

 Ansible DevOps Cookbook
 End-to-end automation solutions including setup, playbooks, cloud services, CI/CD integration, and ansible tower management
 Thorne Montgomery

Preface
 A collection of over seventy-five solution-focused recipes, "Ansible DevOps Cookbook" will show you how to use Ansible to fix problems, simplify operations, and boost the efficiency of your DevOps practices. Clear, step-by-step directions are provided for every recipe in this cookbook, covering everything from basic setup to advanced techniques.
 You should start by creating an efficient inventory system, configuring control and managed nodes, and setting up your Ansible environment. You can implement effective solutions because the recipes address specific challenges. Get a handle on more complex playbook techniques, such as working with variables, facts, conditionals, loops, and more. You will be skillful to organize playbooks and create reusable automation with Ansible roles. You can increase your automation capabilities by accessing community-driven content through Ansible Galaxy, which is explained in the book.
 When it comes to cloud integration, the book goes into great detail on how to automate deployments on AWS, Azure, and GCP. These recipes show how to use Ansible modules for managing and provisioning cloud infrastructure, so you can manage resources efficiently and ensure high availability and performance. Ansible, Jenkins, and GitLab are among the many of the tools covered in this book, which teaches you to automate the build, test, and deployment pipeline as part of continuous integration and continuous delivery.

From playbook errors to inventory management issues, this cookbook has solutions to fix it all. Ansible Tower and AWX are implemented in the last chapters to automate enterprise-grade tasks, including job scheduling, monitoring, and role-based access control. This book's practical, real-world solutions will help you improve your DevOps practices and maximize the effectiveness of Ansible in your automation processes.
 In this book you will learn how to:
 Gain the expertise and abilities needed to establish Ansible environments for efficient automation and management of DevOps processes.
Discover sophisticated playbook strategies for optimizing task automation through the utilization of variables and handlers.
Streamline cloud deployments on AWS, Azure, and GCP to ensure optimal availability and performance.
Integrate Ansible with CI/CD tools such as Jenkins and GitLab to enable continuous delivery.
Resolve playbook errors and address inventory management issues using effective solutions.
Employ Ansible roles and Galaxy to implement scalable and reusable automation content.
Deploy high-level automation using Ansible Tower and AWX, which includes robust role-based access control.
Efficiently manage workflow by scheduling and monitoring Ansible jobs.

Efficiently oversee both dynamic and static inventories, guaranteeing accurate allocation of resources.

Prologue
 When I first discovered Ansible, it felt like finding a hidden gem in the vast world of DevOps tools. I remember how exciting it was to write my first playbook and be amazed as tasks that used to take hours to do by hand were done perfectly in seconds. That moment made me want to automate things and be more efficient, which is why I wrote the "Ansible DevOps Cookbook."
 My association with Ansible began in Seattle on a rainy night. My job at the time was as a DevOps engineer for a medium-sized tech company. We were in the middle of a big deployment. Our old ways of doing things were slow and prone to mistakes, which caused delays and frustration. Ansible came up for me while I was looking for answers. I chose to give it a try because it seemed like it would be easy to use and powerful. I learned Ansible, played around with playbooks, and automated tasks that used to give me a headache over the next few weeks. The results were truly amazing. Ansible speeding up and improved the reliability of our deployments, giving our team more time to work on new ideas instead of doing the same things over and over again. When word got out about how well we did, other teams in the company asked me to help them add Ansible to their workflows. As I learned more about Ansible, I realized that the official documentation and tutorials were helpful, but I needed a guide that was more hands-on and useful. Something that would not only teach the basics but also give DevOps professionals real-world answers to problems they often face. This thought led to the creation of the "Ansible DevOps Cookbook."

With this book, I wanted to make a reliable tool that would help anyone get the most out of Ansible. I started making notes, writing down recipes, and asking coworkers and peers for feedback. There were a lot of hours spent trying out, testing, and improving every recipe in this book. One of the most memorable parts of writing this book was a late-night meeting with my team to come up with ideas. We were trying to figure out a very tricky problem with dynamic inventories in a setting with more than one cloud. After many failed attempts and many cups of coffee, inspiration finally struck. We came up with a solution that worked and made the whole process easier. This recipe, like many others in this book, shows how important it is to work together and keep going.
 There are more than 100 recipes that are meant to help you solve problems in the real world. With this book, you can learn everything from how to set up your Ansible environment to advanced playbook techniques, cloud integration, CI/CD pipelines, and fixing problems. Each recipe is designed to give you useful solutions, which makes it easy to use Ansible and get the most out of it. As you read this book, keep in mind that every great story about automation starts with a single guide. I hope this book becomes your go-to guide and motivates you to discover new things about DevOps automation. We can make the impossible seem possible and difficult tasks run like clockwork if we work together.
 Copyright © 2024 by GitforGits

All rights reserved. This book is protected under copyright laws and no part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without the prior written permission of the publisher. Any unauthorized reproduction, distribution, or transmission of this work may result in civil and criminal penalties and will be dealt with in the respective jurisdiction at anywhere in India, in accordance with the applicable copyright laws.
 Published by: GitforGits
 Publisher: Sonal Dhandre
 www.gitforgits.com
 support@gitforgits.com
 Printed in India
 First Printing: July 2024
 Cover Design by: Kitten Publishing
 For permission to use material from this book, please contact GitforGits at support@gitforgits.com.

Content
 Preface
 GitforGits
 Acknowledgement
 Chapter 1: Up and Running with Ansible Environment
 Introduction
 Recipe #1: Installing Ansible on Linux
Update Package Manager
Install Ansible
Verify Installation
 Recipe #2: Configuring Ansible Control Nodes
Verify SSH Access
Edit Ansible Hosts File
Test Connectivity
Configure ansible.cfg
 Recipe #3: Initializing Ansible Project (Ex. GitforGits Project)
Create Project Directory
Setup Directory Structure
Create Inventory File
Create a Playbook
 Recipe #4: Setting up SSH Key-based Authentication
Generate SSH Key Pair
Copy Public Key to Remote Hosts
Verify SSH Key-based Authentication
 Recipe #5: Organizing Ansible Directory Structure
Review Existing Directory Structure
Create Group and Host Variables Directories
Define Roles
Sample File Placement

Recipe #6: Managing Ansible Configuration Files
Locate Configuration File
Basic Configuration
Privilege Escalation Settings
SSH Connection Settings
Testing and Validation
 Recipe #7: Setting up a Local Virtual Development Environment
Install Vagrant
Install VirtualBox
Initialize Vagrant Project
Configure Vagrantfile
Start and Provision the VM
Integrate with Ansible
 Recipe #8: Connecting to Remote Hosts
Ensure SSH Key-based Authentication
Update Inventory File
Test SSH Connectivity
Verify Ansible Connectivity
Troubleshoot Connection Issues
Configure SSH Options
Test Playbook Execution
 Summary
 Knowledge Exercise
 Chapter 2: Writing and Running Playbooks
 Introduction
 Recipe #1: Creating First Playbook
Understand Playbook Structure
Define Play and Tasks

Run the Playbook
Verify the Results
 Recipe #2: Using Variables and Facts in Playbooks
Advanced Aspects of Variables and Facts
Define Variables in Playbooks
Use Facts in Playbooks
 Recipe #3: Implementing Conditionals in Playbooks
Understand Conditional Statements
Define Variables and Tasks with Conditions
 Recipe #4: Looping over Tasks
Understand Looping Constructs
Define Tasks with Loops
 Recipe #5: Debugging Playbook Errors
Use --check and --diff Options
Enable Verbose Mode
Use the debug Module
Check Return Codes and Standard Output
Review Playbook Logs
Correcting Common Errors
Rerun the Playbook
 Recipe #6: Using Handlers for Task Notifications
Understand Handlers
Define Tasks and Handlers
 Recipe #7: Organizing Playbooks with Includes and Imports
Significance of Includes and Imports
Understanding Includes and Imports
Create the Task Files
Create Main Playbook File
Create Additional Task Files

Recipe #8: Running Playbooks Across Multiple Machines
Necessity of Running Playbooks Across Multiple Machines
Define Inventory Groups
Define Tasks for Multiple Groups
 Summary
 Knowledge Exercise
 Chapter 3: Managing Inventories
 Introduction
 Recipe #1: Setting up Static Inventories
Purpose of Inventory
Types of Inventories
Create Inventory File
Define Hosts and Groups
Verify the Inventory
Use Inventory in a Playbook
 Recipe #2: Creating Dynamic Inventories
Purpose and Benefits of Dynamic Inventories
Install boto3
Create Dynamic Inventory Script
Update Ansible Configuration
Verify Dynamic Inventory
Use Dynamic Inventory in a Playbook
 Recipe #3: Using Inventory Plugins
Install Azure
Configure Inventory Plugin
 Recipe #4: Grouping Hosts in Inventories
Benefits of Grouping Hosts
Define Host Groups
Use Group Variables

Use Host Groups
 Recipe #5: Working with Host and Group Variables
Create Separate Variable Files
Use Variables in a Playbook
 Recipe #6: Managing Inventory Files with Git
Install and Configure Git
Initialize Git Repository and Add Inventory Files
Create a Remote Repository
Collaborate and Manage Inventory Files
Git with Ansible Playbooks
 Recipe #7: Connecting to Cloud Instances with Dynamic Inventories
Install boto3 and botocore
Configure AWS Credentials
Create Dynamic Inventory Configuration File
Update Ansible Configuration
Verify Dynamic Inventory
Test the Dynamic Inventory
Advanced Configuration
Example of Advanced Configuration
Automate Updates with Cron Jobs
 Recipe #8: Troubleshooting Inventory Issues
Common Inventory Issues
Verify Inventory File Paths
Test SSH Connectivity
Validate Dynamic Inventory Configuration
Debug Variable Issues
Update Outdated Static Inventories
Resolve Authentication Failures

Verify Plugin Dependencies
Check for Plugin-Specific Issues
Use Verbose Mode for Detailed Output
Use Ansible Documentation and Community Support
 Summary
 Knowledge Exercise
 Chapter 4: Advanced Playbook Techniques
 Introduction
 Recipe #1: Using Roles to Organize Playbooks
Types of Roles
Create Role Directory Structure
Define Role Tasks
Define Handlers
Define Variables
Create Templates
Define Inventory
 Recipe #2: Creating and using Custom Modules
Create Custom Module Script
Use Custom Module
Define Inventory
 Recipe #3: Implementing Error Handling in Playbooks
‘failed_when’ Directive
‘ignore_errors’ Directive
‘rescue’ and ‘always’ Blocks
 Recipe #4: Using Ansible Vault for Securing Sensitive Data
Introduction to Ansible Vault
Install Ansible Vault
Create Encrypted File
Manage Encrypted Files

Using Encrypted Files in Playbooks
Automate Vault Password Handling
 Recipe #5: Leveraging Ansible Galaxy for Reusable Content
Introduction to Ansible Galaxy
Browse and Search for Roles
Install Role from Ansible Galaxy
Use Role in Playbook
Customize Role Variables
 Recipe #6: Creating Playbook Templates with Jinja2
Jinja2 Overview
Create Jinja2 Template
Define Variables
Using Loops, Conditional and Filters
Verify Advanced Template
 Recipe #7: Implementing Idempotency in Playbooks
Concept of Idempotency
Implement Idempotency in a Playbook
Installing Nginx
Deploying Nginx Configuration
Starting Nginx Service
Update Playbook
Verify Idempotency
 Recipe #8: Optimizing Playbook Performance
Introduction to Playbook Performance Optimization
Enable Fact Caching
‘async’ and ‘poll’ for Long-Running Tasks
Limit Parallelism with ‘forks’
Reduce SSH Connection Overhead
‘delegate_to’ for Centralized Operations

Optimize Task Execution
‘block’ for Grouping Tasks
Monitor Performance with Callback Plugins
 Summary
 Knowledge Exercise
 Chapter 5: Ansible Plugins and Modules
 Introduction
 Recipe #1: Understanding Ansible Plugins and Modules
Ansible Plugins Overview
Module Return Values
List of Ansible Plugins
Module Return Values and Arguments
Putting Plugin into use
 Recipe #2: Installing and using Community Modules
Find and Install a Community Module
Sample Program: Using ‘geerlingguy.mysql’ Role
 Recipe #3: Writing Custom Ansible Modules
Create Custom Module Script
Use Custom Module
Sample Program: Managing a Custom Service
 Recipe #4: Creating Action Plugins for Custom Logic
Create Custom Action Plugin Script
Use Custom Action Plugin
Sample Program: Adding Pre- and Post-Task Logic
 Recipe #5: Using Lookup Plugins for Dynamic Data
Understanding Lookup Plugins
‘file’
‘env’
‘url’

‘csvfile’
‘password’
 Recipe #6: Implementing Filter Plugins for Data Transformation
Create Custom Filter Plugin Script
Use Custom Filter Plugin
Sample Program: Creating Complex Filters
Sample Program: Date Formatting Filter
 Recipe #7: Managing Connections with Connection Plugins
Connection Plugins Overview
Understanding Built-in Connection Plugins
Using Built-in Connection Plugin
Inventory File Configuration
Playbook Configuration
Creating Custom Connection Plugin
Create Custom Connection Plugin Script
Use Custom Connection Plugin
 Recipe #8: Developing Inventory Plugins for Custom Sources
Inventory Plugins Overview
Create Custom Inventory Plugin Script
Create Inventory Configuration File
Use Custom Inventory Plugin
Revising Inventory File
Sample Program: Extending Custom Inventory Plugin
 Summary
 Knowledge Exercise
 Chapter 6: Provisioning on Windows and Mac Systems
 Introduction
 Recipe #1: Setting up Ansible for Windows

Install Ansible on Linux Control Node
Prepare Windows Host
Install pywinrm
 Recipe #2: Managing Windows Hosts
Manage Files on Windows
Create and Manage Users
Manage Windows Services
Install Software on Windows
 Recipe #3: Using WinRM for Windows Communication
Configure WinRM on the Windows Host
Configure Ansible Inventory
Test WinRM Connection
Securing WinRM Communication
Sample Program: Managing Windows Services
 Recipe #4: Installing Software on Windows with Ansible
Install Chocolatey on Windows Host
Configure Ansible Inventory
Install Software
Sample Program: Installing Additional Software
 Recipe #5: Configuring Windows Services
Manage Windows Services
Sample Program: Additional Service Management
 Recipe #6: Setting up Ansible for Mac
Prepare the Mac Host
Setup SSH Key-based Authentication
Test the Connection
Install Homebrew on Mac Host
Manage Software on Mac
 Recipe #7: Managing Mac Hosts

Gather System Information
Manage Files on Mac
Create and Manage Users
Manage Services on Mac
Install Software on Mac
 Recipe #8: Automating Software Installation on Mac
Automate Software Installation
Verify Installation
Sample Program: Installing Additional Software
 Summary
 Knowledge Exercise
 Chapter 7: Ansible with AWS, Azure and GCP
 Introduction
 Recipe #1: Configuring Ansible for AWS
Install AWS CLI and Boto3
Configure AWS CLI
Create Ansible Inventory File for AWS
Install and Test the Ansible AWS Collection
 Recipe #2: Provisioning EC2 Instances
Create EC2 Provisioning Playbook
Verify EC2 Instance
 Recipe #3: Managing AWS Resources with Ansible Modules
Create S3 Bucket
Create IAM Role
Create RDS Instance
Verify AWS Resources
 Recipe #4: Using Ansible with Azure
Install and Configure Azure CLI
Create Azure Service Principal

Use the Azure Service Principal
Create Ansible Inventory File for Azure
Test Azure Configuration
 Recipe #5: Deploying Virtual Machines on Azure
Create Resource Group
Create Virtual Network and Subnet
Create Public IP Address
Create Network Interface
Deploy Virtual Machine
 Recipe #6: Managing Azure Resources with Ansible
Create Virtual Network and Subnet
Create Storage Account
Create Azure SQL Database
Run the Playbooks
 Recipe #7: Integrating Ansible with Google Cloud
Install Google Cloud SDK
Install Ansible GCP Collection
Use the Service Account
Ansible Inventory File for GCP
Test GCP Configuration
 Recipe #8: Automating GCP Resource Management
Provision a Virtual Machine
Create Storage Bucket
Create a Virtual Network
 Summary
 Knowledge Exercise
 Chapter 8: Managing CI/CD
 Introduction
 Recipe #1: Setting up Ansible for CI/CD Pipelines

Ansible Configuration for CI/CD
Create Ansible Inventory File
Environment Variables for CI/CD
Create Basic Playbook for Testing
 Recipe #2: Integrating Ansible with Jenkins
Install Ansible Plugin for Jenkins
Create a Jenkins Job
Add a Build Step to Run Playbook
 Recipe #3: Automating Build and Deployment Processes
Configure Pipeline Script
Ansible Playbook for Deployment
Configure Ansible Inventory
 Recipe #4: Using Ansible with GitLab CI/CD
Create GitLab CI/CD Configuration File
Push Changes to GitLab
 Recipe #5: Implementing Continuous Delivery with Ansible
Define the Continuous Delivery Pipeline in GitLab
Create Playbooks for Staging and Production
Push Changes to GitLab
Verify the Pipeline Execution
 Recipe #6: Managing Rollbacks and Version Control
Prepare Application Repository
Create a Rollback Playbook
Configure GitLab CI/CD for Rollbacks
Trigger a Rollback
 Summary
 Knowledge Exercise
 Chapter 9: Ansible Tower and AWX
 Introduction

Recipe #1: Configuring Ansible Tower
Install Ansible Tower
Access Ansible Tower
Add Users, Teams and Organization
 Recipe #2: Managing Projects and Inventories in Tower
Create Project in Ansible Tower
Create Inventory in Ansible Tower
Add Hosts to the Inventory
Create Groups within Inventory
Verify the Project and Inventory Configuration
 Recipe #3: Creating and Managing Job Templates
Create a Job Template
Schedule the Job
Use Job Templates in Workflows
 Recipe #4: Setting up and using AWX
Install Docker and Docker Compose
Clone the AWX Repository
Deploy AWX
Create a Project in AWX
Inventory in AWX
Create and Launch Job Templates
 Recipe #5: Scheduling Jobs and Workflows in Tower
Navigate to Job Templates
Add a Schedule to the Job Template
Verify the Scheduled Job
Create a Workflow Job Template
Schedule the Workflow Job Template
Verify the Scheduled Workflow
 Recipe #6: Using Tower API for Automation

Generate an API Token
Test API Authentication
List Job Templates
Launch a Job Template
Monitor Job Status
Automate Job Executions
 Summary
 Knowledge Exercise
 Index
 Epilogue

GitforGits
 Prerequisites
 Whether you are an IT administrator, networking professional, cloud engineer or a devops user, this book is meant for you to learn troubleshooting every possible issue, streamline processes, and maximize the performance of your IT infrsastructure and DevOps processes.
 Codes Usage
 Are you in need of some helpful code examples to assist you in your programming and documentation? Look no further! Our book offers a wealth of supplemental material, including code examples and exercises.
 Not only is this book here to aid you in getting your job done, but you have our permission to use the example code in your programs and documentation. However, please note that if you are reproducing a significant portion of the code, we do require you to contact us for permission.
 But don't worry, using several chunks of code from this book in your program or answering a question by citing our book and quoting example code does not require permission. But if you do choose to give credit, an attribution typically includes the title, author, publisher, and ISBN. For example, "Ansible DevOps Cookbook by Thorne Montgomery".
 If you are unsure whether your intended use of the code examples falls under fair use or the permissions outlined above, please do not hesitate to reach out to us at
 We are happy to assist and clarify any concerns.

 Chapter 1: Up and Running with Ansible Environment

Introduction
 The purpose of this chapter is to teach you how to set up and configure your Ansible environment, which will provide you with a solid foundation for managing and automating your infrastructure. Starting with Ansible on Linux, you will be taken through the steps required to get Ansible up and running on your system. This includes configuring Ansible control nodes, which serve as the primary management points for your automation tasks, allowing you to efficiently manage multiple hosts.
 You will also create an Ansible project specifically for the GitforGits web application, allowing you to apply the concepts you have learned to a real-world example. The setup of SSH key-based authentication will be learned, which is a crucial step in securing and optimizing your connections to remote hosts. You'll also learn how to properly organize your Ansible directory structure, which is critical for keeping a clean and manageable code base.
 Another important topic is managing the Ansible configuration files. This will make sure that your Ansible environment is customized to your specific requirements and workflows. The chapter will also walk you through the process of creating a local virtual development environment, which will serve as a sandbox for testing and refining automation scripts without affecting your production systems. Finally, you will connect to remote hosts, allowing you to easily manage and automate tasks across multiple machines.

After reading this chapter, you will know everything there is to know about configuring an Ansible environment on Linux. You will be able to manage your infrastructure more effectively with these basic skills, which will also prepare you for the more advanced automation tasks that will be covered in later chapters.

 Recipe #1: Installing Ansible on Linux
 To begin using Ansible, you first need to install it on your Linux system. This recipe will instruct you on the installation process, ensuring that you have Ansible ready to manage and automate your infrastructure.
 Update Package Manager
 Before installing any new software, it's a good practice to update your package manager to ensure you have the latest package lists. Open your terminal and run:

 sudo apt update

 Install Ansible
 Once your package manager is updated, you can proceed with the Ansible installation. For Debian-based systems like Ubuntu, use the following command:

 sudo apt install ansible -y

 For Red Hat-based systems like CentOS, first enable the EPEL repository:

 sudo yum install epel-release -y

 Then install Ansible:

 sudo yum install ansible -y

 Verify Installation
 After the installation is complete, verify that Ansible is installed correctly by checking its version:

 ansible --version

 You should see the Ansible version and other relevant information, indicating that Ansible is installed and ready to use.

By following these steps, you have successfully installed Ansible on your Linux system. This installation is the first step in setting up your environment, allowing you to start creating and running playbooks for automating tasks across your infrastructure.

 Recipe #2: Configuring Ansible Control Nodes
 A control node is a machine where you install Ansible, and from which you manage and automate tasks across multiple hosts. The control node is essential in Ansible architecture, serving as the central point for running Ansible commands and managing configurations. This recipe will teach you in setting up and configuring your control node to ensure smooth operations.
 Verify SSH Access
 Ensure that you can connect to the target machines via SSH. Generate an SSH key if you haven't already:

 ssh-keygen

 Copy the SSH key to the target machines:

 ssh-copy-id user@target_machine

 Edit Ansible Hosts File
 Ansible uses an inventory file to keep track of the machines it manages. Edit the default inventory file located at

 sudo nano /etc/ansible/hosts

 Add your target machines, organizing them into groups if needed:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com

 Test Connectivity
 Test the connectivity to your target machines using the Ansible ping module:

ansible all -m ping

 You should see a success message for each target machine, indicating that the control node can connect to them.
 Configure ansible.cfg
 Customize Ansible’s behavior by editing the ansible.cfg file. You can create this configuration file in your project directory:

 nano ansible.cfg

 Add basic configurations:

 [defaults]
 inventory = /etc/ansible/hosts
 remote_user = your_user
 host_key_checking = False

 With this, you have successfully configured your Ansible control node. This configuration allows you to manage and automate tasks across multiple machines, laying the groundwork for more advanced Ansible operations.

 Recipe #3: Initializing Ansible Project (Ex. GitforGits Project)
 With the control node configured, the next step is to initialize your Ansible project for the GitforGits web application. This recipe will teach you in setting up the project structure and preparing it for managing and automating tasks.
 Create Project Directory
 Start by creating a directory for your Ansible project. This will be the root directory where all your playbooks, inventory files, and configuration files are stored:

 mkdir ~/GitforGits
 cd ~/GitforGits

 Setup Directory Structure
 Organize your project directory by creating subdirectories for playbooks, inventory, roles, and configuration files. This structure helps maintain a clean and manageable codebase:

 mkdir playbooks inventory roles

 Create Inventory File
 In the inventory directory, create a file named hosts to list the target machines you will manage. Refer to the configuration steps in Recipe #2 if needed:

 nano inventory/hosts

 Add your target machines:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com

 Create a Playbook

In the playbooks directory, create a file named site.yml as your main playbook. This playbook will define tasks for managing the GitforGits application:

 nano playbooks/site.yml

 Add a basic playbook structure:

 - hosts: all
 tasks:
 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 become: yes

 Ensure your project is using the correct Ansible configuration by creating an ansible.cfg file in the project root directory. Refer to the configuration steps in Recipe #2 if needed:

 nano ansible.cfg

 Add basic configurations:

 [defaults]
 inventory = inventory/hosts
 remote_user = your_user
 host_key_checking = False

 This above outlined setup will allow you to organize and manage your playbooks and inventory efficiently, providing a solid foundation for automating tasks related to GitforGits.

 Recipe #4: Setting up SSH Key-based Authentication
 Authentication is quite a needy mechanism for managing remote machines securely, and there are several types of authentication methods available, including password-based, token-based, and key-based authentication. Password-based authentication requires you to enter a password each time you connect to a remote machine. While simple, it poses security risks such as susceptibility to brute-force attacks. Token-based authentication uses time-sensitive tokens and is commonly used in multi-factor authentication scenarios.
 Key-based authentication, on the other hand, is considered more secure and efficient. It uses a pair of cryptographic keys: a public key stored on the remote machine and a private key stored securely on your control node. This method eliminates the need for password entry during connections, reduces the risk of brute-force attacks, and allows for automated, secure connections.
 This recipe sets up SSH key-based authentication to have secure and automated connections between your control node and remote hosts.
 Generate SSH Key Pair
 First, generate an SSH key pair on your control node if you don’t already have one.
 Open a terminal and run:

 ssh-keygen

 Follow the prompts to save the key pair in the default location You can choose to add a passphrase for additional security.
 Copy Public Key to Remote Hosts

Next, copy the public key to each remote host. This step authorizes your control node to connect to the remote host using the private key:

 ssh-copy-id user@remote_host

 Replace user and remote_host with the appropriate username and hostname or IP address of the remote machine. Repeat this step for each remote host.
 Verify SSH Key-based Authentication
 Test the connection to each remote host to ensure that key-based authentication is set up correctly:

 ssh user@remote_host

 If the setup is correct, you should be able to connect without being prompted for a password.
 Then, update your ansible.cfg file to ensure Ansible uses the correct SSH key for connections:

 nano ansible.cfg

 Add or update the following settings:

 [defaults]
 inventory = inventory/hosts
 remote_user = your_user
 private_key_file = ~/.ssh/id_rsa
 host_key_checking = False

 With this, you have successfully set up SSH key-based authentication for your Ansible control node. Which ultimately improves the efficiency of your Ansible operations.

 Recipe #5: Organizing Ansible Directory Structure
 A well-organized directory structure is crucial for maintaining a clean and manageable Ansible project. This recipe will demonstrate in setting up a structured directory layout for the GitforGits project. Referring back to Recipe #3, where you initialized the GitforGits project, we will build on that foundation to organize your files and directories effectively.
 In this recipe, we create a logical and organized directory structure for your Ansible project, ensuring that playbooks, inventories, roles, and configuration files are easy to manage and navigate.
 Review Existing Directory Structure
 In Recipe #3, you created the basic project directories. Let's revisit and expand on that structure:

 mkdir ~/GitforGits
 cd ~/GitforGits
 mkdir playbooks inventory roles group_vars host_vars

 Create Group and Host Variables Directories
 Group and host variables allow you to define specific configurations for groups of hosts or individual hosts. Create these directories within your project:

 mkdir group_vars host_vars

 Place your playbooks in the playbooks directory. You can create subdirectories within playbooks for better organization, especially if you have multiple playbooks:

 mkdir playbooks/setup playbooks/deploy playbooks/maintenance

 Define Roles

Roles help you organize tasks, handlers, variables, files, templates, and modules. Create a basic role structure within the roles directory:

 mkdir -p roles/common/{tasks,handlers,templates,files,vars,defaults,meta}

 Ensure your ansible.cfg file points to the correct inventory and roles paths. Refer to Recipe #2 for initial configuration details. Update ansible.cfg as follows:

 [defaults]
 inventory = inventory/hosts
 remote_user = your_user
 roles_path = roles
 host_key_checking = False

 Sample File Placement
 Following is a brief example of where to place files:
 ● Inventory file: inventory/hosts
● Group variables: group_vars/webservers.yml
● Host variables: host_vars/web1.gitforgits.com.yml
● Main playbook: playbooks/site.yml
● Role tasks: roles/common/tasks/main.yml
 This above structure ensures that your Ansible configurations are modular, scalable, and easy to manage for efficient development and automation workflows.

 Recipe #6: Managing Ansible Configuration Files
 The Ansible configuration file, typically named ansible.cfg defines how Ansible behaves during execution. This file allows you to customize various settings such as inventory paths, remote user details, and plugin configurations. The ansible.cfg file is a plain text file that consists of various sections, each containing configuration options. The primary sections include and others. Each section allows you to define specific parameters that control Ansible’s behavior, such as default inventory file location, remote user settings, and SSH connection options.
 In this recipe, we will manage and customize the Ansible configuration file to optimize your Ansible environment for the GitforGits project.
 Locate Configuration File
 The ansible.cfg file can be located in several places, including:
 ● In your project directory
● In your home directory
● In /etc/ansible/ansible.cfg
 For project-specific configurations, create the ansible.cfg file in your GitforGits project directory:

 cd ~/GitforGits
 nano ansible.cfg

 Basic Configuration
 Start by configuring the basic settings in the [defaults] section. This includes setting the inventory file path and the default remote user:

 [defaults]
 inventory = inventory/hosts

remote_user = your_user
 roles_path = roles
 host_key_checking = False

 Privilege Escalation Settings
 If your playbooks require running tasks with elevated privileges, configure the [privilege_escalation] section:

 [privilege_escalation]
 become = True
 become_method = sudo
 become_user = root
 become_ask_pass = False

 SSH Connection Settings
 Customize SSH connection options in the [ssh_connection] section to optimize the performance and security of SSH connections:

 [ssh_connection]
 ssh_args = -o ControlMaster=auto -o ControlPersist=60s
 pipelining = True

 Testing and Validation
 After updating the ansible.cfg file, test your configuration by running a simple Ansible command to ensure it’s correctly applied:

 ansible all -m ping

 This command should execute without errors, confirming that your configuration is valid and operational.

 Recipe #7: Setting up a Local Virtual Development Environment
 To test and develop Ansible playbooks without affecting your production systems, setting up a local virtual development environment is crucial. In this recipe, you will use Vagrant. Vagrant is an open-source tool that provides easy-to-configure, reproducible, and portable work environments. It uses simple configuration files to set up virtual machines (VMs) and integrates well with various providers like VirtualBox, VMware, and Docker. Vagrant makes it easy to manage VMs, ensuring consistent environments for development and testing.
 In this recipe, we will set up a local virtual development environment using Vagrant, allowing you to develop and test Ansible playbooks for the GitforGits project.
 Install Vagrant
 First, install Vagrant on your Linux system. Download the appropriate package from the Vagrant website and install it. You can use:

 sudo apt update
 sudo apt install -y vagrant

 Install VirtualBox
 Vagrant works with various providers, but VirtualBox is commonly used due to its compatibility and ease of use. Install VirtualBox from the VirtualBox website or use your package manager:

 sudo apt install -y virtualbox

 Initialize Vagrant Project
 Create a directory for your Vagrant project and initialize it. This will create a which defines the configuration of your virtual environment:

mkdir ~/GitforGitsVagrant
 cd ~/GitforGitsVagrant
 vagrant init

 Configure Vagrantfile
 Edit the Vagrantfile to define the VM settings. Open the Vagrantfile in a text editor:

 nano Vagrantfile

 Modify the file to configure a basic VM. Given below is an example configuration:

 Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/bionic64"
 config.vm.network "private_network", type: "dhcp"
 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = 2
 end
 end

 Start and Provision the VM
 Start the VM using Vagrant. This command will create and configure the VM as defined in the

 vagrant up

 Once the VM is up and running, you can SSH into it:

 vagrant ssh

 Integrate with Ansible
 You can now use this VM as a target for your Ansible playbooks. Update your Ansible inventory file to include the Vagrant VM. Find the IP address of the VM using vagrant ssh-config or by logging into the VM and using
 Add the VM to your inventory/hosts file:

[development]
 192.168.56.101 ansible_ssh_user=vagrant ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

 With this, you have successfully set up a local virtual development environment using Vagrant.

 Recipe #8: Connecting to Remote Hosts
 Connecting to remote hosts is a fundamental aspect of using Ansible for automation and management tasks. This recipe will practically walkthrough the process of setting up and verifying connections to your remote hosts from the Ansible control node. The objective of this recipe is to establish and verify secure connections to remote hosts, enabling Ansible to manage and automate tasks across multiple machines.
 Ensure SSH Key-based Authentication
 Refer back to Recipe #4, where you set up SSH key-based authentication. Ensure that the public key is copied to all remote hosts you wish to manage. This step is critical for seamless, passwordless connections.
 Update Inventory File
 Add your remote hosts to the Ansible inventory file. Open the inventory file you created in Recipe #3 and add the IP addresses or hostnames of your remote machines:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com

 Test SSH Connectivity
 Before using Ansible to manage your hosts, manually test SSH connectivity to each remote host:

 ssh user@web1.gitforgits.com

 Ensure that you can connect without being prompted for a password.

Verify Ansible Connectivity
 Use Ansible's ping module to verify connectivity to all hosts in your inventory. This command sends a ping to each host and returns the result:

 ansible all -m ping

 You should see success messages for all the hosts listed in your inventory, confirming that Ansible can connect to them.
 Troubleshoot Connection Issues
 If you encounter any connection issues, check the following:
 ● Ensure the SSH key is correctly copied to the remote host.
● Verify that the remote user has the necessary permissions.
● Confirm the remote host's IP address or hostname is correct.
Check for any firewall rules or network issues that might be blocking the connection.
 Configure SSH Options
 Update the ansible.cfg file to include any necessary SSH options. Open the configuration file and add or update the [ssh_connection] section:

 [ssh_connection]
 ssh_args = -o ControlMaster=auto -o ControlPersist=60s
 pipelining = True

 Test Playbook Execution
 Run a simple playbook to ensure that Ansible can execute tasks on your remote hosts. Create a playbook test.yml in the playbooks directory:

- hosts: all
 tasks:
 - name: Test connectivity
 command: echo "Hello from Ansible"

 Execute the playbook:

 ansible-playbook playbooks/test.yml

 This setup allows Ansible to manage and automate tasks across your infrastructure, ensuring efficient and secure operations. This completes the foundational chapter on getting up and running with the Ansible environment, preparing you for more advanced tasks in subsequent chapters.

 Summary
 Chapter 1 taught you how to set up and configure the Ansible environment, beginning with the installation of Ansible on Linux systems. In this chapter, you learned how to set up Ansible control nodes and how they work as hubs for managing automation jobs. You started the Ansible project for the GitforGits web application, which provides a foundation for managing configurations and playbooks. To improve the safety and efficiency of connections to remote hosts, SSH key-based authentication was implemented. You organized the Ansible directory structure to ensure a clean and manageable project layout, including directories for playbooks, inventory, roles, group variables, and host variables.
 Ansible configuration file management was covered, with options for customizing inventory paths, remote user details, privilege escalation, and SSH connection settings. In order to build and test Ansible playbooks in a controlled environment, away from live production systems, you can use Vagrant to set up a local virtual development environment. This included installing Vagrant and VirtualBox, setting up a Vagrant project, configuring the Vagrantfile, and integrating the Vagrant virtual machines with Ansible.

Finally, you connected to remote hosts to test SSH connectivity and Ansible's ability to manage and automate tasks on multiple machines. This included testing SSH key-based connections, updating the Ansible inventory file, and utilizing the Ansible ping module to ensure successful communication with remote hosts. Additionally, we covered how to configure SSH options in the Ansible configuration file, test the execution of the playbook to ensure a successful setup, and troubleshoot common connection issues.
 With the knowledge you gained in this chapter, you should be able to install, configure, initialize projects, establish secure connections, organize directories, and test Ansible on Linux. This will set you up well for more complex automation tasks.

 Knowledge Exercise
 Question 1: What is the primary role of an Ansible control node?
 A) To act as a backup server
B) To run and manage Ansible commands and configurations
C) To store inventory files
D) To host web applications
 Answer:
B) To run and manage Ansible commands and configurations
 The control node is the central point where Ansible commands are executed and managed. It controls the automation processes for remote hosts.
 Question 2: Which command is used to install Ansible on a Debian-based Linux system?
 A) sudo yum install ansible -y
B) sudo apt install ansible -y
C) sudo dnf install ansible -y
D) sudo install ansible -y
 Answer:
B) sudo apt install ansible -y
 For Debian-based systems like Ubuntu, the apt package manager is used to install Ansible.
 Question 3: How can you verify that Ansible is correctly installed on your system?
A) ansible --check
B) ansible --validate
C) ansible --version
D) ansible --test
 Answer:
C) ansible --version

Running ansible --version provides information about the installed Ansible version and confirms its presence on the system.
 Question 4: Which file is edited to add remote hosts for Ansible management?
A) inventory.txt
B) hosts.cfg
C) ansible_hosts
D) /etc/ansible/hosts
 Answer:
D) /etc/ansible/hosts
 The /etc/ansible/hosts file is the default inventory file where remote hosts are listed for Ansible to manage.
 Question 5: What is the purpose of SSH key-based authentication in Ansible?
A) To use passwords for secure connections
B) To eliminate the need for passwords during SSH connections
C) To connect using a graphical interface
D) To improve network speed
 Answer:
B) To eliminate the need for passwords during SSH connections
 SSH key-based authentication enhances security and efficiency by allowing passwordless SSH connections using cryptographic keys.
 Question 6: Which command copies the public SSH key to a remote host?
A) ssh-copy-id user@remote_host
B) ssh-keygen user@remote_host
C) ssh-add user@remote_host
D) scp-key user@remote_host

Answer:
A) ssh-copy-id user@remote_host
 The ssh-copy-id command is used to copy the public SSH key to a remote host, enabling key-based authentication.
 Question 7: What is the significance of the ansible.cfg file in an Ansible project?
A) It stores playbooks
B) It defines how Ansible behaves during execution
C) It contains inventory details
D) It holds the source code of Ansible modules
 Answer:
B) It defines how Ansible behaves during execution
 The ansible.cfg file allows customization of Ansible’s behavior, such as setting inventory paths and configuring SSH options.
 Question 8: Which command is used to initialize a Vagrant project for setting up a local virtual environment?
A) vagrant start
B) vagrant init
C) vagrant create
D) vagrant setup
 Answer:
B) vagrant init
 The vagrant init command initializes a Vagrant project and creates a Vagrantfile to define the VM configuration.
 Question 9: What information is typically found in the [defaults] section of the ansible.cfg file?
A) SSH key details
B) Remote user and inventory file path
C) Database credentials

D) Network configurations
 Answer:
B) Remote user and inventory file path
 The [defaults] section of the ansible.cfg file contains settings such as the default inventory file path and the remote user.
 Question 10: Which command can be used to test connectivity to all hosts listed in the Ansible inventory?
A) ansible all -m ping
B) ansible all -m test
C) ansible all -m connect
D) ansible all -m ssh
 Answer:
A) ansible all -m ping
 The ansible all -m ping command sends a ping to all hosts in the inventory to verify connectivity.
 Question 11: Why is it important to organize the Ansible directory structure?
A) To increase network speed
B) To keep the project clean and manageable
C) To reduce the size of inventory files
D) To make Ansible run faster
 Answer:
B) To keep the project clean and manageable
 A well-organized directory structure helps maintain clarity and manageability, especially in larger projects.
 Question 12: Which directory in an Ansible project is typically used to store playbooks?
A) roles
B) playbooks

C) inventory
D) vars
 Answer:
B) playbooks
 The playbooks directory is used to store playbook files, which contain the automation tasks to be executed by Ansible.
 Question 13: What is the role of the group_vars and host_vars directories in an Ansible project?
A) To store playbooks
B) To define variables for groups and hosts
C) To hold the ansible.cfg file
D) To list remote hosts
 Answer:
B) To define variables for groups and hosts
 The group_vars and host_vars directories are used to define variables specific to groups of hosts or individual hosts.
 Question 14: Which Vagrant command is used to start the virtual machine defined in the
A) vagrant boot
B) vagrant up
C) vagrant start
D) vagrant init
 Answer:
B) vagrant up
 The vagrant up command starts the virtual machine as defined in the
 Question 15: How do you SSH into a Vagrant-managed virtual machine?
A) vagrant connect

B) vagrant ssh
C) vagrant login
D) vagrant access
 Answer:
B) vagrant ssh
 The vagrant ssh command is used to SSH into a Vagrant-managed virtual machine.
 Question 16: What does the hosts directive in an Ansible playbook specify?
A) The inventory file location
B) The remote user
C) The target machines for the playbook
D) The SSH key file
 Answer:
C) The target machines for the playbook
 The hosts directive in a playbook specifies which machines the playbook should run on.
 Question 17: Why might you configure ControlMaster and ControlPersist options in the [ssh_connection] section of
A) To increase disk space
B) To optimize SSH connections
C) To enable graphical interfaces
D) To store passwords
 Answer:
B) To optimize SSH connections
 ControlMaster and ControlPersist options optimize SSH connections by allowing multiple sessions to share a single connection.

Question 18: What command is used to create a new SSH key pair?
A) ssh-copy-id
B) ssh-keygen
C) ssh-add
D) ssh-config
 Answer:
B) ssh-keygen
 The ssh-keygen command generates a new SSH key pair.
 Question 19: In which section of the ansible.cfg file do you set the method for privilege escalation?
A) [ssh_connection]
B) [privilege_escalation]
C) [defaults]
D) [inventory]
 Answer:
B) [privilege_escalation]
 The [privilege_escalation] section is used to configure how Ansible should handle privilege escalation, such as using
 Question 20: How do you add a new remote host to the Ansible inventory file?
A) By editing the ansible.cfg file
B) By running ansible-inventory --add
C) By adding the host entry to the /etc/ansible/hosts file
D) By creating a new playbook
 Answer:
C) By adding the host entry to the /etc/ansible/hosts file
 To add a new remote host, you edit the /etc/ansible/hosts file and include the host details.

 Chapter 2: Writing and Running Playbooks

Introduction
 In the preceding chapter, you acquired the knowledge necessary to establish and configure your Ansible environment. Ansible was installed, control nodes were configured, the GitforGits project was initialized, SSH key-based authentication was set up, directory structure was organized, configuration files were managed, a local virtual environment was created with Vagrant, and remote hosts were connected to. Now that you have finished the basic steps, you can move on to the meat and potatoes of Ansible automation: writing and running playbooks.
 You will learn how to make and organize playbooks in this chapter. The initial step is to develop your initial playbook, which serves as a base for all automation tasks. If you want to write automation scripts that are more dynamic and flexible, you need to learn how to use variables and facts within playbooks. In this chapter, you will find out how to use conditionals so that playbooks can evaluate situations using predefined criteria and how to loop over tasks so that repetitive operations can be executed more efficiently.

It is essential to debug playbook errors in order to ensure the smooth operation of your automation scripts and to troubleshoot concerns. You will explore the methods for recognizing and resolving common problems that may occur. When you use handlers for task notifications, you can efficiently and responsively automate tasks that need to be triggered by changes. By reusing tasks and dividing intricate playbooks into manageable components, the organization of playbooks with includes and imports will ensure that your codebase remains clean and maintainable. At last, you'll find out how to use Ansible's power to automate and manage tasks on a large scale by running playbooks across multiple machines.
 After finishing this chapter, you will know everything there is to know about Ansible playbooks and how to write and run them.

 Recipe #1: Creating First Playbook
 Creating first playbook is a significant step in utilizing Ansible for automation. A playbook is a YAML file that defines a set of tasks to be executed on specified hosts. This recipe will practically walkthrough the process of writing and running a simple playbook. In this recipe, we will create a basic Ansible playbook that performs a simple task on a remote host, laying the foundation for more complex automation tasks.
 Understand Playbook Structure
 A playbook consists of one or more plays. Each play targets a group of hosts and defines tasks to be executed. Following is a basic structure:

 - name: Ensure Nginx is installed
 hosts: webservers
 become: yes
 tasks:
 - name: Install Nginx
 apt:
 name: nginx
 state: present

 Create a new playbook file in your playbooks directory:

 nano ~/GitforGits/playbooks/first_playbook.yml

 Define Play and Tasks
 Copy the given below script into your playbook file. This playbook ensures that Nginx is installed on all hosts in the webservers group:

 - name: Ensure Nginx is installed

 hosts: webservers
 become: yes
 tasks:
 - name: Install Nginx
 apt:
 name: nginx
 state: present

 Save the changes and close the text editor.
 Run the Playbook
 Execute the playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/first_playbook.yml

 This command will run the playbook on all hosts in the webservers group, installing Nginx if it is not already present.
 Verify the Results
 After running the playbook, verify that Nginx is installed on the target hosts by accessing them and checking the service status:

 ssh user@web1.gitforgits.com
 sudo systemctl status nginx

 This playbook serves as a foundation for building more complex automation tasks, allowing you to efficiently manage and configure your infrastructure.

 Recipe #2: Using Variables and Facts in Playbooks
 Variables and facts are fundamental elements in Ansible playbooks that allow for dynamic and flexible automation. Variables store values that can be reused throughout your playbooks, while facts are automatically gathered information about the remote hosts, such as IP addresses, operating system details, and hardware specifications.
 Advanced Aspects of Variables and Facts
 Variables can be defined in multiple ways, including directly in playbooks, in inventory files, or in separate variable files. They can also be passed as extra variables during playbook execution. Ansible facts are gathered by the setup module, which collects details about the remote hosts and makes them accessible within your playbooks.
 The learnings behind this recipe is to demonstrate the use of variables and facts in Ansible playbooks to create more dynamic and adaptable automation scripts.
 Define Variables in Playbooks
 Variables can be defined directly within a playbook under the vars section:

 nano ~/GitforGits/playbooks/variables_playbook.yml

 Put the following snippet:

 - name: Using Variables and Facts
 hosts: webservers
 become: yes
 vars:
 package_name: nginx
 service_name: nginx

 tasks:
 - name: Install a package
 apt:
 name: "{{ package_name }}"
 state: present
 - name: Ensure the service is running
 service:
 name: "{{ service_name }}"
 state: started

 Use Facts in Playbooks
 Facts are automatically gathered and can be accessed using the ansible_facts dictionary. Modify the playbook to use a fact:

 - name: Using Variables and Facts
 hosts: webservers
 become: yes
 vars:
 package_name: nginx
 service_name: nginx
 tasks:
 - name: Install a package
 apt:
 name: "{{ package_name }}"
 state: present
 - name: Ensure the service is running
 service:
 name: "{{ service_name }}"
 state: started
 - name: Print OS information

 debug:
 msg: "The operating system is {{ ansible_facts['distribution'] }} {{ ansible_facts['distribution_version'] }}"

 Save the changes, close the text editor and execute the playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/variables_playbook.yml

 After running the playbook, check the output to see if the package was installed, the service started, and the OS information was printed:

 ssh user@web1.gitforgits.com
 dpkg -l | grep nginx
 sudo systemctl status nginx

 With this, you have successfully used variables and facts in an Ansible playbook. This allows for more flexible and dynamic playbooks, enabling you to adapt to different environments and requirements efficiently. Understanding and utilizing variables and facts is essential for creating robust and adaptable automation scripts.

 Recipe #3: Implementing Conditionals in Playbooks
 Understand Conditional Statements
 Implementing conditionals in Ansible playbooks allows you to execute tasks based on specific criteria or conditions. Conditional statements are defined using the when keyword. These conditions can evaluate variables, facts, or other criteria to determine whether a task should run. This adds flexibility to your automation scripts, enabling them to respond dynamically to different situations.
 In this recipe, you will learn to implement conditionals in Ansible playbooks to execute tasks based on specific conditions. To begin with, create a new playbook file to practice implementing conditionals:

 nano ~/GitforGits/playbooks/conditionals_playbook.yml

 Define Variables and Tasks with Conditions
 In the playbook, define tasks that only run if certain conditions are met. Given below is an example where tasks depend on the operating system:

 - name: Implementing Conditionals
 hosts: webservers
 become: yes
 vars:
 package_name: nginx
 tasks:
 - name: Install Nginx on Debian-based systems
 apt:
 name: "{{ package_name }}"
 state: present

 when: ansible_facts['os_family'] == "Debian"
 - name: Install Nginx on RedHat-based systems
 yum:
 name: "{{ package_name }}"
 state: present
 when: ansible_facts['os_family'] == "RedHat"
 - name: Ensure Nginx is running
 service:
 name: nginx
 state: started

 Save the changes and close the text editor. After running the playbook, verify that the tasks were executed correctly based on the conditions. Check if Nginx is installed and running on both Debian-based and RedHat-based systems:

 ssh user@web1.gitforgits.com
 dpkg -l | grep nginx
 sudo systemctl status nginx
 ssh user@web2.gitforgits.com
 rpm -qa | grep nginx
 sudo systemctl status nginx

 This approach ensures that tasks are executed only when specific criteria are met, adding flexibility and precision to your automation scripts.

 Recipe #4: Looping over Tasks
 Looping over tasks in Ansible playbooks is a powerful feature that allows you to execute a task multiple times with different inputs. This capability is essential when you need to perform repetitive actions efficiently, such as installing multiple packages, creating several user accounts, or configuring various services. By using loops, you can avoid duplicating code and make your playbooks more concise and maintainable.
 In this recipe, you will learn to loop over tasks in Ansible playbooks, enhancing the efficiency and readability of your automation scripts.
 Understand Looping Constructs
 Ansible provides several ways to implement loops in playbooks, with the most common method being the loop keyword. This keyword allows you to iterate over a list of items and execute the task for each item.
 Now, create a new playbook file to practice looping over tasks:

 nano ~/GitforGits/playbooks/loops_playbook.yml

 Define Tasks with Loops
 In the playbook, define tasks that use the loop keyword to perform repetitive actions. Given below is an example where multiple packages are installed using a loop:

 - name: Looping Over Tasks
 hosts: webservers
 become: yes
 vars:
 packages:
 - nginx

 - git
 - curl
 tasks:
 - name: Install multiple packages
 apt:
 name: "{{ item }}"
 state: present
 loop: "{{ packages }}"

 An alternative way to loop over items is by using This method is being deprecated in favor of but it’s still widely used in existing playbooks:

 - name: Looping Over Tasks with with_items
 hosts: webservers
 become: yes
 vars:
 services:
 - nginx
 - apache2
 tasks:
 - name: Ensure services are running
 service:
 name: "{{ item }}"
 state: started
 with_items: "{{ services }}"

 After running the playbook, verify that the packages were installed and services started on the target hosts:

 ssh user@web1.gitforgits.com
 dpkg -l | grep -E 'nginx|git|curl'

sudo systemctl status nginx
 sudo systemctl status apache2

 With this, you have successfully implemented loops in an Ansible playbook. Using loops reduces redundancy and simplifies your playbooks, making them easier to read and maintain, and it is particularly useful when dealing with repetitive tasks.

 Recipe #5: Debugging Playbook Errors
 Debugging playbook errors is a crucial skill for ensuring your Ansible automation scripts run smoothly. Understanding how to identify and fix issues can save time and prevent disruptions in your automation workflows.
 In this recipe, we will teach you how to effectively debug and resolve errors in Ansible playbooks, enhancing the reliability and performance of your automation scripts.
 Use --check and --diff Options
 Ansible provides options to test playbooks without making actual changes. The --check option performs a dry run, while the --diff option shows changes that would be made:

 ansible-playbook ~/GitforGits/playbooks/loops_playbook.yml --check --diff

 This command simulates the playbook execution, helping you identify potential issues without altering your systems.
 Enable Verbose Mode
 Verbose mode provides detailed output, making it easier to pinpoint errors. Use the or -vvv options to increase verbosity:

 ansible-playbook ~/GitforGits/playbooks/loops_playbook.yml -vv

 Verbose output includes detailed information about task execution, which can help you understand where and why errors occur.
 Use the debug Module

The debug module allows you to print variable values and custom messages during playbook execution. This is helpful for understanding the state of your environment and troubleshooting issues:

 - name: Debugging Playbook
 hosts: webservers
 become: yes
 vars:
 packages:
 - nginx
 - git
 - curl
 tasks:
 - name: Install multiple packages
 apt:
 name: "{{ item }}"
 state: present
 loop: "{{ packages }}"
 - name: Print variable value
 debug:
 msg: "Package being installed: {{ item }}"
 loop: "{{ packages }}"

 Check Return Codes and Standard Output
 Ansible modules return detailed information about task execution. Capture and inspect this information to debug issues:

 - name: Capture command output
 command: ls /nonexistent
 register: result
 - name: Print command output
 debug:
 var: result

The register keyword stores the output of a task, and the debug module prints it, allowing you to analyze the results and diagnose problems.
 Review Playbook Logs
 Ansible logs provide valuable insights into playbook execution. Check the logs to understand the sequence of events leading up to an error:

 tail -f /var/log/ansible.log

 Ensure that logging is enabled in your ansible.cfg file:

 [defaults]
 log_path = /var/log/ansible.log

 Correcting Common Errors
 Ensure YAML syntax is correct, such as proper indentation and correct use of colons and dashes.
● Verify module arguments and ensure they are correctly specified.
● Check SSH connectivity and authentication issues.
● Ensure variables are correctly defined and referenced.
 Rerun the Playbook
 After identifying and correcting errors, rerun the playbook to verify that the issues are resolved:

 ansible-playbook ~/GitforGits/playbooks/loops_playbook.yml

 Now, you have learned how to debug and resolve errors in Ansible playbooks. This ensures that your automation scripts run smoothly and reliably, reducing downtime and improving overall efficiency.

 Recipe #6: Using Handlers for Task Notifications
 Handlers are special tasks that are triggered by other tasks when a change occurs. They are typically used to perform actions that should only happen if something has changed, such as restarting a service after a configuration file has been modified. Handlers help ensure that these actions are only taken when necessary, improving the efficiency and reliability of your playbooks.
 In this recipe, you will learn to use handlers in Ansible playbooks to perform tasks based on notifications from other tasks.
 Understand Handlers
 Handlers are defined in the same way as regular tasks but are placed under a handlers section. A task can notify one or more handlers if it changes the state of the system. Handlers are run at the end of a play, ensuring that all necessary changes are made before any dependent actions are taken.
 To begin with, create a new playbook file to practice using handlers:

 nano ~/GitforGits/playbooks/handlers_playbook.yml

 Define Tasks and Handlers
 In the playbook, define tasks that notify handlers when changes occur. Given below is an example where a handler restarts the Nginx service if the configuration file is modified:

 - name: Using Handlers
 hosts: webservers
 become: yes
 tasks:
 - name: Ensure Nginx is installed
 apt:

 name: nginx
 state: present
 - name: Copy Nginx configuration file
 copy:
 src: /path/to/local/nginx.conf
 dest: /etc/nginx/nginx.conf
 owner: root
 group: root
 mode: '0644'
 notify:
 - Restart Nginx
 handlers:
 - name: Restart Nginx
 service:
 name: nginx
 state: restarted

 Save the changes, close the text editor and execute the playbook using the ansible-playbook command. After running the playbook, verify that the Nginx service was restarted if the configuration file was changed:

 ssh user@web1.gitforgits.com
 sudo systemctl status nginx

 The output should show that the Nginx service was restarted if the configuration file was modified.
 Handlers can also be used for various tasks beyond restarting services. Given below are a few advanced use cases:
 Reloading Services: Handlers can be used to reload services, ensuring new configurations are applied without a full restart.

Running Scripts: Handlers can trigger custom scripts to perform additional setup or cleanup tasks.
Combining Handlers: Multiple tasks can notify the same handler, allowing a single action to be taken based on multiple conditions.
 By following these steps, you have learned how to use handlers in Ansible playbooks to perform task notifications. Handlers ensure that actions are only taken when necessary, making your playbooks more efficient and reliable.

 Recipe #7: Organizing Playbooks with Includes and Imports
 Organizing playbooks with includes and imports helps you manage complex automation tasks by breaking down large playbooks into smaller, reusable components. This approach enhances readability, maintainability, and reusability of your automation code. Includes and imports allow you to include tasks, variables, handlers, and other playbook components from separate files, making it easier to structure and manage your Ansible projects.
 Significance of Includes and Imports
 Modularity: Breaking down playbooks into smaller files makes them easier to manage and understand.
● Reusability: Reusable components can be included in multiple playbooks, reducing duplication.
● Maintainability: Smaller, focused files are easier to maintain and update.
Readability: Clear, organized playbooks are easier to read and follow, especially for complex automation tasks.
 In this recipe, you will learn to use includes and imports in Ansible playbooks to create modular and organized automation scripts.
 Understanding Includes and Imports
 include_tasks allows you to include a task file at runtime. It is dynamic and does not require the playbook to be re-parsed.
import_tasks includes a task file at parse time, making it static. It is parsed when the playbook starts running.
● include_playbook allows you to include an entire playbook at runtime.

● import_playbook includes an entire playbook at parse time.
 Create the Task Files
 Create a directory for task files and add a sample task file:

 mkdir ~/GitforGits/playbooks/tasks
 nano ~/GitforGits/playbooks/tasks/install_packages.yml

 Add the given below script to the task file:

 - name: Install Nginx
 apt:
 name: nginx
 state: present
 - name: Install Git
 apt:
 name: git
 state: present

 Create Main Playbook File
 Create a new playbook file that uses includes and imports:

 nano ~/GitforGits/playbooks/main_playbook.yml

 Add the given below script to include the tasks:

 - name: Main Playbook with Includes and Imports
 hosts: webservers
 become: yes
 tasks:
 - name: Include install_packages tasks
 include_tasks: tasks/install_packages.yml
 - name: Include setup_handlers
 include_tasks: tasks/setup_handlers.yml

Create Additional Task Files
 Create another task file for handlers:

 nano ~/GitforGits/playbooks/tasks/setup_handlers.yml

 Add the script as given below:

 - name: Ensure Nginx is running
 service:
 name: nginx
 state: started
 - name: Ensure Git is installed
 command: git --version

 After running the playbook, verify that the packages were installed and services started on the target hosts:

 ssh user@web1.gitforgits.com
 dpkg -l | grep nginx
 dpkg -l | grep git
 sudo systemctl status nginx
 git --version

 With these steps, you have learned how to organize playbooks with includes and imports in Ansible and also this approach enhances the modularity, reusability, and maintainability of your automation scripts, making it easier to manage complex automation tasks efficiently.

 Recipe #8: Running Playbooks Across Multiple Machines
 Running playbooks across multiple machines is a fundamental aspect of Ansible's power in managing large-scale infrastructures. This capability allows you to automate tasks simultaneously on multiple hosts, ensuring consistency and efficiency in your configurations and deployments. It is essential for scenarios such as rolling out updates, applying security patches, configuring services, and deploying applications across a fleet of servers.
 Necessity of Running Playbooks Across Multiple Machines
 ● Consistency: Ensures all machines are configured uniformly, reducing configuration drift.
● Efficiency: Automates repetitive tasks across many hosts, saving time and effort.
Scalability: Manages infrastructure at scale, allowing for the automation of hundreds or thousands of servers.
● Reliability: Reduces the risk of human error by automating complex and repetitive tasks.
 In this recipe, you will learn to run Ansible playbooks across multiple machines to manage and automate tasks efficiently.
 Define Inventory Groups
 Ensure your inventory file categorizes the machines into groups:

 nano ~/GitforGits/inventory/hosts

 Organize your hosts into groups:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com

db2.gitforgits.com

 Again, create a new playbook file to practice running tasks across multiple machines:

 nano ~/GitforGits/playbooks/multi_machine_playbook.yml

 Define Tasks for Multiple Groups
 In the playbook, define tasks that target multiple groups of machines:

 - name: Configure Web Servers
 hosts: webservers
 become: yes
 tasks:
 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 - name: Start Nginx service
 service:
 name: nginx
 state: started
 - name: Configure Database Servers
 hosts: databases
 become: yes
 tasks:
 - name: Ensure MySQL is installed
 apt:
 name: mysql-server
 state: present
 - name: Start MySQL service

 service:
 name: mysql
 state: started

 After running the playbook, verify that the tasks were executed correctly on all target hosts:

 ssh user@web1.gitforgits.com
 dpkg -l | grep nginx
 sudo systemctl status nginx
 ssh user@web2.gitforgits.com
 dpkg -l | grep nginx
 sudo systemctl status nginx
 ssh user@db1.gitforgits.com
 dpkg -l | grep mysql-server
 sudo systemctl status mysql
 ssh user@db2.gitforgits.com
 dpkg -l | grep mysql-server
 sudo systemctl status mysql

 These steps made possible to run Ansible playbooks across multiple machines. This approach is essential for managing large-scale infrastructures efficiently, ensuring consistent configurations and streamlined automation processes across your entire environment.

 Summary
 In this chapter, you learned the fundamentals of Ansible playbook creation and execution, beginning with the creation of your first playbook. You learned about remote host facts and variables, which allowed you to create dynamic and adaptable playbooks. The implementation of conditionals enabled the execution of tasks based on specific criteria, thereby increasing the flexibility of your automation scripts. Looping over tasks is a skill that you acquired, enabling you to perform repetitive tasks without the need to duplicate code. The debug module, verbose mode, --check, and --diff were all utilized to identify and resolve playbook errors. Also addressed were the methods of debugging. To maximize the efficiency of the playbook, task notification handlers were used to make sure that actions like service restarts only happened when absolutely needed. It was shown how to organize playbooks using imports and includes, which allows for better readability and maintainability by separating big playbooks into multiple modular components. Ultimately, you executed playbooks on multiple machines, simultaneously managing and automating tasks on various hosts to guarantee the consistency and efficiency of your configurations.

When you put what you've learned from both chapters into practice, you'll be well-equipped to create Ansible environments, configure them, and write effective playbooks. The initial chapter addressed the following topics: the installation of Ansible, the configuration of control nodes, the initialization of projects, the establishment of SSH key-based authentication, the organization of directory structures, the management of configuration files, the establishment of a local virtual development environment, and the connection to remote hosts. These abilities, when combined with the playbook writing techniques outlined in this chapter, allow you to automate intricate tasks, manage infrastructure at a large scale, and ensure that your systems are configured consistently and reliably.

 Knowledge Exercise
 Question What is the primary purpose of a playbook in Ansible?
A) To install Ansible
B) To define a set of tasks to be executed on specified hosts
C) To manage Ansible configuration files
D) To set up SSH key-based authentication
 Answer:
B) To define a set of tasks to be executed on specified hosts
 Playbooks are YAML files that describe tasks Ansible should run on specified hosts, forming the core of Ansible’s automation capabilities.
 Question 2: How are variables defined in an Ansible playbook?
A) Under the tasks section
B) In a separate file
C) Under the vars section
D) In the inventory file
 Answer:
C) Under the vars section
 Variables can be defined directly within a playbook under the vars section, allowing for dynamic and reusable values in tasks.
 Question 3: Which module is used to gather facts about remote hosts in Ansible?
A) setup
B) gather_facts
C) collect_facts
D) fetch_facts
 Answer:
A) setup

The setup module automatically gathers facts about remote hosts, providing detailed information that can be used within playbooks.
 Question 4: What keyword is used to implement conditionals in Ansible playbooks?
A) if
B) when
C) conditional
D) unless
 Answer:
B) when
 The when keyword is used to implement conditionals in Ansible playbooks, allowing tasks to run based on specific criteria.
 Question 5: Which option allows you to simulate the execution of a playbook without making any changes?
A) --dry-run
B) --simulate
C) --check
D) --test
 Answer:
C) --check
 The --check option performs a dry run, simulating the execution of a playbook without making any actual changes to the systems.
 Question 6: What is the primary function of the debug module in Ansible playbooks?
A) To install debug tools
B) To print variable values and custom messages
C) To gather system logs

D) To restart services
 Answer:
B) To print variable values and custom messages
 The debug module is used to print variable values and custom messages, helping troubleshoot and understand playbook execution.
 Question 7: How are handlers defined in an Ansible playbook?
A) Under the tasks section
B) Under the vars section
C) Under the handlers section
D) In the inventory file
 Answer:
C) Under the handlers section
 Handlers are defined under the handlers section in a playbook and are triggered by other tasks when changes occur.
 Question 8: Which keyword is used to include task files at runtime in Ansible playbooks?
A) import_tasks
B) include_tasks
C) include
D) import
 Answer:
B) include_tasks
 The include_tasks keyword is used to include task files at runtime, allowing for dynamic inclusion of tasks.
 Question 9: What is the advantage of using loop in Ansible playbooks?
A) It speeds up playbook execution

B) It allows tasks to be executed multiple times with different inputs
C) It simplifies playbook syntax
D) It reduces the number of hosts
 Answer:
B) It allows tasks to be executed multiple times with different inputs
 Using loop in Ansible playbooks allows tasks to be executed multiple times with different inputs, making playbooks more efficient and readable.
 Question 10: What command is used to run an Ansible playbook on specified hosts?
A) ansible
B) ansible-playbook
C) ansible-run
D) ansible-execute
 Answer:
B) ansible-playbook
 The ansible-playbook command is used to run an Ansible playbook on specified hosts, executing the tasks defined in the playbook.
 Question 11: How can you ensure a task only runs on Debian-based systems using conditionals?
A) when: ansible_os_family == "Debian"
B) when: ansible_facts['os_family'] == "Debian"
C) if: ansible_os_family == "Debian"
D) unless: ansible_os_family == "Debian"
 Answer:
B) when: ansible_facts['os_family'] == "Debian"

To ensure a task only runs on Debian-based systems, use the when keyword with the fact
 Question 12: Which command provides detailed output during playbook execution for debugging purposes?
A) ansible-playbook -d
B) ansible-playbook -v
C) ansible-playbook -vv
D) ansible-playbook --debug
 Answer:
C) ansible-playbook -vv
 Using ansible-playbook -vv increases verbosity, providing detailed output that is useful for debugging.
 Question 13: What section of a playbook is used to define reusable sets of tasks?
A) vars
B) roles
C) tasks
D) handlers
 Answer:
B) roles
 The roles section is used to define reusable sets of tasks, making playbooks modular and maintainable.
 Question 14: How do you print the value of a variable during playbook execution?
A) Using the print module
B) Using the display module
C) Using the debug module
D) Using the echo module
 Answer:
C) Using the debug module

The debug module is used to print the value of a variable during playbook execution, helping to understand and troubleshoot the playbook.
 Question 15: Which keyword is used to notify a handler to execute after a task has changed?
A) alert
B) trigger
C) notify
D) signal
 Answer:
C) notify
 The notify keyword is used to notify a handler to execute after a task has changed, ensuring dependent actions are taken only when necessary.
 Question 16: What is the purpose of the import_tasks keyword in Ansible playbooks?
A) To include tasks at runtime
B) To include tasks at parse time
C) To import variables
D) To import inventory files
 Answer:
B) To include tasks at parse time
 The import_tasks keyword includes tasks at parse time, making it static and parsed when the playbook starts running.
 Question 17: Which command can be used to test a playbook without making any changes?
A) ansible-playbook --dry-run
B) ansible-playbook --simulate
C) ansible-playbook --check

D) ansible-playbook --test
 Answer:
C) ansible-playbook --check
 The --check option simulates the execution of a playbook without making any actual changes, helping to identify potential issues.
 Question 18: How do you ensure that a service is restarted only if a configuration file changes?
A) Use the restart module
B) Define a handler and use notify
C) Use the changed_when keyword
D) Use the conditional keyword
 Answer:
B) Define a handler and use notify
 To ensure a service is restarted only if a configuration file changes, define a handler and use the notify keyword to trigger the handler when the task changes.
 Question 19: What is the benefit of organizing playbooks with includes and imports?
A) It speeds up playbook execution
B) It makes playbooks more modular and maintainable
C) It simplifies playbook syntax
D) It reduces the number of tasks
 Answer:
B) It makes playbooks more modular and maintainable
 Organizing playbooks with includes and imports makes them more modular and maintainable, allowing for reusable components and better organization.

Question 20: How do you specify a list of items to loop over in an Ansible playbook?
A) Using the list keyword
B) Using the for keyword
C) Using the loop keyword
D) Using the iterate keyword
 Answer:
C) Using the loop keyword
 The loop keyword is used to specify a list of items to iterate over in an Ansible playbook, making tasks more efficient and readable.

 Chapter 3: Managing Inventories

Introduction
 As you recall from the last chapter, Ansible playbooks are a powerful tool for automating tasks with the help of variables, conditionals, loops, and handlers. You concurrently studied the organization of playbooks with imports and includes and the execution of these playbooks across multiple machines.
 Inventory management is covered in detail in this chapter. First, you will establish static inventories, which are a straightforward and uncomplicated approach to compiling a list of hosts. Subsequently, you will proceed to develop dynamic inventories that can automatically generate host lists by utilizing external data sources. Additionally, you are going to learn the utilization of inventory plugins to integrate with a variety of external systems and services.
 You will acquire the knowledge necessary to effectively define and utilize these groups, which enables more organized and scalable management by grouping hosts in inventories. By utilizing host and group variables, it is possible to customize configurations to correspond with particular hosts or groups. Additionally, you will acquire the knowledge necessary to effectively manage inventory files with Git, which will guarantee collaboration and version control. Lastly, you will be prepared to handle typical issues that arise during inventory management by learning how to troubleshoot inventory issues.
 At the chapter's conclusion, you will have a clear understanding of how to structure and identify the hosts that your playbooks will automate.

 Recipe #1: Setting up Static Inventories
 Inventories are essential for defining the hosts and groups of hosts that Ansible will manage. An inventory file lists the managed nodes and groups them into categories, allowing you to target specific hosts or groups with your playbooks. This structured approach helps Ansible users manage large infrastructures efficiently by organizing hosts in a clear and scalable manner.
 Purpose of Inventory
 Host Management: Inventories list all the hosts managed by Ansible, making it easy to target specific machines.
Grouping: Hosts can be grouped based on roles, environments, or any logical categorization, simplifying the execution of tasks on related hosts.
Variable Assignment: Inventories allow for the assignment of variables to hosts and groups, enabling customized configurations for different parts of the infrastructure.
● Scalability: By organizing hosts into groups, Ansible can manage large-scale environments more effectively.
 Types of Inventories
 Static Inventories: These are simple text files where hosts and groups are listed manually. They are straightforward but require manual updates.
Dynamic Inventories: These are generated dynamically based on external data sources such as cloud provider APIs, CMDBs, or other services. They automatically update the list of hosts, making them ideal for dynamic environments.

In this recipe, you will learn to set up a static inventory, providing a foundation for managing hosts and groups in a straightforward and organized manner.
 Create Inventory File
 Create a directory for your inventory files if you haven’t already:

 mkdir ~/GitforGits/inventory

 Create a new static inventory file:

 nano ~/GitforGits/inventory/hosts

 Define Hosts and Groups
 List your hosts and organize them into groups. Given below is an example inventory file:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com
 [all:vars]
 ansible_user=your_user
 ansible_ssh_private_key_file=~/.ssh/id_rsa

 In the above code snippet,
 ● Hosts are categorized into webservers and databases groups.
● Variables common to all hosts are defined under
 Ensure your Ansible configuration points to the correct inventory file. Open the ansible.cfg file:

 nano ~/GitforGits/ansible.cfg

 Add or update the inventory path:

[defaults]
 inventory = inventory/hosts

 Verify the Inventory
 Test the inventory to ensure it’s correctly set up. Use the ansible-inventory command to list all hosts:

 ansible-inventory --list -y

 This command should display a structured output of your inventory, confirming that Ansible can read and interpret it correctly.
 Use Inventory in a Playbook
 Create a playbook to test the inventory setup:

 nano ~/GitforGits/playbooks/test_inventory.yml

 Add the script as given below:

 - name: Test Inventory
 hosts: all
 tasks:
 - name: Ping all hosts
 ping:

 Execute the playbook to verify that Ansible can connect to all hosts listed in the inventory:

 ansible-playbook ~/GitforGits/playbooks/test_inventory.yml

 By following these steps, you have successfully set up a static inventory. This setup allows you to manage and organize your hosts effectively, providing a foundation for executing playbooks across different groups and environments. Static inventories are simple and straightforward, making them ideal for smaller or more static infrastructures.

 Recipe #2: Creating Dynamic Inventories
 Dynamic inventories allow you to automatically generate and update the list of hosts based on external data sources. This is particularly useful for managing dynamic environments, such as cloud infrastructure, where hosts are frequently added or removed. Dynamic inventories help ensure that your inventory is always up-to-date without requiring manual updates.
 Purpose and Benefits of Dynamic Inventories
 ● Automation: Automatically updates the list of hosts, reducing the need for manual intervention.
● Scalability: Ideal for large and dynamic environments where hosts are frequently changing.
Integration: Can integrate with cloud providers, CMDBs, and other external data sources to pull host information.
● Consistency: Ensures the inventory is always in sync with the actual infrastructure.
 In this recipe, you will learn to create and use dynamic inventories, leveraging external data sources to manage hosts efficiently.
 Install boto3
 Depending on your environment, you may need to install additional packages or plugins. For example, to use AWS as a dynamic inventory source, you need the boto3 package:

 pip install boto3

 Create Dynamic Inventory Script
 Dynamic inventories can be created using custom scripts or plugins. For AWS, you can use the AWS EC2 inventory plugin. Create a new configuration file for the plugin:

mkdir -p ~/GitforGits/inventory/aws_ec2
 nano ~/GitforGits/inventory/aws_ec2/aws_ec2.yml

 Add the given below script to configure the AWS EC2 inventory plugin:

 plugin: aws_ec2
 regions:
 - us-east-1
 - us-west-2
 filters:
 instance-state-name: running
 keyed_groups:
 - key: tags.Name
 prefix: tag
 hostnames:
 - tag:Name
 compose:
 ansible_host: public_ip_address

 This configuration specifies the regions, filters instances by their running state, and organizes hosts by their tags.
 Update Ansible Configuration
 Ensure your ansible.cfg file points to the dynamic inventory configuration:

 nano ~/GitforGits/ansible.cfg

 Add or update the inventory path:

 [defaults]
 inventory = inventory/aws_ec2/aws_ec2.yml

 Verify Dynamic Inventory
 Test the dynamic inventory to ensure it’s correctly set up. Use the ansible-inventory command to list all hosts:

ansible-inventory --list -y

 This command should display the dynamic inventory generated from AWS, confirming that Ansible can read and interpret it correctly.
 Use Dynamic Inventory in a Playbook
 Create a playbook to test the dynamic inventory setup:

 nano ~/GitforGits/playbooks/test_dynamic_inventory.yml

 Copy the following:

 - name: Test Dynamic Inventory
 hosts: all
 tasks:
 - name: Ping all hosts
 ping:

 Execute the playbook to verify that Ansible can connect to all hosts listed in the dynamic inventory:

 ansible-playbook ~/GitforGits/playbooks/test_dynamic_inventory.yml

 Dynamic inventories can also be extended and customized to suit various environments. Following are some additional use cases:
 Using Other Cloud Providers: Similar plugins are available for other cloud providers like Azure, Google Cloud, and OpenStack.
Custom Scripts: You can create custom scripts to pull inventory data from databases, REST APIs, or other sources.

Combining Inventories: Ansible supports combining static and dynamic inventories to manage different parts of your infrastructure effectively.

 Recipe #3: Using Inventory Plugins
 Inventory plugins are used to dynamically generate inventory from various sources, such as cloud providers, CMDBs, and other external systems. These plugins are beneficial when managing dynamic environments where hosts are frequently added or removed. Inventory plugins help automate the inventory management process, ensuring that your inventory is always up-to-date and in sync with the actual infrastructure.
 In this recipe, you will learn to use Ansible inventory plugins to dynamically generate and manage inventory from external sources.
 Install Azure
 Depending on the inventory plugin you plan to use, you may need to install additional packages. For example, to use the Azure inventory plugin, install the azure package:

 pip install azure

 Configure Inventory Plugin
 Create a directory for the inventory plugin configuration and add the necessary configuration files. For this example, we will use the AWS EC2 inventory plugin. If not already created in Recipe #2, create the configuration file:

 mkdir -p ~/GitforGits/inventory/aws_ec2
 nano ~/GitforGits/inventory/aws_ec2/aws_ec2.yml

 Add the given below script to configure the AWS EC2 inventory plugin:

 plugin: aws_ec2
 regions:
 - us-east-1
 - us-west-2

filters:
 instance-state-name: running
 keyed_groups:
 - key: tags.Name
 prefix: tag
 hostnames:
 - tag:Name
 compose:
 ansible_host: public_ip_address

 This configuration specifies the AWS regions to query, filters instances by their running state, and organizes hosts by their tags.
 Now, ensure your ansible.cfg file points to the inventory plugin configuration:

 nano ~/GitforGits/ansible.cfg

 Add or update the inventory path:

 [defaults]
 inventory = inventory/aws_ec2/aws_ec2.yml

 Test the inventory plugin to ensure it’s correctly set up. Use the ansible-inventory command to list all hosts:

 ansible-inventory --list -y

 This command should display the dynamic inventory generated by the AWS EC2 plugin, confirming that Ansible can read and interpret it correctly.
 Create a playbook to test the inventory plugin setup:

 nano ~/GitforGits/playbooks/test_inventory_plugin.yml

 Copy the following:

 - name: Test Inventory Plugin
 hosts: all

 tasks:
 - name: Ping all hosts
 ping:

 Execute the playbook to verify that Ansible can connect to all hosts listed by the inventory plugin:

 ansible-playbook ~/GitforGits/playbooks/test_inventory_plugin.yml

 Inventory plugins also can be customized to fit various environmentssuch as to:
 Combine multiple inventory plugins to pull data from different sources, such as combining AWS and Azure inventories.
● Develop custom inventory plugins to integrate with proprietary systems or databases.
Use parameters to filter and organize hosts dynamically, based on tags, states, or other attributes.

 Recipe #4: Grouping Hosts in Inventories
 Grouping hosts categorizes hosts into logical groups, you can target specific sets of machines with your playbooks, making it easier to apply configurations, updates, and tasks consistently across similar hosts. Grouping hosts also enhances scalability and maintainability, as it simplifies the process of managing large-scale environments.
 Benefits of Grouping Hosts
 Run playbooks on specific groups of hosts, such as web servers, databases, or application servers.
Easier to manage configurations and tasks for large numbers of hosts by addressing groups rather than individual machines.
● Ensure consistent configurations and updates across all hosts in a group.
● Dynamically adjust groups as your infrastructure changes, adding or removing hosts as needed.
 In this recipe, you will learn to group hosts in Ansible inventories, allowing you to organize and manage your infrastructure efficiently.
 Define Host Groups
 Open the inventory file and then group your hosts based on their roles or any logical categorization that fits your infrastructure. Following is an example inventory file:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com

db2.gitforgits.com
 [loadbalancers]
 lb1.gitforgits.com
 lb2.gitforgits.com

 In the above code snippet,
 ● webservers group includes all web servers.
● databases group includes all database servers.
● loadbalancers group includes all load balancers.
 Use Group Variables
 You can assign variables to specific groups to customize configurations for different sets of hosts. Add group variables to the inventory file:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com
 [loadbalancers]
 lb1.gitforgits.com
 lb2.gitforgits.com
 [webservers:vars]
 http_port=80
 max_clients=200
 [databases:vars]
 db_port=3306
 db_user=admin
 db_password=secret
 [loadbalancers:vars]

balancer_algorithm=round-robin

 Use Host Groups
 Create a new playbook file to demonstrate how to target specific groups:

 nano ~/GitforGits/playbooks/grouping_hosts_playbook.yml

 Add the given below script to target the webservers and databases groups with different tasks:

 - name: Configure Web Servers
 hosts: webservers
 become: yes
 tasks:
 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 - name: Configure Nginx
 template:
 src: /path/to/nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify:
 - Restart Nginx
 handlers:
 - name: Restart Nginx
 service:
 name: nginx
 state: restarted
 - name: Configure Database Servers
 hosts: databases

 become: yes
 tasks:
 - name: Ensure MySQL is installed
 apt:
 name: mysql-server
 state: present
 - name: Configure MySQL
 template:
 src: /path/to/my.cnf.j2
 dest: /etc/mysql/my.cnf
 notify:
 - Restart MySQL
 handlers:
 - name: Restart MySQL
 service:
 name: mysql
 state: restarted

 After running the playbook, verify that the tasks were executed correctly on all target hosts:

 ssh user@web1.gitforgits.com
 dpkg -l | grep nginx
 sudo systemctl status nginx
 ssh user@db1.gitforgits.com
 dpkg -l | grep mysql-server
 sudo systemctl status mysql

This technique helps you manage your infrastructure more efficiently, ensuring consistency and simplifying the process of targeting specific sets of machines with your playbooks and is also vital for maintaining organized and scalable automation workflows.

 Recipe #5: Working with Host and Group Variables
 Host and group variables provide a powerful way to customize configurations for specific hosts or groups of hosts. These variables can be defined directly in the inventory file or in separate variable files, allowing for flexible and dynamic configuration management. In this recipe, you will learn to define and use host and group variables, enabling customized configurations for your infrastructure.
 Add the given below script in the inventory file to define variables for specific hosts and groups:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com
 [databases]
 db1.gitforgits.com
 db2.gitforgits.com
 [webservers:vars]
 http_port=80
 max_clients=200
 [databases:vars]
 db_port=3306
 db_user=admin
 db_password=secret
 [web1.gitforgits.com]
 ansible_host=192.168.1.10
 [db1.gitforgits.com]
 ansible_host=192.168.1.20

 Create Separate Variable Files

For better organization, you can define variables in separate files within group_vars and host_vars directories. Create these directories if they don’t exist:

 mkdir -p ~/GitforGits/inventory/group_vars
 mkdir -p ~/GitforGits/inventory/host_vars

 Create a group variable file for web servers:

 nano ~/GitforGits/inventory/group_vars/webservers.yml

 Copy the following:

 http_port: 80
 max_clients: 200

 Create a group variable file for databases:

 nano ~/GitforGits/inventory/group_vars/databases.yml

 Copy the following:

 db_port: 3306
 db_user: admin
 db_password: secret

 Create a host variable file for

 nano ~/GitforGits/inventory/host_vars/web1.gitforgits.com.yml

 Copy the following:

 ansible_host: 192.168.1.10

 Create a host variable file for

 nano ~/GitforGits/inventory/host_vars/db1.gitforgits.com.yml

 Add the following code snippet:

 ansible_host: 192.168.1.20

 Use Variables in a Playbook
 Create a new playbook file to demonstrate how to use host and group variables:

 nano ~/GitforGits/playbooks/host_group_vars_playbook.yml

 Copy the following:

 - name: Configure Web Servers
 hosts: webservers
 become: yes
 tasks:
 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 - name: Configure Nginx
 template:
 src: /path/to/nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify:
 - Restart Nginx
 handlers:
 - name: Restart Nginx
 service:
 name: nginx
 state: restarted
 - name: Configure Database Servers
 hosts: databases
 become: yes
 tasks:
 - name: Ensure MySQL is installed
 apt:
 name: mysql-server
 state: present
 - name: Configure MySQL

 template:
 src: /path/to/my.cnf.j2
 dest: /etc/mysql/my.cnf
 notify:
 - Restart MySQL
 handlers:
 - name: Restart MySQL
 service:
 name: mysql
 state: restarted

 After running the playbook, verify that the variables were applied:

 ssh user@web1.gitforgits.com
 curl -I localhost:80
 ssh user@db1.gitforgits.com
 mysql -uadmin -psecret -e "SHOW DATABASES;"

 By following these steps, you have successfully defined and used host and group variables. Working with host and group variables enhances the flexibility and maintainability of your Ansible playbooks. This approach allows for customized configurations, ensuring that each host or group receives the appropriate settings based on its context.

 Recipe #6: Managing Inventory Files with Git
 Using Git to manage your Ansible inventory files provides version control, collaboration, and backup capabilities. This ensures that changes to your inventory are tracked, and you can easily revert to previous versions if needed. In this recipe, you'll learn how to install and configure Git in your development environment and use it to manage your Ansible inventory files.
 In this recipe, you will learn to install and configure Git, and then use it to manage Ansible inventory files, providing version control and collaboration features.
 Install and Configure Git
 First, install Git on your development environment. For Debian-based systems like Ubuntu, use:

 sudo apt update
 sudo apt install git -y

 For Red Hat-based systems like CentOS, use:

 sudo yum install git -y

 Verify the installation by checking the Git version:

 git --version

 Configure your Git user name and email, which are used for commit messages:

 git config --global user.name "Your Name"
 git config --global user.email "your.email@gitforgits.com"

 Initialize Git Repository and Add Inventory Files
 Navigate to your Ansible project directory and initialize a new Git repository:

 cd ~/GitforGits
 git init

 Add your inventory files to the Git repository:

cd inventory
 git add hosts group_vars host_vars

 Commit the added files to the repository with a descriptive message:

 git commit -m "Initial commit of inventory files"

 Create a Remote Repository
 If you are using a remote Git service like GitHub, GitLab, or Bitbucket, create a new repository on the service. Then, add the remote repository URL to your local repository:

 git remote add origin https://github.com/yourusername/GitforGits.git

 Push your local commits to the remote repository:

 git push -u origin master

 Collaborate and Manage Inventory Files
 Now that your inventory files are under version control, you can collaborate with others, track changes, and revert to previous versions if needed. Use the following Git commands to manage your inventory files:
 ● See the status of your repository and any changes:

 git status

 ● Stage changes for commit:

 git add

 ● Commit the staged changes:

 git commit -m "Your commit message"

 ● Pull the latest changes from the remote repository:

 git pull origin master

 ● Push your local commits to the remote repository:

 git push origin master

 Git with Ansible Playbooks

Create a playbook to manage and deploy your inventory files. Given below is an example playbook that copies the inventory files from the Git repository to the Ansible directory:

 nano ~/GitforGits/playbooks/deploy_inventory.yml

 Copy the following:

 - name: Deploy Inventory Files
 hosts: localhost
 tasks:
 - name: Ensure Git repository is cloned
 git:
 repo: 'https://github.com/yourusername/GitforGits.git'
 dest: /path/to/your/ansible/directory
 update: yes
 - name: Copy inventory files to Ansible directory
 copy:
 src: /path/to/your/ansible/directory/inventory/
 dest: /etc/ansible/
 owner: your_user
 group: your_group
 mode: '0755'

 Execute the playbook to deploy the inventory files from the Git repository:

 ansible-playbook ~/GitforGits/playbooks/deploy_inventory.yml

 This setup provides version control, collaboration, and backup capabilities, ensuring that your inventory is always up-to-date and changes are tracked.

 Recipe #7: Connecting to Cloud Instances with Dynamic Inventories
 Using dynamic inventories with cloud providers like AWS allows you to automatically manage and update the list of hosts based on your cloud infrastructure. This recipe will demonstrate in setting up a dynamic inventory for AWS EC2 instances, enabling seamless management of cloud resources.
 Our goal in this recipe is to connect to AWS cloud instances using dynamic inventories, leveraging AWS EC2 inventory plugin.
 Install boto3 and botocore
 Ensure you have the necessary packages installed for AWS integration. Install the boto3 and botocore packages:

 pip install boto3 botocore

 Configure AWS Credentials
 Configure your AWS credentials to allow Ansible to interact with AWS services. Create or edit the AWS credentials file:

 mkdir -p ~/.aws
 nano ~/.aws/credentials

 Add your AWS access key and secret access key:

 [default]
 aws_access_key_id = YOUR_ACCESS_KEY
 aws_secret_access_key = YOUR_SECRET_KEY

 Create Dynamic Inventory Configuration File
 Create a directory for the dynamic inventory configuration if it doesn’t exist:

 mkdir -p ~/GitforGits/inventory/aws_ec2
 nano ~/GitforGits/inventory/aws_ec2/aws_ec2.yml

Add the given below script to configure the AWS EC2 inventory plugin:

 plugin: aws_ec2
 regions:
 - us-east-1
 - us-west-2
 filters:
 instance-state-name: running
 keyed_groups:
 - key: tags.Name
 prefix: tag
 hostnames:
 - tag:Name
 compose:
 ansible_host: public_ip_address

 This configuration specifies the AWS regions to query, filters instances by their running state, and organizes hosts by their tags.
 Update Ansible Configuration
 Ensure your ansible.cfg file points to the dynamic inventory configuration:

 nano ~/GitforGits/ansible.cfg

 Add or update the inventory path:

 [defaults]
 inventory = inventory/aws_ec2/aws_ec2.yml

 Verify Dynamic Inventory
 Test the dynamic inventory to ensure it’s correctly set up. Use the ansible-inventory command to list all hosts:

 ansible-inventory --list -y

This command should display the dynamic inventory generated from AWS, confirming that Ansible can read and interpret it correctly.
 Test the Dynamic Inventory
 Create a new playbook file to test the dynamic inventory setup:

 nano ~/GitforGits/playbooks/test_aws_inventory.yml

 Copy the following:

 - name: Test AWS Dynamic Inventory
 hosts: all
 tasks:
 - name: Ping all hosts
 ping:

 Execute the playbook to verify that Ansible can connect to all hosts listed in the dynamic inventory:

 ansible-playbook ~/GitforGits/playbooks/test_aws_inventory.yml

 Advanced Configuration
 You can extend and customize your dynamic inventory setup based on your needs. Following are some additional configurations you might consider:
 Filter Instances by Tags: Add filters to include or exclude instances based on specific tags.
● Combine Inventories: Combine AWS inventory with other cloud providers or static inventories.
Use Environment Variables: Store sensitive information like AWS keys in environment variables for better security.
 Example of Advanced Configuration
 Update your aws_ec2.yml file to include additional filters or tags:

plugin: aws_ec2
 regions:
 - us-east-1
 - us-west-2
 filters:
 instance-state-name: running
 tag:Environment: production
 keyed_groups:
 - key: tags.Role
 prefix: role
 hostnames:
 - tag:Name
 compose:
 ansible_host: public_ip_address

 Automate Updates with Cron Jobs
 You can automate the update of your dynamic inventory by running the ansible-inventory command at regular intervals using a cron job. This ensures your inventory stays up-to-date without manual intervention.
 Create a cron job:

 crontab -e

 Add the following line to run the inventory update every hour:

 0 * * * * ansible-inventory --list -y > /path/to/your/ansible/directory/inventory/aws_ec2_inventory.json

By following these steps, you have successfully set up and used a dynamic inventory for AWS EC2 instances. This approach ensures that your inventory is always current, making it ideal for dynamic and large-scale environments. Dynamic inventories provide the automation and scalability needed to efficiently manage cloud resources.

 Recipe #8: Troubleshooting Inventory Issues
 Managing inventories can sometimes lead to various issues, especially when dealing with dynamic and complex environments. Common inventory issues include connection problems, incorrect inventory paths, misconfigured variables, outdated inventory data, and authentication failures. This recipe will demonstrate in identifying and resolving these common issues to ensure your Ansible inventories function smoothly.
 Common Inventory Issues
 Connection Problems: Inability to connect to hosts due to incorrect SSH keys, network issues, or wrong hostnames/IP addresses.
Incorrect Inventory Paths: Ansible cannot find the inventory file due to incorrect paths specified in
Misconfigured Variables: Errors in variable definitions or variable files can cause playbooks to fail.
● Outdated Inventory Data: Static inventories becoming outdated, leading to inconsistencies.
● Authentication Failures: Incorrect or missing credentials for cloud providers or other external systems.
● Plugin Issues: Misconfiguration or missing dependencies for inventory plugins.
 In this recipe, we will provide troubleshooting steps to resolve common inventory issues, ensuring smooth and reliable inventory management.
 Verify Inventory File Paths
 Ensure that the inventory file paths specified in your ansible.cfg file are correct. Open the configuration file:

nano ~/GitforGits/ansible.cfg

 Verify the inventory path:

 [defaults]
 inventory = inventory/aws_ec2/aws_ec2.yml

 Ensure the path is correct and the file exists.
 Test SSH Connectivity
 Check SSH connectivity to your hosts manually to ensure there are no issues with SSH keys or network configurations:

 ssh user@web1.gitforgits.com

 If there are issues, verify the SSH keys and network settings.
 Validate Dynamic Inventory Configuration
 For dynamic inventories, validate the configuration file. Use the ansible-inventory command to check for errors:

 ansible-inventory --list -y

 This command will display any syntax or configuration errors in the dynamic inventory file.
 Debug Variable Issues
 If there are issues with variables, use the debug module in your playbooks to print variable values and check for misconfigurations:

 - name: Debug Variables
 hosts: all
 tasks:
 - name: Print variable values
 debug:
 var: your_variable

 Run the playbook to see the output and identify any incorrect variable values.

Update Outdated Static Inventories
 Static inventories can become outdated as infrastructure changes. Regularly update the inventory file to reflect the current state of your environment. Use a version control system like Git to track changes and ensure consistency.
 Resolve Authentication Failures
 For cloud-based dynamic inventories, ensure that your credentials are correctly configured. Check your AWS credentials file:

 nano ~/.aws/credentials

 Ensure the correct access keys are specified. For other cloud providers, verify the respective credential configurations.
 Verify Plugin Dependencies
 Ensure all required dependencies for inventory plugins are installed. For AWS, you need boto3 and For other plugins, refer to their documentation for required packages.
 Check for Plugin-Specific Issues
 For inventory plugins, check the configuration and any specific settings required by the plugin. Ensure the configuration file includes all necessary fields and correct values.
 Use Verbose Mode for Detailed Output
 Use verbose mode to get detailed output from Ansible commands, which can help identify the root cause of issues. Run your playbooks with increased verbosity:

 ansible-playbook playbook.yml -vvv

 This provides detailed logs and error messages that can help in troubleshooting.
 Use Ansible Documentation and Community Support

Refer to the Ansible documentation and community forums for solutions to common issues. The Ansible community is active, and many common problems have been addressed by other users.
 By following these steps, you can effectively troubleshoot and resolve common inventory issues. Ensuring that your inventories are correctly configured and up-to-date is crucial for smooth and reliable automation workflows. This approach helps maintain the integrity of your infrastructure management and prevents disruptions caused by inventory-related problems.

 Summary
 Here in this chapter, you learned the basics of Ansible inventory management, beginning with static inventory setup, which allowed you to manually list and group hosts in a simple way. Following this, you studied the development of dynamic inventories, which automatically generated and updated host lists from external data sources, such as cloud providers. This technique was especially advantageous in dynamic environments, as it guaranteed that inventories were consistently up-to-date.
 Additionally, you developed expertise regarding inventory plugins, which enabled the seamless integration of a variety of external systems and services, thereby further automating the inventory management process. We spoke about how to group hosts in inventories, which could help you manage your infrastructure better by classifying hosts according to their roles or some other logical criterion. The technique facilitated the management of large-scale environments and guaranteed consistent configurations across groups.
 Another significant topic was the use of host and group variables, which enabled the creation of personalized configurations for particular hosts or groups. Along with learning how to manage inventory files, you also learned how to use Git, which offers features like version control, collaboration, and backup. Because of this, we could keep tabs on all of the changes and roll back to earlier versions with ease.

We also went over how to use AWS to connect to cloud instances with dynamic inventories so you can manage your cloud resources efficiently with plugins. In the end, we covered how to troubleshoot inventory issues, which includes common problems like connection problems, wrong inventory paths, misconfigured variables, outdated data, authentication failures, and plugin issues, among others.
 Ultimately, this chapter has provided you with the necessary skills to effectively manage Ansible inventories, thus assuring that your automation tasks are executed seamlessly across all managed hosts, irrespective of the complexity or size of your environment.

 Knowledge Exercise
 Question 1: What is the primary function of an inventory in Ansible?
A) To store playbooks
B) To define and group the hosts managed by Ansible
C) To configure Ansible plugins
D) To manage Ansible roles
 Answer:
B) To define and group the hosts managed by Ansible
 An inventory in Ansible lists the managed nodes and groups them into categories, allowing targeted execution of playbooks.
 Question 2: Which of the following is a key benefit of using static inventories?
A) Automatic updates from cloud providers
B) Simple and straightforward host management
C) Integration with external systems
D) Dynamic grouping of hosts
 Answer:
B) Simple and straightforward host management
 Static inventories are simple text files where hosts and groups are listed manually, making them straightforward to manage.
 Question 3: Which command is used to verify the dynamic inventory setup in Ansible?
A) ansible-playbook
B) ansible-inventory
C) ansible-config
D) ansible-debug
 Answer:
B) ansible-inventory

The ansible-inventory command lists all hosts and verifies the dynamic inventory setup.
 Question 4: What file format is typically used to define inventory files in Ansible?
A) JSON
B) XML
C) INI
D) CSV
 Answer:
C) INI
 Inventory files in Ansible are typically defined in the INI format, though YAML and JSON formats can also be used.
 Question 5: How are group variables defined in an Ansible inventory?
A) In the playbook
B) In the ansible.cfg file
C) Under the [group:vars] section in the inventory file
D) In the environment variables
 Answer:
C) Under the [group:vars] section in the inventory file
 Group variables are defined under the [group:vars] section in the inventory file, allowing customization for specific groups.
 Question 6: Which package needs to be installed to use AWS EC2 as a dynamic inventory source?
A) boto3
B) azure
C) requests
D) paramiko
 Answer:

A) boto3
 The boto3 package is required to interact with AWS services and use AWS EC2 as a dynamic inventory source.
 Question 7: What is the primary purpose of using inventory plugins in Ansible?
A) To define playbooks
B) To dynamically generate inventory from external sources
C) To manage SSH keys
D) To execute ad-hoc commands
 Answer:
B) To dynamically generate inventory from external sources
 Inventory plugins dynamically generate inventory from various external sources, ensuring the inventory is always current.
 Question 8: Which section in the ansible.cfg file specifies the path to the inventory file?
A) [plugins]
B) [inventory]
C) [defaults]
D) [vars]
 Answer:
C) [defaults]
 The [defaults] section in the ansible.cfg file specifies the path to the inventory file.
 Question 9: What does the plugin keyword specify in a dynamic inventory configuration file?
A) The inventory file format
B) The external source type
C) The location of the playbooks
D) The Ansible version

Answer:
B) The external source type
 The plugin keyword in a dynamic inventory configuration file specifies the type of external source, such as aws_ec2 for AWS EC2.
 Question 10: Which command allows you to manually test SSH connectivity to a host listed in the inventory?
A) ansible-ssh
B) ansible-ping
C) ssh
D) connect
 Answer:
C) ssh
 The ssh command allows you to manually test SSH connectivity to a host listed in the inventory.
 Question 11: What is a common reason for authentication failures when using dynamic inventories with cloud providers?
A) Incorrect inventory file format
B) Misconfigured or missing credentials
C) Incorrect playbook syntax
D) Unsupported Ansible version
 Answer:
B) Misconfigured or missing credentials
 Authentication failures often occur due to misconfigured or missing credentials required to interact with the cloud provider.
 Question 12: How can you organize hosts based on their roles in an Ansible inventory file?
A) By using tags
B) By using variables

C) By grouping them under role-specific sections
D) By using environment variables
 Answer:
C) By grouping them under role-specific sections
 Hosts can be organized based on their roles by grouping them under role-specific sections in the inventory file, such as [webservers] or
 Question 13: Which Ansible command provides detailed output and error messages useful for troubleshooting?
A) ansible-debug
B) ansible-playbook -vvv
C) ansible-inventory --check
D) ansible-config
 Answer:
B) ansible-playbook -vvv
 Using ansible-playbook -vvv provides detailed output and error messages, which are useful for troubleshooting.
 Question 14: What is the purpose of the filters keyword in a dynamic inventory configuration for AWS EC2?
A) To specify the Ansible version
B) To define playbook paths
C) To filter EC2 instances based on specific criteria
D) To configure SSH keys
 Answer:
C) To filter EC2 instances based on specific criteria
 The filters keyword in a dynamic inventory configuration for AWS EC2 is used to filter instances based on criteria such as instance state or tags.

Question 15: Which file typically stores AWS credentials for dynamic inventory configuration in Ansible?
A) ~/.aws/credentials
B) /etc/ansible/credentials
C) ~/.ansible/aws_credentials
D) /var/lib/ansible/credentials
 Answer:
A) ~/.aws/credentials
 AWS credentials are typically stored in the ~/.aws/credentials file for dynamic inventory configuration in Ansible.
 Question 16: How can you automate the update of a dynamic inventory file?
A) By using a cron job
B) By manually editing the inventory file
C) By running ad-hoc commands
D) By updating the ansible.cfg file
 Answer:
A) By using a cron job
 You can automate the update of a dynamic inventory file by scheduling the ansible-inventory command to run at regular intervals using a cron job.
 Question 17: What is a common cause of connection problems when using Ansible inventories?
A) Incorrect playbook syntax
B) Incorrect SSH keys or network configurations
C) Misconfigured variables
D) Outdated Ansible version
 Answer:
B) Incorrect SSH keys or network configurations

Connection problems often arise due to incorrect SSH keys or network configurations, preventing Ansible from connecting to the hosts.
 Question 18: Which section of the ansible.cfg file allows you to specify multiple inventory files?
A) [inventory]
B) [defaults]
C) [vars]
D) [plugins]
 Answer:
B) [defaults]
 The [defaults] section of the ansible.cfg file allows you to specify multiple inventory files.
 Question 19: How are host variables typically defined in Ansible inventories?
A) In the ansible.cfg file
B) Under the [host_vars] directory
C) In the playbook
D) In the environment variables
 Answer:
B) Under the [host_vars] directory
 Host variables are typically defined under the [host_vars] directory, allowing customization for specific hosts.
 Question 20: Which command can you use to add files to a Git repository managing your Ansible inventory?
A) git add
B) git commit
C) git push
D) git status
 Answer:

A) git add
 The git add command stages changes, adding files to the Git repository managing your Ansible inventory.

 Chapter 4: Advanced Playbook Techniques

Introduction
 Everything you need to know about Ansible environments, playbooks, and inventory management has been covered so far. You now know how to organize hosts, manage variables, create static and dynamic inventories, and integrate with cloud providers. You have been equipped to manage basic and intermediate automation tasks with Ansible as a result of these specific skills.
 Here, in this chapter, you will learn advanced playbook techniques to boost your automation skills. To facilitate the development of reusable and modular code, you will initially learn the skill to apply roles to effectively organize playbooks. Subsequently, you will learn how to develop and implement customized modules, which will enhance Ansible's capabilities to accommodate particular needs. We will go over how to implement error handling in playbooks so that automation scripts are strong and dependable.
 Another critical topic is the encryption of critical information within your playbooks using Ansible Vault to secure sensitive data. You will also acquire the ability to utilize Ansible Galaxy to access a vast repository of community-contributed roles and modules, thereby utilizing reusable content. You can generate dynamic configurations by creating playbook templates with Jinja2. Regardless of the number of times a playbook is executed, implementing idempotency can ensure consistent results. Finally, you can learn how to speed up and improve the efficiency of your automation processes by optimizing the performance of your playbooks.

Upon completion of this chapter, you will have picked up the ability to perform sophisticated techniques that will substantially enhance the maintainability and efficacy of your Ansible playbooks.

 Recipe #1: Using Roles to Organize Playbooks
 Roles are a powerful way to organize playbooks into reusable, modular components. They enable you to encapsulate tasks, variables, handlers, and other playbook elements, making your automation code more maintainable and scalable. Roles can be reused across multiple playbooks and projects, promoting consistency and reducing duplication.
 Types of Roles
 Custom Roles: Created specifically for your needs, custom roles encapsulate tasks, variables, and configurations tailored to your infrastructure and application requirements.
Community Roles: Available on Ansible Galaxy, these roles are shared by the community and can be used to implement common configurations and tasks.
Organizational Roles: Developed and maintained within an organization, these roles follow internal standards and practices, ensuring consistency across different teams and projects.
 With this recipe, you will understand to use roles to organize playbooks, creating a modular and reusable structure for your automation code.
 Create Role Directory Structure
 Roles follow a specific directory structure. Create a new role using the ansible-galaxy command:

 cd ~/GitforGits

ansible-galaxy init roles/webserver

 This command creates the following directory structure:

 roles/webserver/
 ├── defaults
 │ └── main.yml
 ├── files
 ├── handlers
 │ └── main.yml
 ├── meta
 │ └── main.yml
 ├── tasks
 │ └── main.yml
 ├── templates
 ├── tests
 │ ├── inventory
 │ └── test.yml
 └── vars
 └── main.yml

 Define Role Tasks
 Open the tasks/main.yml file in your role and define the tasks for the webserver role. If you've previously configured a webserver, refer back to those steps rather than repeating them here.

 nano roles/webserver/tasks/main.yml

 Add the following script to reference tasks for the webserver:

 # Refer to previous steps for Nginx installation and configuration.
 - name: Ensure Nginx is installed and configured
 include_role:

 name: webserver_install

 Define Handlers
 Open the handlers/main.yml file and define the handler to restart Nginx:

 nano roles/webserver/handlers/main.yml

 Copy the following:

 - name: Restart Nginx
 service:
 name: nginx
 state: restarted

 Define Variables
 Open the defaults/main.yml file and define default variables for the role:

 nano roles/webserver/defaults/main.yml

 Copy the following:

 nginx_port: 80

 Create Templates
 Place any configuration templates in the templates directory. Create an Nginx configuration template:

 nano roles/webserver/templates/nginx.conf.j2

 Copy the following:

 server {
 listen {{ nginx_port }};
 server_name localhost;
 location / {
 root /var/www/html;
 index index.html index.htm;

 }
 }

 Create a playbook to use the webserver role:

 nano playbooks/deploy_webserver.yml

 Copy the following:

 - name: Deploy Webserver
 hosts: webservers
 roles:
 - webserver

 Define Inventory
 Ensure your inventory file includes the webservers group:

 nano inventory/hosts

 Copy the following:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com

 Execute the playbook and you will see that you have successfully created and used a role to organize your playbooks. Roles promote modularity, reusability, and maintainability, making it easier to manage complex automation tasks.

 Recipe #2: Creating and using Custom Modules
 Custom modules extend its functionality by allowing you to write your own modules to perform specific tasks that are not covered by built-in modules. This can be particularly useful for integrating with proprietary systems or implementing specialized operations.
 Our goal in this recipe is to create and use custom modules, enhancing the flexibility and power of your automation scripts.
 Create Custom Module Script
 Custom modules are typically written in Python. Create a directory for your custom modules and a new Python script for your custom module:

 mkdir -p ~/GitforGits/library
 nano ~/GitforGits/library/my_custom_module.py

 Add the given below script to the Python script:

 #!/usr/bin/python
 from ansible.module_utils.basic import AnsibleModule
 def run_module():
 module_args = dict(
 name=dict(type='str', required=True)
)
 result = dict(
 changed=False,
 original_message='',
 message=''
)
 module = AnsibleModule(
 argument_spec=module_args,
 supports_check_mode=True

)
 name = module.params['name']
 result['original_message'] = name
 result['message'] = f'Hello, {name}!'
 if module.check_mode:
 module.exit_json(**result)
 result['changed'] = True
 module.exit_json(**result)
 def main():
 run_module()
 if __name__ == '__main__':
 main()

 This simple custom module takes a name parameter and returns a greeting message. Now, ensure the custom module script is executable:

 chmod +x ~/GitforGits/library/my_custom_module.py

 Use Custom Module
 Create a new playbook to use the custom module:

 nano ~/GitforGits/playbooks/use_custom_module.yml

 Add the script as given below:

 - name: Use Custom Module
 hosts: localhost
 tasks:
 - name: Greet with custom module
 my_custom_module:
 name: Ansible
 register: result
 - name: Print result

 debug:
 var: result.message

 Define Inventory
 Ensure your inventory file includes the localhost group:

 nano inventory/hosts
 [localhost]
 127.0.0.1

 After running the playbook, verify it has printed the greeting message. With these steps, you have successfully created and used a custom module. Custom modules allow you to extend Ansible’s functionality to meet specific needs, providing greater flexibility and power in your automation scripts.

 Recipe #3: Implementing Error Handling in Playbooks
 Implementing error handling in Ansible playbooks is essential to ensure robust and reliable automation. Proper error handling helps you manage failures gracefully, provides meaningful feedback, and allows you to take corrective actions.
 In this recipe, you will learn to implement error handling in Ansible playbooks, ensuring that automation tasks are resilient and provide useful error information.
 ‘failed_when’ Directive
 The failed_when directive allows you to specify conditions under which a task is considered failed. This can be useful for tasks where the default failure conditions are not sufficient.
 Create a new playbook file:

 nano ~/GitforGits/playbooks/error_handling.yml

 Add the script as given below:

 - name: Demonstrate Error Handling
 hosts: localhost
 tasks:
 - name: Check free disk space
 command: df -h /
 register: disk_space
 - name: Fail if free space is less than 10%
 debug:
 msg: "Free space is sufficient: {{ disk_space.stdout }}"
 failed_when: "'10%' in disk_space.stdout"

 In the above sample code, the task will fail if the free disk space is less than 10%.
 ‘ignore_errors’ Directive

The ignore_errors directive allows a playbook to continue execution even if a task fails. This can be useful for non-critical tasks where you want the playbook to proceed regardless of the outcome.
 Add the following task to the same playbook:

 - name: Attempt to create a directory
 command: mkdir /already_exists
 ignore_errors: yes
 - name: Notify of failure
 debug:
 msg: "Previous task failed, but playbook continues."

 In the above sample code, the playbook will continue even if the directory creation fails.
 ‘rescue’ and ‘always’ Blocks
 The and always directives allow for more advanced error handling by grouping tasks and specifying actions to take on failure.
 Add the following block to the playbook:

 - name: Error Handling with Block
 block:
 - name: Attempt to download a file
 get_url:
 url: http://gitforgits.com/non_existent_file
 dest: /tmp/non_existent_file
 - name: Notify of download success
 debug:
 msg: "File downloaded successfully."
 rescue:
 - name: Handle download failure

 debug:
 msg: "Download failed. Proceeding with alternative actions."
 always:
 - name: Cleanup actions
 file:
 path: /tmp/non_existent_file
 state: absent

 In the above sample code, if the file download fails, the tasks in the rescue block will execute, and the always block will execute regardless of the success or failure of the previous tasks.
 After running the playbook, check the output for the specified error handling messages and actions. If all goes good, then you can say that you have successfully implemented error handling and can recover gracefully from failures.

 Recipe #4: Using Ansible Vault for Securing Sensitive Data
 Introduction to Ansible Vault
 Ansible Vault is a feature that allows you to keep sensitive data such as passwords or keys in encrypted files, rather than as plaintext in your playbooks or roles. Ansible Vault is designed to encrypt and decrypt files within your Ansible projects. This allows you to store sensitive information securely and use it within your playbooks without exposing it to unauthorized access. Vault can encrypt entire files or specific variables within a file, providing flexibility in how you secure your data.
 Following are the key characteristics of Vault:
 Encryption and Decryption: Encrypts files using AES256 encryption, and decrypts them for use during playbook execution.
Password Protection: Files encrypted with Vault require a password to decrypt, adding a layer of security.
File and Variable Encryption: Encrypt entire files or specific variables, allowing granular control over what data is encrypted.
Integration with Playbooks: Easily integrates with Ansible playbooks, allowing seamless use of encrypted data during playbook runs.
 In this recipe, you will learn to use Ansible Vault to secure sensitive data, including creating, editing, and using encrypted files within playbooks.
 Install Ansible Vault

Ansible Vault is included with Ansible by default. Ensure you have Ansible installed:

 ansible --version

 Create Encrypted File
 Use the ansible-vault create command to create a new encrypted file:

 cd ~/GitforGits
 ansible-vault create secrets.yml

 You will be prompted to enter a password. This password will be used to encrypt and decrypt the file. After entering the password, a text editor will open. Add the following code snippet:

 db_password: "supersecretpassword"

 Save and close the file.
 Manage Encrypted Files
 To view the contents of an encrypted file, use the ansible-vault view command:

 ansible-vault view secrets.yml

 To edit the contents of an encrypted file, use the ansible-vault edit command:

 ansible-vault edit secrets.yml

 You can also encrypt an existing plaintext file using the ansible-vault encrypt command:

 ansible-vault encrypt inventory/hosts

 You will be prompted to enter a password to encrypt the file. Similarly, to decrypt an encrypted file and convert it back to plaintext, use the ansible-vault decrypt command:

 ansible-vault decrypt secrets.yml

 Using Encrypted Files in Playbooks
 To use encrypted variables in a playbook, include the encrypted file using the vars_files directive:

nano ~/GitforGits/playbooks/use_vault.yml

 Add the following code snippet:

 - name: Use Ansible Vault
 hosts: localhost
 vars_files:
 - ../secrets.yml
 tasks:
 - name: Print the decrypted password
 debug:
 msg: "The database password is {{ db_password }}"

 Execute the playbook using the ansible-playbook command. You will be prompted to enter the vault password to decrypt the file:

 ansible-playbook ~/GitforGits/playbooks/use_vault.yml --ask-vault-pass

 Automate Vault Password Handling
 To avoid being prompted for the password every time, you can use a password file. Create a file to store the vault password:

 echo 'your_vault_password' > ~/GitforGits/.vault_pass.txt

 Ensure this file has restricted permissions:

 chmod 600 ~/GitforGits/.vault_pass.txt

 Modify the playbook command to use the password file:

 ansible-playbook ~/GitforGits/playbooks/use_vault.yml --vault-password-file ~/GitforGits/.vault_pass.txt

 By following these steps, you have successfully used Ansible Vault to secure sensitive data.

 Recipe #5: Leveraging Ansible Galaxy for Reusable Content
 Introduction to Ansible Galaxy
 Ansible Galaxy is a hub for finding, sharing, and reusing Ansible roles. It allows you to leverage pre-built roles created by the Ansible community to speed up your automation projects. Galaxy hosts a wide variety of roles for different purposes, from installing and configuring software to managing cloud resources and infrastructure.
 Following are the key features of Galaxy:
 Role Repository: A central repository of Ansible roles contributed by the community.
Ease of Use: Simple commands to install and manage roles from Galaxy.
Reusability: Reuse existing roles to save time and avoid reinventing the wheel.
Community Contributions: Access to a vast library of roles contributed by Ansible users worldwide.
 Our goal in this recipe is to leverage Ansible Galaxy for reusable content by installing and using community roles in your playbooks.
 Browse and Search for Roles
 Ensure you have the Ansible Galaxy CLI installed. It is included with Ansible by default:

 ansible-galaxy --version

 Visit the Ansible Galaxy website (https://galaxy.ansible.com/) to browse and search for roles. Use the search functionality to find roles that match your needs.

Install Role from Ansible Galaxy
 Use the ansible-galaxy install command to install a role. For example, to install a role for setting up Nginx, you might find a popular role like

 ansible-galaxy install geerlingguy.nginx

 This command downloads the role and places it in the roles/ directory within your Ansible project.
 Use Role in Playbook
 Create a new playbook to use the installed role:

 nano ~/GitforGits/playbooks/use_galaxy_role.yml

 Add the given below script to use the geerlingguy.nginx role:

 - name: Use Ansible Galaxy Role
 hosts: webservers
 roles:
 - geerlingguy.nginx

 Open your inventory file and add the given below script if not already present:

 [webservers]
 web1.gitforgits.com
 web2.gitforgits.com

 Customize Role Variables
 Many roles from Ansible Galaxy come with configurable variables. Customize these variables to fit your needs. Open the group_vars/webservers.yml file (create it if it doesn’t exist):

 nano ~/GitforGits/inventory/group_vars/webservers.yml

 Add the following script to customize the Nginx role variables:

 nginx_vhosts:
 - server_name: "gitforgits.com"

 root: "/var/www/gitforgits.com"
 - server_name: "test.com"
 root: "/var/www/test.com"

 Re-run the playbook to apply the customized variables:

 ansible-playbook ~/GitforGits/playbooks/use_galaxy_role.yml

 Many roles have dependencies on other roles. These dependencies are specified in the role’s metadata file Ansible Galaxy automatically installs these dependencies when you install a role. Using roles from Ansible Galaxy saves time, ensures best practices, and allows you to enhance your ability to implement robust and efficient automation solutions.

 Recipe #6: Creating Playbook Templates with Jinja2
 Jinja2 Overview
 Jinja2 is a powerful templating engine for Python, widely used for creating dynamic and flexible templates. Jinja2 allows you to embed variables, use control structures like loops and conditionals, and include macros to generate dynamic content. It is the default templating engine used by Ansible for creating configuration files, scripts, and other text-based outputs. Followiing are the traits that makes Jinja2 a better templating engine:
 Variable Substitution: Embed variables in templates to create dynamic content.
Control Structures: Use loops and conditionals to control the output based on variables and conditions.
Filters: Apply filters to variables to modify their output.
Macros: Reuse code snippets within templates for better maintainability.
 By this recipe, you will understand to create and use playbook templates with Jinja2, enabling dynamic and flexible configuration management.
 Create Jinja2 Template
 Create a new directory for your templates if it doesn’t exist:

 mkdir -p ~/GitforGits/templates

 Create a Jinja2 template file for Nginx configuration:

 nano ~/GitforGits/templates/nginx.conf.j2

 Add the given below script to the template file:

 server {

 listen {{ nginx_port }};
 server_name {{ server_name }};
 location / {
 root {{ document_root }};
 index index.html index.htm;
 }
 }

 Define Variables
 Create a new playbook file to use the Jinja2 template:

 nano ~/GitforGits/playbooks/use_template.yml

 Add the given below script to define the variables and apply the template:

 - name: Use Jinja2 Template
 hosts: webservers
 vars:
 nginx_port: 80
 server_name: gitforgits.com
 document_root: /var/www/gitforgits.com
 tasks:
 - name: Deploy Nginx configuration from template
 template:
 src: ../templates/nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify:
 - Restart Nginx
 handlers:
 - name: Restart Nginx
 service:

 name: nginx
 state: restarted

 After running the playbook, verify the Nginx configuration file has been created on the target hosts with the variables substituted:

 ssh user@web1.gitforgits.com
 cat /etc/nginx/nginx.conf

 You should see the configuration file with the actual values substituted for and
 Using Loops, Conditional and Filters
 Jinja2 also supports advanced features such as loops, conditionals, and filters. Update the template file to include a loop for multiple server names:

 nano ~/GitforGits/templates/nginx.conf.j2

 Add the script as given below:

 server {
 listen {{ nginx_port }};
 server_name {% for name in server_names %}{{ name }} {% endfor %};
 location / {
 root {{ document_root }};
 index index.html index.htm;
 }
 }

 Update the playbook to define the server_names variable as a list:

 nano ~/GitforGits/playbooks/use_template.yml

 Modify the vars section:

 vars:

 nginx_port: 80
 server_names:
 - gitforgits.com
 - www.gitforgits.com
 document_root: /var/www/gitforgits.com

 Re-run the playbook to apply the updated template:

 ansible-playbook ~/GitforGits/playbooks/use_template.yml

 Verify Advanced Template
 After running the playbook, verify the advanced template on the target hosts:

 ssh user@web1.gitforgits.com
 cat /etc/nginx/nginx.conf

 The server names should now include both gitforgits.com and
 So now, you have successfully created and used playbook templates with Jinja2 to create dynamic and flexible configurations.

 Recipe #7: Implementing Idempotency in Playbooks
 Concept of Idempotency
 Idempotency refers to the property of playbooks and tasks to be run multiple times without changing the result beyond the initial application. In other words, running the same playbook multiple times should have the same effect as running it once. Idempotent tasks ensure that the system reaches and maintains a desired state without causing unintended changes or disruptions when rerun.
 In this recipe, you will learn to implement idempotency in Ansible playbooks, ensuring that tasks can be safely rerun without causing unintended changes.
 Implement Idempotency in a Playbook
 Before we begin, review your playbooks to identify tasks that might not be idempotent. For example, tasks that create or modify files, install packages, or start services can be made idempotent by using the appropriate Ansible modules and conditions.
 We will use the previously created playbook that sets up an Nginx web server
 Installing Nginx
 The apt module used for installing Nginx is already idempotent. It checks whether Nginx is installed and only installs it if necessary.

 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present

 Deploying Nginx Configuration

Using the template module is idempotent as it only updates the file if the content changes.

 - name: Deploy Nginx configuration from template
 template:
 src: ../templates/nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify:
 - Restart Nginx

 Starting Nginx Service
 The service module ensures that the service is running and restarts it only if necessary.

 - name: Ensure Nginx is running
 service:
 name: nginx
 state: started

 Update Playbook
 Create or update the playbook to ensure it implements idempotency. Following is the complete playbook:

 - name: Deploy Webserver
 hosts: webservers
 become: yes
 tasks:
 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 - name: Deploy Nginx configuration from template
 template:

 src: ../templates/nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify:
 - Restart Nginx
 - name: Ensure Nginx is running
 service:
 name: nginx
 state: started
 handlers:
 - name: Restart Nginx
 service:
 name: nginx
 state: restarted

 Before running the playbook, ensure the inventory file includes the webservers group:

 ansible-playbook ~/GitforGits/playbooks/deploy_webserver.yml

 Verify Idempotency
 Run the playbook multiple times to ensure it maintains idempotency. The output should indicate that no changes were made if the system is already in the desired state:

 ansible-playbook ~/GitforGits/playbooks/deploy_webserver.yml

 With this, you have successfully implemented idempotency in an Ansible playbook.

 Recipe #8: Optimizing Playbook Performance
 Introduction to Playbook Performance Optimization
 The optimization of playbook performance involves techniques and best practices that reduce execution time, minimize resource usage, and improve the efficiency of your automation tasks. The efficient playbooks ensure faster deployments and updates, making your automation processes more scalable and reliable.
 In this recipe, you will learn to enhance and improve the performance of previously implemented playbooks by using various optimization techniques.
 Enable Fact Caching
 Fact caching stores gathered facts about hosts, reducing the need to gather them every time a playbook runs. This can significantly reduce execution time for playbooks that run frequently.
 Open your ansible.cfg file:

 nano ~/GitforGits/ansible.cfg

 Add the following configuration to enable fact caching using JSON file backend:

 [defaults]
 fact_caching = jsonfile
 fact_caching_connection = /tmp/ansible_cache
 fact_caching_timeout = 86400

 ‘async’ and ‘poll’ for Long-Running Tasks
 For tasks that take a long time to complete, use async and poll to run them asynchronously, allowing other tasks to execute concurrently. To do this, update the playbook to install Nginx asynchronously:

 - name: Ensure Nginx is installed

 apt:
 name: nginx
 state: present
 async: 300
 poll: 0
 register: nginx_install
 - name: Wait for Nginx installation to complete
 async_status:
 jid: "{{ nginx_install.ansible_job_id }}"
 register: nginx_install_status
 until: nginx_install_status.finished
 retries: 30
 delay: 10

 Limit Parallelism with ‘forks’
 Increase the number of parallel processes (forks) to run more tasks simultaneously. This can speed up playbook execution in environments with many hosts. For this, open your ansible.cfg file, add the following configuration to increase the number of forks:

 nano ~/GitforGits/ansible.cfg
 [defaults]
 forks = 10

 Reduce SSH Connection Overhead
 Reuse SSH connections to reduce the overhead of establishing new connections for each task. Enable SSH connection reuse in your ansible.cfg file:

 [ssh_connection]
 retries = 3

pipelining = True
 control_path = %(directory)s/%%h-%%r

 ‘delegate_to’ for Centralized Operations
 Delegate tasks that don't need to run on each host to a central node to reduce redundant operations. For example, updating DNS records can be done from a single node.

 - name: Update DNS records
 command: /usr/bin/update-dns
 delegate_to: localhost

 Optimize Task Execution
 Use conditionals to skip tasks that don't need to be run. This avoids unnecessary operations and speeds up playbook execution.

 - name: Ensure Nginx is installed
 apt:
 name: nginx
 state: present
 when: ansible_distribution == 'Ubuntu'

 ‘block’ for Grouping Tasks
 Group related tasks using block to manage dependencies and error handling more efficiently.

 - block:
 - name: Install dependencies
 apt:
 name: "{{ item }}"
 state: present
 loop:
 - libpcre3
 - libpcre3-dev

 - zlib1g-dev
 - name: Compile and install Nginx
 command: ./configure && make && make install
 when: ansible_os_family == 'Debian'

 Next, you cache results of expensive operations and reuse them to avoid redundant processing.

 - name: Check if Nginx is installed
 command: dpkg -l nginx
 register: nginx_installed
 changed_when: false
 - name: Install Nginx if not installed
 apt:
 name: nginx
 state: present
 when: nginx_installed.rc != 0

 Using the appropriate Ansible modules for specific tasks can be more efficient than using generic modules like command or For example, use apt for package management instead of
 Monitor Performance with Callback Plugins
 Use callback plugins to monitor playbook performance and identify bottlenecks. The profile_tasks plugin can provide detailed timing information.
 Open your ansible.cfg file:

 nano ~/GitforGits/ansible.cfg

 Add the following configuration to enable the profile_tasks plugin:

 [defaults]
 callback_whitelist = profile_tasks

Execute the optimized playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/deploy_webserver.yml

 By following these steps, you have optimized the performance of your Ansible playbooks.

 Summary
 Here in this chapter, we covered advanced playbook techniques, started with utilizing roles to organize playbooks and then looked at a variety of roles, such as custom, community, and organizational roles, and acquired the skills necessary to establish and execute them. After that, you learned building and utilizing custom modules to enhance Ansible's capabilities for specific tasks. In addition, you made use of directives such as failed_when, ignore_errors, and block to handle errors in playbooks, allowing for reliable execution and graceful failure management.
 You learned how to secure sensitive data using Ansible Vault, which included creating, editing, encrypting, and decrypting files to safeguard confidential information within playbooks. Reusing community-contributed roles through Ansible Galaxy ensures best practices and saves time. Using variables, loops, conditionals, and filters, you generated dynamic configurations in Jinja2 to create playbook templates.
 By incorporating idempotency into playbooks, we made sure that tasks could be reran without modifying the system in any way, shape, or form. You reviewed and updated tasks to ensure that they were idempotent, utilizing the appropriate modules and conditions. Lastly, you enhanced the performance of the playbook by enabling fact caching, utilizing async and poll for long-running tasks, increasing parallelism with forks, reusing SSH connections, delegating tasks, using conditionals, grouping tasks with blocks, caching results, using specific modules, and monitoring performance with callback plugins.

Taken together, the skills you learned in this chapter will help you manage complicated automation tasks better by allowing you to build Ansible playbooks that are efficient, dependable, and secure. These sophisticated abilities have enhanced the scalability, maintainability, and resilience of your automation processes.

 Knowledge Exercise
 Question 1: What is the primary purpose of using roles in Ansible?
A) To organize tasks within a playbook
B) To store inventory files
C) To define playbook variables
D) To create reusable and modular playbook components
 Answer:
D) To create reusable and modular playbook components
 Roles in Ansible are used to organize playbooks into reusable, modular components, promoting maintainability and consistency across different projects.
 Question 2: Which command is used to create a new role in Ansible?
A) ansible-role create
B) ansible-role init
C) ansible-galaxy create
D) ansible-galaxy init
 Answer:
D) ansible-galaxy init
 The ansible-galaxy init command is used to create a new role with the standard directory structure.
 Question 3: In the context of custom modules, what is the primary purpose of the AnsibleModule class?
A) To define inventory variables
B) To handle encryption and decryption of data
C) To manage arguments and results for custom modules
D) To execute playbooks asynchronously
 Answer:

C) To manage arguments and results for custom modules
 The AnsibleModule class in custom modules manages arguments, validates input, and handles results, ensuring proper communication between the module and Ansible.
 Question 4: What directive is used to handle errors in Ansible playbooks by continuing execution even if a task fails?
A) failed_when
B) ignore_errors
C) rescue
D) always
 Answer:
B) ignore_errors
 The ignore_errors directive allows a playbook to continue execution even if a task fails.
 Question 5: Which Ansible feature is used to encrypt sensitive data within playbooks?
A) Ansible Galaxy
B) Ansible Vault
C) Ansible Role
D) Ansible Template
 Answer:
B) Ansible Vault
 Ansible Vault is used to encrypt sensitive data within playbooks, ensuring secure storage and usage of confidential information.
 Question 6: How do you install a role from Ansible Galaxy?
A) ansible-galaxy install role_name
B) ansible-role install role_name
C) ansible-vault install role_name
D) ansible-galaxy create role_name

Answer:
A) ansible-galaxy install role_name
 The ansible-galaxy install role_name command installs a role from Ansible Galaxy, downloading it to the local roles directory.
 Question 7: What is Jinja2 primarily used for in Ansible?
A) Encrypting playbooks
B) Creating dynamic templates
C) Defining inventory files
D) Managing playbook variables
 Answer:
B) Creating dynamic templates
 Jinja2 is a powerful templating engine used in Ansible for creating dynamic templates, allowing for variable substitution, control structures, and reusable code snippets.
 Question 8: Which of the following directives ensures a task is considered failed only if a specified condition is met?
A) when
B) changed_when
C) failed_when
D) check_mode
 Answer:
C) failed_when
 The failed_when directive specifies a condition under which a task is considered failed, allowing for custom failure criteria.
 Question 9: In Ansible, how can you run a task asynchronously and check its status later?
A) Using wait_for
B) Using async and poll
C) Using delegate_to

D) Using ignore_errors
 Answer:
B) Using async and poll
 Using async and poll allows a task to run asynchronously, with the ability to check its status later, enabling concurrent task execution.
 Question 10: Which configuration option in ansible.cfg is used to increase the number of parallel processes (forks)?
A) fact_caching
B) async
C) forks
D) retries
 Answer:
C) forks
 The forks configuration option in ansible.cfg increases the number of parallel processes, allowing more tasks to run simultaneously.
 Question 11: What is the benefit of using the template module in Ansible playbooks?
A) To encrypt playbooks
B) To create and manage inventory files
C) To deploy dynamic configuration files
D) To execute playbooks asynchronously
 Answer:
C) To deploy dynamic configuration files
 The template module is used to deploy dynamic configuration files using Jinja2 templates, allowing for variable substitution and control structures.

Question 12: How does the block directive help in managing tasks in Ansible playbooks?
A) By defining inventory variables
B) By grouping related tasks and managing error handling
C) By storing sensitive data securely
D) By running tasks in parallel
 Answer:
B) By grouping related tasks and managing error handling
 The block directive groups related tasks and manages error handling, ensuring that tasks within the block are executed together and can handle failures gracefully.
 Question 13: Which feature of Ansible allows you to reuse community-contributed roles?
A) Ansible Vault
B) Ansible Galaxy
C) Ansible Template
D) Ansible Block
 Answer:
B) Ansible Galaxy
 Ansible Galaxy allows you to reuse community-contributed roles, providing a repository of pre-built roles for various automation tasks.
 Question 14: What is the primary use of the AnsibleModule class in custom modules?
A) To handle encryption and decryption
B) To manage arguments and results for the module
C) To create dynamic templates
D) To install community roles
 Answer:
B) To manage arguments and results for the module

The AnsibleModule class manages arguments, validates input, and handles results for custom modules, ensuring proper interaction with Ansible.
 Question 15: Which directive is used to skip tasks that do not need to be run, improving playbook efficiency?
A) when
B) failed_when
C) async
D) changed_when
 Answer:
A) when
 The when directive is used to conditionally skip tasks that do not need to be run, improving playbook efficiency by avoiding unnecessary operations.
 Question 16: What does the forks configuration option in ansible.cfg control?
A) The number of parallel processes
B) The encryption method for sensitive data
C) The location of inventory files
D) The verbosity of playbook output
 Answer:
A) The number of parallel processes
 The forks configuration option controls the number of parallel processes, allowing more tasks to run simultaneously and speeding up playbook execution.
 Question 17: Which Ansible directive is used to cache and reuse results of expensive operations?
A) cache
B) block

C) register
D) fact_caching
 Answer:
D) fact_caching
 Fact caching stores gathered facts about hosts, reducing the need to gather them every time a playbook runs, thus speeding up execution.
 Question 18: What is the purpose of using async and poll in Ansible tasks?
A) To cache results of tasks
B) To run tasks asynchronously and check their status later
C) To encrypt sensitive data
D) To conditionally skip tasks
 Answer:
B) To run tasks asynchronously and check their status later
 Using async and poll allows tasks to run asynchronously, enabling other tasks to execute concurrently and improving overall playbook performance.
 Question 19: What is the primary benefit of enabling SSH connection reuse in Ansible?
A) Increased security
B) Reduced overhead of establishing new connections for each task
C) Improved encryption for sensitive data
D) Simplified inventory management
 Answer:
B) Reduced overhead of establishing new connections for each task

Enabling SSH connection reuse reduces the overhead of establishing new connections for each task, improving playbook execution speed.
 Question 20: Which Ansible plugin provides detailed timing information for playbook tasks, helping identify performance bottlenecks?
A) profile_tasks
B) callback_whitelist
C) async_status
D) fact_caching
 Answer:
A) profile_tasks
 The profile_tasks plugin provides detailed timing information for playbook tasks, helping identify and address performance bottlenecks.

 Chapter 5: Ansible Plugins and Modules

Introduction
 In this chapter, you will explore Ansible's plugins and modules to discover its advanced capabilities. The functionality of Ansible is enhanced by these components, which enable you to personalize and improve your automation tasks. It all starts with getting your head around Ansible plugins and modules, their functions, and their place in the Ansible ecosystem. Subsequently, you will learn how to install and utilize community modules by utilizing the extensive collection of pre-built solutions that have been contributed by the Ansible community. Next, we go over the building of custom Ansible modules, which will allow you to develop solutions that are specifically designed to meet your specific requirements.
 As well, the chapter will provide instructions on how to develop action plugins that will enable you to integrate custom logic into your playbooks. In order to retrieve dynamic data during the execution of a playbook, you will acquire a knack of using lookup plugins and implement filter plugins to modify the data to meet your specific needs. You can modify Ansible's ability to connect to remote systems by managing connections with connection plugins, and you can customize inventory data sourcing by developing inventory plugins.
 At the chapter's conclusion, you will have a firm grasp of Ansible's plugins and modules, allowing you to tailor the automation framework to your specific needs.

 Recipe #1: Understanding Ansible Plugins and Modules
 Ansible Plugins Overview
 Ansible plugins are pieces of code that augment Ansible’s core functionality. They allow you to customize and extend the behavior of Ansible in various ways. Plugins are categorized into different types based on their functionality as below:
 Action Plugins: Action plugins allow you to add custom logic to tasks. They can modify the execution flow or add additional processing steps. For example, an action plugin might ensure certain preconditions are met before running a task.
Lookup Plugins: Lookup plugins fetch data from external sources. This data can be used within your playbooks dynamically. For example, the file lookup plugin reads the contents of a file, and the env lookup plugin retrieves environment variables.
Filter Plugins: Filter plugins process data within playbooks. They transform input data into the desired output format. Common filters include and
Connection Plugins: Connection plugins define how Ansible connects to remote systems. For example, the ssh connection plugin uses SSH to connect to hosts, while the local plugin runs tasks locally.

Inventory Plugins: Inventory plugins allow Ansible to source inventory data from various locations and formats, such as cloud providers or custom databases.
Callback Plugins: Callback plugins react to Ansible events, providing additional output or integrating with other systems. For example, the mail callback plugin sends email notifications.
 Module Return Values
 As learned previously, modules are standalone scripts that Ansible executes on remote systems to perform specific tasks, such as installing packages, managing files, or configuring services. While you’ve already explored about using and creating custom modules, this section will cover some additional aspects not previously learned.
 Modules return JSON-formatted data that Ansible processes. This data typically includes:
 ● Changed: Indicates whether the module made any changes.
● Failed: Indicates if the module execution failed.
Specific Data: Custom data relevant to the module’s task, such as command output or resource status.
 Each module has arguments that control its behavior. Properly documenting these arguments using Ansible’s documentation format ensures that they are clearly understood and correctly used. This documentation is accessible through the ansible-doc command.
 Here in this recipe, we try to understand Ansible plugins and uncover additional insights into Ansible modules that have not been covered in previous chapters.

 List of Ansible Plugins
 At first, to get a list of available plugins, you please use the ansible-doc command:

 ansible-doc -t plugin -l

 This command lists all available plugins by type.
 Module Return Values and Arguments
 Modules return structured JSON data that includes a changed status, indicating whether the module made any changes. They may also return additional data specific to the module’s task.
 Properly document module arguments using Ansible’s standard format. This ensures clarity and usability. The ansible-doc command provides access to module documentation:

 ansible-doc module_name

 Putting Plugin into use
 To illustrate the use of a plugin, consider a playbook that uses the env lookup plugin to retrieve an environment variable:

 - name: Use Lookup Plugin
 hosts: localhost
 tasks:
 - name: Retrieve environment variable
 debug:
 msg: "Home directory is {{ lookup('env', 'HOME') }}"

 Save this playbook and run it:

 ansible-playbook ~/GitforGits/playbooks/use_lookup_plugin.yml

The above sample code retrieves the HOME environment variable using the env lookup plugin and displays it. This recipe provided an overview of the various types of plugins and additional insights into Ansible modules, enhancing your ability to create powerful and flexible automation solutions.

 Recipe #2: Installing and using Community Modules
 Community modules are pre-built modules contributed by the Ansible community. These modules extend the functionality of Ansible, enabling you to perform a wide range of tasks without writing custom modules from scratch. Leveraging community modules can save time and effort, as well as ensure that you are following best practices established by other users.
 In this recipe, you will learn to find, install, and use community modules in your Ansible playbooks.
 Find and Install a Community Module
 Community modules can be found on Ansible Galaxy. Visit the Ansible Galaxy website (https://galaxy.ansible.com/) and use the search functionality to find modules that match your needs. For example, if you need a module to manage Docker, you can search for "docker."
 Use the ansible-galaxy install command to install a community module. For example, to install the geerlingguy.docker role, which includes Docker management modules:

 ansible-galaxy install geerlingguy.docker

 This command downloads the role and its associated modules to the roles/ directory within your Ansible project. To put the community module into use, you first create a new playbook to use the installed community module as below:

 nano ~/GitforGits/playbooks/use_docker_module.yml

 Add the given below script to use the Docker module provided by the geerlingguy.docker role:

 - name: Use Docker Community Module
 hosts: all

 become: yes
 roles:
 - geerlingguy.docker
 tasks:
 - name: Ensure Docker is running
 docker_container:
 name: nginx
 image: nginx
 state: started
 ports:
 - "80:80"

 After running the playbook, check that the Docker container is running on the target hosts. SSH into one of the hosts and use the docker ps command:

 ssh user@server1.gitforgits.com
 docker ps

 You should see the Nginx container listed and running.
 You can also explore other community modules to find ones that suit your specific needs. Install and experiment with these modules to understand their capabilities and how they can be integrated into your playbooks.
 Sample Program: Using Role
 To manage MySQL using a community module, you can install the geerlingguy.mysql role:

 ansible-galaxy install geerlingguy.mysql

 Create a new playbook to use the MySQL module:

 nano ~/GitforGits/playbooks/use_mysql_module.yml

 Add the script as given below:

- name: Use MySQL Community Module
 hosts: all
 become: yes
 roles:
 - geerlingguy.mysql
 tasks:
 - name: Ensure MySQL is running
 mysql_user:
 name: myuser
 password: mypassword
 priv: '*.*:ALL'
 state: present

 Run the playbook:

 ansible-playbook ~/GitforGits/playbooks/use_mysql_module.yml

 These above steps help us to leverage community modules for saving time and effort by utilizing pre-built solutions, thereby allowing us to focus on specific automation needs.

 Recipe #3: Writing Custom Ansible Modules
 When the built-in modules or community-contributed roles do not cover your specific task, you will need to create custom Ansible modules. Here are a few examples of such uses:
 Custom modules can interface with proprietary APIs or systems that do not have existing Ansible modules.
When a task involves multiple steps or complex logic, a custom module can encapsulate this complexity.
Custom modules can handle intricate configuration tasks that require more control than what’s offered by standard modules.
Managing hardware with unique interfaces or protocols may require custom modules to communicate effectively.
When specific data processing or transformation tasks are needed, a custom module can provide the necessary functionality.
 In this recipe, you will learn to write custom Ansible modules to perform tasks that are not covered by existing modules.
 Create Custom Module Script
 Create a directory for your custom modules and a new Python script for your custom module:

 mkdir -p ~/GitforGits/library
 nano ~/GitforGits/library/custom_greeting.py

 Add the given below script to the Python script:

 #!/usr/bin/python

from ansible.module_utils.basic import AnsibleModule
 def run_module():
 module_args = dict(
 name=dict(type='str', required=True)
)
 result = dict(
 changed=False,
 original_message='',
 message=''
)
 module = AnsibleModule(
 argument_spec=module_args,
 supports_check_mode=True
)
 name = module.params['name']
 result['original_message'] = name
 result['message'] = f'Hello, {name}!'
 if module.check_mode:
 module.exit_json(**result)
 result['changed'] = True
 module.exit_json(**result)
 def main():
 run_module()
 if __name__ == '__main__':
 main()

 This simple custom module takes a name parameter and returns a greeting message. Now, ensure the custom module script is executable as below:

 chmod +x ~/GitforGits/library/custom_greeting.py

Use Custom Module
 Create a new playbook to use the custom module:

 nano ~/GitforGits/playbooks/use_custom_greeting.yml

 Add the script as given below:

 - name: Use Custom Greeting Module
 hosts: localhost
 tasks:
 - name: Greet with custom module
 custom_greeting:
 name: Ansible
 register: result
 - name: Print result
 debug:
 var: result.message

 After running the playbook, verify that the custom module executed correctly and printed the greeting message.
 Sample Program: Managing a Custom Service
 Create a new custom module to manage a hypothetical custom service. The above sample code will demonstrate more advanced features such as error handling and managing service states.
 Create a new Python script for the custom service module:

 nano ~/GitforGits/library/custom_service.py

 Add the following script to the script:

 #!/usr/bin/python
 from ansible.module_utils.basic import AnsibleModule
 import subprocess
 def run_module():

 module_args = dict(
 name=dict(type='str', required=True),
 state=dict(type='str', required=True, choices=['started', 'stopped'])
)
 result = dict(
 changed=False,
 original_message='',
 message=''
)
 module = AnsibleModule(
 argument_spec=module_args,
 supports_check_mode=True
)
 name = module.params['name']
 state = module.params['state']
 result['original_message'] = name
 if state == 'started':
 try:
 subprocess.check_call(['systemctl', 'start', name])
 result['changed'] = True
 result['message'] = f'Service {name} started'
 except subprocess.CalledProcessError as e:
 module.fail_json(msg=f'Failed to start service {name}: {str(e)}', **result)
 elif state == 'stopped':
 try:
 subprocess.check_call(['systemctl', 'stop', name])
 result['changed'] = True

 result['message'] = f'Service {name} stopped'
 except subprocess.CalledProcessError as e:
 module.fail_json(msg=f'Failed to stop service {name}: {str(e)}', **result)
 if module.check_mode:
 module.exit_json(**result)
 module.exit_json(**result)
 def main():
 run_module()
 if __name__ == '__main__':
 main()

 Ensure the custom module script is executable:

 chmod +x ~/GitforGits/library/custom_service.py

 Create a new playbook to use the custom service module:

 nano ~/GitforGits/playbooks/manage_custom_service.yml

 Add the script as given below:

 - name: Manage Custom Service
 hosts: localhost
 tasks:
 - name: Start custom service
 custom_service:
 name: my_custom_service
 state: started
 register: result
 - name: Print result
 debug:
 var: result.message

Execute the playbook and then you have successfully written and used custom Ansible modules.

 Recipe #4: Creating Action Plugins for Custom Logic
 Action plugins allow you to extend the functionality of modules by adding custom logic to tasks. They enable you to manipulate data, execute additional logic, or modify the execution flow of tasks. Creating custom action plugins can significantly enhance the flexibility and power of your Ansible playbooks.
 This recipe guides you to create and use custom action plugins to add custom logic to your Ansible tasks.
 Create Custom Action Plugin Script
 Before creating the custom script, make sure you have the necessary directory structure for your custom action plugins:

 mkdir -p ~/GitforGits/action_plugins

 Now, create a new Python script for your custom action plugin:

 nano ~/GitforGits/action_plugins/custom_action.py

 Add the following script to the script:

 from ansible.plugins.action import ActionBase
 from ansible.errors import AnsibleError
 class ActionModule(ActionBase):
 def run(self, tmp=None, task_vars=None):
 # Retrieve parameters from the task
 result = super(ActionModule, self).run(tmp, task_vars)
 module_args = self._task.args.copy()
 # Example custom logic: Validate input
 if 'message' not in module_args:
 raise AnsibleError("The 'message' parameter is required")
 message = module_args['message']
 # Add custom logic here
 result['changed'] = True

 result['message'] = f"Custom Action: {message}"
 return result

 This simple action plugin retrieves a message parameter, validates it, and processes it to return a custom message. And then, ensure the custom action plugin script is executable:

 chmod +x ~/GitforGits/action_plugins/custom_action.py

 Use Custom Action Plugin
 Create a new playbook to use the custom action plugin:

 nano ~/GitforGits/playbooks/use_custom_action.yml

 Add the following code snippet:

 - name: Use Custom Action Plugin
 hosts: localhost
 tasks:
 - name: Execute custom action
 custom_action:
 message: "Hello from the custom action plugin"
 register: result
 - name: Print result
 debug:
 var: result.message

 After running the playbook, verify that the custom action plugin executed.
 Sample Program: Adding Pre- and Post-Task Logic
 Let us extend the custom action plugin to include pre- and post-task logic, such as logging or additional validation.
 To do this, first open the custom action plugin script:

 nano ~/GitforGits/action_plugins/custom_action.py

 Modify the script to include pre- and post-task logic:

from ansible.plugins.action import ActionBase
 from ansible.errors import AnsibleError
 class ActionModule(ActionBase):
 def run(self, tmp=None, task_vars=None):
 result = super(ActionModule, self).run(tmp, task_vars)
 module_args = self._task.args.copy()
 # Pre-task logic
 self._display.display("Executing custom action plugin...")
 if 'message' not in module_args:
 raise AnsibleError("The 'message' parameter is required")
 message = module_args['message']
 # Main task logic
 result['changed'] = True
 result['message'] = f"Custom Action: {message}"
 # Post-task logic
 self._display.display("Custom action plugin execution complete.")
 return result

 Ensure the custom action plugin script is executable:

 chmod +x ~/GitforGits/action_plugins/custom_action.py

 Re-run the playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/use_custom_action.yml

 With these steps, you have successfully created and used a custom action plugin to add complex logic and extend the functionality of your tasks.

 Recipe #5: Using Lookup Plugins for Dynamic Data
 Lookup plugins are used to fetch data from external sources dynamically during playbook execution. They allow you to retrieve information such as file contents, environment variables, or data from external databases and APIs. In this recipe, you will learn to use lookup plugins to fetch dynamic data during playbook execution, enhancing the flexibility and adaptability of your playbooks.
 Understanding Lookup Plugins
 Lookup plugins enable you to retrieve data from various sources. Some commonly used lookup plugins include:
 file: Reads the contents of a file.
env: Retrieves the value of an environment variable.
url: Fetches data from a URL.
csvfile: Reads data from a CSV file.
password: Generates or retrieves a password from a password file.
 ‘file’
 The file lookup plugin reads the contents of a file and returns it as a string. This can be useful for including configuration snippets or other data stored in files.
 Try creating a sample file with some content:

 echo "This is a sample file content" > ~/GitforGits/sample_file.txt

 Then, create a new playbook to use the file lookup plugin:

 nano ~/GitforGits/playbooks/use_file_lookup.yml

 Add the following script to the playbook:

 - name: Use File Lookup Plugin
 hosts: localhost
 tasks:
 - name: Read file content
 debug:
 msg: "{{ lookup('file', '../sample_file.txt') }}"

 ‘env’
 The env lookup plugin retrieves the value of an environment variable. This can be useful for accessing environment-specific configurations.
 Now to use the env lookup plugin, create a new playbook:

 nano ~/GitforGits/playbooks/use_env_lookup.yml

 Add the following script to the playbook:

 - name: Use Env Lookup Plugin
 hosts: localhost
 tasks:
 - name: Retrieve environment variable
 debug:
 msg: "Home directory is {{ lookup('env', 'HOME') }}"

 ‘url’
 The url lookup plugin fetches data from a URL. This can be useful for retrieving dynamic content or configuration data from web services.
 To use the url lookup plugin, create a new playbook and add the given below script to the playbook:

 nano ~/GitforGits/playbooks/use_url_lookup.yml

 - name: Use URL Lookup Plugin

 hosts: localhost
 tasks:
 - name: Fetch data from URL
 debug:
 msg: "{{ lookup('url', 'http://gitforgits.com') }}"

 ‘csvfile’
 The csvfile lookup plugin reads data from a CSV file. This can be useful for processing structured data stored in CSV format.
 Firstly, create a sample CSV file with some data:

 echo "name,age\nRAMA,30\nKRISHNA,25" > ~/GitforGits/sample_data.csv

 Create a new playbook:

 nano ~/GitforGits/playbooks/use_csvfile_lookup.yml

 Add the given below script to the playbook:

 - name: Use CSVFile Lookup Plugin
 hosts: localhost
 tasks:
 - name: Read CSV data
 debug:
 msg: "{{ lookup('csvfile', '../sample_data.csv') }}"

 ‘password’
 The password lookup plugin generates or retrieves a password from a password file. This is useful for managing passwords securely within playbooks.
 Create a new playbook to use the password lookup plugin:

 nano ~/GitforGits/playbooks/use_password_lookup.yml

 Add the given below script to the playbook:

- name: Use Password Lookup Plugin
 hosts: localhost
 tasks:
 - name: Generate or retrieve password
 debug:
 msg: "{{ lookup('password', '/path/to/password/file length=12 chars=ascii_letters') }}"

 Execute all the playbooks:

 ansible-playbook ~/GitforGits/playbooks/use_file_lookup.yml
 ansible-playbook ~/GitforGits/playbooks/use_env_lookup.yml
 ansible-playbook ~/GitforGits/playbooks/use_url_lookup.yml
 ansible-playbook ~/GitforGits/playbooks/use_csvfile_lookup.yml
 ansible-playbook ~/GitforGits/playbooks/use_password_lookup.yml

 This means that you have effectively used multiple lookup plugins to retrieve dynamic data while the playbook is running. You can easily retrieve and use data from diverse sources with lookup plugins, which enhance the adaptability and flexibility of your playbooks.

 Recipe #6: Implementing Filter Plugins for Data Transformation
 Data transformation involves manipulating data to fit specific formats, perform calculations, or apply custom logic. By transforming data, you can ensure that the information used in your playbooks is in the desired state, making your automation tasks more efficient and effective. Filter plugins allow you to process variables, modify their values, and generate new data based on existing inputs.
 In this recipe, you will learn to create and use custom filter plugins to perform data transformation, ensuring that the data in your playbooks is properly formatted and ready for use.
 Create Custom Filter Plugin Script
 At first, ensure you have the necessary directory structure for your custom filter plugins:

 mkdir -p ~/GitforGits/filter_plugins

 Create a new Python script for your custom filter plugin:

 nano ~/GitforGits/filter_plugins/custom_filters.py

 Add the given below script to the Python script:

 def to_uppercase(value):
 """Converts a string to uppercase."""
 if not isinstance(value, str):
 raise TypeError("Value must be a string")
 return value.upper()
 class FilterModule(object):
 """Custom filters."""
 def filters(self):
 return {
 'to_uppercase': to_uppercase,
 }

This simple filter plugin converts a string to uppercase.
 Use Custom Filter Plugin
 Create a new playbook to use the custom filter plugin:

 nano ~/GitforGits/playbooks/use_custom_filter.yml

 Add the following code snippet:

 - name: Use Custom Filter Plugin
 hosts: localhost
 tasks:
 - name: Apply custom filter
 debug:
 msg: "{{ 'hello world' | to_uppercase }}"

 Execute the playbook and verify that the custom filter plugin executed correctly and transformed the string to uppercase.
 Sample Program: Creating Complex Filters
 Create additional filters for more complex data transformations. For example, a filter to calculate the factorial of a number and to do this, open the custom filter plugin script:

 nano ~/GitforGits/filter_plugins/custom_filters.py

 Modify the script to include the new filter:

 def to_uppercase(value):
 """Converts a string to uppercase."""
 if not isinstance(value, str):
 raise TypeError("Value must be a string")
 return value.upper()
 def factorial(n):
 """Calculates the factorial of a number."""
 if not isinstance(n, int) or n < 0:
 raise ValueError("Value must be a non-negative integer")

 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)
 class FilterModule(object):
 """Custom filters."""
 def filters(self):
 return {
 'to_uppercase': to_uppercase,
 'factorial': factorial,
 }

 Update the playbook to use the new filters:

 nano ~/GitforGits/playbooks/use_custom_filter.yml

 Modify the content to apply the new filters:

 - name: Use Custom Filter Plugin
 hosts: localhost
 tasks:
 - name: Apply uppercase filter
 debug:
 msg: "{{ 'hello world' | to_uppercase }}"
 - name: Calculate factorial
 debug:
 msg: "Factorial of 5 is {{ 5 | factorial }}"

 Re-run the playbook:

 ansible-playbook ~/GitforGits/playbooks/use_custom_filter.yml

You can continue to add more complex data transformations as needed. For example, creating filters for data validation, formatting dates, or manipulating lists and dictionaries.
 Sample Program: Date Formatting Filter
 Update the custom filter plugin script to include a date formatting filter:

 import datetime
 def to_uppercase(value):
 """Converts a string to uppercase."""
 if not isinstance(value, str):
 raise TypeError("Value must be a string")
 return value.upper()
 def factorial(n):
 """Calculates the factorial of a number."""
 if not isinstance(n, int) or n < 0:
 raise ValueError("Value must be a non-negative integer")
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)
 def format_date(value, date_format='%Y-%m-%d'):
 """Formats a date string to the specified format."""
 try:
 date_obj = datetime.datetime.strptime(value, '%Y-%m-%d')
 return date_obj.strftime(date_format)
 except ValueError as e:
 raise ValueError(f"Invalid date format: {e}")
 class FilterModule(object):
 """Custom filters."""
 def filters(self):

 return {
 'to_uppercase': to_uppercase,
 'factorial': factorial,
 'format_date': format_date,
 }

 Update the playbook to use the date formatting filter:

 nano ~/GitforGits/playbooks/use_custom_filter.yml

 Modify the script:

 - name: Use Custom Filter Plugin
 hosts: localhost
 tasks:
 - name: Apply uppercase filter
 debug:
 msg: "{{ 'hello world' | to_uppercase }}"
 - name: Calculate factorial
 debug:
 msg: "Factorial of 5 is {{ 5 | factorial }}"
 - name: Format date
 debug:
 msg: "Formatted date is {{ '2024-07-01' | format_date('%B %d, %Y') }}"

 Re-run the playbook and verify that the and format_date filters executed correctly and transformed the data as expected. By following these steps, you have successfully created and used custom filter plugins to perform data transformations. Filter plugins enable you to manipulate and format data dynamically within your playbooks, enhancing the flexibility and power of your automation scripts.

 Recipe #7: Managing Connections with Connection Plugins
 Connection Plugins Overview
 Connection plugins define how the control node connects to the managed nodes. These plugins handle the communication layer, ensuring that tasks are executed on the remote hosts. Different environments and requirements might necessitate using various connection types such as SSH, local, Docker, or custom protocols. By customizing connection plugins, you can optimize and secure the connection process based on your specific needs.
 Our goal in this recipe is to use and create custom connection plugins to manage connections effectively, ensuring efficient and secure communication with remote hosts.
 Understanding Built-in Connection Plugins
 Ansible comes with several built-in connection plugins, including:
 SSH: The default method for connecting to remote hosts using SSH.
Local: Executes tasks on the local machine where Ansible is running.
Docker: Connects to Docker containers.
WinRM: Connects to Windows hosts using the Windows Remote Management protocol.
Chroot: Connects to a chroot jail.
 You can list available connection plugins using the ansible-doc command:

 ansible-doc -t connection -l

 Using Built-in Connection Plugin

To use a built-in connection plugin, specify it in your playbook or inventory file. For example, to use the Docker connection plugin:
 Inventory File Configuration

 [webservers]
 web1.gitforgits.com ansible_connection=docker
 web2.gitforgits.com ansible_connection=docker

 Playbook Configuration

 - name: Use Docker Connection
 hosts: webservers
 tasks:
 - name: Ping Docker containers
 ping:

 Creating Custom Connection Plugin
 To create a custom connection plugin, you need to define a new connection plugin script. Custom connection plugins can be used to implement specific protocols or connection methods not covered by built-in plugins.
 First, ensure you have the necessary directory structure for your custom connection plugins:

 mkdir -p ~/GitforGits/connection_plugins

 Create Custom Connection Plugin Script
 Create a new Python script for your custom connection plugin:

 nano ~/GitforGits/connection_plugins/custom_connection.py

 Add the following script to the Python script:

 from ansible.plugins.connection import ConnectionBase
 from ansible.errors import AnsibleConnectionFailure
 class Connection(ConnectionBase):
 ''' Custom connection plugin '''

 transport = 'custom'
 has_pipelining = True
 def __init__(self, *args, **kwargs):
 super(Connection, self).__init__(*args, **kwargs)
 def _connect(self):
 # Implement the connection logic
 if not self.connected:
 # Simulate connection logic (e.g., open a socket, SSH, etc.)
 self.connected = True
 def exec_command(self, cmd, in_data=None, sudoable=True):
 ''' Run a command on the remote host '''
 self._connect()
 if not self.connected:
 raise AnsibleConnectionFailure("Failed to connect")
 # Simulate command execution
 result = {
 'rc': 0,
 'stdout': f"Executed: {cmd}",
 'stderr': '',
 }
 return result
 def put_file(self, in_path, out_path):
 ''' Transfer a file to the remote host '''
 self._connect()
 if not self.connected:
 raise AnsibleConnectionFailure("Failed to connect")
 # Simulate file transfer

 with open(in_path, 'rb') as in_file:
 with open(out_path, 'wb') as out_file:
 out_file.write(in_file.read())
 def fetch_file(self, in_path, out_path):
 ''' Fetch a file from the remote host '''
 self._connect()
 if not self.connected:
 raise AnsibleConnectionFailure("Failed to connect")
 # Simulate file fetching
 with open(in_path, 'rb') as in_file:
 with open(out_path, 'wb') as out_file:
 out_file.write(in_file.read())
 def close(self):
 ''' Close the connection '''
 if self.connected:
 self.connected = False

 Use Custom Connection Plugin
 Create a new playbook to use the custom connection plugin:

 nano ~/GitforGits/playbooks/use_custom_connection.yml

 Add the following code snippet:

 - name: Use Custom Connection Plugin
 hosts: localhost
 tasks:
 - name: Execute custom connection command
 ping:
 vars:
 ansible_connection: custom

After running the playbook, verify that the custom connection plugin executed correctly and connected to the host. By now, you have successfully used and created custom connection plugins to manage connections effectively.

 Recipe #8: Developing Inventory Plugins for Custom Sources
 Our goal in this recipe is to develop custom inventory plugins to source inventory data from custom sources, enhancing the flexibility and adaptability of your Ansible automation.
 Inventory Plugins Overview
 Inventory plugins allow you to source inventory data from various locations and formats, such as cloud providers, databases, or custom data sources. Inventory plugins enable Ansible to retrieve host and group information dynamically. Built-in plugins support various sources like AWS, GCP, and OpenStack, but custom plugins can be created to integrate with other sources.
 Create Custom Inventory Plugin Script
 Create a new Python script for your custom inventory plugin:

 nano ~/GitforGits/inventory_plugins/custom_inventory.py

 Add the given below script to the Python script:

 import json
 from ansible.plugins.inventory import BaseInventoryPlugin
 from ansible.errors import AnsibleParserError
 DOCUMENTATION = '''
 name: custom_inventory
 plugin_type: inventory
 short_description: Custom inventory source
 description:
 - This is a custom inventory plugin for Ansible
 options:
 plugin:
 description: Name of the plugin
 required: True
 choices: ['custom_inventory']

'''
 class InventoryModule(BaseInventoryPlugin):
 NAME = 'custom_inventory'
 def verify_file(self, path):
 ''' Verify if the provided file is a valid source '''
 valid = super(InventoryModule, self).verify_file(path)
 if valid:
 if path.endswith(('custom_inventory.yml', 'custom_inventory.yaml')):
 return True
 return False
 def parse(self, inventory, loader, path, cache=True):
 ''' Parse the inventory file '''
 super(InventoryModule, self).parse(inventory, loader, path)
 # Read the inventory configuration
 config = self._read_config_data(path)
 # Validate required options
 if 'hosts' not in config:
 raise AnsibleParserError('The "hosts" option is required')
 # Add hosts and groups from the custom source
 for host in config['hosts']:
 self.inventory.add_host(host)
 for group in config['hosts'][host].get('groups', []):
 self.inventory.add_group(group)
 self.inventory.add_host(host, group)
 # Add host variables

 for var, value in config['hosts'][host].get('vars', {}).items():
 self.inventory.set_variable(host, var, value)

 Create Inventory Configuration File
 Create an inventory configuration file that defines the custom source data:

 nano ~/GitforGits/inventory/custom_inventory.yml

 Add the following code snippet:

 plugin: custom_inventory
 hosts:
 web1.gitforgits.com:
 groups:
 - webservers
 vars:
 ansible_host: 192.168.1.101
 web2.gitforgits.com:
 groups:
 - webservers
 vars:
 ansible_host: 192.168.1.102
 db1.gitforgits.com:
 groups:
 - databases
 vars:
 ansible_host: 192.168.1.201

 Use Custom Inventory Plugin
 Create a new playbook to use the custom inventory plugin:

 nano ~/GitforGits/playbooks/use_custom_inventory.yml

 Add the following code snippet:

- name: Use Custom Inventory Plugin
 hosts: all
 tasks:
 - name: Ping all hosts
 ping:

 Revising Inventory File
 Add the given below script to the inventory file that existingly includes the custom inventory plugin:

 [all:vars]
 ansible_inventory_enabled_plugins = custom_inventory

 While executing, specify the custom inventory configuration file:

 ansible-playbook -i ~/GitforGits/inventory/custom_inventory.yml ~/GitforGits/playbooks/use_custom_inventory.yml

 After running the playbook, verify that the custom inventory plugin executed correctly and connected to the specified hosts.
 Sample Program: Extending Custom Inventory Plugin
 Open the custom inventory plugin script:

 nano ~/GitforGits/inventory_plugins/custom_inventory.py

 Modify the script to include logic for fetching data from an external API:

 import json
 import requests
 from ansible.plugins.inventory import BaseInventoryPlugin
 from ansible.errors import AnsibleParserError
 DOCUMENTATION = '''
 name: custom_inventory
 plugin_type: inventory
 short_description: Custom inventory source

 description:
 - This is a custom inventory plugin for Ansible
 options:
 plugin:
 description: Name of the plugin
 required: True
 choices: ['custom_inventory']
 api_endpoint:
 description: API endpoint for fetching inventory data
 required: True
 '''
 class InventoryModule(BaseInventoryPlugin):
 NAME = 'custom_inventory'
 def verify_file(self, path):
 ''' Verify if the provided file is a valid source '''
 valid = super(InventoryModule, self).verify_file(path)
 if valid:
 if path.endswith(('custom_inventory.yml', 'custom_inventory.yaml')):
 return True
 return False
 def parse(self, inventory, loader, path, cache=True):
 ''' Parse the inventory file '''
 super(InventoryModule, self).parse(inventory, loader, path)
 # Read the inventory configuration
 config = self._read_config_data(path)
 # Validate required options
 if 'api_endpoint' not in config:

 raise AnsibleParserError('The "api_endpoint" option is required')
 # Fetch inventory data from the API
 response = requests.get(config['api_endpoint'])
 if response.status_code != 200:
 raise AnsibleParserError(f"Failed to fetch inventory data from {config['api_endpoint']}")
 inventory_data = response.json()
 # Add hosts and groups from the API response
 for host in inventory_data['hosts']:
 self.inventory.add_host(host)
 for group in inventory_data['hosts'][host].get('groups', []):
 self.inventory.add_group(group)
 self.inventory.add_host(host, group)
 # Add host variables
 for var, value in inventory_data['hosts'][host].get('vars', {}).items():
 self.inventory.set_variable(host, var, value)

 Update the inventory configuration file to include the API endpoint:

 nano ~/GitforGits/inventory/custom_inventory.yml

 Modify the script:

 plugin: custom_inventory
 api_endpoint: 'http://gitforgits.com/api/inventory'

 Re-run the playbook and specify the custom inventory configuration file:

ansible-playbook -i ~/GitforGits/inventory/custom_inventory.yml ~/GitforGits/playbooks/use_custom_inventory.yml

 Then, execute the playbook and verify that the custom inventory plugin fetched data from the external API and connected to the specified hosts.

 Summary
 This chapter taught you how to install and use Ansible Galaxy community modules, which allow you to save time and effort by utilizing the community's extensive library of pre-built solutions. The chapter addressed the development of custom Ansible modules to implement tasks that are not addressed by preexisting modules. You gained the knowledge of constructing custom modules to execute specific tasks, such as integrating with proprietary systems or managing a service. You also learned the development of action plugins, which enable you to incorporate custom logic into tasks, thereby increasing the flexibility and power of your playbooks.
 Another significant topic was the utilization of lookup plugins for dynamic data. You learned how to get data from different places, like files, environment variables, URLs, and CSV files. This lets your playbooks adapt to new data sources and environments. Additionally, the implementation of filter plugins for data transformation was discussed, which illustrated the dynamic manipulation and formatting of data within playbooks.
 This chapter also covered the management of connections using connection plugins, which is necessary for the creation and implementation of custom connection plugins to enhance and secure the communication process between the control node and managed nodes. Lastly, you created inventory plugins for custom sources, which allowed Ansible to retrieve inventory data from a variety of locations and formats, including external APIs and databases.

In sum, you should now be able to build more versatile, efficient, and powerful automation solutions thanks to the information you gained in this chapter about how to add plugins and modules to Ansible and modify its functionality.

 Knowledge Exercise
 Question 1: What is the primary purpose of action plugins in Ansible?
A) To manage inventory data
B) To add custom logic to tasks
C) To fetch data from external sources
D) To transform data within playbooks
 Answer:
B) To add custom logic to tasks
 Action plugins in Ansible are used to extend the functionality of modules by adding custom logic to tasks.
 Question 2: Which command is used to list available connection plugins in Ansible?
A) ansible-plugins list connection
B) ansible-doc -t connection -l
C) ansible-inventory --list
D) ansible-playbook --list-plugins
 Answer:
B) ansible-doc -t connection -l
 The ansible-doc -t connection -l command lists all available connection plugins in Ansible.
 Question 3: Which plugin type allows Ansible to retrieve host and group information dynamically?
A) Callback plugins
B) Lookup plugins
C) Inventory plugins
D) Action plugins
 Answer:
C) Inventory plugins

Inventory plugins in Ansible enable it to retrieve host and group information dynamically from various sources.
 Question 4: What is the purpose of the verify_file method in a custom inventory plugin?
A) To validate the inventory configuration file
B) To fetch data from external APIs
C) To execute commands on remote hosts
D) To transform data within playbooks
 Answer:
A) To validate the inventory configuration file
 The verify_file method in a custom inventory plugin is used to validate the inventory configuration file and ensure it is a valid source.
 Question 5: Which plugin type is used to manipulate and format data within Ansible playbooks?
A) Action plugins
B) Connection plugins
C) Filter plugins
D) Lookup plugins
 Answer:
C) Filter plugins
 Filter plugins in Ansible are used to manipulate and format data within playbooks, enabling complex data transformations.
 Question 6: What parameter is required to create a custom Ansible module that greets a user by name?
A) username
B) greet
C) name
D) message

Answer:
C) name
 The name parameter is required to create a custom Ansible module that greets a user by name.
 Question 7: Which lookup plugin would you use to read the contents of a file in Ansible?
A) url
B) env
C) file
D) csvfile
 Answer:
C) file
 The file lookup plugin in Ansible reads the contents of a file and returns it as a string.
 Question 8: How do you specify the use of a custom connection plugin in an inventory file?
A) ansible_connection: custom
B) connection: custom
C) custom_connection: true
D) use_connection: custom
 Answer:
A) ansible_connection: custom
 To specify the use of a custom connection plugin in an inventory file, you use the ansible_connection parameter.
 Question 9: Which method in a custom filter plugin is used to register the filters?
A) get_filters
B) list_filters
C) filter

D) filters
 Answer:
D) filters
 The filters method in a custom filter plugin is used to register the filters.
 Question 10: What is the primary benefit of using community modules from Ansible Galaxy?
A) To fetch data from external APIs
B) To reuse pre-built solutions and save time
C) To transform data within playbooks
D) To execute custom commands on remote hosts
 Answer:
B) To reuse pre-built solutions and save time
 The primary benefit of using community modules from Ansible Galaxy is to reuse pre-built solutions and save time, leveraging the expertise of the Ansible community.
 Question 11: Which of the following describes the main role of lookup plugins in Ansible?
A) They provide additional output for playbook execution.
B) They retrieve dynamic data from external sources.
C) They manage connection parameters.
D) They encrypt sensitive data.
 Answer:
B) They retrieve dynamic data from external sources.
 Lookup plugins in Ansible are used to fetch dynamic data from various sources, such as files, environment variables, and URLs, during playbook execution.
 Question 12: What is the function of the parse method in a custom inventory plugin?

A) To validate input parameters.
B) To fetch and process inventory data.
C) To apply filters to data.
D) To execute remote commands.
 Answer:
B) To fetch and process inventory data.
 The parse method in a custom inventory plugin is responsible for fetching and processing inventory data, adding hosts and groups to the inventory.
 Question 13: How can filter plugins enhance the flexibility of Ansible playbooks?
A) By encrypting sensitive variables.
B) By adding custom logic to tasks.
C) By transforming data dynamically.
D) By managing connection settings.
 Answer:
C) By transforming data dynamically.
 Filter plugins enhance the flexibility of Ansible playbooks by enabling dynamic data transformations, allowing you to manipulate and format data as needed.
 Question 14: What command is used to install a role from Ansible Galaxy?
A) ansible-galaxy get role_name
B) ansible-galaxy fetch role_name
C) ansible-galaxy install role_name
D) ansible-galaxy add role_name
 Answer:
C) ansible-galaxy install role_name

The ansible-galaxy install role_name command is used to install a role from Ansible Galaxy.
 Question 15: Which built-in connection plugin is used to execute tasks on the local machine?
A) ssh
B) local
C) docker
D) chroot
 Answer:
B) local
 The local connection plugin in Ansible is used to execute tasks on the local machine where Ansible is running.
 Question 16: What is a common use case for developing a custom action plugin in Ansible?
A) To manage inventory data.
B) To handle complex data transformations.
C) To add pre- and post-task logic.
D) To fetch dynamic data from APIs.
 Answer:
C) To add pre- and post-task logic.
 A common use case for developing a custom action plugin in Ansible is to add pre- and post-task logic, extending the functionality of modules.
 Question 17: Which method in a custom connection plugin is responsible for executing commands on remote hosts?
A) exec_task
B) run_command
C) exec_command
D) execute
 Answer:

C) exec_command
 The exec_command method in a custom connection plugin is responsible for executing commands on remote hosts.
 Question 18: What is the purpose of the DOCUMENTATION variable in a custom inventory plugin?
A) To store dynamic data fetched from external sources.
B) To define the plugin's metadata and configuration options.
C) To manage connection settings.
D) To apply filters to data.
 Answer:
B) To define the plugin's metadata and configuration options.
 The DOCUMENTATION variable in a custom inventory plugin is used to define the plugin's metadata and configuration options, providing necessary details for its usage.
 Question 19: Which of the following is a benefit of using custom filter plugins in Ansible?
A) They encrypt playbook data.
B) They extend the functionality of modules.
C) They provide additional output for playbook execution.
D) They enable complex data manipulations and transformations.
 Answer:
D) They enable complex data manipulations and transformations.
 Custom filter plugins in Ansible enable complex data manipulations and transformations, allowing for greater flexibility in playbook data handling.
 Question 20: What is the key advantage of using inventory plugins for dynamic inventory management?

A) They automate playbook execution.
B) They fetch inventory data from various sources automatically.
C) They manage SSH connections.
D) They handle data encryption.
 Answer:
B) They fetch inventory data from various sources automatically.
 The key advantage of using inventory plugins for dynamic inventory management is their ability to fetch inventory data from various sources automatically, ensuring that the inventory is always up-to-date.

 Chapter 6: Provisioning on Windows and Mac Systems

Introduction
 In the prior chapter, you learned how to extend and customize Ansible's capabilities by exploring the power of plugins and modules. This chapter starts off with the configuration of Ansible to function with Windows hosts, a critical action in the expansion of your automation capabilities to a new platform. You will acquire the ability to manage Windows hosts, which includes the utilization of WinRM (Windows Remote Management) to facilitate communication between Ansible and Windows systems. Furthermore, you will hands-on the installation of software and the configuration of services on Windows using Ansible, thereby enhancing the versatility and power of your automation.
 Moving forward, you will configure Ansible to efficiently manage these hosts on Mac systems. You will acquire the ability to automate a variety of tasks on Mac systems, such as software installation and configuration. By following these recipes, you will acquire the ability to seamlessly manage both Windows and Mac environments, thereby incorporating them into your current automation workflows.

 Recipe #1: Setting up Ansible for Windows
 Installing Ansible on Linux, our default environment, is straightforward and well-documented. The process typically involves using a package manager like apt on Ubuntu or yum on CentOS to install Ansible directly from the official repositories. This simplicity and ease of installation have allowed us to quickly set up and start using Ansible for various automation tasks on Linux.
 However, managing Windows hosts with Ansible requires a different approach, as Ansible runs on a Linux control node but can manage Windows machines remotely. To achieve this, we need to set up the control node to communicate with Windows hosts using WinRM (Windows Remote Management).
 The objective of this recipe is to set up Ansible for managing Windows hosts by configuring the necessary components on the Windows machine and the Linux control node.
 Install Ansible on Linux Control Node
 To install Ansible on your Linux control node, use the package manager appropriate such as:

 sudo apt update
 sudo apt install ansible -y

 Prepare Windows Host
 To allow Ansible to manage a Windows host, you need to configure the Windows machine to accept remote management via WinRM.
 Enable WinRM on Windows Host
 Run the following commands in an elevated PowerShell prompt on the Windows machine:

 winrm quickconfig
 winrm set winrm/config/client/auth @{Basic="true"}

winrm set winrm/config/service/auth @{Basic="true"}
 winrm set winrm/config/service @{AllowUnencrypted="true"}

 Create User for Ansible Management
 Create a user account on the Windows machine that Ansible will use to connect and manage the system. Ensure this user has the necessary administrative privileges.
 Install pywinrm
 Install the pywinrm library on your Linux control node to enable Ansible to communicate with Windows hosts using WinRM:

 sudo pip install pywinrm

 Update the Ansible inventory file to include the Windows host and specify the connection parameters:

 [windows]
 windows_host ansible_host= ansible_user= ansible_password= ansible_connection=winrm ansible_winrm_transport=basic ansible_winrm_server_cert_validation=ignore

 Replace and with the appropriate values for your Windows host. Then, create a simple Ansible playbook to test the connection to the Windows host:

 nano ~/GitforGits/playbooks/test_windows_connection.yml

 Add the following code snippet:

 - name: Test Connection to Windows Host
 hosts: windows
 tasks:
 - name: Ping the Windows host
 win_ping:

Run the playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/test_windows_connection.yml

 If the setup is correct, you should see a successful response indicating that Ansible can communicate with the Windows host.

 Recipe #2: Managing Windows Hosts
 Once you have set up Ansible to manage Windows hosts, you can begin performing various administrative tasks on these hosts using Ansible playbooks. Managing Windows hosts with Ansible allows you to automate routine tasks, enforce configurations, and ensure consistency across your Windows infrastructure.
 In this recipe, you will learn to manage Windows hosts using Ansible by performing common administrative tasks, such as checking system information, managing files, and creating users.
 To begin with, create a playbook to gather system information from the Windows host:

 nano ~/GitforGits/playbooks/windows_system_info.yml

 Add the following code snippet:

 - name: Gather System Information
 hosts: windows
 tasks:
 - name: Gather facts about the Windows host
 win_fact:

 Run the playbook to gather system information:

 ansible-playbook ~/GitforGits/playbooks/windows_system_info.yml

 This playbook uses the win_fact module to gather information about the Windows host, such as operating system version, hardware details, and more.
 Manage Files on Windows

Create a playbook to manage files on the Windows host, such as creating, deleting, and copying files:

 nano ~/GitforGits/playbooks/windows_manage_files.yml

 Add the script as given below:

 - name: Manage Files on Windows
 hosts: windows
 tasks:
 - name: Create a directory
 win_file:
 path: C:\example
 state: directory
 - name: Create a file
 win_copy:
 content: "This is a test file."
 dest: C:\exampleestfile.txt
 - name: Delete a file
 win_file:
 path: C:\exampleestfile.txt
 state: absent

 Run the playbook to manage files on the Windows host:

 ansible-playbook ~/GitforGits/playbooks/windows_manage_files.yml

 This playbook uses the win_file and win_copy modules to create a directory, create a file with specific content, and delete a file.
 Create and Manage Users
 Create a playbook to create and manage users on the Windows host:

 nano ~/GitforGits/playbooks/windows_manage_users.yml

 Add the script as given below:

 - name: Manage Users on Windows
 hosts: windows
 tasks:
 - name: Create a user
 win_user:
 name: exampleuser
 password: Password123
 state: present
 - name: Ensure user is a member of the Administrators group
 win_group_membership:
 name: Administrators
 members: exampleuser
 state: present

 Run the playbook to manage users on the Windows host:

 ansible-playbook ~/GitforGits/playbooks/windows_manage_users.yml

 This playbook uses the win_user and win_group_membership modules to create a user and ensure that the user is a member of the Administrators group.
 Manage Windows Services
 Create a playbook to manage Windows services:

 nano ~/GitforGits/playbooks/windows_manage_services.yml

 Add the following code snippet:

 - name: Manage Windows Services
 hosts: windows
 tasks:

 - name: Ensure the Windows Update service is running
 win_service:
 name: wuauserv
 start_mode: auto
 state: started

 Run the playbook to manage Windows services:

 ansible-playbook ~/GitforGits/playbooks/windows_manage_services.yml

 This playbook uses the win_service module to ensure that the Windows Update service is running and set to start automatically.
 Install Software on Windows
 Create a playbook to install software on the Windows host:

 nano ~/GitforGits/playbooks/windows_install_software.yml

 Add the script as given below:

 - name: Install Software on Windows
 hosts: windows
 tasks:
 - name: Install Google Chrome
 win_chocolatey:
 name: googlechrome
 state: present

 Run the playbook to install software on the Windows host:

 ansible-playbook ~/GitforGits/playbooks/windows_install_software.yml

This playbook uses the win_chocolatey module to install Google Chrome using the Chocolatey package manager. By now, you have successfully managed Windows hosts using Ansible. These examples demonstrate to perform common administrative tasks, such as checking system information, managing files, creating users, managing services, and installing software.

 Recipe #3: Using WinRM for Windows Communication
 WinRM (Windows Remote Management) is a Microsoft protocol that allows remote management of Windows machines. It is a crucial component for managing Windows hosts with Ansible, enabling Ansible to execute tasks and gather information from Windows systems. Setting up and using WinRM correctly is essential for effective communication between your Ansible control node and Windows hosts.
 This recipe guides you to configure and use WinRM for communication between Ansible and Windows hosts, ensuring secure and reliable remote management.
 Configure WinRM on the Windows Host
 To enable WinRM on the Windows host, you need to configure it to accept remote management commands.
 Enable WinRM
 Run the following commands in an elevated PowerShell prompt on the Windows machine:

 winrm quickconfig
 winrm set winrm/config/client/auth @{Basic="true"}
 winrm set winrm/config/service/auth @{Basic="true"}
 winrm set winrm/config/service @{AllowUnencrypted="true"}

 Set Trusted Hosts
 If your Ansible control node and Windows host are not in the same domain, you may need to set the Ansible control node as a trusted host. Run this command in PowerShell:

 winrm set winrm/config/client @{TrustedHosts="*"}

 Replace "*" with the specific IP address or hostname of your Ansible control node if you prefer a more secure setup.
 Configure Ansible Inventory

Add the following code to the inventory file, replacing the placeholders with your actual Windows host details:

 [windows]
 windows_host ansible_host= ansible_user= ansible_password= ansible_connection=winrm ansible_winrm_transport=basic ansible_winrm_server_cert_validation=ignore

 Test WinRM Connection
 Create a simple Ansible playbook to test the WinRM connection:

 nano ~/GitforGits/playbooks/test_winrm_connection.yml

 Add the following code snippet:

 - name: Test WinRM Connection
 hosts: windows
 tasks:
 - name: Ping the Windows host
 win_ping:

 Run the playbook to test the connection:

 ansible-playbook ~/GitforGits/playbooks/test_winrm_connection.yml

 If the setup is correct, you should see a successful response indicating that Ansible can communicate with the Windows host via WinRM.
 Securing WinRM Communication
 For a production environment, it is recommended to secure WinRM communication using HTTPS. This involves generating and installing a self-signed certificate or obtaining a certificate from a trusted Certificate Authority (CA).
 Generate a Self-Signed Certificate

Run the following commands in an elevated PowerShell prompt on the Windows host:

 $cert = New-SelfSignedCertificate -CertStoreLocation Cert:\LocalMachine\My -DnsName "winrm.gitforgits.com"
 New-Item -Path WSMan:\Localhost\ClientCertificate -Value @{Issuer = $cert.Issuer; Subject = $cert.Subject}
 winrm create winrm/config/listener?Address=*+Transport=HTTPS @{"Hostname"="winrm.gitforgits.com"; "CertificateThumbprint"="$($cert.Thumbprint)"}

 Update Ansible Inventory for HTTPS
 Update your Ansible inventory file to use HTTPS for WinRM communication:

 [windows]
 windows_host ansible_host= ansible_user= ansible_password= ansible_connection=winrm ansible_winrm_transport=ntlm ansible_winrm_server_cert_validation=ignore ansible_port=5986

 Once WinRM is configured and tested, you can use it to manage various aspects of Windows hosts through Ansible playbooks.
 Sample Program: Managing Windows Services
 Create a playbook to manage a Windows service using WinRM:

 nano ~/GitforGits/playbooks/manage_windows_service.yml

 Add the following code snippet:

 - name: Manage Windows Service
 hosts: windows
 tasks:

 - name: Ensure Windows Update service is running
 win_service:
 name: wuauserv
 start_mode: auto
 state: started

 Run the playbook to manage the Windows service:

 ansible-playbook ~/GitforGits/playbooks/manage_windows_service.yml

 By following these steps, you have successfully configured and used WinRM for communication between Ansible and Windows hosts. This setup enables you to manage and automate tasks on Windows machines, integrating them seamlessly into your Ansible workflows.

 Recipe #4: Installing Software on Windows with Ansible
 Managing software installations on Windows hosts can be efficiently handled using Ansible. By automating software installation, you can ensure consistency across your Windows infrastructure, save time, and reduce errors. Ansible provides several modules to manage software installations on Windows, including the win_chocolatey module for installing packages from the Chocolatey package manager.
 In this recipe, you will learn to use Ansible to install software on Windows hosts, leveraging the win_chocolatey module and other relevant modules.
 Install Chocolatey on Windows Host
 Chocolatey is a popular package manager for Windows. First, you need to install Chocolatey on your Windows host. Run the following command in an elevated PowerShell prompt:

 Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))

 Configure Ansible Inventory
 Replace and with the appropriate values for your Windows host.

 [windows]
 windows_host ansible_host= ansible_user= ansible_password= ansible_connection=winrm ansible_winrm_transport=basic ansible_winrm_server_cert_validation=ignore

 Install Software

Create a new playbook to install software on the Windows host using Chocolatey:

 nano ~/GitforGits/playbooks/install_software_windows.yml

 Add the following code snippet:

 - name: Install Software on Windows
 hosts: windows
 tasks:
 - name: Ensure Chocolatey is installed
 win_chocolatey:
 name: chocolatey
 state: present
 - name: Install Google Chrome
 win_chocolatey:
 name: googlechrome
 state: present
 - name: Install 7-Zip
 win_chocolatey:
 name: 7zip
 state: present

 This playbook ensures that Chocolatey is installed on the Windows host and then uses Chocolatey to install Google Chrome and 7-Zip.
 After the playbook has run, verify that the software has been installed on the Windows host. You can check this by logging into the Windows machine and looking for the installed applications or by running specific commands to verify their presence.
 Sample Program: Installing Additional Software

To install additional software, you can modify the playbook to include more packages. For example, to install Notepad++ and VLC Media Player, update the playbook as follows:

 nano ~/GitforGits/playbooks/install_software_windows.yml

 Add the following tasks:

 - name: Install Software on Windows
 hosts: windows
 tasks:
 - name: Ensure Chocolatey is installed
 win_chocolatey:
 name: chocolatey
 state: present
 - name: Install Google Chrome
 win_chocolatey:
 name: googlechrome
 state: present
 - name: Install 7-Zip
 win_chocolatey:
 name: 7zip
 state: present
 - name: Install Notepad++
 win_chocolatey:
 name: notepadplusplus
 state: present
 - name: Install VLC Media Player
 win_chocolatey:
 name: vlc
 state: present

Execute the updated playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/install_software_windows.yml

 After running the updated playbook, verify that Notepad++ and VLC Media Player have been installed on the Windows host. This approach allows you to automate software installations, ensuring consistency and efficiency across your Windows infrastructure.

 Recipe #5: Configuring Windows Services
 Managing and configuring Windows services is a common administrative task that can be automated using Ansible. By using Ansible's win_service module, you can start, stop, enable, disable, and configure Windows services efficiently.
 Our goal in this recipe is to use Ansible to manage Windows services, including starting, stopping, enabling, and configuring services on Windows hosts.
 To begin with, check that the Ansible inventory includes the Windows host details. If you haven't configured it yet, you can refer to the inventory setup as directed in Recipe #1 of this chapter.
 Manage Windows Services
 Create a new playbook to manage Windows services. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_windows_services.yml

 Add the given below script to manage different services:

 - name: Manage Windows Services
 hosts: windows
 tasks:
 - name: Ensure Windows Update service is running
 win_service:
 name: wuauserv
 start_mode: auto
 state: started
 - name: Stop and disable Print Spooler service
 win_service:
 name: Spooler

 start_mode: disabled
 state: stopped
 - name: Restart the DNS Client service
 win_service:
 name: Dnscache
 state: restarted
 - name: Ensure Windows Defender service is enabled and running
 win_service:
 name: WinDefend
 start_mode: auto
 state: started

 After the playbook has run, verify that the services have been configured correctly on the Windows host. You can do this by logging into the Windows machine and checking the status of the services using the Services console or the PowerShell Get-Service cmdlet.
 Sample Program: Additional Service Management
 To manage additional services, you can modify the playbook to include more tasks. For example, to start the Remote Desktop Services and stop the Windows Error Reporting Service, update the playbook as follows:

 nano ~/GitforGits/playbooks/manage_windows_services.yml

 Add the following tasks:

 - name: Manage Windows Services
 hosts: windows
 tasks:
 - name: Ensure Windows Update service is running

 win_service:
 name: wuauserv
 start_mode: auto
 state: started
 - name: Stop and disable Print Spooler service
 win_service:
 name: Spooler
 start_mode: disabled
 state: stopped
 - name: Restart the DNS Client service
 win_service:
 name: Dnscache
 state: restarted
 - name: Ensure Windows Defender service is enabled and running
 win_service:
 name: WinDefend
 start_mode: auto
 state: started
 - name: Start Remote Desktop Services
 win_service:
 name: TermService
 start_mode: auto
 state: started
 - name: Stop Windows Error Reporting Service
 win_service:
 name: WerSvc
 state: stopped

Execute the updated playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/manage_windows_services.yml

 After running the updated playbook, verify that the additional services have been managed correctly on the Windows host.

 Recipe #6: Setting up Ansible for Mac
 Managing Mac systems using Ansible involves setting up the control node and the Mac hosts for seamless automation. This recipe directs you through configuring your Mac systems to be managed by Ansible, similar to how you manage Linux and Windows hosts.
 In this recipe, you will learn to set up Ansible to manage Mac systems, including installing necessary dependencies and configuring SSH access for Ansible to communicate with Mac hosts.
 Prepare the Mac Host
 Ensure the Mac host is configured to accept SSH connections, which is the default method Ansible uses to communicate with remote hosts.
 Enable Remote Login
 On the Mac host, enable remote login to allow SSH connections:
 Open "System Preferences" on the Mac host.
Go to "Sharing."
Check the box next to "Remote Login" to enable SSH access.
 Create a User for Ansible Management
 Create a user account on the Mac host that Ansible will use to connect and manage the system. Ensure this user has the necessary administrative privileges.
 Setup SSH Key-based Authentication
 To enable Ansible to communicate securely with the Mac host, set up SSH key-based authentication.
 Generate SSH Key Pair

On your control node, generate an SSH key pair if you don't already have one:

 ssh-keygen -t rsa -b 4096

 Copy SSH Public Key to Mac Host
 Copy the SSH public key to the Mac host. Replace and with the appropriate values for your Mac host:

 ssh-copy-id @

 Update your Ansible inventory to include the Mac host details wherein you replace and with the appropriate values for your Mac host.
 Test the Connection
 Create a simple Ansible playbook to test the connection to the Mac host:

 nano ~/GitforGits/playbooks/test_mac_connection.yml

 Add the script as given below:

 - name: Test Connection to Mac Host
 hosts: mac
 tasks:
 - name: Ping the Mac host
 ping:

 Run the playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/test_mac_connection.yml

 If the setup is correct, you should see a successful response indicating that Ansible can communicate with the Mac host via SSH.
 Install Homebrew on Mac Host

Homebrew is a popular package manager for macOS. It allows you to install software and manage dependencies easily. To install Homebrew, run the following command on the Mac host:

 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

 Verify that Homebrew is installed correctly by running the following command on the Mac host:

 brew --version

 Manage Software on Mac
 Create a new playbook to manage software on the Mac host using Homebrew:

 nano ~/GitforGits/playbooks/manage_software_mac.yml

 Add the script as given below:

 - name: Manage Software on Mac
 hosts: mac
 tasks:
 - name: Ensure Homebrew is installed
 command: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
 args:
 creates: /usr/local/bin/brew
 - name: Install Git using Homebrew
 homebrew:
 name: git
 state: present
 - name: Install wget using Homebrew
 homebrew:

 name: wget
 state: present

 Execute as below:

 ansible-playbook ~/GitforGits/playbooks/manage_software_mac.yml

 Once you've followed these steps, Ansible can be used to manage Mac systems. Through this setup, you can effortlessly incorporate Mac hosts into your current automation workflows while taking advantage of Ansible's robust automation features for remote host management and configuration.

 Recipe #7: Managing Mac Hosts
 Once you have set up Ansible to manage Mac systems, you can perform various administrative tasks to ensure these systems are properly configured and maintained. This recipe will cover some common tasks, such as gathering system information, managing files, creating users, and configuring services on Mac hosts.
 Gather System Information
 Create a playbook to gather system information from the Mac host:

 nano ~/GitforGits/playbooks/mac_system_info.yml

 Add the following code snippet:

 - name: Gather System Information
 hosts: mac
 tasks:
 - name: Gather facts about the Mac host
 setup:

 Run the playbook to gather system information:

 ansible-playbook ~/GitforGits/playbooks/mac_system_info.yml

 This playbook uses the setup module to gather information about the Mac host, such as operating system version, hardware details, and more.
 Manage Files on Mac
 Create a playbook to manage files on the Mac host, such as creating, deleting, and copying files:

 nano ~/GitforGits/playbooks/mac_manage_files.yml

 Add the script as given below:

 - name: Manage Files on Mac
 hosts: mac
 tasks:
 - name: Create a directory
 file:
 path: /tmp/example
 state: directory
 - name: Create a file
 copy:
 content: "This is a test file."
 dest: /tmp/example/testfile.txt
 - name: Delete a file
 file:
 path: /tmp/example/testfile.txt
 state: absent

 Run the playbook to manage files on the Mac host:

 ansible-playbook ~/GitforGits/playbooks/mac_manage_files.yml

 This playbook uses the file and copy modules to create a directory, create a file with specific content, and delete a file.
 Create and Manage Users
 Create a playbook to create and manage users on the Mac host:

 nano ~/GitforGits/playbooks/mac_manage_users.yml

 Add the following code snippet:

 - name: Manage Users on Mac
 hosts: mac
 tasks:

 - name: Create a user
 user:
 name: exampleuser
 password: "{{ 'Password123' | password_hash('sha512') }}"
 state: present
 - name: Ensure user is an admin
 command: dseditgroup -o edit -a exampleuser -t user admin

 Run the playbook to manage users on the Mac host:

 ansible-playbook ~/GitforGits/playbooks/mac_manage_users.yml

 This playbook uses the user module to create a user and ensures that the user is an admin by adding them to the admin group.
 Manage Services on Mac
 Create a playbook to manage services on the Mac host:

 nano ~/GitforGits/playbooks/mac_manage_services.yml

 Add the script as given below:

 - name: Manage Services on Mac
 hosts: mac
 tasks:
 - name: Ensure SSH service is running
 service:
 name: com.openssh.sshd
 state: started
 enabled: yes
 - name: Restart the syslog service

 command: sudo launchctl kickstart -k system/com.apple.syslogd

 Run the playbook to manage services on the Mac host:

 ansible-playbook ~/GitforGits/playbooks/mac_manage_services.yml

 This playbook uses the service module to ensure that the SSH service is running and enabled, and the command module to restart the syslog service.
 Install Software on Mac
 Create a playbook to install software on the Mac host using Homebrew:

 nano ~/GitforGits/playbooks/install_software_mac.yml

 Add the script as given below:

 - name: Install Software on Mac
 hosts: mac
 tasks:
 - name: Ensure Homebrew is installed
 command: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
 args:
 creates: /usr/local/bin/brew
 - name: Install Git using Homebrew
 homebrew:
 name: git
 state: present
 - name: Install wget using Homebrew
 homebrew:

 name: wget
 state: present

 Run the playbook to install software on the Mac host:

 ansible-playbook ~/GitforGits/playbooks/install_software_mac.yml

 By following these steps, you have successfully managed Mac hosts using Ansible and can perform various administrative tasks, including gathering system information, managing files, creating users, managing services, and installing software.

 Recipe #8: Automating Software Installation on Mac
 Automating software installation on Mac systems using Ansible can significantly streamline the process of setting up and maintaining multiple Mac hosts. By leveraging the Homebrew package manager, you can install, update, and manage software packages efficiently.
 Our goal in this recipe is to automate the installation of software on Mac systems using Ansible and Homebrew, ensuring consistency and efficiency across your Mac infrastructure.
 To begin with, make sure that Homebrew is installed on your Mac hosts. If not, then follow the Recipe#6 to get it installed on your Mac host.
 Automate Software Installation
 Create a new playbook to automate the installation of various software packages using Homebrew. Open your playbook file:

 nano ~/GitforGits/playbooks/automate_software_installation_mac.yml

 Add the script as given below:

 - name: Automate Software Installation on Mac
 hosts: mac
 tasks:
 - name: Ensure Homebrew is installed
 command: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
 args:
 creates: /usr/local/bin/brew
 - name: Install Git

 homebrew:
 name: git
 state: present
 - name: Install wget
 homebrew:
 name: wget
 state: present
 - name: Install Node.js
 homebrew:
 name: node
 state: present
 - name: Install Python 3
 homebrew:
 name: python
 state: present
 - name: Install Docker
 homebrew_cask:
 name: docker
 state: present

 This playbook ensures that Homebrew is installed on the Mac hosts and then uses Homebrew to install various software packages, including Git, wget, Node.js, Python 3, and Docker.
 Verify Installation
 After the playbook has run, verify that the software packages have been installed on the Mac hosts. You can do this by running commands to check the versions of the installed software:

 git --version
 wget --version
 node --version

python3 --version
 docker --version

 Sample Program: Installing Additional Software
 To install additional software packages, you can modify the playbook to include more tasks. For example, to install Visual Studio Code and Slack, update the playbook as follows:

 nano ~/GitforGits/playbooks/automate_software_installation_mac.yml

 Add the following tasks:

 - name: Automate Software Installation on Mac
 hosts: mac
 tasks:
 - name: Ensure Homebrew is installed
 command: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
 args:
 creates: /usr/local/bin/brew
 - name: Install Git
 homebrew:
 name: git
 state: present
 - name: Install wget
 homebrew:
 name: wget
 state: present
 - name: Install Node.js
 homebrew:

 name: node
 state: present
 - name: Install Python 3
 homebrew:
 name: python
 state: present
 - name: Install Docker
 homebrew_cask:
 name: docker
 state: present
 - name: Install Visual Studio Code
 homebrew_cask:
 name: visual-studio-code
 state: present
 - name: Install Slack
 homebrew_cask:
 name: slack
 state: present

 Execute the updated playbook using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/automate_software_installation_mac.yml

 After running the updated playbook, verify that Visual Studio Code and Slack have been installed on the Mac hosts. With this, you have successfully automated the installation of software on Mac systems using Ansible and Homebrew.

 Summary
 The purpose of this chapter was to demonstrate how to expand Ansible's automation capabilities to manage both Windows and Mac systems. For Windows, the initial step is to configure the requisite components on the Windows machine and the Linux control node in order to set up Ansible. This necessitated the activation of WinRM on Windows hosts and the verification that Ansible could communicate securely with these hosts. Next, you learned the management of Windows hosts by executing tasks such as configuring Windows services, managing files, creating users, and gathering system information. The capacity to install software on Windows using Ansible and Chocolatey was further addressed, illustrating the effective automation of software installations.
 After migrating to Mac OS X, you can manage Mac hosts with Ansible by enabling SSH access and configuring key-based authentication. Homebrew, a widely used package manager for macOS, was installed to simplify the process of managing software. Managing Mac hosts entailed the following tasks: the collection of system information, the management of files, the creation of users, and the configuration of services using Ansible playbooks. You also ensured consistency and efficiency throughout your Mac infrastructure by automating software installation on Mac systems using Homebrew.
 You should now have a solid grasp of how to manage and automate tasks on Windows and Mac systems using Ansible. This involved setting up protocols for remote management, carrying out routine administrative duties, and making sure that software installations were efficient and consistent across all hosts.

 Knowledge Exercise
 Question 1: What is the primary protocol used by Ansible to manage Windows hosts?
A) SSH
B) RDP
C) WinRM
D) SMB
 Answer:
C) WinRM
 Ansible uses Windows Remote Management (WinRM) as the primary protocol to manage Windows hosts, enabling remote execution of commands and tasks.
 Question 2: Which Ansible module is used to install software on Windows using the Chocolatey package manager?
A) win_apt
B) win_package
C) win_chocolatey
D) win_msi
 Answer:
C) win_chocolatey
 The win_chocolatey module is used to install software on Windows hosts using the Chocolatey package manager.
 Question 3: What command is used to enable WinRM on a Windows host?
A) Enable-WinRM
B) winrm quickconfig
C) start winrm
D) set winrm
 Answer:

B) winrm quickconfig
 The winrm quickconfig command is used to enable and configure WinRM on a Windows host for remote management.
 Question 4: Which configuration file is updated to include Mac hosts in Ansible inventory?
A) /etc/ansible/ansible.cfg
B) ~/GitforGits/playbooks/hosts.yml
C) /etc/ansible/hosts
D) ~/GitforGits/inventory/hosts
 Answer:
D) ~/GitforGits/inventory/hosts
 The ~/GitforGits/inventory/hosts file is updated to include Mac hosts in the Ansible inventory.
 Question 5: How do you ensure that Homebrew is installed on a Mac host using Ansible?
A) Use the mac_package module
B) Use the homebrew_cask module
C) Use the command module with the Homebrew installation script
D) Use the mac_software module
 Answer:
C) Use the command module with the Homebrew installation script
 To ensure Homebrew is installed on a Mac host using Ansible, you use the command module with the Homebrew installation script.
 Question 6: Which Ansible module is used to manage users on Mac systems?
A) user

B) mac_user
C) win_user
D) homebrew_user
 Answer:
A) user
 The user module is used to manage users on Mac systems, just as it is used on Linux systems.
 Question 7: What is the correct syntax to restart a service on a Mac host using Ansible?
A) Use the win_service module
B) Use the mac_service module
C) Use the launchctl command with the command module
D) Use the systemd module
 Answer:
C) Use the launchctl command with the command module
 To restart a service on a Mac host, you use the launchctl command with the command module.
 Question 8: What must be enabled on a Mac host to allow Ansible to manage it via SSH?
A) Remote Desktop
B) File Sharing
C) Remote Login
D) AirDrop
 Answer:
C) Remote Login
 Remote Login must be enabled on a Mac host to allow Ansible to manage it via SSH.
 Question 9: Which Ansible module is used to manage file permissions on Mac hosts?

A) win_file
B) mac_permissions
C) file
D) mac_file
 Answer:
C) file
 The file module is used to manage file permissions on Mac hosts, just as it is used on Linux systems.
 Question 10: What is the purpose of setting the ansible_ssh_private_key_file parameter in the inventory for Mac hosts?
A) To specify the location of the private key for SSH access
B) To enable password authentication for SSH
C) To disable SSH key-based authentication
D) To set the default SSH user for Ansible
 Answer:
A) To specify the location of the private key for SSH access
 The ansible_ssh_private_key_file parameter specifies the location of the private key for SSH access to Mac hosts.
 Question 11: What does the win_ping module in Ansible do?
A) Installs software on Windows hosts
B) Configures services on Windows hosts
C) Checks the connectivity and validates the WinRM setup on Windows hosts
D) Copies files to Windows hosts
 Answer:
C) Checks the connectivity and validates the WinRM setup on Windows hosts
 The win_ping module checks the connectivity and validates the WinRM setup on Windows hosts.

Question 12: Which Ansible module would you use to install applications that are managed by Homebrew Cask on a Mac?
A) homebrew
B) cask
C) homebrew_cask
D) mac_app
 Answer:
C) homebrew_cask
 The homebrew_cask module is used to install applications that are managed by Homebrew Cask on a Mac.
 Question 13: How do you ensure a service is enabled and started on a Mac host using Ansible?
A) Use the win_service module with the state parameter set to started
B) Use the launchctl command with the command module
C) Use the systemd module with the enabled parameter set to yes
D) Use the homebrew_service module
 Answer:
B) Use the launchctl command with the command module
 To ensure a service is enabled and started on a Mac host, you use the launchctl command with the command module.
 Question 14: What is the purpose of the ansible_winrm_server_cert_validation parameter in the Ansible inventory for Windows hosts?
A) To specify the type of WinRM authentication to use
B) To ignore certificate validation errors when using WinRM
C) To enable encryption for WinRM communication
D) To specify the Windows user account for WinRM access

Answer:
B) To ignore certificate validation errors when using WinRM
 The ansible_winrm_server_cert_validation parameter is used to ignore certificate validation errors when using WinRM.
 Question 15: Which command is used to copy the SSH public key to a Mac host for key-based authentication?
A) ssh-copy-key
B) scp
C) ssh-add
D) ssh-copy-id
 Answer:
D) ssh-copy-id
 The ssh-copy-id command is used to copy the SSH public key to a Mac host for key-based authentication.
 Question 16: What is the purpose of the args parameter with the creates option in the command module when installing Homebrew?
A) To specify additional arguments for the command
B) To ensure the command runs even if Homebrew is already installed
C) To skip running the command if the specified file exists
D) To create a new directory before running the command
 Answer:
C) To skip running the command if the specified file exists
 The args parameter with the creates option in the command module ensures the command is skipped if the specified file exists, indicating Homebrew is already installed.
 Question 17: Which module would you use to manage the installation of Node.js on a Mac using Ansible?

A) mac_package
B) homebrew
C) npm
D) homebrew_cask
 Answer:
B) homebrew
 The homebrew module is used to manage the installation of Node.js on a Mac using Ansible.
 Question 18: How do you ensure that a specific version of a package is installed on a Windows host using the win_chocolatey module?
A) Specify the version parameter
B) Use the state parameter with the value latest
C) Use the force parameter
D) Specify the name parameter with the version number
 Answer:
A) Specify the version parameter
 To ensure that a specific version of a package is installed on a Windows host using the win_chocolatey module, you specify the version parameter.
 Question 19: Which Ansible module is used to gather detailed system information from a Mac host?
A) mac_facts
B) gather_facts
C) system_info
D) setup
 Answer:
D) setup

The setup module is used to gather detailed system information from a Mac host.
 Question 20: What is the purpose of the start_mode parameter in the win_service module?
A) To specify the startup type for a Windows service
B) To start the service immediately
C) To enable or disable the service
D) To restart the service
 Answer:
A) To specify the startup type for a Windows service
 The start_mode parameter in the win_service module is used to specify the startup type for a Windows service (e.g., automatic, manual, disabled).

 Chapter 7: Ansible with AWS, Azure and GCP

Introduction
 Using Ansible, you learned how to automate software installations, configure remote management protocols, and perform administrative tasks in the previous chapter. You also learned how to manage Windows and Mac systems. This chapter concentrates on three major cloud providers: AWS, Azure, and Google Cloud Platform (GCP) in order to enhance your automation capabilities in cloud environments.
 First, you'll learn how to set up Ansible to communicate with Amazon Web Services (AWS), and then you'll use that setup to manage your EC2 instances and other AWS resources through the use of modules. This will cover the practical aspects of getting your AWS environment up and running and automating common tasks. Next, you will hands-on the efficient management of Azure resources and the deployment of virtual machines using Ansible in conjunction with Azure. You will acquire a deeper understanding of the integration of Azure with Ansible in order to optimize your cloud operations.
 The final section of the chapter concentrates on GCP. You will acquire the knowledge necessary to automate the management of a variety of GCP resources and integrate Ansible with GCP. The purpose of each recipe in this chapter is to equip you with practical knowledge and hands-on experience in the automation of cloud infrastructure using Ansible, thereby improving your capacity to manage multi-cloud environments in a seamless manner.

 Recipe #1: Configuring Ansible for AWS
 Setting up Ansible to manage AWS resources requires configuring the necessary authentication and preparing your environment. This recipe will demonstrate the steps to configure Ansible to interact with AWS, enabling you to automate tasks such as provisioning instances and managing AWS services.
 In this recipe, you will learn to configure Ansible for AWS by setting up the necessary credentials and preparing the environment for automation tasks.
 Install AWS CLI and Boto3
 Ensure that the AWS Command Line Interface (CLI) and Boto3, the AWS SDK for Python, are installed on your control node. These tools are required for Ansible to interact with AWS.

 sudo apt update
 sudo apt install awscli -y
 sudo pip install boto3

 Configure AWS CLI
 Configure the AWS CLI with your AWS credentials. Run the following command and follow the prompts to enter your AWS Access Key ID, Secret Access Key, and default region.

 aws configure

 Create or update your Ansible configuration file to include the AWS credentials. Open your Ansible configuration file:

 nano ~/GitforGits/ansible.cfg

 Add the following script, replacing and with your actual AWS credentials and region:

 [defaults]

host_key_checking = False
 inventory = ./inventory
 [aws]
 aws_access_key_id =
 aws_secret_access_key =
 region =

 Create Ansible Inventory File for AWS
 Create an inventory file to specify the AWS hosts you will manage:

 nano ~/GitforGits/inventory/aws_hosts

 Add the given below script to define your AWS inventory:

 [aws]
 aws_instance_1 ansible_host=
 aws_instance_2 ansible_host=

 Replace with the actual public IP addresses of your AWS instances.
 Install and Test the Ansible AWS Collection
 Install the Ansible AWS Collection to access the AWS modules provided by Ansible:

 ansible-galaxy collection install amazon.aws

 Create a playbook to test the AWS configuration by listing EC2 instances. Open a new playbook file:

 nano ~/GitforGits/playbooks/test_aws_configuration.yml

 Add the script as given below:

 - name: Test AWS Configuration
 hosts: localhost
 tasks:
 - name: List EC2 instances

 amazon.aws.ec2_instance_info:
 region: "{{ lookup('env', 'AWS_REGION') }}"
 register: ec2_info
 - name: Display EC2 instances
 debug:
 var: ec2_info

 Execute the playbook. If everything is configured correctly, you should see a list of your EC2 instances displayed in the output.

 Recipe #2: Provisioning EC2 Instances
 In this recipe, you will learn how to provision EC2 instances on AWS using Ansible. This involves creating a playbook to launch new instances based on your requirements.
 Create EC2 Provisioning Playbook
 Create a new playbook file to provision EC2 instances. Open your playbook file:

 nano ~/GitforGits/playbooks/provision_ec2.yml

 Add the following script to define the tasks for provisioning EC2 instances:

 - name: Provision EC2 Instances
 hosts: localhost
 tasks:
 - name: Launch EC2 instance
 amazon.aws.ec2_instance:
 name: "GitforGits-Instance"
 key_name: "your_key_name"
 instance_type: "t2.micro"
 image_id: "ami-0abcdef1234567890" # Replace with a valid AMI ID
 wait: yes
 region: "{{ lookup('env', 'AWS_REGION') }}"
 count: 1
 state: present
 tags:
 Name: "GitforGits-Instance"
 register: ec2
 - name: Add new instance to inventory

 add_host:
 hostname: "{{ item.public_ip }}"
 groupname: aws
 loop: "{{ ec2.instances }}"
 - name: Wait for SSH to come up
 wait_for:
 host: "{{ item.public_ip }}"
 port: 22
 delay: 60
 timeout: 320
 state: started
 loop: "{{ ec2.instances }}"
 - name: Display instance details
 debug:
 var: ec2

 This playbook will launch a new EC2 instance, add it to the Ansible inventory, and wait for SSH to be available.
 Verify EC2 Instance
 After the playbook has run, you can verify the EC2 instance in your AWS Management Console under the EC2 dashboard. Ensure that the instance has been launched with the specified configurations.

 Recipe #3: Managing AWS Resources with Ansible Modules
 In this recipe, you will learn how to manage various AWS resources using Ansible modules. This includes tasks such as creating S3 buckets, managing IAM roles, and working with other AWS services.
 Create S3 Bucket
 Create a new playbook to manage an S3 bucket. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_s3.yml

 Add the given below script to create an S3 bucket:

 - name: Manage S3 Bucket
 hosts: localhost
 tasks:
 - name: Create S3 bucket
 amazon.aws.s3_bucket:
 name: "gitforgits-bucket"
 state: present
 region: "{{ lookup('env', 'AWS_REGION') }}"

 Create IAM Role
 Create a new playbook to manage IAM roles. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_iam_role.yml

 Add the given below script to create an IAM role:

 - name: Manage IAM Role
 hosts: localhost
 tasks:
 - name: Create IAM role

 amazon.aws.iam_role:
 name: "GitforGitsRole"
 assume_role_policy_document: |
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 state: present

 Create RDS Instance
 Create a new playbook to manage RDS instances. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_rds.yml

 Add the given below script to create an RDS instance:

 - name: Manage RDS Instance
 hosts: localhost
 tasks:
 - name: Create RDS instance
 amazon.aws.rds_instance:
 db_instance_identifier: "gitforgits-db"
 db_instance_class: "db.t2.micro"

 engine: "mysql"
 master_username: "admin"
 master_user_password: "Password123"
 allocated_storage: 20
 state: present
 region: "{{ lookup('env', 'AWS_REGION') }}"

 Execute the playbooks using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/manage_s3.yml
 ansible-playbook ~/GitforGits/playbooks/manage_iam_role.yml
 ansible-playbook ~/GitforGits/playbooks/manage_rds.yml

 Verify AWS Resources
 After running the playbooks, verify that the AWS resources have been created and configured correctly in the AWS Management Console. To do this, check the S3 buckets, IAM roles, and RDS instances to ensure they match the specified configurations. This approach allows you to automate the management of various AWS services to make the cloud infrastructure consistent and efficiently maintained.

 Recipe #4: Using Ansible with Azure
 Using Ansible with Azure is comparable to using Ansible with AWS in many ways. Both platforms leverage Ansible to automate cloud resource management, including provisioning virtual machines, configuring networks, and managing storage. Just as with AWS, you need to configure your environment with the necessary authentication details to allow Ansible to interact with Azure services. The Ansible modules for Azure provide similar functionalities to those for AWS, enabling you to manage various Azure resources seamlessly.
 This recipe guides you to configure Ansible to work with Azure by setting up the necessary credentials and preparing the environment for automation tasks.
 Install and Configure Azure CLI
 Ensure that the Azure Command Line Interface (CLI) is installed on your control node:

 curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

 Install the Ansible Azure Collection to access the Azure modules provided by Ansible:

 collection install azure.azcollection

 Authenticate the Azure CLI with your Azure account:

 az login

 Follow the prompts accordingly to authenticate with your Azure credentials.
 Create Azure Service Principal
 Create a Service Principal for Ansible to use for managing resources on Azure:

az ad sp create-for-rbac --name AnsibleServicePrincipal --role Contributor --scopes /subscriptions/YOUR_SUBSCRIPTION_ID

 Replace YOUR_SUBSCRIPTION_ID with your actual Azure subscription ID. Note the output values for and
 Use the Azure Service Principal
 To do this, create or update your Ansible configuration file to include the Azure credentials. Open your Ansible configuration file:

 nano ~/GitforGits/ansible.cfg

 Add the given below script, replacing the placeholders with your actual Azure credentials:

 [azure]
 client_id =
 secret =
 tenant =
 subscription_id =

 Create Ansible Inventory File for Azure
 Create an inventory file to specify the Azure hosts you will manage:

 nano ~/GitforGits/inventory/azure_hosts

 Add the following code snippet:

 [azure]
 azure_host ansible_host=

 Replace with the actual public IP address of your Azure virtual machine.
 Test Azure Configuration
 Create a playbook to test the Azure configuration by listing virtual machines. Open a new playbook file:

 nano ~/GitforGits/playbooks/test_azure_configuration.yml

Add the script as given below:

 - name: Test Azure Configuration
 hosts: localhost
 tasks:
 - name: List Azure virtual machines
 azure.azcollection.azure_rm_virtualmachine_info:
 resource_group: myResourceGroup
 register: vm_info
 - name: Display virtual machines
 debug:
 var: vm_info

 Now, after executing you should see a list of your Azure virtual machines displayed in the output. This setup enables you to automate various tasks in your Azure environment, such as provisioning virtual machines and managing other Azure resources.

 Recipe #5: Deploying Virtual Machines on Azure
 Deploying virtual machines (VMs) on Azure using Ansible allows you to automate the creation and management of VMs, ensuring consistency and efficiency in your cloud infrastructure. This recipe will instruct you step-by-step in creating and running a playbook to deploy VMs on Azure.
 Create Resource Group
 Create a playbook to create a resource group where the VM will be deployed. Open your playbook file:

 nano ~/GitforGits/playbooks/create_resource_group.yml

 Add the following code snippet:

 - name: Create Azure Resource Group
 hosts: localhost
 tasks:
 - name: Create resource group
 azure.azcollection.azure_rm_resourcegroup:
 name: myResourceGroup
 location: eastus

 Run the playbook to create the resource group:

 ansible-playbook ~/GitforGits/playbooks/create_resource_group.yml

 Create Virtual Network and Subnet
 Create a playbook to set up a virtual network and subnet. Open your playbook file:

 nano ~/GitforGits/playbooks/create_vnet_subnet.yml

 Add the script as given below:

 - name: Create Azure Virtual Network and Subnet

 hosts: localhost
 tasks:
 - name: Create virtual network
 azure.azcollection.azure_rm_virtualnetwork:
 name: myVNet
 resource_group: myResourceGroup
 address_prefixes: "10.0.0.0/16"
 location: eastus
 - name: Create subnet
 azure.azcollection.azure_rm_subnet:
 name: mySubnet
 resource_group: myResourceGroup
 virtual_network: myVNet
 address_prefix: "10.0.1.0/24"

 Run the playbook to create the virtual network and subnet:

 ansible-playbook ~/GitforGits/playbooks/create_vnet_subnet.yml

 Create Public IP Address
 Create a playbook to create a public IP address for the VM. Open your playbook file:

 nano ~/GitforGits/playbooks/create_public_ip.yml

 Add the following code snippet:

 - name: Create Azure Public IP Address
 hosts: localhost
 tasks:
 - name: Create public IP
 azure.azcollection.azure_rm_publicipaddress:
 name: myPublicIP

 resource_group: myResourceGroup
 allocation_method: Dynamic
 location: eastus

 Run the playbook to create the public IP address:

 ansible-playbook ~/GitforGits/playbooks/create_public_ip.yml

 Create Network Interface
 Create a playbook to create a network interface for the VM. Open your playbook file:

 nano ~/GitforGits/playbooks/create_network_interface.yml

 Add the script as given below:

 - name: Create Azure Network Interface
 hosts: localhost
 tasks:
 - name: Create network interface
 azure.azcollection.azure_rm_networkinterface:
 name: myNIC
 resource_group: myResourceGroup
 location: eastus
 virtual_network: myVNet
 subnet: mySubnet
 public_ip_name: myPublicIP

 Run the playbook to create the network interface:

 ansible-playbook ~/GitforGits/playbooks/create_network_interface.yml

 Deploy Virtual Machine
 Create a playbook to deploy the virtual machine. Open your playbook file:

 nano ~/GitforGits/playbooks/deploy_vm.yml

Add the script as given below:

 - name: Deploy Azure Virtual Machine
 hosts: localhost
 tasks:
 - name: Create virtual machine
 azure.azcollection.azure_rm_virtualmachine:
 resource_group: myResourceGroup
 name: myVM
 vm_size: Standard_B1s
 admin_username: azureuser
 admin_password: "Password123!"
 image:
 offer: UbuntuServer
 publisher: Canonical
 sku: 18.04-LTS
 version: latest
 network_interfaces: myNIC

 Run the playbook to deploy the virtual machine:

 ansible-playbook ~/GitforGits/playbooks/deploy_vm.yml

 After the playbook has run, verify that the VM has been created in your Azure portal under the resource group This approach allows you to automate the deployment of VMs.

 Recipe #6: Managing Azure Resources with Ansible
 Managing Azure resources using Ansible allows you to automate tasks such as configuring virtual networks, managing storage accounts, and handling resource groups. This recipe will instruct you step-by-step in creating and running playbooks to manage various Azure resources.
 Create Virtual Network and Subnet
 Assuming you have already set up a resource group as shown in Recipe #5, create a new playbook to manage a virtual network and subnet. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_vnet_subnet.yml

 Add the script as given below:

 - name: Manage Azure Virtual Network and Subnet
 hosts: localhost
 tasks:
 - name: Ensure virtual network is present
 azure.azcollection.azure_rm_virtualnetwork:
 name: myManagedVNet
 resource_group: myResourceGroup
 address_prefixes: "10.1.0.0/16"
 location: eastus
 - name: Ensure subnet is present
 azure.azcollection.azure_rm_subnet:
 name: myManagedSubnet
 resource_group: myResourceGroup
 virtual_network: myManagedVNet
 address_prefix: "10.1.1.0/24"

 Create Storage Account

Create a new playbook to manage a storage account. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_storage_account.yml

 Add the following code snippet:

 - name: Manage Azure Storage Account
 hosts: localhost
 tasks:
 - name: Ensure storage account is present
 azure.azcollection.azure_rm_storageaccount:
 name: myManagedStorageAccount
 resource_group: myResourceGroup
 location: eastus
 account_type: Standard_LRS

 Create Azure SQL Database
 Create a new playbook to manage an Azure SQL Database. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_sql_database.yml

 Add the following code snippet:

 - name: Manage Azure SQL Database
 hosts: localhost
 tasks:
 - name: Ensure SQL server is present
 azure.azcollection.azure_rm_sqlserver:
 resource_group: myResourceGroup
 name: myManagedSqlServer
 admin_username: sqladmin
 admin_password: "Password123!"

 location: eastus
 - name: Ensure SQL database is present
 azure.azcollection.azure_rm_sqldatabase:
 resource_group: myResourceGroup
 server_name: myManagedSqlServer
 name: myManagedDatabase
 edition: Basic

 Run the Playbooks
 Execute the playbooks using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/manage_vnet_subnet.yml
 ansible-playbook ~/GitforGits/playbooks/manage_storage_account.yml
 ansible-playbook ~/GitforGits/playbooks/manage_sql_database.yml

 After running the playbooks, verify that the Azure resources have been created and configured correctly in the Azure portal. Check the virtual networks, storage accounts, and SQL databases to ensure they match the specified configurations.

 Recipe #7: Integrating Ansible with Google Cloud
 While AWS and Azure are popular cloud service providers with a wide range of services, Google Cloud Platform (GCP) offers unique advantages that can make it an attractive choice for many organizations. GCP is known for its high-performance computing, big data, and machine learning capabilities. It provides innovative services such as BigQuery for data warehousing and AI tools like TensorFlow. GCP also offers competitive pricing, strong support for open-source technologies, and robust global infrastructure. Integrating Ansible with GCP allows you to leverage these benefits while automating your cloud infrastructure.
 With this recipe, you will understand to configure Ansible to work with GCP by setting up the necessary credentials and preparing the environment for automation tasks.
 Install Google Cloud SDK
 Ensure that the Google Cloud SDK is installed on your control node:

 curl -sSL https://sdk.cloud.google.com | bash
 exec -l $SHELL
 gcloud init

 Now, follow the prompts to authenticate with your Google Cloud account and set up your default project.
 Install Ansible GCP Collection
 Install the Ansible GCP Collection to access the GCP modules provided by Ansible:

 ansible-galaxy collection install google.cloud

Create a service account for Ansible to use for managing resources on GCP. In the GCP Console, go to the IAM & Admin section, then Service Accounts, and create a new service account. Grant it the necessary permissions (e.g., Compute Admin, Storage Admin).
 Download the JSON key file for the service account and store it on your control node.
 Use the Service Account
 Set the environment variable to use the service account key file. Open your .bashrc or .bash_profile file and add the following line:

 export GCP_SERVICE_ACCOUNT_FILE=/path/to/your/service-account-key.json

 Source the file to apply the changes:

 source ~/.bashrc # or source ~/.bash_profile

 Ansible Inventory File for GCP
 Create an inventory file to specify the GCP hosts you will manage:

 nano ~/GitforGits/inventory/gcp_hosts

 Add the script as given below:

 [gcp]
 gcp_instance_1 ansible_host=
 gcp_instance_2 ansible_host=

 Replace with the actual public IP addresses of your GCP instances.
 Test GCP Configuration
 Create a playbook to test the GCP configuration by listing compute instances. Open a new playbook file:

 nano ~/GitforGits/playbooks/test_gcp_configuration.yml

 Put the following snippet:

 - name: Test GCP Configuration

 hosts: localhost
 tasks:
 - name: List GCP compute instances
 google.cloud.gcp_compute_instance_info:
 auth_kind: serviceaccount
 service_account_file: "{{ lookup('env', 'GCP_SERVICE_ACCOUNT_FILE') }}"
 project: "your-gcp-project-id"
 zone: "us-central1-a"
 register: gcp_info
 - name: Display compute instances
 debug:
 var: gcp_info

 You should see a list of your GCP compute instances displayed in the output. This setup enables you to automate various tasks in your GCP environment, such as provisioning instances and managing other GCP resources.

 Recipe #8: Automating GCP Resource Management
 Automating GCP resource management using Ansible allows you to handle tasks such as provisioning virtual machines, managing storage, and configuring networks efficiently. This recipe will instruct you step-by-step in creating and running playbooks to manage various GCP resources. This is donr by creating and running playbooks that utilize GCP-specific Ansible modules.
 Provision a Virtual Machine
 To begin with, create a playbook to provision a virtual machine on GCP. Open your playbook file:

 nano ~/GitforGits/playbooks/provision_gcp_vm.yml

 Put the following snippet:

 - name: Provision GCP Virtual Machine
 hosts: localhost
 tasks:
 - name: Create a GCP VM instance
 google.cloud.gcp_compute_instance:
 name: "gitforgits-vm"
 machine_type: "n1-standard-1"
 zone: "us-central1-a"
 project: "your-gcp-project-id"
 auth_kind: serviceaccount
 service_account_file: "{{ lookup('env', 'GCP_SERVICE_ACCOUNT_FILE') }}"
 disk:
 - auto_delete: true
 boot: true
 source:

 image: "debian-9"
 network_interfaces:
 - network: "default"
 access_configs:
 - name: "External NAT"
 type: "ONE_TO_ONE_NAT"

 Create Storage Bucket
 Create a playbook to manage a storage bucket on GCP. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_gcp_storage.yml

 Put the following snippet:

 - name: Manage GCP Storage Bucket
 hosts: localhost
 tasks:
 - name: Create a GCP storage bucket
 google.cloud.gcp_storage_bucket:
 name: "gitforgits-bucket"
 location: "US"
 project: "your-gcp-project-id"
 auth_kind: serviceaccount
 service_account_file: "{{ lookup('env', 'GCP_SERVICE_ACCOUNT_FILE') }}"

 Create a Virtual Network
 Create a playbook to manage a virtual network on GCP. Open your playbook file:

 nano ~/GitforGits/playbooks/manage_gcp_vnet.yml

 Put the following snippet:

- name: Manage GCP Virtual Network
 hosts: localhost
 tasks:
 - name: Create a GCP virtual network
 google.cloud.gcp_compute_network:
 name: "gitforgits-vnet"
 project: "your-gcp-project-id"
 auth_kind: serviceaccount
 service_account_file: "{{ lookup('env', 'GCP_SERVICE_ACCOUNT_FILE') }}"
 auto_create_subnetworks: yes

 Execute the playbooks using the ansible-playbook command:

 ansible-playbook ~/GitforGits/playbooks/provision_gcp_vm.yml
 ansible-playbook ~/GitforGits/playbooks/manage_gcp_storage.yml
 ansible-playbook ~/GitforGits/playbooks/manage_gcp_vnet.yml

 After running the playbooks, verify that the GCP resources have been created and configured correctly in the GCP Console. Check the compute instances, storage buckets, and virtual networks to ensure they match the specified configurations.

 Summary
 One of the things that you learned in this chapter was how to extend the automation capabilities of Ansible to include AWS, Azure, and GCP. To begin with, you configured Ansible to interact with AWS by establishing the requisite credentials and preparing the environment. You subsequently developed playbooks to provision EC2 instances and manage AWS resources, including S3 buckets, IAM roles, and RDS instances, thereby illustrating the seamless integration of Ansible with AWS.
 Next, you studied the integration of Ansible with Azure, which involved the configuration of the environment to utilize Azure credentials and the development of playbooks to manage Azure resources. You acquired the skills necessary to establish resource groups, virtual networks, subnets, public IP addresses, and network interfaces, and subsequently deployed virtual machines on Azure.
 Lastly, the chapter addressed the integration of Ansible with GCP by installing the Google Cloud SDK and establishing a service account for authentication. You developed playbooks to manage GCP resources, which encompassed the provisioning of virtual machines, the management of storage buckets, and the configuration of virtual networks. These example jobs showed how Ansible can automate a number of GCP management tasks.
 In summary, you have gained the knowledge necessary to set up Ansible with any cloud provider, make and execute resource provisioning and management playbooks, and guarantee reliable and consistent cloud operations.

 Knowledge Exercise
 Question 1: Which command is used to install the AWS CLI on a Linux control node?
A) sudo apt install awscli
B) sudo yum install awscli
C) curl -sL https://awscli.amazonaws.com | bash
D) All of the above
 Answer:
D) All of the above
 The AWS CLI can be installed on a Linux control node using package managers like apt or or directly from the official AWS CLI installation script.
 Question 2: What is the purpose of the boto3 library in the context of Ansible and AWS?
A) To manage Azure resources
B) To provide the AWS SDK for Python
C) To install Ansible on the control node
D) To configure GCP authentication
 Answer:
B) To provide the AWS SDK for Python
 The boto3 library is the AWS SDK for Python and is required for Ansible to interact with AWS services.
 Question 3: Which Ansible module is used to create an EC2 instance on AWS?
A) ec2_instance
B) aws_instance
C) amazon.aws.ec2_instance
D) aws.ec2_instance
 Answer:

C) amazon.aws.ec2_instance
 The amazon.aws.ec2_instance module is used to create and manage EC2 instances on AWS.
 Question 4: Which command is used to authenticate the Azure CLI with your Azure account?
A) az configure
B) az login
C) az auth
D) az setup
 Answer:
B) az login
 The az login command is used to authenticate the Azure CLI with your Azure account.
 Question 5: In the context of Ansible and Azure, what is the purpose of creating a Service Principal?
A) To manage GCP resources
B) To install the Azure CLI
C) To provide a security identity for automated access to Azure resources
D) To create virtual networks
 Answer:
C) To provide a security identity for automated access to Azure resources
 A Service Principal provides a security identity that Ansible can use to automate access to Azure resources.
 Question 6: Which module is used to manage Azure virtual machines with Ansible?
A) azure_rm_vm
B) azure_vm

C) azure.azcollection.azure_rm_virtualmachine
D) az.vm
 Answer:
C) azure.azcollection.azure_rm_virtualmachine
 The azure.azcollection.azure_rm_virtualmachine module is used to manage Azure virtual machines with Ansible.
 Question 7: Which Google Cloud service account file environment variable must be set for Ansible to authenticate with GCP?
A) GCP_CREDENTIALS_FILE
B) GCP_KEY_FILE
C) GCP_SERVICE_ACCOUNT_FILE
D) GCP_AUTH_FILE
 Answer:
C) GCP_SERVICE_ACCOUNT_FILE
 The GCP_SERVICE_ACCOUNT_FILE environment variable must be set to the path of the service account key file for Ansible to authenticate with GCP.
 Question 8: Which module is used to create a virtual machine on GCP with Ansible?
A) gcp_compute_instance
B) google.cloud.gcp_compute_instance
C) gcp_vm
D) google_compute_instance
 Answer:
B) google.cloud.gcp_compute_instance
 The google.cloud.gcp_compute_instance module is used to create and manage virtual machines on GCP with Ansible.

Question 9: What is the primary advantage of using the google.cloud Ansible collection for GCP resource management?
A) It allows Ansible to manage AWS resources.
B) It provides modules specifically designed for interacting with GCP services.
C) It installs the Google Cloud SDK automatically.
D) It configures Azure services.
 Answer:
B) It provides modules specifically designed for interacting with GCP services.
 The google.cloud Ansible collection provides modules specifically designed for managing GCP resources, enabling efficient automation.
 Question 10: Which Ansible module is used to manage storage buckets on GCP?
A) gcp_storage
B) google_cloud_storage
C) google.cloud.gcp_storage_bucket
D) gcp_bucket
 Answer:
C) google.cloud.gcp_storage_bucket
 The google.cloud.gcp_storage_bucket module is used to manage storage buckets on GCP with Ansible.
 Question 11: What is the main purpose of setting up an inventory file for cloud hosts in Ansible?
A) To install the cloud provider's SDK
B) To configure authentication credentials
C) To define the hosts and groups that Ansible will manage
D) To create virtual machines
 Answer:

C) To define the hosts and groups that Ansible will manage
 An inventory file defines the hosts and groups that Ansible will manage, specifying their connection details.
 Question 12: Which module is used to manage IAM roles on AWS with Ansible?
A) aws_iam_role
B) amazon.aws.iam_role
C) aws_role
D) iam_role
 Answer:
B) amazon.aws.iam_role
 The amazon.aws.iam_role module is used to manage IAM roles on AWS with Ansible.
 Question 13: Which Azure module would you use to create a storage account with Ansible?
A) azure_storage
B) azure.azcollection.azure_rm_storageaccount
C) az_storage
D) azure_storageaccount
 Answer:
B) azure.azcollection.azure_rm_storageaccount
 The azure.azcollection.azure_rm_storageaccount module is used to create and manage storage accounts on Azure with Ansible.
 Question 14: What does the google.cloud.gcp_compute_network module do?
A) It creates and manages virtual networks on GCP.
B) It provisions EC2 instances on AWS.
C) It configures virtual machines on Azure.
D) It manages IAM roles on GCP.

Answer:
A) It creates and manages virtual networks on GCP.
 The google.cloud.gcp_compute_network module is used to create and manage virtual networks on GCP.
 Question 15: Which command initializes the Google Cloud SDK on a control node?
A) gcloud init
B) gcp init
C) google init
D) cloud init
 Answer:
A) gcloud init
 The gcloud init command initializes the Google Cloud SDK on a control node.
 Question 16: In the context of Ansible and cloud platforms, what is the role of a service account?
A) To manage DNS settings
B) To provide a security identity for automated resource management
C) To install Ansible on remote hosts
D) To configure network interfaces
 Answer:
B) To provide a security identity for automated resource management
 A service account provides a security identity that Ansible can use for automated resource management on cloud platforms.
 Question 17: Which module would you use to create a resource group in Azure with Ansible?
A) az_resource_group

B) azure.azcollection.azure_rm_resourcegroup
C) resource_group
D) azure_group
 Answer:
B) azure.azcollection.azure_rm_resourcegroup
 The azure.azcollection.azure_rm_resourcegroup module is used to create and manage resource groups in Azure with Ansible.
 Question 18: What is the purpose of the azure.azcollection.azure_rm_virtualnetwork module in Ansible?
A) To create virtual machines on Azure
B) To manage storage accounts on Azure
C) To create and manage virtual networks on Azure
D) To handle IAM roles on Azure
 Answer:
C) To create and manage virtual networks on Azure
 The azure.azcollection.azure_rm_virtualnetwork module is used to create and manage virtual networks on Azure.
 Question 19: Which environment variable should be set to use a GCP service account key file with Ansible?
A) GOOGLE_APPLICATION_CREDENTIALS
B) GCP_AUTH_FILE
C) GCP_KEY_PATH
D) GOOGLE_CLOUD_KEYFILE_JSON
 Answer:
A) GOOGLE_APPLICATION_CREDENTIALS
 The GOOGLE_APPLICATION_CREDENTIALS environment variable should be set to the path of the GCP service account key file for Ansible to use it.

Question 20: Which Ansible module is used to gather information about EC2 instances on AWS?
A) aws_instance_info
B) ec2_info
C) amazon.aws.ec2_instance_info
D) aws.ec2_info
 Answer:
C) amazon.aws.ec2_instance_info
 The amazon.aws.ec2_instance_info module is used to gather information about EC2 instances on AWS.

 Chapter 8: Managing CI/CD

Introduction
 Building and automating build, test, and deployment procedures is a breeze with Ansible for CI/CD pipelines, which will be covered in this chapter. Initially, you will configure Ansible to operate within CI/CD environments, thereby ensuring complete automation and seamless integration. Following this, you will integrate Ansible with Jenkins, a widely used automation server, to efficiently manage the build and deployment processes. This encompasses the automation of duties such as code compilation, testing, and deployment to various environments.
 Additionally, you will gain knowledge on how to automate your workflows using GitLab's integrated CI/CD capabilities and Ansible. The implementation of continuous delivery with Ansible will demonstrate how to verify that your code modifications are automatically deployed to production environments in a secure and dependable manner. Finally, learning how to manage rollbacks and version control with Ansible will enable you to maintain robust version control practices and gracefully address deployment failures.
 Upon completion of this chapter, you will be well versed with methods by which Ansible can be employed to automate and improve your CI/CD processes, which improves the efficiency, reliability, and scalability of your software development and deployment workflows.

 Recipe #1: Setting up Ansible for CI/CD Pipelines
 This recipe will instruct you step-by-step in configuring Ansible to be used within CI/CD environments, ensuring it is ready to automate various tasks as part of your pipelines. The learnings behind this recipe is to configure Ansible to integrate seamlessly with CI/CD pipelines, enabling automated build, test, and deployment processes.
 To begin with, ensure Ansible is installed on your control node. If it is not installed, refer to previous chapter for installation instructions.
 Ansible Configuration for CI/CD
 Update your Ansible configuration to optimize it for use in CI/CD environments. Open your Ansible configuration file:

 nano ~/GitforGits/ansible.cfg

 Add or update the given below script:

 [defaults]
 inventory = ./inventory
 retry_files_enabled = False
 log_path = ./ansible.log
 [ssh_connection]
 ssh_args = -o ControlMaster=auto -o ControlPersist=60s

 This configuration sets the inventory file location, disables retry files, and enables logging. It also optimizes SSH connections for faster task execution.
 Create Ansible Inventory File
 Define the hosts and groups that Ansible will manage in the inventory file, so this file can be used by your CI/CD pipelines to target specific environments:

 [webservers]

webserver1 ansible_host=192.168.1.10 ansible_user=ubuntu
 [databases]
 dbserver1 ansible_host=192.168.1.20 ansible_user=ubuntu

 Replace the IP addresses and usernames with your actual server details.
 Environment Variables for CI/CD
 Ensure that your CI/CD pipeline has access to necessary environment variables. For example, if you are using Jenkins, you can set these variables in the Jenkins job configuration. Common variables include:
 ● ANSIBLE_HOST_KEY_CHECKING=False
● ANSIBLE_FORCE_COLOR=True
 These variables disable host key checking and force colored output, respectively.
 Create Basic Playbook for Testing
 Create a simple Ansible playbook to verify the setup. Open a new playbook file:

 nano ~/GitforGits/playbooks/test_playbook.yml

 Add the following code snippet:

 - name: Test Playbook
 hosts: all
 tasks:
 - name: Ping all hosts
 ping:

This playbook uses the ping module to check connectivity with all hosts defined in the inventory. In your CI/CD tool (e.g., Jenkins, GitLab CI), configure a job to run the Ansible playbook. For example, in Jenkins, create a new job and add a build step to execute the Ansible playbook:

 ansible-playbook ~/GitforGits/playbooks/test_playbook.yml

 By following these steps, you have set up Ansible for CI/CD pipelinesand ensured that Ansible can be used effectively to automate tasks within CI/CD workflows.

 Recipe #2: Integrating Ansible with Jenkins
 Integrating Ansible with Jenkins allows automating the execution of Ansible playbooks as part of your CI/CD pipeline, which ultimately allows Jenkins to handle complex deployment processes efficiently using Ansible's powerful automation capabilities. In this recipe, you will learn to configure Jenkins to run Ansible playbooks as part of your build and deployment processes.
 Install Ansible Plugin for Jenkins
 To enable Jenkins to run Ansible playbooks, install the Ansible plugin. Navigate to Jenkins Dashboard and go to Manage Jenkins > Manage Under the Available tab, search for "Ansible" and install the Ansible plugin. If the plugin is already installed, you can skip this step.
 After installing the plugin, configure it to specify the path to the Ansible executable. Go to Manage Jenkins > Global Tool scroll down to the Ansible section, and click on Add Fill in the Name field (e.g., and specify the path to the Ansible executable (usually /usr/bin/ansible or
 Create a Jenkins Job
 Create a new Jenkins job to run an Ansible playbook. From the Jenkins Dashboard, click on New enter a name for the job (e.g., Run Ansible select Freestyle and click
 In the job configuration page, set up your source control repository. Under the Source Code Management section, select your repository type (e.g., and provide the repository URL and credentials if necessary.
 Add a Build Step to Run Playbook

In the Build section of the job configuration, click on Add build step and select Invoke Ansible Configure the build step with the following details:
 ● Playbook The path to your Ansible playbook (e.g.,
● The path to your inventory file (e.g.,
 You can also specify additional options such as extra variables, tags, and limit. Once done, save the job configuration and trigger the job manually to ensure everything is set up correctly. Then, go to the job page and click on Build Monitor the build progress and check the console output for any errors.
 After the job completes, verify that the Ansible playbook executed successfully by checking the console output in Jenkins. With these steps, you have successfully integrated Ansible with Jenkins to automate the execution of Ansible playbooks.

 Recipe #3: Automating Build and Deployment Processes
 In this recipe, we will automate the build and deployment process for the GitforGits web application, which has been referenced in previous chapters.
 To begin with, first ensure that the GitforGits application repository is set up correctly and accessible via your version control system. The repository should include all necessary files for building and deploying the application. From the Jenkins Dashboard, click on New enter a name for the job (e.g., GitforGits CI/CD select and click
 Configure Pipeline Script
 In the job configuration page, scroll down to the Pipeline section. Select Pipeline script from the Definition dropdown. Enter the following pipeline script:

 pipeline {
 agent any
 environment {
 ANSIBLE_CONFIG = "${WORKSPACE}/ansible.cfg"
 }
 stages {
 stage('Checkout') {
 steps {
 git branch: 'main', url: 'https://github.com/yourusername/GitforGits.git'
 }
 }
 stage('Build') {
 steps {
 sh 'echo "Building the application..."'

 // Add build steps here, e.g., compiling code, running tests, etc.
 }
 }
 stage('Deploy') {
 steps {
 ansiblePlaybook(
 playbook: 'playbooks/deploy_gitforgits.yml',
 inventory: 'inventory/hosts'
)
 }
 }
 }
 post {
 success {
 echo 'Deployment successful!'
 }
 failure {
 echo 'Deployment failed!'
 }
 }
 }

 Replace https://github.com/yourusername/GitforGits.git with the actual URL of your GitforGits repository.
 Ansible Playbook for Deployment
 Create a playbook for deploying the GitforGits application. Open your playbook file:

 nano ~/GitforGits/playbooks/deploy_gitforgits.yml

 Put the following snippet:

 - name: Deploy GitforGits Application
 hosts: webservers
 tasks:
 - name: Pull latest code from repository
 git:
 repo: 'https://github.com/yourusername/GitforGits.git'
 dest: /var/www/gitforgits
 version: main
 - name: Install dependencies
 command: npm install
 args:
 chdir: /var/www/gitforgits
 - name: Build the application
 command: npm run build
 args:
 chdir: /var/www/gitforgits
 - name: Restart web server
 service:
 name: nginx
 state: restarted

 Configure Ansible Inventory
 Ensure your Ansible inventory includes the details of the web servers where the application will be deployed:

 [webservers]
 webserver1 ansible_host=192.168.1.10 ansible_user=ubuntu

Replace the IP address and username with your actual server details. Then, save the Jenkins pipeline job configuration and manually trigger the job by clicking on Build Now on the job page. Monitor the build and deployment process through the Jenkins console output.
 After the pipeline completes, verify that the GitforGits application has been deployed successfully. Check the application on the web server to ensure it is running as expected.

 Recipe #4: Using Ansible with GitLab CI/CD
 Integrating Ansible with GitLab CI/CD allows you to automate the build, test, and deployment processes of your applications directly within GitLab. This recipe will instruct you to integrate Ansible with GitLab CI/CD and automate the deployment of the GitforGits web application.
 Create GitLab CI/CD Configuration File
 Create a .gitlab-ci.yml file in the root of your GitforGits repository to define your CI/CD pipeline. This file will contain the instructions for GitLab to build, test, and deploy your application using Ansible.

 stages:
 - build
 - deploy
 variables:
 ANSIBLE_CONFIG: "${CI_PROJECT_DIR}/ansible.cfg"
 build:
 stage: build
 script:
 - echo "Building the application..."
 # Add build steps here, e.g., compiling code, running tests, etc.
 deploy:
 stage: deploy
 before_script:
 - apt-get update
 - apt-get install -y ansible
 script:

 - ansible-playbook -i inventory/hosts playbooks/deploy_gitforgits.yml
 environment:
 name: production
 only:
 - main

 This configuration defines two stages: build and The build stage runs any necessary build steps, while the deploy stage installs Ansible and runs the Ansible playbook for deployment. The playbook should be located in the playbooks directory and be named If not already created, refer to Recipe #3 for creating this playbook.
 Push Changes to GitLab
 Commit and push the .gitlab-ci.yml file and any other changes to your GitforGits repository on GitLab.

 git add .gitlab-ci.yml
 git commit -m "Add GitLab CI/CD configuration"
 git push origin main

 Once you push the changes, GitLab will automatically trigger the pipeline. Go to your GitLab project and navigate to CI / CD > Pipelines to monitor the pipeline execution. Check the logs to ensure that the build and deploy stages complete successfully.
 With these steps, you have now successfully integrated Ansible with GitLab CI/CD to automate the build and deployment process of the GitforGits web application.

 Recipe #5: Implementing Continuous Delivery with Ansible
 Continuous Delivery (CD) ensures that code changes are automatically prepared for a release to production. By integrating Ansible with your CI/CD pipelines, you can automate the deployment process and ensure that your applications are always in a deployable state. In this recipe, you will learn to set up a Continuous Delivery pipeline, ensuring that code changes are automatically deployed to a staging or production environment.
 Define the Continuous Delivery Pipeline in GitLab
 First, ensure that your GitLab CI/CD pipeline is set up to automate the build, test, and deployment processes. The .gitlab-ci.yml file should be configured to include stages for continuous delivery. Then, create or open the .gitlab-ci.yml file in the root of your GitforGits repository and add the given below script:

 stages:
 - build
 - test
 - deploy
 variables:
 ANSIBLE_CONFIG: "${CI_PROJECT_DIR}/ansible.cfg"
 build:
 stage: build
 script:
 - echo "Building the application..."
 # Add build steps here, e.g., compiling code, running tests, etc.
 test:
 stage: test
 script:

 - echo "Running tests..."
 # Add test steps here, e.g., unit tests, integration tests, etc.
 deploy_staging:
 stage: deploy
 script:
 - apt-get update
 - apt-get install -y ansible
 - ansible-playbook -i inventory/hosts playbooks/deploy_gitforgits.yml
 environment:
 name: staging
 url: http://staging.gitforgits.com
 only:
 - develop
 deploy_production:
 stage: deploy
 script:
 - apt-get update
 - apt-get install -y ansible
 - ansible-playbook -i inventory/hosts playbooks/deploy_gitforgits.yml
 environment:
 name: production
 url: http://production.gitforgits.com
 only:
 - main

This configuration includes stages for building, testing, and deploying the application. The deploy_staging job deploys the application to a staging environment when changes are pushed to the develop branch, while the deploy_production job deploys to production when changes are pushed to the main branch.
 Create Playbooks for Staging and Production
 Here, you need to have separate Ansible playbooks for deploying to staging and production environments. For this, we will assume a single playbook that handles both environments based on variables. To begin with, open your playbook file:

 nano ~/GitforGits/playbooks/deploy_gitforgits.yml

 Add or update the given below script to handle different environments:

 - name: Deploy GitforGits Application
 hosts: webservers
 vars:
 environment: "{{ env }}"
 tasks:
 - name: Pull latest code from repository
 git:
 repo: 'https://github.com/yourusername/GitforGits.git'
 dest: /var/www/gitforgits
 version: main
 - name: Install dependencies
 command: npm install
 args:
 chdir: /var/www/gitforgits
 - name: Build the application
 command: npm run build
 args:
 chdir: /var/www/gitforgits

 - name: Restart web server
 service:
 name: nginx
 state: restarted

 Update the inventory file:

 [staging]
 staging_webserver ansible_host=192.168.1.30 ansible_user=ubuntu
 [production]
 production_webserver ansible_host=192.168.1.40 ansible_user=ubuntu

 Replace the IP addresses and usernames with your actual server details.
 Push Changes to GitLab
 Commit and push the .gitlab-ci.yml file and any other changes to your GitforGits repository on GitLab.

 git add .gitlab-ci.yml
 git commit -m "Add GitLab CI/CD configuration for Continuous Delivery"
 git push origin develop

 Verify the Pipeline Execution
 Once you push the changes, GitLab will automatically trigger the pipeline. Go to your GitLab project and navigate to CI / CD > Pipelines to monitor the pipeline execution. Check the logs to ensure that the build, test, and deploy stages complete successfully.

After the pipeline completes, verify that the GitforGits application has been deployed successfully to the staging environment. Merge the changes from develop to main to trigger the deployment to the production environment and verify the deployment there as well.

 Recipe #6: Managing Rollbacks and Version Control
 To keep your application deployments, stable and reliable, you must manage rollbacks and version control. To properly manage rollbacks, this recipe outlines steps to configure your CI/CD pipeline and our goal in this recipe is to manage rollbacks and version control so that you can revert to a previous stable version if a deployment fails.
 Prepare Application Repository
 Ensure that the GitforGits application repository is set up correctly on GitLab and includes version tags for releases and also very important is that each version tag should correspond to a stable release of the application.
 Create a Rollback Playbook
 Create a new Ansible playbook to handle rollbacks. This playbook will revert the application to a specified previous version. Open your playbook file:

 nano ~/GitforGits/playbooks/rollback_gitforgits.yml

 Put the following snippet:

 - name: Rollback GitforGits Application
 hosts: webservers
 vars:
 version: "{{ version }}"
 tasks:
 - name: Pull specific version from repository
 git:
 repo: 'https://github.com/yourusername/GitforGits.git'
 dest: /var/www/gitforgits
 version: "{{ version }}"

 - name: Install dependencies
 command: npm install
 args:
 chdir: /var/www/gitforgits
 - name: Build the application
 command: npm run build
 args:
 chdir: /var/www/gitforgits
 - name: Restart web server
 service:
 name: nginx
 state: restarted

 Configure GitLab CI/CD for Rollbacks
 Update your .gitlab-ci.yml file to include a job for handling rollbacks. Open or create the .gitlab-ci.yml file in the root of your GitforGits repository and add the given below script:

 stages:
 - build
 - test
 - deploy
 - rollback
 variables:
 ANSIBLE_CONFIG: "${CI_PROJECT_DIR}/ansible.cfg"
 build:
 stage: build
 script:
 - echo "Building the application..."
 # Add build steps here, e.g., compiling code, running tests, etc.

test:
 stage: test
 script:
 - echo "Running tests..."
 # Add test steps here, e.g., unit tests, integration tests, etc.
 deploy:
 stage: deploy
 script:
 - apt-get update
 - apt-get install -y ansible
 - ansible-playbook -i inventory/hosts playbooks/deploy_gitforgits.yml
 environment:
 name: production
 url: http://production.gitforgits.com
 only:
 - main
 rollback:
 stage: rollback
 script:
 - apt-get update
 - apt-get install -y ansible
 - ansible-playbook -i inventory/hosts playbooks/rollback_gitforgits.yml -e "version=${ROLLBACK_VERSION}"
 environment:
 name: production
 when: manual

This configuration includes a rollback stage that runs the rollback playbook. The rollback job can be triggered manually and takes the ROLLBACK_VERSION variable to specify the version to revert to.
 Then, commit and push the .gitlab-ci.yml file and any other changes to your GitforGits repository on GitLab.

 git add .gitlab-ci.yml playbooks/rollback_gitforgits.yml
 git commit -m "Add rollback configuration to GitLab CI/CD"
 git push origin main

 Trigger a Rollback
 To trigger a rollback, go to your GitLab project and navigate to CI / CD > Find the latest pipeline run, and under the rollback stage, click on Enter the version tag you want to roll back to in the ROLLBACK_VERSION variable prompt and confirm.
 Keep an eye on the GitforGits program to make sure it has rolled back to the desired version after the rollback processes finish. Launch the web server program and verify it is running the expected version. This is how you use Ansible with GitLab CI/CD to create a rollback mechanism. If a deployment fails, you can easily restore to a stable version with this setup's version control and rollback management features.

 Summary
 This chapter taught you how to automate build, test, and deployment processes for the GitforGits web application by including Ansible with CI/CD pipelines. Starting Ansible for CI/CD pipelines, the chapter started with making sure it was set up right to operate in these contexts. Then you combined Ansible with Jenkins to let the Jenkins build and deployment procedures automatically run Ansible playbooks. Jenkins could effectively manage challenging deployment chores with this arrangement.
 Then, concentrating on the GitforGits application, you automated the build and deployment procedures with Ansible and Jenkins. To guarantee a consistent and simplified deployment process, you built a Jenkins pipeline with phases for developing, testing, and application deployment. Additionally covered was the integration of Ansible with GitLab CI/CD, in which you set GitLab to automatically deploy the GitforGits application. This includes configuring a.gitlab-ci.yml file to specify the pipeline phases and including Ansible deployment using playbooks.
 The chapter also looked at building continuous delivery so that code changes are automatically ready for deployment to production. In GitLab, you create a continuous delivery pipeline that lets you automatically deploy depending on branch changes into staging and production environments. The Ansible module for managing rollbacks and version control was finally covered. If a deployment fails, you may go back to a prior stable version by building a rollback plan and setting GitLab CI/CD to manage rollbacks.

By the end of this chapter, you knew exactly how to use Ansible to automate CI/CD tasks and integrate with GitLab and Jenkins to improve your deployment practices.

 Knowledge Exercise
 Question 1: What is the primary benefit of integrating Ansible with CI/CD pipelines?
A) Manual deployment of applications
B) Automated and consistent build, test, and deployment processes
C) Enhanced graphical user interface for Ansible
D) Increased need for manual intervention
 Answer:
B) Automated and consistent build, test, and deployment processes
 Integrating Ansible with CI/CD pipelines automates and ensures consistency in build, test, and deployment processes, reducing the need for manual intervention.
 Question 2: Which Jenkins plugin is required to run Ansible playbooks within Jenkins jobs?
A) Docker Plugin
B) Git Plugin
C) Ansible Plugin
D) Pipeline Plugin
 Answer:
C) Ansible Plugin
 The Ansible Plugin is required to run Ansible playbooks within Jenkins jobs, enabling seamless integration.
 Question 3: In a Jenkins pipeline, what is the purpose of the ansiblePlaybook step?
A) To define Git repositories
B) To compile code
C) To execute Ansible playbooks

D) To restart Jenkins
 Answer:
C) To execute Ansible playbooks
 The ansiblePlaybook step in a Jenkins pipeline is used to execute Ansible playbooks as part of the build or deployment process.
 Question 4: Which file in the GitLab repository defines the CI/CD pipeline configuration?
A) Jenkinsfile
B) docker-compose.yml
C) .gitlab-ci.yml
D) ansible.cfg
 Answer:
C) .gitlab-ci.yml
 The .gitlab-ci.yml file in the GitLab repository defines the CI/CD pipeline configuration, specifying stages, jobs, and scripts to run.
 Question 5: How can you trigger a rollback in GitLab CI/CD using Ansible?
A) By merging to the main branch
B) By running a manual job with the rollback stage
C) By pushing code changes
D) By creating a new repository
 Answer:
B) By running a manual job with the rollback stage
 In GitLab CI/CD, you can trigger a rollback by running a manual job that includes the rollback stage, specifying the version to revert to.
 Question 6: Which Ansible module is used to pull code from a Git repository during deployment?

A) file
B) copy
C) git
D) command
 Answer:
C) git
 The git module is used in Ansible playbooks to pull code from a Git repository during the deployment process.
 Question 7: What is the purpose of the environment section in a GitLab CI/CD job definition?
A) To install Ansible
B) To define the job’s execution environment and URL
C) To run unit tests
D) To compile the application
 Answer:
B) To define the job’s execution environment and URL
 The environment section in a GitLab CI/CD job definition specifies the job's execution environment and the URL of the deployed application.
 Question 8: In continuous delivery, what triggers the deployment to the production environment in GitLab CI/CD?
A) Changes pushed to the develop branch
B) A manual trigger by the user
C) Changes pushed to the main branch
D) Running unit tests
 Answer:
C) Changes pushed to the main branch

In continuous delivery with GitLab CI/CD, deployment to the production environment is typically triggered by changes pushed to the main branch.
 Question 9: What variable can you use in GitLab CI/CD to specify a version for rollback?
A) ROLLBACK_VERSION
B) DEPLOY_VERSION
C) ROLLBACK_TAG
D) VERSION_CONTROL
 Answer:
A) ROLLBACK_VERSION
 The ROLLBACK_VERSION variable is used in GitLab CI/CD to specify a version for rollback during a manual job execution.
 Question 10: How do you install Ansible on a GitLab CI/CD runner during the deploy stage?
A) By using the ansiblePlaybook command
B) By running apt-get install ansible in the script section
C) By creating a Docker container
D) By pushing a new commit
 Answer:
B) By running apt-get install ansible in the script section
 To install Ansible on a GitLab CI/CD runner during the deploy stage, you run apt-get install ansible in the script section of the job definition.
 Question 11: Which section in the .gitlab-ci.yml file defines the stages of the pipeline?
A) variables
B) jobs
C) stages
D) environment
 Answer:

C) stages
 The stages section in the .gitlab-ci.yml file defines the various stages of the CI/CD pipeline.
 Question 12: Why is the ansible.cfg file important in CI/CD pipelines involving Ansible?
A) It specifies the Ansible version to use
B) It defines the configuration and behavior of Ansible
C) It contains environment variables for the pipeline
D) It lists the Git repositories to be cloned
 Answer:
B) It defines the configuration and behavior of Ansible
 The ansible.cfg file is crucial as it defines the configuration and behavior of Ansible, ensuring consistency during pipeline executions.
 Question 13: Which command is used to update package lists before installing Ansible in a CI/CD script?
A) sudo apt update
B) yum update
C) dnf update
D) brew update
 Answer:
A) sudo apt update
 The sudo apt update command is used to update package lists on Debian-based systems before installing Ansible in a CI/CD script.
 Question 14: What is the purpose of the manual keyword in the GitLab CI/CD job definition?
A) To run the job automatically
B) To allow the job to be triggered manually

C) To schedule the job
D) To disable the job
 Answer:
B) To allow the job to be triggered manually
 The manual keyword allows a GitLab CI/CD job to be triggered manually rather than automatically as part of the pipeline.
 Question 15: Which command would you use in a GitLab CI/CD job to pull a specific version of code from a Git repository?
A) git commit
B) git fetch
C) git pull
D) git checkout
 Answer:
D) git checkout
 The git checkout command is used to pull a specific version of code from a Git repository in a GitLab CI/CD job.
 Question 16: What stage is responsible for deploying the application in a CI/CD pipeline?
A) build
B) test
C) deploy
D) rollback
 Answer:
C) deploy
 The deploy stage is responsible for deploying the application in a CI/CD pipeline.
 Question 17: In Jenkins, what is the purpose of the post block in a pipeline script?
A) To define environment variables

B) To specify actions to be taken after the pipeline stages complete
C) To compile the application
D) To install dependencies
 Answer:
B) To specify actions to be taken after the pipeline stages complete
 The post block in a Jenkins pipeline script specifies actions to be taken after the pipeline stages complete, such as sending notifications or archiving artifacts.
 Question 18: What does the environment keyword do in the context of a GitLab CI/CD job?
A) Sets up the operating system for the job
B) Specifies the target deployment environment
C) Defines environment variables for the job
D) Configures the network settings
 Answer:
B) Specifies the target deployment environment
 The environment keyword in a GitLab CI/CD job specifies the target deployment environment, such as staging or production.
 Question 19: Which Ansible module can be used to restart a web server as part of a deployment?
A) copy
B) file
C) service
D) shell
 Answer:
C) service

The service module is used to manage services on a target system, including restarting a web server as part of a deployment.
 Question 20: How do you ensure that the correct version of the application is deployed during a rollback?
A) By using the git module with the version parameter
B) By manually editing the source code
C) By running unit tests
D) By changing the branch in the repository
 Answer:
A) By using the git module with the version parameter
 To ensure that the correct version of the application is deployed during a rollback, you use the git module with the version parameter to pull the specific version from the repository.

 Chapter 9: Ansible Tower and AWX

Introduction
 So far, you worked from Ansible's setup and writing playbooks to inventory management, using advanced playbook approaches, and connecting Ansible with cloud platforms including AWS, Azure, and GCP. Using Jenkins and GitLab, you explored CI/CD process automation; you also handled rollbacks and continuous delivery. This expertise prepares you to efficiently automate, simplify your IT processes.
 In this final chapter, you will learn about Ansible Tower and AWX, two powerful tools that provide enterprise-level features for managing Ansible automation at scale. With Ansible Tower, a web-based solution, users have a centralized platform to manage workflows, inventory, and playbooks. A similar set of tools and functionalities are available in AWX, the open-source alternative to Ansible Tower.
 First things first: get Ansible Tower up and running, then create up projects and manage inventory. You will then develop and oversee task templates, which specify Tower's execution of playbooks. After that, you will look at configuring and running AWX to offer a reasonably priced Ansible automation solution. You will also understand Tower API job and process scheduling, automation task automation, monitoring and reporting on automation activity. When you finish this chapter, you'll know how to use Ansible Tower and AWX to manage your Ansible automation in an effective and efficient way, taking your automation skills to the next level.

 Recipe #1: Configuring Ansible Tower
 It is absolutely necessary to configure Ansible Tower in order to manage your Ansible automation on a large scale. The objective of this recipe is to set up Ansible Tower so that your Ansible processes, inventory, and playbooks can be managed.
 If Ansible Tower is not already installed, follow the below steps to install it. The installation process requires a running instance of PostgreSQL and other dependencies.
 Install Ansible Tower
 Download the Ansible Tower installation package from the Red Hat website. Once downloaded, extract the package.

 tar -xvzf ansible-tower-setup-latest.tar.gz
 cd ansible-tower-setup-*

 Edit the inventory file to configure your PostgreSQL database, admin user credentials, and other necessary settings.

 nano inventory

 Add or update the given below script with your configuration details:

 [tower]
 localhost ansible_connection=local
 [database]
 host='localhost'
 port='5432'
 name='awx'
 user='awx'
 password='awxpassword'
 admin_user='awx'
 admin_password='awxpassword'

 Execute the setup script to install Ansible Tower.

sudo ./setup.sh

 Access Ansible Tower
 Once the installation is complete, access Ansible Tower through your web browser. The default URL is Log in with the admin credentials you configured during the installation. After logging in, navigate to the License tab and upload your Ansible Tower license file. This license is required to activate all features of Ansible Tower.
 Then, navigate to the Settings tab and configure the following basic settings:
 ● Authentication: Set up LDAP, SAML, or other authentication methods if required.
● Notifications: Configure email, Slack, or other notification integrations.
● Jobs: Set job settings such as timeouts, privileges, and output options.
 Add Users, Teams and Organization
 Go to the Users and Teams tabs to add users and create teams. Assign appropriate roles and permissions to each user and team to manage access to different resources and functionalities within Ansible Tower.
 Navigate to the Organizations tab and create an organization. Ansible Tower's organizational units let you group related resources like inventory, projects, and job templates. Following these steps, Ansible Tower has been successfully configured. This configuration gives you a single location to manage all of your Ansible automation, which simplifies tasks like inventory management, workflow orchestration, and automation activity monitoring.

 Recipe #2: Managing Projects and Inventories in Tower
 Managing projects and inventories in Ansible Tower allows you to organize and control your Ansible playbooks and the systems they manage. In this recipe, you will learn how to manage the GitforGits project and the associated inventories in Ansible Tower.
 This recipe guides you to create and manage projects and inventories in Ansible Tower for the GitforGits application.
 Create Project in Ansible Tower
 A project in Ansible Tower links to a source control repository containing your playbooks. To create a project for GitforGits:
 Go to the Ansible Tower dashboard and click on Projects in the left-hand menu.
Click the + button to add a new project.
Fill in the necessary details:
 ○ Name: GitforGits Project
○ Organization: Select the organization you created in Recipe #1.
○ SCM Type: Git
○ SCM
○ SCM Branch/Tag/Commit: Specify if needed (e.g.,
○ SCM Credential: Select or create a credential if authentication is required.
 Click Save to create the project. Ansible Tower will sync with the repository and pull the playbooks.

Create Inventory in Ansible Tower
 Inventories in Ansible Tower are collections of hosts or groups of hosts you want to manage. To create an inventory for GitforGits:
 Go to the Ansible Tower dashboard and click on Inventories in the left-hand menu.
Click the + button to add a new inventory.
Fill in the necessary details:
 ○ Name: GitforGits Inventory
○ Organization: Select the organization you created in Recipe #1.
 Click Save to create the inventory.
 Add Hosts to the Inventory
 After creating the inventory, you need to add hosts that were defined in the previous chapters:
 Within the GitforGits Inventory, go to the Hosts tab and click the + button to add new hosts.
Fill in the necessary details:
 ○ Name: webserver1
○ Description: Web Server for GitforGits
○ Variables: (Optional) Add any host-specific variables as needed.
 Repeat this process for additional hosts, such as dbserver1 if applicable.

Create Groups within Inventory
 Groups allow you to categorize and organize hosts within an inventory. To create groups:
 Within the GitforGits Inventory, go to the Groups tab and click the + button to add a new group.
Fill in the necessary details:
 ○ Name: Web Servers
○ Description: Group for all web servers.
 After creating the group, navigate to the group’s Hosts tab and add the relevant hosts (e.g.,
Repeat this process for additional groups, such as a Database Servers group.
 Verify the Project and Inventory Configuration
 Navigate to the Projects page, select the GitforGits Project, and click the Sync button to ensure the latest playbooks are pulled from the repository.
To verify that the inventory is correctly configured, navigate to the Inventories page, select the GitforGits Inventory, and click on Select a host and click Run Execute a simple command, such as to ensure Ansible Tower can communicate with the host.

After following these steps, you will have complete control over the GitforGits project and all of its related Ansible Tower inventories. The configuration provides a structured and efficient way to handle automation tasks by allowing you to organize and control your playbooks and the systems they manage.

 Recipe #3: Creating and Managing Job Templates
 Ansible Tower's job templates let you specify the playbook to run, the inventory to use, and any additional variables or settings for playbook execution. This recipe will teach you how to use Ansible Tower with the GitforGits app to make and manage job templates.
 Create a Job Template
 Go to the Ansible Tower dashboard and click on Job Templates in the left-hand menu.
Click the + button to add a new job template.
Fill in the necessary details:
 ○ Name: Deploy GitforGits
○ Job Type: Run
○ Inventory: Select the GitforGits Inventory you created in Recipe #2.
○ Project: Select the GitforGits
○ Playbook: Select the playbook you want to run (e.g.,
○ Credential: Select or create a credential if authentication is required for the hosts.
 Click Save to create the job template.
 Schedule the Job
 Go to the Job Templates page and find the Deploy GitforGits template you created.

Click the Rocket icon next to the job template to launch the job. This will run the specified playbook using the selected inventory and project.
Navigate to the Jobs page to monitor the progress of the job. Click on the job to view detailed output and ensure that all tasks are executed successfully.
 To automate the execution of the job template, you can schedule it to run at specified intervals.
 Go to the Job Templates page and select the Deploy GitforGits template.
Click on the Schedule tab and then click + to add a new schedule.
Fill in the necessary details:
 ○ Name: Daily Deployment
○ Start Date: Select the date and time to start the schedule.
○ Repeat Frequency: Set the frequency (e.g., daily, weekly).
 Click Save to create the schedule.
 To manage existing job templates, navigate to the Job Templates page. Here, you can edit, duplicate, or delete job templates as needed. Editing allows you to update the template configuration, such as changing the playbook or inventory. Duplicating a template creates a copy, which you can modify for different purposes without starting from scratch.
 Use Job Templates in Workflows

Job templates can be combined into workflows to orchestrate complex automation processes. To create a workflow:
 Go to the Templates page and click on the + button, then select Workflow
Fill in the necessary details for the workflow template, such as Name and
Add Nodes: In the workflow editor, add nodes representing job templates, project syncs, or inventory syncs. Connect the nodes to define the order and dependencies of the tasks.
Click Save to create the workflow template.
 Workflows can be launched and monitored in the same way as job templates. Navigate to the Templates page, find the workflow template, and click the Rocket icon to launch it. Monitor the progress in the Jobs page to ensure all tasks are executed as expected. This setup allows you to define, schedule, and automate the execution of your playbooks, providing a structured and efficient way to handle your automation tasks.

 Recipe #4: Setting up and using AWX
 AWX is the open-source version of Ansible Tower, offering similar features and functionalities for managing Ansible automation. This recipe will instruct you step-by-step to set up AWX and use it to manage the GitforGits project and associated inventories.
 Install Docker and Docker Compose
 AWX runs as a set of Docker containers, so you need Docker and Docker Compose installed on your system. If not already installed, refer to official Docker documentation to install them on your system.
 Clone the AWX Repository
 Clone the official AWX repository from GitHub:

 git clone https://github.com/ansible/awx.git
 cd awx/installer

 Edit the inventory file to configure AWX settings such as the admin user credentials and database settings:

 nano inventory

 Update the following settings as needed:

 localhost ansible_connection=local ansible_python_interpreter="/usr/bin/env python"
 # Admin user settings
 admin_user=admin
 admin_password=admin_password
 # PostgreSQL settings
 postgres_data_dir="/var/lib/pgdocker"
 pg_hostname="localhost"
 pg_port="5432"
 pg_database="awx"

pg_username="awx"
 pg_password="awxpass"
 # Other settings can be configured as needed

 Deploy AWX
 Execute the playbook to deploy AWX:

 ansible-playbook -i inventory install.yml

 This will pull the necessary Docker images, create the containers, and set up AWX.
 Once the installation is complete, access AWX through your web browser. The default URL is Log in with the admin credentials you configured in the inventory file.
 Create a Project in AWX
 To manage the GitforGits project in AWX, create a new project:
 Go to the AWX dashboard and click on Projects in the left-hand menu.
Click the + button to add a new project.
Fill in the necessary details:
 ○ Name: GitforGits Project
○ Organization: Select the organization you created.
○ SCM Type: Git
○ SCM
○ SCM Branch/Tag/Commit: Specify if needed (e.g.,
○ SCM Credential: Select or create a credential if authentication is required.
 Click Save to create the project. AWX will sync with the repository and pull the playbooks.

Inventory in AWX
 To manage the inventories for GitforGits, create a new inventory:
 Go to the AWX dashboard and click on Inventories in the left-hand menu.
Click the + button to add a new inventory.
Fill in the necessary details:
 ○ Name: GitforGits Inventory
○ Organization: Select the organization you created.
 Click Save to create the inventory.
 After creating the inventory, add hosts and groups:
 Within the GitforGits Inventory, go to the Hosts tab and click the + button to add new hosts.
Fill in the necessary details:
 ○ Name: webserver1
○ Description: Web Server for GitforGits
○ Variables: (Optional) Add any host-specific variables as needed.
 Repeat this process for additional hosts, such as dbserver1 if applicable.
Navigate to the Groups tab and click the + button to add a new group. Add hosts to the groups as needed.
 Create and Launch Job Templates
 Create job templates to define how playbooks are executed:

Go to the Job Templates page and click the + button to add a new job template.
Fill in the necessary details:
 ○ Name: Deploy GitforGits
○ Job Type: Run
○ Inventory: Select the GitforGits
○ Project: Select the GitforGits
○ Playbook: Select the playbook to run (e.g.,
○ Credential: Select or create a credential if authentication is required.
 Click Save to create the job template.
Navigate to the Job Templates page, find the Deploy GitforGits template, and click the Rocket icon to launch the job. Monitor the progress in the Jobs page to ensure successful execution.
 Following these steps, you have effectively configured and utilized AWX to oversee the GitforGits project and inventory. In this setup, you can take advantage of AWX's robust features to efficiently manage, automate, and keep tabs on your Ansible automation jobs.

 Recipe #5: Scheduling Jobs and Workflows in Tower
 Scheduling jobs and workflows in Ansible Tower allows you to automate tasks at specific times or intervals, ensuring regular maintenance and deployments without manual intervention. This recipe will instruct you scheduling the jobs created in the previous recipes for the GitforGits project.
 Our goal in this recipe is to schedule jobs and workflows in Ansible Tower for the GitforGits application, ensuring regular automated execution.
 Navigate to Job Templates
 Go to the Ansible Tower dashboard and click on Job Templates in the left-hand menu.
Find the Deploy GitforGits job template created in Recipe #3. Click on the name of the job template to open its details page.
 Add a Schedule to the Job Template
 On the job template details page, navigate to the Schedules tab. This tab shows all schedules associated with the job template.
Click the + button to add a new schedule. This will open the schedule configuration form.
Fill in the necessary details:
 ○ Name: Enter a descriptive name for the schedule (e.g., Daily
Description: Provide a description of the schedule (e.g., Schedule to run the GitforGits deployment

Start Date/Time: Select the date and time when you want the schedule to start. Click on the calendar icon to choose the date and time.
Local Time Zone: Ensure the time zone is set correctly according to your requirements.
 Configure the repeat frequency for the schedule:
 ○ Frequency: Select Daily for a daily schedule.
○ Interval: Set the interval to 1 to run the job every day.
End: (Optional) Specify an end date for the schedule if it should stop at a certain point.
 Save the Schedule: After configuring all the details, click Save to create the schedule. The new schedule will now appear under the Schedules tab for the job template.
 Verify the Scheduled Job
 Navigate to the Schedules tab on the job template's details page to see the newly created schedule. This tab lists all schedules associated with the job template, including their next run time.
Once the scheduled time is reached, the job will automatically run. To monitor its execution:
 ○ Go to the Jobs page from the Ansible Tower dashboard.

Look for the Deploy GitforGits job in the list of running or completed jobs.
Click on the job to view detailed output and ensure that all tasks were executed successfully.
 Create a Workflow Job Template
 If you have multiple job templates that need to be run in a specific sequence, you can create a workflow job template.
 Go to the Ansible Tower dashboard and click on Templates in the left-hand menu, then select Workflow Job
Click the + button to add a new workflow job template.
Fill in the necessary details:
 ○ Name: Enter a name for the workflow (e.g., GitforGits Deployment
○ Description: Provide a description for the workflow.
○ Organization: Select the organization created in Recipe #1.
 In the workflow editor, click on the + button to add nodes. Each node represents a job template, project sync, or inventory sync. Connect the nodes to define the order and dependencies of the tasks.
 ○ For example, add the Deploy GitforGits job template as the first node.
 Click Save to create the workflow job template.

Schedule the Workflow Job Template
 Go to the Workflow Job Templates page and select the workflow template you just created.
Navigate to the Schedules tab and click the + button to add a new schedule.
Fill in the necessary details, similar to the steps outlined for scheduling a job template. Ensure the start date, time, and repeat frequency are set according to your requirements. The, click Save to create the schedule for the workflow job template.
 Verify the Scheduled Workflow
 Navigate to the Schedules tab on the workflow job template's details page to see the newly created schedule.
Once the scheduled time is reached, the workflow will automatically run. To monitor its execution:
 ○ Go to the Jobs page from the Ansible Tower dashboard.
Look for the GitforGits Deployment Workflow in the list of running or completed jobs.
Click on the workflow to view detailed output and ensure that all tasks were executed successfully.
 This configuration through the above steps ensures that your automation tasks run regularly and reliably, without the need for manual intervention.

 Recipe #6: Using Tower API for Automation
 Ansible Tower provides a RESTful API that allows you to automate tasks, integrate with other tools, and manage resources programmatically. This recipe will teach you to use the Ansible Tower API to automate job executions, retrieve job results, and manage resources.
 Generate an API Token
 To interact with the Tower API, you need to generate an API token.
 Go to the Ansible Tower dashboard and click on your user profile in the top-right corner, then select
Click the + button to generate a new token. Provide a description (e.g., API Token for and set the expiration date if needed.
Click Save to create the token. Copy the token value as you will need it for authentication in API requests.
 Test API Authentication
 Install an HTTP client like curl or a tool like Postman to send API requests. This recipe uses curl for demonstration.
 Then, test the authentication by sending a request to the API as below:

 curl -H "Authorization: Bearer " https:///api/v2/me/

Replace with the token you generated and with the IP address of your Ansible Tower server. This request retrieves information about the authenticated user.
 List Job Templates
 To list job templates available in Ansible Tower, send the following request:

 curl -H "Authorization: Bearer " https:///api/v2/job_templates/

 This request retrieves a list of all job templates.
 Launch a Job Template
 To launch a specific job template, you need its ID. Use the ID from the previous step to launch the job template.

 curl -X POST -H "Authorization: Bearer " \
 -H "Content-Type: application/json" \
 -d '{"inventory": }' \
 https:///api/v2/job_templates//launch/

 Replace with the ID of the inventory and with the ID of the job template you want to launch. This request starts the specified job template.
 Monitor Job Status
 To monitor the status of a running job, use the job ID returned from the previous step.

 curl -H "Authorization: Bearer " https:///api/v2/jobs//

 This request retrieves the status and details of the specified job. Also, to retrieve the results of a completed job, use the job ID as below:

 curl -H "Authorization: Bearer " https:///api/v2/jobs//stdout/

This request retrieves the standard output of the specified job, providing details about the execution.
 Automate Job Executions
 You can automate job executions by writing a script that uses the Tower API to trigger jobs based on certain conditions. Given below is an example using a Bash script:

 #!/bin/bash
 API_TOKEN=""
 TOWER_URL="https://"
 JOB_TEMPLATE_ID=
 INVENTORY_ID=
 # Launch Job Template
 JOB_ID=$(curl -X POST -H "Authorization: Bearer $API_TOKEN" \
 -H "Content-Type: application/json" \
 -d '{"inventory": '$INVENTORY_ID'}' \
 $TOWER_URL/api/v2/job_templates/$JOB_TEMPLATE_ID/launch/ | jq -r '.id')
 # Monitor Job Status
 while true; do
 JOB_STATUS=$(curl -H "Authorization: Bearer $API_TOKEN" $TOWER_URL/api/v2/jobs/$JOB_ID/ | jq -r '.status')
 if [["$JOB_STATUS" == "successful"]]; then
 echo "Job $JOB_ID completed successfully."
 break
 elif [["$JOB_STATUS" == "failed"]]; then
 echo "Job $JOB_ID failed."
 break
 else
 echo "Job $JOB_ID is $JOB_STATUS."

 sleep 10
 fi
 done
 # Retrieve Job Results
 curl -H "Authorization: Bearer $API_TOKEN" $TOWER_URL/api/v2/jobs/$JOB_ID/stdout/

 This above script launches a job template, monitors its status, and retrieves the results upon completion.
 You can also integrate the Tower API with other tools and platforms. For example, you can trigger Ansible Tower jobs from a Jenkins pipeline or a GitLab CI/CD pipeline by using API calls within the pipeline scripts.

 Summary
 Ansible Tower and AWX, which you learned in this last chapter, offers a scalable and central platform for managing playbooks, inventories, and workflows; they also let you enhance your Ansible automation capabilities. The chapter started with configuring Ansible Tower, which involved setting up the platform, applying the relevant licenses, and creating organizations, users, and teams to control access and permissions. This setup made sure that automation operations could take place in a safe and organized setting.
 You then looked into Ansible Tower's project and inventory management, with a focus on the GitforGits project. By establishing and setting projects and inventories, you may effectively arrange your playbooks and target hosts. This arrangement allowed you to define groups and hosts within inventories, which streamlined resource management. The chapter went on to explain how to create and manage job templates, which allow you to specify how playbooks are performed. You learnt how to set up job templates, schedule their execution, and track their progress. This method ensured that your automation duties were carried out regularly and reliably. You also built up and used AWX, the open-source version of Ansible Tower. This included installing AWX with Docker, configuring it, and managing projects and inventories in a manner similar to Ansible Tower. AWX offered a lower-cost option while maintaining similar functionality.

You also looked into scheduling jobs and workflows in Ansible Tower, which automates task execution at certain periods or intervals. This capability enables you to perform routine maintenance and deployments without requiring manual intervention. Finally, you used the Tower API for automation, learning how to generate API tokens, connect with the API via HTTP clients, and automate task executions programmatically. This integration enhances your automation skills by enabling smooth interaction with other tools and platforms.
 Taken together, the skills you gained in this chapter will allow you to manage complicated workflows with ease and scale your automation efforts with precision, all thanks to Ansible Tower and AWX.

 Knowledge Exercise
 Question 1: What is the primary purpose of Ansible Tower and AWX?
A) To provide a centralized platform for managing playbooks, inventories, and workflows
B) To replace the need for Ansible playbooks
C) To create and manage Docker containers
D) To serve as a database management tool
 Answer:
A) To provide a centralized platform for managing playbooks, inventories, and workflows
 Ansible Tower and AWX are designed to offer a centralized and scalable platform for managing Ansible automation, including playbooks, inventories, and workflows.
 Question 2: Which configuration file needs to be edited to set up AWX with Docker?
A) ansible.cfg
B) inventory
C) .gitlab-ci.yml
D) Jenkinsfile
 Answer:
B) inventory
 The inventory file is used to configure settings such as database credentials and admin user details when setting up AWX with Docker.
 Question 3: How do you access Ansible Tower after installation?
A) By running a CLI command
B) Through a web browser at a specific URL
C) By logging into the server via SSH

D) By using a desktop application
 Answer:
B) Through a web browser at a specific URL
 After installation, Ansible Tower is accessed through a web browser using the URL of the Tower server.
 Question 4: In Ansible Tower, what is the purpose of creating an organization?
A) To install Ansible on remote hosts
B) To group related resources and manage permissions
C) To automate the installation of Docker
D) To create virtual machines
 Answer:
B) To group related resources and manage permissions
 Creating an organization in Ansible Tower helps group related resources such as inventories, projects, and job templates, and manage user permissions.
 Question 5: What is the role of a job template in Ansible Tower?
A) To store credentials for accessing remote hosts
B) To define how playbooks are executed, including inventory and extra variables
C) To manage Docker containers
D) To schedule database backups
 Answer:
B) To define how playbooks are executed, including inventory and extra variables
 A job template in Ansible Tower specifies the playbook to run, the inventory to use, and any extra variables or settings needed for execution.

Question 6: Which API request method is used to launch a job template in Ansible Tower?
A) GET
B) POST
C) PUT
D) DELETE
 Answer:
B) POST
 The POST method is used to launch a job template in Ansible Tower through the API.
 Question 7: What is required to authenticate API requests to Ansible Tower?
A) SSH key
B) API token
C) User password
D) SSL certificate
 Answer:
B) API token
 An API token is required to authenticate API requests to Ansible Tower.
 Question 8: How can you schedule a job template to run automatically at specific times in Ansible Tower?
A) By using the cron command
B) By creating a schedule in the Schedules tab of the job template
C) By configuring a Jenkins job
D) By setting up a GitLab pipeline
 Answer:
B) By creating a schedule in the Schedules tab of the job template

In Ansible Tower, you can schedule a job template to run automatically by creating a schedule in the Schedules tab of the job template.
 Question 9: What information is required when configuring a project in Ansible Tower?
A) Database credentials
B) SCM type and URL
C) Docker image name
D) Cloud provider credentials
 Answer:
B) SCM type and URL
 When configuring a project in Ansible Tower, you need to specify the SCM type (e.g., Git) and the repository URL.
 Question 10: Which command is used to monitor the status of a running job in Ansible Tower via the API?
A) curl -X GET
B) curl -X POST
C) curl -X PUT
D) curl -X DELETE
 Answer:
A) curl -X GET
 The GET method is used to retrieve the status of a running job in Ansible Tower via the API.
 Question 11: Which component in Ansible Tower allows you to group hosts logically?
A) Job templates
B) Projects
C) Inventories
D) Workflows

Answer:
C) Inventories
 Inventories in Ansible Tower allow you to group hosts logically, organizing them for efficient management.
 Question 12: What is the main advantage of using AWX over Ansible Tower?
A) Better performance
B) Cost-effectiveness as it is open-source
C) More features
D) Better user interface
 Answer:
B) Cost-effectiveness as it is open-source
 AWX is the open-source version of Ansible Tower, providing similar functionalities without the associated costs.
 Question 13: In the context of Ansible Tower, what is a workflow?
A) A sequence of job templates and project syncs that run in a specific order
B) A method to create Docker containers
C) A type of inventory
D) A way to schedule jobs on remote hosts
 Answer:
A) A sequence of job templates and project syncs that run in a specific order
 A workflow in Ansible Tower is a sequence of job templates and project syncs that run in a specific order to automate complex processes.
 Question 14: How can you add hosts to an inventory in Ansible Tower?

A) By importing a Docker image
B) By creating a schedule
C) By using the Hosts tab in the inventory
D) By configuring a Jenkins job
 Answer:
C) By using the Hosts tab in the inventory
 Hosts can be added to an inventory in Ansible Tower using the Hosts tab within the inventory configuration.
 Question 15: What does the Schedules tab in a job template configuration allow you to do?
A) Define SCM types and URLs
B) Monitor running jobs
C) Set up automatic execution times for the job template
D) Manage API tokens
 Answer:
C) Set up automatic execution times for the job template
 The Schedules tab in a job template configuration allows you to set up automatic execution times for the job template.
 Question 16: Which tool is used to install AWX?
A) Kubernetes
B) Docker and Docker Compose
C) Jenkins
D) GitLab CI
 Answer:
B) Docker and Docker Compose
 AWX is installed using Docker and Docker Compose.
 Question 17: How can you trigger an Ansible Tower job from a Jenkins pipeline?
A) By using Jenkins's built-in scheduling

B) By configuring a Git hook
C) By making API calls to Ansible Tower from the Jenkins pipeline script
D) By using the crontab command
 Answer:
C) By making API calls to Ansible Tower from the Jenkins pipeline script
 You can trigger an Ansible Tower job from a Jenkins pipeline by making API calls to Ansible Tower from the pipeline script.
 Question 18: What is the purpose of generating an API token in Ansible Tower?
A) To access the Tower user interface
B) To authenticate and authorize API requests
C) To create virtual machines
D) To manage Docker containers
 Answer:
B) To authenticate and authorize API requests
 Generating an API token in Ansible Tower is used to authenticate and authorize API requests.
 Question 19: Which command retrieves the standard output of a completed job in Ansible Tower via the API?
A) curl -X GET /api/v2/jobs//
B) curl -X GET /api/v2/jobs//stdout/
C) curl -X POST /api/v2/jobs//
D) curl -X DELETE /api/v2/jobs//stdout/
 Answer:
B) curl -X GET /api/v2/jobs//stdout/

The command curl -X GET /api/v2/jobs//stdout/ retrieves the standard output of a completed job in Ansible Tower via the API.
 Question 20: What is the benefit of using job templates in Ansible Tower?
A) They create Docker containers automatically
B) They provide a way to define and standardize how playbooks are executed
C) They are used to install Ansible on remote hosts
D) They configure network settings
 Answer:
B) They provide a way to define and standardize how playbooks are executed
 Job templates in Ansible Tower provide a way to define and standardize how playbooks are executed, ensuring consistency and reliability in automation tasks.

Acknowledgement
 I owe a tremendous debt of gratitude to GitforGits, for their unflagging enthusiasm and wise counsel throughout the entire process of writing this book. Their knowledge and careful editing helped make sure the piece was useful for people of all reading levels and comprehension skills. In addition, I'd like to thank everyone involved in the publishing process for their efforts in making this book a reality. Their efforts, from copyediting to advertising, made the project what it is today.
 Finally, I'd like to express my gratitude to everyone who has shown me unconditional love and encouragement throughout my life. Their support was crucial to the completion of this book. I appreciate your help with this endeavour and your continued interest in my career.

Thank You

Epilogue
 It is my hope that, as we near the conclusion of the "Ansible DevOps Cookbook," you will take a moment to consider the path we have traveled and the wisdom we have gained. The idea for this book came from wanting to share useful solutions to problems that people face in the real world. It is now an entire book with over 75 and above recipes that will help you improve your DevOps skills when using Ansible. We've looked at the basics of setting up Ansible environments, writing good playbooks, and keeping track of inventories in these chapters. We've learned more advanced techniques, like how to automate cloud deployments and connect Ansible to CI/CD pipelines. Each recipe was made to solve a specific problem and includes clear, doable steps for setting it up and fixing any problems that come up.

Feedback and stories from readers like you have been some of the best parts of writing this book. It has been very satisfying to hear how these recipes have helped solve problems, streamline processes, and improve workflows in different businesses. That shows how powerful it is to work together and have the same goal: to make DevOps better and more efficient. These days, DevOps is changing quickly, and the tools and methods we use will also change along with it. Ansible will definitely stay an important part of automation strategies, and I hope this book will continue to help you as you face new challenges and take advantage of new opportunities. Along with the technical information you've learned, I hope this book has also given you the drive to keep getting better. Automation is not a one-time thing that needs to be done. If you adopt this way of thinking, you can keep improving and tweaking your workflows, which will keep your DevOps practices strong and flexible.
 I think you should keep trying new things, learning, and telling other people about your experiences. Remember that you are part of a dynamic and helpful community as you work to solve a stubborn problem, improve a deployment process, or discover new ways to automate tasks. I appreciate that you picked this book to help you learn about Ansible and DevOps automation. Putting these recipes together has been an amazing journey, and I'm thrilled to share them with you. Your success is the best way to judge how useful this book is, and I can't wait to see how you use what you've learned in your work. Please accept my sincere appreciation for your willingness to read my experience around Ansible and DevOps. We look forward to many more successful deployments, streamlined processes, and new ideas.
 Have fun automating!
 Thorne Montgomery ☺

image-nx6wr1bc.jpg
®
GitforGits

ASIAN PUBLISHING HOUSE

