic is going over
each edge of the graph, how much is succeeding, how much is failing, etc.

[image: luar 0106]
Figure 1-6. The call graph of an application

The call graph is a critical starting point because problems that the user sees from outside the cluster may actually be caused by problems with a single service buried deep in the graph. It’s very important to have visibility into the whole graph to be able to solve problems.

It’s also worth noting that, in specific situations, particular paths through
the graph will be relevant, as shown in Figure 1-7. For example,
different requests from the user may use different paths in the graph,
exercising different aspects of the workloads.

[image: luar 0107]
Figure 1-7. Different paths through the call graph

	The golden metrics

	
There are a great many metrics that we could collect for every microservice.
Over time, three of them have repeatedly proven especially useful in a wide
variety of situations, so much so that we now refer to them as the “golden
metrics” (as shown in Figure 1-8):

	Latency

	
How long are requests taking to complete? This is typically reported as an amount of time for a certain percentage of requests to complete. For example, P95 latency indicates the time in which 95% of requests complete, so you can interpret “5 ms P95” to mean that 95% of requests complete in 5 ms or less.

	Traffic

	
How many requests is a given service handling? This is typically reported as requests per second, or RPS.

	Success rate

	
How many requests are succeeding? (This can also be
reported as its inverse, the error rate.) This is typically reported as a percentage of total requests, with “success rate” often abbreviated as SR.

[image: luar 0108]
Figure 1-8. The three golden metrics

The Original “Golden Signals”

These were originally described in Google’s “Monitoring Distributed Systems” post as the four “golden signals”: latency, request rate, error rate, and saturation.
We prefer “golden metrics” because metrics are things you can directly
measure; you derive signals (like “saturation”) from metrics.

We’ll discuss these in much greater detail in Chapter 10, but it’s worth noting at this point that these metrics have proven so useful that many meshes devote considerable effort to recording them—and that the service mesh is an ideal place to track them.

How Do Meshes Actually Work?

Finally, let’s take a quick look at how service meshes actually function.

At a high level, all meshes are fundamentally doing the same job: they insert
themselves into the operating system’s network stack, take over the low-level
networking that the application is using, and mediate everything the
application does on the network. This is the only practical way to allow the
mesh to provide all the functionality it’s designed to provide without
requiring changes to the application itself.

Most meshes—including Linkerd—use the sidecar model of injecting a proxy
container next to every application container (see Figure 1-9).1 Once running, the proxy
reconfigures the host’s network routing rules so that all traffic into and out
of the application container goes through the proxy. This allows the proxy to
control everything necessary for the functionality of the mesh.

[image: luar 0109]
Figure 1-9. Linkerd and the sidecar model

There are other models, but the sidecar model has tremendous advantages in terms of operational simplicity and security:

	
From the perspective of basically everything else in the system, the
sidecar acts like it is part of the application. In particular, this means
that all the things that the operating system does to guarantee the safety of
the application just work for the sidecar, too. This is a very, very
important characteristic: limiting the sidecar to exactly one security context
sharply limits the attack surface of the sidecar and makes it much easier to
reason about whether the things the sidecar is doing are safe.

	
In much the same way, managing the sidecar is exactly the same as managing any other application or service. For example, kubectl rollout restart will just work to restart an application Pod and its sidecar as a unit.

There are disadvantages too, of course. The biggest is that every application Pod needs a sidecar container—even if your application has thousands of Pods. Another common concern is around latency: the sidecar, by definition, requires some time to process network traffic. Again, we’ll talk more about this later, but it’s worth noting up front that Linkerd goes to a lot of trouble to minimize the sidecar’s impact, and in practice Linkerd is very fast and very lightweight.

So Why Do We Need This?

Put bluntly, the functionality provided by the mesh is not optional. You’re never going to hear the engineering team say “oh, we don’t need security” or “oh, reliability isn’t important” (though you might have to convince people of the need for observability—hopefully this book will help!).

In other words, the choice isn’t between having these three features or not:
it’s between having them provided by the mesh or needing to provide them in
the application.

Providing them in the application is costly. Your developers could write them by
hand, but this means a lot of fiddly application code replicated in every
microservice, which is very easy to get wrong (especially since the temptation
will always be to have senior developers focus on the crown jewels of logic
specific to your business, rather than the dreary, less visible, but equally
critical work of getting retries right). You may also run into incompatibilities
between parts of the application, especially as the application grows.

Alternatively, you could find libraries that implement the functionality for
you, which definitely saves development time. On the other hand, you still end up
with each and every one of your developers needing to learn how to use those
libraries, you’re limited to languages and runtimes for which you can find the
libraries, and incompatibilities are still a serious issue (suppose one
microservice upgrades the library before another one does).

Over time, it’s become pretty clear to us that pushing all this functionality
into the mesh, where the application developers don’t even necessarily need to
know that it exists, is the smart way to provide it—and we
think that Linkerd is the best of the meshes out there. If we haven’t
convinced you, too, by the end of the book, please reach out and let us know
where we fell short!

Summary

In summary, service meshes are platform-level infrastructure that provide
security, reliability, and observability uniformly across an entire
application, without requiring changes to the application itself. Linkerd was the first
service mesh, and we think it’s still the one with the best balance of power,
speed, and operational simplicity.

1 The name comes from the analogy of bolting a sidecar onto a motorcycle.

Chapter 2. Intro to Linkerd

The year 2015 was a very good one for cloud native computing: it brought us the first
Kubernetes release, the creation of the Cloud Native Computing Foundation
(CNCF), and the creation of Linkerd. Linkerd was one of the first five projects
donated to the CNCF, and it was the project that coined the term “service
mesh.”

In this chapter, you’ll learn more about Linkerd, where it comes from,
what makes it special, and how it works. We’ll keep the history lesson short, useful, and interesting, but if you want
to get right to the important information, feel free to skip ahead.

Where Does Linkerd Come From?

The Linkerd project was created in 2015 at Buoyant, Inc., by former Twitter
engineers William Morgan and Oliver Gould. The first public release of Linkerd
was in February 2016. You can see a brief summary of its history in Figure 2-1.

[image: luar 0201]
Figure 2-1. A brief timeline of Linkerd

Linkerd1

That first version of Linkerd, now called “Linkerd1,” was written mostly in
Scala and was largely based on the Finagle RPC library created at Twitter. It
was a multiplatform mesh that supported several different container
schedulers and offered a number of powerful features. However, using Finagle
required Linkerd1 to run on the Java Virtual Machine (JVM), and ultimately the
JVM’s performance was simply too high a cost to bear.

Linkerd1 is at its end of life. Going forward, when we talk about “Linkerd,”
we’ll be referring to modern Linkerd—Linkerd2.

Linkerd2

In 2018, the Linkerd project left the Scala world behind with a ground-up
rewrite based on hard-won experience from Linkerd1 use in the real world. The
project dropped support for other container orchestration engines and moved to
exclusively supporting Kubernetes, with most of the code written in Go.
Additionally, the developers chose to write a small, fast, purpose-built Rust
proxy (creatively called linkerd2-proxy) to manage application
communications, rather than adopting the Envoy proxy.

Linkerd and Rust

When the Linkerd2 rewrite started, the Rust programming language had been
gaining attention for its memory safety, which enables developers to write
code that avoids many of the memory management vulnerabilities inherent to C
and C++, while still compiling to native code for high performance. The
downside was that Rust’s networking support was sometimes lacking features
needed by Linkerd2; in many cases, the Linkerd2 developers ended up adding
these features to Rust crates like hyper and tokio.

The driver behind the decisions to focus on Kubernetes and to create a
purpose-built proxy was operational simplicity: the idea that a project
should be able to deliver functionality and performance while still being
simple to learn and use. This concept has had a tremendous impact on the
Linkerd project as a whole, and it continues to be a major focus of Linkerd’s
development.

The Linkerd Proxy

It’s worth repeating that linkerd2-proxy is not a general-purpose proxy;
it was purpose-built for use in Linkerd. It’s extremely fast and lightweight,
and as a user of Linkerd, you should almost never need to interact with it
directly—it is very much meant to be invisible in normal use, and most
Linkerd users never need to tune or debug linkerd2-proxy. (In fact, the
maintainers of Linkerd like to joke that the only linkerd2-proxy experts on
the planet are…​the Linkerd maintainers.)

The Linkerd control plane, introduced in the next section, will be your main interface when working with
Linkerd.

Linkerd Architecture

Because Linkerd is written to be Kubernetes-native, all of its control surface
is exposed in Kubernetes objects. You will manage, configure, and troubleshoot
Linkerd via the Kubernetes API.

Like other service meshes, Linkerd is broken into two main components: the
data plane, which is the part of the mesh that handles application data
directly (primarily composed of the proxies), and the control plane, which
manages the data plane. This architecture is shown in
Figure 2-2.

Linkerd works by taking advantage of the Kubernetes concept of sidecars, which
allows every application container to be paired with a dedicated proxy that
handles all network traffic. The proxies—the data plane of the mesh—implement the advanced functionality of the mesh itself, mediating and measuring all the traffic passing through them.

[image: luar 0202]
Figure 2-2. Linkerd’s internal architecture

Kubernetes Sidecar Containers

Kubernetes didn’t have a formal sidecar container type until the adoption of
KEP-753
in Kubernetes 1.28. The sidecar concept predates KEP-753 by many years,
though.

Linkerd does support KEP-753 sidecar containers as of Linkerd edge-23.11.4, if you’re running Kubernetes 1.28 or later.

Linkerd also supports the concept of extensions, extra
microservices that run as part of the control plane to implement optional
functionality (either in the cluster or in the Linkerd CLI). Some extensions
(such as the Viz and Multicluster extensions) are bundled with the official
Linkerd build; though they must be installed into the cluster separately, you
don’t need any extra tools to do so. Others (such as the SMI extension) must
be obtained separately before you can install them; the documentation for the
extension should tell you how to do this.

mTLS and Certificates

Linkerd relies heavily on Transport Layer Security (TLS), illustrated
in Figure 2-3, for networking security—nearly all of the
communications shown in Figure 2-2 are protected using TLS.

[image: luar 0203]
Figure 2-3. TLS architecture

TLS is the technology that’s underpinned data security and privacy on the
Internet for the last quarter century by allowing secure communication over
an insecure network, even if the parties communicating have never done so
before. It is a huge topic, easily worth a book on its own. We’ll talk more
about it in Chapter 7, but at the architectural level, it’s
important to understand that Linkerd uses TLS to encrypt communications within
the cluster, and also as the foundation of identity within the mesh
(specifically using mutual TLS, or mTLS).

In TLS, encryption and identity both rely on keypairs. A keypair consists of
a public key and a private key, where:

	
The private key must be known only to the single entity that the keypair
identifies.

	
The public key must be known to everyone who needs to communicate with that entity.

The keypair allows an entity (say, a workload in the Linkerd mesh) to use the
private key to attest to its identity; other entities can use the public key
to verify that claim.

An important note about keypairs is that they need to have a limited lifetime,
so every so often we need a way to replace the keys in use for any given
entity. This is called rotating the keys.

Certifying Authorities

Since it’s very tedious to try to keep track of public and private keys
separately all the time, TLS uses keys that are bundled up in X.509
certificates (mostly just called certificates), which give us a standard
format to save the keys and a standard way to allow using one certificate to
attest that another is valid. This is called issuing a certificate or
signing a certificate. Organizations that support the process of issuing
certificates are called certifying authorities or CAs. There are companies
that treat being a CA as a core part of their business (such as Let’s
Encrypt, Venafi, and most cloud providers) as well as software that permits
establishing CAs within our own organizations.

Using certificates to issue other certificates naturally creates a hierarchy
of certificates that form a chain of trust from a single root, as shown in
Figure 2-4.

[image: luar 0204]
Figure 2-4. The certificate trust hierarchy

Linkerd—like everything else that uses TLS—requires a properly configured
hierarchy of certificates in order to function. We’ll discuss this in more
detail in Chapters 3 and 7.

The Linkerd Control Plane

As of this writing, the core Linkerd control plane is composed of three primary
components, as shown in Figure 2-5: the proxy
injector, the identity controller, and the destination controller. We will
discuss these components in more detail in Chapter 15.
Fundamentally, they are responsible for allowing you to add
individual applications to your service mesh and enabling the core security,
reliability, and observability features that Linkerd provides. In order to
provide these functions, these components interact directly with Linkerd’s TLS
certificates.

[image: luar 0205]
Figure 2-5. The Linkerd control plane

Linkerd Extensions

Figure 2-5 shows some extension deployments
running off to the side. Linkerd extensions have no special privileges; in
particular, the only way they can interact with the control plane or the proxy
is via published APIs. This allows them to be written by anyone.

Several extensions are maintained by the Linkerd maintainers to supply
functionality that many users want, but that isn’t required by every Linkerd
installation; these include Linkerd Viz, Linkerd Multicluster, Linkerd Jaeger, Linkerd CNI,
and Linkerd SMI.

Linkerd Viz

The Linkerd Viz extension provides the Linkerd dashboard and its associated
components, as shown in Figure 2-6. It also provides some
additional CLI options that are useful when troubleshooting applications in
your cluster.

[image: luar 0206]
Figure 2-6. The Linkerd Viz extension

Viz is made up of the components described in the following sections.

Web

The Web component of Linkerd Viz provides the dashboard GUI used by many
Linkerd operators. You don’t actually need the GUI—everything it shows is
accessible from the command line—but it is very commonly used, and it can be very useful.

The Linkerd Viz Dashboard Is Unauthenticated

The Linkerd Viz dashboard doesn’t do user authentication—there are simply
too many auth systems in use for it to be feasible. If you choose to expose
Linkerd Viz to the network, you’ll need to use an API gateway or the like to
protect access to Linkerd Viz according to your own policies. The dashboard
can’t change anything in your cluster, but it does expose an awful lot of
information.

You can also choose to leave the dashboard inaccessible from outside the
cluster, and simply use the linkerd viz dashboard CLI command to bring up
the dashboard in a web browser, via a port forward.

Tap

Tap allows Linkerd to surface the metadata about individual requests flowing
between your applications. Tap data is useful for debugging application issues
in live environments, since it permits watching request and response data
in real time.

Tap Doesn’t Show Request Bodies

Tap can only show metadata: paths, headers, etc. It cannot show request
bodies. In a great many cases, of course, the metadata is all that’s needed
to understand what’s going on in an application.

For access to request bodies, you’ll need to incorporate application-level
request logging. Even in this situation, though, Tap can help narrow down the
microservices and request IDs of interest when examining more detailed logs.

Tap injector

For Linkerd Viz to surface metadata about requests, the metadata must be
collected from the individual proxies in the system. The Tap injector modifies the proxy injector so that new proxies will allow this metadata collection.

Note that the proxy injector can’t affect any proxy that’s already running! Any workloads started before the extension was installed will need to be restarted to provide Tap data to Linkerd Viz.

Metrics API

The metrics API is involved in collecting metrics for the Linkerd dashboard. It provides the underlying summary data for the Linkerd dashboard as well as the Linkerd CLI. Like all dashboard components, it is not involved in providing information to the Linkerd proxies.

Prometheus and Grafana

Linkerd’s Viz extension ships with a Prometheus instance. If you choose to install Grafana (as described in the Linkerd documentation), Linkerd publishes several open source Grafana dashboards as well.

You don’t actually need Linkerd Viz to use Prometheus and Grafana. The Linkerd
proxy supports Prometheus natively, so you can install Prometheus and
configure it to scrape the proxies directly if you like. Linkerd Viz is
simpler, though.

Always Use Your Own Prometheus

By default, installing Linkerd Viz will install an internal Prometheus
instance. Do not use this Prometheus in production, as it does not have
persistent storage configured; instead, see the Linkerd documentation and Example 10-9 for information about using an external Prometheus instance.

Linkerd Multicluster

The Linkerd Multicluster extension provides users the ability to connect
clusters together over any public or private networks, as shown in
Figure 2-7. The Multicluster extension connects
clusters via a special gateway that allows all traffic to appear as if it
originates locally in the cluster. This allows users to avoid configuring any
special networking settings when connecting clusters. We’ll dive deeper into
multicluster connections in Chapter 12.

[image: luar 0207]
Figure 2-7. Linkerd multicluster architecture

Linkerd Jaeger

The Linkerd Jaeger extension allows Linkerd to participate in distributed
tracing, as embodied by the Jaeger project.
Specifically, it allows Linkerd to emit and forward distributed tracing spans,
so that you can see proxy activity in the distributed trace. As shown in Figure 2-8, Linkerd Jaeger provides a collector, which forwards spans to a Jaeger instance, and an injector, which modifies the proxy injector so that new proxies will send data to the collector. As with Linkerd Viz, you’ll need to restart any workloads that were running before you installed Linkerd Jaeger!

It’s important to understand that while Linkerd can aid your application-based
tracing by providing details on how the proxies are contributing to your
distributed application’s flow, it cannot add tracing instrumentation to your
application. In order to take advantage of distributed tracing with Linkerd,
your application must first be configured to propagate tracing headers and
create and emit its own spans.

Always Use Your Own Jaeger Instance

By default, Linkerd Jaeger will install an internal Jaeger instance. Do not use this Jaeger instance in production, as it does not provide persistent storage; instead, see the Linkerd documentation for information about using an external Jaeger instance.

[image: luar 0208]
Figure 2-8. Linkerd Jaeger architecture

Linkerd CNI

When a Linkerd proxy starts running, it needs to reconfigure the kernel’s
network layer so that the proxy can intercept and mediate network
communication for the application. There are two possible ways for Linkerd to
do this: the Linkerd init container or the Linkerd Container Network
Interface (CNI) plugin.

We’ll discuss this in much greater detail in Chapter 13,
but it’s worth noting here that the CNI plugin works in conjunction with
the Kubernetes CNI to reconfigure the network stack in environments where
using the init container isn’t possible or isn’t desirable. If you do plan to
use the CNI, you must install the Linkerd CNI plugin before installing any
other Linkerd components. This is the only extension that can and must be
installed before Linkerd’s core control plane.

Linkerd SMI

The Service Mesh Interface (SMI) was a project out of the CNCF that
aimed to provide a standard, cross-platform API to control the behavior of a
service mesh. The Linkerd SMI extension allows Linkerd to do traffic splitting
using the SMI TrafficSplit custom resource definition (CRD).1

SMI saw somewhat mixed adoption overall, and as of October 2023 the SMI
project was archived, with many of its concepts and goals used to inform
the GAMMA initiative within
Gateway API, which Linkerd supports as of version 2.14.

Summary

Linkerd got started in 2015 and grew into its modern form, based on Rust and
Go and driven by the concept of operational simplicity, in 2018. That focus on
operational simplicity remains today and is borne out by Linkerd’s
architecture, with a small, purpose-built Rust data plane proxy, a Go control
plane that focuses on critical functionality, and a set of extensions for
optional functionality.

1 There were other SMI CRDs, but other than TrafficSplit, they duplicate functionality that Linkerd already had APIs for.

Chapter 3. Deploying Linkerd

Now that you understand what Linkerd is and a bit about how it works, it’s time to dig into deploying Linkerd in your environment. We’re going to dive into the whats, whys, and hows of installing Linkerd in this chapter. You can also check out the official Linkerd docs to review the getting started guide.

Considerations

Installing Linkerd can often be quick, easy, and painless. Unfortunately, some
of that ease of use can mask real pitfalls that you’ll want to avoid. We’ll
dive more into the specifics when we get to the install section—for now,
suffice it to say that when you install Linkerd in your actual non-demo
environments, you’ll want to be sure to plan for generating and storing the
TLS certificates we briefly described in Chapter 2. You’ll
also want to be sure you have a good understanding of all non-HTTP ports being
used by your applications, so that you can configure protocol discovery
correctly for them (this is covered in more detail in
Chapter 4).

Linkerd Versioning

We mentioned in Chapter 2 that this book is focused exclusively on Linkerd2, the second major version of Linkerd, which is effectively a rewrite of the project. In recognition of that, Linkerd uses a versioning system that looks like semantic versioning but is, in fact, distinct. Linkerd has two major release channels: stable and edge. You can read more about this versioning scheme and release model in the official Linkerd documentation.

Stable

The stable channel is used for vendor releases, such as Buoyant Enterprise for Linkerd (from, unsurprisingly, Buoyant). This channel uses a modified semantic versioning scheme:

stable-2.<major>.<minor>.<patch>

This means that when you see, for example, “Linkerd 2.12.3,” the major version is 12 and the minor version is 3. This release has no patch number.

The rules of semantic versioning are that a change to the major version means that Linkerd has introduced breaking changes or significant new capabilities, while a change to only the minor version indicates that the new release is fully backward compatible with the previous version and includes improvements or bug fixes. Patch releases are rare and indicate a security fix has been issued for a given minor version.

Edge

The edge release channel is where you’ll find releases of pure open source Linkerd, built from the latest changes to Linkerd available when they’re released. Edge releases are generally provided on a weekly basis with the following versioning scheme:

edge-<two digit year>.<month>.<number within the month>

For example, edge-24.1.1 would be the first edge release of the first month of the year 2024.

Edge Releases Do Not Use Semantic Versioning

It’s probably obvious that the edge release channel does not use semantic versioning, but it’s worth reiterating that point. It’s extremely important that you read the release notes for any edge release you install, and that you provide feedback to the Linkerd team about your experiences.

Workloads, Pods, and Services

Linkerd is a service mesh that is designed around Kubernetes. This means that,
unlike many other service mesh options, you can use Linkerd without ever
interacting with any of its custom resource definitions. Linkerd uses
Kubernetes constructs like workloads, Pods, and services to manage the
majority of its routing and configuration options—so if you have something
that runs in Kubernetes today, you can add Linkerd to it and it should behave
the same, just with the benefits of Linkerd added to it. (See Figure 3-1.) There are some
exceptions to this that we’ll detail in Chapter 4.

[image: luar 0301]
Figure 3-1. Adding Linkerd should never break your application

TLS certificates

As we mentioned in Chapter 2, Linkerd relies on TLS
certificates in a particular hierarchy to provide identity within the mesh.
Specifically, Linkerd requires a single trust anchor certificate, which
signs an identity issuer certificate, which signs workload certificates
(one per workload in the mesh). This is shown in Figure 3-2.

[image: luar 0302]
Figure 3-2. The Linkerd trust hierarchy

Linkerd manages workload certificates for you, but you’ll need to work with a
certifying authority to manage the trust anchor and identity issuer
certificates. In this chapter, we’ll describe how this works with CLI
and Helm installs.

Linkerd Viz

We mentioned Linkerd Viz briefly in Chapter 2: it’s Linkerd’s open source dashboard component, providing an easy-to-use metrics collection and presentation system for Linkerd. It can collect useful metrics about all meshed workloads and present them in a simple web UI. The dashboard can provide the following details about your Linkerd environment:

	
Detailed application metrics, broken down by:

	
Namespace

	
Workload

	
Pod

	
Service

	
Information about connections between your workloads, including:

	
TLS status

	
Meshed status

	
Workload identity

	
Paths and headers in use (via Viz Tap)

	
Metrics breakdowns on a path-by-path basis

We’ll discuss using Linkerd Viz in more detail in Chapter 10, and we’ll discuss production concerns for Linkerd Viz in Chapter 14.

The Linkerd Viz Dashboard Is Unauthenticated

As discussed in Chapter 2, the Linkerd Viz dashboard doesn’t do user authentication. It’s up to you to be careful about how you make it available to users.

Linkerd Viz is considered part of the Linkerd core, but it must be installed separately since some Linkerd installations completely replace Viz with custom-built systems. In general, we strongly recommend installing Viz unless you have a strong reason not to. In the following instructions, we will include installing Viz.

Always Use Your Own Prometheus

By default, installing Linkerd Viz will install an internal Prometheus
instance. Do not use this Prometheus in production, as it does not have
persistent storage configured; instead, see the Linkerd documentation and Example 10-9 for information about using an external Prometheus instance.

Deploying Linkerd

To deploy Linkerd, you’ll need to have a Kubernetes cluster available. This guide will use a k3s cluster deployed locally using the k3d tool. If you’re already comfortable installing and deploying Linkerd, feel free to skip ahead to Chapter 4.

Required Tools

For the rest of this book, we’re going to assume you have the following tools available:

	
kubectl

	
Helm

	
The linkerd CLI

	
k3d

	
The step CLI

Provisioning a Kubernetes Cluster

Start by creating a k3d cluster:

$ k3d cluster create linkerd

k3d will provision your Kubernetes cluster and update your KUBECONFIG. You can test your connection to your new cluster by running:

$ kubectl get nodes

You should also validate that the cluster is configured correctly and that you have the appropriate permissions for the install by running a preinstall check via the Linkerd CLI:

$ linkerd check --pre

Installing Linkerd via the CLI

The Linkerd CLI makes it easy to get started with a Linkerd install. It will generate the Kubernetes manifests required to install Linkerd and allow you to easily apply them to your cluster.

The linkerd install Command and Certificates

When you install Linkerd from the CLI, you have the option of specifying
certificates for it to use. If you don’t, it will silently create certificates
for you, as shown in Figure 3-3. This makes
Linkerd very easy to deploy, but it causes some operational headaches when the
time comes to rotate certificates, because linkerd install does not save
the trust anchor’s private key—anywhere. We’ll talk about this in more
detail in Chapter 7.

[image: luar 0303]
Figure 3-3. The trust hierarchy created with the linkerd install command

Run the following commands to install Linkerd via the CLI:

$ linkerd install --crds | kubectl apply -f -

This will install the Linkerd CRDs in your cluster. As of Linkerd 2.12, installing Linkerd’s CRDs is done using a separate chart and requires its own command when running an install. Following the CRD install, you’ll need to continue the installation by installing the core Linkerd control plane:

$ linkerd install | kubectl apply -f -

With this complete, the Linkerd control plane will begin setting itself up in your cluster. You’ll soon have access to all the tools you need to run a minimal Linkerd service mesh. You can confirm the install has completed successfully by running:

$ linkerd check

Production Clusters Need Production Certificates

Again, if you don’t explicitly say otherwise, linkerd install will silently
create certificates for you. This is OK for a demo, but not for production.

After installing the core Linkerd control plane, you can install Linkerd Viz:

$ linkerd viz install | kubectl apply -f -

As with Linkerd itself, this will start the install and then immediately return. To wait for it to finish and confirm that installation was successful, run:

$ linkerd check

Always Use Your Own Prometheus

By default, installing Linkerd Viz will install an internal Prometheus
instance. Do not use this Prometheus in production, as it does not have
persistent storage configured; instead, see the Linkerd documentation and Example 10-9 for information about using an external Prometheus instance.

Installing Linkerd via Helm

The folks at Buoyant, the makers of Linkerd, recommend in their
production runbook guide that you
use Helm to install and manage Linkerd in production. Helm provides a well
tested, documented, and supported path for installing and upgrading Linkerd
(and in fact, the Linkerd CLI actually uses Helm templates under the hood to
generate its Kubernetes manifests).

Using the Helm-based install also requires you to think more about certificate
management up front, which simplifies the process of renewing your
certificates later. We’ll cover certificates in (much) more detail in
Chapter 7; for now, let’s walk through a simple Helm
installation with manually generated certificates.

Generate Linkerd certificates

The simplest way to install Linkerd with Helm is to manually generate the two certificates that every Linkerd installation requires: the trust anchor and the identity issuer. We’ll use the Smallstep CLI, step, to do this, as illustrated in Example 3-1.

Certificates and Security

We’re generating certificates here without giving any real thought to how to
safely manage the private keys. This is OK for a demo, but not for
production use. We’ll get into this more in Chapter 7.

Example 3-1. Creating certificates for Linkerd

Start by creating your root certificate, which Linkerd refers to
as the trust anchor certificate.
$ step certificate create root.linkerd.cluster.local ca.crt ca.key \
 --profile root-ca --no-password --insecure

Next, create the intermediary certificate. Linkerd refers to this
as the identity issuer certificate.
$ step certificate create identity.linkerd.cluster.local issuer.crt issuer.key \
 --profile intermediate-ca --not-after 8760h --no-password --insecure \
 --ca ca.crt --ca-key ca.key

After running these commands, you’ll have the trust hierarchy shown in
Figure 3-4. Your laptop will be holding both the
public and private keys for the trust anchor and the identity issuer, and the
identity issuer’s cert will be signed by the trust anchor. (There aren’t any
workload certs yet: Linkerd will create those when it’s installed in
the cluster.)

[image: luar 0304]
Figure 3-4. The trust hierarchy created with the step command

Keep the Keys!

Remember, in the real world, it’s very important to keep the private key
safe. Even for our more academic use here, keep it around—you’ll want it
when we talk about certificate rotation in Chapter 7.

The Linkerd docs cover creating certificates in
some detail. Please refer
to the latest version of the docs if you run into any difficulty.

Helm install

After generating certificates, you can install Linkerd with Helm using the commands in Example 3-2. Once
again, the official docs have the most up-to-date instructions; however,
it’s very important to understand what the --set-file arguments shown in
Example 3-2 do:

	
--set-file identityTrustAnchorsPEM tells Helm the file from which to copy
the trust anchor’s public key. This is the only key we need for the trust
anchor.

	
--set-file identity.issuers.tls.crtPEM and --set-file
identity​.issu⁠ers.tls.keyPEM tell Helm the files from which to copy the
identity issuer’s public and private keys, respectively. Both are required.

Example 3-2. Installing Linkerd with Helm

Add the Linkerd stable repo
$ helm repo add linkerd https://helm.linkerd.io/stable

Update your Helm repositories
$ helm repo update

Install the Linkerd CRDs
$ helm install linkerd-crds linkerd/linkerd-crds \
 -n linkerd --create-namespace

Install the Linkerd control plane
$ helm install linkerd-control-plane \
 -n linkerd \
 --set-file identityTrustAnchorsPEM=ca.crt \
 --set-file identity.issuer.tls.crtPEM=issuer.crt \
 --set-file identity.issuer.tls.keyPEM=issuer.key \
 linkerd/linkerd-control-plane

Ensure your install was successful
$ linkerd check

The linkerd check command will let you know the current state of Linkerd in your cluster. It’s useful for ensuring your install completed successfully.

Once helm install completes, the cluster will have copies of the keys
Linkerd needs to run, as shown in Figure 3-5. The
keys will, of course, still be present on your laptop, so be careful with
them!

Permissions Matter!

Note that the trust anchor’s private key is not present in the cluster, but the identity issuer’s private key is present in the cluster. This is required for Linkerd to work. In the real world, you’ll want to make sure that Linkerd itself is the only thing that can see that key. This is covered in more detail in
Chapter 7.

[image: luar 0305]
Figure 3-5. The trust hierarchy created after helm install

Finally, we can install Linkerd Viz using its Helm chart:

$ helm install linkerd-viz linkerd/linkerd-viz \
-n linkerd-viz --create-namespace

As before, we’ll monitor the installation to make sure that it succeeds:

$ linkerd check

Always Use Your Own Prometheus

By default, installing Linkerd Viz will install an internal Prometheus
instance. Do not use this Prometheus in production, as it does not have
persistent storage configured; instead, see the Linkerd documentation and Example 10-9 for information about using an external Prometheus instance.

Configuring Linkerd

Now that you’ve completed an install of Linkerd’s core control plane, we’re
going to pause and take a look at what options you have for configuring the
Linkerd control plane in your cluster. This is necessarily going to be a
summary of common configuration points for the control plane, not an
exhaustive list.

As of Linkerd 2.12, the control plane is managed and configured via the linkerd-control-plane Helm chart. The following settings provide important configuration points for Linkerd. The particular settings can be found by reviewing the current Helm chart values using the following command:

$ helm show values linkerd/linkerd-control-plane

We’ll talk about the general settings, and you’ll need to map them to the appropriate locations in your values file. See Chapter 14 for some examples of Linkerd Helm values files.

Cluster Networks

Linkerd doesn’t have a way to read your cluster network settings at install
time, so the linkerd-control-plane Helm chart assumes that your cluster is using
one of the common network ranges for its cluster network. If your
cluster’s IP addresses are not in one of the following ranges, you’ll need to
override the IP range at install time:

10.0.0.0/8, 100.64.0.0/10, 172.16.0.0/12, 192.168.0.0/16

Linkerd Control Plane Resources

The default install of Linkerd doesn’t set resource requests or limits. You should consider setting requests and limits for your control plane components to aid in scheduling Pods and ensuring Linkerd has the resources it needs to function. Be cautious: as of Linkerd 2.12 the Linkerd destination component has a fairly fixed memory footprint that scales with the number of endpoints in your cluster. If the memory limit you set is too low, you may find yourself in a loop of destination components being “out of memory killed,” or OOMKilled.

Opaque and Skip Ports

Opaque ports and skip ports are Linkerd names for ports to which special rules are applied. You’ll want to review the
relevant Linkerd docs for
the most up-to-date information on the topic. We’ll give a brief overview of
the concepts here; you’ll find many more details in
Chapter 4.

An opaque port in Linkerd is a port that should be treated as a generic TCP
connection. Linkerd will still use mTLS on opaque traffic, but it will not
perform protocol detection or any kind of protocol-specific logic, so the end
result will be similar to the way simple, connection-oriented network load
balancing works. A port should be marked as opaque at install time if you know
it will be part of the mesh and serving non-HTTP TCP traffic.

Remember, there is no protocol detection, and thus no request metrics
or per-request load balancing, on opaque ports.

This section is dedicated to discussing global, install-time Linkerd configuration values. Any opaque port set at install time will be applied globally to all workloads.

Default Opaque Ports

The following ports are the defaults configured at install time:

	
SMTP: 25 and 587

	
MySQL: 3306 and, when used with Galera, 4444. (Ports 4567 and 4568 might also be used by Galera, but they’re not opaque by default.)

	
PostgreSQL: 5432

	
Redis: 6379

	
Elasticsearch: 9300

	
Memcached: 11211

By contrast, a skip port is one that you instruct Linkerd to completely
ignore. Skipped traffic will completely bypass the proxy; the mesh will not
handle it at all. Notably, Linkerd cannot encrypt traffic over skip
ports.

Unlike opaque ports, you need to tell Linkerd whether skip ports refer to
inbound traffic, outbound traffic, or both.

Default Skip Ports

Ports 4567 and 4568 (Galera) are ignored by default in a standard Linkerd install.

Summary

You should now have a good sense of how to install Linkerd as well as an understanding of the major configuration points in Linkerd. You should also have a good grasp of the potential points of friction with installing Linkerd: specifically, generating certificates and handling non-HTTP traffic. While you can use either the Linkerd CLI or the Linkerd Helm charts to install Linkerd, we recommend that you default to using Helm.

Chapter 4. Adding Workloads to the Mesh

Getting Linkerd running in your cluster is a great first step. But it’s
pointless to run Linkerd with nothing else: to get actual value out of your
Linkerd cluster, you’ll need to get workloads running in your service mesh. In
this chapter, we’ll show you how to do exactly that.

Workloads Versus Services

We’ll talk about “workloads” a lot in this chapter—but sometimes we’ll also talk
about “services,” and sometimes “Services.” Unfortunately, these three things
all have slightly different meanings:

	Service

	
A Kubernetes resource that is widely used to control how
Kubernetes allocates DNS names and IP addresses for services (see Figure 4-1).

	Workload

	
A thing that actually does work on your behalf. A workload receives
requests over the network and executes code to take actions. In
Kubernetes, it’s usually one or more Pods (to provide the computation),
often managed by a Deployment or DaemonSet resource, plus one or more
Services (to manage the names and IP addresses), as illustrated in Figure 4-1.

	service

	
A less formal term that could refer to either a Service or a
workload, depending on context. This lack of precision shows just one of
many cases where Kubernetes terminology is very much more confusing than we
would like it to be.

[image: luar 0401]
Figure 4-1. The workload as distinct from the Service

As an application developer, you can usually just say “service” and trust that
people will be fine with the ambiguity. Unfortunately, we often need to be more
precise when talking about service meshes—hence the
discussion of workloads here rather than services.

What Does It Mean to Add a Workload to the Mesh?

“Adding a workload to the mesh” really means “adding the Linkerd sidecar to
each of your workload’s Pods,” as shown in Figure 4-2.

Ultimately, this means changing the Pod’s definition to include the sidecar
container. While you could do this by manually editing the YAML that defines
the Pod, it’s much easier and safer to let Linkerd do the heavy lifting
instead.

Linkerd includes a Kubernetes admission controller called the
linkerd-proxy-injector. Its job, unsurprisingly, is to inject Linkerd
proxies into workload Pods. Of course, it doesn’t do this blindly; instead, it
looks for Kubernetes annotations that tell it which Pods need to be injected, as shown in Figure 4-3.

[image: luar 0402]
Figure 4-2. Adding a workload to the mesh

[image: luar 0403]
Figure 4-3. The proxy injector

Injecting Individual Workloads

The most common way to handle injection is to add the linkerd.io/inject:
enabled annotation directly to the Pod itself, typically by adding the
annotation to the Pod template in a Deployment, DaemonSet, etc. Whenever
linkerd-proxy-injector sees a new Pod with this annotation, it will inject
the proxy sidecar into the Pod for you.

It’s worth pointing out that the value of the annotation is important:
enabled means to do a normal sidecar injection. We’ll look at other
values shortly.

All Pods Are Created Equal

It doesn’t matter what kind of resource is being used to create the Pod.
Deployments, DaemonSets, hand-tooled ReplicaSets, Argo Rollouts resources—all
of them create their Pods exactly the same way. What the Linkerd injector
notices is that a new Pod exists, not what caused it to be created.

Injecting All Workloads in a Namespace

You can add the linkerd.io/inject annotation to a Namespace, rather
than to a Pod. Once that’s done, every new Pod created in that namespace will
be injected (and, again, it does not matter what causes the new Pod to be
created).

This can be very useful for situations where automation is creating Pods, but
it’s difficult or error-prone to modify the annotations on the Pods
themselves. For example, some ingress controllers will re-create Deployments
every time you change a resource; rather than mess about with laboriously
modifying the Pod template used by the ingress controller (if it’s even
possible), you can just annotate the Namespace in which the Deployments will
be created.

linkerd.io/inject Values

The value of the linkerd.io/inject annotation does matter—it’s not just a
matter of having a non-empty string there. There are three specific values that are meaningful:

	linkerd.io/inject: enabled

	
The most common case:
linkerd-proxy-injector will add a proxy container to the Pod and tell the
proxy to run in its “normal” mode.

	linkerd.io/inject: ingress

	
linkerd-proxy-injector will add a proxy container to the Pod, but the
proxy will run in “ingress” mode (which we’ll discuss in Chapter 5).

	linkerd.io/inject: disabled

	
This explicitly tells linkerd-proxy-injector to
not add the proxy sidecar, even if there’s a Namespace annotation that would otherwise say to add the sidecar.

We’ll discuss ingress mode more in Chapter 5: it’s a workaround for
ingress controllers that only know how to route requests directly to workload
endpoints. In most cases, you should use linkerd.io/inject: enabled to get
“normal” mode.

Why Might You Decide Not to Add a Workload
to the Mesh?

In general:

	
You always want to add your application workloads to the mesh.

	
You never want to add cluster infrastructure to the mesh.

So, for example, things in the kube-system namespace are never injected. All
of these Pods are designed to protect themselves no matter what else is going
on, and some of them need to be sure that nothing is between them and the
network layer, so you shouldn’t inject them.

Likewise, a Kubernetes conversion webhook (as shown in the application-code
namespace in Figure 4-3) generally shouldn’t be in the mesh. The webhook mechanism
itself already makes specific demands around TLS, and the mesh won’t help with
that. (It probably won’t hurt, but there’s really no point.) Another good
example here is CNI implementations: these need direct access to the network
layer and shouldn’t be injected.

On the other hand, the workloads that are part of your application running in
the cluster should always be injected into the mesh. All of these guidelines are
shown in Figure 4-4.

[image: luar 0404]
Figure 4-4. Inject the application, not the infrastructure

Other Proxy Configuration Options

Although the basic linkerd.io/inject annotation is the only proxy
configuration option you must provide, there are actually quite a few other
things you can configure about the proxy. The full list can be found in the
Linkerd Proxy Configuration documentation, but two areas very
much worth learning about from the start are protocol detection and
Kubernetes resource limits.

Protocol Detection

As we discussed in Chapter 1, Linkerd puts a lot of effort
into operational simplicity; whenever possible, Linkerd tries to make sure
things just work when you bring your application into the mesh. Protocol
detection is a critical part of this, because Linkerd has to know the protocol
being used over a connection to correctly manage the connection, as shown in Figure 4-5.

[image: luar 0405]
Figure 4-5. Protocol detection

There are several reasons that Linkerd (or any other mesh) needs to know the
protocol in use over the wire. We’ll touch on just a few of them:

	Observability

	
Linkerd can’t provide proper metrics without understanding
the flow of the protocol. Identifying the beginning and end of a request is
crucial to measuring request rate and latency. Reading the status of a request
is critical to measuring the success rate.

	Reliability

	
Any reliability feature beyond the most basic requires
understanding the protocol in flight. Consider load balancing, for example: if
Linkerd doesn’t know the protocol, it can only do connection-based load
balancing, where an incoming TCP connection is assigned to a specific workload
Pod.

However, connection-based load balancing doesn’t work very well for protocols
like HTTP/2 and gRPC. In these protocols, a single long-lived connection can
carry many requests, with multiple requests active at the same time. Linkerd
can dramatically improve reliability and performance by assigning individual
requests to workload Pods, rather than fixing an entire connection to a Pod.
(It’s a fun Linkerd fact that it does this automatically, with zero
configuration; just install Linkerd, and you get this for free.)

	Security

	
If a workload makes a TLS connection to another workload,
Linkerd shouldn’t try to reencrypt it. It also shouldn’t try to do anything
fancy with load balancing, since it won’t be able to see anything inside the
connection. (This implies that you’ll get the best results with Linkerd by
having your workloads not use TLS when connecting to each other: let Linkerd do mTLS
for you!)

When Protocol Detection Goes Wrong

Automatic protocol detection has one major limitation: it can only work for
protocols where the entity that makes the connection is also the first one to
send data (client-speaks-first protocols). It will fail for protocols where
the entity that receives the connection is the first to send data
(server-speaks-first protocols).

The reason for this limitation is that until Linkerd knows the protocol, it
can’t make reasonable decisions about how to do load balancing, so it can’t
decide what server to connect to, so it can’t find out what the server will
say! Every proxy has this frustratingly circular issue.

In the cloud native world, many—perhaps most?—common protocols are,
happily, client-speaks-first protocols; for example, HTTP, gRPC, and TLS
itself are all client-speaks-first. Unfortunately, there are some important
server-speaks-first protocols out there: SMTP, MySQL, and Redis are all
examples.

If Linkerd cannot detect the protocol, it will assume it’s a raw TCP
connection, simply because that’s the least common denominator that will
always function. The problem is that for server-speaks-first protocols,
Linkerd will wait 10 seconds before assuming that it won’t be able to detect
the protocol, and that 10-second delay is obviously not what you want. To
prevent that, you need to tell Linkerd that it should either skip the
connection entirely or treat it as opaque.

Opaque Ports Versus Skip Ports

When you tell Linkerd to skip a connection, you’re telling it to have
absolutely nothing to do with that connection. In fact, the Linkerd proxies
don’t touch the connection at all: the packets flow straight from workload to
workload.

This means that Linkerd can’t do mTLS, load balancing, metrics collection, or
anything. The connection effectively happens outside the mesh entirely.

An opaque connection, on the other hand, does pass through the Linkerd
proxies, which means that it is carried over mTLS. It’s still encrypted and
Linkerd still enforces any policy that has been configured, but you’ll only
get per-connection metrics and load balancing (because Linkerd knows that it
can’t see into the stream to look at individual requests).

This distinction is shown in Figure 4-6.

[image: luar 0406]
Figure 4-6. Opaque ports versus skip ports

This all implies that if you need to use server-speaks-first protocols, it’s
better to mark them as opaque, rather than skipping them entirely. Skipping
should only be necessary when the destination of the traffic isn’t part of
your mesh. Since opaque connections still rely on a Linkerd proxy to do
mTLS, they can’t work if there’s no proxy there to receive the connection!

Configuring Protocol Detection

There are two ways to tell Linkerd about protocols. You can use a Server
resource, which we’ll cover when we talk policy in Chapter 8, or
you can use the following annotations to mark specific ports as opaque or skipped:

	config.linkerd.io/opaque-ports

	
Connections to or from these ports will always be treated as opaque.

	config.linkerd.io/skip-inbound-ports

	
Connections coming into this workload on these ports will always be skipped.

	config.linkerd.io/skip-outbound-ports

	
Connections leaving this workload on these ports will always be skipped.

All of these take comma-separated lists of port numbers or port ranges, so
all of the following are legal:

	config.linkerd.io/opaque-ports: 25

	
This will treat only port 25 as opaque.

	config.linkerd.io/skip-inbound-ports: 3300,9900

	
This will skip connections coming in on port 3300 or 9900.

	config.linkerd.io/skip-inbound-ports: 8000-9000

	
This will skip connections coming in on any port between 8000 and 9000, inclusive.

	config.linkerd.io/skip-outbound-ports: 25,587,8000-9000

	
This will skip connections going out on port 25, port 587, or any port between 8000 and 9000, inclusive.

There’s also a config.linkerd.io/skip-subnets option, which skips any connection to
or from any listed subnets. Its argument is a comma-separated list of Classless Inter-Domain Routing (CIDR)
ranges—for example, config.linkerd.io/skip-subnets: 10.0.0.0/8,192.168.1.0/24.

Default Opaque Ports

As of Linkerd 2.12, several ports are marked as opaque by default (see the list in “Default Opaque Ports” for details).

The default ports are meant to allow various server-speaks-first protocols, such as MySQL and SMTP, to work seamlessly with Linkerd. If you’re using these ports for client-speaks-first protocols, you’ll need to use a
Server resource to override the port default (or—better—just choose a
different port for your client-speaks-first protocol!).

Kubernetes Resource Limits

Compared to protocol detection, Kubernetes resource limits are much more
straightforward. There’s a simple set of annotations to set that will allow you to specify resource requests and limits, as shown in Table 4-1.

Table 4-1. Linkerd annotations for resource requests and limits

	Annotation
	Effect

	config.linkerd.io/proxy-cpu-limit

	Maximum amount of CPU units that the proxy sidecar can use

	config.linkerd.io/proxy-cpu-request

	Amount of CPU units that the proxy sidecar requests

	config.linkerd.io/proxy-ephemeral-storage-limit

	Used to override the limitEphemeralStorage config

	config.linkerd.io/proxy-ephemeral-storage-request

	Used to override the requestEphemeralStorage config

	config.linkerd.io/proxy-memory-limit

	Maximum amount of memory that the proxy sidecar can use

	config.linkerd.io/proxy-memory-request

	Amount of memory that the proxy sidecar requests

Summary

So there you have it: the start-to-finish guide for getting your workloads to
be an effective part of the Linkerd mesh. Hopefully you now have a good
understanding of how to make everything work, and of the gotchas along the way
(like server-speaks-first protocols). Next up is getting Linkerd and ingress
controllers to play nicely together.

Chapter 5. Ingress and Linkerd

Whenever you work with Kubernetes, you always have to find a way for your
users outside your cluster to be able to make requests of (some of) the
services running inside your cluster. This is the ingress problem (see Figure 5-1): the
cluster wants to protect everything inside from the big scary Internet, but
that’s where your legitimate users are.

[image: luar 0501]
Figure 5-1. The ingress problem

There’s an entire class of applications out there, unsurprisingly called
ingress controllers, whose sole purpose is solving the ingress problem.
Linkerd does not include an ingress controller; instead, it allows you to mesh
whatever ingress controller you like, as long as certain rules are followed.
In this chapter, you’ll learn how to make Linkerd and the ingress controller
of your choice play nicely with each other.

There are a lot of different ingress controllers, which approach the ingress
problem in fascinatingly different ways. However, there are some common threads
across all of them, shown in Figure 5-2.

[image: luar 0502]
Figure 5-2. Ingress controller high-level architecture

These common threads include:

	
They are all designed to live right at the edge of a cluster (usually behind
a Kubernetes Service of type LoadBalancer), exposed directly to the Internet
so that their clients can reach them. Security is always a major concern for
an ingress controller.

	
They always have a way to control which requests from outside get routed to
which services inside. This is another critical security issue: installing
an ingress controller cannot mean that all the services in your cluster are
open to the Internet.

All the popular ingress controllers support sophisticated routing controls at
OSI layer 7, typically focusing on HTTP and gRPC. Many also support more limited control
for routing OSI layer 4 connections:

	
At OSI layer 7 (the application layer), the ingress controller might have capabilities like “route an
HTTP request where the hostname is foo.example.com and the path starts
with /bar/ to the Service named bar-service.”

	
At OSI layer 4 (the transport layer), its capabilities are more likely to be along the lines of “route TCP
connections arriving on port 1234 to the Service named bar-service.”

Depending on which ingress controller is in use, the actual way the user
configures routing can vary significantly.

	
Ingress controllers can always terminate and originate TLS connections
(again, mostly focusing on HTTPS) to handle security at the edge of
the cluster. This doesn’t extend Linkerd’s mTLS out to the ingress
controller’s clients; rather, it creates two separate domains in which TLS is
operating and requires the ingress controller to translate between them, as shown in Figure 5-3.

[image: luar 0503]
Figure 5-3. Ingress controllers and TLS

Keeping the two TLS worlds separate usually ends up making sense because the
ingress controller needs to be presenting users with certificates that match
what the user is expecting, but when its proxy interacts with Linkerd, it
needs to present a properly crafted workload identity. These are not the same
thing and shouldn’t be conflated. Allowing the ingress controller to manage
TLS with its client while allowing Linkerd to manage mTLS within the cluster
is a powerful combination.

	
Finally, many ingress controllers offer capabilities like end user
authentication, circuit breaking, rate limiting, etc. These ingress
controllers may also be called API gateways. An example of how one might
handle end user authentication is shown in Figure 5-4.

[image: luar 0504]
Figure 5-4. An API gateway providing end user authentication

API gateways have enormous latitude over what exactly happens to a user
request, allowing very sophisticated capabilities indeed—though this
is obviously out of scope for this book.

Ingress Controllers with Linkerd

Linkerd doesn’t have a lot of constraints in terms of which ingress controller
you use; almost any of them will work, usually without much trouble. From
Linkerd’s point of view, the ingress is just another meshed workload, and from
the ingress controller’s point of view, Linkerd is mostly invisible.

Ingress Controllers in Other Meshes

Some meshes take a very different approach here: they ship with an ingress
controller that is tightly integrated with the mesh. Linkerd takes a very
ingress-agnostic approach because it tends to increase flexibility, lessen
operational complexity, and make it easier to adopt the ingress controller and
the service mesh at different times.

The Ingress Controller Is Just Another Meshed Workload

From Linkerd’s point of view, the ingress controller is mostly just a workload
in the mesh, as shown in Figure 5-5. The fact that clients outside the cluster can talk to the ingress
controller is really not something that Linkerd worries about: you still need
to inject a sidecar into the ingress controller, and all the usual Linkerd
features like mTLS and metrics just work.

[image: luar 0505]
Figure 5-5. The ingress controller is just another workload

The single way that the ingress controller will almost always need special
handling is that you’ll almost always want to tell Linkerd to skip the ingress
controller’s incoming ports. This is because the ingress controller may need
access to the client’s IP address for routing or authorization purposes, but
if Linkerd is handling the connection, then the only IP address the ingress
controller will ever see is that of the Linkerd proxy. See Figure 5-6.

[image: luar 0506]
Figure 5-6. Skipping incoming traffic for the ingress controller

Ingress Controllers Are Designed for the Edge

Remember that part of the job of an ingress controller is to sit at the edge
of the cluster, so it already has to be designed to safely handle connections
directly from the Internet. Telling Linkerd not to handle the incoming
connections for the ingress controller shouldn’t be any problem from a
security point of view.

You’ll use the config.linkerd.io/skip-inbound-ports annotation that we covered in
Chapter 4 to skip the incoming ports. Pay attention to the
port numbers—you need to skip the port(s) on which the ingress controller
Pod is actually listening, which will often not be the port that the client
uses! For example, if you associate your ingress controller with a Service
like this one:

apiVersion: v1
kind: Service
metadata:
 name: myservice
spec:
 type: LoadBalancer
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080

You’ll need to skip inbound port 8080; trying to skip inbound port 80
would have no effect whatsoever. So, the correct annotation would be:

config.linkerd.io/skip-inbound-ports: 8080

Linkerd Is (Mostly) Invisible

From the point of view of the ingress controller, Linkerd is basically
invisible. This is by design: adding Linkerd to a running application is meant
to just work, after all! But there are two things to be aware of to make sure
that everything is working as smoothly as possible: the ingress controller
should use cleartext within the cluster, and it should route to Services
rather than endpoints.

Use Cleartext Within the Cluster

We know: this is probably the only time in years you’ve seen anyone recommend
using cleartext instead of TLS. To be clear, we’re not talking about the
connection from the client to the ingress controller! (Definitely use HTTPS
for that.) Here, we’re talking about the connections made from the ingress
controller to meshed workloads in the cluster, as shown in
Figure 5-7.

[image: luar 0507]
Figure 5-7. Let Linkerd handle mTLS inside the cluster

For those connections, you should use cleartext. If the ingress controller
originates TLS to the workload, Linkerd can’t do anything more than
per-connection proxying; you miss out on per-request load balancing, proper
request metrics, and a lot of other really useful things that Linkerd brings
to the table. Using cleartext connections allows all the advanced
functionality and is still safe because Linkerd’s mTLS will protect the
connection.

Route to Services, Not Endpoints

This is an area where Kubernetes nomenclature and concepts are particularly
challenging. A Kubernetes Service actually has three entirely distinct parts,
and all three are relevant for this point:

	
The Service causes a name to appear in the cluster’s DNS service.

	
That DNS name is associated with a single IP address for the Service itself.

	
The Service is also associated with a set of Pods, and each Pod has an IP
address that is different from every other Pod’s and from the Service’s IP
address.

Collectively, the IP addresses of the Pods are called the endpoints of the
Service. (Kubernetes also has resources called Endpoints and EndpointSlices,
but we’re just talking about the set of Pod IP addresses for the moment.)

These parts are shown in Figure 5-8. Again, all three are
relevant when considering service mesh routing.

[image: luar 0508]
Figure 5-8. The three distinct parts of a Kubernetes Service

It matters which IP address the ingress controller uses for its connections because
normally Linkerd will only load balance connections made to the Service’s IP
address, not connections made directly to an endpoint’s IP address, as shown
in Figure 5-9.

[image: luar 0509]
Figure 5-9. How Linkerd chooses where to route

Linkerd handles routing this way to maximize choice for the application
designer: it’s easy to have the ingress controller simply hand off all
load balancing decisions to Linkerd (by routing to the Service IP), and it’s
still possible to have the ingress controller do its own load balancing (by
routing directly to endpoint IPs).

In most common cases, having the ingress controller route to the Service IP is
the simplest way to take full advantage of Linkerd.

Gateway API and Service Routing

Gateway API introduces a wrinkle into this recommendation: it will need to
support cloud gateway controllers that aren’t really running in the cluster
and therefore can’t have a Linkerd proxy running next to them. At the same
time, these cloud gateway controllers can be extremely latency-sensitive, so
they’re less likely to support Service routing.

This is an area of active work within the GAMMA initiative and Gateway API as
a whole.

Depending on which ingress controller you’re using, you might need to
specifically configure the ingress controller to do this—or you might find
that it is not possible to configure your ingress controller to route to the
Service IP. For these ingress controllers, you’ll need to use Linkerd’s
ingress mode.

Ingress Mode

When ingress mode is active and Linkerd receives a request to an endpoint IP
with the l5d-dst-override header set to a fully qualified Service DNS name,
Linkerd will route the request as if it had gone to the Service IP address for
the service named by the l5d-dst-override header, as shown in
Figure 5-10.

For example, given a Service my-service in namespace my-ns, if you send a
request directly to one of the endpoint IPs for my-service but set its
l5d-dst-override header as shown here, then Linkerd
will treat the connection as if it had been made to the Service IP for
my-service:

l5d-dst-override: my-service.my-ns.svc.cluster.local

[image: luar 0510]
Figure 5-10. Linkerd ingress mode routing

The Ingress Controller Must Inject l5d-dst-override

To effectively use ingress mode, the ingress controller must inject the
l5d-dst-override header into every request. An ingress controller that cannot
inject this header is not compatible with Linkerd ingress mode. Linkerd cannot
create the l5d-dst-override header itself, because in general, it’s not
possible to determine the name of a Service from one of its endpoint IP
addresses. This is because a given Pod can be part of multiple Services.

If possible, it’s usually better to configure the ingress controller to route
to Services than to use ingress mode.

To use ingress mode, inject the proxy with:

linkerd.io/inject: ingress

rather than:

linkerd.io/inject: enabled

Specific Ingress Controller Examples

Here are some specific examples of configuring different ingress controllers
for use with Linkerd. This is not an exhaustive list by any means—it’s
just a convenient set to show a fairly wide range of possibilities. The
Linkerd ingress documentation has more on this topic.

For our examples here, we’ll take a look at Emissary-ingress, NGINX, and Envoy
Gateway.

Emissary-ingress

Emissary-ingress is an open source, Kubernetes-native API gateway that’s
been around since 2017. It’s built on the Envoy proxy, focuses on operational
simplicity and self-service configuration, and has been a CNCF incubating
project since 2021. It defines its own native configuration CRDs but can also
use Ingress resources or Gateway API. (Full disclosure: Flynn is
the original author of Emissary.)

There’s really not too much to dig into as far as setting up Emissary with
Linkerd; it basically just works. Emissary defaults to routing to Services, so
really the only thing to consider when adding Emissary to the Linkerd mesh is
to skip Emissary’s incoming ports if you need Emissary to know client IP
addresses. And you’ll want to make sure that Emissary isn’t originating TLS to
the workloads.

NGINX

NGINX is an open source API gateway and web server that was around long before Kubernetes
came along. Though it’s not a CNCF project itself, it served as the core of
the ingress-nginx Kubernetes ingress controller, which was one of the first
ingress controllers using the Ingress resource, and it has been sufficiently
popular for long enough that people generally mean ingress-nginx when they
talk about running NGINX for Kubernetes.

By default, ingress-nginx will route to endpoint IPs, not Service IPs. To
tell it to route to Service IPs instead, you’ll need to include an
ingress-nginx annotation on your Ingress resources:

nginx.ingress.kubernetes.io/service-upstream: "true"

Installing and meshing ingress-nginx after that should be painless. Remember
to look at skipping incoming ports, too!

Envoy Gateway

As of this writing, Envoy Gateway has recently reached version 1.0. It provides an interesting opportunity to explore using Gateway API to manage both the ingress and the mesh in a Linkerd cluster.

Gateway API has the interesting characteristic that, by design, the user doesn’t directly install the Pods that handle data (the data plane). Instead, the user installs a Gateway API control plane that understands how to watch Gateway resources. Then, when the user creates the Gateway, the Gateway API control plane creates the data plane Pods.

Envoy Gateway, as a Gateway API control plane, interprets this design characteristic to mean that whenever it sees a change to its Gateway resource, it actually deletes and re-creates the data plane Pods. This makes it a touch challenging to manage injecting the Envoy Gateway data plane into the mesh! The most effective way to handle this is to apply the linkerd.io/inject annotation to the envoy-gateway-system namespace, which is where the data plane Deployment will be created.

Also, Envoy Gateway always routes to endpoint IP addresses in version 1.0. Until this is resolved in a future release of Envoy Gateway, it limits Linkerd’s ability to do advanced routing when using Envoy Gateway. (It’s possible to mesh Envoy Gateway in ingress mode and then configure HTTPRoutes to inject the l5d-dst-override header, but it’s a bit manual at present.)

Since Linkerd always gets to manage security though (including encryption and policy), Envoy Gateway with Linkerd is still a practical and interesting combination. Just pay attention to the incoming ports, as with the other ingress controllers!

Summary

One of Linkerd’s strengths is its ability to work with a wide variety of
ingress controllers. As long as a given ingress controller can accept the
Linkerd sidecar and route to Services, it should work seamlessly with Linkerd.
This leaves you free to choose whatever ingress controller works well for your
team and your application and be confident that it’ll get along with Linkerd.

Chapter 6. The Linkerd CLI

The Linkerd command line interface (CLI) is a useful tool for
interacting with the Linkerd control plane. The CLI can help you check on the
health of a Linkerd instance, view details about proxies and certificates,
troubleshoot aberrant behavior, and view policy. It is the recommended way to
directly interface with Linkerd. It handles all the major tasks you’ll need to
work with your Linkerd installs and provides important tools for validating
and examining Linkerd.

In this chapter, we’ll cover some of the most useful things the CLI can do
and illustrate how to take best advantage of it. The CLI is, of course,
constantly evolving as new Linkerd releases come out, so it’s always important
to keep an eye on the official
documentation.

Installing the CLI

The CLI is versioned along with the rest of Linkerd, so when you install the CLI, you’ll start by choosing which release channel to use.

To install from the stable channel, you’ll refer to the vendor instructions (such as those for Buoyant Enterprise for Linkerd).

To install completely open source Linkerd from the edge channel, you’ll refer to the Linkerd quickstart. At the time of this writing, that boils
down to:

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install-edge | sh

In either case, once you install the CLI you’ll need to add it to your PATH in the
appropriate manner for your shell. For example, if you use bash you can
alter the PATH variable directly:

$ export PATH=$HOME/.linkerd2/bin:$PATH

Updating the CLI

To update the CLI, just rerun the installation command. Over time, you’ll end
up with multiple versions stored locally, and you can choose among them.

Installing a Specific Version

Normally, the Linkerd CLI installer (for either channel) will install the most recent version of
the CLI. You can force it to install a specific version by setting the

LINKERD2_VERSION environment variable when you run the install script. For example, using the edge channel:

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install-edge \
 | LINKERD2_VERSION="stable-2.13.12" sh

Set LINKERD2_VERSION for sh, Not curl

Pay attention to where the LINKERD2_VERSION environment variable is set
in the preceding command: it needs to be set for the sh command executing the script that
curl has downloaded, not for the curl command itself. Setting the
environment variable for curl won’t do anything.

Alternate Ways to Install

If you’re on a Mac, Homebrew is a simple way to install the
CLI: just brew install linkerd. You can also download the CLI directly from
the Linkerd releases page.

Using the CLI

The CLI works broadly like any other Go CLI, such as kubectl:

$ linkerd command [options]

The command tells the CLI what exactly you want to do; the options are
optional arguments to the specific command. You can always use the --help
option to get help. For instance, linkerd --help will tell you what
commands are available:

$ linkerd --help

linkerd manages the Linkerd service mesh.

Usage:
 linkerd [command]

Available Commands:
 authz List authorizations for a resource
 check Check the Linkerd installation for potential problems
 completion Output shell completion code for the specified shell (bash, zsh
 or fish)
 diagnostics Commands used to diagnose Linkerd components
 help Help about any command
 identity Display the certificate(s) of one or more selected pod(s)
 inject Add the Linkerd proxy to a Kubernetes config
 install Output Kubernetes configs to install Linkerd
 install-cni Output Kubernetes configs to install Linkerd CNI
 jaeger jaeger manages the jaeger extension of Linkerd service mesh
 multicluster Manages the multicluster setup for Linkerd
 profile Output service profile config for Kubernetes
 prune Output extraneous Kubernetes resources in the linkerd control
 plane
 uninject Remove the Linkerd proxy from a Kubernetes config
 uninstall Output Kubernetes resources to uninstall Linkerd control plane
 upgrade Output Kubernetes configs to upgrade an existing Linkerd control
 plane
 version Print the client and server version information
 viz viz manages the linkerd-viz extension of Linkerd service mesh

Flags:
 --api-addr string Override kubeconfig and communicate directly
 with the control plane at host:port (mostly
 for testing)
 --as string Username to impersonate for Kubernetes
 operations
 --as-group stringArray Group to impersonate for Kubernetes
 operations
 --cni-namespace string Namespace in which the Linkerd CNI plugin is
 installed (default "linkerd-cni")
 --context string Name of the kubeconfig context to use
 -h, --help help for linkerd
 --kubeconfig string Path to the kubeconfig file to use for CLI
 requests
 -L, --linkerd-namespace string Namespace in which Linkerd is installed
 ($LINKERD_NAMESPACE) (default "linkerd")
 --verbose Turn on debug logging

Use "linkerd [command] --help" for more information about a command.

As this output shows, you can also get help on specific commands. For
example, linkerd check --help will get help for the check command, as
shown here:

$ linkerd check --help

Check the Linkerd installation for potential problems.

The check command will perform a series of checks to validate that the linkerd
CLI and control plane are configured correctly. If the command encounters a
failure it will print additional information about the failure and exit with a
non-zero exit code.

Usage:
 linkerd check [flags]

Examples:
 # Check that the Linkerd control plane is up and running
 linkerd check

 # Check that the Linkerd control plane can be installed in the "test"
 # namespace
 linkerd check --pre --linkerd-namespace test

 # Check that the Linkerd data plane proxies in the "app" namespace are up and
 # running
 linkerd check --proxy --namespace app

Flags:
 --cli-version-override string Used to override the version of the cli
 (mostly for testing)
 --crds Only run checks which determine if the
 Linkerd CRDs have been installed
 --expected-version string Overrides the version used when checking
 if Linkerd is running the latest version
 (mostly for testing)
 -h, --help help for check
 --linkerd-cni-enabled When running pre-installation checks
 (--pre), assume the linkerd-cni plugin is
 already installed, and a NET_ADMIN check
 is not needed
 -n, --namespace string Namespace to use for --proxy checks
 (default: all namespaces)
 -o, --output string Output format. One of: table, json, short
 (default "table")
 --pre Only run pre-installation checks, to
 determine if the control plane can be
 installed
 --proxy Only run data-plane checks, to determine
 if the data plane is healthy
 --wait duration Maximum allowed time for all tests to pass
 (default 5m0s)

Global Flags:
 --api-addr string Override kubeconfig and communicate directly
 with the control plane at host:port (mostly
 for testing)
 --as string Username to impersonate for Kubernetes
 operations
 --as-group stringArray Group to impersonate for Kubernetes
 operations
 --cni-namespace string Namespace in which the Linkerd CNI plugin is
 installed (default "linkerd-cni")
 --context string Name of the kubeconfig context to use
 --kubeconfig string Path to the kubeconfig file to use for CLI
 requests
 -L, --linkerd-namespace string Namespace in which Linkerd is installed
 ($LINKERD_NAMESPACE) (default "linkerd")
 --verbose Turn on debug logging

Selected Commands

The linkerd CLI supports a lot of commands. The
official documentation, as always, has
the full set; in this chapter, we’re going to summarize some of the most
broadly useful commands. These are the ones you should always have close to hand.

linkerd version

The first command to know about is linkerd version, which simply reports the
running version of the linkerd CLI and (if possible) of the Linkerd control plane:

$ linkerd version
Client version: stable-2.14.6
Server version: stable-2.14.6

If you don’t have Linkerd running in your cluster, linkerd version will show
unavailable for the server version.

If linkerd version can’t talk to your cluster, it will treat that as an error. You can use
the --client option to just check the version of the CLI itself, without even trying to talk to the cluster, though:

$ linkerd version --client
Client version: stable-2.14.6

CLI Versions Versus Control Plane Versions

It’s very important to remember that the CLI version is independent of the
control plane version. Some CLI commands are quite complex and do a lot of
subtle manipulations, so it’s crucial to make sure that your CLI
version matches your control plane version. A difference of one major version
is OK, but more than one is not supported.

linkerd check

The linkerd check command gives an at-a-glance view of the health of Linkerd
in your cluster. It will test for many known failure conditions and allow you
to run extension-specific health checks. This deceptively simple command
actually offers a lot of powerful tools for validating and checking the
current state of your mesh.

The simplest—and most complete—way to use linkerd check is to run it
with no arguments:

$ linkerd check

This will run a default set of checks that are both reasonably exhaustive and finish in a reasonable amount of time, including (in addition to quite a few other things):

	
Making sure Linkerd is correctly installed in the default namespace

	
Checking that Linkerd’s certificates are valid

	
Running checks for all installed extensions

	
Double-checking necessary permissions

Running this command will give you a lot of
insight into the current state of Linkerd in your cluster, and in fact if you
need to file a bug report against Linkerd, you will always be asked to
include the output of linkerd check.

linkerd check --pre

The precheck option runs a set of checks to make
sure that your Kubernetes environment is ready to have Linkerd installed:

$ linkerd check --pre

This is the only use of linkerd check that does not require Linkerd to already
be installed. The precheck makes sure both that your cluster meets the minimum technical
requirements to run Linkerd and that you have appropriate permissions to
perform a core Linkerd install. It is a useful part of preparing to install
Linkerd on a new cluster.

Precheck and the CNI Plugin

If you plan on running Linkerd with the CNI plugin installed, you’ll need to
run linkerd check --pre --linkerd-cni-enabled so that linkerd check
doesn’t try to check for the NET_ADMIN capability.

linkerd check --proxy

You can also tell linkerd check to specifically check the data plane:

$ linkerd check --proxy

The proxy check runs many—though not all—of the checks performed by the
basic linkerd check command. However, it also runs extra checks specific to
the data plane, such as verifying that Linkerd proxies are running.

Linkerd extension checks

Each installed Linkerd extension has its own specific set of checks it will
run during linkerd check. If needed, you can also run only the checks for
a specific extension with linkerd extension check. For example,
this is how you’d run only the checks for the Linkerd Viz extension:

$ linkerd viz check

Why Limit Checks?

Remember that linkerd check with no arguments will run the checks for all
installed extensions. Limiting checks to a single extension is primarily
helpful to reduce the amount of time that linkerd check takes to run.

Additional options for linkerd check

The linkerd check command obeys all the global CLI overrides, like
changing the namespace in which you have Linkerd installed (--namespace) or
modifying your KUBECONFIG (--kubeconfig) or Kubernetes context
(--context). Additionally:

	
--output allows you to specify the output type, which is useful if you want to
override the default table output. Options include json, basic, short, and table.
Outputting JSON can be particularly helpful if you intend to consume the
check data programmatically.

	
--wait overrides the amount of time the checks will wait in the event
something isn’t right. The default value is 5 minutes, which can be unnecessarily long in many
cases.

linkerd inject

The linkerd inject command reads Kubernetes resources and outputs new
versions that have been modified to add the Linkerd proxy container as
appropriate. The linkerd inject command:

	
Reads resources from its standard input, from local files, or from an
HTTPS URL

	
Can operate on multiple resources at once

	
Knows to modify only Pods and leave other kinds of resources alone

	
Allows you to configure the proxies as well

	
Outputs the modified resources on its standard output, leaving the task of actually
applying them to you

That last point is worth repeating: linkerd inject will never modify any of
its sources directly. Instead, it outputs the modified Kubernetes resources
so that you can apply them yourself, include them in a Git repo, or do whatever
else is appropriate for your environment. This “output, don’t overwrite” idiom
is common across the entire linkerd CLI.

Using linkerd inject can be as simple as:

$ linkerd inject https://url.to/yml | kubectl apply -f -

As always, you can find more examples and see the full docs by running linkerd inject --help.

You Must Handle Applying Injected Resources

The most important thing to remember about linkerd inject is that it does
not, in and of itself, make any changes to your cluster. You’re always
responsible for applying the output of the linkerd CLI to your cluster
yourself, whether by simply feeding the output to kubectl apply,
committing it so that GitOps takes over, or something else.

Injecting in ingress mode

The --ingress flag sets the ingress mode annotation for a workload. Before setting this flag, or the corresponding annotation, on your ingress, please verify that it is required. You can see the ingress docs for more details on ingress mode.

Injecting manually

By default, linkerd inject just adds the linkerd.io/inject annotation to
your workload Pods, trusting the proxy injector to do the heavy
lifting. Setting the
--manual flag instructs the CLI to add the sidecar
container directly to your manifest, bypassing the proxy injector.

The --manual flag provides a valuable tool for overriding or modifying the
proxy configuration in the event that you need to control something about the
proxy that the usual configuration mechanisms don’t support. Be careful
when tampering with the proxy configuration directly, though, as you can
quickly find yourself falling out of sync with your overall proxy
configuration.

Injecting the debug sidecar

Setting --enable-debug-sidecar will add an annotation to your workload that
will cause the proxy injector to add an additional debug sidecar to your
Pods. Before trying to use the debug sidecar, you should definitely read
Chapter 15 and the
debug container
documentation.

linkerd identity

The linkerd identity command provides a useful tool for troubleshooting Pod
certificates. It allows you to see the certificate details of any Pod or Pods;
for example, here’s how you can get the identity of a Pod
belonging to the Linkerd destination controller:

$ linkerd identity -n linkerd linkerd-destination-7447d467f8-f4n9w

POD linkerd-destination-7447d467f8-f4n9w (1 of 1)

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: ECDSA-SHA256
 Issuer: CN=identity.linkerd.cluster.local
 Validity
 Not Before: Apr 5 13:51:13 2023 UTC
 Not After : Apr 6 13:51:53 2023 UTC
 Subject: CN=linkerd-destination.linkerd.serviceaccount.identity.linkerd.cluster.local
 Subject Public Key Info:
 Public Key Algorithm: ECDSA
 Public-Key: (256 bit)
 X:
 98:41:63:15:e1:0e:99:81:3c:ee:18:a5:55:fe:a5:
 40:bd:cf:a2:cd:c2:e8:30:09:8c:8a:c6:8a:20:e7:
 3c:cf
 Y:
 53:7e:3c:05:d4:86:de:f9:89:cb:73:e9:37:98:08:
 8f:e5:ec:39:c3:6c:c7:42:47:f0:ea:0a:c7:66:fe:
 8d:a5
 Curve: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 X509v3 Authority Key Identifier:
 keyid:37:C0:12:A1:AC:2D:A9:36:2D:35:83:6B:5C:99:9A:A2:5E:9C:E5:C5
 X509v3 Subject Alternative Name:
 DNS:linkerd-destination.linkerd.serviceaccount.identity.linkerd.cluster.local

 Signature Algorithm: ECDSA-SHA256
 30:45:02:20:4a:fb:02:db:17:e7:df:64:a4:7b:d2:08:a2:2e:
 66:e5:a4:74:14:35:d5:1a:f7:fc:15:95:9b:73:60:dd:78:a4:
 02:21:00:8c:12:fb:bf:80:7a:c4:25:91:0c:ac:03:37:ca:e0:
 82:d5:9d:9b:54:f1:20:b0:f0:14:e0:ef:ae:a8:ba:70:00

Your Pod Identities Will Be Different

If you try this command, your Pod ID—and the specific certificate
information—will be different. However, none of the information provided by
linkerd identity is sensitive; it only shows public information. It’s always
safe to run.

You can use the output of this command to check the validity of a given Pod certificate. It also gives you the details of what authority signed the certificate, so you can check that it is signed by the correct intermediary and root CAs.

linkerd diagnostics

The linkerd diagnostics command is a powerful tool that enables platform
operators to gather information directly from Linkerd. It will allow you to
directly scrape details from the metrics endpoints of the various Linkerd
components.

This command also allows you to diagnose hard-to-identify conditions, like Linkerd’s failfast error, by listing out the endpoints for a given service. Some examples are given here; see also the latest documentation on the Linkerd site.

Gathering metrics

The linkerd diagnostics command can gather data directly from the metrics endpoints of the control plane and data plane. To gather control plane metrics, use this command:

$ linkerd diagnostics controller-metrics

#
POD linkerd-destination-8498c6764f-96tqr (1 of 5)
CONTAINER destination
#
HELP cluster_store_size The number of linked clusters in the remote discove...
TYPE cluster_store_size gauge
cluster_store_size 0
HELP endpoint_profile_updates_queue_overflow A counter incremented whenever...
TYPE endpoint_profile_updates_queue_overflow counter
endpoint_profile_updates_queue_overflow 0
HELP endpoint_updates_queue_overflow A counter incremented whenever the end...
TYPE endpoint_updates_queue_overflow counter
endpoint_updates_queue_overflow{service="kubernetes.default.svc.cluster.local...
HELP endpoints_cache_size Number of items in the client-go endpoints cache
TYPE endpoints_cache_size gauge
endpoints_cache_size{cluster="local"} 17
...

To gather metrics data for a given proxy or set of proxies, use a command like the following:

$ linkerd diagnostics proxy-metrics -n emojivoto deploy/web

#
POD web-5b97875957-xn269 (1 of 1)
#
HELP inbound_http_authz_allow_total The total number of inbound HTTP reques...
TYPE inbound_http_authz_allow_total counter
inbound_http_authz_allow_total{target_addr="0.0.0.0:4191",target_ip="0.0.0.0"...
inbound_http_authz_allow_total{target_addr="0.0.0.0:4191",target_ip="0.0.0.0"...
HELP identity_cert_expiration_timestamp_seconds Time when the this proxy's ...
TYPE identity_cert_expiration_timestamp_seconds gauge
identity_cert_expiration_timestamp_seconds 1705071458
HELP identity_cert_refresh_count The total number of times this proxy's mTL...
TYPE identity_cert_refresh_count counter
identity_cert_refresh_count 1
HELP request_total Total count of HTTP requests.
TYPE request_total counter
request_total{direction="inbound",target_addr="0.0.0.0:4191",target_ip="0.0.0...
request_total{direction="inbound",target_addr="0.0.0.0:4191",target_ip="0.0.0...
...

linkerd diagnostics produces raw Prometheus metrics, so you’ll need to already have a
sense of what information you’re looking for if you’re using these commands.
Also note that the sample output has been truncated for space reasons—these
commands produce much more output than what’s shown here (hundreds of
lines, or more, is typical).

Checking for endpoints

One of the hardest problems to debug in Linkerd tends to be when the
linkerd2-proxy emits a message indicating it’s in a failfast state. The
failfast state is discussed in more detail in
Chapter 15, but a very common reason to land in failfast
is that a given service doesn’t have any valid endpoints. You can check for
this condition with linkerd diagnostics endpoints. For example,
here we examine the endpoints for the emoji-svc service of the
emojivoto sample application:

$ linkerd diagnostics endpoints emoji-svc.emojivoto.svc.cluster.local:8080

NAMESPACE IP PORT POD SERVICE
emojivoto 10.42.0.15 8080 emoji-5b97875957-xn269 emoji-svc.emojivoto

Note that you must provide the fully qualified DNS name of the service as
well as a port number. If no valid endpoints are found, linkerd diagnostics
endpoints will report No endpoints found and, importantly, requests to the
service will land in failfast.

Diagnosing policy

As of Linkerd 2.13, there is a new linkerd diagnostics policy command that
can provide insight into Linkerd’s advanced routing policy engine. For
example, you can look at the policy applied to traffic on port
80 of the smiley Service in the faces namespace (as you might find if
you’re running the Faces demo
application):

$ linkerd diagnostics policy -n faces svc/smiley 80 > smiley-diag.json

The output of linkerd diagnostics policy is extremely verbose JSON, so
it’s almost always a good idea to redirect it to a file as we’ve done here (or to
less, bat, or a similar tool). You’ll see sections for http1.1, http2,
etc., and in each section will be a very detailed—and, again, verbose—breakdown
of the policy being applied.

As an example, you might see output like that in Example 6-1 to describe what will happen
to HTTP/2 traffic with no advanced policy applied.

Example 6-1. HTTP/2 output block without advanced policy

http2:
 routes:
 - metadata:
 Kind:
 Default: http
 rules:
 - backends:
 Kind:
 FirstAvailable:
 backends:
 - backend:
 Kind:
 Balancer:
 Load:
 PeakEwma:
 decay:
 seconds: 10
 default_rtt:
 nanos: 30000000
 discovery:
 Kind:
 Dst:
 path: smiley.faces.svc.cluster.local:80
 metadata:
 Kind:
 Default: service
 queue:
 capacity: 100
 failfast_timeout:
 seconds: 3
 matches:
 - path:
 Kind:
 Prefix: /

Alternatively, suppose that you apply the HTTPRoute resource shown in Example 6-2 to split traffic sent to smiley so that half the traffic proceeds to the smiley workload, and the other half is redirected to smiley2. (HTTPRoutes are discussed in more detail in Chapter 9.)

Example 6-2. HTTPRoute traffic splitting

apiVersion: policy.linkerd.io/v1beta3
kind: HTTPRoute
metadata:
 name: smiley-split
 namespace: faces
spec:
 parentRefs:
 - name: smiley
 kind: Service
 group: core
 port: 80
 rules:
 - backendRefs:
 - name: smiley
 port: 80
 weight: 50
 - name: smiley2
 port: 80
 weight: 50

With that HTTPRoute in effect, linkerd diagnostics policy might produce an
http2 block like the one in Example 6-3, showing that traffic is
indeed being split.

Example 6-3. HTTP/2 output block with traffic splitting

http2:
 routes:
 - metadata:
 Kind:
 Resource:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: smiley-split
 namespace: faces
 rules:
 - backends:
 Kind:
 RandomAvailable:
 backends:
 - backend:
 backend:
 Kind:
 Balancer:
 Load:
 PeakEwma:
 decay:
 seconds: 10
 default_rtt:
 nanos: 30000000
 discovery:
 Kind:
 Dst:
 path: smiley.faces.svc.cluster.local:80
 metadata:
 Kind:
 Resource:
 group: core
 kind: Service
 name: smiley
 namespace: faces
 port: 80
 queue:
 capacity: 100
 failfast_timeout:
 seconds: 3
 weight: 50
 - backend:
 backend:
 Kind:
 Balancer:
 Load:
 PeakEwma:
 decay:
 seconds: 10
 default_rtt:
 nanos: 30000000
 discovery:
 Kind:
 Dst:
 path: smiley2.faces.svc.cluster.local:80
 metadata:
 Kind:
 Resource:
 group: core
 kind: Service
 name: smiley2
 namespace: faces
 port: 80
 queue:
 capacity: 100
 failfast_timeout:
 seconds: 3
 weight: 50
 matches:
 - path:
 Kind:
 Prefix: /

As Linkerd evolves, this output will change, so take these examples with a
grain of salt. The point of linkerd diagnostics policy is to
provide sufficient detail that you can understand how Linkerd will manage
traffic to a particular workload, no matter what changes are made to the
source.

Summary

The linkerd CLI provides more than just the tooling you need to install
Linkerd. It gives you critical operational tools that simplify the process of
running Linkerd in your clusters. While it’s definitely possible to use
Linkerd and never run the linkerd CLI, the CLI is the most straightforward,
effective way to deal with many real-world situations.

Chapter 7. mTLS, Linkerd, and Certificates

Moving from a monolithic application to a microservices application puts us in a very interesting position
as far as security is concerned. Where the monolith provided a natural
security perimeter at the edge of its process, a microservices application has no
natural security perimeter at all. Sensitive information that was previously
protected by being passed in a function call inside the process now has to be
sent over the network, as shown in Figure 7-1.

[image: luar 0701]
Figure 7-1. Security stance in a monolithic versus a microservices application

Additionally, the microservices are often running on infrastructure and
network resources provided by outside teams, organizations, or even companies.
If nothing is done to counter the threat, it’s all too easy for an attacker
with access to the network to read, intercept, and modify
communications between microservices. This is obviously a serious problem.

Finally, the network doesn’t even provide any secure way for a given
microservice to know who made a call to it. The called microservice can find out
the caller’s IP and MAC addresses, but these aren’t actually secure—it’s
very easy to spoof the sender’s IP address, for example. Things just get
worse when the application is running on a network it doesn’t control.

Secure Communications

To allow any microservices application to work, we need secure
communications. There are three distinct elements to truly secure
communications:

	Authenticity

	
We must be confident that we are talking to who we think
we’re talking to.

	Confidentiality

	
We must be confident that no one can read the data being
sent over the connection.

	Integrity

	
We must be confident that our messages haven’t been altered in
transit.

These aren’t new problems, and many different techniques have evolved to
address them in various ways. Linkerd relies on one of the most trusted of
these: mutual TLS, or mTLS.

TLS and mTLS

TLS, defined by RFC 8446, is a battle-tested,
industry-standard mechanism for secure communications that dates back to 1999.
It’s the same mechanism that web browsers have used for years to securely
communicate with banks, shopping sites, etc. The modern Internet has been
relying on TLS for nearly 25 years, and cryptanalysts have being trying for at
least that long to find weaknesses in it. TLS provides authenticity,
confidentiality, and integrity using the architecture shown in
Figure 7-2.

[image: luar 0702]
Figure 7-2. TLS architecture

(Linkerd specifically uses TLS version 1.3, but all TLS versions have used the
same architecture.)

TLS ensures confidentiality by encrypting data in transit and integrity by
adding message digests—cryptographic checksums—so that the receiver can
validate that the data sent hasn’t been altered. This takes care of two of
our three concerns.

Authenticity is more complex. TLS uses certificates to cryptographically
allow validating the identity of both the sender and the receiver. The TLS
standard always requires the receiving end to identify itself by sending a
certificate. In many cases, this is all that’s needed; for example, when you
use your web browser to visit a shopping site, it’s not terribly useful for
your browser to send a certificate since the shopping site will require you to
log in separately.

For a service mesh, though, we need to authenticate both ends of the
connection. This means we require both ends to send certificates for
identification. When we use TLS like this (as Linkerd does), we call it
mutual TLS or mTLS to distinguish it from the case where only the
receiver identifies itself. This is shown in Figure 7-3.

[image: luar 0703]
Figure 7-3. TLS compared to mTLS

Using certificates in both directions lets mTLS build on the guarantees
provided by TLS: it provides a cryptographically validated identity of the
client as well as the server, while still maintaining encryption in transit.
For Linkerd, this means that mTLS guarantees that your workloads know whom
they’re talking to and that no third party will be able to intercept or listen
in on their communication.

mTLS and Certificates

As we first discussed in Chapter 2, the certificates that
mTLS relies on are built on keypairs consisting of a public key and a
private key. The private key (of course) needs to be kept private: only the
entity that the keypair identifies can know it. The public key, on the other
hand, should be widely distributed: it’s what allows verifying the identity of
the entity holding the private key, so everyone who needs to communicate with
that entity needs the public key.

Certificates give us a way to associate a name and other metadata with the
keypair, which is useful because it allows us humans to more easily work with
the certificate. They also give us a way for one certificate to attest that
another is valid (signing or issuing a certificate), which is useful
because it makes it much simpler to determine whether or not we trust a
certificate.

Using certificates to sign other certificates creates a trust hierarchy, as
shown in Figure 7-4. This hierarchy is important: mTLS
can know that a certificate is valid as long as it has access to any of the
public keys higher up in the hierarchy, and systems built on mTLS (including
Linkerd) take advantage of this property.

[image: luar 0704]
Figure 7-4. The certificate trust hierarchy

Finally, it’s important to limit the lifespan of a given keypair: the longer a
key is used, the greater the danger if it’s compromised. Every so often, we
need to replace the keys in use for a given certificate. This involves
creating a new keypair, then generating a new certificate, and finally getting it
properly signed. This entire process is called rotating the certificate; it
is the main source of operational complexity when working with certificates.

Linkerd and mTLS

Linkerd transparently adds mTLS to all of your interapplication
communications. This means that all meshed traffic is protected against
interception and tampering. It also means your workloads can be certain of
which workloads they’re communicating with at all times.

This can only work if every meshed workload has a valid TLS certificate
associated with that workload, and if all these workload certificates are
part of the same trust hierarchy. Managing this by hand would be incredibly
difficult, so Linkerd helps to automate it.

We talked about adding workloads to the mesh in Chapter 4,
but let’s revisit that in a bit more detail. When a workload is added to the
mesh, it gets a linkerd2-proxy container added to its Pod. That container
will be configured to intercept all TCP traffic going into and out of the Pod,
and it will always attempt to build an mTLS session when a connection is made
with another Pod. If the other Pod also has a linkerd2-proxy—meaning that
it’s part of the mesh!—then the connection will be protected with mTLS.

Since this mTLS connection happens from proxy to proxy, the application
containers within the Pods never even know that mTLS is happening: from an
application perspective, all communications between Pods look like they’re
using cleartext. This means that the application Pods don’t see any
information about the certificates that Linkerd is using, which in turn means
that they don’t need any special code to handle certificate information.

Protocol Detection and the Proxy

The fact that the proxy intercepts all communication between Pods means that
you may sometimes need to give it extra information about the protocol, or
indeed not try to do mTLS. This is all covered at some length in
Chapter 4, but a good rule of thumb is that as long as the
client speaks first, you’re probably OK. If the server speaks first, you’ll
need to do some configuration.

Of course, that’s only true if the server is in the mesh! If you’re trying to
communicate from a meshed Pod to an unmeshed Pod, you will always need to tell
Linkerd to skip the traffic: it won’t be able to do mTLS without the
destination Pod being part of the mesh.

Certificates and Linkerd

We talked about Linkerd certificates back in Chapter 3. In this section, we’ll go into more detail about
exactly what these certificates are used for, how they are created, and what
needs to happen when you want to rotate them. We’re going to cover the three
tiers of certificates used in Linkerd: trust anchor, identity issuer, and workload certificates.

From Linkerd’s point of view, trust starts with its trust anchor
certificate, as shown in Figure 7-5. The trust anchor can, of
course, be signed by some other higher-level certificate—as far as Linkerd
is concerned, though, trust stops with the trust anchor.

[image: luar 0705]
Figure 7-5. The Linkerd trust hierarchy

Linkerd automatically handles the generation, distribution, and rotation of
workload certificates, while relying on the user to manage the trust anchor
and the identity issuer. This is shown in Figure 7-6.

[image: luar 0706]
Figure 7-6. Linkerd certificate management

Never Let Your Certificates Expire

Because Linkerd requires mTLS connections between Pods by default, the health
and security of the certificates it uses are absolutely critical to the
healthy operation of the mesh—and thus your platform. If certificates
expire, or can’t be generated for new Pods, you will incur downtime.

This is the most common cause of downtime in production Linkerd clusters.
Understanding and monitoring your Linkerd certificates is vital.

The Linkerd Trust Anchor

The Linkerd trust anchor is the certificate that provides the foundation
for all trust in your cluster. It is used for exactly two things:

	
When installing Linkerd, you will use the trust anchor to issue the Linkerd
identity issuer certificate, which we’ll discuss in the next section.
This requires access to both the private and public keys of the trust
anchor and is something done outside of Linkerd, before installation.

	
Whenever a workload makes an mTLS connection to another workload, both
workloads use the identity issuer and the trust anchor to verify the
identity of the other workload. This requires access to only the public key
of the trust anchor and happens constantly while the mesh is operating.

Since only the public key is needed for in-cluster operations (the second bullet in the preceding list), we
recommend that you never store your trust anchor’s private key in your
Kubernetes cluster. Instead, store the trust anchor in a secure system
outside of Kubernetes and only copy its public key into the cluster, as we’ll
cover in this chapter.

One very important thing to realize is that the trust anchor is not
intrinsically tied to a cluster: it is completely independent of network
topology or cluster boundaries. This means that if you give multiple clusters
the same trust anchor, they’ll be able to do secure mTLS between workloads in
different clusters, as shown in Figure 7-7. This is
extremely powerful, as it makes multicluster meshes very easy to set up.

[image: luar 0707]
Figure 7-7. Multicluster trust hierarchy

Correspondingly, two clusters that should not be able to communicate with
each other should not share a trust anchor! For most organizations, this
implies not sharing trust anchors across environment tiers—that is, test
clusters shouldn’t have the same trust anchor as development or production
clusters.

The Linkerd Identity Issuer

At the second level of the Linkerd trust hierarchy is the identity issuer
certificate, as we also briefly touched on in Chapter 3.
The identity issuer is used by the Linkerd control plane’s identity controller to
issue workload certificates, as shown in Figure 7-8.
Since the identity issuer is used to sign certificates, Linkerd must have
access to both the private and public keys of the identity issuer certificate,
which means that it must be stored in a Secret in the cluster.

[image: luar 0708]
Figure 7-8. The issuer certificate and the identity controller

The identity issuer must be signed by the trust anchor, and since it must be
stored in the cluster, each cluster must have its own identity issuer.

Linkerd Cannot Warn You If You Share Identity Issuer Certificates

There isn’t any good way for Linkerd to warn you if you accidentally use the
same identity issuer certificate in two clusters, and in fact everything will
work. Don’t do this, though. If you do, the two clusters will become
indistinguishable, and an evildoer will potentially be able to use one
cluster to create a workload certificate that can bypass authorization policy
in the other cluster.

Make sure that each cluster has a unique identity issuer.

Linkerd Workload Certificates

Finally, we come to the certificates that actually do the work of providing
mTLS between our applications. When a workload is added to a Linkerd mesh, the
Linkerd proxy associated with each workload Pod automatically requests a
workload certificate from the Linkerd identity controller. This workload
certificate is the basis for the workload’s identity. It will be signed by the
identity issuer certificate, and since every other workload has access to the
public keys of the identity issuer and the trust anchor, the validity of the
workload certificate can be verified all the way back to the trust anchor.

The workload certificate for each Pod is cryptographically linked to the
Kubernetes ServiceAccount assigned to the Pod, and its name includes the name
of the ServiceAccount and the namespace. This allows your Pods to be uniquely
identified when they communicate with each other. It also provides us with the
identity we will need later when we build policy. The basic format for the
identity name is:

$serviceAccountName.$namespace.serviceaccount.identity.linkerd.$clusterDomain

where $clusterDomain will be cluster.local if you haven’t overridden
it. (Most single-cluster Linkerd installations won’t need to override this.)

Linkerd handles workload certificates completely automatically; you should
never need to worry about managing them.

Certificate Lifetimes and Rotation

As we mentioned earlier, the longer you use a given key, the more
valuable it tends to be to break that key. For this reason, certificates are
given fixed lifespans, and they must be replaced before they expire. Replacing
a certificate with a new one is called rotating the certificate.

Choosing exactly how often to rotate certificates is a balancing act. Rotating
very frequently is most secure, but it can disrupt normal operations and
require an impractical amount of effort. Rotating very infrequently—or not
at all—is very simple, but also very insecure.

Linkerd handles rotating workload certificates for you: by default, workload
certificates expire every 24 hours. However, rotating the identity issuer and
trust anchor certificates is left up to you, since your organization’s policy will often
dictate how often you’ll be rotating. The critical things to consider are:

 	Every time you rotate the trust anchor, you must also rotate the identity issuer.

 	
 This is because the trust anchor must sign the identity issuer. If you’ve just generated a new trust anchor, there’s no way the old identity issuer can be signed by the new trust anchor, so you need a new identity issuer too.

 In turn, this means that you cannot rotate the trust anchor more often
 than the identity issuer.

 	Every time you rotate the identity issuer, you may also rotate the workload certificates.

 	Since workload certificates are automatically rotated by Linkerd, when you rotate the identity issuer you can opt to just wait for Linkerd to rotate the workload certificates. If you want to be sure they’re rotated immediately, just restart the workloads.

The way you rotate a certificate depends on which certificate it is:

	Rotating the trust anchor

	
Rotating the trust anchor is actually out of scope for this book: in practice,
if you adhere to the principle that clusters themselves should be ephemeral,
it can be more practical to simply have the lifespan of the trust anchor
mirror that of the cluster. You can find more about rotating the trust anchor
in the official Linkerd docs.

	Rotating the identity issuer

	
Rotating the identity issuer is a basic operational task in Linkerd. Ideally,
you’ll automate rotating the identity issuer with a tool like Venafi’s
cert-manager, and we show how to do this in this
chapter. You can also manually rotate the trust anchor using the procedure
shown in the official Linkerd docs.

Whether you automate identity issuer rotation or do it manually, it is
critical that you practice rotating the identity issuer before
the identity issuer expires. Having a mechanism that you’ve never tested can
be worse than not having anything set up at all.

	Rotating the workload certificates

	
Workload certificates are automatically rotated by the Linkerd control plane,
so you should almost never need to deal with them. (As noted previously, if you
do want to rotate a workload certificate, just restart the workload.)

By default, workload certificates are valid for 24 hours, and the control
plane will begin attempting to rotate a workload certificate once it’s hit 70%
of its effective lifetime.

Tuning Workload Certificates

If needed, you can tune the lifespan of workload certificates by setting the
issuanceLifetime value when installing Linkerd, but recognize that there are
two important operational concerns if you reduce this value.

First, you increase the frequency with which your Pods communicate with the identity controller, which increases the load on the identity controller.

Second, you reduce the amount of time you have to address problems with
renewals. The proxy will begin attempting to renew at 70% of the lifespan: for
a 24-hour lifespan, this means it will start trying with about 7 hours to
go before the certificate expires, giving you about 7 hours to solve any
problems that come up. If the whole lifespan is just 2 hours, you’ll only
have about half an hour to work with if anything goes wrong.

As you have likely surmised, we’ve only skimmed the surface of how certificates work in general, and in Linkerd in particular, but you should now have more than enough information to understand how certificates are used in Linkerd.

Certificate Management in Linkerd

It should be clear at this point that certificate management is a critical
part of securing a production Linkerd installation. Properly managing
certificates is an important way to reduce the likelihood of an incident. It can also help
minimize time to recovery and the overall impact if something does go wrong.

With that in mind, our recommendations for everyone using Linkerd for any kind
of production use are:

 	Couple the life of the trust anchor to the life of the cluster.

 	
 It’s definitely possible to rotate the trust anchor, but treating the entire cluster as ephemeral and periodically rotating the whole cluster tends to make disaster recovery and provider migration ultimately simpler.

 	Automate rotating the identity issuer.

 	
 It’s definitely possible to manage the identity issuer by hand, but we strongly recommend using a tool like cert-manager to regularly rotate the identity issuer certificate every few days instead. This shorter lifespan for the identity issuer can dramatically limit the scope of any incident, and using cert-manager makes it almost unnoticeable.

Automatic Certificate Management with cert-manager

Venafi’s cert-manager is a CNCF project that manages automatic certificate
generation and rotation, as shown in Figure 7-9. We’re not
going to cover the detailed inner workings of cert-manager (that’s beyond the
scope of this book); instead, we’re going to focus on the concepts required to
understand how to use cert-manager with Linkerd.

[image: luar 0709]
Figure 7-9. Automatic issuer certificate rotation with cert-manager

Installing cert-manager

We start by installing cert-manager using Helm to manage our install, as shown
in Example 7-1. To follow along, you’ll need the following tools available
in your environment:

	
kubectl

	
k3d or another tool for getting a local Kubernetes cluster

	
helm3

Example 7-1. Installing cert-manager

Start by creating the cluster
$ k3d cluster create luar

Add the jetstack Helm repo if you don't already have it
$ helm repo add jetstack https://charts.jetstack.io

Make sure your Helm repositories are up-to-date
$ helm repo update

Install cert-manager
$ helm install \
 cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace \
 --version v1.12.0 \
 --set installCRDs=true

Check out your cert-manager Pods
$ kubectl get pods -n cert-manager

Software Versions

Be aware that our examples are using specific versions to make sure that things work at the time of this writing. There may be more updated versions available by the time you read this, though; make sure you’re using appropriate versions.

Configuring cert-manager for Linkerd

While a deep dive into cert-manager is out of scope for this book, it’s
definitely worth discussing its overall architecture for our use case.
cert-manager is configured with Issuer and Certificate resources: an Issuer
resource tells cert-manager where to find the keys it needs to issue a
certificate, and a Certificate resource tells cert-manager which Issuer to use
for a specific certificate.

In our case, as shown in Figure 7-9, we’ll create an Issuer
that holds the trust anchor keys and a Certificate that describes how to use
that Issuer to get a Linkerd issuer certificate.

We mentioned at the beginning of the chapter that you never want to add your
root CA’s private key to your Kubernetes cluster. Because standing up an
external key store is out of scope for this book, we’re going to break that
rule in Example 7-2 and use cert-manager with the trust anchor stored in a
Kubernetes Secret. In any real production environment you would not do
this, but the overall setup will stay the same, with one Issuer and one
Certificate: you’ll just change the Issuer definition to use your external agent
instead. (cert-manager supports many different external agents; see
the documentation.)

Keep the Trust Anchor Key out of the Cluster!

Again, do not use this setup in production. It can be made safer, but having your trust anchor’s secret key in the cluster will never be as safe as having it exist only in an external store.

Example 7-2. Generating certificates for Linkerd

Start by generating a trust anchor for the cluster.
$ step certificate create root.linkerd.cluster.local ca.crt ca.key \
 --profile root-ca --no-password --insecure --not-after=87600h

Create the linkerd namespace so that we have a place to install
the trust anchor Secret.
$ kubectl create ns linkerd

Save the trust anchor as a Secret in the linkerd namespace.
#
During your real-world installs, you'd instead use an external
cert-manager-compatible Secret store (like Vault) to store the
trust anchor.
$ kubectl create secret tls linkerd-trust-anchor \
 --cert=ca.crt \
 --key=ca.key \
 --namespace=linkerd

Create a cert-manager Issuer that uses the trust anchor Secret
to issue certificates. This Issuer must be in the same namespace
as the trust anchor Secret.
#
During your real-world installs, you'd instead change this
Issuer to connect to your external Secret store.
$ kubectl apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: linkerd-trust-anchor
 namespace: linkerd
spec:
 ca:
 secretName: linkerd-trust-anchor
EOF

With the Issuer created, we will now use a Certificate to instruct
cert-manager to create our identity issuer certificate. We will
also instruct it to automatically rotate that certificate every 48
hours. This Certificate must be in the same namespace as the Secret
it is writing, which (again) is the linkerd namespace.
$ kubectl apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: linkerd-identity-issuer
 namespace: linkerd
spec:
 secretName: linkerd-identity-issuer
 duration: 48h
 issuerRef:
 name: linkerd-trust-anchor
 kind: Issuer
 commonName: identity.linkerd.cluster.local
 dnsNames:
 - identity.linkerd.cluster.local
 isCA: true
 privateKey:
 algorithm: ECDSA
 usages:
 - cert sign
 - crl sign
 - server auth
 - client auth
EOF

Let’s go back over what we just did. We started by installing cert-manager into our cluster, which will automate the process of issuing and rotating certificates. We then created a trust anchor and told cert-manager to use that certificate to automatically create and rotate Linkerd’s issuer certificate. The issuer certificate is an intermediary CA that Linkerd will use to create, distribute, and rotate the individual workload certificates. cert-manager will rotate the issuer certificate every 48 hours, as we defined in its Certificate object.

Let’s take a quick tour around our cluster, as shown in Example 7-3, to see what cert-manager will actually do with this setup.

Example 7-3. Looking around

First, let's validate that the trust anchor Secret exists and
has some information in it.
$ kubectl get secret linkerd-trust-anchor -n linkerd

Given that, we can use the step CLI to examine the public part
of the certificate itself. The way this works is that the public
part is stored, base-64 encoded, in the "tls.crt" key of the
Secret, so we extract that, decode it, and hand it to step.
$ kubectl get secret linkerd-trust-anchor -n linkerd \
 -o jsonpath='{.data.tls\.crt}' \
 | base64 -d \
 | step certificate inspect -

Next, let's check to see if cert-manager was able to create
our issuer certificate. We should see a Certificate named
linkerd-identity-issuer with a "ready" status of True.
$ kubectl get certificate -n linkerd

Following that, we'll check in on the identity issuer Secret.
This is just like what we did for the trust anchor, with a
different name for the Secret.
$ kubectl get secret linkerd-identity-issuer -n linkerd \
 -o jsonpath='{.data.tls\.crt}' \
 | base64 -d \
 | step certificate inspect -

With that out of the way, we can now install Linkerd.

Installing Linkerd using cert-manager

Once cert-manager is set up to issue certs, we need to install Linkerd so that
it knows to use the certificates that cert-manager is managing, as shown in Figure 7-9.

You’ll remember that in Chapter 3 we went through the various
ways to install Linkerd. We’ll use Helm for our installation, as shown in
Example 7-4, since we recommend that folks hoping to run Linkerd in production
install Linkerd with Helm.

Example 7-4. Installing Linkerd with cert-manager

Configure our Linkerd Helm repo.
$ helm repo add linkerd https://helm.linkerd.io/stable

Update our repos.
$ helm repo update

Install the Linkerd CRDs.
$ helm install linkerd-crds -n linkerd --version 1.6.1 linkerd/linkerd-crds

Install Linkerd's control plane.
#
Unlike in earlier chapters, this install will not have us specifying
the issuer certificate. Instead, we instruct Linkerd to use the
existing certificate by setting the identity.issuer.scheme to
kubernetes.io/tls.
$ helm install linkerd-control-plane -n linkerd \
 --set-file identityTrustAnchorsPEM=ca.crt \
 --set identity.issuer.scheme=kubernetes.io/tls \
 --version 1.12.4 \
 linkerd/linkerd-control-plane

Validate the Linkerd install.
$ linkerd check

You'll see warnings letting you know your Linkerd issuer certificate isn't
valid for more than 60 days. That's to be expected, as you are now actively
rotating the issuer certificate with cert-manager.

With that, you now have a fully functional Linkerd instance with an actively and automatically rotating issuer certificate. You’ve added a significant amount of security to your environment and ensured that your cluster will get new certificates on a regular basis. It’s important to actively monitor cert-manager and check that your certificates are being rotated regularly. An expired issuer certificate is one of the few ways Linkerd can actively take down your applications, and its health and safety is critical to your platform.

Summary

We’ve covered a lot of ground in this chapter. mTLS and certificate handling
are complex topics, even though they’ve been around for a long time. The
challenge is that to properly secure a cloud native application, right now you
need to know more about this stuff than you might like.

One of the ways that Linkerd simplifies the process of hardening your
environment is making mTLS effectively automatic, allowing any Linkerd user to
rely on mTLS’s well-trusted identity and encryption mechanisms for secure
communications. Another way is that Linkerd gives you control over critical
certificate management operations: Linkerd’s ability to issue certificates for
your application’s workloads, then rotate them frequently and automatically,
gives you some powerful tools you need to reduce the likelihood and impact of
any security incident.

Chapter 8. Linkerd Policy: Overview
and Server-Based Policy

Microservices applications, as we discussed in Chapter 7,
require a different level of network security than more traditional monoliths.
mTLS gives you the secure communications and workload identity that you need to
start tackling this level of network security—but it’s Linkerd’s policy
mechanisms that provide the ability to use that identity to control how
workloads can talk to each other in your environment.

Linkerd supports two kinds of policy mechanisms: Server-based and
route-based. Since policy is the single most complex area of Linkerd,
we’ll provide an overview and cover Server-based policy in this chapter, then
tackle route-based policy in Chapter 9.

Linkerd Policy Overview

All Linkerd policy mechanisms are based on explicit authorization: Linkerd starts out
assuming that it should allow nothing and must be explicitly told what
requests should be allowed. This
lines up nicely with the zero trust model and makes it straightforward to
reason about permissions, since policy resources are always permitting
things to happen.

Don’t panic, though; this doesn’t mean a policy is always a morass of
hundreds of resources. Linkerd allows setting a default policy at the cluster,
namespace, and Pod levels, with policy settings at more specific levels overriding
policy settings at more general levels: Pods override namespaces, which override
cluster-wide settings, as shown in Figure 8-1.

[image: luar 0801]
Figure 8-1. Different Linkerd default policy settings

It may seem strange to talk about defaults overriding defaults. Here,
“default” is in contrast to the other kind of policy setting that Linkerd
supports: using dynamic policy resources. The default policy is simply the policy
that applies when no dynamic resource is present for a given request.

Policy is always enforced along Pod boundaries, since the Pod is the basic
unit managed by Linkerd. It’s not possible, for example, to write a policy
that will affect communications with a single container in a Pod.

Linkerd Default Policy

Linkerd has the following default policy options:

	all-unauthenticated

	
Allow all traffic, whether authenticated or not.

	cluster-unauthenticated

	
Allow all traffic from this cluster.

	all-authenticated

	
Allow traffic from all meshed clients.

	cluster-authenticated

	
Allow traffic from meshed clients in this cluster.

	deny

	
Deny everything.

The distinction between all and cluster is relevant only if you’re using
multicluster (as discussed in Chapter 12). In a
multicluster setting, all includes clients from other clusters, whereas
cluster does not, as shown in Figure 8-2. If you’re not
using multicluster, the two are equivalent.

[image: luar 0802]
Figure 8-2. all versus cluster

The cluster default policy is set at install time with the
proxy.defaultInboundPolicy value, as shown in Example 8-1. If
not set, the cluster default policy will be all-unauthenticated: this allows
absolutely any request, mirroring Kubernetes’s default wide-open stance.
Linkerd uses this default to ensure that users who don’t want or need
to use policy (or who just haven’t gotten to that point in hardening their
clusters yet) won’t be negatively impacted when they install Linkerd.

Why the Permissive Default Policy?

Linkerd’s default all-unauthenticated is obviously not good for security,
and we strongly advise you to pick a different cluster default for
production installations.

However, as a practical matter, literally any other base default almost
guarantees that installing Linkerd into a running application would break
things. Ultimately, all-unauthenticated as the base default is the only way
to allow Linkerd to do no harm when first brought into an application, and
that’s why it’s the base default.

Example 8-1. Setting the cluster default policy

We can set the cluster's default policy with Helm...
$ helm install linkerd-control-plane -n linkerd \
 ... \
 --set proxy.defaultInboundPolicy=all-authenticated \
 ...

...or with the Linkerd CLI.
$ linkerd install \
 ...
 --set proxy.defaultInboundPolicy=all-authenticated \
 ... \
 | kubectl install -

To override the default for a namespace, workload, or Pod, you’ll use the

config.linkerd.io/default-inbound-policy annotation, setting it to one of the
values listed earlier, as shown here:

$ kubectl annotate namespace your-namespace \
 config.linkerd.io/default-inbound-policy=all-authenticated

Linkerd Policy Resources

To override the default policy, you use policy resources, which are CRDs that
configure which requests should be permitted:

	Server

	
Describes one or more Pods and one port on those Pods

	HTTPRoute

	
Describes a subset of the HTTP traffic to a given Server

	MeshTLSAuthentication

	
Describes one or more mesh identities

	NetworkAuthentication

	
Describes one or more IP addresses

	AuthorizationPolicy

	
Binds a Server or HTTPRoute to mesh or network authentications

These resources work together as shown in Figure 8-3; for
example, an Authorization­Policy can link a Server and a MeshTLSAuthentication
to permit a specific set of mesh identities to access the Server.

[image: luar 0803]
Figure 8-3. Linkerd policy resources

Let’s take a closer look at each of these resources and how they’re used to configure Linkerd policy.

Server

We talked about the Server resource briefly in Chapter 4. Server
resources are specific to Linkerd; they allow describing a single specific
port of a workload. For example, the Server in Example 8-2 describes the
http port of the foo workload, which is the set of Pods with the app:
foo label. This Server also notes that that port carries HTTP/1.1 traffic.

Example 8-2. A Server resource

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 name: foo
 namespace: foo-ns
spec:
 podSelector:
 matchLabels:
 app: foo
 port: http
 proxyProtocol: HTTP/1

Note that Server is a namespaced resource that must appear in the same
namespace as the Pods it needs to match.

HTTPRoute

HTTPRoute is a Gateway API resource that describes specific HTTP requests. We’ll discuss HTTPRoute more in Chapter 9.

MeshTLSAuthentication

MeshTLSAuthentication describes a particular set of mesh identities. Any
workload running with one of the listed identities will match the
MeshTLSAuthentication. For example, Example 8-3 shows a
MeshTLSAuthentication for the single identity
foo.foo-ns.serviceaccount.identity.linkerd.cluster.local.

Example 8-3. A MeshTLSAuthentication resource

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: foo
 namespace: foo-ns
spec:
 identities:
 - "foo.foo-ns.serviceaccount.identity.linkerd.cluster.local"

MeshTLSAuthentication is a namespaced resource. It will typically be placed in
the same namespace as the workloads it’s associated with, although this isn’t
a strict requirement.

NetworkAuthentication

A NetworkAuthentication resource describes a set of IP address CIDR ranges.
Any request coming from one of the listed ranges will match the
NetworkAuthentication.

Given that Linkerd makes such a big deal about using workload identity rather
than network identity, it may seem strange that the NetworkAuthentication
resource exists at all; however, as a practical matter, it can be useful at
times when managing unmeshed clients.

NetworkAuthentication is a namespaced resource. It will typically be placed in
the same namespace as the workloads it’s associated with, although this isn’t
a strict requirement.

AuthorizationPolicy

Linkerd AuthorizationPolicy resources permit access to a target for some
required authentications. The target, at present, must be a Server or an
HTTPRoute. The required authentications must be one or more
MeshTLSAuthentication or Network​Authentication resources.

AuthorizationPolicy is a namespaced resource. It will typically be placed in
the same namespace as the workloads it’s associated with, although this isn’t
a strict
requirement.

We’ll go deeper into the individual objects as we begin actually using policy
to lock down our cluster.

Server-Based Policy Versus Route-Based Policy

Server-based policy gets its name because it relies on Linkerd Server
resources. You’ll note that while the Server resource describes a workload
and port, it does not describe anything about requests. This means that
Server-based policy can’t differentiate separate requests to a given Server,
instead requiring every request going to a Server to adhere to the same
policy.

Route-based policy (which we’ll discuss in Chapter 9), on
the other hand, does get to take request details into account. It is a more
powerful—and also more complex—mechanism.

Server-Based Policy with the emojivoto Application

We’ll use the emojivoto sample
application to illustrate working with policy in Linkerd. For reference,
Figure 8-4 shows our end goal: the entire emojivoto
application will be protected from accesses that shouldn’t happen.

[image: luar 0804]
Figure 8-4. emojivoto policy overview

In this chapter, we’ll guide you through a few different patterns you can
adopt for your cluster, each of which will progressively lock down your
applications and what they can communicate with.

Configuring the Default Policy

The first step we can take to lock down our clusters is also one of the most
impactful and wide-ranging. Linkerd provides a straightforward mechanism for
setting the default inbound policy for all of our proxies. In this section
we’re going to show you how to set the default inbound policy at the cluster
and namespace level.

Cluster default policy

Let’s start by setting the default policy for the entire cluster. Remember, when you
install Linkerd, the default policy for the whole cluster is
all-unauthenticated, which allows absolutely any request, mirroring
Kubernetes’s default wide-open stance.

We’ll start by switching the default policy for the cluster to
all-authenticated. This will require that all connections to meshed Pods
come from other Pods that are in the mesh. This is good for security, but adds
some operational overhead since you’ll need to carve out exceptions for any
nonmeshed applications that you want to continue being able to talk to meshed
Pods. For example, imagine that you have a nonmeshed monitoring tool: when
you flip the default to all-authenticated, it will suddenly be unable to
talk to your meshed Pods, and you’ll either need to mesh the monitoring tool
or add an exception to your Linkerd policy for it.

To Deny or Not to Deny

In a perfect world, your entire cluster would have its default policy set to
deny. This is absolutely the best practice from a security perspective,
but if you’re starting with an existing application, adding Linkerd with the
default set to deny is very likely to break things unless you know all of
the different traffic that you’ll need to permit. In practice, that’s rare if
you weren’t already working with fine-grained security tools.

An effective and practical compromise can be to start with
all-unauthenticated, then use Linkerd’s observability tools to determine
what traffic should be permitted before gradually tightening security via
all-authenticated or cluster-authenticated on the way to deny. Also
remember that you can switch specific namespaces to deny as steps toward
getting the whole cluster to deny.

In a nonproduction environment, of course, the broad stroke of just
flipping everything to deny and watching what breaks is a great way to see
exactly what communications are happening that you haven’t thought of yet.
Just don’t go there in production!

Because the cluster-wide policy is a global setting, we’ll configure it using
Helm. In Example 8-4, we’ll use helm upgrade to change Linkerd’s settings
without changing the version of Linkerd you have installed. This example
assumes you’re using Linkerd 2.13.4.

Example 8-4. Cluster policy

Use helm upgrade to set the global inbound policy to all-authenticated.
$ helm upgrade linkerd-control-plane -n linkerd \
 --set proxy.defaultInboundPolicy=all-authenticated \
 --version 1.12.4 \
 --reuse-values \
 linkerd/linkerd-control-plane

Now we can install the emojivoto app in our cluster to validate that it
can operate normally while meshed.
$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/emojivoto.yml \
 | linkerd inject - | kubectl apply -f -

Once your Pods are up and running, test the emojivoto application to see
if it's still working.
$ kubectl -n emojivoto port-forward svc/web-svc 8080:80

Now browse to localhost:8080 and look at the emojivoto app. You should
see the normal voting page.

Namespace default policy

Going further, we can flip the emojivoto namespace to deny to further
protect our application, as shown in Example 8-5. Once we do this,
all traffic in the namespace will be denied unless we explicitly authorize
it.

Example 8-5. Namespace policy

Start by using kubectl to annotate the namespace. We're going to set it
to deny all traffic that hasn't been explicitly authorized.
$ kubectl annotate namespace emojivoto config.linkerd.io/default-inbound-policy=deny

With that done, the policy changes won't have any impact on the Pods that
are already running. You will need to perform a rollout restart for the
new default policy to take effect.
$ kubectl rollout restart deploy -n emojivoto

Once your Pods are up and running, test the emojivoto application to see
if it's still working.
$ kubectl -n emojivoto port-forward svc/web-svc 8080:80

Now browse to localhost:8080 and look at the emojivoto app. You should now
see the page load, but all the emojis are gone. That is because the web
frontend can no longer talk to either of its backends, voting or emoji.

Timing Matters

Linkerd’s default inbound policy is read by your proxies at startup time. It is not read dynamically. This is important for operators to be aware of because it means any changes you make only take effect when your Pods are created. If you change the default inbound policy for the cluster or a namespace, those changes will only take effect after the Pods in your namespace are re-created. Pod-level inbound policy changes will take effect when the Kubernetes API restarts the modified Pods, so they will effectively get applied as soon as you modify the Deployments, StatefulSets, or DaemonSets in question.

With that, we’ve managed to block communication between our workloads in the

emojivoto namespace…​and everything is broken. To make the app work again,
we need to start allowing necessary traffic again with dynamic policy.

Configuring Dynamic Policy

As demonstrated, it’s not very useful just to use defaults to block
everything. It’s time to look at how to use our dynamic policy resources to allow useful,
necessary traffic to flow. We’ll start with a fairly simple concept: many
organizations treat namespaces as logical boundaries between applications or
teams, so it often makes sense to allow workloads in the same namespace to
talk to each other. This is commonly called namespace isolation.

Namespace isolation

With namespace isolation, we can
easily restrict traffic in a namespace exclusively to those workloads that share that
namespace. In our example, we’ll start by permitting traffic within the
emojivoto namespace as long as the source and destination identities are
both within this single namespace. This makes sense for the
emojivoto
application because the only things running in its namespace are parts of emoji­voto itself: it’s a natural result of the idea that the application is
contained within a single namespace.

Identities, Not IP Addresses

Note that we said “source and destination identities.” Everything Linkerd
does with policy is based on the workload identity, not the workload’s IP
address or anything else about the network. The workloads don’t even need to
be in the same cluster, as long as the identities line up.

We’ll set up namespace isolation for emojivoto in
Example 8-6. Fair warning: this will look complex. The inline
comments are very important to fully understand exactly what’s going on in
this example.

Example 8-6. Namespace isolation for emojivoto

To start applying policies to the emojivoto workloads, we need to create
Server objects. A Server object selects a single named port on one or more
Pods.
#
We'll start by setting up a Server that matches the Linkerd admin port,
used for metrics, for every Pod in our namespace.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: emojivoto
 name: linkerd-admin
spec:
 podSelector:
 matchLabels: {}
 port: linkerd-admin
 proxyProtocol: HTTP/2
EOF

This object, a Server called linkerd, will, due to our matchLabels selector,
match every Pod in our namespace. On each Pod it will bind to a port named
linkerd-admin and allow us to apply policy to it.
#
Next, we will create a Server object for each part of our application,
starting with the web service (which serves the GUI).
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: emojivoto
 name: web-http
 labels:
 app.kubernetes.io/part-of: emojivoto
 app.kubernetes.io/name: web
 app.kubernetes.io/version: v11
spec:
 podSelector:
 matchLabels:
 app: web-svc
 port: http
 proxyProtocol: HTTP/1
EOF

The Server web-http matches the HTTP port for Pods that are part of the
web service by selecting any Pods with the app=web-svc label. It also has
the added benefit of allowing us to skip protocol detection on this port
by specifying the protocol as HTTP/1.
#
Now we'll create the Servers for emojivoto's backing services,
voting and emoji.
$ kubectl apply -f - <<EOF

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: emojivoto
 name: emoji-grpc
 labels:
 app.kubernetes.io/part-of: emojivoto
 app.kubernetes.io/name: emoji
 app.kubernetes.io/version: v11
 app: emoji-svc
 emojivoto/api: internal-grpc
spec:
 podSelector:
 matchLabels:
 app: emoji-svc
 port: grpc
 proxyProtocol: gRPC

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: emojivoto
 name: voting-grpc
 labels:
 app: voting-svc
 emojivoto/api: internal-grpc
spec:
 podSelector:
 matchLabels:
 app: voting-svc
 port: grpc
 proxyProtocol: gRPC
EOF

These are basically the same idea as the web Server, just with different
label selectors. Also, since emojivoto uses gRPC for these workloads, we
set the protocol to gRPC.
#
With that, all of our Servers have been created, and we are ready to begin
to allow communication within our namespace. We'll next define a single
MeshTLSAuthentication resource that matches all service accounts within
the emojivoto namespace.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: emojivoto-accounts
 namespace: emojivoto
spec:
 identities:
 - "*.emojivoto.serviceaccount.identity.linkerd.cluster.local"
EOF

Then, we will bind that MeshTLSAuthentication to our Servers. We could do it
individually on a port-by-port basis, but in this case it's simpler to bind
to every policy object in the namespace.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: emojivoto-only
 namespace: emojivoto
 labels:
 app.kubernetes.io/part-of: emojivoto
 project: emojivoto
spec:
 targetRef:
 kind: Namespace
 name: emojivoto
 requiredAuthenticationRefs:
 - name: emojivoto-accounts
 kind: MeshTLSAuthentication
 group: policy.linkerd.io
EOF

With that, we should see that the emojivoto workloads are able to communicate
with each other once again. You can check this by using a port forward to
look at the emojivoto app's GUI: start this forwarder, then open
http://localhost:8080/ in your browser.
$ kubectl -n emojivoto port-forward svc/web-svc 8080:80

What’s in a Name?

Linkerd Server objects are the core construct that allows us to apply policy to our applications. They work by matching Pods based on some selection criteria and then selecting a port by the port’s name. Kubernetes will allow you to create Pods without adding a name to a port, so you must be sure that when using Linkerd policy in your cluster, every port in your applications has a value set for its name.

We know that was a lot of YAML! Policy definition is the most labor-intensive task you’ll
need to undertake to use Linkerd. Luckily for all of us, policy is an
opt-in feature that you can prepare for in advance of turning it on. We
strongly recommend you thoroughly test all your policy objects in a
nonproduction environment before applying them to a live environment.

Test Early, Test Often

This bears repeating. Policy is complex and easy to get wrong. We
strongly encourage that you test your policy definitions in a
nonproduction environment before taking them to production.

Allowing Linkerd Viz

At this point, we’ve isolated the emojivoto namespace within the cluster:
nothing from outside the namespace gets to speak with anything inside the
namespace. Unfortunately, this will break things like monitoring applications
and ingress controllers. This is decidedly less than ideal: while we’ve done a
lot to secure our emojivoto namespace, we’ve caused other problems. For
example, we’ve left any potential operations folks with little to no ability
to monitor what our emojivoto workloads are doing.

To fix this, we can use dynamic policy resources that reference identities
from outside the namespace. In Example 8-7 we’ll walk you through
installing Linkerd Viz and allowing it to poll your applications, as shown in
Figure 8-5.

[image: luar 0805]
Figure 8-5. emojivoto policy allowing Linkerd Viz

Example 8-7. Let there be Viz!

Let's install the Linkerd Viz extension. We'll continue our theme of
installing things with Helm.
$ helm install linkerd-viz linkerd/linkerd-viz \
 -n linkerd-viz \
 --create-namespace \
 --version 30.8.4

This command will install the linkerd 2.13.4 version of Linkerd's Viz
extension.
#
Once that's done, wait for Viz to be ready.
$ linkerd check

We now want to restart our emojivoto workloads so that they start
collecting Tap data. This is critical for observability.
$ kubectl rollout restart deploy -n emojivoto

With that complete, we can now move on to validating that the Linkerd
Viz extension is unable to talk to our workloads.
$ linkerd viz stat deploy -n emojivoto

You should see all your deployments with no statistics associated with
them. That's because Linkerd's Prometheus instance is located in the
linkerd-viz namespace, and it hasn't been given permission to talk to
anything in the emojivoto namespace.

Let's fix that now. First, we define a MeshTLSAuthentication resource
that matches the identities used by Tap and Prometheus, which are the
parts of Linkerd Viz that collect data.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: linkerd-viz
 namespace: emojivoto
spec:
 identities:
 - "tap.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
 - "prometheus.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
EOF

Next, we permit that MeshTLSAuthentication to talk to Pods in the
emojivoto namespace, using an AuthorizationPolicy as before.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-viz
 namespace: emojivoto
spec:
 targetRef:
 kind: Namespace
 name: emojivoto
 requiredAuthenticationRefs:
 - name: linkerd-viz
 kind: MeshTLSAuthentication
 group: policy.linkerd.io
EOF

At this point, Tap and Prometheus should be happily collecting data.
Give them a minute or so to get something substantive, then you should
be able to see good results from a second "linkerd viz stat" command.
$ linkerd viz stat deploy -n emojivoto

With that complete, we’ve now walked through what you need to do to isolate traffic within a namespace but still allow in an external monitoring tool like the Linkerd Viz extension. You now have the basic knowledge required to begin isolating your own workloads by namespace with Linkerd’s policy tools. Next, we’ll get a little more granular and only allow specific service accounts to access our workloads.

Locking down by port and identity

Namespace isolation goes a long way to further hardening our environment, but
we can go further than that. With the isolation we’ve applied so far, any
request is allowed as long as the calling workload and the called workload are
both in the emojivoto namespace, but this is probably more permissive than
we really need. To go a little further, we can be explicit about which accounts
are allowed to talk to which workloads—but of course, that requires knowing
exactly which communications are truly required by the application.

Figuring out those requirements by inspecting code is tedious and error-prone,
but fortunately we can do better than that by using tools like Linkerd Viz (or
its commercial cousins from Buoyant) to help us map our application’s
communication and build our policy objects.

We need only a single Linkerd Viz CLI command to see which workloads are communicating with one another in the emojivoto namespace:

$ linkerd viz edges deploy -n emojivoto

This will produce a list of Deployments that are communicating with one another in this namespace. Deployments listed under the SRC column are the sources (clients) for requests; those listed under DST are the destinations (servers).

If you’d prefer to investigate using the Viz dashboard rather than its CLI, you can run:

$ linkerd viz dashboard

The Viz dashboard is out of scope for this book, but it’s fairly intuitive, and we encourage you to poke around in it if you haven’t had the chance to use it before.

From the output we can see the connections between our emojivoto workloads, as shown in Figure 8-6.

[image: luar 0806]
Figure 8-6. emojivoto inter-workload communications

emojivoto is a very simple application, so there are only three connections:

	
vote-bot talks to the web Deployment.

	
web communicates with voting.

	
web communicates with emoji.

With that, we can begin building policy. We’ll start by gathering the Subject
names on our individual workloads, as shown in Example 8-8. We’ll need to
gather the names for vote-bot and web. We don’t need to allow voting or emoji
to communicate with any other services, as neither of them act as clients for
any other services.

Example 8-8. Gathering Subject names

Start by grabbing the name of the first vote-bot Pod (which should
be the only vote-bot Pod).
#
This kubectl command uses -l app=vote-bot to pick all Pods with the
"app: vote-bot" label, then uses JSONPath to pick the metadata.name
of the first Pod in the list.
$ VOTEBOTPOD=$(kubectl get pods -n emojivoto -l app=vote-bot \
 -o jsonpath='{ .items[0].metadata.name }')

Now use the Pod name for vote-bot to get the Subject name.
$ linkerd identity $VOTEBOTPOD -n emojivoto | grep Subject:

This will print out the Subject name for the vote-bot Pod, which is
the name of that Pod's identity. It will look like:
#
Subject: CN=default.emojivoto.serviceaccount.identity.linkerd.cluster.local
#
We only want the part after CN=, so
default.emojivoto.serviceaccount.identity.linkerd.cluster.local.

Repeat for the web Pod, which we can find using the "app: web-svc" label.
$ WEBPOD=$(kubectl get pods -n emojivoto -l app=web-svc \
 -o jsonpath='{ .items[0].metadata.name }')

$ linkerd identity $WEBPOD -n emojivoto | grep Subject:

It should output a name like:
Subject: CN=web.emojivoto.serviceaccount.identity.linkerd.cluster.local
#
and again, we'll want the part after CN=:
web.emojivoto.serviceaccount.identity.linkerd.cluster.local

What’s in a Name?

Why does the vote-bot workload get an identity named “default” while the
web workload gets one named “web”? If you look carefully at the vote-bot
and web Deployments, you’ll find that web specifies which ServiceAccount
to use, but vote-bot does not…​so vote-bot gets the default. This is
not a best practice. In a perfect world, every workload would get its own
ServiceAccount.

We’re showing this because while it’s not ideal, it’s very common to see
this default ServiceAccount in use when trying to set up policy for
applications that weren’t designed with zero trust in mind—and you may need
to create new ServiceAccounts in addition to creating policy resources!

With those two Subject names, we can update our policy to be much more explicit
about who is allowed to talk to whom in the emojivoto namespace. It’s worth
remembering that in the previous section we created a number of policy objects
that allow the emojivoto workloads to talk to each other. In
Example 8-9, we’ll be reusing some and removing others in order
to move from a more permissive to less permissive security posture, as shown
in Figure 8-7.

[image: luar 0807]
Figure 8-7. emojivoto less permissive model

Server-Side Policy

In Linkerd, the workload-based policy engine enforces all policy decisions on the server side. When we configure deny as the default in our environment, we have to go through each server individually to ensure all its clients have been explicitly allowed.

Example 8-9. Restricting interapp communication

We'll start by creating two new MeshTLSAuthentication objects. The
first allows only the default identity (currently used by the vote-bot);
the second allows only the web identity.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: default
 namespace: emojivoto
spec:
 identities:
 - 'default.emojivoto.serviceaccount.identity.linkerd.cluster.local'

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: web
 namespace: emojivoto
spec:
 identities:
 - 'web.emojivoto.serviceaccount.identity.linkerd.cluster.local'
EOF

Each object corresponds to either the vote-bot or web application. We
inserted the names we gathered in Example 8-8 to populate these
objects. It's a good practice to name them after the identity they
represent, rather than the workload -- in particular, the "default"
identity is probably used by more than just the vote-bot, so we don't
want to name that MeshTLSAuthentication "vote-bot" as that might give
the impression that we need only think about the vote-bot when using
that!

With that done, we can begin binding those authentications to our servers.
We'll start with allowing vote-bot (using the default identity) to talk
to web.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 labels:
 app.kubernetes.io/part-of: emojivoto
 project: emojivoto
 name: allow-default-to-web
 namespace: emojivoto
spec:
 requiredAuthenticationRefs:
 - group: policy.linkerd.io
 kind: MeshTLSAuthentication
 name: default
 targetRef:
 group: policy.linkerd.io
 kind: Server
 name: web-http
EOF

This AuthorizationPolicy will allow any workload using the default
identity to talk to the web workload, using the "web-http" Server we
already created.

Now we will give the web application access to emoji and voting. In
order to accomplish this we will need to create two AuthorizationPolicy
objects, one for each Server.
$ kubectl apply -f - <<EOF
apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 labels:
 app.kubernetes.io/part-of: emojivoto
 project: emojivoto
 name: allow-web-to-voting
 namespace: emojivoto
spec:
 requiredAuthenticationRefs:
 - group: policy.linkerd.io
 kind: MeshTLSAuthentication
 name: web
 targetRef:
 group: policy.linkerd.io
 kind: Server
 name: voting-grpc

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 labels:
 app.kubernetes.io/part-of: emojivoto
 project: emojivoto
 name: allow-web-to-emoji
 namespace: emojivoto
spec:
 requiredAuthenticationRefs:
 - group: policy.linkerd.io
 kind: MeshTLSAuthentication
 name: web
 targetRef:
 group: policy.linkerd.io
 kind: Server
 name: emoji-grpc
EOF

Here, the allow-web-to-voting AuthorizationPolicy allows any workload
using the web identity to talk to the voting workload; allow-web-to-emoji
does the same for the emoji workload. Again, we're using Servers we created
earlier.

Now that we have our new policies in place, we can delete the policies that
allow all the apps in the emojivoto namespace to talk to one another.
$ kubectl delete authorizationpolicies.policy.linkerd.io emojivoto-only -n emojivoto

Finally, we'll use a port forward to test the emojivoto app and be sure it
still operates normally.
$ kubectl -n emojivoto port-forward svc/web-svc 8080:80

Order of Operations

As we moved from namespace-wide permissions to more specific permissions, we created our new policy objects before removing the namespace-wide permissions. If we had inverted the order, we would have disrupted communication between the emojivoto workloads.

You have now further restricted access to the apps in the emojivoto namespace. Now communication between your workloads will occur only if it has been explicitly authorized by your platform team. Every denial is logged by the Linkerd proxy, and your security team can use these logs to identify malicious behavior in your clusters. Hopefully you can see how this sort of hardening dramatically reduces the risk of an intrusion in your environment and, with proper monitoring and logging, dramatically increases the likelihood that suspicious behavior will be caught.

Summary

Linkerd’s Server-based policy is its oldest policy mechanism, but it’s still
incredibly effective in a great many situations. Server-based policy gives you
the ability to set known, trustworthy defaults while also making it
straightforward to tune everything for your application, and Linkerd’s Tap
ability lets you quickly get a sense of what you need to sort out.

Chapter 9. Linkerd Route-Based Policy

In Chapter 8, we discussed implementing a Linkerd
Server-based policy to enhance the security of the emojivoto application. This
policy ensures that Linkerd effectively safeguards the application’s workload,
preventing unauthorized workloads from making requests. Suppose we want to go
further, though? For example, consider a situation where you have a sensitive
application. You need to be certain that only specific ServiceAccounts are
allowed to make changes, and only certain others have access to read.

That’s where Linkerd’s route-based policy mechanism comes in. In this chapter, we’ll take a closer look at
what route-based policy can do and how to use it.

Route-Based Policy Overview

Route-based policy gives Linkerd a way to express policy that depends not only
on which workloads are in play, but also on which specific requests are being
made. These specific HTTP requests are identified by using Gateway API
HTTPRoute resources to specify matches against the HTTP path, method, headers,
etc.—almost anything except the body can be used. Requests are still
authenticated using mTLS identities.

Gateway API HTTPRoute resources work by associating one or more parents with
one or more rules. When using Gateway API for ingress, the parents of an
HTTPRoute will be Gateway resources; however, this doesn’t make much sense
when using Gateway API to configure a service mesh. When using HTTPRoutes with
Linkerd, the parents will be Services instead, and the HTTPRoute will only
apply to traffic that is directed to the parent Service and that matches a
rule specified by the HTTPRoute.

HTTPRoutes, Gateway API, and You

Linkerd 2.13 supports the HTTPRoute object, but it actually uses a copy in the
policy.linkerd.io/v1 API group, rather than the official
gateway.networking.k8s.io/v1beta1 HTTPRoute. This sidesteps issues around
Gateway API conformance.

When Linkerd 2.13 shipped, it wasn’t possible for a service mesh to be conformant to the Gateway API standard. By Linkerd 2.14, Gateway API had defined the Mesh conformance profile,
which specifies what it means for a service mesh to be conformant with Gateway
API. Linkerd 2.14 and higher are conformant with the Mesh profile and support
the gateway​.networking​.k8s.io/v1beta1 HTTPRoute (as well as the older copy
that Linkerd 2.13 supported). The end result is that some tools that rely on
the HTTPRoute object aren’t fully compatible with Linkerd 2.13, but they’re
happier with Linkerd 2.14 and higher.

(If you want to know more about all of this stuff, check out
the Gateway API introduction and read about Gateway API and the GAMMA
initiative.)

Route-based policy is the most detailed and granular level of policy in
Linkerd, and using it requires a significant amount of planning and a
significant amount of YAML. When you’re ready to secure your environments to
this degree, you need to be aware of the cost in terms of engineering time
and effort. We also strongly recommend that when building any kind of policy
you use multiple environments—at least one for building and testing policy,
and another for enforcing it. Ideally, you’ll integrate policy creation,
auditing, and promotion into your standard application development lifecycle.

The booksapp Sample Application

We’ll be using the booksapp sample
application to show how you can use route-based policy to
restrict calls based not just on the workload, but also on the specific
endpoints being accessed.

As shown in Figure 9-1, the app is very similar to emojivoto.

[image: luar 0901]
Figure 9-1. booksapp interapplication connections

In booksapp, two of our backing services (books and authors) need to
talk to each other—but they shouldn’t all have unrestricted access to each
other. For example, the authors workload should have access to read from the
books workload, so that it can show the books each author has written. The
UI for authors also allows you to add a new book for the author you’re
looking at, so authors needs to be able to POST new books to books.
However, it mustn’t be able to modify or delete books.

Ultimately, we want to allow only the following requests, and no others:

	
Infrastructure:

	
The kubelet needs to be able to run health checks for all our workloads.

	
Linkerd Viz needs to be able to scrape metrics from all workloads.

	
Core application functionality:

	
webapp needs to be able to read, create, delete, and update both authors and books.

	
authors needs to be able to read and create books.

	
books needs to be able to read and create authors.

	
Traffic generator:

	
traffic needs to have full access to webapp.

This can be seen in Figure 9-2.

[image: luar 0902]
Figure 9-2. booksapp application policy overview

Installing booksapp

The setup is fairly simple. We’ll pull down the latest version of the booksapp
application, add the Linkerd proxy, and apply it to our cluster, as shown in
Example 9-1.

Example 9-1. Setup

Install booksapp...
$ kubectl create ns booksapp && \
 curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/booksapp.yml \
 | linkerd inject - \
 | kubectl -n booksapp apply -f -

Wait for Pods to be running...
$ kubectl rollout status -n booksapp deploy

...then test using a port forward.
$ kubectl -n booksapp port-forward svc/webapp 8080:80

Now browse to localhost:8080.

Configuring booksapp Policy

At this point, booksapp is running with no restrictions: everything can
access everything else. This is often the simplest place to start when working
with policy; once you know that the application is working, you can start
tightening things up.

We’ll work through our booksapp policy in steps:

	
At the start, we’ll work on the low-level infrastructure, switching to
default deny and allowing Linkerd Viz to still work. We’ll use
Server-based policy for this; it doesn’t require the granularity of route-based
policy, so we’ll avoid the complexity.

	
We’ll next configure minimal route-based policy to allow read-only access to the
application.

	
We’ll then allow writes to the authors workload, then the books
workload.

	
Finally, we’ll allow access from the traffic generator to the webapp.

The advantage of doing things in this order is that it should quickly make it
possible to see at least part of the application working, and we can do
incremental testing. This is usually a very good idea when doing complex
configuration, and (as we’ve said before) route-based policy is very complex.

Infrastructure Policy

The first step is infrastructure policy. We’ll switch the booksapp namespace
to default deny using a Server-based policy. In turn, this will require us to
explicitly permit Linkerd Viz to keep working. All of this is shown in
Example 9-2.

Example 9-2. books-infra-policy.yaml

Create books-infra-policy.yaml.
$ cat <<EOF > books-infra-policy.yaml

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: booksapp
 name: linkerd-admin
spec:
 podSelector:
 matchLabels: {}
 port: linkerd-admin
 proxyProtocol: HTTP/2

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-viz
 namespace: booksapp
spec:
 targetRef:
 kind: Namespace
 name: booksapp
 requiredAuthenticationRefs:
 - name: linkerd-viz
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: linkerd-viz
 namespace: booksapp
spec:
 identities:
 - "tap.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
 - "prometheus.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
EOF

This is similar to what we did in Chapter 8 to allow Linkerd Viz. Let’s go ahead and apply
the infrastructure policy YAML, then switch the booksapp namespace to
default deny, as shown in Example 9-3.

Example 9-3. Setting up infrastructure policy

Apply the YAML we just created...
$ kubectl apply -f books-infra-policy.yaml

Switch `booksapp` to default deny...
$ kubectl annotate namespace booksapp config.linkerd.io/default-inbound-policy=deny

...and finally, restart the booksapp workloads.
$ kubectl rollout restart deployment -n booksapp

What About Health Checks?

The astute observer will notice that while our Pods have readiness and
liveness probes configured, they’re still starting and staying ready even
though we haven’t carved out any explicit authorizations for the kubelet to
probe our Pods. That’s because Linkerd will, by default, look for liveness and
readiness probes for your applications and create a default HTTPRoute that
will allow that traffic—but it will only do this as long as you haven’t
created HTTPRoutes yourself.

As soon as you begin creating your own HTTPRoutes for your application,
Linkerd will delete its default routes, which means that you’ll need to ensure
that you create routes for your liveness and readiness probes.

At this point, with the booksapp namespace switched to default deny and only
Viz authorized, our application won’t work at all. Let’s continue with getting
our app running.

Read-Only Access

The next thing we’ll do is use route-based policy to allow read-only access to
the application. We’ll be able to use a web browser to look up books and
authors, but we won’t be able to change anything.

Everything we’re doing from this point forward is just applying YAML, so we’ll
just show the YAML that you need to apply. We’ll do this from the inside
out, so our first step is to permit the books workload to fetch
/authors.json and /authors/ from the authors workload. This requires
four resources.

First up, we need to define a Server for the authors workload in the books
namespace, as shown in Example 9-4. This will allow us to use
an HTTPRoute to configure policy for specific requests being made to the
authors workload.

Example 9-4. authors Server

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: booksapp
 name: authors
 labels:
 app: authors
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 podSelector:
 matchLabels:
 app: authors
 project: booksapp
 port: service
 proxyProtocol: HTTP/1

Next, we’ll create an HTTPRoute specifying the two requests that we want to
allow, as shown in Example 9-5.

Example 9-5. authors HTTPRoute

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: authors-get-route
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 parentRefs:
 - name: authors
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/authors.json"
 method: GET
 - path:
 value: "/authors/"
 type: "PathPrefix"
 method: GET

Which HTTPRoute?

We’ve used policy.linkerd.io HTTPRoutes to accommodate readers with
older versions of Linkerd. If you’re using Linkerd 2.14 or newer, though, feel
free to switch to gateway.network⁠ing​.k8s.io/v1beta1 HTTPRoutes!

Finally, we can specify an AuthorizationPolicy/MeshTLSAuthentication pair,
where the targetRef of the AuthorizationPolicy is the HTTPRoute we just
defined, to define which identities are allowed to use this HTTPRoute, as shown in Example 9-6.

Example 9-6. authors AuthorizationPolicy and MeshTLSAuthentication

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-books-to-authors
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: authors-get-route
 requiredAuthenticationRefs:
 - name: books
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: books
 namespace: booksapp
spec:
 identities:
 - "books.booksapp.serviceaccount.identity.linkerd.cluster.local"

Once these resources are applied, the books workload will be able to talk to
the authors workload. However, we’ve just broken health checks for the
authors workload, as we noted earlier. As soon as we attached our
HTTPRoute to the authors Server, the probe routes generated by Linkerd went
away.

To allow those probe requests, we’ll use a separate HTTPRoute, which will
allow us to use a NetworkAuthorization to permit unauthenticated probe
requests from anywhere in our cluster. We definitely don’t want to permit any
other requests to use that NetworkAuthorization, so we really do need a
separate HTTPRoute for the probes! This is shown in
Example 9-7.

Example 9-7. Re-permitting authors health probes

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: books-probes
 namespace: booksapp
spec:
 parentRefs:
 - name: authors
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/ping"
 method: GET

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: authors-probe
 namespace: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: books-probes
 requiredAuthenticationRefs:
 - name: probe-authn
 kind: NetworkAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: NetworkAuthentication
metadata:
 name: probe-authn
 namespace: booksapp
spec:
 networks:
 - cidr: 0.0.0.0/0
 - cidr: ::/0

What’s in a CIDR?

The probe-authn NetworkAuthorization is unnecessarily broad; it should
really be limited just to the Pod CIDR range for your cluster. We can’t
predict that, so you should feel free to replace the CIDR ranges in the
probe-authn NetworkAuthentication resource with the appropriate values for
your cluster.

At this point, the books workload should be able to read from the authors
workload, and probes to the authors workload should work as well. Now we
need to repeat all of this to permit the authors workload to talk to
books, as shown in Example 9-8.

Example 9-8. Allowing authors to read from books

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: booksapp
 name: books
 labels:
 app: books
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 podSelector:
 matchLabels:
 app: books
 project: booksapp
 port: service
 proxyProtocol: HTTP/1

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: books-get-route
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 parentRefs:
 - name: books
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/books.json"
 method: GET
 - path:
 value: "/books/"
 type: "PathPrefix"
 method: GET

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-authors-to-books
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: books-get-route
 requiredAuthenticationRefs:
 - name: authors
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: authors
 namespace: booksapp
spec:
 identities:
 - "authors.booksapp.serviceaccount.identity.linkerd.cluster.local"

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: authors-probes
 namespace: booksapp
spec:
 parentRefs:
 - name: authors
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/ping"
 method: GET

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: authors-probe
 namespace: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: authors-probes
 requiredAuthenticationRefs:
 - name: probe-authn
 kind: NetworkAuthentication
 group: policy.linkerd.io

Finally, we need to permit webapp to talk to both authors and books. We
can use our existing HTTPRoutes here, and we don’t need another Server. All we
need to do is add new AuthorizationPolicy and MeshTLSAuthentication
resources, as shown in Example 9-9.

What’s in an Identity?

We could also do this by adding another identity to our existing authors and
books MeshTLSAuthentications. However, the fine granularity available with
route-based policy is a major point in its favor, and using a separate
AuthorizationPolicy and MeshTLS­Au⁠thentication helps preserve that.

Example 9-9. Permitting web access

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-webapp-to-books
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: authors-get-route
 requiredAuthenticationRefs:
 - name: webapp
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-webapp-to-authors
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: authors-get-route
 requiredAuthenticationRefs:
 - name: webapp
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: webapp
 namespace: booksapp
spec:
 identities:
 - "webapp.booksapp.serviceaccount.identity.linkerd.cluster.local"

At this point, we should be able to use a web browser to view the booksapp
GUI, and we should be able to read everything, but modify nothing.

Advanced Techniques

In some situations, you might want to combine multiple workloads in a single
Server definition. As long as the workloads all share the same port and
proxyProtocol, you can do this using the In operator of the Kubernetes podSelector:

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: emojivoto
 name: authors-and-books
 labels:
 app.kubernetes.io/part-of: emojivoto
 project: emojivoto
spec:
 podSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - authors
 - books
 port: http
 proxyProtocol: HTTP/1

Likewise, MeshTLSAuthentications can list multiple identities:

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: webapp-and-traffic
 namespace: booksapp
spec:
 identities:
 - "webapp.booksapp.serviceaccount.identity.linkerd.cluster.local"
 - "traffic.booksapp.serviceaccount.identity.linkerd.cluster.local"

And, of course, HTTPRoutes can list multiple matches, as we’ve seen throughout
this chapter.

These advanced techniques sacrifice a certain amount of granularity, but they
can make it considerably easier to set up practical Linkerd policies.

Enabling Write Access

The booksapp application is supposed to allow updating both books and authors, so our
next task will be to allow writes to the authors workload. Once this is
done, we’ll be able to make changes to our authors (including updates,
additions, and deletions), but we still won’t be able to change any books.

The way booksapp is built, both webapp and books need to be able to
write to authors. We’ll start by creating an HTTPRoute, shown in
Example 9-10, that describes the kinds of modification requests
we want to allow.

Example 9-10. Modification requests to authors

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: authors-modify-route
 namespace: booksapp
spec:
 parentRefs:
 - name: authors
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/authors/"
 type: "PathPrefix"
 method: DELETE
 - path:
 value: "/authors/"
 type: "PathPrefix"
 method: PUT
 - path:
 value: "/authors.json"
 method: POST
 - path:
 value: "/"

This HTTPRoute is attached to our existing authors Server, because it
describes requests being made to the authors workload. Given that HTTPRoute,
we want to allow both books and webapp to make those requests, as shown in
Example 9-11.

Example 9-11. Permitting modifications

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: authors-modify-policy
 namespace: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: authors-modify-route
 requiredAuthenticationRefs:
 - name: webapp-books
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: webapp-books
 namespace: booksapp
spec:
 identities:
 - "webapp.booksapp.serviceaccount.identity.linkerd.cluster.local"
 - "books.booksapp.serviceaccount.identity.linkerd.cluster.local"

Here we’re using the technique of listing multiple identities in the same
MeshTLS­Au⁠thentication, since webapp and books need exactly the same
permissions in this example.

After all of this is done, we have the policy setup shown in
Figure 9-3.

[image: luar 0903]
Figure 9-3. books after setting up policy for authors

Allowing Writes to books

We’ll finish up our booksapp functionality by allowing writes to the books
workload, as shown in Example 9-12. This is exactly parallel to
allowing writes to authors and will finally permit booksapp to fully
function.

Example 9-12. Modification requests to books

apiVersion: policy.linkerd.io/v1beta1
kind: HTTPRoute
metadata:
 name: books-modify-route
 namespace: booksapp
spec:
 parentRefs:
 - name: books
 kind: Server
 group: policy.linkerd.io
 rules:
 - matches:
 - path:
 value: "/books/"
 type: "PathPrefix"
 method: DELETE
 - path:
 value: "/books/"
 type: "PathPrefix"
 method: PUT
 - path:
 value: "/books.json"
 method: POST
 - path:
 value: "/"

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: books-modify-policy
 namespace: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: HTTPRoute
 name: books-modify-route
 requiredAuthenticationRefs:
 - name: webapp-authors
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: webapp-authors
 namespace: booksapp
spec:
 identities:
 - "webapp.booksapp.serviceaccount.identity.linkerd.cluster.local"
 - "authors.booksapp.serviceaccount.identity.linkerd.cluster.local"

Reenabling the Traffic Generator

Finally, we’ll add permission for the traffic workload, which generates some
load at all times, to access the webapp workload. The booksapp application doesn’t
actually need the traffic generator, but it’s very useful for debugging and
demos! So let’s get it running again.

We’ll start with a Server for webapp (which we haven’t needed before), so
that we can write policies allowing requests to it. This is shown in
Example 9-13.

Example 9-13. A Server for webapp

apiVersion: policy.linkerd.io/v1beta1
kind: Server
metadata:
 namespace: booksapp
 name: webapp-server
 labels:
 app: webapp
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 podSelector:
 matchLabels:
 app: webapp
 project: booksapp
 port: service
 proxyProtocol: HTTP/1

Given this Server, it’s straightforward to permit traffic to access it.
We’ll take the lazy way out and write a Server-based policy here, as shown in
Example 9-14, since we really do want traffic to be able to
do basically everything.

Example 9-14. Permitting the traffic generator

apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
 name: allow-traffic
 namespace: booksapp
 labels:
 app.kubernetes.io/part-of: booksapp
 project: booksapp
spec:
 targetRef:
 group: policy.linkerd.io
 kind: Server
 name: webapp
 requiredAuthenticationRefs:
 - name: traffic
 kind: MeshTLSAuthentication
 group: policy.linkerd.io

apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
 name: traffic
 namespace: booksapp
spec:
 identities:
 - "traffic.booksapp.serviceaccount.identity.linkerd.cluster.local"

Summary

Linkerd’s route-based policy mechanism is the most complex part of Linkerd, enough so
that there are actually a number of powerful tools, both open source and
commercial, for creating and debugging policies in Linkerd. The Tap component
of Linkerd Viz is the simplest, most readily available tool here; likewise,
the linkerd diagnostics command that we discussed in Chapter 6 has a lot
to offer. On the commercial side, we would be remiss if we didn’t mention the
policy tools available in Buoyant Enterprise for Linkerd.

Overall, policy in Linkerd is a powerful and extensible tool for managing
traffic in your cluster, and route-based policy in particular is at once a
very powerful mechanism and a very focused tool. It’s a great way to further
refine policy that you’ve already established with the Server-based mechanism.

Chapter 10. Observing Your Platform with Linkerd

One of the challenges of working with microservices applications is monitoring
them. When dealing with multiple development teams, even in a single language,
understanding which workloads are communicating and surfacing useful metrics from those communications can be a huge challenge. Every developer,
language, and framework will prioritize different details, and organizations
need a single way to view all those different services.

Observability refers to this ability to understand a system by looking at it
from the outside. An application can be more or less observable, so when we
talk about observability in Linkerd we’re referring to how it impacts the
observability of your applications. In this chapter, we’ll look at how Linkerd
increases observability by providing all your apps with standard metrics,
allowing you to see the relationships between your microservices, and allowing
you to intercept and analyze interapp communications.

Why Do We Need This?

As with application security, microservices present new challenges for
platform engineers. The ability to dynamically scale components, create and
update services on demand, and dynamically provision infrastructure increases
the difficulty of understanding the health of our applications. As your
organization builds out your platform for application developers, it’s
important that you make it easy for teams to do the right thing.

How Does Linkerd Help?

Linkerd helps make observability part of your platform. When you add a
workload to the mesh, it begins to automatically surface important information
about that workload’s behavior. That means that when we add Linkerd to
our platform, we make it easy for all our application teams to do the right
thing in terms of observability. If you allow your application to join the
mesh, you can automatically surface performance, health, and relationship data
about your app in a standard way. If you go deeper and build service profiles,
you can save and share critical information about the individual routes
within your apps.

As we go through this chapter, we’ll explore how to observe your applications
with Linkerd using the linkerd CLI. Everything we cover via the CLI can also
be surfaced via the Linkerd Viz dashboard. We’ll cover the dashboard near the
end of this chapter.

As we mentioned in Chapter 1, there are three golden metrics
that have repeatedly proven critical for understanding what’s going on in a
microservices application: traffic, success rate, and latency (see Figure 1-8).

In a microservices application, having these metrics available for every
workload is critical: with just these golden metrics, you should be able to
understand how well a given workload is performing as well as what areas of
your system need special attention or optimization.

The Linkerd proxy automatically collects detailed metrics from every
workload and request and makes them available via Prometheus, so that you
can surface this information within your organization using a variety of widely available
tools.

Observability in Linkerd

We’ll use the booksapp and emojivoto applications to demonstrate
observability in Linkerd. Both of these applications deliberately include
various failures: we’ll use Linkerd observability tools to find where,
exactly, the failures are. (Fixing them is left as an exercise for the
reader!)

Setting Up Your Cluster

You’ll need a cluster with Linkerd and Linkerd Viz already installed (please
refer to Chapter 3 if you want a refresher on setting up such
a cluster). We’ll start by cloning the
booksapp sample application
and emojivoto sample application
repositories, as shown in Example 10-1, since we’ll need the repositories to
appropriately profile these sample applications.

Example 10-1. Cloning the repos

Clone the booksapp repo
$ git clone https://github.com/BuoyantIO/booksapp.git

Clone the emojivoto repo
$ git clone https://github.com/BuoyantIO/emojivoto.git

Next, we can get the applications up and running in our cluster, as shown in

Example 10-2.

Example 10-2. Setting up our apps

Install booksapp
$ kubectl create ns booksapp && \
 curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/booksapp.yml \
 | linkerd inject - | kubectl -n booksapp apply -f -

Install emojivoto
$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/emojivoto.yml \
 | linkerd inject - | kubectl apply -f -

Check that booksapp is ready
$ linkerd check --proxy --namespace booksapp

Check that emojivoto is ready
$ linkerd check --proxy --namespace emojivoto

Once our check returns healthy, we can start looking at our applications using
the linkerd viz command, as shown in Example 10-3. Note that it
may take a minute or so for Linkerd Viz to start showing any data, since it
has to start by collecting enough data to generate statistics.

Example 10-3. Gathering application metrics

View namespace metrics
$ linkerd viz stat ns

View deployment metrics
$ linkerd viz stat deploy -n emojivoto
$ linkerd viz stat deploy -n booksapp

View Pod metrics
$ linkerd viz stat pod -n emojivoto
$ linkerd viz stat pod -n booksapp

You can immediately see just from these basic queries that the emojivoto
and book⁠s­app applications are both having reliability issues. In the following
sections, we’ll dive deeper into our applications to isolate the source of the
problem.

Tap

Linkerd Viz Tap allows authorized users to collect metadata about the requests
flowing between your applications. It will surface details about request
headers, URIs, response codes, and more, permitting you to access this data
on demand for
debugging, as shown in Example 10-4. Tap also
provides convenient tooling for validating the TLS status of your interapp connections.

Example 10-4. Viewing Tap data

Tap the emojivoto web frontend
$ linkerd viz tap deploy/web -n emojivoto

The linkerd viz tap command will run until you send it the break signal. It displays
live data from the proxy, which will give details about the individual requests
that go to and from the web deployment. Each line will show the source and
destination details, TLS status, any status information, and other metadata as
available.

Installing Tap

Tap is built into the Linkerd Viz extension, so it will be automatically
installed by the linkerd viz install command. However, if any of your
workloads were running before you installed Viz, you’ll need to restart those
workloads before Tap will be available.

Tap data is a powerful diagnostic tool that can provide insights into how
exactly your apps are communicating with one another. If Tap is enabled when
you view a workload in the Linkerd Viz dashboard, it will automatically
display a summary of requests. Be sure to try to
view the Tap data for emojivoto’s workloads when you look at the Viz
dashboard later in this chapter.

Service Profiles

Linkerd service profiles, embodied by the ServiceProfile resource, allow you
to give the mesh detailed information about how a given workload is used. At
its most basic level, a ServiceProfile defines what routes are allowed for a
workload. Once routes are defined, you can configure per-route metrics,
timeouts, and retries, as well as which HTTP statuses will be considered failures.

ServiceProfile and HTTPRoute

The Linkerd project is in the midst of a transition to fully adopting
Gateway API. As the project works toward
that objective, you’ll see a few Linkerd custom resources, including
ServiceProfile, begin to be deprecated.

In Linkerd 2.13 and 2.14, ServiceProfile and HTTPRoute often have mutually
exclusive functionality, which makes it particularly important to review the
ServiceProfile documentation
to verify the current state of ServiceProfile as you begin using these resources in
your cluster.

You can build out ServiceProfiles in a number of ways. The most flexible way
is to write them by hand, but the Linkerd CLI provides a few
different ways to generate them automatically, as you’ll see in the following sections.

Configuring routes for emojivoto

The emojivoto application has three workloads:

	
The emoji and voting workloads use gRPC for communication, with their
gRPC messages defined in protobuf files.

	
The web workload uses HTTP to interact with a web browser.

We’ll start with emoji and voting, since they have protobuf files.
Protobuf files work as a guide to our APIs, and they can be consumed by the
Linkerd CLI to automatically create ServiceProfiles, as shown in
Example 10-5.

Example 10-5. Creating ServiceProfiles from protobuf files

Begin by checking for any existing routes.
$ linkerd viz routes -n emojivoto deploy

The output will show every workload in the emojivoto
namespace with a default route. We will now work to
create application-specific routes for emoji and
voting.

Create a ServiceProfile object.
$ linkerd profile --proto emojivoto/proto/Emoji.proto emoji-svc -n emojivoto

This creates, but doesn't apply, the ServiceProfile
for the emoji service. Take a minute to review the
profile object so you understand the basic structure.
We'll be using these ServiceProfiles again in the
next chapter.

Create and apply ServiceProfiles for emoji and voting.
$ linkerd profile --proto emojivoto/proto/Emoji.proto emoji-svc -n emojivoto |
 kubectl apply -f -

$ linkerd profile --proto emojivoto/proto/Voting.proto voting-svc -n emojivoto |
 kubectl apply -f -

Now you can view the updated route data in your environment to see
your deployed applications. You may need to wait a minute
for data to populate.
$ linkerd viz routes deploy/emoji -n emojivoto
$ linkerd viz routes deploy/voting -n emojivoto

Each app will show and store details about which routes have
been accessed.

Storing Linkerd Viz Metrics

Once you’ve created ServiceProfiles for your applications, Linkerd’s Viz
extension will store that data in Prometheus. A very important part of taking
Linkerd to production is planning how you’ll manage this Prometheus data in
the long term. The Prometheus component that ships with Linkerd Viz is not
sufficient for long-term data collection: it stores data in memory, and it
will lose data every time it restarts.

With our routes created for emoji and voting, we have two-thirds of our
application covered with ServiceProfiles. That leaves the web component.
Although we know this must speak HTTP because we talk to it
with a browser, unfortunately the authors of this component didn’t actually write any API
documentation for it at all. This leaves us to figure out how to build
a ServiceProfile with no information about how the API is structured.

Thankfully, we can use Linkerd’s Tap functionality to do just that, as shown
in Example 10-6.

Example 10-6. Creating ServiceProfiles with Tap

Create a new ServiceProfile with Tap.
$ linkerd viz profile -n emojivoto web-svc --tap deploy/web --tap-duration 10s |
 kubectl apply -f -

After you run that command, you should expect to see a
10-second pause as Linkerd watches live traffic to the
service in question and builds a profile.

View the new profile.
$ kubectl get serviceprofile -n emojivoto web-svc.emojivoto.svc.cluster.local -o yaml

You will see the object created with two routes, list and vote.

View the updated route data for web. You may need to allow a minute
for data to populate.
$ linkerd viz routes deploy/web -n emojivoto

Linkerd Default Routes

Linkerd’s ServiceProfile objects are intended to define an entire API, but
what happens when we make a mistake, or when an API changes without the
profiles being updated? That’s where the default route comes in: any route
that isn’t explicitly defined in a ServiceProfile is treated as a default
route.

Default routes are subject to default policies regarding retries and timeouts.
Data about traffic on default routes is aggregated into the catchall
[DEFAULT] route entry.

Building routes for booksapp

Now that we’re finished with the emojivoto application, we need to set
things up for the booksapp application.

Whereas emojivoto included protobuf files for some of its APIs, booksapp ships
with OpenAPI definitions instead. Like protobuf files, OpenAPI definitions
(often called “Swagger definitions,” after an earlier version of the standard)
serve as definitions of how to use the API, and Linkerd knows how to read
them to create ServiceProfiles.

Creating a ServiceProfile with an OpenAPI or Swagger definition is almost
exactly like creating a ServiceProfile from a protobuf file, as shown in
Example 10-7. Please be sure to follow along, as we’ll
be using these ServiceProfiles again in Chapter 11!

Example 10-7. Creating ServiceProfiles with OpenAPI definitions

Create routes for booksapp.
$ linkerd profile --open-api booksapp/swagger/authors.swagger authors -n booksapp |
 kubectl apply -f -

$ linkerd profile --open-api booksapp/swagger/webapp.swagger webapp -n booksapp |
 kubectl apply -f -

$ linkerd profile --open-api booksapp/swagger/books.swagger books -n booksapp |
 kubectl apply -f -

With that, we've profiled our applications. We can now wait a minute
and view the relevant route information.

View route data for booksapp.
$ linkerd viz routes deploy -n booksapp

You should see a number of routes with varying success rates.
In Chapter 11 we'll use some of Linkerd's reliability
features to help address the issues booksapp is having.

Topology

With routes, metrics, and Tap data, we have a lot of useful ways to understand
what our apps are doing without requiring developers to include
instrumentation in their applications. Another common challenge is figuring
out which of all these possible calls are actually happening in the
application, and from which workload to which workload. Linkerd can also
surface that information for you.

In Example 10-8, we’ll examine the relationships between the
components of the booksapp application. You can, and should, try to explore
emojivoto on your own.

Example 10-8. Viewing edges in Linkerd

Start by getting the deployments in the booksapp namespace.
$ kubectl get deploy -n booksapp

You'll see four deployments: traffic, webapp, authors, and books.

Now, dig into the relationship between these components with
the linkerd viz edges command.
$ linkerd viz edges deploy -n booksapp

The output is broken up into five columns:

	SRC

	
The source of the traffic

	DST

	
The destination of the traffic

	SRC_NS

	
The namespace where the traffic originated

	DST_NS

	
The namespace where the traffic went

	SECURED

	
Whether or not the traffic is encrypted via Linkerd’s mTLS

The resulting output gives you an overview of the relationships between the
book⁠s­app components. It shows that the Prometheus instance in the
linkerd-viz namespace is talking to each deployment in the booksapp
namespace. Beyond that, we can see that traffic talks to webapp, webapp
talks to books and authors, and books and authors talk to each other.

The linkerd viz edges command will work for Pods or any other workload type
within Kubernetes.

Linkerd Viz

You’ve likely noticed that a number of the commands we used in this chapter
were linkerd viz commands. This is the Linkerd Viz extension that we
introduced back in Chapter 2. It ships with the core
Linkerd system because it’s often extremely useful, but it was split out from
the core into an extension in Linkerd 2.10, so that not everyone is forced to
run it.

The Viz extension provides a great many CLI tools for observing your Linkerd
installation, along with a web-based dashboard that provides a graphical interface
for exploring your Linkerd environment.

Protecting the Viz Dashboard Is Up to You

As described in Chapter 2, there’s no user authentication
built into the Linkerd Viz dashboard. You’ll need to tackle that using an API
gateway or the like if you want to expose Linkerd Viz to the network—or,
alternatively, leave the dashboard inaccessible from outside the cluster, and
simply use the linkerd viz dashboard CLI command to bring up the dashboard
in a web browser, via a port forward.

Use the following command to open the Viz dashboard:

$ linkerd viz dashboard

Now explore it on your own. Try to find the per-namespace and per-workload metrics.
Also take a look at an individual namespace, like emojivoto, and explore the topology.

Linkerd’s Viz dashboard includes Prometheus and can easily work with Grafana, as shown in Example 10-9.
As we’ve said a few times before, it’s critical to realize that the default
Linkerd Viz install will create an in-memory Prometheus instance that is
only viable for demo purposes, and must not be relied upon for production
use. We recommend you use a separate Prometheus instance for collecting your
Linkerd metrics.

Linkerd and Grafana

In earlier versions of Linkerd, linkerd viz install automatically installed
Grafana. As of Linkerd 2.12, Grafana licensing changes mean that we’re no
longer allowed to do that. Grafana still works beautifully with Linkerd Viz,
but for Linkerd 2.12 and later you need to install it by hand and configure it to talk to the same
Prometheus that Linkerd Viz uses.

Example 10-9. Production-ready Linkerd Viz install

The first step of a production-ready Viz dashboard install
involves installing a standalone Prometheus instance.
This guide assumes you've done that in the linkerd-viz
namespace.

With that done, you can install Grafana.
$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo update
$ helm install grafana -n grafana --create-namespace grafana/grafana \
 -f https://raw.githubusercontent.com/linkerd/linkerd2/main/grafana/values.yaml

The example install uses a values file provided by the
Linkerd team. It includes important configurations that
allow the dashboard to properly use Grafana. You can
read more in the official Linkerd docs:
https://linkerd.io/2/tasks/grafana/

After Grafana is installed, install Linkerd Viz and
tell it to use your Grafana instance.
$ linkerd viz install --set grafana.url=grafana.grafana:3000 \
 | kubectl apply -f -

Audit Trails and Access Logs

Hardening our environments against intrusion doesn’t end at reducing the risk
and impact of an incident. Having a strong security posture also means being
able to rapidly detect when something abnormal has occurred and providing
data that allows your security team to understand exactly what you have in
place. For Linkerd, much of this data is contained in the system logs of the
control plane containers, accessible via kubectl log. It’s definitely worth
ensuring that you have a strategy for collecting and analyzing log messages
that is accessible to your security team.

Beyond normal log messages and events, some users need a detailed history
of all the HTTP requests that transit the proxy. This requires access logging.

Access Logging: The Good, the Bad, and the Ugly

Access logging in Linkerd means the proxy will write a log message for every
HTTP request it processes. In an environment where you have a number of
services talking to each other, that can very quickly turn into a huge volume
of log messages, so it’s definitely worth checking the
official Linkerd docs before
you implement access logging. We will go into the high-level concepts and
practical steps, but the logs are an area where things can change between
versions of Linkerd, so be sure to test your setup after looking over the
docs.

The good

Access logging will give you hugely detailed information about the interactions between your applications. It is configurable; you can emit the messages in either apache or json format so that they’re easier to consume programmatically. With access logging enabled, your security teams will have tremendous amounts of data to help them understand the impact and extent of any security incident.

The bad

Storing and processing these logs is expensive, requires significant engineering overhead, and uses up significant resources in your cluster. Your platform or security teams will need to manage log aggregation tooling and log collection agents on your clusters. Access logging will increase the costs of running your platform.

The ugly

HTTP access logging is disabled by default in Linkerd because it has a performance impact on the proxies in terms of both CPU and latency. That means your application response times and compute costs will increase when you enable it. To what extent will depend very much on your level and type of traffic.

Enabling Access Logging

You can set the access logging configuration at the workload, namespace, or Pod level. In any case, you’ll need to set the following annotation:

config.linkerd.io/access-log: apache

Or:

config.linkerd.io/access-log: json

After it’s set, you need to restart the targeted workloads to begin collecting logs.

We recommend that you test the performance impacts of enabling access logging in your application before rolling it out to production. That will give your organization the data it needs to make an informed decision about access logging in Linkerd.

Summary

Observability in Linkerd ranges from simple metrics to access logging. Linkerd
allows us to understand the behavior, performance, and characteristics of our
apps without requiring application developers to make any modifications. The
power of a service mesh lies in allowing the platform team to provide
observability to app teams as a feature of the platform. It also ensures that
all apps can be understood and compared in a uniform fashion.

Chapter 11. Ensuring Reliability with Linkerd

As discussed from the very beginning, back in Chapter 1,
microservices applications are utterly reliant on the network for all of their
communications. Networks are slower and less reliable than in-process
communication, which introduces new failure modes and presents new challenges
to our applications.

For service mesh users, where the mesh mediates all your application traffic,
the reliability benefit is that the mesh can make intelligent choices about
what to do when things go wrong. In this chapter, we’ll talk about the
mechanisms that Linkerd provides to mitigate the problems of unreliability in
the network, helping to address the inherent instability of microservices
applications.

Load Balancing

Load balancing might seem like an odd reliability feature to lead with, since
many people think that Kubernetes already handles it. As we first discussed in
Chapter 5, Kubernetes Services make a distinction
between the IP address of the Service and the IP addresses of the Pods
associated with the Service. When traffic is sent to the ClusterIP, it ends up
being redirected to one of the endpoint IPs.

However, in Kubernetes, the built-in load balancing is limited to entire
connections. Linkerd improves on this by using the proxy, which understands
more about the protocol involved in the connection, to choose an endpoint for
each request, as shown in Figure 11-1.

[image: luar 1101]
Figure 11-1. Service discovery in Linkerd

As you can see from Figure 11-1, Linkerd will use the destination
address from a given request and, depending on the object type it refers to,
will adjust its endpoint selection algorithm to select a target.

Request-Level Load Balancing

This distinction between connection-level load balancing and request-level
load balancing is more important than it might appear at first glance. Under
the hood, Linkerd actually maintains a pool of connections between your
workloads, letting it rapidly dispatch requests to whichever workload it
thinks appropriate without connection overhead, load balancing the individual
requests so that the load is evenly and efficiently distributed.

You can learn more about connection-level load balancing in Kubernetes on the Kubernetes blog.

The aptly named destination controller in the Linkerd control plane makes this
all possible. For each service in the mesh, it maintains a list of the
service’s current endpoints as well as their health and relative performance.
The Linkerd proxy uses that information to make intelligent decisions about
where and how to send a given request.

Retries

Sometimes, due to network issues or intermittent application failures, a
request might fail. In this situation, the Linkerd proxy can retry the
request for you, automatically repeating it to give the workload another
chance to handle it successfully. Of course, it’s not always safe to retry
every request, so the Linkerd proxy will only do automatic retries if you’ve
explicitly configured retries for a given route, and you should only configure
retries when you know they’re safe.

Don’t Blindly Retry!

Think before you enable retries for a particular request! Not all requests can
be safely retried—consider a request that withdraws money from an account,
and imagine retrying it in a scenario where the request succeeds but somehow
the response gets lost, or the withdrawal service crashes before it can send a
reply but after the money is moved. This is not a request that should be
retried.

Retry Budgets

Many service meshes and API gateways use counted retries, where you define a
maximum number of times a request can be retried before a failure is returned to the caller.
Linkerd, by contrast, uses budgeted retries, where retrying continues as
long as the ratio of retries to original requests doesn’t exceed the budget.

By default, the budget is 20%, plus 10 more “free” retries per second,
averaged over 10 seconds. For example, if your workload is taking 100 requests per second (RPS),
then Linkerd would allow adding 30 more retries per second (20% of 100 is 20,
plus an additional 10).

Budgeted Retries Versus Counted Retries

Linkerd uses budgeted retries because they tend to let you more directly
control the thing you really care about: how much extra load will retries add
to the system? Usually, choosing a specific number of retries doesn’t really
help control load: if you’re taking 10 RPS and allow 3 retries, you’re up to
40 RPS, but if you’re at 100 RPS and allow 3 retries, you might be up to 400
RPS.
Budgeted retries control the added load much more directly, while also
tending to avoid the retry storms that can happen under high load (where large
amounts of retries can themselves crash a Pod, thus causing more retries…​).

Configuring Retries

Take a minute to examine the traffic from books to authors using linkerd viz:

$ linkerd viz -n booksapp routes deploy/books --to svc/authors

You’ll see that the books workload is only sending requests to a single
route over on the authors service: HEAD /authors/{id}.json. Those requests
are failing half the time, making them a great candidate for retries—HEAD
requests are always idempotent (that is, they can always be repeated without the result changing), so we can always safely enable retries on that route.

In Linkerd, we control retry behavior with ServiceProfile resources. In this
case, we’ll be using the ServiceProfile for the authors service, since we’re
going to enable retries when talking to the authors workload.

Retries, ServiceProfiles, HTTPRoutes, and Linkerd

As mentioned earlier, the Linkerd project is in the midst of a transition to fully adopting
Gateway API, which means you’ll soon see a few Linkerd custom resources, including
ServiceProfile, begin to be deprecated.

In Linkerd 2.13 and 2.14, ServiceProfile and HTTPRoute often have mutually
exclusive functionality, which makes it particularly important to review the
retry and timeout
documentation to verify the current state of ServiceProfile as you begin
building retries into your applications.

Start by looking at the existing ServiceProfile using kubectl get:

$ kubectl get serviceprofile -n booksapp \
 authors.booksapp.svc.cluster.local

This ServiceProfile should look a lot like the one in Example 11-1.

Example 11-1. The authors ServiceProfile

apiVersion: linkerd.io/v1alpha2
kind: ServiceProfile
metadata:
 name: authors.booksapp.svc.cluster.local
 namespace: booksapp
spec:
 routes:
 - condition:
 method: GET
 pathRegex: /authors\.json
 name: GET /authors.json
 - condition:
 method: POST
 pathRegex: /authors\.json
 name: POST /authors.json
 - condition:
 method: DELETE
 pathRegex: /authors/[^/]*\.json
 name: DELETE /authors/{id}.json
 - condition:
 method: GET
 pathRegex: /authors/[^/]*\.json
 name: GET /authors/{id}.json
 - condition:
 method: HEAD
 pathRegex: /authors/[^/]*\.json
 name: HEAD /authors/{id}.json

You can see five routes listed in the ServiceProfile. We’re going to focus on the last route, HEAD /authors/{id}.json.

We can configure retries independently for each route by adding the
isRetryable: true property to the ServiceProfile entry for the route. In
addition to that, each ServiceProfile object can define the retry budget for
the all the routes in the ServiceProfile.

The easiest way to add this property is to interactively edit the ServiceProfile:

$ kubectl edit serviceprofiles authors.booksapp.svc.cluster.local -n booksapp

Use your editor to change the ServiceProfile so that the HEAD
/authors/{id}.json route has the isRetryable property set to true, as
shown in Example 11-2.

Example 11-2. The authors ServiceProfile with retries

apiVersion: linkerd.io/v1alpha2
kind: ServiceProfile
metadata:
 name: authors.booksapp.svc.cluster.local
 namespace: booksapp
spec:
 routes:
 - condition:
 method: GET
 pathRegex: /authors\.json
 name: GET /authors.json
 - condition:
 method: POST
 pathRegex: /authors\.json
 name: POST /authors.json
 - condition:
 method: DELETE
 pathRegex: /authors/[^/]*\.json
 name: DELETE /authors/{id}.json
 - condition:
 method: GET
 pathRegex: /authors/[^/]*\.json
 name: GET /authors/{id}.json
 - condition:
 method: HEAD
 pathRegex: /authors/[^/]*\.json
 name: HEAD /authors/{id}.json
 isRetryable: true

Save your changes to the authors ServiceProfile and examine the routes using
linkerd viz routes once again, as shown here:

$ linkerd viz -n booksapp routes deploy/books --to svc/authors -o wide

Switching the output format using -o wide tells the linkerd viz routes command to show
the effective success rate (after retries) as well as the actual success rate
(before retries are taken into consideration). If you run this command repeatedly
after enabling retries, you’ll see that the effective success rate will climb
as the overall latency goes up. Over time, the effective success
rate should climb to 100%, even though the actual success rate stays
consistent at about 50%: the authors workload is still failing about half
the time, even though retries are able to mask that from the caller.

The watch Command

If you have the watch command, this is a great time to use it. It will rerun
the command every two seconds until interrupted, giving you an easy way to see
things changing:

$ watch linkerd viz -n booksapp \
 routes deploy/books --to svc/authors -o wide

You can also see the difference in the effective and actual RPS.
The effective RPS is about 2.2, but the actual RPS will hover near
double that—that’s because retries add load to the failing service by
making additional requests to mask the failures.

Why Are We Seeing a Factor of Two?

We often quote the default retry budget as 20%—so how is it possible that
we’re seeing twice the traffic in this situation? For that matter, how is it
possible that we’re seeing Linkerd mask all the failures when 50% of
requests are failing?

The answer to both questions lies with the “free” 10 requests per second
included in the default budget. Since the actual load is significantly less
than 10 RPS, the extra 10 “free” requests per second are plenty to effectively
allow retrying 100% of the actual traffic, permitting Linkerd to mask all the
failures…​at the cost of doubling the traffic.

Those “free” 10 RPS also mean that you don’t have to worry about Linkerd’s
budget letting failures leak through on a lightly used service, even while the
budget protects you from retry storms on a heavily used service.

Configuring the Budget

Linkerd’s default budget actually works out well for many applications,
but if you need to change it, you’ll need to edit the retryBudget stanza in
your ServiceProfile, as shown in Example 11-3.

Example 11-3. An example retry budget

...
spec:
 ...
 # This retryBudget stanza is AN EXAMPLE ONLY
 retryBudget:
 retryRatio: 0.3
 minRetriesPerSecond: 50
 ttl: 60s
 ...

The retryBudget stanza shown in Example 11-3 would allow retrying
30% of original requests, plus 50 “free” requests per second, averaged over
a full minute.

Don’t Blindly Use This Budget!

The budget shown in Example 11-3 is just an example. Please do
not assume that it will be helpful for any actual application!

Timeouts

Timeouts are a tool that allows us to force a failure in the event a given
request is taking too long. They’re particularly effective when used hand-in-hand with
retries, so that a request that takes too long will be retried—but you
don’t have to use them together! There are a lot of situations where a
judiciously placed timeout can help return agency to an application, opening
the door to providing a better user experience by making intelligent decisions
about what to do if things are slow.

When timeouts are configured and a request takes too long, the Linkerd proxy
will return an HTTP 504 for the request. The timeout will look like any other
request failure as far as Linkerd’s observability functionality is concerned
(including triggering a retry, if retries are enabled), and it will be counted
toward the effective failure rate on a given route.

Configuring Timeouts

Let’s start things off by taking a look at requests from webapp to books,
to see what the average latency for user requests looks like:

$ linkerd viz -n booksapp routes deploy/webapp --to svc/books

Let’s focus on the PUT /books/{id}.json route. Latency varies from
environment to environment, but we’ll start with a latency of 25 ms for our
example; this will probably result in some timeouts being triggered in most
environments. You can use the resulting success rates to tune the timeouts in
your cluster.

Just like retries, timeouts are configured via ServiceProfiles in Linkerd. As we did with retries, we’ll start by looking at the existing profile. We can get the books ServiceProfile with this command:

$ kubectl get sp/books.booksapp.svc.cluster.local -n booksapp -o yaml

This ServiceProfile should look very similar to the one in
Example 11-4.

Example 11-4. The books ServiceProfile

apiVersion: linkerd.io/v1alpha2
kind: ServiceProfile
metadata:
 name: books.booksapp.svc.cluster.local
 namespace: booksapp
spec:
 routes:
 - condition:
 method: GET
 pathRegex: /books\.json
 name: GET /books.json
 - condition:
 method: POST
 pathRegex: /books\.json
 name: POST /books.json
 - condition:
 method: DELETE
 pathRegex: /books/[^/]*\.json
 name: DELETE /books/{id}.json
 - condition:
 method: GET
 pathRegex: /books/[^/]*\.json
 name: GET /books/{id}.json
 - condition:
 method: PUT
 pathRegex: /books/[^/]*\.json
 name: PUT /books/{id}.json

We configure timeouts by adding the timeout property to a route entry,
setting its value to a time specification that can be parsed by Go’s
time.ParseDuration.

Timeouts, ServiceProfiles, HTTPRoutes, and Linkerd

As mentioned earlier, the Linkerd project is in the midst of a transition to fully adopting
Gateway API, so a few Linkerd custom resources, including
ServiceProfile, will soon begin to be
deprecated.

ServiceProfile and HTTPRoute have overlapping functionality for timeouts
starting with Gateway API 1.0.0, which at the time of writing is not yet supported by a stable
Linkerd version. It’s particularly important to review the
retry and timeout
documentation to verify the current state of ServiceProfile as you begin
building retries into your applications.

One particular note is that the syntax for HTTPRoute timeouts, specified by
GEP-2257, is rather more restrictive
than Go’s
time.Parse​Du⁠ration, which is used for
ServiceProfile timeouts.
For maximum compatibility in the future, you may want to consider updating
your ServiceProfile timeouts to conform to GEP-2257.

The simplest way to add a timeout to the PUT /books/{id}.json route is to
edit the ServiceProfile interactively, which you can do using the following command:

$ kubectl edit serviceprofiles.linkerd.io \
 books.booksapp.svc.cluster.local -n booksapp

You will need to add the timeout element to the PUT /books/{id}.json
route, with a value of 25ms. This is shown in Example 11-5.

Example 11-5. The books ServiceProfile with a timeout

apiVersion: linkerd.io/v1alpha2
kind: ServiceProfile
metadata:
 name: books.booksapp.svc.cluster.local
 namespace: booksapp
spec:
 routes:
 - condition:
 method: GET
 pathRegex: /books\.json
 name: GET /books.json
 - condition:
 method: POST
 pathRegex: /books\.json
 name: POST /books.json
 - condition:
 method: DELETE
 pathRegex: /books/[^/]*\.json
 name: DELETE /books/{id}.json
 - condition:
 method: GET
 pathRegex: /books/[^/]*\.json
 name: GET /books/{id}.json
 - condition:
 method: PUT
 pathRegex: /books/[^/]*\.json
 name: PUT /books/{id}.json
 timeout: 25ms

With the timeout set, you’ll want to observe the traffic going from the
webapp to the books service to see how the timeout is impacting the
overall availability of your service. Once again, linkerd viz routes is one
of the simplest ways to do this:

$ linkerd viz -n booksapp routes deploy/webapp --to svc/books

(You can use -o wide if you want—it won’t directly help you when observing
latency, but it’s certainly not harmful.)

Timeouts provide a valuable tool to ensure the overall availability of your applications. They allow you to control latency and ensure applications don’t hang while waiting for responses from downstream services.

Traffic Shifting

Traffic shifting refers to changing the destination of a request based on
outside criteria. Typically this is a weighted split between two or more
destinations (a canary), or a split based on a header match, username, etc.
(an A/B split), although many other types are possible. Traffic shifting is
a major part of progressive delivery, where you roll out new application
versions by carefully shifting traffic to the new version and verifying
functionality as you go. However, you needn’t do progressive delivery to benefit
from traffic shifting.

Traffic Shifting, Gateway API, and the Linkerd SMI Extension

As of Linkerd 2.13, Linkerd natively supports traffic shifting using the

Gateway API HTTPRoute resource, so traffic shifting is the first area where
we’ll use Gateway
API resources to configure Linkerd.

HTTPRoutes Versus Linkerd SMI

In Linkerd versions prior to 2.13, you can still do traffic shifting, but you
need to use the Linkerd SMI extension (which we mentioned in
Chapter 2). For information about the SMI extension and its
legacy TrafficSplit resources, check out the official Linkerd docs on SMI. We recommend
using Gateway API in 2.13 and later, though.

As we explore traffic shifting in Linkerd, we’ll look at the two basic ways of doing it: weight-based and header-based.

Setting Up Your Environment

In this section we’ll be demonstrating traffic shifting using an entirely
different application called podinfo. To follow along with the
traffic shifting demos, we recommend you start a new cluster; please refer to
the material in Chapter 3 if you need any help with that.

Once you have your new cluster, you can follow along with
Example 11-6 to get started shifting traffic with podinfo.

Example 11-6. Launching podinfo

Start in a clean working directory, as we will be cloning the
linkerd-book/luar Git repository.
$ git clone https://github.com/linkerd-book/luar.git

First, we'll create our namespace, podinfo, with the
linkerd.io/inject: enabled annotation set on it. This will
ensure our Pods get Linkerd proxies attached to them.
$ kubectl apply -f luar/reliability/ns.yaml

Next, we'll install the podinfo application using Helm.
$ helm repo add podinfo https://stefanprodan.github.io/podinfo
$ helm repo up

Install 3 versions of podinfo:
- podinfo is our "version 1" Pod.
- podinfo-2 is our "version 2" Pod.
- frontend is a frontend to the whole thing.
$ helm install podinfo \
 --namespace podinfo \
 --set ui.message="hello from v1" \
 podinfo/podinfo

$ helm install podinfo-2 \
 --namespace podinfo \
 --set ui.message="hello from v2" \
 podinfo/podinfo

$ helm install frontend \
 --namespace podinfo \
 --set backend=http://podinfo:9898/env \
 podinfo/podinfo

Create a traffic generator for podinfo.
$ kubectl apply -f luar/reliability/generator.yaml

Check that the applications are ready.
$ linkerd check --proxy -n podinfo

Verify that both versions of the podinfo workload are running.
$ kubectl get pods -n podinfo

Verify that each version of podinfo has its own Service.
$ kubectl get svc -n podinfo

With that, we have our base demo application ready for traffic splitting. The
basic layout of our application is shown in Figure 11-2.

[image: luar 1102]
Figure 11-2. podinfo application architecture

Next, you’ll want to watch how traffic is moving through your cluster. It’s
best to start this running in a separate window, as shown in
Example 11-7, so you can see what changes as you manipulate
resources.

Example 11-7. Watching podinfo traffic

If you have the watch command, it works well for this.
$ watch linkerd viz stat deploy -n podinfo

If you don't have watch, it's simple enough to emulate.
$ while true; do
 clear
 date
 linkerd viz stat deploy -n podinfo
 sleep 2
done

This will show you how traffic is being routed in your cluster. You should see
two podinfo deployments, podinfo and podinfo-v2. podinfo-v2 should be
receiving very little traffic at the moment since we haven’t yet shifted any
traffic to it.

Weight-Based Routing (Canary)

Weight-based routing is a method of shifting traffic that selects where a
given request will go based on simple percentages: a certain percentage of
available traffic goes to one destination, and the rest goes to another.
Weight-based routing allows us to shift a small percentage of traffic to the
new version of a service to see how it behaves.

In progressive delivery this is called canary routing, named after the
proverbial “canary in a coal mine” that would warn miners when
the air was going bad by dying. Here, the idea is that you can shift a small
amount of traffic to test if the new version of your workload will die, or
work, before you shift more traffic. A successful canary ends when all the
traffic has been shifted and the old version can be retired.

To start the canary running, we’ll need to create an HTTPRoute, as shown in

Example 11-8.

Which HTTPRoute?

We’re going to use policy.linkerd.io HTTPRoutes to accommodate readers with
older versions of Linkerd. It’s important to be aware, though, that tools like
Flagger and Argo Rollouts do not support policy.linkerd.io! If you’re using
one of these tools, you’ll need to use the gateway.networking.k8s.io
HTTPRoutes, which requires Linkerd 2.14 or higher.

Example 11-8. The canary HTTPRoute

apiVersion: policy.linkerd.io/v1beta2
kind: HTTPRoute
metadata:
 name: podinfo-route
 namespace: podinfo
spec:
 parentRefs:
 - name: podinfo
 namespace: podinfo
 kind: Service
 group: core
 port: 9898
 rules:
 - backendRefs:
 - name: podinfo
 namespace: podinfo
 port: 9898
 weight: 5
 - name: podinfo-v2
 namespace: podinfo
 port: 9898
 weight: 5

This HTTPRoute will split traffic between the podinfo and podinfo-v2
services. We set the weight to 5 for both services,
which will cause 50% of the traffic to shift over to podinfo-v2,
while leaving 50% with our original podinfo.

The Ratio Is What Matters

The absolute values of the weights don’t usually matter—they don’t need to
add up to any particular number. What does matter is the ratio of weights, so
using weights of 5 and 5, or 100 and 100, or 1 and 1 would all give 50/50
splits.

On the other hand, a weight of 0 explicitly means not to direct any traffic
to that backend—so don’t try to use 0/0 for a 50/50 split.

Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

The astute reader will notice that we’re using podinfo twice: once in
parentRefs and once in backendRefs. Won’t this cause a routing loop? Aren’t
we arranging for traffic to come to podinfo, then get directed to podinfo
again, and do this forever until eventually it finally gets shuffled to
podinfo-v2?

Rest assured that that won’t happen. If we go back to the Kubernetes Service
architecture shown in Figure 11-3, the critical bits are that:

	
When a Service is used in parentRefs, it means that the HTTPRoute will control traffic directed to the Service.

	
When a Service is used in backendRefs, it allows the HTTPRoute to direct traffic to the Pods attached to the Service.

[image: luar 1103]
Figure 11-3. The three distinct parts of a Kubernetes Service

So what we’re really saying with podinfo-route is that 95% of the traffic
to the podinfo Service IP will be directed to the podinfo endpoints,
and the other 5% will be directed to the podinfo-v2 endpoints, so there
are no loops. This behavior is defined in
GEP-1426 from the GAMMA
initiative.

You Can’t Route to a Route

GEP-1426 also prevents HTTPRoutes from “stacking.” Suppose that we apply podinfo-route as shown in
Example 11-8, then also apply another HTTPRoute
(podinfo-v2-canary) that tries to split traffic to podinfo-v2. In that case:

	
Traffic sent directly to podinfo-v2 will be split by
podinfo-v2-canary.

	
Traffic sent to podinfo that podinfo-route then directs to podinfo-v2
will not be split.

This is because podinfo-route will send its traffic directly to the
podinfo-v2 endpoints. Since that traffic bypasses the podinfo-v2
Service IP, podinfo-v2-canary never gets a chance to work with it.

Apply podinfo-route to your cluster and take a look at how the traffic
shifts in your terminal window that’s watching traffic. You’ll see around 25
requests per second going to the v2 deployment (remember that it will take a
little time for the metrics that linkerd viz is watching to catch up).

You can modify the weights and see how traffic shifts around in real time:
just use kubectl edit as shown here:

$ kubectl edit httproute -n podinfo podinfo-route

As soon as you save an edited version, the new weights should instantly take
effect, changing what you see in your window that’s watching traffic.

Once you’re finished, go ahead and delete the podinfo-route route, using the following command:

$ kubectl delete httproute -n podinfo podinfo-route

You should see all the traffic shifting back to
podinfo, setting the stage for our header-based routing experiment.

Header-Based Routing (A/B Testing)

Header-based routing allows you to make routing decisions based on the headers
included in a request. This is commonly used for A/B testing. For example,
if you have two versions of a user interface, you typically don’t want to
randomly choose between them every time your user loads a page. Instead, you might use some
header that identifies the user to pick a version of the UI in a deterministic
way, so that a given user will always see a consistent UI, but different users
might get different UIs.

We’ll use header-based routing to allow selecting a version of podinfo using
a header. Start by applying a new podinfo-route HTTPRoute, as shown in
Example 11-9. (Once again, we’re going to use policy.linkerd.io HTTPRoutes;
see “Which HTTPRoute?” for a caveat on this choice.)

Example 11-9. Header-based routing

apiVersion: policy.linkerd.io/v1beta2
kind: HTTPRoute
metadata:
 name: podinfo-route
 namespace: podinfo
spec:
 parentRefs:
 - name: podinfo
 kind: Service
 group: core
 port: 9898
 rules:
 - matches:
 - headers:
 - name: "x-request-id"
 value: "alternative"
 backendRefs:
 - name: "podinfo-v2"
 port: 9898
 - backendRefs:
 - name: "podinfo"
 port: 9898

(If you were just following the instructions for weight-based routing, that’s
fine; this podinfo-route will overwrite the one from that section if you
didn’t already
delete it.)

This version has a new matches section for header matches. We also move the
reference to podinfo-v2 from the main backendRefs section to a new
backendRefs under matches. The effect is that traffic will be shifted
to podinfo-v2 only if it has the header x-request-id with a value of
alternative.

Since the traffic generator we installed doesn’t send any requests with the
correct header, when you apply this HTTPRoute, you should immediately see all
the traffic fall away from podinfo-v2. We can use curl to send traffic with
the correct header to be routed to podinfo-v2, as shown in
Example 11-10.

Example 11-10. Testing header-based routing with curl

Start by forwarding traffic to your frontend service.
$ kubectl port-forward svc/frontend-podinfo 9898:9898 &

Now send a request to the service and see what message you get back.
You should see "hello from v1" since this request didn't include the
header.
$ curl -sX POST localhost:9898/echo \
 | jq -r ".[]" | grep MESSAGE

Now try again, setting the x-request-id header.
You should see "hello from v2" since this request does include the
header.
$ curl -H 'x-request-id: alternative' -sX POST localhost:9898/echo \
 | jq -r ".[]" | grep MESSAGE

Traffic Shifting Summary

You now have a sense of how to use HTTPRoute objects to manipulate
traffic in your cluster. While it’s still possible, for the moment, to use the
Linkerd SMI extension, we strongly recommend using Gateway API instead—and
if you’re using Linkerd with a progressive delivery tool like Flagger or Argo
Rollouts, using Gateway API can dramatically simplify the interface with that tool
(although, as noted earlier, you’ll likely need to use Linkerd 2.14 for its
support for the official Gateway API types).

Circuit Breaking

When you run applications at scale, it can be helpful to automatically isolate
and direct traffic away from any Pod that is experiencing issues. Linkerd tends
to route away from underperforming Pods automatically, by virtue of using an
exponentially weighted moving average of latency to select the Pod to receive a
given request. With circuit breaking, you can make Linkerd
explicitly avoid routing to any Pods that are experiencing issues.

Enabling Circuit Breaking

When you enable circuit breaking on a Service, Linkerd will selectively
quarantine endpoints that experience multiple consecutive failures. As always
with advanced features, make sure you read the latest Linkerd circuit breaking documentation before implementing this in your environment.

We’ll demonstrate using Linkerd circuit breaking by installing a
deliberately bad Pod:

$ kubectl apply -f luar/reliability/podinfo-v3.yaml

In your terminal that’s watching traffic, you should now see three podinfo
deployments running. Traffic should be roughly evenly split between podinfo
and podinfo-v3, because podinfo-v3 is carefully set up to be part of the
same Service as podinfo.

Seeing podinfo-v2?

If you’re seeing any traffic to podinfo-v2, check to make sure you don’t
have any HTTPRoutes still splitting traffic by running kubectl get httproute -n podinfo.

You should also note that podinfo-v3 has a less than 100% success
rate. Adding a circuit breaker to the podinfo Service, as shown here, should improve things:

$ kubectl annotate -n podinfo svc/podinfo \
 balancer.linkerd.io/failure-accrual=consecutive

This tells Linkerd to apply the circuit breaking policy to the podinfo Service.
It will look for consecutive failures and stop routing to any Pods that are
having issues. If you look back at your window that’s watching traffic, you’ll soon
see that podinfo-v3 is no longer receiving much traffic.

Why Annotations?

Circuit breakers are still rather new in Linkerd, so they’re currently
configurable only using annotations. Keep an eye on the latest Linkerd circuit breaking
documentation to stay up-to-date as development proceeds!

Tuning Circuit Breaking

We can further tune circuit breaking with additional annotations on the Service:

	balancer.linkerd.io/failure-accrual-consecutive-max-failures

	
Sets the number of failures that you’ll need to see before an endpoint is
quarantined. Defaults to 7.

	balancer.linkerd.io/failure-accrual-consecutive-min-penalty

	
Sets the minimum time an endpoint should be put in quarantine. GEP-2257
Duration, defaults to one second (1s).

	balancer.linkerd.io/failure-accrual-consecutive-max-penalty

	
Sets the upper bound for the quarantine period (the maximum time that an
endpoint will be quarantined before the mesh tests it again). GEP-2257
Duration, defaults to one minute (1m).

	balancer.linkerd.io/failure-accrual-consecutive-jitter-ratio

	
Adds some randomness to the quarantine and test timeframes.
Defaults to 0.5; tuning is only rarely appropriate.

Looking at the traffic, you’ll probably still see podinfo-v3 showing too many
failures. Making it a bit more sensitive to failure, as shown in
Example 11-11, will allow the circuit breaker to more aggressively
take podinfo-v3 out of circulation, which should help the situation.

Example 11-11. Tuning circuit breaking

First, we'll set the number of failures we need to see to quarantine
the endpoints. In this case, we'll change it from the default of 7 to 3.
$ kubectl annotate -n podinfo svc/podinfo \
 balancer.linkerd.io/failure-accrual-consecutive-max-failures=3

Next, we'll change the minimum quarantine time to 30 seconds from 1 second.
$ kubectl annotate -n podinfo svc/podinfo \
 balancer.linkerd.io/failure-accrual-consecutive-min-penalty=30s

Finally, we change the max penalty time to 2 minutes.
$ kubectl annotate -n podinfo svc/podinfo \
 balancer.linkerd.io/failure-accrual-consecutive-max-penalty=2m

With that, we should see far fewer errors making it through to podinfo-v3.

Circuit Breaking Won’t Hide All Failures

When Linkerd checks to see if a given endpoint has recovered, it does so by
allowing an actual user request through. If this request fails, the failure will get all the way back to the caller (unless retries are also enabled).

In our example, this would mean that a potentially failing request will make
it to podinfo-v3 every 30 seconds, in order for Linkerd to check to see if
the circuit breaker can be reset.

Summary

With that, we’ve covered how Linkerd can help reliability in your
applications. You can retry in the event of transient failures in the network
and in your APIs, add timeouts to requests to preserve overall availability,
split traffic between versions of a service to perform safer
rollouts, and set up circuit breakers to protect services from failing
Pods. With all this, you’re well on your way to being able to run a
reliable and resilient platform with Linkerd.

Chapter 12. Multicluster Communication with Linkerd

Every Kubernetes cluster represents a single security and operational failure domain. As you look at scaling out your platform to accommodate more teams, more customers, and more use cases, you will inevitably run into the question of how you want to distribute your apps. Do you want to use large regional clusters with all your production apps in one place? Do you want to use purpose-built clusters for each app or each team? Most teams end up somewhere in the middle, with some shared clusters and some purpose-built for certain apps or categories of apps.

Linkerd aims to make the technical implementation problems around running multiple clusters easier to solve.

Types of Multicluster Setups

Linkerd supports two styles of multicluster configurations: gateway-based
multicluster and Pod-to-Pod multicluster. Gateway-based multicluster setups are
easier to deploy; Pod-to-Pod setups offer more advanced functionality.
You can choose which is best for a given situation, and you can even use both
in the same cluster at the same time, if desired.

Gateway-Based Multicluster

Linkerd’s gateway-based multicluster setup routes communications between clusters
through a special workload that Linkerd calls a gateway, which is reachable
via a LoadBalancer Service. This means that gateway-based multicluster
connections don’t require any particularly demanding network configuration:
all that’s required for gateway-based multicluster communications is that Pods
in a given cluster can connect to the LoadBalancer of the other cluster’s
gateway, no matter how that happens. The network also doesn’t need to be
secure: Linkerd will take care of that with its usual mTLS.

The gateway-based multicluster architecture is shown in
Figure 12-1.

[image: luar 1201]
Figure 12-1. Gateway multicluster architecture

The numbers in the diagram show the number of network hops made when the vote-bot in cluster 1 talks to web in cluster 2, which then talks to vote back in cluster 1. (This actually happens in emojivoto.) Following the path, you’ll see a total of six hops. This can complicate things sometimes, which led to the development of Pod-to-Pod multicluster.

Pod-to-Pod Multicluster

A Pod-to-Pod multicluster configuration, by contrast, relies on your Pods being able to talk
directly to each other, even across cluster boundaries. This can be quite a
bit more challenging to set up, because your cluster provider needs to be able
to support it. If you’re creating your own bare-metal clusters, this is
probably quite possible. If you’re using a cloud provider, it will depend on
the provider.

The Pod-to-Pod multicluster architecture is shown in Figure 12-2.

[image: luar 1202]
Figure 12-2. Pod-to-Pod multicluster architecture

Following the path from vote-bot to web and back to vote here, we see only two hops, the same as we would see in a single cluster.

Gateways Versus Pod-to-Pod

As with many things in computing, the mode to choose depends on your situation:

	
The gateway-based multicluster mode is unquestionably simpler to set up; Pod-to-Pod
requires more advanced networking support.

	
Pod-to-Pod is marginally faster than gateway-based, since
there’s no hop through a gateway. With Linkerd this tends to be negligible,
though.

	
A potentially more important concern is that in a gateway-based multicluster setup,
any call from another cluster will appear as having the identity of the
gateway, not the actual originating workload.

	
Another important concern is that in Pod-to-Pod mode, the Linkerd

destination service also needs to be able to connect to the remote
Kubernetes API server.

Remember that the two modes can coexist in the same cluster as long as you
have the correct IP connectivity. You have an enormous amount of flexibility
in how you work with multicluster communications.

Multicluster Certificates

Whichever kind of multicluster setup you decide to use, your clusters’ trust
hierarchies need a common root for Linkerd to establish a
multicluster connection between clusters. By far the easiest way to do this is
to have them share a common trust anchor, as shown in
Figure 12-3. This also implies that if you want clusters
to be isolated from each other, they must not share the same trust anchor!

[image: luar 1203]
Figure 12-3. A multicluster trust hierarchy

The simplest way to manage this is usually to have a single trust anchor for
each environment level (Dev, UAT, Production, Test, etc.), so that, for example,
development clusters can peer with each other but not with production
clusters. Likewise, it’s often simplest to set up a CA for each of these
levels, too, so that each CA needs to worry about only one kind of
certificate.

Don’t Share Identity Issuers

Even in multicluster setups, your clusters should not share identity issuer
certificates. Keeping the identity issuers separate is important both for
being certain of where a given workload identity originated and for
simplifying the operational aspects of rotating the identity issuers.

Ultimately, the needs of your environment will dictate how you set up
certificates and CAs.

Cross-Cluster Service Discovery

The last piece of the multicluster puzzle is service discovery: how do
workloads in one cluster know where to find workloads in other clusters?
Linkerd tackles this problem with the service mirror, which is a part of the
control plane supplied by the Multicluster extension.

As its name implies, the service mirror arranges for Services in one cluster
to appear in other clusters. Exactly how it sets up the mirrored Services
depends on the type of multicluster configuration you’re using:

	Gateway-based multicluster

	
Connections to a mirrored Service will be
redirected to the gateway in front of the original Service. The gateway then
knows how to carry the requests on to a real Pod, including endpoint selection,
policy enforcement, etc.

	Pod-to-Pod multicluster

	
Connections to a mirrored Service will simply transit the network directly to the other Pod. The Linkerd proxy next to the workload making the connection knows which endpoints are available directly, so it handles load balancing, policy enforcement, etc.

The service mirror doesn’t blindly mirror every Service; it only
mirrors those with a mirror.linkerd.io/exported label. The value of the
label, again, depends on the multicluster mode:

	mirror.linkerd.io/exported: true

	
For gateway-based multicluster configurations. The
service mirror will expect there to be a gateway for the remote cluster, and
it will set up the mirrored Service to use it.

	mirror.linkerd.io/exported: remote-discovery

	
For Pod-to-Pod
multicluster configurations. The service mirror will set up the mirrored Service to go directly
to the original Pods.

It’s also worth noting that the service mirror needs permission to talk to
the remote cluster’s Kubernetes API server. Credentials for this are handled
by the Linkerd Link resource, created with the linkerd multicluster link CLI
command.

Links and GitOps

Link resources are actually a little bit more imperative than they should be:
running the linkerd multicluster link command creates a credentials Secret,
a Link resource, and the service mirror controller. Unfortunately, it’s
extremely hard to replicate everything without actually running the command
right now.

With all of that background, we can start setting up an example multicluster

architecture.

Setting Up for Multicluster

Multicluster Linkerd always requires that you be able to route IP traffic between
your clusters. In some cases, it also requires that all clusters have
distinct, nonoverlapping cluster and service CIDR ranges.

Obviously, ensuring that these requirements are met is a bit outside the scope
of the service mesh! However, to demonstrate a multicluster setup in this
chapter, we’ll be creating two k3d clusters, and we’ll need to make sure the
requirements are met when we do so. We’ll call out where we’re doing k3d-specific infrastructure things as we go.

First, as shown in Example 12-1, we’ll create two k3d clusters
attached to the same Docker network, and we’ll give them independent cluster and
service CIDRs so that we can use this setup either for gateway-based
multicluster or for Pod-to-Pod multicluster mode.

This entire block is k3d-specific, unsurprisingly!

Example 12-1. Creating clusters

Create cluster1
$ k3d cluster create cluster1 \
 --servers=1 \
 --network=mc-network \
 --k3s-arg '--disable=traefik@server:*' \
 --k3s-arg '--cluster-cidr=10.23.0.0/16@server:*' \
 --k3s-arg '--service-cidr=10.247.0.0/16@server:*' \
 --wait

Create cluster2
$ k3d cluster create cluster2 \
 --servers=1 \
 --network=mc-network \
 --k3s-arg '--disable=traefik@server:*' \
 --k3s-arg '--cluster-cidr=10.22.0.0/16@server:*' \
 --k3s-arg '--service-cidr=10.246.0.0/16@server:*' \
 --wait

Note that both clusters are told to use the same Docker network
(--network=mc-network), but they have independent, nonoverlapping CIDR
ranges.

We’ll continue by setting up IP routing between clusters, as shown in
Example 12-2. The docker exec commands here are k3d-specific, but the
idea of running the ip route add command on the Nodes themselves is actually not
k3d-specific.

Example 12-2. Setting up IP routing

For each cluster, we need its Node IP and Pod CIDR range.
$ cluster1_node_ip=$(kubectl --context k3d-cluster1 get node k3d-cluster1-server-0 \
 -o jsonpath='{.status.addresses[?(.type=="InternalIP")].address}')
$ cluster1_pod_cidr=$(kubectl --context k3d-cluster1 get node k3d-cluster1-server-0 \
 -o jsonpath='{.spec.podCIDR}')

$ cluster2_node_ip=$(kubectl --context k3d-cluster2 get node k3d-cluster2-server-0 \
 -o jsonpath='{.status.addresses[?(.type=="InternalIP")].address}')
$ cluster2_pod_cidr=$(kubectl --context k3d-cluster2 get node k3d-cluster2-server-0 \
 -o jsonpath='{.spec.podCIDR}')

Once that's done, we'll run `ip route add` on each Node to set up IP
routing. We only need to do this once per cluster because these are
single-Node clusters.
$ docker exec -it k3d-cluster1-server-0 \
 ip route add ${cluster2_pod_cidr} via ${cluster2_node_ip}
$ docker exec -it k3d-cluster2-server-0 \
 ip route add ${cluster1_pod_cidr} via ${cluster1_node_ip}

Once we have routing set up, it’s time to create new certificates using step,
as shown in Example 12-3. As noted previously, you’ll need to use the
same trust anchor for every cluster, no matter what kind of cluster you’re
using.

Example 12-3. Creating certificates for multicluster

First, create a trust anchor. This will be shared across all clusters.
$ step certificate create root.linkerd.cluster.local ca.crt ca.key \
 --profile root-ca --no-password --insecure

Next, use the trust anchor to create identity issuer certificates
(one for each cluster).
$ step certificate create identity.linkerd.cluster.local issuer1.crt issuer1.key \
 --profile intermediate-ca --not-after 8760h --no-password --insecure \
 --ca ca.crt --ca-key ca.key

$ step certificate create identity.linkerd.cluster.local issuer2.crt issuer2.key \
 --profile intermediate-ca --not-after 8760h --no-password --insecure \
 --ca ca.crt --ca-key ca.key

Finally, given our certificates, we can install Linkerd and the Viz extension!
This is shown in Example 12-4.

Be Careful of Contexts!

We have personally made far more mistakes than we’d care to admit to when
working with multicluster setups. A truly embarrassing amount of the time, the
problem was because we ran a kubectl command against the wrong cluster—so
pay attention to those --context arguments!

Alternatively, just set up a window for each cluster and work that way. This
works well if you have separate Kubernetes configuration files and can set
the KUBECONFIG variable differently depending on which cluster you want.

Example 12-4. Installing Linkerd

Install Linkerd in cluster1...
$ linkerd install --context k3d-cluster1 --crds \
 | kubectl apply --context k3d-cluster1 -f -

$ linkerd install --context k3d-cluster1 \
 --identity-trust-anchors-file ca.crt \
 --identity-issuer-certificate-file issuer1.crt \
 --identity-issuer-key-file issuer1.key \
 | kubectl apply --context k3d-cluster1 -f -

$ linkerd viz install --context k3d-cluster1 |
 kubectl apply --context k3d-cluster1 -f -

$ linkerd check --context k3d-cluster1

...then repeat for cluster2.
$ linkerd install --context k3d-cluster2 --crds \
 | kubectl apply --context k3d-cluster2 -f -

$ linkerd install --context k3d-cluster2 \
 --identity-trust-anchors-file ca.crt \
 --identity-issuer-certificate-file issuer2.crt \
 --identity-issuer-key-file issuer2.key \
 | kubectl apply --context k3d-cluster2 -f -

$ linkerd viz install --context k3d-cluster2 |
 kubectl apply --context k3d-cluster2 -f -

$ linkerd check --context k3d-cluster2

At this point, we have to decide whether we’re using a gateway-based or
Pod-to-Pod multicluster architecture, because what we do from this point forward changes.

Continuing with a Gateway-Based Setup

If you want a Pod-to-Pod setup, skip ahead to “Continuing with a Pod-to-Pod Setup”.

To continue with gateway-based multicluster mode, we install the Linkerd
Multicluster extension as shown in Example 12-5. This
extension also ships with the core Linkerd CLI, so you needn’t install an
extra command to use it. This is the default way to install Linkerd Multicluster, since gateway-based
multicluster mode predates Pod-to-Pod.

Example 12-5. Installing Linkerd Multicluster with gateways

$ linkerd multicluster install --context k3d-cluster1 |
 kubectl apply --context k3d-cluster1 -f -
$ linkerd multicluster check --context k3d-cluster1

$ linkerd multicluster install --context k3d-cluster2 |
 kubectl apply --context k3d-cluster2 -f -
$ linkerd multicluster check --context k3d-cluster2

After that, we’ll need to link our clusters together using the gateways, as
shown in Example 12-6.

k3d and --api-server-address

k3d clusters are weird: they always create Kubernetes contexts that say that
the Kubernetes API server is on localhost. With our multicluster setup on the same
Docker network, our cluster1 cannot use localhost to talk to cluster2,
or vice versa.

Therefore, for k3d, we have to use --api-server-address to override the
address with a routable IP address for the other cluster. This is specific to
k3d.

Example 12-6. Linking the clusters with gateways

Link cluster1 to cluster2. Again, --api-server-address is k3d-specific.
PAY ATTENTION TO CONTEXTS! We run `linkerd multicluster link` in the
cluster1 context, then apply it in the cluster2 context.
$ linkerd multicluster link --context k3d-cluster1 \
 --api-server-address https://${cluster1_node_ip}:6443 \
 --cluster-name k3d-cluster1 |
 kubectl apply --context k3d-cluster2 -f -

Link cluster2 to cluster1. Again, --api-server-address is k3d-specific.
PAY ATTENTION TO CONTEXTS! We run `linkerd multicluster link` in the
cluster2 context, then apply it in the cluster1 context.
$ linkerd multicluster link --context k3d-cluster2 \
 --api-server-address https://${cluster2_node_ip}:6443 \
 --cluster-name k3d-cluster2 |
 kubectl apply --context k3d-cluster1 -f -

Ensure everything is healthy (note that this will fail for k3d, even
though things are working).
$ linkerd multicluster check

Check on the gateways.
$ linkerd multicluster gateways --context k3d-cluster1
$ linkerd multicluster gateways --context k3d-cluster2

At this point, skip ahead to “Multicluster Gotchas”.

Continuing with a Pod-to-Pod Setup

If you want a gateway-based setup, go back to “Continuing with a Gateway-Based Setup”.

To continue with Pod-to-Pod multicluster mode, we install the Linkerd Multicluster
extension as shown in Example 12-7, using the --gateway
false flag.

Example 12-7. Installing Linkerd Multicluster Pod-to-Pod

$ linkerd multicluster install --gateway false --context k3d-cluster1 |
 kubectl apply --context k3d-cluster1 -f -
$ linkerd multicluster check --context k3d-cluster1

$ linkerd multicluster install --gateway false --context k3d-cluster2 |
 kubectl apply --context k3d-cluster2 -f -
$ linkerd multicluster check --context k3d-cluster2

Now we need to link our clusters, as
shown in Example 12-8. Again, we need the --gateway false flag (and we only need --api-server-address for k3d).

Example 12-8. Linking the clusters Pod-to-Pod

Link cluster1 to cluster2. Again, --api-server-address is k3d-specific.
PAY ATTENTION TO CONTEXTS! We run `linkerd multicluster link` in the
cluster1 context, then apply it in the cluster2 context.
$ linkerd multicluster link --gateway false --context k3d-cluster1 \
 --api-server-address https://${cluster1_node_ip}:6443 \
 --cluster-name k3d-cluster1 |
 kubectl apply --context k3d-cluster2 -f -

Link cluster2 to cluster1. Again, --api-server-address is k3d-specific.
PAY ATTENTION TO CONTEXTS! We run `linkerd multicluster link` in the
cluster2 context, then apply it in the cluster1 context.
$ linkerd multicluster link --gateway false --context k3d-cluster2 \
 --api-server-address https://${cluster2_node_ip}:6443 \
 --cluster-name k3d-cluster2 |
 kubectl apply --context k3d-cluster1 -f -

Ensure everything is healthy (note that this will fail for k3d, even
though things are working).
$ linkerd multicluster check

Multicluster Gotchas

Irrespective of whether you’re setting up for gateway-based multicluster or Pod-to-Pod multicluster, there are two things that are always very important to bear in mind:

	Directions, contexts, and links

	
Every linkerd multicluster link command creates a unidirectional link.
Running a link command in the cluster1 context and applying it to the
cluster2 context is giving cluster2 the permissions and DNS information
needed to communicate with cluster1. Basically, running the link command
in the cluster1 context gathers information and credentials about
cluster1; applying it in the cluster2 context gives everything to
cluster2.

In our example setup (whether gateway or Pod-to-Pod), we run two
links, one in each direction. In most two-cluster setups, this makes sense,
but it’s definitely not required.

	Checking Your connections

	
We’ve helped a lot of folks troubleshoot their multicluster setups, and the
most common problem we’ve seen is a lack of connectivity between the clusters.
When you’re debugging multicluster setups, the first thing to check is
always to make sure that you have the appropriate connectivity between your
clusters.

You can usually do this very effectively simply by running a Pod in one
cluster with tools like curl, dig, etc., and then trying to make simple
HTTP calls to the other cluster.

Deploying and Connecting an Application

At this point, we have our clusters connected, and we need to begin taking
advantage of our links. In Example 12-9 we will deploy the
emojivoto sample application across
two clusters.

Example 12-9. Deploying a multicluster application

Pull down the luar repo if you don't already have it.
$ git clone https://github.com/linkerd-book/luar.git

Create the emojivoto ns in each cluster.
$ kubectl apply --context k3d-cluster1 -f luar/multicluster/ns.yaml
$ kubectl apply --context k3d-cluster2 -f luar/multicluster/ns.yaml

This will ensure that all new Pods come up with
the Linkerd proxy.

Start the backing services in cluster2.
$ kubectl apply --context k3d-cluster2 -f luar/multicluster/emoji.yaml
$ kubectl apply --context k3d-cluster2 -f luar/multicluster/voting.yaml

Start the web frontend and traffic generator in
cluster1.
$ kubectl apply --context k3d-cluster1 -f luar/multicluster/web.yaml

Check on the Pods in each cluster.
$ kubectl get pods -n emojivoto --context k3d-cluster1
$ kubectl get pods -n emojivoto --context k3d-cluster2

At this point, the Pods will be running in each cluster, but they have no
information about how to talk to each other. You can verify this simply by
looking at the Services in each cluster, as shown in Example 12-10.

Example 12-10. Checking the Services in each cluster

$ kubectl get svc -n emojivoto --context k3d-cluster1
$ kubectl get svc -n emojivoto --context k3d-cluster2

To make emojivoto work in our scenario, we’ll need to mirror
services across the clusters. For each Service we want exported, we’ll add the
mirror.link⁠erd​.io/exported label to it:

	
If you’re using gateway-based multicluster mode, use mirror.link⁠erd​.io/exported:
true, as shown in Example 12-11.

	
If you’re using Pod-to-Pod multicluster mode, use mirror.link⁠erd​.io/exported: remote-discovery, as shown in Example 12-12.

Example 12-11. Exporting Services with gateways

$ kubectl --context=k3d-cluster1 label svc web-svc \
 -n emojivoto mirror.linkerd.io/exported=true
$ kubectl --context=k3d-cluster2 label svc emoji-svc \
 -n emojivoto mirror.linkerd.io/exported=true
$ kubectl --context=k3d-cluster2 label svc voting-svc \
 -n emojivoto mirror.linkerd.io/exported=true

Example 12-12. Exporting Services Pod-to-Pod

$ kubectl --context=k3d-cluster1 label svc web-svc \
 -n emojivoto mirror.linkerd.io/exported=remote-discovery
$ kubectl --context=k3d-cluster2 label svc emoji-svc \
 -n emojivoto mirror.linkerd.io/exported=remote-discovery
$ kubectl --context=k3d-cluster2 label svc voting-svc \
 -n emojivoto mirror.linkerd.io/exported=remote-discovery

In either case, if you check the Services in the emojivoto namespace, as
shown in Example 12-13, you’ll see the mirrored Services.

Example 12-13. Checking on mirrored Services

$ kubectl get svc -n emojivoto --context k3d-cluster1
$ kubectl get svc -n emojivoto --context k3d-cluster2

If using Pod-to-Pod multicluster mode, you can also use linkerd diagnostics
endpoints to check that everything is working correctly, as shown in

Example 12-14.

Example 12-14. Checking on Service endpoints

Any valid Service DNS name should work here.
$ linkerd diagnostics endpoints --context k3d-cluster1 \
 emoji-svc-cluster2.linkerd-multicluster.svc.cluster.local
$ linkerd diagnostics endpoints --context k3d-cluster2 \
 web-svc-cluster1.linkerd-multicluster.svc.cluster.local

As implied by Example 12-14, mirrored Services appear as
serviceName-clusterName; for example, the emoji-svc mirrored from cluster2
into cluster1 will appear as emoji-svc-cluster2.

This is a rare case where, by default, the application may have to change to
work with Linkerd. The manifests that we applied in
Example 12-9 have already been tweaked so that the emojivoto
app uses the mirrored Service names, but you can also use an HTTPRoute and a
placeholder Service to redirect traffic.

For example, suppose we want all traffic for emoji-svc to be redirected to emoji-svc-cluster2. We could start by creating a Service named emoji-svc with no
selector, so that it’s simply not possible for that Service to match any Pods. This is shown in Example 12-15.

Example 12-15. A placeholder emoji-svc Service

apiVersion: v1
kind: Service
metadata:
 name: emoji-svc
 namespace: emojivoto
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: http

We can then associate an HTTPRoute with the placeholder Service to redirect all the traffic, as shown in Example 12-16.

Example 12-16. Redirecting all traffic to the placeholder emoji-svc Service

apiVersion: policy.linkerd.io/v1beta3
kind: HTTPRoute
metadata:
 name: emoji-svc-route
 namespace: emojivoto
spec:
 parentRefs:
 - name: emoji-svc
 kind: Service
 group: ""
 port: 80
 rules:
 - backendRefs:
 - name: emoji-svc-cluster2
 port: 80
 weight: 100
 timeouts:
 request: 5s

Checking Traffic

At this point, traffic should be flowing across clusters and the emojivoto
application should be working, as you should be able to see by pointing a web
browser to the web-svc service in cluster1, as shown in
Example 12-17.

Example 12-17. Checking out emojivoto with a browser

$ kubectl --context k3d-cluster1 port-forward -n emojivoto web-svc 8080:80 &

Open a browser to http://localhost:8000/ here

You can also watch traffic flowing in the Linkerd Viz dashboard, accessible by
running either command shown in Example 12-18, or by using the CLI commands in Example 12-19.

Example 12-18. Multicluster Linkerd Viz dashboard

$ linkerd --context k3d-cluster1 viz dashboard
$ linkerd --context k3d-cluster2 viz dashboard

Example 12-19. Multicluster Linkerd Viz CLI

$ linkerd viz stat service -n emojivoto --context k3d-cluster1
$ linkerd viz stat service -n emojivoto --context k3d-cluster2

However you look at it, you should be able to see traffic flowing across
clusters.

Policy in Multicluster Environments

There’s one more thing to cover before we close out the chapter. Linkerd policy is
applicable not just within but also between clusters. However, as you saw in
Figures 12-1 and 12-2, the two modes
work differently. When using gateway-based multicluster mode, the gateway itself is
where you need to apply any cross-cluster policy. It will accept policy configurations like
any other workload in the mesh.

Pod-to-Pod multicluster mode has the advantage of preserving the identity of the
originating workload when you make multicluster requests. That means you can
set a policy directly on your target workload to only accept requests from the
services that need to access it.

Summary

This chapter covered how multicluster architecture works in Linkerd and showed you how to set it up in a local environment. Linkerd’s multicluster features are robust, powerful, and used at scale by some of the largest organizations in the world. Consider how a multicluster setup could impact your environment and if it’s a good addition to your platform.

Chapter 13. Linkerd CNI Versus Init Containers

In Chapter 2, we mentioned the init container a couple of
times without ever talking about it in detail. The init container is one of
the two mechanisms Linkerd provides for handling mesh networking in
Kubernetes, with the other being the Linkerd CNI plugin. To understand what
these do and why you’d choose one over the other, you need to understand what
happens when a meshed Pod starts running.

As it happens, that’s a much bigger, thornier issue than you might expect.
We’ll start by looking at vanilla Kubernetes, without Linkerd.

Kubernetes sans Linkerd

At its core, Kubernetes has a straightforward goal: manage user workloads so
that developers can concentrate on Pods and Services without needing to worry
too much about the underlying hardware. This is one of those things that’s
easy to describe, and fairly easy to use, but extremely complex to
implement. Kubernetes relies on several different open source technologies to
get it all done. Remember that we’re talking about Kubernetes without
Linkerd at this point—this is essentially your standard Kubernetes
functionality.

Nodes, Pods, and More

The first area that Kubernetes has to manage is orchestrating the actual
execution of workloads within a cluster. It relies extensively on OS-level
isolation mechanisms for this task. Here are some key points to keep in mind:

	
Clusters comprise one or more Nodes, which are physical or virtual
machines running Kubernetes itself. We’ll discuss Linux Nodes here.

	
Since Nodes are entirely distinct from one another, everything on one Node
is isolated from others.

	
Pods consist of one or more containers, and they’re isolated within the same
Node using Linux cgroups and namespaces.

	
Containers within the same Pod are allowed to communicate using loopback
networking. Containers in different Pods need to use non-loopback addresses
because Pods are isolated from each other. Pod-to-Pod communication is the
same whether the Pods are on the same Node or not.

	
An important point is that Linux itself operates at the Node level: Pods and
containers don’t have to run separate instances of the OS. This is the
reason that isolation between them is so critical.

This layered approach, shown in Figure 13-1, lets
Kubernetes orchestrate the distribution of workloads within the cluster, while
keeping an eye on resource availability and usage: workload containers map to
Pods, Pods are scheduled onto Nodes, and all Nodes connect to a single flat
network.

[image: luar 1301]
Figure 13-1. Clusters, Nodes, Pods, and containers

(What about Deployments, ReplicaSets, DaemonSets, and such? They’re all about
hinting to Kubernetes where the Pods they create should be scheduled; the
actual scheduling mechanism underneath is the same.)

Networking in Kubernetes

The other major area that Kubernetes manages is the network, starting with the
fundamental tenet that every Pod must see a flat and transparent network.
Every Pod should be able to communicate with all others, on any Node. This
means that every Pod must have its own IP address (the Pod IP).

Containers or Pods?

The requirement is actually that any two containers must be able to talk to
each other, but IP addresses are allocated at the Pod level—multiple
containers within one Pod share the same IP address.

While it’s possible to have a workload use Pod IPs directly to communicate
with other workloads, it’s not a good idea due to the dynamic nature of Pod
IPs: they change as Pods cycle. It’s a better idea to use Kubernetes Services
in most cases.

Services are rather complex, as we discussed briefly in
Chapter 5:

	
Creating a Service triggers the allocation of a DNS entry, so workloads can refer to
the Service by name.

	
Creating a Service also triggers allocation of a unique IP address for the Service,
distinct from any other IP address in the cluster. We call this the Service IP.

	
The Service includes a selector, which defines which Pods will be
associated with the Service.

	
Lastly, the Service gathers the Pod IP addresses of all its matching Pods
and maintains them as its endpoints.

This is all shown in Figure 13-2—which, sadly, is still a
simplified view of Services.

[image: luar 1302]
Figure 13-2. Kubernetes Services and addressing

When a workload attempts to connect to a Service, Kubernetes
will, by default, select one of the Service’s endpoints and route the
connection there. This allows Kubernetes to perform basic load balancing of
connections, as shown in Figure 13-3:

	
Connections within Pods happen over localhost so that they stay within the
Pod.

	
Connections to other workloads hosted on the same Node stay internal to the
Node.

	
Connections to workloads hosted on other Nodes are the only ones that
transit the network.

[image: luar 1303]
Figure 13-3. Kubernetes basic network routing

To make this all work, Kubernetes relies on the networking mechanisms built
into the core of the Linux kernel.

The Role of the Packet Filter

The Linux kernel has long included a powerful packet filter mechanism to
inspect network packets and make decisions about what to do with each one.
Possible actions the packet filter system can take include letting the packet
continue as is, modifying the packet, rerouting the packet, or even discarding
it entirely.

Kubernetes takes extensive advantage of the packet filter to handle the
complexities of routing traffic among an ever-changing set of Pods within a
cluster. For instance, the filter can intercept a packet sent to a Service
and rewrite it to go to a specific Pod IP instead. It can also
distinguish between a Pod IP on the same Node as the sender and one on a
different Node, and manage routing appropriately. If we zoom in a bit on
Figure 13-3, we get the more detailed view in
Figure 13-4.

[image: luar 1304]
Figure 13-4. Kubernetes and the packet filter

Let’s follow the dotted-line connection shown in Figure 13-4, from Pod B-1 all the way to Pod C-2:

	
The application container in Pod B-1 makes a connection to the Service IP address for Service C.

	
The packet filter sees a connection from a local container to the Service
IP, so it redirects that connection to the Pod IP of either Pod C-1 or Pod C-2. By default, the choice is random for each new connection (though the exact configuration of the cluster’s networking layer can change this).

	
In this case, the Pod IP is on a different Node, so the network hardware gets
involved to communicate over the network to the second Node.

	
On the second Node, the packet filter sees the connection coming over the
network to a Pod IP address, so it hands the connection directly to the Pod,
choosing a container based on the port number.

For the dashed-line connection shown between Pod B-1 and Pod A-1, the process is the same, except that the network hardware
has no role to play since the connection is entirely contained within
one Node. In all cases, the containers see a simple, flat network, with all
containers living in the same IP address range—which, of course, requires
Kubernetes to continuously update the packet filter rules as
Pods are created and removed.

Alphabet Soup: iptables, nftables, and eBPF

There have been several implementations of the packet filter over time, and
you may hear people use the name of a specific implementation when talking about this
topic. The most common as of this writing is iptables, but a newer
nftables implementation is becoming more popular.

You might also find this whole bit reminding you of the filtering technology
known as eBPF, which makes a lot of sense since eBPF is particularly good at
this kind of packet wizardry. However, many implementations predate eBPF and
don’t rely on it.

The Container Networking Interface

Since networking configuration is a rather low-level aspect of Kubernetes,
the details tend to depend on which Kubernetes implementation is in use. The
Container Network Interface (CNI) is a standard
designed to offer a consistent interface for managing dynamic network
configurations; for example, the CNI provides mechanisms for allocating and
releasing IP addresses within specific ranges, which Kubernetes uses in turn
to manage the IP addresses associated with Services and Pods.

The CNI doesn’t directly provide mechanisms for managing packet filtering
functionality, but it does allow for CNI plugins. Service meshes—including
Linkerd—can use these plugins to implement the packet filtering configuration
they need to function.

CNI Versus CNI

There are many implementations of the CNI, and a given Kubernetes solution
often allows a choice between several different CNI implementations (for
example, k3d uses Flannel by default
as its networking layer, but it can be easily switched to
Calico).

The Kubernetes Pod Startup Process

When all is said and done, here’s what Kubernetes needs to do to start a Pod:

	
Locate a Node to host the new Pod.

	
Run any CNI plugins defined by the Node within the new Pod’s context. The
process fails if any plugin doesn’t work.

	
Execute any init containers defined for the new Pod, in the order they’re
defined. Again, the startup process fails if any don’t work.

	
Launch all the containers defined by the Pod.

During the initiation of the Pod’s containers, it’s important to note that the
containers will start in the order outlined by the Pod’s spec. However,
Kubernetes will not wait for one container to start before moving on to the
next, unless a container has a postStartHook defined. In that case,
Kubernetes will start that container, run the postStartHook to completion,
and only then proceed to start the next container. We’ll talk more about this
in “Container ordering”.

Kubernetes and Linkerd

Any service mesh introduces complexities into startup, and Linkerd is no exception. The first concern is that Linkerd has to inject its proxy into application Pods, and the proxy has to intercept network traffic going into and out of the Pod. Injection is managed using a mutating admission controller. Interception is more complex, and Linkerd has two ways to manage it: you can use either an init container or a CNI plugin.

The Init Container Approach

The most straightforward way for Linkerd to configure networking is via an
init container, as shown in Figure 13-5. Kubernetes ensures all
init containers are run to completion, in the order they’re mentioned in the
Pod’s spec, before any other containers start. This makes the init container
an ideal way to configure the packet filter.

[image: luar 1305]
Figure 13-5. Startup with the init container

The downside here is that the init container requires the NET_ADMIN
capability to perform the required configuration. In many Kubernetes runtimes,
this capability simply isn’t available, and you’ll need to resort to the
Linkerd CNI plugin.

Also, the OS used in some Kubernetes clusters may not support the older
iptables binary used by default in Linkerd (this typically comes into play with the
Red Hat family). In these instances, you’ll need to set
proxyInit.iptablesMode=nft to instruct Linkerd to use iptables-nft
instead. (This isn’t the default setting because iptables-nft isn’t
universally supported yet.)

The Linkerd CNI Plugin Method

In contrast, the Linkerd CNI plugin simply requires that you install the
plugin prior to installing Linkerd itself. It doesn’t need any special
capabilities, and the CNI plugin will operate every time a Pod starts,
configuring the packet filter as required, as shown in Figure 13-6.

[image: luar 1306]
Figure 13-6. Startup with the CNI plugin

The main complication here is that the CNI was originally designed for the
people setting up the cluster in the first place, rather than people using it
after it’s been created. As a result, the CNI assumes that the ordering of CNI
plugins is handled completely outside the Kubernetes environment. This has
turned out to be less than ideal, so most CNI plugins these days (including
the Linkerd CNI plugin) are written to try to do the right thing no matter
what the cluster operators did.

In the case of the Linkerd CNI plugin, when it’s enabled Linkerd installs a
DaemonSet designed to arrange for the Linkerd CNI plugin to always run last.
This allows other plugins the chance to configure what they need before
Linkerd jumps in to enable the Linkerd proxy to intercept traffic.

When using the CNI plugin, Linkerd will still inject an init container. If
you’re using a version of Linkerd prior to stable-2.13.0, this will be a no-op init
container that, as the name suggests, essentially doesn’t do much. From
stable-2.13.0 onward, the init container will verify that the packet filter is
correctly configured. If it’s not, the container will fail, prompting
Kubernetes to restart the Pod. This helps to avoid a startup race condition
(more on this in the next section).

Races and Ordering

As you can see, the startup process in Kubernetes can be complex—which
means that there are several different ways things can fail.

Container ordering

As mentioned previously, containers are launched in the order they appear in the Pod’s spec, but
Kubernetes doesn’t wait for a given container to start before launching the next one
(except for init containers). This can cause trouble during Linkerd’s startup:
what if the application container begins running and tries to use the network
before the Linkerd proxy container is functioning?

Starting with Linkerd 2.12, there’s a postStartHook on the Linkerd proxy
container to deal with this. When a container has a postStartHook,
Kubernetes starts the container, then runs the postStartHook to completion
before starting the next container. This gives containers a straightforward
way to ensure ordering.

The Linkerd proxy’s postStartHook won’t complete until the proxy is actually
running, which forces Kubernetes to wait until the proxy is functional before
starting the application container. If necessary, this functionality can be
disabled by setting the annotation config.linkerd.io/proxy-await=disabled.
However, we recommend leaving it enabled unless there’s a compelling reason to
do otherwise!

CNI plugin ordering

There are several ways CNI plugin ordering can cause confusion:

	DaemonSets versus other Pods

	
Kubernetes treats DaemonSet Pods just like any other Pods, which means that an
application Pod might be scheduled before the Linkerd CNI DaemonSet can
install the Linkerd CNI plugin! This implies that the Linkerd CNI plugin won’t
run for the application Pod, which in turn means that the application
container(s) won’t have a functioning Linkerd proxy.

Before Linkerd stable-2.13.0, there was no way to catch this, and the
application container would simply never be present in the mesh. As of
stable-2.13.0, though, the init container checks that the packet filter has been
configured correctly. If it’s not, the init container will exit, causing a crash
loop from Kubernetes’s point of view, which will make the failure obvious.

	Multiple CNI plugins

	
In most cases, a given Kubernetes installation will use more than one CNI
plugin. While the Linkerd CNI DaemonSet puts a lot of effort into allowing the
Linkerd CNI plugin to run last, and to not disrupting other CNI plugins, it’s not
perfect. If this goes wrong, the Pod will (again) probably never appear to be
in the mesh.

	Misconfigured CNI

	
It’s always possible to simply misconfigure the Linkerd CNI plugin when you
install it in the first place. For example, when running k3d, it’s necessary
to supply the plugin with certain paths, and if these are wrong, the plugin
itself won’t work. This might cause application Pods to silently fail to
launch, or it might cause “corrupt message” errors to show up in the proxy
logs:

{ "message": "Failed to connect", "error": "received corrupt message" }

The only real saving grace of CNI issues is that they’re typically pretty
obvious, conspicuous errors: you’ll see linkerd check fail, or Pods won’t
start, or similar things. On the other hand, resolving the failures can be
tricky and depends greatly on the specific CNI involved, so in general we
recommend sticking with the init container mechanism where possible.

Summary

There’s a lot of complexity to the Kubernetes startup process—especially
with Linkerd—but there are also some simple recommendations to help keep
everything going smoothly:

	
Keep Linkerd up-to-date! Recent versions have added some really helpful
things for startup.

	
Use proxy-await unless you have a very good reason to disable it.
It’ll make sure that your application code has a working mesh before
starting.

	
Stick with the init container if you can. If not, just use the CNI plugin,
but if your cluster can run with the init container, it’s probably simplest
to do so.

Chapter 14. Production-Ready Linkerd

Once you’ve deployed Linkerd, your next task is to appropriately
harden your environment for production usage. As you prepare,
it’s valuable to familiarize yourself with the resources available to you.
Linkerd users have access to two basic sets of resources:

	
Community-provided resources, which are free to use and a great source of information for everyone

	
Commercial resources from Buoyant, the creators of Linkerd

For the purposes of this book we’re going to avoid going into the paid
resources. If you’d like more information on Buoyant’s commercial offerings, visit the Buoyant website.

Linkerd Community Resources

The Linkerd community is active on GitHub, Slack, and the CNCF mailing list. Beyond that, there are a number of useful guides and resources online.

If you’re looking to learn more about running Linkerd in production, the Buoyant production runbook is actively updated as Linkerd versions change and contains lots of important information.

Getting Help

Community support for Linkerd is mostly provided by volunteer community members in the Linkerd Slack or directly by the maintainer and contributor community on GitHub. It’s important that users trying to get help from the open source
community understand that you have a responsibility to carefully test all changes you make to Linkerd. When seeking help for Linkerd, you should be sure to clearly articulate the problem you’re facing and, if possible, provide clear steps to reproduce the issue. The hardest task for maintainers or volunteer community members will always be understanding and testing any particular problems that come up.

Responsible Disclosure

If you run into a security issue with Linkerd, the project maintainers kindly ask that you send a private email to cncf-linkerd-maintainers@lists.cncf.io. The maintainers will acknowledge your report and provide you additional information as they investigate the disclosure. You can subscribe to Linkerd vulnerability notifications at the cncf-linkerd-announce mailing list.

Kubernetes Compatibility

Linkerd is tested with all currently active Kubernetes versions. Each version’s release notes contain the minimum supported Kubernetes version.

Going to Production with Linkerd

With that out of the way, we can dive into going to production with Linkerd.

Stable or Edge?

For production use, your simplest path is going to be running a release from the stable channel, such as Buoyant Enterprise for Linkerd. Running an edge-channel release in production is definitely possible, though.

If you decide to run edge releases in production, it is critical that you carefully read the release notes for any release you’re considering and that you give feedback about your experience to the Linkerd maintainers. The simplest way to do this is via the community Slack. Discussions or issues on GitHub are also a great way to reach the Linkerd team.

Preparing Your Environment

The first step in making sure that your environment is ready for Linkerd is
always to run the CLI’s preflight check:

$ linkerd check --pre

This will verify that your environment is ready to run Linkerd, paying
particular attention to Kubernetes permissions.

Beyond the preflight check, you also need to make sure that you understand
your environment’s particular security requirements. For example:

	
If you can’t allow your Pods NET_ADMIN permissions, you’ll need to use the
Linkerd CNI plugin.

	
If you’re using the Kubernetes tainting mechanism and you have applied custom taints to the Nodes where you’ll be running the Linkerd control plane, you’ll need to add tolerations to the Linkerd deployments.

	
If you use network policies to segregate traffic, you’ll need to make sure
that your policies allow communication between the Linkerd control plane and
its proxies. You may also want to consider using the Linkerd policy mechanisms for
application-aware policy enforcement.

In addition to communications, you’ll also need to consider how you’ll handle adding
your application to the mesh, as discussed in Chapter 4.
For example, will you use namespace injection or workload injection? These
aren’t likely to be terribly complex decisions, but it’s still a good idea to
think about them ahead of time.

To recap, you add a workload to the mesh by instructing the Linkerd proxy injector, a mutating webhook, to add a proxy to a Pod at Pod creation time. That instruction can be passed by adding an annotation at either the namespace, workload, or Pod level:

linkerd.io/inject: enabled

For production use, we recommend that you add the annotation at the namespace
or workload level. This will generally be the simplest way to manage meshing
application workloads, since it doesn’t require altering individual Pod
manifests. (There are some situations in which you may need to add the proxy directly to a Pod, as discussed in Chapter 6, but they’re few and far between.)

In either case, you’ll want to configure your deployment tooling to add the
appropriate annotations during the deployment process, to ensure that your
workloads are all appropriately meshed. This is also the time to add any
exceptions to the cluster-wide configuration for skip and opaque ports, as
discussed in Chapter 4.

Explicitly Enabling Injection

Remember that if you are adding the Linkerd proxy-injection annotations at the
namespace level, you can still override the injection behavior on individual
workloads by adding the following annotation to a Deployment:

linkerd.io/inject: disabled

Configuring Linkerd for High Availability

If you’re deploying Linkerd in production, it means you’ve decided to add
critical security, observability, and reliability features to your production
application. Good for you! Unfortunately, all that new functionality comes
with some very real costs. Linkerd is now in the critical operating path for your
most critical workloads. If Linkerd suffers a catastrophic failure, you’re
likely to suffer a very real application outage, or at the very least a
degradation in service.

In order to mitigate these risks, the Linkerd project defines and supports
high availability (HA) mode. HA mode modifies the way Linkerd is deployed, as
shown in Figure 14-1.

[image: luar 1401]
Figure 14-1. Linkerd HA mode

Always Run HA in Production

We strongly recommend HA mode for any production use of Linkerd. If you
don’t explicitly install in HA mode, your Linkerd installation will have
several single points of failure that could cause downtime for your
application.

What does HA mode do?

High availability mode makes a few significant changes to your Linkerd control
plane install. You can find all the details about exactly what HA mode
changes in the latest documentation, and we
strongly encourage you to review this documentation when upgrading to make
sure that you’re working with the latest information.

The basic configuration, though, has been fairly consistent over time. In
broad strokes, HA mode:

	Runs three replicas

	
In HA mode, each control plane component runs three replicas rather than just one,
to prevent failure of a single replica from taking down the whole mesh.

	Sets anti-affinity

	
Additionally, HA mode creates anti-affinity rules that prevent any single Node
from running more than one replica of any control plane component. This
prevents a single Node failure from taking down the entire mesh.

	Tightens resource limits

	
HA mode establishes much more aggressive CPU and memory resource requests and limits
than non-HA mode, to prevent any runaway processes from causing more
widespread problems for the cluster as a whole.

Verifying Requests and Limits

These more aggressive limits set by HA mode function well for many
organizations, but you should view them as just a starting point: they may not
be what your organization needs. It’s important to actively monitor the
Linkerd control plane’s actual resource usage for your installation and tune
the requests and limits as needed.

In particular, a control plane component that hits its memory limit will be
OOMKilled and then restarted.
This can be easy to miss if it happens infrequently, but if it happens
consistently, you will likely suffer a production incident.

	Makes the proxy-injector mandatory

	
In HA mode, the proxy-injector component of the Linkerd control plane is
required to be healthy before any Pod is allowed to be scheduled. This
reflects the fact that Linkerd is commonly responsible for ensuring secure
communications within your application. It is likely to be better to fail to
start an application Pod than to allow it to run without having Linkerd’s
proxy present to make it part of the mesh.

It’s important to realize, though, that this requirement is enforced using a
cluster-wide admission webhook, and as such it affects every Pod in the
cluster, not just application workloads. This means that you must exempt
critical cluster infrastructure namespaces, such as kube-system, from having
the policy enforced.

To exempt a namespace, apply the following label to the namespace:

config.linkerd.io/admission-webhooks: disabled

No Admission Webhook for Infrastructure!

You must exempt infrastructure namespaces from the HA admission webhook.
If you don’t, you can easily end up deadlocked, with Linkerd waiting for system
infrastructure while system infrastructure is waiting for Linkerd.

High availability installation with Helm

We recommend using Helm for production Linkerd installs, including high availability
installs. A complicating factor is that high availability installations are
much more likely than other installations to need customized values for Helm.
To make this a bit easier, the Linkerd Helm chart includes a values file that
you can use as a basis for your high availability installation.

We recommend that you always refer to the
latest
high availability installation instructions when deploying Linkerd HA with
Helm. A brief overview of the process at the time of writing is shown in
Example 14-1.

Example 14-1. Installing Linkerd in HA mode with Helm

Add the Linkerd stable repo
$ helm repo add linkerd https://helm.linkerd.io/stable

Update your Helm repositories
$ helm repo update

Pull down the latest version of the chart
$ helm fetch --untar linkerd/linkerd-control-plane

Examine linkerd-control-plane/values-ha.yaml and edit if needed. The
edited file should be placed in version control and, as new charts are
released, periodically compared with the new values-ha.yaml files.

Install the Linkerd CRDs
$ helm install linkerd-crds linkerd/linkerd-crds \
 -n linkerd --create-namespace

Install the Linkerd control plane
Note the added reference to the values-ha.yaml file
$ helm install linkerd-control-plane \
 -n linkerd \
 --set-file identityTrustAnchorsPEM=ca.crt \
 --set-file identity.issuer.tls.crtPEM=issuer.crt \
 --set-file identity.issuer.tls.keyPEM=issuer.key \
 -f linkerd-control-plane/values-ha.yaml \
 linkerd/linkerd-control-plane

Ensure your install was successful
$ linkerd check

As noted in the comments, you should keep your version of values-ha.yaml in version control. It’s an important resource for reinstallations and disaster recovery.

High availability installation with the CLI

While we don’t generally recommend CLI-based installs for production
environments, you can use the Linkerd CLI to output deployment YAML configured
with all the HA options and then use this YAML as the basis for your actual
install process.

To do this, use the linkerd install command with the --ha flag, and
save the resulting YAML to a file:

$ linkerd install --ha > linkerd-ha.yaml

You can then put linkerd-ha.yaml in version control and edit it as needed.

Monitoring Linkerd

There are commercial providers that will automatically configure Linkerd monitoring and alerting. For those of you looking to monitor Linkerd yourselves, we recommend you establish monitors to ensure Linkerd remains highly available in your
environment.

Certificate Health and Expiration

The most common cause of Linkerd outages is expired certificates. Both the
trust anchor and identity issuer certificates must be valid at all times to
avoid downtime. As such, carefully monitoring your certificates to be certain
that you always renew them before they expire is crucial.

The linkerd check command will begin warning you when your root or
issuer certs will expire in less than 60 days.

Never Let Your Certificates Expire

Because Linkerd requires mTLS connections between Pods by default, the health
and security of the certificates it uses are absolutely critical to the
healthy operation of the mesh—and thus your platform. If certificates
expire, or can’t be generated for new Pods, you will incur downtime.

This is the most common cause of downtime in production Linkerd clusters.
Understanding and monitoring your Linkerd certificates is vital.

Control Plane

Linkerd’s control plane is vital to the normal operation of your platform. You
should collect and measure Linkerd proxy metrics for the control plane,
like success rates, latency, and requests per second. Alert on aberrant
behavior and investigate situations where the success rates drop below 100%.

You should also closely monitor the resource consumption of the control plane
and ensure it never gets close to its CPU or memory limits.

Data Plane

The Linkerd proxy tends to be fairly uncomplicated and straightforward to
operate. That being said, it’s important to ensure the proxies aren’t
consuming more resources than they should be: if they are, it can indicate
excessive traffic or other issues. Monitor the resource usage on your proxies,
and ensure that their resource requests and limits match what they need in
order to handle application traffic.

It’s also wise to ensure you are monitoring the versions of the Linkerd proxies in your environment. The proxy will be deployed with the version defined by the proxy injector at the time a Pod is created. If your Pods aren’t restarted on a regular basis, the proxy version can get out of sync with the control plane. You will want to ensure your proxies are always within at least one major version of the control plane.

Metrics Collection

Any production installation of Linkerd also needs to account for what you will
do with the metrics data generated by Linkerd. Linkerd proxies are constantly
collecting useful information about the traffic going into and out of their
Pods, and all this information is made available in such a way that any tool
compatible with Open­Te⁠lemetry should be able to access it. (Linkerd has also
long provided open source configuration details for configuring Prometheus to
scrape metrics from Linkerd.)

Linkerd is not itself a monitoring tool (though Linkerd Viz can consume
metrics and display many useful things about them); instead, it is designed to
provide metrics to whatever monitoring solution is already in use in your
environment. Whatever that is, one of the most important long-term tasks
facing a platform engineer responsible for a production Linkerd installation
is creating a plan for collecting, storing, and using all the metrics
generated by Linkerd, since effective long-term monitoring is extremely
valuable for understanding the behavior and health of your apps.

Linkerd Viz for Production Use

The Linkerd Viz extension consumes metrics provided by Linkerd, using them to
enable some powerful diagnostics for Linkerd and providing a basic
open source dashboard (shown in Figure 14-2) to make some of
these metrics more easily visible. As of Linkerd 2.12, the core visibility
data available from the CLI—from metrics to the state of a multicluster
gateway—requires the Linkerd Viz extension to be installed.

[image: luar 1402]
Figure 14-2. The Linkerd Viz dashboard

Though Linkerd Viz is not required for production use, we generally
recommend installing it. Running Viz in production requires careful attention
to three areas:

	Prometheus and Linkerd Viz

	
When you install Linkerd Viz, it can install a Prometheus instance for you.
This Prometheus instance is not recommended for production use, since it
uses an in-memory data store for metrics. As it saves more metrics data, it
will fill up its available memory and crash, losing all the metrics data it
had saved up to that point. In a busy production system, this can happen
multiple times a day.

To use Linkerd Viz in production, therefore, you’ll need to use a different
Prometheus instance with persistent storage. The full procedure for
externalizing Prometheus is shown in Example 10-9. You can
also review the official docs on
externalizing Prometheus.

Always Use Your Own Prometheus

We’ll say it one more time: do not use the Prometheus installed by Linkerd Viz in production. It stores your metrics only in RAM, and you will lose
any historical data when it restarts.

Chapter 10 has more details on the right way to deal with
metrics.

	Securing the Linkerd Viz dashboard

	
The open source Linkerd Viz dashboard provides access to important information
about your cluster, including metrics, Linkerd Tap, and more. For ease of
experimentation, it does not include any authentication mechanism; as such, we
do not recommend this configuration for production.

If you intend to make the Linkerd Viz dashboard available in production, we
strongly recommend limiting access to it using your ingress controller as
well as Linkerd authorization policy. You can learn more about ingress
controllers in Chapter 5, and more about exactly how to
secure the Linkerd Viz dashboard in
the Linkerd docs.

	Securing Linkerd Tap

	
Linkerd Tap allows operators to view the metadata about requests between
applications in your environment. Though it cannot ever access unencrypted
message bodies, it is still important to secure access to Linkerd Tap since
many organizations include potentially sensitive information in their URLs or
headers that should not be exposed to everyone with access to the cluster.
Access to Linkerd Tap is provided via the linkerd-linkerd-tap-admin ClusterRole.

You can read more about securing Tap traffic in the
Linkerd docs, but the most
basic operation here is to give a Kubernetes account permission to access
Linkerd Tap. That can be done with the role binding shown in Example 14-2.

Example 14-2. Accessing Linkerd Tap

$ export USER=<target_username>
$ kubectl create clusterrolebinding \
 "${USER}"-tap-admin \
 --clusterrole=linkerd-linkerd-viz-tap-admin \
 --user="${USER}"

Accessing Linkerd Logs

The Linkerd control plane and the Linkerd proxies all emit log information,
accessible using kubectl logs, that can be valuable for troubleshooting any
active incidents or investigating anomalous behavior. Each log message emitted
has an associated log level:

	ERROR

	
Messages that indicate serious problems with Linkerd that must be
resolved in order to continue operating the mesh

	WARNING

	
Messages that indicate problems that should be resolved but won’t
prevent the mesh from functioning

	INFO

	
Informational messages

	DEBUG

	
Messages that are only for debugging and usually require knowledge of
Linkerd to interpret

By default, Linkerd components are configured to emit messages at the INFO
level and higher. If necessary, you can override this configuration so that
Linkerd will emit DEBUG messages too. (It is not recommended to turn off
INFO-level messages.) Switching the log level requires a restart for the
control plane, though Linkerd proxies can change their log level at runtime.

You should only switch Linkerd to emit DEBUG-level log messages while
actively troubleshooting an issue; emitting DEBUG-level logs has real
performance implications for Linkerd itself, and the extra log volume can
quickly overwhelm log aggregators.

On that note, when monitoring your Linkerd environment it’s worthwhile to
monitor the log level of your Linkerd components to ensure they haven’t been
mistakenly left emitting DEBUG logs.

Upgrading Linkerd

Linkerd is designed to be safe to operate and upgrade. Upgrades within the
same major version are generally safe and, if high availability mode is
configured, can be confidently performed without any loss of functionality.
That being said, in all cases it’s wise to test your upgrades, and upgrade
processes, in your nonproduction environments before moving to production.

When using releases from the stable channel, remember that major version upgrades, unlike minor version upgrades, can contain breaking changes. Linkerd 2.10, 2.11, and 2.12 all contained significant changes to the operation of Linkerd that required many users to change their deployment strategies or carefully test the behavior of their applications. It is incumbent on you as the platform operator to carefully read the release notes for a new major version before deploying and test your upgrade process before moving to production.

Never Skip Major Versions

When upgrading, never skip major versions; for example, an upgrade from
2.12.5 to 2.14.3 is not supported. Upgrades are tested only across a
single major version; attempting to skip will land you in uncharted territory
and could easily cause downtime.

Note that you should always read the upgrade instructions for a given
release before upgrading; for example, Linkerd 2.12 added a new step to the
process. This is especially important when using releases from the edge channel! You can find the latest instructions in the
Linkerd upgrade documentation.

As with Linkerd installs, the project supports two main pathways for upgrading.

Upgrading via Helm

Using Helm is the recommended method for production installations and upgrades.

Read the Instructions

Remember to read the Linkerd upgrade
instructions before starting the upgrade!

Here’s the process:

	
Ensure that the control plane itself is healthy and that Linkerd is running cleanly:

$ linkerd check

	
If linkerd check reveals any issues, address them before moving
forward. Trying to upgrade when the control plane is not functioning correctly
can cause major problems.

	
Once you know that the control plane is running smoothly, pull down updates to
your Helm repositories:

$ helm repo update

	
Next, update the Linkerd Helm charts. Note that as of Linkerd 2.12, there are two distinct Helm charts, and you need to run upgrades for both.

First, upgrade the Linkerd CRDs:

$ helm upgrade linkerd-crds -n linkerd linkerd/linkerd-crds

Once that’s done, upgrade the control plane itself:

$ helm upgrade linkerd-control-plane \
 -n linkerd linkerd/linkerd-control-plane

	
Once again, ensure that the control plane is healthy:

$ linkerd check

Upgrading via the CLI

Linkerd’s CLI has an upgrade command that will output YAML that can be
directly applied to your Kubernetes cluster to upgrade the Linkerd control
plane. While we generally recommend using Helm to upgrade Linkerd, the Linkerd
CLI may better fit some workflows.

Read the Instructions

Remember to read the Linkerd upgrade
instructions before starting the upgrade!

The basic process for upgrading the via the CLI is:

	
Ensure that the control plane itself is healthy and that Linkerd is running cleanly:

$ linkerd check

	
If linkerd check reveals any issues, address them before moving
forward. Trying to upgrade when the control plane is not functioning correctly
can cause major problems.

	
Start the upgrade process itself by installing the latest version of the
Linkerd CLI. This allows the CLI to fetch the latest versions of the various
Linkerd installation resources:

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install | sh

Confirm you’re running the latest version with:

$ linkerd version --client

	
Upgrade the control plane running in the cluster:

$ linkerd upgrade \
 | kubectl apply --prune -l linkerd.io/control-plane-ns=linkerd -f -

Using the --prune flag ensures that resources that are no longer required
are removed from your cluster.

Seriously, Read the Instructions!

As an illustration of why reading the instructions is important, upgrading to
Linkerd 2.12 required passing a much more complex set of pruning instructions to kubectl apply!

The upgrade instructions can change with each major version, which is why you
should always read the latest documentation before upgrading.

	
Once again, ensure that the control plane is healthy:

$ linkerd check

Readiness Checklist

There’s a lot separating a small demo environment from a major production
environment, as we’ve just covered! The following checklist covers
some of the most important things to consider when taking Linkerd into
production:

	
I’ve run Linkerd’s preflight checks with my installation credentials.

	
I’m mirroring the Linkerd images into my own internal registry.

	
I’m confident I have the capacity on my cluster to run Linkerd’s control plane in high availability mode.

	
I have a plan to run Linkerd in HA mode.

	
I have created my own certificates for Linkerd.

	
I have a plan to securely store and rotate those certificates.

	
I have created monitors to ensure I will be notified before my certificates expire.

	
I have identified the various non-HTTP workloads in use in my environment.

	
I am aware of which ones are in the mesh and which are not.

	
I have annotated the kube-system namespace to ensure it will operate normally without the proxy injector being available.

	
I have ensured the linkerd namespace will not be configured for auto-injection.

	
I have ensured the kube-system namespace will not be configured for auto-injection.

	
I am aware of any other namespaces that I need to ensure do not get injected by the proxy.

	
I have exempted them from the injector failure policy.

	
I have a plan for adding the appropriate annotations to my workloads.

	
I have a plan for gathering and storing Linkerd metrics.

	
I have tooling in place to ensure Linkerd is healthy and that I will be notified if there is an issue.

If you are able to check off most or all of these items, you are well on your way to being able to confidently run Linkerd in production.

Summary

In this chapter, we covered many of the core tasks and concerns involved with
running Linkerd in production. No two organizations have identical operational
constraints and requirements, so, as with everything else in technology, you
should be prepared to adapt this advice to your real-world circumstances. If
you have particular operational concerns, or want help running Linkerd, we
recommend connecting with the Linkerd community or establishing a commercial
relationship with a vendor that provides support or management for Linkerd.

Chapter 15. Debugging Linkerd

If you’ve come this far, you understand how valuable a tool Linkerd can be for a platform to provide. It secures your apps, provides powerful insights into those applications, and can account for underlying application and network issues by making your connections more reliable. In this chapter, we’re going to look at what to do when you need to troubleshoot Linkerd itself.

In all cases, the first step when diagnosing an issue with Linkerd is to use
the Linkerd CLI’s built-in health checking tool by running linkerd check,
as we discussed in more detail in Chapter 6. linkerd check is a
very quick way to pinpoint many of the most common issues with Linkerd
installations; for example, it can immediately diagnose expired certificates,
which is the most common issue that causes Linkerd outages in practice.

Diagnosing Data Plane Issues

Linkerd is somewhat famous for not requiring a ton of hands-on work with the
data plane; however, it’s still useful to be able to do some basic
troubleshooting. Many proxy issues end up involving fairly similar sets of
solutions.

“Common” Linkerd Data Plane Failures

While Linkerd is generally a fault-tolerant service mesh, there are a few
conditions that we see arise more than others. Knowing how to tackle these can
be extremely helpful.

Pods failing to start

If you run into a situation where injected Pods are failing to start, the
first step will be to identify exactly where the failure is occurring. This is
where the kubectl describe pod and kubectl logs commands can provide a lot
of useful information.

It’s often most useful to start by describing a failing Pod, to get a sense of
what Kubernetes believes has happened. For example, did the Linkerd init
container fail? Did the Pod get killed because its probes never reported
ready? This information can help you decide which containers to pull logs
from, if you need the logs.

If the failing containers belong to the application rather than to Linkerd,
you’ll likely be best off looking at non-Linkerd-specific potential causes,
like a failing common dependency, or perhaps Nodes running out of resources.
If it’s Linkerd containers failing, though, the second step is to understand
whether the failure is affecting all new Pods or only some new Pods:

	Single Pod failure

	
If a single Pod is failing, you’ll want to look at the characteristics of that
Pod. Which containers are failing to start? Is it the proxy, an init
container, or the application itself? If other Pods are starting normally, it
isn’t a systemic issue and you’ll need to dive into the particulars of the specific
Pod.

	All Pods are failing to start

	
If the failure is happening on all new Pods, you likely have a more serious
systemic issue. As noted before, the most common reason that all Pods
fail to start is a certificate issue. The linkerd check command will reveal this kind of
issue immediately, which is why we recommend running it first.

Another possible—though uncommon—issue is that the Linkerd proxy injector
isn’t running or is unhealthy. Note that when running Linkerd in HA mode,
which (as discussed in Chapter 14) we recommend for production use, Kubernetes will refuse to start any new
application Pods until the injector is healthy.

	A subset of Pods is failing to start

	
If only some new Pods are failing to start, it’s time to begin isolating what
common factors exist across those Pods:

	
Look at the output of kubectl get pods -o wide to see if they’ve been
scheduled on the same Node or Nodes.

	
Look at the kubectl describe pod output: are the init containers failing
to complete successfully?

	
If you’re using the Linkerd CNI plugin, you’ll want to check the state of the
network validator, and you may need to restart the CNI container for that
Node.

	
If you’re not using the Linkerd CNI plugin, take a look at the output of
kubectl logs for the Linkerd init container. If it failed to complete
successfully, try to see what is unique about the Node it’s running on.

Intermittent proxy errors

Intermittent proxy errors can be one of the hardest issues to solve. Any intermittent problem with
the proxy is necessarily difficult to catch and address. When running Linkerd
in production, it’s important to build in monitoring to catch errors
including:

	Permission denied events

	
These represent either a dangerous misconfiguration in your platform or a
genuine threat to your environment. You’ll need to collect and analyze the
logs from the Linkerd proxies in order to detect these events.

	Protocol detection timeouts

	
Protocol detection, discussed in Chapter 4, is the process of
Linkerd automatically identifying traffic between two Pods. It’s an important
step that occurs before the proxy can begin sending and receiving traffic. On
occasion, protocol detection can time out and then fall back to treating a
connection as a standard TCP connection. That means the proxy will
introduce an unnecessary 10-second delay, and then the connection will not
benefit from Linkerd’s ability to do things like request-level routing.

Protocol detection timeout events usually indicate a port that should be
marked as skipped or opaque (again, this is discussed in
Chapter 4). In particular, the proxy will never be able to
correctly perform protocol detection for server-speaks-first protocols. If
you’re using Linkerd’s policy resources, you have the ability to declare the
protocol on a given port. This allows you to skip protocol detection entirely
and will improve the overall availability, as well as security, of your
applications.

A proxy may also be unable to handle protocol detection if it is overloaded.

	Out of memory events

	
An out of memory event for the proxy represents a resource allocation issue. It’s important to monitor, test, and manage the resource limits for the Linkerd proxy. It intercepts and manages the traffic going into and out of your applications, and managing its resources is a core responsibility of the platform team.

Ensure you’re providing the proxy with the resources it needs to handle the traffic flowing through it, or you’re going to have a bad day.

	HTTP errors

	
In general, Linkerd will reuse persistent TCP connections between your Pods
and will surface any application-level errors that occur, so if your
applications have any kind of underlying configuration issues, you should see
the errors that your application is actually generating.

However, there are times that the Linkerd proxy will itself respond to a
request with an immediate 502, 503, or 504, and it’s important to understand
what can cause these:

	502s

	
It’s not uncommon for new service mesh users to see an uptick in the
occurrence of 502 errors when they begin adding applications to the
service mesh. This is because whenever Linkerd sees a connection error between
proxies, it will show up as a 502. If you’re seeing a large number of 502
errors in your environment, consult the
Linkerd docs for more
troubleshooting steps you can take.

	503s and 504s

	
503s and 504s show up when a Linkerd proxy finds that requests are
overwhelming a workload’s ability to respond.

Internally, a Linkerd proxy maintains a queue of requests to dispatch. In
normal operation, an incoming request spends almost no time in the queue:
it is queued, and the proxy chooses an available endpoint for the request and
then immediately dispatches it.

However, suppose there’s a massive flood of incoming requests, far
too many for the workload to handle. When the queue gets too long, Linkerd
begins load shedding, where any new request that arrives gets an immediate
503 directly from the proxy. To stop load shedding, the incoming request
rate needs to slow enough for the requests in the queue to get dispatched,
allowing the queue to shrink.

Also, the pool of endpoints is dynamic: a given endpoint can be removed from
the pool by circuit breaking, for example. If the pool ever becomes completely
empty—i.e., there are no available endpoints—then the queue enters a state
called failfast. In failfast, all requests in the queue immediately get a
504 response, and then Linkerd shifts to load shedding, so new requests again
get a 503.

To get out of failfast, some backend has to become available again. If you got
into failfast due to circuit breaking marking all your backends unavailable,
the most likely way you’ll get out is that circuit breaking will allow a probe
request to go through, it’ll succeed, and then the backend will be marked
available again. At that point Linkerd can bring the workload out of failfast
and things will start being handled normally again.

503 Is Not the Same as 504!

Note the different responses there! 504s happen only at the point where the
load balancer enters failfast, while 503s indicate load shedding—which
could be due to failfast, or could be due to too much traffic.

Setting Proxy Log Levels

In normal operation, the Linkerd proxy does not log debugging information. If
needed, you can change the Linkerd proxy’s log level without needing to
restart the proxy.

Debug Logging Can Be Expensive

If you set too verbose a log level, the proxy will consume dramatically more
resources, and its performance will degrade. Do not modify the proxy’s log
level unless you need to, and be sure to reset the log level when you’re not
actively debugging.

When you need to start debugging, you can turn on debug-level logging as shown
in Example 15-1.

Example 15-1. Turning on debug logging

Be sure to replace $POD_NAME with the name of the Pod in question.
$ kubectl port-forward $POD_NAME linkerd-admin

$ curl -v --data 'linkerd=debug' -X PUT localhost:4191/proxy-log-level

Once you’ve finished debugging, be sure to turn off debug-level logging, as shown
in Example 15-2. Don’t leave the proxy running debug-level
logging for longer than you need to: it will impact performance.

Example 15-2. Turning off debug logging

Be sure to replace $POD_NAME with the name of the Pod in question.
$ kubectl port-forward $POD_NAME linkerd-admin

$ curl -v --data 'warn,linkerd2_proxy=info' -X PUT localhost:4191/proxy-log-level

Log levels were discussed in “Accessing Linkerd Logs”; you can find more information about configuring the Linkerd proxy’s log level in the official Linkerd docs.

Debugging the Linkerd Control Plane

Linkerd’s control plane is broken down into the core control plane and its
extensions (such as Linkerd Viz and Linkerd Multicluster). Since every
component of the control plane uses a Linkerd proxy to communicate, you can
take advantage of Linkerd’s observability for debugging.

Linkerd Control Plane and Availability

The control plane is a part of all mesh operations, so its health is critical.
As we mentioned at the start of this chapter, the fastest way to get a good
overview of the health of the control plane—outside of paying for a managed
service—is to run linkerd check.

linkerd check will go through a series of detailed tests and will validate
that there are no known misconfigurations. If there are issues, linkerd
check will point you to documentation about how to fix the problem.

Always Start with linkerd check

It’s hard to overstate how useful linkerd check is. Whenever you see
anything that looks unusual about your mesh, always start with linkerd
check.

It’s also good to realize that linkerd check is deliberate about the order
in which it runs its tests: it starts by running all the tests for the core
control plane, then moves on to each extension in sequence. Within each
section, linkerd check generally performs its tests in sequence, with each
one needing to pass before the next is able to run. If a test fails, the
section it’s in and its position within the section can itself give you a lot
of information about where to start debugging.

The Core Control Plane

The core control plane controls Pod creation, certificate management, and
traffic routing between Pods. As discussed in Chapter 2, the
core control plane consists of three main components: the proxy injector, the
destination controller, and the identity controller. We’ll dive into failure modes
for those components now and what to do about them.

Use HA Mode in Production

Any instance of Linkerd that is running in production must use high
availability mode—no exceptions! Without HA mode, a single failure in the
control plane can put the whole mesh at risk, which is not acceptable in
production. You can read more about HA mode in Chapter 14.

The identity controller

Any failure in the identity controller will impact the issuing and renewing of workload certificates. If a Pod can’t get a certificate at start time, the proxy will fail to start and it will log a message to that effect. On the other side, if a proxy’s certificate expires, it will begin emitting log messages that it failed to renew and will be unable to connect to any new Pods.

As of this writing we’re familiar with only two known failure modes for the
identity controller:

	Expired certificates

	
When you install Linkerd, you provide the control plane with a trust anchor
certificate and an identity issuer certificate, as discussed at length in
Chapter 7. If the identity issuer certificate expires,
the identity controller will no longer be able to issue new certificates, which
will cause a mesh-wide outage as individual proxies become unable to establish
secure connections with one another.

Never Let Your Certificates Expire

Expired certificates will cause your entire mesh to grind to a halt, and they
are the most common cause of production Linkerd outages. You must
regularly monitor the health of your certificates.

	Identity controller overload

	
Linkerd’s identity controller is accessed every time a new meshed Pod is created.
As such, it’s possible—though difficult—to overwhelm the identity controller
by creating a very large number of Pods. This will manifest as long delays in
Pod creation and a large number of messages about certificate creation in the
identity controller’s logs.

The simplest way to deal with an overloaded identity controller is horizontal
scaling: add more replicas to the linkerd-identity deployment in the
linkerd namespace. You might also want to consider allowing it to request
more CPU.

The destination controller

Linkerd’s destination controller is responsible for providing the individual proxies with their routing information as well as providing details about the effective policy for your environment. It is critical to the normal operations of the mesh, and any degradation should be considered a critical issue to be addressed immediately. There are two main areas to be aware of here:

	Memory

	
The destination controller’s memory usage scales linearly with the number of
endpoints in your cluster. For most clusters, this results in the destination
controller consuming a fairly consistent amount of memory over time. In turn,
this means that if the destination controller gets OOMKilled by Kubernetes, it is
very likely to reach its memory limit and get OOMKilled again every time it
restarts. Therefore, it’s important to actively monitor and manage the memory
limits on the destination controller.

	Proxy cache

	
The Linkerd proxy maintains a cache of endpoints that can be reused by the
proxy in the event that the destination controller is unavailable. By default, the
proxy will cache its endpoint list for 5 seconds and maintain that cache as
long as it gets reused in any given 5-second interval. You can configure that
timeout with the outboundDiscoveryCacheUnusedTimeout property of the
linkerd-control-plane Helm chart. Increasing the timeout will increase your
overall resiliency in the face of a destination controller outage, particularly
for services that see less traffic.

The proxy injector

Linkerd’s proxy injector is a mutating webhook that acts in response to Pod
creation events. Of all the elements in the core control plane, the proxy
injector is the one least likely to see issues, but it’s important to actively
monitor its health:

	
In HA mode, if the proxy injector crashes, new Pods will not be allowed to
start until the proxy injector is back online.

	
In non-HA mode, if the proxy injector crashes, new Pods won’t be injected
into the mesh until it’s back online.

Use HA Mode in Production

It should be clear from the above description why it’s so important to use
high availability mode in production. You can read more about HA mode in
Chapter 14.

Linkerd Extensions

No Linkerd extensions are in the critical path to mesh operations, but many
users of Linkerd use the Linkerd Viz extension, in particular, to gather
additional details about the operation of their services. In the event that you’re
seeing aberrant behavior from Linkerd Viz, linkerd check will almost always
show you what the failure is, and generally the best remediation is to upgrade
or reinstall the extension.

The one exception to this “turn it off and on again” approach to
troubleshooting Linkerd Viz is if you’re using its built-in Prometheus
instance. As we discussed in Chapter 14 and elsewhere, the built-in
Prometheus instance stores metrics only in memory. This means that as you add more metrics
data, it will periodically get OOMKilled by Kubernetes, and you will lose
whatever data it had stored. This is a known limitation of the built-in
Prometheus.

Do Not Use the Built-in Prometheus in Production

It should be clear from the previous description that you must not use the
built-in Prometheus instance in production. You can read more about this in
Chapter 14.

Summary

In general, Linkerd is a well-behaved, fault-tolerant mesh—especially in HA
mode. However, as with all software, things can go wrong. After reading this chapter,
you should have an idea of where to start looking when they do.

Index
A
	access logging, Audit Trails and Access Logs	enabling, Enabling Access Logging
	pros and cons, Access Logging: The Good, the Bad, and the Ugly

	all-unauthenticated default policy, Linkerd Default Policy	cluster default policy, Cluster default policy	production environment, Cluster default policy

	API gateways, Ingress and Linkerd	Emissary-ingress, Emissary-ingress
	Envoy Gateway, Envoy Gateway
	NGINX, NGINX

	APIs	Gateway API	documentation URL, Route-Based Policy Overview
	Envoy Gateway, Envoy Gateway
	GAMMA initiative, Linkerd SMI
	HTTPRoute, HTTPRoute
	HTTPRoute and Mesh conformance profile, Route-Based Policy Overview
	HTTPRoute and route-based policy, Route-Based Policy Overview
	Linkerd project toward fully adopting, Service Profiles, Configuring Retries, Configuring Timeouts
	Service routing and, Route to Services, Not Endpoints
	traffic shifting, Traffic Shifting, Gateway API, and the Linkerd SMI Extension, Traffic Shifting Summary

	Kubernetes API	inbound policy changes, Namespace default policy
	linkerd inject command, linkerd inject
	Linkerd management via, Linkerd Architecture
	resource limits, Kubernetes Resource Limits

	Linkerd extension interactions, Linkerd Extensions
	Linkerd Viz extension metrics API, Metrics API
	Service Mesh Interface, Linkerd SMI

	application-code namespace conversion webhooks	generally not injected into mesh, Why Might You Decide Not to Add a Workload
to the Mesh?
	proxy injector, What Does It Mean to Add a Workload to the Mesh?

	applications	deploying in multicluster setups, Deploying and Connecting an Application-Deploying and Connecting an Application
	Server-based policy with, Server-Based Policy with the emojivoto Application
	used in examples (see booksapp application; emojivoto application)

	architecture of Linkerd, Linkerd Architecture	control plane, The Linkerd Control Plane
	extensions, Linkerd Extensions
	Kubernetes exclusive support, Linkerd2
	Linkerd CNI plugin, Linkerd CNI
	Linkerd Jaeger extension, Linkerd Jaeger
	Linkerd Multicluster extension, Linkerd Multicluster
	Linkerd Service Mesh Interface extension, Linkerd SMI
	Linkerd Viz extension, Linkerd Viz-Prometheus and Grafana
	mTLS and certificates, mTLS and Certificates	certifying authorities, Certifying Authorities

	sidecar model of service meshes, How Do Meshes Actually Work?, Linkerd Architecture	Kubernetes admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values
	Kubernetes resource limits, Kubernetes Resource Limits
	Kubernetes sidecar containers, Linkerd Architecture

	authentication	default policy all-unauthenticated, Linkerd Default Policy	cluster default policy, Cluster default policy
	production environment, Cluster default policy

	identity theft as security issue, Security
	ingress controllers, Ingress and Linkerd
	Linkerd Viz dashboard unauthenticated, Web, Linkerd Viz
	X.509 certificates	Linkerd deployment planning, Considerations, TLS certificates
	TLS, Certifying Authorities, TLS and mTLS

	authorization	explicit authorization of Linkerd policy, Linkerd Policy Overview
	microservice overreach as security issue, Security
	principle of least privilege, Security

	AuthorizationPolicy resources, Linkerd Policy Resources, AuthorizationPolicy

B
	booksapp application	installing booksapp, Installing booksapp
	observability	about, Observing Your Platform with Linkerd-Observability in Linkerd
	cloning booksapp repository, Setting Up Your Cluster
	gathering application metrics, Setting Up Your Cluster
	ServiceProfiles built with booksapp, Building routes for booksapp
	setting up your cluster, Setting Up Your Cluster

	route-based policy, The booksapp Sample Application	configuring booksapp policy, Configuring booksapp Policy
	HTTPRoute and health checks, Infrastructure Policy, Read-Only Access
	infrastructure policy, Infrastructure Policy
	multiple identities in same MeshTLSAuthentication, Enabling Write Access
	multiple workloads in a single Server definition, Read-Only Access
	read-only access, Read-Only Access-Read-Only Access
	reenabling the traffic generator, Reenabling the Traffic Generator-Reenabling the Traffic Generator
	write access enabled, Enabling Write Access-Allowing Writes to books

	budgeted retries, Retry Budgets	configuring the budget, Configuring the Budget
	counted retries versus, Retry Budgets
	default retry budget, Configuring Retries

	bug reports via linkerd check command, linkerd check
	Buoyant, Inc.	founding of, Intro to Linkerd
	Helm for Linkerd in production, Installing Linkerd via Helm, Installing Linkerd using cert-manager, High availability installation with Helm	upgrading Linkerd, Upgrading via Helm

	Linkerd as first service mesh, Service Mesh 101, Intro to Linkerd
	Linkerd history, Intro to Linkerd-The Linkerd Proxy
	Linkerd production runbook, Linkerd Community Resources

C
	Calico CNI, The Container Networking Interface
	call graph, Observability
	cert-manager (Venafi), Certificate Lifetimes and Rotation, Certificate Management in Linkerd	automatic certificate management via, Automatic Certificate Management with cert-manager	configuring for Linkerd, Configuring cert-manager for Linkerd-Configuring cert-manager for Linkerd
	installing cert-manager, Installing cert-manager
	installing Linkerd using cert-manager, Installing Linkerd using cert-manager

	external agent documentation URL, Configuring cert-manager for Linkerd

	certificates	automatic management via cert-manager, Automatic Certificate Management with cert-manager	configuring for Linkerd, Configuring cert-manager for Linkerd-Configuring cert-manager for Linkerd
	installing cert-manager, Installing cert-manager
	installing Linkerd using cert-manager, Installing Linkerd using cert-manager

	deployment of Linkerd	planning, Considerations, TLS certificates
	specifying in CLI install, Installing Linkerd via the CLI
	specifying in Helm install, Generate Linkerd certificates, Helm install

	ingress controllers, Ingress and Linkerd
	Linkerd and, Certificates and Linkerd	certificate management, Certificates and Linkerd, Certificate Management in Linkerd
	certificates that are required, TLS certificates
	identity issuer certificate, The Linkerd Identity Issuer
	never let certificates expire, Certificates and Linkerd, Certificate Lifetimes and Rotation, Certificate Health and Expiration, The identity controller
	trust anchor certificate, Certificates and Linkerd, The Linkerd Trust Anchor
	workload certificates, TLS certificates, Linkerd and mTLS, Certificates and Linkerd, Linkerd Workload Certificates

	linkerd identity command for Pods, linkerd identity
	mTLS, mTLS and Certificates	Linkerd and mTLS, Linkerd and mTLS
	service mesh mTLS, TLS and mTLS

	multicluster setups, Multicluster Certificates	creating certificates, Setting Up for Multicluster

	TLS, Certifying Authorities, TLS and mTLS	Linkerd deployment planning, Considerations, TLS certificates
	service mesh mTLS, TLS and mTLS

	trust hierarchy, mTLS and Certificates

	certifying authorities (CAs), Certifying Authorities	multicluster setups, Multicluster Certificates

	CIDR (Classless Inter-Domain Routing), Configuring Protocol Detection	documentation URL, Configuring Protocol Detection
	multicluster setups	CIDR ranges distinct, Setting Up for Multicluster
	setting up, Setting Up for Multicluster

	NetworkAuthentication CIDR ranges, Read-Only Access

	circuit breaking, Circuit Breaking	annotations, Enabling Circuit Breaking
	documentation URL, Enabling Circuit Breaking
	enabling, Enabling Circuit Breaking
	not all failures hidden, Tuning Circuit Breaking
	service overload avoided, Reliability
	tuning, Tuning Circuit Breaking

	Classless Inter-Domain Routing (see CIDR)
	cleartext used within cluster, Use Cleartext Within the Cluster
	CLI (see Linkerd CLI; Linkerd Viz extension; step CLI deployment tool)
	client-speaks-first protocols, When Protocol Detection Goes Wrong	default opaque ports, Default Opaque Ports
	examples of, When Protocol Detection Goes Wrong

	Cloud Native Computing Foundation (CNCF), Intro to Linkerd	Linkerd among first donated, Intro to Linkerd
	Linkerd Service Mesh Interface, Linkerd SMI
	Venafi cert-manager, Automatic Certificate Management with cert-manager

	CNCF (see Cloud Native Computing Foundation)
	CNI (see Kubernetes CNI; Linkerd CNI plugin)
	command line interface (see Linkerd CLI; Linkerd Viz extension; step CLI deployment tool)
	communication	how service meshes work, How Do Meshes Actually Work?
	monolith function calls, Basic Mesh Functionality
	Pod-to-Pod via Kubernetes Services, Networking in Kubernetes
	Rust proxy for, Linkerd2	purpose-built for Linkerd, The Linkerd Proxy

	secure communications, Secure Communications	about security threats, mTLS, Linkerd, and Certificates
	gateway-based multicluster, Gateway-Based Multicluster
	mTLS and Linkerd, Linkerd and mTLS
	mTLS certificates, mTLS and Certificates	(see also certificates)

	protocol detection and, Linkerd and mTLS
	service meshes, TLS and mTLS
	TLS and mTLS, mTLS and Certificates, TLS and mTLS-TLS and mTLS

	Transport Layer Security, mTLS and Certificates, TLS and mTLS-TLS and mTLS
	unreliable as microservice norm, Service Mesh 101, Basic Mesh Functionality, Reliability	reliability benefit, Ensuring Reliability with Linkerd
	reliability issues, Reliability
	security issues, Security

	configuring Linkerd, Configuring Linkerd-Opaque and Skip Ports	cluster default policy, Linkerd Default Policy
	control plane, Configuring Linkerd-Opaque and Skip Ports	cluster networks, Cluster Networks
	control plane resources, Linkerd Control Plane Resources
	opaque and skip ports, Opaque and Skip Ports

	connectivity check for multicluster setups, Multicluster Gotchas
	Container Network Interface (see Kubernetes CNI; Linkerd CNI plugin)
	--context arguments in multicluster setups, Setting Up for Multicluster
	control plane of Linkerd, Linkerd Architecture	CLI for working with, The Linkerd CLI	(see also Linkerd CLI)

	configuration, Configuring Linkerd-Opaque and Skip Ports	cluster networks, Cluster Networks
	control plane resources, Linkerd Control Plane Resources
	opaque and skip ports, Opaque and Skip Ports

	debugging, Debugging the Linkerd Control Plane	core control plane, The Core Control Plane
	destination controller, The destination controller
	expired certificates, The identity controller
	identity controller, The identity controller
	identity controller overload, The identity controller
	linkerd check command, Linkerd Control Plane and Availability
	proxy injector, The proxy injector

	extensions, Linkerd Architecture	Linkerd architecture, Linkerd Extensions
	multicluster extension service mirror, Cross-Cluster Service Discovery

	Linkerd architecture, The Linkerd Control Plane	destination controller, The Linkerd Control Plane
	identity controller, The Linkerd Control Plane, The Linkerd Identity Issuer
	proxy injector, The Linkerd Control Plane

	Linkerd install from CLI, Installing Linkerd via the CLI
	main interface for Linkerd, The Linkerd Proxy
	monitoring, Control Plane
	version matching CLI version, linkerd version

	conversion webhooks	generally not injected into mesh, Why Might You Decide Not to Add a Workload
to the Mesh?
	proxy injector, What Does It Mean to Add a Workload to the Mesh?

	counted retries versus budgeted retries, Retry Budgets
	CRDs (custom resource definitions)	installing Linkerd CRDs, Installing Linkerd via the CLI	Helm install of Linkerd, Helm install, Installing Linkerd using cert-manager

	policy resources as, Linkerd Policy Resources
	SMI TrafficSplit CRD, Linkerd SMI

	custom resource definitions (see CRDs)

D
	dashboards	Grafana dashboards	installation, Linkerd Viz
	installation documentation URL, Prometheus and Grafana
	Linkerd Viz extension, Prometheus and Grafana
	native support by Linkerd proxy, Prometheus and Grafana

	Linkerd Viz extension, Linkerd Viz-Prometheus and Grafana	linkerd viz dashboard command, Web
	securing the dashboard, Linkerd Viz for Production Use
	securing the dashboard documentation URL, Linkerd Viz for Production Use
	unauthenticated, Web, Linkerd Viz

	data plane of Linkerd, Linkerd Architecture	debugging, Diagnosing Data Plane Issues	intermittent proxy errors, Intermittent proxy errors
	Pods failing to start, Pods failing to start

	monitoring, Data Plane

	debugging	about linkerd check, Debugging Linkerd
	bug reports via linkerd check command, linkerd check
	certificate troubleshooting via linkerd identity, linkerd identity
	certificates expiring, Certificate Health and Expiration	identity controller failure, The identity controller

	control plane issues, Debugging the Linkerd Control Plane	core control plane, The Core Control Plane-The proxy injector
	destination controller, The destination controller
	expired certificates, The identity controller
	identity controller, The identity controller
	identity controller overload, The identity controller
	linkerd check command, Linkerd Control Plane and Availability
	proxy injector, The proxy injector

	data plane issues, Diagnosing Data Plane Issues	intermittent proxy errors, Intermittent proxy errors
	Pods failing to start, Races and Ordering, Pods failing to start
	setting proxy log levels, Setting Proxy Log Levels

	debug container documentation URL, Injecting the debug sidecar
	DEBUG-level log messages, Accessing Linkerd Logs	setting proxy log levels, Setting Proxy Log Levels

	linkerd diagnostics command, linkerd diagnostics-Diagnosing policy	checking for endpoints, Checking for endpoints
	diagnosing policy, Diagnosing policy-Diagnosing policy
	documentation URL, linkerd diagnostics
	gathering metrics, Gathering metrics

	Linkerd extensions, Linkerd Extensions
	linkerd inject command debug sidecar, Injecting the debug sidecar
	multicluster setup connectivity check, Multicluster Gotchas
	OOMKilled Prometheus, Linkerd Extensions

	deploying Linkerd	cert-manager certificate management, Automatic Certificate Management with cert-manager	configuring for Linkerd, Configuring cert-manager for Linkerd-Configuring cert-manager for Linkerd
	installing cert-manager, Installing cert-manager
	installing Linkerd using cert-manager, Installing Linkerd using cert-manager

	configuration, Configuring Linkerd-Opaque and Skip Ports	cluster default policy, Linkerd Default Policy
	cluster networks, Cluster Networks
	control plane, Configuring Linkerd-Opaque and Skip Ports
	control plane resources, Linkerd Control Plane Resources
	opaque and skip ports, Opaque and Skip Ports

	considerations, Considerations	Linkerd versioning system, Linkerd Versioning
	protocol discovery for non-HTTP ports, Considerations
	TLS certificate generation and storage, Considerations, TLS certificates
	workloads, Pods, and services, Workloads, Pods, and Services

	deploying on Kubernetes	about Kubernetes cluster needed, Deploying Linkerd
	about tools needed, Deploying Linkerd
	certificates for Helm install, Generate Linkerd certificates, Helm install
	certificates in CLI install, Installing Linkerd via the CLI
	helm install command, Helm install
	installing Linkerd CRDs, Installing Linkerd via the CLI
	installing Linkerd via CLI, Installing Linkerd via the CLI
	installing Linkerd via Helm, Installing Linkerd via Helm-Helm install, Installing Linkerd using cert-manager
	provisioning a Kubernetes cluster, Provisioning a Kubernetes Cluster

	getting started guide URL, Deploying Linkerd
	linkerd check command, linkerd check-Additional options for linkerd check	--help, Using the CLI
	--pre and the CNI plugin, linkerd check --pre
	--pre for preinstall check, Provisioning a Kubernetes Cluster, linkerd check --pre, Preparing Your Environment
	installation check, Installing Linkerd via the CLI, Helm install, linkerd check

	TLS certificates, TLS certificates

	destination controller of control plane, The Linkerd Control Plane	debugging, The destination controller

	distributed tracing, Linkerd Jaeger
	DNS services and Services, Route to Services, Not Endpoints, Networking in Kubernetes	ingress mode, Ingress Mode

	documentation for Linkerd online	Buoyant production runbook, Linkerd Community Resources
	circuit breaking, Enabling Circuit Breaking
	CLI, The Linkerd CLI, Selected Commands
	creating certificates, Generate Linkerd certificates
	debug container, Injecting the debug sidecar
	getting started guide, Deploying Linkerd
	Grafana installation, Prometheus and Grafana
	identity issuer certificate rotation, Certificate Lifetimes and Rotation
	ingress, Specific Ingress Controller Examples
	Jaeger instance, Linkerd Jaeger
	linkerd diagnostics command, linkerd diagnostics
	Linkerd proxy configuration, Other Proxy Configuration Options
	opaque and skip port configuration, Opaque and Skip Ports
	production runbook guide, Installing Linkerd via Helm
	Prometheus instance, Prometheus and Grafana
	quickstart guide, Installing the CLI
	retries and timeouts, Configuring Retries, Configuring Timeouts
	securing the Linkerd Viz dashboard, Linkerd Viz for Production Use
	securing the Linkerd Viz Tap, Linkerd Viz for Production Use
	ServiceProfile resources, Service Profiles
	SMI extension, Traffic Shifting, Gateway API, and the Linkerd SMI Extension
	trust anchor certificate rotation, Certificate Lifetimes and Rotation
	upgrading Linkerd, Upgrading Linkerd
	versioning system, Linkerd Versioning

E
	eavesdropping as security issue, Security
	edge release channel, Edge
	Emissary-ingress, Emissary-ingress
	emojivoto application	deploying in multicluster setups, Deploying and Connecting an Application-Deploying and Connecting an Application
	download URL, Server-Based Policy with the emojivoto Application
	observability	about, Observing Your Platform with Linkerd-Observability in Linkerd
	cloning emojivoto repository, Setting Up Your Cluster
	gathering application metrics, Setting Up Your Cluster
	ServiceProfiles built with emojivoto, Configuring routes for emojivoto
	setting up your cluster, Setting Up Your Cluster

	Server-based policy, Server-Based Policy with the emojivoto Application	cluster default policy, Cluster default policy
	configuring default policy, Configuring the Default Policy-Namespace default policy
	configuring dynamic policy, Configuring Dynamic Policy-Locking down by port and identity
	namespace default policy, Namespace default policy

	encryption	eavesdropping as security issue, Security
	tampering not protected against, Security
	TLS for cluster communications, mTLS and Certificates	keypairs of public and private keys, mTLS and Certificates

	endpoints of a Service, Route to Services, Not Endpoints, Load Balancing	ingress mode, Ingress Mode
	linkerd diagnostics command, Checking for endpoints

	environment variables	KUBECONFIG in multicluster setups, Setting Up for Multicluster
	LINKERD2_VERSION, Installing a Specific Version

	Envoy Gateway, Envoy Gateway
	error rate of requests, Observability
	errors (see debugging; HTTP errors)
	expired certificates, Certificates and Linkerd, Certificate Lifetimes and Rotation, Certificate Health and Expiration	identity controller failure, The identity controller

	explicit authorization of Linkerd policy, Linkerd Policy Overview
	extensions, Linkerd Architecture	debugging, Linkerd Extensions
	Linkerd architecture, Linkerd Extensions	Linkerd Jaeger extension, Linkerd Jaeger
	Linkerd Multicluster extension, Linkerd Multicluster
	Linkerd Service Mesh Interface, Linkerd SMI
	Linkerd Viz extension, Linkerd Viz-Prometheus and Grafana

	linkerd check command, Linkerd extension checks, Linkerd Extensions

F
	failfast state, Intermittent proxy errors	linkerd diagnostics command, Checking for endpoints

	failing over in service failure, Reliability
	failure of requests (see request failure)
	Flannel CNI used by k3d, The Container Networking Interface

G
	GAMMA initiative	documentation URL, Route-Based Policy Overview
	GEP-1426 URL, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	Service Mesh Interface informing, Linkerd SMI
	Service routing, Route to Services, Not Endpoints
	Services and parentRefs versus backendRefs, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

	Gateway API	documentation URL, Route-Based Policy Overview
	Envoy Gateway, Envoy Gateway
	GAMMA initiative, Linkerd SMI
	HTTPRoute resource, HTTPRoute	Mesh conformance profile, Route-Based Policy Overview
	route-based policy, Route-Based Policy Overview

	Linkerd project toward fully adopting, Service Profiles, Configuring Retries, Configuring Timeouts
	Service routing and, Route to Services, Not Endpoints
	traffic shifting, Traffic Shifting, Gateway API, and the Linkerd SMI Extension, Traffic Shifting Summary

	gateway-based multicluster, Gateway-Based Multicluster	mirrored Services, Cross-Cluster Service Discovery
	Pod-to-Pod versus gateways, Gateways Versus Pod-to-Pod
	policy, Policy in Multicluster Environments
	setting up, Setting Up for Multicluster-Continuing with a Gateway-Based Setup

	GEP-1426 URL, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	golden metrics, Observability	as golden signals originally, Observability

	Google post on monitoring distributed systems, Observability
	Gould, Oliver, Where Does Linkerd Come From?
	Grafana dashboards	installation, Linkerd Viz	documentation URL, Prometheus and Grafana

	Linkerd Viz extension, Prometheus and Grafana
	native support by Linkerd proxy, Prometheus and Grafana

H
	health checks and HTTPRoutes, Infrastructure Policy, Read-Only Access
	Helm for Linkerd deployment, Required Tools	cert-manager installation, Installing cert-manager
	cluster-wide policy, Cluster default policy
	configuration of Linkerd, Configuring Linkerd-Opaque and Skip Ports	cluster default policy, Linkerd Default Policy
	cluster networks, Cluster Networks
	control plane resources, Linkerd Control Plane Resources
	opaque and skip ports, Opaque and Skip Ports

	Helm for Linkerd in production, Installing Linkerd via Helm, Installing Linkerd using cert-manager, High availability installation with Helm	upgrading Linkerd, Upgrading via Helm

	high availability installation, High availability installation with Helm
	installing Linkerd via Helm, Installing Linkerd via Helm-Helm install	about, Installing Linkerd via Helm
	cert-manager setup, Installing Linkerd using cert-manager
	generating Linkerd certificates, Generate Linkerd certificates, Helm install
	helm install command, Helm install

	upgrading Linkerd, Upgrading via Helm

	help from Linkerd community, Getting Help
	high availability configuration, Configuring Linkerd for High Availability-High availability installation with the CLI	about high availability, What does HA mode do?-What does HA mode do?
	installation via CLI, High availability installation with the CLI
	installation via Helm, High availability installation with Helm
	required for production, The Core Control Plane, The proxy injector

	history of Linkerd, Intro to Linkerd-The Linkerd Proxy
	HTTP errors, Intermittent proxy errors	HTTP 502, Intermittent proxy errors
	HTTP 503, Intermittent proxy errors
	HTTP 503 versus 504, Intermittent proxy errors
	HTTP 504, Timeouts, Intermittent proxy errors

	HTTPRoute resource, Linkerd Policy Resources, HTTPRoute	route-based policy, Route-Based Policy Overview	health checks and HTTPRoutes, Infrastructure Policy, Read-Only Access
	Mesh conformance profile, Route-Based Policy Overview

	timeout syntax versus ServiceProfile timeouts, Configuring Timeouts
	traffic shifting, Traffic Shifting, Gateway API, and the Linkerd SMI Extension	parentRefs versus backendRefs, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	placeholder Service, Deploying and Connecting an Application
	weight-based routing (canary routing), Weight-Based Routing (Canary)-Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

I
	identity	gateway in gateway-based multicluster, Gateways Versus Pod-to-Pod
	MeshTLSAuthentication with multiple identities, Read-Only Access, Enabling Write Access
	Pod identity name format, Linkerd Workload Certificates
	TLS keypairs, mTLS and Certificates

	identity controller of control plane, The Linkerd Control Plane	debugging, The identity controller	expired certificates, The identity controller
	identity controller overload, The identity controller

	identity issuer certificate, TLS certificates, The Linkerd Identity Issuer

	identity issuer certificate, TLS certificates, The Linkerd Identity Issuer	Linkerd install from CLI, Installing Linkerd via the CLI
	Linkerd install via Helm, Generate Linkerd certificates, Helm install
	rotating the certificates, Certificate Lifetimes and Rotation	documentation URL, Certificate Lifetimes and Rotation
	Venafi cert-manager, Certificate Lifetimes and Rotation, Certificate Management in Linkerd

	same certificate in two clusters, The Linkerd Identity Issuer, Multicluster Certificates
	Secret for storage in a cluster, The Linkerd Identity Issuer

	identity theft as security issue, Security
	ingress and Linkerd	about fixing the ingress problem, Ingress and Linkerd-Ingress and Linkerd
	documentation URL, Specific Ingress Controller Examples
	ingress controllers, Ingress and Linkerd-Ingress and Linkerd	injecting header to every request, Ingress Mode
	just another meshed workload, The Ingress Controller Is Just Another Meshed Workload-The Ingress Controller Is Just Another Meshed Workload
	security, Ingress and Linkerd, The Ingress Controller Is Just Another Meshed Workload

	ingress controllers examples, Specific Ingress Controller Examples-Envoy Gateway	Emissary-ingress, Emissary-ingress
	Envoy Gateway, Envoy Gateway
	Kubernetes ingress controller, NGINX
	NGINX, NGINX

	Ingress mode, Ingress Mode	linkerd inject command, Injecting in ingress mode

	Linkerd mostly invisible, Linkerd Is (Mostly) Invisible-Route to Services, Not Endpoints	cleartext used within cluster, Use Cleartext Within the Cluster
	ingress mode, Ingress Mode
	routing to Services not endpoints, Route to Services, Not Endpoints-Route to Services, Not Endpoints

	init container	about, Linkerd CNI, Linkerd CNI Versus Init Containers
	Kubernetes and Linkerd, Kubernetes and Linkerd	init container approach, The Init Container Approach
	Linkerd CNI plugin approach, The Linkerd CNI Plugin Method

	Kubernetes without Linkerd, Kubernetes sans Linkerd	networking, Networking in Kubernetes-Networking in Kubernetes
	orchestrating workload execution, Nodes, Pods, and More
	packet filter role, The Role of the Packet Filter-The Role of the Packet Filter

	Pod startup process, The Kubernetes Pod Startup Process	CNI plugin ordering, CNI plugin ordering
	container ordering, Container ordering

	installation of Linkerd (see deploying Linkerd)
	integrity checks against tampering, Security
	IP addresses	DNS names, Route to Services, Not Endpoints, Networking in Kubernetes
	ingress mode, Ingress Mode
	Pod IP addresses as endpoints of Service, Route to Services, Not Endpoints, Load Balancing
	same for multiple containers in one Pod, Networking in Kubernetes	communication via Kubernetes Services, Networking in Kubernetes

	Service IP address load balanced, Route to Services, Not Endpoints

	IP routing between clusters, Setting Up for Multicluster	setting up, Setting Up for Multicluster

J
	Jaeger instance with Linkerd Jaeger extension, Linkerd Jaeger	not for production, Linkerd Jaeger

K
	k3d clusters in multicluster setup, Setting Up for Multicluster-Setting Up for Multicluster	Calico CNI available, The Container Networking Interface
	Flannel CNI used by k3d, The Container Networking Interface
	localhost context override, Continuing with a Gateway-Based Setup

	k3s cluster for Linkerd deployment, Deploying Linkerd	k3d tool, Deploying Linkerd	provisioning a Kubernetes cluster, Provisioning a Kubernetes Cluster

	keypairs of public and private keys, mTLS and Certificates	certifying authorities, Certifying Authorities
	identity issuer certificate, The Linkerd Identity Issuer
	Linkerd trust anchor, The Linkerd Trust Anchor
	mTLS certificates, mTLS and Certificates
	rotating the keys, mTLS and Certificates, mTLS and Certificates	Linkerd install from CLI, Installing Linkerd via the CLI
	rotating the certificates, Certificate Lifetimes and Rotation

	kube-system namespace never injected into mesh, Why Might You Decide Not to Add a Workload
to the Mesh?
	KUBECONFIG in multicluster setups, Setting Up for Multicluster
	kubectl	Linkerd deployment, Required Tools	testing connection to new cluster, Provisioning a Kubernetes Cluster

	Linkerd logs, Accessing Linkerd Logs

	Kubernetes	first release (2015), Intro to Linkerd
	k3d clusters in multicluster setup, Setting Up for Multicluster-Setting Up for Multicluster	Calico CNI available, The Container Networking Interface
	Flannel CNI used by k3d, The Container Networking Interface
	localhost context override, Continuing with a Gateway-Based Setup

	k3s cluster for Linkerd deployment, Deploying Linkerd	k3d tool, Deploying Linkerd
	provisioning a Kubernetes cluster, Provisioning a Kubernetes Cluster

	Linkerd and, Kubernetes and Linkerd	init container approach, The Init Container Approach
	Linkerd CNI plugin approach, The Linkerd CNI Plugin Method

	Linkerd exclusive support for, Linkerd2	operational simplicity, Linkerd2
	workloads, Pods, and services, Workloads, Pods, and Services

	multiple processes versus multiple machines, Basic Mesh Functionality
	Pod startup process, The Kubernetes Pod Startup Process	CNI plugin ordering, CNI plugin ordering
	container ordering, Container ordering
	Pods failing to start, Races and Ordering, Pods failing to start

	resource limits, Kubernetes Resource Limits
	sidecar containers, Linkerd Architecture	admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values
	resource limits, Kubernetes Resource Limits

	without Linkerd, Kubernetes sans Linkerd	Kubernetes CNI, The Container Networking Interface
	networking, Networking in Kubernetes-Networking in Kubernetes
	orchestrating workload execution, Nodes, Pods, and More
	packet filter role, The Role of the Packet Filter-The Role of the Packet Filter

	Kubernetes API	inbound policy changes, Namespace default policy
	Kubernetes resources	linkerd inject command, linkerd inject
	resource limits, Kubernetes Resource Limits

	Linkerd management via, Linkerd Architecture

	Kubernetes CNI (Container Network Interface), The Container Networking Interface
	Kubernetes ingress controller, NGINX

L
	l5d-dst-override header, Ingress Mode, Ingress Mode	injected to every request, Ingress Mode

	latency, Observability	as sidecar issue, How Do Meshes Actually Work?

	Linkerd	about, Service Mesh 101	open source, Intro to Linkerd

	architecture, Linkerd Architecture	certifying authorities, Certifying Authorities
	control plane, The Linkerd Control Plane
	extensions, Linkerd Extensions
	Kubernetes exclusive support, Linkerd2
	Kubernetes sidecar admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values
	Kubernetes sidecar containers, Linkerd Architecture
	Linkerd CNI plugin, Linkerd CNI
	Linkerd Jaeger extension, Linkerd Jaeger
	Linkerd Multicluster extension, Linkerd Multicluster
	Linkerd Service Mesh Interface extension, Linkerd SMI
	Linkerd Viz extension, Linkerd Viz-Prometheus and Grafana
	mTLS and certificates, mTLS and Certificates
	sidecar model of service meshes, How Do Meshes Actually Work?, Linkerd Architecture

	CLI (see Linkerd CLI)
	community resources, Linkerd Community Resources
	contact for Linkerd security issue, Responsible Disclosure
	deploying (see deploying Linkerd)
	documentation URL	Buoyant production runbook, Linkerd Community Resources
	circuit breaking, Enabling Circuit Breaking
	CLI, The Linkerd CLI, Selected Commands
	creating certificates, Generate Linkerd certificates
	debug container, Injecting the debug sidecar
	getting started guide, Deploying Linkerd
	Grafana installation, Prometheus and Grafana
	identity issuer certificate rotation, Certificate Lifetimes and Rotation
	ingress, Specific Ingress Controller Examples
	Jaeger instance, Linkerd Jaeger
	linkerd diagnostics command, linkerd diagnostics
	Linkerd proxy configuration, Other Proxy Configuration Options
	opaque and skip port configuration, Opaque and Skip Ports
	production runbook guide, Installing Linkerd via Helm
	Prometheus instance, Prometheus and Grafana
	quickstart guide, Installing the CLI
	retries and timeouts, Configuring Retries, Configuring Timeouts
	ServiceProfile resources, Service Profiles
	SMI extension, Traffic Shifting, Gateway API, and the Linkerd SMI Extension
	trust anchor certificate rotation, Certificate Lifetimes and Rotation
	upgrading Linkerd, Upgrading Linkerd
	versioning system, Linkerd Versioning

	as first service mesh, Service Mesh 101, Intro to Linkerd
	Gateway API full adoption, Service Profiles, Configuring Retries, Configuring Timeouts
	history of, Intro to Linkerd-The Linkerd Proxy
	how Linkerd works, How Do Meshes Actually Work?	(see also service meshes)

	Kubernetes exclusively, Linkerd2	operational simplicity, Linkerd2
	workloads, Pods, and services, Workloads, Pods, and Services

	logs, Accessing Linkerd Logs	log level, Accessing Linkerd Logs
	setting proxy log levels, Setting Proxy Log Levels

	upgrading, Upgrading Linkerd	CLI for upgrading, Upgrading via the CLI
	documentation URL, Upgrading Linkerd
	Helm for upgrading, Upgrading via Helm
	major version upgrades, Upgrading Linkerd

	versioning system, Linkerd Versioning	edge, Edge
	stable, Stable

	vulnerability notification subscription, Responsible Disclosure

	linkerd	--help for available commands, Using the CLI	--help with specific commands, Using the CLI

	check command, linkerd check-Additional options for linkerd check	--help, Using the CLI
	--pre preinstall check, Provisioning a Kubernetes Cluster, linkerd check --pre, Preparing Your Environment
	--proxy for data plane check, linkerd check --proxy
	additional options, Additional options for linkerd check
	bug reports against Linkerd, linkerd check
	certificate expiration warning, Certificate Health and Expiration
	debugging Linkerd, Debugging Linkerd, Linkerd Control Plane and Availability, Linkerd Extensions
	installation check, Installing Linkerd via the CLI, Helm install, linkerd check
	Linkerd extension checks, Linkerd extension checks, Linkerd Extensions
	upgrading Linkerd, Upgrading via Helm, Upgrading via the CLI

	diagnostics command, linkerd diagnostics-Diagnosing policy	checking for endpoints, Checking for endpoints
	diagnosing policy, Diagnosing policy-Diagnosing policy
	documentation URL, linkerd diagnostics
	gathering metrics, Gathering metrics

	documentation URL, Selected Commands
	identity command, linkerd identity-linkerd identity
	inject command, linkerd inject	--ingress for ingress mode annotation, Injecting in ingress mode
	--manual for injecting manually, Injecting manually

	install command, Installing Linkerd via the CLI
	multicluster link command, Multicluster Gotchas
	upgrade command, Upgrading via the CLI
	using the CLI, Using the CLI
	version command, linkerd version	--client to avoid cluster, linkerd version
	CLI versus control plane versions, linkerd version
	unavailable if not in cluster, linkerd version

	viz dashboard command for browser dashboard, Web

	Linkerd CLI	about, The Linkerd CLI
	dashboard viewed in browser, Web
	deployment tool, Required Tools	installing Linkerd via CLI, Installing Linkerd via the CLI
	preinstall check, Provisioning a Kubernetes Cluster

	documentation URL, The Linkerd CLI, Selected Commands
	high availability installation, High availability installation with the CLI
	installing, Installing the CLI	alternative ways to install, Alternate Ways to Install
	installing a specific version, Installing a Specific Version
	Linkerd quickstart guide URL, Installing the CLI
	LINKERD2_VERSION, Installing a Specific Version
	updating, Updating the CLI

	Linkerd Viz extension components, Linkerd Viz
	using the CLI, Using the CLI	(see also linkerd)
	--help for available commands, Using the CLI

	version matching control plane version, linkerd version

	Linkerd CNI (Container Network Interface) plugin, Linkerd CNI	installation, Linkerd CNI
	Kubernetes and Linkerd	init container approach, The Init Container Approach
	Linkerd CNI plugin approach, The Linkerd CNI Plugin Method

	linkerd check --pre and, linkerd check --pre
	mesh networking	about two mechanisms, Linkerd CNI Versus Init Containers
	Kubernetes and Linkerd, Kubernetes and Linkerd
	Kubernetes networking sans Linkerd, Networking in Kubernetes-Networking in Kubernetes
	Kubernetes sans Linkerd, Kubernetes sans Linkerd-The Kubernetes Pod Startup Process
	orchestrating workload execution sans Linkerd, Nodes, Pods, and More
	packet filter role sans Linkerd, The Role of the Packet Filter-The Role of the Packet Filter

	Pod startup process, The Kubernetes Pod Startup Process	CNI plugin ordering, CNI plugin ordering
	container ordering, Container ordering

	Linkerd Jaeger extension, Linkerd Jaeger	Jaeger instance, Linkerd Jaeger	not for production, Linkerd Jaeger

	Linkerd Link resource for service mirror credentials, Cross-Cluster Service Discovery
	Linkerd Multicluster extension, Linkerd Multicluster	for gateway-based setup, Continuing with a Gateway-Based Setup
	for Pod-to-Pod setup, Continuing with a Pod-to-Pod Setup

	Linkerd SMI (Service Mesh Interface) extension, Linkerd SMI	documentation URL, Traffic Shifting, Gateway API, and the Linkerd SMI Extension
	HTTPRoutes unavailable for traffic shifting, Traffic Shifting, Gateway API, and the Linkerd SMI Extension

	Linkerd Viz extension, Linkerd Viz-Prometheus and Grafana	about, Linkerd Viz
	dashboard unauthenticated, Web, Linkerd Viz	securing the dashboard, Linkerd Viz for Production Use
	securing the dashboard documentation URL, Linkerd Viz for Production Use

	debugging, Linkerd Extensions
	dynamic policy configuration, Allowing Linkerd Viz-Allowing Linkerd Viz
	dynamic policy via, Locking down by port and identity
	edges command, Topology
	Grafana dashboards, Prometheus and Grafana	installation, Linkerd Viz

	linkerd check command, Linkerd extension checks, Linkerd Extensions
	metrics API, Metrics API
	monitoring Linkerd with, Linkerd Viz for Production Use
	observability, Linkerd Viz
	production-ready install, Linkerd Viz, Linkerd Viz for Production Use	recommended for production use, Linkerd Viz for Production Use

	Prometheus instance, Prometheus and Grafana	externalization documentation URL, Linkerd Viz for Production Use
	not for production, Prometheus and Grafana, Configuring routes for emojivoto, Linkerd Viz, Linkerd Viz for Production Use, Linkerd Extensions
	OOMKilled Prometheus, Linkerd Extensions
	persistent storage needed for production, Configuring routes for emojivoto, Linkerd Viz for Production Use

	routes	-o wide parameter, Configuring Retries, Configuring Timeouts
	ServiceProfile creation code, Configuring routes for emojivoto, Configuring routes for emojivoto, Building routes for booksapp
	timeout impact, Configuring Timeouts
	watch command with, Configuring Retries

	Tap component, Tap, Tap	data stored in Prometheus, Configuring routes for emojivoto
	observability in Linkerd, Tap
	securing, Linkerd Viz for Production Use
	securing documentation URL, Linkerd Viz for Production Use
	ServiceProfile built from, Configuring routes for emojivoto

	traffic flow, Checking Traffic
	Web component, Web

	linkerd-proxy-injector, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values	annotation values, linkerd.io/inject Values
	configuration options, Other Proxy Configuration Options	configuring protocol detection, Configuring Protocol Detection
	documentation URL, Other Proxy Configuration Options
	protocol detection, Protocol Detection-Default Opaque Ports

	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	injecting individual workloads, Injecting Individual Workloads

	Linkerd2 as Linkerd, Linkerd1	Linkerd versioning system, Linkerd Versioning

	LINKERD2_VERSION environment variable, Installing a Specific Version
	liveness and readiness probes and HTTPRoutes, Infrastructure Policy
	load balancing	reliability, Load Balancing
	request-level versus connection-level, Load Balancing	connection-level blog URL, Load Balancing

	load shedding, Intermittent proxy errors
	LoadBalancer Service	connections made to Service IP address, Route to Services, Not Endpoints
	gateway-based multicluster, Gateway-Based Multicluster
	ingress controllers, Ingress and Linkerd

	logging by Linkerd, Accessing Linkerd Logs	log level, Accessing Linkerd Logs
	setting proxy log levels, Setting Proxy Log Levels

M
	memory	out of memory errors, Intermittent proxy errors
	Rust memory safety, Linkerd2

	Mesh conformance profile, Route-Based Policy Overview
	mesh networking	about two mechanisms, Linkerd CNI Versus Init Containers
	Kubernetes and Linkerd, Kubernetes and Linkerd	init container approach, The Init Container Approach
	Linkerd CNI plugin approach, The Linkerd CNI Plugin Method

	Kubernetes without Linkerd, Kubernetes sans Linkerd	Kubernetes CNI, The Container Networking Interface
	networking, Networking in Kubernetes-Networking in Kubernetes
	orchestrating workload execution, Nodes, Pods, and More
	packet filter role, The Role of the Packet Filter-The Role of the Packet Filter

	Pod startup process, The Kubernetes Pod Startup Process	CNI plugin ordering, CNI plugin ordering
	container ordering, Container ordering

	meshes (see service meshes)
	MeshTLSAuthentication resource, Linkerd Policy Resources, MeshTLSAuthentication	multiple identities in one, Enabling Write Access

	metadata via Tap of Linkerd Viz, Tap	observability in Linkerd, Tap
	securing Tap, Linkerd Viz for Production Use
	Tap injector, Tap injector

	metrics	collecting for monitoring, Metrics Collection	OpenTelemetry for metrics access, Metrics Collection

	golden metrics, Observability	as golden signals originally, Observability

	linkerd diagnostics command, Gathering metrics
	Linkerd Viz extension metrics API, Metrics API

	microservices architecture	extensions, Linkerd Architecture
	microservice overreach as security issue, Security
	monolithic applications versus, Service Mesh 101	security, mTLS, Linkerd, and Certificates

	observability, Service Mesh 101, Observability-Observability, Observing Your Platform with Linkerd
	reliability, Service Mesh 101, Reliability, Ensuring Reliability with Linkerd
	security, Service Mesh 101, Security	monolithic applications versus, mTLS, Linkerd, and Certificates

	service mesh definition, Service Mesh 101

	mirroring services (see service mirror)
	“Monitoring Distributed Systems” (Google), Observability
	monitoring Linkerd	about, Monitoring Linkerd
	certificates expiring, Certificate Health and Expiration
	control plane, Control Plane
	data plane, Data Plane
	logs, Accessing Linkerd Logs	log level, Accessing Linkerd Logs
	setting proxy log levels, Setting Proxy Log Levels

	metrics collection, Metrics Collection	Linkerd Viz for display and diagnostics, Linkerd Viz for Production Use

	monolithic applications, Basic Mesh Functionality	microservices architecture versus, Service Mesh 101	security, mTLS, Linkerd, and Certificates

	observability, Observability
	reliability, Reliability
	security, mTLS, Linkerd, and Certificates

	Morgan, William, Where Does Linkerd Come From?
	mTLS (mutual TLS)	certificates should not expire, Certificates and Linkerd, Certificate Lifetimes and Rotation, Certificate Health and Expiration	identity controller failure, The identity controller

	ingress controllers, Ingress and Linkerd
	opaque connections, Opaque Ports Versus Skip Ports
	secure communications, Secure Communications	about security, mTLS, Linkerd, and Certificates
	certificates, mTLS and Certificates	(see also certificates)

	gateway-based multicluster, Gateway-Based Multicluster
	Linkerd and mTLS, Linkerd and mTLS
	protocol detection and, Linkerd and mTLS
	service meshes, TLS and mTLS
	TLS and mTLS, mTLS and Certificates, TLS and mTLS-TLS and mTLS

	multicluster setups	about, Multicluster Communication with Linkerd
	application deployment, Deploying and Connecting an Application-Deploying and Connecting an Application	traffic, Checking Traffic

	certificates, Multicluster Certificates	creating, Setting Up for Multicluster

	command run against wrong cluster, Setting Up for Multicluster
	default policy, Linkerd Default Policy
	Linkerd Multicluster extension, Linkerd Multicluster
	policy, Policy in Multicluster Environments
	same trust anchor to multiple clusters, The Linkerd Trust Anchor, Multicluster Certificates
	service discovery, Cross-Cluster Service Discovery
	setting up, Setting Up for Multicluster-Setting Up for Multicluster	certificates, Setting Up for Multicluster
	CIDR ranges distinct, Setting Up for Multicluster
	CIDR ranges set up, Setting Up for Multicluster
	connectivity check, Multicluster Gotchas
	continuing with gateway-based setup, Continuing with a Gateway-Based Setup
	continuing with Pod-to-Pod-based setup, Continuing with a Pod-to-Pod Setup
	IP routing between clusters, Setting Up for Multicluster
	IP routing between clusters set up, Setting Up for Multicluster
	Linkerd installation, Setting Up for Multicluster
	linkerd multicluster link command, Multicluster Gotchas
	Linkerd Viz extension installation, Setting Up for Multicluster

	traffic, Checking Traffic
	types of, Types of Multicluster Setups	gateway-based multicluster, Gateway-Based Multicluster
	gateways versus Pod-to-Pod, Gateways Versus Pod-to-Pod
	mirrored Services and, Cross-Cluster Service Discovery
	Pod-to-Pod multicluster, Pod-to-Pod Multicluster
	policy, Policy in Multicluster Environments

	mutual TLS (see mTLS)

N
	namespaces	application-code conversion webhooks, What Does It Mean to Add a Workload to the Mesh?, Why Might You Decide Not to Add a Workload
to the Mesh?
	default policy, Namespace default policy
	dynamic policy	namespace isolation, Namespace isolation-Namespace isolation
	order of operations, Locking down by port and identity
	references outside the namespace, Allowing Linkerd Viz-Allowing Linkerd Viz

	ingress mode, Ingress Mode
	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	kube-system never injected into mesh, Why Might You Decide Not to Add a Workload
to the Mesh?
	policy hierarchy, Linkerd Policy Overview

	NetworkAuthentication resource, Linkerd Policy Resources, NetworkAuthentication
	networking (see communication)
	NGINX, NGINX
	Nodes, Nodes, Pods, and More

O
	observability	about, Observing Your Platform with Linkerd	why needed, Why Do We Need This?

	access logging, Audit Trails and Access Logs	enabling, Enabling Access Logging
	pros and cons, Access Logging: The Good, the Bad, and the Ugly

	Linkerd for	about, Observing Your Platform with Linkerd-How Does Linkerd Help?
	cloning the applications, Setting Up Your Cluster
	gathering application metrics, Setting Up Your Cluster
	service profiles, Service Profiles
	ServiceProfile default routes, Configuring routes for emojivoto
	ServiceProfile resources, Service Profiles
	ServiceProfiles built via booksapp, Building routes for booksapp
	ServiceProfiles built via emojivoto, Configuring routes for emojivoto
	setting up your cluster, Setting Up Your Cluster
	storing Linkerd Viz metrics, Configuring routes for emojivoto
	Tap component of Linkerd Viz, Tap, Configuring routes for emojivoto
	viewing edges, Topology

	Linkerd Viz dashboard, Linkerd Viz
	monoliths, Observability
	protocol detection enabling, Protocol Detection
	service mesh functionality, Service Mesh 101, Observability-Observability

	online resources (see resources online)
	OOMKilled Prometheus, Linkerd Extensions
	opaque ports, When Protocol Detection Goes Wrong	configuration, Opaque and Skip Ports, Configuring Protocol Detection	documentation URL, Opaque and Skip Ports

	default opaque ports, Default Opaque Ports
	server-speaks-first protocols as opaque, Opaque Ports Versus Skip Ports

	open source Linkerd, Intro to Linkerd
	OpenTelemetry for metrics access, Metrics Collection
	OSI model	documentation URL, Ingress and Linkerd
	layer 4 (transport), Ingress and Linkerd
	layer 7 (application), Ingress and Linkerd

	out of memory errors, Intermittent proxy errors

P
	packet filter role, The Role of the Packet Filter-The Role of the Packet Filter	iptables, nftables, eBPF, The Role of the Packet Filter

	permissions	explicit authorization of Linkerd policy, Linkerd Policy Overview
	identity issuer private key in cluster, Helm install
	multiple identities in same MeshTLSAuthentication, Enabling Write Access
	permission denied errors, Intermittent proxy errors
	Pods NET_ADMIN, Preparing Your Environment
	service mirror talking to remote server, Cross-Cluster Service Discovery

	plugin (see Linkerd CNI plugin)
	Pod-to-Pod multicluster, Pod-to-Pod Multicluster	gateways versus Pod-to-Pod, Gateways Versus Pod-to-Pod
	mirrored Services, Cross-Cluster Service Discovery
	policy, Policy in Multicluster Environments
	setting up, Setting Up for Multicluster-Setting Up for Multicluster, Continuing with a Pod-to-Pod Setup

	podinfo for traffic shifting	header-based routing (A/B testing), Header-Based Routing (A/B Testing)
	parentRefs versus backendRefs, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	setting up, Setting Up Your Environment-Setting Up Your Environment
	weight-based routing (canary), Weight-Based Routing (Canary)-Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

	Pods	certificate troubleshooting via linkerd identity, linkerd identity
	deploying Linkerd, Workloads, Pods, and Services
	identity name format, Linkerd Workload Certificates
	IP addresses	as endpoints of Service, Route to Services, Not Endpoints, Load Balancing
	ingress mode routing, Ingress Mode
	policy via workload identity, Linkerd Workload Certificates, Namespace isolation
	Services and, Route to Services, Not Endpoints

	Linkerd architecture, Linkerd Architecture
	policy	changes taking effect when Pods created, Namespace default policy
	enforced on Pod boundaries, Linkerd Policy Overview
	health checks and HTTPRoutes, Infrastructure Policy, Read-Only Access
	policy hierarchy, Linkerd Policy Overview
	workload identity, not IP address, Linkerd Workload Certificates, Namespace isolation

	restarting regularly, Data Plane
	sidecars needed by application Pods, How Do Meshes Actually Work?	adding individual workloads, Injecting Individual Workloads
	adding workloads to the mesh, What Does It Mean to Add a Workload to the Mesh?-Why Might You Decide Not to Add a Workload
to the Mesh?
	all Pods created equal, Injecting Individual Workloads

	startup process, The Kubernetes Pod Startup Process	CNI plugin ordering, CNI plugin ordering
	container ordering, Container ordering
	debugging startup failures, Races and Ordering, Pods failing to start
	postStartHook, The Kubernetes Pod Startup Process, Container ordering
	proxy version monitoring, Data Plane

	workload certificates and mTLS, Linkerd and mTLS, Linkerd Workload Certificates

	policy	default policy, Linkerd Default Policy-Linkerd Default Policy	about, Linkerd Policy Overview
	cluster default policy, Cluster default policy
	configuring, Configuring the Default Policy-Namespace default policy
	deny as default policy, Cluster default policy
	namespace default policy, Namespace default policy
	permissiveness of, Linkerd Default Policy
	policy resources overriding, Linkerd Policy Resources

	diagnosing via linkerd diagnostics, Diagnosing policy-Diagnosing policy
	dynamic policy configuration, Configuring Dynamic Policy	monitoring from outside the namespace, Allowing Linkerd Viz-Allowing Linkerd Viz
	namespace isolation, Namespace isolation-Namespace isolation
	order of operations, Locking down by port and identity
	ServiceAccount creation, Locking down by port and identity
	specifying port and identity, Locking down by port and identity-Locking down by port and identity
	testing in nonproduction environment, Namespace isolation

	multicluster setups, Policy in Multicluster Environments
	overview, Linkerd Policy Overview	about policy, Linkerd Policy: Overview
and Server-Based Policy
	default policy versus dynamic policy resources, Linkerd Policy Overview
	explicit authorization, Linkerd Policy Overview
	Pod boundaries, Linkerd Policy Overview

	policy resources, Linkerd Policy Resources	AuthorizationPolicy resources, Linkerd Policy Resources, AuthorizationPolicy
	HTTPRoute resource, Linkerd Policy Resources, HTTPRoute
	MeshTLSAuthentication resource, Linkerd Policy Resources, MeshTLSAuthentication, Enabling Write Access
	NetworkAuthentication resource, Linkerd Policy Resources, NetworkAuthentication
	Server resource, Linkerd Policy Resources

	read by proxies at startup, Namespace default policy
	route-based policy overview, Route-Based Policy Overview	granularity of route-based policy, Read-Only Access
	planning, engineering, and effort involved, Route-Based Policy Overview
	Server-based versus route-based, Server-Based Policy Versus Route-Based Policy

	route-based with booksapp application, The booksapp Sample Application	configuring booksapp policy, Configuring booksapp Policy
	HTTPRoute and health checks, Infrastructure Policy, Read-Only Access
	infrastructure policy, Infrastructure Policy
	installing booksapp, Installing booksapp
	multiple identities in same MeshTLSAuthentication, Enabling Write Access
	multiple workloads in a single Server definition, Read-Only Access
	read-only access, Read-Only Access-Read-Only Access
	reenabling the traffic generator, Reenabling the Traffic Generator-Reenabling the Traffic Generator
	write access enabled, Enabling Write Access-Allowing Writes to books

	Server-based and explicitly allowing clients, Locking down by port and identity
	Server-based versus route-based, Server-Based Policy Versus Route-Based Policy
	Server-based with emojivoto application, Server-Based Policy with the emojivoto Application	cluster default policy, Cluster default policy
	configuring default policy, Configuring the Default Policy-Namespace default policy
	configuring dynamic policy, Configuring Dynamic Policy-Locking down by port and identity
	namespace default policy, Namespace default policy

	workload certificates for Pod identity, Linkerd Workload Certificates	workload identity, not IP address, Namespace isolation

	ports	opaque and skip ports, When Protocol Detection Goes Wrong	configuration, Opaque and Skip Ports, Configuring Protocol Detection
	configuration documentation URL, Opaque and Skip Ports
	default opaque ports, Default Opaque Ports
	ingress controller incoming ports, The Ingress Controller Is Just Another Meshed Workload-The Ingress Controller Is Just Another Meshed Workload

	policy application via name, Namespace isolation, Locking down by port and identity-Locking down by port and identity
	protocol detection, Protocol Detection-Default Opaque Ports	client-speaks-first protocols only, When Protocol Detection Goes Wrong
	configuring, Configuring Protocol Detection
	server-speaks-first protocols as opaque, Opaque Ports Versus Skip Ports
	unable to detect, When Protocol Detection Goes Wrong

	principle of least privilege, Security
	private keys, mTLS and Certificates	certificates, Certifying Authorities	mTLS certificates, mTLS and Certificates
	required by Linkerd, TLS certificates
	specifying in CLI install, Installing Linkerd via the CLI
	specifying in Helm install, Generate Linkerd certificates, Helm install

	certifying authorities, Certifying Authorities	multicluster setups, Multicluster Certificates

	identity issuer certificate, The Linkerd Identity Issuer
	important to keep safe, Generate Linkerd certificates, Helm install	identity issuer private key in cluster, Helm install

	Linkerd deployment planning, Considerations, TLS certificates
	Linkerd trust anchor, The Linkerd Trust Anchor
	rotating the keys, mTLS and Certificates, mTLS and Certificates	Linkerd install from CLI, Installing Linkerd via the CLI
	rotating the certificates, Certificate Lifetimes and Rotation

	production	all-unauthenticated cluster default policy, Cluster default policy
	Buoyant production runbook URL, Linkerd Community Resources
	certificate management in Linkerd, Certificate Management in Linkerd
	certificates from linkerd install, Installing Linkerd via the CLI
	checklist for production readiness, Readiness Checklist
	downtime from certificate expiration, Certificates and Linkerd, Certificate Health and Expiration	identity controller failure, The identity controller

	Jaeger instance, Linkerd Jaeger
	Linkerd Viz production-ready install, Linkerd Viz, Linkerd Viz for Production Use	recommended for production use, Linkerd Viz for Production Use

	policy objects tested in nonproduction environment, Namespace isolation
	production-ready Linkerd	about, Production-Ready Linkerd
	checklist for readiness, Readiness Checklist
	high availability configuration, Configuring Linkerd for High Availability-High availability installation with the CLI
	high availability required, The Core Control Plane, The proxy injector
	Linkerd community resources, Linkerd Community Resources
	monitoring Linkerd (see monitoring Linkerd)
	preparing the environment, Preparing Your Environment

	Prometheus instance of Linkerd Viz, Prometheus and Grafana, Configuring routes for emojivoto, Linkerd Viz
	upgrading Linkerd, Upgrading Linkerd	CLI for upgrading, Upgrading via the CLI
	documentation URL, Upgrading Linkerd
	Helm for upgrading, Upgrading via Helm
	major version upgrades, Upgrading Linkerd

	Prometheus	externalization documentation URL, Linkerd Viz for Production Use
	instance with Linkerd Viz extension, Prometheus and Grafana	not for production, Prometheus and Grafana, Configuring routes for emojivoto, Linkerd Viz, Linkerd Viz for Production Use, Linkerd Extensions

	native support by Linkerd proxy, Prometheus and Grafana
	OOMKilled Prometheus, Linkerd Extensions
	persistent storage needed for production, Configuring routes for emojivoto, Linkerd Viz for Production Use

	protocol detection, Protocol Detection-Default Opaque Ports	client-speaks-first protocols only, When Protocol Detection Goes Wrong
	configuring, Configuring Protocol Detection
	mTLS and, Linkerd and mTLS
	timeouts during, Intermittent proxy errors
	unable to detect, When Protocol Detection Goes Wrong	default opaque ports, Default Opaque Ports
	server-speaks-first as opaque, Opaque Ports Versus Skip Ports

	proxy injector of control plane, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values	annotation values, linkerd.io/inject Values
	configuration options, Other Proxy Configuration Options	documentation URL, Other Proxy Configuration Options
	protocol detection, Protocol Detection-Default Opaque Ports
	protocol detection configuration, Configuring Protocol Detection

	debugging, The proxy injector
	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	injecting individual workloads, Injecting Individual Workloads
	monitoring versions, Data Plane

	public keys, mTLS and Certificates	certifying authorities, Certifying Authorities
	identity issuer certificate, The Linkerd Identity Issuer
	Linkerd trust anchor, The Linkerd Trust Anchor
	mTLS certificates, mTLS and Certificates
	rotating the keys, mTLS and Certificates, mTLS and Certificates	rotating the certificates, Certificate Lifetimes and Rotation

R
	read-only access to an application, Read-Only Access-Read-Only Access
	reliability	about, Ensuring Reliability with Linkerd
	circuit breaking, Circuit Breaking	annotations, Enabling Circuit Breaking
	documentation URL, Enabling Circuit Breaking
	enabling, Enabling Circuit Breaking
	not all failures hidden, Tuning Circuit Breaking
	tuning, Tuning Circuit Breaking

	load balancing, Load Balancing
	monoliths, Reliability
	protocol detection enabling, Protocol Detection
	retries, Retries	budgeted retries, Retry Budgets
	configuring, Configuring Retries-Configuring Retries
	configuring the budget, Configuring the Budget
	default retry budget, Configuring Retries
	documentation URL, Configuring Retries, Configuring Timeouts
	not always the answer, Retries
	timeouts triggering, Timeouts

	service mesh functionality, Service Mesh 101, Reliability	reliability issues, Reliability

	timeouts, Timeouts	configuring, Configuring Timeouts-Configuring Timeouts
	documentation URL, Configuring Timeouts
	HTTP 504 returned, Timeouts

	traffic shifting, Traffic Shifting	Gateway API HTTPRoute resource, Traffic Shifting, Gateway API, and the Linkerd SMI Extension, Traffic Shifting Summary
	header-based routing (A/B testing), Traffic Shifting, Header-Based Routing (A/B Testing)
	setting up podinfo, Setting Up Your Environment-Setting Up Your Environment
	weight-based routing (canary), Traffic Shifting, Weight-Based Routing (Canary)-Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

	request failure	reliability issue, Reliability
	retries, Reliability
	timeouts as, Timeouts

	resources online	booksapp application, The booksapp Sample Application
	Buoyant production runbook, Linkerd Community Resources
	cert-manager external agent documentation, Configuring cert-manager for Linkerd
	CIDR documentation, Configuring Protocol Detection
	connection-level load balancing blog, Load Balancing
	emojivoto application, Server-Based Policy with the emojivoto Application
	GAMMA initiative GEP-1426, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	Gateway API documentation, Route-Based Policy Overview
	Grafana installation documentation, Prometheus and Grafana
	Linkerd community resources, Linkerd Community Resources	contact for Linkerd security issue, Responsible Disclosure

	Linkerd documentation	circuit breaking, Enabling Circuit Breaking
	CLI, The Linkerd CLI, Selected Commands
	creating certificates, Generate Linkerd certificates
	debug container, Injecting the debug sidecar
	getting started guide, Deploying Linkerd
	Grafana installation, Prometheus and Grafana
	identity issuer certificate rotation, Certificate Lifetimes and Rotation
	ingress, Specific Ingress Controller Examples
	Jaeger instance, Linkerd Jaeger
	linkerd diagnostics command, linkerd diagnostics
	Linkerd proxy configuration, Other Proxy Configuration Options
	opaque and skip port configuration, Opaque and Skip Ports
	production runbook guide, Installing Linkerd via Helm
	quickstart guide, Installing the CLI
	retries and timeouts, Configuring Retries, Configuring Timeouts
	ServiceProfile resources, Service Profiles
	SMI extension, Traffic Shifting, Gateway API, and the Linkerd SMI Extension
	trust anchor certificate rotation, Certificate Lifetimes and Rotation
	upgrading Linkerd, Upgrading Linkerd
	versioning system, Linkerd Versioning

	Linkerd Viz extension documentation	Prometheus externalization, Linkerd Viz for Production Use
	Prometheus instance, Prometheus and Grafana
	securing Tap, Linkerd Viz for Production Use
	securing the dashboard, Linkerd Viz for Production Use

	OSI model, Ingress and Linkerd
	semantic versioning documentation, Linkerd Versioning
	TLS RFC, TLS and mTLS

	retries	documentation URL, Configuring Retries, Configuring Timeouts
	not always the answer, Retries
	reliability, Retries	budgeted retries, Retry Budgets
	configuring retries, Configuring Retries-Configuring Retries
	configuring the budget, Configuring the Budget
	default retry budget, Configuring Retries

	request failure, Reliability
	timeouts triggering, Timeouts

	rotating the keys, mTLS and Certificates, mTLS and Certificates	Linkerd install from CLI, Installing Linkerd via the CLI
	rotating the certificates, Certificate Lifetimes and Rotation, Certificate Management in Linkerd

	Rust	Linkerd communication proxy, Linkerd2	purpose-built for Linkerd, The Linkerd Proxy

	memory safety of, Linkerd2

S
	Secrets	credentials for service mirror, Cross-Cluster Service Discovery
	identity issuer certificate storage, The Linkerd Identity Issuer

	security	contact for Linkerd security issue, Responsible Disclosure
	eavesdropping, Security
	identity theft, Security
	ingress controllers, Ingress and Linkerd, The Ingress Controller Is Just Another Meshed Workload
	microservice overreach, Security
	monolithic versus microservice applications, mTLS, Linkerd, and Certificates
	protocol detection enabling, Protocol Detection
	secure communications, Secure Communications	about security threats, mTLS, Linkerd, and Certificates
	gateway-based multicluster, Gateway-Based Multicluster
	mTLS and Linkerd, Linkerd and mTLS
	mTLS certificates, mTLS and Certificates	(see also certificates)

	protocol detection and, Linkerd and mTLS
	service meshes, TLS and mTLS
	TLS and mTLS, mTLS and Certificates, TLS and mTLS-TLS and mTLS

	service mesh functionality, Service Mesh 101, Security
	tampering, Security
	Transport Layer Security, mTLS and Certificates, TLS and mTLS-TLS and mTLS	identity issuer private key in cluster, Helm install

	vulnerability notification subscription, Responsible Disclosure

	semantic versioning, Stable
	Server resources, Linkerd Policy Resources	multiple workloads in a single Server definition, Read-Only Access
	policy applied via, Namespace isolation
	protocol detection, Configuring Protocol Detection, Default Opaque Ports
	Server-based policy with emojivoto application, Server-Based Policy with the emojivoto Application	configuring default policy, Configuring the Default Policy-Namespace default policy

	Server-based versus route-based policy, Server-Based Policy Versus Route-Based Policy

	server-speaks-first protocols, When Protocol Detection Goes Wrong	default opaque ports, Default Opaque Ports
	examples of, When Protocol Detection Goes Wrong
	as opaque connections, Opaque Ports Versus Skip Ports

	Service Mesh Interface (SMI) (see Linkerd SMI extension)
	service meshes	about, Preface, Service Mesh 101	definition, Service Mesh 101

	adding workloads to, What Does It Mean to Add a Workload to the Mesh?	annotation values, linkerd.io/inject Values, Kubernetes Resource Limits
	configuring protocol detection, Configuring Protocol Detection
	going to production with Linkerd, Preparing Your Environment
	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	injecting individual workloads, Injecting Individual Workloads
	Kubernetes admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values
	Kubernetes resource limits, Kubernetes Resource Limits
	protocol detection, Protocol Detection-Default Opaque Ports
	proxy injector configuration options, Other Proxy Configuration Options
	when not to, Why Might You Decide Not to Add a Workload
to the Mesh?
	workload certificates, Linkerd and mTLS, Certificates and Linkerd, Linkerd Workload Certificates

	architecture, Linkerd Architecture
	authentication, TLS and mTLS
	basic mesh functionality, Basic Mesh Functionality	observability, Service Mesh 101, Observability-Observability
	reliability, Service Mesh 101, Reliability
	security, Service Mesh 101, Security

	how they work, How Do Meshes Actually Work?	sidecar model, How Do Meshes Actually Work?	(see also sidecar model)

	importance of, So Why Do We Need This?
	Linkerd as first, Service Mesh 101, Intro to Linkerd
	Mesh conformance profile for Gateway API, Route-Based Policy Overview
	mTLS for, TLS and mTLS	(see also mTLS)

	service mirror, Cross-Cluster Service Discovery	credentials via Linkerd Link, Cross-Cluster Service Discovery
	multicluster application deployment, Deploying and Connecting an Application

	ServiceAccounts for dynamic policy, Locking down by port and identity
	ServiceProfile resources, Service Profiles	building, Service Profiles	emojivoto protobuf files for, Configuring routes for emojivoto
	Linkerd Viz Tap for, Configuring routes for emojivoto

	default routes, Configuring routes for emojivoto
	deprecation beginning, Service Profiles, Configuring Retries, Configuring Timeouts
	documentation URL, Service Profiles
	reliability	retry behavior control, Configuring Retries-Configuring Retries
	timeout configuration, Configuring Timeouts-Configuring Timeouts
	timeout syntax future compatibility, Configuring Timeouts

	service profiles, Service Profiles

	services	definition, Workloads Versus Services
	deployment consideration, Workloads, Pods, and Services
	multicluster service discovery, Cross-Cluster Service Discovery
	reliability issues	service failures, Reliability
	service overloads, Reliability

	resources (see Services)
	service mirror, Cross-Cluster Service Discovery	credentials via Linkerd Link, Cross-Cluster Service Discovery
	multicluster application deployment, Deploying and Connecting an Application

	Services versus, Workloads Versus Services
	workloads versus, Workloads Versus Services

	Services	definition, Workloads Versus Services	three distinct parts, Route to Services, Not Endpoints, Networking in Kubernetes

	ingress mode, Ingress Mode
	parentRefs versus backendRefs, Service versus Service: ClusterIPs, endpoints, and HTTPRoutes
	Pod communication via Kubernetes Services, Networking in Kubernetes
	Pod IP addresses as endpoints of Service, Route to Services, Not Endpoints, Load Balancing, Networking in Kubernetes
	service mirror, Cross-Cluster Service Discovery	credentials via Linkerd Link, Cross-Cluster Service Discovery
	multicluster application deployment, Deploying and Connecting an Application

	services versus, Workloads Versus Services

	sidecar model, How Do Meshes Actually Work?	adding workloads to the mesh, What Does It Mean to Add a Workload to the Mesh?	annotation values, linkerd.io/inject Values, Kubernetes Resource Limits
	configuring protocol detection, Configuring Protocol Detection
	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	injecting individual workloads, Injecting Individual Workloads
	Kubernetes admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?
	Kubernetes resource limits, Kubernetes Resource Limits
	opaque versus skip ports, When Protocol Detection Goes Wrong
	protocol detection, Protocol Detection-Default Opaque Ports
	proxy injector configuration options, Other Proxy Configuration Options
	when not to, Why Might You Decide Not to Add a Workload
to the Mesh?

	debug sidecar via linkerd inject, Injecting the debug sidecar
	Kubernetes sidecar containers, Linkerd Architecture
	Linkerd architecture, Linkerd Architecture

	skip ports, When Protocol Detection Goes Wrong	configuration, Opaque and Skip Ports, Configuring Protocol Detection	documentation URL, Opaque and Skip Ports

	ingress controller incoming ports, The Ingress Controller Is Just Another Meshed Workload

	Smallstep CLI to generate certificates, Generate Linkerd certificates	step as deployment tool, Required Tools

	stable release channel, Stable
	step CLI deployment tool, Required Tools	generating certificates, Generate Linkerd certificates

	success rate of requests, Observability

T
	tampering as security issue, Security
	Tap component of Linkerd Viz extension, Tap	installing, Tap
	observability in Linkerd, Tap	data stored in Prometheus, Configuring routes for emojivoto
	ServiceProfile built with Tap, Configuring routes for emojivoto

	securing, Linkerd Viz for Production Use	documentation URL, Linkerd Viz for Production Use

	Tap injector, Tap injector
	TLS status validation, Tap

	timeouts, Timeouts	configuring, Configuring Timeouts-Configuring Timeouts
	documentation URL, Configuring Timeouts
	HTTP 504 returned, Timeouts
	protocol detection timeouts, Intermittent proxy errors

	TLS (Transport Layer Security), mTLS and Certificates	about, TLS and mTLS-TLS and mTLS	RFC 8446 URL, TLS and mTLS

	ingress controllers, Ingress and Linkerd
	Tap validating status, Tap
	X.509 certificates, Certifying Authorities, TLS and mTLS	Linkerd deployment planning, Considerations, TLS certificates
	mTLS and Linkerd, Linkerd and mTLS
	service mesh mTLS, TLS and mTLS

	traffic, Observability	multicluster setups, Checking Traffic

	traffic generator reenabled, Reenabling the Traffic Generator-Reenabling the Traffic Generator
	traffic shifting, Traffic Shifting	Gateway API HTTPRoute resource, Traffic Shifting, Gateway API, and the Linkerd SMI Extension, Traffic Shifting Summary, Deploying and Connecting an Application
	header-based routing (A/B testing), Traffic Shifting, Header-Based Routing (A/B Testing)
	HTTPRoute with placeholder Service, Deploying and Connecting an Application
	service mirror, Cross-Cluster Service Discovery, Deploying and Connecting an Application
	setting up podinfo, Setting Up Your Environment-Setting Up Your Environment
	weight-based routing (canary), Traffic Shifting, Weight-Based Routing (Canary)-Service versus Service: ClusterIPs, endpoints, and HTTPRoutes

	Transport Layer Security (see TLS)
	troubleshooting (see debugging)
	trust anchor certificate, TLS certificates, Certificates and Linkerd, The Linkerd Trust Anchor	Linkerd install from CLI, Installing Linkerd via the CLI
	Linkerd install via Helm, Generate Linkerd certificates, Helm install
	rotating the certificates, Certificate Lifetimes and Rotation	documentation URL, Certificate Lifetimes and Rotation
	rotating whole cluster, Certificate Management in Linkerd

	same trust anchor to multiple clusters, The Linkerd Trust Anchor, Multicluster Certificates	setting up, Setting Up for Multicluster

	trust hierarchy of certificates, mTLS and Certificates	multicluster setups, The Linkerd Trust Anchor, Multicluster Certificates

U
	upgrading Linkerd, Upgrading Linkerd	CLI for upgrading, Upgrading via the CLI
	documentation URL, Upgrading Linkerd
	Helm for upgrading, Upgrading via Helm
	major version upgrades, Upgrading Linkerd	never skip, Upgrading Linkerd

V
	Venafi cert-manager, Certificate Lifetimes and Rotation, Certificate Management in Linkerd	automatic certificate management via, Automatic Certificate Management with cert-manager	configuring for Linkerd, Configuring cert-manager for Linkerd-Configuring cert-manager for Linkerd
	installing cert-manager, Installing cert-manager
	installing Linkerd using cert-manager, Installing Linkerd using cert-manager

	external agent documentation URL, Configuring cert-manager for Linkerd

	versioning system for Linkerd, Linkerd Versioning	edge, Edge
	stable, Stable

	Viz extension (see Linkerd Viz extension)
	vulnerability notification subscription, Responsible Disclosure

W
	watch command, Configuring Retries
	Web component of Linkerd Viz extension, Web
	workload certificates, TLS certificates, Linkerd and mTLS, Certificates and Linkerd, Linkerd Workload Certificates	Linkerd handling automatically, Linkerd and mTLS, Linkerd Workload Certificates	rotating the certificates, Certificate Lifetimes and Rotation, Certificate Lifetimes and Rotation

	Pod identity name format, Linkerd Workload Certificates
	rotating a certificate manually, Certificate Lifetimes and Rotation	tuning workload certificate lifespan, Certificate Lifetimes and Rotation

	workloads	adding to the mesh, What Does It Mean to Add a Workload to the Mesh?	annotation values, linkerd.io/inject Values, Kubernetes Resource Limits
	configuring protocol detection, Configuring Protocol Detection
	going to production with Linkerd, Preparing Your Environment
	injecting all workloads in namespace, Injecting All Workloads in a Namespace
	injecting individual workloads, Injecting Individual Workloads
	Kubernetes admission controller, The Linkerd Control Plane, What Does It Mean to Add a Workload to the Mesh?-linkerd.io/inject Values
	Kubernetes resource limits, Kubernetes Resource Limits
	opaque versus skip ports, When Protocol Detection Goes Wrong
	protocol detection, Protocol Detection-Default Opaque Ports
	proxy injector configuration options, Other Proxy Configuration Options
	when not to, Why Might You Decide Not to Add a Workload
to the Mesh?
	workload certificates, Linkerd and mTLS, Certificates and Linkerd, Linkerd Workload Certificates

	deploying Linkerd, Workloads, Pods, and Services	workload certificates, TLS certificates, Linkerd and mTLS

	multiple in a single Server definition, Read-Only Access
	services versus, Workloads Versus Services

	write access enabled, Enabling Write Access-Allowing Writes to books

X
	X.509 certificates	automatic management via cert-manager, Automatic Certificate Management with cert-manager	configuring for Linkerd, Configuring cert-manager for Linkerd-Configuring cert-manager for Linkerd
	installing cert-manager, Installing cert-manager
	installing Linkerd using cert-manager, Installing Linkerd using cert-manager

	deployment of Linkerd	planning, Considerations, TLS certificates
	specifying in CLI install, Installing Linkerd via the CLI
	specifying in Helm install, Generate Linkerd certificates, Helm install

	ingress controllers, Ingress and Linkerd
	Linkerd and, Certificates and Linkerd	certificate management, Certificates and Linkerd, Certificate Management in Linkerd
	certificates that are required, TLS certificates
	identity issuer certificate, The Linkerd Identity Issuer
	never let certificates expire, Certificates and Linkerd, Certificate Lifetimes and Rotation, Certificate Health and Expiration, The identity controller
	trust anchor certificate, Certificates and Linkerd, The Linkerd Trust Anchor
	workload certificates, TLS certificates, Linkerd and mTLS, Certificates and Linkerd, Linkerd Workload Certificates

	linkerd identity command for Pods, linkerd identity
	mTLS, mTLS and Certificates	Linkerd and mTLS, Linkerd and mTLS
	service mesh mTLS, TLS and mTLS

	multicluster setups, Multicluster Certificates	creating certificates, Setting Up for Multicluster

	TLS, Certifying Authorities, TLS and mTLS	Linkerd deployment planning, Considerations, TLS certificates
	service mesh mTLS, TLS and mTLS

	trust hierarchy, mTLS and Certificates

 About the Authors

 Jason Morgan is a DevOps practitioner who has helped many organizations on their cloud native journeys. Jason helps teams adopt cloud native ways of working so they can deliver for their customers and learn how to go fast forever. Jason has given talks, written a number of articles, and contributes to the CNCF.

 Flynn is a technical evangelist at Buoyant working on spreading the good word about Linkerd, Kubernetes, and
 cloud native development in general. He is also the original author and a maintainer of the Emissary-ingress
 API gateway, also a CNCF project. His career in computing spans more than 40 years and runs the gamut from
 bringup on bare metal to distributed applications, with a common thread of communications and security throughout.

 Colophon

The animal on the cover of Linkerd: Up and Running is the European lobster, or common lobster (Homarus gammarus).

This bluish crustacean is found in the eastern Atlantic Ocean, from as far north as Norway to Morocco; throughout much of the Mediterranean Sea; and along the eastern coast of the Black Sea. Though their ranges don’t overlap, the European lobster is closely related to the American lobster.

Like their American relatives, European lobsters are opportunistic feeders, combing the seabed at night for invertebrates such as crabs, starfish, sea urchins, and even other lobsters. They use their larger crusher claw to break open any shells or carapaces and their smaller ripper claw to tear their food up. Interestingly, the “teeth” (or tooth-like structures) of the lobsters are actually in their stomachs!

Lobster has played an important role in human culinary history for thousands of years. In fact, a partial claw of the common lobster was found among kitchen detritus excavated from a seventh-century BCE village near Sardinia, and Apicius (a fifth-century CE Roman cookbook) includes a recipe for lobster croquettes. Yet lobster has not always been a luxury food fetching a premium price. When the first European settlers reached North America, lobsters were so plentiful that they purportedly washed ashore “in piles of two feet high.” Due to their abundance, lobsters were cheap to acquire and thus gained a reputation as food for the poor.

The European lobster today remains relatively abundant, with a stable population and broad geographic range. As such, they have been classified by the IUCN as a species of least concern from a conservation standpoint. Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving from Dover’s Animals. The series design is by Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/luar_1401.png
HA mode sets anti-
affinity rules and
requires that each
control plane
component have three
replicas. It is not
recommended to go
beyond three replicas
of any control plane
component.

HA mode also sets a

policy requiring that

the proxy injector be

ina running statein

order to allow Pods
to be created.

)

Node1

Sm——

Linkerd
destination

-~
—

Linkerd

proxy
injector
—
)

Linkerd
identity

———

~—_—

Kubernetes cluster

Anti-affinity

Anti-affinity

Anti-affinity

)

Node 2

)

Linkerd
destination

—
S

Linkerd

proxy
injector
——
)

Linkerd
identity

———

—_— S

Anti-affinity

Anti-affinity

Anti-affinity

Node 3

)

Linkerd
destination

Linkerd

proxy
injector
—_—
)

Linkerd
identity

N———/

~———o

OEBPS/assets/luar_1306.png
Localhost A

: Service IPs O0Q
1. Node is
created. EndpointIPs (of Pods) O @ @
__________________ |
:l\letwork hardware 5. Linkerd CNI NI Node |
—————— plugin configures —_—_——————————
] packetfilter. \ | g | @D --ccceieeennn-
| Packet filter ¢

7. Application
container can
make requests
through the
sidecar.

4.Podis created;
container runtime
runs CNI plugins.

2. CNI DaemonSet
Pod installs Linkerd
CNI plugininto
Node.

Init
container

Application
container

6. Init container
validates packet
filter setup, then
exits soapp
container and
\ sidecar can start.

3. CNI DaemonSet
Podidles, watching
for plugin changes.

OEBPS/assets/luar_1305.png
Localhost A

Service IPs OO0
Endpmnths (ofPods) O @@

4 pplication
N e— container can
1. Podiis created. make requests
through the

sidecar.

Init
container

Application
container

| 2. Init container 3. Sidecar and
configures app containers
packet filter. start running after
init container
completes.

OEBPS/assets/luar_1304.png
A
009
Endpoint IPs (of Pods) O @ @

Localhost

Service IPs

Arrows with solid lines (==) show a connection to localhost for
communications within a Pod

Arrows with dashed lines (= = =) show a connection being routed to an
endpoint in the same Node when one is available

Arrows with dotted lines (+===+) show a connection being routed to an
endpoint in adifferent Node when there’s no endpoint in the same Node

Cluster

A

Application
container

Application
container

Application
container

|

|

| Application
| container
1]\)
| Y—
| Pod C1

| —
| Application
| container
|

|

|

|

|

|

|

(

| S

Pod C-2

)

Application

container [
~—

OEBPS/assets/luar_1402.png
LINKERD Namespaces

CLUSTER
@ Nemespaces HTTP Metrics =
&8 Control Plane

Namespace Meshed Success Rate RPS P50 Latency P95 Latency P99 Latency
\ DALY M ‘ default 0/0 - - -
WORKLOADS

emojivoto 4/4 92.14% ® 6.15 1ms 4ms 8ms
@ Cron Jobs

kube-node-lease 0/0 - - -
@ Daemon Sets

kube-public 0/0 - - -
Q Deployments
@ Services kube-system 0/5 - - -
@ Jobs linkerd 3/3 100.00% ® 2.4 1ms 4ms 5ms
0 Pods

linkerd-jaeger 3/3 100.00% ® 1.3 1ms 1ms 2ms
@ Replica Sets

linkerd-viz 5/5 100.00% ® 3.23 2ms 71 ms 94 ms
@ Replication Controllers

OEBPS/assets/luar_0105.png
()
Microservices application in Kubernetes

OEBPS/assets/luar_0104.png
Microservices applicationin Kubernetes

Network calls can time
out or fail, or possibly
need to be retried.

be overloaded and slow
to respond.

& Individual services can \

OEBPS/assets/luar_0103.png
Is it really puSvc B
calling uSvc A, or
is it an evildoer

,,,,,,,,,,,,,,,,,,,,,,,,,,, impersonatin
How do you prevent A ppSvc B? °

an evildoer from

eavesdropping on
or tampering with
your communications?

............................

OEBPS/assets/luar_0102.png
Microservices application in Kubernetes

Ay

Kubernetes:

OEBPS/assets/luar_0106.png
()
Microservices application in Kubernetes

OEBPS/assets/cover.png
OREILLY"

Linkerd:
Up & Running

A Guide to Operationalizing a Kubernetes Native
Service Mesh -

Jason Morgan
& Flynn

OEBPS/assets/luar_0101.png
Request
to Service IP
(@[[[[)-88\ 104305

workload

¢ . .)
Pods and
endpoint IPs

s N

Linkerd chooses an endpoint ()

Q

Pod
——
10.99.0.1
——/

DNS m ——
my-service.my-ns O e
sve.cluster.local Service

Pod
104305 IP:1043.05 03
N———

Name: my-service —
kNamespace: my-ns |

Service (with name, 0
d : Pod

Request namespace, and Service IP)
to endpoint IP N J

| —
I[N 10.990.3]
workload Linkerd uses that endpoint

(2

OEBPS/assets/luar_0801.png
Workload
policy
Y —
Inherits
[
Namespace

policy
D S—
Inherits
[
Cluster-wide

Workload
policy

| Overrides

Namespace
policy

| Overrides

Cluster-wide

policy

policy

OEBPS/assets/luar_0709.png
Issuer
cert 2

Kubernetes
Secrets

1. cert-manager generates
intermediary certificate.

2. Saves certificate as issuer
certin a Kubernetes Secret.
3. Continue to rotate as
specified in the cert object.

—
Linkerd control

plane
-—

)

cert-manager

3

Certificate

object
) —

Trust
root

External
Secret store

OEBPS/assets/luar_0805.png
Linkerd Viz

Prometheus

vote-bot

default.emajivoto

web.emajivoto

[emoji][voting

web.emajivoto

OEBPS/assets/luar_0804.png
vote-bot

default.emajivoto

Port 8080

web.emojivoto

Port 8080 Port 8080
emoji voting

web.emajivoto

OEBPS/assets/luar_0803.png
Authorization policy

Authentication

Object 1 Authentication
[MeshTLS-
Server Authentication]
or or
HTTPRoute Network]

L

~

J

OEBPS/assets/luar_0802.png
all

cluster cluster

‘ Cluster A \ Multicluster link ‘ Cluster B \

OEBPS/assets/luar_0902.png
[Linkerd Kubelet

Viz

OEBPS/assets/luar_0901.png
traffic webapp

OEBPS/assets/luar_0807.png
¢

vote-bot

I default.emajivoto
W
0

eb

web.emajivot

e

web.emajivoto

OEBPS/assets/luar_0806.png
vote-bot

default.emajivoto

Port 8080

web.emojivoto

Port 8080 Port 8080
emoji voting

web.emajivoto

OEBPS/assets/luar_1102.png
e

Pod

Y

_

r

podinfo-
frontend

Pod

\.

J

Pod

{

podinfo-frontend Kubernetes

Service

J

podinfo Kubernetes Service

OEBPS/assets/luar_1101.png
App container

Service

.

N\

r

[

App container]

[App container]

S —

3

Pod

3

Pod

~

J

1. An app makes a request.
2. The Linkerd proxy evaluates the request. If it's directed toward a pool, it sends it

over the existingmTLS connection. If it's directed at a service, the proxy uses its

built-in endpoint selection algorithm to pick which Pod to route it to.
3. The Linkerd proxy forwards the unencrypted request to the app container.

OEBPS/assets/luar_0903.png
authors

GET

webapp.booksapp /authors.json
webapp »| /authors/

books.booksapp rewmra—

authors-get-route
L),

r 3\
webapp.booksapp PUT

/authors/
books books.booksapp DELETE

/authors/

POST
/authors.json

A 4

A 4

authors-modify-route

0.0.0.0/0
kubelet A > G%ing

probe-route

OEBPS/assets/luar_1203.png

OEBPS/assets/luar_1202.png
web-svc-
cluster2

vote-bot]

emoji-svc

emoji-svc-

cluster1

vote-svc-

Kubernetes cluster

clusterl

Kubernetes cluster

Cluster1

Cluster 2

OEBPS/assets/luar_1201.png
v
I LoadBalancer b‘ LoadBalancer I
5 2

linkerd2-proxy
gateway

web-svc-
cluster2

vote-svc | |emoji-svc

Kubernetes cluster

Cluster1

emoji-svc-|| vote-svc-
clusterl clusterl

]

Kubernetes
cluster

Cluster 2

OEBPS/assets/luar_1103.png
DNS (Pods and)
my-service.my-ns.svc.cluster.local endpoint IPs
1043.05 ?
| Pod
e N
1099011
4 \ \
)
oty O
Service Pod
—
10.99.0.2
IP:1043.0.5 —
Name: my-service
| Namespace: my-ns | G
Service (with name, Pod
namespace, and Service IP) 10.99.0.3

OEBPS/assets/luar_1303.png
Arrows with solid lines (=) show a connection to localhost for
Localhost A communications within a Pod

009 Arrows with dashed lines (= = =) show a connection being routed to an
endpoint in the same Node when one is available

. Arrows with dotted lines (+===+) show a connection being routed to an
Endpoint Ps (of Pods) 1 1 @ endpoint in a different Node when there’s no endpoint in the same Node

Service IPs

Cluster

|
I
|
|
I
|
|
I
|
|
I
|
|
I
V)
®

Application
container

~—

~—————
——

|
|
|
|
|
|
|
|
: Pod
|
|
|
|
|
|
|

"--———--——1

A

Application || Application
container container

Application
container

tecsececssscssncccssressrereracesasecsssnsrsrerenn

Application
container

Application
container

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OEBPS/toc01.html
		Preface

		Who Should Read This Book

		Why We Wrote This Book

		Navigating This Book

		Conventions Used in This Book

		Using Code Examples

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		1. Service Mesh 101

		Basic Mesh Functionality

		Security

		Reliability

		Observability

		How Do Meshes Actually Work?

		So Why Do We Need This?

		Summary

		2. Intro to Linkerd

		Where Does Linkerd Come From?

		Linkerd1

		Linkerd2

		The Linkerd Proxy

		Linkerd Architecture

		mTLS and Certificates

		Certifying Authorities

		The Linkerd Control Plane

		Linkerd Extensions

		Summary

		3. Deploying Linkerd

		Considerations

		Linkerd Versioning

		Workloads, Pods, and Services

		TLS certificates

		Linkerd Viz

		Deploying Linkerd

		Required Tools

		Provisioning a Kubernetes Cluster

		Installing Linkerd via the CLI

		Installing Linkerd via Helm

		Configuring Linkerd

		Cluster Networks

		Linkerd Control Plane Resources

		Opaque and Skip Ports

		Summary

		4. Adding Workloads to the Mesh

		Workloads Versus Services

		What Does It Mean to Add a Workload to the Mesh?

		Injecting Individual Workloads

		Injecting All Workloads in a Namespace

		linkerd.io/inject Values

		Why Might You Decide Not to Add a Workload
to the Mesh?

		Other Proxy Configuration Options

		Protocol Detection

		When Protocol Detection Goes Wrong

		Opaque Ports Versus Skip Ports

		Configuring Protocol Detection

		Default Opaque Ports

		Kubernetes Resource Limits

		Summary

		5. Ingress and Linkerd

		Ingress Controllers with Linkerd

		The Ingress Controller Is Just Another Meshed Workload

		Linkerd Is (Mostly) Invisible

		Use Cleartext Within the Cluster

		Route to Services, Not Endpoints

		Ingress Mode

		Specific Ingress Controller Examples

		Emissary-ingress

		NGINX

		Envoy Gateway

		Summary

		6. The Linkerd CLI

		Installing the CLI

		Updating the CLI

		Installing a Specific Version

		Alternate Ways to Install

		Using the CLI

		Selected Commands

		linkerd version

		linkerd check

		linkerd inject

		linkerd identity

		linkerd diagnostics

		Summary

		7. mTLS, Linkerd, and Certificates

		Secure Communications

		TLS and mTLS

		mTLS and Certificates

		Linkerd and mTLS

		Certificates and Linkerd

		The Linkerd Trust Anchor

		The Linkerd Identity Issuer

		Linkerd Workload Certificates

		Certificate Lifetimes and Rotation

		Certificate Management in Linkerd

		Automatic Certificate Management with cert-manager

		Summary

		8. Linkerd Policy: Overview
and Server-Based Policy

		Linkerd Policy Overview

		Linkerd Default Policy

		Linkerd Policy Resources

		Server-Based Policy Versus Route-Based Policy

		Server-Based Policy with the emojivoto Application

		Configuring the Default Policy

		Configuring Dynamic Policy

		Summary

		9. Linkerd Route-Based Policy

		Route-Based Policy Overview

		The booksapp Sample Application

		Installing booksapp

		Configuring booksapp Policy

		Infrastructure Policy

		Read-Only Access

		Enabling Write Access

		Allowing Writes to books

		Reenabling the Traffic Generator

		Summary

		10. Observing Your Platform with Linkerd

		Why Do We Need This?

		How Does Linkerd Help?

		Observability in Linkerd

		Setting Up Your Cluster

		Tap

		Service Profiles

		Topology

		Linkerd Viz

		Audit Trails and Access Logs

		Access Logging: The Good, the Bad, and the Ugly

		Enabling Access Logging

		Summary

		11. Ensuring Reliability with Linkerd

		Load Balancing

		Retries

		Retry Budgets

		Configuring Retries

		Configuring the Budget

		Timeouts

		Configuring Timeouts

		Traffic Shifting

		Traffic Shifting, Gateway API, and the Linkerd SMI Extension

		Setting Up Your Environment

		Weight-Based Routing (Canary)

		Header-Based Routing (A/B Testing)

		Traffic Shifting Summary

		Circuit Breaking

		Enabling Circuit Breaking

		Tuning Circuit Breaking

		Summary

		12. Multicluster Communication with Linkerd

		Types of Multicluster Setups

		Gateway-Based Multicluster

		Pod-to-Pod Multicluster

		Gateways Versus Pod-to-Pod

		Multicluster Certificates

		Cross-Cluster Service Discovery

		Setting Up for Multicluster

		Continuing with a Gateway-Based Setup

		Continuing with a Pod-to-Pod Setup

		Multicluster Gotchas

		Deploying and Connecting an Application

		Checking Traffic

		Policy in Multicluster Environments

		Summary

		13. Linkerd CNI Versus Init Containers

		Kubernetes sans Linkerd

		Nodes, Pods, and More

		Networking in Kubernetes

		The Role of the Packet Filter

		The Container Networking Interface

		The Kubernetes Pod Startup Process

		Kubernetes and Linkerd

		The Init Container Approach

		The Linkerd CNI Plugin Method

		Races and Ordering

		Summary

		14. Production-Ready Linkerd

		Linkerd Community Resources

		Getting Help

		Responsible Disclosure

		Kubernetes Compatibility

		Going to Production with Linkerd

		Stable or Edge?

		Preparing Your Environment

		Configuring Linkerd for High Availability

		Monitoring Linkerd

		Certificate Health and Expiration

		Control Plane

		Data Plane

		Metrics Collection

		Linkerd Viz for Production Use

		Accessing Linkerd Logs

		Upgrading Linkerd

		Upgrading via Helm

		Upgrading via the CLI

		Readiness Checklist

		Summary

		15. Debugging Linkerd

		Diagnosing Data Plane Issues

		“Common” Linkerd Data Plane Failures

		Setting Proxy Log Levels

		Debugging the Linkerd Control Plane

		Linkerd Control Plane and Availability

		The Core Control Plane

		Linkerd Extensions

		Summary

		Index

		About the Authors

OEBPS/assets/luar_1302.png
Pod
Metadata:
Name: my-service
DN5 Namespace: my-ns
) my-service.my-ns.svc.cluster.local Specs:
Endpoints [104305 Label:
r \ app.my-workload
— Endpoint IP:10.99.0.1
Endpoint g i p .
10.99.01 Service Pod
\——/ r ~ e N
= -
|| A
Service Metadata:
Endpoint Metadata: Ngmgsggé :ervxce
10.99.0.2 Name: my-service imy-ns
Namespace: my-ns | [Sfaelgz:l
Specs: :
Label: \ app.my-workload)
_2PP-my-workload)| Endpoint IP: 10.99.0.2
109903 Service IP:10.43.0.5 (Pod)
N/ s A
| S ——
IP address assignment is managed by Kubernetes
Labels let the Service find its Pods
Metadata:
Name: my-service
Namespace: my-ns
Specs:
Label:
L app.my-workload)

Endpoint IP: 10.99.0.3

OEBPS/assets/luar_1301.png
Kubernetes

Linux

Node

%

P

N

Container

ontainer

C

Container

O
| Pod

%Node -
Linux

r

N

Container|

Container|

0O
Pod

Container|

Container|

%Node -
Linux

N\

Containeg

\

Container

4

~————/

Container

‘Container\

O
Pod

OEBPS/assets/luar_0508.png
DNS (Pods_and)
my-service.my-ns.svc.cluster.local endpoint IPs
1043.05 ?
| Pod
e N
_ . 109901
)
KA O
Service Pod
—
IP: 104305 (10990.2)
Name: my-service)
Namespace: my-ns G
Service (with name, Pod
namespace, and Service IP) 10.99.0.3

OEBPS/assets/luar_0507.png
Don't do this

Opaque TCP connection

No advanced load balancing,
metrics, etc.

Application Pod

)

Ingress controller Pod

Do this

Linkerd mTLS

'
]
]
:
: NoTLS Q&
)
)
)
)
)

Advanced load balancing,
metrics, retries, etc.

v

Application Pod

Q& NoTLS

'
'
Ll
'
'
'
'
'
'
'
'
’

OEBPS/assets/luar_0502.png
______________________________________ -

I ' Kubernetes

CRD

Ingress controller
configuration

Service
routing

T

Service) r S
Control logic

LoadBalancer (routing, authn/ i Workload }

Service A
authz, rate limiting, -
endpoint selection, LSEW'CEA

i : Workload
L Endpoint > Workload
routing

OEBPS/assets/luar_0501.png

OEBPS/assets/luar_0406.png
Normal: Requests from the

application container go to

thesidecar in the Pod, then
are forwarded as requests to

the sidecars in other Pods.

\

r

Skip: The connection goes
directly from the application
container to the other
application container,
bypassing all the sidecars.
Thisis insecure.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Pod

Opaque: A connection gets —p —Pp

made from the application
container to the sidecar in the

same Pod, then connections

go from that sidecar to the

other sidecars.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Pod

OEBPS/assets/luar_0405.png
1. foo sends a message to bar and the
Linkerd2 proxy intercepts it.

2. foo's proxy opens a connection to bar’s
proxy. It looks at the first few bytes sent
from foo to bar to understand what
protocol is in use.

3. bar s proxy forwards the message tobar.

OEBPS/assets/luar_0506.png
Don't do this

Ingress

OEBPS/assets/luar_0505.png
TLSrequest
using ingress
controller certificate

Service

]
]
]
]
L}

Terminate
incoming request

Ingress

controller
——/

Kubernetes

mTLS
within mesh

OEBPS/assets/luar_0504.png
GET /crownjewels
User: Jane

HTTP200

Ingress
controller

Is Jane allowed to
GET /crownjewels?
Yep, all good

GET /crownjewels
User: Jane

Kubernetes.

Auth
service

<

HTTP 200

GET /crownjewels
User: Mark

——
HTTP 401

Ingress

controller

Is Mark allowed to
GET /crownjewels?

No

Kubernetes.

Auth
service

OEBPS/assets/luar_0503.png
Kubernetes

TLSrequest
using ingress Terminate mTLS
controller certificate incoming request w:thln mesh

I
|
|
|
|
|
|
|
|
|
|
L

]
]
]
]
L}

OEBPS/assets/luar_0708.png
Linkerd identity

Kube API

1. Proxy requests a certificate.
2. Identity checks the client’s
service account token with
Kubernetes API.

3. Identity issues a certificate
using the issuer.

OEBPS/assets/luar_0509.png
Request
to Service IP
(@[[[[)-88\ 104305

workload

¢ . .)
Pods and
endpoint IPs

s N

Linkerd chooses an endpoint ()

Q

Pod
——
10.99.0.1
——/

| p——
)

(2

DNS
my-service.my-ns : | |
sve.cluster.local Service L g
104305 104305 0

Name: my-service 10.990.2
Namespace: my-ns (—)
~ 7

Service (with name, 0
d : Pod

Request namespace, and Service IP)
to endpoint IP N J

| —
I[N 10.990.3]
workload Linkerd uses that endpoint

OEBPS/assets/luar_0703.png
mTLS

)))
1. Client connects to server >
3. Client verifies 2. Server presents
server's cert TLS certificate
Server
Client | 4 Client 5. Server validates 6_Server grants| Server
presents cert client certificate gccess)|
7. Client and server communicate >
<
—/ N——
—— TLS —
1. Client connects to server >
3. Client verifies 2. Server presents
server's cert TLS certificate
Server
Client Server
4. Client and server communicate >
<
—/ N—— S

OEBPS/assets/luar_0702.png
Client

1. Client connects to server >

3. Client verifies 2. Server presents
| server’scert TLS certificate

T

Server

4. Client and server communicate >

A

Server

OEBPS/assets/luar_0701.png
Monolith

)

Process

boundary
—

'

Microservices

N\

OEBPS/assets/luar_0510.png
A R
Calling :l I Pods and
workload Request to endpoint 1P l | Linkerd chooses an endpoint endpoint IPs

10.99.0.3 15d-dst- —_—
over ride: my-service.my-
ns.sve.cluster.local s \ 0
() Pod
——
10.99.0.1
DNS ———
- ()
my-service.my-ns Service WA e
svc.cluster.local
Name: my-service 109902
LNamespace. my-ns | —
Service (with name, 0
namespace, and Service IP)
Request to endpoint IP \ J Pod
10.99.0.3, no 15d-dst- 1099.0.3
Calling override N’

workload

‘l m I Linkerd uses that endpoint
L=

OEBPS/assets/luar_0707.png

OEBPS/assets/luar_0706.png
Ll

|

|

User rotates '
trust anchor and '
identity issuer .

Linkerd rotates
workload certs

Workload

OEBPS/assets/luar_0705.png
Trust anchor

Identity
Workload

OEBPS/assets/luar_0704.png

OEBPS/assets/luar_0207.png
Kubernetes

\

Kubernetes

\

Kubernetes

\

OEBPS/assets/luar_0206.png
container

Application
container

Application
Po

Proxy
container

Application
container

...........

[

............................

linkerd-viz namespace

deployment

Viz
dashboard

Prometheus

|

|

|

:
linkerd-viz '

+ | Web browser

|

|

|

[

Prometheus scrapes
metrics fromall the

proxies; the Viz
dashboard only
manages the GUI.

OEBPS/assets/luar_0205.png
Extension
namespace

Extension
deployment

Extension
namespace

Extension
deployment

identity _Proxy-
deployment injector
deployment
))
Identity proxy-
controller injector
Manages Mutating
identity & webhook
certificates adds Linkerd
proxies to
workload
\——— L ————
destination deployment
s \
Destination | Policy sp-
controller | controller | validator
(Go) (Rust)
Makes sure
Tracks Manages | Service-
endpoints & | outbound | Profile
manages policy | resources
inbound are OK
policy)

OEBPS/assets/luar_0204.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/luar_0108.png

Kubernetes :

Svc
40% SR 75% SR
15RPS 20RPS
150 ms P95 55ms P95

99% SR
15RPS
5ms P95

99% SR
150 RPS
75 ms P95

................................

OEBPS/assets/luar_0107.png
Microservices application
in Kubernetes

N\

Microservices application
in Kubernetes

OEBPS/assets/luar_0203.png
v

Integrity (HMAQC)

Confidentiality
(key exchange +
symmetric cipher)

54

Authentication
(X.509 certificates)

*

*

f

r

.

~

TLS (stream, secure)

J

A

r

~\

ANNA

TCP (reliable streams, insecure)

*
000ad

IP (unreliable datagrams)

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/luar_0202.png
1linkerd namespace

Extension
CLI destination] [proxy-injector] namespace
f ([oterson]
Control plane
Data plane

linkerd-proxy

Application

Pod

-—. -, J

OEBPS/DejaVuSerif.otf

OEBPS/assets/luar_0201.png
(Apr2023)

(Aug 2022)

- - — [Route-based policy in Linkerd
+ [Multicluster failover in Llnkerd] l (Apr2022)

[Linkerd adopts Gateway API]

* i Linkerd Enterprise I
M Dynamic request routing and circuit breaking] (Oct 2023)
N* I
o
N

|

(Mar2022)

Linkerd graduates!
(Jul2021)

Multicluster Linkerd
(Jun 2020)

Zero trust auth in Linkerd
(Sep 2021)

(Linkerd on ARM
(Nov 2020)

o
8 Distributed tracingin Linkerd2
~N (Oct 2019)
Automatic mTLS in Linkerd2
(Apr2019)

2019

(Linkerd 2.0 brings Rust to cloud native
] L (Sep 2018)

Linkerd reaches incubating stage
(Apr2018)

Linkerd1.0
(Apr2017)

Buoyant coins “service mesh”
(Sep 2016)

First Linkerd public release]

2018

[Linkerd becomes CNCF's 5th project
(Jan2017)

2017

(Feb2016)

Buoyant founded
(Feb 2015)

2016

2015

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/luar_0109.png
Microservices applicationin Kubernetes

OEBPS/assets/luar_0404.png
L

-ssssssssssssssssesssee s ey

[

kube-system application-code :
[

[

[

Q||| O O O O '
[

Pod Pod Pod Pod Pod :
coredns kube- app- app- app- c :
proxy workload workload workload webhook ’

[

\ J s

- ~ [

security- . . [
infrastructure other-application-code :
[

[

[

Q||| O |
[

|
security-| |security- : i L
workload | | workload workload workload :
& J .

’

OEBPS/assets/luar_0403.png
- E-sEsSsssssssssH-H--T-E- S GGG G e ey

' [
1 [)
[application-code (1
: 2.proxy-injector Linkerd | «
" 1. Pod appears finds Linkerd. io r
' /inject annotation :
: L RO RO I I -- =g '
oll | Pod |[@l-=-======fccccccaaaaaa ——e ! [
! [
' 3.proxy-injector "1 | identity .
. ai? ad adds Linkerd'sidecar 1 ‘
, workloa 'w '
| —— '
v | () '
' :
| O
: - EEERREE - - - - - ------ » :
" Pod 5.proxy-injector [
' - finds no linkerd.io proxy- destination| | !
0 | |conversion- /inject annotation injector :
. webhook | 4. Pod appears and does nothing "
.
g © J \ J 1
»

Ve e o oo e e e b G G G S G S S S S G e e e e oo s s

OEBPS/assets/luar_0402.png
Unmeshed workload Meshed workload
(——) ~ (—)
O O
s
W L e
(Endpoint| L Pod) (Endpoint| Pod
10.99.01 10.99.0.1
) \
(— N (—)
|| ||
O O
W L.
(Endpoint| L Pod) (Endpoint| Pod
10.99.0.2 10.99.0.2
- N (——)
O O
I3
CLLl) N
(Endpoint| L Pod) (Endpoint| Pod
10.99.0.3 10.99.0.3
—————/ ———/

OEBPS/assets/luar_0302.png
Trust anchor

Identity
Workload

OEBPS/assets/luar_0301.png
Ingress

web Deployment

web Pod

—
==

foo Deployment bar Deployment

-------- EES - - - - - - - -

web Deployment

[foo Pod] [bar Pod]

Kubernetes cluster

[foo-svc] [bar-svc]

foo Deployment bar Deployment
[foo Pod] [bar Pod]

—

Kubernetes cluster

OEBPS/assets/luar_0208.png
Kubernetes cluster
linkerd- jaeger namespace

Jaeger
[injector] [Jaeger]4—[CoIIector]

OEBPS/assets/luar_0401.png
AServiceisa
Kubernetes
resource that
controls allocation
of DNS names and
cluster IP
addresses.

foo.default
.sve.cluster
Jlocal
10420.

-

‘Endpointl

10.99.0.1

r

~

||
D)

‘Endpointl

10.99.0.2
——

‘Endpointl

kPodA

10.99.0.3
)

Aworkload is

a Service plus
the Pods, IP

addresses, etc.
that make it

possible to use it.

OEBPS/assets/luar_0305.png
Private Pu?lic
key | key

Trust anchor I

Identity
issuer

Identity
issuer
] ? ?
Private | Public

key | key

OEBPS/assets/luar_0304.png
Private | Public
key key

Issuer

Private | Public
key key

OEBPS/assets/luar_0303.png
L (Public and private
Self-signed][Identity] keys stored in A4

trust anchor issuer cluster)

(Public key only: | I Workload
private key is not
stored anywhere!)

