

[image: Cover.jpg]

Edge Computing Simplified

Explore all aspects of edge computing for business leaders and technologists

Perry Lea

[image: Packt Logo]

Edge Computing Simplified

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja

Publishing Product Manager: Suwarna Rajput

Book Project Manager: Ashwin Dinesh Kharwa

Senior Editor: Isha Singh

Technical Editor: Arjun Varma

Copy Editor: Safis Editing

Proofreader: Isha Singh

Indexer: Manju Arasan

Production Designer: Gokul Raj S.T.

DevRel Marketing Coordinators: Sharon Sandhya and Rohan Dobhal

First published: June 2024

Production reference: 1170524

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83588-418-8

www.packtpub.com

Dedicated to my thoughtful wife and friend of 26 years, Dawn. Thanks for keeping me rooted and supporting me.

And my family of goldens: Fen, Cardhu, and Duncan.

Peace.

– Perry Lea

Contributors

About the author

Perry Lea has been a technical leader for over 30 years. He currently serves as a fellow and chief architect for Hewlett Packard Advanced Computing Solutions Group. Before his current role, he served as the director of architecture for Microsoft’s Xbox products and xCloud hyperscale content delivery network. He also founded numerous start-ups in the edge and industrial IoT space after working on 5G systems. He led the team designing non-Von-Neumann computing devices at Micron and spent 21 years at Hewlett Packard working on number printing and imaging products, from silicon design to system architecture.

Perry has published many peer-reviewed papers in the areas of imaging, advanced computer architecture, and wireless communications. He has authored over 80 patents with another hundred pending. Perry is a senior member of the Institute of Electrical and Electronic Engineers (IEEE) and Association for Computing Machinery (ACM) as well as serving on the board of directors for Women Innovators (W.IN).

About the reviewers

Sandra Capri has been in the tech industry for over 37 years, the last 7 exclusively in IoT. Her first 30 years at HP and Marvell were spent developing printing/scanning technologies and dabbling in Linux. She is currently the CTO at Ambient Sensors and is part of the engineering services team. She has collaborated on many diverse products, and her current emphasis is designing/building embedded IoT systems with wireless protocols such as Bluetooth Low Energy (BLE), BLE Mesh, and Wi-Fi. She works closely with Nordic Semiconductor and has written lighting models for their BLE Mesh SDK. She also enjoys writing custom BLE Mesh models. She received a BS from the College of Idaho in Gipson Honors in math and computers, and an MSEE from Stanford University.

I thank my colleagues over the years, including Perry Lea, who have taught me so much about technology and teamwork. Thanks to my family and friends, for encouraging my love of science. And most of all, in this current crazy world, I’ve also realized how much I depend on the power and presence of our Lord Jesus for peace and direction in all things – technical as well as personal.

Maurice “Mo” Ramsey is Amazon Web Services’ disaster response and humanitarian leader. In this role, Mo brings significant business and technology leadership experience, advancing cloud technology adoption to support, enable, and activate humanitarian assistance and disaster response (HADR) missions for customers, partners, and communities. Previously, Mo served in the US Army (active) from 1992 to 1997. He was honorably discharged in 1997 as a disabled veteran. He has served in leadership roles at Slalom Consulting, CenturyLink (formerly Tier3), and Lighthouse. Mo earned a BA from Columbia College and holds multiple business and technology certifications.

Shawn Rosti has spent over 20 years doing embedded systems development. Throughout his career, he has been involved in custom device driver and broad support packages (BSP) work for high-performance embedded applications. For the last 7 years, he’s been working at Cradlepoint, enabling embedded systems and routers to compute the data at the edge.

Table of Contents

Preface

Part 1: Edge Basics, Use Cases, and Relevance

1

The Edge, the Cloud, and the Hype

How to read this Edge computing book

What is the Edge?

Edge hype and what the Edge is not

Edge architecture

Edge computing use case examples – problems resolved by Edge computing

Use case – IoT gateway

Use case – smart city surveillance

Use case – vehicle telematics

Use case – video streaming services

Summary

References

2

Digital Transformation History

How we got here

The computing pendulum

Everything connected to IT

Clouds, mobility, IoT, and the Edge

Summary

3

Edge Systems’ Componentry

Hardware architecture

Different classes of Edge hardware

Everything is connected through embedded systems

Communication hardware

SCADA

Networking topologies

Personal area networks

LANs

Wide area networks

Summary

Part 2: Frameworks, Software, and Communications

4

Software and System Frameworks

Typical Edge functions and services

Security and hardening

Remote management and monitoring

Interconnectivity and networking

Software provisioning and upgradability

Reliability and robustness

Operating system

Software architecture

Frameworks

EdgeX Foundry

Microsoft Azure IoT Edge

Digital twins

The fog and the mist

System architecture

Summary

References

5

Connecting Things -Networking and Communications

A typical Edge system in your home

Communication systems differences

Radio spectrum

Near-range communication (PAN)

Bluetooth

NFC and RFID

Meshes (Zigbee PAN)

Near-range communication use cases

Long-range communication

5G and cellular

LoRaWAN

Satellite communication

Summary

6

Edge Protocols – The Language of Edge Machines

Network layering and the basics of the OSI model

Diving deep into TCP/IP networking

Industrial IoT communications

The language of factory machines

Message-oriented, stream-oriented, and RESTful protocols

The most prevalent Edge communication standard – MQTT

Alternative protocols – CoAP and AMQP

Protocol comparison

Summary

References

Part 3: Edge AI, Applications, Security, and Futures

7

Making the Edge Work through AI

The purpose of clouds with Edge computing

Working in the cloud and on the Edge

Edge workloads

Edge patterns

Example of workload organization

Situational awareness applications

Machine learning for the Edge

Rules and decision systems

Time series analysis

Proportional integral derivative controllers

Probabilistic analysis systems

Deep learning models

Federated machine learning

Training in the cloud and inference at the Edge

Proper use of machine learning

Summary

References

8

Security at the Edge

Types of security vulnerabilities

The most pervasive internet hack – Mirai

Mirai

Grand theft auto

Credit card fraud – using the HVAC supplier

Security architecture

Hardware security

Software security

Communications and network security

Physical security

Final thoughts on security

Summary

References

9

Edge Computing Futures and Predictions

Capitalizing on edge computing

Regulatory and compliance standards for IoT and edge computing

Future of edge computing

Pervasive edge computing as smart concrete

AR/VR

Immersive interactions and synthetic sensing

Devices that understand you

Industrial and systems controls

Innovation in sensors and electronics

Batteries and energy harvesting

MECs

Democratized communication systems

Video gaming and entertainment

Summary

References

Index

Other Books You May Enjoy

Preface

Edge Computing Simplified provides a concise and thorough understanding of edge computing for multiple industries, from industrial edge computing to smart cities to content delivery networks. We use real-world use case examples and break down technical jargon into easily understood fundamentals.

By reading this book, you will understand all aspects, necessary resources, technologies, and risks of edge computing. You will see where and how edge computing provides valuable business results. Furthermore, you will have the vernacular to have a professional understanding of the entire edge computing stack, from hardware to communication systems, to edge AI, to at-scale security.

Who this book is for

This book caters to those wanting a fast and thorough understanding of all aspects of edge computing as it relates to real testimonial use cases. The book strays away from jargon and technical depth and provides a solid breadth of all aspects of edge computing. It will be an easy read for both those who are technically inclined and those not versed in technical details. Executives, business leaders, and organizations intending to capitalize on edge computing will find the material engaging and informative.

What this book covers

Chapter 1, The Edge, the Cloud, and the Hype, looks at why edge computing matters, the six rules to consider when thinking about edge computing, standard edge terminology terms and vernacular, and a survey of real-world successful edge use cases.

Chapter 2, Digital Transformation History, explores Moore’s Law, why edge computing has come about now, centralized and decentralized computing, and the difference between IoT and edge computing.

Chapter 3, Edge Systems' Componentry, covers the basics of edge computing systems, the differences and range in edge hardware, where communication hardware fits in, and the large role of embedded systems.

Chapter 4, Software and System Frameworks, looks at functions operating on edge computers, a survey of common edge frameworks, the role of digital twins, and fog and mist computing, and takes a deeper dive into centralized and decentralize computing.

Chapter 5, Connecting Things - Networking and Communications, focuses on a radio and wireless communication systems overview and their fundamentals, near-range and long-range communication (PANs), and long-range communication -5G and satellite.

Chapter 6, Edge Protocols -The Language of Edge Machines, provides a gentle introduction to TCP/IP and networking, networking models, Industry 4.0 and SCADA communication, and understanding the most widely used edge protocols: MQTT, CoAP, and AMPQ.

Chapter 7, Making the Edge Work through AI, explores partitioning hybrid work on the edge and cloud, situational awareness of edge use cases, application of AI and machine learning models on the edge, time-series analysis, and understanding federated computing.

Chapter 8, Security at the Edge, provides a review of types of information attacks and real-world exploits, defining good security practices, from hardware to software, and understanding communication and networking security.

Chapter 9, Edge Computing Futures and Predictions, looks at business and economic constraints to understand and consider before adopting edge computing, how various government regulations affect edge systems, and a review of future trends and predictions germane to edge and hybrid computing.

Conventions used

There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word. Here is an example: “We start by examining what should be considered the most important aspect of edge systems: security.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Edge Computing Simplified, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image: Download a free PDF copy of this book]

https://packt.link/free-ebook/978-1-83588-418-8

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1:Edge Basics, Use Cases, and Relevance

In this part, you will get an overview of edge systems with a comprehensive look at real-world edge use cases, from smart cities to global content delivery networks to agriculture. This section looks at the hype and reality of edge systems and provides a solid understanding of edge systems’ components. It also uncovers why edge systems are relevant now and how computing has shifted from cloud-only to a hybrid computing reality. You will also learn about the six rules of edge computing.

This part has the following chapters:

	Chapter 1, The Edge, the Cloud, and the Hype

	Chapter 2, Digital Transformation History

	Chapter 3, Edge Systems’ Componentry

1

The Edge, the Cloud, and the Hype

Welcome to Edge computing. This chapter covers the introduction to the Edge. More importantly, it talks about the Edge reality and Edge hype. Today, technology is cluttered with buzzwords and hype circles that prognosticators, media, and analysts pitch routinely. Edge computing is this era’s buzzword. Is Edge computing a new hot topic of a recently discovered technology that will change the way we live? No – it is far from a new technical revelation, but it may change the way we interact, work, and entertain ourselves in a digitally connected world.

Edge computing has extensions to the Internet of Things (IoT), 5G and cellular communication, Machine Learning (ML), Industrial IoT (IIoT), Long Range/Low Energy Wireless (LoRaWAN), and Industry 4.0 (all buzzwords to their own extent). You purchased this book for clarity and guidance around this subject and are trying to determine how Edge computing may fit into your organization or business. Above all, you want to know, “What is it and what can it do for me?”. In short, a massive amount of data is being generated in the world. Each year, 20% more data is generated than the previous year. This makes sense with nearly everything being digital and interconnected. Consider these facts at the time of this writing:

	There are between 3.5 and 4 billion daily users of smartphone devices worldwide.

	Nearly 45 billion IoT-connected devices and sensors are online transmitting data.

	In 2019, Netflix video streaming alone was responsible for 61% of all network bandwidth.

	254,000,000,000,000,000,000 bytes of information have been transmitted across the internet.

Each of these devices, whether it’s a sensor, a smartphone camera, or a server, is a source of data generation. Much of the data that’s created in the world isn’t even created by humans – there are autonomous machines creating data that are consumed by other machines. The availability of cheap computing, cheap sensors, nearly unlimited storage, and fast methods of data communication have allowed the internet and modern digital computing to impact nearly every aspect of life.

Edge computing serves a purpose by bringing programmable machines close to where data is generated or data is consumed. Its purpose is to fill a gap between computing in the cloud versus computing exclusively at the source of data (on-prem or on-premises). In Chapter 2, we will learn that this is not a revolutionary concept and has been around for decades.

Edge computing is similar to a cloud-based computer in terms of its basic hardware. They have processors, memory, storage, and communications. However, the difference is scale. Typically, Edge computers will not have the processing performance, storage capacity, and networking fabrics of a machine found in a hyperscale data center. They will be smaller, remotely located, and in some sense less capable. Edge machines pick up where the cloud leaves off. Think of an entire computing device providing the services of a large data center in the form factor of a small Raspberry Pi single-board computer. A key word here is typical. Edge computers are not typical – in many cases, they are bespoke and designed for the environment and workload they need to do the job. Some Edge machines are servers and identical to what you see in a data center (we will explore content delivery as an example later). However, most Edge systems are significantly smaller and purposely designed.

Now, we will dive into a more formal description and the core principles of Edge computing. This definition will be used throughout the rest of this book.

This chapter will cover the following topics:

	The prevalence of Edge computing

	A standard definition of Edge computing versus other forms of information technology

	Defining the purpose, usefulness, and business case that empowers Edge computing

	Understanding real-world use cases where Edge computing creates value and impact

How to read this Edge computing book

This book intends to provide a high-level overview of Edge computing and all the constituent components that make up Edge hardware, software, and services. It is intended to quickly instruct and inform you of Edge computing use cases, the myriad of technologies forming the Edge, and the risks of improperly designed systems.

You don’t need a deep technical background to get something out of this book. This work is targeted at both senior technologists and engineers who need to quickly ramp up their understanding so that it includes Edge systems. Someone versed in technology will find that Edge computing involves a variety of disciplines, from communications systems and theory to embedded systems design to security. This book is designed to be understandable for project managers and senior executives who need to understand what the Edge is and how to separate the hype from reality. The material will be relatable by providing concrete real-world use cases that have been deployed and are commercially successful. After all, if the technology doesn’t make business sense, then it’s more of a hobby.

What is the Edge?

We need to apply rigor in defining what the Edge is. The Edge has lots of definitions and many organizations misuse the term. For now, the six basic goals of Edge computing are as follows:

	Reduce the latency in processing, storing, or transmitting data.

	Reduce the cost of cloud and telecommunications by filtering data and aggregating data sources.

	Bridge networks and communications from simple sensors and non-IP capable networks to IP and internet-capable networks.

	Provide resiliency in terms of computing and critical communications to remote areas, as well as devices that are moving. We have all witnessed dropped calls and lost connectivity, which is not acceptable for critical applications.

	Provide security and data assurance. In some situations, data must be anonymized, scrubbed, or denatured of content before being sent to the cloud.

	Edge devices can programmatically compute, but also are remotely managed/administered. In some cases, they form an extension of the cloud; in other cases, they are more autonomous.

These requirements cannot be satisfied with today’s current infrastructure of cloud computing. The hyperscale public and private clouds provide a relatively frictionless computing ability that can automatically scale globally. Cloud infrastructure consists of powerful server blades, high-speed petabyte storage clusters, 400-gigabit optical networks, megawatts of power distribution, and air and liquid cooling machinery, and the hardened security that surrounds them is few and far between. For example, worldwide, Google has 20 data centers spread between North America, South America, Asia, and Europe. Microsoft manages 58 data centers, and Amazon manages 22. These are built in areas where there is a geographical need, as well as reliable and inexpensive power. The cloud serves a different function than the Edge.

Edge devices touch the physical world, whether that’s a patient in a hospital, a fleet of trucks, a surveillance system in New York City, or users watching Netflix videos on a smartphone. These use cases produce and consume massive amounts of data and require real-time control with as little latency as possible. Think of the Edge as a micro data center that exists outside of the confines of the megawatt-capable billion-dollar data center.

A fair question to ask is, “Why aren’t there only Edge machines, and why require a public cloud?” The answer is that the services provided by the cloud will still need to exist. There is no better method for much of the compute required for business applications and the internet in general. Software-only tasks such as global websites, large database applications, machine learning training, file and data archives, and office productivity/collaboration tools run seamlessly on the cloud. Edge devices have a limited set of resources. A large data center can provide significantly more compute and storage resources than an Edge device. However, data centers are centralized and built to house thousands of servers close to the cheapest power plant or dam. Edge machines are found everywhere and are often in mobile or moving systems such as vehicles. They reside in the harshest of environments and where communication and reliable infrastructure are something to be concerned about. Cloud customers can’t afford to disrupt infrastructure. The Edge is built to robustly handle disruption.

Another factor separating cloud computing from the Edge is ownership. Cloud technologies became prevalent and are now mainstream due to the digital transformation of on-premises data centers that were owned, managed, and funded by companies and private enterprises. This came at a substantial cost in terms of capital equipment such as servers and networking systems. The cloud allowed companies to shed the upfront capital costs that did not amortize as well as use a hyperscale public cloud. The bottom line is that public clouds are financially and technically better than private data centers (except in some cases surrounding security and specialty systems). Edge devices are a different story. In many cases, Edge computing is owned by a service provider or the final customer. While some cloud providers are extending their reach into Edge computing, either through dedicated hardware or software middleware, most Edge systems are privately owned. The reason is that Edge systems are nuanced. There is no general Edge computer you can deploy that will work in farm machinery as well as palliative care home health monitoring. Edge systems are also deeply customized for end solutions. They can be bespoke and custom-designed for their mission.

How would current life be different without Edge computing? How has it made any difference? Technologies that are dependent on real-time decision-making, low latency, and reliability are built on the Edge. Take Netflix for example. Originally, Netflix video content was archived and delivered from Amazon AWS cloud centers exclusively. While this can work, three problems arose:

	The amount of data Netflix consumes on the internet backbone fabric grew year over year.

	Users demanded near-instantaneous play without lengthy buffering.

	Content size was increasing as users migrated from 1080p HD videos to 4K videos. This increased file sizes by four times, exacerbating the problem.

Without moving streaming systems closer to the subscribers, the backbone would become saturated and lead to more bottlenecks and poor latency. Netflix decided to build Edge streaming systems that could be deployed at various Internet Service Provider (ISP) data centers that were – in many cases – closer to the subscribers. This allowed traffic on the backbone of the internet to be reduced while also eliminating several hops across internet routers to AWS. Netflix calls these Edge systems Open Connect Appliances and they sit in secured ISP centers across various regions. These machines are essentially data center blades with similar memory and processing capabilities. The machines are solely managed by Netflix. The machines cannot be accessed by the ISP operator and are intended to be self-monitoring and self-reliant.

While we should now have a clear definition of Edge computing, next, we will describe what Edge computing isn’t and, importantly, how it differs from cloud computing and IoT.

Edge hype and what the Edge is not

While Edge systems are certainly part of recent hype and conference buzzwords, it is not a new concept entirely, nor is it revolutionary. Internet-connected devices have been in existence for over 40 years. One of the first remote devices connected to the internet was a soda machine in the computer science department of Carnegie Mellon University in the 1980s. It allowed computer science students to buy soda remotely via their workstations. The Edge, however, is different – it complements cloud computing by extending its reach to remote devices and machinery.

However, innovative technologies generate hype. We can look at Google search trends to see the interest in Edge computing. In 2015, there was barely a mention of Edge computing in marketing or technical literature. Interest continues to peak month after month well into 2022. Figure 1.1 shows the steep interest in Edge computing:

[image: Figure 1.1 – Google search trends from 2011 to 2022 regarding Edge computing]

Figure 1.1 – Google search trends from 2011 to 2022 regarding Edge computing

With peaking interest comes hype. Edge computing serves many functions, and we will see how it is essential in different use cases. However, there are limits, and Edge computing doesn’t have a place in some environments. This book should help you understand what the Edge is and where to use it. Just as importantly, it should help you understand where not to use Edge technology.

The Edge is not a replacement for public cloud services. The cloud and massive hyperscale data centers will continue to serve a function for a vast majority of information technology. Often is the case, that native cloud applications act as the overall administrator and orchestrator of worker Edge nodes. The cloud serves this function well as it is centrally managed and scales with application growth.

Also, Edge systems are not standalone embedded systems and microcontrollers. As we’ll discuss in Chapter 2, we have had embedded machines running everything from televisions to toasters for decades. What these embedded machines and computers lacked was connectivity. Edge systems require communication in multiple directions.

Edge computing is also not another term for IoT. While most IoT devices are Edge computers since they are connected and intelligent, not all Edge computing systems are IoT devices. An example of this is Netflix’s Edge computing to aid in streaming video. These are public cloud servers that are found close to the consumer. IoT devices are smaller and technically simpler than Edge computers.

We’ll continue by diving deeper into the architectural components that define Edge computing.

Edge architecture

We should set the record early in this book: Edge computers and Edge computing are simply the same computers and services that we would see in a cloud data center or an embedded device. The difference between traditional computing and Edge computing is the function they serve and where they live. There are also constraints within the Edge that need to be factored in. This chapter will supply context and definition as to what the Edge is and what problems it resolves.

Several viewpoints define Edge computing as “any form of computing outside of a data center.” This is broad and could include even the smallest embedded systems in a vacuum cleaner or a microwave. Others claim Edge computing to be a form of computing that reduces latency. It can be argued that latency is just one problem that’s resolved by Edge devices. Furthermore, depending on the distance and number of hops to a traditional data center, latency may not be an issue.

Our definition of Edge computing is a form of computing services and hardware that provides processing, storage, and programmable control close to the sources of data generation or data consumption. Edge computers may be extensions of applications and services hosted in a data center, but they do not necessarily need to be. One aspect of all Edge systems is that they are connected by networks to relay data and for management. Therefore, simple embedded microcontrollers found in the bulk of machinery are not considered Edge computers.

A typical Edge topology is shown in Figure 1.2. The cloud provides the central authority for services such as data warehousing and archiving, control and administration of the collective system, and security and provisioning. We show three Edge nodes that in in three disparate locations. Typically, Edge systems will be associated with a location, while the cloud has no physical presence:

[image: Figure 1.2 – Cloud to Edge – overall architecture]

Figure 1.2 – Cloud to Edge – overall architecture

This diagram depicts the separation between the cloud and Edge layers in a system. Here, data moves from the cloud to the Edge (southbound) to deliver cloud-controlled firmware updates, security policies, and control information. Data moving from the Edge to the cloud (northbound) conveys Edge-generated data that includes status information, AI-predicted failures, and logistic GPS coordinates. East-West data typically transfers data from Edge node to Edge node. Here, Edge systems quickly communicate information to start or halt production based on real-time logistics issues or inventory levels.

Another key aspect in the preceding figure is the communication between the Edge nodes and the cloud. We call this North-South traffic. We speak of Northbound traffic as originating from the Edge and propagating to the cloud. Southbound traffic is the reverse in that traffic originates in the cloud and moves to the Edge. Communication between the Edge and the cloud can be raw data for archival or exchanging security keys. The other form of traffic that is important in Edge architectures is East-West traffic. This is data that’s exchanged between various Edge nodes with each other and does not directly involve communication with the cloud. Think of this communication between two Edge computers managing an industrial production line. They communicate by providing time-critical data between a machine in final assembly and a machine in manufacturing to alert each other if there is a service disruption or if manufacturing should ramp down in case of decreased demand.

Let’s expand on the data flow in the Edge example shown in Figure 1.2. In typical Edge systems, disparate Edge machines utilize the public cloud as a means to communicate with remote devices. In this case, the fleet of trucks and vehicles needs the public cloud to route data to and from the distribution centers. The vehicles may be using cellular 5G communication provided by cellular carriers and will not have direct communication with the distribution or manufacturing sites. The cloud servers are also logging and storing vehicular GPS coordinates, as well as delivery plans. It is making real-time predictive judgments on the best route for the company’s fleet. In the example shown in Figure 1.3, we can assume one of the vehicles has had an unintentional failure or breakdown:

[image: Figure 1.3 – Example data flow in a typical Edge system]

Figure 1.3 – Example data flow in a typical Edge system

Here, a fleet of trucks is delivering widgets to customers throughout the Philadelphia metropolitan region. All trucks deliver real-time updates on GPS locations, vehicle status, delivery completions, and inventory levels to the cloud. This allows for real-time logistics analysis and the ability to reroute vehicles in the event of an issue.

All vehicles report their status, position, inventory levels, and customer completions to the cloud asynchronously (Steps 1A, 1B, and 1C). Vehicle 2 is subject to an unexpected failure. At that time, the cloud software informs the distribution center, which receives all information, delivery status, and customers impacted and makes the decision to reroute vehicle 1 to assume vehicle 2 deliveries. This decision is based on the deliveries vehicle 2 is scheduled to do, as well as the proximity of the closest vehicle to take over. It is also based on the inventory of xyz widgets at the distribution center to cover the supply. The distribution center also uses East-West communication with the factory to schedule the production of additional xyz widgets to cover the inventory gap.

Edge computing use case examples – problems resolved by Edge computing

To illustrate how Edge devices are being deployed and used, we will look at specific examples and analyze what problems they resolve, how they have been implemented, and what results they have obtained.

Use case – IoT gateway

This is the most familiar example for consumers as well as enterprises. Here, an Edge computer is in close proximity to IoT sensors, actuators, and output devices. In a consumer application, a fair analogy of this Edge architecture is a smart lighting hub such as the Philips Hue system. Philips Hue systems are smart lighting appliances that use energy-efficient LED bulbs connected in a mesh network. A mesh is simply an ad hoc network where data traverse across different nodes (in this case, actual light bulbs) before arriving at a central hub. Traditional networks such as Wi-Fi and Ethernet use a hub-and-spoke model where a device communicates directly to a router or gateway. Local orchestration of devices in this mesh is administered by a Philips Hue hub device. This hub, for all practical reasons, fits the bill as an Edge computer, and Ethernet uses a hub-and-spoke model where a device communicates directly to a router or gateway. Local orchestration of devices in this mesh is administered by a Philips Hue hub device. So, this hub fits the bill as an Edge computer:

	It communicates and manages all the smart lights in the Philips mesh using a personal area network (PAN) called Zigbee

	The hub also connects to cloud services across a customer’s local area network (LAN) and internet service

	The cloud supplies remote management through a smartphone application, provisioning and security, and firmware updates for the hub and lights

	The hub is a simple microcontroller that could be considered a small embedded system as it is a fixed-function device:

[image: Figure 1.4 – Edge use case of the Philips Hue lighting gateway]

Figure 1.4 – Edge use case of the Philips Hue lighting gateway

This architecture is efficient. Without a central Edge computer, each light would need to be able to communicate with the cloud and the internet. This would have added considerable cost and complexity to each bulb that has a strict cost constraint.

However, there are issues with architectures like this. First, it relies on a non-Internet Protocol (IP) called Zigbee for the lights to communicate. Since it isn’t IP-based, it introduces security risks with non-authorized users trying to hijack the mesh network. We’ve dedicated an entire chapter to Edge security later in this book.

Use case – smart city surveillance

A very common use case of Edge computing is in the area of smart city deployments. Often, municipalities or even large corporate campuses employ Edge computing to add significant computational abilities to otherwise dumb sensors and systems. One such example is surveillance systems, which utilize many cameras to monitor for security, safety, and behavior. Smart cities use camera systems to monitor potential crime events, parking utilization, crowd control, traffic fees, and violations, as well as environmental health. The constraint that necessitates Edge computing is the sheer amount of volume of data that is generated by cameras and other unstructured data sources. Unstructured data refers to data that doesn’t follow a regular pattern or separable field representation. A database is a good example of structured data where information is arranged into specific fixed-length slots or fields. Video and audio data are essentially random values of colors and tones; this form of data is random, unordered, and can’t be divided into separate fields effectively. Unstructured data also tends to be large. Think about HD 1080p video. Even when we compress the data, an HD camera will generate between 8 to 100 MB of data per minute using modern compression technology. The data also has real-time deadlines and latency constraints. For example, viewers of streaming video won’t usually tolerate frame rates below 30 frames per second (FPS). The following figure illustrates a smart city Edge system. Note the large fanout of video cameras, each providing a constant stream of data. To manage this extreme load, an Edge system close to the source of the data is often used:

[image: Figure 1.5 – Smart city use case]

Figure 1.5 – Smart city use case

For a smart city deployment, a recent pilot project in the UK used existing CCTV video cameras paired with air quality and noise sensors to determine traffic and pollution problems in a metro area. Reusing existing CCTV allowed for reduced cost, but a problem immediately became evident. As mentioned previously, each camera is capable of streaming HD images at 60 FPS. On average, these 20 cameras would generate 160 MB of data per minute, or 6,912,000 MB (6.9 petabytes) of data per month. The video data intended to analyze the content using ML algorithms to detect pedestrians, vehicles, bicycles, and safety issues. If all that data would need to be transmitted to the cloud, the telecommunication service costs, latency, and cloud storage costs would have made this project prohibitive from the start. Analyzing the data on the Edge is the only method to reduce the network service-level agreement (SLA) costs, and to reduce latency in responding to an issue. The architecture of this deployment is illustrated in Figure 1.4.

Use case – vehicle telematics

An emerging use case for Edge computing is in vehicle telemetry, which also includes logistics and vehicular tracking. Whether this is for a fleet of delivery vehicles, municipal snowplows, or first responders in emergencies, there is a need for Edge computing in moving and non-stationary situations.

One implementation is in agriculture. A customer that manages several large farms in Canada needed a system to extract tractor engine health data, as well as utilize equipment. Often, agricultural machinery is leased, and understanding the usage patterns can help provide predictive maintenance for the owners of the machinery and the farm business. These farms are in remote areas that have no or unpredictable cellular coverage. The customer needed a method to record and log information about the tractor (and associated machinery) while the machine was in use. When the vehicle returned to the farm garage, a standard wireless Wi-Fi signal would be present and the cached data would stream from an Edge computer on the tractor to an associated cloud system maintained by the leaser of the tractor. The following figure illustrates a vehicular Edge use case – in this case, agricultural systems. Here, our customer wanted to have each tractor equipped with a small, rugged Edge computer that monitored vehicular information. When the tractor returned to its garage, it would automatically link over Wi-Fi to an Edge router to transmit recent data to a cloud backend system figure:

[image: Figure 1.6 – Vehicular Edge computing]

Figure 1.6 – Vehicular Edge computing

In this example, the Edge computer consisted of a small, embedded computer with a large amount of storage capacity. The Edge computer had several wired interfaces to various sensors and other computers on the tractor. It captured time series data on engine health, hours used, distance traveled, multiple temperature inputs, humidity conditions, oil and fluid reserves, and so on. This data would be cached in the Edge computer’s storage until the vehicle returned to its garage, where it would automatically pair with a Wi-Fi module. At that time, the time would be transmitted, and the Edge storage would be flushed to a clean state. If there were issues or if maintenance was required, cloud rules engines would make the recommendation and pass a notification to the tractor supply company, as well as the end user (the farm owner).

This is a widespread problem in moving and non-stationary IT systems. Often, there is no guaranteed or reliable communication channel. A design must be robust enough to manage spotty cellular coverage by utilizing Edge computing systems to run autonomously without constant connectivity to the cloud.

Vehicular Edge computing has found its way into consumer vehicles as well. Nearly all manufactured vehicles today have some form of connected computing. Whether this is vehicular infotainment systems or automated driving and steering (ADAS), as found in Tesla vehicles, the compute power in an automobile is profound and they are connected to cloud systems (as well as other vehicles) to update maps, receive over-the-air software upgrades, calculate traffic patterns, and find the nearest electric vehicle charger.

Use case – video streaming services

A new use case for Edge computing is in video streaming services and cloud-based gaming. These types of services are also called content delivery networks (CDNs). The explosive growth of streaming content on demand has exposed weaknesses in the traditional cloud-to-customer communication model. Consider that streaming video data involves a huge amount of unstructured data. Netflix, YouTube, and other streaming services accounted for 36.2% of the world’s total internet traffic in 2019. A typical 4K Netflix movie that is about 1 ½ hours long is about 10 GB in size. An average person will also want a sustained frame rate of about 30 FPS or higher with little stuttering. Stuttering is when latency drops, and frames arrive late or not at all. Skipped frames are evident to someone watching a video in real time.

In a typical cloud-to-client type of service, compressed and ready-to-serve content is stored in a cloud data center some distance from the client. Data will stream from the server across multiple hops on the internet before arriving at the client’s device. There can be substantial and unpredictable network behavior once data leaves the control of a data center. Typical internet data may traverse different high-speed switches and routers in the data center and then exit on the internet backbone. From there, data progresses through narrower communications channels (for example, a local internet service provider) as it approaches the “Edge” or where the client device resides. All these traversals add latency and variability in how fast data can move.

For example, between my computer that I’m writing this book on now (Eagle, Idaho) and Google’s closest data center (Mountain View, California), a single byte of data had to cross nine hops to get to me, each adding a small amount of overall latency. This is shown in Table 1.1:

	
Hop

	
Location

	
Physical Location

	
Cumulative Time – Latency (milliseconds)

	
1

	
Computer to cable modem

	
Eagle, Idaho

	
7.3ms

	
2

	
Modem to internet service provider (ISP)

	
Boise, Idaho

	
14.3ms

	
3

	
ISP internal routing

	
Boise, Idaho

	
14.4ms

	
4

	
ISP internal routing

	
Boise, Idaho

	
16.5ms

	
5

	
Level 3 internet IXP

	
Seattle, WA

	
22.0ms

	
6

	
Level 3 internet IXP

	
Seattle, WA

	
24.2ms

	
7

	
Google

	
Mountain View, CA

	
26.1ms

	
8

	
Google

	
Mountain View, CA

	
27.6ms

	
9

	
Google server destination

	
Mountain View, CA

	
28.5ms

Table 1.1 – Example of internet hops and additive latency

This additive latency, as a network packet, migrates through the internet, leading to a loss of quality in video streaming. Additionally, as more users demand streaming services, data centers in geographic regions become saturated with requests. The subtlety here is that video streaming follows the Sun. By that, I mean that there are peak hours and days of demand that follow a work/home/sleep cycle. The highest demand for Netflix streaming is during the hours of 5 P.M. to midnight, and that follows respective time zones across the globe. Demand is cyclical and variable.

To combat demand cycles, increasing consumer demand, and latency issues, we must turn to Edge computing. In this case, the computing services are video streaming devices brought closer to the consumers. They are extensions of streaming servers that are found in traditional data centers but eliminate the number of network hops data must propagate to go to a customer. Netflix developed an Edge architecture called Open Connect to address these challenges.

Open Connect is built on data center server class hardware, but these appliances (OCAs for short) are placed in ISP centers across the globe. These devices are video storage caches. The devices can be placed at internet exchange points (IXPs). In the preceding table, the Layer 3 network in Seattle would be an example of an IXP. Alternatively, the Edge server can be collocated (COLO) at a partner ISP data center close to the end user.

These are video caching machines that intend to reduce latency and balance network demand. No user data, such as credit card information, credentials, or personal information, is stored within an OCA server. Rather, the Netflix cloud (hosted on Amazon’s Cloud AWS) manages all user interactions. OCA Edge machines perform two functions:

	Report status, health, routing information, and video storage information to Netflix cloud

	Stream content using HTTP/HTTPS to a client device

Netflix’s main cloud control manages what we call a control plane, while the OCA devices manage the data plane. The control plane in the cloud will change and modify the videos that are stored on each OCA based on demand dynamically. This is important because some regions may have video and movie content that is more popular than other regions or may be language-specific. The control plane also identifies the user’s location and will match an OCA to the user based on their distance, latency, and bandwidth to an appropriate OCA. The following figure illustrates this technology:

[image: Figure 1.7 – Example of Edge computing used in the Netflix CDN]

Figure 1.7 – Example of Edge computing used in the Netflix CDN

Content delivery systems such as Netflix are classic examples of Edge computing use cases and extend to other services, such as cloud-based video gaming.

Summary

Edge computing is a fast-growing technology and research area that is finding its application in several industries.

We have established that Edge computing serves a viable function when there are constraints that traditional cloud-based infrastructure cannot remediate, nor can an information device exclusively reside without larger cloud connectivity.

If a system is constrained by too much added latency in migrating data to and from the cloud or if the cost of that data movement is too high, an Edge system has a purpose. Additionally, relying exclusively on a cloud system can add risk if a system needs to be resilient.

Bridging networks and communications systems is also a common trait of Edge machinery as it allows non-typical networks such as Bluetooth to communicate through the internet.

Edge devices also extend the cloud to devices that normally have never been connected to the internet. Additionally, Edge devices can filter data the customer doesn’t want to migrate to a public cloud.

The cloud layer and Edge layer each serve their unique function and systems are partitioned to run services on each. This was demonstrated in working examples, from Netflix CDN systems to smart city municipal surveillance systems to vehicular and agricultural telemetry in very remote areas – all while being connected to the internet.

In the next chapter, we’ll talk about the history of IT and how it has progressed to enable Edge computing. We will also study the underlying hardware and software architecture that form typical Edge machines.

References

	E. Ronen, A. Shamir, A. O. Weingarten, and C. Flynn, IoT Goes Nuclear: Creating a ZigBee Chain Reaction, 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, 2017, pp. 195-212.

2

Digital Transformation History

This chapter will lay out the history and trends in IT and technology that got us to Edge computing. Before we dive deep into “Edge” and Edge use cases, we should pause to align ourselves on technical trends and address some questions of why IT shifted from single-use machines to mainframes, to personal computers, to clouds, and now a hybrid of cloud and personal computing.

Information and computing technology have advanced significantly over the last 60years. There have been many digital transformations over that period as well. This book concentrates on Edge computing, but we need to start by understanding how and why Edge computing devices came to be. Advances in silicon processing, nanoscale electronics, computer architecture, and software have improved the power of computing devices. In 1956, an IBM 7090 mainframe cost $2.9 million (in 1956 currency) and could perform 100,000 operations per second. The machine was widely used from controlling the NASA Mercury space flights to managing the first airline reservation and tracking system. Over the progress of 60 years of research and development, a device such as the Microsoft Xbox can manage 10,000,000,000,000 operations per second for a few hundred dollars and fit on a shelf. We have seen between a performance increase of 100 million-fold and a 38,000-fold decrease in cost. This has led to different models of computing over the years and has given rise to the Internet of Things (IoT) and Edge computing, which this book is about.

Today, sensors, mobile devices, intelligent systems, Artificial Intelligence (AI), cloud computing, and streaming entertainment seem ubiquitous and pervasive. One may consider much of technology in the 2020s to be interoperable and seamless. You can view a Netflix video on your set-top box, pause it, and resume where you left off on your smartphone from a completely different area without losing quality or where you stopped the movie. However, the fact is that there is significant infrastructure and backend services that make that a reality. Edge computing is a critical part of the overall infrastructure that resolves many issues in modern IT. We now examine how the information revolution over the past 50 years has enabled and led the industry to Edge computing.

This chapter covers the following topics:

	How Moore’s Law and Dennard Scaling have built the foundation of the IT industry and are now being exploited on the Edge

	Why information technology has shifted back and forth between centralized and decentralized computing

	What embedded systems are and how they differ from Edge machines

	Differences between IoT and Edge computing

How we got here

We start examining Edge computing by describing how information has transformed itself many times within the last 60 years of the information revolution. When the IBM 7090 computer was designed, it was during a time when mainframe systems grew to relevance. Computers during that time were significantly expensive, took large square footage of specialized floor space, and were essentially single-tasked, meaning they performed a fixed function such as managing airline reservations or piloting the trajectory of a Mercury space capsule. As a matter of fact, renowned author Arthur C. Clarke stated in 1974 that the computing power of a large mainframe would be reduced to the size of a console and available to every household. Of course, engineers knew this, as they were proceeding to ride the technology and financial curve of Moore’s Law. Moore’s Law stated that the number of transistors in an integrated circuit would double every 2 years. Indeed, that was true for 30 years after Gordon Moore made that prediction. Mainframes did make way for personal computers. However, devices started becoming much more intelligent as electronics and microprocessors found their way into everything from video game consoles to home printers to automobiles.

Microprocessors and software allow for design flexibility. Before microprocessors existed, much automation was through crude mechanical or electronic circuits. By enabling software in systems, devices became much more intelligent and could change their programming on the fly.

While Moore’s Law was the enabler that allowed computers and information technology to become more powerful and much more economical, there is another law that also impacted the way we use computers. Dennard Scaling (named after the researcher Robert H. Dennard) predicts that as Moore’s Law reduces the physical dimensions of a transistor and they grow smaller and smaller, the power consumed stays constant. What this means is that not only transistors shrinking in size, but the power they use to do the same calculations stays constant. Put another way, the performance of computers was increasing by 40% every generation but with a looming issue of power consumption. This is especially prevalent today with a typical data center that hosts several thousand high-performance servers consuming megawatts of energy – enough to power small cities. Power consumption remains a large issue even in small systems that are powered by batteries.

The following figure shows the contrast between Moore’s Law (increasing the number of transistors and the number of processor cores) versus Dennard Scaling limits. Even though more transistors can be placed on a silicon chip, the power limits how fast the chips can operate, which graphically appears as the leveling off of single-threaded performance and frequency. The principal issue is that more transistors on a chip dissipate increased power in the form of heat. This heat has reached a point where the chip will burn itself up and become non-functional:

[image: Figure 2.1 – Graph illustrating Moore’s Law and Dennard Scaling limitation in modern IT processors and semiconductors (Courtesy K. Rupp, M. Horowitz, F. Labonte, O. Shacham, K.Olukoton, L. Hammond, and C. Batten. See: https://github.com/karlrupp/microprocessor-trend-data)]

Figure 2.1 – Graph illustrating Moore’s Law and Dennard Scaling limitation in modern IT processors and semiconductors (Courtesy K. Rupp, M. Horowitz, F. Labonte, O. Shacham, K.Olukoton, L. Hammond, and C. Batten. See: https://github.com/karlrupp/microprocessor-trend-data)

While the trend of Moore’s Law and Dennard Scaling has had an impact on building some of the most complex microprocessors and silicon devices in high-end servers and computers, IoT and Edge computing devices that may not use the most advanced and fastest high-performance silicon are now riding the wave of innovation and performance. This is one of the reasons why it has become economically practical to connect remote devices through the internet. Edge computing and IoT devices are exploding in growth and opportunity just as the PC revolution grew in the 1990s and 2000s.

Some termed the 1990s as the PC revolution. Large mainframes ceased to exist, and computers were cheap and powerful on every desk but were interconnected by a myriad of different networks and mixed protocols. In the 1980s, as an example, there were six competing commercial network standards from Apple (Appletalk), IBM (SNA), Novell (IPX/SPX), Microsoft (NetBEUI), and others competing against the open TCP/IP protocol. TCP/IP is ubiquitous today but owes its foundation to the U.S. Department of Defense. It was developed as a research project funded by the Defense Advanced Research Projects Agency in the late 1960s and early 1970s through collaborative work with academics. TCP stands for Transmission Control Protocol, and IP stands for Internet Protocol. Together they comprise an open standard of the layered network stack used by nearly every piece of modern networking and communication equipment. All proprietary protocols became obsolete and are rarely used today.

We should also not forget the fact that moving data from one place to another in the 1980s was costly in terms of performance, but also, the equipment and infrastructure weren’t ready for the surge of data and users that exploded in the 1990s. What changed in the mid-90s was the advent of improved networking protocols such as HTTP that enabled the web, but also higher speed and less costly methods to move data, such as cable broadband and telephony digital subscriber lines (DSLs).

The 1990s ushered in the digital revolution, or some call it the information revolution. A personal computer was present at nearly every office worker’s desk as well as in the home. PCs were more powerful with the advances by Intel releasing the Pentium processors, and data movement was affordable with high-speed Ethernet linking each computer. It was also during this time that wireless communication became prevalent, first with voice and audio communication, and then with data as the cellular industry moved from 2G service to 3G service around 2001. Additionally, advances in Wi-Fi (802.11) networking were also enabling personal computers to be mobile.

The computing pendulum

Originally, mainframes were practical and, in all actuality, economical. In the 1960s there were few IT or computer companies outside of IBM, Control Data, Data General, and other large mainframe manufacturers. Mainframes were central to transaction processing tasks common to banks, billing departments, and records management. Typically, a set of dumb terminals would be connected to a mainframe. These terminals had the appearance of a stereotypical personal computer with a monitor but were nothing more than a screen and keyboard. The IT industry has moved from hub and spoke systems with central mainframes to distributed computing using PCs, and now the cloud has migrated back to large, centralized computing coordinating with smaller computing devices. This is the computing pendulum. We often see such shifts in the IT industry as new use cases and computing trends evolve.

With the advent of minicomputers in the 1970s and PCs in the 1980s computing tasks shifted from central control in a mainframe to distributed and personal control on a PC. This was much more economical and led to a myriad of software packages that competed with one another. As connectivity and network standards evolved, these machines became interconnected. Often, they would be accompanied by an office server, which was a shared filesystem and didn’t provide much compute horsepower.

As networking technologies became faster and more prevalent, personal computers became satellites of larger and more powerful servers. Servers now started performing duties such as maintaining email and filesystems. These servers became larger on-premise data centers that IT organizations managed. Some companies at the time created hub and spoke architectures with a central computing node and peripheral smaller computers/workstations that surround the central node, as shown in Figure 2.2. Technical advances progressed throughout the 1990s until the internet provided a revolution in connectivity. No longer were dumb terminals needed to connect to a dedicated mainframe. No longer were PCs satellites of a data center server. Now, computing could exist anywhere, and so could servers:

[image: Figure 2.2 – Typical hub and spoke connectivity with a central server and peripheral PCs, workstations, and dumb terminals]

Figure 2.2 – Typical hub and spoke connectivity with a central server and peripheral PCs, workstations, and dumb terminals

It was in the 2000s through the early 2010s that cloud computing became pervasive. At first, these were servers managed by cloud providers that could be leased by corporations. Rather than spend capital for on-premise data centers, these servers and their respective costs could be expensed by another company such as Microsoft or Amazon. It should be noted that the costs of managing a data center not only include the capital expenses of the computers, networking equipment, racks, buildings, and cooling systems but also include recurring costs of power consumption, which we know now to be a very significant expense. This model of leasing computing equipment hosted elsewhere is what is termed a Platform as a Service (PaaS) in modern vernacular. This required a customer to manage, deploy, and administer the computer and software remotely. Later, data centers started growing the number of services offered. Rather than simply leasing bare-bone hardware and having a customer manage all the software, cloud providers deployed services such as online databases and cloud storage systems for end users. This type of cloud computing is sometimes called Software as a Service (SaaS) and is prevalent in today’s high-performance servers seen in typical hyperscale cloud data centers.

These new cloud technologies reduced operating costs and capital expenditures but caused a rift in IT management. How would a centralized IT department manage security and operations with a public cloud? We will address this issue throughout this book as it’s a central theme for successful Edge computing.

Today we have many services and systems that are managed, hosted, and deployed in large cloud data centers and mobile devices feeding data into and out of such cloud systems. For example, most websites are cloud-hosted, and content is delivered to a tablet or smartphone through standard internet protocols and software frameworks. The cloud provides unmatched power and ease in developing and deploying software at a global level.

Operational costs for maintaining servers cannot be underappreciated. The costs of hardware, cooling systems, floor space, and support personnel on-prem were contributing factors in outsourcing IT and the move to public clouds. This model worked very well (to this date) for applications such as hosting websites (www.manning.com), massive data storage (www.wikipedia.com), and online productivity (www.office365.com) but fails to address the unique needs of Edge computing.

We have seen how computing has migrated from large central mainframes to personal devices to a hybrid mix of cloud and mobile computing, but where does the Edge fall into this topography? We will now examine why Edge computing became prevalent.

Everything connected to IT

Mainframes gave way to personal computers; personal computers gave way to mobile computing. While this is true, we are overlooking a major source of all computing, which is embedded systems. What is an embedded system? Essentially, any device that incorporates a programmable computer for a fixed purpose. Everything from personal computers to large data center servers is powerful and can run a variety of software packages and operating systems and perform countless tasks. Embedded systems typically have a processor, memory, and storage, not unlike a traditional PC or server, but will typically be a part of another machine in a non-traditional space. For example, a printer or copier uses an embedded controller to receive print jobs and control imaging mechanisms. Automobiles have dozens of embedded systems for controlling infotainment systems, comfort and climate control, and, of course, autonomous driving. What is astonishing is that 98% of all microprocessors used in modern computing are not sold for use in personal computers, smartphones, or even servers; they are used exclusively in embedded systems. This is not a new phenomenon. Embedded controllers have existed for decades. Some of the earliest embedded computers include the Apollo Guidance Computer (AGC). Before that, analog control systems were used by energy producers and the electric grid. During the 1960s, the energy sector replaced these analog machines with small digital computers, which became known as programmable logic controllers (PLCs). These were the very first devices that could be considered embedded systems.

Embedded devices continued to flourish while the PC and IT revolution continued. They were designed, built, and purchased for different reasons. Embedded machines such as a printer or a factory automation machine would be designed for the users that used those systems: office workers and factory personnel. Personal computing devices evolved to be managed by an IT department. This disparity is one of the reasons that the IoT has been difficult to grow.

The effect on enterprises set into motion some of the constraints we face in Edge computing today. It was in the 1990s that the acronym IT became mainstream. This led to organizations funding IT departments. Their role was to manage the information assets of a company, including PCs, mainframes, data centers, and communication systems. The IT management function was constrained to the physical PCs and networks within a company’s brick-and-mortar establishment. Typically, an IT department will have a charter similar to the following:

	Support and helpdesk functions for corporate users

	Managing the health, reliability, and security of internal and external networks

	Establishing approved hardware and software for corporate usage

	Defining processes and rules for information security

	Managing who and what may reside on a corporate network

	Data collection to improve and secure company assets and networks

As mobile devices starting with laptops became more prevalent, IT management had to consider new tools and policies for a mobile workforce. No longer did all IT-managed assets (PCs, networks, and software) reside within the confines of a company’s walled building, but a mobile user could be anywhere on the globe, using layers of networks that are not managed by the IT department. PCs today are remotely managed and secured. IT departments can push software updates, remove or grant access to corporate networks, and monitor the health of IT systems. These policies make sense but have been problematic as computing devices have exploded in popularity.

Clouds, mobility, IoT, and the Edge

While local computing and cloud computing have a rich history and combine 60 years of technology development, there are gaps and issues. Computing devices such as PCs, smartphones, and tablets are prevalent for end users, and yet they are fed by cloud-enabled applications such as video streams, databases, file storage, and web backends. For the most part, this works well. When it doesn’t work well is when there are issues with performance, reliability, or cost in moving data to and from a cloud data center and a mobile device.

Additionally, with Moore’s Law allowing hardware to scale exponentially in performance as well as decrease cost generation over generation, we have seen the proliferation of electronics and embedded systems bringing intelligence, programmability, and connectivity to devices that simply had never been connected or intelligent before. For example, in the 1990s, devices such as smart thermostats, intelligent automobiles, and machine learning (ML) in factory automation were science fiction. Today, we call this the IoT. We have the ability and need to connect everyday objects to the internet. We do this not just for the convenience or wow factor, but for safety, security, and to improve productivity. With billions of devices now connected to the internet and with embedded computing abilities, we have a different infrastructure issue than with clouds and personal computing devices. IoT devices have power, size, and space constraints that may prevent them from effectively connecting to a cloud directly. Furthermore, with the volume of IoT devices and the aggregate amount of data produced, it becomes costly and impractical to move that data to and from the public cloud.

The IoT is a 21st-century buzz phrase, but the concept of remote monitoring and management dates back to the first half of the 20th century. In the 1930s and 1940s, as energy generation was becoming mainstream, there arose the need to monitor and control remote power stations and substations to an ever-expanding grid across the US. To enable this process, control systems made use of pilot wires. We might call this sideband communication today. They were emergency presentative circuits using a communication wire between substation relays that were used to detect faults in AC power. As the electric grid expanded and demand increased, so did the need for remote operation and dynamic control of power. In the 1950s, power companies looking at methods to improve operational expenses (OPEX) and improve the reliability of generators installed analog computers as energy management systems (EMSs). These systems dynamically scheduled power generation on demand and allowed different power companies to exchange energy. Additionally, the EMSs allowed substations to be monitored and managed remotely without requiring an electrician to be resident 24/7. Later, in the 1960s, these analog machines were replaced with digital mainframes as they became commercially available.

The first internet-connected device (the first thing in IoT) can be attributed to a graduate student, David Nichols, at Carnegie Mellon University in the early 1980s when fewer than 300 computers were connected to the early internet. He was studying computer science at the renowned university and spent countless hours in his office some distance away from the vending machines on campus. He and two other students then added sensors to a remote soda machine and logic to a network gateway connected to the university network. A larger mainframe called a PDP-5 communicated with the remote gateway and would indicate to computer science students if the soda machine was stocked and even if the sodas were cold. While a novelty, this essentially exhibits all the traits of IoT devices and Edge computing.

Edge computing has evolved with IoT technology. As IoT devices have become more complex and prevalent, Edge systems have evolved to provide more compute power, bridging services, and cloud extensions to devices. One can think of an IoT device as an Edge computer, but not all Edge computing devices should be thought of as IoT. The following description explains why:

	IoT device: A physical object (heart rate monitor, smoke alarm, environmental sensor) that happens to be connected to the internet (directly or indirectly) that may also include physical sensors and actuators. These devices can receive and transmit data without human interaction. IoT devices may have no display or visible feedback. IoT devices are typically massively deployed. Think about very low-cost intelligent sensors with limited compute capabilities. They require low-power and small form factor (SFF) designs.

	Edge device: A direct internet-connected computer with more compute power, storage, and networking facilities than a simple IoT device. It may or may not have physical sensors and systems, but not necessarily. Edge systems reside near the location where data is consumed or gathered, such as a factory floor or livestock feedlot. Edge systems may have a full display, touchscreen, or a variety of human input devices. Finally, Edge systems typically have a deeper connection and coordination with a cloud system. Edge systems also sit between IoT devices and the cloud.

Summary

Information technology has taken a winding course in architecture and structure over the last 50 years. This trend has followed the constraints of computing and new use cases over the years.

Moore’s Law and Dennard Scaling have been instrumental in the explosive growth of information technology for the last 50 years, but we also are witness to the physical limitations of power that constrains the most advanced silicon designs.

IoT and Edge computing are now experiencing explosive growth since these industries do not generally rely on the fastest and most powerful processors and hardware, but are enjoying all the technology and advances the PC industry witnessed in the 1990s and 2000s.

The IT industry has migrated back and forth between centralized and decentralized computing, from mainframes to PCs to cloud computing.

The internet was a catalyst enabling the connectivity of everything. The IoT came into existence in the early 1980s, first as an academic “hack” and now with billions of devices connected using standard protocols and networking concepts.

IoT devices and Edge computers share many of the same concepts, yet IoT devices are more closely aligned with remote “things” using simpler, less powerful hardware and physical sensors. Edge computers are associated with more powerful computing than IoT devices but are physically close to where data is consumed or gathered.

Over the next two chapters, we will explore the components of Edge computing, starting with Edge hardware and then software.

3

Edge Systems’ Componentry

Edge computing starts with Edge hardware. Hardware components include everything from computing devices, sensors attached to the device, and communication systems between the device and the cloud. But hardware alone doesn’t define the Edge. Software is also unique for Edge applications. As we will learn, Edge applications require unique hardware designs as well as bespoke software and applications. We will look at the system architecture of Edge machines and Edge hardware. By system, we mean how everything comes together from the Edge to the cloud, including communications and networking.

This chapter covers the following topics:

	Basic concepts of traditional computing systems and hardware

	Examining high-performance Edge hardware – Hewlett Packard Enterprise (HPE) Edgeline computers

	Examining constrained performance systems – Eurotech ReliaGATE hardware

	Differentiating communication hardware for the Edge

	Understanding the role of embedded systems

Hardware architecture

We could complete this book without touching on any hardware discussion, but that would be disingenuous in the understanding of what the Edge is and what it can do. After all, each type of Edge device is unique. Any computing device consists of three main components: a processor that executes code and performs arithmetic and logical functions, memory to store code and data, and a bus that communicates a processor to various memories. Figure 3.1 captures the relevant blocks of any computing system:

[image: Figure 3.1 – Block diagram of modern computing hardware]

Figure 3.1 – Block diagram of modern computing hardware

In addition to the processor-bus-memory model, there also exist input and output (I/O) devices such as USB ports and video ports. This type of architecture is typically termed von Neumann architecture after John Von Neumann, a prominent and influential physicist and mathematician during the first half of the 20th century. Power delivery is also needed and often overlooked but is a particularly onerous issue when we connect powerful Edge computers in vehicles and remote areas of the globe. Whether a system is an Edge device managing a self-driving car or even your cellphone, all modern IT hardware can be described in an abstract manner using this diagram.

Going a bit deeper into computer architecture, a central processor such as an Intel chip or perhaps an ARM Ltd. processor is the core of the system. There may be a single chip with a single Central Processing Unit (CPU) or a single chip with multiple processors that can run in parallel. There may be additional classes of computing, such as a Graphics Processing Unit (GPU), which is used for specific workloads in graphics, Machine Learning (ML), or signal processing. A CPU is connected to other components via a bus. A bus is made up of wiring to transmit and receive data as well as connect signals between components. Buses are important because they are responsible for all data movement in these machines. The other side of a bus may include additional processors, storage systems, and I/O devices. Storage systems take two forms: volatile storage (which includes DRAM) is not persistent when power is removed from the system, and non-volatile storage includes flash and disk, which will retain data when power is removed. The final block of interest is I/O, which includes everything from wide-area communications such as cellular radios and Ethernet Local Area Network (LAN) to slower near-range communication such as Bluetooth or a legacy serial bus.

Different classes of Edge hardware

What we just described is essentially the computing structure of a smartphone, a PC, or even a video game console. Yet this is where general computing devices and Edge computing devices start to differ. An Edge system may require additional hardware to support different use cases. An Edge server for Netflix may look very much like a server in a data center, but an Edge computer monitoring effluence in a sewer system will need device hardening to allow it to survive the elements. Edge hardware may have custom I/O that would never be used in your home. An example of custom buses and interfaces is Modbus, which would be used in heavy industry and factory machinery to connect robots and automation systems to computers. What needs to be reinforced is that there is not a single Edge computer you can buy that satisfies all the requirements in the Edge industry. Some need to act like servers, some need to perform in a vehicle, and others may find their way into the remotest locations on Earth. Here are two examples of Edge computers and hardware on the market. Contrast the differences:

First, we examine the Hewlett Packard Enterprise (HPE) Edgeline EL8000t. This is a server-class computer and sits in a sheet metal chassis. It consumes a substantial amount of power at 1500 watts (whereas a typical smartphone uses about 10 watts). This machine also utilizes a robust out-of-band (OOB) management communication system for mission-critical computing. This allows an operator to monitor and control the server even if all other connectivity and internet access is lost. The computing power in this Edge computer is substantial. Each processor can have up to 40 separate cores and access up to 6 terabytes of DRAM memory. Storage is through six ultra-high speed non-volatile memory express (NVMe) modules. Additionally, an NVIDIA high-performance Tesla T4 graphics processor can be installed for high-speed ML and video creation. This entire blade can physically weigh 35 pounds or more and is intended to be housed in a rack and isolated from weather and environmental effects. While this sounds impressive, the machine has been designed to run Edge computing applications. Essentially, this is a data center server and can cost anywhere between $2000 to $5000.

While the HPE Edge solution is intended to be an extension of the data center using familiar server hardware at the Edge, there are many (if not more) use cases of smaller and less costly systems-serving functions; for example, the Eurotech ReliaGATE 20-25. Eurotech is a manufacturer of smaller embedded systems devices, IoT devices, and gateways. The ReliaGATE is a standalone small hardened box that can withstand environmental elements. It uses a single Texas Instruments system on chip (SOC). The SOC has a single Intel Atom microprocessor running between 1.75 to 1.9 GHz. By comparison, the Eurotech has about 1/1000 of the computing capability and speed of the HPE machine. I/O, however, is extensive. It uses relatively slow 1 Gbit Ethernet interfaces but includes a wide variety of extensible I/O ports: a Controller Area Network (CAN) bus for industrial automation or automotive control, a vast array of digital I/O for interfacing to switches and sensors, serial communication, a GPS for mobile positioning, and a cellular radio for mobile communication. The device can run industrial automation protocols (which we will cover later in this book in Chapter 6) such as Modbus, MQTT, and S7, which are widely used in manufacturing and factory control systems. This device will cost about $348 through various distributors.

A good way to contrast these two different mass-produced Edge computers is by referencing the following table:

	
	
HP Edgeline EL8000t

	
Eurotech ReliaGATE 20-25

	
Cost

	
$2000 to $5000 depending on configuration

	
About $348

	
Processor

	
Intel Xeon

2.1 GHz to 3.6 GHz configurations

8 to 40 CPU cores

	
Intel Atom

1.75 to 1.9 GHz

2 or 4 cores

	
Other Processors (GPU)

	
Optional: NVIDIATesla T4 GPU

	
None

	
Memory

	
Maximum of 6 TB DRAM

	
Up to 4 GB DRAM

	
Storage

	
High-speed NVMe solid-state storage

256 GB to 40 TB configurations

	
8 GB of embedded MultiMediaCard (eMMC) storage

	
 I/O

	
10-gigabit Ethernet, USB

	
1-gigabit Ethernet, USB, serial, CAN bus, Modbus, temperature sensors, accelerometer, audio in and out, LTE cellular, GPS

	
Power Supply

	
1,500 Watt power supply

	
About 100 Watts

	
Reliability and Robustness

	
Integrated Lights-Out (iLO) second control channel to check the health of the Edge computer

	
Eurotech Everywhere Software Framework (ESF) for remote access

	
Security

	
Trusted Platform Module (TPM) and data encryption hardware

	
None

	
Size and Mounting

	
3.5” x 19” x 16.91”

Rack mountable

	
2” x 7.5” x 5.6”

	
Environmental

	
-5 to 55°C operating temperature

No environmental, atmospheric, or weather protection

	
-40 to 65°C operating temperature

IP30 environmentally hardened aluminum case

Table 3.1 – Contrasting two Edge computers (HPE Edgeline EL8000t and Eurotech ReliaGATE 20-25)

Clearly, the Eurotech device has much less compute power than the HPE Edgeline server. So, what good is it? The HPE device is typically used to extend the data center closer to users and businesses that need extreme compute and storage close to where data is generated or consumed. This type of use case is also called the converged Edge. One customer uses this type of system to run ML data analytics packages in a factory. Data streams into the device where ML workloads are trained to predict downtime in the manufacturing process. Customers may have security concerns and may not want data to leave the factory floor as the data generated is highly confidential. For example, Edge computers monitoring the electric grid across the US require the data to be secure. These customers still want Edge computers integrated into cloud backend services, such as billing the Enterprise Resource Planning (ERP) software, but need to securely steer where data is stored.

The Eurotech device does not have the CPU resources, memory, storage, or compute facilities to run any ML training very well. It would be too slow and/or simply not work. An Edge machine such as this would have enough computational resources to run ML inference. Inference is the execution of a trained model and requires significantly less processing power. This device has been used in other factory automation control systems since it has a vast array of I/O that integrates with legacy (also called brownfield) machinery through the Modbus protocol. A customer using it also needed it to be placed directly on the shop floor in a dusty and exposed environment where there was no infrastructure built to house and cool a server. The customer using the Eurotech ReliaGATE also had no networking service on the shop floor, therefore the cellular radio became imperative to provide instant internet access in an area without any modern network infrastructure. The Eurotech can also be integrated easily into vehicles and is designed to use the common CAN bus communication interface prevalent in automobiles. Therefore, the Eurotech is the computer of choice when one is solving mobile, vehicular, or bespoke industrial settings.

This illustrates how different and unique Edge hardware can be. In summary, the HPE Edgeline system is roughly 1,000 times as powerful as the Eurotech device and about 10 times more costly. They both serve a function and target requirements for different Edge computing users. If you need an Edge machine that will store videos and serve them to customers in various cities, you will want an HPE Edgeline system in every municipality. If you intend to manage and measure the flow of effluent in a sewer tunnel, the Eurotech is a much better choice. The point of this is that Edge computing hardware is unique per application.

Everything is connected through embedded systems

We keep referring to embedded systems, but what are they, and how are they different than a traditional computer? They are critical to all of IT. 99% of all computing devices that exist are embedded systems versus traditional personal computers, servers, and even smartphones. Billions of embedded systems exist in every automobile, TV, appliance, and light pole.

Whereas mainframes gave way to personal computers, personal computers gave way to mobile computing. While this is true, we are overlooking a major source of all computing, which is embedded systems. Essentially, this is any device that incorporates a programmable computer for a fixed purpose. Embedded systems are targeted to a specific task. Often, they are constrained by power limitations, size constraints, and environmental hardiness. Embedded systems such as Eurotech’s ReliaGATE 20-25 are crucial to the Edge computing market.

Communication hardware

While Edge computers share similar architectural traits with their server, mobile, and PC equivalents, there are some fundamental differences. An important aspect of Edge systems is the breadth of different I/O communications systems the Edge requires. While we will study networking and communications later in this book, the hardware aspect requires some attention.

Edge computers find themselves in many different places and configurations. For example, some Edge systems will manage vehicle telemetry such as monitoring a fleet of trucks or municipal waste vehicles. Other Edge computers will find themselves managing a factory floor with industrial equipment. The way these Edge machines communicate and control the equipment they attach to is unique and what makes Edge systems powerful but also complex to design.

SCADA

A typical use of Edge systems is the monitoring and control of industrial equipment. Industrial machinery control systems have existed for quite some time. We previously talked about PLC controllers as an example of factory automation. The types of communication systems (I/O) in manufacturing are also called Supervisory Control and Data Acquisition systems (or SCADA for short).

SCADA systems allow operators to issue commands and monitor the status of connected factory machines in real time. Real-time implies that a system or machine needs response or input in a guaranteed set period. If a system fails to deliver a response within that period, failure or disaster can occur. This is especially true in factory automation that needs adjustments to machine speeds, power, or temperature in millisecond time periods. Since an Edge machine can communicate directly with this local machinery, it performs much better at this task than a cloud-connected system. SCADA systems connect local sensors, actuators, and other computers together. Additionally, they may connect to remote terminals for monitoring, supervisory computers, and alarm systems. Figure 3.2 shows a SCADA hierarchy:

[image: Figure 3.2 – SCADA hierarchy]

Figure 3.2 – SCADA hierarchy

The interfaces shown as arrows in the block diagram are the I/O and communication pathways that require novel Edge hardware. These interfaces include protocols such as Modbus and Profibus, which are not equivalent to the communication standards of consumer and business IT. Whereas a typical enterprise will easily adopt Wi-Fi for wireless communication and Ethernet for wired networking, industrial automation is a unique example requiring significantly different hardware that is not based on TCP/IP protocols.

Modbus was first developed in 1979 by Schneider Electric as one of the first communication and bus protocols to connect machinery and PLCs. Modbus is an open and free-of-license protocol that is widely adopted today and is managed by the Modbus Organization. It is a serial communication protocol, meaning that data is delivered one bit at a time rather than in parallel. Modbus supports communication bidirectionally between multiple devices simultaneously connected to the same cable. For example, there can be a vibration sensor and temperature sensor connected to the same bus, each communicating measurements to the same Edge computer. Additionally, it integrates seamlessly with TCP/IP to connect to the internet.

An alternative protocol is called Profibus. While Modbus is an open standard, Profibus is proprietary and licensed through Profibus International. First designed in 1989 by BMBF of Germany and then licensed by Siemens of Germany, the protocol is still used today in factory automation. Profibus, as with Modbus, is intended to connect factory sensors to controllers. The Fieldbus Message Specification (FMS) was the original protocol, but the industry found it far too complex for simple connectivity to sensors. Today, the Profibus decentralized protocol (DP) and Profibus process automation (PA) are used. Profibus DP allows for several Edge hosts to communicate using tokens to control who may talk at any one time. This is called a token network. Profibus PA is used to directly communicate with end sensors in a safety-critical manner. Profibus PA supplies not only communication through a twisted pair of wires but also supplies power to the sensor. Safety is critical in factory automation, thus Profibus PA was created. An Edge computer does not communicate directly with an Edge sensor; rather, it uses a bridge to isolate the communication, again for safety-critical aspects. Think of Profibus DP as a faster communication with multiple Edge computers monitoring a plant and Profibus PA used to connect to endpoint sensors in a safe manner.

There are several other protocols, both open and proprietary, in the industrial automation segment. Many are proprietary and developed by industrial manufacturing companies such as Allen-Bradley, Mitsubishi, Honeywell, and General Electric. Some bridges translate protocols from one standard to another. SCADA systems have been around for decades and control machinery that can be decades old. Some term this a “brownfield” industry since industrial machinery will amortize on a factory floor for many years. The takeaway is that industrial automation requires specialty hardware communication interfaces built into Edge computers to be a citizen on their network.

Networking topologies

We have talked about industrial protocols such as Modbus in the previous section. Modbus is a wired protocol, meaning that it utilizes a physical wire to transmit data. This was described as a serial protocol where one bit is transmitted at a time versus parallel communication, which can transmit multiple bits of data simultaneously.

There are other communication systems worth mentioning. The most important, of course, is Ethernet. Nearly every piece of modern IT equipment utilizes Ethernet. Ethernet was developed in the 1970s at the legendary Xerox PARC research site. It became commercially available in 1980. Ethernet is based on a standard called the IEEE802.3 (1) protocol. Modern Ethernet transmits data serially or in parallel using multiple twisted pairs of wires or optical fibers. Transmit rates range from 1 Mbit per second to extreme 400 Gbit per second in data centers. Typically, the length of these cables is dependent on the speed of transmission but can extend hundreds of feet. Ethernet also allows for bridges and switches to expand the network. This allows for point-to-point networking between two computers but also a high fanout configuration that may connect thousands of machines.

Besides Ethernet, other forms of wired networking and communication also exist. Take, for example, the communication between various computers and sensors in a typical vehicle. A modern car has upward of 20 to 100 different computers, managing everything from power windows to engine diagnostics. In this environment, a wired protocol called CAN was developed by Bosch in the late 1980s. It is a simple but robust design built for the transportation industry.

These types of networks utilize physical wiring or optical fibers for communication. Later in this book, we will go deep into wireless networking, which is foundational for many Edge systems. For now, the types of wired networks fall into three categories:

	Peer-to-Peer (P2P) network: This is typically a dedicated communication path between two peer devices. This is especially relevant in serial communication protocols such as RS232. This type of communication is less of a network and more of a dedicated circuit. This networking is prevalent in a type of IoT device called machine-to-machine (M2M).

	Hub and spoke network: This form of network relies on a central system (a server, for illustration) to be the communication aggregator. No client communicates directly with another client; rather, the central server acts as a proxy to route communication. This type of network is typical of certain wireless communication systems such as Bluetooth and is analogous to a myriad of Edge devices managed through a central cloud server.

	Bus network: This type of network architecture uses a common fabric (called a bus) as the central channel for all communication. Client computers, servers, and devices all share a common fabric for communication. In this model, the bus can be divided into separable lanes to allow for simultaneous communication. Alternatively, a token can be handed to each node on the bus to indicate when a device is clear to transmit data without interference. Or, in the case of Ethernet, transmission can occur simultaneously, and if two or more devices collide transmitting data, the algorithm randomly pauses a device until the channel clears.

Figure 3.3 contrasts these three types of networks:

[image: Figure 3.3 – Typical network configurations]

Figure 3.3 – Typical network configurations

While Ethernet is the most ubiquitous networking standard, other hard-wired systems exist. For example, the ReliaGATE 20-25 mentions a CAN bus. CAN is another wired interface developed by Bosch in Germany in the 1980s and supported by the Society of Automotive Engineers (SAE). It is used heavily in automotive systems, agriculture machinery, elevators, smart buildings, lighting systems, and factory automation. It is the standard protocol in consumer vehicles that controls all computers, safety systems, and infotainment systems in cars. It is the basis of the automotive On-Board Diagnostics protocol, sometimes called OBD-II.

Personal area networks

Personal area networks (PANs) are near-range communication systems measured in inches or feet at reliable distances. PAN systems include widely used wireless protocols such as Bluetooth, USB, and Thunderbolt. As such, PAN systems can be wired or wireless. What defines a PAN is short-distance communication – short being relative, but any communication under 100 feet fits within the PAN definition. While short-range communication has its constraints, the benefit of PAN systems is that they are generally very low-power. This is an important characteristic since Edge devices and, certainly, IoT systems may be battery-based.

A good example of a PAN network is Zigbee. Zigbee is a wireless communication system that is typically used for low-cost and low-power communication to sensors and home automation systems. Products such as Phillips Hue smart lightbulbs operate using Zigbee. Zigbee is based on a network model called a mesh. Unlike the other forms of networks illustrated in Figure 3.3, a mesh is a reconfigurable network where each node acts as its own router. We will talk more about PAN and mesh systems later in this book; for now, what needs to be understood is that PAN networks are common in Edge computing systems and require a separate radio transceiver from other forms of communication.

LANs

LANs extend the range further than PAN systems. LAN systems are your typical Ethernet and 802.11 Wi-Fi networking common in consumer and enterprise IT equipment. They provide low-cost and reliable communication with ranges up to 1 mile in certain conditions. It is hard to find a modern notebook, smartphone, or computer that does not support Wi-Fi today; these communication standards are ubiquitous and proven. Most Edge systems incorporate Wi-Fi and Ethernet transceivers in hardware for this reason.

Wide area networks

Wide area networks (WANs) encompass communication 100 feet or longer (miles and kilometers, in many cases). These are typically wireless protocols such as 4G-LTE and 5G (cellular). These networks typically consume more energy than PAN systems but have a much greater range. Edge systems may incorporate cellular radios as the primary backhaul to the internet. Other times, cellular may be used as a failover system. Failover networking implies that the cellular radio is a backup communication if the primary network fails. In Chapter 2, we briefly mentioned that the HP Edge system included an OOB networking feature. That would be an example of failover networking for highly reliable and resilient Edge systems.

In this case, the primary may be a subscribed DSL broadband service and a 5G radio as the backup. This is useful since cellular systems typically require a service-level agreement (SLA). This refers to the cellular subscription plan. If the use case requires a substantial amount of data to be transmitted via WAN, the cellular service cost could grow significantly. In these cases, cellular is a backup system, and the primary internet communication will be broadband or some other low-cost transport. In other cases, a 5G cellular system may be the primary means of communication (for example, a smart vehicle).

While cellular radios typically consume a large amount of power, WAN systems can also be exceptionally low power such as LoRa. LoRa (derived from long range) is a proprietary radio technology developed by the French company Cycleo and acquired by Semtech. LoRa has significant range (up to 10 miles or more) and uses extremely low-power radios. Some even call this technology low-power WAN (or LPWAN) because it consumes lower power than cellular and has the same range. This makes LoRa suitable for Edge applications such as battery-based tracking systems, livestock monitoring systems, municipal electric and gas meters, and city-wide smart parking meters. The downside of LoRa is that it does not support high-speed communication. As a matter of fact, while cellular can achieve speeds faster than one 1 GB per second using 5G, LoRa is limited between 0.3 kilobits per second to 50 kilobits per second. This means cellular is up to 20,000 times faster than LoRa but comes at a cost of power, battery life, and SLA subscriptions.

A useful way to categorize these diverse types of networks and radio systems is shown in the following table:

	
	
PAN

	
LAN

	
WAN

	
Network Examples

	
Zigbee, Bluetooth, Ultra Wide Band (UWB)

	
802.11 Wi-Fi

	
LoRa, 5G,NB-IOT, M1, 4GLTE, GSM, Starlink satellite

	
Speed (Bandwidth)

	
<2 megabits per second

	
>1 gigabit per second

	
10 to 1,000 megabits per second

	
Range

	
<100 feet

	
Up to 1 mile

	
Tens of miles

	
Power

	
Very low

	
Medium

	
Low (LoRa) to high (5G)

	
Cost (implementation as well as data transfer costs)

	
Low

	
Medium

	
High

Table 3.2 – Differences between PAN, LAN, and WAN systems

When building an Edge system, it is imperative to consider the communication systems, service charges, reliability, and power consumption.

Summary

In this chapter, we covered the basic operational description of all modern computing architecture. This includes the processor, storage, bus, and I/O configurations. All computing devices at their most fundamental level can be described with this model.

We provided a cursory exploration into two Edge computer systems (HPE Edgeline EL800t and the Eurotech ReliaGATE 20-25). While the HPE system is more akin to a data center server and has nearly 1000 times more processing power, storage, and speed, the Eurotech is much better suited for industrial, low-power, and vehicular Edge computing due to its weight, I/O flexibility, and cost. Unlike the more generic PC and smartphone industry, no two Edge segments will necessarily have the same hardware.

Communication hardware is another critical aspect that makes Edge computing unique. Since the Edge will communicate with brownfield industrial machinery to vehicles to sensors, using the correct I/O is imperative.

Networking and communication are the heart of Edge computing. The three models of traditional networks are P2P, hub and spoke, and bus-type networks. Each model has their purpose in Edge computing, from OBD vehicular networks to Edge-to-cloud communication. PAN and WAN, based on wireless technologies, are prevalent in a myriad of Edge use cases, from commercial Zigbee and Bluetooth communication in smart homes to 5G communication systems in remote Edge computing. PAN systems are typically used for very close-range and low-power communication with limited bandwidth, while WAN systems typically have extended range and more capacity.

Since we now understand the nuances of Edge hardware, in the next chapter, we will explore the litany of software that can run on Edge computers.

Part 2: Frameworks, Software, and Communications

This section will teach you the fundamentals of edge system software frameworks and operating environments. It will provide clarity on edge systems, fog and mist, and the role of digital twins. The section moves on to communications and protocols that are core to understanding edge systems thoroughly. We will explore the significant role of wireless communication systems for the edge and PAN and WAN systems including 5G, before moving on to protocols. By the end, you will understand the “language” of the edge, including SCADA and industrial communications and MQTT, which drives most edge and hyperscaler environments.

This part has the following chapters:

	Chapter 4, Software and System Frameworks

	Chapter 5, Connecting Things - Networking and Communications

	Chapter 6, Edge Protocols - The Language of Edge Machines

4

Software and System Frameworks

The previous chapter provided the groundwork on Edge hardware and the cursory fundamentals of networking. We learned that Edge systems are not ubiquitous, nor are they standard. Each Edge application typically comes with bespoke hardware, input/output (IO), communication interfaces, and performance requirements. The same holds true for the software running on different Edge machines. The architecture of Edge systems also needs to consider the software environment running on the machine. This chapter supplies a high-level view of Edge software. This includes device environments called frameworks.

Later chapters will explore specific Edge applications such as machine learning and federated computing. This chapter is constructed to explore Edge frameworks and the typical features all Edge devices share in software.

What functions do Edge systems provide? While Edge devices serve diverse markets and use cases, there are some common elements within Edge software that are typical and found on nearly every Edge or IoT solution.

This chapter covers the following topics:

	Typical Edge functions and services

	Software architecture

	Frameworks

	Digital twins

	System architecture

Typical Edge functions and services

An Edge machine provides computational power in remote or mobile environments. Edge devices in many cases are also extensions of the cloud. Developers will want to have the services and features that are typically found in managed cloud environments to also be present on Edge devices. Some services, such as security, should be a minimum requirement for any Edge devices, whereas others may not be necessary or required. Here we will detail some of the typical services found on Edge devices.

Security and hardening

We start by examining what should be considered the most important aspect of Edge systems: security. Edge devices will not necessarily have the convenience of a security guard or a locked door protecting assets on a corporate campus. Furthermore, like most IT systems today, Edge systems are connected via the internet or some other medium. Edge systems may also host as much software as servers running in a cloud. To an attacker, all these pathways for compromising a machine are called the surface area of an attack. Edge and IoT systems have been typically easy to compromise. The reason Edge systems are attractive to compromise has some measure to do with the maturity of Edge computing versus traditional PCs and servers. Edge computing is in relative infancy compared to the decades of maturity in PC software and hardware. Remember, Edge hardware is often an embedded system, as we explained in earlier chapters. These systems are constrained by cost and size and do not have traditional PC-level hardware and operating systems. While the maturity of hardware and software continues to improve, it is best to build security into the system as early as possible.

So, what is at risk? Edge devices contain business logic and are essentially extensions of the public cloud. Confidential source code and data running on the device needs to be protected. Additionally, Edge devices contain various credentials for the cloud. Finally, Edge devices also have credentials to securely access and communicate with IoT devices that, again, an attacker can use as a threat. We will see real examples of this later in the book.

Edge and IoT systems should address the following fundamental security threats and attack surfaces:

	Physical attacks: Edge systems may be in an environment in public venues, remote areas, and, certainly, in locations that are not physically secure. This provides an opportunity for the device to be tampered with. Hardening involves both hardware and software. The system needs to know if the system has been rebooted, powered off, opened, disconnected from the network, or if the device has been installed (such as with USB thumb drives). While this book concentrates on electronic theft and countermeasures, we cannot exclude the fact that Edge machines can be vulnerable to physical theft and vandalism. Edge system design does not stop at hardware and software; one must also consider physical attacks.

	BotNets: BotNets are compromised systems that have rogue software installed. This software acts as a proxy for a malicious actor to control the device for nefarious reasons. This also allows the attacker to use the device as a host to infect other Edge systems. One of the most nefarious and dangerous cybersecurity attacks was called the Marai virus in 2016. That attack spread to 600,000 Edge systems, including smart cameras and consumer wireless routers. The end effect was that these bots launched a co-ordinated attack on various websites and organizations and crippled major portions of internet traffic. We will explore this type of attack later in this book.

	Theft: While less widespread than other types of attacks, the theft of electronic material stored or collected on Edge machines is a risk. A great example is an attack on Home Depot, where point of sales (POSs) terminals were infected with malware. These POS terminals were fairly unsecured embedded systems, making them vulnerable to classic types of hacker methods. After the malware was installed on the terminals, the software would gather customer credit card information. Over 56 million credit cards were stolen.

	DDoS threats: DDoS stands for denial of service (attack). This is a type of attack that floods a server with internet traffic to prevent users from accessing connected online services and sites. Sometimes called a DNS attack (DNS is a domain-naming system used for internet navigation), this software works if many devices are simultaneously affected. Essentially, these attacks are analogous to trying to have a conversation with a friend in a stadium hosting a major league sporting event. With thousands of people yelling, it is difficult or impossible to have a conversation. The Marai virus described above, besides being a botnet, also had a DDoS attack built in. That is how it disrupted a major slice of the internet. BotNets are typically used to launch DDoS attacks.

	Ransomware: Ransomware is a prevalent problem in IT. It is a type of attack where the malicious actor installs software that encrypts valuable data on the device. At that point, the attacker holds the key to decrypt it. He or she then informs the owner of the device of the attack and attempts to extort money (typically in crypto coins). If the legitimate owner of the system refuses to pay the ransom, the information may stay encrypted and useless forever or be deleted.

The services defining security for Edge machines include features such as the encryption and decryption of all data incoming through communication services and the encryption of all customer and sensitive data stored on the machine. The device should also include services to boot the machine securely and determine if all the running software is trusted. The system should include authentication services to determine the privilege of various user accounts. Edge machines also provide attestation services. These are software services to ensure that other machines or the overlying cloud can safely identify and ensure that a particular Edge system is trusted and is who it’s saying it is.

Many Edge frameworks provide security services and software to address these issues, which we will explore later in this chapter.

Remote management and monitoring

Edge systems do not have the convenience of being in a nearby data center or server room. They could be located anywhere on this planet (and perhaps others). Therefore, the system must be able to be remotely managed, controlled, and serviced. These devices should appear as an extension of familiar IT tools and infrastructure. Additionally, the health of a remote computer should also be considered. Things go wrong with hardware, and if the Edge computer is in a remote oil field in Alberta, then it should be able to be managed as if it were in a corporate campus in Seattle.

What does Edge management entail?

	Logging: Capturing information about the health of the Edge hardware and software is critical for diagnosing failures and monitoring security breaches. Logging information includes such things as access and usage identities, processor performance, thermal characteristics, power outages, reboots, network and communication downtime, and the health of the systems managed by the Edge computer. Edge systems should capture local logs of events and errors. Additionally, Edge systems should have runtime filters to determine when to send an alert if a critical issue has been discovered.

	Account management: A modern computing environment will allow for multiple system accounts with various privileges. New accounts on the Edge device may need to be created. For example, an Edge system that we developed for factory automation required each operator to have an account on the Edge machine. In this case, the Edge device provided the login interface, but the accounts were verified through an identity and access management (IAM) service in the framework.

	System settings and control: A modern Edge system and operating system will have thousands of different settings. Certain qualified accounts should be set up to control the Edge box. The existence of settings and controls also implies setting quotas, quality of service (QoS) levels, and device limitations. For example, many Edge systems may want to disable hardware, ports, and types of unused IO for security reasons. Other times, different users will have different experiences, such as faster or slower networking abilities, especially in situations where the Edge device is network bandwidth restricted, such as in LoRaWAN systems, which we will explore later.

	Remote updates: It is imperative to have a secure, robust, and reliable method to patch and update software in the field regarding remote devices. A remote Edge device will need software updates throughout its lifetime to repair bugs, add features, and, most importantly, update security holes. Since Edge devices are typically remote, updates must be managed by the cloud and deployed in a controlled manner. If there are millions of Edge devices needing an update, one could saturate the cloud by updating all devices simultaneously. Therefore, rolling the update by region or in some other controlled manner is needed. You may also want to roll updates globally during off-hours or when the systems are not in use. Such updates must also be robust. If something fails during the software patch, the Edge system should automatically roll back to the last known good and verified version to keep the system running, with an update sent to the logs indicating that the update has failed. We should also mention that remote firmware updates are an area of security risk. Firmware updates should be electronically signed so that the system can detect an attempt to update it with malicious code. We will cover this topic more in the security chapter.

The management of Edge systems should be enabled remotely and securely. It should not be expected to have physical proximity when controling any of these features.

Interconnectivity and networking

What separates Edge computing from unconnected computers is networking, particularly internet-based communication. This provides the ability for an Edge device to pass data and control messages to the cloud or other devices. Standard models of communication, such as TCP/IP stacks, are used in Edge networking. Additionally, the industry has adopted other standards such as MQTT and CoAP protocols (which we will go into in more detail in Chapter 6) that are very efficient and robust for Edge and IoT communication.

The Edge device may also act as a gateway between the internet and near-range communication protocols to wireless devices and sensors. For example, Bluetooth, Zigbee, and mesh protocols (covered in the next chapter) allow the Edge device to host many wireless devices in a hub-and-spoke type model. Networking also includes several layers of security services, encryption, and authentication. The networking and communication layers of system software are complex and large. They are also standards-based, and it makes sense to reuse well-tested and proven software stacks rather than design them from scratch.

Software provisioning and upgradability

If there is one message that should resonate with the reader of this book or other IT-centric books, it is this: ensure you can patch and upgrade software remotely! Software is malleable, and there will be bug fixes and security patches that must be rolled out to Edge computers in the field. To do this in the most robust fashion, system software must manage, validate, authenticate, provision, and install patches. Software may be installed immediately through manual deployment or automatically scheduled during maintenance downtimes. The system should also be able to recover in the event of an error during software installation. The trending modern method of pushing software to remote devices is carried out through software container management. We will visit containers later in this book; however, containers logically wrap all the surrounding software and libraries that typically comprise a large software system into a neat package that is easily deployable and decoupled from the environment (OS) where the software runs.

Reliability and robustness

Since these systems are remote and, oftentimes, manage critical infrastructure, the systems need to be reliable, robust, and foolproof. We will see that many failsafe and fallback solutions are a must. Edge computing systems often employ redundant components in the event of critical failure. For example, software must be able to determine if the main wide area network providing internet communication is lost and be able to divert data to a redundant system. An example of this is dynamically detecting that a wired network is down and moving all communication to a cellular fallback network. Then, it must detect when the main network is back up to divert data back to the lower-cost WAN.

Out-of-band (OOB) communication should also be considered when managing an Edge device outside. OOB relies on a separate network interface outside of the main internet access point and is primarily used for reliable IT management and servicing, even if the main network connection fails. This adds a level of redundancy to accessing an Edge system and is also called fault-tolerant or failsafe. Essentially, if all else fails, this channel should be accessible to provide control over a remote Edge machine. The Eurotech device discussed in Chapter 3 has the ability to use OOB communication by using wired serial interfaces or even LTE cellular communication. If the main network fails, the system can automatically switch to a less efficient backup communication system. It will keep the device running, and an operator can still remotely debug the machine.

Operating system

Most Edge systems will use a modern operating system such as Linux (for example, Yocto Linux, OpenWRT, Ubuntu/Ubuntu Core, RasberryPi (Debian), RedHat Linux, or even Google Android). Others may use Microsoft Windows commercial OSs, such as Windows IoT. The reason to use one OS variant over another depends, again, on the use case. If data is migrating to Microsoft Azure, using Windows IoT with extensions to manage the Edge device and marshal data to and from Azure servers is an easy choice. In other cases, a Linux derivative offers more flexibility in design choices and can accommodate nuanced hardware.

Another choice point to consider is if the Edge system must respond to real-time events. A real-time event is one that must be handled within a strict time limit; if not, some other failure may occur. For example, if the Edge system is managing some low-priority task, it may need to be pre-empted to manage a high-priority critical task. Not all operating systems handle real-time events, and the designer may need to elect a true real-time OS, such as FreeRTOS from Amazon, LynxOS from Lynx Software, or ThreadX from Microsoft Xpress Logic.

So, what is a real-time event versus a non-real-time event? A use case of real-time processing is the control system for autonomous driving. It can be argued that a self-driving vehicle is an Edge system. It is constructed of extremely powerful vehicular computers, graphics processors, cameras, and image-processing algorithms, along with extremely sophisticated trained machine learning algorithms capable of “seeing” and responding to driving events as they occur. An autonomous vehicle also communicates with the cloud for navigation assistance, weather information, traffic status, and reporting vehicle health. What separates the vehicular use case from the cloud portion is real-time processing. In one second, a vehicle moving 60 miles per hour will travel 88 feet. Within 1 second, the computers onboard must take multiple images, LiDAR samples, and radar snapshots of the entire surrounding area. This includes lanes, oncoming and nearby vehicle information, pedestrian-predicted paths, road signage, speed limit signs, and also understanding the instantaneous motion and direction of the vehicle. This is an enormous amount of processing, let alone an enormous amount of data collected each second. The Edge computers here must make life-critical decisions hundreds of times each second to avoid disaster. This would not be possible if all that data must traverse to the cloud, be processed in the cloud, and then be used to send vehicular driving controls back.

If the Edge system is more of a remote server for content delivery, it probably will not run a lightweight real-time operating system (RTOS) or an operating system that is targeted at an IoT device. It will most likely require a true virtualized environment and a hypervisor typical of hyperscale data centers.

Software architecture

When we consider the entire software architecture, we like to draw out the applications and services in a stack diagram. We start at the bottom layer closest to the hardware, and move up to the exposed services and applications that comprise the system. As we move down the stack closer to the hardware layer, software becomes more restrictive and privileged for security and protection. This layering approach is convenient for abstraction as well since modern software isn’t necessarily constructed as a monolithic block of code. A typical hierarchy of software and services can take different forms depending on the use case, but there are commonalities (Figure 4.1):

[image: Figure 4.1 – Simple and complex software stacks]

Figure 4.1 – Simple and complex software stacks

Edge systems can be as simple as a single function embedded in a computer to a complex server hosting multiple users and applications.

Software architecture should start with security as the main focus, and the system boot should maintain a root-of-trust process. This is a hardened and immutable hardware/software block that guarantees system integrity from powering on to a fully running system. The hardware abstraction layer (HAL) and device drivers are also architecturally common between low-end and high-end Edge systems. This area of software provides the interfacing and abstraction from upper-layer applications and the hardware. The operating system, which we have already talked about, resides above the HAL and provides all services for real-time control, software security, memory management, and storage systems. Above the dotted line is the separation between the application code and the system code. System code generally needs more protection for software-based security and the protection of hardware. While an application can crash for a variety of reasons, a single application shouldn’t bring down the entire system. The OS can’t crash without affecting all other services and software running upon it.

Application space can vary between simple and complex Edge use cases. In a simple Edge node, such as an IoT Edge gateway (e.g., Samsung SmartThings Home Hub), the application may be fixed and more of an embedded system used to manage home appliances and IoT devices such as smart doorbells, smart locks, and water leak sensors around a home. It will have a set of services, such as MQTT for Edge-to-cloud communication, as well as provisioning and security services to ensure the device is tamper-resistant and field-upgradable (MQTT and Edge protocols will be covered later in this book).

A more complex example would be a device that requires many disparate applications to run simultaneously and provides utilities, such as machine learning and predictive analytics on real-time data, a local user interface, device manifesting and registry, and local data management. This architecture lends itself well to multi-user environments such as the Edge servers used by CDN providers (e.g., Netflix) that may have dozens of users all streaming from a single server. Container-based design can also be used, which requires some additional overhead for a container management service to run, such as with Docker or Moby. This architecture will have more software demands and require more aggressive and powerful hardware to support it. If your Edge system is a very small, purpose-built embedded system, it may not have all the processing and storage resources for containers. Think of it this way: a container encapsulates your application, including all dependencies on other software and operating systems, into a tight package that can be deployed easily. This alleviates a lot of the issues of ensuring the software works on the systems that you deployed. If there is a myriad of different hardware you are dealing with, a container-based system is the right choice.

Frameworks

If you want to build an Edge machine and service, you don’t have to design all the software yourself. Just as operating systems provide a foundation for other software on PCs and servers, frameworks provide a myriad of features and services to get Edge systems running quickly. There are many “frameworks” available from organizations, such as the Linux Foundation, and companies, such as Microsoft and Amazon, to get you started. The framework provides the operating system, remote management, security, and cloud communication that we talked about earlier in this chapter.

EdgeX Foundry

A useful framework for Edge machines is EdgeX Foundry (or just EdgeX). This is an open source community support Edge platform supported by the non-profit Linux Foundation. One can download and start using EdgeX Foundry simply by downloading the framework from https://www.Edgexfoundry.org. The intent of EdgeX is to provide a vendor and hardware-agnostic architecture to rapidly develop Edge and IoT software upon. The first release of the EdgeX framework was in October of 2017, and it was supported by organizations such as ARM, IBM, ATT, Dell, Qualcomm, Red Hat, HP, and Samsung. EdgeX finds itself being used in embedded Edge systems but can scale up with some limitations. If you desire to build a robust Edge streaming content delivery network, a more robust traditional Linux and container-based architecture may be more suitable. The purpose of EdgeX can be summarized as follows:

	Ensure security: It is understood that security is the foundation for all IT. EdgeX Foundry provides typical services, firewalls, and encryption features that are built-in. Edge X also allows designers to selectively determine what data are processed locally and what propagates through the internet to the cloud (this filtering also helps to reduce transmission and cloud costs).

	Ease of connectivity: EdgeX provides a litany of network and communication protocols that are widely used by connected devices. Rather than invest in designing such protocols, such as ModBus, or integrating other third-party libraries, EdgeX provides out-of-the-box connectivity.

	Interoperability: An architecture that supports a plug-and-play philosophy with a variety of hardware, processors, and software.

	Open platform: It offers open source software under Apache license terms. This is developed and supported by the community.

	Low latency operation: To satisfy real-time applications that must process data at millisecond intervals, Edge X is designed around real-time constraints.

	Positive business value: It accelerates time-to-market by allowing users to add and develop their business logic on a standard platform.

	Reduce risk: EdgeX components will be certified through the Linux Foundation. EdgeX is also used extensively in IoT and Edge applications in both commercial and research settings.

	Robustness: It provides services to operate an Edge device when connectivity is interrupted. Even if all networking is lost, the Edge device using EdgeX Foundry will continue to operate, gather data, and re-establish communication at the next opportunity.

As you see, many of the requirements that we used to define the purpose of Edge computing are captured in this framework: latency, networking, bridging, security, resiliency, robustness, and cost control.

In this architecture and many others, we will refer to data directions in compass terms. For example, northbound and southbound data refer to data movement from a device to the next level in the hierarchy of devices. An Edge device might connect to southbound systems, such as IoT devices and sensors, process or store data locally, and then send pertinent data northbound to the public cloud. East-west directionality refers to devices in the same hierarchical tier but where data communicates to peer systems. For example, one Edge system talking to another for failover/resiliency reasons or perhaps as a model for federated machine learning (which we will explore in later chapters).

The EdgeX architecture is built upon microservices. The term microservices simply means the architecture is composed of a collection of loosely coupled services. Rather than creating a large monolithic software package, the system is broken down into manageable components that can communicate with each other by lightweight software interfaces. These services are also easy to deploy and are developer-friendly. A new service can be installed while a system is running. The diagram in Figure 4.2 shows the architectural hierarchy:

[image: Figure 4.2 – EdgeX foundry framework hierarchy]

Figure 4.2 – EdgeX foundry framework hierarchy

The bottom of the diagram depicts the physical sensors and instruments used to connect the analog world to the digital world. The application layer would be host to a variety of different microservices for your application.

Microsoft Azure IoT Edge

While EdgeX Foundry is an open source solution that provides a great starting framework to enable an Edge device, there are commercial frameworks we should also consider and contrast. Microsoft provides a framework called Azure IoT Edge. The framework has many similar features to EdgeX Foundry, but with notable differences.

IoT Edge is composed of a runtime system that manages the Edge machine and the rest of the framework. The other components are IoT Edge modules, which are lightweight containers and run numerous services. This is also where your software would be installed. The final component of the framework is the cloud interface, which allows you to remotely monitor and control any Edge device through Azure’s public cloud portal.

Similar to EdgeX, modules are built on container management services (e.g., Moby). Several independent modules can be deployed at any time. Microsoft also provides modules to aid with machine learning and artificial intelligence on the Edge device. We will go into detail about such AI features later in this book, but for now, these AI modules help with complex event processing, image recognition, audio and speech recognition, and time-series analysis. Microsoft Azure has historically supplied a rich set of services for data analysis (Azure Stream Analytics); these services can also be deployed as modules on the Edge device to process and filter data as close to the source as possible.

Azure IoT Edge is not an operating system; rather, it sits upon various Edge operating systems, including Linux. Therefore, any machine capable of running Linux and Docker can run the Azure IoT Edge framework. It is also programming language agnostic. You are free to design Edge and cloud software using common programming languages such as C, JavaScript (and Node.js frameworks), Python, and so on.

The framework enables millions of Edge devices to be manageable, secure, and reliable. Cloud connectivity allows for module containers to run both on Edge nodes (where it makes sense) and within Azure for heavier computational processing. As mentioned, all software is deployed as containers and delivered to Edge nodes in a controlled manner. The following figure illustrates a typical Azure IoT Hub topology:

[image: Figure 4.3 – Azure IoT hub conceptual diagram]

Figure 4.3 – Azure IoT hub conceptual diagram

In the preceding diagram, there are two different Azure IoT Hub instances; one manages a remote wireless IoT system, and the other manages factory automation. The runtime provides services such as telemetry and communication services, insights for data analytics, and actions, such as alerts and notifications.

The runtime module performs the heavy lifting for the management and communications of the Edge device. It is responsible for installing and managing software updates, enforcing all the security standards, and monitoring the health of the Edge machine and connected devices.

There are many other frameworks you should consider. A good source of various frameworks is located here: https://github.com/qijianpeng/awesome-Edge-computing#frameworks.

Digital twins

Azure IoT Hub is a fitting example of a cloud-to-Edge framework. One enabling feature of Azure IoT Hub is the ability to have Edge and server modules that can create a synthetic clone of the physical device being monitored. This is called a digital twin. First termed in 2002 by academics at the University of Michigan, a digital twin is a virtual representation or simulation of a real physical system. For example, a factory automation system may have several sensors and monitors gathering data from the machines on the factory floor. This data is relayed to the Edge node and later delivered to the cloud. Within the cloud is a model or simulation of the factory machinery (sometimes called an avatar).

Digital twins have various categories:

	Component twins: This is a model of a particular component of a device, such as a drive train in automation or maybe the current speed of a fleet of delivery vehicles.

	Asset twins: This involves the modeling of two or more component twins. This allows you to study the behavior and interaction between objects. For example, if you monitor the speed of a vehicle and the engine RPM, you can derive correlations between performance and engine efficiency.

	System twins: This is the next higher level of digital twins. Here, we take different asset twins and combine them into larger systems.

	Process twins: This is the final “all-encompassing” digital twin level. It may examine an entire manufacturing line and determine the efficiency of a whole factory.

Digital twins have been a buzzword for some time in industrial IoT and what is sometimes called “Industry 4.0” (short for the fourth industrial revolution). Having digital twins enables substantial benefits to various industries besides manufacturing. Power and energy sectors, railways, shipping, logistics, smart-city projects, construction, and engineering have all benefited from using digital twins.

We should talk more about the actual use cases of digital twins and how Edge systems enable them. Let’s examine a case study in energy production. In this example, a large European energy producer contacted the computing consultancy company KPMG regarding the problem of optimizing the output of an installation of 200 wind turbines. This required real-time feedback on the efficiency of each turbine and the angles of the blades to optimize energy production. This is a delicate process. A wind turbine can be and has been catastrophically damaged in high winds. They also dynamically adjust blade angles and the direction of the turbine to the wind direction. Turbines are also directly affected by the weather and fluctuating energy pricing. Therefore, this energy customer needed a method to combine real-time data from each turbine with weather models and forecasts originating in the cloud. Machine learning models were created in the cloud to predict optimal blade direction based on weather and wind forecasts. The models allow the system to simulate and optimize each turbine’s production efficiency while ensuring the turbine would not be damaged in the digital model by analyzing real-time weather data, the orientation of each turbine to wind angles, and fluctuating commodity energy prices. The model also used physical equations to predict if damage would occur if the blades were spinning beyond manufacturing parameters. When exhaustive cloud-based testing was completed, the AI model and the control systems were allowed to manage the real physical wind farm. Doing this without a digital twin could have resulted in possible damage to one or many of the wind turbines at a cost of USD 2.6 to 4 million per turbine. It was far better and less costly to model this using computational models, physical equations, and machine learning than to risk damage to physical property. In the end, the process improved each turbine’s efficiency by approximately 3%. This resulted in the 200 turbines producing an extra 32,000 megawatts of energy and increasing revenue by USD 2.4 million.

The benefit of digital twin technology is that it allows for better R&D through real-time insights, as well as continuous improvements to existing products. Digital twins also allow for improved data visualization of a larger complex system. Functions such as predictive maintenance become a reality with digital twins. A system can monitor and predict when machines or systems are going to fail or stop. Additionally, data can be accessed from anywhere, allowing for worldwide team collaboration around remote physical systems. This all leads to better efficiency in business and better financial planning.

The fog and the mist

Edge computing satisfies the problem of moving connected intelligence close to users and the sources of data generation (for example, sensors). In all the use cases we have examined, the separation between the cloud and the Edge is well established and defined. An Edge computer has unique workloads that separate it from the cloud. The cloud, as we have studied, performs macro-operations such as ingesting data, training machine learning algorithms, and provisioning a vast array of Edge nodes. Software that exists on the cloud must take orthogonal routes to communicate and perform an action on the Edge. There are strict APIs and communication protocols, such as MQTT, that perform these services.

However, what happens when we simply want Edge nodes to be transparent to the cloud? Could a software engineer design a service in the public cloud and simply push that code to the Edge? Could we have software that is abstract and nebulous, whereby what it executes is hidden from the user? The advent of fog computing completes the Edge transition.

Fog computing is defined as Edge nodes that share a common framework, API, and communications protocol with the public cloud. (1) Since the fog is an extension of the cloud, fog nodes can be extensions of each other. Essentially, work can transpire in the cloud or be pushed down to the Edge. It is important to understand that the relationship of the cloud to the fog is considered to be the north-south direction. Other fog nodes are considered to operate in an east-west direction. Fog nodes can communicate with sibling fog nodes in a similar fashion as communicating with the cloud. Addressing other fog nodes allows for load balancing between nodes.

Another concept related to fog computing is called the mist or cloudlets. Mist computing refers to Edge computers at the very far end of the network topology and as close as possible to the source of the data (such as a sensor). These devices have significantly less computing power and are embedded systems. They do share some constructs with fog nodes but have significantly fewer resources that can be used.

There have been initiatives to develop a common framework for fog computing. In 2015, six industry leaders and academics from Microsoft, Dell, Cisco, Intel, ARM, and Princeton University formed the OpenFog Consortium. This group grew to 57 members, and a reference architecture was drafted. Unfortunately, this effort hasn’t had much traction in the industry, and in January 2019, the work was merged into the larger Industrial Internet Consortium. That said, there are commercial frameworks that can be purchased. Most are provided by hyperscale cloud companies, and some of the features include fog computing.

System architecture

After describing the rules and requirements for Edge computers, we must now design a complete architecture as a system. As we saw in Chapter 2, many use cases have multiple Edge nodes and a central controller most likely situated in the public cloud. This is called the hub-and-spoke model of architecture.

Typically, an Edge machine separates the data communicated to the cloud into two pieces: a control plane and a data plane. The control plane manages the things described here, such as provisioning software to Edge nodes, identity management, and so on. The data plane represents the raw data generated, processed, or stored that is particular to the use case. The Netflix content delivery network may manage a huge multi-petabyte amount of data in the form of movies and television shows streaming around the globe, while an industrial automation system may only manage kilobytes of data generated daily by some factory machinery.

The architect of an Edge system has two choices when building the control plane. Either the system is centrally managed or a distributed control plane is used. In a centrally managed system, all services managing and controlling the Edge computing nodes reside in a public cloud or data center. Each Edge node has a heavy reliance on the central cloud or data center to manage itself. If the node loses communication, he device may become non-functional. In extreme cases, not only are control services centrally managed, but all computing functions are also performed in the cloud, with the Edge simply serving to move data from the Edge source to the cloud. Typically, an architecture is not robust if all data is sent blindly to the cloud without some degree of preprocessing or filtering.

A centrally managed architecture is a good choice for systems that may not need to be completely resilient to network outages. Alternatively, if an enterprise is scaling from a traditional data center-central model to now include Edge nodes, this architecture may be the best choice for rapid deployment (Figure 4.3):

[image: Figure 4.4 – Difference between centralized and decentralized Edge computing]

Figure 4.4 – Difference between centralized and decentralized Edge computing

Important note

In Figure 4.4, please note how decentralized computing typically has more interdependencies and communications between Edge nodes.

Unlike a centrally managed system, distributed architectures place more demands on Edge nodes to be self-reliant and robust in the event of failure. The Edge subsumes many of the roles the central service provides. The data center is still a central management controller responsible for overall network and Edge health. The Edge nodes must now orchestrate and sync with the central servers to ensure the entire Edge system has consistent policies and software updates. This architecture is much more resilient to failure, as the Edge nodes must be self-sufficient in the event of communication loss. This architecture also allows Edge nodes to communicate and service each other. For example, if an Edge node loses communication with a data center, it may shuttle data to a neighbor Edge node that still maintains a healthy connection to the cloud.

Managing a distributed architecture requires more software and services to be designed to work autonomously on the Edge compute nodes. Orchestrating and keeping the Edge nodes in sync requires design discipline as well. The central server can operate as a federated data model. In this design, each node manages its systems independently, but the collection of all Edge nodes appears as a single uniform database of nodes and metadata. All this occurs through network communication. The alternative is that each node syncs with the central server (and potentially other Edge nodes) on a periodic basis, attempting to keep all data and control in sync.

Summary

We conclude this chapter by learning how the software stacks of Edge machines can be as or more complicated than many PC and standard IT systems. This is further complicated by the fact that these machines are often used for life-critical applications and must be robust, foolproof, and secure, all while operating remotely and 24/7.

In order to help with the large software lift, one should consider common frameworks that provide a litany of services and features for Edge machines. The most important aspect of software services, which should be designed and architected first, is security services. This includes all software encrypting data in flight and when resting on the device, authenticating accounts and users, and attesting the device is trusted. Many of the frameworks are provided by public cloud companies, and fog frameworks allow software on Edge devices to be developed harmoniously with cloud software.

Edge software architecture is, typically, hierarchical and modular. Several Edge-specific frameworks are available in the public domain or as licensed property. These supply much of the heavy lifting of all the typical services of Edge devices. Frameworks with Edge-to-cloud connectivity allow for digital twins to be used to analyze systems worldwide in real time.

We conclude by understanding the differences between central control systems and distributed control architectures.

References

	https://www.ibm.com/blogs/cloud-computing/2014/08/25/fog-computing/

5

Connecting Things -Networking and Communications

If you feel like you are learning more about how the Edge connects to things, you are correct. IoT and Edge systems are now able to connect previously unconnected and unintelligent devices, in part, because the cost of data networking and communication has dramatically decreased over the last 30 years. Take consumer broadband as an example. In 1998, the average cost of an Mbps service was close to $1,000 per month using lease lines and old telco ISDN technology. Today, the cost per megabit of service is less than $1 per month (I currently pay $120/month for a gigabit service for my home). That is a 35% year-over-year decrease in cost, all while increasing the available bandwidth by 35% as well. Today, we have a myriad of choices for connecting nearly any spot on the Earth (or in orbit), enabling IoT and Edge computing. This ease of connectivity is something to which we are accustomed. Your smartphone works seamlessly in your home using Wi-Fi or while riding a commuter bus using cellular communication. But how well does it work somewhere such as the middle of Yellowstone Park (where there is no cellular coverage) or 10 miles out at sea? Not very well at all, and that’s a problem that the Edge can solve. Without considering networking and communications, there would be no Edge computing. Radio-based communication is an integral part of the definition of Edge. This is the power of Edge and IoT computing: radio communication now gives us the ability to connect what had previously been unconnectable.

This chapter covers the following topics:

	The prevalence of wireless and radio-based networking for IoT and Edge systems

	Typical use cases of connected devices

	Exploring different types of near-range communication, including Bluetooth and Zigbee

	Understanding how NFC and RFID personal area networks (PANs) are used in industrial, financial, and commercial applications

	How long-range communication systems, including 5G cellular, satellite, and LoRa, provide a connection to the cloud

A typical Edge system in your home

Take a common appliance many people use: a smart doorbell, such as a Ring doorbell. Smart doorbells are connected devices that alert the homeowner to movement and record video for security reasons. This simple doorbell has significant computing abilities but relies on services in the cloud to store videos, analyze data, and alert the homeowner of issues.

When you unbox a smart doorbell, the first thing you must do is provision it. Provisioning is a common theme for Edge and IoT devices where the new owner configures and personalizes the Ring doorbell and securely grants it access to our home network. But there are no buttons and no display on the doorbell. This is what we call a headless machine. To configure the device, we need to attach it to our smartphone via an app. Once the app is installed and running, it attempts to connect to the doorbell through Bluetooth. Bluetooth is a low-power, short-range communication system that allows you to communicate and provision the doorbell through your smartphone (it is the keyboard and display for the doorbell). Once configured, the doorbell will reboot. To reach the cloud, a Ring doorbell must have access to a homeowner’s Wi-Fi, so if the customer has no Wi-Fi access point, then a smart doorbell is not an option for them. This is a typical Edge system: Edge device  connectivity  cloud. Usually, installing a Ring doorbell is seamless because the engineering and technology make it just work.

So, what have we learned? An Edge device such as a consumer smart doorbell includes two communication protocols. If the homeowner does not have a Bluetooth-capable smartphone or a home with Wi-Fi access, the doorbell simply won’t work. Many Edge devices run in the same manner. There is a reliance on networking and communication infrastructure.

Communication systems differences

There are many types of communication systems available for IoT and Edge systems. Choosing the correct communication service is critical to the success of an Edge project. You must determine the speed and bandwidth required for networking, as well as the range, reliability, service costs, and power consumption. Before we begin exploring the various communication standards, we need to become conversant in the types of networking.

First, there are wireless and wired types of communication standards. Wired communication involves traditional Ethernet cabling, serial communication, fiber optics, and industrial protocols such as Modbus. These are copper-based or optical wired networks. They serve a purpose as they are inexpensive, standardized, and provide exceptional bandwidth at low power. The main issue with wired networking is the constraint of the wire. Either the cabling exists and can be reused, or the cabling becomes an added cost to the system.

Alternatively, there is wireless communication and networking. These are classified by their respective range:

	PAN: These are extremely near-range types of communication systems. Typically, these are within a personal workspace ranging from centimeters to about 100 meters in extreme cases. PAN systems include popular protocols such as Bluetooth and are popular in wearable IoT applications such as heart rate monitors. PAN protocols are low power and can allow for battery-based sensors to be located anywhere within range. They also include extremely close-range protocols such as Near Field Communication (NFC) or RFID. These ultra-low-range devices can operate without any power and receive their energy through radio waves. Most PAN communication systems are not TCP/IP compatible and use an efficient but proprietary protocol for communication. PAN systems also allow for ad hoc mesh networks to be established.

	Local Area Network (LAN): Ethernet is a widely used LAN technology and has been in existence in some form for over 40 years. Other wired LAN protocols do exist, such as token-ring, but Ethernet is the de facto standard to date. LAN in this context involves wire-based networking either through copper cabling or fiber-optic lines. LAN systems interconnect computers. Wire-based LAN networks do not have the issues of wireless communication where signals can be lost (for example, a cellular user driving through a tunnel) or bandwidth drops in a contentious area. They are constrained by the length and cost of wiring. Either the infrastructure already exists with Ethernet cabling, or it must be designed into the project.

	Wireless Local Area Network (WLAN): The most common form of WLAN is Wi-Fi or 802.11. Nearly every laptop, smartphone, and mobile device supports Wi-Fi. WWAN shares quite a bit with LAN technology. While one is wired and WWAN uses radios, both are TCP/IP compatible. WWAN systems typically have a bandwidth of about 100 Mbps to more than 1 Gbps with new protocols such as 802.11ax (Wi-Fi7). However, the range is limited to about 100 meters.

	Low Power Wide Area Network (LPWAN): LPWAN provides two important features for Edge and IoT systems: very long range and very little power. The tradeoff is bandwidth and speed of transmissions. Most LPWAN protocols are proprietary and must be licensed (both the hardware and software may require a service agreement). The most common forms of LPWAN are LoRa and LTE Cat M1. LoRa is a very long-range system cable of ranges up to 50 km and LTE is a cellular service for IoT systems. Both have limited effective bandwidth but can run on coin cell batteries. LTE is capable of transporting TCP/IP traffic, but the data units of Lora and Sigfox prohibit the size of TCP/IP data (packets). Therefore, Lora and Sigfox require Edge bridging to move data to the internet.

	Wireless Wide Area Network (WWAN): Cellular service and satellite communication are examples of WWAN. This includes services such as 5G and Starlink. WWAN requires cellular radios and cellular infrastructure such as cell towers. This can be managed by a service provider such as ATT or T-Mobile, but new standards, called Citizens Broadband Radio Services (CBRSs) allow you to build a private cellular network and avoid the service-level agreement with a telco. Satellite communication is a new variety of WWAN and allows for communication at a slightly lower bandwidth than cellular but can be used where no cellular service is available. Besides the cost-of-service agreements, there is also a cost for the necessary hardware. Cellular radios are typically more costly and require more power than LPWAN. However, of all the communication standards, at the time of writing, satellite communication is the most expensive form.

Figure 5.1 illustrates the speeds and ranges of these various communication technologies:

[image: Figure 5.1 – Types of communication systems arranged by their typical speed and maximum range]

Figure 5.1 – Types of communication systems arranged by their typical speed and maximum range

Now that we understand where various IoT and Edge wireless technologies land concerning range and speed, we need to understand a bit more about the radio spectrum, how it’s partitioned, and what constraints it has on an Edge system.

Radio spectrum

If an Edge system is not capable of being hardwired (for example, via Ethernet cables, Modbus, or serial) then the communication to various sensors (southbound) and the internet (northbound) will need to rely on wireless technology. This is where some understanding of radio frequencies and spectrum has a significant impact. Radio frequencies are used for everything from Wi-Fi to cellular signals to television broadcasts to satellite communication to military radar. This spread of frequencies and who may use a particular slice is managed by governmental bodies such as the United States FCC (see www.fcc.gov/engineering-technology/policy-and-rules-division/general/radio-spectrum-allocation) and the International Telecommunication Union (ITU).

Radio frequencies are measured in a unit called Hertz (Hz). Hz represents the number of events of cycles of a radio signal per unit time. A 1 Hz signal means that the radio pulses data of 1 event of wave in 1 second. A 100 Hz signal transmits 100 cycles per second. The range of frequencies that radio communication can use is between 0 Hz to 3000 Hz. Different areas of this frequency range are allocated by the ITU for different purposes. Part of the spectrum is sold, licensed, or leased for commercial purposes such as for cellular companies. Other areas are restricted for military, maritime, or aircraft navigation. Finally, some are completely open to unlicensed usage by anyone. These portions of the spectrum that are open are called Industrial, Scientific, and Medical (ISM) bands. These ISM bands are where Wi-Fi, Bluetooth, and many other forms of communication are allowed to operate by governmental restrictions. While this has enabled standards such as Wi-Fi to be commonplace and ubiquitous in the IT industry, it also leads to congestion in these bands. Typically, only a single transmitter and a single receiver can liken to the same channel or frequency and have reliable communication. In a very crowded setting with multiple radios colliding in the same frequency space, the result is a degradation in performance.

Typically, a higher frequency provides more bandwidth with limited range, while lower frequencies provide less bandwidth but more range.

To understand who may use frequencies in the overall spectrum, the following table helps map some of the protocols we will explore. The following table highlights the ISM bands of interest:

	
Frequency Range

	
Usage

	
0 Hz to 535 KHz

	
Maritime and aeronautical use

	
535 KHz to 1.6 MHz

	
Broadcast AM radio

	
1.6M Hz to 54 MHz

	
A mix of maritime, aeronautical, and mobile communication

	
54 MHz to 108 MHz

	
Broadcast TV and FM radio

	
108 MHz to 512 MHz

	
A mix of aeronautical, mobile, satellite, and astronomy

	
512 MHz to 698 MHz

	
Broadcast TV

	
598 MHz to 928 MHz

	
Mobile

	
902 MHz to 928 MHz

	
ISM band (cordless phones, garage door openers, and IoT devices)

	
928 MHz to 2.4 GHz

	
A mix of mobile, scientific applications, amateur radio, and radioastronomy

	
2.4 GHz to 2.5 GHz

	
ISM (Wi-Fi, Bluetooth, Zigbee, and IoT devices)

	
2.5 GHz to 5.725 GHz

	
A mix of maritime, aeronautical, mobile, and radio location

	
5.725 GHz to 5.875 GHz

	
ISM (Wi-Fi)

	
5.875 GHz to 24 GHz

	
A mix of maritime, mobile, and satellite communication

	
24 GHz to 24.25 GHz

	
ISM (Amateur mmWave)

	
24.25 GHz to 61 GHz

	
A mix of 5G mobile, satellite, radiolocation, and navigation

	
61 GHz to 61.5 GHz

	
ISM

	
61.5 GHz to 122 GHz

	
A mix of 5G mobile, astronomy, satellite, and radio location

	
122 GHz to 123 GHz

	
ISM

	
123 GHz to 244 GHz

	
A mix of radio astronomy and space research

	
244 GHz to 246 GHz

	
ISM

	
246 GHz to 300 GHz

	
A mix of satellite, mobile, and radio location

Table 5.1 – FCC frequency allocation and how different bands are reserved for use

In addition to restricting where you may freely or openly use a radio, the amount of power you can use for a particular radio is also limited. You may correctly assume that to increase the range of transmission, you can simply increase the power of a radio. While somewhat true, the result of unbounded power can result in significant damage to radios and antennas. Antennas will transfer some of this power into heat energy and potentially cause a fire. Federal regulations also limit power within ISM bands to ensure that a single transmitter will not overwhelm a large area. Wi-Fi (802.11) is limited to 100 milliwatts in the 2.4 GHz frequency space. This allows Wi-Fi to have a realistic range of 100 meters. Contrast this to AM broadcasting in the 535 KHz range. This licensed area is not freely available and therefore there is less of a chance of radio collisions. AM broadcasting can use up to 10,000 Watts of power (100,000 times more powerful than Wi-Fi) and can reach over 100 kilometers.

Near-range communication (PAN)

Communication systems range from near range (within 100 meters or about 328 feet) to extremely long range (kilometers/miles in range). We’ll start by describing near-range communication via PAN. These are communication systems that are intended to service close range (0.1’ to 300’). Think of these as communication systems for sensors, personal heart rate monitors, audio streaming devices, beacons, lighting systems, security systems, and proximity sensors. These types of networks do not connect directly to the internet like Wi-Fi or Ethernet would, instead relying on much lower power. Often, devices that use near-range radios rely on a small coin-cell battery.

Protocols that encompass near-range communication include the very popular Bluetooth Low Energy (BLE), Zigbee, Z-Wave, Thread, and custom 900 MHz networks. As mentioned previously, these protocols do not connect to the internet directly, thus they do not use TCP/IP as the standard networking stack. These are termed non-IP protocols. Each uses a custom stack, and some, such as Z-Wave, are proprietary. These all require special hubs or bridges to convert their proprietary protocol into an internet-capable protocol. These hubs or gateways are effectively Edge computers.

Bluetooth

Bluetooth (named after the Norse king Blatand) was first developed by Ericsson around 1990 as a wireless method to replace cables for computer peripherals. It evolved over the years and is officially managed by the Bluetooth Special Interest Group (SIG) (www.bluetooth.org). The SIG manages the specifications, release, and logo certification for devices wishing to use Bluetooth. At the time of writing, over 30,000 member companies belong to the SIG and they have shipped over 2.5 billion devices using Bluetooth. The products include audio headsets, computer mice, smartphones, and – most importantly for Edge computing – sensors, beacons, and actuators.

The latest Bluetooth 5.0 standard supports bandwidths of 1 to 2 Mbps but can be driven down to 125 Kbps if you want to improve communication resilience and range. This is a good example of a technology choice point in Edge architectures where we try to balance network speed with network range. You can adopt slower speeds that are more reliable and have a longer range, or higher speed when you can ensure proximity. Bluetooth operates in the 2.4 GHz spectrum and within the ISM band. Since this space is also used by Wi-Fi, Zigbee, and other devices, collisions and potential degradation of performance will occur. Bluetooth attempts to manage this with a technology called Adaptive Frequency Hopping (AFH). This technology (coinvented by the actress Hedy Lemarr during World War 2 in 1942) jumps between set frequencies in a pseudo-random behavior that is synchronized between the transmitter and receiver. Bluetooth divides the 2.4 GHz spectrum into 37 channels (79 for classic Bluetooth). Each transmission uses a new frequency, which helps mitigate collisions in this ISM band.

Bluetooth has many modes of operation. Since its initial concept design, Bluetooth has served as a means of file transport between computers via Bluetooth Classic and is the most widely used wireless audio technology, enabling generations of wireless headsets and earbuds. In addition, Bluetooth 4.0 introduced Bluetooth Low Energy (BLE). Bluetooth Classic, the older protocol, consumes substantially more power than BLE. Thus, it is not suitable for many Edge sensor networks and personal area networks that rely on coin-cell batteries. Unlike many other forms of hardware and communication accessories, Bluetooth devices are plug-and-play. Essentially, they do not need any intervention by the end user or specific software drivers that need to be loaded. Manufacturers can design different Bluetooth hardware but are assured that they will always work now and in future versions. Additionally, Bluetooth is hot-pluggable. This implies that a device can power down, reset, or become inactive without affecting the host system. When power is restored, the device will maintain a registry that allows it to automatically pair with the host.

To help contrast the difference, reference the following table:

	
Parameter

	
Bluetooth Classic

	
BLE

	
Frequency

	
2.4 GHz

	
2.4 GHz

	
Range

	
<100 meters

	
>100 meters

	
Maximum Speed

	
1 to 3 Mbps

	
Up to 2 Mbps

	
Latency

	
100 ms

	
6 ms

	
Typical Power

	
1 Watt

	
0.01 Watt to 0.5 Watt

Table 5.2 – Differences in traditional Bluetooth versus BLE

Concentrating on BLE, since it is the most widely used version of the Bluetooth protocol for IoT and Edge systems, we must state it is a master-slave communication. This means there is a strict one-to-one relationship between a master Bluetooth device and a slave Bluetooth device. BLE uses three advertising channels (out of the 40 total channels) to broadcast identities and allow a master and a client to find each other. The process is called pairing and is a multiple-step process to establish a communication link between the master and slave device. Once established, data communication between the two nodes may commence. One aspect of BLE and the pairing process is the BLE profile. The BLE profile is a set of parameters (or a contract) that specifies the fields, addresses, and data values for a particular device to communicate. In other words, a device such as a BLE temperature sensor communicating with an Edge master computer encodes temperature characteristics at specific addresses in the BLE communication. There are many profiles that Bluetooth has standardized upon, such as heart rate monitors, glucose monitors, telephony, and more. Refer to the Bluetooth specification located at www.bluetooth.com/specifications/specs/ for more information. You may also adopt a proprietary profile for your implementation.

Secure communications are also managed by Bluetooth with five basic security features. It provides authentication services through verification and identification of communicating devices. All data in transit can be encrypted using common encryption standards. You can also limit the authorization of devices by whitelisting devices that are allowed. All data is also verified for integrity to ensure the data in transit has not been altered. Finally, during the pairing process, secret keys are exchanged. When building a Bluetooth application, the designer can choose from five different security levels:

	Level 0: No security: This level is used to discover Bluetooth services between master and slave devices.

	Level 1: No Security: This non-secure mode does not authenticate devices nor encrypt data.

	Level 2: Unauthenticated Key: This mode allows for semi-secure authentication on initial pairing. Additional security can be provided later.

	Level 3: Authenticated Key: In this mode, security is established before the communication link is established. This ensures even device authentication is secured. This mode is intended to stop man-in-the-middle (MITM) attacks. MITM will be discussed in the security chapter of this book.

	Level 4: Authenticated Key and Secure Connection: Providing the highest level of security, this mode requires data to be encrypted for all transactions. This can stop MITM attacks and is also Federal Information Processing Standard (FIPS)-approved. FIPS is a set of minimum security requirements that are managed by the National Institute of Standards and Technology (NIST), IEEE, and the International Organization of Standardization (ISO).

Bluetooth – specifically the BLE portion of Bluetooth – has evolved significantly and provides a rich mixture of features and use cases that are especially relevant for Edge computing and IoT systems. Some of these features are shown in the following table:

	
Feature

	
Bluetooth Version

	
Description and Use Cases

	
Angle of Arrival and Angle of Departure

	
5.2

	
Used for three-dimensional spatial location and tracking of objects. This allows for an Edge device to find, track, and locate objects and their position with centimeter-level accuracy.

	
LE-Audio

	
5.2

	
This feature is the new upcoming standard for Bluetooth audio. It has significantly lower power and provides audiophile-level fidelity compared to traditional Classic Bluetooth audio. It allows for use cases such as massive stadium-level broadcasting of audio data. For example, it can be used by Edge systems in amusement parks, airports, and stadiums to broadcast audio that’s in sync with thousands of listeners. It’s used for modern hearing aids and assistive devices.

	
Beacons

	
5.1

	
Bluetooth can use its advertising channels to broadcast information from an Edge device to listening devices such as customer mobile phones. This allows for proximity-based information to be sent to users. For example, retail customers approaching a sale item in a store can be notified with a listening application. Museums also use this to inform patrons about exhibits when they approach them.

Table 5.3 – New features of Bluetooth 5.1 and 5.2

Bluetooth can also act as a mesh, although that is still uncommon but may gain traction shortly as Bluetooth 5.0 has enabled significant advances in mesh topologies. In Bluetooth vernacular, a master device could very well be an Edge computer acting as a gateway or router. Bluetooth slave devices can have multiple masters, so long as they pair and are secured in communication.

Bluetooth is a pervasive communication standard that is used in consumer, retail, enterprise, and industrial IoT devices and is a good example to follow in terms of a well-designed protocol for PAN communication standards when evaluating other PAN systems.

NFC and RFID

Some use cases in the industry require extremely low cost and low to no battery power supply. These types of use cases include asset tracking systems for products on shelves or logistics, low-cost disposable identification systems for tracking patrons at an amusement park, tracking the progress of components as they move through an assembly line, or livestock management for a large herd of animals. In all these cases, some unique identification and information-carrying device is on the product or person. These ultra-low-power devices require little to no supplied battery, very low costs to the point of being a disposable appliance, and wireless communication to an Edge device that can communicate with it. Radio Frequency Identification (RFID) and Near Field Communication (NFC) serve these use cases. Both protocols are not intended for high-speed communication of any kind.

RFID uses radio-frequency communication with a device called a tag. The device that’s reading or writing to the tag is called an interrogator or reader. Tags can be passive (without any power source or battery) or active/semi-passive (with some power source or battery). Both active and passive tags operate in ISM bands of the radio spectrum.

A passive tag is the lowest cost method of using a digital tag of any IoT device since there is no added cost of a battery and power electronics circuits. A passive device derives its energy when it is in the presence of electromagnetic radio waves generated by an external reader. A passive tag is comprised of an antenna and a tag with some memory source attached to it. When a reader generates a signal of sufficient strength and within the range limits of the tag, the device will couple the energy and awaken. Coupling is the process of transferring energy from one medium to another. For an RFID, this can be inductively coupled or backscattering. Inductive coupling is best for very short-range communication where the interrogator modulates its radio frequency (called the carrier frequency), and the RFID tag’s antenna uses a coil that will convert the magnetic energy into electricity to power the tag.

Backscattering communication allows for slightly longer ranges of about 10 meters. Backscattering can be most easily explained by using a flashlight and mirror analogy. Imagine that our interrogator was a flashlight and the tag was a mirror. You could shine a light of a certain color at the mirror and the mirror would reflect some of the light. Additionally, the mirror could modulate the light in a series of ones and zeros to communicate data back to the interrogator. The same occurs in backscatter RFID. Here, the electromagnetic radio waves produced by the reader will power the RFID tag, and the same signal will be reflected to the reader with data. The range between the RFID reader and the tag is called the interrogation zone of RFID and is typically less than 15 meters.

An active RFID tag supplies its own power source (typically a battery). Active tags will continuously generate their own signal. These function as beacons and provide a much longer distance to communicate with an interrogator. Since an active tag incorporates a power source, rich and complex algorithms and functionality can be embedded in the device. An active tag can also operate as a beacon and constantly transmit a signal for location sensing or alerting. Another powerful feature of active tags is that they can communicate not only with a read device but with other tags. Thus, active tags are used heavily in real-time location systems (RTLSs) in shipyards and large warehouses. Semi-passive tags incorporate a battery but use that power only to supply energy for the microprocessor or other logic on the tag. Semi-passive devices require backscattering or inductive coupling to communicate with a reader. This allows the semi-passive tag to keep running and monitoring what it is attached to even, if a reader isn’t present to supply power. This is useful for environmental or agricultural sensors that monitor temperature, humidity, shock, PH levels, and so on and then report the data when a reader is present.

NFC is the other near-range communication system that’s available. Unlike the passive-inductive RFID, which can communicate with an interrogator within a 1-meter range, NFC operates in four centimeters or less. Like RFID passive tags, NFC uses inductive coupling to provide wireless energy to low-cost NFC tags. NFC operates in the 13.56 MHz radio frequency and at very limited data rates of 106 kilobits per second to 424 kilobits per second. Where RFID uses the terms interrogator/reader and tag, NFC uses the terms initiator to describe the reader and target to describe the NFC tag.

NFC tags are used heavily in industries such as amusement parks and financial transactions and act as identity tokens. New smartphones using Android and Apple iOS devices have NFC initiators built into them for transactions to take place at millions of retailers and vending machines. Simply place the phone next to the Apple Pay, Google Pay, or Samsung Pay icon on the cash register of a soda machine, and the transaction will occur automatically. This technology has effectively removed the need for cash or credit cards in personal transactions.

The following table contrasts the differences in RFID and NFC tags:

	
	
RFID Active Tag

	
RFID Passive Tag

	
NFC Tag

	
The range between the tag and the interrogator

	
150 meters

	
10 meters for backscatter tags

1 meter for inductively coupled tags

	
4 centimeters

	
Typical Operational Radio Frequencies

	
435 MHz and 2.4 GHz

	
860 to 960 MHz

	
13.56 MHz

	
Cost of Tag

	
About $20

	
Less than $0.50

	
Less than $0.10

	
Battery

	
Yes

	
No

	
No

	
Size of Tag

	
About the size of a small smartphone

	
Smaller than a credit card and can be flexible as it’s on a label

	
Smaller than a quarter

	
Indoor/Outdoor

	
Outdoor

	
Indoor/outdoor

	
Indoor/outdoor

	
Logic Complexity

	
Can perform complex calculations.

	
Simple tag and ID information

	
Extremely simple

Table 5.4 – RFID and NFC comparison

Next, we will learn how various near-range communication systems can be used to develop ad hoc instant networks using mesh technology.

Meshes (Zigbee PAN)

A mesh is another form of networking, but unlike a peer-to-peer model (such as wired Ethernet), a mesh allows nodes to build a network in an ad hoc manner. This is good for cases where no infrastructure for networking exists and you must build a network yourself. Mesh networking consists of nodes. These nodes may be Edge computers or IoT devices, but they communicate with the cloud by communicating with each other.

A good example is building parking sensors in a public parking facility. At an airport I frequently visit, there is digital signage on the parking lot entrance indicating how many open spaces are on each floor of the five-story structure. This allows patrons to quickly go to a floor that has open spots and avoid driving aimlessly around the facility looking for a spot. Each parking spot has an electromagnetic sensor to determine if there is a large chunk of metal directly above it (for example, a car or truck). If the spot is occupied, the sensor communicates to a central computer via a mesh network. Data is sent from the sensor to the next sensor and eventually to a mesh gateway to connect to the internet. Each sensor, therefore, is a component of the network infrastructure. So, why do this? The reason is that in many situations, such as a parking structure, the infrastructure was built decades ago, and laying fiber or cable to each parking spot was not a financially viable option. Additionally, using Wi-Fi hotspots could leave shadows of radio communication and some parking spots may have no good connectivity.

There are many mesh networks: Bluetooth and Wi-Fi both have mesh models that can be used. Thread is another example of a low-cost and low-energy mesh network. We will examine Zigbee as it is ubiquitous and very popular for IoT mesh networking and covers many of the aspects of how a mesh works.

Zigbee is another short-range PAN that intends to conserve battery power for wireless sensors and IoT devices. Like Bluetooth, this is a non-TCP/IP protocol, meaning that it can’t connect directly to the internet and requires an Edge gateway. Zigbee was launched in 2002 and the specification for the first draft was released in 2004. Today, it has found its way into products such as smart lightbulbs and lighting systems, home and enterprise security systems, shipping and logistics, livestock management, and food processing (especially in cold storage and supermarket freezers). At its core, Zigbee acts as a mesh network, a common deployment in Edge computing where you can’t run wires or provide the infrastructure to connect a large number of devices.

Let’s examine a popular consumer device: smart lightbulbs, light strips, and even light switches that a consumer can install in their home. The bulbs simply screw in a can light or a lamp like a normal bulb. The lights, however, are all connected, and, through a smartphone application, you can control turning the lights on or off, change the intensity of the light, change the color to one of over 16 million different colors, and even set up complicated scripts to do interesting things with the lights. For example, let’s say I run a script that changes the color of a lamp to reflect how the stock market is performing. I programmed the script to get real-time stock information through an open software interface. If the stocks I own are trending up over a given time, the bulb will increase in intensity and glow blue. If the stocks are trending down, the bulbs will increase in intensity and glow red. Although this is a personal hobbyist demonstration for my entertainment, it illustrates that a simple lightbulb can interface with the stock market.

So, how does a light no bigger than a standard incandescent bulb connect to the internet and the cloud? Moreover, how can it do this without relying on Wi-Fi or a cellular connection? The answer is mesh networking. At its core, these smart lights have a small computer and Zigbee radio embedded within them. The range of Zigbee is fairly short and similar to Bluetooth at about 100 feet for typical reception. When using Zigbee, you don’t address other nodes with an IP address such as 192.168.0.1 or a URL name such as www.mit.edu. Rather, you use a special form of addressing to communicate from one Zigbee device to another, called a mesh.

There are three forms of Zigbee devices (called nodes):

	Zigbee coordinator: This is the master device and the only type of node that can form a Zigbee network from the start. It is also required to add additional nodes to the mesh or remove a node. The coordinator is the root of the network.

	Zigbee end device: These are designed for very low-power (for example, battery-powered) communication. End devices will sleep when no transmission is required. Since an end device may be in a sleep state for extremely long periods, when it does wake, it will poll its parent to retrieve any data being transmitted to it. Therefore, it is not suitable for real-time applications.

	Zigbee router: These devices can extend the range of a Zigbee network. Remember, these devices operate in the 2.4 GHz band, where communication is limited to less than 100 meters for reliable transmission.

To address various nodes in a Zigbee mesh, each device has a unique media access control (MAC) address. This is similar to how Ethernet and Wi-Fi work; a MAC address is unique to the device and is 64 bits in length. This ensures that there can be over 4 billion Zigbee devices covering each square meter of Earth’s surface and still have the capacity for more devices. This should ensure there will be enough unique addresses for a long time. To obtain and register a Zigbee MAC address, you must work with IEEE (www.ieee.org); there is an associated $,1600 fee to register the address. This MAC address allows a Zigbee device to reside on two separate and secured Zigbee mesh networks simultaneously.

In addition to the MAC address, Zigbee uses a shortened address called the node address or NwkAddr. The NwkAddr is a smaller 16-bit number that identifies a particular node on a single Zigbee network. The Zigbee coordinator is always NwkAddr 0x000. There is no relationship between the MAC address and NwkAddress. The NwkAddress is assigned when a node joins a Zigbee network, while the MAC address is built into the hardware and stored in non-volatile storage on the device, so it remains static.

There are four ways to send a message on Zigbee:

	Table routing: This is typical of mesh networks. In this form, an end device will discover the path to a target node by building a routing table of the network to determine how to get to the destination node. The source will send data to the first node in the route, which will subsequently forward the message to the next node and ultimately arrive at the destination. If any node fails in this chain, an error is sent back to the originator and a new routing table will be created. This allows for ad hoc networks to exist and come and go at will.

	Broadcast routing: In this form of communication, a node will send data to every node in the network. This should only be used for specific messages and issues, such as system errors Broadcasting can overload a Zigbee network.

	Multicast routing: This form of communication allows a one-to-many type interchange of messages. The difference between multicast routing and broadcast routing is that multicast uses performed groups of Zigbee devices that are associated with one another. For example, in lighting use cases, a group may consist of a single Zigbee light switch and four Zigbee light fixtures. Only those members of a group will receive the message from a switch.

	Many-to-one and source routing: Both coordinator forms of communication originate from the central Zigbee coordinator and are sent to Zigbee router nodes. Essentially, these are utility messages and are used to help build the Zigbee mesh network routes.

A mesh doesn’t rely on any infrastructure, such as a Wi-Fi access point or an internet service provider. Instead, it forms a network in an ad hoc fashion, allowing the system to morph and change with nodes coming online and going offline all the time. This is a perfect use case for lightbulbs! Think of it this way – to intelligently connect a dozen light bulbs and lamps in your house, you have two choices: either use Wi-Fi communication and burden the cost of each light bulb with a Wi-Fi transceiver, or use a mesh protocol such as Zigbee. The cost of a Wi-Fi radio is typically 10x more expensive than a Zigbee or Bluetooth radio. It also requires each light bulb to send a signal to your Wi-Fi router, which may be difficult if the lights are outside your home or in your garden.

The following figure illustrates a typical Zigbee network. Notice that each NwkAddr is unique and the Zigbee coordinator always starts with address 0x000. Additionally, note that there are multiple paths for some of the nodes. End-Device 7 has two routes in the network. Either it can deliver data through Router B or directly to the Zigbee coordinator. Additionally, Router A and Router B are attached to the coordinator but can also communicate with each other. This is what enables the Zigbee mesh to provide resiliency and redundancy in communication. It always finds a path to communicate:

[image: Figure 5.2 – Typical Zigbee mesh]

Figure 5.2 – Typical Zigbee mesh

A Zigbee mesh requires no Wi-Fi access point or router, and the network is built one node at a time. Lights (especially overhead can lights) are evenly spaced, providing a perfect framework for Zigbee lights to communicate with each other. When you add a new smart light to your home, it attempts to join the current mesh through a process called association. The problem with a mesh is that it isn’t very fast concerning bandwidth. If you are at one end of your home and wish to control the color of a light at the other end, the packets of data you send across each node in the mesh eventually reach the correct device. Bluetooth can also form a mesh. A mesh network is great for Edge computing use cases such as parking meters in smart cities. Have you ever entered a parking garage that shows how many spaces are open? As mentioned previously, each parking space has an Edge sensor to detect parked cars that communicate via a mesh network. However, you will generally never want to use a mesh network where you need very high performance, such as in a smart doorbell, which shuttles large amounts of video.

At the time of writing, these types of communication systems are low energy and have fairly short range. Bluetooth and Zigbee only have a reliable range of about 100 to 200 feet. These short-range communication systems require a hub or special hotspot to proxy data to and from the internet. Bluetooth and Zigbee are not meant to directly attach to the internet as you do with a Wi-Fi system. There is typically an appliance called a bridge that converts Bluetooth or Zigbee into protocols that can be used on the internet. Sometimes, these hubs or bridges have significant intelligence built in and they can also be considered Edge computers.

Near-range communication use cases

We’ve talked about Wi-Fi, Bluetooth, and mesh networks, and while these technologies are ubiquitous and cheap, they aren’t always suitable for Edge computing. Often, Edge computers may need to be in a very remote area well outside of any infrastructure, such as cable internet. Wi-Fi access points and Zigbee bridges all connect to the internet in some manner – typically through your home cable modem or router. However, what do we do for remote Edge computing? What if we need to connect a herd of cattle to the internet?

Let’s back up a bit – why would you even want to connect a herd of cattle to anything? According to the acclaimed IoT World Congress conference, smart agriculture is slated to be a $25 billion business by 2025. The use cases are numerous. Large-scale ranching and farming are heavily automated and computerized. Farm plows are now self-driving, robotic, and autonomous. Each head of cattle on a 1000-acre ranch is connected to the internet and monitored to understand their health, location, and feed. How about smart cities, which intend to connect every light pole to monitor traffic and identify safety problems? Local municipalities and the federal government intend to transform the 164,000 miles of the US interstate systems into smart-connected roads. These problems require a different communication system than the short-range communications of Bluetooth and Zigbee.

Long-range communication

If you need long-range communication and networking, then cellular technology is the de facto standard communication medium. Besides providing service for smartphones, cellular infrastructure is pervasive. According to Ericsson, there are over 8 billion cellular subscriptions at the time of writing in 2021. Think about that – there are only 7.8 billion humans on Earth. A staggering number of cellular subscriptions are in effect and roughly 3.5 billion of these users will transition to 5G service by 2026. But mobile phones aren’t the only devices using cellular communication. IoT and Edge devices also utilize this service when communication is necessary, something that requires high bandwidth, low latency, and good coverage.

Edge systems utilizing cellular service include nearly every first responder vehicle in the US, including ambulances, police, and fire trucks providing internet connectivity and global positioning services. Waste management systems that provide plastic and recyclable waste bins in different cities around the US use cellular Edge computing. These intelligent garbage cans inform the collection trucks of which bins are full or need service, saving time and money. This is convenient for this type of computing because the waste bins are portable and can be moved. There is no reliance on a wired internet connection or wired power. Both these use cases share one thing: they have no pervasive internet connectivity such as your home or office may have.

5G and cellular

The concept of wireless telephony had its roots at Bell Labs in 1946, where Douglas Ring and Rae Young created a cellular array of towers that could form a mobile network. In 1979, Motorola came to market with the first cell phone developed by Martin Cooper to brag to a rival that they produced the first mobile phone and phone call. Back then, cellular devices were extremely large, power-hungry, and analog. Modern communication is all digital and needs high speed and low power. What makes cellular systems different than other forms of wireless communication is that the device can be mobile and not at a fixed location. Whereas Wi-Fi may have a reach of a few hundred feet, cellular signals can extend reliable transmission for many miles. This is enabled by the very fact that the radio towers providing communication act as cells and allow a moving mobile phone to hand off from one tower to the next, hence the name cellular.

One of the main governing bodies over the cellular standard is the Third Generation Partnership Project (3GPP). The 3GPP is organized by seven telco organizations worldwide and is responsible for defining the underlying technology to meet the standards set by the International Telecommunications Union (ITU). The ITU defines cellular architectures and roadmaps and governs the standards of mobile communication. This governance body came into existence in 1865, well before wired telephone systems became a mainstay. They are the body that ensures a cellular device that works in North America can also work in Asia-Pacific regions. They also set the standard for the labeling of 3G, 4G, and now, 5G technology.

5G (also called 5G New Radio or 5GNR) is designed to replace the current 4G (Long Term Evolution (LTE) infrastructure. Some parts of 5G are essentially identical to 4GLTE (as they should be) since it’s backward compatible. 5G will fall back to 4G if the user is not within a new cell site. Additionally, a user with a legacy 4G LTE phone may wander into an area with 5G cells, but everything must work and be backward compatible with older mobile devices.

There are three significant benefits for 5G. This is what makes this technology so exciting and important:

	Enhanced Mobile Broadband (eMBB): This part of 5G is all about faster, bigger, and better. When most people think of 5G, they think about eMBB as it provides ultra-fast communication. The specification states that 5G can provide 1 Gbps to 10 Gbps in the field. This new radio technology should also support 10x to 100x the number of mobile devices per tower than 4G. 4GLTE can typically serve 100 active users on one cell tower; 5G takes that to over 1,000. Finally, the specification states that this class of service should be operational on vehicles moving at 500 km/hour.

	Ultra-Reliable and Low-Latency Communications (URLLC): This portion of the 5G specification states that devices can operate with an end-to-end latency of less than 1 millisecond. Typically, 4G LTE suffers from latency of tens of milliseconds to hundreds of milliseconds. For video streaming, online gaming, and real-time IoT, this is an issue and makes these types of things impossible on a generic smartphone. Additionally, URLLC by its very name ensures 99.999% uptime of service.

	Massive Machine-Type Communications (mMTC): This feature sets the goal of support for one million Edge devices per square kilometer. This is 1,000x more coverage than 4G LTE can provide. Additionally, the radios should support a 10-year battery life and consume just 10% of the power of 4G LTE radios.

These specifications should be read as what the ITU determined for a system to be called 5G. However, your mileage may vary. For example, we may not see 5G systems support 10 Gbps service in a train moving at 250 km/hour for 1,000 passengers aboard that train.

How 5G obtains these speeds and density improvements is no surprise. Part of the technology lies in the expanded radio spectrum that has opened for new communications. Radio signals move at the speed of light through the air. These signals essentially vibrate at different frequencies or Hz. Radio signals range from 1 Hz to 300 gigahertz (GHz). The combination of all the different frequencies is called the radio spectrum. 4G LTE was carved into narrow slices for various carriers, such as AT&T, T-Mobile, and others. These carriers used a spectrum in the 700 MHz to 900 MHz range and 1.9 GHz to 2.6 GHz range. 5G reuses those operational frequency ranges but also uses the 24 GHz to 28 GHz range, the 39 GHz range, and even frequencies as high as the 60 GHz to 80 GHz range. Any frequency above 30 GHz is a millimeter wave (mmWave). Lower frequencies could transmit data in the hundreds of megabit speed, while the higher frequencies can reach gigabit speeds. 5G could be faster than your home internet. This sounds great until we realize that these higher frequencies have significant and profound range issues. The faster the signal, the shorter the range. The typical cellular range of 1km to a nearby cell tower will result in a 22x to 28x loss in quality. When a wireless signal degrades in quality, you lose information, like when you’re in a noisy phone call and missing every other word in a conversation.

So, how does it work with such a poor-quality connection? Essentially, these mmWave signals will require many more towers than what we currently see across the country. Where a 4G antenna would be spaced based on user density as well as a coverage distance of about 1km apart, 5G mmWave systems will require thousands of small-cell (also called femtocell) micro towers. These may be propped up on each city intersection, streetlights, and leased space on the sides of buildings, and could be as close as 100 meters apart in urban environments. It’s also worth noting that each of these small cells is essentially an Edge computing device. 5G enables Edge computing by using Edge computing!

The other issue with these high frequencies is their notorious inability to penetrate things such as glass or even fog. A typical masonry brick wall between a femtocell at 39 GHz and a 5G smartphone can result in a 40x loss of quality and may not operate at all. This implies that not only will femtocells be required outside, but also within multiple locations in a building or home. This may not be acceptable for everyone, nor affordable, as these femtocell Edge systems are essentially mini cell towers and come with some cost and power demands. However, 5G can fall back to 4G frequencies at a reduced data rate. This is the conundrum of 5G technology and must be considered when deploying a well-architected Edge solution.

An interesting twist in 5G communications that has seen growing traction for some Edge deployments is CBRS and Multefire, derivatives of cellular technology that use unlicensed radio spectrum. Therefore, anyone can use this space for communication, not just telco providers. This has a major impact on the service charges and business model since it is based on the same underlying cellular technology and standard cellular radios in client devices can be used. You just need to bring your own infrastructure. This may have a tremendous impact on the adoption of cellular technology and be a disruptive technology for Wi-Fi. Imagine a shipping port that is monitoring the logistics and freight of thousands of containers. Technology such as CBRS can reach across the entire shipyard and monitor each container’s location and status in real time using a standard cellular radio appliance. It can do this without requiring a service plan for each radio from a telco service provider.

Unlike previous cell models, 5G relies less on the hardware and radio and more on software control, routing, and software-based security. Prior cellular systems, such as 4GLTE, used custom hardware from companies such as Ericsson and Huawei to control all the communication from cell towers to the central offices. 5G is much more generic, utilizing software-defined services that are more flexible and less costly. Large carriers such as ATT, Sprint, and Verizon have introduced multi-access Edge computing (MEC), which allows cellular carriers to offer Edge computing services on their radio network – very close to the cellular customers. Since most 5G software runs on commodity hardware, this is relatively easy, and the benefits can be significant. Providing Edge servers close to the customers’ services and devices can reduce latency and also reduce the carrier’s load on the network. This technology allows content delivery services such as Netflix’s video streaming and streaming video game services to make use of this service.

LoRaWAN

While cellular is a pervasive communication technology, it comes at a cost in service plans, and as we have seen, 5G will require many more small cell systems to be deployed to get good coverage. These data plans depend on the category of service. A typical 5G consumer cellular plan may cost $90 per month. But what do you do if you are building an Edge system to monitor cattle in a remote region of Montana? What if your solution is a true autonomous Edge system that doesn’t need the bandwidth capability of 5G, nor can you afford the cost when you have thousands of Edge systems?

Low-ower, wide-area networking (LPWAN), and specifically long-range (LoRa), technologies offer one potential solution. Managed by the LoRa Alliance, which was formed in 2015, LPWAN was originally developed by the French company Cycleo and subsequently acquired by another company called Semtech. The technology involves proprietary hardware developed by Semtech that operates in the 800 and 900 MHz region of radio space, an unlicensed spectrum that uses a different encoding scheme than cellular radios. Essentially, this entire spectrum transmits a robust signal that withstands interference and can penetrate concrete walls. It is a simple protocol that uses a technology called ALOHA. If there is airwave contention, ALOHA simply tries sending the data again until it is successful. In contrast to cellular or Wi-Fi, which has very sophisticated carrier sensing, time division multiplexing, and advanced modulation techniques to ensure little contention or error rates, LoRa can have error rates of 50% and still be functional. An entire LoRa system can be purchased, including the Edge gateway, antennas, and a mixture of environmental sensors, for under $500 and provide a radius of connectivity of several miles. The entire cost of building a LoRa system can be 3x to 10x less than the cost of any cellular system, including the purchase of a LoRa gateway. LoRa represents the physical and modulation techniques of this form of LPWAN.

LoRaWAN, however, is the communication protocol that’s used by LoRa that sits above the physical hardware layers. It is possible to have a LoRa radio that does not use LoRaWAN.

The downside to LoRa is that the bandwidth is capped at 0.5 Kbps to 5 Kbps. Latency is also poor, with typical latencies of 1 to 1.5 seconds (remember 5G at under 1 ms). Therefore, real-time use cases such as gaming or video aren’t suitable for LoRa. However, this technology is perfectly suitable for IoT devices that trickle data to the cloud and perform more functions on the Edge. Use cases include livestock management in remote areas of Montana or monitoring HVAC and smart building infrastructure.

Satellite communication

Finally, low-Earth orbit (LEO) satellites are also a promising place for Edge connectivity. Satellite-based communication has been around since the 1960s and satellite-based consumer networking has been available from various companies ever since. These legacy satellite systems (called Echostartm satellites) find their way into connectivity for aircraft, as well as 1.3 million American consumers. These types of satellites reside in geostationary orbit at 22,236 miles above fixed locations such as North America. Low-Earth satellites are not fixed and orbit at about 340 miles above the surface of the Earth. Not being in geostationary orbit means that these satellites are constantly moving concerning a position on Earth. Many satellites need to be launched at this orbit to ensure that there is always one communicating to users in a narrower area.

In January 2020, Starlinktm had 50 satellites in orbit. In December 2020, that grew to 955, with plans approved by the FCC for 12,000. Starlinktm has also sanctioned the ITU with plans for 30,000 total satellites that will provide coverage for the entire globe. While there are substantially more satellites than legacy geostationary systems, they are much smaller (about the size of a pizza box and weighing 260 kg). This congregation of satellites is termed a constellation. Each satellite is equipped with lasers that are used to communicate with each other. As the satellites stream across the sky, a user’s internet service is maintained as the service is handed over from one satellite to another. This is analogous to the handover scheme in cellular technology. The distance between the earthbound transceiver and the low-orbit satellite is much closer than geostationary systems, reducing latency tremendously. Starlinktm devices show latency in the 30 ms range, while geostationary systems average between 600 to 700 ms. This makes certain use cases in Edge computing and real-time content streaming untenable.

Other low-Earth satellite ventures have also manifested in place of Starlinktm systems, including Telesattm, which has a 117-satellite constellation, and Richard Branson’s OneWebtm, which has 700 satellites. Initially, these systems will provide internet connectivity to nearly every point on the globe. If you can see the sky, you will have connectivity. Eventually, this will enable significant competition for connectivity against Earth-based 5G cellular and traditional broadband companies. Thus, low-Earth satellites will be an important component for Edge-based computing in the most remote areas of our planet.

An interesting hybrid of LEO and LoRa is also being explored by various startups: Fleet (www.fleetspace.com), Swarm (www.swarm.space), and Lacuna (www.lacuna.space). This combines the global and worldwide reach of satellite communication with the low-power and low-cost LoRa devices on Earth’s surface. The intent is to have worldwide coverage and communications for IoT sensors and low-bandwidth devices. In this scenario, a LoRa host is not needed as the satellites provide that service. These small satellites fly in constellation patterns to ensure total global coverage and persistence. They fly at approximately 500 km and store messages that are received by sensors. When the satellite passes a ground-based relay station, the data is dumped from the satellites and broadcast to their destination or internet site.

Summary

This chapter provided a deep dive into communications systems. This is a vital component to spend significant time understanding as an improper design can cripple an Edge project. Here, we learned that choosing the correct protocols and communication medium is critical to a safe, robust, and commercially viable Edge solution. Edge systems may require multiple forms of communication for authentication purposes, initial provisioning, or even out-of-band failsafe scenarios.

Communication to the far Edge for sensors and devices requires PANs. These provide near-range communication with low energy but are not intended for high-bandwidth applications. We also looked at Bluetooth, a widely adopted near-range protocol that can be used for everything from file transfers to audio transmission to low-energy IoT to location tracking. Then, we covered NFC and RFID tags, which allow for very low-cost methods of communication, especially in industries such as logistics, location tracking, ID cards, shipping, and factory automation, and have changed how modern electronic payment systems work, effectively eliminating the need for cash and credit cards.

Often, Edge systems require an ad hoc communication solution where networking infrastructure doesn’t exist. For these applications, we can use mesh networking, which allows us to develop a dynamic and scalable network. Mesh systems include Zigbee and Bluetooth 5.0, both of which are used extensively in residential and commercial lighting systems.

To reach back to the cloud, we can use long-range communication systems. LPWAN systems are mostly proprietary but also provide extremely long range, as measured in kilometers, and also very low power. WWAN systems allow for long-range, wide-area networking via cellular systems and satellites. These require more power but also have considerably more throughput and bandwidth than LPWAN.

6

Edge Protocols – The Language of Edge Machines

We have talked about Edge machines, hardware, and the types of technologies that are used to communicate with an Edge device; however, we have not explored the language used to talk to an Edge computer. Edge devices speak certain languages when communicating with the cloud or other Edge machines. Think of it this way: when we make a phone call or communicate by email, we use language, grammar, and sentence structure to have an effective conversation. Edge computers also need a language or protocol. This chapter will visit the important protocols that Edge nodes must consider depending on the use case. We will talk about the Modbus and other industrial protocols used in factory automation, as well as protocols such as Message Queue Telemetry Transport (or MQTT for short), used in a variety of consumer electronic devices.

This chapter covers the following topics:

	Fundamentals of Transmission Control Protocol and Internet Protocol (TCP/IP) networking and the Open Systems Interconnection (OSI) model

	Models of network communication – message-oriented, streaming, and RESTful APIs

	Industry 4.0 and protocols in industrial and factory automation

	Cloud-to-Edge communication using MQTT

	Alternative protocols such as Constrained Application Protocol (CoAP) and Advanced Message Queuing Protocol (AMQP)

Network layering and the basics of the OSI model

A helpful way to understand networking and protocols is the OSI model. It exemplifies how modern networking software and hardware are built upon layers of abstraction and functionality. The bottom of the OSI model is the physical medium such as Wi-Fi, Ethernet, or a cellular radio. This layer involves the actual hardware used in communication. Above the physical medium is the data link layer (DLL), responsible for controlling the underlying hardware. It treats all data as a series of packets transmitted synchronously. Level 3 is the network layer. The network layer and the transport layer are usually what we refer to as TCP/IP. It is responsible for generating an internet address that can be routed and delivered across many different networks. This chapter will look at the top layers of the OSI stack: 5, 6, and 7. This is where the software will describe particular languages common to the Edge. The following table illustrates the OSI layering from hardware at layer 1 to applications at layer 7:

[image: Figure 6.1 – The OSI model and progressive layering of networking stacks]

Figure 6.1 – The OSI model and progressive layering of networking stacks

The concept of a network stack is to provide a layering of abstractions that serve different purposes in a network. This allows protocols such as TCP/IP to have clean, separable layers and strict interfaces between layers so that one can change or improve part of a network without redesigning a large monolithic piece of hardware and software. Layering also allows TCP/IP to be used on different physical networks such as Wi-Fi, copper wires, cellular systems, and optical interconnects by using a different link and physical layer in the stack.

Diving deep into TCP/IP networking

The de facto standard of networking and wide-area networking is TCP/IP. TCP/IP follows a similar layering concept to the academic OSI model of networking. TCP/IP is used pervasively and runs the entire information technology (IT) world and the internet. Think about a website you visit. To connect to a remote website, you will use TCP/IP to connect and communicate to the site, but the data representative of the web page may include text, font formats, images, video, and audio. That description is part of the HTML format and transmitted using Hypertext Transport Protocol (HTTP), which describes web page content.

TCP/IP is a protocol to marshal packets of data to destination addresses that are embedded in the protocol. This allows you to browse the web and transmit data to and from google.com, as an example.

The following diagram illustrates an Edge client communicating through a typical router before sending data to a public cloud over the internet. You see that the data in transit only propagates through the first few layers of the TCP/IP stack on the router:

[image: Figure 6.2 – TCP/IP stack layering]

Figure 6.2 – TCP/IP stack layering

The preceding diagram illustrates the hierarchy of different layers as data moves from application to physical medium. Intermediate routers on the internet provide the flexibility to move data across different network types (for example, Ethernet-to-satellite communication). The receiving side then runs the network models in reverse to unwind the packet.

The TCP/IP stack is built from bottom to top, starting with the physical layer. The physical layer is responsible for driving underlying hardware. This may be radios in the case of Wi-Fi or Ethernet transceivers in the case of wired connections. This layer simply shuttles data and converts it into proper radio signals or pulses on copper/optical cables.

The next layer is called the link layer, and it resides directly on top of the physical layer. Often, the link layer and physical layer are combined into the silicon hardware. The link layer is used to move packets from the internet layer to the physical medium and silicon chipsets. The link layer adds framing parameters to the packet.

At this point in the network stack, we move closer to the actual TCP/IP software-based protocols and further away from the underlying hardware. This next layer is termed the internet layer and manages the IP portion of the TCP/IP stack. This layer’s main function is routing packets to the correct address. For example, a website such as www.packtpub.com resolves to an IP address of 104.22.0.175. This numeric representation of the text is the primary routing and identity of internet-based traffic. The most important aspect of the IP layer is that addresses used follow a next-hop principle. That is, the data being sent has a destination address but may take multiple and different routes to marshal the data across networks or the internet at large. This process of migrating data across the internet using multiple routes is naturally called routing. One can see how this routing works by seeing the format of an IP datagram in Figure 6.3:

[image: Figure 6.3 – IP packet header]

Figure 6.3 – IP packet header

The fields of the IP packet are important. The header consists of various bit fields that help determine the version of protocols and various flags to control the data. It also consists of source and destination IP addresses. The source is the origination point of the packet and the destination is the receiving end. The fields’ purposes are described as follows:

	Version (4 bits): This field identifies which version of the IP is used (for example, IPv4 and IPv6). IPv4, for example, is indicated if the bit field is set to 0100.

	Internet Header Length (4 bits): This is the header length, sometimes abbreviated as IHL. It indicates how many 32-bit words are in the header portion of the datagram, but it doesn’t include how long the data section is.

	Service Type (8 bits): Also termed Differentiated Services Code Point (DSCP), this is primarily used for Voice over IP (VOIP) telephony and data streaming. It helps specify the priority of certain transmitted data over others to help with quality of service (QoS).

	Total Length (16 bits): This is the total length of the entire datagram, including the data portion, and is measured in bytes (not bits). TCP/IP requires devices to be able to handle, at a minimum, 576-byte datagrams. If the payload with data is larger, the packet will fragment into smaller units. The minimum size of any datagram is 20 bytes (which is simply an IP header without any data attached).

	Identification (16 bits): Used to uniquely identify various fragments in data transmissions. As mentioned, if the datagram is too large for a transmitter or receiver to manage, the datagram will be split into fragments. This field helps identify the various fragments and re-arrange them in proper order when they arrive.

	Flags (3 bits): This small field is used to control fragmentation. Bit 0 is reserved and must be set to 0. Bit 1 informs the system to not divide and fragment packets. Bit 2 implies more fragments are to be managed.

	Fragmentation Offset (13 bits): This represents the number of bytes in the data stream the fragment pertains to.

	Time to Live (TTL) (8 bits): This is used to control how much time, as measured in seconds, that this particular packet is set to remain live on the internet fabric. This field, abbreviated TTL, is necessary to prevent packets from endlessly floating and gathering on the internet if they fail to reach their destination. This prevents overall network congestion and overall degradation of the internet.

	Protocol (8 bits): This field is used to determine the type of data traffic that is being transmitted. Typically, this will be set to TCP, but other types exist, such as User Datagram Protocol (UDP) transmissions.

	Header Checksum (16 bits): This field is used to verify the integrity of the header and assure that no fields are corrupt. If the header and checksum do not match, the packet is destroyed.

	Source IP Address (32 bits): This field is used to identify the origination of the message being transmitted.

	Destination IP Address (32 bits): This field is used to identify the destination of the message being transmitted. Remember that the destination address is where the data transmission completes. The data may be transmitted and propagated through various independent routers along the internet.

The next level of the network stack is the transport layer. This TCP layer is a software component that provides communication between hosts and establishes or deconstructs virtual communication channels. This layer creates a network port. A network port is a semantic used to depict a virtual port that applications can use for communication. There are many standardized ports used by IT systems worldwide. For example, port 80 is most commonly used for web traffic, port 110 is used for email services, and port 123 is used for the Network Time Protocol (NTP).

While we have explored the basics of TCP/IP, it is important to realize this is for IPv4. Modern computing is moving to IPv6. The main difference is that IPv4 uses 32-bit addresses, allowing for around 4.3 billion unique IP addresses. IPv6 uses 128-bit addresses, providing approximately 340 undecillion (3.4 x 10^38) unique IP addresses. That is enough to give the atom that comprises the planet Earth its own IP address. Another important feature of IPv6 is that it provides a rich QoS facility to control traffic as well as encryption of data in transit.

An important part of the transport layer is it can manage connection-oriented communication and connectionless communication. Connection-oriented communication uses TCP communication. This means that the data has robustness and reliability built into the protocol. A message transmitted using TCP will arrive in order, with minimal errors, and duplicate packets/data will be discarded. Any transmissions that are lost are then resent by the transmitter. There are also congestion control and QoS rules for connection-oriented traffic. Most traditional LAN- and internet-based data uses TCP to ensure reliable and safe communication. This level of reliability comes at a cost of latency and throughput. Essentially, each packet is acknowlEdged through various handshakes between the receiver and sender.

The other type of traffic that can be managed by the transport layer is connectionless communication. This includes UDP, which is a best-effort protocol (sometimes called send and forget) also used widely on the internet for streaming services such as Netflix and voice data. In connectionless systems, data transmission is not necessarily reliable. Any lost packets or errors in transmission are handled by error detection and checksums. In UDP, data throughput and latency are more important than the integrity of data. In streaming applications such as video, if a packet is lost out of the millions or billions in flight, the application requiring that data will not fail, but there may be a small video glitch or audio pop that is typically smoothed over through software techniques.

The final layer is the actual application layer in software. This is what most users and systems are exposed to, such as web browsers, messaging programs, and anything that communicates across the internet.

If we put all the network layers in the hierarchy, we can see how the stack is built. Essentially, all networking devices use this stack for communication. For TCP/IP traffic, the data migrates across the internet through various routers, bridges, and switches whose task is to inspect the data headers and marshal the message closer to the destination. This process of traversing many routers along the way is called network routing, and the more hops along the way, the slower the overall transmission and the larger the latencies that occur.

Industrial IoT communications

Industrial automation and factory controls are one of the leading growth industries for IT. This is what is driving the term Industry 4.0. It is projected that the digital transformation of manufacturing will have a 16% compounded annual growth rate or CAGR and will reach $377B in market size according to Fortune Business Insights. (1)

The architecture that is used to control all the machine processes follows what is known as a Supervisory Control and Data Acquisition (SCADA) architecture. It includes a breakdown of computers, networking, communication protocols, a user interface, and management functions. Typically, this equipment is used for operational technology (OT). That is different from IT since IT is focused on the security and technical details of digital information. OT, on the other hand, is focused on the operation of physical processes and the physical machinery behind them. IT functions and personnel are focused on the office, data centers, and related hardware such as corporate laptops, network security, and identity management (IM). OT works on the shop and factory floor. Think of OT as the control systems of a large nuclear plant with a myriad of controls and screens monitoring the status of critical devices.

The following diagram illustrates where OT technologies reside in the technology layers of Industry 4.0:

[image: Figure 6.4 – Industry 4.0 conceptualized diagram]

Figure 6.4 – Industry 4.0 conceptualized diagram

Industry 4.0 allows manufacturers to track the progress of each product being created at every stage of manufacturing, including shipping and freight. This allows for just-in-time (JIT) manufacturing and significantly reduces waste. Additionally, predictive analytics and business intelligence (BI) software allow the factory floor to prevent manufacturing failures before they occur. This is accomplished by monitoring the health of all machinery and inventory through sophisticated machine learning (ML) algorithms.

The format of data is important to Edge use cases. They vary with application and industry. For example, in factory automation, we use SCADA concepts to describe the connectivity of machines on a factory floor. Its purpose is a communication language used by factory machinery and automation. While these factory-floor devices could use HTTP, they generally don’t as this legacy industry has widely adopted protocols established decades before HTTP was invented. As another example, Internet of Things (IoT) devices also communicate with the cloud, and they too need a model to send data across the internet. For these applications, there needs to be a lightweight and efficient protocol that easily transmits data from millions of nodes simultaneously.

Modern SCADA systems use Edge computing and are connected to the cloud and internet. One can control an entire factory floor via a smartphone. State-of-the-art SCADA architecture utilizes databases to store and archive all process data and has extensible and easy-to-manage user interfaces that build a single pane of glass (SPOG) of an entire manufacturing process. Yet, surprisingly, industrial automation has been slow to adopt new technologies as many shop floors rely on expensive and old machinery (sometimes called brownfield devices) that are amortized over many years or decades. We see legacy manufacturing tools being retrofitted with modern sensors and connectivity elements to allow them to be integrated with today’s Edge tools, analytic software, and ML.

The language of factory machines

We covered some of the concepts of industrial protocols in Chapter 2. Now, we will go a bit deeper in understanding how Edge computing works in industrial settings. Part of the enablement of Industry 4.0 is device connectivity and industrial protocols. In industries such as factory automation, additive manufacturing, or energy and oil production, the connectivity with machinery takes the form of protocols such as Modbus, Building Automation and Control Network (BACnet), and PROFIBUS Modbus is the most common and widely used factory automation protocol. It was originally designed by Modicon (now part of the industrial automation giant Schneider Electric) in 1979 to support programmable logic controllers (PLC). A single medium-size manufacturing site may include thousands of sensors, motor drivers, robots, and alarms. What was needed was a method to communicate with all these devices in a standard manner.

We should first briefly describe what PLCs are and what they are intended to do. A PLC is an electronic device used to control machinery (turbines, robots, pick-and-place machines, sirens, lights, conveyor belts, and so on). PLCs deal with machinery in hard real time. That means they must gather input and make corrections to an automated device within a strict amount of time. Failure to meet the time deadline can result in catastrophic failure. Thus, PLCs perform mission-critical functions on the shop floor. A PLC is usually a self-contained device with tens to thousands of input and output (I/O) connections to various sensors and machines. It uses a CPU and memory and provides a communication interface. Now, with internet connectivity, these legacy PLCs have more in common with Edge computers. One difference with the traditional form factor of computers and servers is that PLCs exist on the shop floor in very harsh conditions. They must withstand dust, debris, humidity, as well as shock and vibration. These devices appear as inconspicuous, tightly sealed gray sheet metal or hardened plastic boxes capable of withstanding the harshest elements and do not look like traditional IT and server electronics from the outside.

Communication with PLCs has been performed using low-speed serial interfaces such as RS232 or RS485. This allows it to connect to various sensors, actuators, and motors. Many manufacturers have migrated from custom communication protocols to standard protocols with the advent of Modbus in the 1970s as a means of standardizing a protocol to allow for a wide range of device connectivity. There are two versions of Modbus used in the industry today:

	Modbus RTU: This allows up to 32 devices to be chained together using serial cables; however, only one device can communicate with a server at one time. Addressing a device can be performed by requesting the client to return (or alter) a value held at a specific memory address to the server.

	Modbus TCP (aka Modbus Ethernet): This newer variant of Modbus uses standard network mediums such as Ethernet cables and the TCP/IP protocol for general networking. In this model, there is no physical limit to the number of devices, and multiple devices can communicate simultaneously with a massive amount of bandwidth. Modbus TCP connected using Cat6-gigabit Ethernet cables could theoretically respond to over 30 million requests per second.

Modbus TCP can be packaged over internet connections, while Modbus RTU would need additional hardware and software to do so. Today, the Modbus protocol is managed by the Modbus Organization: https://modbus.org.

There are certainly other protocols, and Modbus derivatives worth exploring such as Profinet and BACnet. While all can communicate over Ethernet and all are just portions of the application layer in the OSI network stack, there are differences. Profinet was developed in 2003 and is tailored for communication in real-time controls. BACnet was developed in 1987 and almost immediately adopted by the HVAC and control industry. BACnet uses predefined data types such as door access, electrical load value, and lighting group number. This allows for relatively easy integration if the data types are supported by your Edge project, but inflexible for new types of machinery. The following table contrasts these SCADA communication systems:

	
	
Modbus

	
Profinet

	
BACnet

	
Typical Usage

	
PLC control, factory automation, manufacturing, energy production

	
Safety-critical situations and hard real-time control systems. Hazardous work areas.

	
Tank-level sensing, building automation, HVAC

	
Network Interface

	
Serial, Ethernet

	
Ethernet

	
Ethernet and LAN

	
Communication Protocol

	
Remote Terminal Unit (RTU) and TCP/IP

Client-server

	
UDP

Provider-consumer

Multiple masters

	
TCP/IP, Zigbee

	
Costs

	
Low

	
Low

	

	
Standard Body

	
IEC 61158

	
Profibus and Profinet International (Germany), IEC 61158

	
ANSI/ASHRAE, ISO 16484-5

	
Proprietary

	
No

	
Yes – devices require certification through Profinet International.

	
No

	
Pros

	
Ubiquitous industrial protocol leader. Many supporting devices and peripherals. Open and royalty-free. Best for communication with existing SCADA computing systems.

	
Great for hard real-time control that requires <1 ms accuracy. Robust to noise and communication loss.

Allows for redundancy in hardware and equipment. Best diagnostics and management services.

	
Good balance of cost, scalability, and performance.

	
Cons

	
Limited data types and limits to data size. The security model is not strong.

	
Limited usage. Not all Ethernet cabling can work with PROFINET

	
Limited adoption. A limited number of legacy devices can be connected. Limited data types.

Table 6.1 – SCADA communication systems comparison (Modbus, PROFINET BACnet)

Suffice it to say, that these protocols for industrial, energy, and factory automation have evolved differently than traditional IT systems. However, given the importance and growth projections for Industry 4.0, it is important to understand their role in Edge computing.

While these protocols have long been established in industrial environments, communication for consumer and commercial use cases has adopted a different set of protocols.

Message-oriented, stream-oriented, and RESTful protocols

When deciding how an Edge device will communicate to the cloud, it is imperative to understand the type of data in transit. There are two types of methods commonly used to transport data over the internet or between machines: message-oriented and stream-oriented. Message-oriented protocols can be thought of as transmitting data in discrete chunks or blobs. Stream-oriented systems will transmit continuously until all data has been transmitted or the session ends.

Message-oriented protocols are persistent, meaning that data that is transmitted will be stored (or buffered) until the data is delivered successfully. This provides an assurance that data will make every effort to ensure reliable transmission. Think of email as an example. When you send an email message across the internet, the data will follow many different and independent paths to the destination. If a hop on the internet fails, the system will retry communication or find alternate paths to deliver the message. TCP was built for this purpose.

Additionally, message-oriented protocols can be asynchronous or synchronous in behavior. What does that mean? If a message-oriented system is synchronous, the transmitter will pause all new transmissions until it has received an acknowledgment that the last transmission arrived correctly at the receiver. Alternatively, the system can be asynchronous, and the transmitter will start a new message before the last is acknowlEdged. While this sounds like a recipe for failure, the TCP protocol can identify if a packet was not received correctly, and it will attempt to resend that packet even if it is in the wrong order.

Stream-oriented communication, however, is tailored for performance and low latency. Stream-oriented communication does not provide persistence like message-oriented systems; rather, data may very well be lost permanently in transit. A good example of this is the real-time video that Netflix and other content delivery networks (CDNs) use. Netflix servers and viewers at home with an Edge set-top box will stream video and music. If a packet is lost, there may be a slight aberration or lag in viewing performance, but the transmission will continue to the next frame. Stream protocols typically provide QoS parameters to adjust the stream on the fly. For example, if the transmission is noisy and many packets are lost, the quality of the viewer degrades. QoS services will then attempt to use a higher video compression rate to adjust to the noise and provide a better viewing experience.

Message-oriented protocols require a broker as part of the network architecture, whereas streaming protocols do not. The broker assists with storing, forwarding, routing, and even transforming messages in flight.

The final model we explore is RESTful communication systems. RESTful systems are nuanced in such a way that they shouldn’t be considered a replacement or alternative to message-oriented or stream-oriented communications, nor is it a protocol entirely. It is more of an application programming interface (API). Here, servers are required to maintain the state of a shared resource. The state of the resources is never shared; only data is exchanged. A classic example of a RESTful model is HTTP, which is the foundation of the World Wide Web (WWW). HTTP uses commands such as GET, PUT, POST, and DELETE to communicate between a client and the server. The service is identified with a Uniform Resource Identifier (URI). A typical website such as www.packtpub.com is one part of a URI. The website name is called the authority field of a URI, but other fields can be port numbers, schemes, pathnames, and even queries.

A fundamental difference between RESTful protocols and message-oriented protocols is that RESTful systems require the client device (for example, a web browser) to manage errors in transmission or even if the server fails. The other difference is that message-oriented systems require a broker to coordinate producers and consumers of information and route data correctly. RESTful systems do not need any middleman or broker; they have a strict client-server relationship.

The most prevalent Edge communication standard – MQTT

We have explored industrial protocols and use cases; however, there are a myriad of other IoT uses that need an efficient means of communication between the cloud and Edge. There may be a single device that needs to transmit temperature data to a public cloud, or there could be millions of smart thermostats in consumer homes frequently transmitting data to the cloud. A protocol needed to be used for the advent of IoT that is smaller and more efficient than HTTP and can extend to millions of nodes transmitting simultaneously. This is where protocols such as MQTT, COaP, and, occasionally, AMQP fit into the picture. Each of these are application layer protocols, thus they sit in layer 7 of the OSI model and are all based on TCP/IP.

MQTT has roots in IBM in 1993, where a technology named IBM WebSphere Message Queue was devised for distributed mainframes to communicate with each other, specifically for industries such as oil and gas processing. It was proprietary to IBM use in traditional IT and mainframe designs until being released in 2010 as a royalty-free protocol. At the time, it was accepted by the non-profit IT standards body, the Organization for the Advancement of Structured Information Standards (OASIS) Consortium, which gave it its official name and released version 3.1 to the world. Now, every major cloud provider supports MQTT as the main protocol to communicate from the Edge to the cloud (and back). The fact that MQTT was developed 20 years before cloud computing existed and 30 years before Edge computing became pervasive is an amazing testament to the technology. Amazon, Google, and Microsoft all support MQTT version 5 as the principal method to connect millions of sensors, Edge computers, and IoT devices. It is the fabric that makes Edge computing work. Ford Motor Company, for example, uses MQTT as the protocol to communicate with their new line-up of internet-connected vehicles. MQTT allows Ford to retrieve vehicle telemetry and maintenance data. It also allows Ford to send remote commands to vehicles anywhere on the planet, such as unlocking a door if the owner is locked inside.

MQTT is a protocol intended to satisfy the following constraints:

	Lightweight and efficient: It is intended for small data payloads and is capable of running on the smallest and cheapest embedded devices in the field. It should be bandwidth efficient to improve performance and latency and reduce network service-level agreement (SLA) charges.

	Bi-directional: MQTT should support Edge-to-cloud data movement as well as cloud-to-Edge. An example is how Ford uses MQTT to retrieve vehicular health data and send commands to the car.

	Scalable: This is perhaps one of the most significant advantages of MQTT. It has been scaled to millions of IoT and Edge systems across the globe. Ford, for example, plans to scale this to millions of vehicles all communicating simultaneously.

	Reliable: The protocol should support various levels of reliability, from least redundant to very high reliability in the event of total system failure. This is especially true for some networks and communications mediums we studied where connectivity cannot be guaranteed.

	Secure: Designed with security built in. Messages will be encrypted, and devices will use widely adopted standards for authentication and identity.

MQTT is a publish-subscribe type of protocol, sometimes called pub-sub. This is radically different than regular web traffic, Modbus, or other protocols. Typically, when a device such as a personal computer wants to communicate with a server, it reaches across a network to a well-known address (for example, www.microsoft.com, which resolves to 23.216.81.152) and to a network port (for example, port 80 for websites). Data is transmitted from the server to the PC, and each packet transferred is acknowlEdged as received. MQTT does no such thing.

When you use MQTT, a client device transmitting data is called a publisher and the client receiving data is the subscriber. Neither a publisher nor subscriber is required to identify itself with a physical identity such as an IP address (example, 192.168.0.202). The physical identity may not even be known to a simple IoT device. A message can also be published and received by whomever else subscribes to that event. This allows messages to be time-invariant, which is important for protocols such as LoRa where a device may publish or read from a subscribed topic after long periods of time. As we have learned in other parts of this book, there is no single definition or technology to define Edge computing; rather, you must understand all the variants.

An MQTT broker is a software component that governs connections. A typical public cloud service can ingest millions of messages per second using its MQTT brokers. The Edge devices that communicate with the broker are called MQTT clients. Clients will subscribe to what are termed topics or topic branches. A client may also publish to a topic branch. In this way, a client can either produce data or consume data. A topic is simply a method to identify fields or data elements of interest to subscribers.

A system I designed used an Edge computer that tracked snowplows in a municipality. Each plow was fitted with an Edge computer. The computer on board would monitor the GPS location of the vehicle, track salt disbursement, and if the snowplow was up or down. The Edge computer would gather data and then transmit it to a receiving system via cellular or LoRa communication. An MQTT broker running in the cloud would manage all the data in various topic hierarchies, and anyone could see in real time where the vehicles were and know which roads had been plowed and when they had been last plowed. Such a system could look like this:

[image: Figure 6.5 – MQTT architecture (note the pub-sub model, where different devices actively publish data while subscribers receive broadcasts)]

Figure 6.5 – MQTT architecture (note the pub-sub model, where different devices actively publish data while subscribers receive broadcasts)

In the example diagram, the topic branch managed by the central cloud broker has the appearance of a file structure by intention. Topics are managed by hierarchy, such as the following:

Boise/vehicle_1
 /latitude
 /longitude
 /salt-on-off
 /plow-on-off
 Each plow would contact the broker and publish its status. Other subscribers, such as a central manager overseeing the municipal plows, would subscribe to the branch and receive data in real time. In another case, a citizen may have a smartphone app that also subscribes to just the latitude and longitude information of the plows and plot them on a map to see which roads have been cleared for a commute.

Edge systems must be resilient to loss of communication. MQTT offers many techniques to ensure a message will arrive at the broker. First, if a new client subscribes with the broker (say, another smartphone user), messages are not retained at the broker; only the last message is stored. All others have been assumed to have been transmitted to subscribers listening. There are methods of data assurance called QoS for MQTT. There are three levels of QoS:

	QoS Level 0: This is the default level of quality. Data is not assured reliable communication by default. Data will be transmitted using fire-and-forget. The receiver will not acknowlEdge transmissions either. This is useful for data that can be lost where the system will be adversely affected.

	QoS Level 1: This level requires the receiver of data to acknowlEdge successful reception back to the transmitter at least one time.

	QoS Level 2: The highest level of data integrity requires that the sender and receiver of data both acknowlEdge transmission. The receiver of data will send an acknowledgment back to the sender, then the sender will send a subsequent acknowledgment back to the receiver. This will generate considerable traffic and slow transmissions but may be required for mission-critical use cases.

Another function of MQTT is called Last Will and Testament (LWT). While it sounds ominous, it simply allows a client that publishes data to inform the broker of a message to send to all subscribers if a connection is lost. The broken is then responsible for broadcasting the last will and testament on behalf of the client. In our example, if a client snowplow loses cellular connectivity (for example, while traveling in a tunnel), the broker will broadcast a message such as Lost connection to all clients.

Alternative protocols – CoAP and AMQP

There are many other protocols analogous to MQTT worth mentioning that are common for Edge communication. CoAP is a particularly common protocol in Edge computing. CoAP was created by a working group in 2014. It is mostly intended as a communication protocol for deeply embedded devices that are processor-, memory-, and bandwidth-constrained. CoAP is similar to the HTTP internet web protocol in structure. Because of this, it is a RESTful protocol, requires no broker such as MQTT, and does not have a server to manage connections. The CoAP server is also termed the origin server. Think of it as a very lightweight HTTP replacement. While it doesn’t replace HTTP and won’t allow you to view websites, it allows for easy addressing in much the same way you address a website using a URI syntax:

coap://host[:port]/[path][?query]
 CoAP defines different roles for the actors in a CoAP network:

	Server: The destination endpoint. Servers are also originators of a response.

	Client: The initiator of a request. Clients also are the destination of responses.

	Origin server: The server where a resource resides.

	Observer: A client node can connect to a resource and receive updates when that resource changes. This is like MQTT subscriptions.

Two Edge nodes may exchange data efficiently using CoAP between themselves. Likewise, a CoAP Edge node may push data to a CoAP-capable server in the cloud. CoAP also has facilities to ensure reliability. These are in the form of confirmable (CON) and non-confirmable (NON) requests. CON requests must be acknowlEdged by the receiver within a time limit. If an acknowledgment isn’t received, the data is resent. NON messages are simply broadcast in a fire-and-forget model. There is no assurance the message will be received in a NON request. Since CoAP is based on UDP and not TCP, messages can be lost in transmission, and there are no facilities to recover the data automatically as TCP enables. Therefore, if data integrity is required, using CON messages in CoAP will be necessary.

AMQP is yet another alternative protocol used from Edge to the cloud. Owing its creation to engineers at JPMorgan Chase in London in 2003, it was originally used for financial transactions. Today, it is an open standard used by Cisco, Red Hat, and VMware. More details on AMQP can be found at www.amqp.org.

Being a message-oriented protocol provides AMQP with a degree of resilience, meaning the transmitted data will be delivered with some form of guarantee. As with the other protocols, data in flight can be encrypted for security. A frame is the basic means of communication in AMQP. A frame can perform tasks such as opening a connection between a client and host, transferring data, closing connections, and so on. AMQP is similar to MQTT in that both are a publish-subscribe type model. A central server manages the various producers and consumers of data and allows them to securely subscribe to the service. The server is also termed a broker, which binds various producers and consumers of data to a set of queues. These queues are buffers of data that stream into the server and are identified using keywords. For example, an AMQP server is monitoring traffic for various roads in a metropolitan area. Each road could be its own queue receiving data from roadway sensors in real time. In this case, each road becomes a keyword to identify it. Someone interested in certain road conditions would receive messages for only those roads by keyword. AMQP is also more flexible than MQTT with regard to how messages are routed from publishers creating data to consumers reading and interpreting data. Each reader could be associated with their own queue, which allows for bespoke types of routing patterns.

AMQP relies on what is called an exchange. The exchange is the target of the message publish operation, which then routes messages to queues. When a consumer receives data from the queue they are listening to, all data can arrive in synchronous order, although asynchronous communication can also be enabled. For reference, MQTT is asynchronous by design. The following diagram illustrates the AMQP architecture:

[image: Figure 6.6 – AMQP queue-based architecture]

Figure 6.6 – AMQP queue-based architecture

Since these protocols are at the heart of Edge computing communication, we will spend some time contrasting them to understand their constraints and usage in more detail.

Protocol comparison

We have briefly explored some of the top-layer protocols for communication between Edge computers and the cloud. It is appropriate to contrast them since choosing the wrong protocol can lead to inefficient designs:

	
	
MQTT

	
CoAP

	
AMQP

	
Network Model

	
Message-oriented

	
RESTful

	
Message-oriented

	
Computational Load

	
Medium

	
Low

	
High

	
Security

	
Payload authentication

Payload encryption

(Requires TLS/SSL)

	
None

(Requires Datagram TLS (DTLS)

	
TLS-based encryption: Yes

Authentication: Yes

	
Protocol Overhead

	
Medium

	
Low

	
High

	
QoS Control

	
Yes

	
Partial (using CON message)

	
Yes

	
TCP or UDP

	
TCP

	
UDP

	
TCP

	
Maximum Message Size

	
256 MB

	
64 KB

	
2 GB (theoretical)

Table 6.2 – Edge communication protocol comparison (MQTT, CoAP, AMQP)

The computational load is the amount of processing and data formatting required on the device. This is important when considering some Edge nodes may be very small embedded systems requiring power by battery or renewable resources such as solar. In this case, AMQP requires more resources and computational power while CoAP is one of the most efficient protocols.

Security is managed differently between these protocols. MQTT and CoAP have no built-in security and require external packages to provide both authentication services and data encryption. MQTT, being a TCP protocol, requires SSL or TLS services. The security chapter will detail SSL and TLS.

QoS is another important parameter in choosing the correct Edge protocol. CoAP manages QoS and data integrity using a simple CON message. CoAP is not as robust and configurable for QoS as MQTT or AMQP.

Now that we have seen different protocols, the designer of an Edge system should choose wisely to understand the type of data being transmitted and also to understand what level of quality and security is needed in the application. Another important factor in determining the correct protocol is whether the cloud backend supports the protocol and which version is supported.

Summary

This chapter explored the critical subject of Edge communications, which is at the heart of all Edge computing. We first talked through the common OSI model of network stacks and illustrated how all modern networks are built using an abstraction and layering approach. TCP/IP is the basis of all modern networking. It is a layered architecture, from physical hardware to the application layer, while UDP, being connectionless, does not embed data reliability within the protocol.

Industrial devices have a long heritage of bespoke protocols for machinery communication. Most notable is Modbus, which can be TCP-based to connect various machinery such as PLCs to other nodes and Edge computers.

There are three types of interconnectivity models to consider for Edge deployment: message-oriented, stream-oriented, and RESTful. The foundation of communications in Edge computing are protocols such as MQTT, CoAP, and AMQP. MQTT is by far the most used Edge communication protocol. Being message-oriented, it requires a broker to handle publishers and subscribers to data or events. CoAP is a very lightweight RESTful Edge protocol that is UDP-based. It is most useful in power-constrained devices but does not allow for the configurability of MQTT or AMQP or the same levels of QoS. Finally, AMQP is a message-oriented protocol used in many financial transactions and mission-critical applications. It is a computationally complex and demanding protocol requiring more Edge resources than others.

In the next chapter, we will address Edge computing applications such as AI, situational awareness, and Edge workload partitioning.

References

	Industry 4.0 Market Size, Fortune Business Insights, 2020 https://www.fortunebusinessinsights.com/industry-4-0-market-102375

Part 3: Edge AI, Applications, Security, and Futures

This final section will provide you with a clear understanding of real-world edge use cases, from situational awareness to machine learning predictors to new technologies such as federated computing. This section will also give you a solid understanding of the security risks and considerations a business needs to consider before embarking on edge projects. We’ll explore some of the largest and most damaging information exploits in the last 10 years that were a result of poor edge security. Finally, we’ll address governmental constraints to consider, as well as predictions for edge futures to watch.

This part has the following chapters:

	Chapter 7, Making the Edge Work through AI

	Chapter 8, Security at the Edge

	Chapter 9, Edge Computing Futures and Predictions

7

Making the Edge Work through AI

So far, we have explored hardware and software frameworks for Edge computing. However, we have not provided details about exactly what Edge systems do. We should ask ourselves, “How does an Edge device communicate with the cloud (or should it)?” We should think about what actions an Edge computer performs. The logic and applications running on Edge systems can be simple utilities and drivers for hardware and sensors that simply relay data back to the cloud, and at the other extreme, we even have Edge systems that make decisions themselves using machine learning. This chapter details how Edge systems interact with cloud systems. We will examine what happens in the cloud when Edge components are added to the mix. We will also talk about cloud usage in machine learning and predictive analytics.

This chapter covers the following topics:

	How to effectively partition work on Edge and cloud systems

	Situational awareness applications

	Machine learning and AI applications on Edge systems

	Cloud training and Edge inference

	Time-series analysis

	Federated computing – blending many Edge systems into AI and decision systems

The purpose of clouds with Edge computing

In many cases, the Edge is an extension of the cloud. Typically, a public cloud acts as a central point of control. Public clouds offer massive global scale, high performance, and significant storage capabilities. This has allowed enterprises to run their applications, such as enterprise resource planning (ERP) systems, databases, and human resource management (HRM) platforms, in the cloud rather than supporting them locally. Cloud infrastructure can be considered centralized (since most clouds are in regional areas and housed in large data centers). The Edge is more decentralized, providing a locus of control closer to where data is generated, whereas a cloud can simply lease hardware to a customer. This is sometimes called infrastructure as a service (IaaS). Other customers just want to run an application in the cloud, such as a global website. This service is sometimes called software as a service (SaaS). However, while these types of services are perfect for applications such as hosting a global website or archiving a company’s data, they are far from the source of data generation. This is where the Edge comes into play.

The relationship between an Edge computer and a cloud service is unique. An Edge computer will deal with data that is local/close to where the data is generated or served to customers. In our earlier examples, we explored the fact that these sources could be as diverse as monitors in municipal sewer infrastructure to streaming content to millions of Netflix users. The cloud systems act as an overall orchestrator. They may manage the provisioning of software and patches to Edge nodes and control security and login credentials, and they feed on data being filtered by the Edge. A cloud system is not required to orchestrate all Edge systems. However, as a system scales, a cloud becomes critical to efficiently designing a production system.

So, what should run on the cloud, and what should run on the Edge? How do you divide or partition the architecture appropriately? This, like most engineering problems, is about optimizing constraints. The following are the typical constraints you will deal with regarding an Edge system:

	How much data is generated at each Edge node?:	Is the Edge node collecting massive amounts of unstructured data, such as video from several surveillance cameras? If so, that can be a significant amount of data to marshal to the cloud. The Edge should preprocess the data.
	Does the Edge have enough local storage for a worst-case load? Perhaps the data is temporal and doesn’t need to be stored or, for privacy reasons, can’t be stored. For example, an Edge system monitoring a homecare patient has a litany of privacy and HIPPA laws that regulate its content and transmission. Preprocessing data may include computer vision algorithms and machine learning classifiers to detect certain events. In this case, look for a positive hit of an event of interest and then transport a historical slice of data to the cloud for further processing.

	What are the service costs of transporting data to the cloud?: Service charges (or SLAs) imposed by a communications provider for broadband service have to be taken into consideration. Whether it’s a fiber optic connection, a 5G cellular service, or LoRaWAN, data plans come in a variety of forms with monthly data caps and rates for various bandwidths. Data plans can be shared by multiple Edge devices, or each Edge device may have its own unique plan. Verizon, for example, has a variety of shared plans for IOT devices that range from USD 1/month for 50 KB of total data to USD 80/month for 10 GB of shared data. If your Edge system must scale, these SLA costs can become a major source of expense. Many Edge proof-of-concepts have failed because the overall charges of data were overlooked, and the system couldn’t scale.

	What are the costs of cloud use?: Public clouds are not free. Expect charges based on how many devices are connected to the cloud, how many message requests are sent to cloud ingestion engines, and how much data processing and storage are needed. Often, cloud systems will provide a customer with an initial trial period, where data and storage are metered to some level and are essentially free. This is useful for evaluating a cloud provider’s services; you should be aware of how the cloud will charge you. Some providers charge you per datum transferred to their system. Some charge for data that is stored or archived. Some will charge based on what services you use in the cloud. Expect a combination of tiered charges.

	Is the system mission-critical?: Perhaps the Edge system is being used to manage real-time factory automation or service palliative in-home healthcare. In these situations, the system needs to be autonomous and not reliant on the cloud or any WAN connectivity to be functional. Imagine a situation where Edge systems that are monitoring vehicular engines require the relevant data to be processed in the cloud to be functional. While 4G and 5G may provide robust connectivity, you can’t guarantee that they will always work, such as when driving through a tunnel.You should also determine if your Edge product can handle routine disconnections from the cloud. For example, in mobile or vehicular telematics, it is often the case that you will lose connection to the cloud, as a vehicle may enter a tunnel or areas with little LoRa or cellular service. Can the system buffer data locally and later transmit this when the service is restored?

	Can your system afford latency?: One of the primary benefits of the Edge is it resolves the device-to-cloud latency issue. In previous chapters, we already studied how Edge-to-cloud latency impacts a system. Think about autonomous driving vehicles, for example. Imagine if all decisions on driving and path correction required data to be sent to the cloud, processed, and sent back to the vehicle. A vehicle driving 60 MPH on a freeway will travel 88 feet in one second. If the cloud takes 100 ms to transmit vehicular data, process it, and send it back to enable course correction, that car will have traveled 8.8 feet before responding. The average braking distance is 180 feet for a car traveling that fast. This clearly will not work and is life-threatening. Autonomous driving systems measure a litany of video, lidar, and GPS information thousands of times per second.

	How will you manage, secure, and scale Edge nodes?: If you have thousands of Edge systems deployed, how will you manage their health, capture logs, update firmware, and control access? Is the system truly decentralized and independent, or do you need central control? Often, you want a central facility to manage the Edge, control access, and present that as a single pane of glass. Clouds provide excellent central management for many Edge nodes.

This thought exercise can help establish what role the Edge should have versus the cloud.

Working in the cloud and on the Edge

Edge computing may trickle data to the cloud. The cloud system will provide a service for data ingestion from the Edge nodes. It will manage deployment and software management to the Edge. It may allow for the container-based deployment of software. It will handle identity and access control. More advanced cloud systems will also be responsible for data archiving regarding all the data streaming from the Edge.

In the cloud, data may be ingested by millions of sources. For example, take the popular smart doorbell market, which is wildly popular in consumer homes. Anytime a presence is detected within view of a doorbell, video data is recorded and streamed via consumer Wi-Fi to awaiting ingestion engines in the cloud. There, data is archived and visible to users with the correct credentials. Ring doorbells, for example, generate an enormous amount of data when we consider over 10 million Ring doorbells have been sold. Only hyperscale cloud systems that can auto-scale and have tremendous storage can manage such a task.

Another service that a cloud routinely performs is providing management and visibility of all the Edge nodes and what they are controlling, as well as providing alerts to issues that arise. Operation technologists (OTs) traditionally like to see a single pane of glass or a single user interface that conveys as much information as possible. For example, an Edge system that is tracking snowplows and attempting to efficiently route them during a snowstorm will ingest GPS co-ordinates, plow fuel capacity, salt capacity, and upcoming weather radar all overlaid on a municipal map of a city that shows which roads have been plowed and when. A single pane of glass dashboard is a common requirement for nearly all OT and Edge use cases.

Edge workloads

After establishing what role the cloud provides versus the Edge, we will now talk about a few relevant services and functions for Edge computers. An Edge device may perform functions, such as serving content to video streams, or it may gather data from sensors (a process known as sensor fusion). For example, in a sensor fusion application, a system tries to analyze road and traffic conditions in a smart city application. Here, sensors involving roadside cameras would be the most natural way to determine if there are traffic congestion situations. However, video (combined with roadside noise sensors), electromagnetic sensors built into roadways, and information collected by smart cards are relayed to central servers and can be combined with such disparate data aligned to make better judgments of the traffic situation. All this data is managed and collected by various Edge systems, all collecting and transmitting different data in different time domains to a central service.

As we have seen, Edge systems can be quite simple, for example, proxying data from IOT sensors to the cloud for storage and processing. Here, the Edge system is a communication bridge or gateway. In order to understand this better, we will explore Edge patterns.

Edge patterns

When used as a gateway, an Edge device can perform specific functions and have different roles based on the use case. Gateways can be transparent gateways or translation gateways.

In a transparent gateway, the Edge device bridges IoT sensors and systems to the cloud as if there is no Edge service between the two. The Edge system operates in a manner that simply performs a connection service. This places some burden on the end IoT device. It must have the logic, networking stacks, and processing power to communicate directly to the cloud as if no Edge device were an intermediary. The IoT device must be able to provision itself correctly, add whatever security measures (such as certificate management) are necessary, and have all the software necessary to communicate with the cloud (for example, MQTT or AMPQ).

In a translation gateway, much less demand is placed on the IoT device. This is typical when the IoT device is physically small, low-powered, and uses non-IP-based networking standards, such as Bluetooth. Essentially, the IoT device alone cannot communicate directly with the cloud. This is where Edge systems operate in a translation manner. The Edge system will manage, secure, and provision all IoT devices that have a relationship with that particular Edge node but will operate in an opaque manner, obscuring the identities of the underlying IoT devices from the cloud. Communication between the IoT device and the cloud data will be transformed by the Edge node. These transformations include the following:

	Protocol translation: In this model, the Edge will communicate to IoT devices using one protocol (for example, Bluetooth), gather and manage data flowing in, and present the data to the cloud using standard protocols, such as MQTT, across the internet. A user cannot interact directly with the attached IoT device in this model.

	Identity translation: In this model, the Edge device will create and assign a unique identity to each attached IoT device. The IoT device still requires protocol translation (for example, standard IP to Bluetooth) but allows a user to have direct control and interaction with the IoT device through the Edge gateway.

Next, we will see how to apply Edge patterns in a real use case.

Example of workload organization

In more complex scenarios, the Edge computer performs mission-critical and real-time tasks, where the added latency of moving data to the cloud and providing actionable responses may not work. In these scenarios, the Edge must perform local asks to be useful.

The first example is a simple use case, where the Edge performs communications that bridge remote sensors and then delivers data to the cloud. In this case, latency is not an issue. Most of the heavy lifting will be performed in the cloud. Since the cloud will have gathered a significant amount of data, it can also perform advanced analysis and predictive analytics on the collection of data:

[image: Figure 7.1 — A simple mock-up use case for Edge applications]

Figure 7.1 — A simple mock-up use case for Edge applications

Here, the Edge node acts as a communication bridge, the sole purpose of which is to marshal data from far Edge sensors to the cloud for archive and analysis.

The second use case provides more computational resources to the Edge node. While still connected to the cloud, the partitioning of software is quite different than the first scenario. Here, we are using Edge computing in a vehicular system. Since the vehicle may have limited or no connectivity at times but must perform life-critical and real-time functions for safety, the system must operate autonomously with or without cloud connectivity. Most self-driving automobiles today rely on extremely high-performance and costly Edge systems with significant amounts of computational power, storage capacity, and fault tolerance. Most self-driving systems must also perform rigorously in harsh environments (for example, heat, cold, vibrations, and so on.). The partitioning of services favors the Edge in this case, where the cloud is used for long-term storage, management, firmware updates, and so on. The following diagram illustrates an Edge use case between cloud and Edge processing for a life-critical application involving real-time processing.

[image: Figure 7.2 – A complex Edge use case]

Figure 7.2 – A complex Edge use case

Here, the software and services are partitioned, with most of the computational load on the Edge system. This is necessary for latency-intolerant, real-time, and life-safety situations. Vehicular systems will typically utilize exceptionally powerful Edge computers.

The following subsections will illustrate some of the common functionality and services that are used in commercial Edge applications.

Situational awareness applications

Situational awareness systems are used in places to gather data on a system and respond to events. Some examples of situational awareness are combat systems that gather data on troop movement, weather, terrain, and enemy intelligence. Here is a situational Edge system in action:

A fighter jet on a reconnaissance mission scans a valley to gather information and sees a vehicle typically used by friendly forces. The Edge system on the jet runs a machine learning inference algorithm on the video feed and receives a notification on the heads-up display of an augmented reality (AR) headset, stating that this vehicle belongs to friendly forces.

However, the pilot knows that local forces had been overrun and adversaries are behind the wheel of this vehicle. At this point, the pilot adds new information to the situational awareness system and the Edge machine corrects the artificial intelligence’s inference recommendation. This new information is then propagated securely to other squad mates, autonomous drones, and to central command to adjust for the new situation on the ground. When the warfighter above corrects the AI output, for example, all warfighters and devices receive that correction and maintain cohesion.

This is one example of situational awareness algorithms operating on the Edge. There are other examples outside of military usage, such as Edge systems that monitor subways using real-time video analytics to determine potential terrorist threats. Another example is systems that will track all employees in a public facility, such as a hotel or airport, and respond to emergencies or disaster situations by communicating to all employees to respond based on their physical location and role. Situational awareness has been used to monitor environmental health in large municipalities and respond to events such as hurricanes and earthquakes.

Machine learning for the Edge

Machine learning (ML) is a broad and complicated topic, and huge advances have been made for organizations and people using ML. It is estimated that the overall market for ML in consumer devices, clouds, enterprises, IOT, medicine, agriculture, and industry will grow 44.06% between 2018 and 2024 (1). The research firm McKinsey and Company has projected that ML will contribute USD 13 trillion to global GDP by 2030 (2). ML is pervasive; e.g., 75% of users’ Netflix videos are chosen by ML algorithms. Autonomous driving from Tesla simply wouldn’t work without ML. ML is used in drug discovery, silicon chip design, business logic, stock trading, energy distribution, and, of course, Edge computing.

Machine learning isn’t a buzzword to throw at a problem; it’s vastly more complicated than that, and many good books and online materials exist to help people go as deep as they want on the subject. Machine learning can provide insights through classification or regression. Classification is simply identifying a state, object, or image according to a label. A machine learning system built as a classifier will predict a discrete value (for example, this image is a dog versus a cat). Regression analysis is another type of learning system used to predict a continuous value instead of a discrete value. For example, regression analysis would be used to predict a stock price or the value of a home based on multiple criteria. Regression is a statistical technique that uses numerical processes that we learned in algebra, such as the linear regression, curve fitting, and least squares methods. These essentially draw a line and predict the next value.

Rules and decision systems

Predictive analytics use statistical and machine learning processes to make future decisions based on real-time data and historical data. The complexity of predictive analysis can take many forms. In the simplest use case, a rules engine may be designed for an Edge computer. A rules engine contains two parts: conditions and actions. Normally, these are expressed as logical “if-then-else” clauses:

if (number_vehicles_parked in a smart garage equals the max_parking_spots)
then display “lot full” message on entrance
else (display max_parking_spots – number_vehicles_parked)
 This simple example uses smart parking detection systems embedded in each parking spot in a garage. This data is fed to an Edge computer that executes a simple rules engine to display how many spots are available and if the lot is full. The preceding example shows the following conditions:

“Are there available spots in the garage? The action is to display different messages to vehicles entering the lot.”

We can extend this rules engine to be more sophisticated (and complex) by attempting to emulate human reasoning or intuition and integrate it into the design. This is also called an expert system and has its roots in the 1980s when it grew in popularity as one of the first commercially viable artificial intelligence applications.

The problem with rules engines is that the world consists of analog events. Many systems are not black and white, on or off, or true or false, and they can change dynamically. Another issue is called the knowlEdge acquisition problem. Expressing all the nuances of a system by a human expert is time-consuming and adds significant complexity to the overall rules engine.

Rules engines (and other machine learning models) can make use of a random forest. Not a real forest, but an algorithm that uses multiple models (rules or otherwise) to make a decision for a system. Why multiple models? Essentially, one model can be biased. This is especially true when we start looking at deep learning models that can be trained or overfit to certain outcomes. Random forests use multiple models or decision trees to arrive at an outcome. Think of this as having multiple experts program a different set of rules for the rule engine. This creates a forest of models and decision trees that can be used to overcome inherent bias.

Time series analysis

The most widely adopted workload for Edge machines is time series analysis for signals and data streams. When we talk about signals, we are actually talking about a list of data values paired with timestamps; that is, data values that change over time and may have dependencies on other signals in a system. Audio data represent a form of a signal. Temperature measurements are another form of a signal. Signals may be binary (0 or 1) or analog in nature.

Good examples of time series analysis include medical monitoring devices, such as EKGs, fluid monitors, breathing tubes, and so on, that constantly monitor patients. Consumer and household Edge systems are also constantly transmitting time series data to cloud servers. For example, household thermostats are constantly uploading home temperatures and HVAC status to public cloud databases, allowing the consumer to see how efficiently their home heating and air conditioning are working.

Proportional integral derivative controllers

PID algorithms have been extensively used in industrial and factory automation for decades, as well as in appliances such as ovens, coffee makers, and breweries. The first manifestations of PID systems were mechanical in nature and have their roots in James Watt’s steam engine invention in the late 1700s. There, he developed a mechanical governor to control the speed of steam engines. In the 20th century, PID systems first found their way into naval navigation and steering controls and were later used in industrial machinery.

A PID is a mathematical tool that creates a control loop. In other words, this tool allows a machine to find a desired set point (such as the temperature of a spinning motor) against the current measured temperature (called process variables (PVs). The algorithm will try to correct the system to achieve the desired set point (SP). This is accomplished by using proportional control. Here, the system will attempt to adjust a variable linearly and expect a linear increase or decrease in the set point. The integral portion of a PID reacts to the error, and the amount of time the error in the set point is observed. If the variable being controlled does not adjust the set point correctly, the system will make corrections to the system to limit overshooting and undershooting. The derivative portion of the algorithm attempts to dampen the fluctuations of the corrections as they occur.

As an example, the temperature of a motor can be adjusted by slowing down the motor, turning on cooling fans, or maybe changing the ambient temperature of the room to compensate. Without detailing the complexities of the theory and mathematics, a PID will try to fit a curve of where a current value is and where it should be by adjusting other factors (such as the speed of the motor). Additionally, a PID looks at the rate of correction over time and adjusts it to ensure a timely change to the desired set point. Using an Edge system allows for the analysis of many more process variables and complex interactions with which to adjust dynamically toward a set point.

Probabilistic analysis systems

Probabilistic models include mathematical constructs, such as Bayesian models (aka Bayesian statistics). Bayesian, made famous by Rev. Thomas Bayes’s theorem, which was developed in the 18th century, is a statistical method that doesn’t use least squares or curve fitting to predict a value or what a system is about to do. These systems determine the probability that an event will occur in the future based on prior knowlEdge of the system (that’s basically all Bayes models do). Put in real-world terms, What is the probability that a machine will fail based on the current temperature of the device? The result of a Bayesian model isn’t a discrete answer but a probability that an event will occur or is occurring.

Bayesian networks are programmed using expert knowlEdge of the system to determine probability weightings. These types of machine learning algorithms are best suited to applications where the entire system can’t be observed. They are also good for systems that must respond to noisy, error-prone, and unreliable data sources. For example, they are used in industrial IoT and in monitoring time series data. A probabilistic Edge computer may inspect the rate at which a temperature is changing in a machine and predict when the machine will fail. Missing data, for example, will not affect the operation of a Bayesian network since bad or missing data adjust that probability distribution momentarily. If the system collects a proportionally large amount of valid data, poor data will be washed out in the probability distribution.

Deep learning models

Deep learning is based on mimicking human brain function by examining patterns represented in data, from small subsections to larger abstract areas. This type of machine learning uses mathematical functions to mimic neural paths. These functions need to be trained over and over again before they become useful. This form of ML takes its name from the fact that the network built by these functions can be very deep, with many independent layers processing more abstract forms of the data.

The most common form of deep learning is the convolutional neural network (CNN), which is built upon progressive layers. A CNN will assist with the classification and identification of objects, especially in image recognition. It performs this function by reducing an image into a set of feature identifiers, such as very small curves, gradients, lines, and color splotches. The first layer of a CNN may have a unique set of very small image features, and the progressive layers built up upon those smaller features turn into larger combinations. The process of finding distinguishable marks in a large bitmap image is a matrix math operation called a convolution, hence the name. Determining if a small area of a larger one is represented by the feature is called an activation function. If the function meets a threshold, the activation is true, and the next layer of the CNN uses that value for further computation.

Federated machine learning

An interesting new use of Edge systems and machine learning is known as federated machine learning. The algorithms we have talked about are used in many Edge systems but don’t make use of the distributed nature of Edge machines. The models are all programmed or trained centrally (in a cloud). This implies that the training data used in the cloud have been acquired from Edge systems and trained, with the models programmed back into the Edge machines.

Federated machine learning utilizes the fact that the data does not necessarily need to be transmitted back to the cloud for training. Training could be performed locally on each Edge machine. There may potentially be many Edge nodes that have gathered their own data. We have already said that Edge machines are typically smaller and less powerful than a cloud server, so why would you perform a complicated task, such as machine learning training, on an Edge node? The answer is privacy. Additionally, the data collected by an Edge node is a subset of all the data its peers have collected. So, training on a small set of local data is much more tenable than training on a massive dataset from thousands of Edge nodes.

Many customers value the data that is collected and analyzed from their machines. A manufacturer of pharmaceuticals may have many proprietary and secret processes in their factory processes. They certainly would not want to share that data with their competitors. However, they may all use similar Edge computers to monitor their machinery (for example, mixing tanks) and would like to use the most accurate machine learning models to predict things such as the viscosity of certain chemicals. They use their Edge system to train locally but pass the model parameters (such as model weights) to a central node to collect and average. In this way, multiple manufacturers may use the same Edge computers and the same machine learning algorithms, but the data is kept locally with each customer.

A typical federated machine learning system utilizes a central server (in the cloud) that acts as an orchestrator and parameter collector. The server orchestrates when an Edge node should run a training session. For example, our manufacturing customer may experience downtime when the factory floor is not operational (for example, on weekends). The server also collects model parameters from various Edge nodes and averages the weights and parameters. There may be many Edge customers, and each may have many Edge nodes. Each node will have collected a rich database of samples to run through the training algorithm. When the model is sufficiently trained to a degree of accuracy, the weights and parameters are then sent to the central server and are blended. The server may simply average the model weights or use other approaches, such as regional biasing, where model parameters are grouped together by geographical region, customer type, or origin. The new parameters are then transmitted back to each Edge node. This will have refined the models for all customers without revealing any secret data.

The steps involved in federated machine learning are as follows:

	Data is collected locally on an Edge node.

	A central server determines the model and machine learning network to be trained and securely transmits the model to the federation.

	The Edge performs local machine learning training on that particular dataset. The user may also trim data, correct errors, and provide supervision over the training of the model.

	The ML parameters of each Edge node are exchanged using the central server.

	A shared global model is built on the central server and distributed to each node in the federation.

	Each Edge node re-incorporates the global shared model locally.

	Each Edge node now has a broader set of parameters (trained securely and privately) from each Edge node taking part in the federated network.

This local training requires more computational resources on the Edge but allows for the security and privatization of datasets. Figure 7.3 illustrates the process of federated learning:

[image: Figure 7.3 – Four-step process of federated learning]

Figure 7.3 – Four-step process of federated learning

Note that local data is used for training each Edge node, but only the trained model is shared, and the customer data is kept private.

Federated machine learning is a perfect use of Edge systems since the machines are distributed, and the data collected stays local and private. In addition to manufacturing, we will see future autonomous vehicles collecting data and refining self-driving machine learning models as a federated collective. We may also see federated systems in healthcare, where ML models help diagnose diseases while patient data are protected and kept private by law. The algorithms are improved during each training run for each customer without sacrificing data privacy. While this technology is still in its infancy and in the realm of academic research, it is a promising use of Edge systems and will become more prevalent.

Training in the cloud and inference at the Edge

All these models represent the execution of machine learning at the source. In other words, they provide inference to classify an event, object, or state and/or predict a future value through statistical, probability, or recurrent methods. We have not spoken about how these models came into existence in the first place, which is through the role of training. A rules engine may be trained based on a set of conditions and the outcome of an expert. Other deep learning models, such as CNNs, need automated and computationally heavy training methods.

There are two fundamental techniques for training:

	Supervised learning: This training uses a dataset, where each value or image is assigned a label. Typically, that label is assigned by a human or group of humans to complete, as the training sets may be very large, with thousands or millions of images.

	Unsupervised learning: This method uses no labels for the training set. Rather, it utilizes mathematical rules to reduce redundancy. For example, it may use regression to attempt to find clusters of like objects, images, or values.

Training a CNN involves repeated motions through the network. A training set is used to see if the result of an image classifier is correct. If the result is incorrect, a process known as backpropagation is used to run the network backward from the classified label back to the first layer and adjust the weights of each node in each layer along the way. This process is repeated many times over until the system stabilizes. In the end, the goal is to have a machine learning system that has a better outcome than a random coin toss of 50% correct or 50% incorrect. We see machine learning models that attempt to achieve 95% accuracy or higher, especially in mission-critical settings.

One issue with training is overfitting models and bias. The training uses a known dataset of images. This representative set should approximate the randomness of the real world. What we find is that it doesn’t always represent the real analog world well in all cases. Retraining models should be part of an Edge solution when new data is received. In this case, if an Edge device experiences incorrect prediction, retraining the model based on the newly acquired data should be performed.

For fully automated driving scenarios that use CNNs to identify road and vehicular objects, training may take a month of computing time on the most powerful servers in a large hyperscale cloud. The cost can be upwards of USD 100 million to provide an accurate model for these life-critical models (3). The result of the training is a network and features that are used in self-driving vehicles. Training is especially problematic, as the training sets are massive in size, and the amount of processing to handle backpropagation is huge. Typically, an Edge node may not be fast enough or have enough memory to sufficiently train a model (although we will see how federated machine learning may resolve that). Public and private clouds using large servers with massive amounts of RAM and storage and perhaps graphics processing units or even custom logic (such as Tensor TPU processors from Google) can assist in crunching these massive, time-consuming datasets and matrix math operations. A modern trend for training is that the process may be distributed across multiple servers and processors throughout the data center to further speed up the process. Edge systems (even high-performance MEC and CoLo servers) typically don’t have these resources.

After training, the resulting network can and should be offloaded to the Edge. Inference systems (whether a decision tree or a complex RNN) are intended to be fast and, in many cases, work in real time. The networks are manageable in size and have one function.

Edge devices offer a unique opportunity for machine learning. Since the Edge device usually runs an inference version of machine learning, this is where the ML model is fully tested in real-world applications. Sometimes, the ML model is wrong (just as human judgment can be incorrect at times). In the event of failure, the Edge device can communicate back to the cloud that an error in the model has been detected. In that case, the cloud can absorb new known inputs from the Edge node that caused the incorrect result and retrain the model with new data. This process of continually retraining and improving the model is important and should be part of any Edge ML system.

Proper use of machine learning

Not all machine learning or predictive analysis algorithms apply to every application. There is wide variance in what a machine learning model can do, and choosing an inappropriate model will result in system failure. Here, we see a representative table of how the areas different ML algorithms can be used and the typical solutions that have already used them on the Edge:

	
Model

	
Applicable Areas

	
Typical Use Cases

	
Statistical Models:

Rules engine

	
Simple logic sequences. Small Edge systems that result in binary decisions.

	
Edge gateways; smart thermostats. Factory control systems. Agriculture and livestock management.

	
Statistical Models:

Complex event processors

	
Time series analysis of sensors. Correlating multiple disparate events.

	
Logistics and shipping. Municipal fleet management for smart cities.

	
Statistical Models:

PID

	
Real-time analysis of signals and other time series events. Control systems.

	
Industrial automation. Machinery control. Navigation and piloting.

	
Probabilistic Models:

Bayesian network

	
Forecasting and predicting future values based on noisy data but structured sources.

	
Energy monitoring. Manufacturing.

	
Deep Learning:

CNN

	
Image recognition and classification. Image analytics and security systems.

	
Smart city surveillance. Factory automation and quality control.

	
Deep Learning:

RNN

	
Predicting events in time-correlated series of data. Speech and sound recognition.

	
Apple Siri.

Healthcare systems.

Factory automation.

	
Federated Machine Learning

	
Applicable to large volume Edge systems (hundreds to thousands of nodes).

	
Allows customers to use globally trained ML models while keeping their datasets private.

Table 7.1 – Machine Learning applications and use cases

In closing, it is important to recognize the limitations of Edge processing and AI inference. One should accept the limits of Edge hardware and cloud networking constraints so as to provision an architecture using the correct hardware and software partitioning.

Summary

This chapter has explored workloads that run on Edge systems. These can be as simple as a network bridge to the cloud or as complex as self-driving systems in vehicles. Successful Edge system architects should have answers to the following questions before proceeding with a design:

	How much data is generated at each Edge node?

	What are the service costs of transporting data to the cloud?

	What are the costs of cloud usage?

	Is the system mission-critical?

	Can your system afford latency?

	How will you manage, secure, and scale the Edge nodes?

We studied situational awareness applications, where Edge nodes are used to monitor and respond to events in real time close to where the events occur. Machine learning applications are commonly used on Edge systems to supply predictive insights in real time. This offers keen insight into significant amounts of data. ML algorithms are adept at finding patterns within data. Time series analysis is a prevalent use of Edge systems. This type of application is suited to store, analyze, and apply data prediction models associated with time. Probabilistic models are used on Edge devices, where data may be noisy or loosely correlated. Bayesian networks are an example of probabilistic models. Deep learning models are a form of artificial intelligence used to find patterns, classify objects or events, or predict future events.

In Edge applications, the Edge is used most often for inference, whereas the cloud is used for data storage, model training, and model correction.

Finally, this chapter investigated federated machine learning, which pulls together all these processes of Edge AI in combination with many Edge nodes contributing to the overall integrity and accuracy of models.

References

	Columbus, L. Roundup of Machine Learning Forecasts and Market Estimates, 2020, Forbes, 2020. https://www.forbes.com/sites/louiscolumbus/2020/01/19/roundup-of-machine-learning-forecasts-and-market-estimates-2020/

	Bughin, J. Notes from the AI frontier: Modeling the impact of AI on the world economy, McKinsey & Co. 2018. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy

	Khan, S & Mann A. AI Chips: What They Are and Why They Matter, Center for Security and Emerging Technology, April 2020.

8

Security at the Edge

Security must not be overlooked or considered an appendage to a system—and this applies to any system. We live in a world where there is a greater propensity for a device or system to be compromised maliciously than fail on its own. Security, as they say, is only as good as the weakest link in a chain. With Edge systems, the chain just got longer and is far more distant and remote. The Edge is the most attractive medium for recent systemic attacks on infrastructure. The reason the Edge is so powerful is that the number of Edge computers and IoT devices has grown exponentially, whereas the number of data center servers and personal computers has not. Edge systems are considered a weak point, and much of the lessons learned in IT security and data centers have not propagated to Edge systems. We also must consider new elements of IT security that weren’t paramount in corporate facilities or buttoned-up data centers. This chapter will provide a treatment of all the considerations around Edge security and will draw an analogy from compromised systems.

This chapter covers the following topics:

	Defining hardware-based security for Edge systems

	Identifying software and systems-based security best practices

	Understanding types of information attacks and exploits

	Reviewing use cases where Edge security vulnerabilities have been compromised, resulting in substantial financial damages

	Physical security of Edge devices

	Analyzing communication and networking security

Types of security vulnerabilities

Typically, there are three forms of malicious cyberattacks:

	The penetration of a system for theft or sabotage: When we think of the lone hacker, using a backdoor or stolen credentials to infiltrate a system, we think of a penetration attack.

	Monetary and ransomware attacks: These include the prevalence of ransomware attacks that are essentially viruses or malicious code intended to encrypt or hijack personal systems, records, data, and photos from a user. These forms of attacks infect one user or a corporate system with the intention that the data are so valuable the user will be forced to pay the attacker (using cryptocurrency for anonymity).

	Distributed denial-of-service attacks (DDOS): This form of attack is intended to overwhelm a system and bring a target’s infrastructure to a crawl or prevent users from accessing a service altogether. Typically, this involves saturating a target system with innocuous requests, but doing so with millions of agents all accessing a system simultaneously.

It should be understood that no system is foolproof, no matter how hardened it may seem. A designer should use every standard form of security hardware and software available to minimize the attack surface. The attack surface can be thought of as the vulnerabilities that an attacker can exploit on a system. A closed system with no form of network communication to the outside world in a locked box and no method to physically manipulate it is still vulnerable. If the system still uses power in some form, either from a public utility or regenerative with solar, an attacker could still exploit the system by cutting its source of power. In the next section, we will dive into real-world examples of Edge-level security failures and their causes.

The most pervasive internet hack – Mirai

The IT world has been plagued by various sophisticated attacks in the last 30 years. Hacking and computer crime is nothing new. Various attacks have been around in different forms for 50 years. It was not until the internet became pervasive that cyber-attacks escalated. That event occurred in 1998 with the occurrence of the Morris worm, which took advantage of a defect in common Unix mail systems across an early version of the internet called Arpanet. The worm affected mainframes running Unix and caused roughly USD 100,000 to 4 million in damage. Since then, the number and level of attacks has grown tremendously. Here, we will detail some of the most profound cyber-attacks that affected Edge systems.

Mirai

If you ever thought the internet (in aggregate) couldn’t be taken down, you are wrong. As a matter of fact, the internet’s major content and eCommerce providers were all abruptly cut from service on October 21, 2016. This included shutting down access to Amazon, Netflix, PayPal, HBO, GitHub, AirBnB, and Twitter. Over some months, from August 2016 to November 2016, millions of users were shut out of one system or another across the globe. This was the result of the largest global attack on the internet ever recorded, and to date, it is the most prevalent and malicious attack globally. The attack used an internet worm called Mirai.

The Mirai worm was a denial-of-service attack. The remarkable trait that made Mirai unlike any other attack prior was that the agents used to create a massive denial-of-service were not commandeered PCs and servers. Rather, the attackers used Edge systems as the vehicle to create massive outages over several months. Mirai worked as a self-replicating and self-propagating worm that actively searched for and found vulnerable IoT and Edge devices to host the attack. Once a device becomes infected, the worm will use that device to randomly scan the internet accessible to that device for other potential hosts. The penetration of a device was not overly complicated. Mirai used a small database of 64 often-used logins and passwords to attempt to gain access to a system. These included such login/password combinations as the following:

Login: admin Password:1111
Login: admin Password:1234
Login: guest Password: guest
Login: root Password: admin
 Once penetrated, the user of the Edge device had no knowledge there was any malicious access. The devices behaved normally without any notion that they had become a compromised agent. At this point, the device is considered a zombie. That is, it has every appearance of being functional and usable but has been compromised with nefarious code. If the zombie device found a compatible system and successfully broke in, it would search the system to ensure the payload of malware was compatible. The infection actually searched the system for other competing worms and malware and removed them! It obfuscated its footprints by deleting the downloaded malware as well.

If the device found a compatible host and successfully installed itself, it would communicate with a central command and control system (C&C). A C&C is a typical botnet since there is a central controller instructing infected nodes about who and when to attack next. After the hacker identified a target, he or she would instruct the C&C to inform the army of zombie devices to launch a mutually co-ordinated denial-of-service attack on a specific company called Krebs on Security (https://krebsonsecurity.com) that hackers purposefully intended to disable. This included flooding the website with HTTP data, UDP data, or TCP data. This volumetric attack would force the website to be unable to respond to normal events and, in many cases, be completely shut down.

On its first day, it had found and successfully infected 65,000 systems. Within three months, it successfully found and created 600,000 attack vectors. These devices included consumer Wi-Fi routers, internet-connected web cameras, air-quality monitors, set-top entertainment boxes, and other IoT devices running Linux. The attacks on Netflix and PayPal were the result of Mirai being instructed by the C&C to direct its denial-of-service attack focus on Dyn. Dyn is a popular domain name service (DNS) provider. Essentially, DNS providers translate a name such as www.microsoft.com into a set of IP addresses such as 23.216.81.152. Anytime you type a website name in a browser, a DNS lookup must occur at least once. Mirai was instructed to target its zombie nodes at Dyn in October 2016. Unfortunately, this affected the name resolution for anyone requiring service from Amazon, Netflix, and PayPal on that day. As a matter of fact, not all 600,000 nodes were used; measurements suggest only 107,000 zombie Edge systems were involved in the compromise.

Denial-of-service attacks are measured by the amount of overwhelming data being generated to saturate a target’s infrastructure. To date, the Mirai attack was the most profound and strongest ever recorded at 623 gigabits of malevolent data generated per second.

When we deconstruct this attack, some things became clear and give us concern about how prevalent and vulnerable Edge computing is:

	The attack was not sophisticated. The penetration parameters used 64 typical login/password combinations. Most of these were set by the manufacturers as default credentials for devices.

	The ability to inject code given administrative control is fairly easy in an Edge system with capable resources. Many of these systems allowed for root access (administrative control), which allowed the attacker to change the software unbeknownst to the user. Even access to these systems were gained with ease as ports, and access to the devices were left exposed.

We will see in the following sections how to harden Edge systems and what things to consider when building or purchasing such devices.

Grand theft auto

In 2022, Europol arrested 31 individuals and seized USD 1.1 million of stolen assets in a number of European countries. The perpetrators had stolen a number of vehicles, predominately Honda-manufactured cars, from 2018 to 2020. In this situation, the perpetrators used what is called a replay attack.

The attack surface here was the communications link between keyless FOBs and the vehicle. The keyless FOBs operated in the 433.215 MHz frequency range and used unencrypted transmissions to open and lock the doors remotely. The wireless protocol was not a standard protocol and did not randomize the frequency, encrypt communication, or create a random code each time the FOB was used. This left a wide attack surface for vehicular theft, all without breaking a window or doing any cosmetic damage to the vehicle.

To perform the attack, the attacker used a simple appliance that allows for digital communication in various frequency ranges. The tool (called a software-defined radio (SDR)) can simply listen to a specific frequency range and record all data transmitted. It can also record all data received and allow the attacker to modify it. In this example, the attacker used the tool to sniff for information in the keyless FOB-specific frequency range. The attacker had to be in proximity to the vehicle, but that usually isn’t a problem for someone intent on grand theft. The attacker simply listens and records the FOB digital signal. If the code retrieved isn’t encrypted or randomized, it can be reused indefinitely to open the car. That is exactly how this exploit occurred.

Of course, the best way to prevent such an attack is to use encrypted, randomized codes and rolling codes in wireless communication. A rolling code is simply a pseudo-random code that is transmitted, with the transmitter and receiver both synchronized to the change in pattern. In this case, a vehicle and FOB are in lockstep with the changing pattern of codes. The code sequence rolls over and reuses the sequence after some number of iterations. You may wonder how this works if I am not in proximity to my car and I hit the button several times, as one might do in real life. In this case, the FOB and the vehicle are not in sync anymore. To remedy this, the next time the user tries to unlock their car from the FOB, the vehicle will receive the incorrect sequence and determine that the FOB is now using a future sequence of codes and not the next immediate code it was expecting. It will then adjust its sync point and start using the new sequence:

[image: Figure 8.1 – Static and rolling code communication example]

Figure 8.1 – Static and rolling code communication example

Earlier, we said that no system is foolproof; even a rolling code can be manipulated and exploited using more sophisticated attacks. The attacker will first start by jamming the radio signals to prevent an authentic FOB from communicating normally with the vehicle. Jamming simply involves using the RF generator described earlier to generate a high-amplitude signal in the same frequency range as the FOB. The vehicle owner attempts to use their FOB, but the jammer prevents the car from receiving a quality signal, and it ignores the user. The attack will also record the rolling code being sent by the FOB. This doesn’t immediately grant the attacker access to the rolling code sequence but requires a second step.

The frustrated owner will then hit their FOB again to lock their car. The attacker simply jams the frequency a second time. In this case, the attacker immediately replays the first sequence and the door locks. However, the attacker has two binary sequences (the first and the second transmission). After the victim leaves their vehicle area, the attacker can now replay the second sequence and have access to the vehicle.

Credit card fraud – using the HVAC supplier

Another successful attack using Edge-based computing was the circuitous path taken by hackers in 2014 to obtain credit card identifications from Home Depot customers. The effect was that over 56 million credit cards had been illegally obtained and had cost the company USD 179 million and required Home Depot to offer credit monitoring services to all potential victims (https://www.infosecurity-magazine.com/news/home-depot-to-pay-2725m/). This was not the first case of credit card fraud that year. Earlier, Target stores had exposed a month-long security breach that was executed in almost the same manner. In the case of Target, 40 million credit card numbers and credentials were illegally obtained.

How did one of the biggest credit card scams come about? Was there a sophisticated legion of hackers who broke into the corporate databases and central computers? No. They got into Target’s IT security through the third-party suppliers’ credentials for the Edge computers controlling HVAC maintenance in each of their department stores. A series of cascading security failures then allowed the attackers to effortlessly install dangerous malware that would sit idle on customer point-of-sale (POS) terminals and scrape memory for signatures of credit cards, which were then sent to a Ukrainian and Russian source. The malware would inspect DRAM on the Edge POS computers anytime a card was swiped. Since the contents of the card information were held in plaintext form (in memory), it didn’t need to be decrypted.

The cascading failures of this attack included the following aspects:

	The fact that third-party vendor credentials allowed unfettered access to Home Depot IT infrastructure, and those credentials worked outside of the corporate LAN.

	Upon logging in with stolen credentials, the thousands of POS terminals and cash registers also existed openly and visibly on the corporate LAN. Typically, you want to separate or layer security in monetary devices on a separate virtual LAN (VLAN) segment. Hardware switches with strict access control lists are the only bridges between a corporate LAN for email and the POS terminals for financial transactions.

	The attackers understood and could infiltrate the POS terminals easily. The terminals were based on very old and insecure embedded operating systems without routine patches for security exploits.

	There was little logging of data and traffic to see the attack unfolding. Using networking monitoring and logging tools would have allowed the patterns of data traffic to not go unnoticed for months, compromising even more customer credit information.

	Finally, confidential data, such as credit card numbers, were stored in plaintext on the POS computer. The designers probably did not consider that malware software could be installed and searched through memory for confidential information. A better solution would have been to ensure all data from IO to a destination were encrypted end-to-end, even in local memory.

Next, we will examine the proper, basic security practices to consider and implement in Edge security systems.

Security architecture

So, how do we circumvent these security issues? What can we expect, and what should your customers demand? Security needs to be considered for every component in an Edge machine. That is, we have to consider security in hardware, middleware, software, communications, and even the packaging of the device. Remember, Edge systems are an extension of the cloud and are connected to the internet; this is what defines them as Edge machines. They are also often physically located in remote or unsecured areas. Because of these abilities, Edge machines have a greater surface area than many traditional IT devices.

We break up the security problem into its constituent parts in the following sub-sections.

Hardware security

Edge computing’s power places high-performance and pervasive computing close to data sources. These sources can be on a factory floor, in a self-driving car, or in a consumer’s home, such as a webcam or doorbell device. Because of the widespread adoption of these appliances and the fact that they don’t have the convenience of physical corporate or office security (a secured door to a data center), these machines have an element of physical security that traditional IT devices didn’t focus on.

There are four elements of hardware security I recommend to customers:

	The device should be physically hardened from not only malicious attackers who want to compromise a system but also from the natural elements that surround an Edge box. A device should also test and verify that its physical security has not been damaged and report its findings quickly. The logging of physical events, such as opening the external enclosure, should also be recorded.

	The device should be trusted from the first line of code that is executed to the last. Utilizing modern hardware paradigms helps maintain this confidence. Additionally, modern silicon and CPU architectures include a variety of features to assist in security and limit exposure to malicious events, especially in software.

	All data on the device should be encrypted and protected with the strongest levels of security available. This is especially true for things such as user credentials, SIM identification, and fiduciary data. These types of credentials should reside in their own protected environment.

	Unused interfaces and hardware should be turned off or, if possible, permanently removed from the device. This includes no loading parts and removing interfaces that provide an attacker with another vector.

By examining these paradigms one at a time, we start with physical security. This includes the chassis and box within which the Edge device resides within. Many Edge computers, such as Schneider Electric residential power meters and 5G small cell antenna arrays, must weather the elements, as they will be deployed in harsh environments with wind, rain, and varying temperature degrees. Within the industry, ingress protection or IP rating is a standard measure of how a device will perform under varying degrees of environmental effects. These standards are captured in the MIL-STD-810 (military), IEC 60529 (International Electrotechnical Commission), and RTCA/DO-160 (Radio Technical Commission of Aeronautics) ratings. IP ratings are a two-digit numeral index. The first digit provides a rating on how the device will protect against foreign bodies such as dust or human appendages. The second digit describes how the device will protect against moisture, such as indirect rain, being blasted with a high-pressure hose, or complete submersion. For example, an IP rating of IP67 will provide complete protection from all dust using a vacuum seal and provide 30 minutes of full submersion in a fluid at a depth of 1 meter.

Like modern IT equipment, Edge systems should provide a root-of-trust (ROT) certificate. A ROT is simply a mechanism that provides attestation that the software it is about to run is genuine and authenticated. It also provides security in that any additional software it loads will also follow the same attestation paradigm. When a computer is first powered on, a process known as boot-loading or boot-strapping occurs to bring up the initial low-level software, then the operating system, and then any user applications. There are multiple phases to booting a computer, and a hardware ROT provides confidence in this boot chain. Because ROT is inherently trusted, it must be secure by design. As such, many ROTs are implemented in hardware so that malware cannot tamper with the functions they provide. The functions within this secure hardware module include cryptographic hash hardware, encryption engines, random number generators, and tamper-proof microprocessors. The device can also securely store keys used to run a computer. The root will boot itself before other components or the main microprocessor boots.

A typical module that should be part of the hardware security to provide ROT is a TPM module. TPM stands for trusted platform module. The functions and security validation of TPM modules are part of the ISO /IEC 11889 international specification. Modern IT equipment and operating systems, such as Microsoft Windows, rely on TPM to form an ROT, and the use of this in secure Edge computers should certainly be considered.

Often, hardware is left as-is, meaning there is an assumption that unused ports and interfaces are naturally secure and that it is better to have the ports usable than artificially disabled. This is not true. By ports, we are referring to all hardware interfaces, such as unused USB ports, serial ports, SDIO ports, internal debug ports, general-purpose IO ports, and even display ports. The reason ports pose a risk is that they open the opportunity for an attack vector to be exposed. For example, the most opportune vector would be a debug port in hardware. This could be a serial port or a special interface called a joint test action group (JTAG) port. Both could allow an attacker with access to the hardware to connect a simple terminal or JTAG emulator to the device and collect information on the device, the underlying operating system, and the debug logs. Even worse, a JTAG device kept live and unsecured can allow the attacker complete control over the hardware, with the ability to step into running software, alter it, and view the memory contents. It is best to perform a security audit and disable all unused ports and high-risk interfaces before a production rollout.

Software security

The software layers running on an Edge machine should also be designed using a security-first model. Any exploit that has been witnessed in traditional IT infrastructure can be exploited on Edge hardware. We have seen 30 years of exploits of various internet worms, zero-day exploits, computer viruses, and ransomware in personal computers. In the early 2000s, many PCs and networks were compromised due to security flaws in software, operating systems, and middleware. Viruses such as the CodeRed (1) in 2001 and Blaster worm (2) in 2003 are examples of early, rapidly spreading viruses that penetrate systems by compromising commercial software. They used techniques called buffer overflows to inject more data than allowable between software interfaces (APIs). Malicious code was piggybacked to the end of a normal message, and that extra payload would find its way into executable portions of system memory. In the end, hundreds of thousands of PCs and workstations had been infected. Today, software exploits still exist and can come in the form of ransomware (WannaCry in 2017), where user data will be encrypted and only released back to the user upon payment of ransom.

Edge systems have been playing catch-up in terms of security. Since Edge systems comprise everything from small, embedded computing devices to large servers using various operating systems and hardware, they don’t immediately share the history of hacks of traditional IT systems over the last 20 years. A malicious agent is always looking for the weakest link in a system to exploit it, as we learned from the attack on Target stores. Edge systems provide much fewer secure pathways that have been patched or remedied in modern PC and IT systems. Therefore, historically less sophisticated exploits have had the opportunity to attack weaker and less secure Edge systems. It is imperative to ensure modern Edge computing devices use the latest methods to secure themselves.

Such methods include the following:

	Using CPUs and operating systems that make use of non-execution protection or executable space protection. This is a hardware and software concept that ensures that the areas of software that actually execute code are allowed to execute, distinguishing this from areas that may not execute software (stack and data space). It sounds trivial, but this is a method to prevent buffer overflow code injection. Modern processors, such as ARM and x86 cores, provide this level of protection, but older and smaller microcontrollers may not.

	Address space layout randomization (ASLR) is another hardware and software mechanism to randomize where software resides in memory. Often a hacker will exploit or reuse privileged portions of commercial code to perform nefarious actions. For example, they may inject code that calls a normally safe routine to open a network port. If the address space of the memory and where the code resides are randomized, this makes it prohibitively difficult for the attacker to call a routine.

One extremely important facility that must be considered for all Edge systems is patching and updating services. A system must be designed with the a priori knowledge that software will need to be updated in the field. Updating software is necessary for a number of reasons, such as adding new functionality or fixing defects. It is also required so that security updates and patches can be provided. All software running on a machine should be upgradable, including boot code, operating systems, and runtime applications. When a number of Edge machines are deployed in the field, a process and system must be developed to update, validate, and control software deployment. Most cloud providers have services that allow for secure and managed software updates to field devices. The cloud agent will have knowledge of all running machines and can stage software rollouts after they have been provisioned. A manifestation of each Edge device is maintained, which is essentially a database of patches and software versions that were rolled out to each appliance. The cloud agent will also roll out updates based on Edge downtime. For example, in a content delivery network, the cloud central agent will roll an update during times of low demand (for example, during early morning hours). When an Edge device is being managed for a software update, the machine must have a recovery mechanism. Essentially, if the update fails, it should securely roll back software to a manifestation of previously working software versions. This ensures constant uptime and fail-safe recovery.

Another important aspect of building secure software is to securely log events within a system. Logging is important, as we saw in the attack on Target stores. Had the software changes and machine behaviors been logged and relayed to an administrator, the amount of reciprocal damage could have been mitigated. When logging data, you should capture as much system information as possible. Telemetry data should be relayed to a central cloud agent to look for anomalies and determine if there are changes in the pattern of usage. Normally, Edge systems follow a certain pattern of CPU usage, memory usage, and network traffic. Anomalies can be uncovered using statistical and machine learning techniques to detect if and when a change in behavior occurs. This would allow the administrator time to shut down certain Edge nodes to prevent collateral damage. Logs should be collected on the following criteria:

	Errors and system events: memory exhaustion, storage errors, illegal code execution, etc.

	Attempted and failed login attempts

	New ports that have been opened or closed

	Network ingress and egress data rates

	CPU usage

	Inbound or outbound network access

	Thermal events (overheating)

	Privileged code execution

	Amount of storage data written and read

	Access to privileged accounts and services, such as administrator or root logins, and secure shell (SSH) access

Software must also utilize encryption wherever and whenever possible regarding data transit and data storage. There are three basic forms of encryption:

	Symmetric key encryption: This is the most basic form of encryption, where a single key is used to encrypt and decrypt the same data. AES and 3DES are algorithms that use symmetric keys.

	Public key encryption: This form of encryption relies on separate keys. A private key is used to decrypt data, and a public key that is generally available can be used to encrypt a message. Transport layer security (TLS) used in networking is an example of public key encryption.

	Cryptographic hashes: This is a one-way method of encryption. Hashes are used to validate software authenticity, device attestation, and data security at rest. Typical hash functions are SHA2 and SHA3.

The designer of an Edge system should choose the latest cryptographic standard available. Choose SHA3 versus SHA2 when considering hashing functions. Choose AES256 (256-bit blocks) versus legacy AES-128 or even older technologies, such as 3DES, that utilize 56-bit keys. Preferably use public key encryption. This is a proven and modern standard that is difficult to break but not impenetrable. The most sensitive aspect of encryption is the protection of the private keys that must be stored on the Edge device. Sophisticated attackers will attempt to gain access to these keys and will then have access to any similar Edge machine.

Another important paradigm in the architecture of a robust and secure system is to remove software. Just like hardware interfaces that are unused or only used for development and debugging, software, too, should only deploy what is absolutely necessary for field operation. Adding a myriad of software libraries, tools, and interfaces widens the attack vector field, giving attackers more opportunities to exploit a system. The designer should audit and scrub a production release of debugging information and tools, extra libraries, and dead or unused code. For example, during the development of an Edge machine, the convenience of having a web server on a host may be useful, but a web service on an Edge machine, along with all the peripheral software to make it run, is a huge risk and opens up several network vulnerabilities.

Communications and network security

Networking and communication services must also be secure. A general principle is to encrypt and secure all data from source to destination. Plaintext data should rarely be used in modern systems, as most hardware now includes extremely fast AES encryption mechanisms that can secure all data. Data in motion can be intercepted and read or altered. It should be assumed that all data leaving an Edge machine is not secure unless the designer explicitly secures it.

Both PAN and WAN communication should be encrypted. For the most part, many of the modern communication protocols presented in this book have inherent security that can be used. Often, security will be enforced. For example, most cloud providers will not accept data from Edge nodes that do not use standard encryption services. On the WAN side, a common encryption protocol is TLS. TLS is used in protocols such as MQTT, CoAP, and various other network stacks. TLS replaces the older secure sockets layer (SSL) protocol, which was popular in the 1990s, with a much more secure form of encryption using the SHA-256 algorithm. In short, TLS operates by a host server (for example, cloud service) sending a digital certificate to the Edge device (client) with a public key. The Edge confirms the authenticity of the key and uses it to create cyphertext-encrypted data to be sent to the server.

One philosophy of security is called zero trust. This is especially relevant to Edge and IoT devices, as they communicate with each other or with a public cloud remotely. Zero trust assumes there is no network Edge. Anything that can be communicated with is considered local and directly connected. Zero trust requires all devices capable of communicating (on a given network) to be authenticated, authorized, and continuously validated. All devices will be verified to meet the configuration and postures allowed before access is granted to join the network. This sounds obvious, but in traditional networks, the rule of thumb had been “trust but verify.” That is, if a user was within a company firewall and perimeter, they were allowed to join a network. They could join a company network with an infected or compromised device only to have their device verified sometime later. This gave time for the malicious software to do its damage. Zero trust validates user identity, device credentials and authenticity, geographic location, firmware versions, operating system, and patch levels, even requiring certain applications to be installed or removed. All this must be performed before the zero trust management allows the user and device to access their network. The National Institute of Standards and Technology maintains a zero-trust standard called NIST 800-207.

Some rules of network and communication security are the following:

	Always use end-to-end encryption: Treat all I/O, whether it is wireless, wired, local, or wide-area, as being compromised. Anytime I/O leaves the Edge computer or travels to it, it is not in your control. At all times, use standard encryption methodologies such as TLS 1.2.

	Monitor data in transit: Log data and respond to events that are anomalous. As stated, most Edge devices will behave in a predictable manner and variances to data flow may be the result of malicious attacks.

	Close unused ports and services that are not used: TCP/IP allows for 65 and 536 ports to exist behind an IP address. Ports are used to access email services (port 25), web servers (port 80), and so on. Having open ports on the internet is one of the most common methods of malicious code attacks. Hackers routinely scour the internet, looking for machines with exposed ports (for example, HTTP, SSH, email, and so on). Another recommendation is to change well-known service ports to other random ports. This obfuscates the attack surface (but does not remove it completely).

	Consider using a firewall for data traffic: Firewalls are hardware or software-based systems that prevent unauthorized access to a computer network. They are used to ensure that users without access cannot interact with a particular system. It controls inbound and outbound internet traffic in a device. Without a firewall, virtually any data can exit your computer or network. In an Edge system, both the Edge device and the cloud should have firewalls. Generally, any network-facing device can employ a firewall.

	Use of intrusion detection systems (IDSs): An intrusion detection system is a network security technology that monitors network traffic and devices to identify potential security threats and alert administrators by using a variety of detection methods and deployment models. An IDS can be implemented as a network security device, a software application, or a cloud-based service. It can be placed inline on the network or out-of-band to monitor traffic. It can find both signature-based intrusions and anomaly-based intrusions. With signature-based detection, IDS software analyzes network traffic for known attack signatures or patterns. In anomaly-based detection, it uses machine learning to establish a baseline of normal behavior and flags deviations.

	Use of intrusion protection systems (IPSs): Where IDS is a passive system that monitors and analyzes network traffic to detect potential security threats but does not take any automatic action, an IPS is an active system that not only detects threats but can also automatically prevent or mitigate them by blocking, dropping, or remediating malicious traffic.

	An IDS is typically deployed out-of-band, monitoring a copy of the network traffic, while IPS is deployed inline on the network to inspect all traffic. IDS generates alerts when it detects suspicious activity, requiring manual intervention by security personnel. IPS can automatically respond to detected threats by blocking, dropping, or remediating the malicious traffic without human intervention.There are various types of firewalls:
	Packet-layer firewalls: These analyze all network data (inbound and outbound) and inspect all data for malicious events that can infect your network.
	Circuit-level firewalls: This is built into the network stack (refer to the OSI model in this book). It monitors the handshake process when using TCP/IP between two machines. Specifically, it ensures the handshake process is genuine and authentic.
	Application-layer firewalls: These ensure that the data being generated by an Edge application is authentic and has not been compromised. Essentially, it ensures the data in transit has not been tampered with.

	Create whitelists and access control lists (ACLs) to only allow connection to clients that have been authenticated.

	If there are attempts to gain electronic access through brute-force attacks, the device should register and log those events and also block IP addresses that are generating repeated attempts to gain access.

	Another level of security is segmentation and micro-segmentation. Segmentation essentially divides a network into specific slices. These slices can be isolated to specific users and devices. For example, one might place IoT devices on a different segment than mission-critical servers. ACLs and virtual local area networks (VLANs) can be set up to logically place a device in its own quarantined network. While all the physical infrastructure (for example, ethernet cabling) is the same, the logical networks are partitioned. Micro-segmentation takes this a step further and allows different applications to be safely routed to different network segments on the same machine. This limits the blast radius if, by chance, a device launches an attack on the IoT VLAN but the corporate LAN remains intact.

While security topics usually focus on the network and software layers, we have to consider the actual Edge device itself. Next, we explore physical security.

Physical security

We must also consider the security of the device itself. In some Edge use cases that we have examined, the device may be in a remote area and cannot rely on the security found in data centers or enterprise locations. A modern data center has significant physical and location-based security. Only select badged and authorized employees may enter a hyper-scale data center. Data centers also provide monitoring, camera surveillance, and guards. An Edge system providing real-time analysis in an agriculture environment will not have this level of security.

Additive security includes tamper detection. For example, if the device is opened either purposely or maliciously, sensors should detect those events. Events should be logged and broadcast to the cloud (or other Edge systems) to indicate a physical event is transpiring. Sophisticated Edge systems also include key access or biometric sensors to open a chassis. This allows for individual control and authorization of the device.

Physical security starts with the machine itself. The Edge device must supply reactive intrusion and tamper resistance. What that implies is that the device should be aware if its chassis has been opened or dislodged by an unauthorized person. Authorization may imply it needs card access or a unique key to open the device. However, that does not prevent an attacker from damaging the enclosure to gain access or from simply stealing the entire device. The Edge machine should also have tamper-resistant circuitry. If the device has been forcibly opened, it should register the information and signal to the upstream cloud that a threat has been detected. While the machine may be lost, it aids in litigation and insurance to report the event.

Final thoughts on security

In conclusion, security never ends. You must be prepared to update and remediate security issues on the fly and in the field. Security must be designed from the start and applied to each layer (hardware, software, and networking) equally to avoid a weak link in the chain. Above all, assume all data in transit can be intercepted, and the encryption of data is a must requirement, from Edge to the cloud and back.

Security issues can be devasting and embarrassing situations; it is best to think about security first and early during design, as Edge systems have become the new target of widespread attacks.

Summary

Security should not be an afterthought. You are more likely to experience a cyber event than have modern machinery fail. We learned about the attack surface area, which is the exposed elements of a system that an attacker can interface with (e.g., networks and installable malware). Edge devices are unique, as their surface area is significantly larger than other IT machinery.

We explored three large-scale recent attacks that have affected Edge computing. This includes the Mirai attack, which was the single largest denial-of-service attack in the world. It resulted in millions of dollars lost and the degradation of the entire internet. Edge systems are also vulnerable to radio and communication attacks. We examined spoofing and replay attacks that compromised millions of dollars in stolen vehicles using attacks on keyless FOBs. This chapter also examined best practices for software, communications, and hardware security. Anything that reduces the attack surface areas should be considered.

References

	Root, E. The evolution of security: the story of Code Red, Kasperky Daily, 2022:https://www.kaspersky.com/blog/history-lessons-code-red/45082/

	Roberts, P. Blaster worm spreading; experts warn of attack, IDG News Service, 2003:https://www.computerworld.com/article/2571072/blaster-worm-spreading--experts-warn-of-attack.html

9

Edge Computing Futures and Predictions

Throughout this book, we have studied the technical nuances of edge systems. We have learned that edge systems come in many shapes and sizes to tackle problems of where data is consumed or produced. We have also learned that edge systems combine hardware, software, communications, and cloud components. We have to ask how can edge systems be monetized and effectively deployed commercially. What is the future of edge machines? Early in this book, we mentioned the pendulum the industry has taken moving from centralized mainframes to PCs and then to cloud computing. Will edge computing be just another IT fad? This chapter will make bold predictions about edge computing. To be successful, edge machines must add value and make economic sense for a company to invest in that technology.

This chapter covers the following:

	Understanding the numerous factors and constraints of edge computing economics

	Various regulatory and compliance standards that should be considered for edge systems

	Future trends in edge computing, including pervasive IoT systems, energy harvesting, new battery technologies, virtual reality and augmented reality (VR/AR), synthetic sensing, and new industrial edge applications

Capitalizing on edge computing

A successful edge or IoT project must consider the economic value. Let’s use an example of a simple edge use case. This could be a simple hobbyist temperature monitoring their hot tub. Even in this simple case, two factors impact the cost:

	Capital expense (CAPEX): This is the initial capital expense for the thermal sensor, edge computer, and wide area network (WAN) hardware. That may be Ethernet, Wi-Fi, cellular, and so on.

	Operational expense (OPEX): This is the cost of energy to power this computing device and network hardware, as well as the cost of network communication through an internet service provider (ISP).

Such a small device can be built with hobbyist hardware such as a Raspberry Pi ($35), cables and miscellaneous hardware ($15), and a cellular modem ($50). This brings the initial CAPEX to roughly $100. Power can be considered an OPEX, although very little will be consumed by a small embedded system. A Raspberry Pi in a low-power state will consume roughly 2 watts of power with an additional 1 watt for the cellular radio. Based on typical North American power rates of roughly 13.31 cents per kWh, the cost of a month’s power would be $0.29. Now, when we examine the rates for communication services, they vary considerably based on data rates, data caps, and service type (satellite, cellular, cable broadband, DSL). To illustrate this contrast, typical data rates for various services at the time of this writing are captured in the following table:

	
Service

	
Average North American Cost

	
Average Speed

	
Data Cap

	
Wired broadband (1)

	
$60/month per location

	
290 Mbps

	
1 TB

	
Cellular LTE (2)

	
$56/month per device

	
5 to 12 Mbps (LTE)

	
10 GB

	
Cellular NB-IoT (3)

	
$2.50/month per device

	
80 to 127 Kbps

	
500 KB

	
LoRa

	
$51/month 250 nodes

	
27 to 50 Kbps

	
Unlimited

	
Starlink Satellite

	
$99/month per location

	
100 Mbps

	
Not Determined

Table 9.1 – Contrast of service-level agreement (SLA) plans for various carriers

These data rates and caps must be considered for the use case. Edge machines transmitting unstructured data such as video data will consume significantly more bandwidth and require larger data caps than something transmitting intermittent temperature data from a hot tub.

For this to be successful, it must provide more value than the $100 upfront hardware cost and more value than the $2.79 monthly energy and data rate plans. Often, these charges must be passed on to your customer. Most, if not all, IoT and edge computing devices at scale have a recurring monthly service fee.

We haven’t broached the cost of integrating with a cloud provider. They are a contributing factor in the overall OPEX and must not be ignored. Hyperscale cloud providers have similar plans that charge for various services such as data ingestion, data storage, access control and identity management (IM), and cloud computing. Different bundling of packages and levels of service can be obtained (or negotiated).

While a single edge device is interesting, commercial deployments must consider mass deployments and scale. As an example, a development I worked on provided connectivity to 1,000 semitrucks in a large fleet to monitor hundreds of different parameters of the health of the engine and vehicle. These were connected via cellular WAN to the cloud. In aggregate, the costs per month were several thousand dollars. Should that OPEX be managed by the edge provider or the customer? That is a recurring question on how edge devices are managed and how they are sold. In the case of the fleet, the customer managed the OPEX.

Regulatory and compliance standards for IoT and edge computing

It is important to recognize standards in IT and how they affect edge computing. Edge devices may find themselves in financial transactions, medical devices, and military use cases. Because of this, there are established standards and compliance criteria that must be demonstrated to sell into certain markets. We present an overview of standards that should be considered when selling into such markets:

	Financial transactions: The Payment Card Industry Data Security Standard (PCI DSS) is a security standard for organizations that process credit cards. There are four levels of compliance dependent on the volume of transactions that are processed annually (20,000 to over 6 million). Elements of the standard that will affect edge devices include provisioning of firewalls on network traffic, removal of vendor-defined passwords, encrypting and hashing stored cardholder data, and protection against malware. PCI certification requires testing and various compliance audits.

	Medical: Edge devices used in some medical use cases require special handling and regulation. Some requirements include the Underwriters Laboratories (UL) 2900 specification and the Health Insurance Portability and Accountability Act (HIPAA) certification. Both target medical healthcare providers, patients, and insurers from fraud and theft. Details of HIPPA regulations are voluminous and beyond the scope of this chapter or book. One can expect strict guidance on methods of encryption for data at rest and data in transit, access control, requirements, unique identification, usage monitors and logging, and automatic log-off of idle computers.

	Self-driving vehicles: Automated driving and assistance systems (ADAS) have significant regulations to protect the health and safety of drivers and pedestrians. There are significant and established regulations for vehicles in general, managed by the US National Highway Traffic Safety Administration (NHTSA). These include standards for nearly every component of a vehicle (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/motor_vehicle_safety_unrelated_uncodified_provisions_may2013.pdf). The ISO 26262 specification should also be considered for electronics involved in self-driving vehicles. The 26262 standard serves to define the functional safety of automotive electronics and electrical systems, including edge computing devices. The standard defines rules for the production, testing, and servicing of ADAS equipment. Additionally, the 2017 Self-Drive Act intended to federally manage the design and testing of automated vehicles and to override disparate state regulations of such vehicles (https://www.congress.gov/bill/115th-congress/house-bill/3388). That bill has yet to become law.

	Communication certification: Edge systems are defined and valued by their internet connectivity. It cannot be assumed that using one form of communication in one region will work in another region across the globe. Take, for example, cellular WAN technology. Cellular systems need device certification to work in a specific country. This can be a lengthy and costly process to ensure that a cellular system meets regional rules regarding frequency distribution, power, and so on.

In lieu of the pervasiveness of edge computing and IoT, regulatory bodies have proposed legislation and standards to ensure the security of systems. Security issues have come to the attention of Congress after IoT attacks such as the Mirai botnet (studied earlier in this book) and nation-state cyberwarfare such as the Stuxnet virus (https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet). One such bill in the US was the Internet of Things (IoT) Cybersecurity Improvement Act of 2019 (https://www.congress.gov/bill/116th-congress/house-bill/1668). The original bill was sponsored in 2017 and became law on April 12, 2020. The bill requires the National Institute of Standards and Technology (NIST) as well as the Office of Management and Budget (OMB) to increase cybersecurity standards for IoT devices. The bill requires NIST to develop and publish standards and guidelines for the federal government on the appropriate use and management by agencies of IoT devices owned or used within the federal government. We would expect NIST to provide requirements such as software authentication and remote upgrade security, removal of deprecated communication protocols and encryption standards, methods for edge computers to isolate and remediate threats, methods of multi-factor authentication (MFA) of edge devices, and written certification from government contractors that machines meet such standards.

We have explored US federal regulatory standards specifically, but it should be known that international regulatory bodies have differing standards. Europe makes use of the European Union Agency for Cyber-Security Issues and Security of Internet of Things . Australia utilizes the IoT Alliance Australia to set security standards. It is wise to understand the regulatory rules and biases for each region you intend to scale to.

Future of edge computing

We conclude this work with a forward-looking view of the future of edge systems. Some technologies exist today but haven’t been fully capitalized upon. The analyst firm Gartner has said, “by 2022 more than 50% of enterprise-generated data will be created and processed outside of the data center or cloud” (B. Gill, D. Smith, The Edge Completes the Cloud: A Gartner Trend Insight Report, Gartner, September 2018). The processor manufacturer, ARM, has stated that by 2025, there will be 200 billion edge and IoT systems and 1.45 trillion MB of data generated per day. 40% of that data will be generated by machines on the edge. We aren’t there yet, but we have the technologies and capabilities to achieve that goal. The edge will not replace the cloud but will complement it to serve certain functions. Early in this book, we defined edge computing as serving the following goals:

	Reducing system latency

	Reducing the cost of cloud

	Bridging networks

	Providing resiliency and robustness

	Providing content security and filtering

	Building an extension of the cloud

Technologies that generate edge data or reach billions of IoT devices are emerging areas of computing that should be monitored. Here, we capture some interesting technologies that have the propensity to further define the edge.

We continue to enjoy the benefits of hardware advances that can bring more computing power to the edge and provide high-quality communication to devices. We can now entertain very small and power-efficient embedded devices that allow for the connectivity of things that had never been connected. Imagine if the costs of embedded computing became so low that they surpassed the operational costs, making the hardware costs negligible. Earlier, we stated a $100 cost for a small Raspberry Pi hobbyist machine. We can foresee a future where that hardware may broach $10 and still have the computing capabilities of a larger more expensive machine. Now, the cost of a cellular data plan would outweigh the costs of the actual hardware in a month of use. This changes the dynamics of edge computing.

Pervasive edge computing as smart concrete

If the cost of computing and connectivity becomes this low, we can start envisioning ARM’s predictions of 200 billion devices or more. We then anticipate the idea of things such as smart concrete. Small, embedded nodes that are on the order of $1 or less could be injected into setting concrete for roadways, bridges, and even building structures. These devices would constantly monitor stress and sheering loads in infrastructure and provide a first warning of imminent failure. Currently, the monitoring of infrastructure is a slow and manual process that addresses surface issues. Here, a device would be set into concrete and monitor the structure for the life of the building.

AR/VR

We should also talk about larger edge machines and some upcoming technologies being thought and planned for by the largest technology companies. While AR and VR systems and headsets have existed since the 1990s and have been commercialized by Microsoft with the HoloLens and Facebook with their Oculus Rift, these systems are still not pervasive in everyday life. One needs to consider the amount of computing necessary to manage an AR/VR headset. Consider these devices must render and display video graphics up to 8K in resolution on two lenses simultaneously at 60 frames per second (FPS). They must also include sensors monitoring head and body position, audio processors, and hand movement, all in real time. These systems require extremely low latency to avoid a sickening experience for the user. AR/VR systems also need connectivity to be useful. Additionally, these devices must be light enough to sit comfortably on one’s head and power-efficient enough to run for hours. These challenges are being conquered through the iterative engineering process. It should be anticipated that various AR/VR appliances will come to fruition in the next 10 years, allowing connectivity to millions of users. These systems will require advances in edge computing to manage these constraints, but the market does exist and should be prepared for them.

Immersive interactions and synthetic sensing

Immersive interaction includes new-use segments such as smarter homes. Today, we enjoy consumer smart home devices such as Amazon Alexa that provide voice interactive smart assistance. Future devices will expand the capability of stationary home assistants and mobile assistants. These devices will become much more aware of the environment and situation in which something occurs. For example, a future home assistant will respond to more than just queries such as, “Alexa, give me a recipe for apple pie.” Rather, a device will understand situational context such as who is in the home and what group of people are in range of the device and listening. It will understand the owner’s behavior from the time they wake, to when they eat, to when they sleep. It will understand emergencies and watch over the home and the users in case of emergency. We will even see edge systems assisting in elder care and memory care of individuals, providing them safety as well as assistance when needed. All these features will require more processing on the edge and interconnections to several different sensors and systems.

Two elements on the emerging technology horizon that contribute to immersive systems include synthetic sensing and situational awareness systems (https://doi.org/10.1145/3025453.3025773). Synthetic sensing is the combination of different physical sensors (temperature, heat, electromagnetic radiation, sounds, and so on) that are combined and normalized in time and passed to a machine learning (ML) inference engine that determines what the combined sensors reveal. A single temperature sensor may simply report changes in ambient heat, whereas the combination of various sensors can reveal that the oven was left on overnight.

Devices that understand you

Imagine machinery that is actively making predictions and assisting your life and wellbeing. Beyond just the convenience of a smartphone map, think about a smartphone that interfaces with traffic, weather, your calendar, your kids’ whereabouts, your home, the parking lot at work, your to-do list, and your personal health metrics. This is a system that brings together a vast array of disparate information to make sense of the situation at hand or a situation that may occur. Situational awareness is like synthetic sensing in that it is a system to derive the context of what is happening around us. Situational awareness systems will extend beyond just connected sensors to extracting information from various local and remote sources. For example, a situational awareness system could be used in agriculture systems to monitor both irrigation and soil moisture content, but also extract information from weather forecasting sources such as the National Oceanic and Atmospheric Administration (NOAA) to avoid over- and underwatering situations. Another example of edge-based situational awareness is in smart cities. Edge systems can monitor freeway traffic in real time, weather conditions, and past models of traffic flow to adjust speed limits and lane usage for optimal traffic flow during rush hours.

Industrial and systems controls

We have already talked about SCADA systems and industrial controllers as a ripe area for IoT and edge computing. There is significant room to improve edge systems in factory machinery. Many systems on the shop floor are so-called “brownfield” devices, meaning they have been used in operation for years or decades. Not all factories are Tesla Gigafactories with significant robotic controls and automation; rather, many industries amortize their investment in machinery over decades. Small businesses and industries represent 99% of all businesses in the US. Among these are older factories looking for methods to improve manufacturing yield, worker safety, and product quality. Edge systems can provide these opportunities by passively monitoring machinery for failure, assisting with product quality pre- and post-production through rules engines and ML, and monitoring the health and safety of workers through vision systems. These techniques allow a legacy manufacturer to improve through processes without incurring significant CAPEX.

Innovation in sensors and electronics

The edge is where the physical world meets the digital world. New innovations in sensors and electronics will enable devices to reach more things than ever. One example of electronics is printable circuits or flexible electronics. Throughout this book, we have talked about hardware, and naturally, we think of electronics as being a relatively stiff and inflexible set of ceramic and copper materials on a fiberglass board. However, new innovations are enabling electronics to be malleable and flexible. Electronics are “printed” on circuit boards made of sheer plastic or similar membranes. This allows them to bend and conform to irregular surfaces. This innovation will enable computers to be woven into wearable materials to monitor health and fitness. Edge systems may be enabled and even powered by your own body heat.

Batteries and energy harvesting

The obvious issue with smart concrete is providing power to the millions of these edge sensors deeply embedded into a hardened concrete mix. The costs become much larger if you must provide cable power to each node along an interstate. This is where advances in energy harvesting come into play. The easiest way to describe energy harvesting is a device that sources its own power without reliance on connecting to the power grid or relying on a battery. Although a battery device may augment an energy harvester, most of the time, they are self-sufficient. Solar is a classic example of an energy-harvesting technology that has been around for decades. However, energy may also be harvested using the induction of converting radio signals that surround us into electricity. Temperature differences also can be used to manufacture energy. Even the motion and stress of cars passing along a highway can generate electricity through the use of micro-electromechanical machines. These are miniature energy plants that can be designed into silicon like a microprocessor. Energy harvesting will become a pervasive technology in the coming decade. Already, there are sensor systems to detect open doors and windows for security that harvest energy from the motion of someone opening a window or releasing a latch on the sensor. This is not an extraordinary amount of energy produced, but enough to power a sensor and a small computer for a brief period of time (for example, 100 ms) to register an event. Other harvesting systems are being developed to feed on radio signals such as Wi-Fi in a room as an energy source.

Another exciting area of rampant innovation is in battery technology and energy sources. All the edge computers here rely on electricity to be present. Many remote edge systems already run on small rechargeable lithium batteries or renewable systems such as solar. New types of IoT devices will gain their power from other sources. Battery technology is considering using solid-state batteries that will replace lithium-ion. Solid-state batteries are based on solid electrolytes and carbon-free components. They have significantly higher energy density than current lithium-ion batteries of about 10x. Additionally, they are not prone to fire and smoke damage associated with compromised lithium devices.

MECs

MECs refer to multi-access edge computing or mobile-access edge computing and are an integral part of 5G cellular. MECs allow for low-latency, localized data and an expansive IoT network. 5G carriers can now process data locally close to mobile subscribers’ devices rather than shuttle data through the internet or to a cloud provider. For example, a cell tower (also called a radio access network (RAN) could host MEC edge hardware and services.

MECs hold promise that new types of end-user applications and services will be developed. For example, content delivery networks (CDNs) could rely on MEC systems to store locally cached copies of movies and videos close to the end user. Data and services could also be localized to what is important to a specific coverage area. For example, MEC systems in an agricultural area could be used to provide edge services for smart-agriculture systems in automated farming, milk production, and cattle location tracking.

Democratized communication systems

We have spent a good part of this book understanding communication systems and networking as that defines the edge. This section calls out the OPEX associated with WAN networks such as cellular. A bold prediction of the future is pervasive and extremely low-cost communication for edge devices. Normally, a cellular or WAN provider builds the cellular infrastructure around the region or country they service. ATT, Verizon, and T-Mobile all have a vast cellular network in the US with thousands of towers and RANs. These commercial carriers establish proprietary cellular services.

An emerging trend is WAN infrastructure provided by individuals, private homeowners, and private citizens. Rather than relying on a large telco to provide WAN connectivity, an ad hoc network is built by private citizens to span large areas of coverage. Most notable is a project called Helium, which is a decentralized network. Helium provides LoRaWAN network connectivity for IoT devices. In many LoRaWAN systems, the infrastructure needs to be built by the edge or IoT users themselves. This includes the central gateways, antennas, and power supply. Helium relies on a large number of individuals to provide gateway and wireless coverage in their own homes and property. This allows IoT devices, sensors, and edge systems to have a large nationwide coverage without relying on a commercial 5G or cellular provider.

The incentive for individuals to provide these services is they are rewarded in the form of cryptocurrency for their efforts. Each Helium gateway generates rewards in the form of Helium crypto for data that is transferred through their hotspot (this is the term for the Helium gateway). They also are rewarded for proof of coverage. Hotspots are occasionally given tests to cryptographically prove that they are supplying radio coverage in a particular place and at a particular time. These tests are assigned randomly and automatically, and passing them earns a hotspot operator Helium reward (called HNTs). This is much different than traditional cryptocurrency miners that rely on extremely powerful and power-hungry hardware and graphical processing units (GPUs) to mine cryptocurrency such as Bitcoin or Ethereum. These types of crypto miners use thousands to millions of crypto servers in one location to provide validation of currency transactions through the process of mining. Helium provides proof of coverage based on location. Each location (which may be a private residence) can only have one hotspot/gateway. As a matter of fact, the algorithm requires hotspots to be 300 meters apart, or the algorithm will degrade rewards given to an individual. This encourages wide network coverage. It only takes 50 to 100 Helium hotspots to provide full coverage for a metropolitan area.

Video gaming and entertainment

The final area we watch is video gaming and entertainment services. We have already explored how Netflix pioneered edge computing for CDNs in their streaming catalog. To address their users’ needs for low-latency and high-quality video streaming services, Netflix has used CDN systems in different geographical areas. Online video gaming has now become an industry of its own. Whereas in the past, video gaming required a PC or console in the home, today content can be generated by powerful servers in the cloud and streamed to any player regardless of their location. Users can play on a mobile device over a 5G or LTE network or play on a couch in their home. Video gaming expands the constraints and issues of CDN systems profoundly. Whereas a movie streaming from Netflix will have the data pre-compressed and ready to be streamed from anywhere in the movie, video games must render and create a new image for every frame at 30 or 60 FPS. Additionally, they must respond to user events from a controller or joystick in milliseconds of time to be playable. This bi-directionality and strict latency requirements will necessitate further improvements in edge systems and CDN networks. CDN systems for entertainment and gaming can significantly lower the latency of bidirectional data, which is critical to gaming.

Summary

We have explored the practicality of edge systems and edge businesses in this chapter. To be commercially viable, edge systems must consider the full cost impact in terms of CAPEX and operational costs with SLAs (OPEX). As systems scale, it is imperative to consider the costs between communication carriers and cloud providers.

Depending on the use cases, it is necessary to consider how the device and edge service will be constrained by regulations and commercial standards; for example, financial transactions requiring PCI compliance, self-driving vehicles managed by ISO 26262 ADAS regulations, and medical IoT systems requiring HIPAA compliance. Also, consider new legislation being drafted by the federal government in the US to govern IoT and edge security.

We wrapped up by postulating the future of the edge, including pervasive computing, new batteries to power the edge, energy harvesting, new electro-mechanical devices that will allow for sensors to be self-powered through mechanical motion, AR/VR use cases where wearable devices such as AR/VR headsets will connect to the cloud but provide low latency rendering on the person, 5G MECs that allow for edge computing on 5G carrier hardware, allowing for edge computing power and 5G services to be aggregated, new ad hoc communication technologies such as Helium, and video gaming and content delivery systems bringing real-time interactive entertainment to everyone.

References

	https://www.highspeedinternet.com/resources/how-much-should-i-be-paying-for-high-speed-internet-resource

	https://www.allconnect.com/blog/the-average-cost-of-a-cellphone-plan-in-the-us-is-113

	https://marketplace.att.com/products/att-nbiot-one-rate-plan-296251

	https://www.sba.gov/sites/default/files/advocacy/2018-Small-Business-Profiles-US.pdf

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

Symbols

5G New Radio (5GNR) 80

 Internet Protocol (IP) 23

A

access control lists (ACLs) 137

Adaptive Frequency Hopping (AFH) 69

address space layout randomization (ASLR) 133

Advanced Message Queuing Protocol (AMQP)

URL 100

versus CoAP 101, 102

versus MQTT 101, 102

Apollo Guidance Computer (AGC) 26

application programming interface (API) 95

Arpanet 126

artificial intelligence (AI) 21

association 78

attack surface 46, 126

attestation services 47

augmented reality (AR) 113, 141

authentication 47

Automated driving and assistance systems (ADAS) 16, 143

B

best-effort protocol (send and forget) 90

blast radius 138

Bluetooth Low Energy (BLE) 69

boot-loading 132

boot-strapping 132

BotNets 46

broker 100

brownfield devices 92

Building Automation and Control Network (BACnet) 92

bus network 39

C

capital expense (CAPEX) 141

carrier frequency 73

central processing unit (CPU) 32

Citizens Broadband Radio Services (CBRSs) 65, 66

cloud

working in 110

cloudlets 58

collocated (COLO) 17

command and control system (C&C) 127

communication hardware 36

LANs 40

networking topologies 38, 39

personal area networks (PANs) 39

SCADA 36-38

wide area networks (WANs) 40, 41

communications and network security 135-138

rules 136, 137

communication systems

differences 64-66

compounded annual growth rate (CAGR) 91

computing pendulum 24, 25

confirmable (CON) 100

constellation 83

Constrained Application Protocol (CoAP) 99

client 99

observer 100

origin server 99

server 99

versus AMQP 101, 102

versus MQTT 101, 102

content delivery networks (CDNs) 16, 95, 148

controller area network (CAN) 33

control loop 116

control plane 18

converged edge 34

convolutional neural network (CNN) 117

credit card fraud 130, 131

D

data link layer (DLL) 86

data plane 18

decentralized protocol (DP) 37

decryption 47

Differentiated Services Code Point (DSCP) 89

digital subscriber lines (DSLs) 24

digital transformations 21

digital twins 56

benefits 58

categories 57

use cases 57

distributed denial-of-service attacks (DDOS) 126

threats 47

domain name service (DNS) 47, 127

dumb terminals 24

E

East-West traffic 9

Edge computing 4-6, 109

architecture 8-11

capitalizing 141, 142

comparing, with cloud computing and IoT 7

examining 22

goals 5

importance 26

purpose of clouds 107, 109

regulatory and compliance standards 143, 144

use case examples 11-19

edge computing, future 144, 145

AR/VR 145

batteries and energy harvesting 147, 148

democratized communication systems 148

immersive interactions 146

industrial and systems controls 147

MECs 148

sensors and electronics innovation 147

smart concrete 145

synthetic sensing 146

system device 146

video gaming and entertainment 149

edge device 28

Edge functions and services 46

interconnectivity and networking 49

operating system 50, 51

reliability and robustness 49

remote management and monitoring 47, 48

security and hardening 46, 47

software provisioning and upgradability 49

edge hardware

classes 33-35

Edge patterns 110, 111

workload organization example 111-113

edge security systems

architecture 131

edge security systems, architecture

communications and network security 135-138

hardware security 131, 132

physical security 138

software security 133-135

Edge systems

using, in homes 64

Edge workloads 110

EdgeX Foundry 53

architecture 54

framework hierarchy 54

purpose 53

URL 53

embedded systems 35

encryption 47

energy management systems (EMSs) 28

Enhanced Mobile Broadband (eMBB) 80

enterprise resource planning (ERP) 35, 107

Eurotech ReliaGATE 20-25 33

exchange 100

F

factory machines 92, 93

failsafe 50

fault-tolerant 50

Federal Information Processing Standard (FIPS) 71

federated machine learning 117-120

femtocell 81

Fieldbus Message Specification (FMS) 37

firewalls

types 137, 138

Fleet

URL 83

fog computing 58

frame 100

frames per second (FPS) 13, 145

frameworks 52

EdgeX Foundry 53, 54

Microsoft Azure IoT Edge 55, 56

G

garbage cans 79

gateways

translation gateway 111

transparent gateway 111

gigabit 80

gigahertz (GHz) 80

grand theft auto 128, 129

graphical processing units (GPUs) 32, 149

H

hardware abstraction layer (HAL) 52

hardware security 131, 132

elements 131

headless machine 64

Health Insurance Portability and Accountability Act (HIPAA) 143

Helium project 148

Hertz (Hz) 66

Hewlett Packard Enterprise (HPE) Edgeline EL8000t 33

hub and spoke network 39

hub and spoke systems 24

human resource management (HRM) platforms 108

HVAC supplier

using 130, 131

Hypertext Transport Protocol (HTTP) 87

I

identity and access management (IAM) service 48

identity management (IM) 91, 142

Industrial IoT communications 91, 92

Industrial IOT (IIOT) 3

Industrial, Scientific, and Medical (ISM) 67

infrastructure as a service (IaaS) 108

ingress protection (IP) 132

input and output (I/O) 32, 93

International Electrotechnical Commission (IEC 60529) 132

International Organization of Standardization (ISO) 71

International Telecommunication Union (ITU) 66, 79

internet exchange points (IXPs) 17

Internet of Things (IoT) 3, 92

regulatory and compliance standards 143, 144

Internet Protocol (IP) 12

Internet Service Provider (ISP) 6, 142

interrogation zone 73

intrusion detection systems (IDSs) 137

intrusion protection systems (IPSs) 137

IoT device 28

IoT gateway 11

J

joint test action group (JTAG) 132

just-in-time (JIT) 92

K

Krebs on Security

URL 127

L

Lacuna

URL 83

LANs 40

Last Will and Testament (LWT) 99

Local Area Network (LAN) 11, 65

long-range communication 79

5G and cellular 79-81

LoRaWAN 82

long-range (LoRa) 40, 82

Long Range/Low Energy Wireless (LoRaWAN) 3, 82

Long Term Evolution (LTE) 80

low-Earth orbit (LEO) 82

Low Power Wide Area Network (LPWAN) 41, 65, 82

M

machine learning (ML) 3, 27, 32, 146

for Edge 114

usage 121, 122

machine-to-machine (M2M) 38

man-in-the-middle (MITM) 71

Massive Machine-Type Communications (mMTC) 80

media access control (MAC) 76

meshes (Zigbee PAN) 74, 75

Zigbee coordinator 75

Zigbee end device 76

Zigbee router 76

message-oriented protocols 95

Message Queue Telemetry Transport (MQTT) 96-99

constraints, satisfying with 96, 97

versus AMQP 101, 102

versus CoAP 101, 102

message sending ways, on Zigbee

broadcast routing 76

many-to-one and source routing 76

multicast routing 76

table routing 76

micro-segmentation 138

microservices 54

Microsoft Azure IoT Edge 55, 56

millimeter wave (mmWave) 80

MIL-STD-810 (military) 132

Mirai worm 127, 128

mist computing 58

mobile-access edge computing (MEC) 148

modbus 33, 37

Modbus Organization

URL 93

Modbus RTU 93

Modbus TCP (aka Modbus Ethernet) 93

Moore’s Law 22

versus Dennard Scaling limits 23

Morris worm 126

multi-access Edge computing (MEC) 81, 148

multi-factor authentication (MFA) 144

N

National Highway Traffic Safety Administration (NHTSA) 143

National Institute of Standards and Technology (NIST) 71, 144

National Oceanic and Atmospheric Administration (NOAA) 146

Near Field Communication (NFC) 65, 72

near-range communication (PAN) 68

Bluetooth 69-72

Meshes (Zigbee PAN) 74, 75

NFC 72-74

RFID 72-74

use cases 78

networking topologies 38, 39

categories 38, 39

network layering

basics 85, 86

Network Time Protocol (NTP) 90

nodes 75

non-confirmable (NON) 100

non-volatile memory express (NVMe) modules 33

Northbound traffic 9

NwkAddr 76

O

OBD-II 39

Office of Management and Budget (OMB) 144

On-Board Diagnostics (OBD) 39

one-way method 135

Open Connect 17

Open Connect Appliances 6

Open Systems Interconnection (OSI) model 85

basics 85, 86

operational expenses (OPEX) 28, 142

operational technology (OT) 91, 110

Organization for the Advancement of Structured Information Standards (OASIS) 96

out-of-band (OOB) 33, 50

P

Payment Card Industry Data Security Standard (PCI DSS) 143

peer-to-Peer (P2P) network 38

personal area networks (PANs) 11, 39, 64

pervasive internet hack 126

credit card fraud 130, 131

grand theft auto 128, 129

grand theft auto 128

Mirai 126-128

physical attacks 46

physical security 138

PID systems 116

integral portion 116

pilot wires 27

Platform as a Service (PaaS) 25

point of sales (POSs) 47, 130

process automation (PA) 37

process variables (PVs) 116

Profibus 37

programmable logic controllers (PLCs) 26, 92

proportional control 116

publish-subscribe (pub sub) 97

Q

quality of service (QoS) 89

levels 48, 99

R

radio access network (RAN) 148

Radio Frequency Identification (RFID) 72

radio spectrum 66-68

Radio Technical Commission of Aeronautics (RTCA/DO-160) 132

ransomware 47

real-time location systems (RTLSs) 73

real-time operating system (RTOS) 51

Remote Terminal Unit (RTU) 94

replay attack 128

RESTful protocols 96

rolling code 128

root-of-trust (ROT) 132

routing 88

S

satellite communication 82, 83

secure shell (SSH) 134

secure sockets layer (SSL) 136

security 46

security vulnerabilities

types 125

segmentation 138

sensor fusion 110

service-level agreement (SLA) 14, 40

set point (SP) 116

single pane of glass (SPOG) 92

slots or fields 13

small form factor (SFF) 28

smart city surveillance 12-14

Society of Automotive Engineers (SAE) 39

software architecture 51, 52

Software as a Service (SaaS) 25, 108

software-defined radio (SDR) 128

software security 133-135

southbound traffic 9

Special Interest Group (SIG) 69

stream-oriented protocols 95

stuttering 16

Supervisory Control and Data Acquisition (SCADA) 36-38, 91

Swarm

URL 83

system 31

architecture 59, 60

system on chip (SOC) 33

T

TCP/IP networking

exploring 86-90

theft 47

the mist 58

Third Generation Partnership Project (3GPP) 79

token network 37

tokens 37

traditional computing systems and hardware

architecture 31, 32

training 120

CNN 120

Edge devices 121

issue 120

supervised learning 120

unsupervised learning 120

translation gateway 111

identity translation 111

protocol translation 111

Transmission Control Protocol (TCP) 85

Transmission Control Protocol (IP) 24, 85

transparent gateway 111

transport layer security (TLS) 135

trusted platform module (TPM) 132

U

Ultra-Reliable and Low-Latency Communications (URLLC) 80

Underwriters Laboratories (UL) 143

Uniform Resource Identifier (URI) 96

User Datagram Protocol (UDP) 89

V

vehicle telematics 14-16

video streaming services 16-19

virtual local area networks (VLANs) 130, 138

virtual reality (VR) 141

Voice over IP (VOIP) 89

von Neumann architecture 32

W

wide area networks (WANs) 40, 141

wired communication 64

wireless communication 64

Wireless Local Area Network (WLAN) 65

Wireless Wide Area Network (WWAN) 65

workload organization example, Edge patterns 111-113

deep learning models 117

machine learning for Edge 114

probabilistic analysis systems 116, 117

proportional integral derivative controllers 116

rules and decision systems 115

situational awareness applications 113, 114

time series analysis 115

World Wide Web (WWW) 95

Z

zero trust 136

Zigbee 12, 40

zombie 127

[image: Packt Logo]

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Fully searchable for easy access to vital information

	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

[image: IoT and Edge Computing for Architects]

IoT and Edge Computing for Architects

Perry Lea

ISBN: 978-1-83921-480-6

	Understand the role and scope of architecting a successful IoT deployment

	Scan the landscape of IoT technologies, from sensors to the cloud and more

	See the trade-offs in choices of protocols and communications in IoT deployments

	Become familiar with the terminology needed to work in the IoT space

	Broaden your skills in the multiple engineering domains necessary for the IoT architect

	Implement best practices to ensure reliability, scalability, and security in your IoT infrastructure

[image: The Azure IoT Handbook]

The Azure IoT Handbook

Dan Clark

ISBN: 978-1-83763-361-6

	Get to grips with setting up and deploying IoT devices at scale

	Use Azure IoT Hub for device management and message routing

	Explore Azure services for analyzing streaming data

	Uncover effective techniques for visualizing real-time streaming data

	Delve into the essentials of monitoring and logging to secure your IoT system

	Gain insights into real-time analytics with Power BI

	Create workflows and alerts triggered by streaming data

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you’ve finished Edge Computing Simplified, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image: Download a free PDF copy of this book]

https://packt.link/free-ebook/978-1-83588-418-8

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

OEBPS/image/B22394_06_01.jpg
081 (Open Source Intarconnection) Model

Loy [— —
s || A e |
© Prnemeton | 5yt Loy ancp comprn pson) ("5 15 |
W Sevson Loy | Syndvosati Lot P oy | TR
ra——— T
fr——

-

OEBPS/image/B22394_QR_Free_PDF.jpg

OEBPS/image/9781837633616.jpg
<packty
ﬁi"‘l
L 7

The Azure loT

Handbook

Develop loT solutions using the infeligent
‘edge-to-cloud technologies

& o

OEBPS/image/B22394_01_02.jpg
North-Bound Traffic (to cloud)

West-Bound Traffic East-Bound Traffic
Edge to Edge Edge to Edg

.
[}
3
N South-Bound Traffic (to edge)
°
3
2 Communications
S o Communication:
ecurity
eData Archive ¢ Monitoring eKey Management
SSkare ribesd eProvisioning
o Backup eBillig #Authorization
®Management atimalis
To Cloud:
To Cloud: Fleet GPS Location
Operational Dat: To cl Situationsl Awareness
Factory Automation Info Operational Data Leve
Machinery Warnings and Fafits Inventory Levels Deliery Information
A'Based predicteq Fallre A1'Based Finai Inspection
o Edge: To Edge: | To Edge:
Poicies securny plce Delvery Routing Information
-~ jon » Security Updates.
Firmware Updates. Ll Blockchain based 1Ds for frieght
i
[}
3
3 N W%
o E"~w.ll Dlh [East-West Data
<3
o s ecrassh rodicon dﬂ
oo

Location 1: Manufacturing Location 2: Final Assembly Location 3: Logistics

OEBPS/image/B22394_05_01.jpg

OEBPS/image/B22394_07_01.jpg
Simple Edge Example: 10T Bridge

Eae acts a5 communcations b t coud
"Eao aso mandors and marshals i dota
nere om sanors ety 1o o

2 ~ -

Tompuria Sermes: Tonpurirs Semnes Tomparhon Sammer

OEBPS/image/B22394_04_01.jpg
Complex Edge Server

3
H
2
g
b
"
s
H
E
3

OEBPS/image/B22394_08_01.jpg

OEBPS/image/B22394_03_01.jpg
e P Oty

OEBPS/image/B22394_01_01.jpg

OEBPS/image/B22394_02_01.jpg
48 Years of Microprocessor Trend Data

1o’ Transistors
6 (thousands)
10°
i Single-Trvead
Performance
10t (SpeciNT x 10%)
5 Frequency (MHz)
10°
Typical Power
107 + 0] ats)
4 L Number of
wh—s—3s Logical Gores
4. :
10° $* | =
1970 1980 1990 2000 2010 2020

OEBPS/image/Cover.jpg
packh

‘ K’\’ \/(\ ,3\

ki

Edge Computing
Simplified

Explore all aspects of edge computing for
business leaders and technologists

&

OEBPS/image/B22394_01_03.jpg
Public Cloud

Step 2: Cloud to Edge
Logstics Information
Reroutng request

Step 1A: Vehicle 3
GPs Cooranates B _

Step 4: Cloud to Vehicle

Update routing nformation
Step 18: Vehicle 2/ inform diver t pick up “xyz" component

Faiure Information at distribution center .

GPS Coordnates Inform anver to deiveronew Stk SA: Edge to Cloud

customers destinations icyripytion center. Pick up inventory

sk originally for vehicle 2 Deliver
Sep 1C: Vaiicle 1 “xy2* componenis to customers

Request increase in
material inventory

@ for widget "xyz"

Distribution Center

Step 3B: Edge to Edge

(North to South) Cloud to Edge

(South to North) Edge to Cloud

{F

Manufacturing '

(West to East, East to West) Edge to Edge

OEBPS/image/Packt_Logo_New1.png
<packmn

OEBPS/image/B22394_01_04.jpg
Cloud Responsibiliti
 Security

» Authentication

o Remote Control

o Firmware Updates

\ Remote Agent

—
? Philips Hue Hub

Zigbee Mesh)

Sy

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B22394_04_03.jpg

OEBPS/image/B22394_06_03.jpg
f—

iif

Tt b [——

OEBPS/image/B22394_01_05.jpg

OEBPS/image/B22394_06_02.jpg
oy S

OEBPS/image/B22394_07_02_(2).jpg
Complex Edge Example: Seif-Driving and Reak-time Vehicutar Analysis:

Ciou s usd 0 store vehicuis
s perrm s
auhr o Fom e ol
g gaars dt nd e e e st o
Edga crovdes s connachty 1o o

= .®

Sotdrvng camerss, LIDAR.

and i coirl systeens

OEBPS/image/B22394_02_02.jpg

OEBPS/image/B22394_04_02.jpg
Northbound:

Public coud, infastructure, wide area m-lwnrks

(Container Management and Deployment) (User Interiacs)

e
—

.. | Y)

Socvous: Core Services_

_—--
_—

o)) G () Tt (i)

Southbound
Physical World, Devices, Sansors, Actuators.

OEBPS/image/B22394_01_06.jpg

OEBPS/image/B22394_01_07.jpg
Netflix (AWS) Cloud

|\ Report heatth, metrics, and storage info
Upate file content \

/
-l
;

ocal Internet
Service Provider

Request video_—
/" tromoca~

OEBPS/image/B22394_06_05.jpg
o Bomuvanic Vst
e PR ST gt 15200)

Pl St ctin
e P S gt 16507)

Pion Bt
e P 5 g 15 300)
LR —
o T S35 Songiute 1687}

o Bosavonc rion
o T o)

OEBPS/image/9781839214806.jpg
loT and Edge
Computing for
Archltects

Second Edition ,

Perry Lea Packt>

OEBPS/image/B22394_06_04.jpg
B T EK:

P ve—
SegnFare o Gl Cormcs___ On P Ot Srmge P Ao

Factory Floor [——

[———

OEBPS/image/B22394_04_04.jpg
Cons Ot Care:
b oot

[

Centraiized Control

o Oas oo

il i
mmmmmmm__m

bk oot

OEBPS/image/B22394_03_03.jpg
Poarto Pesr Communciaton:
e (=)

PRr—

lan - Sere 1 Spke)

OEBPS/image/B22394_07_03.jpg
Step 1: Central Server determines a new ML Stap 2: Central Server broadcasts ML model to federation securely
"model nesds traming

)

Cophose. Copheoe

2@

Step 3: Edge system use local data to train model

OEBPS/image/B22394_03_02.jpg
Control Center Level 4 - Production Schedulir
andMontoring
/\
— =
il i Coardnatng Campuiers Lovl 3 - Production Control

Ciwm: seem e g

.evel 0 - Field Level Systems
L e “ R

OEBPS/image/B22394_05_02.jpg
(Low Power Wide|
‘Area Networks
(LPWAN)

100km|
Tkm

. Personal Area

Wide Area
Wireless Networks.
(WWAN)

(Wireless) Local

Area Networks

(LAN) (WLAN) et
wetoo —_— met

Networks (PAN) | Blustooth 5 Wi i

— 80211 (a.b/n) 802.11 ax

NFC
RFID
10bps 100 bps 10 Kops 100 Kbps 1M 0 Mbps 1 Gb

OEBPS/image/B22394_06_06.jpg

