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1: Introduction
Abstract
This is an instruction to concurrency, parallelism, and structured parallelism.

Keywords
Concurrency; Parallelism; Structured Parallelism
Parallel computing [1] [2] is becoming more and more important. Traditional parallelism often existed in distributed computing, since distributed systems are usually autonomous and local computer is single-core and single-processor and timed (Timed computing is serial in nature). Today, due to the progress of hardware, multi-cores, multi-processors, and GPUs make the local computer truly parallel.
Parallel programming language has a relatively long research history. There have been always two ways: one is the structured way, and the other is the graph-based (true concurrent) way. The structured way is often based on the interleaving semantics, such as process algebra CCS. Since the parallelism in interleaving semantics is not a fundamental computational pattern (the parallel operator can be replaced by alternative composition and sequential composition), the parallel operator often does not occur as an explicit operator, such as the mainstream programming languages C, C++, Java, etc.
The graph-based way is also called true concurrency [3] [4] [5]. There also have been some ways to structure the graph [6] [7], but these work only considered the causal relation in the graph, and neglected the confliction and even the communication. And there are also industrial efforts to adopt the graph-based way, such as the workflow description language WSFL. The later workflow description language BPEL adopts both the structured way and the graph-based way. Why does BPEL not adopt the structured way only? It is because that the expressive power of the structured way is limited. Then why does BPEL not adopt the graph-based way only? It is just because that the graph could not be structured at that time and the structured way is the basis on implementing a compiler.
We have done some work on truly concurrent process algebra [8], which proved that truly concurrent process algebra is a generalization of traditional process algebra and had a side effect on the structuring true concurrency.
Now, it is the time to do some work on structured parallel programming under the background of programming language and parallel software engineering. On one side, traditional structured programming got great successes in sequential computation [9] [10]; on the other side, current structured parallel programming focused on parallel patterns (also known as parallel skeletons, templates, archetypes) [11] [12] [13] [14] [15], with comparison to structured sequential programming, the corresponding structured parallel programming with solid foundation still is missing.
In this book, we try to clarify structured parallel programming corresponding to traditional structured sequential programming. This book is organized as follows. In Chapter 2, we introduce the backgrounds of structured and unstructured parallelism. We introduce truly concurrent process algebra APTC in Chapter 3, guarded APTC in Chapter 4, and distributed APTC in Chapter 5. The so-called building blocks based structured parallel programming is introduced in Chapter 6. We introduce the modeling and verification of parallel programming language in Chapter 7, of parallel programming patterns in Chapter 8, and of distributed systems in Chapter 9. Finally, in Appendix A, we introduce a parallel programming language.
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	[1] M. Danelutto, M. Torquati, P. Kilpatrick,  A green perspective on structured parallel programming,   Euromicro International Conference on Parallel, Distributed and Network-Based Processing IEEE.  2015:430–437.
	[2] M. Mccool, J. Reinders, A. Robison,  Structured parallel programming: patterns for efficient computation,   Structured Parallel Programming.  2012:614–627.
	[3] G. Winskel, M. Nielsen,  Models for concurrency,   Samson Abramsky, Dov M. Gabbay, Thomas S.E. Maibaum, eds.  Handbook of Logic in Computer Science, vol. 4.  Oxford, UK: Clarendon Press; 1995.
	[4] M. Nielsen, G.D. Plotkin, G. Winskel,  Petri nets, event structures and domains, part I,   Theoretical Computer Science 1981;13:85–108.
	[5] G. Winskel,  Event structures,   Wilfried Brauer, Wolfgang Reisig, Grzegorz Rozenberg, eds.  Petri Nets: Applications and Relationships to Other Models of Concurrency.   Lecture Notes in Computer Science.  Berlin: Springer; 1985;vol. 255:325–392.
	[6] T. Elrad, N. Francez,  Decomposition of distributed programs into communication-closed layers,   Science of Computer Programming 1982;2(3):155–173.
	[7] W. Yuan, Y. Sun,  “SEQ OF PAR” structured parallel programming,   Chinese Journal of Computers 1997;20:230–237.
	[8] Y. Wang,  Algebraic laws for true concurrency,  Manuscript  arXiv:1611.09035; 2016.
	[9] E.W. Dijkstra,  Go to statement considered harmful,   Communications of the ACM 1968;11(3):147–148.
	[10] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare,  Structured programming,   Programming and Computer Software 1972;18(7):179–185.
	[11] M. Cole,  Why structured parallel programming matters,   European Conference on Parallel Processing.  Berlin, Heidelberg: Springer; 2004.
	[12] L.V. Kale, N. Chrisochoides, J. Kohl, K. Yelick,  Concurrency-based approaches to parallel programming. [Office of scientific and technical information technical reports] 1995.
	[13] R.D. Cosmo, Z. Li, V. Martin,  Parallel programming with the OcamlP3l system, with applications to coupling numerical codes,   https://www.dicosmo.org/Articles/2004-ClementDiCosmoMartinVodickaWeisZheng.pdf; 2003.
	[14] J. Darlington, Y. Guo, H.W. To, J. Yang,  Parallel skeletons for structured composition,   ACM SIGPLAN Notices 1995;30(8):19–28.
	[15] M. McCool, A.D. Robison, J. Reinders,  Structured Parallel Programming: Patterns for Efficient Computation.  Elsevier; 2012.






2: Parallelism and concurrency
Abstract
This is a general material of concurrency, parallelism, and structured parallel programming.

Keywords
True Concurrency; Parallelism; Structured Parallel Programming
In this chapter, we analyze the concepts of parallelism and concurrency, unstructured parallelism, and structured parallelism.
We introduce unstructured parallelism in Section 2.1, structured parallelism in Section 2.2, and the way from unstructured parallelism to structured parallelism in Section 2.3. In Section 2.4, we give the foundation of unstructured and structured parallel computation.
2.1 Unstructured parallelism – true concurrency
True concurrency is usually defined by a graph-like structure [4] [5], such as DAG (Directed Acyclic Graph), Petri net, and event structure. As follows, we give the definition of Prime Event Structure.

Definition 2.1 
Prime event structure
Let Λ be a fixed set of labels, ranged over a,⋯[image: Image]. A (Λ-labeled) prime event structure is a tuple E=〈E,⩽,♯,λ〉[image: Image], where E[image: Image] is a denumerable set of events. Let λ:E→Λ[image: Image] be a labeling function. And ⩽, ♯ are binary relations on E[image: Image], called causality and conflict respectively, such that:
	1.  ⩽ is a partial order and ⌈e⌉={e′∈E|e′⩽e}[image: Image] is finite for all e∈E[image: Image].
	2.  ♯ is irreflexive, symmetric, and hereditary with respect to ⩽, that is, for all e,e′,e″∈E[image: Image], if e♯e′⩽e″[image: Image], then e♯e″[image: Image].



Then, the concepts of consistency and concurrency can be drawn from the above definition:
	1.  e,e′∈E[image: Image] are consistent, denoted as e⌢e′[image: Image], if ¬(e♯e′)[image: Image]. A subset X⊆E[image: Image] is called consistent, if e⌢e′[image: Image] for all e,e′∈X[image: Image].
	2.  e,e′∈E[image: Image] are concurrent, denoted as e∥e′[image: Image], if ¬(e⩽e′)[image: Image], ¬(e′⩽e)[image: Image], and ¬(e♯e′)[image: Image].






In the Prime Event Structure defined true concurrency, we can see that there exist two kinds of unstructured relations: causality and confliction. Fig. 2.1 and Fig. 2.2 illustrates these two kinds of concurrency (for the simplicity, we separate the causal relation and the conflict relation).
[image: Image]Figure 2.1 An example of unstructured parallelism.
[image: Image]Figure 2.2 Another example of unstructured parallelism.
Fig. 2.1 illustrates an example of primitives (atomic actions, events) with causal relations. Note that, primitives, atomic actions, and events are almost the same concepts under different backgrounds of computer science, and we will use them with no differences.
Fig. 2.2 illustrates an example of atomic actions with causal relations and conflict relations. There exists a conflict relation between the second action in the left parallel branch and the second action in the right parallel branch, if the condition b is true, then the second action and its subsequent actions in the left branch can execute, else the second action and its subsequent actions in the right branch will execute.
2.2 Structured parallelism
Comparing to structured programming in sequential computation [9] [10], we can intuitionally add a structured parallelism to the existed three basic programming structures (sequence, choice, and iteration) of structured sequential programming, to form four basic programming structures of structured parallel programming: sequence, choice, iteration, and parallelism. The intuitions and flow charts of the four basic structures are as follows.
The intuition of sequence (;) of two clauses e1;e2[image: Image] is that after the successful execution of e1[image: Image], e2[image: Image] executes. The corresponding flow chat is shown in Fig. 2.3.
[image: Image]Figure 2.3 Sequence structure.
The intuition of choice if (b) then e1[image: Image] else e2[image: Image] is that if the condition b is true, then e1[image: Image] executes, else e2[image: Image] executes. The corresponding flow chat is shown in Fig. 2.4.
[image: Image]Figure 2.4 Choice structure.
The intuition of iteration while (b) do e1[image: Image] is that while the condition b is true, then e1[image: Image] executes many times. The corresponding flow chat is shown in Fig. 2.5.
[image: Image]Figure 2.5 Iteration structure.
The intuition of parallelism (∥) of two clauses e1∥e2[image: Image] is that e1[image: Image] and e2[image: Image] execute simultaneously. The corresponding flow chat is shown in Fig. 2.6.
[image: Image]Figure 2.6 Parallelism structure.
The programming of atomic actions, mixed by the above four structures is called structured parallel programming. We define Structured Parallel Program inductively as follows.

Definition 2.2 
Structured parallel program
Let the set of all primitives denote P[image: Image]. A Structured Parallel Program SPP is inductively defined as follows:
	1.  P⊂SPP[image: Image];
	2.  If e1∈SPP[image: Image] and e2∈SPP[image: Image], then e1;e2∈SPP[image: Image];
	3.  If b is a condition, e1∈SPP[image: Image], and e2∈SPP[image: Image], then if (b) then e1[image: Image] else e2∈SPP[image: Image];
	4.  If b is a condition, e∈SPP[image: Image], then while (b) do e∈SPP[image: Image];
	5.  If e1∈SPP[image: Image] and e2∈SPP[image: Image], then e1∥e2∈SPP[image: Image]. 






2.3 From unstructured parallelism to structured parallelism
The examples in Fig. 2.1 and 2.2 are two kinds of typical unstructured parallelism. In this section, we try to structure these unstructured parallelisms.
Firstly, the unstructured causalities in the same parallel branch can be structured by the famous conclusion that Goto statement is harmful [9] and also the similarly well-known structured (sequential) programming [10]; and for unstructured causalities, we find the example in Fig. 2.1 can not be structured, and the proof is stated in the following conclusions.

Proposition 2.3 
The example in Fig. 2.1 can not be structured.




Proof 
The actions 3 and 6 have the same causal pioneer 1, they should be in different parallel branches. But, the action 6 is the causal pioneer of the action 3 through the action 7, so, they should be in the same parallel branch. These cause contradictions. □



How can we deal this situation? Yes, we can classify the causal relations into two kinds: one is traditional sequential causality, and the other is the communication between different parallel branches, since the causality between parallel branches being communication is reasonable. Fig. 2.7 is the causality-classified one originated from Fig. 2.1. This classification should be clarified during modeling time, that is, the programmer should draw Fig. 2.7 directly, instead of drawing Fig. 2.1 and then transforming it to Fig. 2.7, in the modeling phase. Note that, multi-parties communications can be steadied by a series of two-parties communications without any loss.
[image: Image]Figure 2.7 An example of structuring unstructured parallelism.
Then the causality-classified parallelism can be structured, we show the structuring way of synchronous and asynchronous communications.
For synchronous communication, the program corresponding to Fig. 2.1 can be written as follows:
(1;((2;4)∥3);5)∥(6;7;8)
[image: Image]

 with three unstructured communications sc1,6[image: Image], sc7,3[image: Image], and sc5,8[image: Image].
The above program can be structured and equivalent to the following program:
sc1,6;((2;4)∥sc7,3);sc5,8
[image: Image]


We can see that the above program is structured, though the equivalence of the above two programs is not obvious. We will explain it through an rigorous way in the following chapters.
For asynchronous communication, the program corresponding to Fig. 2.1 can be written as follows:
(1;((2;4)∥3);5)∥(6;7;8)
[image: Image]

 with three unstructured constraints 1⩽6[image: Image], 7⩽3[image: Image], and 5⩽8[image: Image]. Note that, ⩽ is the causal relation.
The above program can be structured and equivalent to the following program:
(1;((2;4)∥if (7⩽3) then 3 else skip);5)∥(if (1⩽6) then 6 else skip;7;if (5⩽8) then 8 else skip).
[image: Image]

 Note that skip is a voidness primitive.
The above conditions, like 1⩽6[image: Image], 7⩽3[image: Image], and 5⩽8[image: Image], are not based on the traditional results of data manipulation. Asynchronous communications are usually implemented by inserting an intermediate data structure, like mailbox or queue, between the two communicating partners, so, the above conditions can be the results of checking the data structure if the data are received in the data structure by the receiver. If the receiver has the ability to be blocked until the data are received, then the above conditions can be removed, and the structured program is the original one:
(1;((2;4)∥3);5)∥(6;7;8)
[image: Image]

 without any constraint.
Then, it is turn to consider the unstructured conflictions between different parallel branches, since it is already proven that conflictions in the same parallel branch can be structured [10], as the choice structure is a kind of structured confliction. Fig. 2.2 illustrates this kind of unstructured conflictions and can be expressed by the following program:
(1;2;3)∥(4;5;6)
[image: Image]

 with an unstructured confliction 2♯5[image: Image], and a condition b, if b is true then the primitive 2 and its successors execute, else the primitive 5 and its successors execute.
Fig. 2.2 can be structured by Fig. 2.8. The structured program corresponding to Fig. 2.8 is:
if (b) then (1;2;3)∥4 else 1∥(4;5;6)
[image: Image]


[image: Image]Figure 2.8 Another example of structuring unstructured parallelism.

2.4 Foundation of unstructured and structured parallelism
There existed several parallel machines [17] [18] to provide the foundation for unstructured and structured parallelism since quite long time ago. Among them, the one (or multi)-tapes multi-heads Turing machine called PTM (Parallel Turing Machine) [17] provides an intuitive foundation. The unstructured causalities and conflicts can be modeled as communications among the tape heads.
Prather [19] built the so-called structured Turing machines with the four basic structures (sequence, choice, iteration, and parallelism), which can realize every partial recursive function by a structured connection of simple machines.
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3: Truly concurrent process algebra
Abstract
This is an introduction to truly concurrent process algebra.

Keywords
True Concurrency; Algebra; Process Algebra
In this chapter, we introduce the preliminaries on truly concurrent process algebra [8], which is based on truly concurrent operational semantics.
APTC eliminates the differences of structures of transition system, event structure, etc., and discusses their behavioral equivalences. It considers that there are two kinds of causality relations: the chronological order modeled by the sequential composition and the causal order between different parallel branches modeled by the communication merge. It also considers that there exist two kinds of confliction relations: the structural confliction modeled by the alternative composition and the conflictions in different parallel branches which should be eliminated. Based on conservative extension, there are four modules in APTC: BATC (Basic Algebra for True Concurrency), APTC (Algebra for Parallelism in True Concurrency), recursion, and abstraction.
3.1 Operational semantics
The semantics of ACP is based on bisimulation/rooted branching bisimulation equivalences, and the modularity of ACP relies on the concept of conservative extension, for the conveniences, we introduce some concepts and conclusions on them.

Definition 3.1 
Bisimulation
A bisimulation relation R is a binary relation on processes such that: (1) if pRq and p→ap′[image: Image] then q→aq′[image: Image] with p′Rq′[image: Image]; (2) if pRq and q→aq′[image: Image] then p→ap′[image: Image] with p′Rq′[image: Image]; (3) if pRq and pP, then qP; (4) if pRq and qP, then pP. Two processes p and q are bisimilar, denoted by p∼HMq[image: Image], if there is a bisimulation relation R such that pRq.




Definition 3.2 
Congruence
Let Σ be a signature. An equivalence relation R on T(Σ)[image: Image] is a congruence if for each f∈Σ[image: Image], if siRti[image: Image] for i∈{1,⋯,ar(f)}[image: Image], then f(s1,⋯,sar(f))Rf(t1,⋯,tar(f))[image: Image].




Definition 3.3 
Branching bisimulation
A branching bisimulation relation R is a binary relation on the collection of processes such that: (1) if pRq and p→ap′[image: Image] then either a≡τ[image: Image] and p′Rq[image: Image] or there is a sequence of (zero or more) τ-transitions q→τ⋯→τq0[image: Image] such that pRq0[image: Image] and q0→aq′[image: Image] with p′Rq′[image: Image]; (2) if pRq and q→aq′[image: Image] then either a≡τ[image: Image] and pRq′[image: Image] or there is a sequence of (zero or more) τ-transitions p→τ⋯→τp0[image: Image] such that p0Rq[image: Image] and p0→ap′[image: Image] with p′Rq′[image: Image]; (3) if pRq and pP, then there is a sequence of (zero or more) τ-transitions q→τ⋯→τq0[image: Image] such that pRq0[image: Image] and q0P[image: Image]; (4) if pRq and qP, then there is a sequence of (zero or more) τ-transitions p→τ⋯→τp0[image: Image] such that p0Rq[image: Image] and p0P[image: Image]. Two processes p and q are branching bisimilar, denoted by p≈bHMq[image: Image], if there is a branching bisimulation relation R such that pRq.




Definition 3.4 
Rooted branching bisimulation
A rooted branching bisimulation relation R is a binary relation on processes such that: (1) if pRq and p→ap′[image: Image] then q→aq′[image: Image] with p′≈bHMq′[image: Image]; (2) if pRq and q→aq′[image: Image] then p→ap′[image: Image] with p′≈bHMq′[image: Image]; (3) if pRq and pP, then qP; (4) if pRq and qP, then pP. Two processes p and q are rooted branching bisimilar, denoted by p≈rbHMq[image: Image], if there is a rooted branching bisimulation relation R such that pRq.




Definition 3.5 
Conservative extension
Let T0[image: Image] and T1[image: Image] be TSSs (transition system specifications) over signatures Σ0[image: Image] and Σ1[image: Image], respectively. The TSS T0⊕T1[image: Image] is a conservative extension of T0[image: Image] if the LTSs (labeled transition systems) generated by T0[image: Image] and T0⊕T1[image: Image] contain exactly the same transitions t→at′[image: Image] and tP with t∈T(Σ0)[image: Image].




Definition 3.6 
Source-dependency
The source-dependent variables in a transition rule of ρ are defined inductively as follows: (1) all variables in the source of ρ are source-dependent; (2) if t→at′[image: Image] is a premise of ρ and all variables in t are source-dependent, then all variables in t′[image: Image] are source-dependent. A transition rule is source-dependent if all its variables are. A TSS is source-dependent if all its rules are.




Definition 3.7 
Freshness
Let T0[image: Image] and T1[image: Image] be TSSs over signatures Σ0[image: Image] and Σ1[image: Image], respectively. A term in T(T0⊕T1)[image: Image] is said to be fresh if it contains a function symbol from Σ1∖Σ0[image: Image]. Similarly, a transition label or predicate symbol in T1[image: Image] is fresh if it does not occur in T0[image: Image].




Theorem 3.8 
Conservative extension
Let T0[image: Image] and T1[image: Image] be TSSs over signatures Σ0[image: Image] and Σ1[image: Image], respectively, where T0[image: Image] and T0⊕T1[image: Image] are positive after reduction. Under the following conditions, T0⊕T1[image: Image] is a conservative extension of T0[image: Image]. (1) T0[image: Image] is source-dependent. (2) For each ρ∈T1[image: Image], either the source of ρ is fresh, or ρ has a premise of the form t→at′[image: Image] or tP, where t∈T(Σ0)[image: Image], all variables in t occur in the source of ρ and t′[image: Image], a or P is fresh.



3.2 Proof techniques
In this subsection, we introduce the concepts and conclusions about elimination, which is very important in the proof of completeness theorem.

Definition 3.9 
Elimination property
Let a process algebra with a defined set of basic terms as a subset of the set of closed terms over the process algebra. Then the process algebra has the elimination to basic terms property if for every closed term s of the algebra, there exists a basic term t of the algebra such that the algebra ⊢s=t[image: Image].




Definition 3.10 
Strongly normalizing
A term s0[image: Image] is called strongly normalizing if does not have an infinite series of reductions beginning in s0[image: Image].




Definition 3.11 
We write s>lpot[image: Image] if s→+t[image: Image] where →+[image: Image] is the transitive closure of the reduction relation defined by the transition rules of an algebra.




Theorem 3.12 
Strong normalization
Let a term rewriting system (TRS) with finitely many rewriting rules and let > be a well-founded ordering on the signature of the corresponding algebra. If s>lpot[image: Image] for each rewriting rule s→t[image: Image] in the TRS, then the term rewriting system is strongly normalizing. 



3.3 Basic algebra for true concurrency
BATC has sequential composition ⋅ and alternative composition + to capture the chronological ordered causality and the structural confliction. The constants are ranged over A, the set of atomic actions. The algebraic laws on ⋅ and + are sound and complete modulo truly concurrent bisimulation equivalences (including pomset bisimulation, step bisimulation, hp-bisimulation, and hhp-bisimulation).

Definition 3.13 
Prime event structure with silent event
Let Λ be a fixed set of labels, ranged over a,b,c,⋯[image: Image] and τ. A (Λ-labeled) prime event structure with silent event τ is a tuple E=〈E,⩽,♯,λ〉[image: Image], where E[image: Image] is a denumerable set of events, including the silent event τ. Let Eˆ=E﹨{τ}[image: Image], exactly excluding τ, it is obvious that τ⁎ˆ=ϵ[image: Image], where ϵ is the empty event. Let λ:E→Λ[image: Image] be a labeling function and let λ(τ)=τ[image: Image]. And ⩽, ♯ are binary relations on E[image: Image], called causality and conflict respectively, such that:
	1.  ⩽ is a partial order and ⌈e⌉={e′∈E|e′⩽e}[image: Image] is finite for all e∈E[image: Image]. It is easy to see that e⩽τ⁎⩽e′=e⩽τ⩽⋯⩽τ⩽e′[image: Image], then e⩽e′[image: Image].
	2.  ♯ is irreflexive, symmetric and hereditary with respect to ⩽, that is, for all e,e′,e″∈E[image: Image], if e♯e′⩽e″[image: Image], then e♯e″[image: Image].



Then, the concepts of consistency and concurrency can be drawn from the above definition:
	1.  e,e′∈E[image: Image] are consistent, denoted as e⌢e′[image: Image], if ¬(e♯e′)[image: Image]. A subset X⊆E[image: Image] is called consistent, if e⌢e′[image: Image] for all e,e′∈X[image: Image].
	2.  e,e′∈E[image: Image] are concurrent, denoted as e∥e′[image: Image], if ¬(e⩽e′)[image: Image], ¬(e′⩽e)[image: Image], and ¬(e♯e′)[image: Image].







Definition 3.14 
Configuration
Let E[image: Image] be a PES. A (finite) configuration in E[image: Image] is a (finite) consistent subset of events C⊆E[image: Image], closed with respect to causality (i.e. ⌈C⌉=C[image: Image]). The set of finite configurations of E[image: Image] is denoted by C(E)[image: Image]. We let Cˆ=C﹨{τ}[image: Image].



A consistent subset of X⊆E[image: Image] of events can be seen as a pomset. Given X,Y⊆E[image: Image], Xˆ∼Yˆ[image: Image] if Xˆ[image: Image] and Yˆ[image: Image] are isomorphic as pomsets. In the following of the paper, we say C1∼C2[image: Image], we mean C1ˆ∼C2ˆ[image: Image].

Definition 3.15 
Pomset transitions and step
Let E[image: Image] be a PES and let C∈C(E)[image: Image], and ∅≠X⊆E[image: Image], if C∩X=∅[image: Image] and C′=C∪X∈C(E)[image: Image], then C→XC′[image: Image] is called a pomset transition from C to C′[image: Image]. When the events in X are pairwise concurrent, we say that C→XC′[image: Image] is a step.




Definition 3.16 
Pomset, step bisimulation
Let E1[image: Image], E2[image: Image] be PESs. A pomset bisimulation is a relation R⊆C(E1)×C(E2)[image: Image], such that if (C1,C2)∈R[image: Image], and C1→X1C1′[image: Image] then C2→X2C2′[image: Image], with X1⊆E1[image: Image], X2⊆E2[image: Image], X1∼X2[image: Image] and (C1′,C2′)∈R[image: Image], and vice-versa. We say that E1[image: Image], E2[image: Image] are pomset bisimilar, written E1∼pE2[image: Image], if there exists a pomset bisimulation R, such that (∅,∅)∈R[image: Image]. By replacing pomset transitions with steps, we can get the definition of step bisimulation. When PESs E1[image: Image] and E2[image: Image] are step bisimilar, we write E1∼sE2[image: Image]. 




Definition 3.17 
Posetal product
Given two PESs E1[image: Image], E2[image: Image], the posetal product of their configurations, denoted C(E1)×‾C(E2)[image: Image], is defined as
{(C1,f,C2)|C1∈C(E1),C2∈C(E2),f:C1→C2isomorphism}.
[image: Image]


A subset R⊆C(E1)×‾C(E2)[image: Image] is called a posetal relation. We say that R is downward closed when for any (C1,f,C2),(C1′,f′,C2′)∈C(E1)×‾C(E2)[image: Image], if (C1,f,C2)⊆(C1′,f′,C2′)[image: Image] pointwise and (C1′,f′,C2′)∈R[image: Image], then (C1,f,C2)∈R[image: Image].
For f:X1→X2[image: Image], we define f[x1↦x2]:X1∪{x1}→X2∪{x2}[image: Image], z∈X1∪{x1}[image: Image], (1) f[x1↦x2](z)=x2[image: Image], if z=x1[image: Image]; (2) f[x1↦x2](z)=f(z)[image: Image], otherwise. Where X1⊆E1[image: Image], X2⊆E2[image: Image], x1∈E1[image: Image], x2∈E2[image: Image].




Definition 3.18 
(Hereditary) history-preserving bisimulation
A history-preserving (hp-)bisimulation is a posetal relation R⊆C(E1)×‾C(E2)[image: Image] such that if (C1,f,C2)∈R[image: Image], and C1→e1C1′[image: Image], then C2→e2C2′[image: Image], with (C1′,f[e1↦e2],C2′)∈R[image: Image], and vice-versa. E1,E2[image: Image] are history-preserving (hp-)bisimilar and are written E1∼hpE2[image: Image] if there exists a hp-bisimulation R such that (∅,∅,∅)∈R[image: Image].
A hereditary history-preserving (hhp-)bisimulation is a downward closed hp-bisimulation. E1,E2[image: Image] are hereditary history-preserving (hhp-)bisimilar and are written E1∼hhpE2[image: Image].



In the following, let e1,e2,e1′,e2′∈E[image: Image], and let variables x,y,z[image: Image] range over the set of terms for true concurrency, p,q,s[image: Image] range over the set of closed terms. The set of axioms of BATC consists of the laws given in Table 3.1.
Table 3.1
Axioms of BATC.	No.	Axiom
	A1	x + y = y + x
	A2	(x + y)+z = x + (y + z)
	A3	x + x = x
	A4	(x + y)⋅z = x ⋅ z + y ⋅ z
	A5	(x ⋅ y)⋅z = x ⋅ (y ⋅ z)


We give the operational transition rules of operators ⋅ and + as Table 3.2 shows. And the predicate →e√[image: Image] represents successful termination after execution of the event e.
Table 3.2
Transition rules of BATC.	e→e√[image: Image]
	
	x→e√x+y→e√x→ex′x+y→ex′y→e√x+y→e√y→ey′x+y→ey′[image: Image]
	
	x→e√x⋅y→eyx→ex′x⋅y→ex′⋅y[image: Image]



Theorem 3.19 
Soundness of BATC modulo truly concurrent bisimulation equivalences
The axiomatization of BATC is sound modulo truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], and ∼hhp[image: Image]. That is,
	1.  let x and y be BATC terms. If BATC ⊢x=y[image: Image], then x∼py[image: Image];
	2.  let x and y be BATC terms. If BATC ⊢x=y[image: Image], then x∼sy[image: Image];
	3.  let x and y be BATC terms. If BATC ⊢x=y[image: Image], then x∼hpy[image: Image];
	4.  let x and y be BATC terms. If BATC ⊢x=y[image: Image], then x∼hhpy[image: Image].







Theorem 3.20 
Completeness of BATC modulo truly concurrent bisimulation equivalences
The axiomatization of BATC is complete modulo truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], and ∼hhp[image: Image]. That is,
	1.  let p and q be closed BATC terms, if p∼pq[image: Image] then p=q[image: Image];
	2.  let p and q be closed BATC terms, if p∼sq[image: Image] then p=q[image: Image];
	3.  let p and q be closed BATC terms, if p∼hpq[image: Image] then p=q[image: Image];
	4.  let p and q be closed BATC terms, if p∼hhpq[image: Image] then p=q[image: Image].






3.4 Algebra for parallelism in true concurrency
APTC uses the whole parallel operator ≬, the auxiliary binary parallel ∥ to model parallelism, and the communication merge | to model communications among different parallel branches, and also the unary conflict elimination operator Θ and the binary unless operator ◃ to eliminate conflictions among different parallel branches. Since a communication may be blocked, a new constant called deadlock δ is extended to A, and also a new unary encapsulation operator ∂H[image: Image] is introduced to eliminate δ, which may exist in the processes. The algebraic laws on these operators are also sound and complete modulo truly concurrent bisimulation equivalences (including pomset bisimulation, step bisimulation, hp-bisimulation, but not hhp-bisimulation). Note that, the parallel operator ∥ in a process cannot be eliminated by deductions on the process using axioms of APTC, but other operators can eventually be steadied by ⋅, +, and ∥, this is also why truly concurrent bisimulations are called an truly concurrent semantics.
We design the axioms of APTC in Table 3.3, including algebraic laws of parallel operator ∥, communication operator |, conflict elimination operator Θ and unless operator ◃, encapsulation operator ∂H[image: Image], the deadlock constant δ, and also the whole parallel operator ≬.
Table 3.3
Axioms of APTC.	No.	Axiom
	A6	x + δ = x
	A7	δ ⋅ x = δ
	P1	x≬y = x∥y + x|y
	P2	x∥y = y∥x
	P3	(x∥y)∥z = x∥(y∥z)
	P4	e1∥(e2 ⋅ y)=(e1∥e2)⋅y
	P5	(e1 ⋅ x)∥e2 = (e1∥e2)⋅x
	P6	(e1 ⋅ x)∥(e2 ⋅ y)=(e1∥e2)⋅(x≬y)
	P7	(x + y)∥z = (x∥z)+(y∥z)
	P8	x∥(y + z)=(x∥y)+(x∥z)
	P9	δ∥x = δ
	P10	x∥δ = δ
	C11	e1|e2 = γ(e1,e2)
	C12	e1|(e2 ⋅ y)=γ(e1,e2)⋅y
	C13	(e1 ⋅ x)|e2 = γ(e1,e2)⋅x
	C14	(e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)
	C15	(x + y)|z = (x|z)+(y|z)
	C16	x|(y + z)=(x|y)+(x|z)
	C17	δ|x = δ
	C18	x|δ = δ
	CE19	Θ(e)=e
	CE20	Θ(δ)=δ
	CE21	Θ(x + y)=Θ(x)+Θ(y)
	CE22	Θ(x ⋅ y)=Θ(x)⋅Θ(y)
	CE23	Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)
	CE24	Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)
	U25	(♯(e1,e2))e1◃e2 = τ
	U26	(♯(e1,e2),e2 ⩽ e3)e1◃e3 = τ
	U27	(♯(e1,e2),e2 ⩽ e3)e3◃e1 = τ
	U28	e◃δ = e
	U29	δ◃e = δ
	U30	(x + y)◃z = (x◃z)+(y◃z)
	U31	(x ⋅ y)◃z = (x◃z)⋅(y◃z)
	U32	(x∥y)◃z = (x◃z)∥(y◃z)
	U33	(x|y)◃z = (x◃z)|(y◃z)
	U34	x◃(y + z)=(x◃y)◃z
	U35	x◃(y ⋅ z)=(x◃y)◃z
	U36	x◃(y∥z)=(x◃y)◃z
	U37	x◃(y|z)=(x◃y)◃z
	D1	e ∉ H∂H(e)=e
	D2	e ∈ H∂H(e)=δ
	D3	∂H(δ)=δ
	D4	∂H(x + y)=∂H(x)+∂H(y)
	D5	∂H(x ⋅ y)=∂H(x)⋅∂H(y)
	D6	∂H(x∥y)=∂H(x)∥∂H(y)


We give the transition rules of APTC in Table 3.4, it is suitable for all truly concurrent behavioral equivalence, including pomset bisimulation, step bisimulation, hp-bisimulation, and hhp-bisimulation.
Table 3.4
Transition rules of APTC.	x→e1√y→e2√x∥y→{e1,e2}√x→e1x′y→e2√x∥y→{e1,e2}x′[image: Image]
	
	x→e1√y→e2y′x∥y→{e1,e2}y′x→e1x′y→e2y′x∥y→{e1,e2}x′≬y′[image: Image]
	
	x→e1√y→e2√x|y→γ(e1,e2)√x→e1x′y→e2√x|y→γ(e1,e2)x′[image: Image]
	
	x→e1√y→e2y′x|y→γ(e1,e2)y′x→e1x′y→e2y′x|y→γ(e1,e2)x′≬y′[image: Image]
	
	x→e1√(♯(e1,e2))Θ(x)→e1√x→e2√(♯(e1,e2))Θ(x)→e2√[image: Image]
	
	x→e1x′(♯(e1,e2))Θ(x)→e1Θ(x′)x→e2x′(♯(e1,e2))Θ(x)→e2Θ(x′)[image: Image]
	
	x→e1√y↛e2(♯(e1,e2))x◃y→τ√x→e1x′y↛e2(♯(e1,e2))x◃y→τx′[image: Image]
	
	x→e1√y↛e3(♯(e1,e2),e2⩽e3)x◃y→τ√x→e1x′y↛e3(♯(e1,e2),e2⩽e3)x◃y→τx′[image: Image]
	
	x→e3√y↛e2(♯(e1,e2),e1⩽e3)x◃y→τ√x→e3x′y↛e2(♯(e1,e2),e1⩽e3)x◃y→τx′[image: Image]
	
	x→e√∂H(x)→e√(e∉H)x→ex′∂H(x)→e∂H(x′)(e∉H)[image: Image]



Theorem 3.21 
Soundness of APTC modulo truly concurrent bisimulation equivalences
The axiomatization of APTC is sound modulo truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], and ∼hp[image: Image]. That is,
	1.  let x and y be APTC terms. If APTC ⊢x=y[image: Image], then x∼py[image: Image];
	2.  let x and y be APTC terms. If APTC ⊢x=y[image: Image], then x∼sy[image: Image];
	3.  let x and y be APTC terms. If APTC ⊢x=y[image: Image], then x∼hpy[image: Image].







Theorem 3.22 
Completeness of APTC modulo truly concurrent bisimulation equivalences
The axiomatization of APTC is complete modulo truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], and ∼hp[image: Image]. That is,
	1.  let p and q be closed APTC terms, if p∼pq[image: Image] then p=q[image: Image];
	2.  let p and q be closed APTC terms, if p∼sq[image: Image] then p=q[image: Image];
	3.  let p and q be closed APTC terms, if p∼hpq[image: Image] then p=q[image: Image].






3.5 Recursion
To model infinite computation, recursion is introduced into APTC. In order to obtain a sound and complete theory, guarded recursion and linear recursion are needed. The corresponding axioms are RSP (Recursive Specification Principle) and RDP (Recursive Definition Principle), RDP says the solutions of a recursive specification can represent the behaviors of the specification, while RSP says that a guarded recursive specification has only one solution, they are sound with respect to APTC with guarded recursion modulo several truly concurrent bisimulation equivalences (including pomset bisimulation, step bisimulation, and hp-bisimulation), and they are complete with respect to APTC with linear recursion modulo several truly concurrent bisimulation equivalences (including pomset bisimulation, step bisimulation, and hp-bisimulation). In the following, E,F,G[image: Image] are recursion specifications, X,Y,Z[image: Image] are recursive variables.
For a guarded recursive specifications E with the form
X1=t1(X1,⋯,Xn)⋯Xn=tn(X1,⋯,Xn)
[image: Image]

 the behavior of the solution 〈Xi|E〉[image: Image] for the recursion variable Xi[image: Image] in E, where i∈{1,⋯,n}[image: Image], is exactly the behavior of their right-hand sides ti(X1,⋯,Xn)[image: Image], which is captured by the two transition rules in Table 3.5.
Table 3.5
Transition rules of guarded recursion.	ti(〈X1|E〉,⋯,〈Xn|E〉)→{e1,⋯,ek}√〈Xi|E〉→{e1,⋯,ek}√[image: Image]
	
	ti(〈X1|E〉,⋯,〈Xn|E〉)→{e1,⋯,ek}y〈Xi|E〉→{e1,⋯,ek}y[image: Image]


The RDP (Recursive Definition Principle) and the RSP (Recursive Specification Principle) are shown in Table 3.6.
Table 3.6
Recursive definition and specification principle.	No.	Axiom
	RDP	〈Xi|E〉 = ti(〈X1|E,⋯,Xn|E〉)(i ∈ {1,⋯,n})
	RSP	if yi = ti(y1,⋯,yn) for i ∈ {1,⋯,n}, then yi = 〈Xi|E〉(i ∈ {1,⋯,n})



Theorem 3.23 
Soundness of APTC[image: Image] with guarded recursion
Let x and y be APTC[image: Image] with guarded recursion terms. If APTCwith guarded recursion⊢x=y[image: Image], then
	1.  x∼sy[image: Image];
	2.  x∼py[image: Image];
	3.  x∼hpy[image: Image].







Theorem 3.24 
Completeness of APTC[image: Image] with linear recursion
Let p and q be closed APTC[image: Image] with linear recursion terms, then,
	1.  if p∼sq[image: Image] then p=q[image: Image];
	2.  if p∼pq[image: Image] then p=q[image: Image];
	3.  if p∼hpq[image: Image] then p=q[image: Image].






3.6 Abstraction
To abstract away internal implementations from the external behaviors, a new constant τ called silent step is added to A, and also a new unary abstraction operator τI[image: Image] is used to rename actions in I into τ (the resulted APTC with silent step and abstraction operator is called APTCτ[image: Image]). The recursive specification is adapted to guarded linear recursion to prevent infinite τ-loops specifically. The axioms of τ and τI[image: Image] are sound modulo rooted branching truly concurrent bisimulation equivalences (several kinds of weakly truly concurrent bisimulation equivalences, including rooted branching pomset bisimulation, rooted branching step bisimulation, and rooted branching hp-bisimulation). To eliminate infinite τ-loops caused by τI[image: Image] and obtain the completeness, CFAR (Cluster Fair Abstraction Rule) is used to prevent infinite τ-loops in a constructible way.

Definition 3.25 
Weak pomset transitions and weak step
Let E[image: Image] be a PES and let C∈C(E)[image: Image], and ∅≠X⊆Eˆ[image: Image], if C∩X=∅[image: Image] and C′ˆ=Cˆ∪X∈C(E)[image: Image], then C⇒XC′[image: Image] is called a weak pomset transition from C to C′[image: Image], where we define ⇒e≜→τ⁎→e→τ⁎[image: Image]. And ⇒X≜→τ⁎→e→τ⁎[image: Image], for every e∈X[image: Image]. When the events in X are pairwise concurrent, we say that C⇒XC′[image: Image] is a weak step.




Definition 3.26 
Branching pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A branching pomset bisimulation is a relation R⊆C(E1)×C(E2)[image: Image], such that:
	1.  if (C1,C2)∈R[image: Image], and C1→XC1′[image: Image] then	•  either X≡τ⁎[image: Image], and (C1′,C2)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image], such that (C1,C20)∈R[image: Image] and C20⇒XC2′[image: Image] with (C1′,C2′)∈R[image: Image];


	2.  if (C1,C2)∈R[image: Image], and C2→XC2′[image: Image] then	•  either X≡τ⁎[image: Image], and (C1,C2′)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image], such that (C10,C2)∈R[image: Image] and C10⇒XC1′[image: Image] with (C1′,C2′)∈R[image: Image];


	3.  if (C1,C2)∈R[image: Image] and C1↓[image: Image], then there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image] such that (C1,C20)∈R[image: Image] and C20↓[image: Image];
	4.  if (C1,C2)∈R[image: Image] and C2↓[image: Image], then there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image] such that (C10,C2)∈R[image: Image] and C10↓[image: Image]. 



We say that E1[image: Image], E2[image: Image] are branching pomset bisimilar, written E1≈bpE2[image: Image], if there exists a branching pomset bisimulation R, such that (∅,∅)∈R[image: Image].
By replacing pomset transitions with steps, we can get the definition of branching step bisimulation. When PESs E1[image: Image] and E2[image: Image] are branching step bisimilar, we write E1≈bsE2[image: Image].




Definition 3.27 
Rooted branching pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A branching pomset bisimulation is a relation R⊆C(E1)×C(E2)[image: Image], such that:
	1.  if (C1,C2)∈R[image: Image], and C1→XC1′[image: Image] then C2→XC2′[image: Image] with C1′≈bpC2′[image: Image];
	2.  if (C1,C2)∈R[image: Image], and C2→XC2′[image: Image] then C1→XC1′[image: Image] with C1′≈bpC2′[image: Image];
	3.  if (C1,C2)∈R[image: Image] and C1↓[image: Image], then C2↓[image: Image];
	4.  if (C1,C2)∈R[image: Image] and C2↓[image: Image], then C1↓[image: Image].



We say that E1[image: Image], E2[image: Image] are rooted branching pomset bisimilar, written E1≈rbpE2[image: Image], if there exists a rooted branching pomset bisimulation R, such that (∅,∅)∈R[image: Image].
By replacing pomset transitions with steps, we can get the definition of rooted branching step bisimulation. When PESs E1[image: Image] and E2[image: Image] are rooted branching step bisimilar, we write E1≈rbsE2[image: Image].




Definition 3.28 
Branching (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A branching history-preserving (hp-)bisimulation is a weakly posetal relation R⊆C(E1)×‾C(E2)[image: Image] such that:
	1.  if (C1,f,C2)∈R[image: Image], and C1→e1C1′[image: Image] then	•  either e1≡τ[image: Image], and (C1′,f[e1↦τ],C2)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image], such that (C1,f,C20)∈R[image: Image] and C20→e2C2′[image: Image] with (C1′,f[e1↦e2],C2′)∈R[image: Image];


	2.  if (C1,f,C2)∈R[image: Image], and C2→e2C2′[image: Image] then	•  either X≡τ[image: Image], and (C1,f[e2↦τ],C2′)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image], such that (C10,f,C2)∈R[image: Image] and C10→e1C1′[image: Image] with (C1′,f[e2↦e1],C2′)∈R[image: Image];


	3.  if (C1,f,C2)∈R[image: Image] and C1↓[image: Image], then there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image] such that (C1,f,C20)∈R[image: Image] and C20↓[image: Image];
	4.  if (C1,f,C2)∈R[image: Image] and C2↓[image: Image], then there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image] such that (C10,f,C2)∈R[image: Image] and C10↓[image: Image].



E1,E2[image: Image] are branching history-preserving (hp-)bisimilar and are written E1≈bhpE2[image: Image] if there exists a branching hp-bisimulation R such that (∅,∅,∅)∈R[image: Image].
A branching hereditary history-preserving (hhp-)bisimulation is a downward closed branching hhp-bisimulation. E1,E2[image: Image] are branching hereditary history-preserving (hhp-)bisimilar and are written E1≈bhhpE2[image: Image].




Definition 3.29 
Rooted branching (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A rooted branching history-preserving (hp-)bisimulation is a weakly posetal relation R⊆C(E1)×‾C(E2)[image: Image] such that:
	1.  if (C1,f,C2)∈R[image: Image], and C1→e1C1′[image: Image], then C2→e2C2′[image: Image] with C1′≈bhpC2′[image: Image];
	2.  if (C1,f,C2)∈R[image: Image], and C2→e2C1′[image: Image], then C1→e1C2′[image: Image] with C1′≈bhpC2′[image: Image];
	3.  if (C1,f,C2)∈R[image: Image] and C1↓[image: Image], then C2↓[image: Image];
	4.  if (C1,f,C2)∈R[image: Image] and C2↓[image: Image], then C1↓[image: Image].



E1,E2[image: Image] are rooted branching history-preserving (hp-)bisimilar and are written E1≈rbhpE2[image: Image] if there exists rooted a branching hp-bisimulation R such that (∅,∅,∅)∈R[image: Image].
A rooted branching hereditary history-preserving (hhp-)bisimulation is a downward closed rooted branching hhp-bisimulation. E1,E2[image: Image] are rooted branching hereditary history-preserving (hhp-)bisimilar and are written E1≈rbhhpE2[image: Image].



The axioms and transition rules of APTCτ[image: Image] are shown in Table 3.7 and Table 3.8.
Table 3.7
Axioms of APTCτ[image: Image].	No.	Axiom
	B1	e ⋅ τ = e
	B2	e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)
	B3	x∥τ = x
	TI1	e ∉ IτI(e)=e
	TI2	e ∈ IτI(e)=τ
	TI3	τI(δ)=δ
	TI4	τI(x + y)=τI(x)+τI(y)
	TI5	τI(x ⋅ y)=τI(x)⋅τI(y)
	TI6	τI(x∥y)=τI(x)∥τI(y)
	CFAR	If X is in a cluster for I with exits
	{(a11∥⋯∥a1i)Y1,⋯,(am1∥⋯∥ami)Ym,b11∥⋯∥b1j,⋯,bn1∥⋯∥bnj},
	then τ ⋅ τI(〈X|E〉)=
	τ ⋅ τI((a11∥⋯∥a1i)〈Y1|E〉 + ⋯ + (am1∥⋯∥ami)〈Ym|E〉 + b11∥⋯∥b1j + ⋯ + bn1∥⋯∥bnj)


[image: Image]


Table 3.8
Transition rule of APTCτ[image: Image].	τ→τ√[image: Image]
	
	x→e√τI(x)→e√e∉Ix→ex′τI(x)→eτI(x′)e∉I[image: Image]
	
	x→e√τI(x)→τ√e∈Ix→ex′τI(x)→ττI(x′)e∈I[image: Image]



Theorem 3.30 
Soundness of APTCτ[image: Image] with guarded linear recursion
Let x and y be APTCτ[image: Image] with guarded linear recursion terms. If APTCτ[image: Image] with guarded linear recursion ⊢x=y[image: Image], then
	1.  x≈rbsy[image: Image];
	2.  x≈rbpy[image: Image];
	3.  x≈rbhpy[image: Image]. 







Theorem 3.31 
Soundness of CFAR[image: Image]
CFAR[image: Image] is sound modulo rooted branching truly concurrent bisimulation equivalences ≈rbs[image: Image], ≈rbp[image: Image], and ≈rbhp[image: Image].




Theorem 3.32 
Completeness of APTCτ[image: Image] with guarded linear recursion and CFAR[image: Image]
Let p and q be closed APTCτ[image: Image] with guarded linear recursion and CFAR[image: Image] terms, then,
	1.  if p≈rbsq[image: Image] then p=q[image: Image];
	2.  if p≈rbpq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpq[image: Image] then p=q[image: Image].






3.7 Placeholder
We introduce a constant called shadow constant Ⓢ to act for the placeholder that we ever used to deal entanglement in quantum process algebra. The transition rule of the shadow constant Ⓢ is shown in Table 3.9. The rule says that Ⓢ can terminate successfully without executing any action.
Table 3.9
Transition rule of the shadow constant.	Ⓢ→√[image: Image]


We need to adjust the definition of guarded linear recursive specification to the following one.

Definition 3.33 
Guarded linear recursive specification
A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions 〈X|E〉→τ〈X′|E〉→τ〈X″|E〉→τ⋯[image: Image], and there does not exist an infinite sequence of Ⓢ-transitions 〈X|E〉→〈X′|E〉→〈X″|E〉→⋯[image: Image].




Theorem 3.34 
Conservativity of APTC[image: Image] with respect to the shadow constant
APTCτ[image: Image] with guarded linear recursion and shadow constant is a conservative extension of APTCτ[image: Image] with guarded linear recursion.



We design the axioms for the shadow constant Ⓢ in Table 3.10. And for Ⓢie[image: Image], we add superscript e to denote Ⓢ is belonging to e and subscript i to denote that it is the i-th shadow of e. And we extend the set E[image: Image] to the set E∪{τ}∪{δ}∪{Ⓢie}[image: Image].
Table 3.10
Axioms of shadow constant.	No.	Axiom
	SC1	Ⓢ ⋅ x = x
	SC2	x ⋅ Ⓢ = x
	SC3	Ⓢe∥e = e
	SC4	e∥(Ⓢe ⋅ y)=e ⋅ y
	SC5	Ⓢe∥(e ⋅ y)=e ⋅ y
	SC6	(e ⋅ x)∥Ⓢe = e ⋅ x
	SC7	(Ⓢe ⋅ x)∥e = e ⋅ x
	SC8	(e ⋅ x)∥(Ⓢe ⋅ y)=e ⋅ (x≬y)
	SC9	(Ⓢe ⋅ x)∥(e ⋅ y)=e ⋅ (x≬y)


The mismatch of action and its shadows in parallelism will cause deadlock, that is, e∥Ⓢe′=δ[image: Image] with e≠e′[image: Image]. We must make all shadows Ⓢie[image: Image] are distinct, to ensure f in hp-bisimulation is an isomorphism.

Theorem 3.35 
Soundness of the shadow constant
Let x and y be APTCτ[image: Image] with guarded linear recursion and the shadow constant terms. If APTCτ[image: Image] with guarded linear recursion and the shadow constant ⊢x=y[image: Image], then
	1.  x≈rbsy[image: Image];
	2.  x≈rbpy[image: Image];
	3.  x≈rbhpy[image: Image].







Theorem 3.36 
Completeness of the shadow constant
Let p and q be closed APTCτ[image: Image] with guarded linear recursion and CFAR[image: Image] and the shadow constant terms, then,
	1.  if p≈rbsq[image: Image] then p=q[image: Image];
	2.  if p≈rbpq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpq[image: Image] then p=q[image: Image].






With the shadow constant, we have
∂H((a⋅rb)≬wb)=∂H((a⋅rb)≬(Ⓢ1a⋅wb))=a⋅cb
[image: Image]

 with H={rb,wb}[image: Image] and γ(rb,wb)≜cb[image: Image].
And we see the following example:
a≬b=a∥b+a|b=a∥b+a∥b+a∥b+a|b=a∥(Ⓢ1a⋅b)+(Ⓢ1b⋅a)∥b+a∥b+a|b=(a∥Ⓢ1a)⋅b+(Ⓢ1b∥b)⋅a+a∥b+a|b=a⋅b+b⋅a+a∥b+a|b
[image: Image]


What do we see? Yes. The parallelism contains both interleaving and true concurrency. This may be why true concurrency is called true concurrency.
3.8 Axiomatization for hhp-bisimilarity
Since hhp-bisimilarity is a downward closed hp-bisimilarity and can be downward closed to single atomic event, which implies bisimilarity. As Moller [23] proven, there is not a finite sound and complete axiomatization for parallelism ∥ modulo bisimulation equivalence, so there is not a finite sound and complete axiomatization for parallelism ∥ modulo hhp-bisimulation equivalence either. Inspired by the way of left merge to modeling the full merge for bisimilarity, we introduce a left parallel composition [image: Image] to model the full parallelism ∥ for hhp-bisimilarity.
In the following subsection, we add left parallel composition [image: Image] to the whole theory. Because the resulting theory is similar to the former, we only list the significant differences, and all proofs of the conclusions are left to the reader.
3.8.1 APTC[image: Image] with left parallel composition
The transition rules of left parallel composition [image: Image] are shown in Table 3.11. With a little abuse, we extend the causal order relation ⩽ on E[image: Image] to include the original partial order (denoted by <) and concurrency (denoted by =).
Table 3.11
Transition rules of left parallel operator [image: Image].	[image: Image]
	
	[image: Image]


The new axioms for parallelism are listed in Table 3.12.
Table 3.12
Axioms of parallelism with left parallel composition.	No.	Axiom
	A6	x + δ = x
	A7	δ ⋅ x = δ
	P1	x≬y = x∥y + x|y
	P2	x∥y = y∥x
	P3	(x∥y)∥z = x∥(y∥z)
	P4	[image: Image]
	P5	[image: Image]
	P6	[image: Image]
	P7	[image: Image]
	P8	[image: Image]
	P9	[image: Image]
	C10	e1|e2 = γ(e1,e2)
	C11	e1|(e2 ⋅ y)=γ(e1,e2)⋅y
	C12	(e1 ⋅ x)|e2 = γ(e1,e2)⋅x
	C13	(e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)
	C14	(x + y)|z = (x|z)+(y|z)
	C15	x|(y + z)=(x|y)+(x|z)
	C16	δ|x = δ
	C17	x|δ = δ
	CE18	Θ(e)=e
	CE19	Θ(δ)=δ
	CE20	Θ(x + y)=Θ(x)+Θ(y)
	CE21	Θ(x ⋅ y)=Θ(x)⋅Θ(y)
	CE22	[image: Image]
	CE23	Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)
	U24	(♯(e1,e2))e1◃e2 = τ
	U25	(♯(e1,e2),e2 ⩽ e3)e1◃e3 = τ
	U26	(♯(e1,e2),e2 ⩽ e3)e3◃e1 = τ
	U27	e◃δ = e
	U28	δ◃e = δ
	U29	(x + y)◃z = (x◃z)+(y◃z)
	U30	(x ⋅ y)◃z = (x◃z)⋅(y◃z)
	U31	[image: Image]
	U32	(x|y)◃z = (x◃z)|(y◃z)
	U33	x◃(y + z)=(x◃y)◃z
	U34	x◃(y ⋅ z)=(x◃y)◃z
	U35	[image: Image]
	U36	x◃(y|z)=(x◃y)◃z



Definition 3.37 
Basic terms of APTC[image: Image] with left parallel composition
The set of basic terms of APTC[image: Image], B(APTC)[image: Image], is inductively defined as follows:
	1.  E⊂B(APTC)[image: Image];
	2.  if e∈E[image: Image], t∈B(APTC)[image: Image] then e⋅t∈B(APTC)[image: Image];
	3.  if t,s∈B(APTC)[image: Image] then t+s∈B(APTC)[image: Image];
	4.  if t,s∈B(APTC)[image: Image] then [image: Image].







Theorem 3.38 
Generalization of the algebra for left parallelism with respect to BATC[image: Image]
The algebra for left parallelism is a generalization of BATC[image: Image]. 




Theorem 3.39 
Congruence theorem of APTC[image: Image] with left parallel composition
Truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], and ∼hhp[image: Image] are all congruences with respect to APTC[image: Image] with left parallel composition.




Theorem 3.40 
Elimination theorem of parallelism with left parallel composition
Let p be a closed APTC[image: Image] with left parallel composition term. Then there is a basic APTC[image: Image] term q such that APTC⊢p=q[image: Image].




Theorem 3.41 
Soundness of parallelism with left parallel composition modulo truly concurrent bisimulation equivalences
Let x and y be APTC[image: Image] with left parallel composition terms. If APTC⊢x=y[image: Image], then
	1.  x∼sy[image: Image];
	2.  x∼py[image: Image];
	3.  x∼hpy[image: Image];
	4.  x∼hhpy[image: Image].







Theorem 3.42 
Completeness of parallelism with left parallel composition modulo truly concurrent bisimulation equivalences
Let x and y be APTC[image: Image] terms.
	1.  If x∼sy[image: Image], then APTC⊢x=y[image: Image];
	2.  if x∼py[image: Image], then APTC⊢x=y[image: Image];
	3.  if x∼hpy[image: Image], then APTC⊢x=y[image: Image];
	4.  if x∼hhpy[image: Image], then APTC⊢x=y[image: Image].






The transition rules of encapsulation operator are the same, and the axioms are shown in Table 3.13.
Table 3.13
Axioms of encapsulation operator with left parallel composition.	No.	Axiom
	D1	e ∉ H∂H(e)=e
	D2	e ∈ H∂H(e)=δ
	D3	∂H(δ)=δ
	D4	∂H(x + y)=∂H(x)+∂H(y)
	D5	∂H(x ⋅ y)=∂H(x)⋅∂H(y)
	D6	[image: Image]



Theorem 3.43 
Conservativity of APTC[image: Image] with respect to the algebra for parallelism with left parallel composition
APTC[image: Image] is a conservative extension of the algebra for parallelism with left parallel composition.




Theorem 3.44 
Congruence theorem of encapsulation operator ∂H[image: Image]
Truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], and ∼hhp[image: Image] are all congruences with respect to encapsulation operator ∂H[image: Image]. 




Theorem 3.45 
Elimination theorem of APTC[image: Image]
Let p be a closed APTC[image: Image] term including the encapsulation operator ∂H[image: Image]. Then there is a basic APTC[image: Image] term q such that APTC⊢p=q[image: Image].




Theorem 3.46 
Soundness of APTC[image: Image] modulo truly concurrent bisimulation equivalences
Let x and y be APTC[image: Image] terms including encapsulation operator ∂H[image: Image]. If APTC⊢x=y[image: Image], then
	1.  x∼sy[image: Image];
	2.  x∼py[image: Image];
	3.  x∼hpy[image: Image];
	4.  x∼hhpy[image: Image].







Theorem 3.47 
Completeness of APTC[image: Image] modulo truly concurrent bisimulation equivalences
Let p and q be closed APTC[image: Image] terms including encapsulation operator ∂H[image: Image],
	1.  if p∼sq[image: Image] then p=q[image: Image];
	2.  if p∼pq[image: Image] then p=q[image: Image];
	3.  if p∼hpq[image: Image] then p=q[image: Image];
	4.  if p∼hhpq[image: Image] then p=q[image: Image].






3.8.2 Recursion

Definition 3.48 
Recursive specification
A recursive specification is a finite set of recursive equations
X1=t1(X1,⋯,Xn)⋯Xn=tn(X1,⋯,Xn)
[image: Image]

 where the left-hand sides of Xi[image: Image] are called recursion variables, and the right-hand sides ti(X1,⋯,Xn)[image: Image] are process terms in APTC[image: Image] with possible occurrences of the recursion variables X1,⋯,Xn[image: Image].




Definition 3.49 
Solution
Processes p1,⋯,pn[image: Image] are a solution for a recursive specification {Xi=ti(X1,⋯,Xn)|i∈{1,⋯,n}}[image: Image] (with respect to truly concurrent bisimulation equivalences ∼s[image: Image](∼p[image: Image], ∼hp[image: Image], ∼hhp[image: Image])) if pi∼s(∼p,∼hp,∼hhp)ti(p1,⋯,pn)[image: Image] for i∈{1,⋯,n}[image: Image].




Definition 3.50 
Guarded recursive specification
A recursive specification
X1=t1(X1,⋯,Xn)...Xn=tn(X1,⋯,Xn)
[image: Image]

 is guarded if the right-hand sides of its recursive equations can be adapted to the form by applications of the axioms in APTC[image: Image] and replacing recursion variables by the right-hand sides of their recursive equations,
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.




Definition 3.51 
Linear recursive specification
A recursive specification is linear if its recursive equations are of the form
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.




Theorem 3.52 
Conservativity of APTC[image: Image] with guarded recursion
APTC[image: Image] with guarded recursion is a conservative extension of APTC[image: Image].




Theorem 3.53 
Congruence theorem of APTC[image: Image] with guarded recursion
Truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], ∼hhp[image: Image] are all congruences with respect to APTC[image: Image] with guarded recursion.




Theorem 3.54 
Elimination theorem of APTC[image: Image] with linear recursion
Each process term in APTC[image: Image] with linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a linear recursive specification.




Theorem 3.55 
Soundness of APTC[image: Image] with guarded recursion
Let x and y be APTC[image: Image] with guarded recursion terms. If APTCwith guarded recursion⊢x=y[image: Image], then
	1.  x∼sy[image: Image];
	2.  x∼py[image: Image];
	3.  x∼hpy[image: Image];
	4.  x∼hhpy[image: Image].







Theorem 3.56 
Completeness of APTC[image: Image] with linear recursion
Let p and q be closed APTC[image: Image] with linear recursion terms, then,
	1.  if p∼sq[image: Image] then p=q[image: Image];
	2.  if p∼pq[image: Image] then p=q[image: Image];
	3.  if p∼hpq[image: Image] then p=q[image: Image];
	4.  if p∼hhpq[image: Image] then p=q[image: Image]. 






3.8.3 Abstraction

Definition 3.57 
Guarded linear recursive specification
A recursive specification is linear if its recursive equations are of the form
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E∪{τ}[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.
A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions 〈X|E〉→τ〈X′|E〉→τ〈X″|E〉→τ⋯[image: Image].



The transition rules of τ are the same, and axioms of τ are as Table 3.14 shows.
Table 3.14
Axioms of silent step.	No.	Axiom
	B1	e ⋅ τ = e
	B2	e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)
	B3	[image: Image]



Theorem 3.58 
Conservativity of APTC[image: Image] with silent step and guarded linear recursion
APTC[image: Image] with silent step and guarded linear recursion is a conservative extension of APTC[image: Image] with linear recursion.




Theorem 3.59 
Congruence theorem of APTC[image: Image] with silent step and guarded linear recursion
Rooted branching truly concurrent bisimulation equivalences ≈rbp[image: Image], ≈rbs[image: Image], ≈rbhp[image: Image], and ≈rbhhp[image: Image] are all congruences with respect to APTC[image: Image] with silent step and guarded linear recursion.




Theorem 3.60 
Elimination theorem of APTC[image: Image] with silent step and guarded linear recursion
Each process term in APTC[image: Image] with silent step and guarded linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a guarded linear recursive specification.




Theorem 3.61 
Soundness of APTC[image: Image] with silent step and guarded linear recursion
Let x and y be APTC[image: Image] with silent step and guarded linear recursion terms. If APTC[image: Image] with silent step and guarded linear recursion ⊢x=y[image: Image], then
	1.  x≈rbsy[image: Image];
	2.  x≈rbpy[image: Image];
	3.  x≈rbhpy[image: Image];
	4.  x≈rbhhpy[image: Image].







Theorem 3.62 
Completeness of APTC[image: Image] with silent step and guarded linear recursion
Let p and q be closed APTC[image: Image] with silent step and guarded linear recursion terms, then,
	1.  if p≈rbsq[image: Image] then p=q[image: Image];
	2.  if p≈rbpq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpq[image: Image] then p=q[image: Image];
	4.  if p≈rbhhpq[image: Image] then p=q[image: Image].






The transition rules of τI[image: Image] are the same, and the axioms are shown in Table 3.15.
Table 3.15
Axioms of abstraction operator.	No.	Axiom
	TI1	e ∉ IτI(e)=e
	TI2	e ∈ IτI(e)=τ
	TI3	τI(δ)=δ
	TI4	τI(x + y)=τI(x)+τI(y)
	TI5	τI(x ⋅ y)=τI(x)⋅τI(y)
	TI6	[image: Image]



Theorem 3.63 
Conservativity of APTCτ[image: Image] with guarded linear recursion
APTCτ[image: Image] with guarded linear recursion is a conservative extension of APTC[image: Image] with silent step and guarded linear recursion.




Theorem 3.64 
Congruence theorem of APTCτ[image: Image] with guarded linear recursion
Rooted branching truly concurrent bisimulation equivalences ≈rbp[image: Image], ≈rbs[image: Image], ≈rbhp[image: Image], and ≈rbhhp[image: Image] are all congruences with respect to APTCτ[image: Image] with guarded linear recursion.




Theorem 3.65 
Soundness of APTCτ[image: Image] with guarded linear recursion
Let x and y be APTCτ[image: Image] with guarded linear recursion terms. If APTCτ[image: Image] with guarded linear recursion ⊢x=y[image: Image], then
	1.  x≈rbsy[image: Image];
	2.  x≈rbpy[image: Image];
	3.  x≈rbhpy[image: Image];
	4.  x≈rbhhpy[image: Image].







Definition 3.66 
Cluster
Let E be a guarded linear recursive specification, and I⊆E[image: Image]. Two recursion variable X and Y in E are in the same cluster for I iff there exist sequences of transitions 〈X|E〉→{b11,⋯,b1i}⋯→{bm1,⋯,bmi}〈Y|E〉[image: Image] and 〈Y|E〉→{c11,⋯,c1j}⋯→{cn1,⋯,cnj}〈X|E〉[image: Image], where b11,⋯,bmi,c11,⋯,cnj∈I∪{τ}[image: Image].
[image: Image] or [image: Image] is an exit for the cluster C iff: (1) [image: Image] or [image: Image] is a summand at the right-hand side of the recursive equation for a recursion variable in C, and (2) in the case of [image: Image], either al∉I∪{τ}(l∈{1,2,⋯,k})[image: Image] or X∉C[image: Image].



The CFAR are shown in Table 3.16.
Table 3.16
Cluster fair abstraction rule.	No.	Axiom
	CFAR	If X is in a cluster for I with exits
	[image: Image],
	then τ ⋅ τI(〈X|E〉)=
	[image: Image]


[image: Image]



Theorem 3.67 
Soundness of CFAR[image: Image]
CFAR[image: Image] is sound modulo rooted branching truly concurrent bisimulation equivalences ≈rbs[image: Image], ≈rbp[image: Image], ≈rbhp[image: Image], and ≈rbhhp[image: Image]. 




Theorem 3.68 
Completeness of APTCτ[image: Image] with guarded linear recursion and CFAR[image: Image]
Let p and q be closed APTCτ[image: Image] with guarded linear recursion and CFAR[image: Image] terms, then,
	1.  if p≈rbsq[image: Image] then p=q[image: Image];
	2.  if p≈rbpq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpq[image: Image] then p=q[image: Image];
	4.  if p≈rbhhpq[image: Image] then p=q[image: Image].






3.9 APTC with asynchronous communication
Let c be a channel, Δ be a finite set of data. For d∈Δ[image: Image], c↑d[image: Image] is a potential action to send data d via channel c, c⇑d[image: Image] is an actual action to send data d via channel c; and c↓d[image: Image] is a potential action to receive data d via channel c, c⇓d[image: Image] is an actual action to receive data d via channel c. Let the action b∈B[image: Image] be not related to channel c, and E=B∪{δ}∪{c↑d}∪{c⇑d}∪{c↓d}∪{c⇓d}[image: Image]. Let σ be the sequence of data and σ1⁎σ2[image: Image] be the concatenation of data sequences σ1[image: Image] and σ2[image: Image]. For σ=<d1,⋯,dn>[image: Image], last(σ)=dn[image: Image] if 1⩽n[image: Image]. For a queue-like channel, the unary operator μcσ(x)[image: Image] denotes that in x, the channel c initially contains the data sequence σ and outside x, no communications via c are performed. For a bag-like channel, the unary operator μcM(x)[image: Image] denoted the similar thing, but M is a multiset of data. We remain the synchronous communication merge |, and for causality-based asynchronous communication, we just add the causal constraints on the send and receive actions, any violation of the constraints will cause deadlock, that is, {δ|c↓d⩽c↑d,c⇓d⩽c⇑d}[image: Image].
We give the transition rules of APTC with asynchronous communication as Table 3.17 shows.
Table 3.17
Transition rules of APTC with asynchronous communication.	x→e1√y→e2√x∥y→{e1,e2}√x→e1x′y→e2√x∥y→{e1,e2}x′[image: Image]
	
	x→e1√y→e2y′x∥y→{e1,e2}y′x→e1x′y→e2y′x∥y→{e1,e2}x′≬y′[image: Image]
	
	[image: Image]
	
	[image: Image]
	
	x→e1√y→e2√x|y→γ(e1,e2)√x→e1x′y→e2√x|y→γ(e1,e2)x′[image: Image]
	
	x→e1√y→e2y′x|y→γ(e1,e2)y′x→e1x′y→e2y′x|y→γ(e1,e2)x′≬y′[image: Image]
	
	x→e1√(♯(e1,e2))Θ(x)→e1√x→e2√(♯(e1,e2))Θ(x)→e2√[image: Image]
	
	x→e1x′(♯(e1,e2))Θ(x)→e1Θ(x′)x→e2x′(♯(e1,e2))Θ(x)→e2Θ(x′)[image: Image]
	
	x→e1√y↛e2(♯(e1,e2))x◃y→τ√x→e1x′y↛e2(♯(e1,e2))x◃y→τx′[image: Image]
	
	x→e1√y↛e3(♯(e1,e2),e2⩽e3)x◃y→τ√x→e1x′y↛e3(♯(e1,e2),e2⩽e3)x◃y→τx′[image: Image]
	
	x→e3√y↛e2(♯(e1,e2),e1⩽e3)x◃y→τ√x→e3x′y↛e2(♯(e1,e2),e1⩽e3)x◃y→τx′[image: Image]
	
	x→e√e≠c↑d≠c↓dμcσ(x)→e√x→ex′e≠c↑d≠c↓dμcσ(x)→eμcσ(x′)[image: Image]
	
	x→c↑d√μcσ(x)→c⇑d√x→c↑dx′μcσ(x)→c⇑dμcd⁎σ(x′)[image: Image]
	
	x→c↓d√μcσ(x)→c⇓d√x→c⇓dx′μcσ⁎d(x)→c⇓dμcσ(x′)[image: Image]
	
	x→e√e≠c↑d≠c↓dμcM(x)→e√x→ex′e≠c↑d≠c↓dμcM(x)→eμcM(x′)[image: Image]
	
	x→c↑d√μcM(x)→c⇑d√x→c↑dx′μcM(x)→c⇑dμcM∪{d}(x′)[image: Image]
	
	x→c↓d√μcM(x)→c⇓d√x→c⇓dx′μcM∪{d}(x)→c⇓dμcM(x′)[image: Image]


We define the basic terms for APTC with asynchronous communication.

Definition 3.69 
Basic terms of APTC with asynchronous communication
The set of basic terms of APTC with asynchronous communication, B(APTCAC)[image: Image], is inductively defined as follows:
	1.  E⊂B(APTCAC)[image: Image];
	2.  if e∈E[image: Image], t∈B(APTCAC)[image: Image] then e⋅t∈B(APTCAC)[image: Image];
	3.  if t,s∈B(APTCAC)[image: Image] then t+s∈B(APTCAC)[image: Image];
	4.  if t,s∈B(APTCAC)[image: Image] then [image: Image]. 







Theorem 3.70 
Congruence theorem of APTC with asynchronous communication
Truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image], ∼hp[image: Image], and ∼hhp[image: Image] are all congruences with respect to APTC with asynchronous communication.



So, we design the axioms of parallelism in Table 3.18, including algebraic laws for parallel operator ∥, communication operator |, conflict elimination operator Θ and unless operator ◃, and also the whole parallel operator ≬. Since the communication between two communicating events in different parallel branches may cause deadlock (a state of inactivity), which is caused by mismatch of two communicating events or the imperfectness of the communication channel. We use the constant δ to denote the deadlock, and let the atomic event e∈E[image: Image].
Table 3.18
Axioms of parallelism.	No.	Axiom
	A6	x + δ = x
	A7	δ ⋅ x = δ
	P1	x≬y = x∥y + x|y
	P2	x∥y = y∥x
	P3	(x∥y)∥z = x∥(y∥z)
	P4	[image: Image]
	P5	[image: Image]
	P6	[image: Image]
	P7	[image: Image]
	P8	[image: Image]
	P9	[image: Image]
	C1	e1|e2 = γ(e1,e2)
	C2	e1|(e2 ⋅ y)=γ(e1,e2)⋅y
	C3	(e1 ⋅ x)|e2 = γ(e1,e2)⋅x
	C4	(e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)
	C5	(x + y)|z = (x|z)+(y|z)
	C6	x|(y + z)=(x|y)+(x|z)
	C7	δ|x = δ
	C8	x|δ = δ
	CE1	Θ(e)=e
	CE2	Θ(δ)=δ
	CE3	Θ(x + y)=Θ(x)+Θ(y)
	CE4	Θ(x ⋅ y)=Θ(x)⋅Θ(y)
	CE5	Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)
	CE6	Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)
	U1	(♯(e1,e2))e1◃e2 = τ
	U2	(♯(e1,e2),e2 ⩽ e3)e1◃e3 = τ
	U3	(♯(e1,e2),e2 ⩽ e3)e3◃e1 = τ
	U4	e◃δ = e
	U5	δ◃e = δ
	U6	(x + y)◃z = (x◃z)+(y◃z)
	U7	(x ⋅ y)◃z = (x◃z)⋅(y◃z)
	U8	[image: Image]
	U9	(x|y)◃z = (x◃z)|(y◃z)
	U10	x◃(y + z)=(x◃y)◃z
	U11	x◃(y ⋅ z)=(x◃y)◃z
	U12	[image: Image]
	U13	x◃(y|z)=(x◃y)◃z
	AM1	(e≠c↑d≠c↓d)μcσ(e)=e[image: Image]
	AM2	(e≠c↑d≠c↓d)μcσ(e⋅x)=e⋅μcσ(x)[image: Image]
	AM3	[image: Image]
	AM4	μcσ(c↑d)=c⇑d[image: Image]
	AM5	μcσ(c↑d⋅x)=c⇑d⋅μcd⁎σ(x)[image: Image]
	AM6	[image: Image]
	AM7	μcσ⁎d(c↓d)=c⇓d[image: Image]
	AM8	μcσ⁎d(c↓d⋅x)=c⇓d⋅μcσ(x)[image: Image]
	AM9	[image: Image]
	AM10	(d≠last(σ)orσ=∅)μcσ(c↓d)=δ[image: Image]
	AM11	(d≠last(σ)orσ=∅)μcσ(c↓d⋅x)=δ[image: Image]
	AM12	[image: Image]
	AM13	μcσ(x+y)=μcσ(x)+μcσ(y)[image: Image]
	AM14	(e≠c↑d≠c↓d)μcM(e)=e[image: Image]
	AM15	(e≠c↑d≠c↓d)μcM(e⋅x)=e⋅μcM(x)[image: Image]
	AM16	[image: Image]
	AM17	μcM(c↑d)=c⇑d[image: Image]
	AM18	μcM(c↑d⋅x)=c⇑d⋅μcM∪{d}(x)[image: Image]
	AM19	[image: Image]
	AM20	μcM∪{d}(c↓d)=c⇓d[image: Image]
	AM21	μcM∪{d}(c↓d⋅x)=c⇓d⋅μcM(x)[image: Image]
	AM22	[image: Image]
	AM23	(d∉M)μcM(c↓d)=δ[image: Image]
	AM24	(d∉M)μcM(c↓d⋅x)=δ[image: Image]
	AM25	[image: Image]
	AM26	μcM(x+y)=μcM(x)+μcM(y)[image: Image]
	AM27	μcσ(δ)=δ[image: Image]
	AM27	μcM(δ)=δ[image: Image]


Based on the definition of basic terms for APTC with asynchronous communication (see Definition 3.69) and axioms of parallelism (see Table 3.18), we can prove the elimination theorem of parallelism.

Theorem 3.71 
Elimination theorem of parallelism
Let p be a closed APTC with asynchronous communication term. Then there is a basic APTC with asynchronous communication term q such that APTC with asynchronous communication ⊢p=q[image: Image].




Theorem 3.72 
Generalization of APTC with asynchronous communication with respect to BATC
APTC with asynchronous communication is a generalization of BATC.




Theorem 3.73 
Soundness of APTC with asynchronous communication modulo pomset bisimulation equivalence
Let x and y be APTC with asynchronous communication terms. If APTC with asynchronous communication ⊢x=y[image: Image], then x∼py[image: Image].




Theorem 3.74 
Completeness of APTC with asynchronous communication modulo pomset bisimulation equivalence
Let p and q be closed APTC with asynchronous communication terms, if p∼pq[image: Image] then p=q[image: Image].




Theorem 3.75 
Soundness of APTC with asynchronous communication modulo step bisimulation equivalence
Let x and y be APTC with asynchronous communication terms. If APTC with asynchronous communication ⊢x=y[image: Image], then x∼sy[image: Image].




Theorem 3.76 
Completeness of APTC with asynchronous communication modulo step bisimulation equivalence
Let p and q be closed APTC with asynchronous communication terms, if p∼sq[image: Image] then p=q[image: Image].




Theorem 3.77 
Soundness of APTC with asynchronous communication modulo hp-bisimulation equivalence
Let x and y be APTC with asynchronous communication terms. If APTC with asynchronous communication ⊢x=y[image: Image], then x∼hpy[image: Image]. 




Theorem 3.78 
Completeness of APTC with asynchronous communication modulo hp-bisimulation equivalence
Let p and q be closed APTC with asynchronous communication terms, if p∼hpq[image: Image] then p=q[image: Image].




Theorem 3.79 
Soundness of APTC with asynchronous communication modulo hhp-bisimulation equivalence
Let x and y be APTC with asynchronous communication terms. If APTC with asynchronous communication ⊢x=y[image: Image], then x∼hhpy[image: Image].




Theorem 3.80 
Completeness of APTC with asynchronous communication modulo hhp-bisimulation equivalence
Let p and q be closed APTC with asynchronous communication terms, if p∼hhpq[image: Image] then p=q[image: Image].



3.10 Applications
APTC[image: Image] provides a formal framework based on truly concurrent behavioral semantics, which can be used to verify the correctness of system behaviors. In this subsection, we tend to choose alternating bit protocol (ABP) [24].
The ABP protocol is used to ensure successful transmission of data through a corrupted channel. This success is based on the assumption that data can be resent an unlimited number of times, which is illustrated in Fig. 3.1, we alter it into the true concurrency situation.
	1.  Data elements d1,d2,d3,⋯[image: Image] from a finite set Δ are communicated between a Sender and a Receiver.
	2.  If the Sender reads a datum from channel A1[image: Image], then this datum is sent to the Receiver in parallel through channel A2[image: Image].
	3.  The Sender processes the data in Δ, forms new data, and sends them to the Receiver through channel B.
	4.  And the Receiver sends the datum into channel C2[image: Image].
	5.  If channel B is corrupted, the message communicated through B can be turn into an error message ⊥.
	6.  Every time the Receiver receives a message via channel B, it sends an acknowledgment to the Sender via channel D, which is also corrupted.
	7.  Finally, then Sender and the Receiver send out their outputs in parallel through channels C1[image: Image] and C2[image: Image].



[image: Image]Figure 3.1 Alternating bit protocol.
In the truly concurrent ABP, the Sender sends its data to the Receiver; and the Receiver can also send its data to the Sender, for simplicity and without loss of generality, we assume that only the Sender sends its data and the Receiver only receives the data from the Sender. The Sender attaches a bit 0 to data elements d2k−1[image: Image] and a bit 1 to data elements d2k[image: Image], when they are sent into channel B. When the Receiver reads a datum, it sends back the attached bit via channel D. If the Receiver receives a corrupted message, then it sends back the previous acknowledgment to the Sender.
Then the state transition of the Sender can be described by APTC[image: Image] as follows.
Sb=∑d∈ΔrA1(d)⋅TdbTdb=(∑d′∈Δ(sB(d′,b)⋅sC1(d′))+sB(⊥))⋅UdbUdb=rD(b)⋅S1−b+(rD(1−b)+rD(⊥))⋅Tdb
[image: Image]

 where sB[image: Image] denotes sending data through channel B, rD[image: Image] denotes receiving data through channel D, similarly, rA1[image: Image] means receiving data via channel A1[image: Image], sC1[image: Image] denotes sending data via channel C1[image: Image], and b∈{0,1}[image: Image].
And the state transition of the Receiver can be described by APTC[image: Image] as follows.
Rb=∑d∈ΔrA2(d)⋅Rb′Rb′=∑d′∈Δ{rB(d′,b)⋅sC2(d′)⋅Qb+rB(d′,1−b)⋅Q1−b}+rB(⊥)⋅Q1−bQb=(sD(b)+sD(⊥))⋅R1−b
[image: Image]

 where rA2[image: Image] denotes receiving data via channel A2[image: Image], rB[image: Image] denotes receiving data via channel B, sC2[image: Image] denotes sending data via channel C2[image: Image], sD[image: Image] denotes sending data via channel D, and b∈{0,1}[image: Image].
The send action and receive action of the same data through the same channel can communicate each other, otherwise, a deadlock δ will be caused. We define the following communication functions.
γ(sB(d′,b),rB(d′,b))≜cB(d′,b)γ(sB(⊥),rB(⊥))≜cB(⊥)γ(sD(b),rD(b))≜cD(b)γ(sD(⊥),rD(⊥))≜cD(⊥)
[image: Image]


Let R0[image: Image] and S0[image: Image] be in parallel, then the system R0S0[image: Image] can be represented by the following process term.
τI(∂H(Θ(R0≬S0)))=τI(∂H(R0≬S0))
[image: Image]

 where H={sB(d′,b),rB(d′,b),sD(b),rD(b)|d′∈Δ,b∈{0,1}}{sB(⊥),rB(⊥),sD(⊥),rD(⊥)}[image: Image]
I={cB(d′,b),cD(b)|d′∈Δ,b∈{0,1}}∪{cB(⊥),cD(⊥)}[image: Image].
Then we get the following conclusion.

Theorem 3.81 
Correctness of the ABP protocol
The ABP protocol τI(∂H(R0≬S0))[image: Image] can exhibit desired external behaviors.




Proof 
By use of the algebraic laws of APTC[image: Image], we have the following expansions.
R0≬S0=P1R0∥S0+R0|S0=RDP(∑d∈ΔrA2(d)⋅R0′)∥(∑d∈ΔrA1(d)Td0)+(∑d∈ΔrA2(d)⋅R0′)|(∑d∈ΔrA1(d)Td0)=P6,C14∑d∈Δ(rA2(d)∥rA1(d))R0′≬Td0+δ⋅R0′≬Td0=A6,A7∑d∈Δ(rA2(d)∥rA1(d))R0′≬Td0
[image: Image]


∂H(R0≬S0)=∂H(∑d∈Δ(rA2(d)∥rA1(d))R0′≬Td0)=∑d∈Δ(rA2(d)∥rA1(d))∂H(R0′≬Td0)
[image: Image]


Similarly, we can get the following equations.
∂H(R0≬S0)=∑d∈Δ(rA2(d)∥rA1(d))⋅∂H(Td0≬R0′)∂H(Td0≬R0′)=cB(d′,0)⋅(sC1(d′)∥sC2(d′))⋅∂H(Ud0≬Q0)+cB(⊥)⋅∂H(Ud0≬Q1)∂H(Ud0≬Q1)=(cD(1)+cD(⊥))⋅∂H(Td0≬R0′)∂H(Q0≬Ud0)=cD(0)⋅∂H(R1≬S1)+cD(⊥)⋅∂H(R1′≬Td0)∂H(R1′≬Td0)=(cB(d′,0)+cB(⊥))⋅∂H(Q0≬Ud0)∂H(R1≬S1)=∑d∈Δ(rA2(d)∥rA1(d))⋅∂H(Td1≬R1′)∂H(Td1≬R1′)=cB(d′,1)⋅(sC1(d′)∥sC2(d′))⋅∂H(Ud1≬Q1)+cB(⊥)⋅∂H(Ud1≬Q0′)∂H(Ud1≬Q0′)=(cD(0)+cD(⊥))⋅∂H(Td1≬R1′)∂H(Q1≬Ud1)=cD(1)⋅∂H(R0≬S0)+cD(⊥)⋅∂H(R0′≬Td1)∂H(R0′≬Td1)=(cB(d′,1)+cB(⊥))⋅∂H(Q1≬Ud1)
[image: Image]


Let ∂H(R0≬S0)=〈X1|E〉[image: Image], where E is the following guarded linear recursion specification:
{X1=∑d∈Δ(rA2(d)∥rA1(d))⋅X2d,Y1=∑d∈Δ(rA2(d)∥rA1(d))⋅Y2d,X2d=cB(d′,0)⋅X4d+cB(⊥)⋅X3d,Y2d=cB(d′,1)⋅Y4d+cB(⊥)⋅Y3d,X3d=(cD(1)+cD(⊥))⋅X2d,Y3d=(cD(0)+cD(⊥))⋅Y2d,X4d=(sC1(d′)∥sC2(d′))⋅X5d,Y4d=(sC1(d′)∥sC2(d′))⋅Y5d,X5d=cD(0)⋅Y1+cD(⊥)⋅X6d,Y5d=cD(1)⋅X1+cD(⊥)⋅Y6d,X6d=(cB(d,0)+cB(⊥))⋅X5d,Y6d=(cB(d,1)+cB(⊥))⋅Y5d|d,d′∈Δ}
[image: Image]


Then we apply abstraction operator τI[image: Image] into 〈X1|E〉[image: Image].
τI(〈X1|E〉)=∑d∈Δ(rA1(d)∥rA2(d))⋅τI(〈X2d|E〉)=∑d∈Δ(rA1(d)∥rA2(d))⋅τI(〈X4d|E〉)=∑d,d′∈Δ(rA1(d)∥rA2(d))⋅(sC1(d′)∥sC2(d′))⋅τI(〈X5d|E〉)=∑d,d′∈Δ(rA1(d)∥rA2(d))⋅(sC1(d′)∥sC2(d′))⋅τI(〈Y1|E〉)
[image: Image]


Similarly, we can get τI(〈Y1|E〉)=∑d,d′∈Δ(rA1(d)∥rA2(d))⋅(sC1(d′)∥sC2(d′))⋅τI(〈X1|E〉)[image: Image].
We get τI(∂H(R0≬S0))=∑d,d′∈Δ(rA1(d)∥rA2(d))⋅(sC1(d′)∥sC2(d′))⋅τI(∂H(R0≬S0))[image: Image]. So, the ABP protocol τI(∂H(R0≬S0))[image: Image] can exhibit desired external behaviors. □



With the help of shadow constant, now we can verify the traditional alternating bit protocol (ABP) [24].
The ABP protocol is used to ensure successful transmission of data through a corrupted channel. This success is based on the assumption that data can be resent an unlimited number of times, which is illustrated in Fig. 3.2, we alter it into the true concurrency situation.
	1.  Data elements d1,d2,d3,⋯[image: Image] from a finite set Δ are communicated between a Sender and a Receiver.
	2.  If the Sender reads a datum from channel A.
	3.  The Sender processes the data in Δ, forms new data, and sends them to the Receiver through channel B.
	4.  And the Receiver sends the datum into channel C.
	5.  If channel B is corrupted, the message communicated through B can be turn into an error message ⊥.
	6.  Every time the Receiver receives a message via channel B, it sends an acknowledgment to the Sender via channel D, which is also corrupted.



[image: Image]Figure 3.2 Alternating bit protocol.
The Sender attaches a bit 0 to data elements d2k−1[image: Image] and a bit 1 to data elements d2k[image: Image], when they are sent into channel B. When the Receiver reads a datum, it sends back the attached bit via channel D. If the Receiver receives a corrupted message, then it sends back the previous acknowledgment to the Sender.
Then the state transition of the Sender can be described by APTC[image: Image] as follows.
Sb=∑d∈ΔrA(d)⋅TdbTdb=(∑d′∈Δ(sB(d′,b)⋅ⓈsC(d′))+sB(⊥))⋅UdbUdb=rD(b)⋅S1−b+(rD(1−b)+rD(⊥))⋅Tdb
[image: Image]

 where sB[image: Image] denotes sending data through channel B, rD[image: Image] denotes receiving data through channel D, similarly, rA[image: Image] means receiving data via channel A, ⓈsC(d′)[image: Image] denotes the shadow of sC(d′)[image: Image].
And the state transition of the Receiver can be described by APTC[image: Image] as follows.
Rb=∑d∈ΔⓈrA(d)⋅Rb′Rb′=∑d′∈Δ{rB(d′,b)⋅sC(d′)⋅Qb+rB(d′,1−b)⋅Q1−b}+rB(⊥)⋅Q1−bQb=(sD(b)+sD(⊥))⋅R1−b
[image: Image]

 where ⓈrA(d)[image: Image] denotes the shadow of rA(d)[image: Image], rB[image: Image] denotes receiving data via channel B, sC[image: Image] denotes sending data via channel C, sD[image: Image] denotes sending data via channel D, and b∈{0,1}[image: Image].
The send action and receive action of the same data through the same channel can communicate each other, otherwise, a deadlock δ will be caused. We define the following communication functions.
γ(sB(d′,b),rB(d′,b))≜cB(d′,b)γ(sB(⊥),rB(⊥))≜cB(⊥)γ(sD(b),rD(b))≜cD(b)γ(sD(⊥),rD(⊥))≜cD(⊥)
[image: Image]


Let R0[image: Image] and S0[image: Image] be in parallel, then the system R0S0[image: Image] can be represented by the following process term.
τI(∂H(Θ(R0≬S0)))=τI(∂H(R0≬S0))
[image: Image]

 where H={sB(d′,b),rB(d′,b),sD(b),rD(b)|d′∈Δ,b∈{0,1}}{sB(⊥),rB(⊥),sD(⊥),rD(⊥)}[image: Image]
I={cB(d′,b),cD(b)|d′∈Δ,b∈{0,1}}∪{cB(⊥),cD(⊥)}[image: Image].
Then we get the following conclusion.

Theorem 3.82 
Correctness of the ABP protocol
The ABP protocol τI(∂H(R0≬S0))[image: Image] can exhibit desired external behaviors.




Proof 
Similarly, we can get τI(〈X1|E〉)=∑d,d′∈ΔrA(d)⋅sC(d′)⋅τI(〈Y1|E〉)[image: Image] and τI(〈Y1|E〉)=∑d,d′∈ΔrA(d)⋅sC(d′)⋅τI(〈X1|E〉)[image: Image].
So, the ABP protocol τI(∂H(R0≬S0))[image: Image] can exhibit desired external behaviors. □
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4: Guarded APTC
Abstract
This is an introduction to guarded truly concurrent process algebra.

Keywords
Guards; True Concurrency; Process Algebra
This chapter is organized as follows. We introduce the operational semantics of guards in Section 4.1, BATC[image: Image] with Guards in Section 4.2, APTC[image: Image] with Guards 4.3, recursion in Section 4.4, abstraction in Section 4.5.
4.1 Operational semantics
In this section, we extend truly concurrent bisimilarities to the ones containing data states.

Definition 4.1 
Prime event structure with silent event and empty event
Let Λ be a fixed set of labels, ranged over a,b,c,⋯[image: Image] and τ,ϵ[image: Image]. A (Λ-labeled) prime event structure with silent event τ and empty event ϵ is a tuple E=〈E,⩽,♯,λ〉[image: Image], where E[image: Image] is a denumerable set of events, including the silent event τ and empty event ϵ. Let Eˆ=E﹨{τ,ϵ}[image: Image], exactly excluding τ and ϵ, it is obvious that τ⁎ˆ=ϵ[image: Image]. Let λ:E→Λ[image: Image] be a labeling function and let λ(τ)=τ[image: Image] and λ(ϵ)=ϵ[image: Image]. And ⩽, ♯ are binary relations on E[image: Image], called causality and conflict respectively, such that:
	1.  ⩽ is a partial order and ⌈e⌉={e′∈E|e′⩽e}[image: Image] is finite for all e∈E[image: Image]. It is easy to see that e⩽τ⁎⩽e′=e⩽τ⩽⋯⩽τ⩽e′[image: Image], then e⩽e′[image: Image].
	2.  ♯ is irreflexive, symmetric, and hereditary with respect to ⩽, that is, for all e,e′,e″∈E[image: Image], if e♯e′⩽e″[image: Image], then e♯e″[image: Image].



Then, the concepts of consistency and concurrency can be drawn from the above definition:
	1.  e,e′∈E[image: Image] are consistent, denoted as e⌢e′[image: Image], if ¬(e♯e′)[image: Image]. A subset X⊆E[image: Image] is called consistent, if e⌢e′[image: Image] for all e,e′∈X[image: Image].
	2.  e,e′∈E[image: Image] are concurrent, denoted as e∥e′[image: Image], if ¬(e⩽e′)[image: Image], ¬(e′⩽e)[image: Image], and ¬(e♯e′)[image: Image].







Definition 4.2 
Configuration
Let E[image: Image] be a PES. A (finite) configuration in E[image: Image] is a (finite) consistent subset of events C⊆E[image: Image], closed with respect to causality (i.e. ⌈C⌉=C[image: Image]), and a data state s∈S[image: Image] with S the set of all data states, denoted 〈C,s〉[image: Image]. The set of finite configurations of E[image: Image] is denoted by 〈C(E),S〉[image: Image]. We let Cˆ=C﹨{τ}∪{ϵ}[image: Image].



A consistent subset of X⊆E[image: Image] of events can be seen as a pomset. Given X,Y⊆E[image: Image], Xˆ∼Yˆ[image: Image] if Xˆ[image: Image] and Yˆ[image: Image] are isomorphic as pomsets. In the following of the paper, we say C1∼C2[image: Image], we mean C1ˆ∼C2ˆ[image: Image].

Definition 4.3 
Pomset transitions and step
Let E[image: Image] be a PES and let C∈C(E)[image: Image], and ∅≠X⊆E[image: Image], if C∩X=∅[image: Image] and C′=C∪X∈C(E)[image: Image], then 〈C,s〉→X〈C′,s′〉[image: Image] is called a pomset transition from 〈C,s〉[image: Image] to 〈C′,s′〉[image: Image]. When the events in X are pairwise concurrent, we say that 〈C,s〉→X〈C′,s′〉[image: Image] is a step. It is obvious that →⁎→X→⁎=→X[image: Image] and →⁎→e→⁎=→e[image: Image] for any e∈E[image: Image] and X⊆E[image: Image]. 




Definition 4.4 
Weak pomset transitions and weak step
Let E[image: Image] be a PES and let C∈C(E)[image: Image], and ∅≠X⊆Eˆ[image: Image], if C∩X=∅[image: Image] and C′ˆ=Cˆ∪X∈C(E)[image: Image], then 〈C,s〉⇒X〈C′,s′〉[image: Image] is called a weak pomset transition from 〈C,s〉[image: Image] to 〈C′,s′〉[image: Image], where we define ⇒e≜→τ⁎→e→τ⁎[image: Image]. And ⇒X≜→τ⁎→e→τ⁎[image: Image], for every e∈X[image: Image]. When the events in X are pairwise concurrent, we say that 〈C,s〉⇒X〈C′,s′〉[image: Image] is a weak step.



We will also suppose that all the PESs in this paper are image finite, that is, for any PES E[image: Image] and C∈C(E)[image: Image] and a∈Λ[image: Image], {e∈E|〈C,s〉→e〈C′,s′〉∧λ(e)=a}[image: Image], and {e∈Eˆ|〈C,s〉⇒e〈C′,s′〉∧λ(e)=a}[image: Image] is finite.

Definition 4.5 
Pomset, step bisimulation
Let E1[image: Image], E2[image: Image] be PESs. A pomset bisimulation is a relation R⊆〈C(E1),S〉×〈C(E2),S〉[image: Image], such that if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→X1〈C1′,s′〉[image: Image] then 〈C2,s〉→X2〈C2′,s′〉[image: Image], with X1⊆E1[image: Image], X2⊆E2[image: Image], X1∼X2[image: Image], and (〈C1′,s′〉,〈C2′,s′〉)∈R[image: Image] for all s,s′∈S[image: Image], and vice-versa. We say that E1[image: Image], E2[image: Image] are pomset bisimilar, written E1∼pE2[image: Image], if there exists a pomset bisimulation R, such that (〈∅,∅〉,〈∅,∅〉)∈R[image: Image]. By replacing pomset transitions with steps, we can get the definition of step bisimulation. When PESs E1[image: Image] and E2[image: Image] are step bisimilar, we write E1∼sE2[image: Image].




Definition 4.6 
Weak pomset, step bisimulation
Let E1[image: Image], E2[image: Image] be PESs. A weak pomset bisimulation is a relation R⊆〈C(E1),S〉×〈C(E2),S〉[image: Image], such that if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C1,s〉⇒X1〈C1′,s′〉[image: Image] then 〈C2,s〉⇒X2〈C2′,s′〉[image: Image], with X1⊆E1ˆ[image: Image], X2⊆E2ˆ[image: Image], X1∼X2[image: Image], and (〈C1′,s′〉,〈C2′,s′〉)∈R[image: Image] for all s,s′∈S[image: Image], and vice-versa. We say that E1[image: Image], E2[image: Image] are weak pomset bisimilar, written E1≈pE2[image: Image], if there exists a weak pomset bisimulation R, such that (〈∅,∅〉,〈∅,∅〉)∈R[image: Image]. By replacing weak pomset transitions with weak steps, we can get the definition of weak step bisimulation. When PESs E1[image: Image] and E2[image: Image] are weak step bisimilar, we write E1≈sE2[image: Image].




Definition 4.7 
Posetal product
Given two PESs E1[image: Image], E2[image: Image], the posetal product of their configurations, denoted 〈C(E1),S〉×‾〈C(E2),S〉[image: Image], is defined as
{(〈C1,s〉,f,〈C2,s〉)|C1∈C(E1),C2∈C(E2),f:C1→C2 isomorphism}.
[image: Image]


A subset R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] is called a posetal relation. We say that R is downward closed when for any (〈C1,s〉,f,〈C2,s〉),(〈C1′,s′〉,f′,〈C2′,s′〉)∈〈C(E1),S〉×‾〈C(E2),S〉[image: Image], if (〈C1,s〉,f,〈C2,s〉)⊆(〈C1′,s′〉,f′,〈C2′,s′〉)[image: Image] pointwise and (〈C1′,s′〉,f′,〈C2′,s′〉)∈R[image: Image], then (〈C1,s〉,f,〈C2,s〉)∈R[image: Image].
For f:X1→X2[image: Image], we define f[x1↦x2]:X1∪{x1}→X2∪{x2}[image: Image], z∈X1∪{x1}[image: Image], (1) f[x1↦x2](z)=x2[image: Image], if z=x1[image: Image]; (2) f[x1↦x2](z)=f(z)[image: Image], otherwise. Where X1⊆E1[image: Image], X2⊆E2[image: Image], x1∈E1[image: Image], x2∈E2[image: Image].




Definition 4.8 
Weakly posetal product
Given two PESs E1[image: Image], E2[image: Image], the weakly posetal product of their configurations, denoted 〈C(E1),S〉×‾〈C(E2),S〉[image: Image], is defined as
{(〈C1,s〉,f,〈C2,s〉)|C1∈C(E1),C2∈C(E2),f:C1ˆ→C2ˆ isomorphism}.
[image: Image]


A subset R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] is called a weakly posetal relation. We say that R is downward closed when for any (〈C1,s〉,f,〈C2,s〉),(〈C1′,s′〉,f,〈C2′,s′〉)∈〈C(E1),S〉×‾〈C(E2),S〉[image: Image], if (〈C1,s〉,f,〈C2,s〉)⊆(〈C1′,s′〉,f′,〈C2′,s′〉)[image: Image] pointwise and (〈C1′,s′〉,f′,〈C2′,s′〉)∈R[image: Image], then (〈C1,s〉,f,〈C2,s〉)∈R[image: Image].
For f:X1→X2[image: Image], we define f[x1↦x2]:X1∪{x1}→X2∪{x2}[image: Image], z∈X1∪{x1}[image: Image], (1) f[x1↦x2](z)=x2[image: Image], if z=x1[image: Image]; (2) f[x1↦x2](z)=f(z)[image: Image], otherwise. Where X1⊆E1ˆ[image: Image], X2⊆E2ˆ[image: Image], x1∈Eˆ1[image: Image], x2∈Eˆ2[image: Image]. Also, we define f(τ⁎)=f(τ⁎)[image: Image].




Definition 4.9 
(Hereditary) history-preserving bisimulation
A history-preserving (hp-)bisimulation is a posetal relation R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] such that if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→e1〈C1′,s′〉[image: Image], then 〈C2,s〉→e2〈C2′,s′〉[image: Image], with (〈C1′,s′〉,f[e1↦e2],〈C2′,s′〉)∈R[image: Image] for all s,s′∈S[image: Image], and vice-versa. E1,E2[image: Image] are history-preserving (hp-)bisimilar and are written E1∼hpE2[image: Image] if there exists a hp-bisimulation R such that (〈∅,∅〉,∅,〈∅,∅〉)∈R[image: Image].
A hereditary history-preserving (hhp-)bisimulation is a downward closed hp-bisimulation. E1,E2[image: Image] are hereditary history-preserving (hhp-)bisimilar and are written E1∼hhpE2[image: Image].




Definition 4.10 
Weak (hereditary) history-preserving bisimulation
A weak history-preserving (hp-)bisimulation is a weakly posetal relation R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] such that if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C1,s〉⇒e1〈C1′,s′〉[image: Image], then 〈C2,s〉⇒e2〈C2′,s′〉[image: Image], with (〈C1′,s′〉,f[e1↦e2],〈C2′,s′〉)∈R[image: Image] for all s,s′∈S[image: Image], and vice-versa. E1,E2[image: Image] are weak history-preserving (hp-)bisimilar and are written E1≈hpE2[image: Image] if there exists a weak hp-bisimulation R such that (〈∅,∅〉,∅,〈∅,∅〉)∈R[image: Image].
A weakly hereditary history-preserving (hhp-)bisimulation is a downward closed weak hp-bisimulation. E1,E2[image: Image] are weakly hereditary history-preserving (hhp-)bisimilar and are written E1≈hhpE2[image: Image].



4.2 BATC[image: Image] with guards
In this section, we will discuss the guards for BATC[image: Image], which is denoted as BATCG[image: Image]. Let E[image: Image] be the set of atomic events (actions), and we assume that there is a data set Δ and data D1,⋯,Dn∈Δ[image: Image], the data variable d1,⋯,dn[image: Image] range over Δ, and di[image: Image] has the same data type as Di[image: Image] and can have a substitution Di/di[image: Image], for process x, x[Di/di][image: Image] denotes that all occurrences of di[image: Image] in x are replaced by Di[image: Image]. And also the atomic action e may manipulate on data and has the form e(d1,⋯,dn)[image: Image] or e(D1,⋯,Dn)[image: Image]. Gat[image: Image] be the set of atomic guards, δ be the deadlock constant, and ϵ be the empty event. We extend Gat[image: Image] to the set of basic guards G with element ϕ,ψ,⋯[image: Image], which is generated by the following formation rules:
ϕ::=δ|ϵ|¬ϕ|ψ∈Gat|ϕ+ψ|ϕ⋅ψ
[image: Image]


In the following, let e1,e2,e1′,e2′∈E[image: Image], ϕ,ψ∈G[image: Image] and let variables x,y,z[image: Image] range over the set of terms for true concurrency, p,q,s[image: Image] range over the set of closed terms. The predicate test(ϕ,s)[image: Image] represents that ϕ holds in the state s, and test(ϵ,s)[image: Image] holds and test(δ,s)[image: Image] does not hold. effect(e,s)∈S[image: Image] denotes s′[image: Image] in s→es′[image: Image]. The predicate weakest precondition wp(e,ϕ)[image: Image] denotes that ∀s∈S,test(ϕ,effect(e,s))[image: Image] holds.
The set of axioms of BATCG[image: Image] consists of the laws given in Table 4.1.
Table 4.1
Axioms of BATCG.	No.	Axiom
	A1	x + y = y + x
	A2	(x + y)+z = x + (y + z)
	A3	x + x = x
	A4	(x + y)⋅z = x ⋅ z + y ⋅ z
	A5	(x ⋅ y)⋅z = x ⋅ (y ⋅ z)
	A6	x + δ = x
	A7	δ ⋅ x = δ
	A8	ϵ ⋅ x = x
	A9	x ⋅ ϵ = x
	G1	ϕ ⋅ ¬ϕ = δ
	G2	ϕ + ¬ϕ = ϵ
	G3	ϕδ = δ
	G4	ϕ(x + y)=ϕx + ϕy
	G5	ϕ(x ⋅ y)=ϕx ⋅ y
	G6	(ϕ + ψ)x = ϕx + ψx
	G7	(ϕ ⋅ ψ)⋅x = ϕ ⋅ (ψ ⋅ x)
	G8	ϕ = ϵ if ∀s ∈ S.test(ϕ,s)
	G9	ϕ0 ⋅ ⋯ ⋅ ϕn = δ if ∀s ∈ S,∃i ⩽ n.test(¬ϕi,s)
	G10	wp(e,ϕ)eϕ = wp(e,ϕ)e
	G11	¬wp(e,ϕ)e¬ϕ = ¬wp(e,ϕ)e


Note that, by eliminating atomic event from the process terms, the axioms in Table 4.1 will lead to a Boolean Algebra. And G9 is a precondition of e and ϕ, G10 is the weakest precondition of e and ϕ. A data environment with effect[image: Image] function is sufficiently deterministic, and it is obvious that if the weakest precondition is expressible and G9, G10 are sound, then the related data environment is sufficiently deterministic.

Definition 4.11 
Basic terms of BATCG[image: Image]
The set of basic terms of BATCG[image: Image], B(BATCG)[image: Image], is inductively defined as follows:
	1.  E⊂B(BATCG)[image: Image];
	2.  G⊂B(BATCG)[image: Image];
	3.  if e∈E,t∈B(BATCG)[image: Image] then e⋅t∈B(BATCG)[image: Image];
	4.  if ϕ∈G,t∈B(BATCG)[image: Image] then ϕ⋅t∈B(BATCG)[image: Image];
	5.  if t,s∈B(BATCG)[image: Image] then t+s∈B(BATCG)[image: Image].







Theorem 4.12 
Elimination theorem of BATCG[image: Image]
Let p be a closed BATCG[image: Image] term. Then there is a basic BATCG[image: Image] term q such that BATCG⊢p=q[image: Image]. 



We will define a term-deduction system which gives the operational semantics of BATCG[image: Image]. We give the operational transition rules for ϵ, atomic guard ϕ∈Gat[image: Image], atomic event e∈E[image: Image], operators ⋅ and + as Table 4.2 shows. And the predicate →e√[image: Image] represents successful termination after execution of the event e.
Table 4.2
Single event transition rules of BATCG.	〈ϵ,s〉→〈√,s〉[image: Image]
	
	〈e,s〉→e〈√,s′〉 if s′∈effect(e,s)[image: Image]
	
	〈ϕ,s〉→〈√,s〉 if test(ϕ,s)[image: Image]
	
	〈x,s〉→e〈√,s′〉〈x+y,s〉→e〈√,s′〉〈x,s〉→e〈x′,s′〉〈x+y,s〉→e〈x′,s′〉[image: Image]
	
	〈y,s〉→e〈√,s′〉〈x+y,s〉→e〈√,s′〉〈y,s〉→e〈y′,s′〉〈x+y,s〉→e〈y′,s′〉[image: Image]
	
	〈x,s〉→e〈√,s′〉〈x⋅y,s〉→e〈y,s′〉〈x,s〉→e〈x′,s′〉〈x⋅y,s〉→e〈x′⋅y,s′〉[image: Image]


Note that, we replace the single atomic event e∈E[image: Image] by X⊆E[image: Image], we can obtain the pomset transition rules of BATCG[image: Image], and omit them.

Theorem 4.13 
Congruence of BATCG[image: Image] with respect to truly concurrent bisimulation equivalences
(1) Pomset bisimulation equivalence ∼p[image: Image] is a congruence with respect to BATCG[image: Image].
(2) Step bisimulation equivalence ∼s[image: Image] is a congruence with respect to BATCG[image: Image].
(3) hp-bisimulation equivalence ∼hp[image: Image] is a congruence with respect to BATCG[image: Image].
(4) hhp-bisimulation equivalence ∼hhp[image: Image] is a congruence with respect to BATCG[image: Image].




Theorem 4.14 
Soundness of BATCG[image: Image] modulo truly concurrent bisimulation equivalences
(1) Let x and y be BATCG[image: Image] terms. If BATC⊢x=y[image: Image], then x∼py[image: Image].
(2) Let x and y be BATCG[image: Image] terms. If BATC⊢x=y[image: Image], then x∼sy[image: Image].
(3) Let x and y be BATCG[image: Image] terms. If BATC⊢x=y[image: Image], then x∼hpy[image: Image].
(4) Let x and y be BATCG[image: Image] terms. If BATC⊢x=y[image: Image], then x∼hhpy[image: Image].




Theorem 4.15 
Completeness of BATCG[image: Image] modulo truly concurrent bisimulation equivalences
(1) Let p and q be closed BATCG[image: Image] terms, if p∼pq[image: Image] then p=q[image: Image].
(2) Let p and q be closed BATCG[image: Image] terms, if p∼sq[image: Image] then p=q[image: Image].
(3) Let p and q be closed BATCG[image: Image] terms, if p∼hpq[image: Image] then p=q[image: Image].
(4) Let p and q be closed BATCG[image: Image] terms, if p∼hhpq[image: Image] then p=q[image: Image].




Theorem 4.16 
Sufficient determinacy
All related data environments with respect to BATCG[image: Image] can be sufficiently deterministic. 



4.3 APTC[image: Image] with guards
In this section, we will extend APTC[image: Image] with guards, which is abbreviated APTCG[image: Image]. The set of basic guards G with element ϕ,ψ,⋯[image: Image], which is extended by the following formation rules:
ϕ::=δ|ϵ|¬ϕ|ψ∈Gat|ϕ+ψ|ϕ⋅ψ|ϕ∥ψ
[image: Image]


The set of axioms of APTCG[image: Image] including axioms of BATCG[image: Image] in Table 4.1 and the axioms are shown in Table 4.3.
Table 4.3
Axioms of APTCG.	No.	Axiom
	P1	x≬y = x∥y + x|y
	P2	e1∥(e2 ⋅ y)=(e1∥e2)⋅y
	P3	(e1 ⋅ x)∥e2 = (e1∥e2)⋅x
	P4	(e1 ⋅ x)∥(e2 ⋅ y)=(e1∥e2)⋅(x≬y)
	P5	(x + y)∥z = (x∥z)+(y∥z)
	P6	x∥(y + z)=(x∥y)+(x∥z)
	P7	δ∥x = δ
	P8	x∥δ = δ
	P9	ϵ∥x = x
	P10	x∥ϵ = x
	C1	e1|e2 = γ(e1,e2)
	C2	e1|(e2 ⋅ y)=γ(e1,e2)⋅y
	C3	(e1 ⋅ x)|e2 = γ(e1,e2)⋅x
	C4	(e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)
	C5	(x + y)|z = (x|z)+(y|z)
	C6	x|(y + z)=(x|y)+(x|z)
	C7	δ|x = δ
	C8	x|δ = δ
	C9	ϵ|x = δ
	C10	x|ϵ = δ
	CE1	Θ(e)=e
	CE2	Θ(δ)=δ
	CE3	Θ(ϵ)=ϵ
	CE4	Θ(x + y)=Θ(x)+Θ(y)
	CE5	Θ(x ⋅ y)=Θ(x)⋅Θ(y)
	CE6	Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)
	CE7	Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)
	U1	(♯(e1,e2))e1◃e2 = τ
	U2	(♯(e1,e2),e2 ⩽ e3)e1◃e3 = τ
	U3	(♯(e1,e2),e2 ⩽ e3)e3◃e1 = τ
	U4	e◃δ = e
	U5	δ◃e = δ
	U6	e◃ϵ = e
	U7	ϵ◃e = e
	U8	(x + y)◃z = (x◃z)+(y◃z)
	U9	(x ⋅ y)◃z = (x◃z)⋅(y◃z)
	U10	(x∥y)◃z = (x◃z)∥(y◃z)
	U11	(x|y)◃z = (x◃z)|(y◃z)
	U12	x◃(y + z)=(x◃y)◃z
	U13	x◃(y ⋅ z)=(x◃y)◃z
	U14	x◃(y∥z)=(x◃y)◃z
	U15	x◃(y|z)=(x◃y)◃z
	D1	e ∉ H∂H(e)=e
	D2	e ∈ H∂H(e)=δ
	D3	∂H(δ)=δ
	D4	∂H(x + y)=∂H(x)+∂H(y)
	D5	∂H(x ⋅ y)=∂H(x)⋅∂H(y)
	D6	∂H(x∥y)=∂H(x)∥∂H(y)
	G12	ϕ(x∥y)=ϕx∥ϕy
	G13	ϕ(x|y)=ϕx|ϕy
	G14	ϕ∥δ = δ
	G15	δ∥ϕ = δ
	G16	ϕ|δ = δ
	G17	δ|ϕ = δ
	G18	ϕ∥ϵ = ϕ
	G19	ϵ∥ϕ = ϕ
	G20	ϕ|ϵ = δ
	G21	ϵ|ϕ = δ
	G22	ϕ∥¬ϕ = δ
	G23	Θ(ϕ)=ϕ
	G24	∂H(ϕ)=ϕ
	G25	ϕ0∥⋯∥ϕn = δ if ∀s0,⋯,sn ∈ S, ∃i ⩽ n.test(¬ϕi,s0 ∪ ⋯ ∪ sn)



Definition 4.17 
Basic terms of APTCG[image: Image]
The set of basic terms of APTCG[image: Image], B(APTCG)[image: Image], is inductively defined as follows:
	1.  E⊂B(APTCG)[image: Image];
	2.  G⊂B(APTCG)[image: Image];
	3.  if e∈E,t∈B(APTCG)[image: Image] then e⋅t∈B(APTCG)[image: Image];
	4.  if ϕ∈G,t∈B(APTCG)[image: Image] then ϕ⋅t∈B(APTCG)[image: Image];
	5.  if t,s∈B(APTCG)[image: Image] then t+s∈B(APTCG)[image: Image].
	6.  if t,s∈B(APTCG)[image: Image] then t∥s∈B(APTCG)[image: Image].






Based on the definition of basic terms for APTCG[image: Image] (see Definition 4.17) and axioms of APTCG[image: Image], we can prove the elimination theorem of APTCG[image: Image].

Theorem 4.18 
Elimination theorem of APTCG[image: Image]
Let p be a closed APTCG[image: Image] term. Then there is a basic APTCG[image: Image] term q such that APTCG⊢p=q[image: Image].



We will define a term-deduction system which gives the operational semantics of APTCG[image: Image]. Two atomic events e1[image: Image] and e2[image: Image] are in race condition, which are denoted e1%e2[image: Image]. (See Table 4.4.)
Table 4.4
Transition rules of APTCG.	〈e1∥⋯∥en,s〉→{e1,⋯,en}〈√,s′〉 if s′∈effect(e1,s)∪⋯∪effect(en,s)[image: Image]
	
	〈ϕ1∥⋯∥ϕn,s〉→〈√,s〉 if test(ϕ1,s),⋯,test(ϕn,s)[image: Image]
	
	〈x,s〉→e1〈√,s′〉〈y,s〉→e2〈√,s″〉〈x∥y,s〉→{e1,e2}〈√,s′∪s″〉〈x,s〉→e1〈x′,s′〉〈y,s〉→e2〈√,s″〉〈x∥y,s〉→{e1,e2}〈x′,s′∪s″〉[image: Image]
	
	〈x,s〉→e1〈√,s′〉〈y,s〉→e2〈y′,s″〉〈x∥y,s〉→{e1,e2}〈y′,s′∪s″〉〈x,s〉→e1〈x′,s′〉〈y,s〉→e2〈y′,s″〉〈x∥y,s〉→{e1,e2}〈x′≬y′,s′∪s″〉[image: Image]
	
	[image: Image]
	
	[image: Image]
	
	〈x,s〉→e1〈√,s′〉〈y,s〉→e2〈√,s″〉〈x|y,s〉→γ(e1,e2)〈√,effect(γ(e1,e2),s)〉〈x,s〉→e1〈x′,s′〉〈y,s〉→e2〈√,s″〉〈x|y,s〉→γ(e1,e2)〈x′,effect(γ(e1,e2),s)〉[image: Image]
	
	〈x,s〉→e1〈√,s′〉〈y,s〉→e2〈y′,s″〉〈x|y,s〉→γ(e1,e2)〈y′,effect(γ(e1,e2),s)〉〈x,s〉→e1〈x′,s′〉〈y,s〉→e2〈y′,s″〉〈x|y,s〉→γ(e1,e2)〈x′≬y′,effect(γ(e1,e2),s)〉[image: Image]
	
	〈x,s〉→e1〈√,s′〉(♯(e1,e2))〈Θ(x),s〉→e1〈√,s′〉〈x,s〉→e2〈√,s″〉(♯(e1,e2))〈Θ(x),s〉→e2〈√,s″〉[image: Image]
	
	〈x,s〉→e1〈x′,s′〉(♯(e1,e2))〈Θ(x),s〉→e1〈Θ(x′),s′〉〈x,s〉→e2〈x″,s″〉(♯(e1,e2))〈Θ(x),s〉→e2〈Θ(x″),s″〉[image: Image]
	
	〈x,s〉→e1〈√,s′〉〈y,s〉↛e2(♯(e1,e2))〈x◃y,s〉→τ〈√,s′〉〈x,s〉→e1〈x′,s′〉〈y,s〉↛e2(♯(e1,e2))〈x◃y,s〉→τ〈x′,s′〉[image: Image]
	
	〈x,s〉→e1〈√,s〉〈y,s〉↛e3(♯(e1,e2),e2⩽e3)〈x◃y,s〉→τ〈√,s′〉〈x,s〉→e1〈x′,s′〉〈y,s〉↛e3(♯(e1,e2),e2⩽e3)〈x◃y,s〉→τ〈x′,s′〉[image: Image]
	
	〈x,s〉→e3〈√,s′〉〈y,s〉↛e2(♯(e1,e2),e1⩽e3)〈x◃y,s〉→τ〈√,s′〉〈x,s〉→e3〈x′,s′〉〈y,s〉↛e2(♯(e1,e2),e1⩽e3)〈x◃y,s〉→τ〈x′,s′〉[image: Image]
	
	〈x,s〉→e〈√,s′〉〈∂H(x),s〉→e〈√,s′〉(e∉H)〈x,s〉→e〈x′,s′〉〈∂H(x),s〉→e〈∂H(x′),s′〉(e∉H)[image: Image]



Theorem 4.19 
Generalization of APTCG[image: Image] with respect to BATCG[image: Image]
APTCG[image: Image] is a generalization of BATCG[image: Image].




Theorem 4.20 
Congruence of APTCG[image: Image] with respect to truly concurrent bisimulation equivalences
(1) Pomset bisimulation equivalence ∼p[image: Image] is a congruence with respect to APTCG[image: Image].
(2) Step bisimulation equivalence ∼s[image: Image] is a congruence with respect to APTCG[image: Image].
(3) hp-bisimulation equivalence ∼hp[image: Image] is a congruence with respect to APTCG[image: Image].
(4) hhp-bisimulation equivalence ∼hhp[image: Image] is a congruence with respect to APTCG[image: Image].




Theorem 4.21 
Soundness of APTCG[image: Image] modulo truly concurrent bisimulation equivalences
(1) Let x and y be APTCG[image: Image] terms. If APTC⊢x=y[image: Image], then x∼py[image: Image].
(2) Let x and y be APTCG[image: Image] terms. If APTC⊢x=y[image: Image], then x∼sy[image: Image].
(3) Let x and y be APTCG[image: Image] terms. If APTC⊢x=y[image: Image], then x∼hpy[image: Image]. 




Theorem 4.22 
Completeness of APTCG[image: Image] modulo truly concurrent bisimulation equivalences
(1) Let p and q be closed APTCG[image: Image] terms, if p∼pq[image: Image] then p=q[image: Image].
(2) Let p and q be closed APTCG[image: Image] terms, if p∼sq[image: Image] then p=q[image: Image].
(3) Let p and q be closed APTCG[image: Image] terms, if p∼hpq[image: Image] then p=q[image: Image].




Theorem 4.23 
Sufficient determinacy
All related data environments with respect to APTCG[image: Image] can be sufficiently deterministic.



4.4 Recursion
In this section, we introduce recursion to capture infinite processes based on APTCG[image: Image]. In the following, E,F,G[image: Image] are recursion specifications, X,Y,Z[image: Image] are recursive variables. (See Table 4.5.)
Table 4.5
Transition rules of guarded recursion.	〈ti(〈X1|E〉,⋯,〈Xn|E〉),s〉→{e1,⋯,ek}〈√,s′〉〈〈Xi|E〉,s〉→{e1,⋯,ek}〈√,s′〉[image: Image]
	
	〈ti(〈X1|E〉,⋯,〈Xn|E〉),s〉→{e1,⋯,ek}〈y,s′〉〈〈Xi|E〉,s〉→{e1,⋯,ek}〈y,s′〉[image: Image]



Definition 4.24 
Guarded recursive specification
A recursive specification
X1=t1(X1,⋯,Xn)...Xn=tn(X1,⋯,Xn)
[image: Image]

 is guarded if the right-hand sides of its recursive equations can be adapted to the form by applications of the axioms in APTC[image: Image] and replacing recursion variables by the right-hand sides of their recursive equations,
(a11∥⋯∥a1i1)⋅s1(X1,⋯,Xn)+⋯+(ak1∥⋯∥akik)⋅sk(X1,⋯,Xn)+(b11∥⋯∥b1j1)+⋯+(b1j1∥⋯∥bljl)
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ. And there does not exist an infinite sequence of ϵ-transitions 〈X|E〉→〈X′|E〉→〈X″|E〉→⋯[image: Image]. 




Theorem 4.25 
Conservativity of APTCG[image: Image] with guarded recursion
APTCG[image: Image] with guarded recursion is a conservative extension of APTCG[image: Image].




Theorem 4.26 
Congruence theorem of APTCG[image: Image] with guarded recursion
Truly concurrent bisimulation equivalences ∼p[image: Image], ∼s[image: Image] and ∼hp[image: Image] are all congruences with respect to APTCG[image: Image] with guarded recursion.




Theorem 4.27 
Elimination theorem of APTCG[image: Image] with linear recursion
Each process term in APTCG[image: Image] with linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a linear recursive specification.




Theorem 4.28 
Soundness of APTCG[image: Image] with guarded recursion
Let x and y be APTCG[image: Image] with guarded recursion terms. If APTCGwith guarded recursion⊢x=y[image: Image], then
(1) x∼sy[image: Image];
(2) x∼py[image: Image];
(3) x∼hpy[image: Image].




Theorem 4.29 
Completeness of APTCG[image: Image] with linear recursion
Let p and q be closed APTCG[image: Image] with linear recursion terms, then,
(1) if p∼sq[image: Image] then p=q[image: Image];
(2) if p∼pq[image: Image] then p=q[image: Image];
(3) if p∼hpq[image: Image] then p=q[image: Image].



4.5 Abstraction
To abstract away from the internal implementations of a program, and verify that the program exhibits the desired external behaviors, the silent step τ and abstraction operator τI[image: Image] are introduced, where I⊆E∪Gat[image: Image] denotes the internal events or guards. The silent step τ represents the internal events, and τϕ[image: Image] for internal guards, when we consider the external behaviors of a process, τ steps can be removed, that is, τ steps must keep silent. The transition rule of τ is shown in Table 4.6. In the following, let the atomic event e range over E∪{ϵ}∪{δ}∪{τ}[image: Image], and ϕ range over G∪{τ}[image: Image], and let the communication function γ:E∪{τ}×E∪{τ}→E∪{δ}[image: Image], with each communication involved τ resulting in δ. We use τ(s)[image: Image] to denote effect(τ,s)[image: Image], for the fact that τ only change the state of internal data environment, that is, for the external data environments, s=τ(s)[image: Image].
Table 4.6
Transition rule of the silent step.	〈τϕ,s〉→〈√,s〉 if test(τϕ,s)[image: Image]
	
	〈τ,s〉→τ〈√,τ(s)〉[image: Image]


In Section 4.1, we introduce τ into event structure, and also give the concept of weakly true concurrency. In this section, we give the concepts of rooted branching truly concurrent bisimulation equivalences, based on these concepts, we can design the axiom system of the silent step τ and the abstraction operator τI[image: Image].

Definition 4.30 
Branching pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A branching pomset bisimulation is a relation R⊆〈C(E1),S〉×〈C(E2),S〉[image: Image], such that:
	1.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→X〈C1′,s′〉[image: Image] then	•  either X≡τ⁎[image: Image], and (〈C1′,s′〉,〈C2,s〉)∈R[image: Image] with s′∈τ(s)[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions 〈C2,s〉→τ⁎〈C20,s0〉[image: Image], such that (〈C1,s〉,〈C20,s0〉)∈R[image: Image] and 〈C20,s0〉⇒X〈C2′,s′〉[image: Image] with (〈C1′,s′〉,〈C2′,s′〉)∈R[image: Image];


	2.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C2,s〉→X〈C2′,s′〉[image: Image] then	•  either X≡τ⁎[image: Image], and (〈C1,s〉,〈C2′,s′〉)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions 〈C1,s〉→τ⁎〈C10,s0〉[image: Image], such that (〈C10,s0〉,〈C2,s〉)∈R[image: Image] and 〈C10,s0〉⇒X〈C1′,s′〉[image: Image] with (〈C1′,s′〉,〈C2′,s′〉)∈R[image: Image];


	3.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image] and 〈C1,s〉↓[image: Image], then there is a sequence of (zero or more) τ-transitions 〈C2,s〉→τ⁎〈C20,s0〉[image: Image] such that (〈C1,s〉,〈C20,s0〉)∈R[image: Image] and 〈C20,s0〉↓[image: Image];
	4.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image] and 〈C2,s〉↓[image: Image], then there is a sequence of (zero or more) τ-transitions 〈C1,s〉→τ⁎〈C10,s0〉[image: Image] such that (〈C10,s0〉,〈C2,s〉)∈R[image: Image] and 〈C10,s0〉↓[image: Image].



We say that E1[image: Image], E2[image: Image] are branching pomset bisimilar, written E1≈bpE2[image: Image], if there exists a branching pomset bisimulation R, such that (〈∅,∅〉,〈∅,∅〉)∈R[image: Image].
By replacing pomset transitions with steps, we can get the definition of branching step bisimulation. When PESs E1[image: Image] and E2[image: Image] are branching step bisimilar, we write E1≈bsE2[image: Image].




Definition 4.31 
Rooted branching pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A rooted branching pomset bisimulation is a relation R⊆〈C(E1),S〉×〈C(E2),S〉[image: Image], such that:
	1.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→X〈C1′,s′〉[image: Image] then 〈C2,s〉→X〈C2′,s′〉[image: Image] with 〈C1′,s′〉≈bp〈C2′,s′〉[image: Image]; 
	2.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image], and 〈C2,s〉→X〈C2′,s′〉[image: Image] then 〈C1,s〉→X〈C1′,s′〉[image: Image] with 〈C1′,s′〉≈bp〈C2′,s′〉[image: Image];
	3.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image] and 〈C1,s〉↓[image: Image], then 〈C2,s〉↓[image: Image];
	4.  if (〈C1,s〉,〈C2,s〉)∈R[image: Image] and 〈C2,s〉↓[image: Image], then 〈C1,s〉↓[image: Image].



We say that E1[image: Image], E2[image: Image] are rooted branching pomset bisimilar, written E1≈rbpE2[image: Image], if there exists a rooted branching pomset bisimulation R, such that (〈∅,∅〉,〈∅,∅〉)∈R[image: Image].
By replacing pomset transitions with steps, we can get the definition of rooted branching step bisimulation. When PESs E1[image: Image] and E2[image: Image] are rooted branching step bisimilar, we write E1≈rbsE2[image: Image].




Definition 4.32 
Branching (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A branching history-preserving (hp-)bisimulation is a weakly posetal relation R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] such that:
	1.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→e1〈C1′,s′〉[image: Image] then	•  either e1≡τ[image: Image], and (〈C1′,s′〉,f[e1↦τ],〈C2,s〉)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions 〈C2,s〉→τ⁎〈C20,s0〉[image: Image], such that (〈C1,s〉,f,〈C20,s0〉)∈R[image: Image] and 〈C20,s0〉→e2〈C2′,s′〉[image: Image] with (〈C1′,s′〉,f[e1↦e2],〈C2′,s′〉)∈R[image: Image];


	2.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C2,s〉→e2〈C2′,s′〉[image: Image] then	•  either e2≡τ[image: Image], and (〈C1,s〉,f[e2↦τ],〈C2′,s′〉)∈R[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions 〈C1,s〉→τ⁎〈C10,s0〉[image: Image], such that (〈C10,s0〉,f,〈C2,s〉)∈R[image: Image] and 〈C10,s0〉→e1〈C1′,s′〉[image: Image] with (〈C1′,s′〉,f[e2↦e1],〈C2′,s′〉)∈R[image: Image];


	3.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image] and 〈C1,s〉↓[image: Image], then there is a sequence of (zero or more) τ-transitions 〈C2,s〉→τ⁎〈C20,s0〉[image: Image] such that (〈C1,s〉,f,〈C20,s0〉)∈R[image: Image] and 〈C20,s0〉↓[image: Image];
	4.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image] and 〈C2,s〉↓[image: Image], then there is a sequence of (zero or more) τ-transitions 〈C1,s〉→τ⁎〈C10,s0〉[image: Image] such that (〈C10,s0〉,f,〈C2,s〉)∈R[image: Image] and 〈C10,s0〉↓[image: Image].



E1,E2[image: Image] are branching history-preserving (hp-)bisimilar and are written E1≈bhpE2[image: Image] if there exists a branching hp-bisimulation R such that (〈∅,∅〉,∅,〈∅,∅〉)∈R[image: Image].
A branching hereditary history-preserving (hhp-)bisimulation is a downward closed branching hp-bisimulation. E1,E2[image: Image] are branching hereditary history-preserving (hhp-)bisimilar and are written E1≈bhhpE2[image: Image].




Definition 4.33 
Rooted branching (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A rooted branching history-preserving (hp-)bisimulation is a weakly posetal relation R⊆〈C(E1),S〉×‾〈C(E2),S〉[image: Image] such that:
	1.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C1,s〉→e1〈C1′,s′〉[image: Image], then 〈C2,s〉→e2〈C2′,s′〉[image: Image] with 〈C1′,s′〉≈bhp〈C2′,s′〉[image: Image]; 
	2.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image], and 〈C2,s〉→e2〈C2′,s′〉[image: Image], then 〈C1,s〉→e1〈C1′,s′〉[image: Image] with 〈C1′,s′〉≈bhp〈C2′,s′〉[image: Image];
	3.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image] and 〈C1,s〉↓[image: Image], then 〈C2,s〉↓[image: Image];
	4.  if (〈C1,s〉,f,〈C2,s〉)∈R[image: Image] and 〈C2,s〉↓[image: Image], then 〈C1,s〉↓[image: Image].



E1,E2[image: Image] are rooted branching history-preserving (hp-)bisimilar and are written E1≈rbhpE2[image: Image] if there exists a rooted branching hp-bisimulation R such that (〈∅,∅〉,∅,〈∅,∅〉)∈R[image: Image].
A rooted branching hereditary history-preserving (hhp-)bisimulation is a downward closed rooted branching hp-bisimulation. E1,E2[image: Image] are rooted branching hereditary history-preserving (hhp-)bisimilar and are written E1≈rbhhpE2[image: Image].




Definition 4.34 
Guarded linear recursive specification
A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions 〈X|E〉→τ〈X′|E〉→τ〈X″|E〉→τ⋯[image: Image], and there does not exist an infinite sequence of ϵ-transitions 〈X|E〉→〈X′|E〉→〈X″|E〉→⋯[image: Image].




Theorem 4.35 
Conservativity of APTCG[image: Image] with silent step and guarded linear recursion
APTCG[image: Image] with silent step and guarded linear recursion is a conservative extension of APTCG[image: Image] with linear recursion.




Theorem 4.36 
Congruence theorem of APTCG[image: Image] with silent step and guarded linear recursion
Rooted branching truly concurrent bisimulation equivalences ≈rbp[image: Image], ≈rbs[image: Image] and ≈rbhp[image: Image] are all congruences with respect to APTCG[image: Image] with silent step and guarded linear recursion.



We design the axioms for the silent step τ in Table 4.7.
Table 4.7
Axioms of silent step.	No.	Axiom
	B1	e ⋅ τ = e
	B2	e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)
	B3	x∥τ = x
	G26	τϕ ⋅ x = x
	G27	x ⋅ τϕ = x
	G28	x∥τϕ = x



Theorem 4.37 
Elimination theorem of APTCG[image: Image] with silent step and guarded linear recursion
Each process term in APTCG[image: Image] with silent step and guarded linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a guarded linear recursive specification.




Theorem 4.38 
Soundness of APTCG[image: Image] with silent step and guarded linear recursion
Let x and y be APTCG[image: Image] with silent step and guarded linear recursion terms. If APTCG[image: Image] with silent step and guarded linear recursion ⊢x=y[image: Image], then
(1) x≈rbsy[image: Image];
(2) x≈rbpy[image: Image];
(3) x≈rbhpy[image: Image]. 




Theorem 4.39 
Completeness of APTCG[image: Image] with silent step and guarded linear recursion
Let p and q be closed APTCG[image: Image] with silent step and guarded linear recursion terms, then,
(1) if p≈rbsq[image: Image] then p=q[image: Image];
(2) if p≈rbpq[image: Image] then p=q[image: Image];
(3) if p≈rbhpq[image: Image] then p=q[image: Image].



The unary abstraction operator τI[image: Image] (I⊆E∪Gat[image: Image]) renames all atomic events or atomic guards in I into τ. APTCG[image: Image] with silent step and abstraction operator is called APTCGτ[image: Image]. The transition rules of operator τI[image: Image] are shown in Table 4.8.
Table 4.8
Transition rule of the abstraction operator.	〈x,s〉→e〈√,s′〉〈τI(x),s〉→e〈√,s′〉e∉I〈x,s〉→e〈x′,s′〉〈τI(x),s〉→e〈τI(x′),s′〉e∉I[image: Image]
	
	〈x,s〉→e〈√,s′〉〈τI(x),s〉→τ〈√,τ(s)〉e∈I〈x,s〉→e〈x′,s′〉〈τI(x),s〉→τ〈τI(x′),τ(s)〉e∈I[image: Image]



Theorem 4.40 
Conservativity of APTCGτ[image: Image] with guarded linear recursion
APTCGτ[image: Image] with guarded linear recursion is a conservative extension of APTCG[image: Image] with silent step and guarded linear recursion.




Theorem 4.41 
Congruence theorem of APTCGτ[image: Image] with guarded linear recursion
Rooted branching truly concurrent bisimulation equivalences ≈rbp[image: Image], ≈rbs[image: Image], and ≈rbhp[image: Image] are all congruences with respect to APTCGτ[image: Image] with guarded linear recursion.



We design the axioms for the abstraction operator τI[image: Image] in Table 4.9.
Table 4.9
Axioms of abstraction operator.	No.	Axiom
	TI1	e ∉ IτI(e)=e
	TI2	e ∈ IτI(e)=τ
	TI3	τI(δ)=δ
	TI4	τI(x + y)=τI(x)+τI(y)
	TI5	τI(x ⋅ y)=τI(x)⋅τI(y)
	TI6	τI(x∥y)=τI(x)∥τI(y)
	G29	ϕ ∉ IτI(ϕ)=ϕ
	G30	ϕ ∈ IτI(ϕ)=τϕ



Theorem 4.42 
Soundness of APTCGτ[image: Image] with guarded linear recursion
Let x and y be APTCGτ[image: Image] with guarded linear recursion terms. If APTCGτ[image: Image] with guarded linear recursion ⊢x=y[image: Image], then
(1) x≈rbsy[image: Image];
(2) x≈rbpy[image: Image];
(3) x≈rbhpy[image: Image].



Though τ-loops are prohibited in guarded linear recursive specifications (see Definition 4.34) in a specifiable way, they can be constructed using the abstraction operator, for example, there exist τ-loops in the process term τ{a}(〈X|X=aX〉)[image: Image]. To avoid τ-loops caused by τI[image: Image] and ensure fairness, the concepts of cluster and CFAR[image: Image] (Cluster Fair Abstraction Rule) [25] are still needed.

Theorem 4.43 
Completeness of APTCGτ[image: Image] with guarded linear recursion and CFAR[image: Image]
Let p and q be closed APTCGτ[image: Image] with guarded linear recursion and CFAR[image: Image] terms, then,
(1) if p≈rbsq[image: Image] then p=q[image: Image];
(2) if p≈rbpq[image: Image] then p=q[image: Image];
(3) if p≈rbhpq[image: Image] then p=q[image: Image].
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5: Distributed APTC
Abstract
This is an introduction to distributed truly concurrent process algebra.

Keywords
Distributed Computing; True Concurrency; Process Algebra
Distributed APTC makes APTC to have the ability to express the locations or roles. Distributed APTC can be used to model the roles of participants in WS composition.
This chapter is organized as follows. We introduce the operational semantics of static location in Section 5.1, distributed BATC[image: Image] in Section 5.2, distributed APTC[image: Image] in Section 5.3, recursion in Section 5.4, abstraction in Section 5.5.
5.1 Static location bisimulations
Let Loc be the set of locations, and u,v∈Loc⁎[image: Image]. Let ≪ be the sequential ordering on Loc⁎[image: Image], we call v is an extension or a sublocation of u in u≪v[image: Image]; and if u≪̸v[image: Image] v≪̸u[image: Image], then u and v are independent and denoted u⋄v[image: Image].

Definition 5.1 
Consistent location association
A relation φ⊆(Loc⁎×Loc⁎)[image: Image] is a consistent location association (cla), if (u,v)∈φ&(u′,v′)∈φ[image: Image], then u⋄u′⇔v⋄v′[image: Image].




Definition 5.2 
Static location pomset, step bisimulation
Let E1[image: Image], E2[image: Image] be PESs. A static location pomset bisimulation is a relation Rφ⊆C(E1)×C(E2)[image: Image], such that if (C1,C2)∈Rφ[image: Image], and C1→uX1C1′[image: Image] then C2→vX2C2′[image: Image], with X1⊆E1[image: Image], X2⊆E2[image: Image], X1∼X2[image: Image], and (C1′,C2′)∈Rφ∪{(u,v)}[image: Image], and vice-versa. We say that E1[image: Image], E2[image: Image] are static location pomset bisimilar, written E1∼pslE2[image: Image], if there exists a static location pomset bisimulation Rφ[image: Image], such that (∅,∅)∈Rφ[image: Image]. By replacing pomset transitions with steps, we can get the definition of static location step bisimulation. When PESs E1[image: Image] and E2[image: Image] are static location step bisimilar, we write E1∼sslE2[image: Image].




Definition 5.3 
Static location (hereditary) history-preserving bisimulation
A static location history-preserving (hp-)bisimulation is a posetal relation Rφ⊆C(E1)×‾C(E2)[image: Image] such that if (C1,f,C2)∈Rφ[image: Image], and C1→ue1C1′[image: Image], then C2→ve2C2′[image: Image], with (C1′,f[e1↦e2],C2′)∈Rφ∪{(u,v)}[image: Image], and vice-versa. E1,E2[image: Image] are static location history-preserving (hp-)bisimilar and are written E1∼hpslE2[image: Image] if there exists a static location hp-bisimulation Rφ[image: Image] such that (∅,∅,∅)∈Rφ[image: Image].
A static location hereditary history-preserving (hhp-)bisimulation is a downward closed static location hp-bisimulation. E1,E2[image: Image] are static location hereditary history-preserving (hhp-)bisimilar and are written E1∼hhpslE2[image: Image].




Definition 5.4 
Weak static location pomset, step bisimulation
Let E1[image: Image], E2[image: Image] be PESs. A weak static location pomset bisimulation is a relation Rφ⊆C(E1)×C(E2)[image: Image], such that if (C1,C2)∈Rφ[image: Image], and C1⇒uX1C1′[image: Image] then C2⇒vX2C2′[image: Image], with X1⊆E1ˆ[image: Image], X2⊆E2ˆ[image: Image], X1∼X2[image: Image], and (C1′,C2′)∈Rφ∪{(u,v)}[image: Image], and vice-versa. We say that E1[image: Image], E2[image: Image] are weak static location pomset bisimilar, written E1≈pslE2[image: Image], if there exists a weak static location pomset bisimulation Rφ[image: Image], such that (∅,∅)∈Rφ[image: Image]. By replacing weak pomset transitions with weak steps, we can get the definition of weak static location step bisimulation. When PESs E1[image: Image] and E2[image: Image] are weak static location step bisimilar, we write E1≈sslE2[image: Image].




Definition 5.5 
Weak static location (hereditary) history-preserving bisimulation
A weak static location history-preserving (hp-)bisimulation is a weakly posetal relation Rφ⊆C(E1)×‾C(E2)[image: Image] such that if (C1,f,C2)∈Rφ[image: Image], and C1⇒ue1C1′[image: Image], then C2⇒ve2C2′[image: Image], with (C1′,f[e1↦e2],C2′)∈Rφ∪{(u,v)}[image: Image], and vice-versa. E1,E2[image: Image] are weak static location history-preserving (hp-)bisimilar and are written E1≈hpslE2[image: Image] if there exists a weak static location hp-bisimulation Rφ[image: Image] such that (∅,∅,∅)∈Rφ[image: Image].
A weak static location hereditary history-preserving (hhp-)bisimulation is a downward closed weak static location hp-bisimulation. E1,E2[image: Image] are weak static location hereditary history-preserving (hhp-)bisimilar and are written E1≈hhpslE2[image: Image].




Definition 5.6 
Branching static location pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A branching static location pomset bisimulation is a relation Rφ⊆C(E1)×C(E2)[image: Image], such that:
	1.  if (C1,C2)∈Rφ[image: Image], and C1→uXC1′[image: Image] then	•  either X≡τ⁎[image: Image], and (C1′,C2)∈Rφ[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image], such that (C1,C20)∈Rφ[image: Image] and C20⇒vXC2′[image: Image] with (C1′,C2′)∈Rφ∪{(u,v)}[image: Image];


	2.  if (C1,C2)∈Rφ[image: Image], and C2→vXC2′[image: Image] then	•  either X≡τ⁎[image: Image], and (C1,C2′)∈Rφ[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image], such that (C10,C2)∈Rφ[image: Image] and C10⇒uXC1′[image: Image] with (C1′,C2′)∈Rφ∪{(u,v)}[image: Image];


	3.  if (C1,C2)∈Rφ[image: Image] and C1↓[image: Image], then there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image] such that (C1,C20)∈Rφ[image: Image] and C20↓[image: Image];
	4.  if (C1,C2)∈Rφ[image: Image] and C2↓[image: Image], then there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image] such that (C10,C2)∈Rφ[image: Image] and C10↓[image: Image].



We say that E1[image: Image], E2[image: Image] are branching static location pomset bisimilar, written E1≈bpslE2[image: Image], if there exists a branching static location pomset bisimulation Rφ[image: Image], such that (∅,∅)∈Rφ[image: Image].
By replacing pomset transitions with steps, we can get the definition of branching static location step bisimulation. When PESs E1[image: Image] and E2[image: Image] are branching static location step bisimilar, we write E1≈bsslE2[image: Image].




Definition 5.7 
Rooted branching static location pomset, step bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. Let E1[image: Image], E2[image: Image] be PESs. A rooted branching static location pomset bisimulation is a relation Rφ⊆C(E1)×C(E2)[image: Image], such that:
	1.  if (C1,C2)∈Rφ[image: Image], and C1→uXC1′[image: Image] then C2→vXC2′[image: Image] with C1′≈bpslC2′[image: Image];
	2.  if (C1,C2)∈Rφ[image: Image], and C2→vXC2′[image: Image] then C1→uXC1′[image: Image] with C1′≈bpslC2′[image: Image];
	3.  if (C1,C2)∈Rφ[image: Image] and C1↓[image: Image], then C2↓[image: Image];
	4.  if (C1,C2)∈Rφ[image: Image] and C2↓[image: Image], then C1↓[image: Image].



We say that E1[image: Image], E2[image: Image] are rooted branching static location pomset bisimilar, written E1≈rbpslE2[image: Image], if there exists a rooted branching static location pomset bisimulation Rφ[image: Image], such that (∅,∅)∈Rφ[image: Image].
By replacing pomset transitions with steps, we can get the definition of rooted branching static location step bisimulation. When PESs E1[image: Image] and E2[image: Image] are rooted branching static location step bisimilar, we write E1≈rbsslE2[image: Image].




Definition 5.8 
Branching static location (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A branching static location history-preserving (hp-)bisimulation is a posetal relation Rφ⊆C(E1)×‾C(E2)[image: Image] such that:
	1.  if (C1,f,C2)∈R[image: Image], and C1→ue1C1′[image: Image] then	•  either e1≡τ[image: Image], and (C1′,f[e1↦τ],C2)∈Rφ[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image], such that (C1,f,C20)∈Rφ[image: Image] and C20→ve2C2′[image: Image] with (C1′,f[e1↦e2],C2′)∈Rφ∪{(u,v)}[image: Image];


	2.  if (C1,f,C2)∈Rφ[image: Image], and C2→ve2C2′[image: Image] then	•  either X≡τ[image: Image], and (C1,f[e2↦τ],C2′)∈Rφ[image: Image];
	•  or there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image], such that (C10,f,C2)∈Rφ[image: Image] and C10→ue1C1′[image: Image] with (C1′,f[e2↦e1],C2′)∈Rφ∪{(u,v)}[image: Image];


	3.  if (C1,f,C2)∈Rφ[image: Image] and C1↓[image: Image], then there is a sequence of (zero or more) τ-transitions C2→τ⁎C20[image: Image] such that (C1,f,C20)∈Rφ[image: Image] and C20↓[image: Image];
	4.  if (C1,f,C2)∈Rφ[image: Image] and C2↓[image: Image], then there is a sequence of (zero or more) τ-transitions C1→τ⁎C10[image: Image] such that (C10,f,C2)∈Rφ[image: Image] and C10↓[image: Image].



E1,E2[image: Image] are branching static location history-preserving (hp-)bisimilar and are written E1≈bhpslE2[image: Image] if there exists a branching static location hp-bisimulation Rφ[image: Image] such that (∅,∅,∅)∈Rφ[image: Image].
A branching static location hereditary history-preserving (hhp-)bisimulation is a downward closed branching static location hhp-bisimulation. E1,E2[image: Image] are branching static location hereditary history-preserving (hhp-)bisimilar and are written E1≈bhhpslE2[image: Image]. 




Definition 5.9 
Rooted branching static location (hereditary) history-preserving bisimulation
Assume a special termination predicate ↓, and let √ represent a state with √↓. A rooted branching static location history-preserving (hp-)bisimulation is a posetal relation Rφ⊆C(E1)×‾C(E2)[image: Image] such that:
	1.  if (C1,f,C2)∈Rφ[image: Image], and C1→ue1C1′[image: Image], then C2→ve2C2′[image: Image] with C1′≈bhpslC2′[image: Image];
	2.  if (C1,f,C2)∈Rφ[image: Image], and C2→ve2C2′[image: Image], then C1→ue1C1′[image: Image] with C1′≈bhpslC2′[image: Image];
	3.  if (C1,f,C2)∈Rφ[image: Image] and C1↓[image: Image], then C2↓[image: Image];
	4.  if (C1,f,C2)∈Rφ[image: Image] and C2↓[image: Image], then C1↓[image: Image].



E1,E2[image: Image] are rooted branching static location history-preserving (hp-)bisimilar and are written E1≈rbhpslE2[image: Image] if there exists a rooted branching static location hp-bisimulation Rφ[image: Image] such that (∅,∅,∅)∈Rφ[image: Image].
A rooted branching static location hereditary history-preserving (hhp-)bisimulation is a downward closed rooted branching static location hp-bisimulation. E1,E2[image: Image] are rooted branching static location hereditary history-preserving (hhp-)bisimilar and are written E1≈rbhhpslE2[image: Image].



5.2 BATC with static localities
Let Loc be the set of locations, and loc∈Loc[image: Image], u,v∈Loc⁎[image: Image], ϵ is the empty location. A distribution allocates a location u∈Loc⁎[image: Image] to an action e denoted u::e[image: Image] or a process x denoted u::x[image: Image].
In the following, let e1,e2,e1′,e2′∈E[image: Image], and let variables x,y,z[image: Image] range over the set of terms for true concurrency, p,q,s[image: Image] range over the set of closed terms. The set of axioms of BATC with static localities (BATCsl[image: Image]) consists of the laws given in Table 5.1.
Table 5.1
Axioms of BATC with static localities.	No.	Axiom
	A1	x + y = y + x
	A2	(x + y)+z = x + (y + z)
	A3	x + x = x
	A4	(x + y)⋅z = x ⋅ z + y ⋅ z
	A5	(x ⋅ y)⋅z = x ⋅ (y ⋅ z)
	L1	ϵ::x = x
	L2	u::(x ⋅ y)=u::x ⋅ u::y
	L3	u::(x + y)=u::x + u::y
	L4	u::(v::x)=uv::x



Definition 5.10 
Basic terms of BATC with static localities
The set of basic terms of BATC with static localities, B(BATCsl)[image: Image], is inductively defined as follows:
	1.  E⊂B(BATCsl)[image: Image];
	2.  if u∈Loc⁎,t∈B(BATCsl)[image: Image] then u::t∈B(BATCsl)[image: Image];
	3.  if e∈E,t∈B(BATCsl)[image: Image] then e⋅t∈B(BATCsl)[image: Image];
	4.  if t,s∈B(BATCsl)[image: Image] then t+s∈B(BATCsl)[image: Image].







Theorem 5.11 
Elimination theorem of BATC with static localities
Let p be a closed BATC with static localities term. Then there is a basic BATC with static localities term q such that BATCsl⊢p=q[image: Image].



In this subsection, we will define a term-deduction system which gives the operational semantics of BATC with static localities. We give the operational transition rules for operators ⋅ and + as Table 5.2 shows. And the predicate →ue√[image: Image] represents successful termination after execution of the event e at the location u.
Table 5.2
Single event transition rules of BATC with static localities.	e→ϵe√loc::e→loce√[image: Image]
	
	x→uex′loc::x→loc≪ueloc::x′[image: Image]
	
	x→ue√x+y→ue√x→uex′x+y→uex′y→ue√x+y→ue√y→uey′x+y→uey′[image: Image]
	
	x→ue√x⋅y→ueyx→uex′x⋅y→uex′⋅y[image: Image]



Theorem 5.12 
Congruence of BATC with static localities with respect to static location pomset bisimulation equivalence
Static location pomset bisimulation equivalence ∼psl[image: Image] is a congruence with respect to BATC with static localities.




Theorem 5.13 
Soundness of BATC with static localities modulo static location pomset bisimulation equivalence
Let x and y be BATC with static localities terms. If BATCsl⊢x=y[image: Image], then x∼psly[image: Image].




Theorem 5.14 
Completeness of BATC with static localities modulo static location pomset bisimulation equivalence
Let p and q be closed BATC with static localities terms, if p∼pslq[image: Image] then p=q[image: Image].




Theorem 5.15 
Congruence of BATC with static localities with respect to static location step bisimulation equivalence
Static location step bisimulation equivalence ∼ssl[image: Image] is a congruence with respect to BATC with static localities. 




Theorem 5.16 
Soundness of BATC with static localities modulo static location step bisimulation equivalence
Let x and y be BATC with static localities terms. If BATCsl⊢x=y[image: Image], then x∼ssly[image: Image].




Theorem 5.17 
Completeness of BATC with static localities modulo static location step bisimulation equivalence
Let p and q be closed BATC with static localities terms, if p∼sslq[image: Image] then p=q[image: Image].




Theorem 5.18 
Congruence of BATC with static localities with respect to static location hp-bisimulation equivalence
Static location hp-bisimulation equivalence ∼hpsl[image: Image] is a congruence with respect to BATC with static localities.




Theorem 5.19 
Soundness of BATC with static localities modulo static location hp-bisimulation equivalence
Let x and y be BATC with static localities terms. If BATCsl⊢x=y[image: Image], then x∼hpsly[image: Image].




Theorem 5.20 
Completeness of BATC with static localities modulo static location hp-bisimulation equivalence
Let p and q be closed BATC with static localities terms, if p∼hpslq[image: Image] then p=q[image: Image].




Theorem 5.21 
Congruence of BATC with static localities with respect to static location hhp-bisimulation equivalence
Static location hhp-bisimulation equivalence ∼hhpsl[image: Image] is a congruence with respect to BATC with static localities.




Theorem 5.22 
Soundness of BATC with static localities modulo static location hhp-bisimulation equivalence
Let x and y be BATC with static localities terms. If BATCsl⊢x=y[image: Image], then x∼hhpsly[image: Image].




Theorem 5.23 
Completeness of BATC with static localities modulo static location hhp-bisimulation equivalence
Let p and q be closed BATC with static localities terms, if p∼hhpslq[image: Image] then p=q[image: Image].



5.3 APTC with static localities
We give the transition rules of APTC with static localities as Table 5.3 shows.
Table 5.3
Transition rules of APTC with static localities.	x→ue1√y→ve2√x∥y→u⋄v{e1,e2}√x→ue1x′y→ve2√x∥y→u⋄v{e1,e2}x′[image: Image]
	
	x→ue1√y→ve2y′x∥y→u⋄v{e1,e2}y′x→ue1x′y→ve2y′x∥y→u⋄v{e1,e2}x′≬y′[image: Image]
	
	[image: Image]
	
	[image: Image]
	
	x→ue1√y→ve2√x|y→u⋄vγ(e1,e2)√x→ue1x′y→ve2√x|y→u⋄vγ(e1,e2)x′[image: Image]
	
	x→ue1√y→ve2y′x|y→u⋄vγ(e1,e2)y′x→ue1x′y→ve2y′x|y→u⋄vγ(e1,e2)x′≬y′[image: Image]
	
	x→ue1√(♯(e1,e2))Θ(x)→ue1√x→ue2√(♯(e1,e2))Θ(x)→ue2√[image: Image]
	
	x→ue1x′(♯(e1,e2))Θ(x)→ue1Θ(x′)x→ue2x′(♯(e1,e2))Θ(x)→ue2Θ(x′)[image: Image]
	
	x→ue1√y↛e2(♯(e1,e2))x◃y→uτ√x→ue1x′y↛e2(♯(e1,e2))x◃y→uτx′[image: Image]
	
	x→ue1√y↛e3(♯(e1,e2),e2⩽e3)x◃y→uτ√x→ue1x′y↛e3(♯(e1,e2),e2⩽e3)x◃y→uτx′[image: Image]
	
	x→ue3√y↛e2(♯(e1,e2),e1⩽e3)x◃y→uτ√x→ue3x′y↛e2(♯(e1,e2),e1⩽e3)x◃y→uτx′[image: Image]


We define the basic terms for APTC with static localities.

Definition 5.24 
Basic terms of APTC with static localities
The set of basic terms of APTC with static localities, B(APTCsl)[image: Image], is inductively defined as follows:
	1.  E⊂B(APTCsl)[image: Image];
	2.  if u∈Loc⁎,t∈B(APTCsl)[image: Image] then u::t∈B(APTCsl)[image: Image];
	3.  if e∈E,t∈B(APTCsl)[image: Image] then e⋅t∈B(APTCsl)[image: Image];
	4.  if t,s∈B(APTCsl)[image: Image] then t+s∈B(APTCsl)[image: Image];
	5.  if t,s∈B(APTCsl)[image: Image] then [image: Image]. 







Theorem 5.25 
Congruence theorem of APTC with static localities
Static location truly concurrent bisimulation equivalences ∼psl[image: Image], ∼ssl[image: Image], ∼hpsl[image: Image], and ∼hhpsl[image: Image] are all congruences with respect to APTC with static localities.



So, we design the axioms of parallelism in Table 5.4, including algebraic laws for parallel operator ∥, communication operator |, conflict elimination operator Θ, and unless operator ◃, and also the whole parallel operator ≬. Since the communication between two communicating events in different parallel branches may cause deadlock (a state of inactivity), which is caused by mismatch of two communicating events or the imperfectness of the communication channel. We introduce a new constant δ to denote the deadlock, and let the atomic event e∈E∪{δ}[image: Image].
Table 5.4
Axioms of parallelism.	No.	Axiom
	A6	x + δ = x
	A7	δ ⋅ x = δ
	P1	x≬y = x∥y + x|y
	P2	x∥y = y∥x
	P3	(x∥y)∥z = x∥(y∥z)
	P4	[image: Image]
	P5	[image: Image]
	P6	[image: Image]
	P7	[image: Image]
	P8	[image: Image]
	P9	[image: Image]
	C1	e1|e2 = γ(e1,e2)
	C2	e1|(e2 ⋅ y)=γ(e1,e2)⋅y
	C3	(e1 ⋅ x)|e2 = γ(e1,e2)⋅x
	C4	(e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)
	C5	(x + y)|z = (x|z)+(y|z)
	C6	x|(y + z)=(x|y)+(x|z)
	C7	δ|x = δ
	C8	x|δ = δ
	CE1	Θ(e)=e
	CE2	Θ(δ)=δ
	CE3	Θ(x + y)=Θ(x)+Θ(y)
	CE4	Θ(x ⋅ y)=Θ(x)⋅Θ(y)
	CE5	Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)
	CE6	Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)
	U1	(♯(e1,e2))e1◃e2 = τ
	U2	(♯(e1,e2),e2 ⩽ e3)e1◃e3 = τ
	U3	(♯(e1,e2),e2 ⩽ e3)e3◃e1 = τ
	U4	e◃δ = e
	U5	δ◃e = δ
	U6	(x + y)◃z = (x◃z)+(y◃z)
	U7	(x ⋅ y)◃z = (x◃z)⋅(y◃z)
	U8	[image: Image]
	U9	(x|y)◃z = (x◃z)|(y◃z)
	U10	x◃(y + z)=(x◃y)◃z
	U11	x◃(y ⋅ z)=(x◃y)◃z
	U12	[image: Image]
	U13	x◃(y|z)=(x◃y)◃z
	L5	u::(x≬y)=u::x≬u::y
	L6	u::(x∥y)=u::x∥u::y
	L7	u::(x|y)=u::x|u::y
	L8	u::(Θ(x))=Θ(u::x)
	L9	u::(x◃y)=u::x◃u::y
	L10	u::δ = δ


Based on the definition of basic terms for APTC with static localities (see Definition 5.24) and axioms of parallelism (see Table 5.4), we can prove the elimination theorem of parallelism.

Theorem 5.26 
Elimination theorem of parallelism
Let p be a closed APTC with static localities term. Then there is a basic APTC with static localities term q such that APTCsl⊢p=q[image: Image].




Theorem 5.27 
Generalization of APTC with static localities with respect to BATC with static localities
APTC with static localities is a generalization of BATC with static localities.




Theorem 5.28 
Soundness of APTC with static localities modulo static location pomset bisimulation equivalence
Let x and y be APTC with static localities terms. If APTCsl⊢x=y[image: Image], then x∼psly[image: Image].




Theorem 5.29 
Completeness of APTC with static localities modulo static location pomset bisimulation equivalence
Let p and q be closed APTC with static localities terms, if p∼pslq[image: Image] then p=q[image: Image].




Theorem 5.30 
Soundness of APTC with static localities modulo static location step bisimulation equivalence
Let x and y be APTC with static localities terms. If APTCsl⊢x=y[image: Image], then x∼ssly[image: Image].




Theorem 5.31 
Completeness of APTC with static localities modulo static location step bisimulation equivalence
Let p and q be closed APTC with static localities terms, if p∼sslq[image: Image] then p=q[image: Image].




Theorem 5.32 
Soundness of APTC with static localities modulo static location hp-bisimulation equivalence
Let x and y be APTC with static localities terms. If APTCsl⊢x=y[image: Image], then x∼hpsly[image: Image].




Theorem 5.33 
Completeness of APTC with static localities modulo static location hp-bisimulation equivalence
Let p and q be closed APTC with static localities terms, if p∼hpslq[image: Image] then p=q[image: Image].




Theorem 5.34 
Soundness of APTC with static localities modulo static location hhp-bisimulation equivalence
Let x and y be APTC with static localities terms. If APTCsl⊢x=y[image: Image], then x∼hhpsly[image: Image].




Theorem 5.35 
Completeness of APTC with static localities modulo static location hhp-bisimulation equivalence
Let p and q be closed APTC with static localities terms, if p∼hhpslq[image: Image] then p=q[image: Image]. 



The transition rules of encapsulation operator ∂H[image: Image] are shown in Table 5.5.
Table 5.5
Transition rules of encapsulation operator ∂H.	x→ue√∂H(x)→ue√(e∉H)x→uex′∂H(x)→ue∂H(x′)(e∉H)[image: Image]


Based on the transition rules for encapsulation operator ∂H[image: Image] in Table 5.5, we design the axioms as Table 5.6 shows.
Table 5.6
Axioms of encapsulation operator.	No.	Axiom
	D1	e ∉ H∂H(e)=e
	D2	e ∈ H∂H(e)=δ
	D3	∂H(δ)=δ
	D4	∂H(x + y)=∂H(x)+∂H(y)
	D5	∂H(x ⋅ y)=∂H(x)⋅∂H(y)
	D6	[image: Image]
	L11	u::∂H(x)=∂H(u::x)



Theorem 5.36 
Congruence theorem of encapsulation operator ∂H[image: Image]
Static location truly concurrent bisimulation equivalences ∼psl[image: Image], ∼ssl[image: Image], ∼hpsl[image: Image], and ∼hhpsl[image: Image] are all congruences with respect to encapsulation operator ∂H[image: Image].




Theorem 5.37 
Elimination theorem of APTC with static localities
Let p be a closed APTC with static localities term including the encapsulation operator ∂H[image: Image]. Then there is a basic APTC with static localities term q such that APTC⊢p=q[image: Image].




Theorem 5.38 
Soundness of APTC with static localities modulo static location pomset bisimulation equivalence
Let x and y be APTC with static localities terms including encapsulation operator ∂H[image: Image]. If APTCsl⊢x=y[image: Image], then x∼psly[image: Image].




Theorem 5.39 
Completeness of APTC with static localities modulo static location pomset bisimulation equivalence
Let p and q be closed APTC with static localities terms including encapsulation operator ∂H[image: Image], if p∼pslq[image: Image] then p=q[image: Image].




Theorem 5.40 
Soundness of APTC with static localities modulo static location step bisimulation equivalence
Let x and y be APTC with static localities terms including encapsulation operator ∂H[image: Image]. If APTCsl⊢x=y[image: Image], then x∼ssly[image: Image].




Theorem 5.41 
Completeness of APTC with static localities modulo static location step bisimulation equivalence
Let p and q be closed APTC with static localities terms including encapsulation operator ∂H[image: Image], if p∼sslq[image: Image] then p=q[image: Image]. 




Theorem 5.42 
Soundness of APTC with static localities modulo static location hp-bisimulation equivalence
Let x and y be APTC with static localities terms including encapsulation operator ∂H[image: Image]. If APTCsl⊢x=y[image: Image], then x∼hpsly[image: Image].




Theorem 5.43 
Completeness of APTC with static localities modulo static location hp-bisimulation equivalence
Let p and q be closed APTC with static localities terms including encapsulation operator ∂H[image: Image], if p∼hpslq[image: Image] then p=q[image: Image].




Theorem 5.44 
Soundness of APTC with static localities modulo static location hhp-bisimulation equivalence
Let x and y be APTC with static localities terms including encapsulation operator ∂H[image: Image]. If APTCsl⊢x=y[image: Image], then x∼hhpsly[image: Image].




Theorem 5.45 
Completeness of APTC with static localities modulo static location hhp-bisimulation equivalence
Let p and q be closed APTC with static localities terms including encapsulation operator ∂H[image: Image], if p∼hhpslq[image: Image] then p=q[image: Image].



5.4 Recursion
In this section, we introduce recursion to capture infinite processes based on APTC with static localities. Since in APTC with static localities, there are four basic operators ::, ⋅, +, and [image: Image], the recursion must be adapted this situation to include [image: Image].
In the following, E,F,G[image: Image] are recursion specifications, X,Y,Z[image: Image] are recursive variables.

Definition 5.46 
Recursive specification
A recursive specification is a finite set of recursive equations
X1=t1(X1,⋯,Xn)⋯Xn=tn(X1,⋯,Xn)
[image: Image]

 where the left-hand sides of Xi[image: Image] are called recursion variables, and the right-hand sides ti(X1,⋯,Xn)[image: Image] are process terms in APTC with static localities with possible occurrences of the recursion variables X1,⋯,Xn[image: Image].




Definition 5.47 
Solution
Processes p1,⋯,pn[image: Image] are a solution for a recursive specification {Xi=ti(X1,⋯,Xn)|i∈{1,⋯,n}}[image: Image] (with respect to static location truly concurrent bisimulation equivalences ∼ssl[image: Image](∼psl[image: Image], ∼hpsl[image: Image], ∼hhpsl[image: Image])) if pi∼ssl(∼psl,∼hpsl,∼hhpsl)ti(p1,⋯,pn)[image: Image] for i∈{1,⋯,n}[image: Image].




Definition 5.48 
Guarded recursive specification
A recursive specification
X1=t1(X1,⋯,Xn)...Xn=tn(X1,⋯,Xn)
[image: Image]

is guarded if the right-hand sides of its recursive equations can be adapted to the form by applications of the axioms in APTC with static localities and replacing recursion variables by the right-hand sides of their recursive equations,
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.




Definition 5.49 
Linear recursive specification
A recursive specification is linear if its recursive equations are of the form
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.



For a guarded recursive specifications E with the form
X1=t1(X1,⋯,Xn)⋯Xn=tn(X1,⋯,Xn)
[image: Image]

 the behavior of the solution 〈Xi|E〉[image: Image] for the recursion variable Xi[image: Image] in E, where i∈{1,⋯,n}[image: Image], is exactly the behavior of their right-hand sides ti(X1,⋯,Xn)[image: Image], which is captured by the two transition rules in Table 5.7.
Table 5.7
Transition rules of guarded recursion.	ti(〈X1|E〉,⋯,〈Xn|E〉)→u{e1,⋯,ek}√〈Xi|E〉→u{e1,⋯,ek}√[image: Image]
	
	ti(〈X1|E〉,⋯,〈Xn|E〉)→u{e1,⋯,ek}y〈Xi|E〉→u{e1,⋯,ek}y[image: Image]



Theorem 5.50 
Conservativity of APTC with static localities and guarded recursion
APTC with static localities and guarded recursion is a conservative extension of APTC with static localities. 




Theorem 5.51 
Congruence theorem of APTC with static localities and guarded recursion
Static location truly concurrent bisimulation equivalences ∼psl[image: Image], ∼ssl[image: Image], ∼hpsl[image: Image], and ∼hhpsl[image: Image] are all congruences with respect to APTC with static localities and guarded recursion.



The RDP (Recursive Definition Principle) and the RSP (Recursive Specification Principle) are shown in Table 5.8.
Table 5.8
Recursive definition and specification principle.	No.	Axiom
	RDP	〈Xi|E〉 = ti(〈X1|E〉,⋯,〈Xn|E〉)(i ∈ {1,⋯,n})
	RSP	if yi = ti(y1,⋯,yn) for i ∈ {1,⋯,n}, then yi = 〈Xi|E〉(i ∈ {1,⋯,n})



Theorem 5.52 
Elimination theorem of APTC with static localities and linear recursion
Each process term in APTC with static localities and linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a linear recursive specification.




Theorem 5.53 
Soundness of APTC with static localities and guarded recursion
Let x and y be APTC with static localities and guarded recursion terms. If APTC[image: Image] with guarded recursion ⊢x=y[image: Image], then
	1.  x∼ssly[image: Image];
	2.  x∼psly[image: Image];
	3.  x∼hpsly[image: Image];
	4.  x∼hhpsly[image: Image].







Theorem 5.54 
Completeness of APTC with static localities and linear recursion
Let p and q be closed APTC with static localities and linear recursion terms, then,
	1.  if p∼sslq[image: Image] then p=q[image: Image];
	2.  if p∼pslq[image: Image] then p=q[image: Image];
	3.  if p∼hpslq[image: Image] then p=q[image: Image];
	4.  if p∼hhpslq[image: Image] then p=q[image: Image].






5.5 Abstraction
To abstract away from the internal implementations of a program, and verify that the program exhibits the desired external behaviors, the silent step τ (and making τ distinct by τe[image: Image]), and abstraction operator τI[image: Image] are introduced, where I⊆E[image: Image] denotes the internal events. The silent step τ represents the internal events, when we consider the external behaviors of a process, τ events can be removed, that is, τ events must keep silent. The transition rule of τ is shown in Table 5.9. In the following, let the atomic event e range over E∪{δ}∪{τ}[image: Image], and let the communication function γ:E∪{τ}×E∪{τ}→E∪{δ}[image: Image], with each communication involved τ resulting into δ.
Table 5.9
Transition rule of the silent step.	τ→τ√[image: Image]


The silent step τ as an atomic event, is introduced into E. Considering the recursive specification X=τX[image: Image], τs, ττs, and τ⋯s[image: Image] are all its solutions, that is, the solutions make the existence of τ-loops which cause unfairness. To prevent τ-loops, we extend the definition of linear recursive specification (Definition 5.49) to the guarded one.

Definition 5.55 
Guarded linear recursive specification
A recursive specification is linear if its recursive equations are of the form
[image: Image]

 where a11,⋯,a1i1,ak1,⋯,akik,b11,⋯,b1j1,b1j1,⋯,bljl∈E∪{τ}[image: Image], and the sum above is allowed to be empty, in which case it represents the deadlock δ.
A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions 〈X|E〉→τ〈X′|E〉→τ〈X″|E〉→τ⋯[image: Image].




Theorem 5.56 
Conservativity of APTC with static localities and silent step and guarded linear recursion
APTC with static localities and silent step and guarded linear recursion is a conservative extension of APTC with static localities and linear recursion.




Theorem 5.57 
Congruence theorem of APTC with static localities and silent step and guarded linear recursion
Rooted branching static location truly concurrent bisimulation equivalences ≈rbpsl[image: Image], ≈rbssl[image: Image] and ≈rbhpsl[image: Image] are all congruences with respect to APTC with static localities and silent step and guarded linear recursion.



We design the axioms for the silent step τ in Table 5.10.
Table 5.10
Axioms of silent step.	No.	Axiom
	B1	e ⋅ τ = e
	B2	e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)
	B3	[image: Image]
	L13	u::τ = τ



Theorem 5.58 
Elimination theorem of APTC with static localities and silent step and guarded linear recursion
Each process term in APTC with static localities and silent step and guarded linear recursion is equal to a process term 〈X1|E〉[image: Image] with E a guarded linear recursive specification. 




Theorem 5.59 
Soundness of APTC with static localities and silent step and guarded linear recursion
Let x and y be APTC with static localities and silent step and guarded linear recursion terms. If APTC with static localities and silent step and guarded linear recursion ⊢x=y[image: Image], then
	1.  x≈rbssly[image: Image];
	2.  x≈rbpsly[image: Image];
	3.  x≈rbhpsly[image: Image];
	4.  x≈rbhhpsly[image: Image].







Theorem 5.60 
Completeness of APTC with static localities and silent step and guarded linear recursion
Let p and q be closed APTC with static localities and silent step and guarded linear recursion terms, then,
	1.  if p≈rbsslq[image: Image] then p=q[image: Image];
	2.  if p≈rbpslq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpslq[image: Image] then p=q[image: Image];
	4.  if p≈rbhhpslq[image: Image] then p=q[image: Image].






The unary abstraction operator τI[image: Image] (I⊆E[image: Image]) renames all atomic events in I into τ. APTC with static localities and silent step and abstraction operator is called APTCτ[image: Image] with static localities. The transition rules of operator τI[image: Image] are shown in Table 5.11.
Table 5.11
Transition rule of the abstraction operator.	x→ue√τI(x)→ue√e∉Ix→uex′τI(x)→ueτI(x′)e∉I[image: Image]
	
	x→ue√τI(x)→τ√e∈Ix→uex′τI(x)→ττI(x′)e∈I[image: Image]



Theorem 5.61 
Conservativity of APTCτ[image: Image] with static localities and guarded linear recursion
APTCτ[image: Image] with static localities and guarded linear recursion is a conservative extension of APTC with static localities and silent step and guarded linear recursion.




Theorem 5.62 
Congruence theorem of APTCτ[image: Image] with static localities and guarded linear recursion
Rooted branching static location truly concurrent bisimulation equivalences ≈rbpsl[image: Image], ≈rbssl[image: Image], ≈rbhpsl[image: Image], and ≈rbhhpsl[image: Image] are all congruences with respect to APTCτ[image: Image] with static localities and guarded linear recursion.



We design the axioms for the abstraction operator τI[image: Image] in Table 5.12.
Table 5.12
Axioms of abstraction operator.	No.	Axiom
	TI1	e ∉ IτI(e)=e
	TI2	e ∈ IτI(e)=τ
	TI3	τI(δ)=δ
	TI4	τI(x + y)=τI(x)+τI(y)
	TI5	τI(x ⋅ y)=τI(x)⋅τI(y)
	TI6	[image: Image]
	L14	u::τI(x)=τI(u::x)
	L15	e ∉ IτI(u::e)=u::e
	L16	e ∈ IτI(u::e)=τ



Theorem 5.63 
Soundness of APTCτ[image: Image] with static localities and guarded linear recursion
Let x and y be APTCτ[image: Image] with static localities and guarded linear recursion terms. If APTCτ[image: Image] with static localities and guarded linear recursion ⊢x=y[image: Image], then
	1.  x≈rbssly[image: Image];
	2.  x≈rbpsly[image: Image];
	3.  x≈rbhpsly[image: Image];
	4.  x≈rbhhpsly[image: Image].






Though τ-loops are prohibited in guarded linear recursive specifications (see Definition 5.55) in a specifiable way, they can be constructed using the abstraction operator, for example, there exist τ-loops in the process term τ{a}(〈X|X=aX〉)[image: Image]. To avoid τ-loops caused by τI[image: Image] and ensure fairness, the concept of cluster and CFAR[image: Image] (Cluster Fair Abstraction Rule) [25] are still valid in true concurrency, we introduce them below. (See Table 5.13.)
Table 5.13
Cluster fair abstraction rule.	No.	Axiom
	CFAR	If X is in a cluster for I with exits
	[image: Image],
	[image: Image],
	then τ ⋅ τI(〈X|E〉)=
	[image: Image]
	[image: Image]


[image: Image]



Definition 5.64 
Cluster
Let E be a guarded linear recursive specification, and I⊆E[image: Image]. Two recursion variable X and Y in E are in the same cluster for I iff there exist sequences of transitions 〈X|E〉→u{b11,⋯,b1i}⋯[u]→{bm1,⋯,bmi}〈Y|E〉[image: Image] and 〈Y|E〉→v{c11,⋯,c1j}⋯→v{cn1,⋯,cnj}〈X|E〉[image: Image], where b11,⋯,bmi,c11,⋯,cnj∈I∪{τ}[image: Image].
[image: Image] or [image: Image] is an exit for the cluster C iff: (1) [image: Image] or [image: Image] is a summand at the right-hand side of the recursive equation for a recursion variable in C, and (2) in the case of [image: Image], either al∉I∪{τ}(l∈{1,2,⋯,k})[image: Image] or X∉C[image: Image]. 




Theorem 5.65 
Soundness of CFAR[image: Image]
CFAR[image: Image] is sound modulo rooted branching truly concurrent bisimulation equivalences ≈rbssl[image: Image], ≈rbpsl[image: Image], ≈rbhpsl[image: Image], and ≈rbhhpsl[image: Image].




Theorem 5.66 
Completeness of APTCτ[image: Image] with static localities and guarded linear recursion and CFAR[image: Image]
Let p and q be closed APTCτ[image: Image] with static localities and guarded linear recursion and CFAR[image: Image] terms, then,
	1.  if p≈rbsslq[image: Image] then p=q[image: Image];
	2.  if p≈rbpslq[image: Image] then p=q[image: Image];
	3.  if p≈rbhpslq[image: Image] then p=q[image: Image];
	4.  if p≈rbhhpslq[image: Image] then p=q[image: Image].
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6: Building blocks based structured parallel programming
Abstract
This is an introduction to building blocks based structured parallel programming.

Keywords
Building Blocks; Parallelism; Parallel Programming
We will discuss the usual usage case in parallel programming, then introduce the so-called building block and building blocks based parallel programming.
6.1 Orchestration and choreography
In Chapter 2, we have discussed the structured and unstructured parallelism in true concurrency. The usual usage case in parallel computing is illustrated in Fig. 6.1. There are two aspects in this case: orchestration and choreography. Orchestration contains a control flow of atomic actions, including ordinary atomic actions and communicating actions, and interacts with outside through the communicating actions. While choreography defines the interactions among the involved parties.
[image: Image]Figure 6.1 Orchestration and choreography.
Usually, the orchestration is encapsulated as an object, or a thread, or an application process, or a remote process, or a distributed object, or a distributed application, as the two smaller dashed squares in Fig. 6.1 illustrate.
The choreography defines the communications among the orchestrations, and corresponding communications are object call, communication among threads, communication among processes, remote process call, distributed object call, and distributed communications (may be synchronous or asynchronous). And also the choreography can be encapsulated as an entity, such as an object, a thread, a process, a remote process, a distributed object, and a distributed application, as the biggest dashed square in Fig. 6.1 illustrates.
6.2 The building block in parallel programming
According to the above analyses, both the orchestration and the choreography can be encapsulated as an entity which is called building block in parallel programming, as Fig. 6.2 illustrates. The building block interacts with the outside through m inputs and n outputs, and encapsulates a control flow inside.
[image: Image]Figure 6.2 The building block.
The typical process is as follows.
	1.  The building block receives the input dIi[image: Image] from the outside through the channel Ii[image: Image] (the corresponding reading action is denoted rIi(dIi)[image: Image]);
	2.  Then it processes the input and generates the output dOi[image: Image] through a processing function BBFi[image: Image];
	3.  Then it sends the output to the outside through the channel Oi[image: Image] (the corresponding sending action is denoted sOi(dOi)[image: Image]).



We assume all data elements dIi[image: Image], dOi[image: Image] for 1⩽i⩽n[image: Image] are from a finite set Δ.
The state transitions of the building block described by APTC are as follows.
BB=∑dI1,⋯,dIn∈Δ(rI1(dI1)≬⋯≬rIm(dIm)⋅BB2)[image: Image]
BB2=BBF1≬⋯≬BBFn⋅BB3[image: Image]
BB3=∑dO1,⋯,dOn∈Δ(sO1(dO1)≬⋯≬sOn(dOn)⋅BB)[image: Image]
There are no communications in the building block.
Let all modules be in parallel, then the building block BB can be presented by the following process term. 
τI(∂H(Θ(BB)))=τI(∂H(BB))[image: Image]
where H=∅[image: Image], I={BBFi}[image: Image] for 1⩽i⩽n[image: Image].
Then we get the following conclusion on the building block.

Theorem 6.1 
Correctness of the building block
The building block τI(∂H(BB))[image: Image] can exhibit desired external behaviors.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTC, we can prove that
τI(∂H(BB))=∑dI1,dO1,⋯,dIm,dOn∈Δ(rI1(dI1)∥⋯∥rIm(dIm)⋅sO1(dO1)∥⋯∥sOn(dOn))⋅τI(∂H(BB))[image: Image],
that is, the building block τI(∂H(BB))[image: Image] can exhibit desired external behaviors.
For the details of proof, please refer to Section 3.10, and we omit it. □



6.3 Building blocks based parallel programming
After the building blocks (may be encapsulated orchestrations or encapsulated choreographies) are defined, the parallel programming becomes choreography among these building blocks, and then the integrated choreography maybe encapsulated as a new bigger building block. As Fig. 6.1 illustrates, the left orchestration is encapsulated as a building block (BB1), the right orchestration is encapsulated as another building block (BB2), and the choreography between BB1 and BB2 is encapsulated as the third building block (BB3).
Without loss of generality, we explain the building block based parallel programming through the example in Fig. 6.1. The process of Fig. 6.1 is as follows.
	1.  The building block BB1 receives the input dI1[image: Image] from the outside through the channel I1[image: Image] (the corresponding reading action is denoted rI1(dI1)[image: Image]), then after an inner processing function BB1F1[image: Image], generates the output data dO1[image: Image], and sends it to BB2 through the channel O1[image: Image] (the corresponding sending action is denoted sO1(dO1)[image: Image]);
	2.  The building block BB2 receives the input dO1[image: Image] from BB1 through the channel O1[image: Image] (the corresponding reading action is denoted rO1(dO1)[image: Image]), then after an inner processing function BB2F1[image: Image], generates the output data dO5[image: Image], and sends it to BB1 through the channel O5[image: Image] (the corresponding sending action is denoted sO5(dO5)[image: Image]);
	3.  BB1 receives the input dO5[image: Image] from BB2 through the channel O5[image: Image] (the corresponding reading action is denoted rO5(dO5)[image: Image]), then after an inner processing function BB1F2[image: Image], generates the output data dO3[image: Image], and sends it to BB2 through the channel O3[image: Image] (the corresponding sending action is denoted sO3(dO3)[image: Image]);
	4.  BB2 receives the input dO3[image: Image] from BB1 through the channel O3[image: Image] (the corresponding reading action is denoted rO3(dO3)[image: Image]), then after an inner processing function BB2F2[image: Image], generates the output data dO6[image: Image], and sends it to the outside through the channel O6[image: Image] (the corresponding sending action is denoted sO6(dO6)[image: Image]). 



We assume all data elements dIi[image: Image], dOi[image: Image] for 1⩽i⩽6[image: Image] are from a finite set Δ.
The state transitions of the building block BB1 described by APTC are as follows.
BB1=∑dI1∈ΔrI1(dI1)⋅BB12[image: Image]
BB12=BB1F1⋅BB13[image: Image]
BB13=∑dO1∈ΔsO1(dO1)⋅BB14[image: Image]
BB14=rO5(dO5)⋅BB15)[image: Image]
BB15=BB1F2⋅BB16[image: Image]
BB16=sO3(dO3)⋅BB1[image: Image]
There is no communications in the building block BB1.
Let all modules be in parallel, then the building block BB1 can be presented by the following process term.
τI(∂H(Θ(BB1)))=τI(∂H(BB1))[image: Image]
where H1=∅[image: Image], I1={BB1Fi}[image: Image] for 1⩽i⩽2[image: Image].
Then we get the following conclusion on the building block BB1.

Theorem 6.2 
Correctness of the building block BB1
The building block BB1 τI1(∂H1(BB1))[image: Image] can exhibit desired external behaviors.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTC, we can prove that
τI1(∂H1(BB1))=∑dI1,dO1,dO5,dO3∈Δ(rI1(dI1)⋅sO1(dO1)⋅rO5(dO5)⋅sO3(dO3))⋅τI1(∂H1(BB1))[image: Image],
that is, the building block BB1 τI1(∂H1(BB1))[image: Image] can exhibit desired external behaviors.
For the details of proof, please refer to Section 3.10, and we omit it. □



The state transitions of the building block BB2 described by APTC are as follows.
BB2=∑dO1∈ΔrO1(dO1)⋅BB22[image: Image]
BB22=BB2F1⋅BB23[image: Image]
BB23=∑dO5∈ΔsO5(dO5)⋅BB24[image: Image]
BB24=rO3(dO3)⋅BB25)[image: Image]
BB25=BB2F2⋅BB26[image: Image]
BB26=sO6(dO6)⋅BB2[image: Image]
There is no communications in the building block BB2.
Let all modules be in parallel, then the building block BB2 can be presented by the following process term.
τI(∂H(Θ(BB2)))=τI(∂H(BB2))[image: Image]
where H2=∅[image: Image], I2={BB2Fi}[image: Image] for 1⩽i⩽2[image: Image].
Then we get the following conclusion on the building block BB2.

Theorem 6.3 
Correctness of the building block BB2
The building block BB2 τI2(∂H2(BB2))[image: Image] can exhibit desired external behaviors.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTC, we can prove that
τI2(∂H2(BB2))=∑dO1,dO5,dO3,dO6∈Δ(rO1(dO1)⋅sO5(dO5)⋅rO3(dO3)⋅sO6(dO6))⋅τI2(∂H2(BB1))[image: Image],
that is, the building block BB2 τI2(∂H2(BB2))[image: Image] can exhibit desired external behaviors.
For the details of proof, please refer to Section 3.10, and we omit it. □



There are three communication functions between BB1 and BB2.
γ(rO1(dO1),sO1(dO1))≜cO1(dO1)[image: Image]
γ(rO5(dO5),sO5(dO5))≜cO5(dO5)[image: Image]
γ(rO3(dO3),sO3(dO3))≜cO3(dO3)[image: Image]
Let all modules be in parallel, then the building block BB3 can be presented by the following process term.
τI3(∂H3(Θ(BB1≬BB2)))=τI3(∂H3(BB1≬BB2))[image: Image]
where H3={rO1(dO1),sO1(dO1),rO5(dO5),sO5(dO5),rO3(dO3),sO3(dO3)}[image: Image],
I3={BB1F1,BB1F2,BB2F1,BB2F2,cO1(dO1),cO5(dO5),cO3(dO3)}[image: Image].
Then we get the following conclusion on the building block.

Theorem 6.4 
Correctness of the building block BB3
The building block BB3 τI3(∂H3(BB3))[image: Image] can exhibit desired external behaviors.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTC, we can prove that
τI3(∂H3(BB3))=∑dI1,dO6∈Δ(rI1(dI1)⋅sO6(dO6))⋅τI3(∂H3(BB3))[image: Image],
that is, the building block BB3 τI3(∂H3(BB3))[image: Image] can exhibit desired external behaviors.
For the details of proof, please refer to Section 3.10, and we omit it. □







7: Modeling and verification of parallel programming languages
Abstract
This chapter introduces the modeling and verification of parallel programming language.

Keywords
Parallelism; Parallel Programming; Language
In this chapter, we will show the modeling of parallel programming language. For an imperative language (for details, please see Appendix A), the syntactic sets are as follows.
	•  Numbers set N, with positive, negative integers, and zero, and n,m∈N[image: Image];
	•  Truth values set T, with values {true,false}[image: Image];
	•  Storage locations Loc, and X,Y∈Loc[image: Image];
	•  Arithmetic expressions Aexp, and a∈Aexp[image: Image];
	•  Boolean expressions Bexp, and b∈Bexp[image: Image];
	•  Commands Com, and c∈Com[image: Image].



The formation rules of PPL are:
For Aexp:
a::=n|X|a0+a1|a0−a1|a0×a1
[image: Image]


For Bexp:
b::=true|false|a0=a1|a0⩽a1|¬b|b0∧b1|b0∨b1
[image: Image]


For Com:
c::=skip|X:=a|c0;c1|ifbthenc0elsec1|whilebdoc|c0∥c1
[image: Image]


In the following section, we will discuss the modeling of such language by APTC and its guarded extensions.
7.1 Numbers and arithmetic expressions
Numbers and arithmetic expressions are the data and data related manipulation, after evaluation, the data may be stored through the assign command, composed into a Boolean expression, or exchanged through communication channels (shared memory, wired or wireless channels).
APTC and guarded APTC do not support data manipulation, but Boolean expressions and communications, and also atomic actions manipulating data.
7.2 Truth values and Boolean expressions
Truth value and Boolean expressions can be modeled as guards in guarded APTC, ture as ϵ and false as δ and Boolean expressions as guards. And the axioms of guarded APTC lead to a Boolean Algebra.
7.3 Storage locations and assign command
Since data are hidden behind of the atomic actions, storage location, and assign command are modeled as a kind of atomic actions.
7.4 Commands
The assign command is modeled as a kind of atomic actions, skip is modeled as the empty action ϵ in APTC and guarded APTC. ; is modeled as the sequential composition ⋅ in APTC.
ifbthenc0elsec1[image: Image], can be modeled as {b=true}⋅c0+{b=false}⋅c1[image: Image].
whilebdoc[image: Image], can be captured by the following recursive specification:
X={b=true}⋅c⋅X+{b=false}⋅Y
[image: Image]


The command c0∥c1[image: Image] can be modeled by ≬, ∥, [image: Image], and | in APTC and guarded APTC.
7.5 Verification of parallel programs
By use of the axiom systems of APTC and guarded APTC, putting the program segments into parallel, abstracting internal actions, we can verify if the program is correct, that is, if the program exhibits desired behaviors (please see the example in Section 3.10).




8: Modeling and verification of parallel programming patterns
Abstract
This chapter introduces the modeling and verification of parallel programming patterns.

Keywords
Patterns; Parallelism; Parallel Programming
In this chapter, we will introduce the modeling of parallel programming patterns [15] by use of APTC and guarded APTC.
8.1 Parallel control patterns
8.1.1 Fork-Join
The Fork-Join pattern forks the control flow into several ones, and rejoins later, as Fig. 8.1 shows. In Fig. 8.1, the clause e0[image: Image] forks into e1[image: Image], e2[image: Image], and e3[image: Image], and later joins as e4[image: Image].
[image: Image]Figure 8.1 Fork-Join pattern.
The program segment in Fig. 8.1 can be modeled by APTC as follows.
e0⋅(e1∥e2∥e3)⋅e4
[image: Image]


8.1.2 Map
The Map pattern maps every element of the data set through a function and then outputs, as Fig. 8.2 shows. In Fig. 8.2, the data element di[image: Image] is processed through the clause ei[image: Image], and then sends the result data outside. 
[image: Image]Figure 8.2 Map pattern.
The program segment in Fig. 8.2 can be modeled by APTC as follows.
(receive1(d1)⋅e1⋅send1(d1′))∥(receive2(d2)⋅e2⋅send2(d2′))∥(receive3(d3)⋅e3⋅send3(d3′))
[image: Image]


8.1.3 Stencil
The Stencil pattern is a generalization of the Map pattern with the input data can come from the “neighbors”, as Fig. 8.3 shows. In Fig. 8.3, the clause inputs of e1[image: Image] are coming from the neighbors d11[image: Image], d12[image: Image], d13[image: Image], and d14[image: Image], the e1[image: Image] executes and generates the output.
[image: Image]Figure 8.3 Stencil pattern.
The program segment in Fig. 8.3 can be modeled by APTC as follows.
(receive11(d11)∥receive12(d12)∥receive13(d13)∥receive14(d14))⋅e1⋅send1(d′)
[image: Image]


8.1.4 Reduction
The Reduction pattern combines every data element into a single data element through associative functions, as Fig. 8.4 shows. In Fig. 8.4, the data elements d1[image: Image] and d2[image: Image] are combined by e1[image: Image], d3[image: Image] and d4[image: Image] are combined by e2[image: Image], and then combined by e3[image: Image] and generates the data element d′[image: Image].
[image: Image]Figure 8.4 Reduction pattern.
The program segment in Fig. 8.4 can be modeled by APTC as follows.
(((receive1(d1)∥receive2(d2))⋅e1)∥((receive3(d3)∥receive4(d4))⋅e2))⋅e3⋅send(d′)
[image: Image]



8.1.5 Scan
The Scan pattern computes all partial reductions, as Fig. 8.5 shows. In Fig. 8.5, the data element may be sent out directly or may be processed by reductions.
[image: Image]Figure 8.5 Scan pattern.
The program segment in Fig. 8.5 can be modeled by APTC as follows.
(receive1(d1)⋅send1(d1′))∥((receive1(d1)∥receive2(d2))⋅e1⋅send2(d2′))∥((((receive1(d1)∥receive2(d2))⋅e1)∥((receive3(d3)∥receive4(d4))⋅e2))⋅e3⋅send(d3′))∥(receive4(d4)⋅send4(d4′))[image: Image]
8.1.6 Recurrence
The Recurrence pattern is a generalization of iteration with the input data can come from the output of “neighbors”, as Fig. 8.6 shows. In Fig. 8.6, the clause inputs of e2[image: Image] are coming from the neighbors e1[image: Image], d22[image: Image], d23[image: Image], and d24[image: Image], the e2[image: Image] executes and generates the output.
[image: Image]Figure 8.6 Recurrence pattern.
The program segment in Fig. 8.3 can be modeled by APTC as follows.
((receive11(d11)∥receive12(d12)∥receive14(d14))⋅e1⋅send1(d1′))≬((receive21(d1′)∥receive22(d22)∥receive23(d23)∥receive24(d24))⋅e2⋅send2(d2′))[image: Image]
8.2 Parallel data management patterns
8.2.1 Pack
The Pack pattern can be used to eliminate the unused data element in a data collection, as Fig. 8.7 shows. In Fig. 8.7, the data element d2[image: Image] is unused and eliminated.
[image: Image]Figure 8.7 Pack pattern.
The program segment in Fig. 8.7 can be modeled by APTC as follows.
(receive1(d1)⋅e1⋅send1(d1′))∥(receive3(d3)⋅e3⋅send3(d3′))
[image: Image]


8.2.2 Pipeline
The Pipeline pattern connects data-processing tasks one step by another, as Fig. 8.8 shows. In Fig. 8.8, there are two steps e1[image: Image] and e2[image: Image] in the pipeline.
[image: Image]Figure 8.8 Pipeline pattern.
The program segment in Fig. 8.8 can be modeled by APTC as follows.
receive(d)⋅e1⋅e2⋅send(d′)
[image: Image]


8.2.3 Geometric decomposition
The Geometric decomposition pattern breaks data into a set of sub-collections, as Fig. 8.9 shows. In Fig. 8.9, the data set d1−d4[image: Image] is broken into two data collections: d1−d2[image: Image] and d3−d4[image: Image].
[image: Image]Figure 8.9 Geometric decomposition pattern.
The program segment in Fig. 8.9 can be modeled by APTC as follows.
((receive1(d1)∥receive2(d2))⋅e1⋅(send1(d1)∥send2(d2)))∥((receive3(d3)∥receive4(d4))⋅e2⋅(send3(d3)∥send4(d4)))[image: Image]
8.2.4 Gather
The Gather pattern reads a set of data collections according to a set of indices, as Fig. 8.10 shows. In Fig. 8.10, the indices are [0,1,1,3][image: Image].
[image: Image]Figure 8.10 Gather pattern.
The program segment in Fig. 8.10 can be modeled by APTC as follows.
((receive1(d1)∥receive2(d2))⋅e1⋅(send1(d1)∥send2(d2)))∥((receive2(d2)∥receive4(d4))⋅e2⋅(send2(d2)∥send4(d4)))[image: Image]
8.2.5 Scatter
The Scatter pattern is the inverse of the Gather pattern, it writes a set of data collections according to a set of indices, as Fig. 8.11 shows. In Fig. 8.11, the indices are [0,1,2,2][image: Image].
[image: Image]Figure 8.11 Scatter pattern.
The program segment in Fig. 8.11 can be modeled by APTC as follows.
(receive1(d1)∥receive2(d2))⋅e1⋅(send1(d1)∥send2(d2))[image: Image]
8.3 Other parallel patterns
8.3.1 Superscalar sequences
The Superscalar sequence pattern operates according to the data dependencies, as Fig. 8.12 shows. In Fig. 8.12, the data dependencies are defined respectively.
[image: Image]Figure 8.12 Superscalar sequence pattern.
The program segment in Fig. 8.12 can be modeled by APTC as follows.
(receive1(d1)⋅e1⋅send1(d1′))≬(receive3(d3)⋅e3⋅send3(d3′))≬((receive2(d2)∥receive1(d1′)∥receive3(d3′))⋅e2⋅send(d′))[image: Image]
8.3.2 Speculative selection
The Speculative selection pattern generalizes the selection to make the condition and both branches can run in parallel, as Fig. 8.13 shows. In Fig. 8.13, both the condition and the two branches can execute in parallel.
[image: Image]Figure 8.13 Speculative selection pattern.
The program segment in Fig. 8.13 can be modeled by guarded APTC as follows.
({b=true}⋅e1)∥({b=false}⋅e2)
[image: Image]


Note that, {b=true}[image: Image] and {b=false}[image: Image] are guards.
8.3.3 Workpile
The Workpile pattern generalizes the Map pattern with each function can generate one or more instances, as Fig. 8.14 shows. In Fig. 8.14, e1[image: Image] generates e11[image: Image] and e12[image: Image], e2[image: Image] generates e21[image: Image], and e3[image: Image] generates e31[image: Image].
[image: Image]Figure 8.14 Workpile pattern.
The program segment in Fig. 8.14 can be modeled by APTC as follows.
(receive1(d1)⋅e1⋅(e11∥e12)⋅send1(d1′))∥(receive2(d2)⋅e2⋅e21⋅send2(d2′))∥(receive3(d3)⋅e3⋅e31⋅send3(d3′))[image: Image]
8.3.4 Search
The Search pattern finds the required data from the data collections, as Fig. 8.15 shows. In Fig. 8.15, e1[image: Image] finds d1[image: Image] and d2[image: Image], and e2[image: Image] finds d1[image: Image], d2[image: Image], and d3[image: Image].
[image: Image]Figure 8.15 Search pattern.
The program segment in Fig. 8.15 can be modeled by APTC as follows.
((receive1(d1)∥receive2(d2))⋅e1⋅send1(d1′))∥((receive1(d1)∥receive2(d2)∥receive3(d3))⋅e2⋅send2(d2′))[image: Image]
8.3.5 Segmentation
The Segmentation pattern operates on the segmented data collections, as Fig. 8.16 shows. In Fig. 8.16, d1[image: Image] and d2[image: Image] are one segment, and d3[image: Image] and d4[image: Image] are another.
[image: Image]Figure 8.16 Segmentation pattern.
The program segment in Fig. 8.16 can be modeled by APTC as follows.
((receive1(d1)∥receive2(d2))⋅e1⋅send1(d1′))∥((receive3(d3)∥receive4(d4))⋅e2⋅send2(d2′))
[image: Image]


8.3.6 Expand
The Expand pattern can be deemed as a mixture of the Pack pattern and the Map pattern, as Fig. 8.17 shows. In Fig. 8.17, d1[image: Image] is split in d1′[image: Image] and d2′[image: Image], and d2[image: Image] is unused.
[image: Image]Figure 8.17 Expand pattern.
The program segment in Fig. 8.17 can be modeled by APTC as follows.
(receive1(d1)⋅e1⋅(send1(d1′)∥send1(d2′)))∥(receive3(d3)⋅e3⋅send3(d3′))
[image: Image]


8.3.7 Category reduction
The Category reduction pattern finds the data elements in the same category and reduces them to one element, as Fig. 8.18 shows. In Fig. 8.18, the data d11[image: Image] and d12[image: Image] are in the same category, and d21[image: Image] and d22[image: Image], and d31[image: Image] and d32[image: Image] are in the same category.
[image: Image]Figure 8.18 Category Reduction pattern.
The program segment in Fig. 8.18 can be modeled by APTC as follows.
((receive1(d11)∥receive1(d12))⋅e1⋅send1(d1′))∥((receive2(d21)∥receive2(d22))⋅e2⋅send2(d2′))∥((receive3(d31)∥receive3(d32))⋅e3⋅send3(d3′))[image: Image]
8.3.8 Term graph rewriting
The Term graph rewriting pattern provides a graph-like concurrency, as Fig. 8.19 shows. In Fig. 8.19, this style concurrency is only defined by causalities among atomic actions, and is the so-called true concurrency.
[image: Image]Figure 8.19 Term graph rewriting pattern 1.
In Chapter 2 and APTC in Chapter 3, we have already proven that Fig. 8.19 is equivalent to Fig. 8.20 and can be structured.
[image: Image]Figure 8.20 Term graph rewriting pattern 2.
8.4 Verification of parallel programming patterns
By use of the axiom systems of APTC and guarded APTC, putting the parallel programming patterns based program segments into parallel, abstracting internal actions, we can verify if the program is correct, that is, if the program exhibits desired behaviors (please see the example in Section 3.10).
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9: Modeling and verification of distributed systems
Abstract
This chapter introduces the modeling and verification of distributed systems.
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In this chapter, we will introduce the modeling of distributed systems [16] by use of APTC, guarded APTC, and distributed APTC.
9.1 A model of distributed computations
A distributed system consists of a set of processors and a set of channels among the processors, as Fig. 9.1 shows. Each processor may be a shared memories based multi-cores or multi-processors system. The whole distributed computational task is defined by atomic actions and causal relations among them. And there exist two kinds of causalities: one is executional order defined causality, and the other is communication defined causality. Note that: (1) In each processor, there also exists causality defined concurrency (two actions without causal relations between them will be executed concurrently); (2) Communications will always occur between two different parallel branches, it may occur between two different processors through communication channels, or in the same processor, or occur between two cores through the shared memories.
[image: Image]Figure 9.1 A model of distributed computations.
A distributed system is a set of autonomous processors with communications among them through the communication channels, it can be modeled by APTC, guarded APTC, and distributed APTC with the following distinct features.
	•  No common physical clock. There is not a common physical clock in the distributed systems. This feature means that the asynchronous cooperation nature among different processors. APTC and its extensions can model the asynchronous cooperations among processors by use of the placeholder extension in the following way: (1) describe each processor's behaviors by the language elements including send and receive messages through some channels and the appropriate placeholder; (2) put each processor in parallel.
	•  No shared memories. There are not shared memories among different processors. This feature means that communications always occur as message exchanges through some communication channels. APTC and its extensions support the definition of the communication functions, through which synchronous or asynchronous communications can be defined.
	•  Geographical separation. The processors in the distributed systems are geographical separated. This feature means the same function actions performed on different processors should be distinguished. Distributed APTC can be used to model the distribution of the different processors in the distributed systems.
	•  Autonomy and heterogeneity. Each processor is executed autonomously and implemented heterogeneously. The autonomy is assured by the abstraction mechanism of APTC and its extensions, each processor is encapsulated and abstracted away from its internal computations. And the heterogeneity is assured by the neutrality of APTC and its extensions, APTC and its extensions are neutral languages independent to any concrete implementation and just capture the computations and concurrency.



Since the lack of global physical time, the logical time is determined by the causalities among actions defined in the distributed systems. The clock consistency condition says:
ei⩽ei⇒C(ei)<C(ej)
[image: Image]

 where ei[image: Image] and ej[image: Image] are two events in the distributed systems, C(e)[image: Image] is the logical time of event e.
The Lamport's scalar time represents the logical time according to the following two time updating rules:
	1.  R1: In the process Pi[image: Image], before executing an event (send, receive, internal), the logical time Ci[image: Image] of Pi[image: Image] updates according to:

Ci:=Ci+1
[image: Image]

		2.  R2: Each message sent by another process Pj[image: Image] attaches with the logical time Cj[image: Image] of Pj[image: Image], when Pi[image: Image] receives the message with the timestamp, it updates its logical time Ci[image: Image] according to:


Ci:=max(Ci,Cj)
[image: Image]

	 then Pi[image: Image] executes the rule R1 and processes the message. 



APTC and its extensions have the natural advantages to analyze the logical time, for their explicit definition of causal relation ⩽, sequential composition ⋅, communication merge |, and communication function γ.
9.2 Distributed transactions
Traditional transaction has ACID (Atomicity, Consistency, Isolation, and Durability) properties, while distributed transaction implements transactions in distributed system and consists of a set of local transactions. In this section, we will discuss the modeling and verification of several classical distributed transaction protocols, including the so-called Two-Phase Commit protocol (2PC), and Three-Phase Commit protocol (3PC).
9.2.1 Two-phase commit protocol
The 2PC protocol introduces a transaction coordinator to coordinate and manage the distributed transactions, and it includes two phases: the preparation phase and the commission phase, as Fig. 9.2 illustrates.
[image: Image]Figure 9.2 Two-phase commit protocol.
The process of 2PC protocol is following.
	1.  Coordinator receives the transaction request d from the outside through the channel CCI[image: Image] (the corresponding reading action is denoted rCCI(d)[image: Image]), the Coordinator generates the preparation request dpri[image: Image] for the Database i through the internal action prepare[image: Image], and sends dpri[image: Image] to the corresponding Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dpreqi)[image: Image]);
	2.  Database i receives the preparation request dpreqi[image: Image] from Coordinator through the channel CCDi[image: Image] (the corresponding reading action is denoted rCCDi(dpreqi)[image: Image]), then after an internal processing pri[image: Image], generates the preparation response dpresi[image: Image], and sends dpresi[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(dpresi)[image: Image]); 
	3.  Coordinator receives the preparation response dpresi[image: Image] from Database i through the channel CDiC[image: Image] (the corresponding reading action is denoted rCDiC(dpresi)[image: Image]), if all responses are successful, it generates the commission request dcr[image: Image] through an action cr, and sends dcr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dcr)[image: Image]); if one response is unsuccessful, it generates the rollback request drr[image: Image] through an action rr, and sends drr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(drr)[image: Image]);
	4.  Database i receives the commission request or rollback request dr[image: Image] from Coordinator through the channel CCDi[image: Image] (the corresponding reading action is denoted rCCDi(dr)[image: Image]), if dr[image: Image] is a commission request, Database i commits the transaction through an action comi[image: Image], and sends the commission response dcres[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(dcres)[image: Image]); if dr[image: Image] is a rollback request, Database i rollbacks the transaction through an action rolli[image: Image], and sends the rollback response drres[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(drres)[image: Image]);
	5.  Coordinator receives the response dres[image: Image] from Database i through the channel CDiC[image: Image] (the corresponding reading action is denoted rCDiC(dres)[image: Image]), if the response dres[image: Image] is a commission response, Coordinator sends the transaction success response ds[image: Image] to the outside through the channel CCO[image: Image] (the corresponding sending action is denoted sCCO(ds)[image: Image]); if the response dres[image: Image] is a rollback response, Coordinator sends the transaction failure response df[image: Image] to the outside through the channel CCO[image: Image] (the corresponding sending action is denoted sCCO(df)[image: Image]).



Where d∈Δ[image: Image], Δ is the set of data.
Coordinator's state transitions described by APTCG[image: Image] are following.
C=LocC::∑d∈ΔrCCI(d)⋅C2[image: Image]
C2=prepare⋅C3[image: Image]
C3=(sCCD1(dpreq1)∥⋯∥sCCDn(dpreqn))⋅C4[image: Image]
C4=(rCD1C(dpres1)∥⋯∥rCDnC(dpresn))⋅C5[image: Image]
C5={dpres1=SUCCESS∥⋯∥dpresn=SUCCESS}⋅cr⋅(sCCD1(dcr)∥⋯∥sCCDn(dcr))⋅C6+{dpres1=FAILURE+⋯+dpresn=FAILURE}⋅rr⋅(sCCD1(drr)∥⋯∥sCCDn(drr))⋅C6[image: Image]
C6=(rCD1C(dres)∥⋯∥rCDnC(dres))⋅C7[image: Image]
C7={dres=COMMIT}⋅sCCO(ds)⋅C+{dres=ROLLBACK}⋅sCCO(df)⋅C[image: Image]
The state transitions of Database i described by APTCG[image: Image] are following.
Di=LocDi::rCDiC(dpreqi)⋅Di2[image: Image]
Di2=pri⋅Di3[image: Image]
Di3=sCDiC(dpresi)⋅Di4[image: Image]
Di4=rCCDi(dr)⋅Di5[image: Image]
Di5={dr=dcr}⋅comi⋅sCDiC(dcres)⋅Di+{dr=drr}⋅rolli⋅sCDiC(drres)⋅Di[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions. 
γ(rCCDi(dpreqi),sCCDi(dpreqi))≜cCCDi(dpreqi)[image: Image]
γ(rCDiC(dpresi),sCDiC(dpresi))≜cCDiC(dpresi)[image: Image]
γ(rCCDi(dcr),sCCDi(dcr))≜cCCDi(dcr)[image: Image]
γ(rCCDi(drr),sCCDi(drr))≜cCCDi(drr)[image: Image]
γ(rCDiC(dcres),sCDiC(dcres))≜cCDiC(dcres)[image: Image]
γ(rCDiC(drres),sCDiC(drres))≜cCDiC(drres)[image: Image]
Let all modules be in parallel, then the protocol CD1⋯Dn[image: Image] can be presented by the following process term.
τI(∂H(Θ(C≬D1≬⋅≬Dn)))=τI(∂H(C≬D1≬⋅≬Dn))
[image: Image]

 where H={rCCDi(dpreqi),sCCDi(dpreqi),rCDiC(dpresi),sCDiC(dpresi),rCCDi(dcr),sCCDi(dcr),rCCDi(drr),sCCDi(drr),rCDiC(dcres),sCDiC(dcres),rCDiC(drres),sCDiC(drres)|d∈Δ}[image: Image] for 1⩽i⩽n[image: Image],
I={cCCDi(dpreqi),cCDiC(dpresi),cCCDi(dcr),cCCDi(drr),cCDiC(dcres),cCDiC(drres),prepare,{dpresi=SUCCESS},{dpresi=FAILURE},cr,rr,{dres=COMMIT},{dres=ROLLBACK},pri,comi,rolli{dr=dcr},{dr=drr}|D∈Δ}[image: Image] for 1⩽i⩽n[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.1 
The 2PC protocol in Fig. 9.2 is correct.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(C≬D1≬⋅≬Dn))=∑d∈Δ(LocC::rCCI(d)⋅(LocC::sCCO(dc)+LocC::sCCO(df))⋅τI(∂H(C≬D1≬⋅≬Dn))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it. □



9.2.2 Three-phase commit protocol
The 3PC protocol introduces a transaction coordinator to coordinate and manage the distributed transactions, and it includes three phases: the preparation phase, the pre-commission phase, and the commission phase, as Fig. 9.3 illustrates.
[image: Image]Figure 9.3 Three-phase commit protocol.
The process of 3PC protocol is following.
	1.  Coordinator receives the transaction request d from the outside through the channel CCI[image: Image] (the corresponding reading action is denoted rCCI(d)[image: Image]), the Coordinator generates the preparation request dpri[image: Image] for the Database i through the internal action prepare[image: Image], and sends dpri[image: Image] to the corresponding Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dpreqi)[image: Image]);
	2.  Database i receives the preparation request dpreqi[image: Image] from Coordinator through the channel CCDi[image: Image] (the corresponding reading action is denoted rCCDi(dpreqi)[image: Image]), then after an internal processing pri[image: Image], generates the preparation response dpresi[image: Image], and sends dpresi[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(dpresi)[image: Image]);
	3.  Coordinator receives the preparation response dpresi[image: Image] from Database i through the channel CDiC[image: Image] (the corresponding reading action is denoted rCDiC(dpresi)[image: Image]), if all responses are successful, it generates the pre-commission request dpcr[image: Image] through an action pcr, and sends dpcr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dpcr)[image: Image]); if one response is unsuccessful, it sends the transaction failure response in dpcr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dpcr)[image: Image]);
	4.  Database i receives the pre-commission request dpcr[image: Image] from Coordinator through the channel CCDi[image: Image] (the corresponding reading action is denoted rCCDi(dpcr)[image: Image]), Database i pre-commits the transaction through an action pci[image: Image], and generates and sends the response dpcres[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(dpcres)[image: Image]);
	5.  Coordinator receives the pre-commission response dpcresi[image: Image] from Database i through the channel CDiC[image: Image] (the corresponding reading action is denoted rCDiC(dpcresi)[image: Image]), if all responses are successful, it generates the commission request dcr[image: Image] through an action cr, and sends dcr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(dcr)[image: Image]); if one response is unsuccessful, it sends the rollback request drr[image: Image] to Database i through the channel CCDi[image: Image] (the corresponding sending action is denoted sCCDi(drr)[image: Image]);
	6.  Database i receives the commission request or the rollback request dr[image: Image] from Coordinator through the channel CCDi[image: Image] (the corresponding reading action is denoted rCCDi(dr)[image: Image]), if dr[image: Image] is a commission request, Database i commits the transaction through an action comi[image: Image], and sends the commission response dcres[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(dcres)[image: Image]); if dr[image: Image] is a rollback request, Database i rollbacks the transaction through an action rolli[image: Image], and sends the rollback response drres[image: Image] to Coordinator through the channel CDiC[image: Image] (the corresponding sending action is denoted sCDiC(drres)[image: Image]); 
	7.  Coordinator receives the response dres[image: Image] from Database i through the channel CDiC[image: Image] (the corresponding reading action is denoted rCDiC(dres)[image: Image]), if the response dres[image: Image] is a commission response, Coordinator sends the transaction success response ds[image: Image] to the outside through the channel CCO[image: Image] (the corresponding sending action is denoted sCCO(ds)[image: Image]); if the response dres[image: Image] is a rollback response, Coordinator sends the transaction failure response df[image: Image] to the outside through the channel CCO[image: Image] (the corresponding sending action is denoted sCCO(df)[image: Image]).



Where d∈Δ[image: Image], Δ is the set of data.
Coordinator's state transitions described by APTCG[image: Image] are following.
C=LocC::∑d∈ΔrCCI(d)⋅C2[image: Image]
C2=prepare⋅C3[image: Image]
C3=(sCCD1(dpreq1)∥⋯∥sCCDn(dpreqn))⋅C4[image: Image]
C4=(rCD1C(dpres1)∥⋯∥rCDnC(dpresn))⋅C5[image: Image]
C5={dpres1=SUCCESS∥⋯∥dpresn=SUCCESS}⋅pcr⋅(sCCD1(dpcr)∥⋯∥sCCDn(dpcr))⋅C6+{dpres1=FAILURE+⋯+dpresn=FAILURE}⋅sCCO(df)⋅C6[image: Image]
C6=(rCD1C(dpcres)∥⋯∥rCDnC(dpcres))⋅C7[image: Image]
C7={dpcres1=SUCCESS∥⋯∥dpcresn=SUCCESS}⋅cr⋅(sCCD1(dcr)∥⋯∥sCCDn(dcr))⋅C8+{dpcres1=FAILURE+⋯+dpcresn=FAILURE}⋅sCCO(df)⋅C8[image: Image]
C8=(rCD1C(dres)∥⋯∥rCDnC(dres))⋅C9[image: Image]
C9={dres=COMMIT}⋅sCCO(ds)⋅C+{dres=ROLLBACK}⋅sCCO(df)⋅C[image: Image]
The state transitions of Database i described by APTCG[image: Image] are following.
Di=LocDi::rCDiC(dpresi)⋅Di2[image: Image]
Di2=pri⋅Di3[image: Image]
Di3=sCDiC(dpresi)⋅Di4[image: Image]
Di4=rCCDi(dpcr)⋅Di5[image: Image]
Di5=pci⋅Di6[image: Image]
Di6=sCDiC(dpcresi)⋅Di7[image: Image]
Di7=rCCDi(dr)⋅Di8[image: Image]
Di8={dr=dcr}⋅comi⋅sCDiC(dcres)⋅Di+{dr=drr}⋅rolli⋅sCDiC(drres)⋅Di[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions.
γ(rCCDi(dpreqi),sCCDi(dpreqi))≜cCCDi(dpreqi)[image: Image]
γ(rCDiC(dpresi),sCDiC(dpresi))≜cCDiC(dpresi)[image: Image]
γ(rCCDi(dpcr),sCCDi(dpcr))≜cCCDi(dpcr)[image: Image]
γ(rCCDi(dcr),sCCDi(dcr))≜cCCDi(dcr)[image: Image]
γ(rCCDi(drr),sCCDi(drr))≜cCCDi(drr)[image: Image]
γ(rCDiC(dcres),sCDiC(dcres))≜cCDiC(dcres)[image: Image]
γ(rCDiC(dpcres),sCDiC(dpcres))≜cCDiC(dpcres)[image: Image] 
Let all modules be in parallel, then the protocol CD1⋯Dn[image: Image] can be presented by the following process term.
τI(∂H(Θ(C≬D1≬⋅≬Dn)))=τI(∂H(C≬D1≬⋅≬Dn))
[image: Image]

 where H={rCCDi(dpreqi),sCCDi(dpreqi),rCDiC(dpresi),sCDiC(dpresi),rCCDi(dpcr),sCCDi(dpcr),rCCDi(dcr),sCCDi(dcr),rCCDi(drr),sCCDi(drr),rCDiC(dcres),sCDiC(dcres),rCDiC(dpcres),sCDiC(dpcres)|d∈Δ}[image: Image] for 1⩽i⩽n[image: Image],
I={cCCDi(dpreqi),cCDiC(dpresi),cCCDi(dpcr),cCCDi(dcr),cCCDi(drr),cCDiC(dcres),cCDiC(dpcres),prepare,{dpresi=SUCCESS},{dpresi=FAILURE},{dpcresi=SUCCESS},{dpcresi=FAILURE},pcr,cr,rr,{dres=COMMIT},{dres=ROLLBACK},pri,pci,comi,rolli,{dr=dcr},{dr=drr}|D∈Δ}[image: Image] for 1⩽i⩽n[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.2 
The 3PC protocol in Fig. 9.3 is correct.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(C≬D1≬⋅≬Dn))=∑d∈Δ(LocC::rCCI(d)⋅(LocC::sCCO(dc)+LocC::sCCO(df))⋅τI(∂H(C≬D1≬⋅≬Dn))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it. □



9.3 Authentication in distributed systems
In the symmetric encryption and decryption, they use only one key k. The inputs of symmetric encryption are the key k and the plaintext D and the output is the ciphertext, so we treat the symmetric encryption as an atomic action denoted enck(D)[image: Image]. We also use ENCk(D)[image: Image] to denote the ciphertext output. The inputs of symmetric decryption are the same key k and the ciphertext ENCk(D)[image: Image] and output is the plaintext D, we also treat the symmetric decryption as an atomic action deck(ENCk(D))[image: Image]. And we also use DECk(ENCk(D))[image: Image] to denote the output of the corresponding decryption.
For D is plaintext, it is obvious that DECk(ENCk(D))=D[image: Image] and enck(D)⩽deck(ENCk(D))[image: Image], where ⩽ is the causal relation; and for D is the ciphertext, ENCk(DECk(D))=D[image: Image] and deck(D)⩽enck(DECk(D))[image: Image] hold.
In the asymmetric encryption and decryption, they use two keys: the public key pks[image: Image] and the private key sks[image: Image] generated from the same seed s. The inputs of asymmetric encryption are the key pks[image: Image] or sks[image: Image] and the plaintext D and the output is the ciphertext, so we treat the asymmetric encryption as an atomic action denoted encpks(D)[image: Image] or encsks(D)[image: Image]. We also use ENCpks(D)[image: Image] and ENCsks(D)[image: Image] to denote the ciphertext outputs. The inputs of asymmetric decryption are the corresponding key sks[image: Image] or pks[image: Image] and the ciphertext ENCpks(D)[image: Image] or ENCsks(D)[image: Image], and output is the plaintext D, we also treat the asymmetric decryption as an atomic action decsks(ENCpks(D))[image: Image] and decpks(ENCsks(D))[image: Image]. And we also use DECsks(ENCpks(D))[image: Image] and DECpks(ENCsks(D))[image: Image] to denote the corresponding decryption outputs.
For D is plaintext, it is obvious that DECsks(ENCpks(D))=D[image: Image] and DECpks(ENCsks(D))=D[image: Image], and encpks(D)⩽decsks(ENCpks(D))[image: Image] and encsks(D)⩽decpks(ENCsks(D))[image: Image], where ⩽ is the causal relation; and for D is the ciphertext, ENCsks(DECpks(D))=D[image: Image] and ENCpks(DECsks(D))=D[image: Image], and decpks(D)⩽encsks(DECpks(D))[image: Image] and decsks(D)⩽encpks(DECsks(D))[image: Image].
The hash function is used to generate the digest of the data. The input of the hash function hash[image: Image] is the data D and the output is the digest of the data. We treat the hash function as an atomic action denoted hash(D)[image: Image], and we also use HASH(D)[image: Image] to denote the output digest.
For D1=D2[image: Image], it is obvious that HASH(D1)=HASH(D2)[image: Image].
Digital signature uses the private key sks[image: Image] to encrypt some data and the public key pks[image: Image] to decrypt the encrypted data to implement the so-called non-repudiation. The inputs of sigh function are some data D and the private key sks[image: Image] and the output is the signature. We treat the signing function as an atomic action signsks(D)[image: Image], and also use SIGNsks(D)[image: Image] to denote the signature. The inputs of the de-sign function are the public key pks[image: Image] and the signature SIGNsks(D)[image: Image], and the output is the original data D. We also treat the de-sign function as an atomic action de-signpks(SIGNsks(D))[image: Image], and also we use DE-SIGNpks(SIGNsks(D))[image: Image] to denote the output of the de-sign action.
It is obvious that DE-SIGNpks(SIGNsks(D))=D[image: Image].
MAC (Message Authentication Code) is used to authenticate data by symmetric keys k and often assumed that k is privately shared only between two principals A and B. The inputs of the MAC function are the key k and some data D, and the output is the MACs. We treat the MAC function as an atomic action mack(D)[image: Image], and use MACk(D)[image: Image] to denote the output MACs.
The MACs MACk(D)[image: Image] are generated by one principal A and with D together sent to the other principal B. The other principal B regenerate the MACs MACk(D)′[image: Image], if MACk(D)=MACk(D)′[image: Image], then the data D are from A.
Random sequence generation is used to generate a random sequence, which may be a symmetric key k, a pair of public key pks[image: Image] and sks[image: Image], or a nonce nonce[image: Image] (usually used to resist replay attacks). We treat the random sequence generation function as an atomic action rsgk[image: Image] for symmetric key generation, rsgpks,sks[image: Image] for asymmetric key pair generation, and rsgN[image: Image] for nonce generation, and the corresponding outputs are k, pks[image: Image] and sks[image: Image], N respectively.
9.3.1 Protocols based on symmetric cryptosystems
The Wide-Mouth Frog protocol shown in Fig. 9.4 uses symmetric keys for secure communication, that is, the key kAB[image: Image] between Alice and Bob is privately shared to Alice and Bob, Alice, Bob have shared keys with Trent kAT[image: Image] and kBT[image: Image] already.
[image: Image]Figure 9.4 Wide-Mouth Frog protocol.
The process of the protocol is as follows.
	1.  Alice receives some messages D from the outside through the channel CAI[image: Image] (the corresponding reading action is denoted rCAI(D)[image: Image]), if kAB[image: Image] is not established, she generates a random session key kAB[image: Image] through an action rsgkAB[image: Image], encrypts the key request message TA,B,kAB[image: Image] with kAT[image: Image] through an action enckAT(TA,B,kAB)[image: Image] where TA[image: Image] Alice's time stamp, and sends A,ENCkAT(TA,B,kAB)[image: Image] to Trent through the channel CAT[image: Image] (the corresponding sending action is denoted sCAT(A,ENCkAT(TA,B,kAB))[image: Image]);
	2.  Trent receives the message A,ENCkAT(TA,B,kAB)[image: Image] through the channel CAT[image: Image] (the corresponding reading action is denoted rCAT(A,ENCkAT(TA,B,kAB))[image: Image]), he decrypts the message through an action deckAT(ENCkAT(TA,B,kAB))[image: Image]. If isFresh(TA)=TRUE[image: Image] where isFresh[image: Image] is a function to deciding whether a time stamp is fresh, he encrypts TB,A,kAB[image: Image] with kBT[image: Image] through an action enckBT(TB,A,kAB)[image: Image], sends ⊤ to Alice through the channel CTA[image: Image] (the corresponding sending action is denoted sCTA(⊤)[image: Image]) and ENCkBT(TB,A,kAB)[image: Image] to Bob through the channel CTB[image: Image] (the corresponding sending action is denoted sCTB(ENCkBT(TB,A,kAB))[image: Image]); else if isFresh(TA)=FLASE[image: Image], he sends ⊥ to Alice and Bob (the corresponding sending actions are denoted sCTA(⊥)[image: Image] and sCTB(⊥)[image: Image] respectively);
	3.  Bob receives dTB[image: Image] from Trent through the channel CTB[image: Image] (the corresponding reading action is denoted rCTB(dTB)[image: Image]). If dTB=⊥[image: Image], he sends ⊥ to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(⊥)[image: Image]); if dTB≠⊥[image: Image], he decrypts ENCkBT(TB,A,kAB)[image: Image] through an action deckBT(ENCkBT(TB,A,kAB))[image: Image]. If isFresh(TB)=TRUE[image: Image], he gets kAB[image: Image], and sends ⊤ to Alice (the corresponding sending action is denoted sCBA(⊤)[image: Image]); if isFresh(TB)=FALSE[image: Image], he sends ⊥ to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(⊥)[image: Image]);
	4.  Alice receives dTA[image: Image] from Trent through the channel CTA[image: Image] (the corresponding reading action is denoted rCTA(dTA)[image: Image]), receives dBA[image: Image] from Bob through the channel CBA[image: Image] (the corresponding reading action is denoted rCBA(dBA)[image: Image]). If dTA=⊤⋅dBA=⊤[image: Image], after an encryption processing enckAB(TAD,D)[image: Image], Alice sends ENCkAB(TAD,D)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(TAD,ENCkAB(D))[image: Image]); else if dTA=⊥+dBA=⊥[image: Image], Alice sends ⊥ to the outside through the channel CAO[image: Image] (the corresponding sending action is denoted sCAO(⊥)[image: Image]);
	5.  Bob receives the message ENCkAB(TAD,D)[image: Image] through the channel CAB[image: Image] (the corresponding reading action is denoted rCAB(TAD,ENCkAB(D))[image: Image]), after a decryption processing deckAB(ENCkAB(TAD,D))[image: Image], if isFresh(TAD)=TRUE[image: Image], he sends D to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(D)[image: Image]), if isFresh(TAD)=FALSE[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]).



Where D∈Δ[image: Image], Δ is the set of data.
Alice's state transitions described by APTCG[image: Image] are as follows.
A=LocA::∑D∈ΔrCAI(D)⋅A2[image: Image]
A2={kAB=NULL}⋅rsgkAB⋅A3+{kAB≠NULL}⋅A7[image: Image]
A3=enckAT(TA,B,kAB)⋅A4[image: Image]
A4=sCAT(A,ENCkAT(TA,B,kAB))⋅A5[image: Image]
A5=(rCTA(dTA)∥rCBA(dBA))⋅A6[image: Image]
A6={dTA=⊤⋅dBA=⊤}⋅A7+{dTA=⊥+dBA=⊥}⋅A9[image: Image]
A7=enckAB(TAD,D)⋅A8[image: Image]
A8=sCAB(TAD,ENCkAB(D))⋅A[image: Image]
A9=sCAO(⊥)⋅A[image: Image]
Bob's state transitions described by APTCG[image: Image] are as follows.
B=LocB::{kAB=NULL}⋅B1+{kAB≠NULL}⋅B5[image: Image]
B1=rCTB(dTB)⋅B2[image: Image]
B2={dTB≠⊥}⋅B3+{dTB=⊥}⋅sCBA(⊥)⋅B5[image: Image]
B3=deckBT(ENCkBT(TB,A,kAB))⋅B4[image: Image]
B4={isFresh(TB)=TRUE}⋅sCBA(⊤)⋅B5+{isFresh(TB)=FALSE}⋅sCBA(⊥)⋅B5[image: Image]
B5=rCAB(TAD,ENCkAB(D))⋅B6[image: Image]
B6=deckAB(ENCkAB(TAD,D))⋅B7[image: Image]
B7={isFresh(TAD)=TRUE}⋅sCBO(D)⋅B+{isFresh(TAD)=FALSE}⋅sCBO(⊥)⋅B[image: Image]
Trent's state transitions described by APTCG[image: Image] are as follows.
T=LocT::rCAT(A,ENCkAT(TA,B,kAB))⋅T2[image: Image]
T2=deckAT(ENCkAT(TA,B,kAB))⋅T3[image: Image]
T3={isFresh(TA)=TRUE}⋅enckBT(TB,A,kAB)⋅(sCTA(⊤)∥sCTB(ENCkBT(TB,A,kAB)))T+{isFresh(TA)=FALSE}⋅(sCTA(⊥)∥sCTB(⊥))⋅T[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions.
γ(rCAT(A,ENCkAT(TA,B,kAB)),sCAT(A,ENCkAT(TA,B,kAB)))≜cCAT(A,ENCkAT(TA,B,kAB))[image: Image]
γ(rCTA(dTA),sCTA(dTA))≜cCTA(dTA)[image: Image]
γ(rCBA(dBA),sCBA(dBA))≜cCBA(dBA)[image: Image]
γ(rCAB(TAD,ENCkAB(D)),sCAB(TAD,ENCkAB(D)))≜cCAB(TAD,ENCkAB(D))[image: Image]
γ(rCTB(dTB),sCTB(dTB))≜cCTB(dTB)[image: Image]
Let all modules be in parallel, then the protocol ABT[image: Image] can be presented by the following process term.
τI(∂H(Θ(A≬B≬T)))=τI(∂H(A≬B≬T))
[image: Image]

 where H={rCAT(A,ENCkAT(TA,B,kAB)),sCAT(A,ENCkAT(TA,B,kAB)),rCTA(dTA),sCTA(dTA),rCBA(dBA),sCBA(dBA),rCAB(TAD,ENCkAB(D)),sCAB(TAD,ENCkAB(D)),rCTB(dTB),sCTB(dTB)|D∈Δ}[image: Image],
I={cCAT(A,ENCkAT(TA,B,kAB)),cCTA(dTA),cCBA(dBA),cCAB(TAD,ENCkAB(D)),cCTB(dTB),{kAB=NULL},rsgkAB,{kAB≠NULL},enckAT(TA,B,kAB),{dTA=⊤⋅dBA=⊤},{dTA=⊥+dBA=⊥},enckAB(TAD,D),{dTB≠⊥},{dTB=⊥},deckBT(ENCkBT(TB,A,kAB)),{isFresh(TB)=TRUE},{isFresh(TB)=FALSE},deckAB(ENCkAB(TAD,D)),{isFresh(TAD)=TRUE},{isFresh(TAD)=FALSE},deckAT(ENCkAT(TA,B,kAB)),{isFresh(TA)=TRUE},enckBT(TB,A,kAB),{isFresh(TA)=FALSE}|D∈Δ}[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.3 
The Wide-Mouth Frog protocol in Fig. 9.4 is secure.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(A≬B≬T))=∑D∈Δ(LocA::rCAI(D)⋅((LocA::sCAO(⊥)∥LocB::sCBO(⊥))+LocB::sCBO(D)))⋅τI(∂H(A≬B≬T))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it.
That is, the Wide-Mouth Frog protocol in Fig. 9.4 τI(∂H(A≬B≬T))[image: Image] can exhibit desired external behaviors:
	1.  For information leakage, because kAT[image: Image] is privately shared only between Alice and Trent, kBT[image: Image] is privately shared only between Bob and Trent, kAB[image: Image] is privately shared only among Trent;
	2.  For replay attack, the using of time stamps TA[image: Image], TB[image: Image], and TAD[image: Image], makes that τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅(sCAO(⊥)∥sCBO(⊥)))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	3.  Without replay attack, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(D))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	4.  For the man-in-the-middle attack, because kAT[image: Image] is privately shared only between Alice and Trent, kBT[image: Image] is privately shared only between Bob and Trent, kAB[image: Image] is privately shared only among Trent, Alice, and Bob. For the modeling of the man-in-the-middle attack, the Wide-Mouth Frog protocol can be against the man-in-the-middle attack; 
	5.  For the unexpected and non-technical leaking of kAT[image: Image], kBT[image: Image], kAB[image: Image], or they being not strong enough, or Trent being dishonest, they are out of the scope of analyses of security protocols;
	6.  For malicious tampering and transmission errors, they are out of the scope of analyses of security protocols. □






The Otway-Rees protocol shown in Fig. 9.5 uses symmetric keys for secure communication, that is, the key kAB[image: Image] between Alice and Bob is privately shared to Alice and Bob, Alice, Bob have shared keys with Trent kAT[image: Image] and kBT[image: Image] already.
[image: Image]Figure 9.5 Otway-Rees protocol.
The process of the protocol is as follows.
	1.  Alice receives some messages D from the outside through the channel CAI[image: Image] (the corresponding reading action is denoted rCAI(D)[image: Image]), if kAB[image: Image] is not established, she generates the random numbers I, RA[image: Image] through the actions rsgI[image: Image] and rsgRA[image: Image], encrypts RA,I,A,B[image: Image] by kAT[image: Image] through an action enckAT(RA,I,A,B)[image: Image], and sends I,A,B,ENCkAT(RA,I,A,B)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(I,A,B,ENCkAT(RA,I,A,B))[image: Image]);
	2.  Bob receives I,A,B,ENCkAT(RA,I,A,B)[image: Image] from Alice through the channel CAB[image: Image] (the corresponding reading action is denoted rCAB(I,A,B,ENCkAT(RA,I,A,B))[image: Image]), he generates a random number RB[image: Image] through an action rsgRB[image: Image], encrypts RB,I,A,B[image: Image] by kBT[image: Image] through an action enckBT(RB,I,A,B)[image: Image], and sends I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)[image: Image] to Trent through the channel CBT[image: Image] (the corresponding sending action is denoted sCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B))[image: Image]);
	3.  Trent receives I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)[image: Image] through the channel CBT[image: Image] (the corresponding reading action is denoted rCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B))[image: Image]), he decrypts the message ENCkAT(RA,I,A,B)[image: Image] through an action deckAT(ENCkAT(RA,I,A,B))[image: Image] and the message ENCkBT(RB,I,A,B)[image: Image] through an action deckBT(ENCkBT(RB,I,A,B))[image: Image], generates a random session key kAB[image: Image] through an action rsgkAB[image: Image], then he encrypts RA,kAB[image: Image] by kAT[image: Image] through an action enckAT(RA,kAB)[image: Image], encrypts RB,kAB[image: Image] by kBT[image: Image] through an action enckBT(RB,kAB)[image: Image], and sends them to Bob through the channel CTB[image: Image] (the corresponding sending action is denoted sCTB(I,ENCkAT(RA,kAB),ENCkBT(RB,kAB))[image: Image]);
	4.  Bob receives the message from Trent through the channel CTB[image: Image] (the corresponding reading action is denoted rCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB))[image: Image]), he decrypts ENCkBT(dRB,kAB)[image: Image] by kBT[image: Image] through an action deckBT(ENCkBT(dRB,kAB))[image: Image], if dRB=RB[image: Image] and dI=I[image: Image], he sends I,ENCkAT(RA,kAB)[image: Image] to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(I,ENCkAB(RA,kAB))[image: Image]); else if dRB≠RB[image: Image] or DI≠I[image: Image], he sends ⊥ to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(⊥)[image: Image]);
	5.  Alice receives dBA[image: Image] from Bob (the corresponding reading action is denoted rCBA(dBA)[image: Image]), if dBA=⊥[image: Image], she sends ⊥ to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(⊥)[image: Image]); else if dBA≠⊥[image: Image], she decrypts ENCkAT(RA,kAB)[image: Image] by kAT[image: Image] through an action deckAT(ENCkAT(RA,kAB))[image: Image], if dRA=RA[image: Image] and dI=I[image: Image], she generates a random number RD[image: Image] through an action rsgRD[image: Image], encrypts RD,D[image: Image] by kAB[image: Image] through an action enckAB(RD,D)[image: Image], and sends it to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(RD,D))[image: Image]), else if dRA≠RA[image: Image] or dI≠I[image: Image], she sends ⊥ to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(⊥)[image: Image]);
	6.  Bob receives dAB[image: Image] from Alice (the corresponding reading action is denoted rCAB(dAB)[image: Image]), if dAB=⊥[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]); else if dAB≠⊥[image: Image], she decrypts ENCkAB(RD,D)[image: Image] by kAB[image: Image] through an action deckAB(ENCkAB(RD,D))[image: Image], if isFresh(RD)=TRUE[image: Image], she sends D to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(D)[image: Image]), else if isFresh(dRD)=FALSE[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]).



Where D∈Δ[image: Image], Δ is the set of data.
Alice's state transitions described by APTCG[image: Image] are as follows.
A=LocA::∑D∈ΔrCAI(D)⋅A2[image: Image]
A2={kAB=NULL}⋅rsgI⋅rsgRA⋅A3+{kAB≠NULL}⋅A9[image: Image]
A3=enckAT(RA,I,A,B)⋅A4[image: Image]
A4=sCAB(I,A,B,ENCkAT(RA,I,A,B))⋅A5[image: Image]
A5=rCBA(dBA)⋅A6[image: Image]
A6={dBA≠⊥}⋅A7+{dBA=⊥}⋅sCAB(⊥)⋅A[image: Image]
A7=deckAT(ENCkAT(RA,kAB))⋅A8[image: Image]
A8={dRA=RA⋅dI=I}⋅A9+{dRA≠RA+dI≠I}⋅A12[image: Image]
A9=rsgRD⋅A10[image: Image]
A10=enckAB(RD,D)⋅A11[image: Image]
A11=sCAB(ENCkAB(RD,D))⋅A[image: Image]
A12=sCAB(⊥)⋅A[image: Image]
Bob's state transitions described by APTCG[image: Image] are as follows. 
B=LocB::{kAB=NULL}⋅B1+{kAB≠NULL}⋅B8[image: Image]
B1=rCAB(I,A,B,ENCkAT(RA,I,A,B))⋅B2[image: Image]
B2=rsgRB⋅B3[image: Image]
B3=enckBT(RB,I,A,B)⋅B4[image: Image]
B4=sCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B))⋅B5[image: Image]
B5=rCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB))⋅B6[image: Image]
B6=deckBT(ENCkBT(dRB,kAB))⋅B7[image: Image]
B7={dRB=RB⋅dI=I}⋅sCBA(I,ENCkAB(RA,kAB))⋅B8+{dRB≠RB+dI≠I}⋅sCAB(⊥)⋅B8[image: Image]
B8=rCAB(dAB)⋅B9[image: Image]
B9={dAB=⊥}⋅sCBO(⊥)⋅B+{dAB≠⊥}⋅B10[image: Image]
B10=deckAB(ENCkAB(RD,D))⋅B11[image: Image]
B11={isFresh(RD)=TRUE}⋅B12+{isFresh(RD)=FLASE}⋅sCBO(⊥)⋅B[image: Image]
B12=sCBO(D)⋅B[image: Image]
Trent's state transitions described by APTCG[image: Image] are as follows.
T=LocT::rCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B))⋅T2[image: Image]
T2=deckAT(ENCkAT(RA,I,A,B))⋅T3[image: Image]
T3=deckBT(ENCkBT(RB,I,A,B))⋅T4[image: Image]
T4=rsgkAB⋅T5[image: Image]
T5=enckAT(RA,kAB)⋅T6[image: Image]
T6=enckBT(RB,kAB)⋅T7[image: Image]
T7=sCTB(I,ENCkAT(RA,kAB),ENCkBT(RB,kAB))⋅T[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions.
γ(rCAB(I,A,B,ENCkAT(RA,I,A,B)),sCAB(I,A,B,ENCkAT(RA,I,A,B)))≜cCAB(I,A,B,ENCkAT(RA,I,A,B))[image: Image]
γ(rCBA(dBA),sCBA(dBA))≜cCBA(dBA)[image: Image]
γ(rCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)),sCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)))≜cCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B))[image: Image]
γ(rCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB)),sCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB)))≜cCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB))[image: Image]
γ(rCAB(dAB),sCAB(dAB))≜cCAB(dAB)[image: Image]
Let all modules be in parallel, then the protocol ABT[image: Image] can be presented by the following process term.
τI(∂H(Θ(A≬B≬T)))=τI(∂H(A≬B≬T))
[image: Image]

 where H={rCAB(I,A,B,ENCkAT(RA,I,A,B)),sCAB(I,A,B,ENCkAT(RA,I,A,B)),rCBA(dBA),sCBA(dBA),rCAB(dAB),sCAB(dAB),rCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)),sCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)),rCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB)),sCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB))|D∈Δ}[image: Image],
I={cCAB(I,A,B,ENCkAT(RA,I,A,B)),cCBA(dBA),cCAB(dAB),cCBT(I,A,B,ENCkAT(RA,I,A,B),ENCkBT(RB,I,A,B)),cCTB(dI,ENCkAT(RA,kAB),ENCkBT(dRB,kAB)),{kAB=NULL},rsgI,rsgRA,{kAB≠NULL},enckAT(RA,I,A,B),{dBA≠⊥},{dBA=⊥},deckAT(ENCkAT(RA,kAB)),{dRA=RA⋅dI=I},{dRA≠RA+dI≠I},rsgRD,enckAB(RD,D),rsgRB,enckBT(RB,I,A,B),deckBT(ENCkBT(dRB,kAB)),{dRB=RB⋅dI=I},{dRB≠RB+dI≠I},{dAB=⊥},{dAB≠⊥},deckAB(ENCkAB(RD,D)),{isFresh(RD)=TRUE},{isFresh(RD)=FALSE},deckAT(ENCkAT(RA,I,A,B)),deckBT(ENCkBT(RB,I,A,B)),rsgkAB,enckAT(RA,kAB),enckBT(RB,kAB)|D∈Δ}[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.4 
The Otway-Rees protocol in Fig. 9.5 is secure.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(A≬B≬T))=∑D∈Δ(LocA::rCAI(D)⋅(LocB::sCBO(⊥)+LocB::sCBO(D)))⋅τI(∂H(A≬B≬T))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it.
That is, the Otway-Rees protocol in Fig. 9.5 τI(∂H(A≬B≬T))[image: Image] can exhibit desired external behaviors:
	1.  For information leakage, because kAT[image: Image] is privately shared only between Alice and Trent, kBT[image: Image] is privately shared only between Bob and Trent, kAB[image: Image] is privately shared only among Trent, Alice, and Bob;
	2.  For the man-in-the-middle attack, because kAT[image: Image] is privately shared only between Alice and Trent, kBT[image: Image] is privately shared only between Bob and Trent, kAB[image: Image] is privately shared only among Trent, Alice, and Bob, and the use of the random numbers I, RA[image: Image], and RB[image: Image], the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired, the Otway-Rees protocol can be against the man-in-the-middle attack;
	3.  For replay attack, the using of the random numbers I, RA[image: Image], and RB[image: Image], makes that τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	4.  Without man-in-the-middle and replay attack, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(D))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	5.  For the unexpected and non-technical leaking of kAT[image: Image], kBT[image: Image], kAB[image: Image], or they being not strong enough, or Trent being dishonest, they are out of the scope of analyses of security protocols; 
	6.  For malicious tampering and transmission errors, they are out of the scope of analyses of security protocols. □






9.3.2 Protocols based on asymmetric cryptosystems
The Denning-Sacco protocol shown in Fig. 9.6 uses asymmetric keys and symmetric keys for secure communication, that is, the key kAB[image: Image] between Alice and Bob is privately shared to Alice and Bob, Alice's, Bob's, and Trent's public keys pkA[image: Image], pkB[image: Image], and pkT[image: Image] can be publicly gotten.
[image: Image]Figure 9.6 Denning-Sacco protocol.
The process of the protocol is as follows.
	1.  Alice receives some messages D from the outside through the channel CAI[image: Image] (the corresponding reading action is denoted rCAI(D)[image: Image]), if kAB[image: Image] is not established, she sends A,B[image: Image] to Trent through the channel CAT[image: Image] (the corresponding sending action is denoted sCAT(A,B)[image: Image]);
	2.  Trent receives A,B[image: Image] through the channel CAT[image: Image] (the corresponding reading action is denoted rCAT(A,B)[image: Image]), he signs Alice's and Bob's public keys pkA[image: Image] and pkB[image: Image] through the actions signskT(A,pkA)[image: Image] and signskT(B,pkB)[image: Image], and sends the signatures to Alice through the channel CTA[image: Image] (the corresponding sending action is denoted sCTA(SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]);
	3.  Alice receives the message from Trent through the channel CTA[image: Image] (the corresponding reading action is denoted rCTA(SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]), she de-signs SIGNskT(B,pkB)[image: Image] through an action de-signpkT(SIGNskT(B,pkB))[image: Image] to get pkB[image: Image], generates a random session key kAB[image: Image] through an action rsgkAB[image: Image], signs A,B,kAB,TA[image: Image] through an action signskA(A,B,kAB,TA)[image: Image], and encrypts the signature by pkB[image: Image] through an action encpkB(SIGNskA(A,B,kAB,TA))[image: Image], then sends ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]);
	4.  Bob receives ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)[image: Image] from Alice (the corresponding reading action is denoted rCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]), he de-signs SIGNskT(A,pkA)[image: Image] through an action de-signpkT(SIGNskT(A,pkA))[image: Image] to get pkA[image: Image], decrypts ENCpkB(SIGNskA(A,B,kAB,TA))[image: Image] through an action decskB(ENCpkB(SIGNskA(A,B,kAB,TA)))[image: Image] and de-sign SIGNskA(A,B,kAB,TA)[image: Image] through an action de-signpkA(SIGNskA(A,B,kAB,TA))[image: Image] to get kAB[image: Image] and TA[image: Image], if isValid(TA)=TRUE[image: Image], he generates a random number RD[image: Image] through an action rsgRD[image: Image], encrypts RD[image: Image] by kAB[image: Image] through an action enckAB(RD)[image: Image], and sends it to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(ENCkAB(RD))[image: Image]), else if isValid(TA)=FALSE[image: Image], he sends ENCkAB(⊥)[image: Image] to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(ENCkAB(⊥))[image: Image]);
	5.  Alice receives ENCkAB(dBA)[image: Image] from Bob (the corresponding reading action is denoted rCBA(ENCkAB(dBA))[image: Image]), if dBA=⊥[image: Image], she sends ENCkAB(⊥)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(⊥))[image: Image]); else if dBA≠⊥[image: Image], if isFresh(dBA)=TRUE[image: Image], she generates a random number RD′[image: Image] through an action rsgRD′[image: Image], encrypts RD′,D[image: Image] by kAB[image: Image] through an action enckAB(RD′,D)[image: Image], and sends it to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(RD′,D))[image: Image]), else if isFresh(dBA)=FALSE[image: Image], he sends ENCkAB(⊥)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(⊥))[image: Image]);
	6.  Bob receives ENCkAB(dAB′)[image: Image] from Alice (the corresponding reading action is denoted rCAB(ENCkAB(dAB′))[image: Image]), if dAB′=⊥[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]); else if dAB′≠⊥[image: Image], if isFresh(dRD′)=TRUE[image: Image], she sends D to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(D)[image: Image]), else if isFresh(dRD′)=FALSE[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]).



Where D∈Δ[image: Image], Δ is the set of data.
Alice's state transitions described by APTCG[image: Image] are as follows.
A=LocA::∑D∈ΔrCAI(D)⋅A2[image: Image]
A2={kAB=NULL}⋅A3+{kAB≠NULL}⋅A13[image: Image]
A3=sCAT(A,B)⋅A4[image: Image]
A4=rCTA(SIGNskT(A,pkA),SIGNskT(B,pkB))⋅A5[image: Image]
A5=de-signpkT(SIGNskT(B,pkB))⋅A6[image: Image]
A6=rsgkAB⋅A7[image: Image]
A7=signskA(A,B,kAB,TA)⋅A8[image: Image]
A8=encpkB(SIGNskA(A,B,kAB,TA))⋅A9[image: Image]
A9=sCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))⋅A10[image: Image]
A10=rCBA(ENCkAB(dBA))⋅A11[image: Image]
A11={dBA≠⊥}⋅A12+{dBA=⊥}⋅sCAB(ENCkAB(⊥))⋅A[image: Image]
A12={isFresh(dBA)=TRUE}⋅A13+{isFresh(dBA)=FALSE}⋅sCAB(ENCkAB(⊥))⋅A[image: Image]
A13=rsgRD′⋅A14[image: Image]
A14=enckAB(RD′,D)⋅A15[image: Image]
A15=sCAB(ENCkAB(RD′,D))⋅A[image: Image]
Bob's state transitions described by APTCG[image: Image] are as follows.
B=LocB::{kAB=NULL}⋅B1+{kAB≠NULL}⋅B9[image: Image]
B1=rCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))⋅B2[image: Image]
B2=de-signpkT(SIGNskT(A,pkA))⋅B3[image: Image]
B3=decskB(ENCpkB(SIGNskA(A,B,kAB,TA)))⋅B4[image: Image]
B4=de-signpkA(SIGNskA(A,B,kAB,TA))⋅B5[image: Image]
B5={isValid(TA)=TRUE}⋅B6+{isValid(TA)=FALSE}⋅sCBA(ENCkAB(⊥))⋅B9[image: Image]
B6=rsgRD⋅B7[image: Image]
B7=enckAB(RD)⋅B8[image: Image]
B8=sCBA(ENCkAB(dBA))⋅B9[image: Image]
B9=rCAB(ENCkAB(dAB′))⋅B10[image: Image]
B10=deckAB(ENCkAB(dAB′))⋅B11[image: Image]
B11={dAB′=⊥}⋅sCBO(⊥)⋅B+{dAB′≠⊥}⋅B12[image: Image]
B12={isFresh(dRD′)=FLASE}⋅sCBO(⊥)B+{isFresh(dRD′)=TRUE}⋅B13[image: Image]
B13=sCBO(D)⋅B[image: Image]
Trent's state transitions described by APTCG[image: Image] are as follows.
T=LocT::rCAT(A,B)⋅T2[image: Image]
T2=signskT(A,pkA)⋅T3[image: Image]
T3=signskT(B,pkB)⋅T4[image: Image]
T4=sCTA(SIGNskT(A,pkA),SIGNskT(B,pkB))⋅T[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions.
γ(rCAT(A,B),sCAT(A,B))≜cCAT(A,B)[image: Image]
γ(rCTA(SIGNskT(A,pkA),SIGNskT(B,pkB)),sCTA(SIGNskT(A,pkA),SIGNskT(B,pkB)))≜cCTA(SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]
γ(rCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)),sCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)))≜cCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))[image: Image]
γ(rCBA(ENCkAB(dBA)),sCBA(ENCkAB(dBA)))≜cCBA(ENCkAB(dBA))[image: Image]
γ(rCAB(ENCkAB(dAB′)),sCAB(ENCkAB(dAB′)))≜cCAB(ENCkAB(dAB′))[image: Image]
Let all modules be in parallel, then the protocol ABT[image: Image] can be presented by the following process term.
τI(∂H(Θ(A≬B≬T)))=τI(∂H(A≬B≬T))
[image: Image]

where H={rCAT(A,B),sCAT(A,B),rCBA(ENCkAB(dBA)),sCBA(ENCkAB(dBA)),rCAB(ENCkAB(dAB′)),sCAB(ENCkAB(dAB′)),rCTA(SIGNskT(A,pkA),SIGNskT(B,pkB)),sCTA(SIGNskT(A,pkA),SIGNskT(B,pkB)),rCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)),sCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB))|D∈Δ}[image: Image],
I={cCAT(A,B),cCBA(ENCkAB(dBA)),cCAB(ENCkAB(dAB′)),cCTA(SIGNskT(A,pkA),SIGNskT(B,pkB)),cCAB(ENCpkB(SIGNskA(A,B,kAB,TA)),SIGNskT(A,pkA),SIGNskT(B,pkB)),{kAB=NULL},{kAB≠NULL},de-signpkT(SIGNskT(B,pkB)),rsgkAB,signskA(A,B,kAB,TA),encpkB(SIGNskA(A,B,kAB,TA)),{isFresh(dBA)=TRUE},{isFresh(dBA)=FALSE},{dBA≠⊥},{dBA=⊥},rsgRD′,enckAB(RD′,D),de-signpkT(SIGNskT(A,pkA)),decskB(ENCpkB(SIGNskA(A,B,kAB,TA))),de-signpkA(SIGNskA(A,B,kAB,TA)),{isValid(TA)=TRUE},{isValid(TA)=FALSE},rsgRD,enckAB(RD),deckAB(ENCkAB(dAB′)),{dAB′=⊥},{dAB′≠⊥},{isFresh(dRD′)=TRUE},{isFresh(dRD′)=FLASE},signskT(A,pkA),signskT(B,pkB)|D∈Δ}[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.5 
The Denning-Sacco protocol in Fig. 9.6 is secure.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(A≬B≬T))=∑D∈Δ(LocA::rCAI(D)⋅(LocB::sCBO(⊥)+LocB::sCBO(D)))⋅τI(∂H(A≬B≬T))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it.
That is, the Denning-Sacco protocol in Fig. 9.6 τI(∂H(A≬B≬T))[image: Image] can exhibit desired external behaviors:
	1.  For the man-in-the-middle attack, because pkA[image: Image] and pkB[image: Image] are signed by Trent, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired, the Denning-Sacco protocol can be against the man-in-the-middle attack;
	2.  For replay attack, the using of the time stamp TA[image: Image], random numbers RD[image: Image] and RD′[image: Image], makes that τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	3.  Without man-in-the-middle and replay attack, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(D))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	4.  For the unexpected and non-technical leaking of skA[image: Image], skB[image: Image], kAB[image: Image], or they being not strong enough, or Trent being dishonest, they are out of the scope of analyses of security protocols;
	5.  For malicious tampering and transmission errors, they are out of the scope of analyses of security protocols. □






The Woo-Lam protocol shown in Fig. 9.7 uses asymmetric keys and symmetric keys for secure communication, that is, the key kAB[image: Image] between Alice and Bob is privately shared to Alice and Bob, Alice's, Bob's, and Trent's public keys pkA[image: Image], pkB[image: Image], and pkT[image: Image] can be publicly gotten.
[image: Image]Figure 9.7 Woo-Lam protocol.
The process of the protocol is as follows.
	1.  Alice receives some messages D from the outside through the channel CAI[image: Image] (the corresponding reading action is denoted rCAI(D)[image: Image]), if kAB[image: Image] is not established, she sends A,B[image: Image] to Trent through the channel CAT[image: Image] (the corresponding sending action is denoted sCAT(A,B)[image: Image]);
	2.  Trent receives A,B[image: Image] through the channel CAT[image: Image] (the corresponding reading action is denoted rCAT(A,B)[image: Image]), he signs Bob's public key pkB[image: Image] through the action signskT(pkB)[image: Image], and sends the signature to Alice through the channel CTA[image: Image] (the corresponding sending action is denoted sCTA(SIGNskT(pkB))[image: Image]);
	3.  Alice receives the message from Trent through the channel CTA[image: Image] (the corresponding reading action is denoted rCTA(SIGNskT(pkB))[image: Image]), she de-signs SIGNskT(pkB)[image: Image] through an action de-signpkT(SIGNskT(pkB))[image: Image] to get pkB[image: Image], generates a random number RA[image: Image] through an action rsgRA[image: Image] and encrypts A,RA[image: Image] by pkB[image: Image] through an action encpkB(A,RA)[image: Image], and sends ENCpkB(A,RA)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCpkB(A,RA))[image: Image]);
	4.  Bob receives ENCpkB(A,RA)[image: Image] from Alice (the corresponding reading action is denoted rCAB(ENCpkB(A,RA))[image: Image]), he decrypts ENCpkB(A,RA)[image: Image] through an action decskB(ENCpkB(A,RA))[image: Image] to get A and RA[image: Image], encrypts RA[image: Image] by pkT[image: Image] through an action encpkT(RA)[image: Image], then sends A,B,ENCpkT(RA)[image: Image] to Trent through the channel CBT[image: Image] (the corresponding sending action is denoted sCBT(A,B,ENCpkT(RA))[image: Image]);
	5.  Trent receives A,B,ENCpkT(RA)[image: Image] from Bob through the channel CBT[image: Image] (the corresponding reading action is denoted rCBT(A,B,ENCpkT(RA))[image: Image]), he decrypts the message through an action decskT(ENCpkT(RA))[image: Image], signs pkA[image: Image] through an action signskT(pkA)[image: Image], generates a random session key kAB[image: Image] through an action rsgkAB[image: Image] and signs RA,kAB,A,B[image: Image] through an action signskT(RA,kAB,A,B)[image: Image], encrypts SIGNskT(RA,kAB,A,B)[image: Image] through an action encpkB(SIGNskT(RA,kAB,A,B))[image: Image] and sends them to Bob through the channel CTB[image: Image] (the corresponding sending action is denoted sCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B)))[image: Image]);
	6.  Bob receives the signatures from Trent through the channel CTB[image: Image] (the corresponding reading action is denoted rCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B)))[image: Image]), he de-signs SIGNskT(pkA)[image: Image] through an action de-signpkT(SIGNskT(pkA))[image: Image] to get pkA[image: Image], decrypts ENCpkB(SIGNskT(RA,kAB,A,B))[image: Image] through an action decskB(ENCpkB(SIGNskT(RA,kAB,A,B)))[image: Image], generates a random number RB[image: Image] through an action rsgRB[image: Image], encrypts them through an action encpkA(SIGNskT(RA,kAB,A,B),RB)[image: Image] and sends ENCpkA(SIGNskT(RA,kAB,A,B),RB)[image: Image] to Alice through the channel CBA[image: Image] (the corresponding sending action is denoted sCBA(ENCpkA(SIGNskT(RA,kAB,A,B),RB))[image: Image]);
	7.  Alice receives ENCpkA(SIGNskT(dRA,kAB,A,B),RB)[image: Image] from Bob (the corresponding reading action is denoted rCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB))[image: Image]), she decrypts the message through an action decskA(ENCpkA(SIGNskT(RA,kAB,A,B),RB))[image: Image], de-sign SIGNskT(RA,kAB,A,B)[image: Image] through an action de-signpkT(SIGNskT(RA,kAB,A,B))[image: Image], if dRA≠RA[image: Image], she sends ENCkAB(⊥)[image: Image] to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(⊥))[image: Image]); else if dRA=RA[image: Image], encrypts RB,D[image: Image] by kAB[image: Image] through an action enckAB(RB,D)[image: Image], and sends it to Bob through the channel CAB[image: Image] (the corresponding sending action is denoted sCAB(ENCkAB(RB,D))[image: Image]);
	8.  Bob receives ENCkAB(dAB)[image: Image] from Alice (the corresponding reading action is denoted rCAB(ENCkAB(dAB))[image: Image]), if dAB=⊥[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]); else if dAB≠⊥[image: Image], if dRB=RB[image: Image], she sends D to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(D)[image: Image]), else if dRB≠RB[image: Image], he sends ⊥ to the outside through the channel CBO[image: Image] (the corresponding sending action is denoted sCBO(⊥)[image: Image]).



Where D∈Δ[image: Image], Δ is the set of data.
Alice's state transitions described by APTCG[image: Image] are as follows.
A=LocA::∑D∈ΔrCAI(D)⋅A2[image: Image]
A2={kAB=NULL}⋅A3+{kAB≠NULL}⋅A9[image: Image]
A3=sCAT(A,B)⋅A4[image: Image]
A4=rCTA(SIGNskT(pkB))⋅A5[image: Image]
A5=de-signpkT(SIGNskT(pkB))⋅A6[image: Image]
A6=rsgRA⋅A7[image: Image]
A7=encskP(A,RA)⋅A8[image: Image]
A8=sCAB(ENCskP(A,RA))⋅A9[image: Image]
A9=rCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB))⋅A10[image: Image]
A10={dRA=RA}⋅A11+{dRA≠RA}⋅sCAB(ENCkAB(⊥))⋅A[image: Image]
A11=enckAB(RB,D)⋅A12[image: Image]
A12=sCAB(ENCkAB(RB,D))⋅A[image: Image] 
Bob's state transitions described by APTCG[image: Image] are as follows.
B=LocB::{kAB=NULL}⋅B1+{kAB≠NULL}⋅B10[image: Image]
B1=rCAB(ENCskP(A,RA))⋅B2[image: Image]
B2=decskB(ENCpkB(A,RA))⋅B3[image: Image]
B3=sCBT(A,B,ENCpkT(RA))⋅B4[image: Image]
B4=rCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B)))⋅B5[image: Image]
B5=de-signpkT(SIGNskT(pkA))⋅B6[image: Image]
B6=decskB(ENCpkB(SIGNskT(RA,kAB,A,B)))⋅B7[image: Image]
B7=rsgRB⋅B8[image: Image]
B8=encpkA(SIGNskT(RA,kAB,A,B),RB)⋅B9[image: Image]
B9=sCBA(ENCpkA(SIGNskT(RA,kAB,A,B),RB))⋅B10[image: Image]
B10=rCAB(ENCkAB(dAB))⋅B11[image: Image]
B11=deckAB(ENCkAB(dAB))⋅B12[image: Image]
B12={dAB=⊥}⋅sCBO(⊥)⋅B+{dAB≠⊥}⋅B13[image: Image]
B13={dRB≠RB}⋅sCBO(⊥)B+{dRB=RB}⋅B14[image: Image]
B14=sCBO(D)⋅B[image: Image]
Trent's state transitions described by APTCG[image: Image] are as follows.
T=LocT::rCAT(A,B)⋅T2[image: Image]
T2=signskT(pkB)⋅T3[image: Image]
T3=sCTA(SIGNskT(pkB))⋅T4[image: Image]
T4=rCBT(A,B,ENCpkT(RA))⋅T5[image: Image]
T5=decskT(ENCpkT(RA))⋅T6[image: Image]
T6=signskT(pkA)⋅T7[image: Image]
T7=rsgkAB⋅T8[image: Image]
T8=signskT(RA,kAB,A,B)⋅T9[image: Image]
T9=encpkB(SIGNskT(RA,kAB,A,B))⋅T10[image: Image]
T10=sCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B)))⋅T[image: Image]
The sending action and the reading action of the same type data through the same channel can communicate with each other, otherwise, will cause a deadlock δ. We define the following communication functions.
γ(rCAT(A,B),sCAT(A,B))≜cCAT(A,B)[image: Image]
γ(rCBT(A,B,ENCpkT(RA)),sCAT(A,B,ENCpkT(RA)))≜cCAT(A,B,ENCpkT(RA))[image: Image]
γ(rCTA(SIGNskT(pkB)),sCTA(SIGNskT(pkB)))≜cCTA(SIGNskT(pkB))[image: Image]
γ(rCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B))),sCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B))))≜cCTB(SIGNskT(A,pkA))[image: Image]
γ(rCAB(ENCskP(A,RA)),sCAB(ENCskP(A,RA)))≜cCAB(ENCskP(A,RA))[image: Image]
γ(rCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB)),sCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB)))≜cCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB))[image: Image]
γ(rCAB(ENCkAB(RB,D)),sCAB(ENCkAB(RB,D)))≜cCAB(ENCkAB(RB,D))[image: Image]
Let all modules be in parallel, then the protocol ABT[image: Image] can be presented by the following process term.
τI(∂H(Θ(A≬B≬T)))=τI(∂H(A≬B≬T))
[image: Image]

 where H={rCAT(A,B),sCAT(A,B),rCBT(A,B,ENCpkT(RA)),sCAT(A,B,ENCpkT(RA)),rCTA(SIGNskT(pkB)),sCTA(SIGNskT(pkB)),rCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B))),sCTB(SIGNskT(pkA),ENCpkB(SIGNskT(RA,kAB,A,B))),rCAB(ENCskP(A,RA)),sCAB(ENCskP(A,RA)),rCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB)),sCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB)),rCAB(ENCkAB(RB,D)),sCAB(ENCkAB(RB,D))|D∈Δ}[image: Image],
I={cCAT(A,B),cCAT(A,B,ENCpkT(RA)),cCTA(SIGNskT(pkB)),cCTB(SIGNskT(A,pkA)),cCAB(ENCskP(A,RA)),cCBA(ENCpkA(SIGNskT(dRA,kAB,A,B),RB)),cCAB(ENCkAB(RB,D)),{kAB=NULL},{kAB≠NULL},de-signpkT(SIGNskT(pkB)),rsgRA,encskP(A,RA),{dRA=RA},{dRA≠RA},enckAB(RB,D),decskB(ENCpkB(A,RA)),decskB(ENCpkB(A,RA)),de-signpkT(SIGNskT(pkA)),decskB(ENCpkB(SIGNskT(RA,kAB,A,B))),rsgRB,encpkA(SIGNskT(RA,kAB,A,B),RB),deckAB(ENCkAB(dAB)),{dAB=⊥},{dAB≠⊥},{dRB=RB},{dRB≠RB},signskT(pkB),decskT(ENCpkT(RA)),signskT(pkA),rsgkAB,signskT(RA,kAB,A,B),encpkB(SIGNskT(RA,kAB,A,B))|D∈Δ}[image: Image].
Then we get the following conclusion on the protocol.

Theorem 9.6 
The Woo-Lam protocol in Fig. 9.7 is secure.




Proof 
Based on the above state transitions of the above modules, by use of the algebraic laws of APTCG[image: Image], we can prove that
τI(∂H(A≬B≬T))=∑D∈Δ(LocA::rCAI(D)⋅(LocB::sCBO(⊥)+LocB::sCBO(D)))⋅τI(∂H(A≬B≬T))[image: Image].
For the details of proof, please refer to Section 3.10, and we omit it.
That is, the Woo-Lam protocol in Fig. 9.7 τI(∂H(A≬B≬T))[image: Image] can exhibit desired external behaviors:
	1.  For the man-in-the-middle attack, because pkA[image: Image] and pkB[image: Image] are signed by Trent, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired, the Woo-Lam protocol can be against the man-in-the-middle attack; 
	2.  For replay attack, the using of the random number RA[image: Image], RB[image: Image], makes that τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(⊥))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	3.  Without man-in-the-middle and replay attack, the protocol would be τI(∂H(A≬B≬T))=∑D∈Δ(rCAI(D)⋅sCBO(D))⋅τI(∂H(A≬B≬T))[image: Image], it is desired;
	4.  For the unexpected and non-technical leaking of skA[image: Image], skB[image: Image], kAB[image: Image], or they being not strong enough, or Trent being dishonest, they are out of the scope of analyses of security protocols;
	5.  For malicious tampering and transmission errors, they are out of the scope of analyses of security protocols. □
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A: A parallel programming language

In this appendix, we design a detailed parallel programming language, abbreviated PPL. PPL includes the four basic structures: sequence, choice, iteration, and parallelism, and also non-determinism, communications (causalities between different parallel branches), and conflictions between different parallel branches. Note that, for the integrity, the semantics of traditional parts are also involved.
In Section A.1, we give the syntax of PPL. We give the operational semantics and denotational semantics in Sections A.2 and A.3, and the relation between them in Section A.4, we give the axiomatic semantics in Section A.5. We discuss non-determinism in Section A.6, communications in Section A.7, and conflictions in Section A.8, and the structuring algorithm in Section A.9.
A.1 Syntax
The syntactic sets of PPL are as follows.
	•  Numbers set N, with positive, negative integers, and zero, and n,m∈N[image: Image];
	•  Truth values set T, with values {true,false}[image: Image];
	•  Storage locations Loc, and X,Y∈Loc[image: Image];
	•  Arithmetic expressions Aexp, and a∈Aexp[image: Image];
	•  Boolean expressions Bexp, and b∈Bexp[image: Image];
	•  Commands Com, and c∈Com[image: Image].



The formation rules of PPL are:
For Aexp:
a::=n|X|a0+a1|a0−a1|a0×a1
[image: Image]


For Bexp:
b::=true|false|a0=a1|a0⩽a1|¬b|b0∧b1|b0∨b1
[image: Image]


For Com:
c::=skip|X:=a|c0;c1|ifbthenc0elsec1|whilebdoc|c0∥c1
[image: Image]


We see that the syntax of PPL is almost same to traditional imperative language, except for the explicit parallel operator ∥ in Com.
A.2 Operational semantics
The set of states Σ are composed of σ:Loc→N[image: Image], so, σ(X)[image: Image] is the values of storage location X under the state σ. For more about operational semantics, please refer to Plotkin's book [20].
In this section, we give the operational semantics of PPL.
A.2.1 Operational rules of Aexp
〈a,σ〉[image: Image] is called the configuration of arithmetic expression a, while 〈a,σ〉→n[image: Image] denotes that the value of a is n under the state σ.
The evaluation rule of integer n:
〈n,σ〉→n
[image: Image]


The evaluation rule of storage location X:
〈X,σ〉→σ(X)
[image: Image]


The evaluation rule of sums:
〈a0,σ〉→n0〈a1,σ〉→n1〈a0+a1,σ〉→n,n=n0+n1
[image: Image]


The evaluation rule of subtractions:
〈a0,σ〉→n0〈a1,σ〉→n1〈a0−a1,σ〉→n,n=n0−n1
[image: Image]


The evaluation rule of products:
〈a0,σ〉→n0〈a1,σ〉→n1〈a0×a1,σ〉→n,n=n0×n1
[image: Image]


Then we can define the following equivalence ∼ as follows.

Definition A.1 
Equivalence of operational semantics for arithmetic expressions
a0∼a1[image: Image] iff ∀n∈N[image: Image], ∀σ∈Σ.〈a0,σ〉→n⇔〈a1,σ〉→n[image: Image].



A.2.2 Operational rules of Bexp
The evaluation rule of true:
〈true,σ〉→true
[image: Image]


The evaluation rule of false:
〈false,σ〉→false
[image: Image]


The evaluation rule of equality:
〈a0,σ〉→n0〈a1,σ〉→n1〈a0=a1,σ〉→true,n0=n1〈a0,σ〉→n0〈a1,σ〉→n1〈a0=a1,σ〉→false,n0≠n1
[image: Image]


The evaluation rule of ⩽:
〈a0,σ〉→n0〈a1,σ〉→n1〈a0⩽a1,σ〉→true,n0⩽n1〈a0,σ〉→n0〈a1,σ〉→n1〈a0⩽a1,σ〉→false,n0⩾n1
[image: Image]


The evaluation rule of ¬:
〈b,σ〉→true〈¬b,σ〉→false〈b,σ〉→false〈¬b,σ〉→true
[image: Image]


The evaluation rule of ∧:
〈b0,σ〉→t0〈b1,σ〉→t1〈b0∧b1,σ〉→t,t=true,t0≡true∧t1≡true;t=false,otherwise
[image: Image]


The evaluation rule of ∨:
〈b0,σ〉→t0〈b1,σ〉→t1〈b0∨b1,σ〉→t,t=true,t0≡true∨t1≡true;t=false,otherwise
[image: Image]


Then we can define the following equivalence ∼ as follows.

Definition A.2 
Equivalence of operational semantics for boolean expressions
b0∼b1[image: Image] iff ∀t∈T[image: Image], ∀σ∈Σ.〈b0,σ〉→t⇔〈b1,σ〉→t[image: Image].



A.2.3 Operational rules for Com
〈c,σ〉[image: Image] denotes the configuration of the command c, which means that the command c executes under the state σ. And 〈cσ〉→σ′[image: Image] means that the command c executing under the state σ evolves to the state σ′[image: Image]. For n∈N[image: Image] and X∈Loc[image: Image], σ[n/X][image: Image] denotes using n to replace the contents of X under the state σ.
The execution rule of skip:
〈skip,σ〉→σ
[image: Image]


The execution rule of assignment:
〈a,σ〉→n〈X:=a,σ〉→σ[n/X]
[image: Image]


The execution rule of sequence:
〈c0,σ〉→σ′〈c0;c1,σ〉→〈c1,σ′〉
[image: Image]


The execution rule of choice:
〈b,σ〉→true〈c0,σ〉→σ′〈ifbthenc0elsec1,σ〉→σ′〈b,σ〉→false〈c1,σ〉→σ′〈ifbthenc0elsec1,σ〉→σ′
[image: Image]


The execution rule of iteration:
〈b,σ〉→false〈whilebdoc,σ〉→σ〈b,σ〉→true〈c,σ〉→σ″〈whilebdoc,σ″〉→σ′〈whilebdoc,σ〉→σ′
[image: Image]


The execution rule of parallelism:
〈c1,σ〉→σ′〈c0,σ〉→σ″〈c0∥c1,σ〉→σ′⊎σ″
[image: Image]

 where σ′⊎σ″[image: Image] are the final states after c0[image: Image] and c1[image: Image] execute simultaneously.
Note that, for true concurrency, there are still three other properties should be processed: communications, conflictions, and race conditions (we leave them to the next section).
	1.  Communication is occurring between two atomic communicating commands, which can be defined by a communication function γ(c0,c1)≜c(c0,c1)[image: Image]. Communications can be implemented by several ways: share storage locations, invocation of functions by values, or network communications. For a pure imperative programming language, we only consider the case of share storage locations, so, there is no need to define new communicating commands. So, two commands in communication are with a relation γ(c0,c1)≜c(c0,c1)[image: Image], but rules of c0∥c1[image: Image] are still the same to the above ones. We will discuss the general communications in Section A.7;
	2.  Confliction may have two forms: one exists as the condition rules define; the other may exist among the parallel branches, which must be eliminated. But the elimination of confliction existing in parallel branches may lead to non-deterministic results (refer to [8] for details). For simplicity, we assume that the programs written by PPL at this time have no conflictions, because a program with the conflictions existing among parallel branches has an equal program without conflicts. That is, the conflictions can be eliminated and structured, and we will discuss the elimination of conflictions between parallel branches in Section A.8; 
	3.  Race condition may exist in two parallel commands, for example, they are all executing assignment to a same storage location. Two parallel commands in race condition must be executed serially. We should define new rules for race condition, but, these rules also lead to non-deterministic results. So, we also assume that the programs written by PPL deal with this situation and the non-deterministic execution is eliminated. In fact, we can write c0∥(skip;c1)[image: Image] or (skip;c0)∥c1[image: Image], or put c0,c1[image: Image] in a condition, where c0[image: Image] and c1[image: Image] are in race condition. But, indeed, the above parallelism is still can be used widely in non-sharing memory computation (distributed computing), or non-racing of sharing memory computation. For the general form of non-determinism, we will discuss in Sections A.6 and A.7.



We can get the following propositions. Where ∼ is an equivalence relation on commands by the definition, and Σ is the set of states:

Definition A.3 
Equivalence of operational semantics for commands
c0∼c1 iff ∀σ,σ′∈Σ,〈c0,σ〉→σ′⇔〈c1,σ〉→σ′[image: Image]




Proposition A.4 
c0∥c1∼c1∥c0[image: Image], for c0,c1∈Com[image: Image].




Proof 
By use of the transition rules of ∥, we can get the following derivations of c0∥c1[image: Image] for ∀σ∈Σ[image: Image]:
〈c1,σ〉→σ′〈c0,σ〉→σ″〈c0∥c1,σ〉→σ′⊎σ″
[image: Image]


And we can get the following derivations of c1∥c0[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→σ′〈c1,σ〉→σ″〈c1∥c0,σ〉→σ′⊎σ″
[image: Image]


So, it is obvious that c0∥c1∼c1∥c0[image: Image], for c0,c1∈Com[image: Image], as desired. □




Proposition A.5 
(c0∥c1)∥c2∼c0∥(c1∥c2)[image: Image], for c0,c1,c2∈Com[image: Image].




Proof 
By use of the transition rules of ∥, we can get the following derivations of (c0∥c1)∥c2[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→σ′〈c1,σ〉→σ″〈c2,σ〉→σ‴〈(c0∥c1)∥c2,σ〉→σ′⊎σ″⊎σ‴
[image: Image]


And we can get the following derivations of c0∥(c1∥c2)[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→σ′〈c1,σ〉→σ″〈c2,σ〉→σ‴〈c0∥(c1∥c2),σ〉→σ′⊎σ″⊎σ‴
[image: Image]


So, it is obvious that (c0∥c1)∥c2∼c0∥(c1∥c2)[image: Image], for c0,c1,c2∈Com[image: Image], as desired. □




Proposition A.6 
(ifbthenc0elsec1)∥c2∼ifbthenc0∥c2elsec1∥c2[image: Image], for c0,c1,c2∈Com[image: Image]. 




Proof 
By use of the transition rules of choice and ∥, we can get the following derivations of (ifbthenc0elsec1)∥c2[image: Image]:
〈b,σ〉→true〈c0,σ〉→σ′〈c2,σ〉→σ″〈(ifbthenc0elsec1)∥c2,σ〉→σ′⊎σ″〈b,σ〉→false〈c1,σ〉→σ′〈c2,σ〉→σ″〈(ifbthenc0elsec1)∥c2,σ〉→σ′⊎σ″
[image: Image]


And we can get the following derivations of ifbthenc0∥c2elsec1∥c2[image: Image]:
〈b,σ〉→true〈c0,σ〉→σ′〈c2,σ〉→σ″〈(ifbthenc0∥c2elsec1∥c2,σ〉→σ′⊎σ″〈b,σ〉→false〈c1,σ〉→σ′〈c2,σ〉→σ″〈(ifbthenc0∥c2elsec1∥c2,σ〉→σ′⊎σ″
[image: Image]


So, it is obvious that (ifbthenc0elsec1)∥c2∼ifbthenc0∥c2elsec1∥c2[image: Image], for c0,c1,c2∈Com[image: Image], as desired. □




Proposition A.7 
For c0,c1,c2,c3∈Com[image: Image],
	1.  (c0;c1)∥c2∼(c0∥c2);c1[image: Image];
	2.  (c0;c1)∥(c2;c3)∼(c0∥c2);(c1∥c3)[image: Image].







Proof 
(1) By use of the transition rules of sequence and ∥, we can get the following derivations of (c0;c1)∥c2[image: Image]:
〈c0,σ〉→σ′〈c2,σ〉→σ″〈(c0;c1)∥c2,σ〉→〈c1,σ′⊎σ″〉
[image: Image]


And we can get the following derivations of (c0∥c2);c1[image: Image]:
〈c0,σ〉→σ′〈c2,σ〉→σ″〈(c0∥c2);c1,σ〉→〈c1,σ′⊎σ″〉
[image: Image]


So, it is obvious that (c0;c1)∥c2∼(c0∥c2);c1[image: Image], for c0,c1,c2∈Com[image: Image], as desired.
(2) By use of the transition rules of sequence and ∥, we can get the following derivations of (c0;c1)∥(c2;c3)[image: Image]:
〈c0,σ〉→σ′〈c2,σ〉→σ″〈(c0;c1)∥(c2;c3),σ〉→〈c1∥c3,σ′⊎σ″〉
[image: Image]


And we can get the following derivations of (c0∥c2);(c1∥c3)[image: Image]:
〈c0,σ〉→σ′〈c2,σ〉→σ″〈(c0∥c2);(c1∥c3),σ〉→〈c1∥c3,σ′⊎σ″〉
[image: Image]


So, it is obvious that (c0;c1)∥(c2;c3)∼(c0∥c2);(c1∥c3)[image: Image], for c0,c1,c2,c3∈Com[image: Image], as desired.  □




Proposition A.8 
c∥skip∼c[image: Image], for c∈Com[image: Image].




Proof 
By use of the transition rules of skip and ∥, we can get the following derivations of c∥skip[image: Image]:
〈c,σ〉→σ′〈skip,σ〉→σc∥skip,σ〉→σ′⊎σ
[image: Image]


And it is obvious that:
〈c,σ〉→σ′c,σ〉→σ′
[image: Image]


For σ′⊎σ=σ′[image: Image], it is obvious that c∥skip∼c[image: Image], for c∈Com[image: Image], as desired. □




Lemma A.9 
For c0,c1∈Com[image: Image],
	1.  c0∥c1∼c0∥(skip;c1)∼c0;c1[image: Image];
	2.  c0∥c1∼(skip;c0)∥c1∼c1;c0[image: Image].







Proof 
It is obvious by Proposition A.7 and A.8. □



From Lemma A.9, we can see that the execution orders of c0∥c1[image: Image] cause non-determinism, they can be executed in any sequential order or in parallel simultaneously. But, without race condition, the final states after the execution of c0∥c1[image: Image] are deterministic.
A.3 Denotational semantics
Denotational semantics can be used to describe the semantics of PPL. For more about denotational semantics, please refer to Mosses's book [21].
In this section, we give the denotational semantics for PPL.
A.3.1 Denotational semantics of Aexp
We define the denotational semantics of Aexp as A:Aexp→(Σ→N)[image: Image]. The concrete denotational semantics of Aexp are following.
A〚n〛={(σ,n)|σ∈Σ}[image: Image]
A〚X〛={(σ,σ(X))|σ∈Σ}[image: Image]
A〚a0+a1〛={(σ,n0+n1)|(σ,n0)∈A〚a0〛&(σ,n1)∈A〚a1〛}[image: Image]
A〚a0−a1〛={(σ,n0−n1)|(σ,n0)∈A〚a0〛&(σ,n1)∈A〚a1〛}[image: Image]
A〚a0×a1〛={(σ,n0×n1)|(σ,n0)∈A〚a0〛&(σ,n1)∈A〚a1〛}[image: Image]
A.3.2 Denotational semantics of Bexp
We define the denotational semantics of Bexp as B:Bexp→(Σ→T)[image: Image]. The concrete denotational semantics of Bexp are following. 
B〚true〛={(σ,true)|σ∈Σ}[image: Image]
B〚false〛={(σ,false)|σ∈Σ}[image: Image]
B〚a0=a1〛={(σ,true)|σ∈Σ&A〚a0〛σ=A〚a1〛σ}∪{(σ,false)|σ∈Σ&A〚a0〛σ≠A〚a1〛σ}[image: Image]
B〚a0⩽a1〛={(σ,true)|σ∈Σ&A〚a0〛σ⩽A〚a1〛σ}∪{(σ,false)|σ∈Σ&A〚a0〛σ≰A〚a1〛σ}[image: Image]
B〚¬b〛={(σ,¬Tt)|σ∈Σ&(σ,t)∈B〚b〛}[image: Image]
B〚b0∧b1〛={(σ,t0∧Tt1)|σ∈Σ&(σ,t0)∈B〚b0〛&(σ,t1)∈B〚b1〛}[image: Image]
B〚b0∨b1〛={(σ,t0∨Tt1)|σ∈Σ&(σ,t0)∈B〚b0〛&(σ,t1)∈B〚b1〛}[image: Image]
A.3.3 Denotational semantics of Com
We define the denotational semantics of Com as C:Com→(Σ→Σ)[image: Image]. The denotational semantics of Com are following.
C〚skip〛={(σ,σ)|σ∈Σ}[image: Image]
C〚X:=a〛={(σ,σ[n/X])|σ∈Σ&n=A〚a〛σ}[image: Image]
C〚c0;c1〛=C〚c1〛∘C〚c0〛[image: Image]
C〚if b then c0 else c1〛={(σ,σ′)|B〚b〛σ=true&(σ,σ′)∈C〚c0〛}∪{(σ,σ′)|B〚b〛σ=false&(σ,σ′)∈C〚c1〛}[image: Image]
C〚while b do c〛=fix(Γ)[image: Image]
with Γ(ϕ)={(σ,σ′)|B〚b〛σ=true&(σ,σ′)∈ϕ∘C〚c〛}∪{(σ,σ′)|B〚b〛σ=false}[image: Image]
C〚c0∥c1〛=C〚c0〛}∪{C〚c1〛[image: Image]
We can get the following propositions.

Proposition A.10 
C〚c0∥c1〛=C〚c1∥c0〛[image: Image], for c0,c1∈Com[image: Image].




Proof 
By the definition of the denotation of ∥, we can get:
C〚c0∥c1〛=C〚c0〛∪C〚c1〛[image: Image]
C〚c1∥c0〛=C〚c1〛∪C〚c0〛[image: Image]
So, C〚c0∥c1〛=C〚c1∥c0〛[image: Image], for c0,c1∈Com[image: Image], as desired. □




Proposition A.11 
C〚(c0∥c1)∥c2〛=C〚c0∥(c1∥c2)〛[image: Image], for c0,c1,c2∈Com[image: Image].




Proof 
By the definition of the denotation of ∥, we can get:
C〚(c0∥c1)∥c2〛=(C〚c0〛∪C〚c1〛)∪C〚c2〛[image: Image]
C〚c0∥(c1∥c2)〛=C〚c0〛∪(C〚c1〛∪C〚c2〛)[image: Image]
C〚(c0∥c1)∥c2〛=C〚c0∥(c1∥c2)〛[image: Image], for c0,c1,c2∈Com[image: Image], as desired. □




Proposition A.12 
C〚(ifbthenc0elsec1)∥c2〛=C〚ifbthenc0∥c2elsec1∥c2〛[image: Image], for c0,c1,c2∈Com[image: Image]. 




Proof 
By the definition of the denotation of choice and ∥, we can get:
C〚(ifbthenc0elsec1)∥c2〛={(σ,σ′)|B〚b〛σ=true&(σ,σ′)∈C〚c0〛}∪{(σ,σ′)|B〚b〛σ=false&(σ,σ′)∈C〚c1〛}∪C〚c2〛[image: Image]
C〚ifbthenc0∥c2elsec1∥c2〛={(σ,σ′)|B〚b〛σ=true&(σ,σ′)∈C〚c0〛∪C〚c2〛}∪{(σ,σ′)|B〚b〛σ=false&(σ,σ′)∈C〚c1〛∪C〚c2〛}[image: Image]
So, C〚(ifbthenc0elsec1)∥c2〛=C〚ifbthenc0∥c2elsec1∥c2〛[image: Image], for c0,c1,c2∈Com[image: Image], as desired. □




Proposition A.13 
For c0,c1,c2,c3∈Com[image: Image],
	1.  C〚(c0;c1)∥c2〛=C〚(c0∥c2);c1〛[image: Image];
	2.  C〚(c0;c1)∥(c2;c3)〛=C〚(c0∥c2);(c1∥c3)〛[image: Image].







Proof 
(1) By the definition of the denotation of sequence and ∥, we can get:
C〚(c0;c1)∥c2〛=(C〚c1〛∘C〚c0〛)∪C〚c2〛[image: Image]
C〚(c0∥c2);c1〛=C〚c1〛∘(C〚c0〛∪C〚c2〛)[image: Image]
So, C〚(c0;c1)∥c2〛=C〚(c0∥c2);c1〛[image: Image], as desired.
(2) By the definition of the denotation of sequence and ∥, we can get:
C〚(c0;c1)∥(c2;c3)〛=(C〚c1〛∘C〚c0〛)∪(C〚c3〛∘C〚c2〛[image: Image]
C〚(c0∥c2);(c1∥c3)〛=(C〚c1〛∪C〚c3〛)∘(C〚c2〛∪C〚c0〛[image: Image]
So, C〚(c0;c1)∥(c2;c3)〛=C〚(c0∥c2);(c1∥c3)〛[image: Image], as desired. □




Proposition A.14 
C〚c∥skip〛=C〚c〛[image: Image], for c∈Com[image: Image].




Proof 
By the definition of the denotation of skip and ∥, we can get:
C〚c∥skip〛=C〚c〛∪C〚skip〛[image: Image]
So, C〚c∥skip〛=C〚c〛[image: Image], for c∈Com[image: Image], as desired. □




Lemma A.15 
For c0,c1∈Com[image: Image],
	1.  c0∥c1∼c0∥(skip;c1)∼c0;c1[image: Image];
	2.  c0∥c1∼(skip;c0)∥c1∼c1;c0[image: Image].







Proof 
It is obvious by Proposition A.13 and A.14. □



A.4 Relations between operational and denotational semantics
The operational and denotational semantics still agree on the evaluation of Aexp and Bexp, we do not repeat any more, please refer to [22] for details. We will prove the agreement of the case Com as follows.

Lemma A.16 
For all commands c and states σ,σ′[image: Image],
〈c,σ〉→σ′⇒(σ,σ′)∈C〚c〛
[image: Image]






Proof 
We will use rule-induction on the operational semantics of commands. For c∈Com[image: Image] and σ,σ′∈Σ[image: Image], define
P(c,σ,σ′)⇔def(σ,σ′)∈C〚c〛
[image: Image]


We will show P is closed under the rules for the execution of commands, and we will only prove the new case of ∥, other commands please refer to [22] for details.
Recall the transition rules of ∥ are:
〈c1,σ〉→σ′〈c0,σ〉→σ″〈c0∥c1,σ〉→σ′⊎σ″
[image: Image]


Assume that
〈c0,σ〉→σ′&P(c0,σ,σ′)&〈c1,σ〉→σ″&P(c1,σ,σ″)
[image: Image]


From the meaning of P, we can get that
C〚c0〛σ=σ′ and C〚c1〛σ=σ″
[image: Image]


We can get
C〚c0∥c1〛σ=σ′⊎σ″
[image: Image]

 which means that P(c0∥c1,σ,σ′⊎σ″)[image: Image] holds for the consequence of the rule, and is closed under this rule. □




Theorem A.17 
For all commands c and states σ,σ′[image: Image],
C〚c〛={(σ,σ′)|〈c,σ〉→σ′}
[image: Image]






Proof 
Lemma A.16 gives the ⇐ direction of proof, we only need to prove
(σ,σ′)∈C〚c〛⇒〈c,σ〉→σ′
[image: Image]


It is sufficient to induct on the structure of command c, we only prove the new case of c≡c0∥c1[image: Image], other cases please refer to [22] for details.
Suppose (σ,σ′⊎σ″)∈C〚c〛[image: Image]. Then there are some states, such that (σ,σ′)∈C〚c0〛[image: Image], (σ,σ″)∈C〚c1〛[image: Image]. By the hypothesis of c0,c1[image: Image], we get
〈c0,σ〉→σ′ and 〈c1,σ〉→σ″
[image: Image]


So, 〈c0∥c1,σ〉→σ′⊎σ″[image: Image], as desired.  □



A.5 Axiomatic semantics
In this section, we give an axiomatic semantics for PPL by extending the Hoare rules with parallelism.
A.5.1 Extended Hoare rules for parallelism
PPL should be extended to support assertion.
For Aexp, it should be extended to:
a::=n|X|i|a0+a1|a0−a1|a0×a1
[image: Image]

 where i ranges over integer variables, Intvar.
For Bexp, it should be extended to support boolean assertion:
A::=true|false|a0=a1|a0⩽a1|¬A|A0∧A1|A0∨A1|A0⇒A1|∀i.A|∃i.A
[image: Image]


And the formation rule of Com is maintained:
c::=skip|X:=a|c0;c1|ifbthenc0elsec1|whilebdoc|c0∥c1
[image: Image]


Note that, Com contains a parallel composition ∥.
The denotational semantics should also contain an interpretation I.
The full extended Hoare rules are as follows.
Rule for skip:
{A}skip{A}
[image: Image]


Rule for assignments:
{B[a/X]}X:=a{B}
[image: Image]


Rule for sequencing:
{A}c0{C}{C}c1{B}{A}c0;c1{B}
[image: Image]


Rule for conditionals:
{A∧b}c0{B}{A∧¬b}c1{B}{A}ifbthenc0elsec1{B}
[image: Image]


Rule for while loops:
{A∧b}c{A}{A}whilebdoc{A∧¬b}
[image: Image]


Rule for consequence:
⊨(A⇒A′){A′}c{B′}⊨(B′⇒B){A}c{B}
[image: Image]


Rule for parallelism:
{A}c0{C}{C}c1{B}{A}c1{D}{D}c0{B}{A}c0∥c1{B}
[image: Image]


A.5.2 Soundness of the extended Hoare rules
We can prove that each rule is sound by the following soundness theorem.

Theorem A.18 
Let {A}c{B}[image: Image] be a partial correctness assertion, if ⊢{A}c{B}[image: Image], then ⊨{A}c{B}[image: Image].




Proof 
It is sufficient to induct on the rule to prove each rule is valid. We only prove the new case of ∥ rule, other cases please refer to [22] for details.
Assume that ⊨{A}c0{C}[image: Image] and ⊨{C}c1{B}[image: Image], and ⊨{A}c1{D}[image: Image] and ⊨{D}c0{B}[image: Image]. Let I be an interpretation. Suppose σ⊨IA[image: Image]. Then C〚c0〛σ⊨IC[image: Image] and C〚c1〛(C〚c0〛σ)⊨IB[image: Image], and C〚c1〛σ⊨ID[image: Image] and C〚c0〛(C〚c1〛σ)⊨IB[image: Image]. Hence, ⊨{A}c0∥c1{B}[image: Image], as desired. □



A.5.3 Completeness of the extended Hoare rules
Gödel's Incompleteness Theorem implies that the extended Hoare rules are incomplete. We prove the relative completeness in the sense of Cook.

Theorem A.19 
PPL extended with assertion is expressive.




Proof 
It is sufficient to induct on the structure of command c, such that for all assertions B there is an assertion w〚c,B〛[image: Image], for all interpretations I
wpI〚c,B〛=w〚c,B〛I
[image: Image]


We only prove the new case of parallelism c≡c0∥c1[image: Image], other cases please refer to [22] for details.
Inductively define w〚c0∥c1,B〛≡w〚c0,w〚c1,B〛〛[image: Image] and w〚c0∥c1,B〛≡w〚c1,w〚c0,B〛〛[image: Image]. Then, for σ∈Σ[image: Image] and any interpretation I,
σ∈wpI〚c0∥c1,B〛[image: Image] iff C〚c0∥c1〛σ⊨IB[image: Image]
iff C〚c1〛(C〚c0〛σ)⊨IB[image: Image] and C〚c0〛(C〚c1〛σ)⊨IB[image: Image]
iff C〚c0〛σ⊨Iw〚c1,B〛[image: Image] and C〚c1〛σ⊨Iw〚c0,B〛[image: Image]
iff σ⊨Iw〚c0,w〚c1,B〛〛[image: Image] and σ⊨Iw〚c1,w〚c0,B〛〛[image: Image]
iff σ⊨Iw〚c0∥c1,B〛[image: Image]. □




Lemma A.20 
For c∈Com[image: Image] and B is an assertion, let w〚c,B〛[image: Image] be an assertion expressing the weakest precondition with w〚c,B〛I=wpI〚c,B〛[image: Image]. Then
⊢{w〚c,B〛}c{B}
[image: Image]






Proof 
It suffices to induct on the structure of commands c, we only prove the new case of parallelism c≡c0∥c1[image: Image], other cases please refer to [22] for details.
For σ∈Σ[image: Image] and any interpretation I,
σ⊨Iw〚c0∥c1,B〛[image: Image] iff C〚c0∥c1〛σ⊨IB[image: Image]
iff C〚c1〛(C〚c0〛σ)⊨IB[image: Image] and C〚c0〛(C〚c1〛σ)⊨IB[image: Image]
iff C〚c0〛σ⊨Iw〚c1,B〛[image: Image] and C〚c1〛σ⊨Iw〚c0,B〛[image: Image]
iff σ⊨Iw〚c0,w〚c1,B〛〛[image: Image] and σ⊨Iw〚c1,w〚c0,B〛〛[image: Image].
We get ⊢{w〚c0,w〚c1,B〛〛}c0∥c1{B}[image: Image] and ⊢{w〚c1,w〚c0,B〛〛}c0∥c1{B}[image: Image].
Hence, by the consequence rule, we obtain
⊢{w〚c0∥c1,B〛}c0∥c1{B}
[image: Image]

 □




Theorem A.21 
For any partial correctness assertion {A}c{B}[image: Image], if ⊨{A}c{B}[image: Image], then ⊢{A}c{B}[image: Image].




Proof 
Suppose ⊨{A}c{B}[image: Image], then ⊢{w〚c,B〛}c{B}[image: Image] where w〚c,B〛I=wpI〚c,B〛[image: Image] for any interpretation I (by the above Lemma). Hence, ⊨(A⇒w〚c,B〛)[image: Image], we obtain ⊢{A}c{B}[image: Image]. □



A.6 Non-determinism
The guarded commands can make the use of non-determinism more rigorous. To provide each command with a conditional guard, it is useful to eliminate the uncontrolled non-determinism.
The syntax of guarded commands is also composed of Aexp, Bexp, and Com, and the syntax of Aexp and Bexp are the same as those of PPL in Section A.1. And the formation rules for the command c and guarded commands gc are as follows.
[image: Image]

 where [image: Image] is the alternative construct of gc0[image: Image] and gc1[image: Image].
The operational rules of commands:
〈skip,σ〉→σ〈a,σ〉→n〈X:=a,σ〉→σ[n/X]〈c0,σ〉→σ′〈c0;c1,σ〉→〈c1,σ′〉〈c0,σ〉→〈c0′,σ′〉〈c0;c1,σ〉→〈c0′;c1,σ′〉〈gc,σ〉→〈c,σ′〉〈if gc fi,σ〉→〈c,σ′〉〈gc,σ〉→fail〈do gc od,σ〉→σ〈gc,σ〉→〈c,σ′〉〈do gc od,σ〉→〈c;do gc od,σ′〉
[image: Image]


The operational rules of guarded commands:
[image: Image]


A.7 Communications
In this section, we extend communicating processes with the support for true concurrency.
The syntax of PPL is also composed of Aexp, Bexp, the names of communication channels α,β,γ∈Chan[image: Image], and Com, and the syntax of Aexp and Bexp are the same as those of PPL in Section A.1. And the formation rules for the command c and guarded commands gc are as follows.
[image: Image]

 where [image: Image] is the alternative construct of gc0[image: Image] and gc1[image: Image].
The operational rules of commands:
〈skip,σ〉→σ〈a,σ〉→n〈X:=a,σ〉→σ[n/X]〈α?X,σ〉→α?nσ[n/X]〈a,σ〉→n〈α!a,σ〉→α!nσ〈c0,σ〉→σ′〈c0;c1,σ〉→〈c1,σ′〉〈c0,σ〉→〈c0′,σ′〉〈c0;c1,σ〉→〈c0′;c1,σ′〉〈gc,σ〉→〈c,σ′〉〈if gc fi,σ〉→〈c,σ′〉〈gc,σ〉→fail〈do gc od,σ〉→σ〈gc,σ〉→〈c,σ′〉〈do gc od,σ〉→〈c;do gc od,σ′〉〈c0,σ〉→λ〈c0′,σ′〉c0%c1〈c0∥c1,σ〉→λ〈c0′∥c1,σ′〉〈c1,σ〉→λ〈c1′,σ′〉c0%c1〈c0∥c1,σ〉→λ〈c0∥c1′,σ′〉〈c0,σ〉→λ1〈c0′,σ′〉〈c1,σ〉→λ2〈c1′,σ″〉〈c0∥c1,σ〉→{λ1,λ2}〈c0′∥c1′,σ′⊎σ″〉〈c0,σ〉→α!n〈c0′,σ〉〈c1,σ〉→α?n〈c1′,σ′〉〈c0∥c1,σ〉→γα(n)〈c0′∥c1′,σ′〉〈c0,σ〉→α?n〈c0′,σ′〉〈c1,σ〉→α!n〈c1′,σ〉〈c0∥c1,σ〉→γα(n)〈c0′∥c1′,σ′〉〈c,σ〉→λ〈c′,σ′〉〈c∖α,σ〉→λ〈c′∖α,σ′〉 if λ≡α?n and λ≡α!n do not hold.
[image: Image]


Here c0%c1[image: Image] denotes that c0[image: Image] and c1[image: Image] are in race condition.
The operational rules of guarded commands:
[image: Image]


Note that, for true concurrency, we can see that communications, conflictions, and race conditions are solved as follows.
	1.  Communication is explicitly supported in PPL, the two communicating commands α?X[image: Image] and α!X[image: Image] will merge to one communication command γα(X)[image: Image], and the unstructured communication will be eliminated;
	2.  Since each command is with a guard, the conflictions among actions can be achieved by set the commands with exclusive guards;
	3.  As the operational rules state, the actions in parallel in race condition must be executed sequentially and will cause the non-deterministic execution order. Though the execution order is non-deterministic, by setting appropriate guards to the parallel commands, the final execution configuration can be deterministic.



We can get the following propositions. Where ∼ is an equivalence relation on commands by the definition, where Σ is the set of states:

Definition A.22 
Equivalence of operational semantics for commands
c0∼c1 iff ∀σ,σ′∈Σ,〈c0,σ〉→σ′⇔〈c1,σ〉→σ′[image: Image]




Proposition A.23 
c0∥c1∼c1∥c0[image: Image], for c0,c1∈Com[image: Image].




Proof 
By use of the transition rules of ∥, we can get the following derivations of c0∥c1[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→c0σ″〈c1,σ″〉→c1σ′〈c0∥c1,σ〉→c0;c1σ′〈c1,σ〉→c1σ‴〈c0,σ‴〉→(c0)σ′〈c0∥c1,σ〉→(c1;c0)σ′〈c1,σ〉→c1σ′〈c0,σ〉→c0σ″〈c0∥c1,σ〉→{c0,c1}σ′⊎σ″
[image: Image]


And we can get the following derivations of c1∥c0[image: Image] for ∀σ∈Σ[image: Image]:
〈c1,σ〉→c1σ‴〈c0,σ‴〉→c0σ′〈c1∥c0,σ〉→c1;c0σ′〈c0,σ〉→c0σ″〈c1,σ″〉→c1σ′〈c1∥c0,σ〉→c0;c1σ′〈c0,σ〉→c0σ′〈c1,σ〉→c1σ″〈c1∥c0,σ〉→{c0,c1}σ′⊎σ″
[image: Image]


So, it is obvious that c0∥c1∼c1∥c0[image: Image], for c0,c1∈Com[image: Image], as desired. □




Proposition A.24 
(c0∥c1)∥c2∼c0∥(c1∥c2)[image: Image], for c0,c1,c2∈Com[image: Image].




Proof 
By use of the transition rules of ∥, we can get the following derivations of (c0∥c1)∥c2[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→c0σ′〈c1,σ〉→c1σ″〈c2,σ〉→c2σ‴〈(c0∥c1)∥c2,σ〉→{c0,c1,c2}σ′⊎σ″⊎σ‴
[image: Image]


And we can get the following derivations of c0∥(c1∥c2)[image: Image] for ∀σ∈Σ[image: Image]:
〈c0,σ〉→c0σ′〈c1,σ〉→c1σ″〈c2,σ〉→c2σ‴〈c0∥(c1∥c2),σ〉→{c0,c1,c2}σ′⊎σ″⊎σ‴
[image: Image]


So, it is obvious that (c0∥c1)∥c2∼c0∥(c1∥c2)[image: Image], for c0,c1,c2∈Com[image: Image], as desired.
For the case of the parallel commands in race condition, we omit it.  □




Proposition A.25 
For c0,c1,c2,c3∈Com[image: Image],
	1.  (c0;c1)∥c2∼(c0∥c2);c1[image: Image];
	2.  (c0;c1)∥(c2;c3)∼(c0∥c2);(c1∥c3)[image: Image].







Proof 
(1) By use of the transition rules of sequence and ∥, we can get the following derivations of (c0;c1)∥c2[image: Image]:
〈c0,σ〉→c0σ′〈c2,σ〉→c2σ″〈(c0;c1)∥c2,σ〉→{c0,c2}〈c1,σ′⊎σ″〉
[image: Image]


And we can get the following derivations of (c0∥c2);c1[image: Image]:
〈c0,σ〉→c0σ′〈c2,σ〉→c2σ″〈(c0∥c2);c1,σ〉→{c0,c2}〈c1,σ′⊎σ″〉
[image: Image]


So, it is obvious that (c0;c1)∥c2∼(c0∥c2);c1[image: Image], for c0,c1,c2∈Com[image: Image], as desired.
(2) By use of the transition rules of sequence and ∥, we can get the following derivations of (c0;c1)∥(c2;c3)[image: Image]:
〈c0,σ〉→c0σ′〈c2,σ〉→c2σ″〈(c0;c1)∥(c2;c3),σ〉→{c0,c2}〈c1∥c3,σ′⊎σ″〉
[image: Image]


And we can get the following derivations of (c0∥c2);(c1∥c3)[image: Image]:
〈c0,σ〉→c0σ′〈c2,σ〉→c2σ″〈(c0∥c2);(c1∥c3),σ〉→{c0,c2}〈c1∥c3,σ′⊎σ″〉
[image: Image]


So, it is obvious that (c0;c1)∥(c2;c3)∼(c0∥c2);(c1∥c3)[image: Image], for c0,c1,c2,c3∈Com[image: Image], as desired. □




Proposition A.26 
c∥skip∼c[image: Image], for c∈Com[image: Image].




Proof 
By use of the transition rules of skip and ∥, we can get the following derivations of c∥skip[image: Image]:
〈c,σ〉→cσ′〈skip,σ〉→σc∥skip,σ〉→cσ′⊎σ
[image: Image]


And it is obvious that:
〈c,σ〉→cσ′c,σ〉→cσ′
[image: Image]


For σ′⊎σ=σ′[image: Image], it is obvious that c∥skip∼c[image: Image], for c∈Com[image: Image], as desired.  □




Lemma A.27 
For c0,c1∈Com[image: Image],
	1.  c0∥c1∼c0∥(skip;c1)∼c0;c1[image: Image];
	2.  c0∥c1∼(skip;c0)∥c1∼c1;c0[image: Image].







Proof 
It is obvious by Proposition A.25 and A.26. □



From Lemma A.27, we can see that the execution orders of c0∥c1[image: Image] cause non-determinism, they can be executed in any sequential order or in parallel simultaneously. But, with the assistance of guards, the final states after the execution of c0∥c1[image: Image] can be deterministic.

Proposition A.28 
For c,c0,c1∈Com[image: Image],
	1.  α!n∥α?n∼γα(n)[image: Image];
	2.  (c;α!n)∥α?n∼c;γα(n)[image: Image];
	3.  (c;α?n)∥α!n∼c;γα(n)[image: Image];
	4.  (c0;α!n)∥(c1;α?n)∼c0∥c1;γα(n)[image: Image];
	5.  (c0;α?n)∥(c1;α!n)∼c0∥c1;γα(n)[image: Image].







Proof 
By use of the transition rules of ∥, we can prove the above equations. □



From Proposition A.28, we can see that communications among parallel branches are eliminated and the parallelism is structured.
A.8 Conflictions
Corresponding to Fig. 2.2, the program is:
(1;(if (b) then (2;3)))∥(4;(if (¬ b) then (5;6)))[image: Image]
Corresponding to Fig. 2.8 , the program is:
if (b) then (1;2;3)∥4 else 1∥(4;5;6)[image: Image]
We can prove that the above two programs are equivalent, and the confliction between parallel branches is eliminated and the parallelism is structured.
A.9 Structuring algorithm
By PPL, we know that the truly concurrent graph can be structured. As an implementation-independent language, the structuring algorithm of PPL can be designed as follows:
	1.  Input the unstructured truly concurrent graph;
	2.  By use of PPL, implement the graph as a program;
	3.  By use of the laws of PPL, structure the program.
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