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	Foreword







Artificial Intelligence (AI) impacts human lives by assuming the role of cognition amplifiers and guardian angels. To understand and communicate with the user, AI-based agents need to be able to use the language of the user in the form of text. Natural Language Processing (NLP) is the field of AI that deals with text. Speech processing and NLP share a unique relationship. In the conventional sense, the two operate on different modalities of natural language. However, the two fields have inspired each other for a long time. Noisy channel models in speech processing found several applications in NLP, while Transformers in NLP made way for speech Transformers. Recent advances in AI are characterized by the increasingly close collaboration of the two fields. Research problems based on multimodal NLP or text-to-speech transcription have strengthened the association between speech processing and natural language processing. 

The key value of NLP arises from the availability of large volumes of digitized textual data and computing resources to process the data. The result is application of NLP to several disciplines, such as education, law, health care, and other fields. Recent work in GPT-based language models has garnered public attention (and scrutiny) of NLP. However, it is important to remember that it is a mature field of research with decades of history. Sub-areas of NLP have learned from each other as well as from closely related areas such as machine learning, computer vision, and information retrieval. The models of today are more powerful than ever, but they stand on the shoulders of all the models that came before them. 

Natural Language Processing presents the vast landscape of NLP—from early approaches for machine translation to the widely popular deep learning models of today. Research in NLP has been happening for decades. The problems were partially solved in the past using datasets and computing of the times. These problems will continue to be solved with advances in computing infrastructure. The landscape of NLP is wide—it spans a long period of time and contains several solved and unsolved problems. 

The book assumes an interesting lens to visualize NLP—ambiguity resolution. The authors’ position is that ambiguity in language lends direction to ambiguity resolution, an underlying formulation in all NLP tasks. The authors present earlier  work done in ambiguity resolution by introducing three generations of NLP. This generational view not only presents an evolutionary view of NLP but also becomes the central theme of all the chapters in the book. The book covers popular NLP tasks: shallow and deep parsing, machine translation, named entity recognition, sentiment analysis, and so on. The chapter on large language models represents the state-of-the-art in NLP and shows how ambiguity resolution continues to be a guiding principle for recent advances in NLP. The chapter demonstrates the rise of general-purpose models for text synthesis tasks, such as text generation and text completion. Overall, the chapters show how patterns in a text can be used to produce good enough solutions for these tasks. The chapter on ‘Incongruity in NLP’ is interesting as well: it digs deeper into ‘rare’ or ‘incongruous’ forms of text such as sarcasm, humour, and metaphor, which may often be overlooked in the scheme of general-purpose models. The authors’ past work on computational sarcasm (Aditya’s PhD thesis advised by Pushpak, along with Mark Carman from Monash University) guides the insights in this chapter—three generations of NLP. Additionally, the book also contains chapters on the dissemination of NLP and shared tasks in NLP. These are truly unique chapters that compile the authors’ insights about benchmarking and research publication in the area.

In its discussion of the three generations, the book assumes the vantage point of ambiguity resolution. In its exposition of NLP tasks, the book draws parallels between approaches for the tasks. The authors highlight the connection between the three generations to bring home the point that the three generations are not really discrete phases, but that one generation influenced the understanding, datasets, and models of the next generation. 

To allow the readers to develop a holistic view of NLP, the book balances three aspects— linguistic intuition, mathematical details, and applications. The linguistic intuition is supplemented with several examples of sentences. The mathematical details probe fundamental concepts to enable a richer understanding. The applications include starter code, business cases, and review questions. The three aspects strengthen the utility of the book as a solid resource to study NLP. 

The authors have done an excellent job compiling the landscape of NLP over the years. Pushpak’s rich experience in research and academia at IIT Bombay and several other institutions brings invaluable insights to the book. Aditya complements it with his experience in academia and industry. This combination results in a perspective that will help academics and industry practitioners alike to get started on their journey of NLP. The book will also enable researchers from allied AI fields, such as speech processing, to innovate in their own areas of expertise. Irrespective of their background or expectations from the book, I urge the readers to use the methodologies described in the book not only to understand and build NLP systems but also to utilize them to develop computational thinking. 

NLP opens innumerable possibilities to change the way we work with computers. AI of the future will help solve problems of scarcity that exist around the world. NLP is the piece of the puzzle to create such agents. I congratulate the authors on the completion of this massive exercise. This book will serve as a social resource for learning NLP.

Padma Bhushan Prof. Raj Reddy
(ACM Turing Awardee)















	 

	 




	 

	Preface







‘ We have seen computerization, it is now time for humanization.’

The first presentation that Aditya, the student, made to Pushpak, the professor, ended with this quote. As a graduate student at IIT Bombay, Aditya was getting started on his research journey and was hoping to do his project with Pushpak and the quote was part of a presentation he made to Pushpak. Aditya continued to do his PhD with Pushpak as his advisor, and many years later, he set off on the task of writing this textbook with him.

The quote is apt in the context of Natural Language Processing (NLP). Enabling computers to understand human language is indeed a highly intelligent task of imparting an innately human ability to computers—the power of language. This book presents natural language processing in a completely new light. Inspired by the generations of computing, this book views natural language processing in terms of three generations that have witnessed drastic transformations in the approaches and applications of NLP.

Businesses have identified the potential of NLP with several big and small players in technology investing in NLP and offering NLP technologies as a part of their suites. Conferences in NLP that bring together academic and industry practitioners are held on a massive scale. The number of blogs and videos on NLP all over the Internet is aplenty. Books that describe ‘cutting edge’ in NLP are available. Then what does a new book in NLP has to offer?

This book offers a unique perspective to view the past, present, and future of NLP. We break the myth of NLP as a black box or a set of (mostly Python) libraries. We hypothesize that ambiguity is the left, right, and centre of everything in NLP. NLP practitioners and researchers may not explicitly realize this, but what they are dealing with is ambiguity resolution. Classification, sequence-to-sequence generation are approaches, but the inherent ambiguity of language and the potential of machine learning methods to help resolve this ambiguity is at the heart of NLP. Every chapter in the book brings the reader’s focus to ambiguity resolution and how three generations of NLP have attempted to resolve it. Pushpak’s ideology of ‘Linguistics is the eye and computation is the body’ is a crucial vantage point that this book assumes in its exposition of different sub-areas of NLP.

The book is organized as follows: The first chapter introduces natural language processing, highlighting the role of ambiguity and traditional layers of NLP. The chapter sets the background for the three-generation view of NLP that we focus on in the following chapters. Chapter 2 covers representations in NLP: from learning representation via the belongingness of grammar to Transformer-based representations. Chapters 3 and 4 cover shallow and deep parsing, respectively. Shallow parsing discusses part-of-speech tagging and chunking over the three generations of NLP. Deep parsing discusses constituency and dependency parsing using traditional as well as advanced approaches to generating parse trees from text. These two chapters provide insightful discussions on aspects such as the role of probability, linguistic theories, and the foundations of neural models. Chapter 5 is on named entity recognition, which deals with extracting spans of named entities and their types. Chapter 6 describes natural language inference, which aims to predict if a hypothesis and a premise text entail each other. Following this, Chapter 7 on machine translation covers a wide spectrum of machine translation approaches—rule-based, phrase-based, pivot-based, and neural, to name a few. Chapter 8 focuses on sentiment analysis. Since sentiment lexicons are a simple way to implement sentiment analysers, we discuss in detail the creation of these lexicons before providing the three-generational discussion on sentiment analysis. Chapter 9 on question-answering describes document-based question-answering in the three generations. Chapter 10 covers conversational AI—from landmark systems such as ALICE and GUS to modern retrieval-based agents. Following that, Chapter 11 on text summarization describes approaches in abstractive and extractive summarization, using a spectrum of approaches such as graph-based summarization and pointer-generator networks. The next three chapters are unique to this textbook. Chapter 12 is the first in the series focusing on the NLP of incongruous text. While NLP-based tasks mostly deal with obtaining the ‘most likely’ output (i.e., most likely parse tree, most likely translation), NLP of incongruous text such as sarcasm, metaphor, or humour poses unique challenges. We take the readers through the work of detecting such incongruous text via detection of incongruous text. Chapter 13 on Large Language Models (LLMs) presents the cutting edge of NLP. Following the format of the rest of the book, this chapter presents a unique explanation to LLMs via linguistic motivation, mathematical concepts, and extensions such as augmented language models. We particularly focus on applications of LLMs to education and productivity, keeping in mind the readers from academic and industry background. Chapter 14 describes shared tasks and benchmarks—two NLP traditions that have greatly benefited the field. A discussion of the two in this book will be valuable to academic and industry readers alike. Chapter 15 is titled ‘NLP Dissemination’ and focuses on ways to find NLP papers and publish NLP papers. With this chapter, we encourage the readers to continue their NLP learning beyond this book and contribute to new knowledge in NLP. This chapter is designed keeping in mind early research students. 

We set out to write this textbook on Natural Language Processing in late 2020, and it has taken us nearly two years. This book brings together two views of NLP: Pushpak’s extensive experience in pedagogy, research, and deployment of NLP, and Aditya’s substantially recent understanding of NLP research. The outcome is this expansive and insightful book which aims to balance linguistic intuition, mathematical details, and applications of all the NLP problems that it covers. For a book that has taken two years to complete, we realized that a book that covers the expanse of a field that spreads so wide and has consumed our lives so much is no easy task. We hope the book is useful to academic learners and industry practitioners alike, for its focus on both technique and applications.
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	CHAPTER
1

	Introduction








If you can read this, thank a teacher.

Harry Truman





Learning Objectives

After reading this chapter, you will be able to


• Understand the relationship between linguistics, probability, and data in the context of NLP.

• Describe three generations of NLP.

• List typical NLP problems.

• Conceptualize applications of NLP.







If you are reading this book, you can read at least one language—English—thanks to a teacher, a set of teachers, or the big teacher today: the Internet. It is also likely that English is not the only human language you communicate in. And if you have a background in computer science, you are also familiar with a special kind of language that computers understand—a programming language like Python or C++. The focus of this book is the use of the latter for the former; that is, the use of programming languages to enable computers to understand human language.

Languages allow humans to record and reproduce ideas and are recorded in multiple forms using spoken words or gestures/signs, written words, or in the digitized form such as video, audio, or text. Languages around the world are living records of the past and the present of the regions they belong to, and the communication of the people who speak them (Harari, 2014). Spoken histories passed down generations are popular in mythologies around the world, as in the case of Indian mythology which refers to certain stories as ‘shruti/smruti’ (the heard and the remembered stories). Similarly, written records are all-pervasive: personal identification documents, medical records, legal documents, and the like. The Internet is also fast changing languages of the world: new words get added (e.g., the word ‘email’ is now commonly used as a verb), languages get mixed (e.g., as evidenced in code-mixing, where words of multiple languages are used together by multilingual speakers; ‘maine tujhe email kiya’ translated to ‘I emailed you’ is an example of a code-mixed Hindi–English sentence), and modalities are interleaved (e.g., online memes which combine text and images to convey a nugget of information. Text and images are referred to as modalities).

This textbook explores the field of natural language processing (NLP): computational techniques that process languages used by humans (i.e., ‘natural’ languages). This processing may involve specific tasks such as automatic translation or automatic answering of questions. NLP, a sub-field of artificial intelligence, is known by many other names. These names appear to differ in their focus. ‘Human language technology’ highlights that it is a technology while keeping the ‘human’ in focus. ‘Computational linguistics’ is an alternative name, which identifies the collaboration between linguistics and computer science that is at the heart of NLP. A computational linguistic view is based on the foundation that linguistics provides the knowledge of language while computation implements it.

This chapter sets the foundation for what follows in the book. It begins with linguistics, the role of ambiguity in NLP, followed by a historical view of NLP, and then introduces the central premise of this book: the three generations of NLP. Similar to the generations of computers, the book presents advances in NLP via these three generations, each of which is unique in the way it handles ambiguity.




  □  1.1Language and Linguistics



Birds and animals create sounds to communicate with one another. This may be a call to their prospective mates or a threat to an intruder in their territory. Some trees are also understood to communicate with one another via chemicals. This phenomenon results in ‘crown shyness’.1  A diseased tree of some species is able to release a chemical from its leaves so as to indicate to other trees that it possibly has an infection. As a result, the branches of adjacent trees do not grow in the direction of the diseased tree. Animals are also known to communicate with each other using symbols; for example, the pufferfish creates sand art during the mating season (Matsuura, 2015). Many species communicate with one another in other ways. Communication allows exchange of ideas and, as a result, improves the species’ ability to survive. When animals of a group can tell each other of an approaching predator, they can potentially escape together. This extends even to humans. It may be not an exaggeration to say that one of the key reasons for the advancement of the human race is language (Harari, 2014).




Language is a set of well-agreed codes to convey ideas. In the case of spoken texts, sounds are the codes. In the case of written texts, symbols are the codes that carry meaning and, hence, convey ideas. Therefore, the sound of the word ‘hi’ is the spoken form of greeting someone in some cultures. The written symbols ‘h’ and ‘i’ are from the Latin script. When put together they form a word that can be understood as ‘hi’: a written/codified version of the sound of the word ‘hi’. The sound may not carry meaning to everyone, especially to those who do not speak the language. For example, some humans may use the sound ‘ciao’ or the letters ‘c’, ‘i’, ‘a’, and ‘o’ next to each other to form a word. Speakers of the Italian language are likely to understand that the word ‘ciao’ is similar to the English ‘hi’. Those that do not understand Italian or a closely related language may not understand the meaning of the word ‘ciao’ or that of the corresponding sound.

Scripts of languages fall into three categories depending on how they treat vowels, especially the schwa (the ‘ə’ sound)—alphabet, abugida, and abjad. In case of ‘alphabet’, all consonants and vowels are written explicitly. For example, the word ‘London’ in English contains two ‘o’s. Hindi, which belongs to the ‘abugida’ category, will drop the two ‘o’s (लन्दन ). For the ‘abjad’ category, as in Arabic, vowels are mostly dropped completely. Thus ‘kitaab’ (book) and ‘kutub’ (axis/pole) will be written only with ‘k’, ‘t’, ‘b’. Writing scripts of languages may also differ in other ways. Indian languages such as Marathi use a horizontal line (called ‘maatraa’) on top of the characters to connect letters in a word while others like Gujarati may not. Some languages may not be conventionally written either. Sign languages are a detailed set of gestures conveyed using hands and/or facial expressions to convey a detailed meaning and are used by people who may not be able to produce conventional sounds in a language. Sign language can be codified via specialized scripts although that is not their primary intended purpose. Such is the diversity of languages! This diversity in the way sounds are represented in scripts, the way symbols are arranged to codify these sounds, or gestures that may accompany spoken speech only scratches the surface of linguistic diversity. 

Linguistics is the scientific study of languages. A rich field in its own right, linguistics studies language through sub-fields such as phonology (which studies the sounds that constitute words), morphology (which studies how morphemes are combined for conveying speech acts such as number, gender, person, and tense; for example, the word ‘boys’ contains ‘boy’ indicating a young male person and ‘s’ indicating plural), and so on. The layers of NLP described in the next section align with several sub-fields of linguistics, highlighting the fact that linguistics which documents language regularities does, can, and should guide system-building in NLP. Metaphorically speaking, linguistics is the eye of NLP!


  □  1.2Ambiguity and Layers of NLP



Research in what we today understand as NLP has been reported since the 1960s, and it is understood that the crux is really ambiguity processing. Language is inherently ambiguous. A word, a phrase, a sentence can have more than one meaning. Ambiguity can broadly be of two kinds: lexical and structural. The former arises primarily due to multiple meanings of lexical units, specifically words. The latter arises from how phrases are linked to other sentential units. For example, in the sentence, ‘Her face fell when she heard the bad news’, the word ‘fell’ does not refer to the phenomenon of falling under gravity but to that of being disappointed. This ambiguity of the word ‘fell’ is an example of lexical ambiguity. In contrast, in the sentence ‘I saw the boy with the telescope’, the phrase ‘with the telescope’ can link to ‘saw’ (where ‘telescope’ was the instrument of seeing) or to the ‘boy’ (where ‘telescope’ was an object the boy was carrying). This is an example of structural ambiguity, Ambiguity is at the heart of many interesting situations, including humour. The two examples given below indicate lexical ambiguity (i.e., ambiguity at the word level). 

                              Question: What is the difference between in-laws and outlaws?

                              Answer: Outlaws are wanted.

                                              (Ambiguity of ‘wanted’)

                              Question: Why should one never date a tennis player?

                              Answer: Love means nothing to them.

                                              (Ambiguity of ‘love’ and ‘nothing’)

Here, the word ‘wanted’ has many meanings, including ‘wanted by police’. In the second example, the ambiguity arises due to a possible meaning of ‘love’ as a zero score in tennis and the word ‘nothing’. The word ‘love’ as zero has a specific technical meaning in tennis. These are examples of lexical ambiguity or word-level ambiguity.



[image: ]
Dependency ambiguity: More complex and serious kinds of ambiguity come from structural ambiguity. Let us see an interesting sentence which appeared in The Times of India ‘Maharashtra reports increased COVID-19 cases’. There are five words in this sentence, with the intended meaning as ‘it is reported by the Government of Maharashtra that COVID-19 cases have increased’. The main verb of the sentence is ‘reports’ as indicated by the root and the arrow going into the main verb in the dependency structure. Something interesting happens when we take ‘increased’ as the main verb. If the main verb is looked upon as ‘increased’, the arrow from root goes to increased, then ‘Maharashtra reports’ becomes the noun phrase and is the subject of the verb ‘increased’. Then the meaning becomes ‘it is the Maharashtra reports that have increased COVID-19 cases!!!’ 

[image: ]
So, such interesting possibilities can emerge and are not really fictitious. We do see these situations occurring when the machine processes textual data. 

Pragmatic ambiguity: Probably the most complex kind of ambiguity in NLP is pragmatic ambiguity. The following is a conversation between a passenger and a chatbot.

The passenger says, ‘Thank you for sending me to Delhi and my luggage to Mumbai’ and adds a positive sentence, ‘Brilliant service’. The chatbot is unable to identify the pragmatic ambiguity between the two sentences and thanks the passenger because ‘Brilliant service’ is sarcastic. Similarly, look at the meme in Figure 1.1 which quotes this conversation. The text says, ‘Wow, well done’, but the body language is completely negative. The meme is sarcastic towards the output of the chatbot. This kind of incongruity between modes of expression is fundamental to very complex problems like sarcasm detection. 

[image: ]
Figure 1.1   Example of multimodal sarcasm.


As a result, NLP can be viewed a layered process. Starting from morphology where the word is broken into its parts, we look at the morphemes, segments, and also the features of the word (e.g., adverb). Then we move to part-of-speech (POS) tagging, which gives grammatical categories like noun, verb, adjective, and so on. Then we move to forming short non-recursive phrases, which is called chunking. At the parsing layer, the parse tree is created; this is at the syntax level. Next, we obtain the semantic roles and precise meaning of the word—this is word sense disambiguation or semantic role disambiguation. Finally, we move to the processing of large pieces of text which involves the three c’s (coherence, cohesion, and coreference). This is the highest level of processing of the text. If you also do pragmatic processing, then this is really a complex task. These layers of NLP are discussed in detail in the forthcoming chapters of the book. These layers of NLP correspond to NLP tasks that are investigated by researchers working in the area. Figure 1.2 visualizes NLP as a three-dimensional entity. The x-axis defines different languages, y-axis is the NLP task at hand, and z-axis is the algorithm which attempts to solve a particular problem. The labels on the axes are but a small subset of possibilities. NLP researchers and linguists are interested in designing algorithms for a particular problem of a particular language. This perspective of NLP is important for appreciating the challenges of any NLP problem, such as machine translation.

[image: ]
Figure 1.2  Visualizing NLP along three dimensions.


NLP handles many research problems, some of which are as follows: 


• Machine translation (e.g., Google Translate): Automatic translation of sentences from one language to another.

• Information extraction (e.g., OpenIE): Automatic extraction of phrases that convey special meaning (such as names of people, names of diseases) from text.

• Information retrieval (all the search engines): Automatic retrieval and ranking of a list of documents based on a search query.

• Question-answering systems (e.g., Alexa): Automatic answering of a question posed by the human user.

• Multimodal NLP (e.g., emotion recognition based on facial expressions and spoken words): Interaction between text and speech or text and video.

• Sentiment and emotion analysis: Detection of emotion or sentiment in text.

• Conversation agents (e.g., the recent ChatGPT tool): A computer being able to engage with a user in a conversation.




The central theme of all these research problems is ambiguity resolution using computational techniques. The computational techniques form the algorithm axis in the three-dimensional representation shown in Figure 1.2. Extending the metaphorical idea that linguistics is the eye of NLP, we can appreciate that, while linguistics is the eye of NLP, computation is the body of NLP! 


  □  1.3Grammar, Probability, and Data



Computation in NLP involves mechanisms that encode the structure of language. Unsurprisingly, the foundational inspiration lies in grammar. Pāṇinian grammarians provide a structured view of language—one that is encapsulated in the form of a large set of rules (given as production rules) which govern language constructs. While structure brings a sense of determinism to language, it often misses the point that language is not deterministic or fossilized. We explain the notion of language being not deterministic. That language is non-deterministic implies: 

1. no grammar, as far as we know, can capture all and only the phenomena of the language, and

2. given the left-hand side (LHS) of a production rule, multiple right-hand sides (RHS) are possible. For example, NP → DT NN | NNS means that a noun phrase (NP) can be constructed from a determiner (DT) and noun (NN) combination as well as from a plural noun (NNS). 

Lexical and structural ambiguities can cause more than one derivation. Similarly, points (1) and (2) mean that speakers and writers can always produce strings, which serve the purpose of communication but are not licensed by the grammar. 

This, in particular, is relevant because language behaviour of a community evolves over time. The language used on the Internet is an example of this. The sentence, ‘I emailed it to you’ may have looked strange a hundred years ago, but rarely causes any confusion today. The verb ‘emailed’ originates from the process of sending an electronic message (called an email) using a computer. Internet language (also known as netspeak [Crystal, 2004]) often results in users dropping subjects when they are obvious, in order to save time. For example, ‘Emailed it to you’ drops the subject ‘I’, but the subject is likely to be well-understood by both the sender and receiver. Evolution of language behaviour is not new or particular only to the Internet. As people of different language communities interact, new words and word forms are born. This explains the countless similarities between Indian and European languages, which are now believed to have originated from a Proto-Indo-European language. The word ‘potato’ in English can be mapped to ‘patata’ in Italian, another European language, and ‘batata’ in Marathi, an Indian language which is geographically far from the European counterparts. Similarly, the word for ‘father’ often uses the ‘p’ or the ‘b’ sound: ‘pere’ in French, ‘papa’ in colloquial English, ‘baba’ in Hindi, Marathi, or Persian. Therefore, while structured grammars prescribed by grammarians may capture a snapshot of a language, evolving language behaviour pushes the boundaries of what language actually is. As a result, new and unexpected language phenomena are witnessed, while some fade away.

This potentially explains why NLP turns to probability: an otherwise mathematical concept used to model behaviours in pure sciences. The word ‘chest’ may refer to a part of one’s body or a box used to store treasure. The word ‘apple’ may refer to a fruit or be the name of a computer company. The word ‘garv’ in Hindi often refers to a positive sense of pride. The same word in Marathi is likely to imply a negative connotation of pride. The Marathi word for positive pride is ‘abhimaan’. In contrast, the word ‘abhimaan’ in Bengali refers to a combination of anger and disappointment! Such is the interplay of two words in three languages that are all within close geographic and social proximity. All the mentions of ‘may’ and ‘often’ in previous sentences signal the need of probability to resolve the ambiguity in meaning. As a result, in every stage of NLP, the choice to determine ‘meaning’ is achieved via probability. 

If probability is a useful notion for NLP, how can it derive these probabilities? Can a human determine probabilistic values? For example, can a human speaker of a language determine that the word ‘chest’ refers to a part of one’s body with a probability of 0.7 (or 0.9 or 0.1)? This is fraught with subjectivity and may be inaccurate. As a result, NLP turns to data. Textual data sets available in digitized forms (i.e., forms processable by computers) have been at the heart of NLP for decades. 

The key idea is the same as that in machine learning: predict the future based on the past. In the context of NLP, this maps to: use a dataset of textual examples as the ‘training data’ (in the sense of past data), to learn a model that makes predictions on the ‘test data’ (in the sense of future data). The training dataset is the dataset that an NLP system sees when it is learning a task via probabilities. Following that, the test dataset is used to evaluate how well the system has learned the task. 

The relationship between grammar, probability, and data is shown in Figure 1.3. Ambiguity resolution in the context of NLP is grounded on two key principles:


1. Language constructs have multiple meanings (i.e., ambiguity).

2. NLP must choose among possible meanings by assigning numerical scores to them. These scores come from probability, which is in turn based on data.
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Figure 1.3  Relationship between grammar, probability, and data.



It is interesting to note that the grammar of a language is also a language in its own right; it is a symbolic system. Grammar tries to capture and express the regularity underlying the language. For example, VP → V NP captures the language phenomenon of transitive verbs, where VP indicates a verb phrase, V indicates a verb, and NP is a noun phrase. Of course, the designer of a grammar passes on his/her understanding of the language phenomenon through the grammar. Therefore, the grammar is necessarily influenced by the competence and limitations of the grammar designer. The grammar is also limited by the constraints of the language (let us call it ‘meta-language’) it employs to capture the language phenomena. Thus, there are two limitations: (1) those of the grammar designer and (2) those of the meta-language. Since no grammar can ever be sure of capturing all language phenomena and expressing them precisely, we have to give confidence factors to the production rules of the grammar. These confidence factors are probability values obtained from data annotated with LHS and RHS of production rules. For example, VP → V NP (with probability 0.5) would mean 50% of the verbs in the data are transitive. Notice that, while the grammatical rules come from linguistics, the probability values come from data through the application of the maximum likelihood estimation principle.




As a result, a textual string and its probability are the whole and the soul of NLP for decades now, although the notion of probability of text has been widely debated. Getting this probability needs looking into distributions over data: words, phrases, or larger ‘patterns’ of text. Disambiguation by resorting to distribution is really behaviourism in action, as propounded by B. F. Skinner,2 in the sense that frequently occurring language behaviours as manifested in lexemes and structures and their contexts determine the meaning. Behaviourism is to be contrasted to structuralism, which gave rise to generative grammar proposed by Noam Chomsky. This contrast between structuralism and behaviourism is captured in arguments between these two schools of thought—often referred to as the debate of the century. Behaviourism in NLP asserted itself in the late 1980s/early 1990s through IBM’s seminal work on statistical machine translation, founded on an expectation-maximization-based word alignment algorithm, which is thus called IBM model of statistical machine translation. 





  □  1.4Generations of NLP



Early work in NLP was founded on rules. For example, the problem of deciding whether a sentence had positive or negative sentiment would be decided by a very simple rule like ‘IF the number of POSITIVE adjectives exceeds the number of NEGATIVE adjectives, THEN the sentence has positive sentiment’. Obviously, such a rule is very naïve and would face many false positives (errors of commission) and false negatives (errors of omission). These rules may be deterministically applied or be assigned probabilities. As newer forms and structures of language are encountered, rules are updated: new rules may be added or the probability of existing rules may be updated. For example, the previous rule may be updated to include negation. ‘IF the number of POSITIVE adjectives (and NEGATIVE adjectives preceded by a negating word) exceeds the number of NEGATIVE adjectives (and POSITIVE adjectives preceded by a negating word), THEN the sentence has positive sentiment’. In essence, NLP approaches based on rules are ‘unsupervised’. ‘Unsupervised’ means that, at the time of implementation, a rule-based approach has not seen pairs of input and expected output (known as annotated data, where input is annotated with output). 

This does not mean that the early work in NLP did not have annotated data. Annotated data was available for the purpose of evaluation. However, the algorithm implementing the NLP approaches did not use annotated data. This is because the algorithm was driven by human experts who designed the rules.

Two forces propelled entry and harnessing of data in NLP: 

1. Rules many times proved woefully inadequate (as shown in the sentiment rule above) to capture the full spectrum and complexity of language phenomena. Additionally, conflict resolution when multiple rules were applicable was very cumbersome.

2. Language data in machine-processable form kept on increasing and machine learning opened up new vistas. It would have been foolish not to make use of such an abundance of the storehouse of language phenomena. 

Probability showed a way of teasing the regularities out of the data. Three ways of computing probability from language data emerged: maximum likelihood, maximum entropy, and Bayesian probability. Maximum entropy estimation acts as a form of a signal aggregator, where signals are features. In contrast, maximum likelihood estimation is not as effective at signal aggregation but instead maximizes the likelihood of data. The weights of features are computed using an algorithm broadly similar to gradient descent. Maximum likelihood estimation has been a dominant paradigm of ambiguity resolution in NLP. This leads to the recurring usage of the ‘argmax’ term in NLP. A simple formulation of sentiment analysis can be shown as:

(1.1)

s* = argmaxss P(s|D)

where s is a sentiment label, D is an instance (which could be a sentence or a document), and s* is the value of the sentiment returned by the classifier. This value is the argmax [i.e., the argument (value of s) that maximizes the conditional probability P(s|D)]. Let us examine the equation to understand it better. The function being computed is P(s|D). This means that the probability of all sentiment labels s (say, positive and negative) with respect to the instance D will be computed. As indicated by the word ‘max’, the maximum value of P(s|D) will be determined. The argument (‘arg’) of s (written below argmax) will be returned as the value of s. The superscript * on the left-hand side is a convention to indicate that it is the optimal value of s, as returned by the equation. So, Eq. (1.1) can be read as: ‘s* is the value of s which maximizes the value of P(s|D)’.

Bayesian probability is invoked when P(s|D) is converted by Bayes theorem into P(s) (i.e., the so-called ‘prior’) and P(D|s)  (i.e., the so-called ‘likelihood’). The argmax-posterior-MAP-prior-likelihood framework has been at the heart of statistical NLP.

In general, disambiguation in NLP at any layer amounts to choosing the best among possible labels, possible strings, possible trees, or possible graphs. The scoring for this choice comes from the data. As a result, a key idea in such approaches is ‘supervision’. The supervision comes from a dataset with known labels. For example, for sentiment analysis, this could be a dataset of sentences with the sentiment of each recorded as labels. Similarly, in the context of part-of-speech (POS) tagging, this could be a dataset of sentences where the POS tag of every word is recorded. The NLP model uses the supervised data to learn a specific task such as sentiment analysis or POS tagging. In supervised approaches, the thrust of innovations was on useful task-specific representations in the form of features provided by the human expert and learning algorithms. Features are signals that may be useful for the task. For example, an NLP system that detects if a given SMS/text message is angry or not may use the number of capitalized letters as a feature. The sentence ‘I told you I will come’ is not as likely to be as the sentence ‘I TOLD YOU I WILL COME’ because capitalization is often used by speakers to emphasize words. However, unlike rules, the feature is only a signal that the learning algorithm will use to make the prediction. The burden of figuring out how to combine the features is passed on to the learning algorithm, ushering in the second generation of NLP that relies on statistical approaches in machine learning.

However, just like rules, features were also constrained by limitations of human understanding of language phenomena and the task. Features are signals that human designers of an NLP system think are useful for the task that the system attempts to solve. The features attempt to capture the understanding of the designers. However, features are discrete, and their similarities are not captured very well in feature-based statistical NLP. The fact that a sentence contains the word ‘excellent’ and that another contains the word ‘great’ may well be separate features with little regard for similarity between them. Capturing similarities required capturing neighbourhood information in a continuum. Placing language units in a continuum is a problem of ‘representation’. When language units are points in a continuous space, neighbourhood can be exploited to solve the data sparsity problem. As a result, some of the burden of feature learning is offloaded to data. As data increased, all the above became feasible and then a reality, thereby bridging a long-experienced gap in statistical NLP and ushering in a new paradigm.

By and large, representations were task-specific for a significant duration in NLP research. In addition, features were discrete. Deep learning introduced a continuum in which similar linguistic units were close to each other. This proved useful for NLP tasks: (1) it could handle data sparsity and (2) it could learn vectors that are similar to each other. However, NLP witnessed a paradigm shift through the use of deep learning (i.e., learning using layers and layers of very large numbers of neurons with sometimes billions of parameters) towards the so-called deep neural networks (DNN). DNNs interweave two operations: (1) learning meaning representations of language units and (2) learning to solve particular NLP tasks. DNN for NLP relies on layers of neural networks learning representations of text. 

While supervision relies on annotated datasets to learn models for a specific problem or task, it does not utilize the potential of large unlabelled datasets. The Web has made available large datasets such as Wikipedia, review datasets, blogs, and so on. The words in this dataset are next to each other not by fluke, but by a definite design known as language. Therefore, deep learning-based approaches leverage the ability of neural networks to learn the ‘structure’ of language. For example, they may infer that the meaning of a word at a position in a sentence depends on the word and the meaning of the sentence so far (also referred to as ‘auto-regressive models’—a term possibly derived from time series analytics where numerical entities of a current time interval are predicted using those of past intervals). Alternatively, the representation of a word may be ‘contextualized’. The word ‘bank’ means something specific in the context of the sentence ‘I got a call from my bank’ versus ‘I bank on my friends for support’ (also referred to as ‘auto-encoding models’—a term possibly derived from speech processing, where a model learned to re-generate a signal so as to achieve denoizing in the test scenario). This has resulted in approaches such as Word2vec, which is a foundational architecture that allows learning representations of sentences based on large unlabelled data. Thus, this set of approaches, in addition to ‘supervision’, relies on the notion of ‘self-supervision’. Self-supervised models are those that learn to generate a sentence from itself, resultantly being able to generate representation of sentences in the corpus once trained. 

The interplay between self-supervision and supervision harnessed by neural networks is central to the NLP of today. Self-supervision learns the language model, while supervision (as in the previous generation) guides the specific task. Self-supervision learns general interactions between words and sentences, while supervision adapts this learning for certain NLP problems. The popularity of Transformer-based architectures can be gauged from the fact that it has inspired the development of similar architectures in computer vision, speech processing, and also recommender systems. This is among the few times that the advancement in NLP influenced other sub-areas of artificial intelligence. It highlights how NLP is now viewed as an area that advances state-of-the-art for artificial intelligence in general.

Keeping in mind the three paradigms of NLP, this book proposes a novel perspective to view NLP in the form of three generations, akin to generations of computers. The generations are illustrated in Figure 1.4. 
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Figure 1.4  Three generations of NLP and their characteristics.



The first generation is the rule-based generation, where NLP approaches were primarily based on rules designed to solve a particular task. As a result, these rules were made by human experts. The rules tell the computer ‘what signals to look for’ (features) and ‘how to use these signals’ (algorithm). As a result, while the rules accurately perform for the set of cases that they were designed for, they may not work well for a broader set of examples. 

The second generation is the statistical generation, where probabilities are computed from datasets, and machine learning algorithms are used to learn specific tasks. A key dependency of approaches in this generation is the set of features that are often engineered by a human designer. As a result, the optimal combination of features needs to be determined to produce a certain solution. In general, the computational component of the second generation tells the computer ‘what signals to look for’ (features) while the learning algorithm learns the optimal way to ‘use these signals’ (algorithm). The key difference with rule-based systems is the fact that rule-based systems did not have a principled way of giving weightages to features and combining them since data and probability were not used in these systems.

Finally, the third generation is the neural generation, where the power of neural networks assumes importance. Neural networks have been found to be useful for a variety of reasons. They do not rely on overt task-specific features, and the model learns to combine basic signals in ways useful for the task. Facilitated by large datasets and high computational power, neural networks can also learn task-agnostic representations that can later be used in models for specific tasks. The Transformer architecture that uses neural networks has ushered in generative AI that has found applications in other sub-fields of AI and science, in general.

The general pipeline for NLP (or any data science project) is shown in Figure 1.5. Using the data, one needs to first decide what features to look for, how these features can be combined, and finally learn a model based on these combinations of the features. The figure shows how three generations of NLP differ in terms of which component is handled by a human versus which component is handled by a computer. In the first generation, all three steps are managed by a human engineer. The second generation pushes the computer into model learning. While the human supplies the features and combines these features, the model learns the task. The third generation pushes the computer into the three steps while integrating neural networks.
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Figure 1.5  Interaction between different components in the three generations of NLP.




  □  1.5Scope of the Book



This book takes a historical perspective of NLP via the three generations when describing the foundations and applications of NLP. Such a view acknowledges that the thrust of NLP lies in resolving ambiguity using artificial intelligence techniques. When describing approaches in each generation, we describe ‘what’ ambiguities lie at the heart of several NLP problems, and ‘how’ this ambiguity can be resolved using approaches in the three generations. The three generations are not necessarily disjoint. Rule-based and statistical approaches coexist just the way statistical and deep learning-based approaches do. However, an understanding of NLP via these three generations answers a lot of ‘whys’. The ‘whys’ behind algorithms and design choices in the neural generation have answers in the statistical generation. The ‘whys’ behind those in the statistical generation have answers in the rule-based generation. The generational view of NLP will enable a reader to understand the ‘whys’ in addition to the ‘hows’.

In the following chapters, we introduce representations of NLP (i.e., how sentences and words are represented for computational purposes). Following this, we discuss several problems in NLP: POS tagging, parsing, natural language inference, sentiment analysis, question-answering, and so on. In each of these chapters, we have also included resources (datasets and lexicons), business cases, linguistic foundations, and research avenues to account for the applications, foundations, and innovations (respectively) that drive NLP today. The fascination with NLP is as much due to its computational and linguistic foundations as it is because of its applications and deployments. We hope that this multi-perspective understanding of NLP will be useful for a wide variety of readers.




Review Questions

1. Describe the two types of ambiguity occurring in languages.

2. What are the three generations of NLP? How are they different?

3. Describe the relationship between grammar, probability, and data in the context of NLP.



Course Assignment and Project

1. This chapter describes different types of ambiguity. In a language of your choice, list examples of ambiguity. Classify them into lexical ambiguity, dependency ambiguity, and pragmatic ambiguity.



Objective Questions

Fill in the Blanks 

1. Natural language processing is also known as ______ language technology.

2. Sarcasm is an example of ______ ambiguity.

3. To derive the probability of phenomena, NLP turns to ______.

4. The function that returns the value of the argument that maximizes a function (say, conditional probability) is called ______.

5. The three generations of NLP are rule-based, ______, and ______.

Select the Most Appropriate Option

6. What does code-mixing mean in the context of multilingual speakers (i.e., users of multiple languages)?

a.Multilingual speakers may not type as fast as monolingual speakers.

b.Multilingual speakers may use a mixture of words from the languages they speak.

c.Multilingual speakers may prefer to speak in secret words (code words).

d.Multilingual speakers may mix words with hand gestures.

7. Which of the following is not a research problem in NLP?

a.Information extraction

b.Sentiment analysis

c.Hieroglyphics

d.Emotion analysis

8. Models that learn to infer the meaning of a word at a position based on previous words are known as ______.

a.auto-encoding models

b.auto-stochastic models

c.auto-lingual models

d.auto-regressive models

9. What are typical concerns of approaches in the rule-based generation of NLP?

a.Generalizability

b.Explainability

c.Optimality of features

d.None of the above

10. In the second generation of NLP, what does the learning algorithm do?

a.Decides what the signals/features are.

b.Learns how signals/features can be used for the task.

c.Learns how to apply linguistic rules defined by the programmer.

d.None of the above
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Answers to Objective Questions



1.human

2.pragmatic

3.data

4.argmax

5.statistical, neural

6.(b)

7.(c)

8.(c)

9.(b)

10.(b)



 

1https://www.visiting.com.au/blog/4-amazing-examples-of-crown-shyness/ (accessed on 15 April 2023).

2https://crackerbarrel.weebly.com/ (accessed on 15 April 2023).

















	 

	 




	CHAPTER
2

	Representation
and NLP








It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind 1

J.G. Saxe






Learning Objectives

After reading this chapter, you will be able to


• Define grammars to represent language.

• Understand statistical and neural   language models.

• Implement models to train and/or use neural representations such as Word2vec and Transformers.

• Describe Transformers and underlying concepts.






In this 19th century poem based on ancient Hindu and Buddhist texts, the poet J.G. Saxe narrates the story of six blind men. The six blind men wanted to understand (as evidenced in the ‘satisfy his mind’ line) what an elephant is like. The poem goes on to describe how their individual interpretations were different based on which body part of the elephant they touched since they could not see the elephant. The blind men in the poem learn a restricted understanding of an elephant. In contrast, sighted people may be able to describe the shape, structure, and colour of an elephant. Looking at the elephant, they generate a representation of an elephant in their mind: an elephant is an animal characterized by a long trunk, big ears, and thick legs. In both cases (the sighted people and the blind men in the poem), the perceiver is creating a representation of the elephant. In their mind, they are attempting to answer the question: ‘How is the entity called an elephant represented and understood by a human?’ 

Representing concepts in the form of written pictures is found in hieroglyphics. Hieroglyphics is an ancient writing system that is associated with ancient Egypt (Budge, 1981). This later became written scripts that allowed future reproduction. Hieroglyphics or scripts are in a way written representations of languages that were produced on surfaces such as paper or rock (as in the case of Egyptian pyramids, Rosetta stone, and so on). On similar lines, when language has to be processed using computers as in the case of NLP, it has to be represented in ways that computers understand it. If a key function of written scripts for languages was the reproduction of ideas by humans, a key function of these ‘computerized’ representations was to accurately represent the communicated ideas in order to achieve NLP tasks. Extending the elephant example above, the corresponding question in the context of NLP representation would be: ‘How is the entity called an elephant represented and understood by a computer?’ 

Representation in NLP involves the creation of data structures that capture the belongingness of a text to a language. The representations in the form of these ‘data structures’ act as the input for specific NLP tasks. The validity of a sentence in a language can be determined by its representation. Therefore, at the semantic level, the representation of a text in NLP is also called grammaticality. This bears a connection with the resolution of ambiguity. As we will see, different kinds of representations make assumptions and simplifications about ambiguity in order to explicitly or implicitly construct a ‘language model’. The term ‘language model’ may seem overloaded. Which component of language is this model trying to capture? A language model is a model that helps to understand the likelihood of a given word sequence in a language. Intuitively, the sequence ‘the boy goes to school’ is expected to be more likely as compared to ‘the boy eats school’ (because a school is a place that one can go to, but is not an edible object) even if the two sentences do not occur in the exact form in a dataset of observed sentences. In other words, the aim of language representation is to be able to infer that ‘the boy goes to school’ belongs to the language, while ‘the boy eats school’ does not. We compare human and computer representations of languages in Figure 2.1. The idea conveyed in the figure is depicted in the form of the words ‘a galloping horse’ for it to be understood by a human. When a human who understands English hears these words, they will be able to imagine the visual. The corresponding NLP representation is derived from this text and may be a vector of numbers as shown in Figure 2.1. While we see alternative representations that are possible in this chapter, it is important to note that the vector is an example of a data structure (as mentioned above) that allows a computer to understand the notion of a galloping horse, and potentially use it for NLP tasks. 



[image: ]
Figure 2.1  Representations of ideas for humans and NLP.




  □  2.1Ambiguity and Representations



When a human hears the phrase ‘a galloping horse’, it creates a specific image in the human’s mind. The phrase ‘moving animal’ is more ambiguous because it does not specify the animal and the nature of its movement. A ‘moving animal’ could be a ‘crawling snake’ or a ‘flying dove’. Depending on the choice of words, the idea becomes more or less ambiguous. Resultantly, when a text (a phrase or a sentence) is represented in its computational form, it may be a vector of numbers. Phrases that are related to each other would then have vectors that are similar to each other. These vectors could also be used as input to a mathematical formulation that achieves a specific NLP task. Let us consider the sentence ‘A galloping horse is an example of a moving mammal (sentence A)’. The sentence is more similar to ‘A flying dove is an example of a moving mammal (sentence B)’ as compared to ‘The boy goes to school (sentence C)’. Why is it so? Several answers are possible. Sentences A and B have more words in common as compared to sentences A and C. Also, sentences A and B have a common pattern, X is an example of Y. This brings forth an additional requirement for representation—representation must capture similarity in meaning. Rephrasing this requirement really brings us back to the key idea of NLP: resolve ambiguity (i.e., multiplicity of meaning)!

Evidently, language representations are at the heart of how we visualize the three generations of NLP because of their distinctive ways of resolving ambiguity and, as a result, capture belongingness. Each generation attempted to capture the belongingness of a sentence via its constituent words. The first generation uses grammar to model language. Knowledge-based NLP creates a set of candidate rules that encapsulate the grammar of a language. These rules are a combination of syntactic rules (e.g., a noun phrase may comprise an article, an optional adjective, or a noun) and word generation rules (e.g., if you need to generate a noun, you may generate the word ‘school’). There will be rules of this kind for all nouns that are understood by a given grammar. As a result, a grammatical sentence can be generated using the rules while a non-grammatical sentence cannot. Therefore, the first-generation approach gives a Boolean answer to belongingness: ‘Does the sentence belong to the language, as defined by the grammar?’ The second generation uses probabilistic modelling of a sequence of words. A sentence is defined as a sequence of words where a word is dependent on a finite length of words preceding it. The belongingness of a sentence is captured in terms of the joint probability over the sequence. So, the belongingness of the sentence ‘The boy goes to school’ depends on the probability of the sentence, as seen in the training set. This relationship between probability, data, and NLP was introduced in Chapter 1, and will be described in detail in a subsequent section of this chapter. The third generation of NLP uses belongingness of sentences as a composition of belongingness over words. Therefore, it first represents words as a vector. The semantics of a word are captured by the components in the vector and their interactions though the components themselves are uninterpretable in general. The next step is to represent a sentence as an outcome of interactions between words and their context. The belongingness of a sentence is captured in terms of a dense vectorial representation in the k-dimensional space. As we will see, attention mechanism allows to capture the interaction between a word and its context. So, the belongingness of a sentence is a dense vector capturing the semantics of the sentence. The word ‘dense’ here refers to the likely possibility that most elements of the vector will not be zero. This is in contrast with sparse where many elements in the vector may be zero.

In the rest of the chapter, we present language representations in these three forms: grammars in the first generation of NLP, n-gram vectors and probabilities in the second generation, and word and contextualized vectors in the third generation.



  □  2.2Generation 1: Belongingness via Grammars 



The first effort towards deciding belongingness was via a set of rules that capture the space of valid sentences (i.e., grammaticality). Therefore, a language and its grammar are defined in terms of a set of rules that produce valid sentences using the grammar. Grammar visualizes language as a set of rules that are applied to generate sentences of the language. As a result, a sentence is said to belong to the language if it can be generated via these rules. This interplay of belongingness and generation is at the heart of representation approaches in this generation of NLP. 

Noam Chomsky proposed a set of languages, hierarchically arranged in layers, with one layer relaxing certain assumptions over the next. This is known as the Chomsky’s hierarchy (Chomsky, 1956). Chomsky’s hierarchy represents the grammar of a language via production rules, which are the foundation of programming languages and compilers. In the first generation, an available and well-studied technique for compilers of programming languages was applied to natural languages too.

The grammar-based models in the first generation of NLP are a manifestation of the relationship between programming languages and natural languages. How are the two similar or different? Let us compare English, the natural language that this book is written in, and Python, the programming language. Both languages have a certain set of symbols that are known as ‘words’, which have a certain meaning. So, to get started with our understanding of grammatical representations of language, let us see how the programming language Python can be represented using rules. 

2.2.1 Representing Method Definitions in Python Using a Set of Rules 

Let us begin with the simpler of the two—Python. Python is simpler than a natural language such as English because it has a significantly lower vocabulary (i.e., the number of words that can be used in a Python program, not including comments) and a restricted number of structures (related to programmatic constructs such as loops, class definitions, methods, and so on). Specifically, let us focus on how methods are defined in Python. A method contains a set of Python commands that can be executed by referring to the name of the method. A keyword for method definition is def. In Python, the word def has a specific meaning. It is used to define methods. When a human (or a compiler) sees the word def in a Python program, they expect the next word to follow to be the name of a method, followed by the arguments of the method enclosed within brackets. At the end of the brackets, Python also expects to see a colon. This collectively forms the definition of a method such as: 

def func1(a, b):

Let us assume a language for only method definitions in Python, as indicated above. What are the components of a method definition? The word def has a specific meaning. Therefore, all ‘sentences’ in this language begin with the word def.

[def] …

The next word is the name of the method. Let this be indicated by <method-name>. So, the valid method definition is now extended to:

[def <method-name>] …

The function name must be followed by an opening bracket. This may be followed by more than one argument, separated by commas. Here, we use notations from theoretical computer science: a+ means that the character a is repeated 1 or more times. a* means that the character a is repeated 0 or more times. In other words, it is optional. So, how do we represent a list of arguments where each argument is called one or more times? Let us assume for the sake of simplicity that each method must have at least one argument. So, if the name of an argument is indicated by <argument-name>, a series of arguments separated by commas looks like: <argument-name> {, <argument-name>}*. The asterisk in the second term implies that the second term is optional (since it can be repeated 0 times, as per the definition of *) and can have infinite length (since it can be repeated as many times). (The claim about infinite arguments to a method is hypothetical.) The list of arguments is followed by a closing bracket and a colon. So, the valid method definition (as per our relaxed constraints) is finally:

[def <method-name> (<argument-name> {, <argument-name>}*):]

So, if the language is L, it can be defined by the following grammar:

L → def <method-name> (<argument-name> {, <argument-name>}*):

So, every sentence in this language of method definitions can be generated using the grammar above. In formal grammar, this is called a rule. A rule starts with a symbol on the left (known as the head of the rule) and generates symbols on the right (known as the body of the rule). Therefore, all sentences in the language of method definitions can be generated using the symbol L, which is called the starting symbol.

While the rule above describes the syntax of method definitions, we have not defined permissible method names and argument names.

A method or argument name has the same rules. This name can contain alphanumeric characters and underscore and must begin with an alphabetic letter. Let us assume that they are only lower-case characters. [a–z] indicates all letters in lower case, while [0–9] indicates all digits from 0 to 9. Therefore, what is the permissible pattern for the method/argument name? It is – [a−z][a−z0−9]*. The hyphen indicates the range, and the square brackets enclose a set of alphabets or alphabet and digits. So, can we represent this as a rule that defines what we called <method-name> above?

<method-name> → [a - z][a - z0 - 9]*
<argument-name> → [a - z][a - z0 - 9]*

One last point to notice in the rules above is that they contain two kinds of symbols. The word def, the colon, the brackets, and the characters that make up the method and argument names will eventually be seen in an actual statement or an actual ‘sentence’ that is valid in this language of method definitions. These symbols in the grammar are called terminals. This is because a rule terminates at the points where these terminals are generated. In contrast, <method-name> and <argument-name> are only placeholders to facilitate representation. In such cases, another rule in the grammar may be recursively applied. Therefore, these symbols are called non-terminals. Let us call <method-name> as M, and <argument-name> as A. Therefore, this language for method definitions in Python has three rules:

L → def M (A{, A}+):
M → [a - z][a - z0 - 9]*
A → [a - z][a - z0 - 9]*

Thus, the grammar of a language is defined by four primitives (T, N, S, R):

1. T is the list of symbols in the language. These symbols may be characters or words in the language. They are referred to as terminals.

2. N is a list of symbols that are not in the text of the language. They are symbols used to represent intermediate symbols that will be used for generation. They are referred to as non-terminals.

3. S is the start symbol of the grammar. This is the head from which the rules are applied. The start symbol is one of the symbols in the list of non-terminals. There must be at least one rule with the start symbol on the left-hand side for any sentence to be generated.

4. R is the set of rules. Each rule is represented by two entities connected by a →. The entity on the left is called a head, while the one on the right is called a body. The head and body may be a combination of non-terminals and terminals. The restrictions on this combination are crucial. In fact, a key difference between grammars at every level of the Chomsky hierarchy is the restrictions on the rules.

The grammar we discussed for method definitions in Python has the following:

1. Terminals: [a–z] and [0–9], def, :, (, )

2. Non-terminals: L, M, A

3. Start symbols: L

4. Rules: The three rules indicated above

2.2.2 Representing Simple English Sentences as a Set of Rules 

The grammar for method definitions in Python seemed simple. This is because the syntax was restricted. There was a definite sequence of words that we expected to see. As one can imagine, sentences in a natural language are much higher due to broader possibilities. Therefore, grammar to generate language is likely to contain far more rules.

In the case of the Python method definition, we said that the word def needs to be followed by the name of the function. Can we say something similar about a specific sub-set of English? Let us say that the first word of a sentence is always ‘The’. Can we determine as a rule, the way we did for Python, a non-terminal that defines the next word?

The word ‘The’ may be followed by an adjective or a noun. In rare cases, it may also be followed by a verb, as in the sentence, ‘The is an article’. Just the way we focused only on method definitions in Python, let us focus on a sub-set of sentences in English. In other words, we will now attempt to define a grammar that generates a set of sentences that are a sub-set of the (huge) scope of the English language. Consider the following set of sentences:

1. The boy eats rice

2. The girl eats rice

3. The boy drinks milk

4. The girl drinks milk

Let us go back to the definition of grammar. To begin with, let the start symbol be S. So, a sentence that belongs to this language must start with the symbol S. What are the terminals of the language? Terminals are the symbols we see evidenced in the sentences of the language. Terminals can be represented via letters of the alphabet, as in the case of the Python method definition. But in this case, a sequence of letters has a specific meaning. Therefore, the terminals are the words of the language. The set of terminals is, thus, ‘The, boy, girl, eats, drinks, milk, rice’. The first word of all sentences is ‘The’. So, we define the first step as:

S → The …

The word ‘The’ can be followed by either ‘boy’ or ‘girl’. This rule is incomplete so far. We are yet to specify what ‘…’ stands for. Let us define a non-terminal A which generates one among the two. Therefore, we now have two rules, one to generate each of the two words. We also extend the first rule above. 

S → The A …
 A → boy
 A → girl

Similarly, the third word can be ‘eats’ or ‘drinks’; and the fourth word can be ‘milk’ or ‘rice’. The word ‘eats’ needs to be followed with ‘rice’ and not ‘milk’. Therefore, it really means that ‘eats rice’ and ‘drinks milk’ are two common sub-structures of the language. Let us define a non-terminal DRINKING that generates ‘drinking milk’ and another EATING that generates ‘eats rice’. Note that here we used a large string ‘DRINKING ’ as a non-terminal instead of a single letter S. This is primarily to make the grammar readable. The grammar then looks as follows:









	
S → The PERSON ACTION


	
(1)





	
PERSON → boy | girl


	
(2)





	
ACTION → EATING | DRINKING


	
(3)





	
EATING → eats EATABLE


	
(4)





	
DRINKING → drinks DRINKABLE


	
(5)





	
EATABLE → rice


	
(6)





	
DRINKABLE → milk


	
(7)







The symbol ‘|’ indicates OR. We can see that the rules above are able to generate the four sentences in the set. For example, ‘The boy eats rice’ can be generated by applying rules in the order: rule (1), rule (2) (where we generate ‘boy’), rule (3) (where we use the non-terminal EATING on the right-hand side), rule (4), and rule (6). Other sentences in the set can be similarly generated by applying different sequences of rules.

2.2.3 Chomsky Hierarchy 

Noam Chomsky presented an idea of generative grammars for languages, as described in the preceding subsections (Chomsky, 1959). A language is defined as a collection of sentences constructed from a finite set of symbols. The notion of collection highlights the emphasis on ‘belongingness’. The crux of grammar is to be able to generate sentences that belong to a language. Conversely, it will not be able to generate sentences that do not belong to a language. The set of symbols (terminals, in our discussion so far) is called the alphabet of the language.

The grammar we saw for the simple case above attempted to capture the syntax of the language in the form of a set of rules. Syntax in the form of the order of words was used as a guide to uncover the deeper meaning of sentences. In other words, the grammar captured the four sentences in the language but did not know much about what the words or, better, the sentences meant.

This idea of belongingness via grammar was captured by Chomsky. Given the large universe of languages and possible constructs in the languages (in the form of linguistic phenomena), Chomsky presented a hierarchy of grammars used to represent languages. Each level of the hierarchy imposes restrictions on the rules that can be a part of the level. As a result, each level of hierarchy can represent languages that comprise a certain set of sentences. The levels differ in these restrictions, often relaxing the restrictions progressively.

Before we describe the levels of hierarchy from 3 to 0, let us highlight why a hierarchy of grammars is a notion that attracted the attention of the NLP community. The grammars could effectively capture automata and programming languages. When a natural language or a sub-set of its constructs could be represented using a set of rules, the belongingness of a sentence to the language could be effectively checked. Due to its ability to check the validity of sentences, grammar-based belongingness in the first generation is an important milestone in language representation.

Note that Type-3 languages are a proper sub-set of Type-2 languages. Type-3 rules are also Type-2 rules, but not vice-versa. Similarly, Type-2 grammar is obtained by restricting rules in Type-1, and Type-1 by restricting rules in Type-0. This results in a hierarchical structure. The Chomsky hierarchy is shown in Figure 2.2.

[image: ]
Figure 2.2  Chomsky’s hierarchy of languages.



Type-3 grammar allows a limited set of rules. The restriction in the case of Type-3 grammar is that a rule can have at most two symbols on the right-hand side, of which the first symbol is a terminal. The second symbol is an optional non-terminal. Therefore, rules can either be X → a or X → aA, where a is a terminal in the alphabet and A is a non-terminal among the set of non-terminals. Type-3 grammar is called regular grammar. Sentences in Type-3 grammar grow from the left word onwards in a sequence. As an example, see the generation rules for a fictitious language that we call the ‘laughing language of mobile phone users’.

S → Ha S → Ha S S → He S 

This language is assumed to be used by mobile phone users to express that they are laughing. (More modern forms such as ‘lol’ and ‘lmao’ are ignored for the sake of explanation.) As shown in the rules above, He and Ha are terminals while S is the only non-terminal and also the start symbol. This language can generate an infinitely long string ‘HaHeHaHaHeHe…Ha’ with any combination of Ha’s and He’s and ending with a Ha. The laughing language generates sequences from left-to-right, one terminal at a time. Therefore, this grammar is also known as left-linear grammar.




Type-2 grammar allows a larger set of rules than Type-3. A rule in Type-2 can be of the form S → (T ∪ N)*. This means that any combinations of terminal and non-terminal symbols can be generated by a rule. In Type-3, the combination must be of one terminal and one non-terminal. That is how Type-3 grammar is obtained by restricting rules in Type-2. 

While Type-2 languages allow any combination of terminals and non-terminals, there must be at least one rule with only non-terminal(s) on the right-hand side. The latter ensures that the generation terminates. As an example of Type-2 grammar, let us consider a fictitious language called ‘adjective banquet language’.


S → very S
S → good|bad|terrible|excellent S

S → S C U N 

C → red|pink|green|blue 

C → red|pink|green|blue U 

U → handy|helpful|clunky

U → ϵ

N → bag




What kind of sentences can this language generate? The production rule ‘S C U N ’ gives us some understanding. This rule consists of four non-terminals in a sequence—a relaxation in Type-2 over Type-3. C generates names of colours followed by an optional U (because U can generate an ϵ). ϵ refers to a null string. Therefore, the rule does not generate any symbol and the production can stop there.

U generates adjectives associated with utility (such as ‘handy’ or ‘helpful’). The grammar above contains rules that use non-terminals and terminals in different orders and sequences. As a result, the language generates an adjectival phrase describing a ‘bag’, with a sequence of adjectives. ‘very good red bag’ is a sequence that can be generated via the grammar above. ‘good very red bag’ is not possible.

Type-1 grammar further relaxes restrictions on production rules. So far, the head of a production rule is only a single non-terminal symbol. Type-1 grammar allows the head to be a combination of terminals and non-terminals. Therefore, Type-1 grammar allows rules of the type α A β → α γ β. Here, α and β are (T ∪ N  )*, while γ is (T ∪ N  ). This means that α and β may be empty, but γ must not be empty. If γ is empty, it means that symbols are getting deducted from the portion generated by the non-terminal A. Therefore, Type-1 grammar allows rules like: 


S → B passport 

S → a B visa 

B → diplomatic B diplomatic 

B passport → diplomatic Indian passport 

diplomatic B passport → diplomatic Australian passport 

a B visa → a T passport 

T → tourist|work




The grammar above is able to generate phrases like ‘a tourist visa’, ‘diplomatic Indian passport’, etc. It can be seen that some rules above account for information from either direction of a given non-terminal. This refers to the idea of ‘context’ (as in the case of ‘diplomatic B passport → diplomatic Indian passport’). A word at a position is generated based on the context around it. Therefore, Type-1 grammar is referred to as context-sensitive grammar. Because Type-2 grammar does not require the grammar to abide by context, it is called context-free grammar.

Type-0 grammar relaxes the constraints further. Rules of the format α → β are permitted with no restriction on contextual matching, as in the case of Type-1. A rule signifying termination condition (i.e., a null symbol or a terminal on the body of the rule) is the only necessary condition to ensure that strings terminate. Thus, Type-0 represents a broad family of languages known as recursively enumerable languages.

We described languages from Type-3 to Type-0. This is because Type-3 is a sub-set of Type-2 and so on. Let us now trace the path backward to understand how one type subsumes the next. When is a Type-0 grammar equivalent to Type-1 grammar? Type-0 languages that account for context become permissible as Type-1 grammar. Then, when is a Type-1 grammar equivalent to Type-2 grammar? When all rules have α and β as empty, all rules are restricted to the form required for Type-2 grammar. When is a Type-2 grammar equivalent to Type-3 grammar? Similarly, when the γ on the right-hand side can only be ‘a’, ‘aA’, or ‘Aa’, the grammar is restricted to Type-3.

2.2.4 Applications 

Grammatical representation of languages is one that is focused on the generation of sentences as a handle to belongingness. Grammatical representations of languages use the expertise of linguists to capture generation via a set of rules. It was extensively applied to different languages and linguistic constructs. Consequentially, it has also been applied in the first generation of NLP for a variety of tasks. An important activity in first-generation NLP involved writing grammars for a language and testing it on a dataset of sentences. The programmatic component would then be to encode the grammar using a programming language like Prolog. We will see that it has been applied to understand the syntactic correctness of sentences in parsing. It has also been applied to understand the semantic validity of sentences in information extraction. Finally, grammar-based representations have been applied to natural language generation too.


  □  2.3Generation 2: Discrete Representational Semantics 



2.3.1 n-Gram Vectors 

We now describe how n-gram vectors can be used to represent text as a bag of words. Let us look at unigram vectors first, understand how they are implemented, and look at their extensions to n-grams and some limitations of n-gram vectors in general (Cavnar et al., 1994).

Unigrams 

Consider a dummy corpus consisting of four sentences:

1. I skipped my breakfast today.

2. I ate my breakfast today.

3. I ate my lunch yesterday.

4. I skipped my lunch today.

In order to make these sentences readable by a learning algorithm, a typical method is to convert all words in the entire corpus as a random variable for each unique word in the corpus. Let us consider the word ‘I’. The word is present in all the sentences. Therefore, the value of the variable corresponding to the word ‘I’ is 1 or True for all four sentences. Now, consider the word ‘skipped’. The word is present in the first and fourth sentences but absent in other sentences. Therefore, the value of the variable corresponding to the word ‘skipped’ is 1 or True for the first and the fourth sentences and is 0 or False for the second and third sentences. Therefore, a sentence will be represented as a set of random variables where the words present in the sentence are 1 and those not present in the sentence are 0. The word ‘set’ denotes that the order of the words in a sentence or text is not retained. Each sentence is represented as a vector containing values of variables corresponding to each word in the dataset.

First of all, what should the length of such a vector be? It is the number of unique words in the corpus. This is called vocabulary of the corpus. Therefore, in the dummy corpus above, the vocabulary is (I, skipped, my, breakfast, today, ate, lunch, yesterday). Therefore, the sentences can each be represented using a vector of length 8 since there are eight words in the vocabulary. The first sentence contains the first five words in the vocabulary and does not contain the last three words. Therefore, the first sentence is represented as (1, 1, 1, 1, 1, 0, 0, 0). The second sentence is represented as (1, 0, 1, 1, 1, 1, 0, 0). The zero at the second place indicates that the word ‘skipped’ is absent in the sentence. The 1 in the sixth place is different from the first sentence since it indicates the word ‘ate’. Similarly, we note that the third and the fourth sentences will be represented as (1, 0, 1, 0, 0, 1, 1, 1) and (1, 1, 1, 0, 1, 0, 1, 0), respectively. These vectors are known as unigram vectors since each element in the vector corresponds to a unigram (i.e., a word in the corpus).

Implementation 

To implement a unigram vector, there are two steps as shown in Figure 2.3. The first step is to create a vocabulary of words in the corpus. These are the unique words in the corpus. The second step is to create an index indicating the position of each word. Then, each sentence can be represented as a vector of 1’s and 0’s corresponding to the positions as indicated by the index. While we consider examples of sentences, these vectors can be applied to larger documents as well. The only difference in that case is that the length of the vector depends on the vocabulary.



[image: ]
Figure 2.3  Representation of a unigram vector.



Here is a sample Python code to create unigram vectors for the sentences as shown above.



sentences = ["I skipped my breakfast today", "I ate my breakfast today",

"I ate my lunch yesterday", "I skipped my lunch today"]

bagofwords = [i.lower().split(" ") for i in sentences]

vocab = list(set([item for sublist in bagofwords for item in sublist]))

unigram_vectors = []

for i in bagofwords:

        vector = []

        for j in vocab:

                if j in i:

                          print(j + " found")

                          vector.append(1)

                else:

                       print(j + " not found")

                       vector.append(0)

        unigram_vectors.append(vector)

print(unigram_vectors)





bagofwords contains the words in each sentence. Vocab is the unique words in the dataset (achieved by the set function in Python). The nested for loops iterate over the dataset and the vocabulary to create the unigram vectors. The code above is for clarity of explanation, and several optimizations are possible.

In practice, several libraries in Python allow quick creation of unigram vectors. Using the scikitlearn library, unigram vectors can be created as follows:





from sklearn.feature_extraction.text import CountVectorizer

sentences = ["I skipped my breakfast today", "I ate my breakfast today",

"I ate my lunch yesterday", "I skipped my lunch today"]

model = CountVectorizer(ngram_range = (1, 1))

matrix = model.fit_transform(sentences).toarray()

print(model.vocabulary_)

print(matrix)





The list sentences is used to represent the input dataset. CountVectorizer is the class that creates vectors based on counts. The ngram_range value of 1 indicates that we want unigrams. model.vocabulary_ prints the vocabulary of the feature vector since words may be considered in an order that is different from the one in the dataset. Note that scikitlearn drops words of length 1, so the word ‘I’ is dropped from the vocabulary.

n-Grams 

While individual words in the corpus capture information, they are possibly limited in how useful they are on their own. This leads to the idea of n-grams. An n-gram refers to a set of n words that appear consecutively. Consider the sentence ‘I skipped my breakfast today’. This sentence contains the bigrams: I-skipped, skipped-my, my-breakfast, and breakfast-today. Similarly, it contains the trigrams: I-skipped-my, skipped-my-breakfast, and my-breakfast-today. Therefore, to construct a bigram vector, we would first compute the vocabulary of bigrams which is the set of the unique bigrams in the corpus. Then, the bigram vector to represent a sentence would be similar to that for a unigram vector. To create a bigram vector using scikitlearn, ngram_range can be specified as (1, 2). This creates a vocabulary of unique words (indicated by 1) along with a vocabulary of bigrams (indicated by 2).

2.3.2 Caveats 

In the word n-gram vector so far, we assumed that the components in the vector are Boolean values—a word is either present or not present. What happens if a word is present in the sentence more than once? This is likely to happen in documents. In such cases, components in the vector may represent counts of words instead of their presence. The earlier representation, where words are represented as Boolean values, can be referred to as n-gram count vectors while the latter can be referred to as n-gram presence vectors.

Similarly, some words may not contain valuable information. These words are referred to as stop words. These could be function words such as articles and conjunctions. Therefore, it may be reasonable to eliminate function words from the vocabulary so as to reduce the length of the feature vector. The term ‘stop words’ originates from information retrieval research (Luhn, 1960). It was originally meant to refer to words that are not indexed by search engines so as to save computational resources. A set of stop words was originally referred to as stop lists in the early information retrieval works. Stop lists were shown to drastically reduce the storage requirements of search indexes without compromising performance. Scikitlearn allows an easy mechanism to remove stop words:

vectorizer = CountVectorizer(stop_words='english')

2.3.3 Limitations 

The n-gram vectors preserve the contiguous presence of words as indicated by the value of n. However, beyond that, they do not preserve the order of words in a sentence and merely rely on the presence of words in a document. In other words, the unigram vector for the sentences ‘I went to school’ and ‘to school went I’ is the same since they contain the same unique unigrams. However, one sentence is a valid English sentence while the other is not (because of incorrect word order). How do vectors capture belongingness then? Bigram and trigram vectors come into play here. Although the words have the same unigrams, the bigrams and trigrams are different. Therefore, n-gram vectors are often composed of unigrams as well as bigrams (and further n-grams). 

Another limitation of n-gram vectors was noted in the beginning of the third generation of NLP. n-gram vectors were referred to as one-hot vectors. The word ‘hot’ comes from electronics where ‘hot’ indicates that current is received at the terminal. (Note: One-cold vector is also a concept in electronics, but rarely used in the context of n-gram vectors.) In the context of NLP, ‘hot’ refers to the presence of a word. This is because a word is either present in the document or not, implying that the value at a position is either 1 or 0. One-hot-ness of these vectors poses a peculiar challenge. Let us consider the dummy corpus in our example above. Sentences 1 and 2 differ in one word (‘ate’ versus ‘skipped’), while sentences 2 and 3 differ in two words (‘lunch’ and ‘breakfast’; and ‘today’ and ‘yesterday’). Let us consider a fifth sentence ‘I skipped my class today’. This sentence also differs from the first sentence in one word. However, it is not semantically as close to the first sentence as the second sentence. This limitation lingered until the third generation of NLP. For now, we pause our discussion of sentence representations and vectors and discuss another useful approach of representation in the second generation: statistical language models.

2.3.4 Statistical Language Models 

The second generation of NLP is characterized by the use of probability and, in turn, statistical language models (Clarkson and Rosenfeld, 1997). They formulate language models in the form of probabilities. In other words, the goal here is to estimate the probability of a given word sequence P(w1, w2, …, wn), where wi is a word at the position i. Using the chain rule of probability, the probability can be expressed as:

(2.1)

[image: ]
Before we analyse the equation, a note on the order of conditional dependencies in the equation is essential. The chain rule allows to decompose the joint probability P(w1, w2, …, wn) into a product of conditional probabilities such as P(w3|w1, w2, w4, w5…) and so on. However, the order in which the chain rule is applied is restricted to the left-to-right order in the sentence. In other words, the word wi is assumed to be dependent on words wi to wi - 1. This choice is not arbitrary. It takes into account how language is produced in humans and captures the context of a word in terms of the words that have appeared so far.

Conditional probabilities of long sequences in Eq. (2.1) can be difficult to compute. This is because it would need a large amount of evidence in terms of words. Therefore, n-gram assumption (similar to n-gram vectors) can prove to be a simplification. It allows a reduction in the dependency of a word on the words preceding it. Therefore, if we restrict to bigram dependencies, Eq. (2.1) becomes: 

(2.2)

[image: ]
This simplification is not as data-intensive as the previous case because it depends on the co-occurrence of only two words at a time. So, how is P(wn|wn–1) computed? It is computed as (#wn–1, wn)/(#wn–1). In plain words, the numerator indicates the number of times the pattern wn–1 wn occurs in the dataset while the denominator indicates the number of times the word wn–1 occurs in the dataset. The values of probability are thus estimated from a dataset of documents.

Smoothing 

Equation (2.2) is restrictive in that it depends on a large corpus. This is because the probability of a sentence is computed strictly based on the evidence observed in the corpus. However, is a sentence completely unlikely in a language? Worse, is a sentence completely unlikely because its parts (i.e., bigrams as in the case above) were never seen in the corpus?

One is reminded of the sunrise problem discussed by the French scholar and polymath Pierre-Simon Laplace (1749–1827). The problem asks the question, ‘What is the probability that the sun will rise tomorrow?’ The question focuses on the notion of an impossible event in probability and posits that an impossible event has a non-zero probability of occurrence. Smoothing does the same for probabilistic language models.

A statistical language model encounters zero probabilities for patterns (read the section on ‘n-grams’) it has not encountered in the training corpus. For a corpus with a large vocabulary, these zero probabilities can result in some sentences being predicted as ‘impossible’. However, they may be feasible (in terms of grammar and/or semantics). Smoothing ‘smoothes’ some of these probabilities. Two intuitions are at the heart of smoothing:

1. Observed events are not as likely as you think: In the context of a language model, this translates to ‘an n-gram that is likely is not as likely as seen in the data’.

2. Unobserved events are not as unlikely as you think: In the context of a language model, this translates to ‘an n-gram that is unlikely is not as unlikely as seen in the data’.

The two intuitions can be understood as probability redistribution—probabilities of observed events are reduced and distributed to unobserved events. Why can the probabilities of unobserved events be increased without reducing those of observed events? This is because all probabilities need to sum to 1!

Some methods of smoothing are as follows:

1. Add-one smoothing: The most elementary form of smoothing is to add 1 to all counts of n-gram occurrences. As a result, the n-grams that had counts as zero also get changed from 0 to 1. Therefore, the smoothed probability is [image: ] The V in the denominator is the number of unique words in the vocabulary. The normalization introduced in the denominator reduces the probability of the observed events.

2. Additive/Add-k smoothing: This is a modification of add-one smoothing. Instead of adding 1 to the numerator, a small number k (greater than 0 and less than/equal to 1) is added. This means that the smoothed probability is [image: ] It is evident that add-one smoothing is a special case of additive smoothing for k = 1. The intuition is that add-one smoothing increases the probability of unseen events more than necessary.

3. Interpolation-based smoothing: In the case where a large n-gram is not sufficiently observed in the training corpus, the probability of an n-gram can be decomposed as a summation over the sub-sets of its n-grams. For example, a trigram probability of P(w3|w2, w1) can be decomposed as: λ1P(w3|w2, w1) + λ2P(w3|w2) + λ3P(w3). This method is known as Jelinek-Mercer smoothing.

4. Backoff: This is an extension of interpolation-based smoothing. In this case, the decomposition to a smaller segment is done only if there are no instances of the larger segment. Therefore, P(w3|w2, w1) is decomposed as P(w3|w2, w1) if the n-gram (w1, w2, w3) occurs in the training corpus. If it does not occur, it is decomposed as P(w2|w1)α(w1, w2). Here, α is computed as the leftover probability mass for the bigram w1, w2.

5. Kneser–Ney smoothing: Backoff uses a sequential approach to backoff to a smaller segment. Kneser–Ney extends the idea of backoff (Kneser and Ney, 1995). In the case of Kneser–Ney smoothing, non-zero counts are downgraded by a constant D. This means that P(wn|w(n - 1) is now defined with the numerator c(wn, wn - 1) - D instead of c(wn, wn - 1), while zero counts are set to a small value that depends on the backoff. Now, n-grams with zero counts are set to a value that depends on the continuation probability. This continuation probability accounts for the uniqueness of a smaller n-gram on its own as compared to the larger n-gram it appears in. Let us consider a word wn. The continuation probability of wn is

(2.3)
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Let us now see a code sample for probabilistic language modelling. 



import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

sentences = ["I skipped my breakfast today", "I ate my breakfast today",

"I ate my lunch yesterday", "I skipped my lunch today"]

def compute_model(sentences):

           sentences = [i.lower() for i in sentences]

           model = CountVectorizer(ngram_range = (1, 2))

           matrix = model.fit_transform(sentences).toarray()

           df = pd.DataFrame(matrix, index=["1", "2", "3", "4"],

           columns = model.get_feature_names_out())

           df.loc['#', :] = df.sum(axis=0)

           res = df.to_dict(orient='records')

           res = res[-1]

           return res

def test_probability(sentence):

          words = sentence.lower().split(" ")

          prob_sentence = 1

          for i in range(0, len(words)):

                  if i > 0 and i + 1 < len(words):

                         c = res.get(words[i-1] +" "+words[i], 0)

                         N = res.get(words[i], 0)

                         print("["+words[i-1] + " " + words[i] + "] : " + str(c)

                         + " & " + words[i] +" : " + str(N))

                         prob = (c + 1)/(N + 8) # V = 8

                         prob_sentence *= prob

          return prob_sentence

res = compute_model(sentences)

print(res)

test_sentence = ("I skipped my breakfast yesterday")

prob = test_probability(test_sentence)

print(test_sentence, ": ", prob)





The function compute_model creates the counts for unigrams and bigrams and stores them in res. Note that we have used scikitlearn’s CountVectorizer for the same. The function test_probability shows how the probability of a sentence can be computed using add-one smoothing. The variables c, N, and V are as given in the formula above. The code is for the purpose of understanding and can be optimized further. 

2.3.5 Use of Statistical Language Modelling 

Statistical machine translation (SMT) is a sub-field of NLP that uses statistical models to translate text from a language (known as source language) to another (known as target language). SMT uses language modelsduring the decoding step (i.e., after words have been translated to the target language), and the right order of words now remains to be determined. When trying to learn the most likely sequence of words(also known as sentence), statistical language modelling is brought into use. In this case, statistical language models impart ‘fluency’ to the sentence. Since they are learned on corpora of the target language, they are expected to generate sequences that are likely to be valid in the target language. Statistical language modelshave also been used in information retrieval for language identification of documents. In this case, the language model prescribes the expected sequence of words as observed in a certain language by scoring the sequences in terms of their probability. 


  □  2.4 Generation 3: Dense Representations 



The third generation of NLP, namely the neural generation of NLP, is characterized by dense representations of text. The word ‘dense’ here is in contrast with ‘sparse’ unigram vectors. Unigram vectors are ‘sparse’ because for a dataset with a large vocabulary, most terms in a unigram vector are likely to be zero.

2.4.1 Dense Representation of Words 

As described above, one-hot vectors capture the presence of words but do not capture the similarity of meaning. The sentences ‘The movie is amazing’ and ‘The movie is great’ are more similar to each other as compared to ‘The movie is terrible’. Each of these sentences differs in exactly one word. Therefore, unigram vectors (i.e., one-hot vectors) are inadequate to capture the similarity between words. Dense representations of words map them to points in a k-dimensional space. Therefore, a word is no longer represented as a random variable (as in the case of a unigram vector) but as a vector in itself. Since the representation can be viewed as embedding the words in a k-dimensional space, they have also been referred to as word embeddings. Word embeddings are expected to capture the meaning of words. Word embeddings of words closer in meaning are also expected to be close to each other in the k-dimensional space. The closeness of vectors is determined by cosine similarity. 

The goal of models that learn these word embeddings is to create representations of words based on a dataset of documents where the words co-occur with each other.

What does ‘close in meaning’ really mean? When are words close to each other? There are words that are synonyms. Synonyms can be used interchangeably in a sentence. But then, why are the words ‘breakfast’ and ‘lunch’ close in meaning? They are not identical in meaning and, hence, are not synonyms. They are possibly close in meaning because they are both types of meals, and differ in the time of the day. From an NLP perspective, breakfast and lunch are similar because they may appear with similar neighbouring words, that is, context. For example, a verb such as ‘eat’ may occur close to the two words. Similarity of meaning can be understood as words participating in similar contexts, as they occur in a large dataset of real-world documents. Therefore, models that learn word embeddings often use similar contexts as a proxy for similarity in word meaning or semantic similarity. Similarity between words because of similar contexts is referred to as paradigmatic similarity (Reinhard, 2002). ‘breakfast’ and ‘lunch’ are paradigmatically similar because the words can replace each other in a sentence (with some potential loss of meaning, but the sentence is still likely to be grammatically and syntactically plausible). This is in contrast with syntagmatic similarity where words are considered similar because they occur. For example, ‘eat’ and ‘breakfast’ are similar syntagmatically because (a) they cannot really replace each other in a sentence, but (b) they are likely to co-occur in a sentence.

Two models for learning word embeddings have been proposed in an early algorithm called Word2vec (Mikolov et al., 2013). Word2vec learns vectors for words such that their cosine similarities are likely to capture their meaning. The formula for cosine similarity is as follows:
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A and B represent word vectors for the two words being compared. The formula can be understood as follows. The numerator corresponds to dot product between the two vectors. The denominator corresponds to the magnitude of the vectors. For example, the cosine similarity between word vectors of ‘amazing’ and ‘great’ is 0.66 while that between ‘amazing’ and ‘terrible’ is 0.45.2




Word vectors using Word2vec can be learned using two algorithms:

1. Skip-gram model: Given a word, predict the words that are likely to appear in its context (i.e., around it). This means that the sentence ‘the man eats breakfast’ will be mapped to a skip-gram model such that the input is the word ‘eats’ and the output are the words ‘eats’ and ‘breakfast’. 

2. Continuous bag-of-words model (CBOW): Given a context (i.e., a set of words that appear in a certain sequence around a given position), predict the word at the position. This means that the sentence ‘the man eats breakfast’ will be mapped to a skip-gram model such that the input is the context ‘eats’ and ‘breakfast’ while the output is the word ‘eats’. 


These models are depicted in Figure 2.4. Let us formally define the two models. Assume that the dataset is a sequence of W words represented by w1, w2, …, wW . Among W words, let us assume that there are V unique words. V indicates the vocabulary of the dataset. The dataset will be distributed across multiple sentences, but let us assume, for the sake of simplicity, that it is a series. Let us assume a context window of K. This means that the skip-gram model will produce K words while the CBOW model will take as input K words.
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Figure 2.4  Skip-gram and continuous bag-of-words models for word representations.



The skip-gram model takes as input the word at position i, wi and predicts as likely words wi - k , wi - k + 1… until wi - 1 and wi + 1, wi + 2, … wi + k. Since a word is used to predict words around it, this model is called skip-gram model as it skips over the input word. In contrast, the bag-of-words model takes as input a context of words wi - k, wi - k + 1… until wi - 1 and wi + 1, wi + 2, … wi + k, and predicts as output the word wi.

Let us first focus on the skip-gram model. For the model to be able to predict context words given a centre word, the model must maximize the probability of predicting the context words wcon, given a centre word wcen: P(wcon|wcen). In contrast, for the bag-of-words model to be able to predict centre word given context words, the model must maximize the probability P(wcen|wcon). Therefore, the optimization function for the dataset is

(2.4)
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The second part of Eq. (2.3) defines wcen and wcon in terms of their definitions relative to actual word positions.

Let us now progress from a Bayesian formulation to a vectorial formulation. Let us focus on P(wcon|wcen). If we represent words as random variables, the probability P(wcon|wcen) can be computed using the conditional probability expression: P(wcon|wcen) = num(wcon, wcen)/num(wcen). What does the denominator really do? It marginalizes over all possible context words. In other words, it is [image: ] This, therefore, indicates the probability of seeing a context word in the context of a centre word. As we see in statistical language models, this must deal with the presence of large corpora where evidences of these words are observed or resort to sampling.

Let us now gradually transform this formulation into vectors. Let us assume that vector uw indicates a dense representation of word w. The term ‘dense’ here implies that it is a real-valued vector, where the vector refers to a semantic representation or embedding of the word in a K-dimensional space. However, how will such a vector be constructed? A handle to do so is via the one-hot vector. A word can be represented in its one-hot vector form based on its position in the vocabulary. Then, a matrix, say M, maps the one-hot vector representation to the word vector representation. The dimensions of the one-hot vector oh are 1×V since it contains one row and V columns, where V is the vocabulary. The dimensions of M would, therefore, be V  × K. The word vector uw is computed as uw = ohwM.


Training Word Vectors 

Figure 2.5 shows the skip-gram model architecture in detail. We expect the model to learn from a large dataset of documents by splitting it into pairs of centre and context words. Therefore, for every document, the algorithm is trained on a sliding window over the document such that, for a possible centre word as the input, its context words are the expected output. For every context and centre word combination, the skip-gram model aims to predict appropriate context words for a given centre word. The input is a one-hot representation of the centre word. This is then mapped to its word embedding representation of size1 × D using a word embedding matrix. D is the number of dimensions and is typically much lower than V, the total number of unique words in the dataset, that is, the vocabulary. The context embedding matrix D × V maps the embedding of the centre word to the context words. Finally, a softmax layer is applied to generate a specific word. The model will be trained in order to maximize seeing actual context words for a given centre word. Let us look at the softmax function in further detail. The softmax function is given by


(2.5)
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Figure 2.5  Detailed skip-gram architecture to learn word representation.



The conditional probability of context word c given the centre word w is computed as a fraction of vector multiplication of the vectors for c and w divided by all possible words in the vocabulary. This can be a computationally expensive operation. Therefore, two strategies have been suggested to optimize the computation of the word vectors:

1. Hierarchical softmax: The first step is to compute a Huffman tree from the dataset. A Huffman tree is used to minimize the encoding length of words and satisfies the following properties:


•Leaf nodes are unique words in the vocabulary.

•Words that are frequent are closer to the root.

•There exists a unique path from the root to the leaf nodes.




As a result, for every word in the vocabulary, we can learn a Boolean vector where 0 indicates that the left subtree was taken, while 1 indicates that the right subtree was taken. For example, let us assume that a dataset was represented using the Huffman tree shown in Figure 2.6. In this case, the word ‘bank’ would be represented by ‘100’. The numbers indicate that, to reach ‘bank’ from the root of the tree, we need to first take the right subtree (indicated by 1), then the left subtree (indicated by 0), and then the left subtree (indicated by 0). The corresponding representation for ‘of’ is ‘00’ since we take the left subtree twice. As can be seen, more common words (such as function words: of and on) use two bits while more rare words need more bits. The conditional probability is then decomposed into a product over probabilities of taking the left versus the right subtree. For an expected word in a given position, the value would be computed as the probability of taking the right versus left subtree. As a result, the computation need not be performed over all words of the vocabulary.

[image: ]
Figure 2.6  Huffman tree to learn hierarchical softmax for word representations.



2. Negative sampling: Instead of learning P(word|context) or P(context|word), an alternative approach is to decompose it as a classification problem. This is done in the case of negative sampling. The centre word and context word combinations are the positive samples: these are words that indeed co-occur within a context. In the case of negative sampling, negative samples are generated: for every positive sample, a random negative sample is generated (i.e., a random word from the vocabulary may be generated as a centre word). As a result, the probability P(context|word) is modified to:

(2.6)
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The first product term represents the positive samples, given the centre and context words that indeed occur together. The second product term represents the negative samples, given the randomly generated centre and context word pairs. This means that the model to train word vectors is now a logistic regression—one for each word in the vocabulary. Only a sub-set of them needs to be trained per training instance because we will only be training it for the positive and negative samples. As a result, it saves the computational cost of iterating over all words in the vocabulary.




Using Word Vectors to Represent Text 

The Word2vec algorithm learns vectors for words. How can these vectors be used to represent documents or sentences? A typical strategy is to represent a sentence as the average of its word vectors. One way to train word vectors is to use the gensim library. Consider the following code snippet that trains Word2vec for a dummy dataset:



from gensim.models import Word2Vec

from sklearn.metrics.pairwise import cosine_similarity

texts = ["The boy goes to school", "The girl goes to school", "The boy reads a book", "The girl reads a book", "The girl eats breakfast", "The boy eats lunch", "The boy cooks lunch for his mother", "The girl cooks breakfast for her mother", "The girl reads a book to her mother", "The boy reads a book to his mother", "The child cooks breakfast for their mother", "The child reads a book to their mother"]

texts = [i.lower().split(" ") for i in texts]

model = Word2Vec(sentences=texts, vector_size=90, window=3, min_count=1)

print(model.wv.similarity("boy", "girl"))

print(model.wv.similarity("breakfast", "lunch"))





texts contains the small dataset of sentences. An object of the Word2vec class is created with sentences as the text. The vector_size parameter indicates the length of the vector that will be generated. Window refers to the context window to be considered. Min_count indicates the minimum number of times a word must be present in the dataset. A higher value would indicate that less frequent words are pruned.

Gensim3 also provides Word2vec models that have been trained on large datasets. Such models can be useful to analyse a dataset of words by retrieving their word vectors. An example code is as follows:



import gensim.downloader

model = gensim.downloader.load('word2vec-google-news-300')

print(model.wv.similarity("boy", "girl"))

print(model.wv.similarity("breakfast", "lunch"))





The name of the model is word2vec-google-news-300 indicating that it was trained on the news dataset with vectors of size 300. Other available models can be listed using the documentation. Note that the output of this model is much better than the output of the dummy example above. (Specifically, the similarity between the words is higher.) This is because Word2vec, like all neural models, depends on large volumes of data.

2.4.2 Neural Language Models 

The Word2vec algorithm learns vectors for words based on their context. However, every word has exactly one vector. Therefore, while the vectors of the words ‘bank’ and ‘river’ may be similar, the vector of the word ‘bank’ conflates the meanings of its ambiguous meanings. This limitation of word vector models requires contextualization of word vectors. A word has a certain vector with respect to its context. The vector of the word ‘bank’ in the sentence ‘I went to the bank to withdraw cash’ must be different from that of the word ‘bank’ in the sentence ‘I went to the river bank to catch fish’. How should such vectors be learned? Let us understand how a human reader would distinguish between the meaning of the word ‘bank’ in the two sentences:

1. The word ‘bank’ opens up a set of possible meanings. This refers to the ambiguous meanings of the word ‘bank’.

2. The human reader will look for clues in the sentence that help them disambiguate the meaning. For example, the words ‘went’, ‘withdraw’, and ‘cash’ in the first sentence and the words ‘went’, ‘fish’, and ‘river’ in the second sentence are important to disambiguate the meaning of the word ‘bank’. The word ‘went’ in the two sentences refers to the idea that the word ‘bank’ refers to a place where one can go. 

3. The word ‘went’ does not allow the reader to disambiguate between the two meanings. However, the word ‘cash’ refers to the idea that the word ‘bank’ in the first sentence potentially refers to a financial institution. Therefore, the word ‘cash’ is more important than ‘went’ to disambiguate ‘bank’.

In essence, a human reader is paying attention to a sub-set of words in the sentence when trying to understand the meaning of a word. Among these words, some words are likely to be more important than others. This intuition in human disambiguation of words can be applied to the notion of ‘attention’ that is the cornerstone of neural language models (Vaswani et al., 2017). 

The limitations of word vector models gave way to neural language models in the third generation of NLP. These models have assumed centre stage in NLP more than ever before. A key shortcoming with any word-based representation (either n-grams or word embeddings) is that it does not account for order of words in a sentence. Therefore, language representations derived from a neural architecture relying on attention are used to produce a sequence of words have become popular. Broadly speaking, there are two categories of neural language models—auto-regressive language models and auto-encoding language models.

Auto-regressive language models are similar to statistical language models of the second generation. To produce the representation of the word wi, they consider the context of words that are either before or after it. If the context involves words that are before it, it would be referred to as left-to-right context. If the context involves words after it, it would be referred to as right-to-left context.

Auto-encoding language models encode sequences as a whole and hence do not rely on linear dependencies between words. Word at position wi is generated as a result of a context window of, say, n positions around it. It does so using a notion of ‘masking’. Imagine a sentence, ‘The boy goes to school’. In the case of an auto-encoding language model, the model could mask the word at the second position (‘boy’) and use the model to generate likely words. Notionally, this is similar to the Word2vec approach of generating centre words using context words. As seen in the case of word embeddings, the expected words would be ‘boy’ and other related words such as ‘student’, ‘girl’, ‘teacher’, and so on.

In the forthcoming sub-sections, we first describe the Transformer architecture that is at the heart of neural language models. Following that, we describe one auto-regressive language model, and one auto-encoding language model. As the auto-encoding language model, we describe BERT (i.e., Bidirectional Encoder Representations from Transformers), while, as the auto-regressive language model, we describe XLNet. Since this is an active area of research, we expect newer models with larger number of parameters. The largeness of parameters and the resultant language understanding ability have resulted in the popularity of the term large language models (LLMs). The recent GPT model is an auto-encoding model. At the time of writing this book, GPT-4 by OpenAI has several competitors in terms of Facebook’s LLaMA and Google’s PaLM. All of these models are based on the Transformer architecture. An understanding of Transformers is crucial to understanding these derivatives that will continue to be developed.












	
	
Auto-Regressive Language Models


	
Auto-Encoding Language Models





	
Goal


	
Estimate likelihood of a word given the context of a sequence of words before (or after) it.


	
Estimate the likelihood of a masked word given the context of the remaining words.





	
Direction


	
Context is unidirectional since it depends either on words before or after the word to be predicted.


	
Context is bidirectional since a word at a masked position would be generated via other words.





	
Estimation


	
They estimate likelihood of sequences.


	
They estimate likelihood of reconstruction (of masked tokens) and not sequences.





	
Training


	
During training, self-supervision in text is used.


	
During training, random masked tokens are introduced in the corpus, so as to learn their likelihood.







Transformer Architecture 

Attention is at the heart of a BERT encoder, which is based on the Transformer architecture shown in Figure 2.7. The Transformer architecture was originally introduced for machine translation. It consists of two key components—the encoder and the decoder. The encoder obtains representations of the input sentence, whereas the decoder obtains representations of the output sentence. The first part of the decoder uses only the output sentence, whereas the second part uses information from the input sentence. Both encoder and decoder consist of stacks of layers based on attention.
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Figure 2.7  Transformer architecture.



Attention and multi-headed attention    Attention is a powerful concept that breaks out of the sequential nature of text processing. The second generation of NLP was tightly coupled with the linear structure of text, as in the case of probabilistic language models. This assumption that context in text is linear (i.e., a word depends on its previous n words and is independent of other words) is a common theme of language representations. The attention mechanism frees NLP of this assumption from the second generation. A word draws information from any other word in a sentence, and not necessarily from words adjacent to it in the sentence. By doing so, the attention mechanism enhances the expressive power of language models by allowing relationships and interactions between non-contiguous words.

The assumption is this—just because humans speak or write text from the first to the last word, it does not mean that models must process them in sequential order. There are two ramifications of breaking this assumption:

1. Because attention does not depend on sequential processing of text, it can achieve parallelization. As a result, the processing time is faster. Hence, neural language models can use GPUs when available to significantly improve their training and inference time. 

2. Because attention accounts for different parts of text when processing a given portion, it can account for context from different parts of the text. This is implemented using a technique similar to memoization in dynamic programming. In dynamic programming, an input is split into parts, and an operation is repeated on each of these parts. A key advantage of dynamic programming is memoization—a program saves results of intermediate states so that the results can be reused when required by other parts of the input. Attention implements the memoization of knowledge to deal with long-term dependencies that NLP has tried to handle in many of its past pursuits.

But what does attention need? What does attention mean for NLP? Attention is based on three key requirements of contextual understanding. To understand the meaning of a word in a sentence:

1. The word carries its own meaning. This is incorporated in the form of a dense vector representing the word. This vector is known as the query vector.

2. Words in the sentence carry relative importance with respect to the word. This relative importance is captured using a key matrix. By computing a dot product between the query and key, the resultant weightages are computed. These weightages are scaled to the dimensions of the vectors followed by a softmax. The softmax converts real values (of the products) to a distribution that highlights relative importance.

3. Words in the context of a word contribute to the meaning of the word based on their semantic values. This is achieved using a third vector called value.

Note how the three vectors map to the intuitive example about two sentences containing the word ‘bank’.

The query–key–value combination results in a scaled dot-product attention as shown in Figure 2.8. It is called scaled because it scales relative attention to a distribution and by the dimension size. It is called dot-product because it uses dot-product to compute the attention. The formula for the attention is given as: 


(2.7)
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Figure 2.8  Examples of attention in Transformer. (a) Scaled dot-product attention. (b)  Multi-head product attention.



where T indicates transpose. The numerator QKT uses the dot product of query Q and key K. The scaling parameter dk ensures that the dot products between Q and K are minimized so that the gradients are large enough to facilitate learning. Figure 2.8a represents the formula of Eq. (2.7).




The Transformer architecture uses the scaled dot-product attention as a building block for context. However, this attention is not a singular relationship between words in a sentence. A word may be related to other words in its context in more than one way. This intuitively refers to the fact that two words representing objects may be similar in terms of their size, their shape, or their attributes such as colour. To capture this, the Transformer encoder computes attention for multiple possible combinations of contexts. This is referred to as heads. Each of these heads learns different key matrices. As a result, each head can attend to different components of semantics that collectively contribute to the meaning of a word in the context of a sentence. The encoder portion of the architecture is shown in Figure 2.9. The Transformer architecture uses repeating stacks of multi-head self-attention followed by a feed-forward layer. Between the two, output is added and normalized. ‘Self’ in self-attention refers to the fact that the attention is computed over the words in the sentences themselves. As shown in Figure 2.7, the decoder also uses cross attention where representations of the encoder and decoder interact with one another. Thus, self-attention learns to capture the contextual meaning of a sentence. Cross attention learns to capture contextual meaning of a sentence in relation to another sentence.
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Figure 2.9  Encoder of Transformer architecture. 



While encoders and decoders are the core of the Transformer architecture, the input sentences are represented to the architecture using two key ideas: position encoding and tokenization. We describe them now, and would eventually tie them up with the Transformer architecture.




Positional Encoding

Attention mechanism accounts for the relative importance of words in the context of a target word. However, it has yet to capture the notion of the linear nature of words in a text. Therefore, positional encoding accounts for a unique representation for each position in the sentence.

The way one-hot vectors represent the presence of a word, one-hot position vectors can be used as positional representations. Similar representations that use real-valued representations based on the relative position of the word in the document (i.e., positions converted to a distribution) can also be used. These are called fixed representations. Why is this not done? The length of sentences in a dataset cannot be predicted in advance. Therefore, the length of documents in the test set and, as a result, the length of the positional vectors (if represented as a one-hot vector) cannot be determined. Therefore, it becomes essential to create vectors that uniquely represent a position, not relative to its presence in the document. Instead, BERT uses another form of fixed representation. It represents a position as sine and cosine values relative to the position. The position encodings are given as:

(2.8)
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For even positions, the sine component is used, while for odd positions, the cosine component is used.


Tokenization 

The input to the Transformer is provided in a tokenized manner. The words in a sentence are split into tokens. Tokens are complete sub-sets of a word. For example, the word ‘systematic’ may be split into two tokens: ‘system’ and ‘atic’. This allows the Transformer to learn from different forms of the word ‘system’ (as a noun ‘system’ or an adjective ‘systematic’) that may occur in the training corpus. Common methods of tokenization are WordPiece tokenizer and Byte-pair encoding. In essence, they will be expected to convert the sentence ‘the boys are going to school’ to ‘the boy ##s are go ##ing to school’. Tokenization also allows the use of special tokens as we will see in the discussion on BERT. 

Representation of Word and Sentence

The representation of a word is an addition of its token embedding and positional encoding. The representation of a sentence is a concatenation of its word representations. This raises a question: What if a sentence is five words long and another is 18 words long? Transformer and its derivative models use an upper bound on the length of the sentence that it can take as an input. If a sentence is longer than the maximum sentence length, it will be truncated for the purpose of a given instance. If a sentence is shorter than the maximum sentence length, a special token <PAD> is added. <PAD> stands for the padding token.

Representations (or vectors) of tokens and special tokens may be randomly initialized, and their values updated as a part of training. The Transformer is trained on input–output pairs of sentences where the weights of layers in the encoder and decoder are updated for optimization. 

2.4.3 Bidirectional Encoder Representations from Transformers (BERT) 

To recap, the Transformer learns to generate an output sentence from an input. To do so, it uses two stacks of layers—the first set of layers is called encoder. It encodes the input sentence into a hidden representation. The second set of layers is called decoder. It uses the hidden representation of the input sentence and generates the output sentence. Both encoder and decoder consist of a stack of transformations. What does it mean for representation though? We want to be able to generate dense representations of sentences and also use them for NLP tasks. This makes the encoder component of the Transformer useful. This is harnessed in the case of BERT. BERT uses only the encoder of the Transformer architecture. The encoder learns the representation of the input sentence by leveraging multi-head attention. Therefore, the name contains the phrase ‘encoder representations from Transformers’. Where does the ‘bidirectional’ part come from? BERT is an auto-encoding model, in that it learns representations of words based on context to their left as well as right in the sentence. This refers to the ‘bidirectional’ in its name. 

Objective Functions of BERT 

BERT uses the encoder stack of a Transformer (Devlin et al., 2019). It also optimizes the learning using two objective functions:

1. Masked language model: Words in a sentence are randomly masked (i.e., replaced by special tokens known as [MASK]). These are then given as input to the encoder. The goal of the encoder is to learn the prediction of words at the masked positions. This is incorporated in the objective function to generate an expected word at the masked position, given the context. BERT must learn to correctly predict words at positions in the text as accurately as possible. The intuition behind this can be understood as follows. Imagine that you are in a noisy room and you are unable to hear all the words spoken by a person. However, if you are fluent in the language (and understand the context of the conversation), you will be able to infer the missing words based on approximate sounds that you hear. Therefore, assume that an input sentence ‘The boys go to school to study’ is converted to the input ‘The boys [MASK] to school to [MASK]’ with the expected output ‘go’ and ‘study’. The masked language modelling objective must now learn to correctly predict the missing words.

2. Next-sentence prediction: The masked language model learns to predict words within a sentence. However, a text consists of a sequence of sentences. The next-sentence prediction uses relationships between sentences to learn the discourse nature of documents. In the case of the next-sentence prediction, [SEP] tokens are used to separate two sentences. The goal is to predict if one sentence follows the next in a document. SEP indicates a special separating token. The intuition behind this can be understood as follows. Which of the two looks more plausible as the sub-set of a larger document? (a) ‘The boys go to school to study. They also love to play in the school playground’. (b) ‘The boys go to school to study. The apple fell from the tree’. (a) is more likely than (b). This is exactly what the next-sentence prediction is trained for. (a) will be predicted as True. (b) will be predicted as False.

Pre-Training Using BERT 

We talked about the two objectives. How is a dataset mapped to these objectives? Figure 2.10a shows the pre-training procedure of BERT. The first step is the creation of input. The dataset must be prepared in order to achieve the two objectives—masked language model and next-sentence prediction. The masked language model learns the bidirectional context of words as a building block of sentences, while the next-sentence prediction learns context across sentences as a building block of discourse.

[image: ]
Figure 2.10  BERT pre-training. (a) Pre-training. (b) Fine-tuning.



Creation of training input: To enable the learning of the masked language model, a predefined proportion of words are randomly masked. This value was indicated as 15% in the original BERT paper. This allows us to learn the masked language model objective. The input-output for a sentence is then, thus, modified as: given a sentence with some tokens masked, the encoder must learn to predict the actual tokens that have been masked. This is a peculiar form of supervision arising from the data itself. BERT is expected to learn to predict ‘holes’ in the data based on the observed data. The ‘hole’ is the specific word at a position in the sentence, while the observed data are the unmasked, observed words. This supervision comes from the data itself since the sentences are available in their entirety in the dataset. Therefore, it has been referred to as self-supervision.

To enable the learning of the next-sentence predictor, sentence pairs with positive and negative labels are presented as follows. The positive sentence pairs are the ones which appear consecutively in a dataset of documents. The negative sentence pairs are generated randomly by picking two sentences which do not appear next to each other in the corpus. The original BERT paper mentions that the proportion of positive and negative samples as indicated above is 1:1.

The concept of self-supervision allows learning belongingness via the BERT model. In the case of the masked language model, a word, among all words in the vocabulary, must be predicted for a masked position. The word actually present in the dataset is the label that is available within the data itself, without requiring external supervision. This is the first form of self-supervision. In the case of next-sentence prediction, a Boolean label must be predicted to indicate whether or not two sentence inputs are likely to be contiguous in a document. The self-supervision in this case is achieved by creating positive examples from pairs of sentences which appear next to each other in the corpus and synthesizing negative examples by selecting pairs of sentences that do not occur consecutively in the corpus. Since BERT is now being trained to learn representations of the text without being used for any specific NLP task, this is referred to as ‘pre-training’. ‘Pre-training’ can be associated with training a model to learn representation. The model weights are then updated again to optimize for specific prediction tasks in NLP. This refers to ‘fine-tuning’.




A special [CLS] token is added to the beginning of an input, which may be a sentence or a pair of sentences. This [CLS] token stands for classification. The representation of this token can be used as a hidden representation of the sentence or pair of input sentences. [CLS] allows for the pooling of representations of contextualized word positions. So, if you are going to use BERT to obtain vectors for sentences, you are in essence using the output of the [CLS] token. The sentence representation returned by the [CLS] token can be fine-tuned for specific learning tasks.

Representation of input: Each sentence pair that is the input to the encoder is represented as follows:

1. The first token is [CLS]. The CLS token is a dummy token that is added to the vocabulary. This token serves two functions. When two sentences are provided, it captures the learning of next-sentence prediction. When one sentence is provided, the output of the encoder corresponding to the CLS token is taken to be the representation of the sentence.

2. Each sentence pair has a [SEP] token representing the boundary between the two sentences. This identifies the two segments of the input.

3. The words in a document now need to be initialized with their corresponding embeddings. These embeddings could be learned using algorithms similar to Word2vec, as described above. However, it was identified that words that are not exactly present in a corpus do not get word embeddings generated for them. For languages which have several forms of a given word (say, if a verb in a language has gender and number markers on it), word embeddings would need to be learned for all possible forms of the word. This in turn means that the dataset from which the embeddings are learned needs to be large enough.

This is where BERT benefits from tokenization. A word is split into ‘sub-words’ and embeddings are learned for the sub-words. For example, the word ‘embedding’ gets split into three sub-words—‘em’, ‘##bed’, and ‘##ding’. The first sub-word component of a word is not preceded by two hash symbols, while all the following sub-word components are preceded by two hash symbols. The advantage of sub-word embeddings can be understood via the following example. Let us assume that the dataset on which embeddings are learned contains the word ‘embedding’ but does not contain the word ‘embed’. If word-level embeddings are alone learned, as in the case of Word2vec, the learned embeddings will have no representation for the word ‘embed’. This means that if a test document contains the word ‘embed’, it will be represented by the embeddings of the ‘unknown’ token. Let us see what happens if sub-word embeddings are learned instead. If the word is split into sub-words and embeddings are learned for sub-words and not words, the algorithm will learn a representation for ‘em’, ‘##bed’, and ‘##ding’. As a result, when the word ‘embed’ is encountered in a test document, it will be split into two sub-words ‘em’ and ‘##bed’. It will then be able to use embeddings learned for the first two sub-words of the word ‘embedding’.

BERT initializes the words in a document with sub-word embeddings from a particular algorithm called WordPiece embeddings. These embeddings were originally learned for English. They split a word into sub-words before learning sub-word embeddings from a large corpus. The splitting is done as shown in the case of ‘embedding’ above. A general benefit of sub-word embeddings can be understood in the context of inflected forms of words. By incorporating sub-word embeddings, BERT relieves the burden of the dataset because it no longer needs to see all forms of a word. An example of a typical such component could be a suffix such as the ‘-ing’ at the end of a verb to indicate the present continuous tense.

4. Each word is represented as an addition of three embeddings—embeddings of the token, embeddings of the segment (i.e., embeddings indicating the first or second segment in a sentence pair), and position embeddings (as described in the Transformer architecture). The three embeddings are added to create the representation of a word position in a given training instance.

Learning: The self-supervised task in the masked language model is similar to word embedding learning in the sense of its supervision. The learning or the pre-training of BERT is task-agnostic. The dataset is unlabelled in itself, and the encoder is only learning to model the language of the dataset.

Fine-Tuning of BERT 

A key utility of BERT is the ability to fine-tune it for learning tasks such as the automatic detection of sentiment. The process of using a pre-trained language model for a specific task has been referred to as the ‘downstream application’ of the language model. The process of fine-tuning involves updating the parameters of the BERT model. The labelled dataset is converted into the representation with [CLS] and [SEP] tokens. For example, consider the task of sentiment prediction. The goal of the task is to predict if a sentence is positive or negative. The labelled dataset may consist of sentences with associated sentiment labels. For example, the sentence ‘The boys loved the movie’ (input) is known to be ‘positive’ (output label). The input sentence after tokenization may look like ‘[CLS] The boy ##s love ##d the mov ##ie’. For single-sentence classification tasks such as sentiment prediction, the [SEP] token marks the end of the input sentence. For pair-wise classification tasks, the [SEP] token is inserted between adjacent pairs of sentences. For example, consider the task of paraphrase detection. The sentences ‘Her face fell’ and ‘She was disappointed’ are paraphrases of each other. Therefore, the input for this task may look like ‘[CLS] Her face fel ##l [SEP] She was dis ##appoint ##ed’.

With the input tokenized and structured as above, the architecture of BERT is then used to fine-tune for the specific task. This is done as follows. The representation of the [CLS] token is used as the semantic encoding of the input sentence. Using this representation, a fully connected layer followed by a softmax is used to predict the output label.

The fine-tuning process then initializes representations with one of the BERT models. The parameters of the intermediate layers are then learned using backpropagation based on the losses incurred on the output labels from the labelled dataset.

A useful analogy in this regard is a vacuum cleaner. A vacuum cleaner is a device that cleans surfaces. Cleaning can be done in multiple ways. One may use a cloth to wipe the surface or use a broom to sweep the surface. However, the vacuum cleaner uses a different approach. It uses suction as a mechanism to clean the surface. Depending on the nature of the surface, you may attach an appropriate head to the base of a vacuum cleaner. A flat brush may be used to clean floors while a nozzle may be attached to clean corners that are difficult to reach. Pre-trained BERT is similar. Its masked language modelling and next-sentence prediction outputs are the mechanisms it uses to understand semantics. This can be visualized as the base of the vacuum cleaner. Depending on the surface, the attachment of the vacuum cleaner is changed. Similarly, the output of the [CLS] token is optimized so as to learn a specific NLP task.

Variants of BERT 

Several variants of BERT have been reported in order to extend the capability of BERT, or to capture domain-specific semantics. For example, BioBERT captures semantic representation in biomedical documents. MBERT is a multilingual BERT trained on multilingual corpora. A notable extension of BERT is RoBERTa which aims at creating a robust BERT (hence, the ‘Ro’, in its name). RoBERTa trains BERT on larger batch sizes and also removes the next-sentence prediction objective. It is known to result in better performance for classification tasks.

Sample Code for BERT

The Transformers library developed by HuggingFace4 is a popular library to use Transformer-based models. HuggingFace provides several pre-trained and fine-tuned models that can be directly used. The module pipeline is easy to get started, if the objective is to only use a model that has been made available on HuggingFace. Let us first use pipeline to generate output of masked words.



from transformers import pipeline

unmasker = pipeline('fill-mask', model='bert-base-uncased')

unmasker("The student went to [MASK].")







The model is specified as bert-base-uncased. uncased means that the model is case-insensitive. The top five words returned are ‘bed’, ‘work’, ‘sleep’, ‘him’, and ‘class’.


from transformers import pipeline

sentiment_pipeline = pipeline("sentiment-analysis")

data = ["The movie is excellent", "The movie sucks"]

sentiment_pipeline(data)




The constructor for pipeline takes the input task as sentiment-analysis. It downloads the model from the Transformers library and returns the prediction for the two sentences in the list data. The output predicts the first sentence as positive and the second as negative.

Let us now see how vectors of text can be obtained using the library. Two classes are used here: AutoTokenizer (which tokenizes the input) and AutoModel (which contains the pre-trained model).



from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

model = AutoModel.from_pretrained("bert-base-uncased")

text = "The movie is excellent"

encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)




The output of the code above is a dense vector representing the input sentence in text. HuggingFace has a large repository of models uploaded by the research community. By replacing bert-base-uncased above with the appropriate model name, these models can be used. It would be useful to check the performance of the model reported in the model card on the HuggingFace website. 

Computing infrastructure that provides GPU can accelerate the performance of these models. This can be done as follows:



import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')




The model will then be mapped to the device as follows:



model = AutoModel.from_pretrained("bert-base-uncased").to(device)




Note that the tokenization is on the CPU while the model inference and training is done on the GPU. Therefore, the output of the tokenizer should also be moved to device using a call to .to(device).

2.4.4 XLNet 

While BERT captures bidirectional context due to its attention-based mechanism, the [MASK] tokens introduce noise during the learning. The [MASK] tokens are absent during testing. In contrast, auto-regressive language modelling such as n-gram language modelling relies on the linear structure of a text by utilizing a left-to-right context. In that way, it is not able to leverage context from right-to-left in a sentence.

The two strategies have their unique strengths, which can be combined in a model that is auto-regressive in that it does not use masked tokens in order to learn context, and that it is auto-encoding in that it still is able to learn representation of a word at a given position, using the rest of the sentence to its left and right.

XLNet is a language model that combines the two models (Yang et al., 2019). It introduces the idea of ‘permutation-based language modelling’. In the case of auto-regressive language modelling, the computation of representation always proceeds from left to right. In the case of permutation-based language modelling, this left-to-right ordering is decomposed to a randomly sampled factorization order. Representations are then learned for different factorization orders, by decomposing a text in a given factorization order. Thus, permutation-based language modelling in the case of XLNet consists of two steps:

1. Sample a factorization order, which is a sequence of word positions in the sentence.

2. Decompose P(x) in the sequence of the factorization order.

Formally, let us assume that a sentence contains K words: w1, w2, w3, and so on. Auto-regressive modelling computes the representation of wk using w1 to wk - 1. For a sequence of length K, the total number of possible permutations is KPK (i.e., K !/(K - K)! = K !).

In the case of permutation-based language modelling, the first step is to sample a permutation order o. Therefore, a word at position k is sampled using the word positions before k in the factorized sequence. This will be represented by o < k.

Therefore, the objective function is to learn representations xi, … xk such that:

(2.8)

[image: ]
where [image: ] represents a word position in the kth position of the factorization order o. Let us focus on [image: ] This needs to satisfy two conditions to predict a token at [image: ]:

1. It should use information from the token representations in [image: ].

2. It should use information about the position ok but not the word [image: ] or its representation [image: ].

To incorporate the two, XLNet uses two streams of attention. The first type of attention encodes the context and the word itself. The second type of attention uses contextual information and position information, but no information from the word itself. This is done by using attention masks based on the factorization order. In the case of self-attention, the masks are implemented such that the entire context is encapsulated. In the case of contextual attention, the masks are implemented such that the representation of the current word position is excluded from the computation. To optimize the computation, XLNet also memoizes representations of smaller segments so that they can be used directly for larger segments of the sentence, for overlapping factorization orders.



Summary

Representation of text is the first step to NLP. This corresponds to being able to assign belongingness to sentences—valid sentences have a valid representation. Because ambiguity is central to NLP, an important goal of representation learning is to be able to create representations that capture the meaning of the text. The three generations of NLP have dealt with representation learning in different ways. The first generation used a grammar-based approach to represent sentences. Sentences that could be generated using a grammar were valid. The second generation uses one-hot vectors and probabilistic language models to predict the belongingness of sentences. As a result, the probability of a sentence is conditioned on the sequence of words in the sentence. The third generation uses neural models to generate representations. Word embedding representations may capture the semantics of words using dense vectors learned from neural models. Finally, neural language models like BERT have brought about a revolutionin how representations are learned and used for a variety of NLP tasks. The models can be pre-trained via self-supervision and fine-tuned for specific tasks using an architecture derived from a Transformer. Representation learning is foundational to NLP. By enabling an understanding of representation learning across three generations of NLP, this chapter paves the way for the next steps in understanding NLP.



Review Questions

1. How does the first generation of NLP answer the belongingness question of language?

2. Describe Chomsky’s hierarchy of languages.

3. What are the two steps to implement a one-hot unigram vector?

4. What are the different methods of smoothing in statistical language models?

5. What are skip-gram and continuous bag-of-words models of learning word representations? How do they differ?

6. What is negative sampling? How does it help to learn word representations?

7. What are the two objective functions of BERT? How do they capture ambiguity in text?

8. What is the difference between auto-encoding and auto-regressive language models?

9. Describe the fine-tuning of BERT.

10. What is permutation-based language modelling? How does it improve upon previous approaches to neural language modelling?


Objective Questions

Fill in the Blanks 

1. In the rule NN → boy, ______ is the non-terminal and ______ is the terminal.

2. Type-1 grammar is context-______ while Type-2 grammar is context-______.

3. If the vocabulary of a dataset is [‘boy’, ‘group’, ‘winter’, ‘apple’, ‘eats’, ‘banana’] (in that order), the sentence ‘The boy eats an apple in winter’ can be represented as a unigram presence vector as ______.

4. In the case of Word2vec, the conditional probability of word-given context is defined in terms of a(n) ______ function.

5. The special token ______ is used to fine-tune BERT for classification tasks.

6. XLNet determines a(n) ______ order to allow permutations of words.

7. The type of supervision that uses unlabelled text to pre-train BERT is called ______.

Select the Most Appropriate Option 

8. Which of the following is true in the context of grammar used in the first generation of NLP?

a.Grammar defines rules that can produce all sentences in the language.

b.Grammar defines vectors that can produce all sentences in the language.

c.Grammar defines rules that can produce the top-k common sentences in the language.

d.Grammar defines vectors that can produce the top-k common sentences in the language.

9. How many types of languages does Chomsky’s hierarchy specify?

a.Three

b.Four

c.Five

d.Recursive innumerable (cannot say)

10. Which of the following is true in the context of smoothing in probabilistic language models?

a.Smoothing accounts for unseen n-grams in the dataset.

b.Smoothing increases the probability of seeing n-grams in the dataset.

c.Smoothing allows for the application of the chain rule by eliminating zero probabilities.

d.All of the above

11. Which of the following is true for the hierarchical softmax approach for Word2vec learning?

a.The representations of leaf nodes in the Huffman tree are separately learned.

b.The representations of subtrees in the Huffman tree can be learned, conditional on their siblings.

c.The representations of the intermediate nodes in the Huffman tree help to compute values of leaf nodes in their subtrees.

d.None of the above

12. Which of the following is true in the case of BERT?

a.BERT is an auto-regressive model.

b.BERT is an auto-encoding model.

c.BERT is a semi-supervised model.

d.None of the above
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Answers to Objective Questions

1.NN, boy

2.sensitive, free

3.[1, 0, 1, 1, 1, 0]

4.softmax

5.[CLS]

6.factorization

7.self-supervision

8.(a)

9.(b)

10.(d)

11.(c)

12.(b)



 

1https://en.wikipedia.org/wiki/Blind_men_and_an_elephant (accessed on 19 April 2023).

2A useful demo to get cosine similarities is available at the link http://epsilon-it.utu.fi/wv_demo/ (accessed on 20 April 2023).

3Additional details of all arguments and other documentation for the gensim library can be found at the link: https://radimrehurek.com/gensim/models/word2vec.html (accessed on 20 April 2023).

4The documentation for BERT can be found at the link: https://huggingface.co/transformers/v4.9.2/model_doc/bert.html# (accessed on 20 April 2023).















	 

	 




	CHAPTER
3

	Shallow Parsing








Colorless green ideas sleep furiously.

Noam Chomsky






Learning Objectives

After reading this chapter, you will be able to

• Understand the linguistic basis of shallow parsing techniques.

• Explain the probabilistic formulation of POS tagging and Viterbi decoding.

• Use BERT-based models for POS tagging.

• Describe the role of recurrent neural networks in chunking.







Words are building blocks of languages, which are stringed together into sentences to convey meaning. In this chapter, we will discuss a set of NLP tasks called shallow parsing that aims to label words or short strings of words. Such strings are called non-recursive phrases. It is the property of non-recursivity that makes the task of shallow parsing amenable to light-weight but high-accuracy computing solutions. 

Noam Chomsky, the celebrated linguist that we introduced in Chapter 2 on representations, stressed the importance of keeping in mind the recursive nature of language. Consider the question, ‘How can a finite set of words, however large but still bounded, produce an infinite number of sentences?’ The answer is, ‘By repeating themselves’. Thus, a word can be used and reused any number of times, contributing to the unbounded number of sentences. Thus, ‘the’ can be and is used a potentially infinite number of times (‘the ball’, ‘the sky’, ‘the child’, and so on). Like words, strings of words can also be used and reused, contributing to the unboundedness of the number of potential sentences. The string ‘the red ball’ can appear in, ‘The red ball rolled’, ‘I saw the red ball roll’, ‘The red ball that I saw rolled’, and so on. Such a string of words with a definite structure and meaning is called a phrase. ‘The red ball’ is a phrase, in particular, a noun phrase (NP). We call ‘the red ball’ a noun phrase because the phrase refers basically to a noun with a specific colour attribute. NPs can be embedded in other phrases; take for example in the sentence, ‘The rolling of the red ball in the garden drew out peals of laughter from the children’. Similarly, there can be a verb phrase (VP), adjective phrase (AdjP), adverb phrase (AdvP), preposition phrase (PP), and so on. 




Figure 3.1 illustrates recursivity. ‘The rolling of the red ball in the garden’ is an NP with the structure ‘The rolling of NP in the garden’. NPs can be embedded within other NPs, other types of phrases, the same sentence, and across sentences many times over.

[image: ]
Figure 3.1  Illustration of embedding of phrases within phrases.


The strings of words, however, need not form linguistic phrases, which are noun phrases, verb phrases, adjective phrases, preposition phrases, and so on. Instead, we have more general structures called n-grams, of which linguistic phrases are special cases. An n-gram is a consecutive sequence of n words. The n-grams, along with their probability of occurrence, are called language models (LM). Extremely large language models (LLMs) have paved the way for completely new ways of doing NLP. Modern NLP can safely be called NLP with LLMs.

It has been observed that insistence on working with only linguistic phrases, which are nuggets of well-defined syntax and semantics, harms rather than helps. This point fits in well with the point made by Prof. Joanna Bresnan in her 2016 acceptance speech of the ACL Lifetime Achievement Award, ‘Linguistics: The Garden and the Bush’. She urged forsaking the make-believe artificial world of beautiful linguistics and facing the real, dirty world of actual language phenomena and practical applications. A compelling case in point is the phrase table of statistical machine translation (SMT  ). If we weed out the non-linguistic phrases from the phrase table, we eliminate disambiguation signals. Let us exemplify.


The bank will close all transactions by 3 P.M. today →
‘Aaj dopahar ko 3 baje tak baink saaraa len den band kar degaa’



Since the phrase table is created from the whole corpus of parallel sentences, it is quite possible that the mapping ‘close all transactions’ → ‘len den band kar’ gets created and also gets a high-probability value. While ‘close all transactions’ is a linguistic phrase (VP), ‘len den band kar’ is not. Now, if we eliminate this pair from the phrase table, we will lose a valuable disambiguator of ‘bank’, which is ‘transaction’. Of course, one may argue that ‘transaction’ need not appear only once in the phrase table, and that other appearances of ‘transaction’ can help disambiguate. This fact is acknowledged, but the point still remains that ‘cleaning’ the phrase table is not a good idea since the disambiguation signals are reduced if not altogether lost. 

We will see in Chapter 4 that phrases which embed other phrases (called recursive phrases) need pushdown automata (PDA) for their detection. We need context-free grammar (CFG) rules and algorithms such as chart and CYK parsing. Non-recursive phrases, on the other hand, do not need anything more than a finite state machine (FSM). We need FSM and probability to detect non-recursive phrases (i.e., for shallow parsing). Shallow parse strings are also called chunks. Like phrases, we can have noun chunks (NC; e.g., golf stick), verb chunks (VC; e.g., Hindi: ‘beith jaanaa’, English: to sit down), adjective chunks (AdjC; e.g., ‘big red’), preposition chunks (PC; e.g., in front of), and adverb chunks (AdvC; e.g., slowly surely). Our problem statement for this chapter then is as follows:

Problem Statement: 


Input: a sequence of words
Output: a sequence of labels of these words



Thus, shallow parsing is a sequence labelling (SL) task. When the task is labelling parts of speech on the words, the SL task is called part-of-speech tagging, or POS tagging. When the SL task involves giving labels to words with respect to their forming chunks, the task is called chunking. 

When labelling is done for chunking, we resort to the B-I notation, which is sometimes typed. The symbol B stands for ‘beginning’ and I for ‘inside’.

B-I Notation: Let wi, wi +1, wi +2, …, wi + j be a sequence of words. If wi starts a chunk, it is given the label B. All subsequent words until the next chunk are given the label I. 

Example: ‘The blue sky was shining’ is labelled as ‘The_B blue_I sky_I was_B shining_I’. There are two chunks: the NC ‘The blue sky’ and the VC ‘was shining’.

Sometimes the chunks are typed. Continuing the example:

Example: The_BNC blue_INC sky_INC was_BVC shining_IVC.

Non-typed chunking is thus a binary classification problem. Typed chunking and POS tagging are multiclass classification problem.

The Role of Probability

Shallow parsing uses probability to find the best possible label sequence. A question that may arise at this stage is, ‘Why probability?’ After all, to detect the English noun chunk (NC) ‘the blue sky’ or the Hindi verb chunk (VC) ‘has uthaa’ (‘abruptly laughed’) or the Bengali adjective chunk (AdjC) ‘bada laal ’(‘big red’ as in ‘badaa laal bal ’ : ‘big red ball’), all we need is an FSM with rules of transition and emission. However, ambiguity arises in sequence labelling as well. A word can have multiple parts of speech—almost all English nouns are verbs too. Without the context, it is uncertain whether a word belongs to a chunk or not. Consider the following pair of sentences:


The town folks visited yesterday was lively and festive
The town folks visited yesterday a lively fair



The chunking for the first three words is


The_B town_I folks_B…: first sentence
The_B town_I folks_I…: second sentence



The ambiguity of whether ‘folks’ continues the chunk or starts a new chunk is not resolved until we see the word ‘was’/‘a’ after ‘yesterday’. It is such disambiguation that calls for using probability. 

Let us now take up POS tagging, the task that started machine learning (ML)-based NLP.




  □  3.1Part-of-Speech Tagging



As per the Oxford Dictionary of English, the POS of a word is a category to which a word is assigned in accordance with its syntactic functions. In English, the main parts of speech are noun, pronoun, adjective, determiner, verb, adverb, preposition, conjunction, and interjection. The key phrase here is syntactic functions. Words in a sentence contribute to the meaning of the sentences by virtue of their own meanings and their syntactic roles like becoming the subject of a sentence (nouns can do this), qualifying another word (adjectives can do this), or joining two phrases (prepositions can do this). 

Dictionaries give not only the meanings of words but also their parts of speech, and for a word, both can be multiple. For example, the word ‘bank’ can be both a noun and a verb (in the sense of ‘depend’). Though a word can have multiple POS as recorded in the dictionary, in a sentence the word can have only one POS. This makes the determination of parts of speech of words a context-assisted disambiguation task. Figure 3.2 shows the positioning of POS tagging in the NLP stack.
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Figure 3.2  NLP layer and POS tagging. POS tagging comes at the second stage after morphological processing. As we will see in the case of discriminative models such as MEMM and CRF, morphological signals are crucial for the correct determination of parts of speech.




POS tagging is foundational in respect of downstream NLP tasks, as it can supply complex NLP models with disambiguation signals. Consider the example of a question-answering system. Suppose the input question is, ‘Who is the prime minister of India?’ The expected answer is the name of a person, which is a proper noun. If the question is passed through a POS tagger, then the POS sequence is as follows:


Who – WP (who pronoun)
Is – VZ (auxiliary verb)

The – DT (determiner)

Prime – JJ (adjective) 

Minister – NN (noun) 

Of – IN (preposition)

India – NNP (proper noun)

? – PUNC (punctuation)






These POS tags are as per the Penn Treebank tagset.1 The POS label WP signals that an NP,  specifically a proper noun, is expected as an answer. 

An objection can be raised here: Who cares about such intermediate stages of disambiguation as POS tagging and chunking in this era of end-to-end deep learning? This is a valid objection. But then the onus of disambiguation shifts to data. More data, more annotation, and more curation are typically required when one wants to go completely end-to-end.

Another objection that can be raised is ‘who’ by itself is a significant disambiguation clue. So why is any other additional clue required? This may be so as human communication situations are complex. Consider the sentence:

Who could have imagined that he will achieve so much?

This is not a question at all, but an expression of surprise. Metaphor, hyperbole, sarcasm, etc., are expressive means humans employ to communicate better. Processing such texts can do with as many clues as may be extracted, else the burden shifts to data.

The next large NLP task we consider is machine translation (MT  ). MT too can be helped by POS tagging. SMT first learns correspondences of source language and target language phrases—not necessarily linguistic—along with their probability values from large parallel corpora. There is a special kind of SMT called factor-based SMT, which operates with multiple tables of correspondences—phrases, lemma, affixes, and also POS tags. This additional information leads to better translation disambiguation. Thus, the translation of ‘I bank on your moral support’ to Hindi ‘Main aapake naitik samarthan par nirbhar hUM ’ needs disambiguation of ‘bank’ (verb; POS tag VB) to ‘nirbhar hUM ’—as opposed to the noun ‘bank’ meaning ‘the financial organization’ or ‘the side of a water body’. With large amounts of corpora, the disambiguation signal can come from neighbouring words like ‘support’. But if the corpora are in short supply, such signals are absent, or weak and unreliable (low probability), in which case supra-sentential information, such as POS tag, suffix, semantic roles, and position in parse tree, becomes necessary. Among these supra-sentential information, POS tags, lemma, and affixes are most common, as they come cheap with shallow NLP processing.  

3.1.1 Illustration of Ambiguity in POS Tagging and the -al Rule

We illustrate the ambiguity of POS tagging with the word ‘close’, which can be an adjective, adverb, verb, or noun. Let us see some examples of this:


‘Running close to the competitor’– Adverb

‘This was a close escape’– Adjective

‘Close the door’– Verb

‘Towards the close of the play’ – Noun




A dictionary would record that the word ‘close’ has four possible POS. POS tags specified in the dictionary are called grammatical roles. POS tags as per the sentential context are called functional roles. Consider the phrase ‘golf stick’. ‘Golf’ is a noun, but since it qualifies ‘stick’, it has an adjectival role. Functional roles are expressed by what we call the al-rule. In the dictionary, ‘golf’ is either a noun (‘plays golf’) or a verb (‘golfed through the morning’), but never an adjective. Therefore, in ‘golf stick’, we say ‘golf’ is an adjectival (i.e., it has an adjective role). The ‘al’ at the end of ‘adjective’ is to differentiate the category from the dictionary-specified ‘adjective’. The ‘al-rule’ is—if a word has a functional POS tag different from its grammatical POS, then we add ‘al’ to specify the word’s syntactic function. 

Like adjectival, we can have nominal, where the word is not a noun but functions as a noun, verbal where the word is not a verb but functions as a verb, and adverbial where the word is not an adverb but functions as an adverb. In the sentence, ‘The rich will not know the pains of the hungry’, the word ‘hungry’ is a nominal since dictionaries normally do not mention ‘hungry’ as a noun.

The -al concept is very important, not so much for machines but for humans (i.e., annotators). Annotators create POS-tagged data for training ML models to do POS tagging. The data appears in the following form:

Who_WP is_VZ the_DT prime_JJ minister_NN of _IN India_NNP? PUNC where each word is associated with a tag. Now, annotators do get confused when a word in a sentence has its functional role different from the grammatical role. Figure 3.3 illustrates the case of the word ‘golf’. There is no mention of adjective in the dictionary description of ‘golf’.
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Figure 3.3  Dictionary meanings of ‘golf’.



The awareness of the -al rule sensitizes annotators to the difference between grammatical and functional roles. What tag they ultimately assign to the word in such situations is left to their preferences. Thus, ‘golf stick’ can get both ‘JJ NN’ and ‘NN NN’ tags. This does not cause any serious problem since both ‘JJ NN’ and ‘NN NN’ are good for the next stages of NLP—specifically, chunking and deep parsing.

3.1.2 Table Look-Up-Based and Rule-Based POS Tagging

Given the input sentence which is a word sequence, a tag sequence is produced. Now, if each word had a unique tag, a simple look-up of the dictionary that stores the tags of words would solve the problem of POS tagging. In fact, table look-up is the first algorithmic step—albeit fallible—towards seq2seq labelling. However, ambiguity is the spanner in the works. How to choose the correct option from the table is the disambiguation task. So, we turn to rules that make use of contextual clues to pick the correct POS tags for words in a sentence. 




A rule-based POS tagger uses a set of human-created rules to perform the disambiguation task. To understand this, let us consider the following sentences: 


‘He gave me a present’ – where ‘present’ is noun

‘They present innovative ideas’ – where ‘present’ is verb

‘He was present in the class’ – where ‘present’ is adjective



To disambiguate noun from among these three POS, a rule could be: 


If 

the word ‘present’ is preceded by a ‘a’/‘an’/‘the’/‘this’/‘that’

Then 

the POS tag will be noun 



This seems like a very reasonable rule: if there is a determiner or demonstrative before ‘present’ then this ‘present’ must be a noun. Is this a 100% precision (P) and recall (R) rule?

Notion of Precision and Recall

At this juncture, we note a few fundamental concepts related to the evaluation of ML models (the rule we just created is an ML model). We mentioned precision (P) and recall (R). 100% P is equivalent to zero error of commission or, in other words, zero false positive. 100% R is equivalent to zero error of omission or, in other words, zero false negative. Coming to the above rule, 100% P means the rule will not incorrectly tag any instance of ‘present’ as a noun when it is actually not a noun. 100% R means the rule will not miss labelling any instance of ‘present’ as a noun when it is actually a noun. 

It turns out that the rule does not ensure 100% P and R because we can have false positives and negatives in operating this rule. In ‘The present case is not convincing’, ‘present’ is an adjective, which is preceded by a determiner and will be tagged incorrectly as a noun. In ‘Present foretells the future’, the rule will miss detecting ‘present’ as a noun since it is not preceded by a determiner or demonstrative.

Let us see if we can repair this rule. We may try ‘local fixes’. If we prescribe:


If

‘present’ is not preceded by anything

Then

it is a noun




then ‘present the witness’ will fail. 

If we prescribe:


If 

‘present’ is preceded by ‘the’ and followed by a noun

Then

it is a noun



then the ball shifts to another court. Determining if the following word is a noun is in itself a disambiguation problem! Indeed, in ‘The present results…’ more context is needed to get the correct POS tag of ‘results’ because ‘results’ can be both a noun and a verb. 

The above discussion shows the limitations of the rule-based approach to POS tagging. It is impossible to give a 100% precision and 100% recall rule base for POS tagging. 

If we have to live with imperfection, then why strive for the impossible? Moreover, wrecking our minds imagining all possible situations of disambiguation and coming up with rules is time-consuming and expertise driven. A much simpler and scalable solution is to label sentences with POS tags and then train a machine with the annotated data. Annotating words with POS tags is much simpler than creating POS tagging rules. While creating POS tagging rules needs deep linguistic expertise, annotating words with tags from a list can be managed with undergraduate-level qualification. 

A final point is that, in these days of social media, short messaging applications, etc., the demand for NLP of noisy text is ever-increasing. NLP of noisy text needs POS tagging of noisy text. POS tagging texts such as ‘8 dinner at 8 and dessert 2’ (‘ate dinner at 8 and dessert too’) or texts with emoji will need reworking the rules, which are quite fragile to start with. 

Such limitations of rules pushed the case for ML-driven POS tagging. Statistical POS tagging was inspired by the success of statistical automatic speech recognition (ASR). Frederick Jelinek of AT&T is credited with the first demonstration of data-driven POS tagging, thereby heralding a new kind of NLP (i.e., statistical NLP). 


  □  3.2Statistical POS Tagging



Second-generation POS tagging or statistical POS tagging relies on counts of a word, counts of words occurring with particular POS tags, and probability in order to learn POS tagging. The technique originally used by Jelinek is based on Hidden Markov Models (HMM), which in turn is grounded on the noisy channel metaphor from speech processing.

Figure 3.4 shows the basic idea of statistical POS tagging. The input W is a sequence of words w0, w1, w2, …, wn, and the output T is the sequence of tags t0, t1, t2, …, tn. Two notations are important here—the argmax notation and star notation. x* = argmaxx[y = f (x)] means as follows: y = f (x) is maximized over x, and the value x* which is the value of x that maximizes f (x) is returned. Notice the difference between argmax and max. The former returns a particular value of x and the latter a particular value of y. 
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Figure 3.4  Noisy channel model. The string W passes through a noisy channel and gets transformed in to the string T. This general framework is applicable to a large number of NLP problems, including machine translation, question answering, summarization, and so on. The best sequence T given W as well as the best sequence W given T. Both problems can be solved by maximizing the probability P(T |W ) and P(W |T ), respectively.



In the case of POS tagging, the function that is maximized is the probability of T given W, P(T |W  ). This is the noisy channel modelling of POS tagging. By its very nature, this way of modelling accommodates imperfection (i.e., errors in both input and output). The option with the highest probability is chosen. Because the decision is probabilistic, there is no compulsion to get the perfect post-tag sequence.

3.2.1 Hidden Markov Model Based Formulation of POS Tagging

Let us understand the argmax computation further as shown below:

(3.1)
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T* is the ‘best’ tag sequence in the sense that T* has the maximum P(T |W  ), which is the conditional probability of T given W. Applying Bayes theorem, we get the three terms P(T  ), P(W |T  ), and P(W  ) as shown above. Since the argmax is over T, P(W  ), the denominator comes only as a scaling factor and can be dropped, giving rise to the product of two terms—the prior P(T  ) and the likelihood P(W |T  ). These two terms can be further processed as follows:

Word sequence W: ^ w0 , w1, w2, …, wn-2, wn-1, wn.

Notice that the hat (^) at the start of the sequence and the dot (.) at the end are the sentence beginners and sentence finishers, respectively. The tags of these two symbols are again these symbols only. So, the tag sequence is

T: ^ t0, t1, t2, …, tn-2, tn-1, tn.

where ti is the tag for the word wi at the ith position of the sequence. P(T  ) now becomes

(3.2)
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The assumptions made are

P(^) = 1; the tag at the beginning of a sentence has to be ‘^’
ti depends only on ti-1 and nothing else, the bigram assumption, so we can work with P(ti|ti-1)
t-1 = hat (^) and tn+1 = dot (.)

The likelihood becomes:

(3.3)
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Here the facts and assumptions are

P(^|^) = 1 and P(.|.) = 1; hat and dot get the same symbols as the tags
P(wi|w0,1,…(i-1), T  ) = P(wi|ti). That is, the probability of the observation wi at the ith position depends only on the state value ti at that position. This is called lexical independence assumption

The final argmax expression is

(3.4)
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bigram and lexical independence are the two key assumptions in Eq. (3.4). The two parameters—P(ti|ti-1) and P(wi-1|ti-1)—are like the transition probabilities and emission probabilities of HMM, where tags are looked upon as states and words as emissions of the states. Obtaining the best POS tag sequence involves finding the best state sequence that emits the given word sequence. This process of finding the best sequence is called decoding and usually employs Viterbi or beam search. Decoding is an important term in sequence processing, and we will explain this with an example in the subsequent section.

3.2.2 Viterbi Decoding for POS Tagging

Let us illustrate the technique with an example sentence containing just two words, where each word has POS ambiguity. The sentence is


^ people dance.



‘people’ and ‘dance’ can be both nouns and verbs, as in 


‘old_JJ people_NNS’ (‘people’ as noun)

and 

‘township_NN peopled_VBN with soldiers_NNS’ (‘people’ as verb)

as well as 

‘rules_NNS of_IN classical_JJ dance_NN’ (‘dance’ as noun)

and

‘will_VAUX dance_VB well_RB’ (‘dance’ as verb)




Now, the possible POS tag sequences for ‘^ people dance.’ are (for simplicity we take single letter tags—N: noun, V: verb):

^ N N.
^ N V.
^ V N.
^ V B.

We know that out of these, the second option ^ N V. is the correct one. How do we get this sequence? Here are the steps:

1. We first build a trellis diagram for the input sequence. Trellises are columns of tags erected on words of the input along with transition arcs going from tags (states) to tags in consecutive columns and output arcs going from tags to words (observations). This is illustrated in Figure 3.5.
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Figure 3.5  Trellis diagram for ‘^ people dance.’. The tags for hat and dot are ^ and . respectively. Columns N-V are raised above both ‘people’ and ‘dance’. Probability values are marked against the arcs. For example, P(V  |N  ) indicates the probability of transition from state N to state V, and P(‘people’|N  ) indicates the probability of observing ‘people’ in state N.



2. Now, we have to select the highest probability path from among the four possibilities. We have to compute the path probabilities in stages, making use of ‘accumulated’ probabilities. 

Refer Figure 3.6. The initial state of the HMM is the first tag, that is, hat (‘^’). Here, the observation is ‘^’. We reach states N and V with probabilities A1 and A2, which are products of transition and lexical probabilities P(N |^)P(‘^’|^) and P(V  |^)P(‘^’|^), respectively. Next, on encountering ‘people’, we move to four N and V states from two N and V states. What happens next is the heart of Viterbi decoding. We explain with numerical values of the probability parameters, which control the whole computation. These values are hypothetical but not unrealistic. Let us assume there are only two tags N and V.
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Figure 3.6  Illustration of the Viterbi decoding process with bigram assumption, after seeing the first word ‘people’. 



When it comes to the start of the sentence, most sentences start with a noun. So, we have

P(N |^) = 0.8, P(V  |^) = 0.2 and of course P(‘^’|^) = 1.0







Then,

A1 = 0.8, A2 = 0.2

Now, we encounter ‘people’. From both N and V, we can go to two states N and V. We need values of probability parameters. Transition from N to N is less common than to V. Transition from V to V, as in auxiliary verb to main verb, is quite common. So also, is the transition from V to N, as in the case of a nominal object following the verb. So, let us have the following transition probabilities:

P(N |N  ) = 0.2, P(V  |N  ) = 0.8, P(V  |V  ) = 0.4, P(N |V  ) = 0.6

We also need lexical probabilities. ‘people’ appearing as a verb is much less common than it appearing as a noun. So, let us have:

P(‘people’|N  ) = 0.01, P(‘people’|V  ) = 0.001

Now, we are in a position to calculate the B values.


B1 = 0.8.0.2.0.01 = 0.0016 (approx.)

B2 = 0.8.0.8.0.01 = 0.0064 (approx.)

B3 = 0.2.0.6.0.001 = 0.00012

B4 = 0.2.0.4.0.001 = 0.00008



Now comes the key step. We compare the probabilities of all those paths that end in the same state. Thus, we compare B1 against B3 and B2 against B4. We do not continue with the paths that have lower probabilities. Figure 3.7 depicts this configuration.

[image: ]
Figure 3.7  Reduced Viterbi decoding configuration.



As mentioned, the above is the heart of Viterbi decoding. Since the next observations are all going to be equal for all the states and since we accumulate probabilities with products, there is no point advancing those paths that have lower probabilities compared to their counterparts ending in the same state. In the following sub-section, we make some important observations on the computational complexity of Viterbi decoding.




3. The next word is ‘dance’. We proceed with the reduced state diagram (Figure 3.8).
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Figure 3.8  Configuration after seeing ‘dance’. The state after observing the full stop is dot (.).



At this point, we need the probabilities of sentences ending in N and V (i.e., P(.|N  ) and P(.|V  )). Also, we need probabilities of ‘dance’ being a noun and a verb—P(‘dance’|N  ) and P(‘dance’|V  ). We can give equal probabilities to sentences ending in noun and verb. Also, ‘dance’ as verb is more common than noun. So, let us have:

P(.|N) = 0.5 = P(.|V  )
P(‘dance’|N  ) = 0.001
P(‘dance’|V  ) = 0.01 

Then

       C1 = 0.0016.0.5.0.001 = 0.0000008
C2 = 0.064.0.5.0.01 = 0.00032

4. Now the decoding is over. The path with the highest probability value of C2 = 0.00032 is

^ N V

That is, the most likely POS tag sequence for the sentence ‘people dance’ is ‘N V ’. 




3.2.3 Computational Complexity of Viterbi Decoding

It is apparent from the above discussions that the Viterbi algorithm is linear in the input length. This saves us the potentially exponential computation of examining all SL paths, where S is the number of tags in the tagset and L is the length of the sequence, leaving out hat and dot. This is because the starting state gives rise to S children from which S 2 grandchildren are produced. These grandchildren are the endpoints of S 2 paths. Now, out of all the paths ending in a particular state only one is retained—the one with the highest path probability which is the accumulated product of transition and lexical probabilities. Thus, after seeing the second word (‘^’ being the first) too, the number of states needing expansion into S children is again S. This will be the situation for every word. After seeing the last word, the only transition from each state is into the ‘dot’ state. Thus, the complexity is O(S 2L).

How does S 2 come about? At every word, we find the maximum probability path out of the S paths ending in the same state. Max finding is linear in the number of inputs (i.e., O(S) in this case). Since max finding is done S times, the S 2 term comes about.

Because of the bigram assumption (i.e., states depend only on their previous state), ‘killing off children states’ starts from the second level (i.e., after seeing the second word, ‘6’ being the first). If we have a trigram assumption (i.e., a state depends on two previous states), then selective expansion of states will happen after seeing the third word. We have to compare among all those paths that have identical last two states. So, starting from the third word, after every word, again S paths will remain, but obtained by searching among S 2 possibilities. Hence, the complexity will be O(S 3L).

We can generalize the above argument and say that for the k-gram assumption (i.e., any state depends on its previous k states), we get the complexity of Viterbi decoding as O(SkL). If we do not ‘kill off ’ paths, which of course is pointless, we would have had exponential complexity algorithms of O(SL).

Viterbi decoding is one of the celebrated algorithms of AI. Like many great ideas, this one was also independently hit upon in many different fields such as communication systems, decision processes, speech processing, and so on. The heart of the Viterbi algorithm is dynamic programming, which produces the optimal path through a trellis. The efficiency comes from reusing computation and independence assumptions. This needs a little elaboration.

All that we are doing in finding the best possible tag sequence is finding the path over which the product of pairs of state transition and lexical probabilities is maximum. Since all these paths have sub-paths that are common, computing these sub-path probabilities once and reusing them many times over is the right thing to do. Additionally, if many of these sub-paths need not be expanded—a result of the Markov independence assumption—the efficiency cause is doubly served.

In essence, therefore, Viterbi decoding is a clever way of computing products of expressions. This need not be tied to only the HMM, which is a generative model. The same decoding idea is applicable to discriminative modelling too, which is the topic of discussion in Sub-section 3.2.5.

3.2.4 Parameter Estimation

Decoding the output sequence (in this case, POS tags) is controlled by probability values which are called parameters. We need the following: 


Initial probabilities P(N |^) and P(V  |^)
Transition probabilities P(N |N  ), P(V  |N  ), P(N |V  ), and P(V  |V  )
Lexical probabilities P(‘people’|N  ), P(‘people’|V  ), P(‘dance’|N  ), and P(‘dance’|V  )


This is exactly like the requirements of an HMM, which needs initial probabilities, transition probabilities, and emission probabilities. With the ingenious way of looking at POS tags as states and words as observations (i.e., emissions), POS tagging (an NLP task) makes itself amenable to an ML technique—the HMM. Statistical POS tagging is a leading example of task-technique matching in NLP-ML.

For the purpose of communicating the concepts of decoding, we have guesstimated the probability values in Section 3.2.2. These were reasonable guesses, but guesses nonetheless. In actual practice, these estimates are obtained from annotated data and by applying the principle of maximum likelihood. Let us choose as a representative the computation of P(V  |N  ):

(3.5)
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where #< N, V  > is the number of times the V tag immediately follows the N tag and #N is the number of times the N tag appears in the annotated corpus. Similarly, lexical probabilities also are computed as the ratio of counts. For example, P(‘dance’|V  ) is computed as:

(3.6)
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where # < ‘dance’, V > is the number of times the word ‘dance’ appears with the V tag and #V is the number of times the V tag appears in the annotated corpus.

The crucial role of annotated corpus must now be apparent. We need POS-tagged sentences, lots of them, and the more the merrier! The more the annotated corpus, the better the estimate of parameters. This fact is due to a celebrated law in probability and statistics, the Law of Large Numbers (LoLN  ). LoLN has two versions—the weak form and the strong form. Without going into specifics, suffice it to say that as the sample size grows, the sample average gets closer and closer to the population average.

The annotated corpus given to the POS tagging task is a sample from the whole population of sentences and their corresponding POS tags. The population size is potentially infinite because the number of sentences in a language is potentially infinite. We estimate P(V  |N  ) from the POS-tagged data and assume that that is the population behaviour as well. That is, if we find P(V  |N  ) = 0.8, then we guess that 80% of the time a noun is followed by a verb in the language. As we increase the annotated data size, if P(V  |N  ) value hovers around 0.8, we will grow in confidence that 0.8 indeed is the value of the parameter, as the annotated data size increases. 

Law of Large Numbers (LoLN  ) and Parameter Values

A question that may arise at this stage is, ‘LoLN is stated in terms of average, but P(V  |N  ), or P(‘people’|V ) and all such are proportions. How can we apply LOLN?’ To answer this question, we look deeper in terms of expectation and indicator variables. Indicator variables take values 1 and 0 only. In our case, the indicator variable pertaining to the computation of P(V  |N  ) is, say, ZNV , which takes the value 1 if a V indeed follows a given N and 0 otherwise. We look at the corpus and record the value of the indicator variable as it passes over each N.

Let us consider the expectation of ZNV , which is a random variable.

(3.7)
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Thus P(V  |N  ) is indeed an average and LoLN applies.

The next question could be: What probability principle operates in computing the empirical probability (i.e., the probability as evidenced from the data in the sample)? We look upon the whole corpus as an observation sequence whose likelihood is controlled by parameters such as P(V  |N  ), P(‘people’|V  ), etc. We can now set up the observation likelihood as a multinomial expression in terms of the parameters. We have to make the standard i.i.d. assumption. After differentiating the likelihood expression with respect to the parameters, we will be able to get the values of the parameters as ratios of counts. We leave working out these details as an exercise. As a help to solving this exercise, the reader is encouraged to find the probabilities of turning up the denominations 1 to 6 for a dice whose N throws yield m1 1s, m2 2s, m3 3s, and so on, up to m6 6s. We will get P(1, i.e., probability of turning up 1) = m1/N, P(2) = m2/N, and so on after maximizing the likelihood. However, it is very instructive to set up the likelihood expression, which is more than half the battle in any maximum likelihood estimation (MLE) situation. 

3.2.5 Discriminative POS Tagging 

In HMM-based POS tagging, we worked with products of transition and lexical probabilities. This happened after we applied the Bayes theorem to argmaxT(P(T |W  )) and obtained argmaxT(P(T  )P(W |T  )) = argmaxT(P(W,T  )). This means working with the joint probability of P(T,W  ). Viterbi decoding gave an efficient way of computing the product of these probabilities, where the product is taken over the positions of the observation (i.e., the word sequence). 

Optimizing based on the joint probability of words and corresponding labels (i.e., P(W, T  )) is the so-called generative model.

However, a more intuitive way is to work directly with argmaxT(P(T |W  )). Because in plain English, this reads as: Given the word sequence W as input, produce the highest probability tag sequence T as output.

That is, 

Given W: ^ w0, w1, w2, …, wn-2, wn-1, wn.

We want the best possible T: ^ t0, t1, t2, …, tn-2, tn-1, tn.

This method of finding the tag sequence is the so-called discriminative modelling. The term discriminative signifies that we are able to discriminate among various possible sequences based on a score, viz., their probability values. 

P(T |W  ) is modelled as:

(3.8)
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where Fi is the feature vector at position i of the sequence. The components of Fi are fij, j = 1, 2, 3…k (i.e., there are k features). In discriminative modelling, the focus is on positions inside the sequence and various features with respect to each position. 

We, of course, make independent assumptions here as well. We assume that the decision at position i depends only on p positions around the ith, including the ith one. For the current discussion, we will work with p = 3 (i.e., position i – 1, i, and i + 1). 

Feature Engineering

We illustrate feature engineering with the following sentence as example:

‘^ brown foxes jumped over the fence.’ 

The word to be POS tagged is ‘foxes’ at position number 2. The feature vector F2 at position 2 consists typically of the following:

A. Word-based features:

f21—dictionary index of the current word (‘foxes’): integer

f22—dictionary index of the previous word (‘brown’): integer

f23—dictionary index of the next word (‘jumped’): integer

B. POS tag-based features: 

f24—index of POS of previous word (here JJ): integer (naturally, we cannot consider the POS tag features of the current word and the next word since these POS tags are yet to be found) 

C. Morphology-based features:

f25—does the current word (‘foxes’) have a noun suffix, like ‘s’, ‘es’, ‘ies’, etc.: 1/0—here the value is 1

f26—does the current word (‘foxes’) have a verbal suffix, like ‘d’, ‘ed’, ‘t’, etc.: 1/0—0

f27 and f28 for ‘brown’ like for ‘foxes’

f29 and f2, 10 for ‘jumped’ like for ‘foxes’; here f2, 10 is 1 (jumped has ‘ed’ as suffix)

Notice that morphological features can be fairly open-ended. They can be large in number and complex depending on the language under consideration. Dravidian languages, Tibeto-Burman languages, Arabic, Hungarian, Turkish, Finnish, and so on are morphologically complex. Used with dexterity, they can disambiguate POS tags with a very high degree of certainty. For example, the ‘unnu’ suffix in the Malayalam word ‘ceyy-unnu’: English ‘does, is doing’ is a sure-shot identifier of the verb POS (VBS). 

A prerequisite for using morphological signals in POS tagging is a morphology analyser. However, high-accuracy morphology analysers do not exist for most languages of the world. Also, what morphological features would facilitate POS tagging is a matter of linguistic insight and knowledge. So, many times a suffix splitter (a much simpler tool than a full-fledged morph analyser) is used, which identifies morphemes that are unique identifiers or eliminators of POS tags. 

A Note on Morphology

Languages of the world fall at various points in the analytic-synthetic spectrum. Analytic languages are those which keep their morphemes largely separated from one another, while synthetic languages join the morphemes. Morphemes are the smallest meaning-bearing units forming a word. For example, in ‘quickly’ there are two morphemes ‘quick’ and ‘ly’. No language is completely analytic or completely synthetic. For example, to express the future tense of ‘go’ activity, English uses two morphemes separated from each other—‘will’ and ‘go’. Here, English is showing analytic behaviour. But in the case of present continuous tense expressed as ‘going’, the behaviour is synthetic—‘go’ joined with ‘ing’. Analytic languages are also called isolating and synthetic languages agglutinative. Languages are categorized as agglutinating or isolating depending on their majority behaviour with respect to morphology. For example, English is isolating, while Malayalam is agglutinative.

There is another dimension in which languages are categorized. This is fusion. When each of the bound morphemes expressing grammaticality (number, tense, etc.) or case relationships are overloaded (i.e., perform multiple roles), we say the language displays fusional behaviour. One morpheme–one function is one end of the spectrum. The other end is a small number of morphemes performing many morphological roles. Such overloading of roles per morpheme is called syncretism. In ‘will go’, English is displaying syncretism (i.e., fusion) since number and person are indeterminate here: ‘I/we/you/he/she/they will do’. Hindi is much less syncretic than English—‘jaaUmgaa’ (first person, singular number, future tense of ‘go’), ‘jaaoge’ (second person, singular number, future tense of ‘go’), ‘jaayegaa’ (third person, singular number, future tense of ‘go’).

Figure 3.9 shows the categorization of languages according to isolating/agglutinative and fusional behaviour. It is important to remember no language is 100% isolating/agglutinative, nor are they 100% fusional/non-fusional. Vietnamese and Chinese are mentioned as tonal languages. Rising, flat, and falling tones form another dimension of variability for words. Meaning and grammaticality change with tones in tonal languages. 
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Figure 3.9  Categorization of languages as per their morphological properties.



The relevance of morphology to POS tagging cannot be overemphasized, especially for morphologically rich languages. In the Marathi sentence ‘gharaasamorchyaanii saMgitle’  (English: ‘the one in front of the house said’), the suffix ‘nii’ is a giveaway for the noun POS tag. It is, however, another matter that such a coarse tag as just one noun for the string which conceals a whole phrase is not very useful for downstream applications.

We will now continue discussing feature engineering for POS tagging.

D. Syntactic features of words:

f2,11—Capitalization? 1/0—here 0 (‘foxes’ is not capitalized)

f2,12—Length: integer—5 (length of the string ‘foxes’ is 5)

f2,13 —Number of syllables: integer—2 (‘fox’ ‘es’) 




Similarly, three features each for ‘brown’ (f2,14, f2,15, f2,16) and ‘jumped’ (f2,17, f2,18, f2,19). 

E. Semantic features:

This is based on the word’s meaning.

f2,20—is the word denoting a place/organization/person (i.e., a named entity)? 1/0—0 (foxes is not an NE)

f2,21—is it animate? 1/0—1 (‘foxes’ is animate)

Similarly, two features each for ‘brown’ (f2,22, f2,23) and ‘jumped’ (f2,24, f2,25). 

This was a glimpse of what is done in feature engineering, undoubtedly a very important and intricate work in NLP. For brevity, we omitted other features like prefixes which also give a lot of clues about the POS tag.

We now discuss how these features are used to obtain the POS tags.

Modelling P(T |W  )

The probability that the tag at a position i in the word sequence W: ^ w0, w1, w2, …, wn-2, wn-1, wn. is t is given as:

(3.9)
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where S is the set of tags. The sequence probability of a tag sequence T is as per Eq. (3.8), the product of P(ti|Fi), i varying over the positions. 

The denominator of Eq. (3.9) is a normalizing factor ensuring the values computed for different tags form a probability distribution. λj’s are the weights of the features, which give the relative importance of the features. For example, in deciding whether an English word is a verb, the suffix ‘-ed ’ must have a considerable weightage. 

Obtaining the highest probability tag sequence T * can become an exponential complexity computation since there are |S|n +2 possible sequences, where n is the number of words in the sequence with 2 added to account for the sentence beginner hat (‘^’) and the sentence finisher dot (‘.’). Beam search or Viterbi search is employed to obtain the best possible sequence. Viterbi decoding was explained with illustration in Section 2.4. Here, we illustrate beam search-based decoding. 

Beam Search-Based Decoding

The highest probability POS tag sequence is obtained by beam search which we explain with an example:

^ The brown foxes jumped.

Let us assume the following tags for the purpose of the discussion:


D – determiner, as in case of ‘the’

A – adjective, as in case of ‘brown’

N – noun, as in case of ‘foxes’, ‘fence’

V – verb, as in case of ‘jumped’



Let the decoder start at the state ‘^’, which denotes start of the sentence. 

Step 1:

The word ‘the’ is encountered. First, there are four next states possible corresponding to four tags, giving rise to four  possible paths:








	
^ D


	
-P1





	
^ A


	
-P2





	
^ N


	
-P3





	
^ V


	
-P4







We call these paths P1, P2, P3, P4. The probabilities of these paths can be found easily by applying Eqs. (3.8) and (3.9) since all variable values in these formulae are known. The feature values fij’s and weights λj’s are obtained from the training corpus. 

Now, comes the main point of beam search. In beam search, we have to commit to a beam width. Beam width is an integer which denotes how many of the possibilities should be kept open. Let us suppose that we decide the beam width is 2. This means that out of all the paths obtained so far, we retain only the top 2 in terms of their probability scores.

We will assume here that we are lucky to be able to always get the actual linguistically viable sub-sequences as the top two choices. ‘The’ is a determiner and (we assume) we get the two highest probability paths for ‘^ The’ as P1 and P3. 

Step 2:

‘brown’ is the next word. P1 and P3 are extended as:








	
^ D D


	
-P11





	
^ D A


	
-P12





	
^ D N


	
-P13





	
^ D V


	
-P14





	
^ N D


	
-P31





	
^ N A


	
-P32





	
^ N N


	
-P33





	
^ N V


	
-P34







Among these, we retain the two highest probability paths, discarding others. Let us assume they are the ones corresponding to correct/almost-correct sub-sequences. ‘brown’ is an adjective, but can be a noun too (e.g., ‘the brown of his eyes’).








	
^ D A


	
-P12





	
^ D N


	
-P13







Step 3:

The next word is ‘foxes’. As such, this word can be both a noun and a verb (verb: ‘he was foxed by their guile’). From P12 and P13, we will get eight paths, but retain only two, as per the beam width.








	
^ D A A


	
-P122





	
^ D A N


	
-P123







We assume only the paths coming from P12 survive. ‘A’ and ‘N ’ are the second and third tags, respectively; so P122 and P123.

Step 4:

The final word is ‘jumped’. This can be both a past participial adjective (‘the jumped queue’) and a verb. Again, retaining only two top probability paths, we get:








	
^ D A N A


	
-P1232





	
^ D A N V


	
-P1234







Step 5: 

On encountering a dot, beam search stops. We assume we get the correct path ^ D A N V., probabilistically. 

The question now is, ‘How does one go about fixing the beam width?’ An understanding of the task helps here. Suppose we are doing English POS tagging and are working with the Penn POS tagset, which has approximately 40 tags. There are finer categories under noun, verb, etc., such as NNS for plural NNP for proper noun, VAUX for auxiliary verb, VBD for past tense verb, and so on. A word can have, on average, at most three POSs. Now, allowing for four finer category POSs under each of the broad categories and with support from a lexicon that records the broad category POSs, a viable beam width for POS tagging could be 12 (= 3 × 4).

Fixing λ’s

It must be apparent by now that feature design and weights λ are at the heart of discriminative POS tagging, as described in the steps above. λ’s are fixed by a gradient descent algorithm called iterative scaling, where λ’s are initialized to random values and an appropriate loss function is minimized in steps, thereby yielding the required values of λ’s.

Why is the probability expressed the way it is in Eq. (3.9)? One can show that this is the expression which makes the least number of assumptions on the model. In other words, Eq. (3.9) maximizes the entropy of the conditional probability distribution of the tag sequence given the word sequence, subject to any constraints. In the current situation, the constraint is that the expectation of the features as per the model equals the expectation as per the data (i.e., the empirical expectation).

The discriminative model we described here is called the maximum-entropy Markov model (MEMM). MEMM and its successor for sequence labelling conditional random field (CRF) are both discriminative models directly optimizing the conditional probability P(T |W  ), unlike the generative model which optimizes the joint probability P(T, W  ). MEMM and CRF give elegant ways of exploiting features of the language phenomena occurring at a position and its neighbourhood. HMM does not have a simple way of making use of features such as subword level information (prefixes and suffixes of words) and other syntactic and semantic properties. When the training data is small, when there are unseen words in the test corpus, and when the language in question is morphologically rich, discriminative is the way to go. 

In the following section, we will learn about another discriminative method of POS tagging, which is neural network-based tagging. We first describe how a neural net can compute probabilities which ultimately are the scoring mechanisms in the ambiguous world of NLP.


  □  3.3Neural POS Tagging 



Neural approaches to shallow parsing consider different kinds of neural models like the following:


• Feed-forward neural networks

• Recurrent neural networks

• Long short-term memory (LSTM) networks

• Bi-LSTM networks

• Transformers


We have described some of these models in Chapter 2. 

3.3.1 Foundational Considerations 

One of the fundamental tasks of neural nets is classification. It should be clear from the discussions in preceding sections that at every position of the word sequence, a decision is made regarding what the POS tag at that position should be. This decision is probabilistic in the sense that at any position visited so far, the highest probability subsequence is maintained. 

The question that arises at this point is, ‘How does a neural net compute probability?’ This is done through sigmoid neurons for a two-class classification problem or through softmax neurons for a multiclass classification problem. 

Sigmoid Neurons

A sigmoid neuron is shown in Figure 3.10. For a two-class problem, Oi gives the probability of belonging to one of the two classes (a design decision), and 1–Oi is the probability of belonging to the other class. In this context, to explain the role of sigmoid, suppose we are solving a two-class problem of whether the word at a position in a sentence is a noun or not. Then we can apply the sigmoid neuron and find the best parameter values that minimize the cross-entropy loss on the training data. The cross-entropy loss is given by Eq. (3.10):



(3.10)
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Figure 3.10  Sigmoid neuron and the associated computation rule. Oi which is computed as sigmoid of neti lies between 0 and 1, both included. Xi is the input vector at position i. The parameters wj (components of W  ) are learned by backpropagation and gradient descent on the loss function, which is typically cross entropy.


where P is the target distribution of the random variable x and Q is the observed distribution. The random variable x can take two values 1 and 0, corresponding to the two classes noun and non_noun,respectively. 

Now, given the sentence, ‘people laugh’, suppose we get the sigmoid output as 0.2 for ‘people’, meaning thereby that the probability of ‘people’ being noun is 0.2. The target distribution at position 0 is <1, 0> while the obtained distribution is <0.2, 0.8>. Clearly the sigmoid neuron needs training so that probability of noun is considerably higher than that of non_noun. The cross-entropy loss in this case is computed as follows:





Classes: Noun (1), Non_Noun (0)

Input sentence: ‘People laugh’

x : the random variable taking value 1 or 0

P(x): target distribution, <1, 0> 

Q(x): obtained distribution, <0.2, 0.8>




Therefore,

H(P, Q) = -1[log2(0.2)] - 0[log(0.8)] = -log2(2/10) = log2(10/2)

With training, the cross entropy can be made smaller and smaller. It can be proven that this way of cross-entropy loss minimization is equivalent to maximizing the probability of the observation (i.e., maximizing the likelihood of the training data). 

Softmax Neurons

When the number of classes increases, the basic neural computing device is softmax neurons. In fact, softmax–cross-entropy combination is ubiquitous in NLP, with almost all NLP tasks employing a softmax function at the outermost layer for collecting the output and using cross-entropy loss minimization for fixing the weights in neural nets. 

Figure 3.11 shows a neural net with just input and output layers. A softmax function operates on a vector and returns a vector which is a probability distribution. A two-neuron softmax function is equivalent to a sigmoid function. For POS tagging, the input vector at position i in the sentence is Xi. The parameters (i.e., the weight values of the neural network) are learned by backpropagation and gradient descent on the loss function, which is cross entropy. 
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Figure 3.11  Softmax neurons and their associated computation rule. Oi which is computed as softmax of NETi lies between 0 and 1, both included. Note that NET i is capitalized, showing that it is a vector. The input and output to a softmax function are vectors, with each component in the output vector being the closed interval of [0, 1] and the sum of all components is 1. 



Softmax and POS Tagging

Let us discuss the functioning of softmax for POS tagging with the example of the sentence ‘The brown foxes jumped’ (discussed in Section 3.2.5 on discriminative POS tagging), with the POS tags being: 


D—determiner like ‘the’

A—adjective like ‘brown’

N—noun like ‘foxes’, ‘fence’

V—verb like ‘jumped’



Now, at each position in the sentence, we can have a neural network with the output layer as softmax computes the probability of the four classes, and the highest probability subsequence so far will determine the final tag subsequence. The four output neurons will each stand for one of the four classes. Since each position in the sentence can have one and only one tag, the target distribution will be a four-bit one-hot vector, with exactly three 0s and one 1. The computation of cross entropy will be exactly like what was done in the case of a sigmoid neuron, with the summation in the cross-entropy expression going over four classes instead of two. In case of the observed distribution diverging by a significant amount from the target distribution, many epochs of training will be required to bring down the cross-entropy loss to an acceptablelimit.

The loss minimization is done by backpropagation and gradient descent and updating the network weights iteratively. We know that backpropagation is a greedy algorithm since gradient descent changes the loss function in one way—decrementing. Greediness is built into gradient descent, so backpropagation can get stuck in local minima, thereby giving incorrect weights. However, with layers and layers of large numbers of neurons and more and more amount of data, neural POS tagging can score over statistical counterparts, both generative and discriminative. This has been the experience in multiple sequence labelling tasks in NLP, most notably machine translation. 



Recurrent Neural Nets, Decoding, and POS Tag Sequence Labelling

The discussion under ‘Softmax and POS Tagging’ points to maintaining a memory of POS tags generated so far. The problem of sequence memory is well tackled by recurrent neural nets (RNNs) which form the foundation of Transformers (refer Chapter 2). Modern NLP is almost wholly dependent on Transformers which use word embeddings, and self and cross attention for various tasks. We illustrated decoding in generative models and discriminative models by Viterbi decoding and beam search, respectively, which are based on argmax-based modelling. The function on which argmax operates is the probability P(T |W  ), where W is the word sequence and T is tag sequence. The key point is that at each position all the partial sequences created and maintained are lengthened by one tag, giving rise to S2 new sequences in the case of bigram-based Viterbi decoding and KS sequences in the case of beam search-based decoding, where |S| is the size of tag repository and K is beam size.

Since neural nets also compute probability, it is easy to see that argmax computation is done in neural POS tagging as well. P(T |W  ) is modelled as:

(3.11)

P(T |W  ) = P(^t0, t1, t2, …, tj|EN, SA, CA, ^t0, t1, t2, …, tj-1)

where it is seen that P(⋅) depends on

EN = encoding of W 

SA = self-attention in W

CA = cross attention from the partial tag sequence up until (j - 1)th position to the input, the partial sequence till the (j - 1)th position 

3.3.2 A Simple POS Tagger Implementation Using Transformer

Transformers, which were covered in Chapter 2, implement the above mechanism for POS tagging. Figure 3.12 shows a piece of code2 which is BERT-based and does POS tagging. Recall that BERT stands for Bidirectional Encoder Representations from Transformers. BERT is a language model trained on the Transformer encoder and considers the bidirectional context in the sentence, that is, it attends both the right and left contexts while processing a word in the sentence. BERT is a general-purpose language model that can be fine-tuned for many downstream NLP tasks including POS tagging.
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Figure 3.12  BERT-based code for POS tagging.



The code makes use of the HuggingFace Transformer implementation of BERT fine-tuned for POS tagging. First, the code loads the tokenizer and the model into the system. Then, the model and the tokenizer are passed into the token classification pipeline. The pipeline takes a sentence as input, tokenizes it, and passes the tokenized sentence to the model. We explain in detail the classes mentioned in thecode:

AutoTokenizer: This class is a base class for all tokenizers defined in the huggingface transformers library. The class automatically recognizes the desired tokenizer based on the model name passed as an argument to the from_pretrained() function. In this case, the BertTokenizer class is obtained since the BERT-base model is being used.

AutoModelForTokenClassification: Similar to AutoTokenizer, this class automatically recognizes the desired model based on the model name passed as an argument to the from_pretrained() function. The BertModelForTokenClassification class is obtained, which resembles the BERT architecture for sequence labelling tasks.

TokenClassificationPipeline: This class creates a pipeline for token classification. It expects a tokenizer and a model as input. A pipeline is created such that an input sentence is first passed through the tokenizer, and then the tokenizer output is passed to the model for sequence labelling. This pipeline expects the model to have the token classification architecture, so choosing the appropriate model class is crucial.

In the code, the above three classes are first imported from the huggingface transformers library. The model_name variable is set, indicating the pre-trained model needed for the task. Note that any other model with similar token classification properties can also be used instead of BERT. Next, the tokenizer and the model using the from_pretrained() function defined in the auto classes are obtained. This function will automatically select the appropriate tokenizer and model classes for us based on the model name passed to it. Now that the tokenizer and model classes are in place, a pipeline is created using the TokenClassificationPipeline class. The pipeline will expect a sentence as input, so we pass a sample sentence to it and obtain POS tags as the output. For the input sentence ‘We are going to the house party’, the output tags are shown in Figure 3.13.
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Figure 3.13  Output corresponding to the code and input of Figure 3.12.



Each line corresponds to a token in the input sentence. The word in the output represents a particular token, and the entity in the output represents the POS tag assigned to the corresponding word. Each POS tag also has a confidence score associated with it (shown as score in the output). The index tells the position of the token in the sentence, and the start and end indicate the beginning and the ending index of the token in the sentence, respectively.




Taking a look at the second line, we see that the second token in the sentence is are which is categorized as a VBP which represents a non-third person singular verb in the Penn Treebank dataset. The model assigns a confidence score of 0.99920 to this categorization (which is pretty high).


  □  3.4Chunking



Following the discussion on POS tagging, we shift attention to another task in shallow parsing: chunking. Chunking is the task of identifying non-recursive groups of words in sentences. Thus, in the sentence:

The little boy who lives in Delhi came here yesterday

The noun chunks (NC) are


The little boy

Who

Delhi

Here



Notice that the first NC forms part of the NP: 

The little boy who lives in Delhi

This NP recursively contains other NPs like ‘the little boy’. Chunks are always non-recursive.

All the discussions on techniques of POS tagging can be applied to chunking too, albeit in a much simpler setting. There are only two tags in chunking—B and I corresponding to ‘begins a chunk’ and ‘inside the chunk started by B’, respectively. Thus, compared to POS tagging, chunking typically has a much higher accuracy. Also, since there are only two tags, the reliance on previous labels (B/I  ) is not very fruitful. On the other hand, word properties like length, affixes, syntactic class (POS), semantic class (animacy, etc.), and so on are too strong a set of clues for B-I disambiguation to let go of. Hence, while POS tagging sees wide application of generative models, chunking is almost always discriminative model-based, making use of morphological, syntactic, and semantic clues (refer Section 3.2.5). 

Chunking as a Sequence-to-Sequence Task

A sequence-to-sequence task is mathematically a mapper of form f : In → Out, where In signifies the input sequence and Out signifies the output sequence, both are of variable lengths and it need not be the case that In and Out are of the same length. Chunking maps a sequence of words to a sequence of chunk tags, such as B-NC (beginning of noun chunk), I-NC (inside a noun chunk), and so on. 

We illustrate in Figure 3.14 neural chunking through a very simple encoder–decoder architecture (refer Chapter 2). An encoder consisting of LSTM (or equivalently Bi-LSTM)  runs over the entire sentence and forms an encoding. In the decoder, we would have an LSTM (or Bi-LSTM) coupled with a dense layer, which has a softmax activation. The task of the dense layer is to predict the probabilities over the chunk tags, where the tag with the highest probability is output for the particular time-step.
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Figure 3.14  Noun chunking for the sentence ‘I read the book’ using simple encoder and decoder. The noun chunks are ‘I’ (B_NC) and ‘the book’ (B_NC and I_NC, respectively). ‘read’ is a verb and so gets the ‘O’ (‘other’) tag.


Summary

This chapter described the first NLP task in this book—shallow parsing. Shallow parsing attempts to extract shallow ‘meanings’ of words in the form of POS tags and chunks the words belong to. We describe the three generations of NLP and approaches that are typical of these generations for POS tagging and chunking. The intuition of the impossibility of attaining 100% precision and 100% recall for POS tagging was given, paving the way for probabilistic POS tagging through generative and discriminative models. The now classic HMM-based POS tagging (the generative framework) was presented along with a step-by-step depiction of Viterbi decoding. This was followed by MEMM-based formulation of POS tagging, along with feature engineering. Morphological, syntactic, and semantic features help disambiguate the tag at any position. The final part is on neural POS tagging and chunking. The critical role of softmax as probability computer and neural net doing a probabilistic classification of information at each position of the input sentence to generate the POS label was discussed. This paved the way for describing a Transformer-based solution for POS tagging.

Chunking followed next. Non-recursive word groups and B-I tags with chunk types formed this part of the text. Discriminative chunking leading to an encoder–decoder-based neural chunker ended the chapter.

While explicit shallow parsing techniques may be linked only indirectly with downstream NLP tasks, the conceptualization introduced in this chapter is an essential reading and understanding for any student of NLP, showing as it does the importance of a foundational NLP task and the harnessing of ML for this task.


Review Questions

1. Prove rigorously that a two-component softmax function is equivalent to a sigmoid function.

2. Derive the expressions for the derivative of a softmax function.

Select the Most Appropriate Option

1. An NLP researcher is studying HMM-based POS tagging and has to decide between Viterbi and beam search for decoding the POS tag sequence. The researcher deduces that computational complexity of Viterbi decoding is O(|S|2L), where S is the set of tags and L is the length of the word sequence. The researcher is assuming that the tag at a position depends only on the __________.

a.previous two tags

b.word at that position

c.features associated with that position

d.previous tag

2. Penn POS tagset is used as the basis for the POS tagset of many languages. Typically, Penn tagset is expanded for a language by introducing new tags. 

Suppose a language L has 49 tags (Penn has about 40). An NLP researcher is studying HMM-based POS tagging and has to decide between Viterbi and beam search for decoding the POS tag sequence. The researcher experimentally finds that until K (the beam width) crosses a particular threshold, the time taken by beam search is no worse than that by Viterbi. The threshold value is __________.

a.5

b.6

c.7

d.None of the above

3. An input vector I of dimension N is passed to a softmax function to get the vector S. I vector is strictly monotonic, that is, for any pair <i, i +1>, I [i +1]>I [i]. Which of the following is/are true?  

a.S is strictly monotonic.

b.Dimension of S is N +1.

c.If I [i] is negative, so is S[i].

d.The smallest value in I will give rise to the smallest value in S too.

4. Consider a two-output neural net with softmax at the output layer. Let D1 be the derivative of the output of an output neuron with respect to its own net input and D2 the derivative of the same output neuron with respect to the net input of the other neuron. Which of the following is/are false (‘/’ indicates division and ‘.’ indicates multiplication)?

a.D1 +D2 is always greater than 0.

b.D1/D2 is 1. 

c.D1D2 is non-positive. 

d.D1D2 is non-negative.

5. There is a famous saying, ‘Time flies like an arrow’. Assume there are only four tags:

N: noun, V: verb, P: preposition, D: determiner

Following are the tags for the words:

Time: N, V; Flies: N, V; Like: V, P; An: D; 

Arrow: N

The maximum number of tag sequences for the sentence is __________.

a.8

b.6

c.10

d.None of the above


6. Assume that for a POS tagging situation, there are only four tags: ‘^’ (sentence beginner), ‘N ’ (noun), ‘V ’ (verb), and ‘.’ (sentence finisher). P(B|A) gives the probability that B follows A. The transition probabilities are given

P(^) = 1.0

P(N |^) = 0.8, P(V  |^) = 0.2, P(.|^) = 0.0

P(N |N  ) = 0.2, P(V  |N  ) = 0.6, P(.|N  ) = 0.2

P(V  |V  ) = 0.1, P(N |V  ) = 0.5, P(.|V  ) = 0.4

There are only two words: ‘Men’ (call it ‘M ’) and ‘Jog’ (call it ‘J ’) in the vocabulary. Also ‘^’ and ‘.’ function as both tag and vocabulary words. The lexical probabilities are

P(^|^) = 1, P(.|.) = 1

P(‘M ’|N  ) = 0.9, P(‘J ’|N  ) = 0.1

P(‘M ’|V  ) = 0.1, P(‘J ’|V  ) = 0.9

The probability of the sentence ‘^ Men jog.’ (ignore quotes) is __________.

a.approx. 0.54

b.approx. 0.36

c.approx. 0.72

d.approx. 0.16

7. Assume there are the following tags: N(noun), V(verb), J(adjective), R(adverb), P(preposition), D(determiner), C(conjunction), U(punctuation), and O(others). Given the sentence, ‘The old ash tree near the river stood tall and slender’ in the training data (ignore the quotes), which of the following can be true? 

a.There are 12 tags for the sentence.

b.Three of the tags are N.

c.Two of the tags are N.

d.Three of the tags are R.

8. Assume that the word ‘bank’ has two senses in the noun POS and one sense in the verb POS. Similarly, assume ‘ash’ has three senses as a noun and one as a verb. Assume also that each of these two words has only two POS tags. There are two WSD systems—D1 and D2. D1 works on POS-tagged input sentence, while D2 works on non-POS-tagged input. Given the input sentence, ‘Some ash fell on the river bank’ (assume only ‘ash’ and ‘bank’ are ambiguous and none else), the number of options D1 and D2 have to select from, respectively, are __________.

a.6, 12

b.12, 6

c.4, 3

d.3, 4

9. A model of WSD factoring in POS tags can be __________.

a.S* = argmaxS[P(S,w,C,T  )]

b.S* = argmaxS[P(w)P(S,C,T |w)]

c.S* = argmaxS[P(S)P(C,T |S,w)]

d.None of the above

where w is the target word, C is the context for w (the words in the sentence w is part of), T is the tag sequence for the sentence, S is the sense, and S* is the selected sense.

Which of the above is/are correct?

10. A training corpus has N tokens, V unique words, and T tags. It is required to find the ‘best possible’ (as per corpus) POS tag t of a single word w (w and t belong to the set of V unique words and T tags, respectively). A V × T matrix is constructed with counts of all <w,t > combinations. Which of the following statement(s) is/are false? 

a.A discriminative model D will maximize P(t|w) and a generative model G will maximize P(t, w).

b.D will have to scan the whole of V × T matrix.

c.G will have to scan the whole of V × T matrix. 

d.D will have to scan the whole column corresponding to t in the V × T matrix.

11. ‘cows cows cow cow cows’ is a sentence wherein two parts of speech of ‘cow’ and two senses appear. In this sentence the animal sense of ‘cow’ as a noun and the ‘intimidate’ sense of ‘cow’ as verb are used. Which is the correct POS tag sequence for the sentence?

a.NNS NNS VB VB NNS

b.NNS VBS NN VB NNS

c.NNS NNS VB NN VBS

d.NNS VBS VB NN NNS

12. The word ‘unprofitability’ consists of the root word ‘profit’ and affixes ‘un’, ‘able’, and ‘ity’ (with phonetic adjustments at the boundaries). This kind of morpheme segmentation is brought about by B-I sequence labelling meaning ‘beginning’ and ‘inside’. Thus ‘un profit abil ity’ will be labelled as: 

BI BIIIII BIII BII

Now, ‘unforgetfullness’ will have __________.

a.5 Bs and rest Is

b.4 Bs and rest Is

c.2 Bs and rest Is

d.None of the above
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Answers to Objective Questions

1.(d)

2.(c)

3.(a), (d)

4.(a), (b), (d)

5.(a)

6.(d)

7.(a), (b), (c), (d)

8.(a)

9.(a),(b)

10.(d) and (d)

11.(a)

12.(b)


 

1https://www.ling.upenn.edu/courses/Fall_2007/ling001/penn_treebank_pos.html

2https://huggingface.co/QCRI/bert-base-multilingual-cased-pos-english














	 

	 




	CHAPTER
4

	Deep Parsing








To shift the structure of a sentence alters the meaning of that sentence, as definitely and inflexibly as the position
of a camera alters the meaning of the object photographed.

Joan Didion






Learning Objectives

After reading this chapter, you will be able to


• Represent sentences as parse trees.

• Understand parsing via the X-bar theory.

• Execute steps in top-down and bottom-up parsing for example sentences.

• Distinguish between constituency and dependency parsing.

• Explain the role of recursive neural networks in deep parsing.






In Chapter 3, we discussed shallow parsing which involves identifying parts of speech of words and also chunking (i.e., grouping words that form non-recursive phrases). For example, given the sentence: 

The brown fox sat in front of the fence(4.s.1; ‘s’ indicates ‘sentence’)

We will get the POS-tagged sequence as

The_DT brown_JJ fox_NN sat_VBD in_IN front_NN of_IN the_DT fence_NN

(4.t.1; ‘t’ indicates ‘POS-tagged’)

and the chunked sequence as


The_DT_BNC brown_JJ_INC fox_NN_INC sat_VBD_BVC in_IN_BPC front_NN_IPC
of_IN_IPC the_DT_BNC fence_NN_INC

(4.n.1; ‘n’ indicates ‘chunked’)


There are two noun chunks (NC) -the brown fox and the fence-, one verb chunk (VC) -sat-, and one preposition chunk (PC) -in front of-. A chunk extends from a B-symbol to the next B-symbol. 




However, the work of syntax does not stop with POS and chunk. Sentences have underlying deep structures called parse trees. The parse tree for sentence 4.s.1 is shown in Figure 4.1.

[image: ]
Figure 4.1  Parse tree for 4.s.1. S: sentence, NP: noun phrase, VP: verb phrase, D: determiner, ADJP: adjective phrase, JJ: adjective, NN: noun, VINT: intransitive verb, VF: verb form, VBD: past tense verb, PP: preposition phrase, PG: preposition group.



The parent–child relation in the parse tree has the following meaning. Each parent → child(ren) subtree is a rewrite rule. Thus,

S → NP VP

means a sentence consists of a noun phrase (NP) and a verb phrase (VP). NP and VP are then expressed in the form of further sub-phrases.


  □  4.1Linguistics of Parsing



The need for invoking deep hierarchical structure for sentences, which superficially are a linear sequence of words, arose when such language phenomena as enumerated below had to be explained:

1. Interrogative formation from declarative sentences: For the sentence

The child is smiling now(4.s.2)

 the question form is

Is the child smiling now?(4.q.1; ‘q’ indicates question)

However, for the sentence

The child who was crying a while ago is smiling now(4.s.3)

the question form is

Is the child who was crying a while ago smiling now?(4.q.2)

‘is’ travels over and past the group of words, ‘The child which was crying a while ago’ and sits in front of the rest of the sentence to form the question.

2. WH-word replacement: In response to the question

Who is smiling now?(4.q.3)

the answer is

The child who was crying a while ago(4.c.1; ‘c’ indicates constituent)

The wh-word ‘who’ targets the group of words in 4.c.1.

In response to the question 

What is the child who was crying a while ago doing?(4.q.4)

the answer is

She is smiling now(4.s.4)

 ‘is smiling now’ is the group of words targeted by ‘what’.

In response to the question

What was the child who is smiling now doing?(4.q.5)

the answer is 

She was crying a while ago(4.s.5)

‘was crying a while ago’ is the target of ‘what’.

3. One-replacement: In the sentence

 The child who was crying a while ago is smiling now; not the one who was sleeping a while ago(4.s.6)

 the indefinite pronoun ‘one’ refers to ‘the child’.

But in the sentence

The child who was crying a while ago is smiling now; this one is surely happy!(4.s.7)

 ‘one’ refers to the whole group ‘The child who was crying a while ago’.

4. Fronting, focus, topicalization: These devices are employed for emphasis or for drawing attention to particulars

see!… is smiling now…the child who was crying a while ago!!(4.s.8)

The group ‘is smiling now’ has moved forward—fronted—drawing attention to the smiling activity.

By now, it should be clear that there is a linguistic reality to the existence of groups of words which bind together strongly. Such a group (1) presents a unified front to the main auxiliary verb to jump over for question formation, (2) stands up as an answer to a wh-question, (3) provides lexical material for a pronoun to bind to, (4) moves around places for emphasis, and so on.

Groups of words as described above are called constituents; they are also called phrases. Besides constituents, there is another way of uncovering the internal structure of sentences (viz., dependencies). The dependencies are between heads and modifiers, both of which will be discussed in the following section.

4.1.1 Heads and Modifiers

Heads and modifiers play a fundamental role in capturing the structure of sentences. A phrase consists of a head and one or more modifiers. In the phrase, ‘The brown fox’, the head is ‘fox’ and the modifiers are ‘the’ and ‘brown’. In the phrase, ‘The child who was crying a while ago’, the head is ‘child’, while the modifiers are ‘the’ and ‘who was crying a while ago’. Modifiers that come before the head are called pre-modifiers and those after are called post-modifiers. In English, pre-modifiers of nouns are typically determiners and adjectives. Post-modifiers of nouns are typically preposition phrases (PPs: ‘the boy with long hair’) and clauses (‘the boy who plays football’). Phrases and clauses are distinguished by the fact that the latter have finite verbs (i.e., verbs that carry inflections of tense). Determiners themselves can be of various types like definite articles (‘the’), indefinite articles (‘a/an’), existential quantifiers (e.g., ‘some/a few’), universal quantifiers (e.g., ‘all/every/each’), definite pronouns (e.g., ‘this/that’), possessive pronouns (e.g., ‘my/your/their’), and so on. Adjectives can be quantitative (e.g., ‘three/seventh/many’) as well as qualitative (e.g., ‘red/fast/steady’). Of course, different types of pre-modifiers can be combined as in ‘the brown fox’ where a definite article has been combined with an adjective. Similarly, different types of post-modifiers can be combined as in ‘the boy with long hair who plays football’ where a PP has been combined with a clause. Note that ‘the boy who plays football with long hair’ is odd. This will be explained in Section 4.1.4 on X-bartheory.

Head–modifier relation is expressed by directed arcs as shown in Figure 4.2. The labels on the arcs are the types of relations. For example, ‘mod’ is a very generic relation specifying a modifier. ‘obj’ specifies an object. Prepositions are thought to take objects. Thus, there is a head–modifier relation between ‘boy’ and ‘with long hair’, and an object relation between ‘with’ and ‘hair’. ‘hair’ in turn is modified by ‘long’.

[image: ]
Figure 4.2  Dependency graph showing head–modifier relations for the phrase ‘the boy with long hair’. A head–modifier relation is depicted by a directed arrow from the head to the modifier; ‘with long hair’ modifies ‘boy’, so there is an arrow from ‘boy’ to ‘with’. Note also that ‘long hair’ itself is a phrase with ‘hair’ as the head and ‘long’ as the modifier.


Both the head and the modifier may themselves be phrases, and phrases in turn are composed of smaller phrases. Let us introduce the terminology head-complex and modifier-complex in such cases. Whatever the length of the phrase, there has to be a head and zero or more modifiers. When a head and its modifier are complexes, the head of the modifier-complex modifies the head of the head-complex. The dependency graph of the phrase ‘the little boy with long hair’ is shown in Figure 4.3.



[image: ]
Figure 4.3  Dependency graph for ‘the little boy with long hair’; ‘boy’ is the head of the head-complex ‘the little boy’ and ‘with’ is the head of the modifier-complex ‘with long hair’; so, there is an arrow from ‘boy’ to ‘with’.



4.1.2 Relationship between Constituency and Dependency

Though seemingly different, constituency and dependency are related. Sentences are recursively divided into phrases and sub-phrases (i.e., constituents and sub-constituents). Thus, we get a tree diagram rooted at S, the symbol for the sentence. In dependency also, we get a tree rooted at the main verb of the sentence. Figures 4.4 and 4.5 illustrate the constituencies and dependencies of the famous sentence 

I saw a boy with a telescope(4.s.9)

The sentence is ambiguous since it is not clear who has the telescope—‘I’ or ‘the boy’! We show the two sets of trees in Figures 4.4 and 4.5.


[image: ]
Figure 4.4  One of the two constituency and dependency trees of ‘I saw a boy with a telescope’, with the meaning, ‘I have the telescope’. S stands for sentence, which consists of a noun phrase (NP) and a verb phrase (VP). For simplicity, we denote both pronouns and nouns with N. Other symbols are V: verb, Det: determiner, PP: preposition phrase, P: preposition. The dependency tree is rooted at the main verb ‘saw’. ‘saw’ is linked with ‘I’ via the agent (agt) relation, with ‘boy’ via the object (obj) relation, and with ‘with’ via the modifier (mod) relation.


[image: ]
Figure 4.5  The other constituency and dependency tree of ‘I saw a boy with a telescope’, with the meaning, ‘the boy has the telescope’.



The bridge-linking constituency with dependency is depicted in Figure 4.6. The constituency-meaning of Figure 4.6 is that phrase A is composed of phrases B and C. This is written using a context-free grammar (CFG) as:

[image: ]
Figure 4.6  A is a constituent (phrase) with sub-constituents (sub-phrases) B and C.



A → B C

Parent–child relationship in a constituency tree means that the child is a sub-constituent of the constituent denoted by the parent. The order B-C means that C follows B textually.

Now comes a very important rule:

Head–Modifier Rule:

Whenever a node has two or more children, which are called sister nodes, one of the sisters is the head and rest are modifiers.


Thus, in Figure 4.6, one of B and C is the head, and the other is the modifier. 

The head–modifier rule is the heart of syntax and the start of semantics. One of the foundations of syntax–semantics interaction is the principle of compositionality, which is a part of the framework built by 20th-century logicians and semanticists like Bertrand Russel, Montague, and others, called formal semantics. The principle of compositionality states that the meaning of A (Figure 4.6) is the composition of the meanings of B and C. One of the meaning constituents is the relationship between A and B which is very concrete (viz., head–modifier).






Therefore, given a constituency tree, we invoke the head–modifier rule recursively to create the dependency tree. Complementarily, given the dependency tree, we keep collecting the head–modifier pairs, building bigger and bigger constituents, and eventually landing S.

One question that may arise is, ‘Why are constituency and dependency trees, TREES?’ Let us first answer this for constituency. A constituent can be part of exactly one bigger constituent and no more. Even if there is ambiguity, given a single interpretation, any constituent can form part of one and only one constituent. For dependency also, any child word can be linked to exactly one parent word, where the child is the modifier of the parent (head). A modifier can modify exactly one head and no more.

4.1.3 Phrase Structure Grammar Rules

We have thus far been using rules of the form A → B C without precisely and completely defining them. Such rules specify the grammar of a language descriptively. There have been many different frameworks for expressing syntactic rules. We will describe here what is called phrase structure grammar (PSG) and a specific kind of PSG called X-bar theory.

PSG purports to express syntactic regularities by rewrite rules of the form

A → B C

This means that a ‘pattern’ A can be replaced by two patterns B and C in that order. Conversely, patterns B and C can be combined to generate A. Thus, given

S → NP VP
VP → V NP

starting from the sentence symbol S, we can descend down into the structures of noun phrase (NP) followed by verb phrase (VP). Conversely having identified an NP and a VP in that order, we can combine them to write the S symbols.

The phrase structure rule VP → V NP expresses the syntactic regularity that a verb phrase may be composed of a transitive verb followed by a noun phrase and strictly in that order. The rule is typical of the so-called SVO (subject-verb-object) languages like English. For SOV (subject-object-verb) languages like Hindi and Japanese, the corresponding rule is 

VP → NP V

According to this rule ‘Jack loves Jill’ is grammatical in English, but not ‘Jack Jill loves’. But in Hindi, ‘jEk jill ko payaar kartaa hE ’ (gloss: Jack Jill <ergative marker> love do <copula>) is grammatical and not ‘jEk payaar kartaa hE jill ko’ (gloss: Jack love do <copula> Jill <ergative marker>). Such ordering of words and phrases is central to any language. When a child learns to understand and speak a language, they acquire the vocabulary of the language and the syntactic rules of phrase and sentence formation. 

Now, PSGs are a generative mechanism. This means that if correctly formulated, the PSG of a language should be able to produce all and only the grammatical sentences of the language. Operated another way, the PSG should be able to classify a sequence of words as grammatical or ungrammatical. Grammaticality, therefore, it is a yes/no (i.e., a binary classification) problem. This forms the heart of the algorithmics of syntactic analysis or parsing.

PSGs can and do invoke recursion liberally. This is the reason for the expressive power of PSGs. A language potentially has an infinite number of valid structures (i.e., sentences). PSGs try to capture infinity by finiteness. This it is able to do by having symbols invoke themselves. To illustrate:


JJP → JJP JJ | JJ
JJ → ‘fragrant’|‘little’|‘pretty’|‘shining’



is a PSG rule for adjectives. The ‘|’ stands for ‘or’. In plain English, the rule says an adjective phrase can be composed of one or more adjectives.

The recursion JJP → JJP JJ has the capability of generating infinitely long adjective strings (though practically that is impossible!). So, to generate the adjectives of ‘roses’ in 

Little fragrant shining pretty roses

we invoke the rewrite rules as follows:


JJP

|- JJP JJ

|- JJP JJ JJ

|- JJP JJ JJ JJ

|- JJ JJ JJ JJ

|- little fragrant shining pretty



(Emboldened symbols are transformed by rewrite rules.) This illustrates the so-called top-down processing. The converse bottom-up processing runs as follows:



Little fragrant shining pretty

|- JJ JJ JJ JJ

|- JJP JJ JJ JJ

|- JJP JJ JJ

|- JJP JJ

|- JJ



(Emboldened sequences are combined and rewritten as symbols.) These top-down and bottom-up processing will form the basis of our discussion on algorithmic parsing in Section 4.2. 

Yield, Derivation, Governance, Domination, Projection

Five important terms in syntax that are used interchangeably and that mean the same are yield, derivation, governance, dominance, and projection. If a non-terminal X derives by applying one or more CFG rules a string of words w1, w2, w3, …, wn, then we interchangeably use the following expressions:


w1, w2, w3, …, wn is the yield of X, or

X derives w1, w2, w3, …, wn, or

X governs w1, w2, w3, …, wn, or

X dominates w1, w2, w3, …, wn, or

w1, w2, w3, …, wn is the projection of X



Thus, an NP yields/derives/governs/dominates/projects the noun phrase ‘the boy with long hair who plays football’.

We will now expound on X-bar theory, which is a way of standardizing PSG rules such that syntactic proximity mirrors semantic closeness. 

4.1.4 X-Bar Theory

Phrase structure grammar (PSG) rules are rewrite rules that generate sentences in a language and also detect the grammaticality of a sequence of words. It must be apparent that grammar rules play a central role in such generation and detection processes. Now, there can be a wide variation in writing grammar rules. There can be variation in the choice of symbols, in the fan-out factor of the rewrite rules (i.e., the number of symbols allowed on the right side of the rules), left vs. right recursion, and so on.

Let us illustrate this point with the adjective phrase generation rules. We may use either left or right recursion as in:

JJP → JJP JJ | JJ  (left recursion)
OR
JJP → JJ JJP | JJ  (right recursion)

Both these generate and accept the same set of strings. Only some algorithms like top-down or top-down–bottom-up parsing algorithms do not work with the former due to left recursion, a topic we will return to in the context of rule-based parsing. 

Besides the need for standardization, there are linguistic phenomena that need to be explained. Consider, for example, the phrase 

The boy with long hair who plays football

This is an NP in which ‘boy’ is the head, ‘the’ is the pre-modifier, and ‘with long hair’ and ‘who plays football’ are the two post-modifiers. Semantically, a definite ‘boy’ is being talked about (because of ‘the’), and the boy has two attributes—‘long hair’ and ‘plays football’. However, the following is odd:

The boy who plays football with long hair

It might be argued that this phrase is odd because it has PP attachment ambiguity. What is the PP ‘with long hair’ attached to—‘boy’ or ‘football’? However, this is not the actual reason for the oddness. The real reason is a basic principle of linguistics which gets violated in the latter construction. This principle is what Indian linguistics calls ‘Sannidhi’, meaning proximity. 

Sannidhi and Linguistic Structures

If a head has multiple modifiers, these modifiers can be ordered in terms of their strength of modification of the head. This strength of modification is expressed by the phrase strength of binding. Oddness of construction results if a modifier that binds stronger with the head is far from the head and there are interspersing modifiers that bind weaker with the head.

Let us examine the phrase ‘the boy with long hair who plays football’ vis-à-vis ‘the boy who plays football with long hair’. The modifier ‘with long hair’ binds stronger with ‘boy’ than does ‘who plays football’ (possibly because ‘hair’ is part of the body while ‘playing football’ is an acquired skill, but we are not going into those details here). Therefore, the former construct is more acceptable than the latter.

Congruity of Syntax Tree with Underlying Semantics

An important parameter in a parse tree is the path length between two nodes in the tree. Syntax–semantics consistency demands the following:

If

a constituent Y modifying a constituent X binds stronger with X than doesanother modifier Z

Then

the path length from X to Y should be smaller than the path length from X to Zin the constituency tree

This principle demands that the CFG rule

P → X Y Z

is converted to two rules

P → X ′ Z
X ′ → X Y

X ′ is pronounced as X-bar. Rewrite rules in X-bar theory are always binary.

Let us see the application of this rule to the phrase ‘the boy with long hair who plays football’. The syntactic tree consistent with semantics is shown in Figure 4.7. This is in place of the tree in Figure 4.8.

[image: ]
Figure 4.7  Constituency tree of the NP  ‘the boy with long hair who plays football’.


[image: ]
Figure 4.8  Constituency tree of the NP ‘the boy with long hair who plays football’.




Notice how the node N2 in Figure 4.7 increases the depth of the syntactic tree. It also causes the tree distance of the constituent ‘the boy’ to be less from the semantically closer constituent ‘with long hair’ than that from the constituent ‘who plays football’.





In summary, we need a mechanism in syntax that makes syntactic proximity mirror semantic closeness. The basic mechanism to do this is to introduce non-terminals that do a binary grouping of constituents that are semantically close. X-bar theory, introduced by Noam Chomsky in 1970, formalizes these ideas and standardizes the writing of grammar rules, though such grammars are not used in practice, except possibly for a kind of parsing implementation called principle-based parsing.

Elements of X-Bar Theory

In X-bar theory, bar-level projections are introduced to capture semantic closeness. This happens in all parts of speech. We start with NPs.

NP → (D) N ′
N ′ → (AP) N ′ | N ′ (PP) | N (PP)

NP does not directly yield determiner (D) followed by N, or adjective phrase (AP) followed by N, or N followed by one or more prepositional phrases (PP). It does so by introducing N ′ (pronounced N-bar) as a bar-level projection. N ′ then can have one or more PPs recursively, finally placing the head noun (N ) and making its semantically closest PP modifier its sibling.

We illustrate the above framework of syntactic tree construction with the famous example ‘the book of poems with blue cover’ given by Andrew Carnie.





Notice how larger and larger constituents (noun phrases) are formed by attaching pre- and post-modifiers to the head noun ‘book’. The PPs are at different levels indicating different strengths of binding.  

In X-bar theory, there are three kinds of general constructs:


Specifier

Complement

Adjunct 



Their interrelationship is depicted in Figure 4.10, which indicates that there are only three kinds of rules:


XP → Specifier X-Bar

X-Bar → X-Bar Adjunct

X-Bar → X Complement



The second rule makes it possible to introduce as many adjuncts as we want. Thus, a phrase can be arbitrarily long.

This tree clearly shows that the argument of X called the complement can come into the syntactic structure only by following a process and binds the strongest with the head, which is X. 

Now, various types of phrase structure rules are written as follows:

NP


NP → (D) N ′

N ′ → (AP) N ′

N ′ → N ′ (PP)

N ′ → N (PP)



These NP rules state that a noun phrase is headed by a noun which can be preceded by an optional determiner or any number of optional adjective phrases. These determiners and the adjective phrases are the specifiers in the noun phrase. The head can be followed by any number of preposition phrases. The PP closest to the head is the complement without which the semantics is not complete, while other PPs are adjuncts. This explains the tree in Figure 4.9 for the NP ‘the book of poems with blue cover’. 

[image: ]
Figure 4.9  X-bar syntactic tree of the NP ‘the book of poems with blue cover’.



VP


VP → V ′

V ′ → V ′ (PP)

V ′ → V (NP)




[image: ]
Figure 4.10  Structure of phrases in X-bar theory.



These VP rules state that a verb phrase is headed by a verb which can be followed by an optional complement NP and any number of optional PPs. The NP will appear for transitive verbs. Thus, in the VP ‘saw the boy with a telescope’, ‘saw’ is the head, ‘the boy’ is the complement, and ‘with a telescope’ is the adjunct. Notice that if a VP contains a complement, it can be an NP only and no other phrase type.

AP


AP → A′

A′ → (AP) A′

A′ → A (PP)



These adjective phrase rules state that an adjective phrase is headed by an adjective which can be preceded by any number of optional adjectives and followed by only one PP which is the complement. The AP ‘nice in the truest sense of the word’ has the head as ‘nice’ and ‘in the truest sense of the word’ as the PP. The optional APs allow formation of long adjective strings. 

PP


PP → P ′

P ′ → P ′ (PP)

P ′ → P (NP)



These PP rules state that the PP is headed by a preposition and can be followed by an optional NP as a complement and any number of PPs as adjuncts. In ‘with a spoon’, ‘with’ is the head and ‘a spoon’ is the complement. There can be a string of PPs which are adjuncts as in ‘with a spoon in the room’. But adjuncts have to come after the complement. The NP complement is optional because we can have constructs like ‘these actions can be frowned upon’.

It can now be seen that the application of these rules makes the parse trees obey syntax–semantics consistency as far as head–modifiers are concerned. Also, the grammar rules are standardized. The rules can be written in only one way—one symbol on the left and at most two on the right of the arrow. 


  □  4.2Algorithmics of Parsing



From Section 4.1, it must be apparent that the problem statement of parsing is

Input: (a) Grammar rules, (b) Input sentence
   Output: Parse Tree (constituency/dependency)

Let us first discuss the algorithmics of constituency parsing. There are two ways of going about constructing the constituency tree: top-down and bottom-up. In top-down, we start with the S symbol and draw its children, say, NP and VP, assuming the input to be a declarative sentence. Now the subtrees under NP, followed by those under VP, are developed. For example, NP → DT NN could be applied. After this, only POS tags will need to be resolved. DT will absorb, say, the word ‘the’ in the input and NN, ‘man’. This will complete constructing the NP subtree for ‘the man’. Similarly, the VP subtree is constructed.

Bottom-up processing follows the reverse process. The words are resolved to their POS tags. Then POS tags are combined by constituency rules (e.g., NP → DT NN  ). Generated non-terminals are then attempted to be combined. For example, after generating JJP and NP, they are combined to form a bigger NP by applying NP → JJP NP.

Thus, the main operations in parsing are

1. Doing a left-to-right scan of the input sentence.

2. At every word, deciding if the word should (1) create a new constituent or (2) wait until more words get a look-in to create a constituent. 

3. On the creation of a new constituent, examining if the new constituent can be merged with an adjacent one to form a bigger constituent.

A reference to parsing of programming languages gives concreteness to the above description. An input stream and a stack are the data structures controlling the parsing process. There are two operations: 

Shift: Shifting symbols from input string onto a stack.

Reduce: Reducing the symbols on the stack, representing the RHS (right-hand side) of a grammar rule to the LHS (left-hand side).

Figure 4.11 illustrates shift and reduce operations. The words in the input sentence are ‘the’, ‘boy’, ‘plays’, and so on. The stack at the start is empty. ‘the’ is first shifted and pushed onto the stack. Now a classification decision has to be made with respect to

[image: ]
Figure 4.11  Illustration of shift-reduce; the phrase ‘the boy’ in a sentence is resolved to NP through a series of shift and reduce operations.



reducing the terminal on the stack to a non-terminal (i.e., replace ‘the’ with DT  )
OR
shifting the current word ‘boy’ onto the stack

Such repeated classification decisions and the resulting actions lead to the formation of constituents and the creation of the parse tree. Figure 4.11 also shows the formation of the NP for the string ‘the boy’. 

Some classification decisions are easy or relatively easy, such as (1) a word must first be shifted to the stack, (2) the word on the stack should be reduced to its POS, and (3) if a non-terminal is atop another non-terminal on the stack AND if a grammar suggests reducing the pair to a non-terminal, perform the reduction. 

From this view of parsing, two problems must be apparent. The first is garden pathing. Non-terminals are merged to produce a non-terminal, and later we find that we have hit a wall because more inputs remain and no further constituents can be created. There is a famous sentence:  

The horse raced past the garden fell.(4.s.10)

The parsing process would complete creating a parse tree with the words ‘the horse raced past the garden’ with the NP as ‘the horse’ and the VP as ‘raced past the garden’. There is still the word ‘fell’ left in the input which is a VBD. But there is no grammar rule combining S and VBD. What is the problem?

The phrase ‘raced past the garden’ is not the VP constituent of a sentence, but a clausal modifier for the NP ‘the horse’. Thus, the overall NP for the sentence is ‘the horse (that was) raced past the garden’. Because the parsing process committed to creating the VP ‘raced past the garden’ instead of an adjectival clausal modifier, it was led astray down the garden path, as it were (hence the name)! Parsing in such a case must undo its work, backtrack, and produce the correct parse. The correct parse tree for 4.s.10 is left as an exercise.




Another challenge in the parsing process is structural ambiguity. Sentences may have multiple parse trees. Consider again the famous sentence 4.s.9 ‘I saw the boy with a telescope’. The sets of parse trees are shown in Figures 4.4 and 4.5. The parsing process must arrange for the production of both the constituency trees (and both the dependency trees). This means that in the parsing algorithmics, the ‘work done’ towards creating the constituents should be preserved for future use.

4.2.1 Machine Learning and Parsing

The fact that parsing is a continuous series of classification decisions makes the task amenable to machine learning (ML). Can we train an ML model to do parsing by giving it examples of input sentences and the corresponding parse trees? The answer is YES. Data-driven ML-based parsing making use of probability is one of the milestones of NLP.

Like in POS tagging, we can formulate parsing as a sequence-to-sequence transformation task and argmax-based computation. We look upon the two-dimensional parse tree as a linear sequence of words and brackets, giving rise to what is called a bracketed structure or bracketed sequence. The sentence 4.s.9 is depicted as a bracketed structure as follows:

Parse #1 (meaning: the boy has the telescope)
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	[I]NP 
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sawVBD 


	
	



	
	
	
[


	
	



	
	
	
	
[the boy]NP 


	



	
	
	
	
[with [a telescope]NP]PP


	



	
	
	
]NP


	
	



	
	
]VP


	
	
	



	
]S


	
	
	
	
(4.b.1a; ‘b’ indicates bracketed sequence)








Parse #2 (meaning: I have the telescope)
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	[with [a telescope]NP]PP

	 

	 




	 

	]VP

	 

	 

	 




	]S

	 

	 

	 

	(4.b.1b)









The problem statement for parsing now changes to:

Input: word sequence
Output: bracketed sequence depicting the parse tree


Note that grammar now does not form part of the input. It is, however, always there in the background, providing the constituent labels and their spans through brackets (vide 4.b.1a and 4.b.1b) in the training data.

Since there can be multiple parse trees, we resort to argmax computation:


T * = argmax [P(T | S )]

            T

= argmax [P(T).P(S |T )]

            T

= argmax [P(T )], since given the parse the
                              sentence is completely
                              determined and P(S |T ) = 1



(4.e.1; ‘e’ indicates ‘equation’)

T * is the best possible parse tree in the sense of the highest probability parse tree. The meaning of probability of a parse tree will be discussed in Section 4.4 on probabilistic parsing.




  □  4.3Constituency Parsing: Rule Based



Rule-based parsing is based on grammar rules and implicit control rules for shift and reduce. We discuss four algorithms here—top-down, bottom-up, top-down–bottom-up, and CYK.

4.3.1 Top-Down Parsing

In top-down parsing, grammar rules are operated left to right as words are processed one by one. Since the LHS of grammar rules can expand to multiple RHSs, a stack of options is maintained. Backtracking is frequently adopted to (1) bring back the computation to the right track and (2) output all the trees in case of structural ambiguity. We illustrate the process with a minuscule grammar and an input sentence.

Grammar:

               Syntax


S → NP VP

NP → DT NN | NN

VP → VB RB | VB



               Lexicon


DT → a | an | the

NN → people | laugh | …

VB → people | laugh | …



(4.g.1; ‘g’ indicates ‘grammar’) 

The first grammar rule says that a sentence is composed of a noun phrase and a verb phrase. The second rule is actually two rules—an NP consists of (1) a determiner and a noun (NN ) or (2) a single noun. The third rule is also two rules—a VP consists of (1) a verb (VB) and an adverb (RB) or (2) a single verb.

The input sentence is

0 People 1 laugh 2(4.s.11)

Note that we have introduced between-words indices. Index 0 is before the first word and index (l–1) is after the last word, where l is the length of the sentence in terms of the number of words (also called tokens). These indices control the parsing process.

Recall from Chapter 3 on shallow parsing that ‘people’ and ‘laugh’ can both be noun as well as verb.

The computation maintains a stack of states as shown in the first column of Table 4.1. A state is a tuple whose first component is the non-terminal sequence waiting to be expanded, and the second component is the pointer to the current word in the sentence—the index before the word. The non-terminals are expanded as per the grammar rules. Whenever there are multiple RHSs, the first RHS is brought on the stack with other RHSs kept as backup states.

Table 4.1   Top-Down Parsing of the Sentence ‘People Laugh’










	
	
State


	
Backup State


	
Action





	
1.


	
((S ) 0)


	
–


	
Expand S





	
2.


	
((NP VP) 0)


	
–


	
Expand NP; have backup





	
3.


	
((DT NN VP) 0)


	
((NN VP) 0)


	
Match DT; fail; bring backup





	
4.


	
((NN VP) 0)


	
–


	
Consume ‘People’; pop NN; advance input pointer





	
5.


	
((VP) 1)


	
–


	
Expand VP





	
6.


	
((VB RB) 1)


	
((VB) 1)


	
Consume ‘laugh’; pop VB advance input pointer





	
7.


	
((RB) 2)


	
–


	
Match RB; fail; bring backup; Retract input pointer





	
8.


	
((VB) 1)


	
–


	
Consume ‘laugh’; pop VB





	
9.


	
(( ) 2)


	
–


	
Stack empty; input over; Parsing succeeds











Here is a description of the parsing process as shown in Table 4.1. The first state of the process is ((S), 0). 


1. S is expanded into NP and VP; the input pointer does not move as no token is consumed.  

2. NP is expanded into DT and NN; the input pointer remains at 0; simultaneously a backup state is created with NN and VP because NP can be expanded as NN too; the input pointer for the backup state is at 0.






3. Expecting DT, but there is no determiner. Case of failure. We discard this stack entity and bring the backup state ((NN VP) 0).

4. Match ‘people’. The first word is consumed; NN popped from the stack; input pointer moves to 1. Now we are expecting a verb phrase. 

5. VP is expanded to VB RB—verb and adverb combination; the backup state is VB, input pointer at 1.

6. Match ‘laugh’; pop VB; expose RB. Input pointer advanced to 2.

7. Expecting adverb but input over. Case of failure. Bring the backup state and retract the input pointer. State on the stack is ((VB ) 1).

8. Match ‘laugh’; succeeds; pop VB; advance input pointer to 2. 

9. STACK_EMPTY and INPUT_OVER, parsing success.

This is top-down parsing. The search for the parse tree is goal-driven, where the goal is to reach a state of STACK_EMPTY and INPUT_OVER. The method has additional names—recursive descent parsing, predictive parsing, as well as expectation-driven parsing. The names arise respectively from the properties of the algorithm—handling of recursive rules, descending from S to NP VP and their children, and predicting or expecting constituents at different positions in the input. 

The stack of states in Table 4.1 is called a chart, which is a data structure maintaining partial constituents or parses. The parse tree can be easily recovered by following back pointers from the chart. 

The strength of top-down parsing is its focused, goal-directed behaviour. When its expectations are met, it can be very fast. But it has serious limitations: 

1. There can be useless rule expansions. In Step 2 above, NP was expanded to DT NN, though there was no determiner in the input. Similarly for VP → VB RB. Bringing backup states on to stack, retracting the input pointer—these are expensive operations.

2. When a non-terminal can be expanded in multiple ways, the rule coming first is applied before other rules. For the sake of brevity, precedence is given to the one that appears earlier in the text. This is a problem. In Step 2, if NP → NN appeared before NP → DT NN, backtracking would have been avoided. Similarly for VP → VB as against VP → VB RB. 

3. If the rules have left recursion, then the processing can go into an infinite loop. Consider the rule JJP → JJP JJ. Once applied, this rule will keep pushing symbols JJP and JJ onto the stack ad infinitum.

The root of all problems with top-down parsing is that the algorithm is blind to the actual data! It starts with S and keeps bringing in non-terminals expecting constituents that may never be found. This problem is ameliorated in the reverse process of parsing, called bottom-up parsing, which starts with the words in the input sentence and seeks to reach the starting non-terminal S. 

4.3.2 Bottom-Up Parsing

We describe bottom-up parsing with the running example

0 people 1 laugh 2

The process is illustrated in Figure 4.12. Parsing starts with words. POS tags are resolved by looking up the lexicon. Of course, if the POS tagging is done before, this step is eliminated. However, we illustrate the process starting with the resolution of POS tags. The lower suffixes on the non-terminals Xij are very important. They control the parsing process. Thus, NN01 means there is a noun between the positions 0 and 1. Similarly, VP12 means that there is a verb phrase between the positions 1 and 2. Another important entity is the circle called dot ; for example, after the rule application NP01 → NN01 and also between NP and VP in the rule application S → NP01 VP12. The string before the dot is called handle, which is the entity that has been reduced. Dot plays a crucial role in bottom-up parsing as explained below:

(4.e.2)

Zik → Xij [image: ] Yjk

[image: ]
Figure 4.12  Illustration of bottom-up parsing. The non-terminal symbols are as per the grammar (4.g.1) of top-down parsing.


Z is the constituent to be found between positions i and k. Z, however, is composed of the constituentsX and Y between positions i and j and j and k, respectively. Whenever a constituent has been resolved, the dot moves over the resolved constituent, exposing the next constituent. 





Left of dot indicates COMPLETED work
Right of dot indicates TO-BE-COMPLETED work



Thus, 

S02 → NP01 [image: ] VP12(4.e.3)

means an NP has been found between positions 0 and 1 and a VP needs to be found from 1 to 2. 

Figure 4.12 illustrates the ‘chart’ involved here. This is a data structure maintaining all partial constituents/parses and rule applications, and from which the parse tree can be recovered. Let us describe the steps in the parsing process:

1. Resolve ‘people’ to its POS tags NN and VB.

2. Apply rules NP → NN and VP → VB; dot moves over NN and VB with nothing in front, indicating that the ‘work’ of finding NP and VP constituents between positions 0 and 1 is completed. 

3. Apply S → NP VP; dot moves over NP, exposing VP which needs to be found.

4. Resolve ‘laugh’ to its POS tags NN and VB.

5. Since ‘laugh’ has been resolved to VB, VP → VB is applied; dot moves over VB with nothing in front, indicating that the work of finding VP between positions 1 and 2 is completed.  

6. Apply S → NP VP; dot moves over VP, with nothing in front, indicating that the work of finding S between positions 0 and 2 (i.e., the complete sentence is done). Parsing SUCCEEDS.

The contrast with top-down parsing must be apparent. The application of useless rules is minimized. NP → DT NN or VP → VB RB were never used. 

The POS of the words and the constituents on the chart decide what rules to apply, by operating them right to left. The only useless rule to be applied was that at the start VP → VB on seeing ‘people’. Even this could be avoided by a high-accuracy POS tagger.

Left recursion is also not a problem anymore. Once a constituent has been found, the dot moves over the corresponding non-terminal symbol within the applied rule, precluding this rule application again over the same input. Consider the rules for adjectives:


JJP → JJP JJ
JJP → JJ



Suppose we have the NP


bright blue vast sky



We now need this rule for NP


NP → JJP NN



Parsing will proceed as:



JJ blue vast sky
JJP blue vast sky
JJP JJ vast sky
JJP vast sky
JJP JJ sky

JJP sky

JJP NN

NP




In spite of left recursion, the parsing could be completed because the dot continuously saw new parts of the input. In top-down, JJP would be repeatedly expanded without regard to the input, resulting in an infinite loop.

Now, bottom-up parsing can also do useless reduction. Both useless rule expansion and useless reduction are minimized by combining top-down and bottom-up parsing. This algorithm is called top-down–bottom-up chart parsing. 

4.3.3 Top-Down–Bottom-Up Chart Parsing

This is a very efficient parsing algorithm, also known as early parsing after its inventor Jay Early (1968). It uses a chart and dynamic programming and has complexity of O(n3), where n is the length of the input string.

Figure 4.13 illustrates top-down–bottom-up chart parsing. Top-down–bottom-up parsing starts from the position 0. The ‘work’ of completing S needs to be undertaken. This is indicated by the presence of a dot in front of NP VP. NP is exposed to dot, requiring, thereby, resolving an NP. Finding an NP involves finding an NN; hence, the dot before NN in the rule NP → NN. All the applicable rules are pulled, which is a process called transitive closure. Transitive closure is expectation-driven or predictive in nature and forms the top-down part of top-down–bottom-up chart parsing.

[image: ]
Figure 4.13  Illustration of top-down–bottom-up chart parsing. 



Note that there is no mention of the need to find a VP. Thus, reducing ‘people’ to VB is avoided. This is the difference from bottom-up parsing. This expectation drives the bottom-up part of resolving POS and consequent constituents. The resulting constituents exposed now pass through transitive closure. The above top-down and bottom-up processing alternates. Hence, the name top-down–bottom-up parsing. 

The algorithm combines goal-driven and data-driven behaviour and avoids useless rule application (top-down) and useless POS or constituent resolution (bottom-up). However, it suffers from the left-recursion problem in the top-down part. The rules need to be processed for the removal of left recursion.




Removal of Left Recursion

Left recursion removal has been extensively dealt with in programming languages and compilers. A rule

A → Aa | β

is transformed to

A → βA1
A1 → aA1 | ε

Recursion is not eliminated; only, the left recursion is turned into a right recursion. This avoids the problem of bringing up the same non-terminal A again and again without a change of input. Application of A1 first has to match and consume β which allows A1 to see a different and shortened input.

Applying left recursion removal to the adjective phrase rule, 

JJP → JJP JJ
JJP → JJ

we get

JJP → JJ JJP1
JJP1 → JJ JJP1 | ε

which can process an adjective string of arbitrary length.

4.3.4 CYK Parsing

CYK parsing, named after three of its four joint inventors—John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz—is essentially bottom-up parsing which uses dynamic programming. It has the best asymptotic complexity of O(n3|G |), where n is the length of the input string and |G | is the size of the grammar. 

For the running example of 

0 people 1 laugh 2

the parsing process is illustrated in Table 4.2. The positional indices on rows and columns should be noted. Row indices start from 0 and stop before the last position. Column indices start from 1 and run up to the last position. Each cell <i, j > records the constituents (including POS tags) in those cells. Thus, we have NN and VB at cell <0, 1> and NN and VB at <1, 2>. NN is resolved to NP and VB to VP. Then we move vertically upwards from <1, 2> and see that S can be resolved at <0, 2>, with the parsing succeeding.  CYK parsing is a very powerful method. We illustrate its power with a more involved grammar and a longer example sentence.




Table 4.2   CYK Parsing of ‘People Laugh’









	
Positions (row-col)


	
1


	
2





	
0


	
people
01, NN01, VB01,
 NP01, VP01


	
S02





	
1


	
	
laugh
01, NN12, VB12,
 NP12, VP12










The grammar in Figure 4.14 is for declarative sentences only, that too for a small fragment of the English language. The grammar will not be able to deal with interrogative, imperative, and exclamatory sentences; nor are there any adjectives and adverbs. There are two components in the grammar—syntax and lexicon. The vocabulary consists of only seven words—‘the’, ‘a’, ‘man’, ‘boy’, ‘telescope’, ‘saw’, and ‘with’. The determiners (DT  ) are ‘the’ and ‘a’; the nouns (NN  ) are ‘man’, ‘boy’, and ‘telescope’; the only verb (VBD) is ‘saw’; and the only function word is the preposition (P) ‘with’.

[image: ]
Figure 4.14  Grammar of a fragment of English.


Sentence S is as usual constituted of a noun phrase (NP) and a verb phrase (VP). The NP can be constituted of a determiner–noun combination, DT NN, or recursively as NP with any number of PPs, NP PP. The grammar does not have the capability of dealing with determiner-less noun phrases like plural nouns or proper nouns. The VP can be constituted of a single verb VBD, or recursively as VP with multiple NPs, or again recursively as VP with multiple PPs. VP → VP NP is needed to deal. For example, with ditransitive verbs as in [gaveVBD [the man]NP [a telescope]NP]VP. VP → VP PP is needed to handle multiple PPs as in [[sawVBD [the man]NP ]VP [with a telescope]PP [in the market]PP]VP . The preposition phrase PP can be constituted in only one way with a preposition P and an NP.

The main operation in CYK parsing is the ‘eager’ completion of as many constituents as possible. After resolving a constituent in a cell <i, j >, an attempt is made to complete all constituents moving vertically upwards, that is, in the cells <i–1, j >, <i–2, j >, …, <0, j >. 

The condition for finding a larger constituent in Zi-k, j at <i–k, j > is that there should be a 

1. completed constituent Xi-k,i at the cell <i–k, i>,

2. completed constituent Yij at <i, j >, and grammar rule, Z → X Y.

Illustration of CYK Operation on a Long Sentence with Ambiguity  

The grammar 4.g.2 is operated on the sentence

(4.s.12)

0 the 1 man 2 saw 3 the 4 boy 5 with 6 a 7 telescope 8





The CYK parse output appears in Table 4.3. Larger and larger constituents are built continuously as per the process outlined above. For example, consider column 3.

Table 4.3   CYK in Operation with Grammar 4.g.2 and Sentence 4.s.12















	
Positions (row-col)


	
1


	
2


	
3


	
4


	
5


	
6


	
7


	
8





	
0


	
the01 DT01


	
NP02


	
S03


	
–


	
S05


	
–


	
–


	
S08





	
1


	
	
man12 NN12


	
–


	
–


	
–


	
–


	
–


	
–





	
2


	
	
	
saw23 VBD23 VP23


	
–


	
VP25


	
–


	
–


	
VP28 (VP25 PP58/VP23 NP38)





	
3


	
	
	
	
the34 DT34


	
NP35


	
–


	
–


	
NP38





	
4


	
	
	
	
	
boy45 NH45


	
–


	
–


	
–





	
5


	
	
	
	
	
	
with65 P56


	
_


	
PP58





	
6


	
	
	
	
	
	
	
a67 DT67


	
NP68





	
7


	
	
	
	
	
	
	
	
telescope78 NH78








1. ‘saw’ is reduced to VBD in <2, 3>.

2. VBD is reduced to VP by the rule VP → VBD.

3. Nothing can be done in <1, 3>; ‘man’ cannot be absorbed to form a bigger constituent; there is no grammar rule starting with NN (man).

4. S can be formed at <0, 3>, by observing an NP (the man) at <0, 2> and combing it with the VP (saw) at <2, 3> applying the rule S → NP VP.

The cell to take particular note of is <2, 8> which records a VP28. This VP can be constituted in two different ways:

1. VP25 PP58, or

2. VP23 NP38

Parse (a) makes the PP ‘with a telescope’ the sister of the VP ‘saw the boy’. This has the semantics that the man has the telescope. Parse (b), on the other hand, makes the NP ‘the boy with a telescope’ the sister of the VP ‘saw’, with the semantics that the boy has the telescope.

By consulting the cells, it is possible to recover both the parse trees of the sentence, which are shown in Figure 4.15.

[image: ]
Figure 4.15  Two parse trees of sentence 4.s.12. The former attaches the PP with VP, and the latter with the NP.



It is also important to note that S gets resolved three times during the parsing process—S03, S05, and S08. This is because the grammar recognizes the following as valid (sub)sentences:


The man saw

The man saw the boy

The man saw the boy with a telescope






which happens because all of the following are valid VP s as per the grammar.


saw (VP → VBD → saw)

saw the boy (VP → VP NP → VBD NP → VBD DT NN → saw the boy)

saw the boy with a telescope 

                  (VP → VP PP → saw the boy PP → saw the boy P NP → 

                                                                            saw the boy with a telescope)






  □  4.4Statistical Parsing



The discussion in Section 4.3.4 on CYK parsing has prepared the ground for data-driven ML-based parsing. Figure 4.16 shows two parses of sentence 4.s.12 ‘the man saw the boy with a telescope’. Both theparses are correct, given the grammar. However, a downstream application like semantic parsing or question answering would need one parse tree—the most appropriate one as per context. 

[image: ]
Figure 4.16   A probabilistic context-free grammar. The grammar is same as 4.g.2 and has probabilities attached to each rule.




For sentence 4.s.12, it is impossible to decide on the acceptable parse without more information. Even a subordinate clause may not help, as in

The man saw the boy with a telescope which he dropped

Of course, rearrangement of phrases can help, as in

With a telescope, the man saw the boy, or
The man with a telescope saw the boy

However, most of the time the correct parse is clear to a human, as in

The man saw the boy with the dog

where world knowledge helps decide that the PP ‘with the dog’ should be attached to NP ‘the boy’. But the machine, unpossessed of the robustness characteristic of deeper understanding, would produce both the parse trees.

It turns out that it is possible to score the parse trees and take the stand that the tree with the highest score is the one to choose. Probability steps in here to provide a scoring mechanism. We have seen this in Section 4.3 [Eq. (4.e.1)].

T * = argmaxT (P(T  ))

That is, the best parse tree T * is the one that has the highest probability. Now, the question that arises is how to obtain the probability of a parse tree.   

4.4.1 Computing the Probability of a Parse Tree

We will show that the probability of a parse tree is the product of probabilities of rules that were applied to create the parse tree. Let us establish this idea for the parse trees of 4.s.12. For this we need a probabilistic grammar (i.e., grammar where probabilities of rules are given). We replicate 4.g.2 augmented with probability values. The probabilities have to be found from data—the bracketed structures—as described in Section 4.2. However, for the purpose of explaining the concepts, we give probabilities based on linguistic judgement and world knowledge. 

The probabilities in Figure 4.16 are in actuality to be found from data (i.e., the bracketed corpus) (Section 4.2). The probability of a rule Z → X Y is found as 

(4.e.4)

[image: ]
where # stands for ‘count of ’. Thus, P(Z → X Y ) is found from the bracketed corpus by counting the number of times Z is expanded as X Y, and the number of times Z appears in the corpus and dividing the former count by the latter. Figure 4.16, therefore, states that VP appears as VP NP 50% of the time in the corpus, 20% as VBD, and 30% as VP PP. Similarly, DT appears as ‘the’ 50% of the times and as ‘a’ the rest 50% of the times (we are ignoring ‘an’!). As for nouns (NN  ), the probability mass is distributed equally to ‘man’, ‘boy’, and ‘telescope’. The probability of VBD goes totally to ‘saw’ and P to ‘with’, assuming there are no other verbs and prepositions!

Now, we are ready to calculate the probabilities of trees in Figure 4.17. The first tree is detailed in Figure 4.18.




[image: ]
Figure 4.17  Parse tree-1 of 4.s.12; attaches PP with VP (‘the man has the telescope’); at every non-terminal node, we indicate the probability of the corresponding rule application (e.g., 0.3 beside VP28 comes from the rule VP → VP PP given in the probabilistic grammar of 4.g.1). 




P(tree-1) = 1.0 × 0.5 × 0.5 

                         × 0.33 

                         × 0.3 × 0.5 × 0.2 × 1.0 

                         × 0.5 × 0.5 

                         × 0.33

                         × 1.0 × 1.0 

                         × 0.5 × 0.5 

                         × 0.33

                         = 1.7 × 10–5




We write the probabilities traversing the tree in depth first manner. The probability of tree-1 comes out to be 1.7 × 10–5.


P(tree-2) = 1.0 × 0.5 × 0.5

                         × 0.33

                         × 0.5 × 0.2 × 1.0

                         × 0.5 × 0.5 × 0.5

                         × 0.33

                         × 1.0 × 1.0

                         × 0.5 × 0.5

                         × 0.33

                          = 2.8 × 10–5



Thus, we come to the observation that tree-2, which states that ‘the boy has the telescope’, has higher probability (Figure 4.18). So as per data (which would have been used for obtaining the probabilities), tree-2 is more likely than tree-1. The parser has no idea of what ‘man’, ‘boy’, ‘telescope’, ‘saw’, etc., mean, nor does it have any notion of the preposition ‘with’. It is guided completely by the data out there (the bracketed structure). 

[image: ]
Figure 4.18  Parse tree-2 of 4.s.12; attaches PP with NP (‘the boy has the telescope’).


From the calculation, it must be apparent that even if a sentence has multiple parse trees, many subtrees are common across these trees. The probabilities of these common subtrees can be computed once for one of the trees and used and reused for other trees. This is another application of dynamic programming.

4.4.2 Theory Behind Computing the Probability of a Parse Tree

Notion of Domination

We say that a non-terminal dominates all the nodes in the subtree rooted at that non-terminal. We also say that the non-terminal dominates that segment of the input sentence that is generated by that non-terminal. By definition, S dominates the whole sentence and all the nodes of the parse tree rooted at S. Indices which are between words are of help here. For sentence  4.s.12,

0 the 1 man 2 saw 3 the 4 boy 5 with 6 a 7 telescope 8

S08 dominates 4.s12. It also dominates all the non-terminals NP, VP, VBD, PP, P, NN, etc., below it. 

The domination of S08 over the whole sentence is actualized by the domination of an NP02 over the segment 

0 the 1 man 2

and by the domination of a VP28 over the segment

2 saw 3 the 4 boy 5 with 6 a 7 telescope 8

and the non-terminals DT01 and NN12 below it. DT01 dominates ‘the’ and NN12 dominates ‘man’.

The domination of VP28 happens in two different ways:

    (man has the telescope) VP25 PP58, or
(boy has the telescope) VP23 NP38 

that is, by the domination VP28 over 

VP25 and PP58, or 

by the domination of VP28 over 

VP23 and NP38. 

VP25, PP58, VP23, NP38, in turn, have their own segments, respectively, as 


2 saw 3 the 4 boy 5 

5 with 6 a 7 telescope 8

2 saw 3 

3 the 4 boy 5 with 6 a 7 telescope 8



We can keep moving down the tree, recording dominations over segments and of non-terminals and terminals. 

Domination and Probability of a Parse Tree

We define the probability of a parse tree as the probability of domination of S over the sentence

0w1, 1w2, 2w3, 3w4, …, L-2 wL-1, L-1 wL

mediated through the domination of the non-terminals S dominates. First, we discuss the probability of a parse tree rooted at the non-terminal Z with subtrees rooted at X and Y, created through the application of the rule Z → X Y (Figure 4.19). 
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Figure 4.19  Zik dominates the segment Wi-k of a sentence from index i to index k. This domination is mediated through the domination of Xij on the sub-segment Wi-j from index i to index j and the domination of Yjk on the sub-segment Wj-k from index j to index k. The notation Wi-j (Wj-k) means the sequence of words spanning from index i to index j (index j to index k). Note that capital W's denote sequences. Small w's denote words (e.g., wj-( j + 1) means the word between index j and ( j + 1)).



Definition:

	P(Z → X Y ) = P(Xij Yjk | Zik )(4.e.5)

That is, the probability of a CFG rule is the joint probability of dominations of all the symbols on the RHS of the rule conditioned on the domination of the symbol on the LHS.




Probability is required here to deal with structural ambiguity which means multiple internal structures of the input sentence. For 4.s.12, there are two internal structures of the sentence. It is VP28 that contributes to the ambiguity, as shown above. This gives a method for computing the probability of a parse tree; just multiply the probabilities of all the rules that were applied to create the parse tree. We now give the theoretical justification behind this method.

Probability of a Parse Tree in Terms of Domination

We first describe three independence assumptions that are at the heart of the probability calculation:

1. Stationarity: The probability of any rule stays the same, whatever its application location in the parse tree.

2. Context-freeness: The probability of rule application at any node in the parse tree is independent of the sisters of that node in the tree.

3. Ancestor-freeness: The probability of rule application at any node in the parse tree is independent of the ancestors of that node in the tree. 

These independence assumptions run kind of counter to linguistic intuition. We know that linguistic decisions at different points in a linguistic construct (phrase, sentence, para, etc.) often depend on signals coming from distant parts of the sentence. For example, for the sentence

The bank which was closed during the COVID-19 outbreak has started seeing activities again with immersions taking place in the river recently.

The uncertainty with respect to the sense of the word ‘bank’ does not get resolved until the word ‘immersion’ is seen, and we know that the sense of ‘river-bank’ is meant. This decision is further reinforced by the word ‘river’ coming four words later. 

Probabilistic context-free grammar (PCFG) parsing independence assumptions—just like HMM-Viterbi independence assumptions—facilitate modelling, computation, and efficiency. These are engineering and pragmatic decisions. 

The probability 

P(T | S) = probability of domination of T by S

denotes the probability we are interested in. In other words, the probability of a parse tree is the joint probability of domination of various segments of the sentence by non-terminals and terminals constituting the parse tree. 

Let us now illustrate the process of probability calculation with the example in Figure 4.20. We see that NP → DT NN is applied at three places, and everywhere the probability of the rule stays at 0.5. This is due to the stationarity assumption. The use of the other two assumptions follows now.
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Figure 4.20  Parse tree of the sentence ‘the man saw the boy with a telescope’. Each node records the non-terminal of that node, representing the constituent along with its span and the probability of the rule applied at that node. For example, NP02 0.5 means there is an NP spanning indices 0 to 2 and this NP expands into DT NN with probability 0.5. S spans the whole sentence (0 to 8) and S → NP VP has the probability of application as 1.0.



P(T | S) = P(all dominations in the parse tree | S )

We systematically list the dominations:

S08: domination of W0-8 by S (whole sentence)







NP02: domination of W0-2 by an NP (the man)

DT01: domination of W0-1 by a DT (the)

NN12: domination of W1-2 by a NN (man)

VP28: domination of W2-8 by a VP (saw the boy with a telescope)

VP25: domination of W2-5 by a VP (saw the boy)

VBD23: domination of W2-3 by a VBD (saw)

NP35: domination of W3-5 by an NP (the boy)

DT34: domination of W3-4 by a DT (the)

NN45: domination of W4-5 by an NN (boy)

PP58: domination of W5-8 by a PP (with a telescope)

P56: domination of W5-6 by a P (with)

NP68: domination of W6-8 by an NP (a telescope)

DT67: domination of W6-7 by a DT (a)

NN78: domination of W7-8 by a NN (telescope)



(4.l.1; ‘l’ denotes a list)

P(T | S08) is by definition written as the joint probability of all the dominations enlisted as 4.l.1. That is,


P(T | S08) = P(NP02, VP28, 

                        DT01, NN12,

         the01, man12,

         VP25, PP58,

         VP23, NP35,

         VBD23, 

         saw23, 

         DT34, NN45,

         the34, boy45,

         P56, NP68,

         with56,

         DT67, NN78,

         a67, telescope78| S08)

= P(NP02, VP28| S08)×P(DT01, NN12,| NP02, VP28, S08) ×…

= P(S → NP VP) × P(NP → DT NN  ) ×…(4.e.6)




The first step in the derivation is the joint probability of all dominations given S. The second step is the application of the chain rule of probability. We write only the first two terms. The dots after these two terms indicate more terms from the application of the chain rule. In the third step, we get P(S → NP VP), with the understanding that the probability of a rule is the joint probability of occurrences of symbols on the RHS of the rule conditioned on the LHS. The indices are dropped due to stationarity.

We also get the term P(NP → DT NN  ), by dropping


VP28 (context-freeness), and

S08 (ancestor-freeness)



since VP28 is the sister of NP02 and S08 is the ancestor of NP02.

In the next step will get P(VP → VP PP), by dropping terms from the conditioning part of the corresponding joint probability expression. The process continues, and we get the probability as the product of all rule applications.   

4.4.3 CYK Parsing and Probabilities of Constituents

In probabilistic parsing too, the basic technique is one of the algorithms discussed in Section 4.3. Probability gives a means of scoring the parse trees and selecting the one with the highest probability. The commonly used algorithm is CYK parsing presented in Section 4.3.4. The inside-outside algorithm which is used to score and select the best parse tree has as its core CYK.

We show the probabilities in various cells in Table 4.4 when CYK parsing is applied to sentence 4.s.12.

Table 4.4 CYK Algorithm Applied to the Sentence ‘The Man Saw the Boy with a Telescope’, and the Probabilities in Various Cells















	
Positions (row-col)


	
1


	
2


	
3


	
4


	
5


	
6


	
7


	
8





	
0


	
the01 DT01 0.5


	
NP02
0.0825


	
S03
1.0 × 0.0825 × 0.2 = 0.01
65


	
–


	
S05
1.0 × 0.0825 × 0.00
825 = 0.0007


	
–


	
–


	
S08
0.0825 × 0.0002,0.0825 × 0.000
34 = 0.000017, 0.000028





	
1


	
	
man12 NN12 
0.33


	
–


	
–


	
–


	
–


	
–


	
–





	
2


	
	
	
saw23 VBD23 VP23
1.0 × 0.2 = 0.2


	
	
VP25
0.5 × 0.2 × 0.0825 = 0.00825


	
–


	
–


	
VP28
VP25 PP58/VP23 NP38
0.3 × 0.00825 × 0.0825,0.5 × 
0.2 × 0.0034 = 0.0002/0.00034





	
3


	
	
	
	
the34 DT34 0.5


	
NP35 0.0825


	
–


	
–


	
NP38
0.5 × 0.0825 × 0.0825 = 0.0034





	
4


	
	
	
	
	
boy45 NN45
0.33


	
–


	
–


	
–





	
5


	
	
	
	
	
	
with56 P56 1.0


	
–


	
PP58
1.0 × 0.0.0825 = 0.0825





	
6


	
	
	
	
	
	
	
a67 DT67 0.5


	
NP68
0.5 × 0.165 = 0.0825





	
7


	
	
	
	
	
	
	
	
telescope78 NN78
0.33









By way of a brief explanation, let us first consider the cell <0, 2>. NP02 in this cell dominates ‘the man’. Consulting the cells <0, 1> and <1, 2>, we get the probability at cell <0, 2> as


P(NP02) = P(NP → DT NN  ) × P(DT01) × P(NN12)

              = 0.5 × 0.5 × 0.33

              = 0.0825







The most complex cell is VP28. The verb phrase can be formed in two ways: as VP PP or as VP NP, depending on the PP attachment. Cell <0, 8> thus has two values, comma separated. 


P(VP28) = P(VP → VP PP) × P(VP25) × P(PP58) or

              = P(VP → VP NP) × P(VP23) × P(NP38)



Now,

P(VP25) = P(VP → VP NP) × P(VP23) × P(NP35) = 0.5 × P(VP23) × P(NP35)

But,


P(VP23) = P(VP → VBD) × P(VBD23) = 0.2 × P(VBD → saw) = 0.2 × 1.0 = 0.2

P(NP35) = P(NP → * the boy) = 0.0825 ( → * means chain of rule application)



The probability of NP35 is like that of NP02 as well as that of NP68, by virtue of the stationarity property of PCFG rules, in this case applied to P(NP → DT NN  ). 

Therefore, 

P(VP25) = 0.5 × 0.2 × 0.0825 = 0.00825

Next, we find


P(PP58) = P(PP → P NP) × P(P56) × P(NP68) = 1.0 × P(P → with) × 0.0825

              = 1.0 × 1.0 × 0.0825 = 0.0825



Therefore, one possibility for VP28 is

P(VP28) = 0.3 × 0.00825 × 0.0825 = 0.0002

The other possibility yields

P(VP28) = 0.00034, this derivation is easily traced from the CYK in Table 4.4.

Having got the two probabilities of VP28, we multiply them by P(S → NP VP ), which is equal to 1.0, and by P(NP02) which is 0.0825. This yields the two parse tree probabilities for S. We have already seen that the parse tree with PP-attachment in favour of the NP (‘the boy’) is the winner structure with the probability of 0.000028.

Like we did in HMM-Viterbi for partial POS tag sequences, we need not grow the subtrees which have no chance of winning at the end. For example, we need not multiply VP28 coming via VP PP by NP02 because this structure cannot win against VP28 coming via VP NP. In the next sub-section, we discuss an efficient method of finding the highest probability parse tree rooted at S. 

4.4.4 Need for Efficiency in Computing the Highest Probability Parse Tree

To find the highest probability parse tree, we should make use of the idea of reusing already done calculations, just like in Viterbi decoding for HMM-based POS tagging. Viterbi decoding builds the probability of the ‘best’ POS tag sequence by accumulating the products of POS subsequence probabilities. In probabilistic parsing too, the ‘best’ parse tree is found by accumulating the products of probabilities of subtrees. Just as the Markov independence assumption lets us discard subsequences in POS tagging, so do the ancestor freeness and context-freeness assumptions allow us to discard subtrees in parsing which have no promise. 

A question that might arise is, ‘Why all this fuss about efficiency, if after all the number of parse trees is small?’ The answer is that the number of potential parse trees is not small. In the worst case, the number of parse trees can be exponential in the length of the sentence. This comes from the theory of Catalan numbers which figure in many combinatorial problems. Catalan number Cn is a series of numbers (like factorialn ) (n ≥ 0) and is defined as

(4.e.7)

[image: ]
which is exponential in n.

It can be shown that the number of full binary trees with n + 1 leaves, or, equivalently, with a total of n internal nodes is Cn. Binary trees are obtained from X-bar grammars. They are also obtained when we apply CYK parsing since the grammar is in Chomsky normal form (CNF). Thus, efficiency concern is a real one for parsing. 

We now proceed to discuss an efficient algorithm for finding the parse tree with the highest probability.   

4.4.5 Important Probabilities

For the efficient computation of the highest probability parse tree given the grammar and input sentence, as well as for computing sentence probabilities, we need three special probabilities which we define in the following.

a, β, and δ Probabilities

Let N 1 be the starting symbol of a PCFG. N1 is the same as the start symbol S conventionally used for CFGs. The names N1, N2, …, Nj are notational conveniences pertinent to the current discourse(Figure 4.21).

[image: ]
Figure 4.21  Parse tree to depict inside (β ) and outside (a) probabilities.



We first define the inside (β ) probability.

(4.e.8)

[image: ]



That is, the inside probability βj, given a segment Wpq of the sentence and a grammar symbol N j, is the probability that N j dominates Wp-q. Recall that Wp-q (W in capital) is the segment of the sentence from indices p to q. Recall also that the indices are between-word indices and not word indices.  

It turns out that inside probability can be computed recursively from the inside probabilities of smaller segments of Wp - q, finally terminating at terminal symbols (words). For this, we make use of the fact that the grammar is in CNF.

N j → N k N l, for some k and l

N k and N l are non-terminals and let us suppose N k dominates over Wp-r and N l over Wr-q for some r(Figure 4.22). 

[image: ]
Figure 4.22  Domination of Nj over Wpq through the domination of Nk over Wpr and of Nl over Wrq.



There may be many such N k-r-N l combinations; the domination of N j over Wp-q can be realized in multiple ways. Therefore, by invoking marginalization over k, r, and l, we get

(4.e.9)

[image: ]
the termination condition being 

(4.e.10)

[image: ]
which is the lexical probability in the grammar.

At this point, we foresee the possibility of confusion. Bj(p, q) is the probability of domination of N j over Wp-q. Did we not express this domination as the product of probabilities of grammar rules? How come then βj(p, q) is the sum of products of smaller segment β probabilities? This seems to be at variance with Section 4.4.2!

There is no confusion really. The product rule probabilities are used when the parse tree is given. In Section 4.4.2, we derived the probability of S (or any non-terminal) generating a parse tree or parse subtree, dominating over a sentence or over a segment thereof. For β probabilities, we are not given the parse tree. The parse tree is a hidden entity, hence the marginalization and consequent sum over all possible parse trees.




Another confusion may arise over the entries of constituents and probabilities in the CYK parse in Table 4.4. There VP28 probability was written as (0.000017, 0.000028). Should not these two probabilities have been summed? The answer is no; we were not computing β probabilities in that section. We were only recording all possible parse trees and their probabilities.  

We will not use the a probability aka the outside probability here that aj(p, q) is the probability of starting from N 1, (1) generating the prefix of Wp-q, (2) generating N j, and (3) generating the suffix of Wp-q. The use of outside probability is in learning a PCFG from treebank data, in conjunction with inside probability. This is similar to the use of forward and backward probabilities in learning an HMM from POS-tagged data using the Baum-Welch algorithm.

However, for our discussion on finding the parse tree with the highest score (i.e., probability), the most relevant is the delta (δ ) probability which is defined as

(4.e.11)

	δi(p, q) = maxj(βj(p, q))

That is, the delta probability is the probability of that parse tree which has the highest inside probability parse of the subtree rooted at N ipq. The steps of finding the highest probability parse tree are as follows:

1. Initialization, δi(p, p + 1) = P(N i → w), where w is the word between indices p and p+1 

2. Induction

(4.e.12)

[image: ]
These two steps mean that we start with the words (the diagonal elements in the table for CYK parsing) and reduce them to their respective non-terminals. Then, we keep track of the highest probability parse subtree for every constituent and store their pointers. In the end, for N1 (i.e., S), we have the highest probability and the parse tree that has this probability. In case of a tie at any stage, we choose one among the subtrees randomly. This algorithm has a complexity of O(m3n3), where m is the number of grammar rules and n is the number of words in the sentence.

We now illustrate the finding of the highest probability parse tree by referring to Table 4.4 for the sentence ‘the man saw the boy with a telescope’.

1. ‘the’ is reduced to DT; this is recorded in cell <0, 1> along with the probability 0.5.

2. Similarly, for ‘man’ → NN along with the probability 0.33 at cell <1, 2>.

3. Cell <0, 2> gets NP02 along with the probability 0.0825.

4. This process continues normally until we come to cell <2, 8>; VP28 has two parse trees one through VP → VP PP with a probability of 0.0002 and the other through VP → VP NP with a probability of 0.00034.

5. Here we choose the parse tree through VP NP which has the higher probability.

6. The process terminates with parse tree rooted at S, having probability 0.000028 (PP attached to NP, indicating the boy has the telescope).

Note how the CYK algorithm is guiding the whole incremental construction, and whenever a cell has multiple parse trees, the one with the highest probability is retained and grown further. This is similar to retaining and advancing the highest probability partial path among all partial paths ending in the same POS tag. The place of ‘the same POS tag’ is taken by ‘the same non-terminal’ which is the root of all these parse subtrees.  

Argmax and generative model provides the framework, as in the case of POS tagging. PCFG is the counterpart of HMM for dynamic programming-based parse tree decoding.

In the next section, we discuss the other major approach to parsing known as dependency parsing.


  □  4.5Dependency Parsing



Section 4.1.1 introduced the notions of heads, modifiers, and head–modifier relations. Concepts of heads, modifiers, and dependencies between heads and modifiers date back to the days of Pānini, the 6th century bc linguist from India, whose colossal work on phonology and morphology is still regarded as the first scientific study of human language. Indian linguistics introduced the concepts of ‘aakangkshaa’, ‘yogyataa’, and ‘sannidhi’ which roughly translate as ‘desire’, ‘fitness’, and ‘proximity’. A word may play the role of a desire-word or supply-word. The word may either raise a desire to be satisfied or satisfy the desire of a desire-word. To be able to meet the desire of desire-words, the supply-words must have the properties that enable them to satisfy the desire of the desire words. An example clarifies these points:

(4.s.13)

The man saw the boy with a hat

This sentence has no ambiguity though it is structurally identical to 4.s.12. ‘hat’, unlike ‘telescope’, does not have the property of instrumentality that can fulfil the desire for instrument, called the instrument slot of the verb ‘saw’. In the parlance of modern linguistics, ‘hat’ does not meet the selectional preferenceof ‘saw’.

4.5.1 Arguments and Adjuncts

‘Aakangkshaa’ and ‘yogyataa’ go towards building the meaning representation of a sentence. Meaning representations are typically created by meaning graphs in which nodes are words and arcs are word relations. In Figure 4.23, we show the meaning graph of the sentence
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Figure 4.23  ‘Agent’, ‘Object’, ‘Beneficiary’, ‘Instrument’, ‘Place’, and ‘Time’ relations for the sentence ‘John teaches children drawing with coloured chalks every day in the school’.




(4.s.14)

John teaches children drawing with coloured chalks in the school every day.

The main verb (MV) in this sentence is ‘teaches’. The ‘slots’ of the MV and the corresponding fillers are as follows:


MV: ‘teaches’

         Agent: John

         Object: Drawing

         Beneficiary: Children

         Instrument: Coloured chalks

         Place: School

         Time: Every Day  



The slots are called case relations or case roles. The terminology for case relations in Indian linguistics is ‘kaaraka’. ‘Kaarakas’ go hand in hand with ‘vibhaktis’, which are the case markers. Case markers are suffixes attached to nouns or are adpositions (pre/post-positions) before/after nouns. In English, case markers are almost always prepositions (‘in the school’). In Indian languages, they are suffixes (‘ShaaLet: ShaaLaa+et:’ Marathi) or post-positions (‘skul meM:’ Hindi). Identifying case relations automatically is called semantic role labelling (SRL). 





Out of these slots and fillers, some are essential, in the sense that without these, the sentence is incomplete. These essential slots together form what is called an argument frame, and the fillers are called arguments. Other slots that are not essential and are there to provide additional information are called adjuncts. Thus, in 4.s.14, only (1) and (2) form the arguments, rest of the slots and fillers are adjuncts. There can be an arbitrary number of adjuncts, but arguments are only so many. The arguments of ‘teach’ are agent (who teaches) and object (what is taught). Beneficiary (who is taught), instrument (by what is taught), place (where does the teaching take place), and time (when is the teaching done) are adjuncts. 

Arguments and adjuncts answer to wh-questions, and therefore are crucial for question answering. Verb-arguments are inherent properties of verbs; so is the case with other parts of speech such as adjectives, adverbs, and prepositions. Prepositions need noun phrases to fulfil their ‘aakangkshaa’. So do adjectives. Adverbs too have their ‘aakaangkshaa’ because they need VPs.

The bridge between modern linguistics and Indian linguistics, as far as semantics is concerned, must be clear at this point. Argument frames represent ‘aakaangkshaa’, and the ‘aakangkshaa’ is for words with specific properties. This desire for specific properties is called selectional preference (SP). The SP of ‘teach’ for the agent argument are among other properties animacy and volition. The agent of ‘teach’ must be animate and must have volition, besides other properties. In 4.s.14, ‘John’ meets these requirements, and so John has the ‘yogyataa’ (i.e., is fit) for fulfilling the ‘aakaangkshaa’ of ‘teach’.  

‘Aakaangkshaa’ and ‘yogyataa’ are foundational for words to form a sentence. Additionally, they are the means of disambiguation, as was illustrated by 4.s.13. When ‘aakaangkshaa’ and ‘yogyataa’ fail to disambiguate, ‘sannidhi’ meaning proximity is invoked. Thus, for 4.s.12, ‘the man saw the boy with a telescope’, neither ‘saw with a telescope’ nor ‘boy with a telescope’ violate ‘aakangkshaa’ and ‘yogyataa’ requirements. Hence, to disambiguate we can invoke ‘sannidhi ’ and attach the PP ‘with a telescope’ to ‘the boy’ which is textually closer to the PP than is ‘saw’. The preferred meaning then is that the boy has the telescope. 

The importance of dependency identification lies in the fact that it is a crucial step towards the construction of a meaning graph. Dependencies can be depicted by a dependency graph in which nodes are head words and modifier words and arcs are dependencies. If the arcs are named with specific dependency relations such as subject and object, the dependency graph is called labelled dependency graph; else it is called unlabelled dependency graph. 

Creation of an unlabelled dependency graph consists of solving two binary classification problems:

1. For every pair of words in the sentence, decide if a dependency arc can be set up between the words.

2. If so, decide which word should be the head, the other automatically being the modifier.

For labelled dependencies, we additionally solve the problem of what specific dependency label to place on the dependency arc.

Case relations or semantic roles are deeper than dependency relations in the sense that a dependency relation can map to multiple semantic roles which are refinements of dependency relations. Consider, for example, the following three sentences:


John broke the window(4.s.15)

The window broke(4.s.16)

The stone broke the window(4.s.17)




A typical dependency parser specifies nsubj (nominal subject) relationship between all three pairs of John-broke, window-broke, and stone-broke. However, the case relations are 


agent for John

object for window

instrument for stone



We need additional information in the form of argument frame and SP of ‘break’ and the properties of ‘John’ (e.g., person, animate, volitional), ‘window’ (e.g., artefact, inanimate), and ‘stone’ (e.g., hard-object, inanimate). These additional features feed a classifier for correct SRL. This is the bridge connecting dependency parsing with ML.

4.5.2 Algorithmics of Unlabelled Dependency Graph Construction

We now discuss the method of constructing an unlabelled dependency graph given an input sentence. The steps given below are typical of the construction of the dependency graph of a sentence. The procedure is called transition-based dependency parsing. Another approach, which is more general, is called graph-based dependency parsing (described in Section 4.5.6).

Recall that dependency relations are always from a head to its corresponding modifier(s). Also, a word can have the double role of being simultaneously a head itself and the modifier of another head. Thus, for the VP ‘saw tiny flowers’, ‘flowers’ is simultaneously the modifier of ‘saw’, and head for ‘tiny’.
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Figure 4.24  Shift-reduce based DP construction steps of 4.s.18, with the meaning ‘I have the binoculars’. Note how the modifier goes out of reckoning once linked with the head. 


Steps for Unlabelled Dependency Graph Construction   

1. Identify the main verb of the sentence. Make a special node called root point to the main verb. This special node root is the fictitious head for which the main verb acts as the modifier.  

2. For the main verb, identify the phrases and clauses that contain its modifiers. To reiterate, a dependency graph contains directed arcs between pairs of words, namely head and modifier.

3. For the modifier phrase or clause, determine its head. For this head, identify its modifiers. Keep doing this until all head–modifier relations are established for that phrase or clause.

4. Link the head of the clause or phrase with the main verb.

5. Keep doing this until all phrases and clauses have been linked with the main verb. 

The basic technique is that of shift-reduce parsing. Figures 4.24 and 4.25 give the steps for constructing two dependency parse trees for the ambiguous sentence 

(4.s.18)

I spotted you with binoculars

These are shift-reduce steps. The resulting graphs are shown in Figures 4.26 and 4.27.

The name transition based comes from the fact that the algorithm makes transition from one state to another. A state consists of the top of the stack and the front element of the buffer. The parsing algorithm shifts words from the buffer to the stack, links elements in the stack with a right or left arc, and removes the modifier from the stack, and so on, thereby transitioning from one state of the machine to another. 


[image: ]
Figure 4.25  Shift-reduce based DP construction steps of 4.s.18, with the meaning ‘You have the binoculars’.





4.5.3 Dependency Relations

Figures 4.26 and 4.27 show dependency graphs without dependency labels. Dependency parses are incomplete without actual relation labels. We will place labels on the arcs and express the nodei-label-nodej as binary predicates as follows:

[image: ]
Figure 4.26  DP tree of 4.s.18 with the meaning ‘I have the ‘binoculars’.

[image: ]
Figure 4.27  DP tree of 4.s.18 with the meaning ‘You have the binoculars’.



(DP of Figure 4.26)



nsubj(spotted, I)

dobj(spotted, you)

prep(spotted, with)

pobj(with, binoculars)



(DP of Figure 4.27)


nsubj(spotted, I)

dobj(spotted, you)

prep(you, with)

pobj(with, binoculars)



Notice that only the prep predicate-argument expression changes according to the meaning of the sentence. When the meaning is ‘I have the binoculars’, the preposition ‘with’ is linked with ‘spotted’. When the meaning is ‘You have the binoculars’, the preposition ‘with’ is linked with ‘you’.

The labels nsubj, dobj, prep, and pobj are called dependency relation labels. The most well-known and comprehensive dependency relation repository is Universal Dependencies (UDs; https://universaldependencies.org/) which, true to its name, aims to capture language phenomena across world’s languages. In the above examples, however, we have used Stanford CoreNLP Dependency relations1 with the following interpretations of labels:


nsubj: links a verb with its subject

dobj: links a verb with its direct object

prep: links a verb or a noun with the preposition head of a PP

pobj: links the preposition head in a PP with its modifier



Now, it is understandable why there are two predicate-argument expressions in the example sentence. prep as a predicate can take both verb and noun as its argument.

It is important to note that dependency relations are asymmetric predicates; the first argument is always the head and the second is its modifier. This is consistent with the notion that dependency graphs are directed graphs and dependency relations are always from the head to the modifier.

We will not go into the details of dependency relations, but would like to remark that like POS tagset design, the design of dependency relations is also an intricate and complex exercise, combining linguistic and computational insights. The dependency relation repository should be rich enough to incorporate all dependency phenomena, while at the same time allowing ML to detect the labels with reasonable accuracy. Downstream NLP applications needing dependency parses are SRL, question answering, information extraction, and even low-resource machine translation. High-accuracy dependency parsing is therefore a critical necessity.

4.5.4 Dependency Parsing and Semantic Role Labelling

It is pertinent to relate dependency parsing with semantic role labelling (SRL). Semantic roles are deep semantic relations representing the meaning of a sentence correctly and completely. These relations are deeper than dependency relations as illustrated in the three sentences of ‘John broke the window’, ‘the stone broke the window’, and ‘the window broke’. There have been many projects on deep semantic relations and SRL. One of the authors of this book has been a part of the United Nations University (UNU) initiated project called Universal Networking Language.2 The UNL project sought to represent the sentential meanings of 15 different languages. Linguists and computational linguists of these languages would meet at different locations of the world to deliberate on inserting into, deleting from, and refining existing ones in the relation repository of UNL. The fact that UNL relations are deeper than dependency relations is illustrated by expressing the two meanings of ‘I spotted you with binoculars’ as follows:

(I have the binoculars)


agt(spot@past, I)

obj(spot@past, you)

ins(spot@past, binoculars)



(You have the binoculars)


agt(spot@past, I)

obj(spot@past, :01)

agt:01(hold@past, you)

obj:01(hold@past, binoculars)



The meanings of the above UNL relations are as follows:


agt: agent of an action (animate and has volition)

obj: object of an action

ins: instrument of an action 



The symbol @past indicates past tense and is called attribute. Attributes in the UNL framework are very exhaustive and fine-grained, capturing number, tense, aspect, modality, etc. The symbol :01 is also a unique device in UNL for representing meaning. They capture overt or covert clauses. For the meaning ‘you have the binoculars’, the sentence ‘I spotted you with binoculars’ is paraphrased as ‘I spotted you holding binoculars’. ‘you holding binoculars’ is looked upon as an object-clause which is given the symbol :01, indicating that there is an underlying clause. The two relations agt:01 and obj:01 carry this clausal information to deeply and correctly represent the meaning of the sentence.

Computationally speaking, creating deep semantic representations like UNL is a complex and involved task. In the initial phases of the UNL project, thousands of rules would be written to convert sentences into UNL. However, such rule bases would be brittle and the effort of rule-making arduous, painstaking, and error-prone. As more UNL graphs were created, they became fodder for ML-based systems. ML-based SRL was pioneered by Gildea and Jurafsky (2002). The lexical and syntactic features of heads and modifiers were used by a classifier that identified the semantic roles as given in the Framenet3 repository. The current ML approaches to SRL are based on deep learning. We will discuss neural parsing at the end of the chapter.

4.5.5 Projectivity

We close the discussion on dependency parsing with projectivity which is a fundamental concept for computation of dependency parsing. Shift-reduce parsing described in Section 4.5.2 will in general produce incorrect arcs and labels, especially for linking the main clause with the subordinate clauses, if the input sentence is non-projective.

Definition: A sentence S:w1, w2, w3, …, wn-1, wn is said to satisfy projectivity constraint if its dependency tree  is projective. A  dependency tree is called projective iff whenever a word wi in S is the parent of wi+k, then all intermediate words wi+1, wi+2,…, wi+k-1 are descendants of wi.

This definition implies that the dependency tree can be drawn on paper such that there is no crossing of arcs. The arcs must all be drawn either above the sentence or below it.

We illustrate projectivity with a running example

(4.s.19)

	I spotted you with binoculars which was expensive

Figure 4.28 illustrates the use of the dependency label relcls—meaning relative clause—which links a word with its clausal modifier. The head of the clausal modifier ‘which was expensive’ is ‘was’. ‘binoculars’ is linked by relcls with ‘was’.

[image: ]
Figure 4.28  Dependency tree of 4.s.19 with the meaning ‘I have the telescope, and the telescope is expensive’.


Figure 4.29 shows the violation of projectivity. The arc from ‘binoculars’ to ‘was’ crosses the arcs from ‘spotted’ to ‘I’ and from ‘spotted’ to ‘with’. From the definition of projectivity, we see that ‘binoculars’ is the ancestor of ‘was’. But the intervening words ‘spotted’ and ‘you’ are not descendants of ‘binoculars’.




[image: ]
Figure 4.29  Dependency tree of the non-canonical scrambled form of 4.s.19, which is ‘I with binoculars spotted you, which was expensive’.




Interestingly, a variation of 4.s.19, ‘The binocular I spotted you with was expensive’ is projective as shown in Figure 4.30.

[image: ]
Figure 4.30  Dependency tree of ‘The binoculars I spotted you with was expensive’.


The violation of the projectivity constraint leads to incorrect dependency parses in shift-reduce dependency parsing. We note that the core of shift-reduce dependency parsing is the rule: do not remove the head from the stack until all its modifiers have been linked with the head and removed from the stack. 

Consider the shift-reduce parsing of ‘I with binoculars spotted you, which was expensive’. The dependency  tree produced for this by shift-reduce parsing is shown in Figure 4.31.



[image: ]
Figure 4.31  Inaccurate dependency tree of ‘I with binoculars spotted you which was expensive’. ccomp and acomp are new labels meaning clausal complementizer and adjectival complement, respectively.



There is no crossing of arcs as is expected of the output of shift-reduce DP. However, the fact that ‘which was expensive’ is the clausal modifier of binoculars is not captured in this tree. The ccomp dependency relation links the head (verb) ‘spotted’ of the main clause with the head (verb) ‘was’ of the subordinate clause. This is not incorrect but is not very informative either! It is not enough to say that the sentence has a clause. It is necessary to specify what the clause modifies.

It is interesting to track why shift-reduce parsing produced the dependency tree of Figure 4.30. The algorithm assumes a priori that the input is projective, even if it is not! It continuously makes the following two decisions:

1. To shift or to reduce

2. If reduce, what relation to label with

The parsing producing the dependency tree in Figure 4.30 proceeds as follows:

1. Shift—I

2. Shift—with

3. Shift—binoculars

4. Reduce—set up rightarc to binoculars from with; label with pobj; remove binoculars from stack

5. Shift—spotted 

6. Reduce—leftarc to with from spotted ; label prep; remove with

7. Reduce—leftarc to I  from spotted ; label nsubj; remove I  from stack

8. Shift—you

9. Reduce—rightarc to you from spotted ; label dobj; remove you

10. Shift—which

11. Shift—was

12. Reduce—leftarc to which from was; label nsubj; remove which

13. Shift—expensive

14. Reduce—rightarc to expensive from was; label acomp; remove expensive

15. Reduce—rightarc to ‘was’ from spotted ; label ccomp; remove was 

16. Shift—spotted 

17. Input over, stack empty; parsing COMPLETE with SUCCESS  

The decision at every stage is taken by a classifier trained with data. The data is the dependency treebank. The relation ccomp is established between the verb of the main clause and that of the subordinate clause because most likely this is what the training data is like.

This limitation of shift-reduce parsing, viz., treating the input sentence as projective when it is not and thereby producing wrong relations is ameliorated in sequence labelling-based and graph-based parsing which we now briefly describe.

4.5.6 Sequence Labelling-Based Dependency Parsing

Let us illustrate with our running example, with the special word root placed before the first word of the sentence.

root I spotted you with binoculars

We number the words in the sentence starting with root given the number 0. Now, the dependency tree can be completely defined by the incoming edges and labels thereon for each word, except root. So, for the sentence under consideration,


0—root: no incoming edge and label

1—I: edge coming from spotted (word no. 2); label nsubj

2—spotted: edge coming from root (word no. 0); no label

3—you: edge coming from spotted (word no. 2); label dobj

4—with: edge coming from spotted (word no. 2); label prep

5—binoculars: edge coming from with (word no. 4); label pobj 



The tagged sequence which represents dependency is

root_φ,φ I_2,nsubj spotted_0,φ you_2,dobj with_2,prep binoculars_4,pobj

φ indicates no label.

The sequence labelling process annotates each word with two labels—the position of the word from which the incoming edge is coming, and the label.

Now, we are in the familiar terrain of sequence labelling. The labelling can be done by a generative model like HMM or by discriminative models like MEMM, CRF, or Neural Net. The reader is referred to Chapter 3 for these approaches. The discriminative models are feature aggregators, wherein a detailed set of features are human-engineered like in POS tagging.  

Sequence lablelling-based approaches do not suffer due to wrong or uninformative labels that are produced as a result of non-projectivity. However, there is another serious limitation. Sequence labelling machines mentioned above are all near-neighbour devices, in the sense that they disambiguate by signals from near vicinity words and their features (e.g., POS of the previous word), dependency label (position plus label) of the previous word, morphological and semantic properties of the previous word, and so on. Thus, the accuracy of dependency parsing falls when the sentence is long. It is quite common to have dependencies from words in subordinate clauses to words in main clauses which are long distance apart. For example, consider the sentence, ‘I know the boy from Delhi which is a big city and the capital of India which is a large country with a billion people, who plays football very well’. ‘boy’ and ‘plays’ which have large textual separation should be linked. An online popular parser4 we tried links ‘boy’ with ‘is’ with the label relcls (relative clause) which in turn is linked with ‘big city’, which is completely wrong. 

The above problem of long-distance effect is ameliorated in graph-based dependency parsing whose underlying essential idea we now briefly describe.   



4.5.7 Graph-Based Dependency Parsing

We start with the assumption that every word in a sentence is dependent on every other word, except root on which all words depend. This gives a fully connected directed graph rooted at root. We illustrate step by step the maximum spanning tree (MST)-based parsing with an example. For simplicity and for conveying the core of the idea, we work with only three words from our example sentence. 

I spotted you

The fully connected unlabelled directed graph is shown in Figure 4.32.

[image: ]
Figure 4.32  Unweighted fully connected dependency graph for ‘I spotted you’.




Now if we could have appropriate weights on the edges of this graph (in both directions for every pair of words), finding MST rooted at root could give us the dependency tree. It must be noted that the actual weight values are immaterial. In the end, we must have ‘winner’ edges between every pair of words, including from the root to the correct word of the sentence. root always points to the main verb of the sentence. It is when there are multiple verbs—as in clausal sentences—that the task of finding the main verb arises. In any case, weights are also assigned from root to all words in the sentence, though there are no backward edges from words to root. MST finding automatically locates the main verb of the sentence. For Figure 4.32, the MST should consist of edges


From root to spotted

spotted to I

spotted to you



Let us now discuss the algorithm to find the MST. This algorithm is famous by the name Chu-Liu-Edmonds algorithm. Figure 4.33 shows the weighted directed graph. The weights are found from the data (i.e., already created dependency trees for many sentences). Such databases are called dependency treebanks. Prague Dependency Treebank is well known as the storehouse of English and Czeck dependency tree examples.

[image: ]
Figure 4.33  Weighted fully connected graph for ‘I spotted you’.



Chu-Liu-Edmonds algorithm for finding MST is greedy. 

1. First, for every node in the directed graph find the incoming edge with the maximum value.

2. If Step 1 yields a tree, it must be the required MST, else there must be a cycle.






3. For each cycle, do the following:


•Create a fictitious node called the collapsed node C; let the members inside C be c1 and c2.

•Decide the outgoing and incoming edges of the collapsed node C as follows:

•The outgoing edge from the collapsed node to any node M should be the one which has the greater of the two weights c1  → M and c2 → M.

•The incoming arc to the C from any node N should be created by finding the MST from N to c1 and c2. That MST is N → c1  → c2 or N → c2 → c1; suppose it is the former, then the weight of N → C is the sum of the weights N → c1 and c1  → c2.


4. Process the new graph as in Steps 1 to 4:


•If we get a tree, this is the MST.

•C is uncollapsed and the final MST is obtained; that MST is the dependency tree of the input sentence.


Let us illustrate the algorithm with the processing of the graph in Figure 4.33 (the weights are assumed to have been learned from treebank data).

Figure 4.34 shows the graph with each incoming edge to any node being the maximum of the incoming edges for that node.

[image: ]
Figure 4.34  Graph for ‘I spotted you’ with maximum-value incoming weights to each node retained; non-maximum edges are dashed. 




For I, the maximum weight incoming edge is spotted → I

For spotted, the maximum weight incoming edge is I → spotted

For you, the maximum weight incoming edge is spotted → you 



Now, there is a cycle involving ‘I’ and ‘spotted’. Let us collapse these nodes (call this I-spotted). From the collapsed node consisting of ‘I’ and ‘spotted’, there is only one outgoing arc, the arc spotted → you with weight 30 since this is the bigger of the two weights, spotted → you and I → you.

As for incoming arc to the collapsed node I-spotted, there are two: root → I-spotted and you → I-spotted. As for root to I-spotted, there are two trees: root → spotted → I and root → I → spotted. For the former, the total weight is 10 + 30 = 40, while for the latter it is 9 + 20 = 29. So, the MST is root → spotted → I. This sets up the incoming arc from root to I-spotted with weight 40. Similarly, the weight from you to I-spotted is 31 (both trees have equal total weight). The graph is shown in Figure 4.35.


[image: ]
Figure 4.35  Graph for ‘I spotted you’ with collapsed node I-spotted.





Running the same process on the graph, viz., retaining only the maximum-weight incoming edges, and subsequently uncollapsing I-spotted we get the MST in Figure 4.36.

[image: ]
Figure 4.36  MST giving the dependency tree of ‘I spotted you’. The edge weights will be dropped and dependency labels will be marked.




Figure 4.37 is the labelled dependency tree for ‘I spotted you’. The finding of the dependency tree by the MST algorithm crucially depends on the weights and the ML model. We end the chapter by discussing neural parsing.

[image: ]
Figure 4.37  Final dependency tree of ‘I spotted you’.



  □  4.6Neural Parsing



We will now cover neural constituency parsing; neural dependency parsing follows a similar procedure. We recall that constituency parsing takes as input a sequence of words and identifies constituents aka linguistic phrases licenced by a CFG along with parent-child information (phrases and their sub-phrases) as well as phrase labels such as NP, VP, and PP.

Section 4.2.1 laid the foundation for ML-driven parsing. It was shown that constituency parsing can be looked upon as a sequence labelling problem, where labelled brackets are superimposed on word sequences. 4.b.1a is reproduced below:

Parse #1 (with the meaning: the boy has the telescope)
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(4.b.1a)










Recall that we work with ‘between-word’ position indices. In the above example, there are two opening brackets at position 0—one opening and one closing at position 1, and so on. Also, the closing bracket at position 1 has the label NP. This shows that there are three kinds of classification decisions to be made:

1. Are there any brackets to be inserted at a position p?

2. If the answer to (1) is yes, which bracket—opening or closing?

3. If closing bracket, which label to insert?

Rule-based parsing shows how rules in top-down/bottom-up/top-down–bottom-up parsing drive these decisions. Statistical parsing in Section 4.4 shows how a graphical model like probabilistic CFG can ‘decode’ an input sequence of words to produce its constituency parse and also score it. Sections 4.5.6 and 4.5.7 also give a method for feature-driven sequence labelling-based and MST-based parsing. Arc weights for MST parsing are learned from data.

In this section, we give a neural solution to the above sequence labelling process. The basic observation in the words of Stern et al. (2017) is

‘A constituency tree can be regarded as a collection of labelled spans over a sentence. Taking this view as a guiding principle, we propose a model with two components, one which assigns scores to span labels and one which assigns scores directly to span existence. The former is used to determine the labelling of the output, and the latter provides its structure.’

This, then, is the principle of neural parsing: (1) search for spans and (2) score spans through softmax. The machine employed is RcNN—the recursive neural net. The following section gives the basic methodology following Socher et al. (2010, 2011). 

4.6.1 Constituency Parsing Using RcNN

We work with the example

0 the 1 man 2 saw 3 the 4 boy 5 with 6 a 7 telescope 8

A CYK like bottom-up approach is employed for creating a binary parse tree. RcNN is nothing but a recurrent neural network (RNN) which runs over the words as units and combines the vector representations of these units into phrase representations. We call the new units that are created by the combination of a bigram combination-units. 

It can be spotted that the words are terminals and (some of the) combination-units are non-terminals. We use the term combination-unit because not all combination-units are valid grammatical categories.

The name recursive neural net derives from the following fact. After the first pass over the input, every subsequent pass contains combination-units created in previous passes by the RNN. The RNN treats these subsequent sequences just like the word sequence of the first pass because in all passes the sequence consists of representation vectors. The RNN is recursive in the sense that it operates on its own work in every pass except the first one. 

The essence of this parsing methodology is as follows:

1. In the first pass, the representation from two consecutive word-units is obtained by (a) concatenating the vectors of these words and (b) passing the concatenation through the recurrent neural network.

2. The resulting combination-unit is scored by passing it through a non-linear function.

3. The highest scoring combination-unit is retained, and a new sequence is obtained by deleting the word-units constituting the combination-unit.

4. The new sequence is treated like in the previous pass, combining bigrams.

5. Besides being scored, the retained combination-units also pass through a feedforward network with softmax final layer to obtain the labels NP, VP, PP, etc.

6. The process stops with the finding of the start symbol S.

Let us illustrate the methodology with an example.

1. 0 the 1 man 2 saw 3 the 4 boy 5 with 6 a 7 telescope 8.

2. 0 C  102 1 C 113 2 C 124 3 C 135 4 C 146 5 C 157 6 C 168 7; assume C 102 (the man) has the highest score; the upper right suffix ‘1’ indicates pass-1; the man is replaced with its representation C 102 along with the label NP.

3. 0 C 102_NP 1 saw 2 the 3 boy 4 with 5 a 6 telescope 7; new sequence.

4. (after combining, scoring, and filtering) 0 C 102_NP 1 saw 2 C 224_NP 3 with 4 a 5 telescope 6; upper right suffix indicates 2nd pass.

5. 0 C 102_NP 1 saw 2 C 224_NP 3 with 4 C 346_NP 5; 3rd pass; a telescope is an NP.

6. 0 C 102_NP 1 C 413_VP 2 with 4 C 346_NP 5; 4th pass; saw and NP (a boy) give rise to a VP.

7. 0 C 102_NP 1 C 413_VP 2 C 525_PP 3; 5th pass; with and NP (a telescope) produce a VP. 

8. 0 C 102_NP 1 C 613_VP 2; 6th pass; VP (saw the boy) + PP (with a telescope) → VP.

9. 0 C 702_S; 7th pass; S → NP VP; S found; TERMINATE.

Provided all decisions go correctly, we will obtain the parse tree of Figure 4.18. The schematic of the RcNN is shown in Figure 4.38.

[image: ]
Figure 4.38  RcNN-based parse tree for the sentence ‘the man saw the boy with a telescope’. Each rectangle with circles represents the same RcNN at different passes.




Figure 4.38 depicts the recursivity of the RNN. Only the combination-units which are valid phrases are shown in the figure. The NPs are first found (‘the man’, ‘the boy’, and ‘a telescope’) in three passes, followed by the small VP (saw NP ), the PP (with NP ), the larger VP (VP PP), and finally the S. It is, of course, possible to identify multiple phrases in a single pass. We stick to the depiction of a single phrase at each pass to bring out the essential elements of the process.




We mentioned ‘provided all decisions go correctly’. This is the crux of neural parsing. In Step 2, we obtained seven bigrams. Only C02 (‘the man’), C34 (‘the boy’), and C68 (‘a telescope’) are valid phrases (all NPs). The scoring should be such that non-phrase bigrams are scored low and phrase bigrams are scored high. We will now discuss the scoring mechanism.

Three sets of parameters are involved in recursively computing the binary parse tree:

1. Parameters of RcNN: Call this parameter set ρ (pronounced rho); denote by Rρ(cj, cj+1) the function that returns the parent vector or the combination-unit C of the bigram <cj, cj+1>.

2. Parameters of the scoring function: Call this parameter set σ (pronounced sigma); denote by Sσ(C ) the scoring function that returns a score for the merit of C.

3. Parameters of the labelling function: Call this parameter set λ (pronounced lambda); denote by Lλ(C ) the labelling function.

As an example, we will get the vector C = Rρ(‘the’,‘man’), its score Sσ(C ), and its label NP = Lλ(C ). Sσ(C ) should be higher than, for example, ‘man saw’, ‘saw the’, etc. This is made possible by learning ρ, σ, and λ. 

4.6.2 Learning ρ, σ, and λ

We have now come to the stage where the training data for learning the parameters need to be discussed, as well as the training methodology. For data, we are given sentences and corresponding trees which are bracketed structures as in 4.b.1a. 

The intuition behind designing the loss (or objective) function is as follows. Given a sentence Xi from the training data, the RcNN will recursively compute the parse tree Yi. Now, this tree at the outset is very likely to be wrong. The errors can be due to:

1. Embeddings of the combination-units are wrong.

2. Wrong combination-units are scored high.

3. Labels are inappropriate.

The effect of point number 2 is that non-terminals with wrong spans get created. For example, in the running example of this section, the bigram ‘saw the’ is not a valid phrase and should get a low score. 

Figure 4.39 gives the network that simultaneously learns to give combination-units, scoring them for their linguistic viability and labelling them. The loss function that is minimized by backpropagation sweeping through the whole RcNN-FFNN-FFNN combination is designed as follows. 
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Figure 4.39  Neural net to simultaneously train for detecting, scoring, and labelling phrases. Combination-units forming network is an RcNN, while the scoring and labelling networks are FFNNs.



During training, the tree generated by the RcNN is compared against its gold-standard tree in the training data (i.e., the treebank). Let us understand the training process with an example. The sentence chosen is 

the man saw the boy

whose constituent labelled tree is

[[the man]NP [saw [the boy]NP]VP]S 

The RcNN of Figure 4.39 first looks at the bigram C = the-man. The score Sβ(C ) should be 1. The softmax neuron corresponding to the class NP in Lγ(C ) should be 1 and other neurons for other phrase labels should be 0. If that is not the case, the parameters ρ, σ, and λ which are internal edge weights and biases in neurons in the three networks are changed by backpropagation. Next, the RcNN slides right and looks at the bigram C = man-saw. Now, the score Sσ(C ) should be 0 because this bigram is not a valid phrase. All phrase label neurons too should be 0. If that does not happen, again the parameters should change by backpropagation. This process continues for several sentences and their corresponding trees, the network going over each training data instance several times over, until the error (i.e., the value of the loss function) falls below a threshold.





The loss function which is minimized by backpropagation is designed by incorporating tree distance. A match between the RcNN-produced tree and the treebank-specified tree should get a high reward. Similarly, any tree that differs from the training data tree must be penalized. The tree that differs maximally should get the maximum penalty. 

The training scheme delineated above is called max margin estimation. In this scheme, the objective to be maximized (correspondingly, the loss function to be minimized) is designed such that invalid constituents, i.e., non-linguistic phrases are penalized heavily compared to the linguistic phrases. Socher (2010) gives the following objective (equivalently, loss) function:

(4.e.13)
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The first part of the equation rewards agreement with the target tree as per the training data. The second part penalizes the generation of any other tree. The Δ term computes the difference between the target tree yi and any generated tree y. Obviously, y is a function of the parameters of RcNN that produces the representation of the combination-units and the feedforward neural network that scores these representations. 

Explaining 4.e.12 further, yi is the parse tree of the sentence xi in the treebank. The index i runs over all the sentence–parse tree pairs, the training data. A(xi) is the set of all possible parse trees that can be constructed from xi. The size of A(xi) is typically exponential in the length of xi (refer Section 4.4.4). 

Importance of Treebanks

We should note the frequent reference to treebanks as sources of training data to train an ML model. There are two famous treebanks called Penn Treebank for English and Prague Treebank for English and Czeck. The former contains constituency parse trees and the latter dependency trees. In some sense, these treebanks can be looked upon as parallel corpora. Sentences are put in correspondence with their constituency and dependency trees. After linearizing the trees, sequence labelling, machine translation, and such approaches can be taken for parsing and learning to parse. Nowadays, many languages have their treebanks; this fact has given a lot of momentum to the NLP of those languages. 



Summary

We began by discussing the task of parsing—uncovering the underlying structure of a linear sequence of words, a major step towards uncovering the meaning. In Section 4.1, deep parsing was contrasted with shallow parsing, with the reality of deep structure being established and citing many language phenomena such as interrogative formation, wh-replacement, and one-replacement. Foundational concepts like constituents, dependencies, head–modifier, and PSG  were introduced. Standardization of PSG via X-bar theory was described.

Algorithmics of parsing and use of the ML in parsing were taken up in Section 4.2. State transition-based processing forms one of the major approaches to parsing. Shift-reduce was shown to be the heart of transition-based parsing, with the top elements on the stack and front elements in the buffer forming the states. The decision of selecting the right action at any state was shown to be an ML problem, where data in the form of treebanks trains the model. This section makes the parsing chapter true to the theme of the book, viz., ambiguity and its resolution by classification is the crux of the matter in any NLP task. 

Section 4.3 covered classical (first-generation) parsing. Top-down, bottom-up, and top-down–bottom-up chart parsing and CYK parsing for constituency were described. CYK—the bottom-up parsing technique—has remained the go-to source for technique in second-generation classical data-driven parsing as well as third-generation neural parsing.

Statistical or probabilistic parsing was covered in Section 4.4. This is the second-generation parsing, using data and probabilities. The need for probability was brought out by introducing the notion of domination over a segment of the input sentence by a non-terminal. Both the span of the segment and the choice of non-terminal are uncertain, which motivates the invocation of probability. This connection between probability and uncertainty of phrase formation was at the heart of probabilistic parsing. Again, a CYK-like algorithm—but this time using probability—was introduced. a, β, and δ probabilities are used to form the constituency tree that was the best given the data (i.e., the treebank of constituency parses).

Section 4.5 took up the topic of dependency parsing (DP), arguably a more universal parsing framework since DP is resilient against the challenges of free word order. Parsing now involves setting up head–modifier relations, which link pairs of words and are more intuitive and ancient. The important notions of arguments and adjuncts and also the underpinnings of Indian linguistics since the days of Yāska, Pānini, and Bhartṛhari—‘aakaangkshaa’, ‘yogyataa’, and ‘sannidhi’—were covered. These are the notions invoked in disambiguation, especially in attachment ambiguity. DP as a stepping stone to SRL was touched upon along with the international UNL project. Shift-reduce technique again played its role in transition-based dependency parsing. Projectivity which is an important notion both linguistically and algorithmically forms a foundational discussion in this section. Transition-based DP parsing creates a projective tree no matter what, often sacrificing the syntactic and semantic reality inherent in the input sentence, especially in the case of complex sentences. Tackling unprojectivity brought in sequence and graph-based parsing, the former mirroring the POS tagging techniques. Maximum spanning tree (MST) based DP concluded the section. 

No coverage of NLP topic can be complete without the modern developments of neural networks and deep learning and their application in NLP. Section 4.6 is on neural parsing. The exact points where data and ML are required were brought out through the working of neural constituency parsing (CP). Among several techniques for CP, recursive RNN-based parsing was chosen as representative. An indication of how backpropagation could simultaneously train the parameters of RcNN for correct constituent formation and the parameters of two feedforward networks for scoring and labelling the constituents were described. A brief discussion on what goes into the design of the loss function ended the section and the chapter. Deep parsing is undoubtedly the epitome of CL/NLP, and mastering this topic is simultaneously a scholarly and technical enrichment.

Review Questions

1. Consider the sentence:

0 Buffalo1 buffaloes2 Buffalo3 buffaloes4 buffalo5 buffalo6 Buffalo7 buffaloes8 Buffalo9 buffaloes10 buffalo11

There are four sets of buffaloes: 1st set bullies 3rd set, 2nd set bullies 1st set, 4th set bullies 3rd set.

Meaning: Buffaloes (1st set of buffaloes) living in Buffalo (USA) which are bullied by other buffaloes living in Buffalo (2nd set of buffaloes) in their turn bully buffaloes living in Buffalo (3rd set of buffaloes) which are bullied by other buffaloes living in Buffalo (4th set of buffaloes) 

Give the structure of this sentence. 

2. Draw all possible constituency and dependency trees for the sentence ‘The cameraman shot the batsman when he was near the minister’.

3. Implement algorithms for (a) constituency-to-dependency parse tree conversion and (b) dependency-to-constituency parse tree conversion.



Objective Questions

Select the Most Appropriate Option

1. The correct morpheme grouping for the word ‘unproductivity’ is ______.

a.[[[un] + [[product]+[ive]]]+[ity]]

b.[[[un] + [[product]]+[ive]+[ity]]

c.[[un] + [product]+[ive]+[ity]]

d.[[un] + [[[product]+[ive]]+[ity]]]

2. Take the sentence, ‘The cameraman shot the batsman when he was near the captain’. How many parse trees does this have and how many plausible meanings? You do not have to actually draw the parse trees. Just count the phrases and word meanings and combinations thereof.

a.(1, 1)

b.(2, 4)

c.(3, 4)

d.(4, 6)

3. Assume that we have a corpus with only noun phrases and nothing else; NP is the start symbol. The corpus is annotated with POS tags—DT(determiner), NN(singular noun), NNS (plural noun), JJ(adjective), IN(preposition), NP(noun phrase), JJP(adjective phrase), and PP(preposition phrase). The PCFG (probabilistic context-free grammar) is as follows:

(i) NP → DT NN; 0.5

(ii) NP → NNS; 0.3

(iii) NP → JJP NNS; 0.2

(iv) JJP → JJP JJ; 0.2

(v) JJP → JJ; 0.8

Rules (iv) and (v) state that an adjective phrase can be composed of one or more adjectives.

Answer the following questions based on the above.

(1) The transition probability for POS tagging, P(NN | DT  ), is ______.

a.0.5

b.0.75

c.1.0

d.0.25

(2) P(NNS | JJ ) is ______.

a.0.8

b.0.2

c.1.0

d.Cannot be determined

(3) Assuming the language somehow does not allow more than length three chunks, P( JJ | JJ ) is ______.

a.0.8

b.0.2

c.0.33

d.Cannot be determined

4. ‘Horses raced past the garden neighed loudly’ (‘neigh’ is the call of the horse). Given this sentence and the starting rule as S → NP VP, the length of the verb phrase VP is ______.

a.5

b.6

c.2

d.4

5. Consider the sentence ‘Buffalo1 buffaloes2 buffaloes3 buffalo4 cow5 cows6 buffaloes7 buffalo8’. The word ‘cow’ can be both a noun (meaning the ‘common animal cow’) and a verb (meaning to ‘make afraid’ or ‘intimidate’). Similarly, ‘buffalo’ can be both a noun (meaning the ‘animal buffalo’ or the ‘USA city Buffalo’) and a verb (meaning ‘to bully’). As usual, the POS tag NNS means plural noun, VBZ means third person, singular, present tense verb, VB means a base verb, NN means singular noun, JJ means adjective, and IN means preposition.

How many NN tags are there for the sentence?

a.4

b.2

c.1

d.3

6. The sentence, ‘The book makes available stories not easily accessible’, has how many dependency trees? 

a.1

b.2

c.3

d.4

7. The degree of a node in a graph is the sum of incoming and outgoing edges. If the incoming edges are considered to contribute a positive count and the outgoing edges contribute a negative count, the total number of nodes with degree 0 for the sentence ‘The book makes available stories no longer easily accessible’ (considering all its dependency trees) is ______.

a.1

b.2

c.3

d.4

8. ‘Stem’ is the root or the main part of a word, to which morphemes (inflections and other formative elements) are added. Stem is also a morpheme in its own right. Note that there may be phonological changes at the boundaries of morphemes leading to changes in graphemes (e.g., lady+s=ladies; gate+ing=gating). The length of the stem in the word ‘uncommunicativeness’ is ______.

a.10

b.12

c.13

d.None of the above

9. The number of morphemes in the word ‘uncommunicativeness’ is ______.

a.3

b.4

c.2

d.None of the above

10. The process of constructing a tree of sub-strings from a word, with the given word being the root and the morphemes being the leaves, is called morphological parsing. The morphological parse tree for the word ‘uncommunicativeness’ is ______.

a.left-skewed (i.e., more nodes on the left subtree of the root)

b.right-skewed

c.balanced

d.None of the above

11. The maximum depth of the parse tree (i.e., the length of a path from the root to a leaf ) of the word ‘uncommunicativeness’ is ______.

a.2

b.3

c.4

d.5

12. How many things are wrong in the following dependency parse tree? You have to give the exact number, not less and not more.

[image: ]
a.3

b.5

c.6

d.0

13. Consider the probabilistic context-free grammar given below. ‘hi’ is the terminal string. 

S → hi; 1/3
S → S S; 2/3

The probability values are beside the rules. The number of parse trees the string ‘hi hi hi hi’ has is ______.

a.3

b.5

c.4

d.8

14. Consider the probabilistic context-free grammar

S → hi; 1/3
S → S S; 2/3

The probability of the string ‘hi hi hi’ is ______.

a.24/35

b.25/35

c.23/35

d.22/35

15. Consider the sentence ‘I spotted you with binoculars’. Which of the following is/are true?

a.The sentence has lexical ambiguity.

b.The sentence has structural ambiguity.

c.The sentence has both lexical and structural ambiguity.

d.The sentence has no ambiguity.

16. Consider the sentence ‘You were spotted with binoculars by me’. Which of the following is/are true? 

a.The sentence has lexical ambiguity.

b.The sentence has structural ambiguity.

c.The sentence has both lexical and structural ambiguity.

d.The sentence has no ambiguity.

17. Consider the sentence ‘You were spotted by me with binoculars’. Which of the following is/are true? 

a.The sentence has lexical ambiguity.

b.The sentence has structural ambiguity.

c.The sentence has both lexical and structural ambiguity.

d.The sentence has no ambiguity.

18. Consider the sentence ‘I spotted you with binoculars’. With respect to POS tagging, which of the following is/are true?  

a.The sentence has two PRPs.

b.The sentence has one NNS.

c.The sentence has one IN.

d.The passive form of the sentence has two INs.

19. Consider the sentence ‘I spotted you with binoculars’. To completely capture the language phenomena in the sentence, how many CFG rules will you need? Count only structural productions and leave out lexical productions. Just capture the language phenomena without consideration of any processing issues.  

a.7 

b.9

c.5

d.None of the above

20. Consider the sentence ‘I spotted you with binoculars’. With respect to top-down–bottom-up  chart parsing, which of the following is/are true? Remember that positional indices will start with 0 before the first word, end with a value equal to sentence length, and will have values between words. Use the grammar you designed in answer to Question 5.

a.Two parse trees will be produced.

b.One parse tree will be produced.

c.Two incomplete parse trees will be produced. 

d.No parse tree will be produced.

21. Consider the sentence ‘I spotted you with binoculars’. With respect to CYK parsing, which of the following is/are true? Remember that positional indices will start with 0 before the first word, end with a value equal to sentence length, and will have values between words. Use the grammar you designed in answer to Question 5.  

a.There are two S symbols in the CYK matrix.

b.The number of NP symbols in the matrix is 2.

c.The number of VP symbols in the matrix is 2.

d.In the cell (1,4) in the matrix, there is a non-terminal symbol.

22. Consider the sentence ‘I spotted you with binoculars’. With respect to transition-based dependency parsing, which of the following is/are true?  

a.There are four shift operations.

b.Between the last left arc setting operation and the first right arc setting operation, there is one shift operation.

c.Between the last left arc setting operation and the first right arc setting operation, there are two shift operations.

d.Between the last left arc setting operation and the first right arc setting operation, there are three shift operations.

23. How many ‘heads’ does the expression ‘Air India women pilot’ have?

a.1

b.2

c.3

d.4

24. How many ‘modifiers’ does the expression ‘Air India women pilot’ have?

a.1

b.2

c.3

d.4

25. Semantic roles primarily mean the relationship of ______.

a.NPs with NPs

b.NPs with VPs

c.VPs with ADJPs

d.VPs with ADVPs

26. How many row(s) in the table below has/have wrong entries?









	
Sentence


	
Shallow relation from dependency parsing between the subject and the verb


	
Deeper relation from semantic role labelling that will replace ‘nsubj’







	
1. John broke the window


	
Nsubj


	
Object





	
2. The stone broke the window


	
Nsubj


	
Instrument





	
3. The window broke


	
nsubj


	
Agent






	
4. 1947 saw the freedom of India


	
nsubj


	
Time





	
5. Delhi saw bloodshed when Nadir Shah attacked Delhi


	
nsubj


	
Place








a.1

b.2

c.3

d.4 or more

27. In the sentence ‘visiting aunts can be interesting’, which semantic role ambiguity/ambiguities is/are present?  

a.Instrument-Object

b.Place-Time

c.CCOMP-XCOMP 

d.Agent-Object

28. You are told that the constituency parse tree of the sentence ‘We talked about the proposal over the phone’ has the following non-terminals: S, NP, VP, PRP, V, PP, P, DET, NN. The frame roles are ‘speaker’, ‘topic’, and ‘medium’. A semantic role labelling (SRL) algorithm uses non-terminals and terminals and their positions in the constituency parse tree as the discriminating features. Which of the following seem reasonable combinations of semantic roles and feature-discriminators from a feature engineering and explainability point of view?

a.‘speaker’ and a terminal at depth 3

b.‘topic’ and a VP at depth 2

c.‘medium’ and a P at depth 3 

d.‘topic’ and an NP at depth 3

29. Consider the word ‘unlockable’. The morphemes in the word are ______.

a.‘un’, ‘lock’, ‘able’

b.‘un’, ‘locka’, ‘ble’

c.‘unlock’, ‘able’

d.‘un’, ‘lockable’

30. Assume that the word ‘lock’ has only one meaning: ‘to close’. ‘unlockable’ has two meanings, arising because of two different structures of the word. Which of the following exhibits the same phenomenon, i.e., ambiguity due to multiple internal structures? Assume that the root morpheme has a single meaning.

a.‘retractable’

b.‘unstoppable’

c.‘incapability’

d.‘unavailability’

31. The Hindi word नकिम्मापन (‘Nikammapan’) meaning ‘laziness’/’supineness’ is similar to which of the following English word(s) in terms of morphological behaviour? Note that the three words corresponding to options (a), (b), and (c) have three morphemes each. Ignore the phonological phenomena at the boundaries.

a.‘incapability’

b.‘unstoppable’

c.‘unavailability’

d.None of the above

32. Assume that we have a corpus with only noun phrases and nothing else; NP is the start symbol. The corpus is annotated with POS tags—DT(determiner), NN(singular noun), NNS (plural noun), JJ(adjective), IN(preposition), NP(noun phrase), JJP(adjective phrase), and PP(preposition phrase). The PCFG (probabilistic context-free grammar) is as follows:

 (i) NP → DT NN; 0.5

(ii) NP → NNS; 0.3

(iii) NP → JJP NNS; 0.2

(iv) JJP → JJP JJ; 0.2

 (v) JJP → JJ; 0.8

where the numbers are probability values. Thus, NP can be expanded in three different ways with probability values of 0.5, 0.3, and 0.2. Rules (iv) and (v) state that an adjective phrase can be composed of one or more adjectives. Assuming the language somehow does not allow more than the length of three chunks, P( JJ | JJ ) is ______.

a.0.8

b.0.2

c.0.33

d.None of the above

33. The total number of unlabelled dependency trees for the sentence ‘Time flies like an arrow’ is ______.

a.1

b.2

c.3

d.4

34. Consider the probabilistic context-free grammar: 

S →  S S | hello | hi

Each production rule has a probability of 1/3. The probability of the string ‘hi hi hello’ is ______.

a.1/35

b.2/35

c.22/35

d.23/35

35. Consider the following hierarchical structure giving the ‘vegetable ontology’ (indices are in parentheses):

                           Vegetables (1)

                                       Underground (2)

                                                 Potato (3)

                                                 Carrot (4)

                                       Overground (5)

                                                 Cabbage (6)

                                                 Cauliflower (7)



We need to compute the probability of the above vegetable-ontology tree (we often need to compute the probability of a tree). This probability is defined as the joint probability of all the nodes in the tree. There is an independence assumption that a node ‘depends’ on only its immediate parent. By convention, the probability of the root node is assumed to be 1. Then the probability of the above tree will be 

a.P(1, 2, 5| 3, 4, 6, 7)

b.P(1) P(2|1) P(4|2) P(5|1) P(6|5) P(7|5) P(3|2) 

c.P(1,2) P(1,5) P(3|2) P(4|2) P(6|5) P(7|5) 

d.None of the above

36. A probabilistic context-free grammar is given as follows:

[image: ]
Given the input sentence, ‘The man saw the boy with a telescope’, which of the following is the most likely situation? Assume no knowledge other than what is dictated by the grammar.

a.The man has the telescope.

b.The boy has the telescope.

c.Both the man and the boy have a telescope.

d.Cannot be determined
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Answers to Objective Questions


1.(a) ‘Un’ as a prefix applies only to adjectives. So, the grouping is unproductive+ity.

2.(b)

3.1- (c), 2- (d), 3- (c)

4.(c)

5.(c)

6.(b)

7.(d)

8.(a)

9.(b)

10.(a)

11.(b)

12.(b)

13.(b)

14.(c)

15.(c)

16.(c)

17.(c)

18.(a),(b),(c),(d)

19.(a)

20.(a)

21.(d)

22.(a),(c)

23.(b),(d)

24.(a)

25.(b)

26.(b)

27.(d)

28.(a),(c),(d)

29.(a)

30.(a)

31.(d)

32.(c)

33.(d)

34.(b)

35.(b),(c)

36.(b)




 

1https://nlp.stanford.edu/software/stanford-dependencies.html

2http://www.undl.org/

3https://framenet.icsi.berkeley.edu/fndrupal/

4https://demos.explosion.ai/displacy
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Ashwatthamah hatah, naro va kunjaro va
(Sanskrit text for: ‘Ashwatthama is killed, either the man or the elephant’)

Mahabharata






Learning Objectives

After reading this chapter, you will be able to


• Describe NER and its challenges.

• Explain B/I/O tagsets used in NER.

• Use off-the-shelf NER libraries.

• Implement NER using neural models.

• Apply NER to specialized domains such as medical documents.







At the centre stage of the ancient Indian epic Mahabharata is a great battle between two groups—the Kauravas and Pandavas, which lasted for 18 days. The Pandavas (who were five brothers) eventually won. Retold for centuries, the epic features a story identified by the Sanskrit phrase ‘naro vaa, kunjaro vaa’ (‘either the man or the elephant’). The story stands at a crucial turning point in the epic for it marks a key shift in power towards the Pandavas. The story goes as follows: On the 15th day, the Pandavas were struggling to put up a fight against the Kauravas who were headed by the mighty sage warrior Drona. The Pandavas were looking for a way to bring down Drona, the commander-in-chief of the Kaurava Army. Drona’s son, Ashwatthama, was dear to him and it was thought that his safety would impact Drona. Therefore, the Pandavas killed an elephant named Ashwatthama. Drona was told that Ashwatthama had been killed. Drona turned toYudhishthira, the eldest among Pandavas and well-known for his truthfulness, and asked him if it was indeed true. Yudhishthira said ‘Ashwathamah hatah’ (Ashwathama was killed) and is said to have mumbled under his breath ‘naro va kunjaro va’ (maybe a man or an elephant). A distraught Drona disembarked from his chariot.

This story is an example of how a word may be the name of different kinds of entities, and the entity affects the meaning of the sentence. When communicating with each other, humans decipher the type of entities in order to understand what is being said. For example, consider the sentence ‘The book about Riparimanto won the prize this year’ where ‘Riparimanto’ is a fictional name. (‘Riparimanto author’ returns no results on a popular search engine at the time of writing this book.) A reader of the sentence will imagine that ‘Riparimanto’ is a person. However, if the sentence were ‘The book about riparimanto won the prize this year’, the reader would no longer assume that riparimanto is a person because it could be a noun. In fact, the absence of a capital letter would be reason enough to believe that ‘riparimanto’ is not a person. The task of understanding if a word is the name of a human or not becomes more challenging in languages that do not have capitalization. Consider the Hindi sentence, ‘maine magar ko kitab di’ (‘I gave the book to Magar/crocodile’). The word ‘magar’ has no capitalization in the Devanāgarī script and may refer to a person’s last name (written as ‘Magar’ in English) or a crocodile. Therefore, a reader must rely on cues around the word to understand whether it refers to the name of a human or not. As humans read and understand text, they use cues from neighbouring words and textual features like capitalization in order to understand what an entity like ‘riparimanto’ means. The notion of ‘names’ can be applied to all proper nouns in general—names of companies (e.g., Bill and Melinda Gates Foundation), names of places (e.g., Dadra and Nagar Haveli), or names of animal species (e.g., Rana Tigrina is the scientific name for a species of frog found in South and Southeast Asia). Being able to understand which words in a sentence refer to the name of an entity is crucial to understanding its meaning and may change the output of a downstream task. Take the example of a search engine. A search engine query ‘head of Commonwealth of Australia’ returns the name of the Prime Minister. Another query ‘head of Commonwealth Bank’ returns the name of the CEO of the bank. The word ‘head’ is interpreted differently depending on the type of entity it is attached to—a country in the first query and a financial organization in the second.

Named entity recognition (NER) is the task that deals with the automatic identification of words or phrases in text which refer to names of entities, and the determination of their type (Nadeau and Sekine, 2007). Therefore, the sentence ‘Nehru was the first Prime Minister of India’ contains two named entities: ‘Nehru’ referring to a person and ‘India’ referring to a country.

Information extraction deals with extracting structured information from text. This may be used for search or stored in a database. NER is a sub-task of information extraction that focuses on the names of entities in text. An entity may be a person (such as Albert Einstein), a medicine (such as azithromycin), or a location (such as Marsh Street). The examples in brackets point us to possible applications of NER. If NER is applied to a dataset of medical literature that extracts the names of medicines and symptoms, the information in free-form text in the papers can be entered into a database. Therefore, if a paper states that ‘X (a medicine) can be used to treat Y (a symptom)’, X and Y can be extracted and stored in a structured database for possible retrieval in the future.

NER is a step in the direction of converting unstructured, natural language text into structured information that can be used in a variety of applications. Given the sentence ‘New Delhi is the capital of India’, ‘New Delhi’ can be identified as a city, ‘India’ as a country, and the relationship between them can be stored in a structured database. Similarly, if a user enters a query in a search engine as ‘Washington birth date’, NER identifies the ‘Washington’ being referred to in the query as a person and not the city because of the words ‘birth date’. In contrast, if the query is ‘capital of Washington’, NER would recognize ‘Washington’ as a place (specifically, a state).


  □  5.1Problem Formulation



NER is the task of finding and classifying names in text into types such as location, person, and so on. This makes it similar to word sense disambiguation. While the goal of word sense disambiguation is to predict the exact meaning of a word in a given context (often based on a knowledge base of words and their known meanings or senses—one such example is the WordNet), NER aims to achieve a coarse sense disambiguation of sorts. In the case of word sense disambiguation (WSD), every word has its own set of possible senses. NER aims to identify entities and classify them as a set of predetermined categories. These categories may be place or person in a general domain corpus. So, the goal of NER would be to identify that ‘Sachin Tendulkar’ is a person and ‘Maharashtra’ is a place in the sentence ‘Sachin Tendulkar was born in Maharashtra’.


  □  5.2Ambiguity in Named Entity Recognition



Ambiguity in NER can be understood via typical scenarios in which it may arise.

Same name, different entities of the same type: Consider the sentence ‘You can drive from Sydney to Newcastle in two hours’. The name ‘Newcastle’ may refer to the city in England or the one in Australia. However, given the context of the sentence, it refers to the city in Australia. Therefore, if the goal is to be able to link the name of the city to an exact city in an ontology (or a map), identifying the correct entity is important. (The word ‘ontology’ here refers to ontology in computer science.)

Same name, different entities of different types: The goal of NER is to extract entities that have the same name but are different entities of different types. Consider the example ‘Washington was the first President of the United States’. In this sentence, the word ‘Washington’ refers to George Washington, a person. In contrast, consider the sentence ‘60% of residents of Washington lived in Seattle and the adjacent areas’. The word ‘Washington’ here refers to the state ‘Washington’.

Inclusion–exclusion ambiguity: Consider the sentence ‘My Days with Gandhi was written by Nirmal Kumar Bose, the last secretary of Gandhi’. The words ‘My Days with Gandhi’ refer to the name of a book by the author ‘Nirmal Kumar Bose’. The last word in the sentence ‘Gandhi’ refers to ‘Mahatma Gandhi’. Therefore, the NER must extract ‘My Days with Gandhi’ as a book, ‘Nirmal Kumar Bose’ as a person, and ‘Gandhi’ as a person. This example highlights a crucial ambiguity that lies in NER—the ambiguity of inclusion versus exclusion. A span of multiple words in a sentence may refer to an entity while individual words refer to another entity. Therefore, the ambiguity resolution in NER deals with the resolution of two forms of ambiguity—identifying whether a span of words or its constituent (‘My Days with Gandhi’ versus ‘Gandhi’ in the example above) is the named entity and what is the type of entity (‘Washington’ as a person versus a state).

Proper noun–common noun ambiguity: Many cultures name people after desirable attributes or tangible/intangible objects that are associated with the desirable attribute. Therefore, a word may refer to a person’s name or an object/entity. This results in a proper noun–common noun ambiguity, especially in languages which do not use capitalization. For example, the Hindi sentence ‘pooja ne pooja ke liye phool kharida’. Since ‘Pooja’ could mean the name of a girl or a prayer, the sentence can be translated into ‘Pooja (a girl) bought a flower for a Pooja (a prayer)’ or ‘Pooja (a girl) bought a flower for Pooja (another girl)’. This ambiguity is referred to as the proper noun–common noun ambiguity.

The above challenges show that NER consists of two components:

1. Identifying spans of words that refer to entities.

2. Inferring the type of entities.

For example, in the sentence ‘Washington was the first President of the United States’, NER must discover that ‘Washington’ and ‘United States’ are named entities, and ‘Washington’ is a person and ‘United States’ is a location (specifically, a country).




  □  5.3Datasets



Since NER deals with the extraction of information from text, the creation of datasets for NER is contingent on how this information is represented in training data. Efforts in natural language processing (NLP) towards creating such benchmarks for annotations have been executed for many decades. A key benchmark is the outcome of the Message Understanding Conference (MUC) (Grishman and Sundheim, 1996). It is also called MUC benchmark. NER was added to the benchmark of tasks in the 1996 edition of the conference. The benchmark suggests a two-level hierarchy of tasks and uses an XML-style markup to indicate the tags in a labelled dataset. Let us understand the tags using the following sentence:

Mohandas Karamchand Gandhi was born in 1869 in Porbandar.

The words ‘Mohandas Karamchand Gandhi’ and ‘Porbandar’ are names of entities. Similarly, ‘1869’ refers to a year. The MUC benchmark tags named entities using a tag name called ENAMEX (that stands for entity name expression). Similarly, temporal entities are tagged using the tag TIMEX (that stands for time expression). In the example above, ‘1869’ is a TIMEX. Therefore, the sentence above will be tagged as:

<ENAMEXTYPE = "person"> MohandasKaramchandGandhi </ENAMEX> wasbornin 

<TIMEXTYPE = "date"> 1869in <ENAMEXTYPE = "location"> Porbandar </ENAMEX>

The MUC benchmark also proposed template elements that allow named entities to be linked to each other. This means that the entity ‘Mohandas Karamchand Gandhi’ in the sentence above can be linked to other mentions of the entity using the template:




  <PERSON-ID>:=

PERSONNAME: "MohandasKaramchandGandhi"

PERSON ALIAS: "Gandhiji; Gandhi; MahatmaGandhi"

PERSONCOUNTRY: India




The ID in this example would be a numeric identifier to uniquely identify the entity. PERSON ALIAS in the template shows different ways in which this person may be referred to. This information is crucial because it sets up the premise of ambiguity for NER. Consider the sentence ‘Mahatma Gandhi University is located in Kottayam, Kerala’. Although this sentence contains one of the aliases ‘Gandhi’ in the template above, the named entity in this sentence is ‘Mahatma Gandhi University’ which will have a template of its own. Therefore, the ambiguity resolution problem in this case is to choose between templates that contain aliases in the known set of templates.

Other recent datasets for NER label sentences such that each word is assigned a label that indicates the named entity. Consider the example ‘Mumbai is the capital city of Maharashtra’. The words ‘Mumbai’ and ‘Maharashtra’ indicate locations. Specifically, ‘Mumbai’ is a city while ‘Maharashtra’ is a state. An NER dataset would contain labels such as ‘B-LOC O O O O O B-LOC’. The ‘B’ indicates that the first and the last word are the beginning of a named entity while ‘O’ indicates that all remaining words in the sentence are outside a named entity. The type of the named entity may also be marked. In this case, the first and last words have been marked with the entity type ‘location’ indicated by ‘LOC’. Annotation format such as this was used in an early dataset for NER that was released as a task for the CoNLL-2003 conference (Sang and De Meulder, 2003). The dataset consists of sentences from news articles. An assumption that many NER datasets make is that named entities are non-recursive and non-overlapping. Non-recursivity means that named entities cannot be included within another named entity. Consider the example ‘University of New South Wales is a premier university in Sydney’. The word ‘Sydney’ corresponds to a location. ‘New South Wales’ is the name of a state in Australia. However, because named entities are non-recursive, the labelling will only contain ‘University of New South Wales’ marked as an organization, potentially with a tag like ‘ORG’. This example, however, raises a pertinent issue. Named entities may span multiple words. As a result, an alternative labelling convention is used. In addition, to the inside and outside tags (indicated by ‘I’ and ‘O’ in the previous example), a ‘B’ tag indicating the beginning of a named entity is also added. Therefore, the sentence ‘University of New South Wales is a premier university in Sydney’ may be labelled as ‘B-ORG I-ORG I-ORG I-ORG I-ORG O O O O O B-LOC ’.

The labels can be read as follows: The first word is the beginning (indicated by ‘B’) of an organizational entity name (‘LOC’). The next four words are the inside (indicated by ‘I’) of an organizational entity name (‘LOC’). Since the words are contiguous, it means that the named entity spans multiple words, ‘University of New South Wales’ in this case. This also means that a sequence of words tagged with ‘I’ will always have a word tagged with ‘B’ in the beginning.

NER datasets in certain domains may require additional annotation. One such example is the CADEC dataset by Karimi et al. (2015). The dataset consists of social media posts related to medical conditions. Words in the dataset are labelled with named entities where the entity types are more nuanced than the above example. The goal of the dataset is adverse drug event detection. An adverse drug event refers to an event where a medicine causes an unexpected reaction. Therefore, named entities in the dataset are not only linked with their entity types (which in this case are drug name, adverse effect, etc.) but also with entities in a medical ontology. Medical ontologies like SNOMED link medical concepts such as symptoms, drugs, and diseases. Therefore, the CADEC dataset also assigns a named entity (composed of a set of words) with a unique ID in the SNOMED medical ontology. Ontology-based mapping of terms in an NER dataset is not limited to medical datasets. This may apply to a general-domain corpus consisting of names of people, organizations, and cities, as discussed above. Since organizations and famous people can have Wikipedia pages that have a unique identifier, NER datasets also link named entities with their unique identifiers in such a knowledge resource.

As can be seen, the labelling format and granularity of labelling for NER depend on the eventual goal of using the dataset. The task and availability of information determine what kind of annotations can be done.


  □  5.4First Generation: Rule-Based Approaches



Sundheim (1995) is an early work that describes an approach to NER. The goal here is to extract named entities from a sentence and determine their types—person, location, and organization.

We now describe a rule-based system that was implemented to extract named entities from news articles. These named entities are of three types: persons (e.g., ‘Obama’ in the sentence ‘Obama was the President of the United States at that time’), organizations (e.g., ‘Obama Foundation’ in the sentence ‘Obama Foundation oversees the setup of the library’), and locations (e.g., ‘Obama Boulevard’ in the sentence ‘Obama Boulevard is located in Los Angeles’). Mikheev et al. (1999) have described a five-step rule-based NER system, which is discussed below. This system requires a set of NLP tools and lexicons:

1. Gazetteer: The system uses a reference list of entities with their types in different steps. This list of entities is extracted from The World Factbook and websites that list names of famous personalities. This list is referred to as the gazetteer.

2. Part-of-speech tagger: Several patterns at different steps of the pipeline match words based on their parts of speech (POS). Therefore, a sentence is assigned POS labels using an automatic POS tagger.

3. Lexicon: A lexicon containing names of professions (e.g., ‘engineer’, ‘doctor’, ‘entrepreneur’), relations (e.g., ‘brother’, ‘father’), etc., is used. This lexicon also helps in matching patterns to extract appropriate entities and predict the correct NER type.

The five steps are executed in sequence as follows:

1. Sure-fire rules: As the name suggests, this step uses a set of rules that result in a prediction if the rule is sure to be fired. An example of a sure-fire rule is the pattern ‘in the Xxx+ area’ returning Xxx+ as a location. As an if-then rule, this can be written as: If sentence contains the pattern ‘in the Xxx+ area’ and the first X is capital, return ‘Xxx+’ as a location. Sentences which match this pattern are first extracted. Then, the term in the place of Xxx+ is looked up in the gazetteer. The initial capital X in Xxx indicates that the first letter of the word in the pattern must be a capital letter. Therefore, for a sentence like ‘Several chocolate stores are found in the Zurich area’, the rule first extracts the pattern ‘in the Zurich area’. It then looks up ‘Zurich’ in the gazetteer and assigns it as a location if it is found in the gazetteer. Another possible rule is ‘Xxx+ is? a? JJ* PROF’ referring to a person. The question marks next to is and a indicate that these words are optional. JJ is the tag for adjectives while PROF is a noun indicating a profession. The former is based on the output of the POS tagger while the latter is based on the lexicon lookup. Therefore, the phrase ‘Rabindranath Tagore, a prolific writer’ gets matched with this rule. The words ‘Rabindranath Tagore’ are looked up in the gazetteer, and, if present, they are returned as a person. The dataset with some entities labelled is passed to the next step. These are the entities that could definitively be marked with entity types based on the sure-fire rules.

2. Partial match 1: This step is called partial match because it looks for partial matching of entity names as extracted in the first step of sure-fire rules. The partial match takes as input all entities and sentences that have been completely matched in the sure-fire rules step, and are processed as follows:


•Extract partially matching sentences: ‘Rabindranath Tagore’ and ‘Zurich’ will be two such entities, based on our examples above. The partial match 1 step first identifies possible sub-sets of these named entities. For ‘Rabindranath Tagore’, the sub-sets are ‘Rabindranath’ and ‘Tagore’. No sub-sets for ‘Zurich’ are possible. Then, sentences containing these sub-sets are identified. An example of such sentences is ‘Ekla Chalo Re is one of the finest poems by Tagore’ since it contains the word ‘Tagore’. Therefore, this step ensures high precision: sentences with named entities that can be certainly determined are marked as such.

•Train a classifier based on sure-fire matched sentences: Sentences that have been labelled in the first step are used to train a maximum entropy-based classifier. Therefore, ‘Rabindranath Tagore, a prolific writer, won the Nobel Prize’ would be one such sentence where ‘Rabindranath Tagore’ has been labelled as a person (in the first step). The sentence is represented as features (1) the number of capitalized letters within the named entity and outside the named entity, (2) the number of words of each POS tag, and so on.

•Predict named entities for partial matching sentences: Using the classifier trained on sure-fire matched sentences, named entities in the sentences with partially matched entities are predicted. The sentences which are returned with a high confidence only are retained.


3. Rule relaxation: In this step, the set of sure-fire rules is applied again with the additional markup available from Step 2. Since some sentences with partial matches have been predicted with named entity types, these are included in the list of known named entities. As a result, some examples which were hitherto not fired by a rule will be fired now. In addition, the rules are relaxed based on the list of known entities and capitalized cases. Therefore, a sentence containing ‘Tagore’ is assigned the named entity as a person even if it directly does not match a rule. Therefore, the sentence ‘Tagore’s best-known work is Gitanjali ’ would be marked with ‘Tagore’ as a person even if a rule with an apostrophe s (indicating a possessive) was not present in the set of rules. Therefore, this step learns from the information gained in the previous steps and labels additional sentences with named entities. This will potentially help improve the recall, at the expected cost of precision.

4. Partial match 2: This step takes as input sentences from the previous step with some entities marked as returned by the previous step. In this step, additional rules and classifiers are used to predict possible named entities. In this step, misspellings are allowed as well. For example, if ‘Tagore’ has been identified in one of the sentences and if an unlabelled sentence is ‘Tagore and Rmaan (sic) are two Nobel Laureates from India’, ‘Rmaan’ is assigned the same entity type as the entity ‘Tagore’. This is done although there is a spelling mistake in the word ‘Rmaan’, as it should be ‘Raman’.

Title assignment: This step comes into play because of the nature of the dataset. Since this system was developed for a news article dataset, headlines often contain letters in all capitals. As a result, the rules based on capitalization cannot be applied. Therefore, based on entities as returned in the previous steps, the headlines with all capital letters are scanned. A headline such as ‘TAGORE REMEMBERED ON HIS ANNIVERSARY’ will be identified. In this case, the word ‘TAGORE’ will be assigned the entity type person since it has been extracted as that in an earlier step of the pipeline.

Let us revisit different steps of the pipeline (shown in Figure 5.1) to understand what each of them is doing. The first step takes a conservative yet high-confidence view of named entities and their types. It relies on complete matching in the gazetteer list. Steps 2 to 4 allow for partial matches of entities and use classifiers based on patterns. Thus, even if a sentence was not specifically captured within a pattern in the rules, the named entities in the sentence can be classified. The last step is a domain-specific requirement. Because the domain of datasets being used contains sentences which are in all capitals, special handling is required. The steps in the pipeline are not independent either. Entities returned in Step 1 are used for partial matching in Step 2. Rules in Step 1 are matched again in the rule relaxation step. Also, at every step, sentences whose labels have been predicted in a previous step are used to assign labels to sentences that have not been labelled so far.
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Figure 5.1  Rule-based pipeline for NER.



  □  5.5Second Generation: Probabilistic Models



If the sentence is ‘I went to X’, it can be inferred that X is likely to be a location. This is because it is preceded by a verb ‘went’ with properties that are relevant to locations. The verb is followed by a preposition ‘to’ which makes the possibility of the following word being a location stronger. Consider an alternative sentence ‘I went with X’. In this case, ‘with’ implies that the following word is likely to be a person. The phrases ‘likely to be a location’ and ‘likely to be a person’ indicate that probability is coming into the picture. A word/phrase may be predicted as a location or person depending on how frequently it occurs as a location or person in the given context in a labelled dataset. It can be seen that linear contexts in a sentence can be used to detect named entity types. The second-generation NER approaches have been influenced by linear probabilistic models that capture linear structures of sentences. One such model is the Hidden Markov Model (HMM).

Let us revisit HMMs (Rabiner and Juang, 1986). HMMs are graphical models that consist of two kinds of nodes or states—observable states and hidden states. Observable states are the states that can be seen from the data. Hidden states or latent states are the internal states that generate the observable states. In an HMM, the hidden states have links between them. These are formulated by transition probabilities. This means that, given a hidden state at timestamp i (indicated by yi ),  the state at the next timestamp yi+1 is given by a transition probability P( yi+1| yi ). A hidden state at the timestamp i generates an observable state xi. This probability is referred to as emission probability and is given as P(xi | yi ).

In the context of NER, the observed states are the words in a sentence while the hidden variables are properties of words. Therefore, if an observed sentence is x1, x2, …, xn, its probability can be written as:
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The estimation of the model is done in a similar manner as discussed for POS tagging. Zhou and Su (2002) is an approach that uses HMMs for NER. The objective is to predict the sequence of named entity types. In this case, they are the hidden variables. Therefore, the goal is to generate the optimal tag sequence, given a sentence. This can be written as p( y1, y2, …, yn|x1, x2, … , xn ). In other words, for a sequence of words w1, w2, …, wn, the HMM tagger must estimate the optimal tag sequence yi , y2, …, yn. However, another key component of the HMM model is that it can represent features of the observed variables. For example, words in a sequence have their POS tags associated with them. They also have other properties associated with words, as shown in the ‘I went to/with’ example. Therefore, the second generation of NER experiments with different kinds of observed features:

1. Morphological features: These features, such as case and number, can be attributed to words. For example, the Hindi word ‘ladkiyon’ stands for the root word ‘ladki’ (girl) while ‘yon’ indicates a plural form of girl (i.e., girls). The ‘o’ also indicates that the following word is likely to be a post-position as in the case of ‘ladkiyon ko’ (to the girls, where ‘ko’ means ‘to’).

2. Gazetteer features: These are Boolean features that indicate the presence of an entity in a known list/lexicon/gazetteer relevant to the task. For example, if a lexicon of terms relevant to the task is known in advance, the presence of a word in the lexicon can be used as a feature. For example, if a list of cities is available, a feature indicating whether a word occurs in the list of city names is added as a feature.

3. Punctuation-based features: These features have also been useful for NER since punctuations are a smaller set of symbols as compared to words.

4. Stylistic features: These features, such as capitalization and use of hyphens, can also be used. For example, in the sentence ‘I went to Creek’, ‘Creek’ is likely to be the name of a place because of capitalization. However, not all languages have capitalization, and language-specific styles warrant specific features.

5. Cluster-based features: These methods for words provide a semantic space with a reduced feature length. One approach to leverage similarity between words is to perform word-based clustering on the words in the training corpus. Then, each word is represented with a cluster ID based on the cluster it belongs to. A vector of length equal to the total number of clusters is then appended to the feature vector. This provides cluster-based features that capture similarities between words.

The ambiguity decision in the second generation of NLP is whether a given word is inside or outside a named entity. It makes this decision by incorporating features of the word. A probabilistic formulation gives a conditional probability of a named entity tag given a set of word features, and also incorporates sequential structures in sentences.

Let us now look at a simple code that uses an HMM-based tagger for NER:



import nltk

nltk.download('punkt')

nltk.download('maxent_ne_chunker')

nltk.download('words')

def ner(sentence):

         tokens = nltk.word_tokenize(sentence)

         tagged = nltk.pos_tag(tokens)

         result = nltk.chunk.ne_chunk(tagged)

         return result

sentence = "New Delhi is the capital of India"

result = ner(sentence)

print(result)

sentence = "Canberra is the capital of Australia"

result = ner(sentence)

print(result)





The code uses an NLP library called NLTK. The ‘download’ lines download modules required to load components of the tagger. punkt is the tokenizer and words is the dataset of words. This highlights that an NER tagger may rely on gazetteers (‘words’) and other components. The output of the code is as follows:


(S

   (GPE New/NNP Delhi/NNP)

   is/VBZ

   the/DT

   capital/NN

   of/IN

   (GPE India/NNP))

(S

   (GPE Canberra/NNP)

   is/VBZ

   the/DT

   capital/NN

   of/IN

  (GPE Australia/NNP))






GPE refers to a geo-political entity. Note that the tagger extracts ‘New Delhi’ as a GPE as expected.


  □  5.6Third Generation: Sentence Representations and Position-Wise Labelling



The third-generation approaches of NER are broadly organized into two types. The first type uses BERT which is shown in Figure 5.2. You may recall that BERT is composed of stacks of encoders and the special token [CLS] is used for text classification. In the case of NER, the representations of the final layer can be useful. Consider the input sentence ‘University of New South Wales is located in Sydney’. The  representations in the final layer can be passed through a classifier as simple as a softmax function (represented by the grey oval in Figure 5.2). As a result, BERT will be fine-tuned such that the predictive ability of the classifiers is maximized for named entity recognition. One notes that, in this case, named entity recognition is mapped to a sequence classification task—just like the second generation. However, the mechanism used to train the classifier is characteristic of the third generation anduses BERT.
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Figure 5.2  BERT fine-tuned for named entity recognition.




The HuggingFace repository contains NER models that can be directly used as follows:



from transformers import AutoTokenizer, AutoModelForTokenClassification

from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained ("dslim/bert-base-NER")

model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")

NER = pipeline("ner", model = model, tokenizer = tokenizer)

sentence = "University of New South Wales is in Sydney"

result = NER(sentence)

print(result)




AutoModelForTokenClassification is the class that defines models that can be used for ‘token’ classification. The token classification here refers to the fact that the output of NER consists of a string with one output (NER label) per token.

An alternative approach is a combination of neural models and sequence labelling algorithms is typical of many approaches for NER in the third generation. The neural model typically captures the representation of the textual units (words, in this case) with distributional vectors, while the sequence labelling learns to predict an output label for NER based on the linear structure of the sentence. To appreciate the different innovations in the third generation of NER, let us consider some key approaches.

One such approach (Huang et al., 2015) is shown in Figure 5.3. The architecture consists of two parts:
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Figure 5.3  Bidirectional long short-term memory (LSTM) with conditional random field (CRF) for NER.




1. Sentence representation using linear chains: The representation of a sentence is learned using a linear chain of bidirectional long short-term memory (LSTM). As shown in the figure, the sentence ‘EU rejects German call’ is initialized with the concatenation of its word vectors, followed by a bidirectional layer that captures forward and backward dependencies in the sentence. The output of the bidirectional LSTM for each word is then used in the next step.

2. Named entity recognition using CRF: A conditional random field (CRF) is then applied to the representation of each word in the sentence. The CRF predicts one among the many labels of NER. In the example, it predicts that ‘EU’ is the name of an organization (B-ORG) while ‘German’ is a miscellaneous named entity (B-MISC). 

A similar architecture that uses bidirectional LSTM with CRF is presented in Lample et al. (2016). However, the two are different in the way they obtain a representation of words. In Huang et al. (2015), words are represented as a concatenation of several features. These include: (1) stylistic features such as capitalization and the presence of a number, (2) word-based features (where each word is represented by one hot unigram and bigram vectors), and (3) word embedding initializations. In contrast, Lample et al. (2016) use an alternative representation of words. Instead of representing a word as a set of hand-crafted features, they do so by learning sub-word representations. The mechanism is shown in Figure 5.4. Each word is split into its characters, with its own embedding representation. Thus, the characters M, A, R, S, or the word Mars are initialized with their embeddings. A bidirectional LSTM is then learned on the characters. The last state of the forward LSTM and the first state of the backward LSTM are considered to have captured the representation of the word using its character embeddings. These states constitute the embedding of characters and are concatenated. Word-level embeddings from a lookup table (available via embeddings for words learned from a large unsupervized corpus) are concatenated with the embeddings learned from characters. Therefore, each word is represented as a concatenation of two embeddings: (1) the word embedding and (2) the embedding composed of characters in the word. In addition, an unknown (UNK) embedding is added to the lookup table to account for unknown words. If a word is not seen in the training corpus, the character-level embeddings can be used to compose its representation. While the improvement of this approach over the previous is small, its ability to represent unseen words is an interesting way to generalize a trained classifier to unseen words in the test corpus.
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Figure 5.4  Sub-word representations for LSTM-CRF-based NER.



Let us now explore three aspects of the above approach—BiLSTM, CRF, and the interaction between the two. The BiLSTM layer could be replaced by any linear chain that learns the representation of a position in a sentence based on interactions between words in the sentence. The representation of each LSTM cell at every position cell captures the representation of the word position in context. Therefore, for every word position, the BiLSTM layer obtains a dense representation. The output of the BiLSTM layer becomes the input feature vector for the CRF. Therefore, the goal of the CRF is to predict the output tag (as a named entity type) based on the vector obtained by the BiLSTM layer. Note that probabilistic models in the second generation modelled every word position using a set of features (based on patterns, part of speech, etc.). The onus of representation of a word position is delegated to the BiLSTM layer in the third generation of NLP. Thus, the BiLSTM layer provides a representation of the ambiguity while the CRF layer disambiguates between possible tags. In other words, the CRF layer learns to predict the NER label using the representations given by the BiLSTM layer. This is different from LSTM-based classifiers that would use representations of the last position to represent a sentence. NER needs to predict labels for each position in the sentence. Therefore, it uses representations corresponding to each word position in the sentence.

The advent of Bidirectional Encoder Representations from Transformers (BERT) that uses the encoder of Transformers impacted the third generation of NER as well. The versatility of BERT can be understood as its representation can be used for NER as well. In the original paper that introduces BERT, its representations are tested on the CoNLL-2003 NER task as well. In order to do so, they formulate it as a sequence classification task where the output representation of each word/token is the named entity tag. The representation of the first sub-token is used as an input to a token-level classifier. The classifier is fine-tuned on the dataset labelled for NER. This is shown in Figure 5.3. Considering that NER cannot eliminate stylistic markers such as capitalization, the WordPiece model used to generate sub-word embeddings is modified to preserve cases in the text. Thus, BERT has proven to be useful for NER in the third generation of NLP. Extensions of BERT that leverage the combination of neural models with sequential taggers are also possible. A combination of BERT and CRF has also been proposed by Souza et al. (2019), as shown in Figure 5.5. The approach can be described as follows:

1. Preprocessing: The input document is tokenized and split into overlapping spans. A span consists of k contiguous words. Therefore, the sentence ‘New Delhi is the capital of India’ for a span length of four will be split into ‘New Delhi is the’, ‘Delhi is the capital’, ‘is the capital of ’, and ‘the capital of India’. This step simplifies the task of labelling NER for sentences by labelling NER for spans. This reduces the requirement for long-distance dependencies in the sentence. Each span is then assigned an H-dimensional representation.

2. BERT-based classification: This classifier generates scores for each span corresponding to the number of tags. Therefore, the H-dimension representation of the span is converted to a vector over the total number of tags. As a result, the BERT-based classifier is used as the first level of classification of tags.
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Figure 5.5  BERT and CRF for NER.



3. CRF-based tagger: This represents each word in the sentence with the tag score vector obtained from BERT for each span and then concatenates tag predictions for each span. 

The classifier can be trained using two strategies. In the first strategy, only the BERT classifier and CRF parameters are trained. This strategy relies on BERT’s pre-trained model. The second strategy is a fine-tuning approach. In this case, all the layers, including BERT’s layer, are updated during the training.



Case Study



Biomedical Information Extraction

NER for medical texts is an important application of NLP to the medical domain. Biomedical documents such as research papers or medical transcripts contain terms pertaining to drug names, symptoms, or anatomical entities. The ambiguity in this case is the different possible ways to mention an entity. A drug name may have a generic name or a brand name. A symptom may have a medical name or a colloquial name. Approaches to NER have been enhanced in the medical setting by leveraging existing medical ontologies such as SNOMED. These ontologies are graphical representations of medical concepts. By linking terms in a medical text with concepts in a medical ontology, several applications can be facilitated. For example, to make research papers searchable, it is useful to extract terms and classify them into appropriate types. This can be achieved using NER.






  □  5.7Implications to Other NLP Problems



NER has been understood to be useful for other NLP problems. Let us consider the example of automatic translation (also known as machine translation). Consider the example, ‘I went to Churchgate’. In this case, ‘Churchgate’ refers to the name of a suburb in Mumbai. As a result, its Hindi translation would be ‘Main Churchgate gaya’ where ‘main’ is a translation of ‘I’, ‘gaya’ is a translation of ‘went’, while ‘Churchgate’ has been retained as it is since it is the name of a place. In the absence of NER, the translator would potentially translate Churchgate to its component words ‘church’ and ‘gate’. 



Summary

NER is the task that deals with the automatic identification of words or phrases in text which refer to names of entities, and the determination of their type. The problem of ambiguity resolution in NER deals with identifying overlapping entities (‘Gandhi’ versus ‘Gandhi University’) and resolving multiple entity types (‘Washington’ could be a person or a location)—the first generation of NLP. The second generation of NLP uses probabilistic models like HMM to capture the linear structure of sentences. The third generation of NLP typically obtains representations for word positions in context using neural architectures such as bidirectional LSTM or BERT before being given as input to a probabilistic model. NER has been found to be useful for the extraction of structured information from unstructured data (i.e., text) and can be used in several applications such as biomedical document indexing.


Review Questions

1. What are entities of the same name but different types? Give an example.

2. What stylistic features are useful for named entity recognition, as recommended in the second generation of NLP?

3. What is the MUC benchmark? What are the tag types in MUC?

4. What is the difference between a gazetteer and a lexicon, as used in a rule-based approach for named entity recognition?

5. What are the two strategies with which a BERT-based model for named entity recognition can be trained?



Course Assignment and Project

1. To understand the challenges of named entity recognition, we will create a dataset. In order to do so:

a.Identify a data source. This could be Wikipedia or another publicly available textual dataset.

b.Compare and evaluate different benchmarks for NER annotation.

c.Label 50 sentences from the dataset with named entity tags in the annotation format that you selected.

2. Implement an NER system for sentences from news articles:

a.Download a dataset that was reported for a CoNLL-2003 shared task competition.1

b.Use the pre-trained  model from Hugging Face.2

c.PapersWithCode is a useful website to get baseline implementations of the model. Find a useful model for NER from the website.

d.Can you think of extensions to improve the model you downloaded?

e.Compare the HuggingFace model with this extension on the test set from CoNLL-2003.

f.Discuss how your models would differ if you had a larger dataset.



Objective Questions

Fill in the Blanks

1. In the MUC benchmark, temporal entities are labelled as ____.

2. Named entities in the sentence ‘SEEK is a technology company headquartered in Melbourne’ are _____ (____) and _____ (______).

3. B, I, O labels in NER stand for ____, ____, and _____.

4. Capitalization of the first letter of words is an example of ______ features used for NER.

5. Representations corresponding to word positions from the _____ layer of BERT are typically fine-tuned to train an NER model.



Select the Most Appropriate Option

6. Which of the following is true for NER?

a.Named entities may span multiple words.

b.Named entities can span one word only.

c.Named entities are linked with phrases and not words.

d.None of the above

7. What do NER approaches in the third generation that combine LSTMs and CRF use LSTMs for?

a.Learn predictors of NER labels.

b.Learn representations of each word position in the sentence.

c.Convert sentences into syntactic trees.

d.Convert representations into statistical features such as tense and number.

8. In terms of  the Transformers library, what is NER represented as?

a.NER is a token classification problem.

b.NER is a sequence classification problem.

c.NER is a phrase classification problem.

d.None of the above

9. Named entity recognition can be applied to biomedical text where entities are _________ .

a.symptoms

b.medicines

c.names of organs

d.All of the above

10. Which of the following is true for NER and POS tagging?

a.Both involve the prediction of labels corresponding to each word in a sentence.

b.In the second generation of NLP, both use sequence labelling algorithms like HMM and CRF.

c.Both a and b

d.None of the above
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Answers to Objective Questions



1.TIMEX

2.SEEK (organization), Melbourne (location)

3.beginning, inside, and outside

4.stylistic

5.final

6.(a)

7.(b)

8.(a)

9.(d)

10.(c)


 

1This dataset is available at https://www.clips.uantwerpen.be/con.

2One option is available at the link: https://huggingface.co/dslim/bert-base-NERhttps://huggingface.co/dslim/bert-base-NER.














	 

	 




	CHAPTER
6

	Natural Language
Inference








Cogito, ergo sum.
I think, therefore, I am.

René Descartes





Learning Objectives

After reading this chapter, you will be able to


• Describe entailment and contradiction as concepts in NLI.

• Annotate an NLI dataset via alternative methodologies.

• Use the Sentence_Transformers library for NLI.

• Explain NLI approaches in the three generations.







In 1637, the French philosopher, René Descartes, presented his first principle of philosophy. The dictum ‘Cogito, ergo sum’ states that the ability to think proves existence. Using evidence to propose theories is a common phenomenon in several fields of science. The law of gravity has a popular story associated with it. The story states that an apple fell on Isaac Newton’s head when he was sitting under a tree. The evidence of the fallen apple followed by Newton’s own reasoning eventually led him to propose the law of gravity. Evidences and a set of reasoning steps often lead humans to new ideas known as inferences. Inference also occurs when a baby starts to learn its first language. In a process known as first language learning (Pinker, 2003), the baby infers implications of producing a certain sound. For example, the baby understands that, to get food or attention of the adult, a minute of crying is possibly necessary and hopefully sufficient. The baby eventually learns to produce a basic set of sounds, which is then followed by words and complete sentences. Learning to speak a language is embodied in the ability to draw inferences and produce patterns of words that one may not have exactly heard before.

Inference and understanding are closely related. The baby understands that producing a particular sound seems to be correlated with receiving food. As a result, the baby starts producing the sound to obtain the expected effect of getting fed. If understanding is the joint probability of the effect (that is experienced by the baby) and the sound (that is produced by the baby), inference is the conditional probability of the effect, given the sound. A related idea from cognitive science is learning by explaining (Ploetzner et al., 1999). It is understood that being able to explain a certain task to oneself or others can be used as an indicator of whether one would be able to do the task well. If language understanding is the process of being able to do the task (of understanding language), inference is an analogous process of being able to explain the task (of what it means to understand language).

Inference encompasses several areas of science and engineering. Inferential learning is a paradigm of learning in artificial intelligence that models learning as a traversal in the search space to achieve a certain goal. This can be understood in the context of robotics. A robot in a room begins with a start state that formulates a representation of its surroundings. The robot may discover more about the room by moving about, thereby expanding its understanding of the space where it is located. Similarly, inference is also observed in mathematical proofs. Mathematical proofs infer that a hypothesis is true based on a set of rules and axioms. The inductive method of theorem proving starts with a base hypothesis that can be shown to be true. It then proves an inductive hypothesis via the base hypothesis. The base step and the induction step together help to generalize the proof to the space of applicable conditions on the inputs and parameters.

As ubiquitous as inference is, what does it mean in the context of natural language processing (NLP)? NLP has attempted to represent language and the ambiguity within the language in a variety of ways in the three generations. In Chapter 2, we saw the ways in which language models represent text so that these representations can be used to train models for specific tasks. This encapsulates the idea of language understanding as a joint probability, as described in the case of the baby learning a new language. Natural language inference (NLI) is a peculiar NLP problem that provides a conditional formulation to understand language. The sentence, ‘He is snoring’, creates a mental image of a man who is sleeping and producing a sound as a result of his breathing. Learning a representation of this sentence is the goal of language understanding. However, if we assume that ‘he is snoring’, can we infer that he is sleeping? This sets up a conditional probability between the two sentences: what is the probability that ‘he is sleeping’ is true if we know that ‘he is snoring’ is true? It is likely that it is true. Consider a Hindi example. If we know that ‘ladka paathshaala mein hai’ (‘the boy is in the school’) is true, what is the probability of ‘ladka paathshaala gaya’ (‘the boy went to school’) is true? This is likely to be true as well. What is the probability of ‘ladka bus se paathshaala gaya’ (‘the boy went to school by bus’)? The truth value of this sentence cannot be determined. This is the problem definition of NLI which is also known as textual entailment. The sentence that is known to be true is called the premise. The sentence whose truth value is to be determined is called the hypothesis. Thus, NLI deals with predicting the hypothesis, given the premise. 

In this chapter, we view NLI through the foundational hypothesis of this book: ambiguity in the case of NLI and its resolution in the three generations of NLP.


  □  6.1Ambiguity in NLI



Correct textual entailment by an NLP system can be used as a test of whether or not it understands meaning of the text. The importance of ambiguity in NLI has been understood since the early work by Dagan and Glickman (2004). They refer to language ‘variability’: the fact that the same meaning may be expressed in different ways. Both the premise and hypothesis have one among multiple possible meanings and interpretations. NLI deals with identifying a possible pair of interpretations of the premise and hypothesis that holds true or false. If the meaning matches for a pair of interpretations, the premise entails the hypothesis. If the meaning mismatches for a pair of interpretations, the hypothesis contradicts the premise. If a match cannot be detected for any pair of possible meaning interpretations, an entailment relationship cannot be inferred.

Consider the following example. Let the premise be ‘A mother is feeding a spoonful of rice to her toddler while the two of them are sitting on a bench in the park’. Let us now see how different hypotheses can pose increasing difficulty for NLI. Assume that the first hypothesis is ‘A mother is feeding her toddler a spoonful of rice’. This hypothesis is true. In other words, the premise entails the hypothesis. Therefore, the ambiguity resolution in this case can be viewed as a mapping between words in the hypothesis and the premise. This map is intuitive because the words in the hypothesis are a sub-sets of the words in the premise. Let us now look at the second hypothesis: ‘The toddler is eating rice’. This hypothesis is also true. However, understanding that it is true requires some additional knowledge over and above the premise. The required knowledge here is that when a toddler is fed a particular food item, the toddler is eating it. Therefore, the relationship between ‘feeding’ in the premise and ‘eating’ in the hypothesis needs to be understood to correctly identify the entailment. The ambiguity resolution resolves the relationship between ‘feeding’ and ‘eating’ and identifies a link between the two. Let us consider a third hypothesis: ‘The mother is standing’. This hypothesis is false. The premise contradicts the hypothesis. The ambiguity resolution here is to resolve the multiple meanings of ‘sitting’ and ‘standing’ and discover that one sense of sitting is an antonym of one sense of standing. In addition to understanding the antonymy, an NLI system must be able to map the relationship between the phrase ‘the two of them’ and the mother and the toddler. Finally, consider the hypothesis: ‘The mother is carrying a red bag’. The information provided in the premise is insufficient to establish the truth value of the hypothesis. Therefore, we say that this hypothesis is not entailed by the premise. However, it is not contradicted by the premise in an explicit sense. There are no direct sense matches or mismatches between words in the premise and the hypothesis.


  □  6.2Problem Formulation



NLI has two inputs: a premise and a hypothesis. The conditional probability associated with NLI enforces additional semantics on its two inputs. These semantics are that one of them is assumed to be true (‘he is snoring’, in the example above), while the other is to be inferred (‘he is sleeping’ in the example above). The prior is called premise while the latter is called hypothesis. Therefore, the goal of NLI is to evaluate if the hypothesis is true, assuming that the premise is true.

This formulation closely resembles entailment relationships in logic. If condition A makes it certain that condition B is also true, it can be said that A entails B. Therefore, NLI has also been referred to as natural language entailment. The relationship can be stated as, ‘he is snoring’ entails that ‘he is sleeping’. Therefore, NLI has been synonymously called recognizing textual entailment (RTE).

NLI tests whether a sentence(s) can be inferred from another sentence(s). While NLI can follow a logic-based approach for sentences written in simple present tense, ambiguity in language brings challenging ways to understand if a sentence infers another. This problem is central to NLI.

Therefore, the NLI problem is formulated as: given the premise, is the hypothesis likely to be true? The ‘likelihood’ of truth appears from a definition of entailment from Dagan et al. (2005): If a reader reads the premise and hypothesis and is told that the premise is true, would they infer that the hypothesis is true?

Several NLP problems at the higher levels of the NLP hierarchy can be visualized as an NLI problem. For example, summarization is the task of generating a summary that can be entailed from the reference document, such that the summary is shorter than the reference document. Sentiment analysis is the task of generating a sentiment summary from a reference document (e.g., ‘The washing machine is efficient and washes clothes with no hassles’ entails ‘The author likes the washing machine’).




  □  6.3Datasets



The importance of NLI has been understood in NLP for a long time. As a result, several datasets for NLI have been created. The methods used to create these datasets have also changed over the three generations of NLP and represent how newer forms of available data were used to create NLI datasets.

An early dataset for NLI is called FRACAS suite, which consists of 346 manually created NLI examples (Cooper et al., 1996). Each example is a pair of premise and hypothesis with the corresponding NLI label. The dataset also classifies these examples into linguistic categories that are the source of the entailment. These categories are anaphora, ellipsis, and so on. These categories help to examine which phenomena are correctly handled by the NLI system and the underlying representation learning algorithm. Both the premise and hypothesis are constructed by humans in the case of the FRACAS dataset.

Research in NLI was also facilitated by a recurring competition called Recognizing Textual Entailment (RTE) challenge. This competition was run over seven years (Bentivogli et al., 2011), where datasets for NLI were provided. The datasets consist of around 5000 examples. The premises of these datasets were extracted from naturally occurring texts. The hypotheses were manually constructed by humans so as to follow a given entailment value in the RTE datasets.

A dataset released in the third generation of NLP by Bowman et al. (2015) is called the SNLI dataset. This dataset was created based on captions of an image hosting website. The website allows people to add images and also lets them caption these images. In the SNLI dataset, the image captions were used as the premise. The human crowdsourced workers were then asked to provide hypothesis that is true or false based on the premise. For example, a worker may be shown a caption ‘I ate chicken pizza today’ and be asked to generate a hypothesis that entails as true. The worker may then construct an example ‘I ate pizza today’. If the worker is asked to generate a hypothesis that entails as false, the example may be ‘I ate pasta today’. The RTE dataset is thus constructed by using image captions from a real-world dataset and asking workers to construct hypothesis for specific entailment output. The resultant dataset consists of around 550,000 examples. The two alternatives for dataset creation of NLI are illustrated in Figure 6.1. All the discussed datasets do not form a complete list of datasets for NLI. However, the three datasets represent two dimensions of dataset creation—the methods used to create these datasets and the number of instances in each dataset. The FRACAS dataset uses synthesized premises as well as hypotheses. In contrast, the SNLI dataset has real-world premises but synthesized hypotheses. This is because the SNLI dataset bridges the gap between text and images. Similarly, the number of instances in the three datasets has been growing. This points to the ever-increasing data requirement and the opportunity of learning when such data may be available.



[image: ]
Figure 6.1  Two approaches for NLI dataset creation: (a) for data labelling for pairs of sentences, and (b) for label-based generation of examples.





  □  6.4First Generation: Logical Reasoning



The first-generation approaches for NLI use logical reasoning as the key method for NLI. Natural language inference can be thought as a natural language variant of theorem proving with first-order logic. First-order logic is a set of formal representations that formulates knowledge in the form of predicates and quantifications. A predicate indicates a proposition while a quantification applies two elementary quantifications: ‘there exists’ (which indicates a possibility) and ‘for all’ (which indicates ubiquity). Using a set of rules, predicates and quantifications can help to deduce new relationships and predicates. Consider the example sentences—‘All dogs are animals’ and ‘Tommy is a dog’. Two predicates can be defined here: dog(x) and animal(x), where x can be viewed as a parameter or a variable. dog(x) stands for the English sentence ‘x is a dog’ while animal(x) stands for the English sentence ‘x is an animal’. Therefore, the sentence ‘All dogs are animals’ can be represented as ∀xdog(x) → animal(x). The second sentence ‘Tommy is a dog’ can be represented as dog (‘Tommy’). We use quotes for Tommy to indicate that Tommy is a name of a specific dog. Using the property of the →, one can deduce animal (‘Tommy’). This stands for the English sentence ‘Tommy is an animal’. In the NLP sense, this means that if all dogs are animals and if Tommy is a dog, it implies that Tommy is also an animal. The rich field of first-order logic has been used in early work in NLI.

However, it is intuitive that language and logical representations are fundamentally different: language is ambiguous. Different word forms could mean the same thing. For example, ‘Bell invented the telephone’ and ‘Bell was the inventor of the telephone’ are equivalent. In contrast, ‘Bell invented the telephone’ and ‘But who invented the telephone bell?’ are not equivalent. ‘Bell’ in the first example is a person while ‘bell’ in the second is a common noun. Figurative language can be a significant added challenge. ‘It is pouring cats and dogs today’ and ‘Cats and dogs are the most popular pets in the world’ have common words ‘cats and dogs’. In the first case, it is an idiom for heavy rain, but in the second, it refers to two kinds of animals.

The work of Dagan and Glickman (2004) combines logic via predicates and relationships with a probabilistic framework. While the former gives a formal representation of propositions and meanings, the probabilistic component allows us to capture the inherent ambiguity in language. In terms of first-order logic, the notion of consequence is the key point in NLI approach. A consequence from φ to ψ means that if φ holds true, then ψ also holds true. We have elucidated this in the dog and animal example above.

This NLI approach based on logic and probability generates a set of inference rules along with their associated probability. Each rule consists of two templates: the entailing template and the entailed template. For example, the probability of ‘X killed Y’ is high if ‘X assassinated Y’ is known. In this case, ‘X killed Y’ is the entailing template while ‘X assassinated Y’ is the entailed template. In contrast, the probability of ‘X loved Y’ is low (but not zero) if ‘X assassinated Y’ is known. The approach aims to identify two sets of words: core words and anchor words. The core words indicate relationships whereas anchor words indicate entities. An entity could be a common or a proper noun. Therefore, the word ‘assassinate’ is a core word while ‘X’ or ‘Y’, which would be names of people, are anchor words. A simplified way to visualize this is to consider verbs as anchor words. At the core of the algorithm are five inference rules that are applied to templates:

1. Axiom: The axiom rule gives the probability of an entailment pattern. This is in terms of the probability of seeing a given entailing and entailed element together. For example, a dictionary can provide an axiom that ‘author → writer’, indicating that author and writer are synonymous. The probability of the axiom is 1 since it is known from the dictionary.

2. Reflexivity: P(T 1 → T 2) = 1 if T 1 and T 2 are the same, and 0 if they are not. T his essentially means that if the algorithm knows that ‘William Shakespeare wrote Macbeth’, the algorithm can generate that ‘William Shakespeare wrote Macbeth’. While this seems trivial, the converse is important to ensure that none of the forthcoming rules generate unexpected patterns. For example, ‘William Shakespeare wrote Macbeth’ should not entail that ‘X is the capital of Y’, irrespective of whether the statement is true or not.

3. Monotone extension: An extension of a template T 1 is a superset of the template; that is, it contains the template with a permissible word added. The monotone extension rule states that P(E(T 1) → E(T 2)) = P(E holds monotonically for T 1 and T 2). P(T 1 → T 2). For example, let us assume that T 1 is ‘wrote’ and T 2 is ‘authored’. A possible extension of the two can be adding the word ‘originally’ to the beginning of T 1 and T 2 each. Therefore, the probability of ‘originally wrote’ implying ‘originally authored’ is a product of (1) the probability that originally is monotonic (i.e., semantically preserving), and (2) the probability that ‘wrote’ implies authored. The latter is 1 since they are synonyms. Therefore, the proposed implication is also true.

4. Restrictive extension: A restrictive extension reduces a larger phrase in the implying element to a smaller element. For example, P(E(T ) → T ) = P(E is a restrictive extension of T ). For example, ‘originally wrote’ is a restrictive extension of T. Therefore, if ‘originally wrote’ holds true in a template, ‘wrote’ also holds true. Note that the notion of ‘true’ here implies a probability of 1. In the algorithm, this probability is computed in terms of the occurrence of these patterns in the corpus.

5. Transitivity: The probability of an implication can be computed via the chain rule (i.e., a product of probabilities that iterate over multiple hops).

The algorithm uses web search to obtain sentences that contain words of interest. Sentences that contain these words are stored to extract newer patterns. The algorithm can be applied directly if a dataset is available, where instead of searching the Web, the documents in the dataset are searched. The algorithm operates in two parts. The first part is an iterative phase that is shown in Figure 6.2. Once the iterative phase converges, the inference patterns are discovered. Upon convergence, the probability of patterns is calculated based on their prevalence. The algorithm is as follows:

[image: ]
Figure 6.2  Iterative expansion of words in the rule-based NLI.



1. The set of words of interest is first selected based on a lexicon such as WordNet. These are the initial words that the algorithm will commence its learning from. These are called core candidates. Let us assume that the word ‘wrote’ is one of the candidate words.

2. Sentences in the corpus that contain the core candidates are then selected. Words that co-occur significantly with core candidates are then identified. These are called anchor words. The set of anchor words is compiled. Considering the example of core candidate word ‘wrote’, the corresponding anchor words are likely to be the pairs: ‘William Shakespeare’ and ‘Macbeth’, ‘Salman Rushdie’ and ‘Midnight ’s Children’, and so on.




3. Sentences containing anchor words are selected. The set of inference rules shown above are applied to the known anchor and core candidates to identify a new set of core candidates. Therefore, for the anchor word pair ‘Shakespeare’ and ‘Macbeth’, the new core candidate ‘playwright’ may be discovered. This core candidate is related to the original candidate ‘wrote’ but is now a specialized variant that is specific to this anchor word pair.

4. The algorithm proceeds to Step 2 to identify a new set of anchor words. This continues till the algorithm saturates (i.e., till the point the number of core candidates being added to the list becomes small). This means that the next step will be to search for sentences containing the core candidate word ‘playwright’, as in the example above, and search for new anchor words. The algorithm will then be expected to find pairs of anchor words which correspond to play and playwright pairs.

5. The relationships between core candidates and anchor words are stored in the form of templates. This means that the dataset will now be available in terms of the number of occurrences of each template. For example, ‘William Shakespeare’, ‘playwright’, and ‘Macbeth’ may be present in the dataset, say, 500 times.

6. Once the template pairs are extracted, the five inference rules indicated are applied to infer an implication. 

This original algorithm applies a Prolog-style sequential inference algorithm to perform NLI. Let us see how it applies to the premise ‘I gifted him a copy of Macbeth’ and hypothesis ‘I had a copy of Macbeth’. The overarching chain of inference is—I gifted him a copy of Macbeth → I owned a copy of Macbeth → I had a copy of Macbeth.


  □  6.5Second Generation: Alignment



In Section 6.4, we saw how a set of inference rules can be applied for NLI. The algorithm proceeds in a generative manner by sequentially applying the inference rules. An alternative to NLI lies in a notion called alignment.

Alignment implies a correspondence between word(s) in the premise and those in the hypothesis. Consider the example:

Premise: The CEO announced a new yearly bonus for all employees this week.
Hypothesis: The Chief made an announcement this week.

The words ‘this week’ are present in both the sentences. Therefore, they align with each other. This means that there is a support in the premise for the phrases present in the hypothesis. Similarly, the words ‘The CEO’ and ‘The Chief’ can be considered to be synonymous to each other. Therefore, there is a support for the ‘Chief ’ in the premise. ‘made an announcement’ aligns with ‘announced’. This implies that the two phrases are analogous. Therefore, all the words in the hypothesis have a support in the premise. As a result of this complete alignment, the algorithm can infer that the hypothesis holds true, given the premise.

One such algorithm that uses alignment is given by Chambers et al. (2007). The first component of the algorithm is highlighted in the example above: correspondence between phrases. In the CEO example pair above, we observe that all the words in the hypothesis have a support in the premise, either because:

1. The words are the same (‘this week’).

2. The words are synonymous (‘the CEO’ and ‘the Chief ’).

3. The phrases are analogous (‘made an announcement’ and ‘announced’).

The alignment is trivial if the words are the same—they only need to be matched. The alignment in the case of synonyms can be achieved using a lexicon or dictionary. The alignment in the third case is non-trivial. One way to achieve this alignment is using knowledge graphs such as WordNet. By traversing these graphs, the correspondence between the two terms can be inferred. An alternative is to use similarity between words in terms of, say, the words they co-occur with.

However, a key component of the algorithm is missing. Aligning words is not sufficient. Let us consider the following example pair.

Premise: Brutus stabbed Caesar.
Hypothesis: Caesar stabbed Brutus.

There is one-to-one correspondence for every word in the hypothesis. However, it is clear to a human reader that the hypothesis is not entailed from the premise. This is because the relationship between Brutus and Caesar is inverted in the hypothesis. Therefore, the algorithm must also check for compatibility of the relationships between the words.

Therefore, the alignment-based algorithm for NLI can be stated as follows. Assume that the hypothesis has words h1 to hn. Let a(h1) indicate the word in the premise that h1 is aligned to. The similarity score for a pair of hypothesis h and premise p, for a given alignment a, is given as:

(6.1)
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The first term indicates the similarity between a word and its alignment. The second term consists of a pair of words in the hypothesis. It computes the similarity between the edge between these words and the edge between the aligned words in the hypothesis. These words could potentially be dependency types, as described in the chapter on deep parsing.

The similarity value above is for a specific alignment. Therefore, this needs to be optimized for all possible alignments. This can be optimized by converting it to the appropriate conditional probability.

The idea of alignment in NLI is similar to that in machine translation. A key component to learn a machine translation module is that of alignment. Alignment maps words between the two languages. The equivalence of alignment with NLI is evident. A detailed discussion on alignment is given in Chapter 7 where it has been exploited for translation of words across documents.


  □  6.6Third Generation: Neural Approaches



An intuitive approach for NLI using long short-term memory (LSTM) is shown in Figure 6.3. This is an approach by Bowman et al. (2015). The architecture takes as input the premise and the hypothesis. They are initialized with word vectors, and then applied to an LSTM layer. The LSTMs learn representations of the premise and hypothesis separately. They are then concatenated and applied to a multi-layer perceptron classifier. The concatenation of the two inputs allows for interactions between them to be learned by the neural layers that follow.
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Figure 6.3  Early deep learning architecture for NLI.




In the classifier above, the premise and hypothesis are encoded separately with no interaction between representations that are learned for the two. The classifier regards the premise and hypothesis as two disjoint vectors with little notions of the relationship between them. However, more nuanced neural architectures can use the relationship between these two kinds of inputs. Rocktäschel et al. (2016) present an architecture that does so. The architecture is shown in Figure 6.4. The architecture takes as input the premise and the hypothesis. The words are converted to their word representations using pre-trained word vectors. Therefore, a sentence is a concatenation of word vectors of its constituent words. At the other end of the architecture is the prediction for NLI. This is computed as a result of a softmax layer applied to the output of the last state of the hidden layer (h9 in Figure 6.4). The architecture has three components:
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Figure 6.4   Attention-based deep learning architecture for NLI.




1. Conditional encoding: The architecture assumes a specific order between the premise and the hypothesis. This is done by arranging the LSTM layer for the premise next to that for the hypothesis. In other words, the last state of the LSTM sequence for the premise is the initialization of the semantic representation of the premise. This means that the context of the premise is incorporated in the information that is passed on to the first cell of the representation for the hypothesis. This means that the encoding for the hypothesis is learned, conditional on the premise. This component is, therefore, called conditional encoding. The direction of conditionality is a representation of the conditional probability that is at the heart of NLI: how likely is the hypothesis, given the premise?





2. Attention: An attention layer allows to weigh different elements of the source vector (premise, in this case) in terms of the relative importance for the target vector (hypothesis, in this case). Therefore, an attention layer computes a weight over states of the premise. This is done by taking into account the hidden representations of the premise learned at the output of the LSTM. These are states h1 to h5 in the figure. The matrix of learned premise representation is projected to the dimension space of the word vectors. The learned attention vectors are multiplied with the hypothesis vectors to generate the resultant vectors.

3. Word-by-word attention: Each word in the hypothesis is conditional on some word in the premise. This stems from the idea of alignment in the second generation of NLP. Therefore, the attention mechanism is applied in order to map all words in the premise to a word at a given position in the hypothesis. This is called word-by-word attention. For the hypothesis, the attention for second position onwards is computed using representations of all positions in the premise vector (h1 to h5 in Figure 6.4). 

The intuition of sentence representations of the premise and hypothesis followed by alignment between their components is also used in Chen et al. (2017). The architecture is shown in Figure 6.5, which consists of three layers. The first layer obtains sentence encodings of the premise and the hypothesis. These encodings may be any projection function that converts the initialized word vectors to a sentence representation. This means that the first layer could be a BiLSTM or BERT. Unlike in the previous case, the representations are decoupled from each other. This means that the representations are not conditional on each other. The second layer is the attention layer that computes the alignment between words in the premise and the hypothesis. This is achieved through the weighting mechanism in the attention layer. The third layer of the architecture combines the local alignment from the second layer to obtain a composited representation of the premise and hypothesis. The two are then concatenated and a softmax layer is applied to obtain the prediction for NLI.

[image: ]
Figure 6.5   Tree-based alignment for NLI.








6.6.1 Attention over Trees

Attention in neural networks is a good fit for alignment as required in NLI. However, the alignment as presented in the previous approach accounts for sequences of words without acknowledging the inherent structure of sentences. Words combine to become a phrase in a sentence. These phrases as a semantic unit can be aligned between the premise and the hypothesis. Let us consider an example from Hindi. Let the premise be ‘Maine khaana khaaya’ (‘I ate food’) and the hypothesis be ‘Main bhookha hoon’ (‘I am hungry’).The word ‘bhookha’ (‘hungry’) aligns with ‘khaana khaaya’ (‘ate food’). As a result, the contradiction can be inferred. When the sentences are visualized as a parse tree, ‘khaana khaaya’ (‘ate food’) corresponds to a verb phrase while ‘bhookha’ (‘hungry’) corresponds to an adjective. The alignment can be established between the non-leaf nodes of the tree: verb phrase in the premise and the adjective in the hypothesis. The representation of a sentence as a tree allows a semantically coherent formalization of units in the sentence. Therefore, NLI can also be performed by representing the hypothesis and premise as trees and generating alignment between them.

Zhao et al. (2016) presents a tree-based alignment approach shown in Figure 6.5. This approach models NLI as a structured prediction problem. Instead of representing a sentence as a sequence of words, it represents sentences with a specific structure: a tree. The architecture consists of three components:

1. Representation of sentences as trees: A binary tree–LSTM extends the idea of LSTM to a binary tree. Each node in a binary tree is represented by two vectors: the memory cell and the output cell. This is similar to an LSTM. However, in a typical LSTM chain, cells are arranged in a linear structure: where the cell at a given position in the chain influences the cell at the next position. In the case of a binary tree–LSTM, the output vector of a cell is an input to both the child nodes. Also, the output vector is used as a representation of the node. Let Tp and Th be the trees for premise and hypothesis, respectively. Therefore, the optimization for the NLI problem can be formulated as:

(6.2)
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The goal of the tree-based NLI approach is to learn an alignment between the nodes of the hypothesis and premise trees. Let the space of alignments be A. Therefore, the conditional probability above can be decomposed as:

Pr( y |Tp, Th ) = Pr ( y, A |Tp, Th )

Therefore, the optimization problem can be updated as:

(6.3)

[image: ]
By chain rule, this can be written as:

(6.4)
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Therefore, the prediction problem can be divided into two components indicated by the two terms. The second term is a conditional probability of an alignment given a tree. This corresponds to the node-based attention component below. The first term then predicts the entailment value based on the alignment and the trees. This corresponds to the alignment/entailment composition step below.

2. Node-based attention: This step deals with learning an alignment over nodes in the form of attention vectors. The alignment between a pair of nodes (i, j) in the two trees is then computed as a multiplicative attention over the output vectors of nodes i and the relevant node j.

3. Alignment composition: The alignment vectors of each node in the hypothesis tree are then combined recursively to create an alignment composition. For each node in the hypothesis tree, this composition involves: (a) vector corresponding to the node itself, (b) the alignment for the tree, (c) the representation of the node in the premise tree that this node is aligned with, and (d) the children of this node in the hypothesis tree. This means that the representation of a node is a composition of its children nodes (as expected in a binary tree–LSTM, given the inherent tree nature) and the representation of the aligned node from the premise tree. When this is recursively applied, the resultant vector at the root of the tree can be subjected to a tanh followed by a softmax layer to obtain a probability over the possible entailment values.

NLI using Sentence-Transformers

Sentence_Transformers is a Python library that provides embeddings for sentences (Reimers et al., 2019). Sentence_Transformers provides NLP models for several tasks including NLI. The following code shows how a model in Sentence_Transformers can be used.



from sentence_transformers import CrossEncoder

model = CrossEncoder('cross-encoder/nli-distilroberta-base')





Cross-encoder is a model that takes as input two sentences and applies them in a specific order. The order refers to the ‘cross’ in the name of cross-encoder. This configuration applies to NLI since the premise and hypothesis have a directed relationship—the goal is to predict if premise entails the hypothesis and not the other way round.


premise = "A mother is feeding a spoonful of rice to her toddler while the

two of them sit on a park bench"

hypotheses = ["A mother is feeding her toddler a spoonful of rice", "The

toddler is eating rice", "The mother is standing"]

data = [(premise, i) for i in hypotheses]

scores = model.predict(data)

#Convert scores to labels

label_mapping = ['contradiction', 'entailment', 'neutral']

labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]

print(labels)




model.predict  takes as input a list of tuples. The tuple consists of two elements. The first element is premise and the second is the hypothesis. The output of the code is ['entailment', 'entailment','contradiction'].

The Sentence_Transformers library can be used to generate embeddings. These embeddings can be used as features in a statistical model or compared using cosine similarity. The function to do so is called encode. 




sentence = "Hello world"

embedding = model.encode([sentence])




The value of embedding is a dense vector that is returned by the model.



Case Studies



Dealing with Legalese

Legal documents such as contracts often contain a detailed list of clauses that the signing parties must abide by, in a peculiar language that is colloquially referred to as legalese. Abir leads a business which entered into a contract with a large company to manufacture a part of the product that the large company sells. Abir wants to know if he can procure an intermediate manufactured material from another company. The legal document is difficult to understand and spans over hundreds of pages. Using NLI, Abir can pose a hypothesis to the legal document as a premise. NLI would be able to tell Abir if the contract allows the business to do it, disallows them or does not explicitly state either. The business decision can be influenced as a result of the NLI.

Helping Doctors with Diagnosis

In an ever-evolving medical field, doctors often read medical literature to keep themselves updated with the advances in the field. When Dr. Akshita has a patient with respiratory symptoms, he wants to prescribe a popular medicine. However, Dr. Akshita is also aware that the patient has a co-morbid condition. Dr. Akshita uses a search engine on the top of medical journals to look for terms. The search displays papers that match the query terms. However, could the search engine help the doctor better? Could the doctor pose her concern as an NLI problem? If she types the hypothesis ‘Medicine X can result in conditions of bones and joints’, the search engine can operate as a multi-document, multi-premise NLI. This can potentially save the doctor’s time to read through multiple snippets of papers. It can also potentially be a safer option because the doctor may miss out querying the right terms to a search engine.






Summary

Natural language inference (NLI) or textual entailment is the task of predicting if a premise entails the hypothesis. The ambiguity resolution in NLI is based on linkages between multiple meanings of the premise and the hypothesis. A heuristic-based approach for NLI follows a logic-based approach by representing sentences as rules and deriving a hypothesis from a premise. The second set of approaches uses the construct of probabilistic alignment to link phrases between the premise and the hypothesis. The third set of approaches uses neural approaches centred around attention-mechanism to achieve the alignment. NLI has been used as a mechanism to evaluate language understanding for it provides the conditional formulation of hypothesis given premise.

Review Questions

1. What are premise and hypothesis in the context of NLI?

2. How are natural language inference and language understanding related?

3. A premise sentence is ‘The driver waited for the passenger to wear his seatbelt before starting the car’. Construct a hypothesis sentence that can be entailed as true from the premise.

4. Construct an alignment graph between the premise and hypothesis for the example given in Question 3.

5. What is the monotone extension property of logical rules used for reasoning?

6. How does word-by-word attention assist alignment between words in the premise and the hypothesis?

7. What are the four inputs to entailment composition when a tree-based neural approach is used for NLI?

Course Assignment and Project

1. Consider the premise sentence ‘The driver waited for the passenger to wear his seatbelt before starting the car’ and the hypothesis sentence that you constructed. Using the set of axioms and inference rules presented in logical reasoning-based approaches for NLI, show that the hypothesis sentence holds true, if the premise is true.

2. Wikipedia articles are a source of information about a variety of topics. To understand how they can be used for NLI, perform the following steps: 

a.Download a set of Wikipedia articles about tourist destinations in your country. Select a set of sentences in the articles that contain factual statements.

b.For each sentence as a premise, construct a set of hypothesis sentences that can be entailed as true. Then construct a set of hypothesis sentences that can be entailed as false.

c.Implement a neural approach for NLI trained on a benchmark dataset available as a part of benchmarks like the GLUE. Test the approach on the dataset of Wikipedia sentences above.

d.Repeat the experiment above by splitting your dataset into a train and test dataset.

e.Report how the performance changes for the two settings—when a larger general-domain dataset is used versus when a smaller domain-specific dataset is used.

What are challenges and observations? What challenges were reported in step (b)? Were some kinds of examples difficult to construct hypothesis for? 



Objective Questions

Fill in the Blanks

1. Natural language inference operates on two sentences: premise and _______.

2. In rule-based approaches for NLI, a(n) _____ extension reduces a larger phrase in the implying element to a smaller element.

3. _____ in the second generation of NLI maps equivalent phrases in premise and hypothesis.

4. ______ module in the Sentence_Transformers library can be used for NLI.

5. In the tree-based LSTM method for NLI, the LSTM cells form the ____ of the tree.

Select the Most Appropriate Option

6. Which of the following statements is correct if the hypothesis of a natural language inference is true?

a.The premise contradicts the hypothesis.

b.The premise does not entail the hypothesis.

c.The premise is not true.

d.None of the above

7. Which of the following hypotheses are entailed from the premise ‘natural language inference helps several areas of NLP’?

a.Natural language inference is challenging.

b.Natural language inference is useful.

c.Natural language inference is an NLP problem.

d.Natural language inference relies on data.

8. What does ∀x mammal(x) → animal(x) represent?

a.All animals are mammals.

b.All mammals are animals.

c.Some mammals are animals.

d.Some animals are mammals.

9. Which of the following is true for attention-based model for NLI?

a.Attention between representations of premise and hypothesis is computed.

b.Attention between representations of pairs of words in the hypothesis is computed.

c.Attention between representations of pairs of words in the premise is computed.

d.None of the above

10. Which of the following is true for Sentence_Transformers?

a.The library can be used to obtain embeddings of sentences.

b.The library can be used to predict natural language inference.

c.Both a and b

d.None of the above
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Answers to Objective Questions

1.hypothesis

2.restrictive

3.Equivalent phrases

4.Cross-encode

5.nodes

6.(d)

7.(b)

8.(b)

9.(a)

10.(c)












	 

	 




	CHAPTER
7

	Machine Translation








When I look at an article in Russian, I say: This is really written in English, but has been coded in some strange symbols; I will now proceed to decode.

Waren Weaver,  Excerpt from a letter written in 1955






Learning Objectives

After reading this chapter, you will be able to


• Explain paradigms of MT.

• Understand the challenges of MT for resources-scale languages.

• Appreciate the mathematics behind MT.

• Describe encoder–decoder models for MT.







  □  7.1Introduction



Thousands of languages are spoken around the world in various countries. India, for example, is a richly multilingual country with 22 official languages. Translation has served as the vehicle for making ideas expressed in one language accessible in other languages. Translation is the process of converting text from one language to another, retaining the meaning in the source text (called fidelity, aka adequacy), and ensuring grammaticality, idiomaticity, and register-conformity in the target text (called fluency). Machine translation (MT) refers to the process of translation by a machine (i.e., a computer). MT is the forcing function of natural language processing (NLP), NLP the forcing function of artificial intelligence (AI), and AI the forcing function of computer science (CS). Challenges and tasks in MT drive progress in computer science itself. For example, the requirement of analysis of source-side sentences in rule-based machine translation (RBMT) has pushed the frontiers of parsing technology. As another example, Transformers, a neural model initially developed for MT, has inspired similar architectures in computer vision, recommender systems, and speech processing.

MT by definition is a multilingual activity. Translation involves two languages—the source language and the target language. As a result, MT must deal with the ambiguity of both the languages and the ambiguity of linkages between them. When MT attempts to generate a sentence in the target language from a source language sentence, it must disambiguate the source words and phrases, unambiguously translate them into the target language words and phrases, and definitively choose among multiple options of putting them together in the target sentence. All MT approaches implicitly or explicitly carry out source, transfer, and target disambiguation to varying degrees.

7.1.1 Ambiguity Resolution in Machine Translation

In order to appreciate the complexity of MT, we revisit the NLP stack (Figure 7.1) and see how MT engages with this stack. At the bottom of the NLP stack is morphology, which concerns breaking down a word into its parts and extracting features such as gender, number, person, and tense. Sentences are composed of words and words are composed of morphemes. Morphemes are units that carry the syntactic (e.g., ‘uMgaa’ in ‘jaauMgaa’: ‘will go’) and semantic (‘jaa’ in ‘jaauMgaa’) load. Morphology can vary from being very simple to very complex and has been categorized into analytic (morphemes mostly stand apart, as in ‘will go’) and synthetic (morphemes get fused as in ‘jaauMgaa’: ‘will go’). Chinese is an example of an analytic language, while Arabic is a synthetic language. Many times, MT has to straddle family boundaries (e.g., MT between Chinese and Arabic). A peculiar characteristic of Arabic morphology is that only the consonants are retained and we have to decipher the word from the context. For example, the consonant string ‘ktb’ can stand for both ‘kutub’ which means ‘axis’ or ‘pole’ and also ‘kitaab’ which means ‘book’. In morphology, we break the word into its parts and obtain the features. For example, the word ‘jaauMgaa’ in Hindi has ‘ja’ as the root and ‘uMgaa’ as the suffix indicating first person singular number and future tense. Parts and properties together come as features which assist in downstream NLP layers, MT included.

[image: ]
Figure 7.1  The NLP stack.



Morphology layer feeds into the part-of-speech (POS) tagging layer. For every word in the sentence, we assign POS tags which are grammatical categories such as noun, verb, adjective, adverb, and so on. POS tags at a position are determined by previous words, tags, and parts and properties of the current word. POS tagging feeds into chunking, which is the process of extracting small phrases. In fact, POS tagging and chunking together form shallow parsing, which should be differentiated from deep parsing that consists of dependency parsing, constituency parsing, and combined constituency and dependency parsing. 

After parsing comes the layer of semantics. The main task of the semantic layer is semantic role identification (e.g., agent, object, instrument, place, time, and so on). These are fundamental semantic relations needed for the meaning of the sentence. Finally, processing large pieces of text needs resolving co-references and ellipses and even registers, stances, nuances, and other such  pragmatic features. 




The NLP stack is important for MT. Every layer in the NLP stack sends signals into the translation process, which ensures more and more accurate and high-quality translation. This fact was captured by the Vauquois triangle (discussed in Section 7.1.5). Features coming from various layers of the NLP stack help reduce the requirement of data needed for training an MT system using only raw data. For example, a paradigm of MT called statistical machine translation (SMT) trains an MT model with parallel sentences. It has been shown that, even with small amounts of data, SMT can give reasonably good results if we supply semantic roles and shallow parsing features in the training process. If we do RBMT (another paradigm), we have no other option than obtaining NLP signals from each of these levels. In RBMT the source sentence has to pass through NLP layers (‘analysis’ part of ‘analysis-transfer-generation’ aka ‘A-T-G’) to obtain a representation that the ‘Generation’ part of A-T-G can work on to produce the target language sentence. The ‘A’ process has to grapple with ambiguity at each layer. Machine learning (ML) based MT, which means SMT and neural machine translation (NMT), relegates the responsibility of ambiguity resolution to data and ML.

7.1.2 RBMT-EBMT-SMT-NMT

Like many other areas of AI, MT can be knowledge based and data driven. Knowledge-based machine translation (KBMT) is also called rule-based machine translation (RBMT). RBMT is of two kinds—interlingua based and transfer based. Data-driven MT paradigms have example-based machine translation (EBMT), SMT, and NMT, the last being the de facto paradigm these days. 

Figure 7.2 depicts the paradigms of MT. It is interesting to observe that all these MT paradigms have an ‘A’ word as the essence of the paradigm. 
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Figure 7.2  Paradigms of machine translation.



1. For RBMT, the essence is ‘analysis’. The source sentence needs to be analysed and converted to a form from which the target sentence is generated (A-T-G). One of the very first examples of RBMT is the KBMT project at Carnegie Melon University in the 1970s, which actually introduced the NLP stack! Unless the analysis is of high quality, the target sentence cannot be expected to be good. 

2. In data-driven MT we have the following techniques: 


• EBMT is based on similarity, and the essence of EBMT is ‘analogy’. Given a new sentence to be translated, we refer to the translation memory—a database of already done translations—and see if there are parts of the input sentence which have been pre-translated and such translations can be reused. Consider an example of an English sentence that needs to be translated into Hindi: ‘Delhi is the capital of India’. The Hindi translation should be ‘dillii bhaarat kii raajdhaanii hai’. Now suppose in the translation memory, we have a translation pair ‘the capital of a country is its administrative centre’ ‘ek desh kii raajdhaanii uska praSaasanik Kendra hai’. In this case, ‘Capital of ’ mapping to ‘kii raajdhaanii’ is a reusable element of translation. In EBMT, the first task is to find out which sentences in the translation memory are similar to or have overlapping components with the input sentence. Translation segments are picked up from translation memory and stitched together—a process called recombination. When stitching together these segments, there may be segments that do not stitch perfectly, due to either word overlap or missing words. Therefore, a sub-task to dispose off on the way is to resolve the ‘boundary friction problem’. Resolving boundary friction means making ‘adjustments’ to pre-translated components as required by the given input sentence. For example, the input sentence may have the plural form of a noun which in the translation memory appears as singular. Reusing the translation may need generating the plural form in the translation. Analogy is the heart of EBMT, and finding analogy needs similarity computation, which today has reached a level of sophistication hitherto unseen, in the form of embedding-based NLP. 

• SMT is the contribution from IBM in the 1990s. There were two celebrated papers in 1990 and 1992 working out The Mathematics of Statistical Machine Translation. This mathematical analysis is based on expectation maximization. Given a pair of parallel sentences, the task is to find which words and phrases in the pair align. For example, given the pair:



English: Delhi is the capital of India
Hindi: ‘dillii bhaarat kii raajdhaanii hai ’ 




Finding out that ‘rajdhaanii’ and ‘capital’ correspond to each other is part of the so-called alignment problem. We start from sentence alignment and go from word alignment to phrase alignment. Expectation-maximization-based word alignment is the heart of SMT because from word alignment, we can obtain phrase alignment, and from phrase alignment, tree alignment. Data-driven MT became possible because the word alignment problem was solved. EBMT and SMT started almost together, their respective paradigm-defining papers came in 1984 and 1990, respectively. However, EBMT struggled to make progress because the problem of analogy could not be solved satisfactorily. On the other hand, SMT solved the alignment problem by making use of probability and expectation maximization. In the computation of analogy, when multiple translation mappings are possible, there is no principled way of scoring these correspondences. SMT had a principled framework for scoring multiple-word alignments based on probability.

• NMT today is primarily done through Transformers. Here again, an ‘A’ word (‘attention’) is the crux of the matter. ‘Attention’ pays attention to correspondences among words and phrases in the two parallel sentences and also within the same sentence. Linguistic agreements, for example, are implemented through attention. If the verb form must conform to the gender number and person (GNP) of the subject of the sentence in the source and target sentences, attention ensures this conformance. 


In summary, four ‘A’ words—Analysis, Analogy, Alignment, and Attention—are crucial for four MT paradigms: 

1. Analysis in RBMT

2. Alignment in SMT

3. Analogy in EBMT

4. Attention in NMT

7.1.3 Today’s Ruling Paradigm: Neural Machine Translation

Neural machine translation (NMT) is done by neural networks which, like its predecessor paradigms, mirrors the Vauquois triangle. The famed ‘Encoder-Decoder’ architecture as well as the more modern ‘Transformer’ architecture implements the A-T-G pipeline through layers of neurons. NMT is extremely data-intensive, due to its requirement of fixing millions and sometimes billions of weight values.Figure 7.3 is a typical depiction of NMT vs. SMT comparative performance as training data increases, based on the authors’ experience of English-Hindi machine translation. This is similar to a very widely reported study in Koehn and Knowles’ (2017) article Six Challenges for Neural Machine Translation. The figure for English-Hindi machine translation shows that phrase-based statistical machine translation (PBSMT), which first establishes phrase correspondences and then stitches the translated phrases with a large language model, is very effective. But as data increases, PBSMT is no match for NMT. With a huge amount of data, we set millions and billions of parameters in a Transformer network that beats all other paradigms of MT hands down. 
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Figure 7.3  Variation of accuracy of machine translation with corpus size. Notice how the SMT line (grey) is no match for the NMT line (black) as the corpus size increases.



NMT’s rise to prominence was gradual, with the world taking note of its power in 2013 when Google published MT results on standard benchmark datasets and moved the popular and widely used Google Translate completely to neural. Translation is a crucial need for several aspects of life, and translation pairs are generated every day from education, finance, economics, tourism, and other domains. So NMT is here to stay. However, the biggest criticism of NMT is its lack of interpretability and explainability. An NMT system with millions of weight values is a black box. In RBMT, we can explain why a particular translation was generated by following the sequence of rule-firing. In SMT, the explainability is a little less, though not quite hopeless. We can inspect the phrase table, the mappings, and the probabilities, though this becomes impractical very quickly. The phrase table generated from a parallel corpus of a mere 100,000 sentences can have as many as 1 million entries! Still, the explainability is better because one can point to the phrase pairs that go into the building of the target sentence. On this point of explainability, it is very instructive for a student of NLP to go back to the early days of any NLP task and appreciate that the exercise of designing and implementing rule-based and feature-based ML systems is empowering, in the sense that creating rules and exploiting sentence features demand both language and problem insight.




7.1.4 Ambiguity in Machine Translation: Language Divergence

Languages have different ways of expressing meanings, the so-called phenomenon of language divergence. One of the ideals of MT has always been the extraction of meaning completely and correctly from the source text and then the production of the target language text from the extracted meaning. Meaning extraction is an exercise in disambiguation at every layer of the NLP stack-morphology, POS tagging, chunking, parsing, and semantics. 

When the same meaning is expressed by two different languages, two kinds of divergence arise: 

1. Lexico-semantic divergence

2. Structural divergence

Lexico-semantic divergence is essentially vocabulary difference (i.e., the difference of words and phrases). ‘jaauMgaa’ in Hindi and ‘jaabo’ in Bengali, meaning ‘will go’ are illustrative of lexical divergence. The second kind of divergence is structural, where languages are different in the manner in which they arrange words and phrases in a sentence. Subject-verb-object (SVO) and subject-object-verb (SOV) divergences are the most prominent examples of structural divergence.

Figure 7.4 shows an example illustrating language divergence. The languages involved are English, Hindi, Bengali, Marathi, and Manipuri. English, Hindi, Bengali, and Marathi belong to the Indo-European language family. Manipuri is from the Tibeto-Burman family. Let us say the meaning we are dealing with is expressed in English as ‘This blanket is very soft’. 
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Figure 7.4  Language divergence illustrated with the English sentence, ‘This blanket is very soft’.



There is a qualifier-qualified relationship between ‘blanket’ and ‘soft’, an intensifier relationship between ‘soft’ and ‘very’, and a definitive pronoun-noun relationship between ‘this’ and ‘blanket’. The first divergence point we see is that English has SVO. ‘This blanket’ - subject, ‘is’ - verb, ‘very soft’ - object/complementizer. In Hindi, the verb auxiliary ‘is’ has become the verb copula and has gone to the end of the sentence (‘hai’). In Bengali, the copula is not present. In Marathi, the copula is ‘aahe’, which has a one-to-one correspondence with ‘hai’. Manipuri also retains the copula ‘laui’. The subject in English ‘This blanket’ becomes ‘yaha kambal ’ in Hindi, ‘ei kambal ’ in Bengali, and ‘haa kambal ’ in Marathi. In the case of Manipuri, we have an interesting divergence: the definitive pronoun ‘This’ goes after the noun ‘kampor asi’. Bengali, additionally, introduces ‘ti’, which is a ‘classifier particle’. Thus, ‘This blanket’, ‘yah kambal ’, ‘ei kambal ’, and ‘haa kambal ’ are isomorphic to each other, but Manipuri transposes the position of the definitive pronoun and the noun. This is a major language divergence point between the Indo-European and Tibeto-Burman families, viz., the formation of the definitive pronoun-noun phrasal combination. Another divergence point is ‘very soft’, which becomes ‘bahut naram’ in Hindi, ‘khub naram’ in Bengali, and ‘khup naram’ in Marathi. But Manipuri implements intensification with reduplication; the adjective is repeated as ‘mon mon’ (‘soft soft’). 

From these examples, we can intuitively feel that in terms of ‘distance’, Marathi is closest to Hindi, Bengali is close, Manipuri is somewhat far, and English is the farthest. Hindi-Marathi MT is almost an exercise in word substitution, albeit with disambiguation. In Bengali, additional work of introducing the classifier particle ‘ti’ is needed. Thus, we begin to see the formation of a rule in Hindi-Bengali MT; the translation of a definitive pronoun-noun combination needs a classifier particle after the noun. There are many additional complexities, of course. Classifiers in Bengali change as per the number of the nouns: ‘ti’ and ‘ta’ for singular and ‘te’ for plural (‘ti-ta’ differentiation is more complex getting into deeper levels of semantics). We may, therefore, have to write 10 rules for introducing the classifier. Such exercises give us insight into how Bengali operates and the intricacies of Hindi-Bengali translation. 

Such insights are costly to obtain but come with great benefits even in the case of a data-intensive paradigm such as NMT. The first benefit is helping in selecting, curating, and refining training data. Both language understanding and task understanding are required in training data preparation. The second benefit is in doing an error analysis of the output. Understanding language phenomena and task requirements is at the heart of error analysis. 

While NMT has the handicap of the data demand being huge, the rule-based system has the limitation of not being able to anticipate and give rules for all possible test situations and thereby facing the problem of false positives and false negatives. Thus, the rule-based system might miss introducing ‘ti’ when it is needed (the false negative situation) and might introduce ‘ti’ when it is not needed (the false positive situation). 

7.1.5 Vauquois Triangle

Language divergence phenomena have been unified in a famous framework called Vauquios triangle (see Figure 7.5). The top of the triangle represents the complete disambiguated meaning of the source sentence. All ambiguities have been resolved on the way up the left side of the triangle through NLP layers to the top. On the way down from the top, we begin to generate the target language sentence, descending down the right side of the triangle through different stages of natural language generations (NLG). The broad stages of NLG are root word determination, target root substitution, morphology generation on target roots, and then arranging the target words through a process called syntax planning, wherein the objective is to place the words appropriately with respect to one another, obeying the rules of grammar of the target language. For example, adjectives generally precede nouns in English, but follow the nouns in French. Prepositions of English become post-positions of Hindi, with transposition of the modifier and the modified. 
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Figure 7.5  Vauquois triangle illustrating the analysis-transfer-generation (A-T-G) process. The left side of the triangle is effectively the NLP stack. Complete disambiguation lands the source sentence representation at the top of the triangle. The bottom of the triangle is the opposite extreme, where no analysis is needed as in the case of very close languages such as Spanish-Catalan.



The key point here is complete disambiguation. Operating from the top of the triangle is what is called interlingua-based MT. Analysis of the source sentence gives the complete and correct meaning representation of the sentence, which is also language-independent. This renders transfer ‘T’ redundant in the sense that no transformation is needed from the source-side representation to the generation-side representation. Interlingua-based MT is the epitome of RBMT in the sense that the complete analysis of the sentence is done by rules. There need to be rules to obtain correct morphology, correct POS tag, correct parse, correct semantic roles and correct word senses, correct named entities, correct co-references and ellipses, and correct pragmatics. This is a tall order and can exist only in imagination. Human minds cannot describe and anticipate all language phenomena, let alone capture them by rules. Living languages are constantly evolving and new language constructs show up frequently (e.g., coining of the noun ‘whatsapp’ and the corresponding past tense verb ‘whatsapped’). The pressure to communicate with diverse groups that have varied linguistic, educational, and economic backgrounds often leads to flouting of grammatical rules (‘ain’t no towel in the bathroom’), mixing languages (‘gaadi chalaaoing’ meaning ‘driving a car’), taking liberty with spelling (‘going ri8 now’), new metaphors (‘ask google’), and idioms (‘find me on LinkedIn’) and makes the question of what is in the language and what is not a grey area. This is the main challenge of RBMT, pertaining to analysis.

The second problem with RBMT is that of formulating transfer rules. The task of creating rules of transfer (i.e., transformation) is fraught with challenges. A case in point is a translation of proverbs. The rule for translating ‘A bad workman quarrels with his tools’ into Hindi as ‘naach naa jaane aangan tedaa’ (literally: ‘a bad dancer says the floor is crooked ’) has to be exactly specific to this language situation, dictating that the proverb has to be translated exactly as specified with no generalization. Such hard-coded rules, however, fall into the trap of ambiguity as in ‘the old man kicked the bucket’ which can be both idiomatic (‘the old man died’) and literal (‘the old man gave a kick to the bucket’). 

The third problem is with generation. Rules of generation have to respect pragmatics and ‘register’. That is, suit the generated sentence to the communication situation (formal vs. informal), mood of the speaker-listener (as in dialogues), and intent of communication. It is well-nigh impossible to create an all-encompassing rule base, not only because there are too many such situations, but also because codifying the conditions is a herculean task. For example, how do you give the rule that ‘Oh dear’ in ‘Oh dear, what a mess’ should be translated into Hindi as ‘he bhagwan’ (‘Oh my God’) and in ‘Oh dear, get well soon’ as ‘he priya’ (‘Oh beloved’)? 

Such hurdles for MT force relinquishing ideal and unconstrained in favour of real but restricted. Instead of worrying about what translations are possible, MT must focus on what is probable as dictated by data. We will not tell a machine how to translate but will show examples of translations.

Ideally, at the top of the Vauquois triangle, we have a meaning representation which is independent of any language. Obtaining this representation requires going through the whole NLP stack and doing a thorough and exhaustive analysis, including the graphemic level where the characters are recognized; morpho-syntactic level where morphology analysis and POS tagging are done; syntagmatic level where short phrases are obtained; syntactic functional level where dependencies within the sentence are uncovered; logico-semantic level where semantic graphs and very precise representation of rules are put in place; and finally the deep understanding level where the completely disambiguated meaning is obtained. 

However, depending on the source and target pair of languages, a thorough disambiguation is not needed in most cases. Consider the Hindi sentence, ‘aap ko mujhe mithaee khilaanii padegii’. This sentence has an ambiguity of semantic roles. The sentence does not clarify who is giving sweets to whom. So, the translation can be either ‘You have to give sweets to me’ or ‘I have to give sweets to you’. Thus, translating to English will need semantic role disambiguation, but not so for translation into Bengali. The Bengali translation ‘aapnaake aamaay mishti khaaoaate habe’, has the same semantic role ambiguity as in Hindi. This is an example of translation without disambiguation. The responsibility of disambiguation lies with the listener/reader who has access to the context of the discourse.

The Vauquois triangle is a good abstraction of the translation process, capturing the many subtleties and nuances of the process. As an illustration, in Hindi, the post-positions are written separately from nouns. For example, in the Hindi sentence, ‘raam ne aam khaaya’ (‘Ram ate a mango’), the ergative marker ‘ne’ is a post-position and not a suffix. In Marathi, the corresponding case marker appears as a suffix, ‘raamaane aambaa khaallaa’. So, for Hindi-Marathi MT, additional work is required on the generation side to stitch together the case marking suffix and the noun. This situation is an example of ascending transfer where the amount of work done on the Marathi side is more than the work done on the Hindi side. Morpheme stitching is this additional work.

Vauquois triangle in its original form is very elaborate with many sub-activities of intricate nature. A simplified Vauquois triangle is depicted in Figure 7.6 with source and target languages at the bottom of the pyramid and a transfer happening at some place between the top and bottom of the triangle. The left side of the triangle is the analysis side and the right side is the generation side.

[image: ]
Figure 7.6  Abridged Vauquois triangle.



At the top of the triangle is the interlingua-based MT. Any transition into the generation side below the top gives rise to the transfer-based machine translation (TBMT). TBMT is rule-based but needs much less rules and has much less complexity. For example, take the above example of ‘aap ko mujhe mithaii khilaanii padegii’ translating into Bengali. No rules for semantic role disambiguation are needed. The pair of languages decides the number and complexity of the rules. The closer the pair of languages, the less the number of rules. Interlingua-based MT with the demand of complete disambiguation is an overkill for a pair of typologically close languages (i.e., languages that have familial proximity). 




When the pair of languages is very close to each other, translation can be done by direct translation. Ideal direct translation needs just word-to-word substitution, albeit with disambiguation. This situation is like doing POS tagging, where the words on the source side are tagged with words of the target language, with no analysis effort except for word sense disambiguation and no effort in generation, except for Viterbi decoding.


  □  7.2Rule-Based Machine Translation



In RBMT, all rules—whether for analysis, transfer, or generation—are written by human experts. So, the responsibility of correct and complete capturing of language and translation phenomena and formulating rules therefrom lies with a human system designer. The pipeline in Figure 7.7 is the typical architecture for Indian language to Indian language machine translation (ILILMT), which was executed as a consortium activity in the period 2000-2006 funded by India’s Ministry of Electronics and Information Technology (MeitY). The analysis side consists of morphological processing, POS tagging, chunking, vibhakti computation (i.e., determination of case marker), named entity recognition, and word sense disambiguation. For the generation of the target text, after doing lexical transfer we arrange for intra-chunk (between words in word groups) and inter-chunk (between word groups) agreements before getting the target text. This intra- and inter-chunk agreements are illustrated as follows. Consider a generated target sentence segment: ‘raam ki bahan kaa chhotaa saa ghar’ (English: ‘the small house of Ram’s sister’). In this the genitive case marker ‘ki’ agrees in gender with ‘sister’ which is of feminine gender inside the chunk ‘raam ki bahan’. The genitive case marker ‘kaa’ agrees in gender with the head ‘ghar’ of another chunk ‘chhotaa saa ghar’; ‘saa’ in turn has gender agreement with ‘ghar’ which is of masculine gender.
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Figure 7.7  RBMT pipeline, illustrating analysis-transfer-generation (A-T-G). Analysis has many sub-processes, as does generation.



RBMT is founded on the principle of linguistics is the eye, and computation is the body. Deep insight into the properties of the source and target languages are needed, which then facilitates creation of computational rules for A-T-G. Obtaining insights into language properties needs standards, documentation, and resources. From that point of view, it is pertinent to look into the challenges of the Indian language NLP.





Like all languages of the world, Indian language computing also has its challenges, which assume importance in the context of MT as much as in other areas of NLP. These challenges are:

1. Scale and diversity: There are 22 scheduled languages in India, written in 13 different scripts, with over 720 dialects. Sufficiently large datasets for different pairs of languages are a pressing need for the Indian language MT.

2. Code mixing: Owing to India’s multilingual culture, people in India routinely and seamlessly use at least two languages in their day-to-day communication and sometimes even three, one of which is typically English. This results in code-mixing where words of a language may be used in a sentence primarily of another language. This has resulted in unique names for code-mixed languages such as Hinglish (a mixture of Hindi and English), Benglish (a mixture of Bengali and English), Tanglish (a mixture of Tamil and English), and so on. Of the two languages, one is called matrix language, which supplies the syntax and vocabulary, and the other language is called secondary language, which supplies the substituent vocabulary. An example of a Hinglish sentence is ‘kyo ye hesitation’: English ‘why this hesitation’. In this sentence, ‘hesitation’ is an English word while the other words and the grammatical structure are of Hindi. The secondary language can supply affixes too, as in the gerundification of ‘gaadi chalaaoing’: English ‘driving a car’. Here ‘ing’ is the English suffix to the Hindi verb ‘chalaana’ (to drive). Code-mixing brings in new challenges involving ambiguity. For example, in ‘raam ne shyaam ko kal kal kiyaa thaa’; English gloss: ‘Ram <ergative> Shyam <accusative> yesterday call did ’; English meaning: ‘Ram had called Shyam yesterday’ where the first ‘kal ’ means ‘yesterday’ and the second ‘kal ’ which is an English word written in Devanagari script means ‘call’. ‘kal ’ has its own inherent ambiguity since ‘kal ’ can mean both ‘yesterday’ and ‘tomorrow’ in Hindi. As a result, code-mixing adds to the ambiguity. Therefore, MT must account for multiple possible meanings of the same word.

3. Absence of basic NLP tools and resources: NLP of any language needs basic tools and resources such as POS taggers, named entity recognizers, wordnets, machine readable dictionaries (MRDs), and so on. Most Indian languages do not have these tools and resources. As a result, MT may be relegated to reliance on low quality or absence of tools.

4. Absence of linguistic documentation and treatise for many languages: The celebrated Ashtadhyay by Pānini is a milestone in linguistic studies. However, for many languages of India, no linguistic tradition exists. There is no language documentation, no study of morphology, syntax, and semantics of these languages. This situation hinders annotation design and error analysis when NLP systems (or MT, in particular) are required to be built for such languages.

5. Script complexity and non-standard input mechanism: Indian languages have conjunct characters (‘yuktaakshar’) as in वक़्त (‘vakt’, English: ‘time’) (where the ‘k’ and ‘t’ sounds are fused to form the coda of the syllable). Also, the QWERTY keyboard for Roman scripts is non-optimal for Indian languages. So also, is InScript (short for Indic Script), which is the decreed standard keyboard layout for 12 Indian scripts including Devanagari, Bengali, Gujarati, Gurmukhi, Kannada, Malayalam, Odia, Tamil, and Telugu, among others.

6. Non-standard transliteration: Due to the ubiquity of English language keyboards, Indian languages are transliterated into English. As a result, there may be non-standard transliteration to represent the same Indian language word. For example, all of ‘am’, ‘aam’, and ‘Am’ are used to express the concept of ‘mango’ in Hindi but written in Roman script.

7. Non-standard storage: Many organizations in India, especially newspaper agencies, have their proprietary fonts that do not follow the Unicode format. This puts the corpora from these organizations out of bounds for NLP usage. Converters have to be written between such proprietary fonts and Unicode. 

8. Challenging language phenomena: There are language phenomena which are peculiar to Indian languages. Compound verbs exemplify one such phenomenon. The verb complex ‘has padaa’ literally means ‘laugh fell’ and stands for ‘laughed suddenly’. In this structure, the first verb is called polar, while the second vector. Typically, the polar verb carries the semantic load and the vector verb the grammatical load in the sense that the meaning of the structure comes from the polar, and features like gender, number, and person appear on the vector. Another example is morphological stacking. The word ‘gharaasamorchyaanii ’ in Marathi means ‘the one in front of the house’, where the root word ‘ghar’ (house) has the suffixes ‘samor’ (in front), ‘chyaa’ (of ), and ‘nii’ (ergative). 

The purpose behind discussing challenges of Indian language NLP is to emphasize the need for clear understanding and knowledge of language phenomena and task details, so that maximum gain can be derived from whatever data the MT builders have at their disposal. Knowledge of language compensates for poverty of data, and data makes up for lack of the knowledge. 

We conclude this section with some discussion on Indian language SMT. The description above pertained to RBMT with a case study in Indian language translation (Figure 7.8). Indian language-RBMT, or IL-RBMT, efforts were varied and numerous within India and outside. However, these efforts showed the typical high precision–low recall behaviour that is characteristic of rule-based systems. Many language phenomena were left out in the created MT systems, so they were very brittle too. IL-RBMT systems took many years to create with numerous man-hours. Systems such as AnaglaBharati, Anubharati at IIT Kanpur, Mantra at CDAC Pune, Shakti at IISc Bangalore, and UNL based system at IIT Bombay are some noteworthy efforts in IL-RBMT.
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Figure 7.8  BLEU score values within Indo-Aryan and Dravidian families and across families. en - English, hi - Hindi, ur - Urdu, pa - Punjabi, bn - Bengali, gu - Gujarati, mr - Marathi, kk - Konkani, ta - Tamil, te - Telugu, ml - Malayalam (the last three languages are in the Dravidian linguistic family, while the others are in the Indo-Aryan family). Rows are source languages and columns are target languages. Cells give BLEU scores; for example, the value 20.48 in the cell ta-hi indicates the BLEU score of 20.48 in translating from Tamil to Hindi. The concept of BLEU will be explained going forward. The domains are ‘tourism’ and ‘health’.



The reason for discussing IL-SMT before delving into the theory of SMT is to show the importance of data and MT and the various ways the data scarcity problem encumbers IL-NLP.





  □  7.3Indian Language Statistical Machine Translation



In 2014, MeitY of India funded creation of parallel corpora in many Indian languages. This project is called Indian Language Corpora Initiative (ILCI). About 100,000 parallel sentences were created for languages from the Indo-Aryan and Dravidian families. The languages were Hindi, Urdu, Punjabi, Bengali, Marathi, Guajarati, Konkani, Tamil, Telugu, and Malayalam, along with English. English was the pivot language that connected these languages.

Leveraging on the created parallel corpora, SMT systems were created for pairs of Indian languages and also between English and Indian languages. One such comprehensive work was SMT systems for 110 pairs of languages. The BLEU scores, which are performance measures of translating to-and-fro different pairs of languages, are shown in Figure 7.8. Patterns are discernible in the figure. In general, scores are high in the Indo-Aryan family. Hindi-Urdu has a  high BLEU score of 61, Hindi-Punjabi 68, Hindi-Bengali 34, Hindi-Gujarati 51, Hindi-Marathi 39, and Hindi-Konkani 37. Hindi-Marathi and Hindi-Konkani have relatively lower BLEU scores. This is because Marathi and Konkani have Dravidian family influence in the form of morphemes stacking. Dravidian family which is characterized by heavy agglutination shows a much lower range of BLEU scores. Translation involving Dravidian languages requires looking inside the words and mapping morphemes for obtaining proper translation. 

That was an observation for SMT involving Indian languages. Today’s MT paradigm is NMT which is very data-hungry, and data is in short supply, especially in the context of Indian languages. Innovative embellishments to the data are required. The 100,000 parallel sentences created for 110 pairs of languages through the ILCI initiative of MeitY amount to a multilingual corpus of 1 million sentences. By today’s NMT standards, this is really small since only a single pair can have 1 million parallel sentences.



7.3.1 Mitigating the Resource Problem

If we had all possible morphological forms of words in the dataset, the machine is as good as trained (i.e., it has seen evidence of translations of all possible word forms). The only task for it is disambiguation. For example, ‘will go’ in English can translate to Hindi ‘jaaungaa’ (first person, singular number, masculine gender), ‘jaaungii’ (first person, singular number, feminine gender), ‘jaaoge’ (second person, singular/plural number, masculine gender), ‘jaaongii’ (first person, singular/plural number, feminine gender), ‘jaayegaa’ (third person, singular number, masculine gender), ‘jaayegii’ (third person, singular number, feminine gender), ‘jaayenge’ (first/second/third person, plural number, masculine gender), ‘jaayengii’ (first/second/third person, plural number, feminine gender). With contextual clues, ‘will go’ must be translated to one of these forms. But these forms have to appear in the training data. For morphologically rich languages, such as Dravidian languages, Turkish, Arabic, Hungarian, and so on, the demand for the presence of all forms in the training data can be too much of an ask. That is where subword-based NLP can be leveraged. We give the basic idea with an example. 

Consider the two Hindi words ‘jaauMgaa’ (English: ‘will go’) and ‘khaauMgaa’ (English: ‘will eat’). Both have ‘uMgaa’ as the suffix, which carries the gender, number, person, and tense (GNPT) information with values of masculine gender, singular number, first person, and future tense, respectively. We can attach ‘uMgaa’ to new verbs ‘khel ’ (‘to play’), ‘so’ (‘to sleep’), ‘bol ’ (‘to speak’), and so on. If we break a word into its parts, we have the possibility of reusing these parts as a building material for generating word forms that are not seen in the training data. This methodology essentially captures productivity in language generation, in this case morphology generation. Subword-based NLP is a powerful idea, looking into the internals of words and reusing their parts. In MT, subword-based A-T-G consists of three steps: (1) segmenting words into parts, (2) mapping these parts into the target language’s word parts, and (3) stitching these parts into word forms. For example, khelungaa → khel + ungaa → play + will → will play. This is exactly the process that is followed in factor-based MT, which is a type of SMT. In factor-based SMT, there are not one, but multiple phrase tables. 

The above discussion sets the stage for discussing SMT and PBSMT, which will be done shortly. Coming back to the point of mitigating the resource problem in MT, we have only a handful of methods:

1. Subwords: As discussed above, subword-based MT involves breaking the word into its parts, making use of characters, syllables, orthographic syllables, and byte pair encodings (BPE). For example, given ‘khaa + ungaa → will + eat’ and ‘jaa + rahaa_hE → is + going’, we can synthesize new forms ‘khaa + rahaa_hE’ (English: ‘is eating’) or ‘jaa + umgaa’ (English: ‘will go’), even though such strings did not appear in the training data. 

2. Cooperative NLP: This aims to take help from another language, which can happen in two ways. The first way is to use a pivot language. For example, for English-to-Bengali MT, Hindi can be used as a pivot language. Suppose the English-Bengali training data does not have the mapping ‘water → jal ’. However, English-Hindi training data has ‘water → paanii’ and Hindi-Bengali data has ‘paanii → jal ’. This makes it possible to translate ‘water’ to ‘jal ’. Notice, however, that the introduction of a pivot language introduces additional sources of ambiguity (recall the ambiguity brought in by code mixing). Therefore, we again encounter precision-recall, sparsity-removal-ambiguity-insertion conflict. Only contextual clues can resolve this conflict.

The second way of cooperative NLP is to use transfer learning. Use the model trained on data from another domain/task in a specific domain/task. Thus, the model trained for English-Hindi MT may be used for English-Bengali MT with zero English-Bengali training data or very little of it. The former situation is called zero-shot learning and the latter few-shot learning. NMT has made zero-shot and few-shot learning a reality for MT. The weight values in the English-Hindi NMT model also serve as weights for English-Bengali MT for zero-shot learning. In the case of few-shot learning, the weight values act as initial values for training with whatever little English-Bengali data there is.

3. The third way of resource scarcity mitigation is to use higher-level language properties such as POS and sense ID, thereby obtaining additional clues for disambiguation. If we know that ‘bank’ in a certain sentence has POS as a noun, we will not consider ‘bharosaa karnaa’ (English: ‘rely on’) as a translation candidate. 

Now, since blessings are often mixed, let us see what problems making use of these tricks might entail. NLP’s law of trade-off  is at work:


• Precision vs. Recall

• Sparsity vs. Ambiguity

• Information-injection vs. Topic-drift


Thus, in the case of pivot-based MT, a major challenge is to keep the unwanted meanings of pivot language words out of the way. For example, for water (English)→ ‘paanii’ (Hindi)→ ‘jal ’ (Bengali), the meaning ‘sharpness of a weapon’ which is one of the rare meanings of ‘paanii’ will have to be kept out of consideration, as in case of Bengali translation of ‘one should drink plenty of water’. Sparsity-ambiguity is a well-known trade-off. When we introduce more and more information to solve sparsity, the new entrants come with their own noise and their own ambiguity which can lead the computation down a rabbit hole. Similarly, precision vs. recall is a well-known trade-off in ML. Precision deals with how accurate a prediction is, while recall deals with how many cases the predictions cover.

Methods of Subwording

It is pertinent to note the different methods of subwording, which are based on dividing the words into its parts (illustrated with the word ‘jaaungaa’; English: will go).  Subwording may be performed in terms of:

1. Characters: ‘j’ +  ‘aa’ + ‘u’ + ‘M ’ + ‘g’ + ‘aa’

2. Morphemes: ‘jaa’ + ‘uMgaa’

3. Syllables: ‘jaa’ + ‘uM ’ + ‘gaa’

4. Orthographic syllables: Strings ending in vowels: ‘jaau’ + ‘Mgaa’

5. BPE : Depends on corpora, statistically frequent patterns. On that count both ‘jaa’ and ‘uMgaa’ are likely 

What is the reason for working with orthographic syllables? Syllabification as a task has its own problem of ambiguity. Consider the Indian name ‘abhijiit’. This can be syllabified as ‘a’ + ‘bhi’ + ‘jiit’ or as ‘ab’ + ‘hi’ + ‘jiit’. Thus, ‘b’ can end the first syllable or start the second syllable. This is technically called coda-onset ambiguity. From the point of view of phonetics, a syllable consists of onset—the starting consonant string, nucleus—the vowel that makes the word pronounceable, and coda—the ending consonant string. Thus, ‘b’ can be the onset of ‘bhi’ or the coda of ‘ab’. Such disambiguation is in itself a very challenging task, which is sometimes avoided by working with orthographic syllables. Orthographic syllabification simply breaks the word after every vowel. Thus, the orthographic syllables of ‘abhijiit’ unambiguously are ‘a’, ‘bhi’, ‘ji’, “””, ‘t’.





Actual Evidence of Benefits of Subwording

We show the quantitative evidence of benefits of  subwording in this section. First, we repeat the results of word/token-based MT for Indo-Aryan and Dravidian language families in Figure 7.9.
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Figure 7.9  BLEU scores for word/token-based machine translation.


Figure 7.10a shows morpheme-based SMT BLEU scores. There is consistent BLEU score improvement as shown in  Figure 7.10b. For example, Punjabi-Gujarati improved from 39.79 to 44.41 which is an improvement of 11%. Dravidian language family had more remarkable observations. There was 15% improvement for Punjabi-Tamil (Indo-Aryan to Dravidian family). 
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Figure 7.10  (a) Morpheme-based SMT and corresponding BLEU scores. (b) Per cent improvement over word level scores. 



BPE-based SMT showed a still larger improvement in scores. BPE is based on frequent, statistically significant sub-strings, and to an extent it is a surrogate for morphological analysis. Figure 7.11 shows, for example, that Punjabi-Tamil BLEU score improvement is 28.26%!
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Figure 7.11  (a) BPE-based SMT and corresponding BLEU score. (b) Per cent improvement over word level scores.




  □  7.4Phrase-Based Statistical Machine Translation 



It is now time we take up a discussion on phrase-based statistical machine translation (PBSMT) and understand how phrase mappings are created from parallel corpora and how the phase of ‘decoding’ achieves MT.






7.4.1 Need for Phrase Alignment

When translating a sentence from one language to another, a simple approach may be to translate the sentence word by word, accompanied by morphological and syntactic adjustments. Such an approach will require a dictionary that maps words of the source language to those of the target language. However, there are many compelling reasons for why translation based on units of text longer than words should be done. IBM models of alignment make various unintuitive assumptions on alignment and end up in messy modelling and processing. Instead of words, if we allow word groups to align, the modelling becomes much simpler.

Phrase alignment process runs as follows:


• Run IBM model 3 in both directions—source to target and target to source—to create what are called alignment sets. There are two alignment sets—one in each direction.

• Then apply a process called symmetrization to obtain phrase alignments.


Note that this process of creating phrase alignments is essentially that of merging neighbours. In a tabular representation of alignments, this amounts to growing strings of words by expanding along diagonals and aligning these strings. Figure 7.12 illustrates this.

[image: ]
Figure 7.12  Creation of phrase alignments from word alignments through grow-diag algorithm.




Alignments are marked with ‘X’. For English → Hindi, the alignment set is

A1: {<Mumbai, Mumbai>, <of, ke>, <people, log>}
A2: {<mumbai, Mumbai>, < ke, of>, < log, people>}

Now the grow-diag process will create the alignments


People of → ke log (black square)

of Mumbai → mumbai ke (light grey square)

People of Mumbai → mumbai ke log (dark grey square)



Out of these phrase alignments, the light grey and dark grey squared ones are ‘linguistic phrases’ while the black is not. The meaning of a linguistic phrase is that there is a grammatical rule governing the formation of the phrase. Thus, ‘People of Mumbai’ aligned with ‘mumbai ke log’ is a noun phrase (NP), and ‘of Mumbai’ aligned with ‘mumbai ke’ is a preposition phrase (PP), while ‘people of ’ aligned with ‘ke log’ is not a linguistic phrase. Why cannot we call word groups in ‘ke log’ → ‘people of ’ linguistic phrases? Isn’t ‘People of ’ a PP ? No, because English is a head-initial language, and in a PP, the first word should be a preposition, which is not the case in ‘People of ’. Similarly, ‘ke log’ is not a post-position phrase. Hindi is a head-final language, and the head of a phrase should be the last word of the phrase. If ‘ke log’ were to be a postposition phrase, ‘ke’ should have gone to the end of the phrase. 




The case of null alignment is an interesting one. The article ‘the’ in English often does not translate to anything when the translation task is  that of English into an Indian language. Consider Figure 7.13. There is no entry below the column headed by ‘the’. This means ‘the’ aligns to nothing. Similarly, the ‘se’ row aligns with nothing. Of course, all this is under the assumption that the word alignment is perfect.

[image: ]
Figure 7.13  Phrase alignments in case of null alignment.



Now, the dark-grey box will expand into the cell <‘se’, ‘the’> and create the alignment ‘the people of Mumbai’→‘mumbai ke logoM se’. The alignment ‘the people’→‘logoM ’ too will be created, merging the <‘ke’, ‘the’> cell with <‘logoM ’, ‘people’>. Cells from null rows or null columns can be merged upwards or downwards, thereby associating the row-word/column-word with the next phrase or the previous phrase. Thus, due to the null alignment of ‘the’, all the following phrase alignments are possible:


‘meet the’ ←→ ‘se miliye’

‘the people’ ←→ ‘logoM ’

‘the people’ ←→ ‘logoM se’




That is, ‘the’ and ‘se’ can be both prefix and suffixes of phrases. Recall the discussion on onset-coda ambiguity in syllabification, illustrated with ‘abhijeet’.




Which phrase among the above will be retained? The answer is all! But with different probabilities. ‘the people’→ ‘logoM ’ should have higher probability than ‘the people’→ ‘logoM se’ because ‘people’ is likely to be seen more in the company of ‘logoM ’ than ‘logoM se’, as in ‘tell the people’→ ‘logoM ko bolo’, ‘have faith in the people’→ ‘logoM pe viswaas rakho’, and so on. Data will decide the score (i.e., the probability). 

To give credence to the discussion above, we describe language situations that are natural cases of phrase alignment, rather than word alignment. We reiterate that word alignment is still the foundation on which the structure of phrase alignment is erected.

7.4.2 Case of Promotional/Demotional Divergence

Promotional and demotional divergences are particular cases of language divergence. We take a particular example of promotional divergence in which the translation of a word or word group in the target language has a part of speech higher in the POS hierarchy than the POS of the source language word or word group. POS hierarchy refers to the fact that content words—noun, verb, adjective, and adverb—are situated ‘higher’ than the function words—prepositions, conjunctions, pronouns, interjections, and so on. Content words are the primary meaning-bearing units that are linked by function words to form a sentence. Within content words again, nouns and verbs are higher in the hierarchy since adjectives and adverbs act as qualifiers of nouns and verbs. With this understanding now, consider the translation pair: ‘The play is on’← → ‘khel chal rahaa hai; gloss: play continue <progressive auxiliary> <auxiliary>’. (Grammatical entities in the gloss are written in triangular brackets.)

The translation of ‘on’ is ‘chal rahaa hai’. Therefore, we say that the fertility of ‘on’ is three since one source-side word gives rise to three target-side words. It is apparent that setting up correspondence between ‘rahaa’ and ‘on’ is not only artificial and non-intuitive, but also harmful for producing fluent output. A portion of the probability mass for mapping of ‘on’ is spent on ‘rahaa’, thus depriving the more deserving candidates like ‘par’ and ‘upar’, which are frequent translations of ‘on’, of their fair share. This may lead to the strange translation of ‘The book is on the table’ as ‘mej ke rahaa kitaab hai’ instead of the correct ‘mej ke upar kitaab hai’!

A much better mapping is ‘is on’ → ‘chal rahaa hai’ which requires phrase-based alignment. ‘is on’ has a separate allocation of probability mass that does not steal from the probability mass of ‘on’ onto its more legitimate mappings ‘upar’, ‘ke upar’, etc.

Thus, there is a case for mapping of phrases from the source side to the target side. However, the term ‘phrase’ is a bit of a misnomer here. For PBSMT, phrases are any contiguous portion of text, not necessarily linguistic. In fact, it has been shown empirically  that requiring only linguistic phrases to be aligned degrades SMT performance. 

7.4.3 Case of Multiword (Includes Idioms)

The other crucial case for phrase-based alignments is multi-words: both noun and verb groups.Non-compositional multi-words are not amenable to word-based alignment unless the source and target languages are extremely close linguistically and culturally. We give two examples:


English: Cut your coat according to your cloth 

Bengali: আয় বুঝে ব্যয় কর

Bengali Transliterated: aay bujhe byay karo

Bengali Gloss: income <having understood> expense do



Not a single word in the Bengali sentence above has an equivalent translation in the parallel English sentence. On the other hand, in the following example:


Hindi: नाच ना जाने आंगन टेड़ा

Hindi Transliteration: naach naa jaane aangan tedaa 

Hindi Gloss: dance not knowing courtyard crooked 

Bengali: নাচতে না জানলে উঠোন বাকা

Bengali Transliteration: naachte naa jaanle uthon baakaa

Bengali Gloss: to_dance not knowing courtyard crooked



In this case, there is almost one-to-one correspondence between Hindi and Bengali. The corresponding English translation of the two sentences is, ‘A bad workman blames his tools’, with no common words with the Hindi/Bengali sentences similar to the coat example.

7.4.4 Phrases Are Not Necessarily Linguistic Phrases

Phrases in PBSMT are not necessarily linguistic phrases (in the sense of being constituents of parses) but are sequences of words. Albeit some of these word sequences can be linguistic phrases, but it is not necessarily so. It is possible to have aligned phrases that are non-equivalent in meaning. Even when the two languages are close to each other, phrases aligned can be non-linguistic. Consider Table 7.1. The first two examples are phrases in the linguistic sense: ‘The Prime Minister of India’ is a noun phrase while ‘Is running fast’ is a verb phrase. However, the third and fourth examples are not linguistic phrases. ‘the boy with’ is potentially a commonly occurring phrase in the parallel corpus, while ‘Rahul lost the match’ is a full sentence that has been learned as an alignment with its Hindi counterpart.

Table 7.1 Linguistic and Non-Linguistic Phrases









	
S. No.


	
English Phrases


	
Hindi Phrases





	
1


	
The Prime Minister of India


	
भारत के प्रधान मंत्री (bhaarat ke pradhaan mantrii)





	
2


	
Is running fast


	
तेज भाग रहा है (tej bhaag rahaa hai)





	
3


	
the boy with 


	
उस लड़के को (us ladke ko)





	
4


	
Rahul lost the match


	
राहुल मुकाबला हार गया (raahul mukaabala haar gayaa)








1 = proper linguistic phrase (noun phrase (NP), 2 = proper verb phrase (VP), 3 = non-linguistic, 4 = full sentence (inflectional phrase (IP) in X-bar framework). 




Thus, mappings can be of equivalent meaning content, reduced meaning content, and additional meaning content. This situation arises because phrase mappings are built upwards from word alignments probabilistically. This means non-preserving mappings are possible though not probable. Consider Table 7.2. The English phrase ‘Prime Minister of India’ has three kinds of correspondences in this table. The first row shows equivalence, the second row shows additional information on the target side (‘former’ is added), and the third row shows missing information on the target side (‘of India’ is missing).



Table 7.2   Example of Alignment of Phrases with Non-Equivalent Meanings










	
S. No.


	
English Word Sequence


	
Hindi Word Sequence


	
Probability





	
1


	
Prime Minister of India


	
भारत के प्रधान मंत्री

India of Prime Minister


	
0.75





	
2


	
Prime Minister of India


	
भारत के भूतपूर्व प्रधान मंत्री

India of former Prime Minister


	
0.02





	
3


	
Prime Minister of India


	
प्रधान मंत्री

Prime Minister


	
0.23







1= meanings are equivalent, 2 = former is additional information on the Hindi side, 3 = of India absent on the Hindi side. 



7.4.5 Use of the Phrase Table

We have to work with the aligned phrases in the phrase table along with their probability values. The probability value of a phrase translation indicates how good a translation pair is, as formed by the phrase and its translation (i.e., how likely is the correspondence of phrase and its translation). When a new sentence needs to be translated, we have to match parts of the input sentence in the phrase table, pick up the translations, combine the translations, and finally score the resulting ‘sentences’ (obviously they need not be grammatical, well-formed, native speaker acceptable sentences!) using phrase translation probabilities and language model probabilities. Everything starts with finding and matching parts of the input sentence in the phrase table. The size of the phrase table is, thus, an important factor in the translation process.

Note that the pipeline of A-T-G as in the Vauquois triangle (Figure 7.5) in this scenario reduces to: 


• Extraction of sentence parts and matching these parts in the phrase table (A-step). 

• Picking up the translation unit (T-step). 

• Stitching together these parts (G-step).


This is a very clean and definite process despite its serious limitations, viz., non-linguistic phrases, unintuitive phrase alignments, and consequent problematic sentence generation. 

It is worthwhile at this point to compare and contrast PBSMT with RBMT and EBMT paradigms. RBMT, as we have seen, is of two kinds—interlingua-based and transfer-based. Interlingua in its pure form disambiguates the input sentence to such an extent and extracts the meaning so completely that it eliminates language dependence and produces a representation that any language can generate from. There is no transfer stage, but only analysis and generation. TBMT pitches the analysis, transfer, and generation at a level appropriate to the properties of the language pair involved in translation. Having analysed the source sentence, it transfers to the target side using transfer rules. These rules operate on strings of words, on strings of words and non-terminals, and on templates and patterns. These transfer rules are created by humans. In EBMT, the transfer rules are learned from data. This learning is a form of pattern learning. Thus, EBMT is data-driven like SMT. But while SMT learns mappings of strings of words and their probabilities, EBMT tries to learn translation patterns. It is here that EBMT is less definite than both SMT and interlingua-based MT. Translation patterns and their similarity have been the thorn in the flesh for EBMT. PBSMT concentrates on only phrase mapping (linguistic and non-linguistic) giving them scores in the form of probability values. These mappings and probability values eventually decide the quality of the target sentence generated, which is a very principled approach for MT.

An interesting question that arises now is: If PBSMT is so good, why did NMT upstage this paradigm? This is a point of great interest which we will delve into when we discuss NMT.

7.4.6 Mathematics of Phrase-Based Statistical Machine Translation

We now discuss the theory of phase-based statistical machine translation (PBSMT). We follow the treatment in Koehn (2010). The basic equation of SMT is

(7.1)
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where e and f have their usual meaning of output and input, respectively; the translation with the highest score is ebest. P( f |e) and PLM(e) are the translation model and language model, respectively. The translation probability P( f |e) is modelled as:

(7.2)
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Left-hand side (LHS) is the probability of the sequence of I phrases in sentence f, given I phrases in sentence e. Φ is called phrase translation probability and d(⋅) is distortion probability. The argument of d(⋅) is starti-endi–1-1 which is a function of i only, where starti is the starting position of the translation of the i-th phrase of e in f and endi–1 is the end position of the translation of the (i - 1)th phrase of e in f . The quantity starti-endi–1-1 is a measure of the distance between the translation of i-th phrase and the translation of the (i - 1)th phrase of e as they appear in f . It is, thus, also a measure of the reordering of phrases induced by thetranslation.

A number of points need to be noted with respect to Eq. (7.2):

1. The translation probabilities are phrase translation probabilities and not word translation probabilities. The phrases and the probabilities themselves are to be learned from parallel corpora.

2. The number of phrases in both e and f are equal. This is an important point. IBM models of alignment preceded PBSMT. One of the major difficulties in IBM models is the uncertainty of the number of words in the output sentence. In PBSMT there is no such uncertainty. PBSMT is therefore similar to a translation situation wherein the number of words in the input and the output sentences are equal. The phrases which are the translation units may have to be reordered.

3. Unlike words, phrases typically have a span of greater than 1. This introduces the notion of distortion, just like in IBM model 3 which introduced fertility. This parameter also needs to be learned from parallel corpora.

At this stage the reader might wonder: What principles of probability were followed in deriving Eq. (7.2) from Eq. (7.1)? We know that a factor like distortion can be introduced only through marginalization. So, what happened to summation that is typical in marginalization? What about independence assumptions after invoking the chain rule? To answer these questions, we present an example by way of clarifying concepts, followed by mathematical derivation. 




7.4.7 Understanding Phrase-Based Translation Through an Example

Equation (7.2) is best appreciated through an actual translation scenario. Technically, this is called decoding. Let us consider the following example input:


Hindi: आज जल्दी आना

Hindi Transliteration: ‘aaj jaldii aanaa’

English gloss: today soon come



The expected output is:


English: come soon today



Suppose the phrases from the input are:


HP1: ‘aaj’

HP2: ‘jaldii aanaa’



Now, from the phrase table, we find the translation units for these two phrases as:


EP1: ‘today’ (with probability p1; there are other translations too)

EP2: ‘come soon’ (with probability p2; there are other translations too)



There would be two translations (among many others with other translation units):


C1: ‘come soon today’

C2: ‘today come soon’



Since Eq. (7.2) has inverted probability of P( f |e) on the right-hand side (RHS), e generates f and is scored according to:


• Language model probability PLM(e) (the prior).

• Product of probabilities of translations of phrases of e.

• Product of probabilities of distance by which phrases have moved around.


Thus, for candidate C1, the distance by which EP1 has moved is found as follows:


Starti for translation(‘come soon’ ) = ‘jaldii aanaa’ is 2.
Endi–1 = 0 (we assume a null before the starting phrase whose translation occupies position 0).



So, the distance for ‘come soon’ = 2 - 0 - 1 = 1.


For ‘today’

Starti = 1

Endi–1 = 3



So, the distance for ‘today’ = 1 - 3 - 1 = -3

This means translation(‘today’) = ‘aaj’ has moved left three words to occupy the starting place of the Hindi sentence. Now, to compute the distortion probability of ‘come soon’ for this example, we will observe from the data how many times ‘come soon’ has travelled a particular distance compared to other distances it has travelled. The ratio of these two numbers is the required probability. We can get the distortion probability of ‘today’ in a similar manner.

Thus, the two candidate translations of ‘aaj jaldii aanaa’,


‘Come soon today’

‘Today come soon’



This will be scored using the following parameters:


• PLM (‘come soon today’ ) and PLM (‘today come soon’).

• P(‘jaldii aanaa’|‘come soon’) and P(‘aaj ’|‘today’).

• Distortion probability of ‘come soon’ and distortion probability of ‘today’.


Since the translation probabilities are the same for both candidate translations, it is the language model and distortion probabilities that will decide the translation. Spatiotemporal adverbs are normally found at the end of the sentence for English. Hence, ‘come soon today’ should be scored over ‘today come soon’, provided there is enough evidence of spatiotemporal adverbs in the parallel corpora.


  □  7.5Factor-Based Statistical Machine Translation



In early 2009, it was shown that we can use semantic roles as factors (Ramanathan et al., 2009). SMTestablishes phrase correspondences, and factor-based MT establishes factor (feature) correspondences. Here is an example: ‘I ate mangoes’ → ‘mei + ne aam khaa_ yaa: English gloss- I_ergetive mangoes eat_ past + masculine + singular’, where ‘ate’ is the main verb in past tense, ‘I’ is the agent, and ‘mangoes’ is the object (Figure 7.14).
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Figure 7.14  Translation of an English sentence to Hindi using a factor-based SMT paradigm.




In Hindi, the target sentence is ‘mei_ne aam khaa_yaa’. Where does ‘ne’ come from? Hindi grammar rules say that the agent should get the ergative marker ‘ne’ if the verb is transitive (‘sakarmak kriya’) and in the past tense. This rule holds even for ellipsis wherein lexemes are implicit. If the word ‘aam’ is dropped, the translation will still be ‘mei_ne khaa_yaa’. Koehn and Hoang (2007) worked out the theory of factor-based SMT, as to how any number of factors could be introduced into the translation process. Figure 7.15 is a classic depiction of factor-based MT. The left part of the diagram points to the words, lemma, suffixes, and semantic relations present in the input English sentence. The output Hindi sentence is constructed from mapped lemma and the suffixes capturing the case. 
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Figure 7.15  Mapping of factors in factor-based SMT. Suffix + semantic relation gives rise to case-marking suffix or case-marking post-position, lemma maps to lemma, and finally a word in correct form appears in the target language.


Thus, we have, ‘I + agent + transitive + past tense’ → ‘mei + ne’. Such a mapping mediated through the mapping of factors captures an underlying linguistic rule of transfer between English and Hindi.






What is the term ‘reordered’ appearing in Figure 7.15? The input English sentence is reordered, bringing the English sentence into Hindi syntactic order, putting the verb at the end, and transforming prepositions to post-positions. MT experiences over the years have shown that when input sentences are preprocessed to bring them into the target language syntactic order, better quality phrase table mappings are produced. Thus, it is routine in today’s ML-based MT to first preprocess for source sentence reordering. Such reordering is arranged by reordering rules that work on parse trees of source sentences. 

In Figure 7.15, the meaning of arrows and joins is as follows: suffixes and semantic relations in the source English sentence contribute to obtaining suffixes and case markers in the Hindi sentence. We record the factors involved in the transfers:


Lemma→ lemma factor: ‘I ’→‘mei’; ‘mango’→‘aam’; ‘eat’→‘khaa’

Past tense and transitivity of main verb + agent→ ergative marker: 

‘eat_past + agency of I + transitivity of eat’→‘ne’ 

Past tense of eat→‘yaa’ suffix



Factors have been impactful. MT experiences across the world reported the reduction of data requirement in ML-driven MT when factors are used. 


  □  7.6Cooperative NLP: Pivot-Based Machine Translation



Here, an intermediate language is introduced to supply missing data when the parallel corpus is inshort supply. The intermediate language is called bridge language. The theory of translation through pivot language is based on the concept of marginalization in probability theory. Equations (7.3)-(7.6) show this.

(7.3)
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Where p( f  |e) is given by:

(7.4)
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(7.5)
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(7.6)
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Here, ebest is the highest probability output sentence, as per argmax over e, given the input sentence f. Equation (7.3) is the usual argmax expression with a translation model and language model. Equation (7.4) expands the translation model in terms of phrase mapping probability (φ), distortion probability (d ), and lexical weight (pw, γ ). The key step is Eq. (7.5); phrases p of the pivot language are introduced by marginalization. Equation (7.6) gives a way of computing the lexical weight. An interesting fact is that any number of pivot languages can be introduced in the translation process. This fact may seem very attractive—bringingin data from other languages to mitigate resource problems. However, the spanner in the works is the own-ambiguity of the lexical material of pivot languages themselves. Own-ambiguity introduces drift in the translation process, producing incorrect output. 

Figure 7.16 explains the utilization of phrase tables in pivot-based SMT. There are three phrase tables: source-pivot phrase table, pivot-target phrase table, and source-target phrase table. Consider again the example of ‘English: water’ → ‘Bengali: jal ’ and two cases. In the first case, assume the English-Bengali parallel corpus does not have evidence of ‘water’ → ‘jal ’ correspondence. We will then go via Hindi: ‘water’ → ‘paanii’ → ‘jal ’. There are two probabilities Pwater→paanii and Ppaanii→jal. What is the probability of Pwater→jal, given these two probabilities? Assuming independence, Pwater→jal = Pwater→paanii.Ppaanii→jal. The second case is if the English-Bengali parallel corpus itself gives the water → ‘jal ’ correspondence with the corresponding probability. Then we choose to ignore the evidence from the pivot. 

[image: ]
Figure 7.16  Processing of phrases in pivot-based SMT.


We report here our own experience of a pivot-based MT situation. We were required to build an SMT system from Mauritian Creole (MC) to English €. Now, there is very little parallel data between MC and E. So, we decided to engage a pivot, viz., French, that is, Mauritian Creole (MCR) - French (FR) → English (EN). The first reason for choosing French was the following: The Mauritian Creole is very close to French with a large vocabulary overlap. (Table 7.3 is evidential.) 

Table 7.3 Evidence of Large Vocabulary Overlap between Mauritian Creole and French









	
French


	
Creole


	
English





	
avion


	
Avion


	
aeroplane





	
bon


	
Bon


	
good





	
gaz


	
Gaz


	
gas 





	
bref


	
bref


	
brief





	
pion


	
pion


	
pawn









The second reason is the fact that the French-English pair is extremely resource rich, possibly the richest pair in the world, in terms of parallel corpus. We take advantage of source-pivot linguistic proximity and pivot-target resource richness. Table 7.4 shows the data of English to French—2 million sentences.

Table 7.4 Amount of Parallel Corpora in the Context of MC→FR→EN Translation









	
Language pair


	
#Sentences 


	
#Unique words (L1–L2)





	
En-Fr 


	
20,00,000


	
1,27,405–1,47,812





	
En-Cr (train + tune)


	
25,010


	
16,294–17,389 





	
En-Cr (test) 


	
284 (142 short + 142 long)


	
1,168–1,070 + 3,562–3,326





	
Fr-Cr 


	
18,354


	
13,769–13,725









The English-Creole data was just 25,010 sentences for training and tuning and only 284 sentences for testing. French-Creole data too was small, just around 18,000 sentences. The observation was that for long sentences, the introduction of French showed remarkable improvement in the BLEU score. In the graph shown in Figure 7.17, the term BACK-OFF means backing off into the source-pivot and pivot-target phrase tables when the source-target phrase table does not yield a match. 
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Figure 7.17  BLEU scores for MC→EN translation with and without pivot. Grey bars are with FR as pivot.






Thus, the BLEU score for long sentences improves from 21 to 24 when French is introduced as pivot. Encouraged by this observation, we replicated this pivot SMT effort in English to Hindi MT, introducing many Indian languages as pivots. Figure 7.18 shows the BLEU scores vs. training data size. Interestingly, Punjabi and Urdu, coming as pivots, pushes up the EN-HI BLEU score maximally. 




[image: ]
Figure 7.18  BLEU score improvement by pivot(s) for English-Hindi MT. The pivot languages going down the table are Bengali (BN), Gujarati (GU), Konkani (KK), Malayalam (ML), Marathi (MA), Punjabi (PU), Tamil (TA), Telugu (TE), Urdu (UR), and Punjabi and Urdu together.



BLEU score of 24.73 was obtained for English-Hindi MT with Punjabi and Urdu as pivots. Another interesting observation from the figure is that if we fix the corpus size (a point in x-axis), then the BLEU score moves up due to introduction of the pivot. Similarly, if we fixate on a particular BLEU score (a point on y-axis), the introduction of pivot reduces the data requirement.



  □  7.7Neural Machine Translation



As data started growing, neural ML started upstaging classical ML in many tasks, and MT was no exception. As highlighted earlier in the book, we refer to this paradigm shift as the third generation of NLP. In 2016, Google announced the shifting of Google Translate completely to neural, and NMT at scale arrived.What caused this transition from statistical to neural? Understanding this reason will help put things in perspective and motivate discussions that follow. 

The first point to observe is that neural processing happens in a vector space. Objects are points in an n-dimensional space. In neural NLP, word vectors are designed to place the words in a vector space, enabling us to apply mathematical operations of ‘distance’, ‘similarity’, ‘addition’, ‘averaging’, etc. In a neural framework, it is easier to see that ‘dog’ as a concept has more similarity with ‘cat’ than with ‘door’, though the strings ‘dog’ and ‘door’ have a much larger overlap than do ‘dog’ and ‘cat’. Potentially, the language objects are parts of a continuum, and the whole power of geometry, algebra, calculus, etc., can be harnessed for doing NLP. Statistical ML, on the other hand, uses discrete objects (e.g., features) for classification. Neural ML potentially has much larger power than classical ML fundamentally due to the armoury of continuous mathematics. The analogy is to physics which could use mathematics to understand nature, discover natural laws, and harness nature’s power to practical use. 

Another advantage of neural ML is its efficiency. Consider, for example, the topic of language models (LMs). In an n-gram based language model, the problem is to predict the (n + 1)th word, given an n-word sequence. The parameter is the probability p(wn | w1, w2, w3, …, wn) and the number of these parameters is exponential is n. This is because the total number of n-word sequences possible is V n, where V is the vocabulary size. On the other hand, if we consider a neural LM, the number of parameters is linear in n. This is because of the following. The n-word sequence is input as a sequence of n-word vectors, each vector being a 1-hot vector of dimension V. Let the neural net have only one hidden layer with H neurons. The output layer is also of size V neurons. The total number of parameters (i.e., the total number of weights) is nVH + HV (i.e., linear in n). Figure 7.19 illustrates this discussion.
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Figure 7.19  The number of parameters in neural LM is linear in n, where n is the length of the n-gram sequence.



The above observations apply to MT as well. In RBMT, the onus of understanding translation phenomena and making rules therefrom is on the human translation system creator. The creation of translation rules is an onerous task because rules can be in millions and very complex too. SMT takes away part of this burden through the exploitation of data (i.e., parallel corpora). SMT discovers alignments, scores them probabilistically, builds the phrase table, considers the n-grams in the input sentence, finds the target language correspondences of these n-grams, stitches these target phrases, scores them as per the target-side language model, and outputs the most probable translation.

7.7.1 Encoder-Decoder

What happens in NMT? Details will follow, but let us enumerate the essential steps through the now‘classic-in-NMT’ encoder-decoder (Figure 7.20):



1. The input sentence passes through what is called the encoder as a sequence of word vectors. 

2. At the end of encoding, out comes a vector that is supposed to be a representation of the whole input sentence.

3. This encoder output vector is processed by the decoder to output the target language sentence. 
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Figure 7.20  The classic encoder-decoder network for machine translation. The input sentence ‘I read the book’ is encoded into a vector at the state s4. This vector is supposed to represent the English sentence. It is then processed by the decoder in steps to produce the Hindi sentence मैंने किताब पढ़ी—‘meine kitaab paDhi’. Though the ergative particle ‘ne’ is separately generated, it will be joined with the pronoun ‘mei’ as per the rule of Hindi grammar.



This process is a simplification in itself and an idealization because there are many ‘hacks’ or ‘adjustments’ that happen on top of these basic steps. In the encoder-decoder steps, we spot the presence of A-T-G in accordance with Vauquois triangle. We discuss the reasons why this encoder-decoder based NMT could outperform the pipeline of phrase_extract→  phrase_map→ sentence_generate based SMT:




• The operation is in the continuous space of word vectors unlike in the discrete space of words. This enables handling of data sparsity much better. For example, the training data may not have the word ‘procure’, but a very similar word ‘get’ is present, and so for the input ‘procure the vehicle’ the vector representation will still produce the translation, making use of the similarity with ‘get the car’ if the latter is present in the training data. Such exploitation of semantic similarity is not possible in SMT if the surface form is different.

• Ambiguity too is handled better. The phrase ‘withdrew from the bank thousands and thousands of dollars’ will require for SMT the disambiguation signal ‘dollars’ to be present inside the span of an n-gram, where n is a design parameter of SMT training. The continuous space operation and accumulation of values in the vector coming out of the encoder liberate NMT from any such constraint.

• Generation of words in the target sentence through neural LM is much better in neural than in statistical, as discussed above. The gap between the performance of the neural decoder over statistical decoder increases, as data goes on increasing. 


7.7.2 Problem of Long-Distance Dependency

There is a caveat we delayed alluding to, so as not to distract attention from understanding the exact reasons of NMT’s superior performance over SMT. That caveat is long-distance dependency. Let us take the rule of verb agreeing in gender number person with the subject, which is arguably the most important agreement rule of linguistics. Generating word forms conforming to agreement rules has to grapple with the challenge of long-distance dependency. Consider the sentences (1) ‘A boy whom the newspaper of yesterday reported as missing lives near the cinema hall’ and (2) ‘Boys whom the newspaper of yesterday reported as missing live near the cinema hall’. The forms ‘live’/‘lives’ are decided by ‘boy’/‘boys’ which are far apart from ‘live’/‘lives’ in the sentence. The memory of the singular/plural feature of ‘boy’/‘boys’ does not last till ‘lives’/‘live’. 

This problem of attenuation of memory brings on stage two key ideas: ‘context vector’ and ‘attention’. The basic encoder-decoder operation described above is not what is used in practice. The input sentence is processed token by token. After every token, the encoder output is tapped and sent to the decoder. That output is called context vector. The decoder processes the context vector at that stage of processing and decides to (1) output a word or (2) wait to see more. Option (1) is a softmax on the whole vocabulary and is a function of the words produced thus far. Thus, the decoder’s current output is conditioned on whatever it has output so far, the so-called auto-regression plus the context vector. Option (2) can apply, for example, to handle fertility. Hindi ‘salaha denaa’—सलाह देना (English: ‘advise’) will need the decoder to wait until the full complex predicate ‘salaha denaa’ has been seen.

7.7.3 Attention

The combination of context vectors from the encoder at every token along with autoregression has proven quite effective in dealing with long-distance dependency. But this combination too is not adequate for correct translation. Processing of a sentence requires paying different amounts of attention to different parts of the sentence at different stages of processing. Take for example, the problem of coreference resolution or tasks needing coreference resolution. Consider the sentences: (1) ‘The1 snake2 went3 near4 the5 dog6 and7 it8 barked9 and10 chased11 it12’ and (2) ‘The1 snake2 went3 near4 the5 dog6 and7 it8 hissed9 and10 chased11 it12’. The tokens are indexed with their positions in the sentence. The two it’s need binding to correct nouns—a task called anaphora resolution, which first needs attention to the nouns ‘snake’ and ‘dog’ and then to the verbs ‘barked’ and ‘hissed’. The fact that a dog’s angry shout is called ‘bark’ and a snake’s angry sound is called ‘hiss’ is to be paid attention to. Thus, it8 → dog6 in (1) and it8 → snake2 are the results of paying attention to ‘bark’ and ‘hiss’, respectively. This is what the ‘attention’ mechanism does. Mathematical details for modelling attention will be discussed later in the chapter.

Attention is All You Need is the belief the MT community has held on to and is also the title of a landmark paper by Vaswani et al. (2017), which brought about a paradigm shift in NMT. Attention tries to capture an age-old linguistic principle: the ‘akangksha-yogytaa ’ (desire_ability_to_meet_the_desire) principle in Sanskritic tradition and the argument_ frame-selectional_ preference principle in the Western linguistic tradition. ‘Dogs bark, and not snakes’ and ‘Snakes hiss, and not dogs’. ‘bark’ as a verb needs an agent (desire for an argument) and only ‘dog’ can satisfy that desire (ability_to_meet_the_desire, selectional_preference). With huge amounts of data and repeated reinforcing, strengthening of dog-bark association from the data, the MT system learns to pay this attention to the pair of desire-words and words that can service that desire. ‘Attention’ is the NMT name for linguistic association. Like the linguistic principle of ‘distributional similarity’ led to ‘word vectors’, the linguistic principle of ‘linguistic association’ led to ‘attention’. 

How is this learning of attention implemented and utilized? This is done by making a context vector dependent not only on the tokens seen so far but also giving different amounts of importance to different tokens. The context vector at every input token is a function of not only other tokens but also of the amount of importance given to each of the other tokens. 

Consider the two dog-snake sentences again. The context vector at ‘it’ will be conditioned more by ‘dog’ when ‘bark’ is present in the environment than by other words, and by ‘snake’ when ‘hiss’ is present than by other words. We say ‘it’ is paying attention to ‘dog’ in the presence of ‘bark’ and to ‘snake’ in the presence of ‘hiss’. These are conceptually simple, but implementationally complex matters. The context vector comes out of the encoder through neural activities over its connections. A new block of neurons and connections is added to the existing encoder, and these new connections are called attention weights. 

Different tasks require different types and places of attention, and consequently different attention weights. Suppose we are building a question-answering system. We tell the encoder, the attention block, and the decoder that the answer to the question ‘who chased whom’ for the first sentence is ‘the dog chased the snake’, while for the second, the answer is ‘the snake chased the dog’. Repeating such patterns many times over and on diverse and huge quantities of data will fix the attention weights such that the ‘it’ will learn to pay the right amount of attention to the right nouns.

This specific kind of attention where a word in a sentence gives selective importance to other sentences is called self-attention. Self-attention is always intra-sentence. Now, it has been seen that if the decoder too gives selective importance to the input token individually, and not to the context vector and auto-regression alone, then MT accuracy goes up. The attention given by the decoder to input tokens is called cross-attention. We take an example to give an intuitive explanation of the efficacy of cross-attention.

Consider the sentence pair ‘I read the book’ and its Hindi translation ‘meine kitaab paDhi’ (English: ‘I book read’). When generating the last word ‘paDhi’, self-attention requires that the attention value for the word ‘kitaab’ be more than ‘maine’. This ensures that the fact of ‘paDhi’ (read), which is syntagmatically similar to ‘kitaab’ (book) and its form is determined by ‘kitaab’, is minded. Cross-attention in MT drives vocabulary transfers from source to target. Therefore, for the word ‘paDhi’, what will the cross-attention vector look like? The cross-attention vector captures the importance given by words in the target sentence to the source sentence words. Cross-attention value between ‘paDhi’ and ‘read’ is expected to be the highest. This informs the decoder that it is now time to generate the most likely translation for the English word ‘read’. This example conveys an important concept: cross-attention attends to the correct word(s) in the source sentence for vocabulary transfer, while self-attention (indirectly influencing the decoder) attends to the correct word in the word sequence generated so far for correct morphology.

7.7.4 NMT Using Transformers

Transformers raised the bar in MT by establishing new benchmarks in WMT 14 English to German and English to French tasks in 2017. The situation was similar to CNN and RNN upstaging rule-based and statistical ML approaches by their superior performance on ImageNet and Switchboard data, respectively. The new performance figures forced the community to take these techniques seriously. Subsequent sustained interest and new very good performance figures in diverse applications cemented the position of Transformers. That is why any discussion on MT will not be complete without a look at Transformer-based NMT. 

Positional Encoding

Encoder-decoder RNN generates a sequence of hidden states ht, t varying from 0 to L, where L is the sentence length. Each ht is a function of the previous hidden state ht–1 and the input at position t. So, to process the input at the tth step, the encoder or decoder has to wait for t - 1 steps. This sequential nature of RNN makes the training time very long.

One of the main contributions of the Transformer (over and above ‘attention’) is the introduction of positional encoding. Here, we take a moment to understand the importance of word positions. An analogy is helpful. We consider a sentence to be a STAGE and the words in the sentence as ACTORS. One of these actors is special: the main verb. All actors have their roles to play in relation to the roles of other actors. Linguistically, such roles are called semantic roles and are expressed as semantic relations in what are called semantic graphs. Out of these semantic roles, of special importance are roles with respect to the main verb. These roles are called case relations (‘kaarakas’ in Indian linguistics) and they typically answer the wh-questions—who, what, when, where, how, and why. For example, consider the sentence ‘children saw a big lion in the zoo in the morning’. Here,


main verb: saw 

who (agent): children

what (object): lion

where (locative): zoo

when (temporal): evening



Notice the importance of the positions of words. If ‘children’ and ‘lion’ exchange positions, the sentence meaning also changes. English encodes the case relations in positions with respect to the main verb. Typically, the noun phrase to the left of the main verb is the agent and that to the right is the object. Languages which express case relations with case markers (called ‘bibhakti’ in Indian linguistics) can take liberty with word positions. In Hindi, the above sentence can be expressed either as:


bacchoM ne chidiyaaghar me ek bade sher ko dekhaa

children <ergative marker> zoo in one big lion <accusative> saw



or as


ek bade sher ko bacchoM ne chidiyaaghar me dekhaa

one big lion <accusative marker> children <ergative > zoo in saw



Thus, it must be apparent that positions of words are important for all NLP tasks, and MT is no exception. The translation of English ‘Jack saw Jill’ to Hindi is ‘jek ne jil ko dekhaa’ and that of ‘Jill saw Jack’ is ‘jil ne jek ko dekhaa’. The MT system must KNOW or LEARN that


If

the main verb (MV) is transitive and in past tense

Then

the NP to the left of MV should get the ‘ne’ post-position mark 

and 

the NP to the right of MV should get the ‘ko’ post-position mark



The rule could have been more powerful and robust if semantic roles of NPs were available and the conditions were expressed in terms of agent, object, etc. But that would have involved more sophisticated NLP machinery which unfortunately most languages of the world do not have. However, that is not to say that shallow signals are not important. Data- and ML-driven NLP have shown that a lot can be achieved from very simple surface-level signals in the sentences.

So, the merit of Transformers was in using word positions as additional disambiguation signals. Words influence one another by virtue of their properties and positions. Such influences manifest in translations as morphological transformations, lexical choices, pragmatic markers, and so on. And here comes the tenet of ML-NLP: with sufficient data all these mutual influences can be learned.

In Transformers, positions are encoded as embeddings, and positional embeddings are supplied along with input word embeddings. The training phase teaches the Transformer to condition the output by paying attention to not only input words, but also their positions. 

Let us assume the dimension of the position vector is d which is kept same as the dimension of the word vector. The position vector is added component wise to the word vector. Let POS denote the position vector of dimension d. Each position t in the input sentence has a position vector associated with it; let us call this POSt. Let the i-th component of the t-th position vector be denoted as pos(t, i), i varying from 0 to (d/2) - 1. Then 

(7.7)
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Why sine and cosine functions?

What is the intuition behind this way of forming the position vector? The reason is not linguistic or computational, but a fundamental fact about the nature of things.

Imagine we have a finite set of symbols, and we have to create infinite number of patterns with these symbols. Then it is no brainer to see that the symbols must REPEAT. 


Foundational Observation 1: Let S be a set of symbols. Let P be the set of patterns the symbols create. If | P | > | S |, then there must exist patterns in P that have repeated symbols.



Additionally, if the pattern space forms a total order, that is, given any two patterns A and B, we can decide if A < B or A = B or A > B, then as the pattern values increase, the string length representing the patterns also must increase. Finally, and this is crucial, 


Foundational Observation 2:

If

the patterns can be arranged in a series with equal difference of values between every consecutive pair, 

Then 




• at any given position, the symbols at different positions of the pattern strings must REPEAT, and 

• the frequency of repetition depends on the position of the symbol; the highest frequency occurs at the least significant position and the lowest frequency at the most significant position.


Let us illustrate the above with INTEGERS. In decimal system, there are 10 symbols called digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In the sorted list of integers in ascending order, the string length of the integer goes on increasing, and the digits repeat after every 10 numbers in the lowest significant position, after every 100 numbers in the next lowest position, after every 1000 numbers in the next to next lowest, and so on. This periodicity is all the more apparent in binary representation of integers. For 3-bit numbers, 000, 001, 010, 011, 100, 101, 110, 111, we have the situation depicted in Figure 7.21.

[image: ]
Figure 7.21  Periodicity of repetition of the bits in binary numbers. Frequency at  any position is half its right-side neighbour.



Coming back to the question of representing positions in the Transformers, we cannot have decimal integers. This is because words with large positional values in their input representation will overshadow other positions. We can normalize the position values by dividing them by the length of the sentence. But then the relationship holding among words in a phrase will change with the length of the sentence these words appear in, which is linguistically unintuitive. For example, the syntactic, semantic, and pragmatic relationships between the words in ‘Oh, what a beautiful day!!’, which expresses (1) delight, (2) the nature of the ‘day’ being ‘beautiful’, (3) ‘Oh’, being an exclamatory prefix to the rest of the phrase, and so on, should be invariant with respect to the sentence length. A decimal position information concatenated with the word vector will jeopardize this requirement.

The above factor builds the case for not concatenating but adding the positional information as a vector to the word vector. Clearly the dimension of the position vector should be the same as the word vector. Can the position vector be binary?

The answer is ‘no’ since components that are 0’s will contribute nothing to the vector and those with 1’s will influence completely. Such black-and-white (0 - 1) hard decisions go against the grain of NLP whose other name is ambiguity. A language object represented by a vector must allow soft choices in its components, preferably represented by values in the closed range [0, 1]. 




We thus come to the conclusions that


• the position vector should be added component by component to the word vector,

• the components of the position vector should range from 0 to 1, both included, and

• the components should be periodic since they represent consecutive integers.


It was quite ingenious on the part of the creators of Transformers to spot that sine and cosine functions meet the above requirements. Let us consider the sentence, ‘Jack saw Jill’. There are three positions indexed as 0, 1, and 2. Assume word vector dimension d to be 4 and the frequency to be 1/(102i/d ), i = 0, 1. Then 
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(7.8)
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The positional embeddings are learned these days just like word vectors are learned. For word vector learning, the initialization is with 1-hot vectors. Positional embeddings, on the other hand, are initialized with sine and cosine of word index and the vector index as described above.

Translation by Transformer 

We will close the discussion on Transformer-based NMT by observing that the Transformer architecture is designed to take the input which is a sequence of word vectors through many layers of processing. A Transformer has many encoder and decoder layers (vide Chapter 2). The power of Transformer comes from positional embeddings and self and cross-attention. We describe the main point of self-attention with an example. 

Consider two phrases:


The bank of the river

The bank of the town



The translations to Hindi are


नदी का तट (‘nadii kaa tat’)

शहर का बैंक (‘Shahar kaa bEiMk’)



The translations are different due to two different meanings of the word ‘bank’.

Clearly the decoder will need two different encodings of the input phrases to produce two different Hindi phrases. The initial word vectors (non-contextual, derived from corpora, say google word vectors) for the word ‘bank’ will be the same in both the phrases. It is the words ‘river’ and ‘town’ in the two phrases that will influence the contextual representations of ‘bank’ which are different in the two phrases. This happens due to self-attention which is depicted schematically in Figure 7.22. The way of obtaining the Yi vectors is shown in Figure 7.23.
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Figure 7.22  Through self-attention contextual word vectors Y1, Y2, Y3, Y4 are obtained from initial word vectors V1, V2, V3, V4 corresponding to the words ‘bank’, ‘of’, ‘the’, and ‘river’.



While self-attention is intra-sentence (within input), cross-attention is inter-sentence (from output to input). Figure 7.24 shows a schematic of cross-attention for translating the sentence ‘Peter slept early’ to Hindi पीटर जल्दी सोया (‘piitar jaldii soya’). 





[image: ]
Figure 7.23  The four contextual vectors of the words in the phrase ‘bank of the river’ are obtained by multiplying the original word vectors by weights wij which are called self-attention weights and are learned based on mutual pairwise similarities of the words, through the so-called query, key, and value triples.


[image: ]
Figure 7.24  The lines from English to Hindi words depict cross-attention. The weight of connection from English ‘Peter’ to Hindi ‘piitar’ should be larger than the weights to ‘jaldii’ and ‘soyaa’. This is accomplished by learning from parallel training data.



Like encoder and decoder, there are also stacks of attention blocks in the Transformer. These attention blocks are typically multi-headed, i.e., they capture self and cross-attention at multiple levels of NLP pipeline (lexicon, syntax, semantic, and pragmatics). The theoretical understanding of Transformers is still evolving. We see the Vauquois triangle again at work here. Processing with many layers of encoding with multihead attention, we surmise is equivalent to taking the input through NLP layers of POS tagging, chunking, parsing, etc. With billions of parameters in modern Transformer-based models such as GPT3, it is impossible to keep track of which layer is doing what, what to speak of activities of individual neurons! The field relegates theorizing to the future, while celebrating in ‘a new star is born’-like style as shown in Figure 7.25.
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Figure 7.25  Sub-set of results reported for machine translation in the landmark paper by Vaswani et al. (2017).


Summary

In this chapter on machine translation, we started from our usual vantage point of ambiguity resolution. Rule-based, statistical, and neural paradigms were introduced with the underlying agenda of showing that MT is also in exercise in ambiguity resolution and hence have three generations of MT approaches. The foundational abstraction of Vauquois triangle was described, with the key message that it is the specific pair of languages that decides the exact height on the analysis and generation sides of the triangle, from where the A-T-G process operates. This concluded Section 7.1.

In Section 7.2, RBMT was elaborated, primarily with the aim of bringing out the challenges of MT. Rules demand a clear understanding of the task, the technique, and the task-technique synergy. Discussions were centred on RBMT of Indian languages which present the classic case of resource-constrained MT. Many challenges of IL NLP were mentioned, setting the stage for linguistically embellished data-driven MT. An experience of building the first SMT system of Indian languages (110 pairs) was recounted in Section 7.3.

This led to the discussions of the foundations of phrase-based SMT (PBSMT) in Section 7.4. The key concepts of word alignment and the use of word alignment for creating phrase alignments were presented. A point to note is that phrases in SMT are not linguistic phrases. In fact, insisting that the phrase table contains only linguistic phrases and deleting the non-linguistic n-grams harms rather than helps SMT! This has been repeatedly observed. This can be explained from the standpoint of ambiguity. n-grams, linguistic or non-linguistic, bring disambiguation signals, and eliminating such signals can deteriorate MT performance. Of course, such signals can also be noise, but there is a net advantage in mapping of linguistic and non-linguistic phrases in phrase tables. Resource constraint mitigation with subwords, factors, and pivots formed the core of discussions in this section.

In Section 7.5, we moved to the ruling paradigm of MT today—neural machine translation (NMT). The now classic encoder-decoder was presented. The inadequacy of encoder-decoder due to long-distance dependency was illustrated. ‘Attention’ was introduced as a solution. NMT today is predominantly Transformer-based. While there are many treatises on Transformers, we focused in Section 7.6 on the unique contribution of the Transformer framework, viz., positional encoding. The linguistic and computational underpinning of positional encoding was presented. A major point of this section was attempting an answer to the question, ‘why sine and cosine based positional encoding?’ which keeps puzzling the MT researcher. The section and the chapter ended with a top-level description of how Transformers translate.



Review Questions

1. Derive the following formulae for alignment of words from parallel corpora:

M-step

[image: ]
E-step
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The symbols have the following meaning:

Pi, j = probability of mapping the i-th word in the lexicon of the source language E to the j-th word in the lexicon of the target language F ; this is the parameter to be estimated

s: index of the sth parallel pair of sentences in the SMT training data; s varies from 1 to S

e sp: pth word in the source side of the sth parallel pair; p varies from 1 to l s

f sq: qth word in the target side of the sth parallel pair; q varies from 1 to m s

l s: the number of words on the source side of the sth parallel pair

ms: the number of words on the target side of the sth parallel pair

z spq: indicator hidden variable representing alignment within the sth parallel pair; 1 iff e sp is aligned with f sq

indexE(e sp ): position of e sp in the lexicon of E

indexF( f sq ): position of f sq in the lexicon of F

2. Consider two parallel sentences (i) Peter slept early ←→ ‘piitar jaldii soya’ and (ii) early morning tea ←→ ‘jaldii subahwali chaay’.

Use the formulae in Question 1 to find the probability of alignments after four iterations.

3. What is the number of parameters in the multi-headed attention sub-network of the Transformer encoder with the configuration mentioned below:


• Size of the output vector from each layer: 512

• Number of attention heads: 8

• Query, key, and value projection matrices of dimension 512 × 64

• A linear layer is applied after the concatenation of the outputs from different heads.


4. Positional encoding enables parallel processing in Transformers. Explain this with illustrations and a clear explanation. Contrast the time complexity with respect to the encoder-decoder. 

5. Language modelling is nothing but predicting the Nth word given the preceding N-1 words. What has this task got to do with any NLP task, say machine translation? Why should MT ‘benefit from’ language modelling? Give a well thought-out answer. Make use of fundamentals, mathematics, examples, and all such things as needed, for answering this question.



Objective Questions

1. You are given ‘parallel’ sentences between Czeck and English as follows:

[nesu]            ‘I carry’

[ponese]         ‘He will carry’

[nese]             ‘He carries’

[nesou]           ‘They carry’

[yedu]             ‘I drive’

[plavou]         ‘They swim’

In Czeck, the word for ‘but’ as a conjunction linking two sentences is ‘ale’. Which of the options below is/are the correct meaning(s) of the Czeck sentence ‘poplavou ale poyedu’?   

a.They carry but I swim.

b.He will swim but I will drive.

c.They will swim but I will drive.

d.None of the above 

2. Which of the following cannot convincingly be used as evidence that all languages originated from one single language?

a.Sanskrit and Latin for ‘eight’ are ‘ashta’ and ‘octo’, respectively.

b.About 90% of the world’s languages place the subject before the object.

c.‘Procrastination’ and ‘delay’ mean the same thing.

d.Malayalam belongs to the Dravidian family of languages.

3. Consider two parallel sentences in two languages E: e1, e2, e3, …, em and F : f1, f2, f3, …, fn. The m words of E are placed on the rows (source language) of the alignment matrix and the n words of F in the columns (target language). A cell <p, q> is given the value of 1 if ep and fq are aligned; else 0. In the absence of any other information, the total number of possible alignments is ______.

a.n2m

b.m2n

c.2mn

d.mn

4. Consider the situation in Question 3 again. Suppose it is known that E and F are monotonically aligned with no null alignment and fertility factor 1. The alignment is called monotonic if ‘whenever p2>p1, q2>q1’. Then the total number of possible alignments is ______. 

a.1

b.2

c.4

d.8

5. Consider the situation in Question 3 again. Suppose it is known that (a) E and F are from SVO and SOV languages, respectively, (b) E has exactly two nouns, a single verb, and a single preposition, (c) the POS tags are marked, and (d) there is no null alignment and the fertility factor is 1. Now given E and F, which of the following is/are most likely to be true?

a.Alignment is monotonic, and the possible number of alignments is 1.

b.Alignment is non-monotonic, and the possible number of alignments is 1.

c.Alignment is monotonic, and the possible number of alignments cannot be determined.

d.Alignment is non-monotonic, and the possible number of alignments cannot be determined.

6. Consider the problem of dialect transfer. The sentences in a dialect (Ld ) are to be translated into the more populous version of the language (L), e.g., translation of the Hindi dialect ‘brajbuli’ to standard Hindi. There is no null alignment and fertility is 1. Also, target word selection can be done based on a small window. Assuming (a) the maximum fan-out in the Ld-L lexicon is K, i.e., a word from Ld can map to at most K words of L in the lexicon, and (b) the target word at a position depends only on the previous target word, the worst-case complexity of translating a sentence of length N in Ld to L by a generative method is best estimated as

a.O(KN )

b.O(log(KN )) 

c.O(K N 2)

d.O(K 2N )

7. Languages in the world are divided into two broad categories—agglutinative in which morphemes are mostly stacked together, and isolating in which the morphemes are mostly kept separated by space. The word alignment matrix of L1 (row, source language) vs. L2 (column, target language) shows the behaviour of many 1’s across any row. Which of the following is/are most likely false?

a.This looks like a case of Hungarian-Chinese MT.

b.It is a case of (a) and Chinese words are on the rows.

c.This also could be typical of Tamil-Punjabi MT.

d.It is a case of (c) and Punjabi words are on columns.

8. Read up on the evaluation metric for MT. The most popular metric is called BLEU which is essentially an average of n-gram matchings between machine output and the gold reference translation with a few adjustments like ‘clipping’ and ‘brevity penalty’ (look these concepts up). A Hindi-to-English translator outputs ‘the cats rats looked’. There are two reference translations: (a) ‘cats saw rats’ and (2) ‘cats looked at rats’.  Which of the options below best approximates the BLEU score for the output considering up to 2-grams?

a.0.6

b.0.7 

c.0.8

d.None of the above

9. Consider the sentence ‘meet the people of Mumbai’ and the corresponding correct Hindi translation ‘mumbai ke logo se miliey’. It is seen from the data that the distortion probability follows a Gaussian distribution, i.e., the probability of placing a phrase in the target sentence peaks at the correct position in the target and then tapers off around it in a bell-shaped curve with mean μ and standard deviation σ. It is known that the areas under the normal curve from < μ - σ  > to < μ + σ  > is 0.68, that from < μ - 2σ  > to < μ + 2σ  > is 0.95, and that from < μ - 3σ  > to <μ + 3σ  > is 0.99. The lower limit of the probability that phrases ‘mumbai ke’, ‘logo se’, and ‘miliye’ in the given Hindi sentence will be correctly placed is best approximated as ______.

a.0.078

b.0.15 

c.0.30

d.0.039

10. Suppose reference translation R is ‘aapkii badii meharbaanii hogii ’ while the output from MT system M1 is O1: ‘aapkii meharbaanii badii hogii’ and that from M2 is O2: ‘badii meharbaanii hogii aapkii’. We decide to use unigram precision P1, bigram precision P2, and trigram precision P3 with equal weight to all. The BLEU scores for O1 and O2 will, respectively, be ______.

a.0 and approx. 0.33

b.0 and approx. 0.69

c.approx. 0.74 and 0

d.approx. 0.33 and approx. 0.69
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9.(a)

10.(b)














	 

	 




	CHAPTER
8

	Sentiment Analysis







Wherever there are sensations, ideas, emotions, there must be words.

Swami Vivekananda





Learning Objectives

After reading this chapter, you will be able to


• Appreciate the challenges of sentiment analysis.

• Use and create sentiment lexicons and datasets.

• Implement sentiment analyzers using rules and features.

• Fine-tune a neural language model for sentiment analysis.

• Apply sentiment analysis to domain-specific datasets.







The need for humans to express their emotions is highlighted by Swami Vivekananda, an Indian philosopher and scholar, in the chapter-opening quotation. Emotions are feelings understood to be experienced by all living beings. Emotions or sentiments have no universally agreed definition. The Oxford English Dictionary defines ‘emotion’ as ‘a strong feeling’. Although emotions are known to be universal across species, the human language has developed to express emotions in a variety of ways. In his book Sapiens: A Brief History of Humankind, Yuval Noah Harari states that one of the basic functions of language in early humans was gossip. Gossip involves discussing opinions about people or situations, based on stories, news or statements that may or may not be true. This highlights the importance of the subjective experience expressed using emotion or opinion.

It is no surprise that the text that NLP systems deal with contains sentiment. Sentiment analysis (SA) is an area of natural language processing (NLP) that refers to the general task of detection of sentiment in text. Rosalind Picard’s landmark book, Affective Computing, introduced the idea of computers being able to understand and express affect or emotion (Picard, 2000). In its most elementary form, SA deals with the prediction of emotion in a binary sense: positive and negative. This is a Boolean classification task. So, the sentence ‘I love weekends!’ should be predicted as positive while ‘I hate people who turn up late’ should be predicted as negative. However, it is no surprise that SA has diversified to a wide range of formulations. These formulations find motivations in foundational problems in languages (such as the prediction of the magnitude of emotions) or applications (such as the detection of angry emails to ensure that customer care attends to them swiftly). Recent availability of large datasets has made SA a common benchmark task against which novel machine-learning architectures are evaluated. Benchmark datasets that provide annotations for sentiment analysis as a binary classification task are available. As a result, SA has become a must-have in a machine learning paper that introduces a new architecture. 

In this chapter, we describe SA as an area of NLP that has witnessed wide applications in the business and social domains. We first describe the problem definitions, the role of ambiguity in terms of its challenges, lexicons of SA, followed by approaches in the three generations.


  □  8.1Problem Statement



The Boolean classification version of SA takes as input a piece of text (which may be a sentence or a document)and predicts if it is positive or negative. For example, the sentence ‘We enjoyed the rollercoaster ride’ would be predicted as a positive sentence. The Hindi sentence ‘Samose khaake bada mazaa aya’ (Eating samosas was a lot of fun) would also be predicted as a positive sentence. An extension of this definition performs a three-class classification: positive, negative, and neutral. Therefore, the Hindi sentence ‘Nayi Dilli Bharat ki raajdhani hai ’ (New Delhi is the capital of India) would be predicted as neutral since it does not express an opinion. Similarly, the Hindi sentence ‘Mujhe yaha ka khana achha nahi lagta’ (I don’t like the food here) would be predicted as a negative sentence. It is noteworthy that an early textbook by Bo Pang and Lillian Lee uses sentiment, polarity, and opinion interchangeably (Pang and Lee, 2009). While it is a useful simplification, there are nuanced differences between these terms. Let us look at a few alternatives for the binary classification version of sentiment analysis. The alternative that you choose would depend on the target application.

The idea of binary classification can be extended to multiclass classification. An example of this is fine-grained SA which captures the magnitude of sentiment. Fine-grained SA has been referred to as star-rating prediction. The word ‘star-rating’ borrows from review websites on the Internet which allow users to rate a product on a scale of, say, 1 to 5, while also requiring them to write a textual review. The points are often referred to as ‘stars’—hence the name. Star-rating prediction then becomes a five-class classification problem. It takes as input a piece of text and predicts a star rating (1 through 5) for it. Star-rating prediction is useful for long texts such as reviews. Reviews may contain a mixture of positive and negative sentences. Some sentences may override others. A reviewer who liked a product a lot versus someone who liked a product only marginally would produce different kinds of reviews. It may be useful for a star-rating prediction to be able to detect this.

Emotion classification deals with the prediction of emotions in text and, hence, is a multiclass classification problem. However, a key question is: what is the set of possible emotions? Humans often express and experience a combination of emotions. For example, ‘You have achieved an unbelievable feat!’ expresses joy as well as surprise. Linguistic studies view these emotions in terms of their basic constituents and model emotion analysis around these basic emotions. Linguistic and psychological research has delved into what basic emotions are. A commonly agreed set of basic emotions is joy, sadness, anger, surprise, and disgust. It must be noted that only one basic emotion is a purely positive emotion, while surprise may or may not be positive. Emotion classification may be formulated as a multiclass classification where, given a piece of text, the goal is to predict one out of many emotions. However, it is also possible to view it as a set of multiple Boolean classification tasks. This allows the prediction of a set of emotions at a time since multiple emotions may indeed be present in a text. A possible application of emotion classification is to detect emotion trends by a social media user. It may be useful for the user to see how their emotions as expressed in tweets have been changing over time. Emotion classification of their tweets can be employed to plot their daily emotions on a timeline.

Stance detection is a variant of SA that changes the semantics of the output labels. Instead of positive and negative sentiments, stance detection deals with a specific target and attempts to predict whether or not a sentence expresses a supportive or opposing view towards the target. Consider the example of the Hindi sentence ‘Cricket sangh ki vifaltaa ka dosh kaptaan ko diya nahi jaana chahiye’ (The failure of the cricket team must not be blamed on the captain). This sentence is negative because it talks about the failure of the team. However, the sentence expresses a positive sentiment towards the team captain. Therefore, with the captain as the target, the sentence will need to be predicted as a ‘supporting’/‘positive’ sentence. Stance detection can be useful to predict the stance towards entities. Consider the example ‘Sydney is a livelier city than Melbourne’. This sentence ‘supports’ or is positive towards Sydney while it is ‘opposing’ or is negative towards Melbourne. 

Aspect-based SA is another formulation under the umbrella of SA. In principle, it applies to any entity that has attributes towards which sentiment can be separately expressed. However, a particular use case of aspect-based SA drives its utility. It often arises in the context of product or service reviews. Aspects of a product are the attributes of the product which are being evaluated in a review. For example, the sentence ‘If it were not for the awesome food, I would not put up with the unfriendly service’ expresses a positive sentiment towards the food and a negative sentiment towards service. Therefore, aspect-based SA may be formulated in two ways: (1) a piece of text is the input, and a pair of aspect and sentiment labels is generated. While sentiment labels can either be positive or negative, the value of the aspect is based on a predetermined set of aspects; (2) a piece of text and aspect is the input, and the output is the sentiment towards the aspect.

The different problem statements in the SA umbrella are summarized in Figure 8.1. While each of these is a challenging research problem, they are not completely disjoint. Positive/negative sentiment classification is a sub-set of positive/negative/neutral sentiment classification because two of three labels in a classification task are subsumed in the other. Similarly, subjective/objective classification is related to positive/negative/neutral sentiment classification because the subjective class represents a union of positive and negative labels. Emotion classification is a more fine-grained form of sentiment classification because it aims to distinguish between different forms of, say, negative sentiment: anger, fear, etc. Aspect-based SA is a structured form of SA, where the goal is to perform SA for a specific set of aspects. Stance detection extrapolates sentiment to sentiment towards or against a target.
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Figure 8.1  Problem statements in sentiment analysis.



The gamut of problems related to SA makes it a challenging task. However, the challenge of SA can be understood in the example ‘I love the songs in the movie, though only the set of actors was liked by my brother who later liked it because the director was of the opinion that the storyline which is from a novel by Shakespeare will be lapped up by the public’. The speaker of the sentence expresses sentiment towards the ‘movie’ (corresponding to binary classification). The text first expresses positive sentiment towards the songs (corresponding to aspect-based SA where ‘songs’ are considered an aspect of the movie). It then mentions the sentiment held by the reviewer’s brother about the director. The brother is also stated to quote the opinion of the director. The director is of the opinion that because the story of the movie is inspired from a novel by Shakespeare, the movie will be appreciated. While this is a contrived sentence, it shows that the sentiment in this sentence is not straightforward and follows multiple perspectives. These perspectives have been captured in a quintuple (Liu, 2010). The quintuple characterizes sentiment using five attributes:

1. Object: The target of the sentiment.

2. Aspect: The aspect of the object towards which sentiment may be expressed.

3. Opinion holder: This is the individual or group that holds the opinion.

4. Polarity: This is the sentiment value.

5. Time: The time or time period of sentiment. 

Therefore, the sentiment in the text above can be characterized by the following tuples:


• (Movie, Songs, Speaker, Positive, Current) based on ‘I love the songs in the movie’.

• (Movie, Cast, Speaker’s brother, Positive, Past) based on ‘only the cast was liked by my brother’.

• (Movie, –, Speaker’s brother, Positive, Present) based on ‘who later liked it’.

• (Movie, –, Director > Audience, Positive, Past) based on ‘the director was of the opinion that the storyline which is from a novel by Shakespeare will be lapped up by the public’.


Except the object and polarity, other fields are optional. Sentiment classification deals only with a prediction of polarity, while aspect-based SA deals with the prediction of aspect and polarity.

The majority of SA approaches only refer to speaker-side sentiment. For example, the author of the sentence ‘I loved the movie’ expresses a positive sentiment. However, reader-side SA may be useful as well. For example, the sentence ‘Team Bulldogs defeated Team Panthers’ is positive to the supporter of Team Bulldogs, but negative to a supporter of Team Panthers. Reader-side sentiment requires user modelling of readers and poses unique challenges as well as opportunities. Based on reader-side user modelling, news articles may be classified as ‘happy’ news or ‘sad’ news. While news about disasters will be sad news, there may be user-specific sentiment in news articles. For example, ‘Virat Kohli dropped as the cricket team captain’ would evoke a negative sentiment in a fan of Virat Kohli but a positive sentiment in a reader who does not like Virat Kohli.


  □  8.2Ambiguity for Sentiment Analysis



Given variations in sentiment expression, SA has unique challenges. We will now view them via different aspects of ambiguity:

1. Lexical Ambiguity: Words may have alternate meanings. As a result, each meaning may carry different sentiment polarities. This results in challenges such as:


• Domain specificity: The word ‘cancer’ has at least two senses. The first sense refers to a medical condition and may be used in a sentence such as ‘He was diagnosed with cancer’. The second sense refers to a person or a trait that is undesirable. This is in the case of the sentence ‘Corruption is cancer to the society’. In the former, the word ‘cancer’ does not carry a negative sentiment although it does refer to an ailment with a negative impact on people experiencing it. However, in the second sentence, the word carries a negative sentiment. Thus, in the medical domain, the word is not negative. In the general domain, it is. Consider the Hindi sentence ‘Rishwatkhori ek saamajik burai hai’ (Bribery is a social evil). This is a negative sentence. In contrast, ‘Achhai aur burai ka antar kai baar hum samajh nahi paate’ (The distinction between goodness and evil is often not clearly understood) is a neutral sentence. Sentiment of words may also flip across different domains. Consider the word ‘deadly’. When used for a snake, it is a negative word. When used for a sportsperson, it may be used in a positive sense.

• Cultural connotations: Words may have different sentiments in different cultural contexts. A typical example is the sentiment associated with colours. ‘Red’ may signify good luck in the Chinese culture but love in some others such as the Indian culture. When used in a sentence, they may be intended to be used to convey different emotions.


2. Syntactic ambiguity: Negation markers can be thought of as tokens that reverse sentiment. However, this may not always be true. Consider the example, the word ‘not’ in each of the sentences here changes sentiment in different ways: ‘I do not like the phone’, ‘I not only like the colour but also the texture’, and ‘The alarm clock does not have an auto-snooze feature, not that it bothered me’. In the first sentence, it reverses the sentiment of the word ‘like’. In the second sentence, the word ‘not’ is a part of the phrase ‘not only’—and, hence, does not modify the sentiment. The third sentence contains two ‘not’s. The first ‘not’ expresses the unavailability of the feature, while the second expresses the user’s disinterest in the feature.

3. Semantic ambiguity: Semantic ambiguity can affect the target towards which sentiment is being expressed. Consider the example ‘Australia beat India in the cricket match’. The target of the sentiment is tied with the role. Australia would be assigned a positive sentiment in this case, while India would be assigned a negative sentiment. Consider another example ‘Visiting aunts can be a nuisance’. There are two possible interpretations. If ‘aunts’ is the subject of ‘visiting’, then the sentiment is expressed towards the act of visiting. Alternatively, the ‘aunt’ is the target of the negative sentiment.

4. Discourse ambiguity: Discourse may impose difficulties on sentiment detection of documents. When attempting to determine overall sentiment of a document, interaction of sentences may need to be taken into account. This results in a peculiar challenge called thwarting. When evaluating an entity, a writer may consider different aspects of the entity. As a result of describing these aspects, the writer may conclude their sentiment about the entity. Consider the review of a restaurant: ‘The first thing I noticed was the tastefully designed ambiance. The staff was diligent and helpfully got us seated. In a reasonably short wait of 10 minutes, our food arrived. The food was, to put it mildly, not palatable. I was disappointed for sure.’ The first three sentences of the document are positive while the last two are negative. The resultant label for the document needs to resolve the ambiguity of relative importance of these sentences and the sequence. Similarly, the last sentence refers to negative sentiment towards food and the restaurant, on the whole, as understood via the discourse structure of the review.

5. Pragmatic ambiguity: Sarcasm is a typical challenge that arises due to pragmatic ambiguity. Sarcasm is a peculiar form of sentiment that is intended to express contempt or ridicule. Therefore, while it may or may not have negative markers in the form of words of phrases, it has an implied negative sentiment. Consider the example, ‘You are doing a great job at avoiding work’ has a positive word ‘great’. However, the sentiment of this sentence arises from the fact that avoiding work is not a desirable act. Therefore, a positive appraisal of the act entails a negative sentiment. Another challenge associated with pragmatics is implicit sentiment. ‘This phone has a touch screen too’ is a positive sentence from the times mobile phones moved from having buttons as the key input mechanism to a touch screen. The sentence does not bear any sentiment word but conveys a positive sentiment.


  □  8.3Lexicons for Sentiment Analysis



Lexicons provide a way to bootstrap SA systems. A summary view of lexicons is shown in Figure 8.2. Lexicons may be as simple as lists of words—positive and negative. They still have shown to be useful for SA by looking up sentiments of words (Mohammad and Turney, 2013). In contrast, a lexicon may be a structured graph of concepts where nodes are annotated with sentiment information.
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Figure 8.2  Classes of sentiment lexicons.



Lexical Inquiry and Word Count (LIWC) is a lexicon that arranges words in a hierarchy of concepts corresponding to concerns (work, family, etc.) and emotions (Pennebaker et al., 2001). The emotion labels also have sub-hierarchies. Words are labelled with ‘posemo’, ‘negemo’ in addition to granular emotions such as anger, fear, and so on.

8.3.1 Valence, Arousal, and Dominance

There are multiple ways to determine sentiment. The choice decides the kind of annotation in a lexicon. Take the example of the Valence, Arousal, Dominance (VAD) Lexicon (Warriner et al., 2013). The VAD Lexicon formulates sentiment as a three-tuple description. Valence indicates the extent to which the word invokes pleasant or unpleasant emotion, roughly corresponding to positive and negative. For example, ‘happy’ has a positive valence, while ‘sad’ has a negative valence. Arousal indicates the intensity of sentiment. For example, ‘excited’ is more strongly positive as compared to ‘happy’. Therefore, it has a higher arousal value. Dominance is a dimension that determines the extent of control experienced in an emotion. For example, ‘ecstatic’ and ‘serene’ are both positive and carry high arousal. However, they differ in terms of dominance. In the case of ‘ecstatic’, the experience is more out of control as compared to ‘serene’.




8.3.2 Wheel of Emotions

Plutchik’s wheel of emotions is another valuable representation of emotions (Plutchik, 1980). It arranges emotions in a wheel-like representation along dimensions similar to valence, arousal, and dominance. Emotions opposite in valence are on either side of the wheel. Emotions with increasing value of dominance are along the petals. An important utility of the Plutchik wheel is the way it starts off with the notion of valence, arousal, and dominance to not only represent basic emotions and arrange them in a structured manner but also represent complex emotions as combinations of basic emotions.

8.3.3 Manual Creation of Lexicons

Creation of manual annotations may be possible using crowdsourcing. Several online platforms (such as Amazon MTurk) allow one to create crowdsourced datasets. ‘Crowdsourcing’ refers to using the power of an internet-based crowd to complete a task. Crowdsourcing often requires a clear definition of the task, in the form of clear, unambiguous questions (Mohammad and Turney, 2013). Crowdsourcing often elicits the following considerations:

1. Task definition: The task of annotation serves as instructions to annotators. Because crowdsourcing workers may not directly contact the task administrators, the task definition must be defined as unambiguously as possible. It may help to include examples.

2. Fall-back labels: It is useful to provide a fall-back label so that examples that are fuzzy do not get assigned wrong labels. An example of a fall-back label would be ‘Cannot say’ in addition to ‘positive’ and ‘negative’.

3. Worker selection: An annotator on a crowdsourcing platform is sometimes referred to as a ‘worker’. Many crowdsourcing platforms allow the task creator to select workers on the basis of a number of parameters such as the experience of the worker, the number of tasks completed by them in the past, and so on. These are often condensed into scores so that workers may be selected.

4. Evaluation set: Crowdsourcing platforms allow the task creator to upload an evaluation set: a set of instances with labels provided. During the task of annotation, instances from the evaluation set are also posed to the workers. This allows the task creator to estimate the quality of annotation by a worker, and, in many cases, select annotations based on this quality.

5. Associated costs: A task will be configured to pay workers per task for a bulk of annotations or per annotation. This may influence how many workers, if at all, are interested in contributing to your task.

6. Quality checks: At the end of annotation, annotations from workers whose annotations performed poorly may be discarded. Short sentences that do not convey a lot of information for sentiment may also be discarded. 

While description features in this chapter on sentiment analysis, the above refers to using crowdsourcing in general. Crowdsourcing can be used to generate labelled datasets for a wide range of NLP tasks. The considerations highlighted above find corresponding equivalents when creating datasets for other tasks.



8.3.4 Automatic Creation of Lexicons

Creation of large lexicons has always been a challenge for any NLP problem. In the absence of resources to create large manually annotated lexicons, semi-supervised methods often come to rescue. A popularsentiment lexicon that has been created using a semi-supervised approach is SentiWordNet (SWN) (Esuli and Sebastiani, 2006). SWN assigns a three-tuple score to synsets in WordNet. The three-tuple score is a distribution over positive, negative, and neutral, such that the three scores sum to 1. The process of creation of SWN is shown in Figure 8.3, and is as follows:


1. Start with a small set of synsets whose polarity labels are manually labelled. These are often clearly positive or negative synsets.

2. Use relations in WordNet to expand this set of synsets. For example, antonymy relation is likely to invert sentiment across synsets while meronymy may preserve a portion of the sentiment.

3. Train a classifier based on this expanded set of synsets. The classifier takes as input a representation of synsets in the training set labelled with sentiment scores. The representation of a synset may include unigrams or synset identifiers of words in the gloss.

4. The classifier in the previous step is then used to predict sentiment scores for a larger set of synsets.

[image: ]
Figure 8.3  SentiWordNet creation.



Thus, SWN achieves annotation of a large set of synsets using a smaller set of synsets. Several versions of SWN have been created. These vary in terms of the initial set, steps for expansion, and features in the classifier. A version called SentiWordNet 3.0 uses a seed set of synsets as opposed to words.

SWN is centred around the key idea of selecting a set of ‘extreme’/‘clear’ sentiment words (such as ‘good’ and ‘bad’ or ‘excellent’ and ‘terrible’). Sentiments of other words are computed in terms of their similarity with these extreme words. For example, Agarwal et al. (2006) used pointwise mutual information between words to compute their sentiment polarities.

The NLTK library provides a mechanism to obtain word scores using SentiWordNet. The following is a sample code:




import nltk

nltk.download('sentiwordnet')

nltk.download('wordnet')

from nltk.corpus import sentiwordnet as swn

word = "happy"

res = swn.senti_synset(str(word)+'.a.01')

print(str(word)+" has the sentiment: " + str(res))

word = "sad"

res = swn.senti_synset(str(word)+'.a.01')

print(str(word)+" has the sentiment: " + str(res))





The senti_synset function of the sentiwordnet module is used in the code above. What does str(word)+ '.a.01' mean? WordNet is a graph of concepts (known as ‘synsets’) where every word has a different synset depending on its part of speech and meaning. Therefore, the 'a' in the argument refers to adjective and 01 refers to the first sense of the word. The line can be read as ‘What is the sentiment of the word happy when it is used as an adjective in its most common (i.e., first) sense?’

The output of the code above is



happy has the sentiment: <happy.a.01: PosScore=0.875 NegScore=0.0>

sad has the sentiment: <sad.a.01: PosScore=0.125 NegScore=0.75>





  □  8.4Rule-Based Sentiment Analysis



Sentiment analysis in the first generation has been explored in the form of rule-based systems. A typical approach to rule-based SA is based on the basic principle of counting positive and negative words. A rule-based approach attempts to resolve ambiguity by looking up the polarity of words in the input text. The approach may incorporate interaction between these words in different ways to achieve compositionality of sentiment as follows:

1. Word-level: If the lexicon contains senses of words assigned with polarity as in the case of SWN, rule-based SA needs to employ strategies to select a specific sense. One way to achieve this is to take the first sense, which corresponds to the most commonly used sense. The example snippet for SWN in the previous subsection does this. Another way is to get scores of all synsets of the word and compute average values for each of the three sentiment classes. Sentiment word lists are often available as a part of libraries.

2. Sentence-level: If a sentence contains only positive words, it is likely to be positive. If a sentence contains only negative words, it can be predicted as negative. However, if it contains a mixture of positive and negative words, several strategies are possible:

a.The category that is in the majority may be returned as the final prediction. This means that if positive words outnumber the negative words, the sentence may be predicted as positive. If not, it may be predicted as negative.

b.Negation words have a key role in resultant sentiment. A negation word can be assumed to reverse the sentiment of words after it. The scope of reversal can be limited using heuristics. Examples of such heuristics are the next conjunction or a fixed number of words after the negation word.

c.Magnifying words are words such as ‘extremely’ and ‘absolutely’ that highlight the strength of sentiment words that follow. A rule that adjusts the strength accordingly may be incorporated.

3. Document-level: Combining sentiments across sentences into a document has been explored in multiple ways. It may take into account the structure of a document. For example, sentences at the beginning may be weighted higher than the ones that follow. This is typical, however, in the case of situations such as thwarting. Document-level SA as a composition of individual sentences may also use a majority weighting scheme where the majority polarity of the set of sentences in a document is the polarity of the document. Pang and Lee (2004) developed a seminal algorithm that creates subjective extracts of a document: a sub-set of sentences of a document that contain sentiment-bearing words. They represent a document of n sentences as a graph of n + 2 nodes: one node for each sentence and the source and sink nodes. Edges between sentence nodes are weighted by similarity and linear distance between the sentences in the document. Edges between source/sink nodes and sentence nodes are weighted by the conditional probability of a sentence to be either a subjective or an objective sentence. There are no edges between the source and sink nodes. The objective of the subjective extraction algorithm is then to find a minimum cut that separates the graph into two sub-graphs. In essence, this divides the graph into subjective and objective parts of the graph. 

A simple rule-based sentiment analysis algorithm is as follows:



import nltk

nltk.download('opinion_lexicon')

from nltk.corpus import opinion_lexicon as ol

def get_word_sentiment(word):

         if word in ol.negative():

                  return "neg"

         elif word in ol.positive():

                  return "pos"

         else:

                  return "neu"

def get_sentence_sentiment(sentence):

         sentence = sentence.lower()

         sents = [get_word_sentiment(word) for word in sentence.split(" ")]

         if sents.count("pos") > sents.count("neg"):

                  return "pos"

         elif sents.count("neg") > sents.count("pos"):

                  return "neg"

         else:

                  return "neu"

print("Sentiment of the word happy is : ", get_word_sentiment("happy"))

print("Sentiment of the sentence 'this movie has a shocking beginning but

ends on a happy and cheerful note' ", get_sentence_sentiment("this movie

has a shocking beginning but ends on a happy and cheerful note"))





The code uses an opinion lexicon available as a part of the NLTK library. ol.negative() is the list of negative words whereas ol.positive() is the list of positive words. The get_word_sentiment() function returns a word as positive, negative, or neutral. The get_sentence_sentiment() function counts the number of positive and negative words in a sentence. It computes the sentiment of a sentence as the majority sentiment of words in the sentence. The code above is only a starting point and does not capture intensifiers, negations, or even conditional sentences. We leave the extension of the above code to cover other sentence constructs for the reader. As you continue to add new if conditions or functions to the code, you will observe that the code gets cumbersome and may have contradicting conditions. When it gets the prediction right, it does so with confidence. However, the algorithm may not cover all possible conditions. High precision and low recall of this form is characteristic of rule-based algorithms. This really leads to the second-generation algorithms.




  □  8.5Statistical Sentiment Analysis



Statistical classification algorithms are typical of approaches in the second generation of NLP. This includes supervised classification learning to predict output labels using labelled corpora. For the purpose of simplicity, let us begin with the binary classification task of sentiment classification. A typical pipeline for statistical SA is shown in Figure 8.4. This pipeline assumes a statistical classifier with word-level features. Later, we also discuss additional enhancements to the pipeline which have been shown to be useful. The pipeline has the following steps:


1. Data Preparation: Since SA is being formulated as a supervised classification, a labelled dataset is the starting point. A labelled dataset consists of textual units (which may be sentences or documents), each of which is labelled with a binary sentiment value: positive or negative. Several sentiment-labelled datasets are available for academic or research purposes. UCI Machine Learning Repository1 is one such repository. For business applications, proprietary datasets where each instance has a sentiment label may also be useful. In the case that you want to create your own labelled dataset, it may be possible to use distant supervision. Distant supervision is the mechanism of creating labelled datasets using heuristics to obtain labels. The ‘distant’ in distant supervision comes from the fact that the supervision is governed by a distant phenomenon such as the presence of a keyword. For example, social media posts containing certain hashtags (say, ‘#happy’ or ‘#sad’) may be downloaded and labelled as per the presence of a hashtag. This means that social media posts containing ‘#happy’ will be assumed as happy or positive posts, while those containing ‘#sad’ will be assumed as sad or negative posts. If  a social media post contains both hashtags, you may consider discarding the post. However, if distant supervision has been used, it is essential to remove to hashtag once the dataset has been created. This is to avoid the possibility of the classifier learning to use the hashtag as the precise feature to make the prediction. Also, with the hashtag removed, the classifier can learn from additional cues in the text.

2. Preprocessing: Typical preprocessing used for SA involves the removal of punctuation marks and conversion of words to lowercase. This ensures that words in their capitalized and non-capitalized forms are not treated differently. However, a word in all caps may have a semantic value (‘I love this’ versus ‘I LOVE this’). Therefore, it may be advisable to apply heuristics such as repeating the capitalized word twice. In addition, stopwords may be removed using publicly available stopword lists. A stopword list may be manually created for a new language as well.

3. Feature Representation: Once the text has been preprocessed, instances must now be converted to their vector representations. For a feature vector representation that uses words as features, the first step is to create a vocabulary of words in the dataset. This is the set of unique words in the dataset. Following this, each instance is represented as a vector where positions in the vector corresponding to words present in the instance are ‘switched on’. This switching on may either be Boolean or frequency-based. This means that, for a sentence ‘This is very very good’, the word ‘very’ may be represented as being present or occurring twice.

4. Feature selection: Feature selection allows reduction in the feature size while improving the performance of the classifier. Feature selection may be in the form of pruning. This is where words that occur less than a certain number of times are removed. An alternative is to remove words or features that are often correlated. Feature transformation may also transform the feature space from a vector of words to a vector of features with a feature function that maps words to feature values.

5. Classifier training: Documents in their feature vector representations are then given as input to train a classifier. The general idea of a classifier is that it learns a functional mapping between features and the output label. Typical classification algorithms used for SA have been described later.
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Figure 8.4  A typical pipeline for statistical sentiment analysis.



Loading a Dataset for Sentiment Classification

In the rest of this section, we show how a sentiment classifier can be built using a combination of Pandas and Scikit-learn. Pandas is a Python library that is used to store and process datasets using simple primitives. The dataset used in this example is from Kotzias et al. (2015). However, the code can be reused for any dataset that is organized into rows, where each row consists of two columns: text and sentiment label.



import pandas as pd

import re




The read_csv method is used to read a structured file. Although the method reads csv files by default, the delimiters separating fields can be specified as an argument. As seen below, the delimiter is specified as a tab (‘\t’). The other arguments state that the dataset file does not contain column headers. Instead, it assigns names to columns as text and label, as given by the names value.



df = pd.read_csv("./datasets/imdb_labelled.txt", delimiter="\t", header=None,

names = ['text', 'label'])




The code below creates a new column in the dataframe called processed_text which removes special characters and converts all words to lowercase. This means that the word ‘good’ will refer to the same feature in its different capitalizations such as ‘Good’, ‘good’, or ‘GOOD’.



df["processed_text"] = df["text"].apply(lambda x: re.sub(r'[^\w\s]', '', x.

lower()))




The next step is to split the dataset into train and test sets. The sentiment classifier will be trained on the train set and evaluated on the test set. This can be done using the train_test_split method as shown below. The value of 0.1 shows that 10% of data will be used as the test set, while the rest will be the training set. It is useful to split the dataset into train and test, so that different feature combinations can be tried out to build the best performing classifier. The ‘best performing’ classifier will be determined based on its performance on the test set.



from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.1)




The CountVectorizer class in scikit-learn converts a text to a vector. The length of the vector is equal to the vocabulary of the dataset. The individual values in the vector of a text correspond to the number of times they occur in the text. CountVectorizer is one of the many vectorizers available for scikit-learn. The fit_transform function combines two steps: fit the instances in the training set to a vocabulary, and then transform the input text into the vector of values as described above. As a result, X_train contains the vectorial representations of the training set, while y_train contains the output labels as obtained from the label column. X_test and y_test are the corresponding values of vectors and labels for the test set.



from sklearn.feature_extraction.text import CountVectorizer

X_train = vectorizer.fit_transform(train["processed_text"].tolist())

y_train = train["label"].tolist()

X_test = vectorizer.transform(test["processed_text"].tolist())

y_test = test["label"].tolist()




8.5.1 Classification Algorithms

We formalized SA as a classification problem. In its elementary form, it is in fact a binary classification problem. The input is a piece of text, either a sentence or a document comprising a collection of sentences. The output is one among the two labels: positive, indicating that the document carries positive sentiment, and negative, indicating that the document carries negative sentiment. The assumption in the simplification is that a document cannot be predicted as both. Let us now focus on classifier learning algorithms that have been commonly used for SA.

Formally speaking, words in a document are the input variables while sentiment label is the output variable.

8.5.2 Naïve Bayes

Naïve Bayes algorithm is based on the Bayes rule that determines a way to compute the conditional probability between two variables. Let us look at the Bayes rule:

(8.1)
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The Bayes rule is adapted for classification such that B is the classification label S indicating a Boolean variable for sentiment. A is the text T indicating the words in the document. The Bayes rule can be revisited as:

(8.2)
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The document T can be represented as a set of words W. The chain rule in probability would make it computationally challenging to calculate the value. This is where naivety helps. The algorithm is called naïve because it naïvely assumes that words are independent of each other. Words are in fact dependent on each other. However, it turns out that Naïve Bayes can work well to an extent in practice. The independence between words allows the conditional probability on the right-hand side to be decomposed as a product over all words.

(8.3)
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The classification algorithm aims to infer a value of the label S from the equation above. The notion of argmax comes into play. ‘argmax’ stands for the value of S that maximizes the value of the probability. Therefore, the value of label S being predicted using Eq. (8.3) can be represented as:

(8.4)
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Let us now examine how the value of Eq. (8.4) can be computed. For every candidate label, the value of P(W |S ) can be computed in terms of the definition of conditional probability: the number of times a word occurs in a document of a certain label, divided by the number of times a label occurs in a document. The denominator indicates the label skew in the dataset while the numerator indicates the co-occurrence of the word with the given output labels. Now we are left with the denominator of the overall equation P(W  ). How can that be computed? It turns out that the computation is not necessary. The value of P(W  ) is the same for both values of the output label S. Therefore, this computation can be dropped since it does not affect which label wins.

Thus, Naïve Bayes gives a simple technique to classify sentiment labels. In general, it can be extended to any text classification problem. Let us now see how the code looks.

We will be using the naïve_bayes class available in scikit-learn (referred to as sklearn in Python code).



from sklearn import naive_bayes

from sklearn.metrics import accuracy_score




The fit function trains the model. Therefore, it must take two inputs, X_train and y_train. The parameters of Naïve Bayes are learned such that the conditional probabilities with respect to words in X_train maximize the performance on the expected labels in y_train.



nb = naive_bayes.MultinomialNB()

nb.fit(X_train,y_train)



The next step is to check how well the model performs on the test set. We will be using the predict function that takes as input X_test and produces a set of predictions y_pred. These predictions must be compared against the expected values y_test. The accuracy_score function computes the accuracy by comparing the two sets of values y_pred and y_test. The multiplicative factor of 100 converts it to a percentage.



# predict the labels on test dataset

y_pred = nb.predict(X_test)

# Use accuracy_score function to get the accuracy

print("Naive Bayes Accuracy Score -> ",accuracy_score(y_pred, y_test)*100)





The output we obtained for this was



Naive Bayes Accuracy Score -> 78.66666666666666




While we evaluated the model on a test set, it is useful to get its predictions on input strings. This is useful to evaluate individual examples. Also, this is useful if the model will be deployed in a product. The following code shows how to do it. It uses the predict function again. Instead of computing the accuracy score, it prints the prediction.



X_test = vectorizer.transform(["This movie started off well, but ended on

a terrible note"])

y_pred = nb.predict(X_test)

print(y_pred)

X_test = vectorizer.transform(["This movie was supremely entertaining!"])

y_pred = nb.predict(X_test)

print(y_pred)




The output we obtained for this was as follows: 0 indicates negative and 1 indicates positive because that is how the rows were labelled in our source dataset.



[0]

[1]




While the code above shows how sentiment classifiers can be built using scikit-learn for a binary sentiment task (positive/negative), it can be applied to a wide variety of sentiment classification tasks. If you have a dataset of angry and not angry emails, they can be passed into a similar code. The only thing that changes is the meaning of 0 and 1 in the predicted output. If your training set marks angry emails as 1 and non-angry emails as 0, the predicted output must also interpret 1s and 0s in a similar manner.



Other Algorithms

Naïve Bayes is one among the many statistical algorithms that can be used to train a classifier. Another algorithm is the support vector machine (SVM). SVMs are a maximum-margin classifier which estimates the coefficients of hyperplanes that separate the instances of the two classes (positive and negative, in our case). Using alternatives for statistical algorithms is straightforward with scikit-learn. Analogous to the Naïve Bayes code above is the code for SVM:




X_train = vectorizer.fit_transform(train["processed_text"].tolist())

y_train = train["label"].tolist()

X_test = vectorizer.transform(test["processed_text"].tolist())

y_test = test["label"].tolist()

svm_class = svm.SVC(kernel = "linear")

svm_class.fit(X_train,y_train)

# predict the labels on validation dataset

y_pred = svm_class.predict(X_test)

# Use accuracy_score function to get the accuracy

print("SVM Accuracy Score -> ",accuracy_score(y_pred, y_test)*100)

X_test = vectorizer.transform(["This movie is boring"])

y_pred = svm_class.predict(X_test)

print(y_pred)

X_test = vectorizer.transform(["This movie is entertaining!"])

y_pred = svm_class.predict(X_test)

print(y_pred)





Adding New Features

The code above describes how words can be used as features. However, for sentiment classification, other qualitative features have often been found to be useful. Referred to as ‘feature engineering’, key research in the second generation of SA focused on engineering features in ways that are useful for the task. Therefore, it is up to the human engineer to decide what features are likely to be useful for a classification task. This depends on the source of data and the human engineer’s understanding of the data. For example, a designer creating an SA system for emotion classification of messages created by youngsters may decide to use emoticons or emojis as features because the designer thinks that youngsters tend to use emojis a lot. 

This means that, in addition to vectors representing presence of words, additional features may be concatenated to the input to the classifier. These engineered features can often be motivated by multiple parameters:

1. Nature of text: Social media text may include non-verbal markers in the form of emoticons. They may be interpreted as special features. Similarly, numeric features such as number of punctuation marks (exclamation marks, for example), number of hashtags, and presence of mentions of another user may be useful. Each feature has a unique relevance of its own.

2. Feature spaces: Notions of feature spaces can also be modified. One way to do so is to, say, replace all words with synonym indicators. Consider a lexical resource such as WordNet. Imagine a set of preprocessing steps for a document whose sentiment needs to be predicted. We first identify the synsets of words in a document, either by manually labelling words with synsets or using word sense disambiguation to obtain synset identifiers. Then, instead of training a classifier on a vector of word indicators (or n-gram indicators, as the case may be), a classifier is trained on synset identifiers. This allows words with different surface forms to overlap with each other if they have the same sentiment. Does this method still work if there is no lexical resource available? Clustering techniques can be useful. Instead of mapping synonyms to the same identifier, a clustering technique could find a cluster of words that co-occur with each other. Word vectors can then be replaced with cluster vectors, where the length of the vector is the total number of cluster identifiers. These cluster identifier vectors can also be combined with word vectors as additional information.

3. Sentiment-based features: Given the nature of the problem, a key category of features that have been useful for SA are sentiment-based features. These are features derived from sentiment lexicons. A simple example is the number of positive and negative words in a document. A sentiment lexicon may be used to determine these counts. The number of positive and negative words is concatenated with a feature vector of words present in the document. Depending on what the lexicon contains, additional information can be supplied to the classification learning algorithms. 

So, how does this look in action? FeatureUnion in scikit-learn is a mechanism that can be used to combine features. The code is shown as follows:



from sklearn.preprocessing import FunctionTransformer

from sklearn.pipeline import FeatureUnion

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer




We have decided to use four kinds of features: count vectors, TF-IDF vectors, length of the text, and number of question marks and exclamation marks. This is only a small sub-set of useful features for sentiment classification. The code below must be viewed as an example of how new features can be included in a sentiment classifier.

FunctionTransformer defines a lambda function, which is inspired from functional programming languages such as Haskell. For an input column x, a vector of lengths of documents in x is created. Note list comprehension in Python used in the code : [[len(doc)] for doc in x]. The next line does the same for punctuations. This is a Boolean feature which is True if the text contains ! or ?.  Finally, count and TF-IDF vectorizers are also initialized.



length_extractor = FunctionTransformer(lambda x: [[len(doc)] for doc in x],

validate=False)

punctuation_extractor = FunctionTransformer(lambda x: [["!" in doc or "?" in doc]

for doc in x], validate=False)

count_vectorizer = CountVectorizer()

tfidf_vectorizer = TfidfVectorizer()




We will now represent each row in the dataset as a concatenation of four features: Count-based vector over the vocabulary, TF-IDF vector over the vocabulary, length of the text, and presence of exclamation/question mark. This is done by defining a feature union as follows:



features = FeatureUnion([

         ('length', length_extractor),

         ('punctuation', punctuation_extractor),

         ('unigrams', count_vectorizer),

         ('tfidf', tfidf_vectorizer)

])




Following this, the train and test functions remain the same. Note that the features object is used in the fit_transform and transform functions because we want the input rows in the training and test sets to be represented as the concatenation of features as created using FeatureUnion.



X_train = features.fit_transform(train["processed_text"].tolist())

y_train = train["label"].tolist()

X_test = features.transform(test["processed_text"].tolist())

y_test = test["label"].tolist()

svm_class = svm.SVC(kernel = "linear")

svm_class.fit(X_train,y_train)

# predict the labels on test dataset

y_pred = svm_class.predict(X_test)

# Use accuracy_score function to get the accuracy

print("SVM Accuracy Score -> ",accuracy_score(y_pred, y_test)*100)

X_test = features.transform(["This movie is boring"])

y_pred = svm_class.predict(X_test)

print(y_pred)

X_test = features.transform(["This movie is entertaining!"])

y_pred = svm_class.predict(X_test)

print(y_pred)





  □  8.6Neural Approaches to Sentiment Analysis



In the third generation of NLP, linear neural layers such as recurrent neural networks (RNN) ushered in a new advancement in sentiment classification. RNN consists of a series of neural units, such that an internal state of a unit feeds into the next in the series. Therefore, for a set of steps 1 to t, a recurrent neural chain consists of t neurons, where there are t inputs, t outputs, and t links between consecutive neurons. These ‘links’ are referred to as states in that they pass information from a state to the text. The state of a neuron at step t feeds into the state of a neuron at step t + 1. This results in a series of states representing information about a series of inputs such that these states pass information through them.

The applicability of an RNN for text is intuitive. Text is fundamentally linear, either in its written form or spoken. RNN captures this dependency in the form of a chain as well. However, RNNs suffer from a peculiar problem in the context of language. RNN is a chain-like structure where the current state strictly depends on the previous. As is known in language, words may have long-range dependencies within a sentence that are crucial for their understanding. In addition, sentences may have dependencies between them that cause a discourse structure to emerge. Because weight update proceeds in a reverse order, RNNs suffer from a vanishing gradient problem. Because the gradient of the first state is updated as a product of consequent states, the influence of weight change of a state depends on the distance between the two states. As a result, a modification of RNNs has emerged to be effective.

Long short-term memory network (LSTM) is a modification of RNN that has feedback connections along with a memory and gates. An illustration is shown in Figure 8.5. The gates regulate the extent of information to be passed on to the next state. Therefore, an LSTM cell consists of (1) an input gate which receives information in the form of weighted vectors, (2) a forget gate which decides what part of the information needs to be forwarded, and (3) an output gate which computes the output of the cell. In addition to the gates, the memory of a state is stored in the form of a cell state. The cell state allows the state to remember information while the forget gate allows the state to forward information over a long duration. This imparts it the name LSTM.
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Figure 8.5  LSTM cell.


A typical SA architecture that uses LSTM or RNN first initializes words with their word embedding representations as derived from a large unlabelled corpus using an algorithm like Word2vec, GloVe, etc. Thus, a sentence of length N is represented by N cells with the word embedding initialization. Since sentence lengths are variable, the length of the input vector is assumed to be the length of the longest sentence in the training set. For sentences shorter than the maximum length, the input vector is padded with dummy tokens. This vector of initialized word embeddings is then passed to two sequences of LSTMs. These are known as bidirectional LSTMs (BiLSTMs). BiLSTMs are LSTMs that operate in forward and backward directions. One series of LSTM cells runs from the first word to the last while the other series runs from the last word to the first. Several layers of BiLSTM may be followed by a feed-forward layer and a prediction layer that converts (or colloquially, ‘squashes’) the output to a probability distribution over the set of labels.




In addition to representations that are learned over the BiLSTM layers, information may be passed into the network in the form of an attention layer that learns weighted importance over units in a BiLSTM series without having to follow the linear structure of a sentence. Information from lexical resources and other traditional features can be augmented at the end of the BiLSTMs. The BiLSTM component captures the semantics of the sentence while the features encapsulate additional information.

The advent of Transformer-based models resulted in BERT emerging as a popular paradigm for sentiment classification. As described in Chapter 2, BERT uses the encoder blocks in the Transformer and trains them on training objectives such as the masked language model. The [CLS] token can be used to fine-tune a BERT model for sentiment classification. The input is BERT trained on a large dataset of text. In order to fine-tune, that is, adapt it for sentiment classification, a softmax layer is typically applied to the output of the CLS token. The model is then re-trained on the sentiment-annotated dataset. This updates the values of the model so that it is optimized for sentiment classification.

We will now discuss a simple way to use sentiment classification using Transformers. A useful blog from HuggingFace is available at the link: https://huggingface.co/blog/sentiment-analysis-python.2



from transformers import pipeline

sentiment = pipeline(task = 'sentiment-analysis')

sentiment("The movie is excellent.")




In the example above, we use the pipeline module of Transformers. The input sentence can simply be passed as an argument to ‘sentiment’. The code above predicts the sentence as positive.

Let us now see how BERT can be fine-tuned for sentiment classification. We will use the IMDB dataset available as a part of HuggingFace repository. The dataset consists of sentiment-labelled movie reviews.

We will test on a small sample of the dataset. Let us take 500 rows for training and 50 rows for testing. Larger samples will likely produce better results, but this example uses a sample for the sake of fast training.



train_small = imdb["train"].shuffle(seed=42).select([i for i in list(range(500))])

test_small = imdb["test"].shuffle(seed=42).select([i for i in list(range(50))])




The BERT tokenizer will be used to create text into embeddings that will be the input to the BERT model. We will be using the DistillBERT model which provides a compact BERT-based model.



from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")




The preprocess function will extract the text column and apply the tokenizer on the train and test sets as follows:



def preprocess_function(examples):

         return tokenizer(examples["text"], truncation=True)

tokenized_train = train_small.map(preprocess_function, batched=True)

tokenized_test = train_small.map(preprocess_function, batched=True)





AutoModelForSequenceClassification can be used for sequence classification (where the input text is the sequence that must be assigned a label—sentiment label, in this case). We specify that the number of labels is 2.



from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("distilbert-baseuncased",

num_labels=2)




We will now define the metrics that will be reported during training. Specifically, we will report F-score and accuracy. 



import numpy as np

from datasets import load_metric

def compute_metrics(eval_pred):

         load_accuracy = load_metric("accuracy")

         load_f1 = load_metric("f1")

         logits, labels = eval_pred

         predictions = np.argmax(logits, axis=-1)

         accuracy = load_accuracy.compute(predictions=predictions, references=

         labels)["accuracy"]

         f1 = load_f1.compute(predictions=predictions, references=labels)["f1"]

         return {"accuracy": accuracy, "f1": f1}





Let us look at the compute lines above. The input arguments are predictions and labels. This means that the column predictions and labels will be used to compute the metrics. The output will be reported in columns indicated in double quotes, namely f1 and accuracy.

We will now use TrainingArguments and Trainer to fine-tune the model. The training arguments are specified as follows. The output directory is specified as ./model. HuggingFace allows models to be pushed to their hub. The output_dir will refer to the name of the model and an additional argument that indicates that the model must be pushed to the hub. In this case, an access token from HuggingFace is required. Pushing a model to the hub makes it available for the research community and is a useful practice that HuggingFace has fostered. 



from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

         output_dir = "./model",

         learning_rate=2e-5,

         per_device_train_batch_size=16,

         per_device_eval_batch_size=16,

         num_train_epochs=2,

         weight_decay=0.01,

         save_strategy="epoch"

)





The Trainer class defines the input and output for the model as follows:



trainer = Trainer(

         model=model,

         args=training_args,

         train_dataset=tokenized_train,

         eval_dataset=tokenized_test,

         tokenizer=tokenizer,

         compute_metrics=compute_metrics,

)




The train() and evaluate() methods will be used to train on the dataset specified in train_dataset and then evaluate the model using the eval_dataset function.


trainer.train()

trainer.evaluate()






  □  8.7Sentiment Analysis in Different Languages



As multilingual content in digital formats grew, SA in languages other than English has also grown. Early work attempted to follow lexicon-based and rule-based approaches to SA. Sentiment-annotated datasets available in languages around the world are fast growing. However, English language datasets significantly outnumber those for other languages. Therefore, as datasets began to be made available in English, cross-lingual approaches to SA have also been useful. Cross-lingual SA refers to approaches that use datasets from a language to train sentiment classifiers in another language. The former is called the source language, while the latter is called the target language. There could be more than one source or target language. For example, languages that are closely related to each other may benefit from datasets in these languages.

Using machine translation (MT) was an early idea in cross-lingual SA. The intuition here is that the translation for cross-lingual SA need not preserve fluency as long as it preserves the sentiment nature. Early research that uses MT states that only the sentiment words need to be translated. Therefore, one option is to use a bilingual dictionary to translate individual words with a focus on words that occur in the sentiment lexicon of either of the two languages. This will tend to preserve the sentiment nature of the text, thereby allowing cross-lingual SA.

Another option for cross-lingual SA is to use cross-lingual projections. In the first generation of NLP, bilingual dictionaries were a popular alternative for cross-lingual SA. Using a bilingual dictionary and a sentiment lexicon either in the source or target language, words in a document were translated to a destination language. This language could either be the source or target language. A way to achieve cross-lingual projection if there are datasets in both source and target language is co-training. Co-training is where classifiers for the source and target languages would be trained together. The algorithm operates in an iterative manner as follows. This algorithm assumes that there exists a labelled dataset in the source language and a smaller dataset in the target language. A classifier is learned for the source language using the labelled dataset in the source language. Instances that are predicted to be high confidence are translated to the target language. These translated instances, along with the target language dataset, are used to train a classifier. This classifier is then used to obtain predictions for the unlabelled target language dataset. High-confidence instances are translated back to the source language and used to improve the source language classifier. This continues until convergence.

In the third generation of NLP, cross-lingual SA has been viewed using three key paradigms. The first paradigm is via a multilingual embedding in the same space. If words are represented as embeddings in the same space, classifiers can be agnostic to the language of origin of the documents. The multilingual embeddings may be learned from aligned corpora along with large unsupervised corpora in both languages. Until the time of writing this book, cross-lingual SA relies on such bilingual mapping between the source and target languages.



Case Studies



Angry Complaint Emails to a Company

CustPro is a company that provides services to a large community of customers. Customers often write to the company’s email address for customer feedback. These emails tend to be to different degrees of complaints. Some emails are mild suggestions whereas some are threats to discontinue service. Given the restrictions on the resources to handle and reply to these emails, CustPro needs to prioritize among them. Emails that are angrier than the others would be replied to with a higher priority than the rest. The company receives a large number of emails. Therefore, manual evaluation of the ‘angriness’ is not feasible. Sentiment analysis can be helpful in this case. This is a typical case of sentiment polarity detection with a focus on anger as the sentiment.

Predict Stock Prices

A company investing in stocks understands that stock prices are linked to public sentiment about a company. It is not the only factor, but it can prove to be a helpful indicator in making decisions to buy or sell stocks. Therefore, the company decides to use news reports about the trading options and perform sentiment analysis on top of them. This case study has been deployed by many financial advisory companies.

Social Media Monitoring

The popularity of social media has made it a channel for youngsters to express their sentiment. In an ever-changing world, social media is often a repository of emotions expressed in the form of posts. There are social media platforms that are focused on allowing users to vent their emotions. These users can tag their posts with a specific emotion and receive solidarity from other users of the network. These social networks can help to understand the mental health of a community. Given the large volume of these posts,  sentiment analysis is an automated way of understanding the trends in sentiment.


Other Business and Social Applications of Sentiment Analysis

It is no surprise that there are more negative emotions than positive emotions. Being able to detect negative emotions can be critical to businesses, administrative authorities, and social agencies. Understanding the emotions within a conversation may be useful for call centres in the case of ongoing conversations. This may also be applied to work meetings where communication devices track the emotional high points of a meeting.

In terms of social applications, hate speech detection and offensive language detection are two popular applications that are the most relevant. Offensive language detection deals with the detection of language that may be considered unacceptable in certain settings. In contrast, hate speech detection involves the detection of text that is hateful towards a certain individual or group—possibly marginalized. Availability of datasets, clear definition of the problem, and inherent biases in the dataset are some considerations in this regard.



Summary

In terms of its challenges, applications, and available datasets, sentiment analysis (SA) has emerged as a key area of natural language processing (NLP). It deals with the detection of sentiment in text. In this chapter, we discuss how approaches for SA in the three generations have tackled ambiguity.In the first generation, rules based on combinations of words are used to detect sentiment, often relying on a sentiment lexicon. In the second generation of NLP, features based on emotion lexicons orindicating emotions are used to train statistical classifiers. Design of useful features is a key requirement of the second generation. In the third generation of NLP, neural architectures that compute representations using combinations of inputs from a text without the need for explicit feature design are used for SA. The third generation performs well on sentiment classification but also unearths challenges in terms of corner cases such as sarcasm or contextual sentiment.

Review Questions

1. What is stance detection? How is it different from binary sentiment classification?

2. What are some considerations in using crowdsourcing to create datasets?

3. What are the three scores that every synset gets in SentiWordNet? Do they always sum to 1?

4. What is the difference between an LSTM cell and an RNN cell?

5. How can machine translations be useful to classify documents in Hindi using a training set of English documents?

6. What is naïve about the Naïve Bayes algorithm?

Course Assignment and Project

1. Feature-based sentiment analysis deals with the identification of features for a classifier. Design features for the sentiment classification of feedback notes in the guest register of a five-star hotel. Define the data types and prescribe ways to compute the features. Clearly state your assumptions.

2. Download a hundred posts from a social media website (such as X) that mention an upcoming movie. You may consider using the API of the platform to ensure that you abide by the restrictions of the platform. Obtain labels for each of the posts as ‘positive’ and ‘negative’ from two annotators. Report your findings in the form:

a.How often do the annotators agree? In what cases do they disagree?

b.Which examples did they find challenging?

c.Can you map each of the challenges to different kinds of ambiguity mentioned in this chapter?

3. Implement an LSTM-based sentiment classifier. You may use the dataset available at the link: http://www.cs.jhu.edu/mdredze/datasets/sentiment/. Present your analysis to answer the questions:

a.How does the performance change with different embedding initializations?

b.What kind of preprocessing do you need to do?

c.How are words in the test set that are not present in the training set handled?

4. Thwarting is the phenomenon in a piece of text wherein the majority set of sentences set an expectation about an overall sentiment. However, a minority set supersedes this sentiment and flips the overall sentiment. Design three approaches based on principles in the three generations of NLP and compare them.

Objective Questions

Fill in the Blanks

1. In aspect-based SA for products, aspect refers to _______ of products.

2. Thwarting is a form of _______ ambiguity that poses a challenge to SA.

3. LIWC is a lexicon that organizes words into _______.

4. SentiWordNet assigns _______ scores to every synset.

5. The _______ function in scikit-learn converts an input row to a required feature representation.

6. The process of designing features that may be useful for a classification task such as sentiment analysis is called _______.

Select the Most Appropriate Option

7. What is the ambiguity in the sentence ‘This is a movie that you want to watch because the cinema hall has air conditioning’?

a.Discourse

b.Lexical

c.Syntactic

d.Pragmatic

8. Which of the following is true about SentiWordNet?

a.The three scores of a synset add to 1.

b.SentiWordNet was created using a semi-supervised approach.

c.SentiWordNet provides scores to synsets in the WordNet.

d.All of the above

9. Which of the following is true about distant supervision?

a.Distant supervision may allow rapid creation of annotated datasets.

b.Distant supervision uses heuristics to assign labels to a document. This may include the presence of hashtags.

c.Distant supervised datasets need to be checked for quality because the heuristics may result in undesirable annotation.

d.All of the above

10. Which module in the Transformers library can be used to train a sentiment classifier?

a.AutoTokenizer

b.AutoModelForTokenClassification

c.AutoModelForSequenceClassification

d.Datasets

11. How can BiLSTM be used for sentiment classification?

a.A feed-forward and softmax layer are attached to the cell corresponding to the last-word position.

b.A feed-forward and softmax layer are attached to the cell corresponding to the first-word position.

c.Bidirectional LSTM produces a single value corresponding to prediction.

d.Bidirectional LSTM produces two values that are averaged to obtain prediction.
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Answers to Objective Questions

1.attributes

2.discourse

3.hierarchy

4.three

5.transform

6.feature engineering

7.(d)

8.(d)

9.(d)

10.(c)

11.(a)



 

1https://archive.ics.uci.edu/ml/datasets.php (accessed on 1 May 2023).

2https://huggingface.co/blog/sentiment-analysis-python (accessed on 3 May 2023).














	 

	 




	CHAPTER
9

	Question Answering








If I had an hour to solve a problem and my life depended on the solution, I would spend the first 55 minutes determining the proper question to ask … for once I know the proper question, I could solve the problem in less than 5 minutes.

Albert Einstein





Learning Objectives

After reading this chapter, you will be able to


• Describe seminal Q&A systems such as IBM Watson.

• Use off-the-shelf Q&A models and libraries.

• Apply Q&A to solve business problems.

• List steps in a Q&A system.






Einstein captures the importance of questioning in the chapter-opening quotation. Ability to  ask nuanced questions is a crucial component of learning, and languages enable humans to do that. Humans express curiosity about their surroundings by asking questions to one another. If a baby sees a picture of an animal it has not seen before, the baby may point to the picture and say ‘What?’ to its parent. The parent then answers the question. The next time the baby sees the animal, it is likely to say the name of the animal rather than asking ‘What?’ The ability to ask questions and learn from the answers one receives is a crucial skill that allows humans to broaden their knowledge.

Internet users have traditionally learned new information in a similar manner using search engines. Search engines are the Web portals that allow users to submit queries and obtain a list of documents that are relevant to the query. A query is typically a phrase consisting of a few words. On receiving a search query from a user, a search engine looks for relevant documents and returns these documents for the user to read and find the answer to the question. It is up to the user to obtain the information they were looking for, from the documents. For example, a user may search for the name of a new phone on a search engine and get pages that describe the phone. However, this process leaves it to the user to find the answer to their questions by reading the returned document(s). If the user types a query ‘battery life of phone X’, a typical search engine would return a list of documents where at least one contains the result in the form, say, ‘The battery of this phone X lasts 9 hours after a full charge’. The user must read the sentence to get the answer to their question.

However, the ability to ask questions and receive an answer to a question from a computer has been regarded as a more graceful interaction with computers since as early as 1985 (Paris, 1985). Often, a user may require a specific piece of information about an entity without having to read through the documents. For example, their information need may be to know the price of a new phone. Being provided a numerical value is a more human way of addressing this information need, instead of returning a set of documents as in the case of a search engine. Since natural language processing (NLP) aims to impart the ability of understanding language to computers, it is imperative that computers must be able to answer questions, the way the parents of the baby in the example above do. The area of NLP that deals with this is called automatic question answering or, simply, question answering (Q&A). Q&A is the task of automatically generating answers to questions posed by a user (Hirschman and Gaizauskas, 2001). Therefore, a user may type the question: ‘What is the capital of India?’ A traditional search engine would return a set of documents. Search engines today integrate question answering. If the query is posed as a question, the answer is returned in the form of a ‘card’—a display artefact that contains the answer to the question. Such a Q&A system returns the answer ‘New Delhi’. In that sense, Q&A covers two components of NLP: natural language understanding and natural language generation. When a user asks a question to a computer, the computer must first understand the question, look up its knowledge resource for a possible answer, and then generate an appropriate answer.

In fact, the ability to answer questions is at the heart of a key test in artificial intelligence called Turing test (Turing, 1950). This is a test for machine intelligence proposed by Alan Turing in 1950. The Turing test is an imitation game described as follows. A user asks questions on a computer terminal. The user is then shown an answer. This answer may be generated from one among two sources. It may be generated by a human responder (on the other side of the terminal) who manually reads the question and types the answer. Alternatively, the answer may be generated automatically by a computer which possesses the ability of language understanding and generation and knowledge regarding the world. The Turing test states that a machine can be said to be truly intelligent only if the user who is interacting with the terminal is unable to determine if the answer presented to them was from the human responder or the computer. An intelligent computer responding to questions will be able to imitate a human responder, thereby confusing the human observer who asked the question. The importance of a computer being able to answer questions can be understood from the fact that the Turing test states that the ability to answer questions is the hallmark of machine intelligence.

The value of Q&A has been understood for a long time. Enabling computers to answer natural language questions has been attempted since half a century by scientists and technologists. Following the Apollo mission, the LUNAR Q&A system was developed to allow geologists to query information about lunar rocks and soil collected by the mission (Woods, 1973). Similarly, a system called Student was developed that solves textual mathematical questions by applying a set of rules to convert textual descriptions in the questions to mathematical expressions (Bobrow, 1964). While the LUNAR system was based on structured data and used heuristics to be able to answer a small set of structured questions, ever-growing information on the Internet or enterprise databases has increased the potential utility of Q&A. Given the large volume of information in databases or the Internet, Q&A has emerged as a possible solution using which humans can access the information.





  □  9.1Problem Formulation



The input to Q&A is a question and the output is an answer. Questions can be of several types: factual questions (‘What is the capital of India?’), opinion questions (‘What do you think of the new phone launched by company X?’), or summary questions (‘Tell me about the Jallianwala Bagh massacre’). A Q&A system may generate different kinds of answers. An answer to a factual question may be a single phrase. For example, the answer to the question ‘In which year did India gain independence?’ is ‘1947’. An answer generated by a Q&A system may also be a list of entities. For example, ‘Which prime ministers of India were born in the state of Maharashtra?’ The answer to this question needs to be compiled by putting together information across multiple pages on a website such as Wikipedia. The answer may be returned as a list of names.

While the input and output to a Q&A system are intuitive, Q&A also relies on a third crucial component. The third component is the source of information that acts as the knowledge base for Q&A. Therefore, the answer is generated based on the information in the knowledge base. This information may be in the form of a single document (and also in the form of a Web-based corpora). In the context of a document-question pair, the Q&A system uses the information in the document to answer the question. This has been referred to as document-based question answering. The other alternative is to use the Web as a source of information. Therefore, to answer the question ‘How many planets are there in the solar system?’, a Q&A system may use web pages on the Internet to obtain the information. This has been referred to as web question answering.

Automatic answering of questions can thus be visualized as three broad stages, as shown in Figure 9.1: (1) understanding the question, (2) retrieving potentially relevant documents and snippets from the resource that may answer the question, and (3) extracting the answer from these snippets. The three stages may be performed as a sequence or jointly. As we will see in the next sections of this chapter, approaches to Q&A in the three generations differ in the way they handle these stages, either sequentially or jointly, or as a distinct pipeline of stages or in combination.

[image: ]
Figure 9.1  Overview of stages of question answering.



  □  9.2Ambiguity in Question Answering



Since Q&A consists of three stages, ambiguity in Q&A arises due to each of the three. Let us consider ambiguity in the three one by one. 

The first stage in Q&A is question interpretation. Ambiguous questions may be questions that do not have a definitive answer. For example, ‘Have you stopped troubling your parents?’ is a yes/no question but the answer depends on the opinion of the listener. A listener may respond to the question with a ‘yes’ or ‘no’ or say ‘no, I never troubled them, what do you mean?!’ However, we refer to ambiguity in questions as the ambiguity in interpretation of the question itself. Since questions are free-form text, there may be ambiguous interpretations of the question. Examples of ambiguous declarative sentences can be converted to ambiguous questions. For example, ‘Did you see the boy with the telescope?’ is an ambiguous question because it is not clear if the listener (you) is expected to have seen a boy holding a telescope or using a telescope. Let us consider the example of a factual question: ‘Which country is the highest producer of kiwis?’ The ambiguity resolution in this case involves resolution of ‘kiwi’ (as the fruit, and not kiwi, the bird from New Zealand). It must also disambiguate the metonymy in the question. A country being the highest producer of kiwis implies that the manufacturers and farmers in the country produce the highest number of kiwis. Another example is the question ‘Who would believe that India would defeat England in the cricket series?’ The answer to this question could either be a person or an emotional response (such as ‘that’s true. it is quite a feat). Therefore, pragmatics plays an important role in Q&A.

The second stage in Q&A is the retrieval of appropriate documents. Typical challenges in sense disambiguation for information retrieval (IR) play a role here. For example, ‘kiwi’ in the example above may retrieve documents containing references to the bird. Therefore, documents containing the correct sense of kiwis must be retrieved.

The third stage is answer extraction. Ambiguity in this case may arise due to several factors. The first factor is conflicting information. If the Internet is used to extract answer to the question above, different pages may return different information as the result. At the time of writing this book, the query ‘planets in the solar system’ resulted in a different count as an answer because of because of disagreement among scientists about downgrading of Pluto to a dwarf planet. Therefore, candidate answers must be appropriately scored before an answer is returned.


  □  9.3Dataset Creation



Dataset creation strategies for Q&A originate from two sources: information retrieval (IR) and reading comprehension, as shown in Figure 9.2. Early work in Q&A derived inspiration from the utility of Q&A to IR. The ability to answer free-form questions is seen as an extension to IR which only allows a user to enter a query and obtain a ranked list of relevant documents. Therefore, datasets for Q&A can be created by giving a set of questions to human annotators and asking them to find answers to these questions using a corpus of documents.The annotators would then use IR to find the answers to these questions. The resultant question-answer pairs would constitute the training and evaluation set for Q&A.



[image: ]
Figure 9.2  Types of approaches for the creation of Q&A datasets.



The second source of datasets for Q&A is reading comprehension. Natural language understanding pursues the goal of being able to interpret natural language text. Therefore, reading comprehension poses the question: Given a document or a set of documents and associated questions, would the machine be able to answer the questions? With this motivation in mind, several datasets for Q&A have been constructed such that questions are associated with a specific document. Therefore, in this case, the annotators are given a document(s). They may be asked to generate questions and accompanying answers based on the information in these documents. Let us describe some such datasets that have been created for Q&A.

Early work in Q&A focuses on single document-based Q&A. In this case, the input is a document and a question, and the expected output is an answer to the question as found in the document. Some early work also refers to it as reading comprehension (Hirschman et al., 1999). Reading comprehension means that it mimics how human readers understand a paragraph and answer questions based on it. The dataset they use consists of reading materials for schools and contains stories along with accompanying questions.

The TREC Competition released an early dataset for Q&A (Voorhees and Tice, 2000). It is created by a series of human participants and assessors, as shown in Figure 9.3. The human participants are given a large set of news articles, along with a set of questions. They have to then select an answer based on the documents. They can use search engines to find the answer from the document. Assessors then determine if the answers by the participants are correct or incorrect. Questions that are correctly answered by the majority of the human participants are selected in the test set for evaluation. The availability of crowdsourcing has allowed the creation of large-scale Q&A datasets. A recent dataset is the SQuAD dataset (Rajpurkar et al., 2016). A set of Wikipedia articles was first selected based on metrics that measure the quality of the article. A crowdsourced worker was then shown an article and asked to type questions that can be answered based on the article. The answers were indicated as highlighted parts of the text in the article. The highlighting ensured that the answer could indeed be retrieved as a sub-set of words in the article.



[image: ]
Figure 9.3  Creation of the TREC dataset for Q&A.



The method above describes the creation of datasets for Q&A and is useful to create domain-specific datasets. However, an alternative for publicly available datasets for Q&A is scrapes of discussion forums such as Quora.


  □  9.4Rule-based Q&A



In the first generation of NLP, Q&A has been viewed as three steps, as in the case of MULDER (Kwok et al., 2001), as shown in Figure 9.4. It involves decomposing the problem into sub-problems that can be handled using the appropriate set of techniques. The first step is question classification. The natural language question is converted to a structured representation. This structured representation identifies components of the question such as the type of the expected entity (is the answer to the question aperson, a date, a city, etc.?), the key entities (does the question ask information about a person, a place or similar?), and so on. 

[image: ]
Figure 9.4  MULDER: Rule-based Q&A system.



The second step is the retrieval engine. Based on the structured representation of the sentence, appropriate snippets from the knowledge base are retrieved. A snippet may be all or a few sentences in a relevant document. Similarly, the knowledge base may be a document, a set of documents, or pages on the Internet. Finally, the third step is answer extraction. This step extracts the appropriate answer and constructs it in the expected output format. The output format could either be only the answer word(s) or a sentence that answers the question. Approaches in the first generation of NLP differ in terms of the three steps, based on the scope of questions that they expect to be able to answer. For example, if the goal is to answer factual questions, the resource used in the retrieval engine could be the Web. If the goal is to answer opinion-based questions (‘how good is the battery of the new phone?’), the resource could be a discussion forum or a set of reviews. For example, Figure 9.4 shows a framework for Q&A that is divided into three components. The first component understands the question, the second component uses IR to obtain documents that potentially contain the information, and the third component uses parse trees to construct an answer to the question.




Let us now look deeper into how systems of the first generation have approached the three steps described above. Hovy et al. (2000) present a Q&A system that applies different text processing tools to generate the answer to a question as shown in Figure 9.5. The goal of the system is to obtain answers to a factual question based on information in a set of documents. The factual nature of questions simplifies the system in that the facts that are being asked in the question are likely to appear in the document as declarative sentences. For example, the answer to the factual question ‘Who built the Taj Mahal?’ can be obtained from a document about Taj Mahal. Therefore, this method relies on a set of documents as the source of data. These documents could be from a website like Wikipedia, or be documents owned by a private enterprise. For example, a toy company may use the toy manuals as the dataset and allow users to ask questions about the toys. To answer the question, the toy manuals will be used as the reference material.

[image: ]
Figure 9.5  Rule-based approach for Q&A.


Answers to questions can be generated by automating the following step-by-step procedure:

1. Parse the question: The input question is parsed using a parser. Based on the parse tree, the expected answer and the type of the entity are determined. For example, the question ‘Who painted Mona Lisa?’ contains the word ‘who’ indicating that the expected answer is the name of a person.

2. Query the document dataset using words from the question: The next step is to select commonly occurring phrases in the question as extracted in the parse tree. These phrases are then used to obtain the set of relevant documents. For example, in the question ‘Who painted Mona Lisa?’, a candidate commonly occurring phrase is ‘Mona Lisa’. Therefore, the dataset of documents will be queried for ‘Mona Lisa’, and documents which contain the bigram will be returned.

3. Identify relevant segments of the extracted documents: Segments in a document that contain the queried phrase(s) are then extracted. A segment could be a sentence or a sequence of sentences. The segments are then ranked based on the number of words in the question that are present in the segment. For example, if a segment contains many words from the question, it is likely to be a useful segment to answer the question. WordNet is also used to expand terms in the segment. Therefore, even if the segment does not contain the exact words in the question, the segment will be scored high if synonyms of words in the question are present in the segment. Top k segments with the highest score are selected for the next step (see Figure 9.5). 

4. Parse the segments and match them with the question: The top k segments are parsed. The parse tree of the segment is matched with the parse tree of the question. Segments that best match the parse tree of the question are selected. For example, if the segment ‘Leonardo da Vinci painted the Mona Lisa’ is extracted, its parse is likely to be similar to that of the question ‘Who painted the Mona Lisa?’ Based on the expected value of the question as extracted in the first step, the answer word is identified from the segment. 

The system described above relies on matching the parse trees of the question with those of the question segments. However, there may be multiple ways of stating a fact. For example, the fact that a city X is the capital of country Y can be stated as: ‘X is the capital of Y’, ‘X, the capital of Y’, ‘Y’s capital, X’, and so on. Therefore, a Q&A system may explicitly learn these different patterns that state a fact of a certain kind (the ‘kind’ is the capital in the example above). These patterns can then be used to answer questions of that type.

A method to learn these patterns has been described by Ravichandran and Hovy (2002). This method consists of two parts. The first part is the extraction of patterns, and the second part involves the generation of answers based on extracted patterns. The goal is to extract patterns for different question types. For example, the goal is to discover that to address questions about birthdate, patterns such as ‘X was born in Y’ and ‘X (Y-)’ can be useful. Therefore, this method suggests the following steps:

1. For each question type of interest, select a few candidate examples that are known to be true. For example, if the question type of interest is the capital city, one candidate example pair is ‘New Delhi’ and ‘India’.

2. Query a search engine with the candidate example pair. Extract sentences that contain the two terms in the pair.

3. Replace the two pairs with a placeholder ‘QUESTION’ and ‘ANSWER’. This means that the sentence ‘New Delhi is the capital of India’ will be used to extract the pattern ‘ANSWER is the capital of QUESTION’. This pattern can be used to answer questions of the form: What is the capital of country X?

The output of the steps above is a set of patterns for each question type. The second part of the method uses the extracted patterns to obtain answers to questions. This is achieved using the following steps:

1. The question type of the question is determined using a set of rules. These rules could be based on the words present in the question and the type of question (who/when, etc.). For example, ‘When was Mahatma Gandhi born?’ is a question of the type ‘BIRTHYEAR’.

2. Once the question type has been extracted, the patterns corresponding to the question type are retrieved. These patterns are the ones that have been extracted from the previous step. Assume that the patterns corresponding to BIRTHYEAR are ‘QUESTION was born in ANSWER’ and ‘QUESTION (ANSWER-)’.

3. Every pattern corresponding to a given question type is modified by placing the question term at the appropriate place in the pattern. For example, for the question above, the patterns corresponding to BIRTHYEAR will be modified as ‘Mahatma Gandhi was born in ANSWER’ and ‘Mahatma Gandhi (Y-)’. Either a corpus of documents or the Internet is then queried with this search query.

4. Sentences that match the pattern are expected to contain the answer. Therefore, if a document contains the sentence ‘Mahatma Gandhi was born in 1869’, 1869 is identified as the answer. The answer is then returned to the user.

The approach we described above follows the template: (1) for a set of answer pairs, identify patterns that can be used to extract answers, (2) for an input question, use the patterns to search the Internet and get an answer. This approach works in cases where the types of questions are known in advance so that the patterns can be learned from them. An alternative approach is to modify questions to generate appropriate sub-strings to search in order to generate answers (Kwok et al., 2001). Given the large scope of pages on the Web, this approach can work well if the source of information is the Web. This approach works as follows:

1. A parser generates the parse for a question. Following this, a question-type classifier uses a set of rules based on a lexicon in order to determine the type of question: nominal, numerical, and temporal. Nominal questions are ones that will return a noun phrase as an answer (‘Who was the first American in space?’). Numerical questions return a number as an answer (‘How much does an elephant weigh?’). Temporal questions return a date as an answer (‘When did India gain independence?’).

2. Noun phrases from the question are extracted as topic words which will be used to generate the query. Instead of querying a search engine for these noun phrases alone, this approach reorders words in the question based on a set of linguistic rules. For example, the question ‘How much does an elephant weigh?’ is converted to a query as ‘An elephant weighs’. The rules are primarily based on the roles of verbs in questions. However, a question may be worded differently. For example, a question may be ‘What is the weight of an elephant?’ To account for such paraphrases, a lexical resource such as WordNet is used. The noun phrase corresponding to ‘weigh’ is weight. Therefore, both queries ‘An elephant weighs’ and ‘The weight of an elephant is’ are constructed. Note that these correspond to the patterns that were extracted in the previous approach that we discussed.

3. A search engine is used to obtain documents that contain the extracted query patterns. Therefore, the results of the queries ‘The weight of an elephant is’ and ‘An elephant weighs’ are obtained, and sentences that contain the query are retrieved. Assume that three documents are retrieved: ‘The weight of an elephant is 6000 kg’, ‘An elephant weighs 4500 kg’, and ‘An elephant weighs 6000 kg’. If multiple answers are retrieved, they are scored on the basis of their number of occurrences. If words have overlaps (if the question ‘Who was the 16th President of the United States?’ returns ‘Abraham Lincoln’ and another returns ‘Lincoln’), candidate answers are clustered before the scores are computed. Since the most common answer among the numbers retrieved is 6000, ‘6000 kg’ is returned as the answer to the question. It must be noted that 4500 kg is the correct weight for an elephant from some parts of the world.

Let us now implement a simple Q&A system, akin to those in the first generation. Assume that the source of information is a structured dataset, and that the dataset is a dummy product dataset as follows:



      product   cost   rating   nutrition   location

0     Banana    10     3.5       High         Aisle 2

1     Apple      20     4.0       Medium    Aisle 4

2     Bread      5       3.0       Medium    Aisle 1

3     Cheese    20     4.5       Low          Aisle 3




Our goal is a Q&A system that will answer questions about the dataset. We will be using the three stages of rule-based Q&A—question understanding, answer retrieval, and answer construction.

The first step is to load all the data. The following code uses the following data structures:


• Template: It maps columns in the dataset with templates for answers. The retrieved answers will be filled in here. The template will be used during answer construction.

• Question_type_to_column: This maps all possible phrases to appropriate columns. It instructs the Q&A system which column to select from the dataset. This data structure will be used during question understanding.

• Products: It contains the list of products. The products will be used during question understanding.

• Df: This is the ‘knowledge base’ for our dummy example. Df is used during answer retrieval.




import pandas as pd

def load_data():

          template = {"cost": "PRODUCT costs ANSWER",

          "rating": "The rating of PRODUCT is ANSWER",

          "nutrition": "The nutrition value of PRODUCT is ANSWER",

          "location": "PRODUCT is located in ANSWER"}

          question_type_to_column = {"how much": "cost", "price": "cost",

          "cost": "cost",

          "nutritional value": "nutrition", "nutrition": "nutrition",

          "where": "location", "location": "location", "located": "location",

          "rating": "rating", "popularity": "rating", "popular": "rating"}

          df = pd.read_csv("datasets/ch09-dataset.csv")

          products = df["product"].tolist()

          products = [i.lower() for i in products]

          return df, products, question_type_to_column, template




The first step is question understanding. The method below defines the question-understanding method. The objective is to return the answer field to be looked up, and the name of the product contains_product. The answer field corresponds to a column in the knowledge base Df.  contains_product corresponds to a row in the knowledge base. Note that answer_field is returned as a list. This allows for multiple columns to be returned as answer fields. So, for the question ‘What is the cost and rating of a banana?’, the answer_field will be [‘cost’, ‘rating’] and the contains_product will be ‘banana’.


def question_understanding(sentence, products, question_type_to_column):

          answer_field = []

          sentence = sentence.lower()

          for i in question_type_to_column.keys():

                  if i in sentence:

                  answer_field.append(question_type_to_column[i])

          question_type = list(set(answer_field))

          contains_product = ""

          for product in products:

                  if product in sentence:

                         contains_product = product

          return answer_field, contains_product




The next step is answer retrieval. The method below returns answers corresponding to each answer field. So, for the question ‘What is the cost and rating of a banana?’, the value of answers is [‘cost’: 10, ‘rating’: 3.5].



def retrieve_answers(df, answer_fields, contains_product):

        answers = {}

        for answer_field in answer_fields:

                 res = df[df["product"] == contains_product][answer_field].

                 tolist()[0]

                 res = str(res)

                 answers[answer_field] = res

        return answers





Now that the answer values have been retrieved, we will use template to generate sentences for answers. The method below does that.



def construct_answer(template, answers, contains_product):

         answer = ""

         for key in answers.keys():

                  retrieve_template = template[key]

                  retrieve_template = retrieve_template.replace("PRODUCT", con

                  tains_product).replace("ANSWER", answers[key])

                  answer += (retrieve_template+". ")

         return answer




It is time to write a calling function answer_question which calls all the above methods in the right sequence and returns the answer.



def answer_question(question):

         df, products, question_type_to_column, template = load_data()

         answer_field, contains_product = question_understanding(question,

         products, question_type_to_column)

         answers = retrieve_answers(df, answer_field, contains_product)

         answer = construct_answer(template, answers, contains_product)

         return answer





Let us now test our rule-based Q&A system. We will be passing four questions as input.



sentences = ["What is the cost and rating of a banana?", "How much does

an apple cost and what is its rating?", "How much does a banana cost?" ,

"Where is cheese located?"]

for sentence in sentences:

         answer = answer_question(sentence)

         print(sentence, answer)




The output is as follows:


What is the cost and rating of a banana? banana costs 10. The rating of

banana is 3.5.

How much does an apple cost and what is its rating? apple costs 20. The

rating of apple is 4.0.

How much does a banana cost? banana costs 10.

Where is cheese located? cheese is located in Aisle 3.





The example above shows how rule-based systems need meticulous design. The example does not claim to answer all possible questions on the dataset. An astute reader will also spot that the code is essentially a rudimentary natural language query language—similar to SQL! How will the functions need to be modified to allow comparative questions like ‘What costs more?’ we leave this to the reader. It will also become evident that extending such Q&A systems is a labourious task.


  □  9.5Second Generation



In the second generation of Q&A, the field borrowed from advances in other areas of NLP. One such approach is given by IBM’s Q&A system for the TREC Competition (Ittycheriah and Roukos, 2006). The availability of the dataset resulted in several approaches, the most noteworthy of them being the IBM Watsonsystem (Ferrucci, 2012; Ferrucci et al., 2010). A key event in the history of the IBM Watson system occurred when it defeated a human player in the game show Jeopardy. Jeopardy is a quiz show where contestants first pick categories of questions. These categories can be general (as ‘sport’) or specific (as ‘words that end in -ific’). The category of the question is known in advance and gives a clue about what the tentative answer would be. A contestant is displayed a question in the form of a phrase. The contestant must then give an answer, phrased as a question. An example of a typical Jeopardy question is as follows. Assume that the category is ‘country’. When the contestant picks the category, the contestants are told the phrase ‘largest producer of cheese’. The contestant who picked the category must then give the answer ‘What is USA?’ Although the answer is posed as a question, the game is really about returning ‘USA’ given that the input is ‘largest producer of cheese’ and the answer type is known as ‘country’. The architecture of IBM Watson was called DeepQA and is shown in Figure 9.6. The architecture is a pipeline of several modules that operate as follows:

[image: ]
Figure 9.6  IBM Watson pipeline.



1. The first step is question and topic analysis. Given the question and topic (category), a source of documents is searched to retrieve a set of candidates. This source of documents is the knowledge base that will be used to retrieve the answer.




2. The next step is hypothesis generation and scoring. This step corresponds to the selection of candidate answers from the set of retrieved documents. The identified hypotheses are scored on the basis of their relevance to the question and the category. This results in a set of hypotheses which are candidate answers.

3. The next step is a set of evidence-scoring models which look for additional evidences of the candidate answers. This results in additional score updation for the answers.

4. The candidate answer with the highest score based on the hypothesis and evidence models is returned as the answer.

The second generation of Q&A was significantly influenced by IBM Watson. Given that it decomposed the pipeline into a set of sub-tasks, several sub-tasks of Q&A were considered in this generation of NLP. Therefore, feature-based approaches, as are typical in the second generation, were developed for answer type classification, question understanding, and so on. Statistical learning methods that relied on feature engineering were commonly used. 

Let us take a look at the example of answer type classification. The goal of answer type classification is to determine the type of answer that a question elicits. 

Li et al. (2002) present a question taxonomy. The top-level classes in taxonomy are

1. Abbreviation: The answer is an abbreviation or expansion of an abbreviation.

2. Entity: The entity could be an answer referring to an object such as a plant.

3. Human: The answer is a person. This may be an organization or an individual.

4. Description: The answer is a definition or a description.

5. Location: The answer is a location: a specific location (Mumbai, for example) or a generic location (school, for example).

6. Numeric: The answer is a numeric value such as size, weight, and temperature.

Each top-level class is further divided into several sub-classes. This points to the fact that the classification problem here actually has a large number of classes. How can such classification be handled? In the second generation, hierarchical classification is often used. Hierarchical classification divides the classification process into two or more steps. The first step is a coarse classifier—classify a question into a top-level class. The second step is a fine classifier—classify a question of a top-level class into specific sub-classes. 

Why does coarse classification work? It works because of two reasons. Firstly, hierarchical classification is able to pool data from different sub-levels. Therefore, all questions with the entity as an answer become the same top-level class ‘entity’. Secondly, hierarchical classification reduces the burden on the classifier algorithm. Instead of being able to distinguish between, say, 40 sub-classes, a coarse classifier needs to distinguish between only, say, six top-level classes. 

The next obvious question is: Why does fine-grained classification work? It works because the questions that will be input to every classifier will be specific to a given sub-class. These are likely to be questions within a closed domain of questions. The classifier needs to focus on distinguishing between each of these question types.

What kind of features can be useful for the task? In addition to unigrams, one may think of features such as:

1. Question words such as ‘who’ and ‘when’ are strong indicators of the type of answer. Therefore, question words can be concatenated as special features.

2. Does the question already contain the names of the answer types? For example, ‘what is the weight of an elephant’ contains the word ‘weight’. Therefore, these can be considered as features.

3. Q&A may rely on features derived from other NLP tasks. For example, the number of adjectives/nouns/adverbs in the question may be a useful feature. Similarly, NER may be applied to the sentence. Number of named entities in the question may be used as a feature.

The reader can imagine several new features depending on the kind of questions that can be expected in the dataset. Classifiers, both coarse-grained and fine-grained, can be trained using scikit-learn as shown in Chapter 8. We will now show a dummy example of how the classifiers may be tied together in a hierarchical setup.

Assume that there are six top-level classes. Each of the top-level classes has [3, 4, 5, 3, 3, 4] sub-classes.



import random

num_top_classes = 6

num_sub_classes = [3, 4, 5, 3, 3, 4]




We will now define a coarse classifier. In the example below, it randomly returns a class among the number of top classes as the output. In practice, this will be replaced by a model. Imagine a svm.predict() in the place of random.randint(). As mentioned earlier, the objective of this exercise is to understand how coarse and fine-grained classifiers are interfaced.



class CoarseClassifier:

         def __init__(self):

                  self.num_top_classes = num_top_classes

         def predict(self):

                  return random.randint(0, self.num_top_classes)





We now define the fine-grained classifier class. The predict function here takes a specific classifier_number. This will be the fine-grained classifier corresponding to a specific top-level class. The predict function here invokes randint as a proxy to invoke the specific classifier. Note that the classifier models for each top class will be separate. The predict function in the fine-grained classifier will invoke predict on one of these models.



class FineClassifier:

         def __init__(self):

              self.num_sub_classes = num_sub_classes

         def predict(self, classifier_number):

              print("Calling classifier number ", classifier_number)

              return random.randint(0, self.num_sub_classes[classifier_number])




Now that we have the two sets of classifiers. Let us see how we can tie them together. The code below shows ways to do so. Based on the prediction of the coarse classifier, the value top_class is passed as an input to the fine-grained classifier. This will help to select the classifier corresponding to the predicted top_class.



def predict(inp): # The input is not used at all. Predictions are random.

# This is an illustrative example to show how hierarchical classification

# works.

          cs = CoarseClassifier()

          fs = FineClassifier()

          top_class = cs.predict()

          print("Coarse classifier predicted class ", top_class)

          fine_class = fs.predict(top_class)

          print("Fine classifier predicted class ", fine_class)

          return fine_class

result = predict("Dummy input")

print("Final Prediction ", result)




The output is as follows:



Coarse classifier predicted class 2

Calling classifier number 2

Fine classifier predicted class 0

Final Prediction 0





Note that, since we use randint(), the output will differ for every run. However, the output helps to understand how the prediction of the coarse classifier leads into predictions for the fine-grained classifier.


  □  9.6Third Generation



The advent of neural methods led to hybrid approaches to Q&A. An approach in the third generation of NLP decomposes Q&A into a two-step process: a retriever and a reader. The retriever identifies a sub-set of documents relevant to a question. As was seen in the earlier generations of NLP, this stage uses IR engines to retrieve the documents. The reader then uses neural models in order to identify answers from the documents. These answers may be spans of words that answer the question or may be generated as sentences using information from the question.

9.6.1 RNN-Based Model

One such approach is DrQA (Chen et al., 2017) shown in Figure 9.7. DrQA is an approach that works on Wikipedia articles. The large scale of the dataset implies that it needs a robust technique to extract relevant documents since there are millions in Wikipedia. DrQA consists of two parts: a document retriever (DRt) and a document reader (DRe). The DRt returns a sub-set of Wikipedia articles that are potentially relevant to the question. The DRe models the potentially relevant documents in order to discover answer spans in them. These answer spans are returned as the answers to the questions.

[image: ]
Figure 9.7  RNN-based DrQA.



The DRt is an IR system that uses bigram hashing. An inverted index is learned on the dataset of documents. A dictionary of bigrams is constructed such that a bigram points to the identifiers of the documents where it is present. A question is then represented as a term vector such that the bigrams present in the question are set to True. As a result, documents that contain the highest overlap with the words in the question are scored higher. These documents are determined to be relevant to the question and returned as the output of DRt. DRt returns the top five Wikipedia articles as returned by the IR system. Therefore, if the question is ‘How many planets does our solar system have?’, the Wikipedia article on the solar system is likely to be one of the top documents returned. This is because, at the time of writing this chapter, there were 173 occurrences of the word ‘solar system’ and 275 occurrences of the word ‘planet’ and its forms.




The set of five documents returned by the DRt serve as an input to the next step. The next step is the DRe. DRe takes as input representations of the documents and the question and identifies potentially relevant answer spans. Therefore, it is here that neural language models are used to create representations of text in the documents and the question itself. Assume that a question q consists of m words: q1, q2, … qm. Let the documents retrieved by DRt consist of n paragraphs, where each paragraph pi has l words: w1, w2, … wl (where there are n paragraphs represented by vecp). The architecture has three parts: the representation of a document using its constituent paragraphs and words, the representation of a question, and a classifier that connects the two components to predict the answer span.

The first part of the architecture is the representation of documents. Each word wi in a paragraph is represented as a concatenation of word embeddings and other features. The features incorporate useful information to identify relevant answer spans for the questions. Therefore, each word is represented as:

1. Word embeddings from GloVe: These embeddings capture the meanings of words in the form of dense representations.

2. Word matching features: These are three binary features that indicate: (a) Does the word wi exactly match a word in q1... qm? (b) Does the word wi match the lower case of a word in q1… qm? (c) Does the lemma of the word wi match the lemmas of the words in q1... qm?

3. Grammatical features: These are three one-hot features that indicate: (a) part-of-speech of the word, (b) named entity of the word, and (c) term frequency of the word.

4. Relative weight with the question: This feature is an attention score over the words of the question. Therefore, for a word wi, this score is a summation over all words in the question, i.e., Σj aij E(qj ), where E(qj ) is the embedding of the jth question word. The summation means that the value of the attention score aij is multiplied with the embedding representation of the jth word in the question. The attention score aij is computed as ‘a proportion of dot products between non-linear mappings of the embeddings’. Let us read the phrase carefully. The first part is an embedding of a word (either a question word or a word in a retrieved document) that is mapped using a non-linear mapping. This transformation is a dense layer with ReLU activation, represented as α. Therefore, the non-linear mapping of an embedding of the word qj is given by αE(qj ). The dot product between non-linear mappings of the embeddings, thus, corresponds to a dot product between those of a question word and the document word wi. This is given as: αE(wi ). αE(qj ). The attention score is a proportion given as: [image: ] Therefore, the score computes the similarity between a specific pair of the document word and question word as a proportion over all words in the question. 

A paragraph vec(p) is then represented as an RNN applied on the top of the word representations as indicated by the three components above.

The second part of the architecture is a representation of the question. A question is represented as an RNN applied on top of the word representations of the words in the question. However, to learn the relative importance of words, a scoring vector bj is added. Therefore, a question q is represented as a weighted sum of bj and the word qj . Here, bj is [image: ] where w is the weight over all words to be learned. This is shared across all words in the vocabulary. As a result, relative importance of words in a question can be learned.

The third component connects the first two parts in order to produce the result for Q&A. This component is implemented as two classifiers. The first classifier predicts if a word in the document is the beginning of an answer span. The second classifier predicts if a word in the document is the end of an answer span. The connection between the question and the documents comes in the form of a dot product between the question vector and a word vector. Therefore, the dot product is qwi. The first classifier, thus, learns to optimize: exp(W qwi). This classifier is trained on the dataset where the positive examples are the ones in which wi is indeed the beginning of an answer span. Here, W is the learnable parameter in this case. Similarly, the second classifier is trained on the dataset where the positive examples are the ones in which wi is the end of an answer span.

So, what does a model like the above need for training? It needs a dataset of questions along with answer spans marked in specific documents. During training, a specific question-document pair is applied as the input with the corresponding answer as the expected output.

9.6.2 BERT-Based Models

As we have seen in Chapter 2, the BERT model takes as input two textual units and produces one or a sequence of labels. The original BERT model also evaluates the architecture of Q&A. In order to do so, the BERT architecture is trained as follows:

1. The text of the question is passed as one of the inputs.

2. The text of the document is passed as the other input.

3. The output is a representation of the document such that the endpoints of an answer span can be predicted. An answer span here corresponds to predicting the right entity span in the input document. This can be compared with NER where the task is to predict the span of the named entity. 

Given the versatility of BERT, extensions to the above architecture are possible for Q&A. A specific limitation of the approach above is that the input is a specific document. This means that the approach does not have an explicit ‘retriever’ component. It works for document Q&A where the document in which the answer to the question can be found is known. Therefore, extending this to a dataset of documents is imperative for the approach to work over a dataset of documents. One such extension is given by Yang et al. (2019) shown in Figure 9.8. Using an IR engine called Anserini, the most relevant k segments to a question are retrieved. Then, a BERT-based model described above is used as the ‘reader’ component. The IR-based retriever returns a set of spans which are scored based on the output of the IR engine. Let the scores overall span be Sserini. The BERT-based reader returns a set of spans present in the segment, as learned by BERT. Let the scores overall spans be SBERT. The two sets of spans are combined using a weighted sum:



[image: ]
Figure 9.8  Extension of BERT for question answering.




(9.1)

[image: ]
Using a combination of the weighted spans, the answer is generated as a sequence of tokens retrieved from the language model.

9.6.3 Code Examples

Let us now look at some examples of code to use question-answering models from the third generation. The simplest way is to load a pre-trained model using a pipeline. The code below uses the ‘question-answering’ pipeline. It provides the context in the form of the Wikipedia entry for question answering at the time of writing this. The model is called by passing two arguments—the question and the context. The function must return an answer from the document.



from transformers import pipeline

qa_model = pipeline("question-answering")

context = "Question answering (QA) is a computer science discipline within

the fields of information retrieval and natural language processing (NLP)

that is concerned with building systems that automatically answer questions

that are posed by humans in a natural language. A question-answering

implementation, usually a computer program, may construct its answers

by querying a structured database of knowledge or information, usually a

knowledge base. More commonly, question-answering systems can pull answers

from an unstructured collection of natural language documents."

question = "Where can question-answering systems pull answers from?"

qa_model(question = question, context = context)





The output of the code is as follows:



{'score': 0.4167346656322479, 'start': 506, 'end': 562, 'answer': 'an

unstructured collection of natural language documents'}




The start and end values indicate the position in the context. The answer is returned as a span of words within the context. The score indicates the confidence of the model. Let us make it slightly difficult now. We will replace question answering with the abbreviation QA which has been defined in the first sentence of the context.


question = "Where can QA systems pull answers from?"

qa_model(question = question, context = context)





The same answer is returned.

Let us now try an example question whose answer is not present in the context.



question = "What is the capital of India?"

qa_model(question = question, context = context)




The output is returned as follows:



{'score': 0.016439996659755707, 'start': 0, 'end': 18, 'answer': 'Question

answering'}




The answer is incorrect, and the score is significantly lower. It is common to use thresholds on scores when returning output of Q&A systems. Therefore, if the answer is predicted to have a score above a certain threshold, the answer will be returned; else, the answer may be suppressed.



Case Studies



Assistant for Customer Care

Customers of an electronic products company often wish to know more about their products. This may include additional specifications of products, information about warranty, and so on. Customers may visit a store and ask the company representative present in the store. Alternately, they may call the customer care helpline and pose their query. However, a Q&A system can help reduce the human-intensive effort. A conversation agent or a chatbot with a question-answering system can help automate providing responses to customer questions. Therefore, a customer may log into an Internet-based chatbot and ask the question ‘What is the weight of this laptop?’ By allowing users to ask questions to their chatbot, the company is able to reduce the burden on their human customer care representatives and redirect their efforts to solving critical customer queries.

Question Answering from Commercial Contracts

Commercial contracts between organizations are legal tenders that are binding to the parties entering into the contract. The contracts are formally written and often cover several corner cases. A Q&A system that takes a contract as an input allowing a user to ask questions about the terms in the contract can be useful. Since contracts are valid for a long duration, stakeholders may have questions pertaining to the terms. ‘Am I allowed to engage another provider on a part-time basis?’ is an example of such a question. By allowing its employees to ask questions pertaining to a contract, a company can ensure adherence to the contract.




Summary


Q&A is the NLP area that deals with obtaining natural language answers to natural language questions with a document set as the knowledge base. In this chapter, we discussed how approaches to Q&A in the first generation are retrieval-based: they explicitly extract relevant documents and snippets to answer a query. We then describe key approaches in the second generation which decompose the Q&A task into classification and generation of sub-tasks. Finally, we show retrieval-based and retrieval-free approaches to Q&A, as seen in the third generation of NLP.


Review Questions

1. What is the Web Q&A? How is it different from document-based Q&A?

2. What is comprehension-based creation of Q&A datasets?

3. How does the IBM Watson pipeline address Q&A?

4. Describe how a BERT reader and a document retriever can be combined for Q&A.


Course Assignments and Projects

1. Create a document-based question-answering dataset using the comprehension-based method. In order to do so, use the following steps:

a.Download a set of documents from a Wikipedia corpus in a language other than English. Choose the language based on the availability of human annotators.

b.Obtain a set of question-answer pairs based on the comprehension-based method separately from each annotator.

c.Compute the inter-annotator agreement. Do the annotators agree on the validity of questions as well as answers? Analyse the disagreements.

d.Can the annotators generate questions that cannot be answered from the document?

2. Create a neural Q&A system as a seq2seq formulation. In order to do so, we suggest the following steps:

a.Download the SQuAD dataset for Q&A.

b.Find a relevant implementation of a Q&A approach from papers with code.

c.Can you enhance the existing implementation using the notion of ambiguity resolution?

d.Does the performance on Q&A improve with your enhancement?

e.Evaluate the original approach and your enhancement on the dataset you created in the previous assignment.

f.What answers do you get for questions that can otherwise not be answered from the document? Does it highlight the limitations of document-based Q&A?

3. Discuss how general domain Q&A and document-based Q&A are different and similar.



Objective Questions

Fill in the Blanks

1. Document question answering refers to the problem of answering a question based on a _____.

2. The two sources of datasets for question answering are information retrieval and _____.

3. The output of IBM Watson’s Q&A system is the answer and associated _____.

4. In Q&A, _____ is the step that extracts the appropriate answer and constructs it in the expected output format.

5. The document reader (DRe) for Q&A extracts _____ in the document as answers to the question.

Select the Most Appropriate Option

6. A hierarchical question classifier first classifies questions as objective or subjective. It then classifies objective questions as numeric, entity-based, or descriptive. In contrast, it classifies subjective questions as supportive or contrastive. How many classifiers will be invoked when making a prediction for a supportive question?

a.4

b.3

c.2

d.1

7. Which of the following is not a component of the MULDER system for question answering?

a.Question classification

b.BERT reader

c.Query formulation

d.Answer extraction

8. The relative weight feature for Q&A computes attention score and uses it as a signal for a span being an answer. What is the attention score typically computed over?

a.Context

b.Question

c.Document

d.Answer

9. In the IBM Watson pipeline, what do answer sources provide?

a.Candidate answers

b.Answer scores

c.Answer evidence

d.Hypothesis

10. A rule-based Q&A system retrieved top k candidate answer sentences. How can parsing be useful to select the best answer?

a.Select the sentence with the most unique parse tree as the best answer.

b.Select the sentence whose parse tree has the best match with parse tree of the question as the best answer.

c.Select the sentence whose parse tree is of the same depth as that of the question as the best answer.  

d.Parse trees are not useful in this case.
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Answers to Objective Questions

1.document

2.reading comprehension

3.confidence

4.answer extraction

5.spans/word spans

6.(c)

7.(b)

8.(b)

9.(a)

10.(b)















	 

	 




	CHAPTER
10

	Conversational AI








Socrates: There is nothing which for my part I like better, Cephalus, than conversing with aged men;
for I regard them as travellers who have gone a journey which I too may have to go, and of whom
 I ought to inquire, whether the way is smooth and easy, or rugged and difficult.

Benjamin Jowett (Translation of Plato: The Republic), 1892







Learning Objectives

After reading this chapter, you will be able to


• Explain early works such as ALICE.

• Distinguish between generation-based and retrieval-based conversation agents.

• Pick conversational AI options based on the availability of datasets and the nature of conversations.







Conversations are exchanges of interactions between two or more participants. In the chapter-opening quote, Socrates expresses high regard for conversations as mechanisms for understanding the life experiences of the elderly. In Chapter 9, we discussed approaches to question-answering (Q&A). In the case of Q&A, a human with the need for information poses a question to a computer. The computer then answers the question, potentially by using a knowledge resource such as a reference document or a set of documents (say, Wikipedia). Q&A can be viewed as a request–response situation, namely, the user asks a question, and the computer generates a response. It is a way for humans to obtain information using the knowledge that is accessible to computers—either as a set of reference documents or a set of connected documents such as the Internet.

However, the request–response paradigm as in the case of Q&A is different from how humans use language to address their need for information and action. Humans engage one another in the exchange of sentences in a conversation or a dialogue. In this chapter, we extend Q&A to an ongoing exchange of ideas between the user and the computer expressed using text. This ongoing exchange refers to conversations. This chapter focuses on conversational AI: natural language processing (NLP) techniques that automatically generate text in response to user input as a part of an ongoing conversation.

Human conversations operate at the level of pragmatics, making them a highly intelligent activity (Levinson, 1983). A conversation involves two or more participants indulging in a talk. The nature of a conversation is associated with individual and shared properties of the participants. An example is a conversation between two friends. What are the characteristics of such a conversation? The conversation is likely to be informal. Depending on their demographic attributes, participants may greet each other with a ‘What’s up?’ If two friends having a conversation have known each other for a long time, there is also a significant shared context. Therefore, they may refer to people, places, or incidents that both of them are aware of. For example, one of the friends may say to the other ‘Hey, did you check out our lab’s new website?’ Since the two have a shared context, they know which lab is being referred to in the phrase ‘our lab’. This shared context may also be reflected in ‘insider jokes’, i.e., references to incidents that the two friends are aware of but may not be common knowledge. Now, let us compare this conversation between friends with another conversation: an unhappy customer talking to a call centre agent of a telecom company. This conversation is more formal than the previous example. The call centre agent may also use a written script to guide the conversation. The agent may say ‘How may I help you today?’ at the beginning of the conversation, and ‘Is there anything else I can help you with?’ towards the end of the conversation. Also, this conversation is likely to be specific to the domain of the conversation (e.g., the after-sales service of the telecom company, for example). They are highly unlikely to discuss, say, quantum physics. In addition, the participants in the conversation have little shared context between the participants. The customer may first provide an identification in the form of a phone number or a device ID. The customer’s dissatisfaction with the product will also be reflected in the choice of words and the tone that the customer uses. In contrast, the call centre agent will attempt to be empathetic towards the customer. By engaging in the conversation, the agent and the customer will attempt to solve the customer’s problem. This conversation has a specific goal, limited shared context and definite roles, which may not necessarily be the case in the conversation between friends.

While the two examples described above are reasonably dissimilar, conversations between different participants are quite unique. Conversations between students and a teacher, those between colleagues, those between family members, and those between strangers travelling together on a train can be distinguished in terms of different dimensions as described above: shared context, presence of a goal, power relationships, and so on. On the surface, a conversation is about participants talking to each other. Several dimensions are latent to a conversation, and human intelligence involves using the right words with respect to the latent dimensions. In the realm of computer technology, an additional dimension comes into play: the channel used for the conversation. For example, an in-person conversation is different from a conversation over a video call. The participants may have to wait for each other’s turns. There might be connection issues resulting in the loss of some words. Therefore, such a conversation may contain clarificatory questions. Similarly, the conversation between two people on a smartphone-based chat application is also unique. Users are known to use short forms of words to avoid typing long words (e.g., ‘cos’ instead of ‘because’). In the absence of non-verbal cues, written communication may involve the use of emojis—images used to represent ideas such as a smiling face.

Conversational AI refers to the AI approaches where an artificially intelligent agent engages in a conversation with a human user. Conversations with a robot or a visual representation of a human bring multimodality in to the picture. When the AI agent is conveying an unpleasant message, how should the expressions on the visual representation change? Given the scope of this book, we restrict the discussion to text-based approaches. As we describe approaches to conversational AI over the three generations of NLP, we show how these approaches have handled the aspects corresponding to the choice of words, contextual understanding, and other cues. While models like ChatGPT have revolutionized conversational AI (as we will see in the chapter on large language models), this chapter covers foundational material in conversational AI.



  □  10.1Problem Definition



Conversational AI deals with artificially intelligent agents that can conduct a conversation primarily with human participants. Therefore, at every step in the conversation, the input is the user utterance and the context of the conversation. The context may be a shared understanding between the human and the agent, or the portion of the conversation so far. The output is a text generated by the conversational agent.

Conversational AI may be a task-specific agent or a general-purpose chatbot. Task-specificity means that the purpose of the conversation is specific and known in advance. An example of a task-specific conversation agent is an AI agent on an e-commerce website that a customer can communicate with in order to find a product the customer is looking for. Since the task that a task-specific agent will address is known in advance, the overarching sequence can be estimated a priori. The set of conversations or conversation topics is reasonably limited or may be designed as such. For example, the agent may first understand the customer query, then look up its knowledge base, provide a response, and then respond to clarificatory questions. In contrast, a general-purpose chatbot engages in a general conversation. A general-purpose chatbot may have a ‘persona’. A persona of a chatbot is the set of attributes that are incorporated into its design. Personas of chatbots may be distinct, imparting them unique qualities and also helping with ambiguity resolution. When the chatbot needs to decide its response, it may act based on its persona. A ‘customer care chatbot’ may need to be polite and helpful. A ‘doctor chatbot’ may need to be friendly and non-judgemental. Conversation agents in smartphone devices running on Android and iOS are examples of conversational AI. However, their conversational ability is fairly limited.

We will now see how this interplay of solving a task, representing the right persona, and the use of a knowledge base, while engaging a user in a conversation, results in ambiguity resolution challenges in conversational AI.


  □  10.2Ambiguity Resolution in Conversational AI



As described in Chapter 9, the Turing test is the test where a human communicator has a conversation with an agent which may be a human or a computer. If the communicator cannot accurately determine whether the agent is a human or a computer although the agent is a computer, the computer is said to have passed the Turing test. With this holy grail in mind, we see that ambiguity at all levels of NLP becomes applicable to conversational AI. Consider the example of a conversation between a student and a chatbot that simulates a teacher. The human student asks doubts to the AI teacher. An example of such a conversation is asfollows:


Student (S) :Hello!

Chatbot (C) :Hi, Diptesh! How may I help you today?



The student (S) initiates a conversation with the chatbot by saying ‘Hello’. The chatbot knows the student’s name (possibly based on a login session). The chatbot personalizes the response by mentioning the student’s name.


Student (S) :I am working on my mathematics assignment. I could solve the simultaneous equations problems. But I am struggling to understand the Pythagoras theorem.

Chatbot (C) :Don’t worry! Let me help you. Do you know what the Pythagoras theorem is?



The student, Diptesh, mentions his problem. The chatbot must now choose between multiple possible responses. One possible option is that the chatbot retrieves the statement of the Pythagoras theorem and returns it. However, in this case, the chatbot detects the sentiment of the student expressed through ‘struggling’ and says, ‘Don’t worry’. Then, the chatbot asks a clarificatory question to evaluate the understanding of the student: ‘do you know what…’


Student (S) :It is a theorem which says that the square of length of a side of a triangle is equal to sum of squares of the lengths of its remaining sides.

Chatbot (C) :That’s partially correct, Diptesh. The Pythagoras theorem applies only to a right-angled triangle. Do you know what a right-angled triangle is?



The student provides his understanding of the Pythagoras theorem. The chatbot uses natural language entailment to detect that the student’s statement is partially correct, in reference to the Pythagoras theorem. The chatbot must be able to resolve an entailment problem here: whether something about right-angled triangles holds for all triangles. The chatbot resolves this ambiguity and infers that the student’s statement is partially correct. As a result, the chatbot generates a response that supplies the missing information (‘applies only to a right-angled triangle’).


Student (S) :Is it a triangle with one of the angles as 90 degrees?

Chatbot (C) :Absolutely! So, how would you redefine Pythagoras theorem?

Student (S) :The square of length of the hypotenuse of a triangle is equal to sum of squares of the lengths of its remaining sides.



The student responds to the question asked by the chatbot. The chatbot identifies that this response is correct and appreciates the student by using a positive expression (‘absolutely’). The chatbot understands that the student now has a clarification and asks the student to redefine the theorem. In response, the student updates his definition of Pythagoras theorem.


Chatbot (C) :That’s correct. Let me give you an example now.

..........



The chatbot again appreciates the student (‘that’s correct’) and progresses with the conversation. We pause our discussion of this example conversation here.

Based on this example conversation, we see that, while the generation of text is the primary function of a conversation agent, it must account for several aspects as shown in Figure 10.1 (Hovy, 1990). The pragmatic aspects of a conversation involve all the information that the agent holds about the conversation or the participant. This information is of three types:



1. General information about the human participant. In the case of our example, it is the name of the student. Also, the fact that the human interactor is a student is important pragmatic information. The conversation agent can assume a pedagogical position.

2. Conversation-specific information in terms of how much the student understands. For example, the chatbot must resolve ambiguity underlying sentiment analysis (by detecting the sentiment of the student), or natural language entailment (by detecting that the student has given a partially correct answer), and so on, as shown in the examples.
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Figure 10.1  Interplay between layers of ambiguity for a conversation agent.



3. Factual information about the Pythagoras theorem.

Using this information, the conversation agent is guided by its own goals. Since this conversation agent simulates a teacher, it must also generate an empathetic response or encourage the student when he gets the right answer. Therefore, each time the conversation agent has to generate a response, it must choose a strategy. Options of such strategies include: (1) Should the response be empathetic? (2) How much of the answer should the agent give away?

With the pragmatic information and the goals in view, the conversation agent may then generate a response. When a conversation agent needs to determine its response at a certain step in the conversation, different aspects of ambiguity become important:

1. Determine the topic to address: Among the topics being discussed in the conversation so far, which one will be addressed at this step? In the example above, the student says, ‘I am working on my mathematics assignment. I could solve the simultaneous equations problems. But I am struggling to understand the Pythagoras theorem.’ The noun phrases in this text are: ‘mathematics assignment’, ‘simultaneous equations problems’, and ‘Pythagoras theorem’. The conversation agent may have detected the sentiment of the text as negative because of the word ‘struggled’. The conversation agent may choose between these phrases as the topic of its next utterance. Since conversational text may contain coreferences or ellipses (e.g., ‘I am struggling with it’), the coreferent mentions must be resolved before determining the set of topics. Let us assume that the conversation agent resolves this ambiguity and decides that its response must be about ‘Pythagoras theorem’ and the student’s word ‘struggled’.

2. Organize the topics: After the topics of the response have been chosen, the conversation agent must resolve the ambiguity of ordering and juxtaposition. In terms of our example, the conversation agent must decide: Which of the two topics will it tackle first? Will they be tackled as two separate sentences? Let us assume that the conversation agent resolves this ambiguity and decides that it will first respond to ‘struggled’ and then respond to the student’s question about ‘Pythagoras theorem’.

3. Generate an appropriate response: The third layer of ambiguity is in terms of ‘realization’. This appears when the conversation agent must choose the words to generate or realize. The conversation agent knows so far that it will first respond to the student’s negative sentiment. The conversation agent may say, ‘Why are you struggling?’, ‘You are such a crybaby’, ‘Don’t worry! Let me help you’, among many other options. The first option listed here would be chosen if the conversation agent decides to know more about the student’s emotions. The second option would be an insensitive response not befitting a teacher. The third option expresses empathy. True to its teacher persona, the conversation agent chooses this option and says ‘Don’t worry! Let me help you’. Following this, the conversation agent must decide how to address the ‘Pythagoras theorem’ topic. It may simply paste the definition of the Pythagoras theorem as a response. Therefore, ‘Don’t worry! Let me help you. Pythagoras theorem states that the square of the length of the hypotenuse of a right-angled triangle is equal to the sum of squares of the lengths of the remaining sides’ would have been a valid response. However, our hypothetical conversation agent adopts a pedagogical strategy known as Socratic reasoning. It chooses instead to understand from the student how much he knows. So, the conversation agent chooses to ask ‘Do you know what Pythagoras theorem is?’ The choice that the conversation agent made here was a dialogue act. A dialogue act represents the role of an utterance in the context of a conversation. For example, an utterance may be a dialogue act which can take three values: question, statement, and request for action. In this case, the conversation agent decides that its response should be a question (‘Do you know’) instead of a statement (‘Pythagoras theorem is...)’. Predicting dialogue act type so that an appropriate response can be generated is another goal of ambiguity resolution in the case of conversation agents.

The conversation agent must deal with different kinds of ambiguity: topic selection ambiguity, ellipsis ambiguity, coreference ambiguity, and dialogue act ambiguity.

Evidently, conversation agents have to deal with ambiguity at every level of NLP. While conversation agents are far from perfect at the time of writing this book, the release of ChatGPT, a Web-based tool that can have conversations with humans, has garnered wide attention. While we will discuss ChatGPT and similar tools in a later chapter,  this chapter focuses on how different generations of NLP have attempted to handle some of these many ambiguities that underlie conversational AI.


  □  10.3Rule-Based Approaches to Conversational AI



We will now discuss rule-based approaches to conversational AI. A rule in this case is a mapping between a user input and the expected response. If the user says ‘hello’, the conversation agent must say ‘hello’. This can be specified as a rule in the knowledge base of the conversation agent. With a large set of such rules in its knowledge base, the rule-based conversation agent is an algorithm that selects rules that are relevant to a given user input in order to generate a response. Broadly speaking, the requirements of such an algorithm are:

1. Identify parts of the input sentence as a part of patterns: For example, if the user input is ‘Will you be able to send me the document’, the algorithm must recognize that the input pattern ‘Will you be able to’ can have responses such as ‘I will definitely be able to’ or ‘I will not be able to’, assuming that such a pattern exists. By matching the input–output pair, the algorithm may generate a response that starts with ‘I will definitely be able to’.

2. Repeatedly apply patterns: Let us now continue to develop the user input above. Since the conversation agent does not have an exact pattern corresponding to ‘Will you be able to send me the document’, it needs to repeatedly apply patterns to generate responses. Once the response corresponding to ‘Will you be able to’ is generated as described above, the algorithm must now focus on the remaining part of the user input ‘send me the document’. It may now look for patterns that match this input.

3. Allow variability of word forms: Since user input may include colloquialisms, the chatbot must factor that in. For example, if the user input is ‘Will ya be able to send me the document’, the chatbot must be able to understand that the word ‘ya’ corresponds to ‘you’ and match the pattern that is described above. 

In the context of a rule-based conversation agent, we describe two popular approaches from the first generation of NLP: ALICE and GUS. In the words of its creator, ALICE is a ‘stimulus-response’ chatbot. The chatbot receives a stimulus in the form of a user input and returns a response. It has been applied for general conversations. The second conversation agent that we discuss here is GUS. GUS is a task-specific conversation agent: an AI-based travel agent. We note that these are not the only conversation agents of this generation. For example, ELIZA is a popular rule-based chatbot. Let us now discuss ALICE in detail.

10.3.1 Artificial Linguistic Internet Computer Entity (ALICE)

To illustrate the approaches to conversational AI in the first generation, we now describe an early conversation agent: Artificial Linguistic Internet Computer Entity (ALICE). ALICE is a simple rule-based chatbot. It uses a set of input–output pairs as its knowledge base. ALICE takes as input a sentence from the user and generates an automatic response to the user input. In order to do so, it uses a template-based system that matches parts of the user input with one of the many input patterns. Each input pattern is associated with a response pattern. A simple example is the pattern: If the input is ‘What’s up?’, the response is ‘All good!’. When the user input is received as ‘What’s up’, ALICE will match the above pattern and generate the corresponding response. Therefore, the knowledge base of ALICE is in the form of input–output pairs, and an algorithm that selects patterns based on the input. The knowledge base in ALICE is represented as AI Markup Language (AIML) tags. AIML is a markup language like XML that uses a structuredrepresentation enclosed within matching tags. An AIML document typically uses the following tags and is shown below.



<aiml version = "1.0">

<topic name="pleasantry">

         <category name="informal-greeting">

                    <pattern>What’s up?</pattern>

                    <template>

                              All good, thanks!

                    </template>

         </category>

         <category name="informal-greeting-named">

                    <pattern>How are you?<pattern>

                    <template>

                              <srai>what’s up</srai>

                    </template>

         </category>

</topic>

</aiml>




The reader may notice that matching tags in AIML resemble HTML code. Let us now look at some of the tags in the example:

1. aiml: This tag indicates the beginning of the AIML document and mentions the version of the document. As shown in the figure, the version of this document is 1.0.

2. topic: This is the high-level tag that combines multiple categories. For examples, input–output pairs corresponding to a certain type of communication may be grouped as a topic. An example of a topic may be ‘pleasantry’ which contains input–output pairs corresponding to casual pleasantries in a conversation.

3. category: A category contains a pair of input pattern and the corresponding response. A category may have a name. For example, the figure contains the example of the category ‘informal-greeting’. Category encloses two tags:

a.Pattern: This is the pattern of the input from the user.

b.Template: This is the output that will be returned by the chatbot. As shown in the example, the pattern is ‘What’s up?’ and the template response is ‘All good!’

4. srai and sri: SRAI and SRI are versatile tags in AIML. They stand for simply recursive AI and symbolic reduction, respectively. The second category in the example above shows the usage of SRI. We will shortly discuss the usage of these tags.

Categories capture input–output pairs in the form of pattern (input from the user) and template (response from the chatbot). Categories may introduce flexibility in the kind of acceptable input and possible responses. This flexibility can be understood at three levels:

Level 0 is when the pattern and template are both strings. The example in the figure is this kind of category. These categories are called atomic categories because they are composed of strings themselves. One such example is:

1. pattern: How are you?

2. template: I am fine, thanks.

Level 1 is when patterns or templates may contain a wildcard character. This allows for categories to be a part of the categories. Consider the example:

1. pattern: happy

2. template: That’s good

The above example means that it will be matched for a string such that the word ‘happy’ is followed by words (indicated by the wildcard ‘*’). When such a string is matched in the user input, the corresponding response will be ‘That’s good’, followed by text generated from the other words in the user input. This kind of category is called ‘default categories’.

Level 2 allows for different ways to express the same idea. It does so via ‘recursive categories’ that may be expressed through ‘srai’ and ‘sri’ tags. For example,

1. pattern: How are you doing?

2. template: srai : How are you?

The structure above indicates that ‘How are you doing?’ is another way to say ‘How are you?’ As a result, if the user says ‘How are you doing?’, this category will be matched first. Since this category contains an ‘srai’, the category with the pattern ‘How are you’ will be looked up. Since it exists as an atomic category as shown above, the template corresponding to it will be returned.

With a knowledge base of categories of different types, an AIML interpreter applies a set of rules to respond to a question from the user. Imagine that the set of categories is as follows:

1. This category indicates that a ‘Hello’ from the user will be responded with a ‘Hello’ from the chatbot:

a.pattern: hello

b.template: hello

2. This category indicates that a ‘Hey’ from the user is equivalent to a ‘Hello’ from the user:

a.pattern: hey

b.template: srai: hello

3. This category indicates that a ‘how are you’ will be responded with ‘I am fine, thank you’:

a.pattern: how are you

b.template: i am fine

A typical chatbot would contain a large repository of such categories. The above is a subset only for illustrative purposes. Now, assume that a user enters the input: ‘Hey, how are you?’ The AIML interpreter applies the following rules:

1. Normalization: The interpreter first splits the user input into sentences. It then converts the sentence to lowercase and removes punctuation. Therefore, the input would be ‘hey how are you’.

2. Pattern matching: The interpreter then attempts to match patterns among those in the set of categories. This can be implemented as a pathfinding algorithm that starts from the first word and attempts to find categories with matching templates. In the case of our example, the interpreter will operate as follows:

a.It will first pick category 2 in the list above and note that ‘hey’ has an ‘srai’ label of ‘hello’. It will then match category 1 and pick the template ‘hello’.

b.It will then proceed to the next word in the sequence. The word ‘how’ does not have a matching category. It will then expand the input pattern to ‘how are’, resulting in a no-match again. Finally, when it looks up ‘how are you’, it will find a matching pattern. The interpreter will then pick the corresponding template ‘I am fine, thank you’.

c.The two templates that are picked will be combined with each other in order to generate the response.


10.3.2 Genial Understander System (GUS)

In the previous subsection, we saw how AIML categories can be used to create a stimulus-response conversation agent like ALICE. The conversation agent engages the user in a conversation without any motive to accomplish. To understand how a rule-based conversation agent can be employed to achieve a specific task, we now describe the Genial Understander System (GUS). GUS is a conversation agent that plays the role of a travel agent to help human users book flights.

What would such a task-specific conversation agent need? Firstly, typical of a conversation agent, it would need a mechanism to generate a response from user input. This requirement is similar to what ALICE achieves with its categories. However, there is an additional requirement in the case of a task-specific conversation agent. In order to make a booking, the agent needs to complete this information about the booking. Three aspects assume importance here (summarized in Figure 10.2):



1. Know what is required: The conversation agent must know what information is required. In order to complete the task of flight booking, the conversation agent knows that it needs the relevant travel information. For example, an AI-based travel agent needs to know: (1) the flight details (say, flight number, travel date, ticket class, etc.) and (2) passenger details (name, age, etc.). This is the knowledge component.

2. Extract requirements from user input: The conversation agent must be able to extract relevant pieces of information from the user input. For example, if the user says, ‘I want to travel to New Delhi on Tuesday’, the conversation agent must understand that the destination city is New Delhi, and the travel date is Tuesday. This is the natural language understanding (NLU) component.

3. Ask for clarificatory information: A human user may not always provide complete information as their first statement to the conversation agent. In fact, the communicative ability of the conversation agent allows it to understand what information is missing and it requests for additional clarification. Since a travel booking requires several components to be completed, the conversation agent must ask for the missing information. For example, if the user says, ‘I want to travel to New Delhi on Tuesday, the conversation agent may ask what the source city is or ask for tentative time slots for which it needs to look for flights. This is the natural language generation (NLG) component. 
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Figure 10.2  Three components of a task-specific conversation agent.




We remember that the knowledge in ALICE was stored in the form of pattern-template pairs. In the case of GUS, it must remember what information has been obtained and identify what information is remaining. Therefore, the knowledge representation component in GUS uses a more nuanced structure called frame. Like ALICE had atomic, default, and recursive categories, GUS has frames corresponding to different sub-tasks that the conversation agent will achieve. For example, one such frame could be REQUEST-BOOKING. An illustrative representation of a frame in GUS is shown in Figure 10.3.
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Figure 10.3  Three components of a task-specific conversation agent.


A frame consists of three parts. The first part is the name of the frame that is used to reference the frame. The second part is the prototype of the frame. Frames in GUS are instances of other frames which are in return instances of abstract frames. This allows a nested structure across frames. The third part is ‘slot’. The idea of ‘slot’ that appears in GUS is a popular concept in conversational AI till date. For the frame REQUEST-BOOKING, the slots are essentially the values that are required to be filled. Therefore, the slots in REQUEST-BOOKING could be: (a) name of destination city, (b) name of source city, (c) date of travel. When a user says, ‘I want to go to New Delhi on Tuesday’, GUS must then match the frame REQUEST-BOOKING and recognize that the destination city and date of travel have been supplied by the user. It must then ask for the source city.

Each slot consists of the name of the slot, its fillers or values, and procedures that operate on these values. A procedure may create the value in the slot or perform computations on the value for a desired outcome. An example of a slot is a CityName. The slot can take a string as a value. The procedure that operates on TravelDate may be AskClient. Therefore, when the agent realizes that it does not have the source city which it requires for the slots in REQUEST-BOOKING, it generates a sentence that asks the question to the user.

With the set of frames representing the knowledge of the system, a user input to GUS is processed as follows:

1. GUS initiates a conversation with the user by setting the expectations. An example of a greeting message is ‘Hi, I am an AI-based agent who will help you make a flight booking’. GUS initializes its state to the initial frame Dialog.

2. The user enters an input. GUS matches patterns in the user sentence with the set of frames. For example, if the user says, ‘I want to go to New Delhi on Tuesday’, GUS extracts the destination city as New Delhi and the travel date as next Tuesday. Given the structure of the sentence, GUS identifies that the REQUEST-BOOKING frame as indicated above is relevant for the task.

3. GUS then identifies that it does not know the source city. So, GUS invokes the AskClient function on the source city. It will, therefore, generate the response ‘Where do you want to travel from?’ or ‘What is your source city?’ These responses are a part of templates associated with every slot.

4. As the conversation progresses, GUS keeps track of all that it knows about the user’s travel plan. It iteratively progresses to related frames since frames are connected to one another via the prototype links. These frames can be tracked as a sequence to be executed.

5. Once the conversation agent has all the information it needs, it will store the required booking information and respond accordingly to the user.

The concept of slot-filling is prevalent in conversation agents to date. Slots are the components of information required to do a task, akin to arguments of a function in a programming language. If a conversation agent is being used to send a text message, it needs to know two things: (1) the receiver, and (2) the text of the message. Therefore, based on the information that the user reveals to the conversation agent, it fills the relevant slots and asks for questions to obtain information about the remaining slots. So, if the user says, ‘Send a message to Mohan’, the agent matches the receiver name as ‘Mohan’. It still does not know what message is to be sent. Therefore, the agent might ask a question to get the message, saying ‘What is the message to send to Mohan?’

The idea of filling slots in order to guide a conversation is an important paradigm of task-specific conversation agents to date.


  □  10.4Statistical Approaches



Slot-filling introduced in conversation agents like GUS provides a structured approach to managing the expectations of a conversation agent. A conversation agent detects entities in the user input and builds expectations around the entities it expects. For example, when a user says, ‘I want to travel to Delhi’, the conversation agent detects the destination city as ‘Delhi’ and solicits information such as the source city and travel date. This configuration works well in situations where the user provides information to the conversation agent, and the conversation agent solicits more information by asking questions.

However, a more realistic conversation allows more generalized dialogue. Assume that the conversation agent responds ‘Which city do you want to travel from and on what date?’ in response to the user input ‘I want to travel to Delhi’. The user may be expected to say, ‘I will travel from Pune on 1st January’. However, what if the user says, ‘I will travel from Pune, but my dates are flexible. When is it cheap to travel from Pune?’ A typical slot-filling conversation agent will detect the source city, Pune. However, it must now also detect that the user has asked for more information in response. Specifically, the user has asked for cheap tickets from Pune to New Delhi. This means that a conversation agent must not only fill slots but be able to detect the role of user input in the context of the conversation. Once the slots are filled, a set of template-based patterns may be used to generate the appropriate response.

The patterns may also be selected via a classifier to select the most possible template based on the slots filled from the input. This has resulted in approaches that deal with dialogue act classification. As described in the ambiguity resolution section above, a dialogue act is the role of an utterance in the context of a conversation. For example, a dialogue act may be a question, a statement, or a request for action. Datasets of human dialogue have been tagged with dialogue acts so that a dialogue act classifier can be trained. The popular SWITCHBOARD corpus tags a large set of dialogue acts which capture nuances in a conversation. These tags are shown in Figure 10.4. Statements are classified as statement-non-opinions and statements-opinions. Questions have several dialogue acts of their own: yes-no-question, wh-question, declarative yes-no-question, tag-question, and so on. Repeat phrases, open-question, self-talk, and third-party-talk indicate dialogue acts in a conversation that may not necessarily take the conversation forward but are commonplace in human conversations.
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Figure 10.4   Fine-grained types of dialogue acts.


By explicitly performing classification on user inputs, the conversation agent can choose its response based on the dialogue act. Therefore, in the case above, the conversation agent may detect that the user has asked a question and, as a result, provide information. The second generation of conversation agents are characterized by tasks such as dialogue act classification. By modelling these tasks as classification tasks, they are able to use statistical approaches for text classification. The characterization brings structure to the conversation agent’s understanding of the ‘dialogue state’: the current situation in the conversation.

The second generation of NLP is characterized by several feature-based approaches to detect dialogue acts (Sridhar et al., 2009; Webb et al., 2005). Some of these features include:

1. Word-based features: The first set of popular features for dialogue act classification are based on words. These could be in the form of one-hot unigram vectors (indicating which words are present in a given utterance). Alternatively, morphological features based on words can also be used. For example, morphological features can indicate the number of adjectives, adverbs, and verbs (and so on) present in an utterance. For example, the utterance ‘Can you help with returning an online order?’ contains one determiner, one preposition, one adjective, one modal, one noun, one pronoun, one verb, and one gerund. These can be represented as count-based part-of-speech (POS) features.

2. Affective features: When a user makes a request or asks a question, it is to address an underlying need. For example, the customer of an e-commerce website may not find the information they are looking for, and, as a result, the customer decides to chat with a conversation agent. Therefore, sentiment features using sentiment and emotion lexicons can be useful for dialogue act classification. Some such features are the number of positive, negative, angry, and surprised words in a dialogue.

3. Inter-utterance features: Utterances are a part of a dialogue. As a result, it is useful to incorporate information from utterances in the neighbourhood to the target utterance. Inter-utterance features refer to features that capture signals from multiple utterances. For a target utterance, it can be helpful to have additional context in the form of preceding utterances.  Consider the utterance ‘Can you help me do that?’ This utterance could be preceded with ‘You can log on to our returns website and initiate the returns of your online order’. Information from the preceding utterance can be included in the feature representation of the target utterance. This information can be in the form of the features described above. Therefore, unigrams and POS tags from the preceding utterance may be included in the feature representation of the target utterance. 

Other classification tasks relevant to conversation agents are sentiment classification and intent classification. By explicitly predicting sentiment or intent, the conversation agent hopes to generate a coherent and appropriately empathetic response to the user.


  □  10.5Neural Approaches



In the third generation of NLP, the foundational tasks of conversation agents remain the same: dialogue act classification, slot-filling, and response generation. However, the advances in neural approaches change the way these tasks are achieved.

Slot-filling in a conversation agent takes as input a sentence and extracts information relevant to an intent in the form of slots. For example, when a user tries to book a flight, the user must specify the travel date, source, and destination cities, and so on. The third generation of NLP models slot-filling as a sequence labelling problem as shown in Figure 10.5. Words in the input sentence are converted to a dense representation using an encoder such as BERT. As shown in the figure, each of the words ‘San Francisco on Monday’ are mapped to their corresponding encodings. A feed-forward layer followed by a softmax classifier is used to predict the tag for every word position. As a result, the model predicts that the first two words are a destination, and the fourth word ‘Monday’ is a time. The model is trained on a labelled corpus of utterances and the slot types for the corresponding words.



[image: ]
Figure 10.5   BERT-based model for slot-filling.


Two paradigms have emerged in modern conversation agents in terms of how responses are generated: retrieval-based and generation-based. We will now discuss the two paradigms in the following subsections.

10.5.1 Retrieval-Based Agents

As the name suggests, retrieval-based approach retrieves a response from a dataset of conversations. The general architecture of the retrieval-based approach is shown in Figure 10.6. The approach uses a conversation dataset as the source of information. When a user submits an input to the agent, the user input is compared with the sentences in the conversation dataset. Sentences in the dataset similar to the user input are extracted. The response sentences to these sentences are the candidate set of responses. Therefore, the next step for the conversation agent is to rank and select the appropriate response. Consider a factual question, ‘Who created the periodic table of elements?’ When the agent receives this as an input from the user, it will look up sentences in the conversation dataset that are similar to the question. Some such sentences could be ‘Who was the creator of the periodic table in chemistry’, ‘Who formulated the period table of elements’, and so on. The responses to these questions in the conversation dataset are essentially candidate responses to the user input. Assuming that the true response ‘Dmitri Mendeleev’ is present in the conversation dataset, it will be retrieved as a response.

[image: ]
Figure 10.6  Retrieval-based conversation agents.


As a result, retrieval-based approaches for conversation agent are based on two key components: (1) similarity between the user input and the sentences in the conversation dataset and (2) matching the candidate responses with the intent of the question. For example, consider the question ‘Where was the Statue of Liberty built?’ This question may spuriously be matched to a question in the conversation dataset ‘When was the Statue of Liberty built?’ However, because the expected response for the user input is the name of the place, the response year for ‘when’ will be discarded as an incompatible response. Metrics of semantic similarity can be applied to retrieval-based approaches to create different variants.

In general, these chatbots are primarily dependent on a dataset of conversations. The overarching approach for retrieval-based chatbots is as follows:

1. The user submits an input.

2. The conversation agent looks up the dataset of conversations. This may be done using an index on the dataset.

3. Sentences in the conversation dataset that are similar to the user input are retrieved.

4. Responses to these sentences are ranked on the basis of their relevance, and a response is selected.

Can you spot a risk in using retrieval-based agents? They retrieve sentences from the conversation dataset. If the sentence in the dataset is biased or discriminatory, returning it as the output results in the agent appearing to perpetuate the bias. 




10.5.2  Generation-Based Agents

In contrast, generation-based models generate a response based on a representation of the user input. A class of models that are commonly used for the purpose are seq2seq models. These models generate a target sequence of words from a source sequence. While they are primarily motivated by advances in machine translation, they can be used for conversation agents as well. The source sentence is the user input whereas the target sentence is the agent response. A typical architecture of a seq2seq model is shown in Figure 10.7 (Vinyals and Le, 2015). The model is arranged in an encoder–decoder manner. The encoder creates a representation of the input whereas the decoder generates the text that will be the response from the conversation agent. The encoder may consist of a sequential encoder such as long short-term memory network (LSTM) or recurrent neural network (RNN), or also incorporate attention. The encoder component of the model learns a representation of the sentence or sentences in the conversation so far. The last state indicated by ‘eos’ in the figure is the representation of the context. The representation is used as the input in the encoder to generate the response. As a result, the first word generated by the decoder is ‘w’. The generated word ‘w’ and the representation from the encoder are together used to generate the next word ‘W’. The generation in the encoder stops when the end symbol ‘eos’ is generated.

[image: ]
Figure 10.7   seq2seq model for conversation agents.




The encoder–decoder architecture shown in Figure 10.7 is a general paradigm of such approaches in conversation agents. The encoder represents the meaning of the user input or any additional input in a dense vector. The additional input may be in the form of previous sentences in the conversation or additional information such as information about the user, the persona of the conversation agent, and so on. The encoder in itself can be implemented using a sequential encoder or extended to its Transformer-based variant. On the other hand, the decoder ‘unpacks’ the representation by generating the response one word at a time. An encoder–decoder architecture is trained by providing a dataset of input–output pair. The decoder maximizes the generation of the expected response (i.e., output) for the given user input. The encoder may be separately pre-trained on a large dataset of sentences so that it learns to capture the semantics of the sentence. However, a seq2seq model as described above does not really capture conversational context, a necessity for conversational AI that we have highlighted in the chapter so far.

The neural responding machine (NRM) is a popular approach that does so. It employs a generation-based approach using a neural architecture (Shang et al., 2015). In a broad sense, the NRM is a seq2seq model: the encoder represents the input, and the decoder generates the agent’s response. However, NRM identifies an additional component that is necessary for a machine to have a conversation: context. Experimental results on NRM show that it works well for short conversations. The original work reporting NRM was tested on a dataset of conversations from the Chinese social networking website, Sina Weibo. Figure 10.8 shows the architecture of NRM. The input is represented by x1, x2, …, xt, where x is a word in the sentence.




[image: ]
Figure 10.8   Neural responding machine.



The encoder generates a hidden representation h. The hidden representation is then passed to the context generator. Along with the hidden representation, the context generator receives attention from the previous timestamp. In essence, this is the information that the context generator knows about the conversation so far. By combining the two, the context generator generates a context ct which is the representation of the current input and the context of the conversation. It is this context ct that is passed to the decoder in order to generate the response y1, y2, …, yt. As in the case of the input, each y represents a word in the output. The learning objective of NRM is to find the optimal sequence y in response to a user input x, that is, to optimize P(y|x). Let us now understand each of the three components. The context generator is the component that imparts the conversational property to the NRM.

Let us begin with the decoder. We do so because the decoder is tied to the context generator. The representation at a timestep in the decoder is used to feed back into the context generator, as shown in Figure 10.8. The decoder takes as input the representation of the context and passes it to an LSTM layer to capture the sequential context. Let this be represented as s1, s2, s3, and so on. The output at every step is a combination of three parts: the output of the previous time-step, the output of the LSTM layer, and the context vector at that instant. In other words, yt is generated as a function g(yt − 1, st , ct ). The first argument ensures that the word generated at the current time-step is grammatically compatible with the output generated in the previous step. The second argument st ensures that the word is compatible with the sequential information from the context. The third argument ct ensures that the word is compatible with the absolute contextual information at the current time-step.

The encoder and the context generator are tightly coupled, as shown in Figure 10.9. x1, …, xt correspond to representations in the input word. The encoder creates representation using two types of encoders: the global encoder and the local encoder. The global encoder applies a sequential encoder (similar to an LSTM) on the input to generate [image: ] as the final state. The local encoder uses attention over all hidden states. The context generator combines signals from three sources:



[image: ]
Figure 10.9   Encoder and context generator of the neural responding machine.



1. The last state of the global encoder. This represents the semantics of the input composed using a sequential layer.

2. All states of the local encoder. This represents a contextual representation of every position in the input.

3. Attention signal applied over the sequence of hidden states from the encoders hl and hg, and the hidden states of the decoder s. This represents the contextual representation of every position in the output generated prior to this step.



Case Studies



Customer Care Agent

Customer care helplines are commonplace in organizations over a wide range of sectors. Automating at least a part of these helplines using conversation agents has been a growing trend. As a result, automated conversation agents are often the first point of contact for a customer who has reached out to the customer care of an organization. This conversation agent may attempt to triage the user’s problem before forwarding the user to the appropriate human customer care agent.

Counsellor Agents

Conversation agents that assume the role of a counsellor have been deployed as components of several lifestyle apps. For example, an app that encourages people to quit cigarette smoking has an embedded conversation agent. The agent engages the user in a conversation in order to help the user get over an urge of smoking. Often, talking to someone, albeit a conversation agent, can be helpful to humans in order to form useful habits.




Summary

This chapter discusses the three generations ofNLP in conversation agents. The first generation ischaracterized by pattern-based chatbots like ALICE.The second generation of approaches combine slot-filling with template-based generation. Statistical classifiers are used to select the appropriate slots, followed by the templates to generate the response. The third generation exhibits two broad approaches: retrieval-based approaches (where the most similar response from a dataset of input-response pairs is returned) and generation-based approaches (where a seq2seq model is used to generate the response). Conversation agents that can engage a human user in a conversation are the frontier of NLP that will make computers more human.


Review Questions

1. How do different layers of ambiguity interact in the case of conversation agents?

2. Describe the architecture of the Genial Understander System.

3. What categories of features can be used for intent classification in conversation agents?

4. What are the two paradigms of neural approaches of conversation agents?

5. Describe the neural responding machine in detail.


Course Assignment and Project

1. Design an AI teacher that responds to student queries in mathematics. Implement it via a set of rules. The following considerations are important:

a.What is the persona of the agent? What kind of tone and word choice considerations are important?

b.Identify the class of mathematical problems that the agent will be able to answer. Design a set of rules.

c.Implement them using a programming language of your choice. Perform human evaluation to determine the quality of the output.

d.How would you extend the capability of the conversation agent by using an external knowledge base?

e.Describe the context generator in the neural responding machine.

f.How can BERT be used for slot-filling in the case of conversation agents?

2. Implement a chatbot that plays the role of a diet expert.

a.An example of such a chatbot is available as part of HuggingFace library at: https://huggingface.co/transformers/model_doc/blenderbot.html. The pre-trained model can be used directly.

Download a dataset of discussion forum posts related to cooking using Quora API. Extend the chatbot using fine-tuning on this dataset. Perform a detailed error analysis before and after the fine-tuning. What kind of inputs does the chatbot satisfactorily or unsatisfactorily respond?


Objective Questions

Fill in the Blanks 

1. The three components of a conversation agent such as the Genial Understanding System are understanding, generation, and ________.

2. Human conversations operate at the level of ________, making them a highly intelligent activity.

3. A slot-filling conversation agent creates slots in the form of slot names, values, and ________.

4. In the neural responding machine, the output of the ________ generates the context in the form of attention.

5. ________ approaches for Q&A may perpetuate harmful biases present in its source dataset by returning discriminatory sentences verbatim.

Select the Most Appropriate Option

6. What is the purpose of srai tags in AIML?

a.They simply return the user input as the response.

b.They are recursively looked up for matching patterns.

c.They are recursively looked up for matching templates.

d.They contain simple responses from AI.

7. Which of the following dialogue acting in the Switchboard corpus is used to indicate that dialogue may linger in a conversation?

a.Yes-no-question

b.Self-talk

c.Statement-opinions

d.Tag-question

8. Which of the following statements is true about seq2seq models for conversational AI?

a.The decoder generates the response sequence.

b.The encoder may be separately pre-trained on a large dataset of sentences.

c.The encoder learns a representation of the input and may use an LSTM layer to do so.

d.All of the above

9. What is the markup language used to represent knowledge in ALICE called?

a.AIML

b.AlBERT

c.ALIZA

d.ALFA

10. What is the output of retrieval-based conversation agents?

a.Top webpage retrieved from a search engine.

b.Top document retrieved from the conversation dataset.

c.Relevant sentence matched in the conversation dataset.

d.Relevant word spans matched in the user input.
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Answers to Objective Questions



1.knowledge

2.pragmatics

3.procedures

4.decoder

5.retrieval-based

6.(b)

7.(b)

8.(d)

9.(a)

10.(c)
















	 

	 




	CHAPTER
11

	Summarization








The purpose of an elevator pitch is to describe a situation or solution so compelling that the person you’re with wants to hear more even after the elevator ride is over.1

Seth Godin






Learning Objectives

After reading this chapter, you will be able to

• Distinguish between extractive and abstractive summarization.

• Use off-the-shelf summarizers.

• Describe extractive summarization in three generations.

• Apply pointer-generator networks for abstractive summarization.







To budding entrepreneurs, an elevator pitch is a short pitch about their business venture: short enough to be completed within an elevator ride, and interesting enough for the listener (who may be a potential investor) to be interested in the business. An elevator pitch represents a classic case of communication in a time-bound manner. Presenting a large volume of information in short is common in human communication. Imagine a student who attends an hour-long talk about data structures. Following the talk, they might write a summary that captures their key understanding of the talk. This summary will be useful for them in the future to recall the talk. It is unlikely that the student will remember or be able to reproduce the hour-long talk verbatim in their notes. You expect the summary to be much shorter than the actual talk. What elements do you expect in the summary written by the student? They might use bullet points to list down key ideas from the talk. The key ideas may be phrases used by the presenter. Let us contrast this summary with a summary of another kind: headlines of news articles. A headline attracts a reader to read a news article.A headline will typically be a short, catchy phrase that describes the article. It needs to be catchy so as to attract the attention of the reader. With the unflattering exception of ‘clickbait headlines’ found on the Internet,headlines are typically required to convey the key idea in the news article. The key idea may be the news event that the article describes. So, what is a summary? A summary is a text that captures the content of a reference text and has a length shorter than the reference text. A summary of a reference text must meet one key objective: it should include important content in the reference text. 

This ability to express in a concise manner is useful in the case of textual datasets. This is where natural language processing (NLP) plays a role. The process of creating summaries is called summarization. In situations where large volumes of texts are available, it may be cumbersome for a human to read all of them before generating a summary. Similarly, if a document on the Internet is too long, a user may benefit from being given a short summary. This has resulted in approaches for automatic text summarization since as early as the statistical approach presented by Luhn in 1958. 

In the context of NLP, the larger piece of information would be a textual document(s). Therefore, the summary of a book would be a text that describes the content of the book such that the summary is shorter than the book. There are mobile phone applications today which provide short summaries of books to help people read summaries of new books and use them in their professional and personal conversations.

Alterman (1992) defines summarization as the process of reducing an information object to a smaller size and to its most important points. Radev et al. (2002) define summary as a text produced from a source text or texts such that the summary is shorter than the source text and contains key ideas in the source text or texts. Summarization may also need to adhere to other requirements as follows:

1. Length: A summary may be restricted in terms of the number of words or sentences.

2. Personalization: A summary may be tailored for its audience. For example, a talk on deep learning can be summarized differently for a computer science student versus a non-computer science person. Similarly, a summary of a product in its operating manual is different from its summary in an advertisement. 

Humans generate summaries of different kinds. The process can be broadly divided into three parts: (1) understanding the content of the text, (2) determining what components of the content are important and relevant, and (3) generating a summary that captures the key message of the text. Humans may not do the three separately or in that order. However, these are useful mechanisms to conceptualize the underlying components of summarization. Keeping the process in mind, we present text summarization, the role of ambiguity therein, and how the three generations of NLP tackled ambiguity in the context of summarization.


  □  11.1Ambiguity in Text Summarization



At the heart of ambiguity in summarization lies the concept of intertextuality. Intertextuality refers to relationships between two pieces of text. A parallel corpus that is commonly used for machine translation is an intertextual corpus because the source and target text convey exactly the same meaning—but in different languages. Summaries are a special case of intertextuality. A summary conveys a part of the meaning, albeit the essential part of the meaning of the reference text. Therefore, there exists a one-way entailment between a summary and a reference text. A summary can be entailed by the reference text but not vice versa. Since a summary is shorter than the reference text, the decision to be made during summarization is: Is this piece of information (a phrase, a sentence, or more) in the reference text important enough to be included in the summary? The choice of selecting a piece of information, either in the form of a phrase, a sentence, or an idea, is the ambiguity angle in summarization.

Linguistic studies have been interested in summaries as a human ability to present information in a concise manner. For example, a user may not be willing to read a long text due to a shortage of time. Therefore, a summary presents a brief view of the text. Fries (1997) states that summaries have ‘become especially important in the 20th century’, and has defined several functions of summaries depending on the nature of the source. To understand how the summaries vary in terms of these functions, let us consider William Shakespeare’s popular play Romeo and Juliet and see how summaries may differ.

1. Long articles: If a reader has no time to read an original text, summaries provide concise information. An abstract of a research paper is an example of such a summary. If one had to describe Romeo and Juliet in a sentence, one would use the first sentence of the Wikipedia page: ‘Romeo and Juliet is a tragedy written by William Shakespeare early in his career about two young star-crossed lovers whose deaths ultimately reconcile their feuding families’.

2. Reviews: Interestingly, a review often summarizes the plot of a movie or the story of a book. Therefore, it gives a reader a glimpse of the product being reviewed. The summary of the plot in a review of Romeo and Juliet would be a three- to four-sentence brief of the play. The website shakespeare.org.uk provides such a summary as: ‘An age-old vendetta between two powerful families erupts into bloodshed. A group of masked Montagues risk further conflict by gatecrashing a Capulet party. A young lovesick Romeo Montague falls instantly in love with Juliet Capulet, who is due to marry her father’s choice, the County Paris. With the help of Juliet’s nurse, the women arrange for the couple to marry the next day, but Romeo’s attempt to halt a street fight leads to the death of Juliet’s own cousin, Tybalt, for which Romeo is banished. In a desperate attempt to be reunited with Romeo, Juliet follows the Friar’s plot and fakes her own death. The message fails to reach Romeo, and believing Juliet dead, he takes his life in her tomb. Juliet wakes to find Romeo’s corpse beside her and kills herself. The grieving families agree to end their feud’.

3. Advertising: An advertisement is a summary of a specific kind. An advertisement of a product describes the product to influence the reader to buy the product. An advertisement for a play on Romeo and Juliet could read as ‘Watch how love unfolds between Romeo and Juliet as their families fight. Where will love take them?’ News headlines are a peculiar type of advertisement-based summaries as well. If the summarization task is to create news headlines for a news article, then stylistic choices such as the preference of noun phrases over verb phrases would play a role in deciding the summary. 

Let us understand how humans create summaries. Professional summarization is understood to have three sub-tasks: abstracting (which is the creation of an abstract from a larger document), indexing (which is the identification of key terms for a document), and classifying (which is representing a document with a set of predetermined terms). Abstracting allows a textual summary. Indexing allows an object (say, a book) to be linked to other objects (i.e., books) (via a search engine), and classifying allows the object to be arranged in a taxonomy. Endres-Niggemeyer and Neugebauer (1998) define text summarization by humans as a two-step process. The first step converts the document to a document representation. This is achieved by humans by reading, understanding, and representing the document. The representation may either be in the form of a mental model or put down on paper in a representation that humans are comfortable with. The ambiguity that humans must deal with here is the relative importance of ideas in the document and possible redundancy of ideas. The former is important because not all ideas may be central to the document. The latter is important because the same idea may be discussed in different ways in the document. Depending on the expected length of the summary, the details around an idea may need to be skipped. The ambiguity here is to determine which ideas must be skipped. The second step is generation where the ideas in the document representation are converted to a summary. The ambiguity here is the arrangement of ideas in an appropriate sequence of sentences in the summary. For example, assume that a human summarizer decides to select a set of sentences where some sentences may be general and some specific. The human summarizer must now decide the order in which the sentences must be presented: a depth-first approach would start from the general ideas and proceed towards more specific ideas and a breadth-first approach would place ideas that are relatively important in consecutive sentences and eventually elaborate the details in forthcoming sentences.

It comes as no surprise that automatic text summarization leverages this process of summarizing a document. It is believed that most documents across domains tend to present the most important information at the beginning. A common baseline used for text summarization is the Lead-3 baseline. This is a simple baseline where the first three sentences of a document are returned as its extract or summary. Considering how documents that may need summarization are structured, this approach is a naïve, yet useful, baseline for text summarization.

As an example of summarization itself, let us summarize the preceding section. A one-sentence summary of this section is: ‘Summarization when done by humans or computers needs to deal with ambiguity’. A short (more than one sentence) summary of this section is: ‘Summarization is a form of intertextuality between the reference document and summary where the objective may differ based on the purpose of the summary. Text summarization by humans is a two-step process: the creation of a document representation and the generation of a summary. As a result, automatic text summarization can use a simple baseline: simply return the first three sentences of a document as its summary’. The two summaries are not the only way to summarize this section. The fact that many valid summaries exist highlights that summarization is a subjective task.


  □  11.2Problem Definitions



Automatic text summarization is the process of automatically generating summaries from a reference document (Lloret and Palomar, 2012). For the sake of brevity, we refer to it as text summarization in the remainder of the chapter. Some variants of text summarization are as follows.

A primary categorization of text summarization is in terms of how the generated summaries reflect the content in the reference text. This results in two approaches: extractive summarization and abstractive summarization, illustrated in Figure 11.1. Extractive summarization creates summaries by selecting sentences from the reference text. As a result, this approach does not generate new sentences. It simplifies the summarization process to a selection of sentences from the reference document. This means that extractive summarization needs to account for only the first two steps in the process of text summarization. Early research refers to extractive summaries as ‘indicative summaries’. This is because the goal is to present to a reader a sub-set of sentences in a document that is likely to be indicative of the document. The goal of an indicative summary is to allow a reader to decide if they should be reading the complete document. In contrast, abstractive summarization creates summaries by generating sentences that may not be present in their exact form in the reference document. In other words, abstractive summarization creates a paraphrasing of the reference document by generating new sentences that may not be exactly present in the reference document. This means that the approach needs to account for all three steps in the process of text summarization.



[image: ]
Figure 11.1  Extractive versus abstractive summarization. In the left block, m out of n sentences are picked. In the right block, p sentences are generated where each sentence is not necessarily one of n sentences in the reference document.



Other formulations of summarization account for other parameters, such as the number of reference documents, affective properties of the summary (e.g., opinion summaries), and multilinguality. If the reference text consists of more than one document, it is referred to as multi-document text summarization. If it consists of only one document, it is referred to as single-document text summarization. Similarly, if the summary is expected to retain the sentiment or opinion content of the reference text, it is referred to as opinion summarization. A summary may also be generated from reference documents of multiple languages, giving rise to multilingual summarization.


  □  11.3Early Work



Early generations of text summarization focused on extractive summarization. In fact, early work limits the scope of summarization by calling it text extraction. Therefore, Edmundson (1969) shows that the problem is simplified into two steps. For a document comprising a set of n sentences, the process of creating an extract deals with choosing a sub-set of m sentences among the n sentences.

The value of m may be determined as a fixed value (e.g., where the objective is ‘generate a one-sentence summary’) or as a proportion of N sentences (e.g., where the objective is ‘select 10% most indicative sentences of the document’). Towards this, the first step is to score sentences based on their importance, and the second step is to select sentences that form the summary. A typical approach in the first generation of NLP captured the scoring and selection of sentences based on factors that are considered important for a sentence to be included in a summary. This method uses a sequence of steps that are applied to summarization as illustrated in Figure 11.2. The first step is the creation of dictionaries. In this context, a dictionary is a lookup table that contains a list of ‘factors’ (known in today’s NLP as features) with corresponding scores. One such factor is a word along with the score of how relevant the word is to a summary. A dataset of documents and reference summaries are used to generate dictionaries for different kinds of factors. Consider the example of a word-based dictionary. Each word in the dataset is scored with three factors:
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Figure 11.2  Rule-based approach for summarization.



1. The number of times it appears in a summary (indicating how important it is for inclusion in the summary).

2. The number of times it appears in a document but not in a summary (indicating that it may not be important for inclusion in the summary).

3. The number of times it appears in the dataset itself (indicating how common the word is).

When the dictionary is created for a set of words, each word is scored for the three factors. A relative score for the word is determined based on the three factors. For example, a highly indicative word will appear more often in a summary when it is present in the document.

The second step uses the dictionaries computed in the first step in order to extract sentences from a document. Sentences in a reference document are scored on the basis of four sets of factors:

1. Cue: The cues in a sentence are unigrams in the sentence. The cue factor for a sentence is computed as a sum of scores of the unigrams present in the sentence as obtained from the dictionary. This indicates the relative importance of the sentence, dependent on the words present in it. The cue factor also assumes that a pre-decided list of stop words has been eliminated from the computation of the scores.

2. Key: While the cue factor spans all words in a document, the key factor only selects the most indicative words as extracted from a dictionary. These words are called topic words. Therefore, the first step is to use a dictionary to identify the topic words in a document. For a news article about an earthquake, the keywords could be ‘earthquake’, ‘tremors’, ‘rehabilitation’, and so on.

3. Title: For structured documents such as research papers, words in the titles of sections and the paper can be more indicative of the content of the paper. Therefore, the scores of these words can be amplified by using a relevant multiplicative factor.

4. Location: The position of words in a document depends on the structure of the document. For example, if the task is to generate an extract of a scientific article, the titles of sections in the article may be useful to determine the relative importance of sentences. For example, the introduction may highlight the key ideas and motivation of the article, while the conclusion section may contain key takeaways of the paper. Similarly, another example is news articles. Known as the inverted pyramid style, news articles often summarize the key event in the first few paragraphs, while providing details and quotes in the subsequent paragraphs. Therefore, each sentence is also scored on the basis of a linear position or a relative position. A linear position corresponds to the sequence number of a sentence in a document. For example, the designer of the system may choose to weigh sentences in the first 1/3rd and the last 1/3rd portions of a news article to be higher than the rest of the sentences. Therefore, the scores of these sentences can be amplified by using a relevant multiplicative factor. 

We observe that cues and locations are based on the designer’s intuition from the large corpus. This means that these values are computed on the basis of what the designer observes in the corpus. The title and key factors are dependent on the characteristics of the document to be summarized. The scores from each of the above factors are combined using a weighted sum that is experimentally determined.

The third step is to rank sentences in the decreasing order of their scores computed from the factors above and to select an appropriate sub-set of sentences. This can be done in one of the following ways:

1. Sentences with top k scores are selected as the indicative extract.

2. Sentences which have a score above a certain threshold are selected as the indicative extract.

3. Top k% of sentences in a document are selected as the indicative extract. The value of k is a parameter. However, the number of sentences that will be returned depends on the length of the document.

The factor-based approach above assigns scores to sentences on the basis of words present in them and the location of the sentence in the document. This poses a difficulty. This approach does not account for sentences that contain references to preceding sentences in the document. For example, ‘The process of doing so is to combine complex materials with each other’. The word ‘so’ is an anaphoric reference (i.e., a reference to a portion of the document preceding this sentence). A simple extension to the rule-based selection approach was provided by Paice (1990). If a sentence contains anaphoric references (such as ‘so’ or ‘that’), the scores of adjacent sentences are included in the computation of the score for that sentence. In this way, a rule-based approach for summarization can be extended by handling anaphoric references.

Let us now look at a simple code that shows a summarizer. This code is for illustrative purposes and can be optimized further.

The input is a document as given below. We use the first paragraph of this chapter as the reference document.



document = "Presenting a large volume of information in short is common in human communication. Imagine a student who attends an hour-long talk about data structures. Following the talk, they might write a summary that captures their key understanding of the talk. This summary will be useful for them in the future to recall the talk. It is unlikely that the student will remember or be able to reproduce the hour-long talk verbatim in their notes. You expect the summary to be much shorter than the actual talk. What elements do you expect in the summary written by the student? They might use bullet points to list down key ideas from the talk. The key ideas may be phrases used by the talk presenter. Let us contrast this summary with a summary of another kind: headlines of news articles. A headline attracts a reader to read a news article. A headline will typically be a short, catchy phrase that describes the article. It needs to be catchy so as to attract the attention of the reader. With the unflattering exception of ‘clickbait headlines’ found on the Internet, headlines are typically required to convey the key idea in the news article. The key idea may be the news event that the article describes. So, what is a summary? A summary is a text that captures the content of a reference text and has a length shorter than the reference text. A summary of a reference text must meet one key objective: it should include important content in the reference text."





We will first pre-process the document by splitting it into sentences. We assume that a dot is the end-of-sentence marker.



sentences = document.lower().split(".")

sentences = [i.strip() for i in sentences]






We will save a map of sentences in sentence_dict so that the key is the position of the sentence in the document, and the value is the text of the sentence. The sentence_dict will be used in generating the final summary, as we will see later.



sentence_dict = {}

for i in range(0, len(sentences)):

        sentence_dict[i] = sentences[i]




Every sentence will have a set of scores. Let us start with the cue score. We assume that the cue score of a sentence is the proportion of words in the document that are contained in a sentence. Therefore, longer sentences will have higher cue scores. The cue score indicated here can be replaced by more informative scores based on the uniqueness of terms, etc.



# Cue

sentence_lengths = [len(i) for i in sentences]

cue_scores = [i/max(sentence_lengths) for i in sentence_lengths]




The key indicates the topic of the summary to be generated. Let us assume that we want to generate a summary related to the word ‘student’. Therefore, the key_scores looks as follows:



# Key

key = "student"

key_scores = [i.count(key) for i in sentences]




The third kind of score we will consider is the location score. We assume an unrealistic heuristic for the purpose of this example: sentences earlier in a document are more important than the ones that come later. This results in position_scores as follows: 



# Location

position_scores = sorted(list(range(0, len(sentences))), reverse = True)




What we have so far are three lists: cue scores, key scores, and location scores. Each list is of the same length: the number of sentences in the document. Let us now compute an overall sentence score as a weighted sum. The weights defined below are indicative only. We urge the reader to experiment with different scores and see how the summary changes. The point to note here is that the success of this approach relies on how the scores are defined and what the weights are: both of which are being programmatically supplied in the code.



# Weighted sum

cue_score_weight = 0.02

key_score_weight = 5

position_score_weight = 0.05

weighted_cue_scores = [i * cue_score_weight for i in cue_scores]

weighted_key_scores = [i * key_score_weight for i in key_scores]

weighted_position_scores = [i * position_score_weight for i in position_

scores]

final_scores = [sum(x) for x in zip(weighted_cue_scores, weighted_key_

scores, weighted_position_scores)]




The list final_scores indicates the weighted sum as required. Let us now stitch together the sentences by looking up the indices in sentence_dict.



result = sorted(range(len(final_scores)), key=lambda k: final_scores[k],

reverse = True)

summary = ' * ' .join([sentence_dict[i] for i in sorted(result[0: int(len

  (sentences)*0.30) ])])

print(summary)




The output of the program is




presenting a large volume of information in short is common in human communication * imagine a student who attends an hour-long talk about data structures * following the talk, they might write a summary that captures their key understanding of the talk * it is unlikely that the student will remember or be able to reproduce the hour-long talk verbatim in their notes * what elements do you expect in the summary written by the student? they might use bullet points to list down key ideas from the talk




Sentences in the summary are separated by the asterisk sign because they may not be consecutive sentences in the document.


  □  11.4Summarization Using Machine Learning



Recall that extractive summarization involves selecting or not selecting a sentence in the reference document. Majority of summarization approaches in the second generation of NLP can be broadly categorized into two groups, illustrated in Figure 11.3 (Lloret and Palomar, 2012):


1. Feature-based selection: In this case, sentences of a document are represented as features for a statistical learning algorithm. The algorithm may be a regression model that computes a score for every sentence based on its features. Alternatively, it could be a classifier that captures interactions between the features and the output label that predicts whether or not a sentence must be included.

2. Graph-based selection: In this case, summarization attempts to capture discourse connections between sentences of a document by representing them as a graph. The general idea is to represent sentences as the nodes of a graph where the edges capture the similarity between sentences. The process of summarization is then reduced to the selection of sentences that capture the essential meaning of the document while avoiding redundant sentences based on their similarity as indicated by the edges. 

[image: ]
Figure 11.3  Alternatives to machine learning-based approaches for summarization: graph based and feature based.



In the following sub-sections, we describe in further detail the two methods for machine learning-based summarization.

11.4.1 Sentence-Based Summarization

Sentence-based summarization formulates summarization as a classification problem. In this case, every sentence in the document is predicted as whether or not it is worthy of inclusion in the summary. An early work that utilizes this approach is by Kupiec et al. (1995). They represent every sentence as a set of features and then train a Naïve Bayes classifier. The classifier assumes that the features are independent of one another. Some useful features for sentence-based summarization are




1. Sentence length: Sentence length in terms of number of words may be used as a feature. This can be represented as an integer where the length of the sentence in words is considered as the value of the feature. Alternately, it may be represented as a categorical feature where sentence length is bucketed into categories such as short, medium, and long. Depending on the number of words in the sentence, the feature for one of the three buckets is set to true.

2. Word-based features: These are typical unigram or n-gram features present in the sentence to be classified. In addition, thematic features based on words may also be used. A typical example of thematic features is as follows. Given the training set, words that commonly occur in the reference summaries may be represented as thematic features. Therefore, in addition to word-based features (which span over all words in the sentence), thematic features contain a numeric value indicating whether this sentence contains words with high relevance to the theme of the dataset. Similarly, words that appear in titles of the headings of the document may also be used as a separate class of features. Consider that a reference document is a research paper with a section titled Methodology. Therefore, for sentences that contain the word ‘methodology’, a separate title-based features can be included in the sentence representation (Schilder and Kondadadi, 2008).

3. Stylistic features: If a sentence contains abbreviations (which are typically indicated by all capital letters in English), it may indicate that the sentence refers to important concepts used in the document. Therefore, the presence of stylistic indicators such as capitalization or italicization can be useful as a feature.

4. Position: The position of a sentence in the document may be represented as a feature itself. For example, one way to do so is to represent position as a three-label variable: the value 0 indicates that the sentence is present in the first 1/3rd portion of the document, the value 1 indicates that the sentence is present in the next 1/3rd portion of the document, and the value 2 indicates that it is in the last 1/3rd portion of the document. 

Once modelled as a classification task, extractive summarization can leverage statistical classifiers for text classification with the appropriate set of features.

11.4.2 Graph-Based Summarization

Mihalcea (2004) shows a method for graph-based summarization. This work is based on identifying the importance of web pages on the Internet using an algorithm called HITS algorithm. The idea here is that web pages refer to other web pages using hyperlinks and, as a result, form a web of pages. Therefore, a page has two kinds of scores: the hub score indicating how many important pages this page points to, and the authority score indicating how many important pages point to this page. This generates a directed graph of pages.

This can be mapped to extractive summarization by representing a document as a graph. The nodes of the graph are the sentences themselves. The weight of a node is determined on the basis of features such as the words present in the sentence and the position of the sentence in the document. The weights on the edges are the similarity between sentences. This can be computed in terms of the number of common words or semantic similarity between words in the sentence.

The TextRank algorithm is a popular text similarity algorithm that is used to rank sentences in a document on the basis of their relative importance (Mihalcea and Tarau, 2004). The algorithm iteratively updates the score of a node based on the weights of edges connected to the nodes and the scores of the nodes connected to the node. In this algorithm, the ambiguity regarding the sentences to be selected for an extractive summary is resolved on the basis of the salience of sentences. The score of nodes serves as a signal towards the salience of sentences.

Erkan and Radev (2004) present an algorithm called LexRank that selects sentences in terms of their centrality in a graph. The algorithm represents sentences as nodes of a graph. Each node contains the representation of a unigram vector based on the words present in the sentence. The edges of the graph are the cosine similarity between the node vectors (i.e., the sentence vectors of the graph). Borrowing from the notion of the HITS algorithm, the salience or prestige of a node is determined by how similar it is to other important nodes in the graph. The LexRank of a node depends on the rank of the nodes that it connects to. Therefore, the LexRank of node u is given by

(11.1)
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Like the TextRank algorithm, this algorithm also operates in an iterative manner. It is based on the notion of eigenvector centrality in graphs. Nodes with a high eigenvalue are the informative or prestigious nodes. Therefore, the algorithm computes the cosine similarity values for pairs of nodes and selects the similarity values above a certain threshold. The scores of nodes in Eq. (11.1) are iteratively updated to incorporate similarity values. Eigenvector centrality states that nodes in a graph with high eigenvector values are the salient nodes in the graph. These nodes in turn represent sentences. Nodes with salience scores above a certain value are then selected for inclusion in the summary.

The advantage of the LexRank algorithm is that it can be used effectively for multi-document summarization. Sentences across multiple documents can be represented as nodes of the same graph, and similarity between pairs of nodes can be recorded as such on the edges of the graph.

TextRank and LexRank are both graphical approaches for summarization. They represent documents as a set of nodes in a graph. The similarity values in TextRank are computed as a similarity function. In contrast, LexRank uses cosine similarity as the metric. The re-ranking step in LexRank also sets it apart from TextRank.

Barrios et al. (2016) provide an open-source implementation of TextRank in the open-source summa library.



from summa.summarizer import summarize





Let us try using it on the document used in the rule-based approach. To do so, we will use the summarize method as follows:



summarize(text, ratio=0.2)





  □  11.5Summarization Using Deep Learning



The third generation of NLP witnessed approaches for neural text summarization (Dong, 2018). In this section, we will cover both extractive and abstractive summarization. The latter is the kind where the summary may not be an exact selection of sentences in the reference document.

11.5.1 Similarity Between Language Representations for Summarization

We recall that extractive summarization deals with selecting a sub-set of sentences that capture the meaning of a document. This essential understanding of summarization holds true in the case of the third generation of NLP as well. However, the advent of language models allows for a more robust mechanism to select sentences. Let us re-visualize extractive summarization using representations obtained from language models. Language models provide dense representations of sentences in a document. When the sentences in a document are represented as vectors of such a form, summarization that selects a sub-set of these sentences must adhere to two requirements (Yin and Pei, 2015). The first requirement is prestige. The prestige of a sentence is its value to the overall message of the document. This has been referred to as ‘salience’ of a sentence as well. If the task of summarization is to select important or salient sentences from a document, then it can be reduced to a classification task. Each sentence will then be classified as whether or not it should be included in the summary. Consider the example of the following document:


Binary search is an iterative search algorithm that allows you to search for a number (called a key) in a list of numbers that are expected to be in a sorted order. Binary search divides the list into two parts at the midpoint. It then compares the element at the midpoint to see if the key is lower than the element. If it is, then the algorithm continues to search in the left segment of the list. If it is not, it searches in the right segment of the list. It then looks up the midpoint of this segment of the list until an element is found. In other words, binary search iteratively divides a list of numbers into half until an element is found or until it is sure that the element cannot be found. Its iterative nature makes it time-consuming, however. A requirement for binary search is that the list must be sorted. Consider an example…



Let us assume that the document continues to explain binary search via an example. Prestige deals with the salience of each sentence in the document. All sentences above carry certain information. However, the importance of each sentence can be ranked in terms of its value to the overall document. The ranked list can then be used to determine if a sentence should be selected in an extractive summary of the document. As an example, the sentences ‘Binary search is an iterative search algorithm that allows you to search for a number (called a key) in a list of numbers that are expected to be in a sorted order’, ‘In other words, binary search iteratively divides a list of numbers into half until an element is found or until it is sure that the element cannot be found’, and ‘A requirement for binary search is that the list must be sorted’ are likely to be the most salient sentences in the document.

However, summarization is more than a selection of sentences in isolation of each other. The ambiguity in summarization does not arise from whether a sentence should be selected or not, but it arises from the decision of which among the many sentences should be selected. Therefore, meeting the requirement of salience alone is not sufficient for summarization. This brings to the fore the second requirement: ‘diversity’. Documents may have sentences that repeat the same idea. For example, a lead paragraph may introduce an idea while the subsequent paragraphs give details about them. Extracting sentences that refer to the same key idea may be redundant, even if these sentences individually carry a lot of informative words. For example, the sentences ‘Binary search is an iterative search algorithm that allows you to search for a number (called a key) in a list of numbers that are expected to be in a sorted order’ and ‘A requirement for binary search is that the list must be sorted’ are redundant in that the first sentence already conveys the message of the second sentence.

Language models can be used to model prestige and diversity as required by extractive summarization. Yin and Pei (2015) do so using an optimization function. Assume that a document contains a set of n sentences S1, S2, …, Sn. Let C be a sub-set of these sentences which will be returned as an extractive abstract. Therefore, the total prestige of C consisting of k sentences, U(C ), is given by

(11.2)
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Here, p is a function that takes as input the language model representation of a sentence and returns a utility value. Let us now look at the second term: diversity. Let diversity be modelled as similarity: the converse notion of diversity. Let a matrix S represent the similarity between sentences. This similarity can be captured via cosine similarity between the sentence representations. Therefore, the total diversity is given by

(11.3)
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The two terms can be combined to obtain the best possible extract from a set of candidate extracts. Therefore, the problem of extractive summarization is the optimization:

(11.4)
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The best sub-set C is the set of sentences that has the highest set of salience (U(C )) but the lowest similarity between the selected sub-set (P(C )). The two can be trained sequentially: a set of sentences is first selected as salient sentences followed by the elimination of redundant sentences. Alternatively, given a dataset of documents and their extractive summaries, argmax can be used as an optimization function.

11.5.2 RNNs for Summarization

As we saw in the chapter on language models, recurrent neural networks model the linear structure of a sentence via dependencies between consecutive word positions in a sentence. Therefore, words in a sentence can be passed sequentially through an RNN to get a representation of the sentence. This approach can be applied in a hierarchical manner to obtain representations of documents as well. Figure 11.4 shows a hierarchical extractive summarizer. The summarizer consists of two layers of RNNs followed by a classification layer. They fulfill the following functions:


1. The first layer takes as input word embedding representations and applies a recurrence over their sequence. As a result, the last state of the RNN sequence for each sentence is a representation of the sentence. This results in sentence-level representations for all sentences in a document. Therefore, this layer obtains sentence representations.

2. The second layer takes as input the sentence representations and applies a recurrence over the sequence of sentence representations. As a result, the last state of the RNN sequence is the representation of the document.

3. The third layer is a pair-wise comparison of the document representation with the sentence representation of individual sentences. Each sentence representation is compared with the document representation in a classification layer that decides if the sentence should be included in the extract of a sentence.

[image: ]
Figure 11.4  RNN for summarization.



11.5.3 Pointer-Generator Networks

Advances in deep learning have revolutionized abstractive summarization. The input is a set of sentences, and the output is also a set of sentences, such that the output sentences may not be directly present as input sentences. What is the ambiguity in this case that needs to be resolved then? One of the ambiguities stays the same: the selection of the key ideas in the input document that is represented by the set of sentences in it. Therefore, neural architectures for abstractive summarization continue to delve into the notion of salience of concepts, albeit not as explicitly as, say, graph-based methods for summarization. The second ambiguity which is typical of abstractive summarization is the ambiguity of sentence generation. The ideas that are selected as salient may be put together in multiple manners: using different sentence structures or order to sentences, to say the least. Therefore, the key idea of abstractive summarization is to balance between ‘what to select’ (among the sentences in the document) and ‘how to reproduce it’ (as a summary). An important model underlying abstractive summarization is called pointer-generator networks. The architecture, as illustrated in Figure 11.5, consists of three parts:
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Figure 11.5  Pointer-generator networks for summarization.


1. Context vector component: The context vector component represents the information from the document to be summarized. Words are represented by their vectors followed by an LSTM layer to compute linear context. This is followed by an attention vector. The attention vector combines the representation of the hidden state of a position, the representation of the decoder state (which is the representation of the output generated so far), and a bias term. The three are combined as follows: 

(11.5)

eti = vT tanh(Whhi + Ws st + battn)

Thus, the attention vector can be computed as a softmax over et: at = softmax(et ). Like a typical attention vector, the attention vector represents the distribution over importance of words in the input document. The context vector of the document is represented by:

(11.6)
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2. Distribution over extended vocabulary: Extended vocabulary is the vocabulary of words in the entire corpus where not all of them are present in the document to be summarized. Abstractive summarization allows the generation of words that are not present in the document so as to capture the meaning of the document. Therefore, the second component of the architecture generates a distribution over the extended vocabulary of the corpus. This is done using the formula: 




(11.7)
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where the decoder state and the context representation are combined with the entire vocabulary.

3. Choice between copy and generate: This component of the architecture is what imparts the utility of pointer-generator networks to this summarization architecture. In this component, the architecture must now choose between the relative weight of whether to generate an existing word in the document or to generate a new word from the vocabulary. It does so by first sampling a generation probability. This generation probability Pgen is computed as a product of the encoder state and the hidden contextual representation of the sentence. Following this, a word is generated using: 

(11.8)

P(w) = Pgen Pvocab(w) + (1 - Pgen)

4. Coverage vector: The last component of the architecture is the coverage vector. The coverage vector ensures that ideas are not repeated in the summary that is generated. To do so, the architecture computes a coverage vector, which is a summation over attention vectors from the previous steps. One may remember that the attention vector notionally represents the relative importance of words at every step in order to generate a summary word at the time-step. Therefore, the coverage vector computed as a sum over these attention vectors captures the relative importance that has been laid on the words in the past so far. Therefore, the coverage vector at step i is used as a term in the attention vector equation given above. Therefore, the architecture, in fact, adds an additional term in the attention vector as:

(11.9)
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As a result, pointer-generator networks closely couple four ideas:

1. Selection of words in the source document (using attention distributions over the input words).

2. Selection of words in the vocabulary that may not occur in the input document (using a probability distribution computed based on the context vector).

3. Coverage vector that ensures diversity of ideas included in the summary.

4. Fine-tuning between generation and copying (using the generation probability and relative weighting of the selection of words in and outside the source document).

Pointer-generator and other sequence-to-sequence models for summarization are available as a part of the HuggingFace repository, including pipeline models.


  □  11.6Evaluation



So far, we have described typical approaches for summarization in the three generations of NLP. How is summarization evaluated? To empirically evaluate summarization, benchmark datasets are useful. The datasets used for the evaluation of summarization consist of pairs of reference text and summaries. The reference text may be a web page, a news article, a research paper, or similar text. Each reference text is associated with a summary. These summaries may be human written. This means that, for the creation of such datasets, human experts read a reference text and summarize it. Guidelines provided to annotators determine:

1. Requirements of style: Should the summary be in an informal or a formal style? Should it include exact phrases from the text as much as possible?

2. Length: Is there a word limit for the summary?

3. Critique: Should the summary include words that evaluate the document beyond what is included in the document?

4. Perspective: Is the summary written with a particular audience (e.g., subject experts versus laypersons) in mind? 

Another alternative to creating a dataset for evaluation is to use distant supervision. For example, many review websites allow users to add a summary in a few words to their reviews. Therefore, the summary provided by the author of a review may be used as a reference summary. The difficulty with using a review summary as a reference summary is that it may not necessarily capture all ideas presented in a review. For example, a review author may describe different aspects of a product and their experience with the product. However, they may write a review summary that summarizes their opinion about the product. Such a summary may be ‘What a waste of money’. This does not capture the concept of the review but does summarize the sentiment of the author. Summarization of this form has been referred to as opinion summarization. Similarly, if one is using a news article corpus, a news headline, or a news by-line (i.e., a subheading that gives details about the news) can be used as reference summaries. The challenge in this case is in terms of news headline styles. News headlines tend to use short phrases (that convey the key idea) or puns or proverbs (to attract the attention of readers).

We will describe two approaches to evaluate summarization: one automatic and the other semi-automatic. ‘Automatic’ means that the method can be programmatically implemented in its entirety. ‘Semi-automatic’ means that the method requires human intervention or evaluation at some stage. 

11.6.1 Recall-Oriented Understudy for Gisting Evaluation

With datasets consisting of reference documents and summaries in place, automatic evaluation metrics allow an empirical evaluation of a summarization system. A popular metric used for the evaluation of summaries is the Recall-Oriented Understudy for Gisting Evaluation (ROUGE). ROUGE is a suite of metrics that are computed to evaluate summarization. Each of these metrics compares different aspects of summarization, and they collectively allow an empirical evaluation of summarization.

The ROUGE score compares n-grams between two summaries: the reference summary that is the benchmark for comparison and the candidate summary that is generated by a summarization system. Simply put, ROUGE is the proportion of n-grams in the reference summary that are present in the candidate summary.

Because it relies on matching n-grams across the candidate and reference summaries, alternative approaches to qualify these matches have been considered. Several variants of ROUGE have been reported in order to ensure that n-gram matching corresponds to retention of content as expected in summarization. The first variant of ROUGE is ROUGE-N, given by Eq. (11.10):

(11.10)
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As shown in Eq. (11.10), ROUGE is defined in terms of the window of matching n-grams. Therefore, the variants of this version of ROUGE are indicated by ROUGE-N. For example, ROUGE-1 is the proportion of 1-gram (i.e., unigrams) in the reference summary that are also present in the candidate summary. However, this version of ROUGE has its limitations. As the value of N increases, the constraint on ROUGE gets stricter since contiguous spans of words need to be matched. While ROUGE-N for lower values of N can be computed because of matching words, they discount the fact that word order is an important component for correct summarization. Therefore, another variant of ROUGE is ROUGE-L. The L in the name indicates the longest common subsequence. The components of the metric use the length of the longest common subsequence between reference and candidate summaries. A common subsequence is a matching span of words in the two summaries. The longest common subsequence indicates the most common phrase in the reference summary that has been replicated in the candidate summary. Consider a reference summary of length M and a candidate summary of length N. Let the length of the most common subsequence between the two summaries be S. ROUGE-L is computed as a combination of precision and recall of the summaries as:

(11.11)
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The parameter β controls the relative importance between precision and recall.

The Python library, rouge, can be useful to compute ROUGE.



from rouge import Rouge

rouge_scorer = Rouge()




The get_scores method in Rouge is used to compute ROUGE scores. The arguments hyps and refs refer to hypothesis text and reference text, respectively. In the context of summarization, hypothesis refers to the generated sentence.



score = rouge_scorer.get_scores(

    hyps="the three friends took the bus to school . one of them forgot her

    school bag . ",

    refs= "the two friends boarded the bus but one of them remembered that

    she forgot her school bag at home . "

)

print(score[0])




The output of the program above is



{'rouge-1': {'r': 0.5789473684210527, 'p': 0.7857142857142857, 'f':

0.666666661781451}, 'rouge-2': {'r': 0.3157894736842105, 'p': 0.4,

'f': 0.35294117153979243}, 'rouge-l': {'r': 0.5789473684210527, 'p':

0.7857142857142857, 'f': 0.666666661781451}}





As seen in the output, the scorer returns ROUGE-1, ROUGE-2, and ROUGE-L, by default.


11.6.2 Pyramid

A document may be summarized in many ways and, therefore, expecting that an exact ideal summary is even possible may be unrealistic. If documents have only one reference summary, systems that do well may be scored lower only because their generated summary does not match the expected reference summary. Considering this subjective nature of the summarization, semi-automated methods to evaluate the output have been reported. One such method is called the pyramid method (Nenkova and Passonneau, 2004).

The pyramid method assumes that each document has more than one reference summary. In a bottom-up manner as in the case of a pyramid, this method combines the smallest meaningful phrases from reference summaries that are observed in the candidate summary. The process of evaluation using the pyramid method consists of the following steps:

1. Documents in the evaluation set have more than one reference summary. Each reference summary must be labelled with content units which are a sub-set of words in the summary that are key to the summary.

2. For a generated candidate summary, a human annotator again labels the content units.

3. The key idea here is that some words in the reference summaries constitute a content unit that conveys the key idea of the summary. If these units are correctly extracted by the generated summary, they must be weighted higher than other words.



Case Studies



Busy CEO

Sumitra is the CEO of a company. Sumitra is very busy and, therefore, cannot read a lot of news articles. However, it is important for her to stay abreast of the current affairs. Sumitra has a short time window at the beginning of the day to get the news. Sumitra would like to get short snippets of news articles in today’s newspaper. Note that headlines are often not indicative of the content of the article since they are framed to attract the attention of the reader. Sumitra is okay if she is shown key sentences from the news article. The above is an example of extractive summarization.

Professor and Summaries

A professor in a university supervises a group of students. The students read papers every fortnight and send a short description of what the paper is about to the professor. They email these summaries to the professor periodically. The professor has her own understanding of the paper written down as their summaries. How can the professor evaluate how well a student has understood the message of the paper?

This is a typical case of evaluation of summarization. It may also be noted that the student may add their own understanding of the paper. Therefore, a summary may not necessarily be penalized because it contains words that are not present in the reference summary written by the professor.




Summary

Summarization is the process of creating a shorter version of a document while retaining its key content. Automatic text summarization has been an area of research in NLP for several decades now. Early approaches use dictionary-based rules to identify sentences that need to be selected to create an extractive summary. Statistical approaches can be broadly divided into two types: graph-based approaches and feature-based approaches. Graph-based approaches represent a document as a graph where sentences are nodes and relationships or similarities between them are weights on the edges between them. The algorithm must then select a sub-set of nodes as the summary of the document. Feature-based approaches represent sentences with features based on their words, position, and so on. Neural approaches to summarization use linear structures like RNNs and pointer-generator networks that achieve a key decision: selecting parts of sentences to be generated in the summary or generating new pieces of text.


Review Questions

1. What is the ambiguity decision in automatic text summarization?

2. What is the difference between abstractive and extractive summarization?

3. What kind of features can be used to represent a sentence in a feature-based approach for summarization?

4. What is ROUGE? What do different variants of ROUGE capture?

5. What are the different strategies to rank sentences in a document for their selection for summarization in a rule-based approach?

6. What do ‘pointer’ and ‘generator’ mean in pointer-generator networks for abstractive summarization?


Course Assignment and Project

1. Download a benchmark dataset for summarization. Implement a feature-based approach that creates extractive summaries. Report your findings on two sets of features:

a.Features that use information from the text to be classified.

b.Features that add information from the position of the text in the document and adjacent sentences.

2. Download a set of 10 Wikipedia articles. In a group of three annotators, create a summary of all Wikipedia articles using two methods:

a.Each annotator selects 5% sentences in an article.

b.Each annotator rewrites the article in three sentences each.

 Compute the ROUGE scores in each of the two cases. Which of the ROUGE scores is higher?

3. If you have to decide on a reference summary of the article among the three reference summaries in Question 2, what strategies could you use?

4. Summarization of meetings is a peculiar challenge due to the conversational nature of the text. What challenges does this pose for the use of pointer-generator networks? How can pointer-generator networks be extended to encapsulate the conversational nature of the dataset? Obtain the code and dataset from the following:

a.Download the dataset of meetings with reference extractive summaries from https://groups.inf.ed.ac.uk/ami/corpus/annotation.shtml

b.Use the code for pointer-generator networks available at: https://github.com/abisee/j



Objective Questions

Fill in the Blanks 

1. Summarization is the process of generating a summary from a reference text such that the summary is ______ in length than the reference text.

2. The key score in the rule-based summarization approach corresponds to relative importance with respect to keys, that is, ______.

3. Graph-based summarization approaches use ______ as nodes and ______ between them as edge scores.

4. Pointer-generator networks are a form of ______ summarization.

5. ROUGE is defined in terms of the window of matching ______ between the reference and generated text.

Select the Most Appropriate Option 

6. If scores for every sentence in a document have been computed, which of the following is the way to generate a summary?

a.Return k sentences with highest scores.

b.Return k sentences with highest scores ensu-ring sentences are extracted from as many positions in the document.

c.Return k sentences with highest scores ensu-ring sentences cover as many topic words in the document.

d.Any of the above

7. What is matched in the case of ROUGE-L?

a.Longest common subsequence

b.L-grams

c.Longest unique subsequence

d.L-nodes

8. What is the role of the coverage vector in pointer-generator networks?

a.Ensure fluency in the generated summary

b.Ensure diversity in the generated summary

c.Ensure tone in the generated summary

d.None of the above

9. Which of the following is true in terms of LexRank and TextRank?

a.They are graph-based methods of summarization.

b.They use cosine similarity between sentences as edges.

c.They rank sentences based on their saliency scores.

d.All of the above

10. Which of the following is false about extractive summarization?

a.The summary is a sub-set of sentences in the reference document.

b.The summary is expected to contain key information in the reference document.

c.The summary is generated by picking the most likely words from the vocabulary.

d.The summary is generated by picking the most informative sentences from the document.
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Answers to Objective Questions



1.shorter

2.topic/topic words

3.sentences, similarity

4.abstractive

5.n-grams

6.(d)

7.(a)

8.(b)

9.(a)

10.(c)


 

1https://seths.blog/2011/12/no-one-ever-bought-anything-in-an-elevator/ (accessed on 19 May 2023) 













	 

	 




	CHAPTER
12

	NLP of Incongruous Text









Sarcasm is the lowest form of wit, but the highest form of intelligence.

Oscar Wilde







Learning Objectives

After reading this chapter, you will be able to

• Appreciate why incongruous text poses unique challenges to NLP.

• Describe approaches for sarcasm, metaphor, and humour detection.

• Implement prediction models for specific incongruous text types.

• Apply existing methods for new problems in incongruity.







In the chapters so far, we have discussed how ambiguity processing is central to approaches in natural language processing (NLP). Resolution of ambiguity so as to bring forth the ‘most likely’ output has been the expectation in all NLP problems discussed so far. For example, machine translation returns the most likely decoding of a source sentence in the target language. Sentiment analysis returns the most likely sentiment label for a given text. The ‘most likely’ has been addressed via a recurring formulation of an argmax or a softmax in the second and third generations. This idea of ‘most likely’ is also observed in the case of language models. Whether for words or sentences, these models aim to capture the most likely sense or meaning of a piece of text. In general, when embeddings are learned on large unsupervised corpora, they are influenced by the dominant meaning of words, phrases, and sentences. Is linguistic intelligence only about identifying the most likely meaning?

It turns out that selecting the ‘most likely’ meaning is not the objective for some uncommon but important linguistic phenomena. These are texts where the meaning of words or phrases is different from their most likely interpretation. This alternative interpretation corresponds to incongruity, which is an incompatibility of the implied meaning with the expected meaning. The most likely meaning of words in the text is incongruent with the words in their context. As a result, phenomena such as figurative language or humour arise. For example, the sentence ‘I love being ignored’ is sarcastic because the sentiment of the word ‘love’ disagrees with the sentiment of the word ‘ignored’. Oscar Wilde’s quote (mentioned at the start of this chapter) about sarcasm suggests that such text is in fact an intelligent usage of language. 




In this book which covers NLP via the prism of ambiguity as the task of inferring the most likely meaning, we consider it imperative to dedicate a chapter to NLP problems where incongruous text is processed.  Texts that contain incongruous components (referred to as ‘incongruous text’ in this chapter) have been handled in specialized ways in NLP problems for incongruous text. Therefore, this chapter explores some of these NLP problems arising out of incongruity, while highlighting how ambiguity resolution takes an alternative route in the case of these problems, as highlighted in Figure 12.1. The figure shows that typical NLP tasks (as discussed in preceding chapters) focus on the most likely meaning, whereas NLP for incongruous text delves into the unexpected contextual meanings of sentences.

[image: ]
Figure 12.1   NLP for incongruous text vis-a-vis other NLP problems.


In Section 12.1, we discuss the relationship between incongruity and ambiguity. Sections 12.2–12.4 describe three peculiar problems: sarcasm detection, metaphor detection, and humour detection. This is not necessarily a complete list, but it represents the class of NLP problems, which have to grapple with incongruity.


  □  12.1Incongruity and Ambiguity



Incongruity is the state of disharmony or incompatibility. In the context of language, incongruity refers to the situation where parts of a text are incompatible with each other. This incompatibility may be in terms of the words themselves or their specific properties. For example, sentiment incongruity refers to the incongruity in sentiment of components of a sentence. Sentiment incongruity is commonly found in sarcasm. Consider the example of ‘Being stranded in traffic is the best way to start a week’. The negative sentiment of ‘stranded’ is incongruous with the positive sentiment of the word ‘best’, giving rise tosarcasm.

Another phenomenon based on incongruity is humour, which often relies on ideas of the unexpected. Humour has two components: setup and punch. The two may be one or more sentences or words. The setup sets the expectations by establishing a premise of the joke. The punch catches the listeners by surprise for the humorous impact. Consider the example, ‘You don’t need a parachute to skydive. You need a parachute to skydive twice.’ The setup is the first sentence which describes the role of a parachute as an important device for skydiving. However, the second sentence repeats the first by adding a single word ‘twice’. This word flips the expectation created by the setup for a humorous effect implying that a parachute must be carried on a skydive to be able to skydive the second time.

In general, incongruous text is infrequent. Sarcastic text is a small portion of a randomly created dataset of text. This is why computational handling of incongruous text may be useful for NLP tasks such as sentiment analysis or machine translation. NLP tasks involving incongruity detection aim to distinguish between the literal meaning and the intended meaning. The literal meaning arises from the surface forms of the words while the intended meaning is a deeper, implied meaning. The presence of these two meanings causing incongruity is a form of ambiguity. In sarcasm, speakers not only intend to convey their negative sentiment but also want to accentuate it by including words that are positive on the surface. Therefore, it may be said that incongruity exists because there is ambiguity. NLP problems that detect incongruous phenomena such as sarcasm essentially attempt to disambiguate between the literal and intended meaning of sentences.

Gibbs et al. (1994) describe the nature of incongruity via two dimensions: intentionality and plausibility, as shown in Figure 12.2. Intentionality refers to the situation where the speaker intends to convey a certain meaning. Plausibility refers to the likelihood of the sentence being true or plausible. When the speaker intends to convey an alternative meaning and uses a sentence that does not look plausible, it leads to figurative language. For example, ‘I love being ignored’ is intended to mean ‘I do not love being ignored’. The speaker uses a positive word with a negative word to highlight that the sentence is not plausible. As a result, the speaker conveys the incongruity. When speakers intend to convey an alternative meaning but use a sentence that looks plausible on the surface, they resort to deception. For example, if a person hates a meal that their friend cooked but says, ‘It’s delicious’ to not offend their friend, they are indeed trying to deceive, albeit with a good intention. This interplay of intentionality and plausibility highlights the relationship between incongruity and ambiguity.

[image: ]
Figure 12.2   Incongruity along the dimensions of intentionality and plausibility.



Like every other problem of NLP, incongruity has been captured in unique ways in the three generations of NLP. In the following sections, we explore three examples of NLP problems related to incongruity which require ambiguity resolution to investigate semantics other than the most likely meaning. We discuss how the ambiguity between the literal and intended meaning was resolved by approaches in each of these generations.





  □  12.2Sarcasm Detection



Sarcasm is defined as a form of verbal irony that is intended to express contempt or ridicule. Therefore, there are two components of sarcasm: irony (where there is an incongruity between literal and intended meaning) and intentionality to express contempt (such that the implied meaning is the expression of a negative sentiment). For example, ‘I love being ignored’ is a sarcastic sentence because the intended meaning is that the speaker does not like being ignored. The intended meaning is also negative.

Sarcasm detection has been understood to be useful for a variety of NLP tasks, most prominently sentiment analysis. Since sarcasm is a peculiar form of sentiment expression, sentiment analysis approaches may not work well for sarcastic text. Therefore, the problem of sarcasm detection aims to predict whether or not a piece of text is sarcastic. The field of sarcasm detection is relatively new to NLP. It came to the fore after the limitations of sentiment analysis in the context of sarcasm were understood. It is estimated that the performance of sentiment analysis degrades to nearly 50% for different forms of text ( Joshi et al., 2018). However, although sarcasm detection has been investigated only in the past decade, the history of sarcasm detection also traces the three generations of NLP. Approaches for sarcasm detection capture incongruity of meaning via rule-based approaches, approaches based on features, and deep learning-based approaches ( Joshi et al., 2017). We describe some approaches in the forthcoming sub-sections.

While the above approaches were reported after the advent of deep learning (i.e., well into the third generation of NLP), they seem to follow the pattern of the three generations of NLP. Early approaches attempted to capture sarcasm detection via heuristic-based rules. An example is shown in Dubey et al. (2019) for the case of sentences which contain sarcasm expressed through numbers.

Consider the sentence, ‘Got to work after a 3.5-hour long drive. The traffic situation has improved so much in the city!’. When a number is encountered in a sentence, an average value of the number is determined based on the context (hour-long drive is the context in this case) based on a large dataset of unlabelled and potentially non-sarcastic sentences. If the number in the sentence to be classified is above a certain predetermined threshold, the sentence is predicted to be sarcastic.

As observed in the case of other NLP problems in the past, these approaches were found to be high on precision but low on recall; statistical approaches that use different kinds of features were reported. Finally, with the creation of large datasets and the availability of language models, sarcasm detection approaches that use neural architectures were reported. This appears to point to the fact that a new problem in NLP also progresses the way the field of NLP has progressed: experiment with intuitive rules, create new datasets, use signals in the form of features, and, finally, adapt neural architectures to enhance the performance.

12.2.1 Creation of Datasets

Sarcasm is based on the intentionality of the speaker. This means that a speaker (or author) of a sarcastic text intends to be sarcastic and, as a result, provides indicators in the text to convey sarcasm. Therefore, the creation of a labelled dataset for sarcasm is a challenging task. Sarcasm annotation is influenced by a variety of factors. Some of these are:

1. Cultural background of the annotators: If the text was written by a speaker from a background different than that of the annotator, then the sarcasm may not be understood. For example, if the sentence contains names of popular celebrities and uses anecdotes around them to convey the sarcasm, an annotator who is not familiar with these celebrities may not appreciate the sarcasm or annotate it as such.

2. Context: Sometimes, sarcasm may be a part of a conversation. These conversations can be observed on social media or in discourse text. Social media allows users to communicate with each other. Similarly, discourse text can also require additional context. This is particularly true in the case of hyperbolic expressions that are intended to be sarcastic. For example, the sentence ‘Wow, that’s a great choice!’ may or may not be sarcastic, depending on the context available to the annotators.

3. Individual perspective/viewpoint: Sarcasm may be lost on annotators if they strongly disagree with the sentiment of the speaker. A sentence ‘X should be made the President for twenty more years!’ may have been intended to be sarcastic. However, if the annotator is a supporter of X, they may not understand the sarcasm.

Therefore, creating labelled datasets for sarcasm has involved the use of distant supervision. Distant supervision is a technique where the supervision or the annotation is done by a signal that is distant and not provided by human annotators. Hashtag-based supervision has been a popular technique because it allows the creation of large-scale datasets for subjective tasks like sarcasm detection. Hashtag-based supervision for the creation of sarcasm datasets is illustrated in Figure 12.3. Tweets that contain the hashtag ‘#sarcasm’ (or the hashtag #not) may be downloaded and considered as sarcastic tweets. This takes into account the fact that sarcasm depends on the intention of the speaker (or author). Then, to create negative examples, other tweets by the same set of users which do not contain the hashtag may be used. This implies that, although these users are aware of sarcasm-indicating hashtags and have used them in some of their tweets, they did not use them in some others. Alternately, tweets explicitly marked as not sarcastic using hashtags (‘#notsarcastic’) may be used as negative examples. In case hashtag-based supervision is not desirable, manual annotation with a detailed set of guidelines for the annotators can be useful to obtain annotated datasets. However, typically, inter-annotator agreements for sarcastic datasets have been reported to be lower than more unambiguous tasks such as POS tagging. While we describe the creation of sarcasm datasets in the context of tweets, the hashtag-based supervision strategy can be applied to any social media which makes its data available via APIs and uses mechanisms like hashtags. In addition to datasets in English, sarcasm datasets in languages such as Hindi (Bharti et al., 2017) and Czech (Ptáček et al., 2014) are also available.



[image: ]
Figure 12.3  Creation of sarcasm datasets.



12.2.2 Rule-Based Approaches

A popular method by Maynard and Greenwood (2014) uses a rule-based approach for sarcasm detection of tweets. The approach is applied to tweets containing a hashtag. The general intuition of the approach is that often sarcasm is conveyed using a hashtag whose sentiment is incongruous with the preceding text. Consider the example, ‘Sleepless in my bed at 3 am #greatstarttotheweek’. The sentence can be divided into two parts: the hashtag ‘#greatstarttotheweek’ and the preceding text ‘Sleepless in my bed at 3 am’. The sentiment of the preceding text is negative because of the word ‘sleepless’. The sentiment of the hashtag is positive because of the word ‘great’. Therefore, a rule-based approach for sarcasm detection can bedefined as:

1. Input: The text of a tweet. While this approach has been experimented with on tweets, it can be applied to posts from any platform that allows a user to annotate the post with additional information in the form of tags.

2. Separate the tweet into hashtags and the remaining portion: Although the example above contains the hashtag at the end of the tweet, it could potentially be anywhere in the text. Hashtags allow the platform to create a reverse index. Therefore, by indicating a word as a hashtag, the author wants to highlight its role in the sentence. We remember that sarcasm is dependent on the intentionality of the speaker, who aims to convey their intention to be sarcastic by leaving cues. In a spoken sarcastic sentence, this may be a gentle shrug of the shoulder. In a tweet, this may be in the form of a hashtag. This is what this approach aims to capture.

3. Tokenize the hashtag: Hashtag consists of a sequence of words that may or may not be separated by underscores or camel-case characters. For example, while a hashtag can be any string, typical styles of hashtags may be ‘GreatStartToTheDay’ (where the first letter of each word is in capitals), ‘Great_Start_To_The_Day’ (where the words are separated by underscore), or ‘greatstartotheday’. In the proposed approach, the authors use a hashtag tokenizer that uses a greedy approach to split a word into constituent words by maximizing the word coverage across the entire string. As a result, a hashtag gets split into constituent words.

4. Compute the sentiment of the tokenized hashtag and the remaining portion: This may be done using a variety of approaches. A simple approach would be similar to rule-based sentiment analysis.

5. Predict sarcasm based on the agreement in sentiment: If the sentiment of the hashtag is the same as the remaining portion, the hashtag was potentially used to highlight the sentiment of the remaining portion. In this case, the tweet is predicted as non-sarcastic. If the hashtag does not contain any sentiment, it is potentially a topic hashtag, which describes what the tweet is about. In this case, the tweet is predicted as non-sarcastic. If the hashtag bears a sentiment that is opposite to the sentiment of the remaining portion, the tweet is predicted as sarcastic.

Other rule-based approaches for sarcasm detection use similar heuristics. For example, Joshi et al. (2017) use the intuition that a sarcastic tweet contains a word that is unexpected. Therefore, we implement a rule-based approach that relies on a neural language model called Context2vec. The model was used to generate expected words in a given context and was a precursor to contextualized word representations. In this algorithm, we compute the expected word at a given position in a sentence and iterate over all content words in the sentence. If the distance between any expected word and the observed word at that position is above a certain threshold, the tweet is predicted as sarcastic.


12.2.3 Statistical Approaches

Statistical approaches to sarcasm detection model sarcasm detection as a classification task with features from the text being used as indicators for sarcasm. Word-based features such as unigrams or bigrams have been common. Apart from these, some typical features that can be used are as follows:

1. Incongruity via sentiment: Many sarcastic sentences contain incompatibility in sentiment in the portions of the text. Therefore, features that incorporate this incompatibility can be explored. One such feature is sentiment flips. A sentiment flip occurs when a word or phrase of one polarity is followed by a word or phrase of another polarity. Number of sentiment flips, the largest sequences of sentiment flips, or the number of positive and negative words are some features based on sentiment flips. Emoticons or emojis and sentiments associated with them can also be a useful feature in the form of number of positive and negative emojis.

2. Incongruity via context: Contextual incongruity refers to the incongruity between the content of the text to be classified and additional information about the text. This information could be with respect to the author of the text. For example, social media platforms allow users to share content over a period of time. Rajadesingan et al. (2015) give a detailed set of features based on context from the author’s social media profile. These features could be the topics that the author has posted in the past (this list of topics could either be predefined or computed per author), the sentiment they have expressed about the topics (based on sentiment analysis applied to their historical posts), and their propensity to express sentiment (based on how many positive or negative posts the author has posted in the past).

3. Incongruity via semantics: Semantic similarity can be a useful feature to capture incongruity. Incongruous sarcastic statements may not contain sentiment-bearing words (as in the famous quote by an Australian activist ‘A woman needs a man like a fish needs a bicycle’). Therefore, semantic similarity measures such as WordNet similarity can be used as features. In addition, Joshi et al. (2016) showed how word similarity as obtained from word embeddings can be useful as features. Consider the quote above. The Word2vec similarity between ‘woman’ and ‘man’ is greater than that between ‘fish’ and ‘bicycle’. Therefore, we propose a set of features such as the maximum of maximum pair-wise similarity between content words and the minimum of minimum pair-wise similarity between content words. The maximum of maximum shows how closely related words in the sentence are. The minimum of minimum shows how distant words in the sentence are. By using these features together, the classifier can be used to capture incongruity.

12.2.4 Deep Learning-Based Approaches

Deep learning-based approaches for sarcasm detection expect to capture incongruity via neural layers by comparing portions of the sentence to be classified with an appropriate context. There are three kinds of approaches. The first kind of approach uses incongruity within the sentence itself and captures it via recurrent layers to formulate relationships between parts of the sentence. The second kind of approach uses incongruity across sentences and additional context and captures it via attention layers to formulate relationships between parts of a sentence and additional context. The third kind of approach uses Transformer-based architecture.




Let us look deeper into some examples of the first kind. An important approach is presented in Ghosh and Veale (2016). The architecture consists of layered neural layers as shown in Figure 12.4. The words in a tweet are represented by the concatenation of their word vectors. This is followed by three types of layers. The first is a two-layer convolutional neural network (CNN) that computes compositions of features over spans of words. This allows representations of phrases to be extracted. This is then followed by long short-term memory network (LSTM) layers that incorporate context in the sequential structure of sentences. Finally, a fully connected layer and a softmax are used to obtain the prediction of the sarcasm labels. Another architecture is proposed by Poria et al. (2016) and shown in Figure 12.5. This architecture uses stacks of convolutional layers followed by max pooling. The architecture contains two components. The first component is shown on the left and is based on word vectors of words in the sentence to be classified. The convolutional layer interlays semantic representations of different combinations of words. The second component is shown on the right of the figure. These are convolutional layers that are applied to features based on sentiment and emotion. In this case, the sentiment and emotion values of words in the tweet are represented as a vector, and a convolutional layer is applied to them. A fully connected layer operates on the concatenation of vectors from the left and the right components. A softmax is eventually used to predict the sarcasm labels. Additional features can also be incorporated as in the previous case. For example, in Ghosh and Veale (2017), sentiment features based on an online sentiment service are concatenated with the other components based on target and context.
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Figure 12.4   CNN-LSTM combination for sarcasm detection.
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Figure 12.5   CNN layers that incorporate different attributes into sarcasm detection.




Zhang et al. (2016) present a neural network-based approach for sarcasm detection that incorporates context. The architecture is shown in Figure 12.6. It contains two components. The first component is based on the target tweet (i.e., the tweet to be classified). The words in the target tweet are represented using the word vectors. A concatenation of vectors is then applied to a gated recurrent neural network (RNN). This captures the linear structure of the sentence.



[image: ]
Figure 12.6   A contextual model for sarcasm detection.



The second component is based on the contextual tweets that are captured only on the basis of the words present in them. The two components are then combined in a pooling layer followed by a tanh activation and a softmax layer used for prediction. This model, thus, captures the incongruity between the tweet to be classified and historical tweets by the author.


  □  12.3Metaphor Detection



Metaphor is a figure of speech where a word or phrase is applied to an object or an action where it is not directly applicable. Consider the example, ‘My suggestion was shot down by my manager’. The word ‘shot’ literally refers to shooting someone with a weapon, say, a gun. However, in the case of this example, the word ‘shot’ is intended to mean ‘reject’. Therefore, a literal interpretation of the sentence is ‘My suggestion was rejected by my manager’. Therefore, although the incongruity in metaphor does not convey a specific sentiment as in the case of sarcasm, it is intended to express a meaning different from the literal meaning of the words. The detection of metaphor can leverage this incongruity between the literal meaning of the word and the words in its context in the sentence. Incongruity as in the case of metaphors has been described as a violation of selectional preference. To express an idea, one may typically prefer to select a certain set of words. Metaphors occur when the speaker violates this selection. This violation of selection essentially corresponds to non-adherence to an ‘argmax’ (i.e., the speaker does not choose a word that is the most likely at a given position in the sentence). Instead, the speaker uses another word to convey an idea. Consider the sentence with a blank ‘This app on my phone ___ a lot of battery’. Possible words are ‘consumes’, ‘requires’, and so on. However, a speaker may violate the selectional preference and say ‘This app on my phone eats up a lot of battery’. The act of eating applies to the physical consumption of edible items by an animate entity. In this case, the word ‘eats’ is used for an inanimate object (the app on thephone).

Sarcasm detection has implications to sentiment analysis and other applications. Why is metaphor detection useful? Metaphors can prove to be challenging for machine translation. For example, the sentence ‘He has the memory of an elephant’ is metaphoric because it compares the memory of the person referred to in the ‘he’ with that of an elephant. While ‘the memory of an elephant’ is an idiom in English, it may not be the same in the target language. In general, a machine translation system may not literally translate words in a metaphorical sentence. Similarly, metaphors can also play a role in inference. ‘The film actor rubbished rumours about his personal life’ is a metaphorical sentence. The word ‘rubbished’ is a verb form of the word ‘rubbish’ and literally refers to throwing something in the garbage. However, the implied meaning of the word ‘rubbish’ is ‘to deny’. The incongruity arises because rumours are an intangible entity and cannot literally be thrown into the garbage. Therefore, if the premise is ‘The film actor rubbished rumours about his personal life’ and the hypothesis is ‘The film actor has accepted that the rumours about him are true’, the inference needs to predict it as a contradiction. The hypothesis could be posed as a question in a question-answering system. In that case, the answer needs to account for the metaphorical usage of the word ‘rubbished’ and response appropriately.

In the forthcoming sections, we describe how ambiguity and incongruity have been handled in the approaches for metaphor detection in each generation of NLP. Metaphor detection is formulated as a classification task where given a sentence, the goal is to predict whether or not it is metaphorical.



12.3.1 Rule-Based Approaches

Early work in metaphor detection designs rules for specific forms of metaphors. For example, Krishnakumaranand Zhu (2007) use a combination of rules based on WordNet and co-occurrence of words. Metaphors may be expressed via a noun (as in the case of Shakespeare’s famous quote ‘All world is a stage’) or a verb (as in the case of ‘He jumped at the opportunity’). The approach detects metaphors as follows:

1. If the sentence contains nouns, they are looked up in WordNet. If the nouns are not connected by a relation in the WordNet, the sentence is predicted to be a metaphor.

2. If the sentence contains verbs or adjectives, a dataset is used to measure co-occurrence. The assumption for incongruity holds here too: metaphorical text is significantly less common as compared to literal text. Therefore, if these words in the sentence co-occur less than a certain threshold, the sentence is predicted to be a metaphor.

12.3.2 Statistical Approaches

Metaphors consist of combinations of words where some are intended literally and, hence, correspond to concrete entities while some others are intended metaphorically and, hence, correspond to abstract ideas. This notion of capturing the presence of abstractness and concreteness as a handle to incongruity is an underlying theme of research in the second generation of NLP for metaphor classification. Some approaches to capture this incongruity via statistical techniques are as follows:

1. Clustering becomes an intuitive option to create conceptual clusters around abstractness and concreteness. Shutova et al. (2013) present a statistical approach for metaphor detection. Their approach is based on the notion that metaphors have words that can be represented as clusters. Their approach uses a bootstrapped list of metaphorical expressions and a large unlabelled corpus. Sentences in the corpus are parsed, and nouns and verbs are extracted. These are then clustered separately into abstract nouns, abstract verbs, concrete nouns, and concrete verbs. Based on the bootstrapped list, statistical methods are used to identify noun and verb associations that are likely to be metaphorical.

2. Statistical features in a classifier have also centred around the notion of concrete/abstractness. Jang et al. (2015) present a set of features for metaphor classification. This includes the number of words for each word category (such as the number of adjectives and adverbs), topic distribution, abstractness and concreteness scores as obtained from a lexicon, and dependency features. Similarly, Tekiroğlu et al. (2015) use features based on a sensorial lexicon—a lexicon of words that capture words associated with the five senses of a human (such as touch or smell). Sensory words correspond to concrete concepts.

12.3.3 Deep Learning-Based Approaches

A neural approach for metaphor detection is by Rei et al. (2017). They detect metaphors using the notion of compositionality in a metaphorical phrase. In other words, the goal is to predict if a given phrase is literal or metaphorical. For example, the phrase ‘rich gravy’ is metaphorical because the word ‘rich’ corresponds to opulence in wealth while ‘gravy’ is a concept from cuisine. Therefore, they propose an approach to generate metaphor-aware embeddings that are generated using composition between words. The approach is shown in Figure 12.7. The architecture takes phrases consisting of two words. The representation of the first word is passed through a gated unit and multiplied with the representation of the second word. This results in a modified representation of the second word. Then, the representation of the first word and the modified representation of the second word are multiplied. An activation layer is then applied to generate an output prediction. This architecture is trained on a labelled set of datasets of metaphorical and non-metaphorical phrases and applied to a large dataset of phrases to obtain their representations.



[image: ]
Figure 12.7   Metaphor detection based on compositionality.



Gao et al. (2018) use a neural architecture for metaphor detection at two levels. The first level is to identify if a given word in a sentence is used in a metaphorical sense in the sentence. The second is to identify if an input sentence is metaphorical. The architecture consists of a typical bidirectional LSTM (BiLSTM). The first step is to map words to word embeddings. Then, BiLSTM is applied, followed by a softmax. In the case of metaphorical word identification, the softmax predicts a label for each word in a sentence. In the case of a metaphor classification, an attention layer is applied over hidden representations of words in the sentence. The resultant representation is then passed through a softmax layer that predicts a label for the entire sentence.


  □  12.4Humour Detection



Humour is an experience that evokes laughter or provides amusement. Humour may be triggered by humorous text that is known as a joke in popular parlance. The relationship between humour and incongruity has been described by Aristotle. Humour arises because of incongruity between what the listener was expecting and what was said. Humour is a key property of human communication. In the ancient Indian text Natya Shastra, humour has been listed as one of the nine basic emotions (nav-rasas) and called haasya-rasa. Humour can have a variety of functions: building relationships, increasing happiness, or reducing stress.

Consider the text ‘I love nature. So, I stare at it from my window while laying in my bed’. The first sentence sets the expectation that the speaker loves nature. The second sentence flips the expectation around because the speaker says that they only stare at it from their bed. This incongruity is expected to evoke laughter/mirth in the listener’s mind. Humour as in the case of the example is a part of human communication so vital that natural language understanding is incomplete without its ability to understand humour. Humour generation and recognition has caught the attention of NLP since its early days. In this section, we focus on humour detection and discuss approaches across the three generations of NLP.

It is interesting to note that sarcasm, humour, and metaphor all originate from incongruity. Yet, there are differences between the three. In particular, the differences and similarities between sarcasm and humour warrant a discussion. Sarcasm employs incongruity to express contempt or ridicule the listener. It may have a resultant negative impact on the target of sarcasm. In contrast, humour employs incongruity to make listeners laugh. A listener may get offended by the humour and not find it amusing. However, sarcasm ‘masks’ itself as a positive or neutral statement even when trying to ridicule. Humour need not do that. This fundamental difference is important to understand how the approaches in the three generations have also tackled incongruity differently.

12.4.1 Dataset Creation

For a classification task to detect if a given text is humorous or not, datasets may be created in a few ways. One way to create such a dataset is to use humour websites as a source of positive examples. Many humour websites contain repositories of jokes. Such websites may be crawled if the website allows one to do so. In order to create negative examples, one may use examples from a drastically different domain. The alternative source may be:

1. Choosing the appropriate source of negative examples: An unrelated source of negative examples may be useful, say, news articles or operation manuals of appliances. Therefore, to create a set of negative examples, news websites may be crawled to obtain negative examples with the assumption that news articles do not contain humour. Therefore, in this case, the classification task is not a purely humour detection task but a task to distinguish between jokes and news articles. An alternative may be to use sentences from a domain that is not as drastically unrelated. This would be in the form of discussion forum posts. In order to do so, the first step is to download the dataset of jokes that constitute positive examples. Following this, the next step is to obtain common words in the dataset of positive examples. These words may be selected on the basis of their part-of-speech tags as well. For example, since adjectives can be indicators of sentiment, they may be eliminated. Following this, the selected words can be used to download posts from an alternative source. An example of such an alternative source is discussion forums.

2. Choosing the appropriate source of positive examples: The choice of the domain can also play a role in the selection of positive examples and, as a result, the negative examples. For example, if a website that hosts political jokes is used to create a positive dataset, a news website may be used to create a negative dataset. As a result, the domain of the dataset becomes the same. Therefore, it is no longer a humour versus news classification task but a funny news versus serious news classification task.

An additional step of manual evaluation may be performed. Annotators may be asked to label instances with ‘jokes’, ‘not jokes’, and ‘not funny jokes’. This allows to ascertain the quality of the annotated dataset.

12.4.2 Rule-Based Approaches

Early work in computational humour has been summarized in Ritchie (2001). The paper shows that early work is based on a pattern-based generation of sentences that have alternative readings. Therefore, rules were found to be more suitable for generating humour than detecting it. It points to the fact that rules are likely to have high precision and low recall. Therefore, a paper uses patterns in words and their phonemic representations to generate a joke. A typical premise of a rule-based approach to generate humour contains the following:

1. A set of input words and templates.

2. The rules in the humour generation algorithm then use appropriate templates to select new words that are likely to produce humour.

Let us consider the example of a joke with the input word ‘ghost’ and the template: ‘What do X Y? Answer: Z’. The algorithm may select ‘ghost’ to be put in the place of X. Then, it looks for appropriate verbs in the place of Y (to adhere to the language model) and a word in the place of Z that links Y and X (ghost) in some way. The algorithm would rely on a language resource such as WordNet. If the algorithm detects ‘wear’ and ‘spectacles’ in the place of Y and Z, it selects this pair because the ‘spec’ in the latter rhymes with a word related to ghosts: ‘spooky’. Therefore, the algorithm may generate the joke: ‘What do ghosts wear? Answer: spooktacles’. Approaches like these have been reported in a popular project for joke generation known as the JAPE joke generator (Binsted and Ritchie, 1994).

However, using the first-generation paradigms, some heuristic-based approaches to detect humour or specific forms of humour such as puns are as follows. Takizawa et al. (1996) use rules based on phonemic patterns to detect puns. Therefore, the rules evaluate if a given piece of text contains repetitive sounds or ambiguous meanings of different pronunciations of words.

12.4.3 Statistical Approaches

In addition to unigram-based features, some qualitative features that have been reported for humour classification in Mihalcea and Strapparava (2005) are as follows:

1. Alliteration: Since humour may involve word play, the presence of alliteration may be captured in terms of the number of words with the same initial letter or prominent sound.

2. Antonymy: Incongruity may be captured in the form of presence of antonyms in a sentence.

3. Swear words: Since humour may be emphasized by the use of swear words, these words can serve to be useful features. They may be indicated as Boolean or count-based features where the former indicates whether a sentence contains a cuss word or not while the latter represents the number of cuss words in a sentence.

4. Polysemy: In Ahuja et al. (2018), the authors also use ambiguity as a handle for incongruity. If a word is polysemous, it is likely to be used with an alternative meaning (colloquially known as ‘double meaning’). Therefore, the number of senses of words in the sentence can be used as an indicator of incongruity to detect sarcasm. Polysemy may also be captured in terms of domain applicability of words. This means that, for each word, the number of domains that it belongs to is counted (using domain-specific vocabularies). This is then captured in the form of features such as average domain ambiguity and maximum or minimum domain ambiguity.

12.4.4 Deep Learning-Based Approaches

Since incongruity can be captured via word embedding similarity, this can be done for humour classification as well. Cattle and Ma (2018) present an approach for humour classification where features based on word embeddings are used in a statistical classifier. This method is an intermediary between deep learning-based and statistical approaches. This is because the feature vectors are obtained using deep learning methods (such as Word2vec) while the classifier learning algorithm is statistical. Typical features for such approaches are maximum, minimum, and average word similarities between words in a sentence. This is similar to the word embedding similarity features used for sarcasm detection.

Typical neural architectures obtain a prediction as follows: they first represent sentences with concatenation of word embeddings. This is followed by compositionality layers (such as CNNs or BiLSTM). The output of these layers eventually leads to a fully connected layer and softmax to obtain a prediction (Chen and Soo, 2018). In this case, however, they also use highway networks that allow shortcut connections between gates of the network. They show that this results in a better performance and allows much deeper models to be trained. A similar set of architectures has been reported by Sane et al. (2019). They learn embeddings for words of multiple languages in order to detect humour in code-mixed data. They examine that translations of words result in closer word embeddings.

Language model-based fine-tuning has been exemplified for a language model called ULMFit. This has been demonstrated by Blinov et al. (2019), showing how a language model is first learned on a large unlabelled corpus and then fine-tuned on a corpus labelled for humour. Similarly, Weller and Seppi (2019) use BERT and fine-tune it for humour classification of puns and non-puns.



Summary

Incongruous textual phenomena are infrequent in large corpora. However, they pose unique challenges to NLP problems. NLP for incongruous text represents a scenario where the formulation of ambiguity resolution is the opposite of typical NLP tasks. Specifically, in the case of incongruous text, meanings of text that are not the most likely must be taken into account. Ambiguity resolution in the case of incongruous text must investigate contextual meanings of phrases so as to detect these infrequent, incongruous phenomena. In this chapter, we discussed sarcasm detection, metaphor detection, and humour detection. In general, rule-based approaches capture incongruity in the form of sentiment or meaning mismatch rules, statistical approaches do so in the form of features which capture the semantic incompatibility of words or phrases, whereas deep learning-based approaches use semantic representations of phrases along with neural network mechanisms to measure proxies of incongruity.

Review Questions

1. What are the dimensions of incongruity? Compare sarcasm and deception along these dimensions.

2. Explain how appropriate handling of incongruous text (as in the case of sarcasm detection, metaphor detection, and humour detection) can help NLP tasks. 

3. What is distant supervision and how can it help in the creation of sarcasm detection datasets?

4. Describe a contextual model for sarcasm detection.

5. How can rules be used to detect metaphors in text?

6. How can semantic compositionality using neural representations be used to detect metaphors in text?

7. How can negative examples be selected for a dataset for humour detection?

8. What features can be useful for humour detection?


Course Assignment and Project

1. Compare simple rule-based baselines with deep learning-based approaches for humour detection.

a.Obtain a benchmark dataset.

b.Construct and implement an algorithm that uses rules to detect humour.

c.Use a pre-trained language model (such as ULMFit) and fine-tune it for humour detection.

d.Compare the performance of the two approaches using metrics such as accuracy and F-score.

e.Obtain the output of humour detection for the two approaches and analyse the examples where the two approaches produce different outputs.

f.Summarize your findings in a report.

2. Sarcasm detection can be helpful for sentiment analysis. Compare different approaches to combine the two.

a.Fine-tune BERT on a sarcasm detection dataset.

b.Fine-tune BERT on a sentiment classification dataset.

c.Implement a feature-based approach for sentiment classification.

d.Compare three alternatives to combine the two approaches. This may include:


• Multi-task learning to predict the two labels (i.e., sarcasm and sentiment) separately.

• Use the label of sarcasm detection to determine if sentiment classifier needs to be invoked.



Objective Questions

Fill in the Blanks

1. If the sentiment of a hashtag in a social media post is different from the sentiment of the remaining text, the social media post is likely to be ______.

2. In the sense of incongruity, metaphors violate ______ preference of words.

3. Phonemic patterns can be used to detect ______, a form of figurative language that is used for humour.

4. Compositionality of word embeddings can be used to detect ______ in multi-words.

Select the Most Appropriate Option

5. Which of the following is true for figurative language?

a.Plausibility is true, intentionality is true (to be understood).

b.Plausibility is false, intentionality is false (to not be understood).

c.Plausibility is true, intentionality is false.

d.Plausibility is false, intentionality is true.

6. Statistical sarcasm classification may use features based on information in the user profile. What kind of incongruity do such features exploit?

a.Incongruity via context

b.Incongruity via sentiment

c.Incongruity via semantics

d.None of the above

7. Which of the following may be used for rule-based humour generation?

a.A random word generator and a lookup table

b.A dictionary and a lookup table

c.A dictionary and templates

d.A random word generator and a neural network

8. Which of the following is true in the case of NLP of incongruous text?

a.The most likely meaning of words may not be chosen during disambiguation.

b.Semantic interactions between words or phrases in the text may be used.

c.It may help other NLP tasks such as machine translation or sentiment analysis.

d.All of the above
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Answers to Objective Questions



1.sarcastic

2.selectional

3.puns

4.metaphors

5.(d)

6.(a)

7.(c)

8.(d)
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We now ask the question, ‘What will happen when a machine takes the part of A in this game?’ Will the 
interrogator decide wrongly as often when the game is played like this as he does when the game is played
between a man and a woman? These questions replace our original, ‘Can machines think?’

Alan Turing





Learning Objectives

After reading this chapter, you will be able to

• Explain architectures of decoder-only models.

• Understand the need for augmented language models.

• Observe risks of hallucination in the output of LLMs.

• Apply LLMs to productivity and education.

• Fine-tune LLMs for downstream tasks.






In his seminal paper from 1950, Alan Turing proposed a test for machine intelligence (Turing, 1950).He said that a machine can be said to be able to think if it can convince a human interacting with it to believe that it is a human. The test is based on the premise of a human having a conversation with an entity that may be a human or computer. Fast forward to 2022, OpenAI released a Web-based demonstration of their product ChatGPT, which is a text-based conversation agent based on their model called GPT. ChatGPT has received the most attention for an AI product in recent times for its ability to engage users in human-like conversation. People have used it to generate poems in the style of famous littérateurs (‘write a poem about coronavirus in the style of William Wordsworth’), ask very open-ended questions (‘what is the meaning of life?’), or utilize it in place of their favourite search engine (‘how do I explain thermodynamics to my nephew who is 10?’). Popular science websites have touted ChatGPT as the beginning of AI revolution, akin to the Industrial Revolution. The hype apart, ChatGPT has resulted in several fields, taking note of advances in natural language processing (NLP). Applications of ChatGPT in education, health care,law, telecommunications, and other fields are evident with several tech giants releasing GPT-like models of their own. 

ChatGPT provides a conversational interface to a human user. The user may ask questions or make statements. ChatGPT generates textual responses to the user input. The user can ask a question in response to the textual response itself, thereby ensuring a ‘chat’ or conversation and maintaining a dialogue state. The ChatGPT output can be structured responses also. For example, if the user asks to provide word-to-word correspondences between a pair of parallel sentences in two languages, ChatGPT may provide a table that maps words in the input to the words in the target language, akin to the alignment table.

In the context of NLP, ChatGPT stands on the shoulders of models like GPT, which in turn rests on the past two generations of NLP. ChatGPT and similar tools are known as large language models (LLMs). This chapter introduces the reader to LLMs and ways to use them. The chapter is organized into four sections—background, ambiguity resolution, training LLMs, and their application. Section 13.1 presents an overview of LLM and related advancements. We then describe four concepts relevant to training LLMs—pre-training, fine-tuning, reinforcement learning using human feedback (RLHF), and augmented LLMs. Following this, we show how LLMs can be used by means of prompting, for example, in teaching–learning situations and enhancing work productivity as in composing emails and creating minutes of meetings. LLMs are an advancement from what we regard as the third generation of NLP. Throughout this chapter, we compare and contrast LLMs with techniques in prior generations of NLP. In doing so, we wish to provide a connected view of the three generations of NLP that are a focus of this book. 


  □  13.1Background



While ChatGPT has gained traction, we must remember that it comes from a long line of conversational agents (as discussed in Chapter 10). It is one of the many tools of its kind on the Internet today. In this section, we introduce key terminology that will be useful for discussion in the following chapters.

Tools like ChatGPT are an outcome of advances in NLP in the form of a Transformer-based model such as GPT (Generative Pre-trained Transformer). We will discuss GPT in detail later in this chapter. But let us try to understand the components of this term now. In a broader sense, they are an offshoot of generative language models. The word ‘generative’ here means that the AI generates an output in reference to an input. Generative AI has assumed a much broader sense than the erstwhile focus of AI: prediction. Predictive tasks like sentiment analysis take as input a sentence and produce a categorical output. Generative AI produces text and, in that, it subsumes categorical outputs. This means that, while generative AI generates textual outputs as predictions for classification tasks, it is also able to generate long textual paragraphs. Given their large size (as we will discuss later in the chapter), generative language models have been referred to as large language models. These language models use the decoder blocks of the Transformer architecture in order to generate output text based on textual input. In this sense, generative language models are decoder-only language models that are large in size. In this chapter, we will refer to decoder-only large language models simply as LLMs. What does ‘decoder-only’ mean? We will cover that in Section 13.3.1. 

Let us now introduce another key term: prompt. In the LLM world, the input and output are called prompt and response, respectively. At inference time, a prompt is provided as the input to the LLM. We discuss the use of prompts in Section 13.4.2. For the purpose of this book, we restrict ourselves to generative AI where the output is text. We acknowledge that there is an ongoing debate (and for the right reasons) in the NLP community as to if these models ‘understand’ language at all. The models are an outcome of a computer program. While their textual outputs may be useful or coherent to a human reader, it is but an illusion of understanding. This chapter intentionally stays away from speculations about the cognitive abilities of GPT, but instead focuses on the NLP view. 

Our premise of ambiguity resolution holds true in the case of LLMs as well. Let us see how.




  □  13.2Ambiguity Resolution



Imagine a teacher in a mathematics class. The teacher says, ‘The Pythagoras theorem is’ and takes a pause. The teacher might enunciate the ‘is’ longer to signal to the class to complete the sentence. The class might respond with, ‘the square of the hypotenuse of a right-angled triangle is equal to the sum of squares of the remaining sides’. What did the class do? The class had memorized a sequence of words which they understood as the Pythagoras theorem. They repeated the sequence to complete the teacher’s sentence which, via prosodic clues, was posed as a question. If the input x is ‘The Pythagoras theorem is’, the output y is the long statement describing the theorem. Why did the class choose to respond with this exact output? ‘The Pythagoras theorem is a theorem given by Pythagoras’ is a grammatically and factually correct completion for the teacher’s input x. Why did the class choose the option of stating the theorem instead of this? The class learned that the expectation of the teacher would be to pick the option of stating the theorem and not just expanding the noun compound ‘Pythagoras theorem’ as a theorem given by Pythagoras. The class disambiguated the intention and chose one option. 

Let us consider another scenario. Assume that the teacher says, ‘Twelve plus ten equals’ and takes a pause. The class responds in a chorus, ‘twenty-two’. What happened here? It is likely that the teacher had never asked the class this exact question, ‘twelve plus ten’. The class, however, had been taught arithmetic and knew that they had to perform addition based on the teacher’s statement. They performed the arithmetic operation and responded with the answer. In a computational sense, the input x here is ‘Twelve plus ten equals’, and the output y is ‘twenty-two’. ‘Twelve plus ten equals a number’ would have been a valid but unexpected completion. ‘Twelve plus ten equals thirty’ would have been a grammatically valid but incorrect completion. The class had likely not memorized the answer as in the case of Pythagoras theorem, but they disambiguated the question based on the numbers in it and their understanding of arithmetic addition.

As in the last scenario, let us assume that the teacher asks the class, ‘How do you greet someone if you see them at 2:00pm?’ The class responds with, ‘Good afternoon’. The teacher has asked a question here (input x), and the class has responded with an answer (output y). ‘Hello’ or ‘Namaste’ would have been appropriate greetings, irrespective of the time of the day. However, the class paid attention to the words ‘greet’ and ‘2:00pm’ in the teacher’s input and chose to generate the specific answer ‘good afternoon’. The class disambiguated the teacher’s intent and gave a specific and appropriate answer.

The three scenarios above represent the class’s ability to complete the teacher’s statement in a given context. Similarly, it has often been seen that when two people know each other well, they are able to complete each other’s sentences. If you know someone well, you are able to predict what they will say in a certain context. You are able to predict the stand a public figure will take with regard to a contentious issue, and also imagine which catchphrase they will use. LLMs are derived from this idea of ambiguity resolution in completing sentences and assigning probability scores to different options. The idea of text completion is not new to NLP. It is similar to probabilistic language modelling, where the objective is to predict the next word in a sequence. It is also akin to fluency in machine translation, where sentences in the target language are used to train a language model that assists in generating translations. 

Ambiguity resolution in generative LLMs involves choosing the right words when ‘completing an input’. This task reduces to—given the sentence generated so far—predicting the next word or words. Let us consider the phrase, ‘The sun is’. What could be the next words in this sentence? ‘The sun is a star’, ‘The sun is worshipped in many religions of the world’, ‘The sun is at the centre of the solar system’ are a few of the many possibilities (i.e., ambiguity). It must be noted here that datasets used to train LLMs are typically Web-scraped documents (including social media posts), and factual correctness cannot be guaranteed since the datasets may not be thoroughly fact-checked.

At inference time, the required information for disambiguation will come from the prompt. If the prompt is ‘Is the sun a star or a planet?’ and the model has generated ‘The sun is’, then the completed sentence ‘The sun is a star’ seems appropriate. If the prompt is ‘Where is the sun?’, the sentence would likely be completed as ‘The sun is at the centre of the solar system’. The word ‘where’ drives attention to the location of the sun. Among the three options we considered, the one about the sun being at the centre of the solar system is the only alternative for this prompt. 


  □  13.3Generative LLMs



The conversion of input x to output y can be written as

(13.1)

	P( y | x) = P( y | x ; θ )

where θ is the parameter controlling the mapping between the input and the output. 

The second generation of NLP uses probability for disambiguation. As a result, the last two generations of NLP use different ways to formulate the mapping. In the second generation of NLP, statistical models learn weights for predictive functions that map x to y. The onus is upon the human user to provide input representations for x—typically done using feature vectors. In the third generation of NLP, the input is represented in the form of encodings pertaining to tokens and positions. The learning consists of two phases. The first phase uses self-supervision via unlabelled datasets by setting up different learning objectives. These could be learning to predict: (1) part of the text (masked language modelling as in the case of BERT), (2) contextualized embeddings of words (as in the case of Word2vec, CBOW, GLoVE), and (3) next piece of text (as in the case of decoder-only language models). The second phase is fine-tuning. In this phase, the model can be adapted to labelled datasets for specific tasks.

The NLP problems that we have covered in the book so far vary in terms of y, while x is always a textual input (which may be represented using features in the second generation of NLP, or embeddings in the third generation). In the case of sentiment analysis, y is a categorical variable: positive, negative, or neutral. In the case of named entity recognition, y is a sequence of categorical variables: each indicating whether or not a word at a position is part of a named entity, along with its type. In the case of document question-answering, y is a sequence of words from a reference document. In the case of machine translation, y is a sequence of words in the target language. The x and y discussed so far are semantically dissimilar. y is the output, belonging to a separate set of labels (e.g., categorical labels in the case of sentiment analysis). What if x and y were both sequences of words, say, where x precedes y in a document? The key premise of LLMs is that generation of text in the form of next-text prediction takes centrestage.

Figure 13.1 shows an overview of LLM and its interactions with other components. The figure provides a high-level view to understand the central theme of LLMs. Training an LLM involves pre-training it on large unlabelled corpora. The key task here is to learn to predict the next word in the text. This learning results in what is called foundation model. As the name suggests, the foundation model forms the basis of downstream NLP tasks. The foundation model can be fine-tuned using a labelled corpus, which is provided in the form of input (prompt) and output (response) pairs. During fine-tuning, the model learns to produce the correct output for the inputs in the labelled corpus. A foundation model or a fine-tuned model are both forms of LLMs: the former is trained to complete sentences with no specific understanding of a particular task, while the latter is adapted to perform a certain task. Interestingly, foundation models also encapsulate some understanding of prediction based on the datasets they are trained on. We will look at it in the context of prompting. An interesting analogy to understand pre-training and fine-tuning lies in sports. A sportsperson specializes in a sport (say, cricket or football). However, they must also engage in weight training, which helps them to build the muscle and strength required to undertake strenuous tasks. Training for their specific sport enables them to develop skills to perform their sport. Weight training is analogous to pre-training while training for the specific sport corresponds to fine-tuning!
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Figure 13.1  Training an LLM comprising a stack of decoders.



So far, we have covered the components to the left of the LLM in the figure. Let us look at the interactions on the right now. LLMs may also need to interact with humans in the form of a chatbot. In this case, they interact with a reward model trained on human feedback. Finally, LLMs may use external tools to augment the information that is not present in their labelled corpus. For example, the answer to the question, ‘How is the weather in Sydney today?’ is not one that the LLM may have encountered in its training set. It must resort to an external tool to provide this information. This adaptation of LLMs to use external tools refers to augmented language models. In this chapter, we will cover these four aspects of an LLM:

1. Pre-training an LLM to create a foundation model.

2. Fine-tuning an LLM for a task.

3. Refining an LLM using human feedback.

4. Augmenting an LLM using external tools.

At this point, it is important to comment on the ‘large’ part of these models. The word ‘large’ first appeared next to language models around 2020. The largeness of language models is due to the number of trainable parameters in the neural network. At the time of writing this book, this number was in billions. Higher number of parameters is claimed to reflect the model’s ability to store information contained in the dataset and, as a result, used to produce output. GPT-3 has 175 billion parameters. LLaMA is Meta’s open model consisting of 7 to 65 billion parameters (Touvron et al., 2023). GPT-Neo, which is not as large as the proprietary models, is an open-source language model with up to 2.7 billion parameters (Black et al., 2021).


13.3.1 Pre-Training LLMs

The reader may recall that the Transformer takes an input text and produces an output text. So, in the case of machine translation, the input text may be a sentence in the source language while the output text may be a sentence in the target language. The Transformer architecture consists of two sets of blocks: encoders and decoders. Encoders iteratively apply self-attention to generate intermediate encodings of the input text. The decoders use a modified form of self-attention along with cross-attention to learn to generate the output text.

The decoder of a Transformer architecture is used as a building block of LLMs. Such models are referred to as decoder-only models since they only use the decoder blocks. Figure 13.2 visualizes the evolution of a decoder-only model via these blocks. The fundamental unit is the decoder block, which consists of masked self-attention and feed-forward networks. Let us revisit masked self-attention. Masked self-attention is a modification of self-attention and is given in Eqs. (13.2) and (13.3).


(13.2)
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(13.3)
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Figure 13.2  Visualization of evolution of a decoder-only model.




Recall that Eq. (13.2) gives weightage to vector v. Consider the sentence ‘This bank gives good interest to all its customers’. Say, q is the query vector of the word ‘interest’ and k’s are key vectors of all the words in the sentence. qkT is the cosine similarity vector of ‘interest’ with all the words in the sentence. [image: ] normalizes the components of this similarity vector. Then, softmax gives a probability vector of the relative importance of ‘interest’ with all the words in the sentence. So, if the training data is good and the training regime is accurate, then in the probability vector, we should see a relatively large value for the components expressing similarity between ‘interest’ and ‘bank’ and between ‘interest’ and ‘customers’. In other words, the representation for ‘interest’ hears from and attends to the voice of all words around it, notably, ‘interest’ and ‘customers’. 




Now, Eq. (13.3) helps drown out the voice of words coming to the right of the current word. In order to use a decoder to generate the next word, we want to mask out or remove the voice of all words after a word. An external informed masking of attention will expectedly solve this problem. Therefore, in Eq. (13.3), masked attention modifies attention by ‘masking’ (or simply, setting the softmax values to zero) for words that are to the right of the current word. This ensures that the context used to generate a word at a position is only to the left of the current word. In the case of the example above, masked attention obliterates the voice of the word ‘customers’ when computing attention for the word ‘interest’. As a result, decoder-only LLMs are often called unidirectional models.

This task of predicting words in a sequence would be computationally expensive in terms of the length of the sequence if positional encodings are used. This is because positional encodings in Transformers use the absolute position of a word in sequence. Rotary position embeddings (RoPE) (Su et al., 2021) are used to embed relative positions by using matrix transformations. They have been shown to be useful for long sequences and are used in LLMs such as LLaMA.

Masked self-attention in the decoder operates in an auto-regressive manner. Recall that auto-regression refers to the idea of using historical data to make predictions about the present. This means that the LLM generates representations for the next word (the present) given past words (historical data). The decoder stack is a sequence of decoders such that the output of a decoder block is applied as an input to the consequent decoder block. 

Finally, the decoder-only model applies softmax on the output of the final layer. This prediction is to be interpreted as the word that follows the input sequence. The ‘logit’ in the diagram is implemented as a language model head (LMHead) such that logit is computed over all words in the vocabulary (https://huggingface.co/blog/encoder-decoder), followed by a softmax on the logits. Therefore, when training such a model, the objective is to have the highest probability for the next word. The decoders trained as such result in a foundation model, which is a model that has been trained to generate text. Learning the foundation model provides the base (or the foundation) for generative AI. Efficient ways to train decoder-only models have accelerated the developments in generative AI (Tay et al., 2022).

GPT (Radford et al., 2019) is an example of a foundation model that uses the decoder blocks of the Transformer. Different versions of GPT have shown improved ability on natural language generation tasks. These versions differ in terms of their availability (proprietary versus open-source), parameter size, and dataset quality (some use manually cleaned datasets while some others use large datasets such as Pile; https://pile.eleuther.ai/). Let us look at how an LLM can be used for autoregression.



from transformers import AutoTokenizer, AutoModelForCausalLM




AutoModelForCausalLM is a class that can be used for auto-regressive (also called causal) language modelling. EleutherAI1 provides open-source GPT models that can be used for text completion.




model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B").to

  (device) # "EleutherAI/gpt-j-6B"

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")





The model is assigned to the GPU using to(device). This ensures fast inference. We will use GPT-J model by EleutherAI. 



prompt = "Long long ago, there lived a boy who loved to write poems."

input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)




The prompt contains the first sentence of the story. It will be used as the starting point for the text completion. The variable input_ids contains the tokenized version of the prompt that will be provided as input to the language model. Note to(device) indicates that GPU will be used if available.



gen_tokens = model.generate(

       input_ids,

       do_sample=True,

       temperature=0.9,

       max_length=100,

)





In addition to input_ids (which are tokenized representations of the prompt), the call above has three arguments. The argument max_length indicates the number of words in the generated text. Since the model appends generated text to the prompt, max_length includes the length of the prompt itself. The second argument is temperature, which controls the degree of determinism in the output of the model. Temperature of 0 generates a deterministic output; at every position, the most likely word is output. Higher temperatures allow for variability or diversity in the generated output. The third argument is do_sample. do_sample is False if the expectation is that the most likely output will be returned. do_sample being True would return one among the top samples.



gen_text = tokenizer.batch_decode(gen_tokens)[0]

gen_text




The variable gen_text will contain the completed story starting with the prompt.

13.3.2 Fine-Tuning LLMs

Foundation models serve as a basis for generative AI. The next step is to adapt the language model for specific tasks as in NLP. This is done by employing transfer learning. The term ‘transfer learning’ is derived from two components. The word ‘learning’ is similar to how it is understood in the context of machine learning. The model is provided a labelled set that it must learn from. The word ‘transfer’ implies that it must not learn from scratch, rather build on the computational knowledge present in the foundation model and transfer it to the specific task.

The labelled set to fine-tune a model is provided in the form of prompt–response pairs. The fine-tuning can be done in three ways: sentence labelling, sentence completion, and instruction responding. 

1. Sentence labelling is where the response is a categorical label associated with the sentence which is the prompt. This will fine-tune the foundation model for prediction. 

2. Sentence completion is where the response is a phrase that completes the prompt. This will adapt the foundation model to complete sentences as per an unlabelled dataset; for example, GitaGPT is an example of the GPT model fine-tuned on the Bhagavad Gita, one of the holy scriptures of Hinduism (https://en.wikipedia.org/wiki/Bhagavad_Gita). The resultant fine-tuned model uses the foundation model of GPT along with fine-tuning in the form of Bhagavad Gita. 

3. Instruction responding is where the responses are sentences that respond to the prompts. 

Fine-tuning a model on a labelled training set updates the weights of the last layers of the model, as shown in Figure 13.3. Signals from the penultimate layer feed into a dense feed-forward layer. The output of the layer returns the predicted labels. The model is optimized such that the error between predicted labels and expected labels (as present in the labelled set) is minimized. The weights of the lower layers are frozen. That way, they remain unchanged, thereby retaining the learning existing in the foundation model.

[image: ]
Figure 13.3  Fine-tuning GPT for classification.


Using prompt–response pairs in the form of an instruction and an expected response to the instruction allows foundation models to follow textual instructions. Such fine-tuning is called instruction fine-tuning and has been useful in reasoning tasks. 

Let us now see how a language model can be fine-tuned. GPTNeoModel in transformers provides the GPT-Neo model, an open-source GPT-based model.



from transformers import AutoTokenizer, GPTNeoModel

import torch





We will use the GPTNeo model provided by EleutherAI.



Tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")

model = GPTNeoModel.from_pretrained("EleutherAI/gpt-neo-1.3B")






The training dataset can be supplied as a list of lists. It is efficient to use dataframes in Pandas or Spark. 



train_dataset =[ ["...A training dataset here…."] ]





The following line shows that the model will be stored as an example_model. The arguments specify parameters to be used for fine-tuning.



Training_args = TrainingArguments(

      output_dir="./example_model",

      evaluation_strategy="steps",

      num_train_epochs=5,

      weight_decay=0.01,

)

trainer = Trainer(

      model=model,

      args=training_args,

      train_dataset=train_dataset,

      eval_dataset=eval_dataset,

)




Finally, train function in the trainer uses training arguments, the train, and evaluation datasets on the specified model.



trainer.train()





OpenAI (the company behind ChatGPT) also provides an approach to fine-tune models using a commandline interface. Theirs is a paid API to fine-tune an OpenAI model such as GPT. The openai library in Python provides primitives to do so. The dataset must be converted to a Json format such that the input–output pairs are formulated as prompt and completion, as follows:



{"prompt": "<input>", "completion": "<output>"}




Two commandline primitives are available to fine-tune and test the fine-tuned model. fine_tunes.create is used to create a fine-tuned model and can be invoked as follows:



openai api fine_tunes.create -t <TRAIN_FILE_ID_OR_PATH> -m <BASE_MODEL>





The argument t corresponds to the file path of the training file, whereas the argument m is the name of the base model.

The list of fine-tuned models can be retrieved using OpenAI API fine_tunes.list. The list will contain the name of a fine-tuned model that can be used during inference. The name of the fine-tuned model can be included in the call to the API for sentence completion using completions.create.



openai api completions.create -m <FINE_TUNED_MODEL> -p <YOUR_PROMPT>




Since this is a subscription-based API, an OpenAI API key must be set in the environment parameters or passed during call.

13.3.3 Refining LLMs for Conversations

We have seen so far that LLMs use completion of text as their core learning task, and that they can be fine-tuned for specific tasks using prompt–response pairs. This imparts two properties:

1. They are able to predict the next word in the sentence. This comes from the foundation model.

2. They are able to disambiguate between multiple possible words based on fine-tuning.

Are the properties above sufficient in the context of an LLM that engages a human in a conversation? The discourse nature of a human conversation requires an additional component of taking human feedback into account. If a human communicator expresses agreement with the LLM, it must understand the agreement. If the human communicator asks a related question, it may account for the question in relation to the conversation so far. This is where reinforcement learning comes into play.

Reinforcement learning is a form of learning where an artificially intelligent agent learns from its inputs in an iterative manner. Figure 13.4 shows a typical reinforcement learning agent, which is viewed as having five components: environment, state, action, reward, and policy. 


1. The environment is the setting of the agent. 

2. The state is what the agent understands about the environment. 

3. The action is the mechanism from the agent to influence its environment. 

4. The reward allows the agent to measure how its actions impact the environment. 

5. The policy governs how the agent determines its actions based on the rewards. 

[image: ]
Figure 13.4  Components of reinforcement learning.


Imagine a robot that is being used to remove weeds in a farm. The farm is the environment of the robot. Two simple actions that the robot may undertake are: keep moving in multiple possible directions or plucking a plant it sees. Once the robot has plucked a plant, it may use its sensors to determine its reward: a positive reward would indicate that it indeed plucked a weed, whereas a negative reward would indicate that it plucked a useful plant. The robot may decide to move or pluck based on its rewards. This decision is governed by the policy.




What does this look like in the context of a chatbot such as ChatGPT? Figure 13.5 adapts the reinforcement learning illustration to a chatbot configuration. The environment is rather simplistic as compared to the robot. A text-based interactive environment is the setting of a chatbot. The actions that the chatbot can take are sentences it can generate. The set of actions in the case of a chatbot is significantly larger: it will use the foundation model to generate one among multiple possible sentences. The state of the conversation is what the model knows about the conversation, say, in terms of the topic of the conversation. What are the rewards? The rewards will come from the model’s understanding of how good a response is. Since it is interacting with a human, this comes from human feedback. The policy of the model must then be trained on generating sentences that optimize the human feedback. 

[image: ]
Figure 13.5  LLM using reinforcement learning using human feedback.



The description above leads us to a key advancement that has enabled LLMs to be used for conversations, which is RLHF (which stands for reinforcement learning from human feedback). RLHF allows LLMs to learn a policy based on human feedback to enable conversations. 

We will now use ChatGPT as an example of how LLMs use RLHF to converse with humans. The starting point is a prompt dataset. A prompt dataset consists of a dataset of prompts that will be used in the training. The prompt dataset may consist of prompts of different categories (such as mathematics and science) so that it covers different areas. ChatGPT is trained using three steps that are conducted over several iterations.

Step 1: Fine-tuning

The prompts in the prompt dataset are provided to human labellers who write essays corresponding to the prompt. The prompts serve as the input while essays are the output. An LLM is fine-tuned on pairs of prompts and essays. The notion of using human labellers to create output text is a technique that was used to create natural language inference dataset. We have looked at them in Chapter 6  on natural language inference.

Step 2: Reward model

The LLM fine-tuned using the previous step is expected to encapsulate the learning from the foundation model transferred to the essay-prompt dataset it was fine-tuned on. However, generative tasks do not necessarily have a definitive answer. An essay corresponding to a prompt can be written in multiple ways. The second step, therefore, is a reward model that learns to rank essays. 

To do so, the fine-tuned model from Step 1 is used to generate multiple outputs for a set of prompts. Now, the input is a prompt with multiple outputs. The human labeller plays a role again. The human labeller is shown multiple outputs corresponding to a prompt. Their task is to order the essay outputs in an order of preference. They may take into account coherence to the prompt and factual correctness in their evaluation. This results in a labelled dataset of prompts and multiple essay options. A reward model is trained to rank responses corresponding to a prompt. 

Step 3: Learning the policy

The reinforcement learning policy ties the LLM with the reward model. The policy is initialized. Step 3 learns a policy using the output of the fine-tuned LLM with the reward model. A random prompt is sampled from the dataset. The prompts are used to generate an output from the LLM and the corresponding reward from the reward model. The reinforcement learning policy is updated based on the two. The approach highlights that while the LLM generates appropriate responses to the textual input, the reward and the reinforcement learning policy are both fundamental to carry out theconversation.

13.3.4 Enhancement of LLMs Using External Tools

The reliance of LLMs on sentence completion is considered a cause for generating factually incorrect output. Finding answers is not only about completing sentences! An example is mathematical computation. If the prompt is ‘I have three apples and four bananas in two boxes. How many fruits do I have?’, the model need not look up examples containing apples and bananas. A human responding to the question takes into account two things: (1) apples and bananas are fruits while boxes are not and (2) three and four are numbers. Therefore, to answer the questions, one must ‘add’ the number of fruits. This understanding is deeper than merely linguistic and involves understanding the correlation between ‘how many’ and the mathematical operation of addition. Language models, therefore, need to look at sources of information beyond ‘language’ or ‘text’ in the pure sense. 

Consider another example. Imagine that a user poses a natural language question to the calendar application on their mobile phone. ‘When am I meeting my client at Ajax Technologies (this is an imaginary name; resemblance to a real entity is coincidental) next?’ A pure language model may be able to generate the incomplete sentence ‘You are meeting Ajax Technologies on …’ as an appropriate response. However, the exact answer in the words that will follow the incomplete sentence must come from the information stored in the database of the application (i.e., the calendar of the user) itself.

As language models begin to be integrated into larger applications such as the calendar application, they can no longer rely solely on language modelling as a text completion task. They must work in tandem with additional sources of information or tools. Augmented language models are a step in that direction (Mialon et al., 2023).

Augmented language models combine generative language models with external tools and data sources. These tools may be a calculator program (for the fruit-counting example above) or a search engine (for information it is not confident about). The database may be integrated with an application (as in the calendar) or a knowledge base (such as a structured repository of geographical information). Therefore, the learning objective becomes:

– Given the input sentence so far,
  – Generate the next word

OR

– Generate a call to an external tool to fetch information. The information fetched from the tool becomes additional context to generate the next word(s).

Figure 13.6 shows an example of an augmented language model in action. Consider the prompt ‘Send a text message reminder to Raj Singh about our next meeting’. The LLM can call upon multiple tools such as a calculator, telephone directory, calendar, or a research database. By merely utilizing its generation ability, the language model produces the text ‘Hello Raj, this is a reminder regarding our meeting on ...’. The words ‘Raj’ and ‘reminder’ are generated due to their presence in the prompt. Following this, the language model decides that it needs information regarding the next meeting. Therefore, it looks up the calendar and finds upcoming meetings with Raj Singh. The text of the meeting (e.g., the date and title) becomes the context for the language model to produce the remaining text. It does so by generating ‘… 3rd May to discuss strategies for FY2024’.


[image: ]
Figure 13.6  Illustrative example of augmented language models.



Toolformer is an example of an augmented language model (Schick et al., 2023). It combines language models with external tools such as search engine APIs. Toolformer is trained as follows:

1. Sentences in the dataset used to train the language model are converted to a form where the sentence contains calls to APIs using special tokens indicated by square brackets. For example, the sentence ‘The capital of Australia is Canberra’ may be converted into ‘The capital of Australia is [SEARCH: “capital Australia”]’. This is done by prompting an LLM with few-shot learning. An example of such a prompt may be: Your task is to create an API call to a search engine based on text. Include an API call in square brackets such that the brackets contain the query to be made to the search engine. Here are some examples:




Input: The capital of India is New Delhi.
Output: The capital of India is [SEARCH: 'capital India']

Input: The capital of Ireland is Dublin.
Output: The capital of Ireland is [SEARCH: 'capital Ireland']

Input: The capital of Australia is
Output: 

Thus, the dataset is converted to a codified format where the language model predicts positions in which API calls may be made. Let us call this the ‘API-fied dataset’.

2. The API-fied dataset is filtered by removing API calls that do not contribute to additional information. This refers to situations where the language model itself can produce correct output without requiring the API call.

3. The language model is fine-tuned on the original dataset as well as the API-fied dataset.

So, how does the model generate output? During inference, the model may produce a word or a special API string. When the model generates an API string, the model pauses the generation of the sentence. It makes the API call, obtains the result, and adds it to the context to be used for generation. Assume that the user prompt is, ‘What is the capital of Sri Lanka?’ and the training dataset does not contain this information. The language model generates the sub-sentence: ‘The capital of Sri Lanka is …’ based on the prompt. Following this, it generates the string [SEARCH: ‘capital Sri Lanka’]. The search API is invoked and the result is obtained as ‘Colombo’. The generation now has two contexts: ‘The capital of Sri Lanka is …’ and ‘… Colombo’. It now decides to include the search result in its generated output: ‘The capital of Sri Lanka is Colombo’. 


  □  13.4Usage of LLMs



We saw different ways to train LLMs. Let us now see how they can be used. Figure 13.7 shows different scenarios in which LLMs may be used. They can be used for prediction, sequence completion, conversation, and by modelling prediction as text generation. In this section, we will describe how LLMs can be used employing concepts such as zero-shot/few-shot prompting. However, before that, it is imperative to discuss the risks associated with the use of LLMs.
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Figure 13.7  Usage of LLMs.



13.4.1 Risks of Using LLMs

Three kinds of risks emerge when using LLMS: hallucination, bias, and deception. Considering that LLMs are trained on next-word prediction, they do not always produce the correct output. The phenomenon of LLMs producing factually incorrect output has been referred to as hallucination (Ji et al., 2023). Users of LLM-based technologies must be advised to fact-check the output produced by LLMs. AugmentedLLMs (as described in Section 13.3.4) aim to reduce hallucination in LLM output by makingAPI calls to generate factual information. However, they themselves can result in API hallucination (i.e., hallucinating the need to make an API call). API hallucination refers to the situation in which the augmented LLM makes unnecessary API calls when the language model could have retrieved the correctanswer.




Training corpora used to pre-train foundation models often contain biased and harmful content. LLMs have also been found to generate biased and harmful content that reflects racist, sexist, or homophobic biases in their training set. This is an important consideration to take into account before deploying LLMs in a commercial setting. Debiasing methods or detecting potentially harmful content can be ways to reduce potential harmful content. 

Finally, because LLMs typically produce fluent text, they can be used to create deceptive content that can be used for phishing or scams. This possibility represents a harmful application of LLM that all Internet users must be mindful of.

13.4.2 Prompting

Several NLP tasks are indeed classification tasks. To use generative LLMs for such tasks, it is necessary to be able to cast the classification tasks as prompts. An example prompt may be ‘Is the sentence “I love the movie” positive or negative?’ In this case, a general-purpose LLM must rely on its interpretation of ‘positive’ and ‘negative’ to make the prediction. Since the dataset used to train the LLM may include sentiment classification datasets, it may rely on their learning to provide an output for the question. The output may be ‘The sentence is positive’.

However, what if the prediction task does not require ‘general-purpose’ knowledge? Take the example of domain-specific classification tasks. Consider the prompt ‘Should this loan applicant be approved a loan?’ This prompt is clearly inadequate. A human respondent would not be able to answer this question either, without knowing more about the applicant. This brings forth the point regarding the precision of prompts. Let us revise the prompt to ‘A loan applicant is 35 years old, loves the colour red, earns [image: ]10,00,000 per year, and lives in New Delhi. Should this loan applicant be given a loan?’ The first sentence is a textual manifestation of the ‘features’ of the loan applicant. Not all features provided may be useful for the prediction task at hand. For example, the phrase ‘loves the colour red’ is likely to be irrelevant for the prediction task. The second sentence is the question that elicits the prediction task. This prompt is slightly better than the previous one since it provides information about the applicant. However, this may still be inadequate to make a confident prediction. Banks may have different policies regarding loan approval. Therefore, the prompt can be enriched by adding a few training examples. The prompt may be revised as:

Training examples:

A 30-year-old who earns [image: ]8,00,000 and lives in Mumbai was provided a loan.

A 48-year-old who earns [image: ]19,00,000 and lives in New Delhi was not provided a loan.

A 29-year-old who earns [image: ]3,00,000 and lives in Chandigarh was not provided a loan.

Question: A loan applicant is 35 years old, loves the colour red, earns [image: ]10,00,000 per year, and lives in New Delhi. Should this loan applicant be approved a loan?’

The LLM can now answer the question by relying on information provided in the prompt. It is evident that information in the prompt provides context to answer the question (i.e., aids in disambiguation). The examples above demonstrate two ways in which LLMs can be used for prediction: zero-shot prompting and few-shot prompting. 

1. Zero-shot prompting refers to the situation in which no labelled examples are provided in the prompt. The model must use its interpretation of the question to make the prediction. 

2. Few-shot prompting refers to the situation in which a few labelled examples are provided in the prompt. The model is expected to rely on these labels to produce a good quality score. 

Recent work in NLP has shown that zero-shot and few-shot prompting using LLMs produces reasonable results. Zero-shot and few-shot prompting provide useful baselines, in cases where labelled data is not available. Typical zero-shot formulations of NLP tasks may be expressed in the form of prompts as

1. Sentiment analysis: ‘Is the sentence, “I love this movie” positive or negative?’

2. Machine translation: ‘Translate the sentence, “I love this movie” to French’.

3. Named entity recognition: ‘What are the named entities in the sentence, “University of New South Wales is in Sydney”?’

4. POS tagging: ‘Label the sentence, “I love this movie” with part-of-speech tags’.

5. Natural language entailment: ‘Consider the sentences, “He is sleeping” and “He is snoring”. If the first sentence is the premise and the second sentence is the hypothesis, predict if the pair represents an entailment, contradiction, or neither’.

Prompts are text-based inputs. The output relies on this text. As a result, ambiguity in the language of the prompts has an impact on the correctness or quality of the output. When using prompt-based zero-shot/few-shot prompting, it is customary to experiment with multiple textual prompts so as to select the best prompt. Figure 13.8 shows some examples of zero-shot and few-shot learning. The few-shot learning example defines a task of predicting a sentence as ‘strongly positive’ or ‘positive’. It does so by providing examples as a part of the prompt. It is evident that few-shot learning is a useful mechanism to utilize LLMs on uncommon prediction tasks by providing a few examples.
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Figure 13.8  Zero-shot/few-shot prompting.



The code used for text completion can be applied to prompting by passing the appropriate prompts. An example of a few-shot prompt is 


prompt = "<Input examples>\n" +

          "<Test example>"





However, prompts in the form of sentences may not always work well in challenging tasks. A typical example is mathematical tasks that require steps of computation. A novel idea in prompting is chain-of-thought prompting. It decomposes a challenging reasoning task into sub-tasks. The sub-tasks are input to the language model as a sequence of sub-prompts. At every step, the output of the sub-task prompt is appended to the input and passed through consecutive steps. Prompting has ushered in a flexible mechanism for using LLMs. However, LLMs are far from being able to perform commonsense reasoning that is an innate human skill in most contexts.

13.4.3 Applications in Education and Work Productivity

Several businesses have announced the integration of generative AI in their products. The web-search giant, Google, is one such company. A typical information retrieval system (or search engine) creates an index of web pages based on words in the pages and meta information. When a user types a query consisting of a few words, the search engine looks up the index of pages. The result of a search engine is a ranked list of pages. In this scenario, a user with a need for information must think of an appropriate query, type it into the search engine, and then manually go through the list of pages to find an answer to their query. Google has proposed a natural language search, where the user asks textual questions and may get a textual response with links to webpages. Natural language input allows the user to express their information needs through longer sentences. The natural language output has the potential to directly ‘answer’ the user’s question without requiring them to go over a list of pages. Hallucinated results can be detrimental to the performance of natural language search and, as a result, their uptake by users.

LinkedIn, a professional social network, has also announced that they will integrate generative AI in job postings and profile completion. A hirer creating a job ad will be able to provide a prompt describing the job position, and the generative AI will create a sample that the hirer can then edit before posting the ad. Microsoft has announced integrations of generative AI into their Office Suite, where users can type prompts to create announcement emails or even presentations! 

Bloomberg has released BloombergGPT (Wu et al., 2023), a GPT model for the financial domain. Recent models like GPT-4 also claim multilingual ability by reporting results on languages other than English (including some widely spoken Indian languages such as Telugu and Marathi). While details of their training dataset are not available, they claim to use some multilingual data.

ChatGPT continues to be a popular tool for Internet users. Here are some example usages of ChatGPT:

1. Software engineers: Software engineers have relied on search engines and websites like Stack Overflow to get help with programming tasks. A software engineer or a software engineering student may seek help from ChatGPT instead. ChatGPT produces reasonably well-structured code for at least simple coding tasks since the underlying GPT model is trained on code repositories, among other data sources. GitHub Copilot is an example of a product that assists software engineers in coding tasks.

2. Writers: Writing text related to a topic is commonplace in several professions. Journalistic articles, work announcements, and academic essays are a few examples of writing. ChatGPT has been reported to be used in each of these contexts.

3. Academic exercises: ChatGPT has found applications in academia. Teachers may use it to set question papers. Students may use it to improve the writing of their text, obtain simpler explanations to the difficult concepts in their syllabus, or create essays for their assignments. It is no surprise that some academics believe technologies like ChatGPT will hamper learning because it will encourage students to take shortcuts in learning.

4. Explanations: Neural models have often been criticized for lack of explanability (i.e., the ability to explain). The output from models in the second generation of NLP could be explained to an extent because the features were human-interpretable. Therefore, an explanation such as ‘This sentence was predicted as positive because it contains the word excellent and a smiling emoji at the end’ was plausible. Since neural models use dense features and interactions (primarily due to attention), the explanation of their output in terms of features is non-intuitive. Generative AI can generate textual interpretations for the predicted output. 

While large language models are an exciting advancement, it has ramifications in areas such as linguistics, law, and ethics. While we point to some of these concerns in this chapter, the list is not exhaustive by any means. Let us zone in on the applications of LLMs in two contexts: education and work productivity.

LLMs in Education

LLMs can be effective summarizers. As a result, they can be useful tools in education for learners and instructors alike. Some example scenarios of using LLMs in education are

1. Simplified explanations of concepts: This can be done in a zero-shot manner with prompts such as ‘Explain quantum physics to a fifth grader’. If the learner has a reference text (such as a chapter or a paragraph in a book) that they are struggling to understand, they may include that in the prompt and add a sentence instructing the LLM to simplify the text. This is particularly useful in situations where students want to solve their doubts but are unable to reach the teacher.

2. Question set generation: This can be used by educators to create question papers. The educator may provide a concept, sample questions, or a reference document. The prompt may also include difficulty levels and types of questions (such as multiple-choice questions). 

While the use of AI-assisted tools like ChatGPT can be helpful for students, rules of academic integrity must always be adhered to. With the view that ChatGPT and similar tools can hamper learning, several universities around the world have disallowed students from using LLMs for essays and other tasks.

LLMs for Work Productivity

Writing is ubiquitous in several professions. Some professionals such as journalists produce written text as a core part of their job. While others use it to perform important functions. Imagine an office worker who wants to schedule a meeting with their client. They typically do so by writing an email. Meeting etiquettes at workplaces state that an invitation for a meeting must ensure a few things. The date/time of the meeting should be accurately communicated. The tone of the email must be appropriate. The email should also contain sufficient details about the purpose of the meeting.

The ability of LLMs to generate text in response to a prompt makes them a useful tool to improve work productivity. LLMs can be powerful tools to create drafts of written communication at work. An example of such a tool is compose.ai (https://www.compose.ai/guide), which is a plugin that can be used to generate text corresponding to prompts. Compose.ai can be triggered using two forward slashes (‘//’) followed by a prompt.

Compose.ai provides options such as:

1. Writing emails: This can be done using a prompt such as ‘Write an email to a client to schedule a meeting for Friday’.

2. Writing long text such as blog posts: This can be done using a prompt such as ‘Write a blog about biodiversity on the IIT Bombay campus’. 

Chain-of-thought prompting can be effective in guiding the LLM through text construction. This can be done by providing appropriate prompts. The guidance provides control to the writer about the output. A prompt may be ‘Write a blog outline about biodiversity in the IIT Bombay campus’. This prompt generates bullet points of sections that the blog can contain. The writer may fill these in manually. Alternatively, the LLM can be invoked again with the prompt ‘Write a blog section about …’ to complete a section of the blog.

It is always advisable to manually inspect the output from LLMs before using it directly. Since the output is going to be sent in the name of the sender, it ensures that he or she is accountable for the content of the output.



Summary

Large language models (LLMs) are an advancement in the third generation of natural language processing (NLP) that rely on text generation as the fundamental task of language modelling. Foundation models are pre-trained on large, unlabelled corpora with the objective of predicting the next word in a sequence. They can then be adapted to specific tasks using fine-tuning. Generative AI provides a ‘natural’ way to communicate with computers. However, the output of LLMs relies on the text of prompts. While ambiguity resolution in NLP models has been the core of NLP (and also our position in this book), the responsibility of ambiguity resolution is now shared with humans in the form of succinct prompts. Not only should NLP learn ways to disambiguate but humans using NLP systems must also pay attention to provide prompts that are as precise/unambiguous as possible. LLMs and their multimodal counterparts are a fast-evolving technology with newer models being developed every week, often with applications to specific domains. This chapter provided an introduction to fundamental concepts of powerful, emerging technology in NLP.



Review Questions

1. Describe the role of masked self-attention in the context of decoder-only modelling.

2. What is fine-tuning in the context of LLMs?

3. Describe RLHF and its usage in the adaptation of LLMs for human conversations.

4. What are zero-shot prompting and few-shot prompting?

5. Why are augmented language models necessary? How can they be used to improve the output of LLMs?

Course Assignment and Project

1. We will learn to fine-tune an LLM on a specialized dataset.

a.Download an open-source dataset or a dataset accessible to you. You may use books from Project Gutenberg (https://www.gutenberg.org/browse/scores/top).

b.Fine-tune GPT-Neo using the Transformer library.

c.Use the fine-tuned model to generate a new story.

2. We will learn to use generative AI for creative writing. Consider the following steps to do so:

a.Use a generative AI plugin (such as compose.ai) to write a blog about a topic of your choice.

b.Experiment with different ways to do so: using AI to generate the complete blog versus using AI to generate blog sections.

c.Examine the output in terms of factual correctness and style. This will help you to understand what kind of checking must be performed when using LLMs for creative writing.

Objective Questions

Fill in the Blanks

1. The ‘large’ in large language models corresponds to the number of ________.

2. ________ embeddings allow modelling long sequences in decoder-only models.

3. Adapting a foundation model to specific prediction tasks using labelled datasets is called ________.

4. RLHF in the context of LLMs stands for ________.

5. The phenomenon of factually incorrect output being produced by an LLM is called ________.

6. The textual input to an LLM is known as ________.

7. The integration of LLMs with external tools is known as ________.



Select the Most Appropriate Option

8. Which of the following is true for generative language models?

a.They use stacks of encoders in Transformer architecture.

b.They use stacks of decoders in Transformer architecture.

c.They learn representations using masked language modelling. 

d.They learn representations using probabilistic language modelling.

9. Which of the following is an example of a generative language model?

a.GPT-J

b.LLaMA

c.BERT

d.GPT-3

10. What does the reward model in a conversational LLM do?

a.It learns to predict user sentiment during a conversation.

b.It learns to retrieve the most similar utterances from a conversational dataset.

c.It learns to rank options of generated output, given a prompt.

d.None of the above

11. What is augmented with a language model in the case of augmented LLMs?

a.External tools

b.External knowledge bases

c.External databases

d.All of the above

12. What is chain-of-thought prompting?

a.Using prompts to print chains of different sizes.

b.Employing recurrent neural networks to generate prompts.

c.Decomposing problems into sub-problems and using prompts corresponding to these.

d.Using human feedback into chains to train a reward model.
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Answers to Objective Questions



1.parameters/trainable parameters

2.rotary position embeddings

3.fine-tuning

4.reinforcement learning using human feedback

5.hallucination

6.prompt

7.augmented LLMs/ augmentation

8.(b)

9.(c)

10.(c)

11.(d)

12.(c)


 

1 EleutherAI is a non-profit research lab (https://www.eleuther.ai/about).













	 

	 




	CHAPTER
14

	Shared Tasks and
Benchmarks








Great discoveries and improvements invariably involve the cooperation of many minds.

Alexander Graham Bell






Learning Objectives

After reading this chapter, you will be able to

• Obtain appropriate benchmark datasets for NLP projects.

• Contribute to existing benchmarks as applicable.

• Participate in shared tasks.






In the book so far, we have introduced natural language processing (NLP) in terms of the three generations that are distinct in their computational approaches to handling ambiguity. We have discussed approaches that characterize each generation for different problems of NLP such as machine translation and sentiment analysis. These computational approaches rely on datasets that may be labelled for a specific task or set of tasks. Commercial businesses have their proprietary datasets which are generally not publicly available. However, the NLP research community has mechanisms and tools using which datasets can be shared and approaches can be tracked. Referring to the chapter-opening quotation here, it is these mechanisms that have been instrumental in discoveries and improvements in NLP. Shared tasks and benchmarks are central to the ability to track NLP progress. Therefore, in this chapter, we focus on shared tasks and benchmarks that have been reported for NLP. The shared tasks and benchmarks covered in this chapter do not focus on a specific NLP problem. The information in this chapter will help readers discover new datasets, participate in these shared tasks, and hopefully develop better NLP systems. In particular, we encourage readers to consider participating in a shared task or contributing a dataset to a community-sourced benchmark.


  □  14.1Background 



As is true for any computational field, NLP measures performance via empirical metrics as computed on datasets labelled for a particular task. Traditionally, research papers would create their own datasets or request existing authors to share these datasets for a comparison with a newer approach. Alternatively, these datasets would be made publicly available (via Github repositories or shared drives) so that future approaches could produce their results on the same datasets. These datasets are equally helpful for a student of NLP to get hands-on experience with different NLP approaches. Similarly, the framework of such standardization has also accelerated the research in the area.

An important initiative towards making standard datasets and lexicons available was the institution of the European Language Resources Association (ELRA). ELRA is a non-profit organization whose main mission is to make language resources for human language technologies available to the community at large. ELRA biennially organizes the Language Resources and Evaluation Conference (LREC), which has become a major event in the field of language engineering. The importance of having the same dataset or resource to compare different approaches or to reproduce the results of an architecture has been felt in NLP for a long time. In terms of reproducibility and comparability of algorithms for different NLP problems, two typical exercises have surfaced in the area of NLP. In this chapter, we describe these exercises: shared tasks and benchmarks. 

Shared tasks are competitions in which datasets are shared between all participating teams. This is an important trend that has fostered the development of NLP approaches for many generations of NLP. Shared tasks were periodically organized events where a specific problem statement was announced along with a dataset. Take the example of a shared task on sentiment detection of customer feedback. The problem statement defines the nature of the task in terms of the dataset, output labels, and additional rules. The rules of the shared task specify if participating teams are allowed to use external resources or language models. Akin to university hackathons, participating teams submit their systems within a pre-determined time period and produce results for the NLP problem. Shared tasks allow participating teams to submit their entry in the form of short reports or papers. As a result, shared tasks are a unique opportunity in the NLP research community for budding or experienced researchers to publish work related to a focused task. Datasets released during shared tasks could be used in the future. Often, datasets introduced as a part of shared tasks continued to be benchmarks for the specific research problem for several years. 

The second exercise that we focus on in this chapter spanned the third generation of NLP. This was benchmark datasets. Benchmark datasets were released on a platform for a range of NLP tasks, without any specific end date indicating the period for which the challenge will be open. These datasets are publicly available for experimentation, and the results of competing systems are uploaded on their leaderboards. NLP leaderboards based on these benchmarks have fostered rapid research and innovation for different NLP problems. Recently, user-contributed benchmarks such as the BIG-Bench have become popular. These benchmarks have democratized the creation of benchmarks themselves. Contributors can submit datasets for different tasks. The BIG-Bench repository itself provides mechanisms to test different language models on the benchmark tasks. This chapter first describes shared tasks followed by benchmarks. While the focus of the chapter is datasets, we also acknowledge the availability of shared models in the form of publicly available repositories such as the one provided by HuggingFace.


  □  14.2Shared Tasks



Shared tasks are competitions organized by a research group focusing on a particular NLP task.They serve as a good starting point for learners of NLP to get hands-on experience with building an NLP solution. They also have been important providers of benchmark datasets for these tasks. Results of shared tasks have been displayed as leaderboards in the area for the duration of the task. Several areas of NLP have been influenced by shared tasks. Many shared tasks eventually grew into workshops or conferences of their own. Bearing in mind the influence of shared tasks, we now describe shared tasks in the field of NLP.

14.2.1 Motivation

The purpose of shared tasks can be understood via three functions that they serve:

1. Compare: Since a shared task allows different teams to compete during a fixed period, they serve as a forum to compare alternative approaches. Different research teams can apply their efforts towards solving the same problem in a competitive environment.

2. Learn: Shared tasks have been understood to be a great learning tool for early learners of NLP. A shared task provides a dataset and a well-defined problem. As a result, a team of learners (such as undergraduate students) can bootstrap from the well-defined problem definition and get hands-on experience working on an NLP problem.

3. Collaborate: Shared tasks have also been shown to be a great collaborative environment. For a company attempting to attract attention to a research problem that they are dealing with, a shared task can be a place where they release a small dataset as a part of the shared task. This way, they get to collaborate with other researchers who may be interested in the area.

14.2.2 Overview

A shared task consists of two key stakeholders: organizers and participants. Organizers are a set of people who administer the shared task. As a part of the administration, the dataset and the problem are publicized to call for participation. Participants are organized in teams of one or more members. Participating teams may or may not be from the same organization. Participants are the set of people who submit their systems to the shared task. Typically, at the end of a shared task, the organizers publish a paper summarizing the task, the participating teams, and the leaderboard which ranks the teams based on their performance. Participating teams may also be invited to submit papers describing the approaches used in their systems.

14.2.3 Datasets

Shared tasks consist of two or more kinds of datasets. A training dataset is released at the beginning of the shared task. This training dataset may be from a paper reported in the past. If the training dataset is from a platform where the text cannot be shared directly, an accompanying script to obtain the data is also released. This is typical of datasets from platforms such as Twitter, where tweet IDs and labels are released as a part of the training set. The script can then be used to download the text of the tweets, keeping in mind the sharing restrictions of Twitter. The second type of dataset is the evaluation dataset.The evaluation dataset is released without annotations although organizers have a version of the test dataset with the annotations.



14.2.4 Process

A shared task may be organized via online learning platforms such as Kaggle (https://www.kaggle.com/). Kaggle is a portal that allows uploading of code and running it on pre-uploaded datasets. The typical process of a shared task is shown in Figure 14.1 and has the following steps:



1. Announcing calls for shared tasks: Conferences may release a call for shared tasks. Prospective organizers submit a definition of the task and a sample dataset. A note highlighting the utility and non-triviality of the problem may also be added. The conference may then decide to hold the shared task.

2. Announcing the shared task and releasing the training set: The organizers then announce the shared task and release the training set. They provide the script to download data if raw data is not being shared. The announcement clearly defines (a) the statement of the NLP problem, (b) a set of examples that show the expected output, (c) annotation guidelines used to create the training set, (d) important dates associated with the shared task, and (e) evaluation process. The evaluation criteria may be in the form of metrics (such as F-score) that can be automatically computed. Alternately, for objective tasks such as summarization, some shared tasks also have a manual evaluation of the results. In this case, after the participating teams upload their results, expert manual annotators assign scores to individual results, and the overall performance of the team is computed based on these scores. The shared task organizers define the evaluation process in advance.

3. The competition: For a period typically ranging over a few months, the participating teams try out their approaches on the released training set. If the problem is a mainstream NLP task (such as machine translation), participating teams may use their approaches reported in past work. Alternatively, they may devise new approaches for the purpose of the shared task. Shared task organizers may allow participating teams to use data outside of the training set. The organizers may request participating teams to upload this external data along with their final submissions.

4. Releasing the evaluation set: The evaluation set consists of examples that the organizers annotate for the purpose of the shared task. The idea here is that this dataset may not be directly available from the Internet or may not have been reported in a past paper. The evaluation set is released without the annotations. At the end of the evaluation period, participating teams are required to upload the outputs of their systems for the evaluation set.


[image: ]
Figure 14.1  A typical process of a shared task.



5. Announcing the results: The organizers then announce the leaderboard for the shared task. The leaderboard may continue to appear on the portal after the shared task has ended. New teams may be encouraged to continue to try out their approaches on the released datasets on the portal. Alternatively, the organizers may upload the evaluation set along with gold annotations so that it can be used for future work.

6. Summary papers: At the end of the shared task, the organizers compile a paper that describes the entire process along with a leaderboard that summarizes participating teams. The shared task organizers may invite all participating teams or a pre-defined set of top-performing teams to submit a paper describing their approach. These papers are published along with the proceedings of the accompanying conference or workshop. They are also presented in a special shared task session which begins with organizers presenting their summary paper followed by talks or posters by participating teams. 

Shared task organizers also often release a set of naïve methods that may be used to solve the problem. This may be released in the form of a code (of say, a basic classifier, in the case of a classification problem) or as a tutorial (which describes how to use a popular library for the problem). This allows teams to use the code or the tutorial to use the baseline results. It also serves as a reasonably simple baseline that the teams must try to better with their proposed approaches. In the following sub-sections, we describe some well-known shared tasks.

14.2.5 SemEval

The SemEval task was first held in 1998 as SenseEval (http://www.itri.brighton.ac.uk/events/senseval/ARCHIVE/index.html). It was a competition for word sense disambiguation. The shared task organizers released a set of baselines ranging from a ‘random’ baseline to ones that used word similarity metrics for word sense disambiguation. The SemEval competition was conducted for a variety of tasks thereafter. In many cases, the datasets for SemEval have been useful for research in their respective areas and have been cited in other papers because they provided datasets and benchmark methods.

While the core task in SemEval is word sense disambiguation, SemEval per se has diversified into tasks such as

1. Word sense disambiguation: Word sense disambiguation-based tasks in SemEval provide textual datasets where words in the dataset are labelled with identifiers from a knowledge base such as WordNet. In this case, the identifier corresponds to the sense of the word being labelled. In addition to general-domain word sense disambiguation, there have been shared tasks on domain-specific word sense disambiguation such as word sense disambiguation for clinical text. Encodings such as ICD-10 have been used as references for the disambiguation.

2. Sentiment analysis: Sentiment analysis tasks may be classification tasks where instances in the dataset must be assigned one or more out of a set of predefined labels. This set of predefined labels may be Boolean or correspond to the sentiment of emotion values. Detection of implicit polarity, detection of figurative language, and aspect-based sentiment analysis are some recurring editions in the sentiment analysis track of SemEval.

3. Similarity: Similarity-based tasks involve assigning a real-valued similarity score to a given instance. SemEval has conducted tasks around the similarity between words, the similarity between sentences, or between documents. Tasks that depend on the notion of similarity have also been explored. For example, SemEval-2015 conducted a shared task, where given a new question, a relevant answer from a set of known question-answer pairs must be returned.

4. Extraction: These tasks are centred around returning a sub-set of words in the text. Some such tasks are the extraction of phrases representing temporal entities, spatial entities, or clinical terms. 

The above is not a complete list. However, it gives a glimpse of the nature of tasks that have been run as a part of SemEval. SemEval has also conducted shared tasks related to parsing, simplification for L2 learners, or taxonomy extraction. SemEval tasks have been diverse in their linguistic focus with languages. The first SemEval task had datasets in English, French, and Italian. Datasets in Arabic, Dutch, and German have also been used in subsequent years.

14.2.6 WMT

Workshop on Machine Translation has organized shared tasks pertaining to machine translation (https://dl.acm.org/conference/wmt). In the past, pairs of languages that have been considered are French-English, Hindi-English, German-English, Czech-English, and Russian-English. Since machine translation is dependent on the availability of additional corpora, WMT encourages the use of additional corpus or decoders. The shared task organizers also point to a repository of other existing corpora for the pairs of languages.

As a part of their shared tasks, WMT has conducted an evaluation in either direction of translation for these pairs. Since 2016, WMT established itself as a conference, where they conducted 10 shared tasks. Typical types of tasks in WMT are as follows:

1. Domain-specific: Some tasks were specific to a certain domain such as news, IT, and biomedical.

2. Phenomenon-specific: Tasks may also be in terms of specific phenomena such as translation of pronouns or bilingual document alignment.

3. Evaluation-specific: These involve determining the quality of translation in the absence of a reference translation.

4. Other tasks: Post-editing (automatic or manual) has also been the focus of some shared tasks. In the case of automatic post-editing, the generated output from a given input is released. The expected result is a post-edited output. In recent times, multimodal translation has also been reported as a WMT-shared task where documents are accompanied by image data.


  □  14.3NLP Benchmarks



While shared tasks were fixed-duration competitions whose datasets could be made available later, NLP benchmarks have become popular as persistent data and code base to monitor the progress of the field. These benchmarks provide test data for evaluating NLP systems. They may also contain labelled or unlabelled datasets or pre-trained models that can be used as a starting point for different approaches. A benchmark consists of: (1) task definitions, (2) labelled datasets associated with each task definition, (3) a leaderboard ofteams for each task and their performance, and (4) the code and/or models of these teams as may be made available. A typical NLP benchmark is shown in Figure 14.2.



[image: ]
Figure 14.2  Contents of an NLP benchmark.



Since NLP is dependent on data, NLP benchmarks provide large datasets for free download. This situation has reduced the resource gap between academia and industry. It must be also noted that the benchmark datasets were not necessarily created for the specific tasks but were often derived from popular shared tasks. In a way, shared tasks that run for a duration make way for an ongoing benchmark.

As in the case of the shared tasks, we first describe the process of generating and reporting a benchmark. We then follow it with a description of three NLP benchmarks—the GLUE benchmark for English, the Indic GLUE benchmark for Indian languages, and BIG-Bench—a multilingual benchmark for language model-based tasks. The three benchmarks represent in themselves an evolution of benchmarking in NLP.

14.3.1 Process

NLP benchmarks have been useful in consolidating datasets for a variety of NLU tasks and making them available for research. This can be of particular value if the benchmark is being created to accelerate NLP research in a new language or domain. The typical process to create a benchmark consists of:

1. Deciding the problems: NLP benchmarks typically consist of multiple problems that are representative of natural language understanding. These problems could be categorized in terms of the phenomena that they are trying to capture. As we will see, the GLUE benchmark defines three categories of tasks: classification, similarity, and inference. Deciding the problems may also be linked to what kind of applications seems useful.

2. Collecting or creating the datasets: The datasets for benchmarks may be collected from already available datasets that have been reported in shared tasks or past approaches. An alternative is to look at various sources of digital information available. The Internet provides a useful set of options. Discussion forums, news websites, etc., can provide text in the target language or domain for which benchmarks are to be created.

3. Making them available: These datasets and benchmarks then can be made available via a public platform for download. Simple baselines may also be made available for comparison. Leaderboards are also a common feature of benchmarks because they allow a comparison of a wide variety of approaches. 

The above process has often been facilitated by consortia across multiple organizations in academia and industry.



14.3.2 General Language Understanding Evaluation

The GLUE benchmark consists of datasets for nine NLP tasks, divided into three categories (Wang et al., 2018). The first category is single-sentence tasks. The second category is similarity-based tasks whereas the third category is inference-based tasks.

The first two of these tasks are single-sentence tasks (i.e., a label needs to be predicted for a single input sentence). These tasks are linguistic acceptability (abbreviated as CoLA) and sentiment analysis (abbreviated as SST-2). The linguistic acceptability task deals with determining whether a given sentence is an acceptable English sentence. The original dataset for CoLA consists of 8.5k training and 1k test sentences. The second single-sentence task is sentiment analysis. In this case, the dataset consists of sentences that have been labelled as positive or negative. The original dataset for SST-2 consists of 67k training and 1.8k test sentences.

The next set of tasks is related to the similarity between pairs of inputs. This means that each instance in the dataset consists of a label for a pair of inputs. The first task is paraphrase detection (abbreviated as MRPC). The dataset was derived from news sources. Each pair of sentences in the dataset is labelled with whether they convey the same meaning. The second task is the question equivalence task. This dataset consists of questions from a discussion forum. Given a pair of questions, the label and, hence, the prediction task is to predict if the questions are semantically the same. This dataset consists of 364k training and 391k test sentences and is the largest among all tasks. The third task among the sentence-pair-related tasks is the only regression task in the GLUE benchmark. By regression, we mean that the task deals with the prediction of a real value as against Boolean values in the case of other tasks. Given a pair of sentences, the goal is to predict a similarity between the two sentences as a real value between 0 and 1.

The third set of tasks is related to inference between a pair of sentences. Unlike the previous set, the two sentences are no longer interchangeable or transitive. There is a direct relationship between the two sentences. For example, the first task is multi-genre inference (abbreviated as MNLI). Given a hypothesis sentence and a premise sentence, the goal is to predict if the premise entails or contradicts (or neither) the hypothesis. This dataset consists of 393k training and 20k test instances.

The second task is question-answering inference. Based on a discussion forum consisting of questions and corresponding answers, this dataset poses a task to determine if, given a question and a paragraph, the corresponding answer is indeed the answer to the question present in the paragraph. This is abbreviated as QNLI. The third task is textual entailment based on news and Wikipedia text, abbreviated as RTE. The fourth task is called WinogradNLI (or WNLI). In this case, a pair of sentences is provided as input where the second sentence is the same as the first sentence but has one pronoun in the first sentence replaced by one of the nouns. The goal is to predict if such a replacement is valid, thereby understanding an anaphoric resolution.

As one sees, the tasks vary in the sizes and sources of the datasets. However, it is important to note that the benchmark pre-determines the train and test datasets. As in the case of shared tasks, experimentation on benchmark datasets may use external datasets or resources.

14.3.3 iNLP Suite

The iNLP Suite (the GLUE benchmark equivalent for Indian languages) consists of benchmark datasets and tasks for Indian languages (Kakwani et al., 2020). It was built on the lines of the GLUE benchmark. This is an evolving benchmark which is expected to add new tasks to its repertoire. IndicGLUE consists of tasks that were collated from past work. The first task is news category classification. The dataset consists of 125k news articles across nine Indian languages.

The second task was headline prediction. The input is a news article and four candidate headlines. This dataset consists of 880k instances from 11 Indian languages. The third task is Wikipedia Section Title Prediction, consisting of 400k instances across 11 Indian languages. 

The fourth task is a cloze-style question-answering task. Given a text with a masked token, the goal is to predict between one among four candidate terms. The dataset consists of 239k instances across 11 languages. The fifth task is named entity recognition. This consists of sentences with B, I, O style tags indicating named entities in the sentence corresponding to words. The dataset consists of 787k sentences across 11 Indian languages. The sixth task is cross-lingual sentence retrieval. Given a sentence as input, the goal is to select the most likely translation among the set of sentences in a target language. This task is based on a dataset of 39k parallel sentence pairs across eight Indian languages. 

Other tasks in the IndicGLUE benchmark consist of inference, sentiment analysis, discourse analysis, and paraphrase detection. As can be seen, the tasks in the Indic GLUE benchmark are based on the multilingual diversity of Indian languages. Therefore, cross-linguality also appears in these tasks.

14.3.4 BIG-Bench

The GLUE benchmark provides datasets for NLP tasks. However, there exist benchmarks that encompass a wider set of tasks for which NLP models can be used. One such benchmark is called the BIG-Bench (Srivastava et al., 2022). The BIG-Bench repository is an evolving set of tasks that can be used for the evaluation of NLP models. The term ‘evolving’ here means that user contributors can add new datasets to the repository. This is a community-contributed repository of tasks in multiple languages and use cases. The BIG-Bench benchmark is popular for the evaluation of LLMs or their fine-tuned variants. The BIG-Bench repository provides additional code wrappers to compute metrics and optimally load the models and scripts to run the task evaluations. Tasks in BIG-Bench are classified into difficulty levels and topics. However, in terms of their implementation, tasks in the BIG-Bench repository can be of two types: JSON tasks and programmatic tasks.

JSON Tasks: In the case of JSON tasks, the input and output are specified as a structured JSON file. Imagine an irony classification task where a labelled dataset of 5,000 instances is mapped to 5,000 input–output pairs and included in a JSON. Let us look at the example of a JSON for a classification task included in the BIG-Bench repository.

The JSON begins with meta-data about the task. The canary string indicates to crawlers used to create training data for LLMs to not use the dataset in this JSON file. This is required since LLMs are trained on publicly available GitHub repositories, among other things, and the BIG-Bench repository is one such repository. 



{"canary": "…. .",

"name": "…"

   "description": "…. .",

   "keywords": [

   "…. ."

],




The keywords attribute indicated above gives keywords that describe the task. This can be used to indicate the topic or the use case of the task. Following the description are parameters that describe the nature of the output. The preferred_score and metrics describe the nature of the task: is it classification? are labels ordered? and so on. Following these are prefixes for the input, output, and task. The prefixes are used to create the prompts that will be provided as inputs to the language model.



"preferred_score": "….",

"metrics": ["……"]

"example_input_prefix": "\nExample: ",

"example_output_prefix": "\nYes/No? ",

"task_prefix": "Prefix of the prompt?\n",

"append_choices_to_input": false,




The attributes specified above are used by the evaluation code of BIG-Bench to perform the computation corresponding to the task. After the attributes, examples are provided in the form of input and target_scores.



"examples":[

           {

                      "input":"Sentence.",

                      "target_scores":{

                               "Yes":1,

                               "No":0

                      }

           },

….

}




The example above shows that for the input Sentence, the target score must be 1 for Yes. These scores can be real-valued. This means that a sentence may not be labelled as Yes or No  but have flexibility across the two labels.

Programmatic Tasks: In this case, the input and output are described as inherited classes that may perform additional computations on the input or output. A simple example of a programmatic task in the BIG-Bench benchmark is arithmetic addition. If one wants to test a language model’s ability to perform arithmetic addition, they can implement the addition as a program instead of providing input–output pairs. Therefore, the expected output can be implemented as a function in an inherited class and need to be provided as a dataset of input–output pairs. A skeleton code for a programmatic task is shownas follows:


import bigbench.api.task as task




As shown below, the new task named as NewTask is defined as an inherited class of task.Task. The class definition must include definitions of methods that will be required to evaluate a model on the task or return inferred values.


class NewTask(task.Task):

         """A boolean expression task of variable difficulty."""




The init function sets the task parameters.



           def __init__(

           ):

                   ……




The _eval_expression method takes the tokens, generates a prompt, and returns the expected result along with the problem.



           @classmethod

           def _eval_expression(cls, tokens):

……

                    return expected_result, prompt




The get_task_details method returns descriptive text regarding the task.



           def get_task_details(self):

                    return task.TaskMetadata(

                    )




The evaluate_model function evaluates a model (passed as an argument) by internally invoking the _eval_expression function.



                      def evaluate_model(self, model, max_examples=None, random_seed=None):

……

……

                               return




Note that the code above uses Python conventions such as the use of underscore prefix to indicate private functions.

BIG-Bench accepts contributions to its task repository either as a JSON task or as a programmatic task. BIG-Bench represents a novel mechanism using which researchers can make their data publicly available to the research community.


Summary

Shared tasks are competitive events that provide shared datasets for research problems and invite teams to contribute solutions for the task. In contrast, benchmarks are publicly available datasets along with corresponding evaluation mechanisms for NLP tasks. In this chapter, we described shared tasks in terms of their process, along with an example of the popular SemEval competition. Following that, we described three benchmarks: GLUE, IndicNLP, and BIG-Bench. The three benchmarks represent the NLP community’s efforts to help research by collaborating on dataset creation. 

The shared tasks and benchmarks described in this chapter will be valuable resources to kickstart experimentation and research in NLP. We reiterate our encouragement to the readers of the book to contribute new datasets to some of these benchmarks. The availability of datasets in the form of benchmarks has increased the availability of datasets, resulting in the democratization of research in NLP. However, the strength of computing infrastructure can often result in a disparity between the ability to innovate new NLP models. In her address at the Association for Computational Linguistics (ACL) 2020 conference, Prof. Kathleen McKeown brought into light the ‘race’ of NLP leaderboards that has been effectuated by the advent of NLP benchmarks (https://acl2020.org/program/keynotes/). She highlighted the value of qualitative analysis and a focus on the linguistic basis that is the foundation of NLP. Her remark ‘bring language back to NLP’ is testimony to the fact that while NLP benchmarks have been instrumental in democratizing NLP, the chase of leaderboards must be accompanied with evaluation of the linguistic or application-oriented implications of new NLP models and techniques.


Review Questions

1. What are the functions of shared tasks?

2. What is the GLUE benchmark? What are typical tasks in the GLUE benchmark?

3. What is the cloze test?

4. What was the core task of the SemEval shared task? What other tasks have been used in competitions at SemEval?

5. What is the iNLP Suite? Describe the set of tasks and languages in the benchmark.

6. What are the two kinds of tasks in BIG-Bench? How are they implemented?

Course Assignment and Project

1. Platforms like Kaggle are often used to administer shared tasks. Search a Kaggle page for a shared task. Highlight different components of the platform for different stages of the shared task process. (An example of a shared task on Kaggle is provided at: https://www.kaggle.com/c/alta-2019-challenge.)

2. Benchmarks are often based on contributions from the research community. Identify a novel NLP task. Write a formal description of the task, create a new dataset for a language other than English, and examine the process of hosting it as a task in a well-known benchmark.


Objective Questions

Fill in the blanks

1. WMT organizes shared tasks in ______.

2. The GLUE benchmark consists of three categories of tasks: single-sentence tasks, ______ tasks, and ______ tasks.

3. SemEval was a shared task competition originally started for ______ tasks.

4. Task prefixes in BIG-Bench are used to create the ______ required for the language model.

5. The method ______ in a programmatic task in BIG-Bench is responsible to receive the input and generate the output.

Select the Most Appropriate Option

6. Which of the following is/are ‘shared’ in ‘shared tasks’?

a.Base models

b.Datasets and tasks

c.Base models and datasets

d.Tasks and base models

7. What is the role of a canary string in benchmark datasets like BIG-Bench?

a.It attaches a higher weight to certain instances in score computation.

b.It identifies training and test instances.

c.It prevents crawlers from including the sentence in the training corpus.

d.It is a unique identifier for the individual who contributed to the test example.

8. Which of the following is true for evaluation set in shared tasks?

a.It must be from the same distribution as the training set.

b.It must contain output labels at the time of release.

c.It must be from a different distribution than the training set.

d.It must not contain output labels at the time of release.

9. Which of the following contains multilingual tasks?

a.BIG-Bench

b.IndicGLUE

c.Both a and b

d.Neither a nor b

10. Which of the following is not included in GLUE?

a.Programmatic tasks

a.Sentiment analysis tasks

c.Natural language inference tasks

d.None of the above
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Answers to Objective Questions



1.machine translation

2.similarities, interference

3.word sense disambiguation

4.prompts

5.eval expression

6.(b)

7.(c)

8.(d)

9.(c)

10.(a)
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	NLP Dissemination








One sometimes finds what one is not looking for.

Alexander Fleming






Learning Objectives

After reading this chapter, you will be able to

• Identify potential publication opportunities in NLP.

• Understand review processes involved in the dissemination of NLP research.

• Adapt research submissions to adhere to review policies.

• List venues that allow the dissemination of NLP research.







In this book, we have looked at natural language processing (NLP) in its three generations from the lens of ambiguity. The previous chapters of this book cover the foundations and frontiers of NLP that will help a student or a practitioner to build an understanding of NLP. Being an ever-evolving field, it is crucial that learners and researchers keep themselves updated with advancements in their areas of work within NLP. 

In this unique chapter, we introduce the readers to some of the forums being used for the dissemination of research advances in NLP. Since the objective of this chapter is to provide an exposition to learn about innovations in NLP, the chapter does not carry exercise questions. This chapter is designed for a reader who wishes to read or publish papers in NLP. The chapter does not provide details of writing papers or making them more likely to be accepted at these venues. 

We discuss the dissemination of advances in NLP in three sections: where it is done, how to read and learn, and how to publish. The first section describes avenues where NLP research is published. This may be done via peer reviews or via pre-print servers. Peer reviewing is a process where independent researchers provide feedback and opinions on papers. Pre-print servers are an alternative to peer reviewing. As the name suggests, a paper may be submitted to a pre-print server so that it gets published without review. The review is solicited later, and the paper may be iteratively updated. The second section of the chapter is designed for students who wish to read and understand these papers, and potentially use them in their work (either as an academic work or as an industry project). The third section is geared towards researchers who wish to publish their work in an NLP venue. As in the case of the second section, this work may have been done as a part of an academic or industry project. A learner or researcher in a commercial (‘industry’) environment is reminded that they must take into account potential commercial and intellectual property restrictions that their organization and other organizations may be required to abide. Similarly, the names of conferences, journals, and websites mentioned in this chapter must be treated as information. The lists are neither prescriptive nor complete. Being a fast-evolving field, research processes are also subject to change. We hope that the chapter will serve as a good starting point for a reader of this book who is hoping to learn from NLP dissemination or contribute to it.


  □  15.1How Is NLP Work Disseminated?



In general, three kinds of forums exist for the dissemination of original research in NLP: pre-print servers, peer-reviewed conferences, and peer-reviewed journals. Pre-print servers are online portals that allow the submission of papers with minimal approval. They allow wide dissemination of research and peer evaluation by the NLP community. A popular pre-print server is arXiv. arXiv is available as a website where authors can submit their papers. Several iconic NLP papers (including the transformative paper on attention) were first made available on arXiv.

In contrast, conferences and journals follow a peer-review process where papers are selected based on reviews by a set of experts and a committee known as the program committee. Conferences are events (that are held either in person or online) where attendees present their work and attend presentations of work. These attendees may be from diverse professional backgrounds: academia and industry, students, engineers, and researchers. Conferences serve as a great venue to communicate your research, be heard, form future collaborations, and explore studentship/employment opportunities. In contrast, journals are publications that do not have an associated event for the communication of research. Journals may be published as print copies as well as online. Journals may publish special issues with papers specific to a certain area, edited by a set of researchers with a reputation in the area. Conferences typically have registration fees associated with attendance and publication. Journals have different models of publishing costs—some of them are free. In NLP, conferences and journals may be considered comparable in their standing although conference rankings and journal rating systems are in place.

In the rest of the chapter, we refer to event-based dissemination and publication-only dissemination collectively as NLP forums for the sake of brevity. However, we also acknowledge that papers on pre-print servers have occasionally reported breakthroughs in NLP research, before being eventually accepted at forums.

15.1.1 Papers

Papers by Length

NLP forums accept papers in multiple types determined by their length. While most conferences enforce a hard page limit with an optional appendix section, journals tend to prescribe an expected number of pages for each type of paper. Papers are typically long or short. For example, a long paper at a conference may be 8–10 pages in length, while a short paper may be 4–5 pages in length. Papers that are accepted are often provided with an extra page to accommodate changes based on the comments by reviewers.

Papers selected as short or long papers may be presented at conferences in two formats: a talk or a poster. A talk may be assigned different time slots (of say, 15 minutes versus 10 minutes) as decided by the conference organizers. This takes into account the number of papers in each track and the length of the paper among other factors. In contrast, poster sessions consist of a large printed poster that the authors stand against. Attendees walk through a hall with multiple posters and ask questions to the authors. Talks and posters have advantages of their own. A talk gives a focused time to each paper while allowing the authors to reach out to a large audience. Posters allow for one-on-one interaction since the attendees can discuss ideas with others in depth. Some conferences also conduct spotlight talks for posters. Each poster presenter in a session is given a short time (say, a minute or two) with exactly one slide that they can present to an audience. This helps the audience to plan which posters they would like to visit in the poster session. The suitability of the format of the presentation may be requested from the authors or reviewers. For example, when reviewing a paper, a reviewer may suggest that it would be suitable to present this paper as a talk (or a poster).

Journals may or may not accept short papers. Conferences typically accept papers of both types: short and long. Pre-print servers typically do not specify a page limit.

Papers by Presentation Type

In addition to long and short papers in the main conference, conferences in NLP also publish papers specific to their presentation type.

One such category of papers is system demonstration papers. Demonstration papers are short papers (of say, two-page length) which describe a prototype or deployment of a system. Demonstration papers are presented at conferences in the form of a demonstration video or a computer that allows attendees to try out the demonstration. An example of a demonstration paper could be an automatic grammar correction tool that allows users to enter a sentence which then gets corrected by the system. Attendees may try this system at a demonstration session. Demonstrations of such papers may be accompanied by posters as in a poster session.

Conferences often also have a category of papers called industry papers. These are papers reporting the deployments and implementations of NLP approaches in commercial applications. These papers may focus on crucial considerations such as scalability, privacy, and fairness of the deployments. Industry papers may be limited in the exposition of details, given privacy restrictions due to intellectual property. The industry papers may be presented as a poster, a demonstration (as in a demonstration paper), or a talk.

Some conferences also accept student workshop papers as a part of the main conference. These papers are typically by a student as a main author and introduce findings from a short-duration project or an upcoming PhD proposal. The papers may contain early experimental results or an analysis of the problem. Student workshop papers provide an early exposition to student researchers.

Some conferences and journals also publish opinion or position papers. These are often written by authors with a reputation in a certain field/sub-field in order to provide a perspective for the road ahead for the field. Recent NLP conferences have also been accepting papers under a ‘theme’ track. Every year, conferences announce a theme which constitutes a special track in which papers are accepted. Themes typically represent a combination of retrospective and forward-looking research with a focus on uncovering insights pertaining to a topic.

For a paper to be accepted as one of the above special types of papers, it is typically submitted in the online portal of the appropriate track. This way, a paper is indicated to be a submission to a particular type of paper at the time of submission.



15.1.2 Key Bodies

Conferences are often organized by research organizations whose goal is to foster communication and dissemination of research.1 We now discuss different organizing bodies that host conferences or publish research.

Conferences

ACL organizes several conferences to report advances in NLP. The collective is currently referred to by the phrase ‘*ACL’. These include the annual meeting of the Association of Computational Linguistics (known as the ACL conference). The regional chapters of ACL also organize North American ACL (known as NAACL), European ACL (EACL), and Asia-Pacific ACL (AACL). Other key conferences include Empirical Methods in Natural Language Processing (EMNLP), Conference of Computational Linguistics (COLING), and so on. Table 15.1 shows a list of key NLP conferences and some details of each. At the time of writing this book, conferences are ranked as A*, A, B, and so on by bodies such as Computing Research and Education (CORE). National bodies exist in different countries such as the Excellence in Research in Australia (ERA) ranking for Australia. These bodies may provide a different ranking for conferences and journals. Many conferences in NLP have competitive acceptance rates. Papers are submitted within tracks that are pre-determined by the conference committees. Examples of tracks are sentiment analysis, semantics, applications, and so on. The ACL 2020 website, for example, states that acceptance rates for each track ranged from 17.9% to 41.7%. Conferences in other areas of AI also encourage the publication of NLP papers. These conferences may have specialized tracks for NLP papers. However, some machine-learning conferences also regularly publish papers where novel machine-learning architectures are evaluated on benchmark textual corpora. For example, the AAAI Conference on Artificial Intelligence organized by the Association for the Advancement of Artificial Intelligence (AAAI) is a renowned conference that publishes papers in several areas of artificial intelligence, where NLP is one of them. Similarly, leading machine learning conferences such as the International Conference on Machine Learning (ICML) and information retrieval conferences such as Special Interest Group on Information Retrieval (SIGIR) have also published path-breaking innovations in NLP.


Table 15.1   Conferences that Publish NLP Research








	
Title


	



	
NLP-Focused Conferences


	
Abbreviation







	
Association for Computational Linguistics


	
ACL





	
Empirical Methods in Natural Language Processing


	
EMNLP





	
International Joint Conference on Natural Language Processing


	
IJCNLP





	
International Conference on Computational Linguistics


	
COLING





	
Annual Conference of the North American Chapter of the Association for Computational Linguistics


	
NAACL






	
Annual Conference of the European Chapter of the Association for Computational Linguistics


	
EACL





	
International Conference on Computational Linguistics and Intelligent Text Processing


	
CICLing





	
Conference on Language Resources and Evaluation


	
LREC





	
Conference on Computational Natural Language Learning


	
CoNLL





	
Conferences with Broader Scope That Have NLP Tracks





	
Conference on Information and Knowledge Management


	
CIKM





	
Annual Conference on Neural Information Processing Systems


	
NeurIPS





	
International Conference on Machine Learning


	
ICML





	
AAAI Conference on Artificial Intelligence


	
AAAI





	
ACM SIGIR Conference on Research and Development in Information Retrieval


	
SIGIR





	
Interspeech (Speech Processing)


	
Interspeech







Conferences that foster communication and collaboration among geographically collocated researchers are also held. ICON is a popular NLP conference organized in India, while ALTA is the equivalent in Australia and New Zealand.

Journals

Journals are online (or print) publications that do not necessarily have an associated event for the presentation of the work. Journals are often associated with metrics such as the impact factor. A journal paper is typically longer than a conference paper because they do not impose a page limit on the papers. As a result, a journal paper can be characterized by a detailed explanation or evaluation of research. Transactions of the Association for Computational Linguistics (TACL) and Computational Linguistics (CL) are two journals endorsed by ACL. Several other commercial publishers have their own journals. Some of the high-impact journals of NLP are listed in Table 15.2.

Table 15.2   Some Popular NLP Journals with Their Broad Focus








	
Journal


	
Broad Focus





	
Transactions of ACL (TACL)


	
NLP/CL





	
ACM Computing Surveys


	
General Computer Science





	
Computational Linguistics


	
NLP/CL





	
Natural Language Engineering (NLE)


	
NLP/CL (Engineering-Driven)





	
ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)


	
NLP/CL in Asian and Low-Resource Setting










In recent times, some journals may provide an option to present papers at conferences affiliated with the governing body of the journal. For example, TACL allows authors of selected papers to optionally present their papers at one of the *ACL conferences.

Special Interest Groups

Special Interest Groups (SIGs) are communities working in focused areas of technology. SIGs may have annual meetings, publications, or other activities. For example, SIGDIAL (Special Interest Group on Discourse and Dialogue) helps collaboration between industry and academic researchers working in dialogue systems and related areas. One of their key activities is holding a conference called SIGDIAL Conference. SIGs have evolved with time, and some known SIGs are SIG for annotation (SIGANN), biomedical NLP (SIGBIOMED), natural language generation (SIGGEN), machine translation (SIGMT), computational semantics (SIGSEM), and so on.





Workshops

Workshops are forums often affiliated with conferences. A conference in NLP may host workshops that are said to be co-located with the conference. Workshops accept papers through portals of their own and may follow a separate peer review process of their own. Workshops are excellent venues to foster the dissemination of research to a focused audience. The power of workshops can be understood from the fact that several workshops have become conferences of their own! Examples of some workshops in NLP are listed inTable 15.3. As seen in the table, some workshops focus on areas of NLP while others on data forms. Workshops can be a good forum to share one’s research with a focused research audience.





Table 15.3   Workshops Corresponding to Different NLP Areas








	
NLP Area


	
Example Workshops





	
Machine translation


	
Workshops on Machine Translation (WMT); Neural Generation and Translation





	
Sentiment analysis


	
Workshops on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA); Abusive Language Online





	
Annotation and stylistics


	
Linguistic Annotation Workshop (LAW); Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LATECH)





	
Data Form-Specific


	
Example Workshops





	
Noisy data


	
Noisy User-generated Text (W-NUT 2019); Workshop on Natural Language Processing for Social Media





	
Medical data


	
Biomedical Natural Language Processing Workshop (BioNLP); Social Media Mining for Health Applications (#SMM4H) Workshop; Sixth Workshop on Computational Linguistics and Clinical Psychology





	
Cross-Disciplinary Areas


	
Example Workshops





	
Language families


	
International Workshop on Computational Linguistics for Uralic Languages; Balto-Slavic Natural Language Processing; Arabic Natural Language Processing





	
Applications


	
Workshops on Innovative Use of NLP for Building Educational Applications; e-Commerce and NLP









Diversity and Inclusion Initiatives

Researchers from certain sub-communities are significantly marginalized due to a variety of social and professional challenges. To nurture researchers belonging to these communities, NLP has witnessed an increase in the number of special sessions to facilitate diversity and inclusion in NLP research.

One such session is a ‘birds of a feather’ (BOAF) session. These sessions bear as themes different tracks of NLP. The objective of a BOAF session is to allow researchers in a specific area of NLP to meet to discuss ideas, seek feedback, and foster collaborations. For example, a BOAF session for sentiment analysis would be a meeting of researchers working in sentiment analysis. These researchers would be from any level of experience in the field. One possible advantage of a BOAF session would be to allow students to seek potential advisors for their projects.

Another kind of special sessions are affinity group socials. The goal of these sessions is to raise awareness about different sub-communities within NLP, not necessarily based on their work in NLP. These socials may include a talk by invited speakers following discussions among participants in smaller groups. For example, ‘Queer in AI’ is an affinity group that organizes socials at most major NLP conferences (and also other AI conferences) to foster collaborations and raise awareness about LGBTQI+-identifying individuals and their issues working in the area. Socials for people belonging to linguistic or national backgrounds (AfricaNLP, LatinX in AI) have also been organized. These socials are expected to help researchers of diverse backgrounds identify role models, form collaborations, and, resultantly, improve their sense of inclusion.


  □  15.2How Can One Learn about NLP Research?



We now describe how learners of NLP can consume innovation in NLP research. We identify two channels. The first channel is the official forums hosted by publishing entities such as conferences and journals. The second channel consists of online portals that allow supplementary content describing ideas in a paper. We describe these channels in the next sub-sections.

15.2.1 Forums from Publishing Entities

Some forums that can be used to access digital versions of papers are:

1. Search engines such as DBLP or Google Scholar can be used to search papers related to NLP.

2. Conference proceedings are uploaded on the websites of the conference where papers may be uploaded in the form of PDFs.

3. arXiv is a popular pre-print server where many NLP papers have been uploaded for early scrutiny. Many NLP conferences now have guidelines about uploading to arXiv since papers on arXiv are not anonymous.

4. ACL Anthology is a website that hosts papers from several conferences on NLP. Similar other anthologies administrated by other computer science bodies such as ACM also host NLP papers.

In addition, most academic publishers have journals that accept papers in NLP, either in an NLP-focused venue or as a general computer science venue.



15.2.2 Supplementary Online Content

Free video streaming portals such as YouTube allow conference presenters and organizers to upload talks of papers and posters. These videos may be useful to learn about papers from authors. In addition, social media channels dedicated to ML/NLP content also contain videos that may be potentially helpful for readers to understand a new paper.

Similarly, textual blogs (on portals such as Medium) that explain or discuss papers can be helpful in understand a new paper. Since blogs may be written by authors of different backgrounds and expertise, they can potentially be helpful to readers of NLP.

To allow users to reproduce papers or run experiments on their local datasets, GitHub repositories are also encouraged to be included with research papers. The repositories point to code that was used to obtain the results in a paper. Websites such as paperswithcode link papers with GitHub repositories. Therefore, a student of NLP who is trying to learn a new method and hoping to get a hands-on experimentation can use such online portals.


  □  15.3How Is NLP Work Published?



Publication of research using peer reviews is not new to any area of scholarly work. Different areas of science and technology have unique processes to publish papers. In this section, we provide an overview of the typical steps of publishing an NLP paper, while highlighting some key differences that may exist between journals and conferences.

15.3.1 Publishing at an Event-Based Forum

An event-based forum may be a conference, a workshop, or similar. A paper is referred to as a ‘submission’ (or ‘submitted paper’) until it is ‘accepted’. When the conference is held, the paper may be published in print and/or digitally on an anthology or the conference website. It is then referred to as a published paper/publication. In this section, we describe an overview of the stakeholders (i.e., the program committee) and the process behind publication in a conference.

Program Committee

The program committee of an event-based forum consists of reviewers, area chairs, and program chairs. To facilitate reviewer expertise, NLP conferences organize papers into research tracks. Some examples of research tracks are semantics, morphology, phonetics, and so on. Each research track has a set of area chairs and reviewers while the program chairs oversee all tracks. Some conferences require area chairs to perform a basic check to ascertain if a paper should be sent for reviews. Reviewers submit textual reviews of the paper. Based on the recommendation scores of the papers, area chairs and senior area chairs may provideadditional reviews of the paper or conduct discussions before arriving at a decision. As mentioned above, the program chairs coordinate and oversee the selection of papers across all tracks in a conference. Different stakeholders in the program committee are shown in Figure 15.1. The detailed functions of each role can be understood via the process outlined in the next section.




[image: ]
Figure 15.1  Stakeholders in a program committee.



Process

The process of publishing a paper in a conference/workshop is shown in Figure 15.2. The process of publishing is undertaken on online conference portals, which may or may not charge a fee to conference organizers. The process of publishing a research at a conference consists of following steps:

[image: ]
Figure 15.2  Example of a process of publication in a conference.


First, the conference publishes a call for papers (CFPs) on their website. It may also be communicated on online e-lists associated with ACL, SIGIR, etc. Websites such as wikicfp may also be used to advertise the call for papers. An example CFP is shown in Figure 15.3. A CFP typically contains the following details:


[image: ]
Figure 15.3  Example of a conference CFP.


1. Scope: A CFP highlights the scope of a conference in terms of types of papers and areas of interest. As described in an earlier sub-section of this chapter, papers may be short or long, or be submitted to the main conference or system or demonstration tracks. Areas of interest list a suggested set of areas (e.g., morphology, machine translation, and so on) in which the conference will accept papers. This list evolves over the years and serves as an indicator of shifting trends in research.

2. Anonymity requirement: To ensure impartiality and fairness of reviews, conferences may specify different anonymity requirements. As shown in Figure 15.4, these may be specified as:
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Figure 15.4  Anonymity policies in conferences.

(a) Double-blind: The reviewers and the authors of the paper do not know the identities of one another. Therefore, the authors must not include any identifying information. This may include overt information such as the names of authors in the author byline, or implicit information such as first-person references to old papers (e.g., ‘we showed in our paper [ Joshi et al., 2020])’, which violates the double-blind policy.




(b) Single-blind: Some conferences require that authors state their names in the author byline of the paper. In such a case, the reviewers know who the authors are, but the authors do not know the identity of the reviewers. In such a case, authors are allowed to refer to old papers in the body of the submission.

3. Stylesheets (that specify the formatting styles or provide LaTeX stylesheets that are used to write papers).

4. Important dates: This includes an optional abstract submission deadline, the submission deadline, date on which reviews are communicated, an optional author response deadline, a date to communicate the decision, and a deadline to submit revised papers. It is advisable to look up the time zone specified in the CFP. In most cases, the time zone is ‘anywhere in the world’.



5. Policy details: CFPs also describe different categories of policies of the conference. These may include multiple submission policy, reproducibility policy, and ethics policy. These policies can be described as follows:

(a)Multiple submission is a situation where a submission is under consideration at multiple forums. The multiple submission policy defines whether a submission to a conference may be submitted in parallel to another, may be available on a pre-print server, and so on. Since pre-print publications are an increasing trend, conferences may prescribe that a submission may not have been uploaded to a pre-print publication after a certain date.

(b)Reproducibility refers to specifications necessary to reproduce the findings of a paper. The reproducibility policy details the expectations of the conference in terms of ways to reproduce the paper. This may involve including a link to the code or uploading the code/dataset wherever possible. It may also involve describing the infrastructure configurations (hyperparameter values, processing requirements, etc.), so that the performance measures reported in the paper can be accurately replicated.

(c)Textual datasets may contain biases that may cause harmful impacts to individuals or communities. Cognizance of the ethical implications of research is, therefore, essential. As a result, ethical policies describe the requirements that a submission needs to meet in terms of ethical considerations. This may involve a self-disclosure statement, approval from an institutional review board, or similar approval.

Authors of papers expecting to publish papers at the conference (hereafter, referred to as ‘authors’) draft papers reporting their research. They must abide by the style and language requirements specified in the CFP. 

Some conferences require authors to submit an abstract by a certain deadline. This allows the program committee to prepare for the reviewing process ahead of time. The abstract, if required, is uploaded on the online portal.

The authors then upload the paper on the online portal on or before the paper deadline. They may be required to include a PDF file along with an editable version (either as a LaTeX file or a doc file), images, and supplementary material. As part of the submission form, the authors may be required to fill out details related to the CFP. They may select the relevant area of the paper and answer questions related to multiple submissions, ethical considerations, and the reproducibility policy of the conference.

Area chairs then assign multiple reviewers to a paper. A typical scenario would be to assign three reviewers to a paper. When assigning reviewers, area chairs may take into account the reviewer load (i.e., the number of papers that each reviewer has to review), the expertise of reviewers (i.e., to ensure that each paper is reviewed by reviewers of different degrees of expertise), and reviewer relevance (i.e., to ensure that the reviewers have a suitable background either evidenced by publications in the area or self-identification). Reviewers are notified about the papers they are expected to review. These notification emails may include guidelines for reviewers. Typical guidelines involve encouraging reviewers to highlight both the strengths and weaknesses of papers.

The reviewers are then expected to submit reviews using a form in the online portal. Review forms are an evolving document and may see several changes over the years. A review form typically consists of three components: a textual component, a compliance component, and a recommendation score component. Some aspects of a typical peer review form are:

1. Textual component: A text area (in a Web-based form) may be used to obtain reviewer comments. However, recent NLP conferences split the textual components over several questions in order to produce a structured review. Potential questions are ‘What is the main contribution of the paper?’, ‘What are the strengths and weaknesses of the paper?’, ‘Do you have any questions for the authors?’ Requiring the reviewers to describe the contribution of the paper in their own words acts as a verification of how the reviewer has understood the paper. Similarly, soliciting questions for the authors may allow a focused discussion between the authors and the reviewers.

2. Compliance component: The compliance component is a list of checklist-style questions that ensure that the submission has followed the policies of the conference.

3. Recommendation score component: The recommendation score component may ask a reviewer to enter scores corresponding to different aspects of the paper such as originality, innovation, meaningful comparison, and so on, followed by an overall recommendation score. Some conferences skip scores along different aspects and only request for a single recommendation score. The reviewer form would define the aspects to allow clarity. Similarly, it has been found to be helpful to give textual descriptions of what each score means, in order to achieve an improved calibration between different reviewers. A review form may also include a confidence score that indicates how confident a reviewer is of their evaluation, based on their familiarity with the area of the paper. Recent *ACL conferences also include excitement and soundness scores. 

The next optional step is to display the reviews to the authors allowing them to respond to the reviewer comments. The author’s response may be limited by the number of words. Authors can respond to reviewer questions, highlight potentially incorrect evaluations by the reviewers, or offer any additional perspective to the paper. Typically, authors are not expected to add significant information to the submission or present results that were obtained after the submission deadline. Parts of the review may be hidden from the authors. For example, some conferences do not display the final recommendation scores to the authors at this stage.

The reviews along with the author’s responses, if any, are then scrutinized by the area chairs. Given the volume of papers in NLP conferences, some recent NLP conferences have senior area chairs and area chairs. Therefore, a paper passes through multiple levels of scrutiny before a decision is made.

Based on the quality of papers, volumes of papers per track, and the possibility of conducting talks and posters for the selected papers, a paper is accepted or rejected. An email stating so is sent to the authors of the paper.

If a paper is accepted, the authors are encouraged to revise the paper based on the reviewer’s comments and questions. The authors may also non-anonymize the paper if the peer review process was expected to be double-blind. The revised paper (with author details) is then uploaded to the conference portal, after which the paper is passed through the publication pipeline. Finally, the paper is published in a digital or print version.

Several key conferences in NLP require that authors of submissions must also act as reviewers. This ensures that the reviewer load is managed while also training new reviewers in the process. Similarly, some conferences in NLP have been announcing outstanding reviewers and area chairs in order to encourage good quality reviews and appreciate reviewer effort. The conferences also regularly publish guidelines for first-time reviewers to ensure that submissions are not disadvantaged due to a reviewer’s limited experience with reviewing.

Open Reviews

Obtaining reviews from a limited set of reviewers has raised concerns about the peer-review process. Since the selection of a paper depends on the expertise and inherent biases of reviewers, open reviewing has become a recent trend in NLP. Submissions to a conference may be published on an online portal (such as OpenReview) which resembles a discussion forum with the submission as the main post and reviews/feedback as responses to it. Reviewers are assigned to a paper as in the case of a typical conference. However, in addition, the paper is publicly available for readers to comment on. This allows the paper to obtain feedback from a wider set of readers. In most cases, the reviewers stay anonymous. This means that a reviewer’s name is not visible in their review. Many NLP conferences have also adopted the rolling review model, where a paper may ‘roll’ into a review cycle until it is recommended for acceptance. Upon acceptance, the authors commit the paper to a conference, that is, accept that the paper be included in a specific conference.


15.3.2 Publishing in Journals

The process of publishing a paper in a journal is shown in Figure 15.5. It is fundamentally similar to a conference. However, some peculiar differences are:


1. The program committee of a journal is typically a set of editors and subeditors who manage the load of handling papers across different research areas. Reviewers are selected from an available pool of reviewers.

2. Since papers do not have a specific deadline in journals, they can be submitted at any time. Papers received until a certain date are processed at periodic intervals. For example, the editors of a journal may look at papers submitted until the 15th of every month.

3. Since journals do not have an event associated with them, a submission to a journal may undergo several iterations of reviews. This means that a reviewer may suggest changes and the authors would then make them or respond to the reviews. Following the changes, the reviewer would review the paper again, and potentially suggest more changes.

4. Since journal papers do not have a page limit, the authors may decide to do additional experimentation based on reviews and include them in the revision of a paper.

5. Some journals provide typesetting and proof-editing services for papers. This may be beneficial for some authors.
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Figure 15.5  Example of a journal paper publication process.



Summary

Being an active sub-field of artificial intelligence with several commercial and social applications, the interest in NLP is characterized by innovations in the field. In this chapter, we introduce the reader to modes of dissemination of advances in NLP. We first introduce different avenues of publication: pre-print servers, conferences, workshops, journals, and so on. We then discuss how a learner of NLP may learn more about the work in NLP via conference proceedings and other supplementary sources such as blogposts or streaming videos. Finally, we present an overview of the process of getting one’s work published in an NLP journal or conference. Learning from NLP dissemination and contributing to new knowledge in NLP will truly take the field forward. Towards this, we hope that this chapter will be insightful to readers, irrespective of how they wish to benefit from the NLP avenues.


 

1Association for Computational Linguistics (ACL) is a premier body of research in NLP (https://www.aclweb.org/portal/).
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