

Learning System Design on AWS


Building and Scaling Enterprise Solutions


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.



Jayanth Kumar and Mandeep Singh




  Learning System Design on AWS

  
    by 
    Jayanth 
    Kumar
     and 
    Mandeep 
    Singh
  

  Copyright © 2025 Jayanth Kumar and Mandeep Singh. All rights reserved.

  Printed in the United States of America.

  
    Published by 
    O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
  

  
    O’Reilly books may be purchased for educational, business, or sales
    promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
    department: 800-998-9938 or 
    corporate@oreilly.com.
  

  
    	
      Editors:
       Melissa Potter and Megan Laddusaw
    

    	
      Production Editor:
       Katherine Tozer
    

    
    	
      Interior Designer:
       David Futato
    

    	
      Cover Designer:
       Karen Montgomery
    

    	
      Illustrator:
       Kate Dullea
    

  

  
    	
      October 2024:
       First Edition
    

  

  
  
    Revision History for the Early Release

    
      	
        2023-06-27:
         First Release
      

    

  

  
    See 
    http://oreilly.com/catalog/errata.csp?isbn=9781098146894
     for release details.
  

  
    
      The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
      Learning System Design on AWS, the cover image, and related trade dress
      are trademarks of O’Reilly Media, Inc.
    

    
      The views expressed in this work are those of the authors and do not
      represent the publisher’s views. While the publisher and the
      authors have used good faith efforts to ensure that the information and
      instructions contained in this work are accurate, the publisher and the
      authors disclaim all responsibility for errors or omissions, including
      without limitation responsibility for damages resulting from the use of or
      reliance on this work. Use of the information and instructions contained
      in this work is at your own risk. If any code samples or other technology
      this work contains or describes is subject to open source licenses or the
      intellectual property rights of others, it is your responsibility to
      ensure that your use thereof complies with such licenses and/or rights.
      
      
    

  

  
    978-1-098-14689-4

     
  




      Chapter 1. System Design Tradeoffs and Guidelines

      A Note for Early Release Readers

        With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

        
        This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

        
        If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.

        

      Today’s modern technological revolution is happening because of large scale software systems. Big enterprise companies like Google, Amazon, Oracle, and SAP have all built large scale software systems to run their (and their customer’s) businesses. Building and operating such large scale software systems requires first principles thinking to design and develop the technical architecture before actually putting the system into code. This is because we don’t want to be in a state where these systems will not work/scale after writing 10k lines of code. If the design is right in the first place, the rest of the implementation journey becomes smooth. This requires looking at the business requirements, understanding the needs and objectives of the customer, evaluating different trade-offs, thinking about error handling and edge cases, contemplating futuristic changes and robustness while worrying about basic details like algorithms and data structures. Enterprises can avoid the mistake of wasted software development effort by carefully thinking about systems and investing time in understanding bottlenecks, system requirements, users being targeted, user access patterns and many such decisions, which in short, is System Design. 

      This chapter covers the basics of system design, with the goal of helping you to understand the concepts around system design itself, the system trade-offs that naturally arise in such large-scale software systems, the fallacies to avoid in building such large scale systems and the guidelines—those wisdoms which were learnt after building such large scale software systems over the years. This is simply meant to introduce you to the basics—we’ll dig into details in later chapters, but we want you to have a good foundation to start with. Let’s begin by digging into the basic system design concepts.

      
        System Design Concepts

        To understand the building blocks of system design, we should understand the fundamental concepts around systems. We can leverage abstraction here, the concept in computer science of obfuscating the inner details to create a model of these system design concepts, which can help us to understand the bigger picture. The concepts in system design, be it any software system, revolve around communication, consistency, availability, reliability, scalability, fault tolerance and system maintainability. We will go over each of these concepts in detail, creating a mental model while also understanding how their nuances are applied in large scale system design.

        
          Communication

          A large scale software system is composed of small sub-systems, known as servers, which communicate with each other, i.e. exchange information or data over the network to solve a business problem, provide business logic, and compose functionality. Communication can take place in either a synchronous or asynchronous fashion, depending on the needs and requirements of the system.

          Figure 1-1 shows the difference in the action sequence of both synchronous and asynchronous communication.

          
            [image: Sequence Diagram for Synchronous vs Asynchronous Communication]
            Figure 1-1. Sequence Diagram for Synchronous vs Asynchronous Communication

          

          Let’s go over the details of both communication mechanisms in the following sections.

          Note

            We will cover the communication protocols as well as mechanisms for asynchronous communication in detail in Chapter 6: Communication Networks and Protocols.

          

          
            Synchronous communication

            Consider a phone call conversation with your friend, you hear and speak with them at the same time and also use pauses in between to allow for conversation to complete.This is an example of synchronous communication, a type of communication in which two or more parties

            communicate with each other in real-time, with low latency. This type of communication is more immediate and allows for quicker resolution of issues or questions. 

            In system design, a communication mechanism is synchronous when the receiver will block (or wait) for the call or execution to return before continuing. This means that until a response is returned by the sender, the application will not execute any further, which could be perceived by the user as latency or performance lag in the application.

          

          
            Asynchronous communication

            To give you an example of asynchronous communication, consider that instead of a phone call conversation, you switch to email. As you communicate over email with your friend, you send the message and wait for the reply at a later time (but within an acceptable time limit). You also follow a practice to follow up again if there is no response after this time limit has passed. This is an example of asynchronous communication, a type of communication in which two or more parties do not communicate with each other in real-time. Asynchronous communication can also take place through messaging platforms, forums, and social media, where users can post messages and responses may not be immediate. 

            In system design, a communication mechanism is asynchronous when the sender does not block (or wait) for the call or execution to return from the receiver. Execution continues on in your program or system, and when the call returns from the receiving server, a “callback” function is executed. In system design, asynchronous communication is often used when immediate response is not required, or when the system needs to be more flexible and tolerant of delays or failures. 

            In general, the choice of synchronous or asynchronous communication in system design depends on the specific requirements and constraints of the system. Synchronous communication is often preferred when real-time response is needed (such as the communication between the frontend UI and the backend), while asynchronous communication is often preferred when flexibility and robustness are more important (such as the communication to check the status of a long running job).

          

        

        
          Consistency

          Consistency, i.e. the requirement of being consistent, or in accordance with a set of rules or standards, is an important issue when it comes to communication between servers in a software system. Consistency can refer to a variety of concepts and contexts in system design.

          In the context of distributed systems, consistency can be the property of all replica nodes (more on this in a moment) or servers having the same view of data at a given point in time. This means that all replica nodes have the same data, and any updates to the data are immediately reflected on all replica nodes.

          In the context of data storage and retrieval, consistency refers to the property of each read request returning the value of the most recent write. This means that if a write operation updates the value of a piece of data, any subsequent read requests for that data should return the updated value. Let’s discuss each of these in more detail.

          
            Consistency in Distributed Systems

            Distributed systems are software systems, which are separated physically but connected over the network to achieve common goals using shared computing resources over the network. 

            Ensuring consistency, i.e. providing the same view of the data to each server in distributed systems can be challenging, as multiple replica servers may be located in different physical locations and may be subject to different failures or delays. 

            To address these challenges, we can use various techniques in distributed systems to ensure data consistency, such as:

            
              	Data replication

              	
                In this approach, multiple copies of the data are maintained on different replica nodes, and updates to the data are made on all replica nodes simultaneously through blocking synchronous communication. This ensures that all replica nodes have the same view of the data at any given time.

              

              	Consensus protocols

              	
                Consensus protocols are used to ensure that all replica nodes agree on the updates to be made to the data. They can use a variety of mechanisms, such as voting or leader election, to ensure that all replica nodes are in agreement before updating the data.

              

              	Conflict resolution

              	
                In the event that two or more replica nodes try to update the same data simultaneously, conflict resolution algorithms are used to determine which update should be applied. These algorithms can use various strategies, such as last writer wins or merge algorithms, to resolve conflicts.

              

            

            Overall, ensuring consistency in a distributed system is essential for maintaining the accuracy and integrity of the data, and various techniques are used to achieve this goal.

          

          
            Consistency in Data Storage and Retrieval

            Large scale software systems produce and consume a large amount of data and thus, ensuring consistency in such data storage and retrieval is important for maintaining the accuracy and

            integrity of the data in these systems. For example, consider a database that stores the balance of a bank account. If we withdraw money from the account, the database should reflect the updated balance immediately. If the database does not ensure consistency, it is possible for a read request to return an old balance, which could lead to incorrect financial decisions or even, financial loss for us or our banks. 

            To address these challenges, we can use various techniques in data storage systems to ensure read consistency, such as:

            
              	Write-ahead logging

              	
                In this technique, writes to the data are first recorded in a log before they are applied to the actual data. This ensures that if the system crashes or fails, the data can be restored to a consistent state by replaying the log.

              

              	Locking

              	
                Locking mechanisms are used to ensure that only one write operation can be performed at a time. This ensures that multiple writes do not interfere with each other and that reads always return the value of the most recent write.

              

              	Data versioning

              	
                In this technique, each write operation is assigned a version number, and reads always return the value of the most recent version. This allows for multiple writes to be performed concurrently, while still ensuring that reads return the value of the most recent write.

              

            

            Overall, ensuring consistency in data storage and retrieval is essential for maintaining the accuracy and integrity of the data, and various techniques are used to achieve this goal.

            Note

              We will discuss some of the above techniques for ensuring Consistency in detail in Chapter 2: Storage Types and Relational Stores and Chapter 3: Non-Relational Stores.

            

          

          
            Consistency Spectrum Model

            Since consistency can mean different things, the consistency spectrum model helps us reason about whether a distributed system is working correctly, when it’s doing multiple concurrent things at the same time like reading, writing, and updating data.

            The consistency spectrum model represents the various consistency guarantees that a distributed system can offer, ranging from Eventual Consistency to Strong Consistency. The specific consistency guarantee chosen depends on the specific requirements and constraints of the system. Let’s walk through the consistency levels in the consistency spectrum model.

            
              	Strong Consistency

              	
                At one end of the spectrum, strong consistency guarantees that all replica nodes have the same view of the data at all times, and that any updates to the data are immediately reflected on all replica nodes. This ensures that the data is always accurate and up-to-date, but can be difficult to achieve in practice, as it requires all replica nodes to be in constant communication with each other.

              

            

            Note

              We will cover the strong consistency requirements of relational databases as part of ACID property in Chapter 2: Storage Types and Relational Stores.

            

            
              	Monotonic read consistency

              	
                Monotonic read consistency guarantees that once a client has read a value from a replica node, all subsequent reads from that client will return the same value or a more recent value. This means that a client will not see “stale” data that has been updated by another client. This provides a stronger consistency guarantee than eventual consistency, as it ensures that a client will not see outdated data.

              

              	Monotonic write consistency

              	
                Monotonic write consistency guarantees that once a write operation has been acknowledged by a replica node, all subsequent reads from that replica node will return the updated value. This means that a replica node will not return outdated data to clients after a write operation has been acknowledged. This provides a stronger consistency guarantee than eventual consistency, as it ensures that a replica node will not return outdated data to clients.

              

              	Causal consistency

              	
                Causal consistency works by categorizing operations into dependent and independent operations. Dependent operations are also called causally-related operations. Causal consistency preserves the order of the causally-related operations. It guarantees that if two operations are causally related into dependant and independant operations, then they will be seen in the same order by all processes in the system. This means that if operation A must happen before operation B, then all processes in the system will see A before they see B. This provides a stronger consistency guarantee than eventual consistency, as it ensures that the order of related operations is preserved.

              

              	Eventual Consistency

              	
                At the other end of the spectrum, eventual consistency guarantees that, given enough time, all replica nodes will eventually have the same view of the data. This allows for more flexibility and tolerance of delays or failures, but can result in temporary inconsistencies in the data.

              

            

            Note

              We will cover the tunable consistency feature of some of the non-relational columnar databases like Cassandra in Chapter 3: Non-relational Stores.

            

            Figure 1-2 shows the difference in the result of performing action sequence under strong consistency and eventual consistency. As you can see in the figure on the left for strong consistency, when x is read from replica node after updating it from 0 to 2, it will block the request until replication happens and then, return 2 as result. On the other side in the figure on the right for eventual consistency, on querying replica node, it will give stale result of x as 0 before replication completes.

            
              [image: Sequence Diagram for Strong Consistency and Eventual Consistency]
              Figure 1-2. Sequence Diagram for Strong Consistency and Eventual Consistency

            

            In general, the consistency spectrum model provides a framework for understanding the trade-offs between consistency and availability in distributed systems, and helps system designers choose the appropriate consistency guarantee for their specific needs.

          

        

        
          Availability

          In a large scale software system, sub-systems or servers can go down and may not be fully available to respond to the client’s requests — this is referred to as system’s availability. A system that is highly available is able to process requests and return responses in a

          timely manner, even under heavy load or in the face of failures or errors. Let’s try to quantify the measurement of availability of the system.

          
            Measuring Availability 

            Availability can be measured, mathematically as the percentage of the time the system was up (total time - time system was down) over the total time the system should have been running.

            
              
              

            

              Availability percentages are represented in 9s, based on the above formula over a period of time. You can see the breakdown of what these numbers really work out to in Table 1-1.

              
                Table 1-1. Availability Percentages Represented in 9s
                
                  	Availability %
                  	Downtime per Year
                  	Downtime per Month
                  	Downtime per Week
                

                
                  	90% (1 nine)
                  	36.5 days
                  	72 hours
                  	16.8 hours
                

                
                  	99% (2 nines)
                  	3.65 days
                  	7.2 hours
                  	1.68 hours
                

                
                  	99.5% (2 nines)
                  	1.83 days
                  	3.60 hours
                  	50.4 minutes
                

                
                  	99.9% (3 nines)
                  	8.76 hours
                  	43.8 minutes
                  	10.1 minutes
                

                
                  	99.99% (4 nines)
                  	52.56 minutes
                  	4.32 minutes
                  	1.01 minutes
                

                
                  	99.999% (5 nines)
                  	5.26 minutes
                  	25.9 seconds
                  	6.05 seconds
                

                
                  	99.9999% (6 nines)
                  	31.5 seconds
                  	2.59 seconds
                  	0.605 seconds
                

                
                  	99.99999% (7 nines)
                  	3.15 seconds
                  	0.259 seconds
                  	0.0605 seconds
                

              

              The goal for availability is usually to achieve the highest level possible, such as “five nines” (99.999%) or even “six nines” (99.9999%). However, the level of availability that is considered realistic or achievable depends on several factors, including the complexity of the system, the resources available for maintenance and redundancy, and the specific requirements of the application or service.

              Achieving higher levels of availability becomes progressively more challenging and resource-intensive. Each additional nine requires an exponential increase in redundancy, fault-tolerant architecture, and rigorous maintenance practices. It often involves implementing redundant components, backup systems, load balancing, failover mechanisms, and continuous monitoring to minimize downtime and ensure rapid recovery in case of failures.

              While some critical systems, such as financial trading platforms or emergency services, may strive for the highest levels of availability, achieving and maintaining them can be extremely difficult and costly. In contrast, for less critical applications or services, a lower level of availability, such as 99% or 99.9%, may be more realistic and achievable within reasonable resource constraints.

              Ultimately, the determination of what level of availability is realistic and achievable depends on a careful evaluation of the specific requirements, resources, costs, and trade-offs involved in each particular case.

          

          
            Availability in parallel vs in sequence

            The availability of a system that consists of multiple sub-systems depends on whether the components are arranged in sequence or in parallel with respect to serving the request.

            Figure 1-3 shows the arrangement of components in sequential system on the left, where the request needs to be served from each component in sequence vs the parallel system on the right, where the request can be served from either component in parallel.

            
              [image: Sequential system vs Parallel system]
              Figure 1-3. Sequential system vs Parallel system

            

            If the components are in sequence, the overall availability of the service will be the product of the availability of each component. For example, if two components with 99.9% availability are in sequence, their total availability will be 99.8%.

            
              
              

            

              On the other hand, if the components are in parallel, the overall availability of the service will be the sum of the availability of each component minus the product of their unavailability. For example, if two components with 99.9% availability are in parallel, their total availability will be 99.9999%. This can lead to significantly higher availability compared to the same components arranged in sequence (6 9s from 3 9s in the above example). 

            
              
              

            

              Overall, the arrangement of components in a service can have a significant impact on its overall availability, and it is important to consider this when designing a system for high availability.

          

          
            Ensuring availability

            Ensuring availability in a system is important for maintaining the performance and reliability of the system. There are several ways to increase the availability of a system, including:

            
              	Redundancy 

              	
                By having multiple copies of critical components or subsystems, a system can continue to function even if one component fails. This can be achieved through the use of redundant load balancers, failover systems, or replicated data stores.

              

              	Fault tolerance

              	By designing systems to be resistant to failures or errors, the system can

              	
                continue to function even in the face of unexpected events. This can be achieved through the use of error-handling mechanisms, redundant hardware, or self-healing systems.

              

              	Load balancing

              	
                By distributing incoming requests among multiple servers or components, a system can more effectively handle heavy load and maintain high availability. This can be achieved through the use of multiple load balancers or distributed systems.

              

            

            Note

              We will cover load balancing in detail in Chapter 5: Scaling Approaches and Mechanisms and the different types of AWS load balancesr in Chapter 9: AWS Network Services.

            

            Overall, ensuring availability in a system is important for maintaining the performance and reliability of the system, and various techniques can be used to increase availability.

          

          
            Availability Patterns

            To ensure availability, there are two major complementary patterns to support high availability: fail-over and replication pattern.

            
              Failover Patterns

              Failover refers to the process of switching to a redundant or backup system in the event of a failure or error in the primary system. The failover pattern chosen depends on the specific requirements and constraints of the system, including the desired level of availability and the cost of implementing the failover solution.

              There are two main types of failover patterns: active-active and active-passive.

              
                	Active-active failover

                	
                  In an active-active failover pattern as shown on the left in Figure 1-4, multiple systems are used in parallel, and all systems are actively processing requests. If one system fails, the remaining systems can continue to process requests and maintain high availability. This approach allows for more flexibility and better utilization of resources, but can be more complex to implement and maintain.

                

                	Active-passive failover

                	
                  In an active-passive failover pattern as shown on the right in Figure 1-4, one system is designated as the primary system and actively processes requests, while one or more backup systems are maintained in a passive state. If the primary system fails, the backup system is activated to take over processing of requests. This approach is simpler to implement and maintain, but can result in reduced availability if the primary system fails, as there is a delay in switching to the backup system.

                

              

              
                [image: Active Active Failover system setup vs Active Passove Failover system setup]
                Figure 1-4. Active Active Failover system setup vs Active Passove Failover system setup

              

              The failover pattern can involve the use of additional hardware and can add complexity to the system. There is also the potential for data loss if the active system fails before newly written data can be replicated to the passive system. Overall, the choice of failover pattern depends on the specific requirements and constraints of the system, including the desired level of availability and the cost of implementing the failover solution.

              Note

                These failover patterns are employed in relational datastores, non-relational datastores and caches, and load balancers, which we will cover in detail in Chapter 2: Storage Types and Relational Stores, Chapter 3: Non-relational Stores, Chapter 4: Caching Policies and Strategies and Chapter 5: Scaling Approaches and Mechanisms respectively.

              

            

            
              Replication Patterns

              Replication is the process of maintaining multiple copies of data or other resources in order to improve availability and fault tolerance. The replication pattern chosen depends on the specific requirements and constraints of the system, including the desired level of availability and the cost of implementing the replication solution.

              There are two main types of replication patterns: Multi leader and Single leader.

              
                	Multi leader replication

                	
                  In a multi leader replication pattern as shown on the left in Figure 1-5, multiple systems are used in parallel and all systems are able to both read and write data. This allows for more flexibility and better utilization of resources, as all systems can process requests and updates to the data simultaneously. A load balancer is required or application logic changes need to be made to support multiple leaders and identify on which leader node to write. Most multi leader systems are either loosely consistent or have increased write latency due to synchronization to remain consistent. Conflict resolution comes more into play as more write nodes are added, leading to increase in latency. However, this approach can become more complex to implement and maintain, as it requires careful management of conflicts and errors.

                

                	Single leader replication

                	
                  In a single leader replication pattern as shown on the right in Figure 1-5, one system is designated as the leader system and is responsible for both reading and writing data, while one or more follower systems are used to replicate the data. The follower systems can only be used for reading data, and updates to the data must be made on the leader system. Additional logic is required to be implemented to promote a follower to the leader. This approach is simpler to implement and maintain, but can result in reduced availability if the leader system fails, as updates to the data can only be made on the leader system and there is a risk of losing the data updates.

                

              

              
                [image: Multi leader replication system setup vs Single leader replication system setup]
                Figure 1-5. Multi-leader replication system setup vs Single leader replication system setup

              

              There is a risk of data loss if the leader system fails before newly written data can be replicated to other nodes. And thus, the more read replicas that are used, the more writes need to be replicated, which can lead to greater replication lag. In addition, the use of read replicas can impact the performance of the system, as they may be bogged down with replaying writes and unable to process as many reads. Furthermore, replication can involve the use of additional hardware and can add complexity to the system. Finally, some systems may have more efficient write performance on the leader system, as it can spawn multiple threads to write in parallel, while read replicas may only support writing sequentially with a single thread. Overall, the choice of replication pattern depends on the specific requirements and constraints of the system, including the desired level of availability and the cost of implementing the replication solution.

              Note

                We will cover how relational and non-relational datastores ensure availability using single leader and multi-leader replication in Chapter 2: Storage Types and Relational Stores and Chapter 3: Non-relational Stores. Do look out for leaderless replication using consistent hashing to ensure availability in non-relational stores like key-value stores and columnar stores in detail in Chapter 3: Non-relational Stores.

              

            

          

        

        
          Reliability

          In system design, reliability refers to the ability of a system or component to perform its intended function consistently and without failure over a given period of time. It is a measure of thed ependability or trustworthiness of the system. Reliability is typically expressed as a probability or percentage of time that the system will operate without failure. For example, a system with a reliability of 99% will fail only 1% of the time. Let’s try to quantify the measurement of reliability of the system.

          
            Measuring Reliability

            One way to measure the reliability of a system is through the use of mean time between failures (MTBF) and mean time to repair (MTTR).

            
              	Mean time between failures

              	
                Mean time between failures (MTBF) is a measure of the average amount of time that a system can operate without experiencing a failure. It is typically expressed in hours or other units of time. The higher the MTBF, the more reliable the system is considered to be.

              

            

            
              
              

            

              
                	Mean time to repair

                	
                  Mean time to repair (MTTR) is a measure of the average amount of time it takes to repair a failure in the system. It is also typically expressed in hours or other units of time. The lower the MTTR, the more quickly the system can be restored to operation after a failure.

            
              
              

            

                

              

              Together, MTBF and MTTR can be used to understand the overall reliability of a system. For example, a system with a high MTBF and a low MTTR is considered to be more reliable than a system with a low MTBF and a high MTTR, as it is less likely to experience failures and can be restored to operation more quickly when failures do occur.

          

          
            Reliability and availability

            It is important to note that reliability and availability are not mutually exclusive. A system can be both reliable and available, or it can be neither. A system that is reliable but not available is not particularly useful, as it may be reliable but not able to perform its intended function when needed.

            On the other hand, a system that is available but not reliable is also not useful, as it may be able to perform its intended function when needed, but it may not do so consistently or without failure. In order to achieve high reliability and availability to meet agreed service level objectives (SLO), it is important to design and maintain systems with redundant components and robust failover mechanisms. It is also important to regularly perform maintenance and testing to ensure that the system is operating at its optimal level of performance.

            In general, the reliability of a system is an important consideration in system design, as it can impact the performance and availability of the system over time.

            Note

              Service level objectives and goals including Change Management, Problem Management and Service Request Management of AWS Managed Services, will be introduced in Part II - Diving Deep into AWS Services.

            

          

        

        
          Scalability

          In system design, we need to ensure that the performance of the system increases with the resources added based on the increasing workload, which can either be request workload or data storage workload. This is referred to as scalability in system design, which requires the system to respond to increased demand and load. For example, a social network needs to scale with the increasing number of users as well as the content feed on the platform, which it indexes and serves.

          
            Scalability Patterns

            To ensure scalability, there are two major complementary patterns to scale the system: vertical scaling and horizontal scaling.

            
              Vertical Scaling

              Vertical scaling involves meeting the load requirements of the system by increasing the capacity of a single server by upgrading it with more resources (CPU, RAM, GPU, storage etc) as shown on the left in Figure 1-6. Vertical scaling is useful when dealing with predictable traffic, as it allows for more resources to be used to handle the existing demand. However, there are limitations to how much a single server can scale up based on its current configuration and also, the cost of scaling up is generally high as adding more higher end resources to the existing server will require more dollars for high end configurations.

            

            
              Horizontal Scaling 

              Horizontal scaling involves meeting the load requirements of the system by increasing the number of the servers by adding more commodity servers to serve the requests as shown on the right in Figure 1-6. Horizontal scaling is useful when dealing with unpredictable traffic, as adding more servers increases the servers capacity to handle more requests and if demand arises, more servers can further be added to the pool cost-effectively However, though horizontal scaling provides a better dollar cost proposition for scaling, the complexity of managing multiple servers and ensuring they work collectively as an abstracted single server to handle the workload is the catch here.

              
                [image: Vertical Scaling vs Horizontal Scaling]
                Figure 1-6. Vertical Scaling vs Horizontal Scaling

              

              Note

                We will cover both scaling approaches and mechanisms in detail in Chapter 5: Scaling Approaches and Mechanisms.

              

              In early stage systems, you can start scaling up by vertically scaling the system and adding better configuration to it and later, when you hit the limitation in further scaling up, you can move to horizontally scaling the system.

            

          

        

        
          Maintainability

          In system design, maintainability is the ability of the system to be modified, adapted, or extended to meet the changing needs of its users while ensuring smooth system operations. In order for a software system to be maintainable, it must be designed to be flexible and easy to modify or extend. 

          The maintainability of a system requires covering these three underlyings aspects of the system: 

          
            	Operability

            	
              This requires the system to operate smoothly under normal conditions and even, return back to normal operations within stipulated time after a fault. When a system is maintainable in terms of operability, it reduces the time and effort required to keep the system running smoothly. This is important because efficient operations and management contribute to overall system stability, reliability, and availability. ​​

            

            	Lucidity

            	
              This requires the system to be simple and lucid to understand, extend to add features and even, fix bugs. When a system is lucid, it enables efficient collaboration among team members, simplifies debugging and maintenance tasks, and facilitates knowledge transfer. It also reduces the risk of introducing errors during modifications or updates.

            

            	Modifiability

            	
              This requires the system to be built in a modular way to allow it to be modified and extended easily, without disrupting the functionality of other subsystems. Modifiability is vital because software systems need to evolve over time to adapt to new business needs, technological advancements, or user feedback. A system that lacks modifiability can become stagnant, resistant to change, and difficult to enhance or adapt to future demands.

            

          

          By prioritizing maintainability, organizations can reduce downtime, lower maintenance costs, enhance productivity, and increase the longevity and value of their software systems.

        

        
          Fault Tolerance

          Large scale systems generally employ a large number of servers and storage devices to handle and respond to the user requests and store data. Fault tolerance requires the system to recover from any failure (either hardware or software failure) and continue to serve the requests. This requires avoiding single points of failure in the large system and the ability to reroute requests to the functioning sub-systems to complete the workload.

          Fault tolerance needs to be supported at hardware as well as software levels, while ensuring the data safety, i.e. making sure we don’t lose the data. There are two major mechanisms to ensure data safety: replication and checkpointing.

          
            Replication

            Replication based fault tolerance ensures data safety as well as serving the request by replicating both the service through multiple replica servers and also, replicating the data through multiple copies of data across multiple storage servers. During a failure, the failed node gets swapped with a fully functioning replica node. Similarly data is also served again from a replica store, in case the data store has failed. The replication patterns were already covered in the previous section in availability.

          

          
            Checkpointing

            Checkpointing based fault tolerance ensures that data is reliably stored and backed up, even after the initial processing is completed. It allows for a system to recover from any potential data loss, as it can restore a previous system state and prevent against data loss. Checkpointing is commonly used to ensure system and data integrity, especially when dealing with large datasets. It can also be used to verify that data is not corrupted or missing, as it can quickly detect any changes or issues in the data and then take corrective measures. Checkpointing is an important tool for data integrity, reliability, and security, as it ensures that all data is stored properly and securely.

            Note

              Recovery Manager of databases use checkpointing to ensure the durability and reliability of the database in the event of failures or crashes. This will be covered in detail in Chapter 2: Storage Types and Relational Stores.

            

            There are two checkpointing patterns — it can be done in either using synchronous or asynchronous mechanisms.

            
              	Synchronous checkpointing

              	
                Synchronous checkpointing in a system is achieved by stopping all the data mutation requests and allowing only read requests, while waiting for all the checkpointing process to complete for the current data mutation to ensure its integrity across all nodes. This always ensures consistent data state across all the nodes.

              

              	Asynchronous checkpointing

              	
                Asynchronous checkpointing in a system is done by checkpointing asynchronously on all the nodes, while continuing to serve all the requests (including data mutation requests) without waiting for the acknowledgement of the checkpointing process to complete. This mechanism suffers from the possibility of having inconsistent data state across the servers.

              

            

            So now we have covered the basic concepts and requirements of a large scale system and strive towards building a performant and scalable system—one that is also highly available, reliable, maintainable and is fault-tolerant. Before diving deep into how to build such systems, let’s go through the inherent fallacies as well as trade-offs in designing such systems. 

          

        

      

      
        Fallacies of Distributed Computing

        As a large scale software system involves multiple distributed systems, it is often subject to certain fallacies that can lead to incorrect assumptions and incorrect implementations. These fallacies were first introduced by by L. Peter Deutsch and they cover the common false assumptions that software developers make while implementing distributed systems. These eight fallacies are:

        
          	Reliable Network

          	
            The first fallacy is assuming that “The network is reliable”. Networks are complex, dynamic and often, unpredictable. Small issues like switch or power failures can even bring the entire network of a data-center down, making the network unreliable. Thus, it is important to account for the potential of an unreliable network while designing large scale systems, ensuring network fault tolerance from the start. Given that networks are inherently unreliable, to build reliable services on top we must rely on protocols that can cope with network outages and packet loss.

          

          	Zero Latency

          	
            The second fallacy is assuming that “Latency is zero”. Latency is an inherent limitation of networks, constrained by the speed of light, i.e. even in perfect theoretical systems, the data can’t reach faster than the speed of light between the nodes. Hence, to account for latency, the system should be designed to bring the clients close to data through edge-computing and even choosing the servers in the right geographic data centers closer to the clients and routing the traffic wisely.

          

          	Infinite Bandwidth

          	
            The third fallacy is assuming that “Bandwidth is infinite”. When a high volume of data is flowing through the network, there is always network resource contention leading to queueing delays, bottlenecks, packet drops and network congestion. Hence, to account for finite bandwidth, build the system using lightweight data formats for the data in transit to preserve the network bandwidth and avoid network congestion. Or use multiplexing, a technique that improves bandwidth utilization by combining data from several sources and send it over the same communication channel/medium.

          

          	Secure Network

          	
            The fourth fallacy is assuming that “The network is secure”. Assuming a network is always secure, when there are multiple ways a network can be compromised (ranging from software bugs, OS vulnerabilities, viruses and malwares, cross-site scripting, unencrypted communication, malicious middle actors etc) can lead to system compromise and failure. Hence to account for insecure networks, build systems with a security first mindset and perform defense testing and threat modelling of the built system.

          

          	Fixed Topology

          	
            The fifth fallacy is assuming that “Topology doesn’t change”. In distributed systems, the topology changes continuously, because of node failures or node additions. Building a system that assumes fixed topology will lead to system issues and failures due to latency and bandwidth constraints. Hence, the underlying topology must be abstracted out and the system must be built oblivious to the underlying topology and tolerant to its changes.

          

          	Single Administrator

          	
            The sixth fallacy is assuming that “There is one administrator”. This can be a fair assumption in a very small system like a personal project, but this assumption breaks down in large scale distributed computing, where multiple systems have separate OS, separate teams working on it and hence, multiple administrators. To account for this, the system should be built in a decoupled manner, ensuring repair and troubleshooting becomes easy and distributed too.

          

          	Zero Transport cost

          	
            The seventh fallacy is assuming that “Transport cost is zero”. Network infrastructure has costs, including the cost of network servers, switches, routers, other hardwares, the operating software of these hardware, and the team cost to keep it running smoothly. Thus, the assumption that transporting data from one node to another is negligible is false and must consequently be noted in budgets to avoid vast shortfalls.

          

          	Homogenous Network

          	
            The eight fallacy is assuming that “The network is homogeneous”. A network is built with multiple devices with different configurations and using multiple protocols at different layers and therefore we can’t assume a network is homogenous. Taking into consideration the heterogeneity of the network as well as focusing on the interoperability of the system,( i.e. ensuring subsystems can communicate and work together despite having such differences) will help to avoid this pitfall.

          

        

        Note

          The AWS Well-Architected Framework consists of six core pillars that provide guidance and best practices for designing and building systems on the AWS cloud, avoiding these fallacies and pitfalls. 

          Operational Excellence pillar avoids the fallacy of Single Administrator and Homogenous Network. Security pillar avoids the fallacy of Secure Network. Reliability pillar avoids the fallacy of Reliable Network and Fixed Topology. Performance Efficiency pillar avoids the fallacy of Zero Latency and Infinite Bandwidth. Cost Optimization pillar as well as Sustainability pillar avoids the fallacy of Zero Transport Cost. 

          The book will not cover the AWS Well-Architected Framework in detail and it is left as an excursion for the readers.

        

        These fallacies cover the basic assumptions we should avoid while building large scale systems. Overall, neglecting the fallacies of distributed computing can lead to a range of issues, including system failures, performance bottlenecks, data inconsistencies, security vulnerabilities, scalability challenges, and increased system administration complexity. It is important to acknowledge and account for these fallacies during the design and implementation of distributed systems to ensure their robustness, reliability, and effective operation in real-world environments. Lets also, go through the trade-offs in the next section, which are generally encountered in designing large scale software systems.

      

      
        System Design Trade-offs

        System design involves making a number of trade-offs that can have a significant impact on the performance and usability of a system. When designing a system, you must consider factors like cost, scalability, reliability, maintainability, and robustness. These factors must be balanced to create a system that is optimized for the particular needs of the user. Ultimately, the goal is to create a system that meets the needs of the user without sacrificing any of these important factors.

        For example, if a system needs to be highly reliable but also have scalability, then you need to consider the trade-offs between cost and robustness. A system with a high level of reliability may require more expensive components, but these components may also be robust and allow for scalability in the future. On the other hand, if cost is a priority, then you may have to sacrifice robustness or scalability in order to keep the system within budget.

        In addition to cost and scalability, other trade-offs must be taken into account when designing a system. Performance, security, maintainability, and usability are all important considerations that must be weighed when designing a system. There are some theoretical tradeoffs that arise in system design, which we will discuss in this section.

        
          Time vs Space 

          Space time trade-offs or time memory trade-offs arise inherently in implementation of the algorithms in computer science for the workload, even in distributed systems. This trade-off is necessary because system designers need to consider the time limitations of the algorithms and sometimes use extra memory or storage to make sure everything works optimally. One example of such a trade-off is in using look-up tables in memory or datastorage instead of performing recalculation and thus, serving more requests by just looking up pre-calculated values.

        

        
          Latency vs Throughput 

          Another trade-off that arises inherently in system design is latency vs throughput. Before diving into the trade-off, let’s make sure you understand these concepts thoroughly.

          
            	Latency, Processing time and Response time

            	
              Latency is the time that a request waits to be handled. Until the request is picked up to be handled, it is latent, inactive, queued or dormant. 

              Processing time, on the other hand, is the time taken by the system to process the request, once it is picked up. 

              Hence, the overall response time is the duration between the request that was sent and the corresponding response that was received, accounting for network and server latencies.

              Mathematically, it can be represented by the following formula:

            

          

          
            
            

          

            
              	Throughput and Bandwidth

              	
                Throughput and bandwidth are metrics of network data capacity, and are used to account for network scalability and load. Bandwidth refers to the maximum amount of data that could, theoretically, travel from one point in the network to another in a given time. Throughput refers to the actual amount of data transmitted and processed throughout the network. Thus, bandwidth describes the theoretical limit, throughput provides the empirical metric. The throughput is always lower than the bandwidth unless the network is operating at its maximum efficiency.

                Bandwidth is a limited resource as each network device can only handle and process limited capacity of data before passing it to the next network device, and some devices consume more bandwidth than others. Insufficient bandwidth can lead to network congestion, which slows connectivity.

              

            

            Since latency measures how long the packets take to reach the destination in a network while throughput measures how many packets are processed within a specified period of time, they have an inverse relationship. The more the latency the more they would get queued up in the network, reducing the number of packets that are being processed, leading to lower throughput. 

            Since the system is being gauged for lower latency under high throughput or load, the metric to capture latency is through percentiles like p50, p90, p99 and so on. For example, the p90 latency is the highest latency value (slowest response) of the fastest 90 percent of requests. In other words, 90 percent of requests have responses that are equal to or faster than the p90 latency value. Note that average latency of a workload is not used as a metric, as averages as point estimates are susceptible to outliers. Because of the latency vs throughput trade-off, the latency metric will go down as the load is increased on the system for higher throughput. Hence, systems should be designed with an aim for maximal throughput within acceptable latency. 

        

        
          Performance vs Scalability 

          As discussed earlier in the chapter, scalability is the ability of the system to respond to increased demand and load. On the other hand, performance is how fast the system responds to a single request. A service is scalable if it results in increased performance in a manner proportional to resources added. When a system has performance problems, it is slow for a single user (p50 latency = 100ms) while when the system has scalability problems, the system may be fast for some users (p50 latency = 1ms for 100 requests) but slow under heavy load for the users (p50 latency = 100ms under 100k requests).

        

        
          Consistency vs Availability 

          As discussed earlier in the chapter, strong consistency in data storage and retrieval is the guarantee that every read receives the most recent write, while high availability is the requirement of the system to always provide a non-error response to the request. In a distributed system where the network fails (i.e. packets get dropped or delayed due to the fallacies of distributed computing leading to partitions) there emerges an inherent trade-off between strong consistency and high availability. This trade-off is called the CAP theorem, also known as Brewer’s theorem.

          
            CAP Theorem

            The CAP theorem, as shown in Venn Diagram Figure 1-7, states that it is impossible for a distributed system to simultaneously provide all three of the following guarantees: consistency (C), availability (A), and partition tolerance (P). According to the theorem, a distributed system can provide at most two of these guarantees at any given time. Systems need to be designed to handle network partitions as networks aren’t reliable and hence, partition tolerance needs to be built in. So, in particular, the CAP theorem implies that in the presence of a network partition, one has to choose between consistency and availability.

            
              [image: CAP Theorem Venn Diagram]
              Figure 1-7. CAP Theorem Venn Diagram

            

            However, CAP is frequently misunderstood as if one has to choose to abandon one of the three guarantees at all times. In fact, the choice is really between consistency and availability only when a network partition or failure happens; at all other times, the trade-off has to be made based on the PACLEC theorem.

          

          
            PACELC Theorem

            The PACELC theorem, as shown in Decision Flowchart Figure 1-8, is more nuanced version of CAP theorem, which states that in the case of network partitioning (P) in a distributed computer system, one has to choose between availability (A) and consistency (C) (as per the CAP theorem), but else (E), even when the system is running normally in the absence of partitions, one has to choose between latency (L) and consistency (C). This trade-off arises naturally because to handle network partitions, data and services are replicated in large scale systems, leading to the choice between the consistency spectrum and the corresponding latency.

            If the system tries to provide for strong consistency at the one end of the consistency spectrum model, it has to do replication with synchronous communication and blocking to ensure all the read replicas receive the most recent write, waiting on the acknowledgement from all the replica nodes, adding to high latency. On the other hand, if the system does asynchronous replication without waiting for acknowledgment from all nodes, it will end up providing eventual consistency (i.e. the read request will eventually reflect the last recent write) when the replica node has acknowledged the data mutation change for serving the requests. 

            
              [image: PACLEC Theorem Decision Flowchart]
              Figure 1-8. PACLEC Theorem Decision Flowchart

            

            In summary, the CAP and PACELC theorems are important concepts in distributed systems design that provide a framework for understanding the trade-offs involved in designing highly available and strongly consistent systems. 

            Note

              We will cover how non-relational stores navigate CAP theorem trade-off by providing BASE property in detail in Chapter 3: Non-relational Stores.

            

            Given such requirements, fallacies and trade-offs in system design, in order to avoid repeating mistakes of the past we should prescribe to a set of guidelines learnt by the previous generation of software design practitioners. Let’s dig into those now.

          

        

      

      
        System Design Guidelines

        System design will always present the most interesting and challenging trade-offs, and a system designer should be aware of the hidden costs and be well-equipped to get it right — though not perfect! These guidelines, which have emerged over years of practicing system design, guide us to avoid pitfalls and handle trade-offs while designing large scale-systems. These guidelines aren’t just vague generalities but virtues that help reflect on why the system was designed the way it was, why it was implemented the way it is and why that was the right thing to do.

        
          Guideline of Isolation : Build It Modularly

          
            Controlling complexity is the essence of computer programming.

            ~Brian Kernighan

          

          The first guideline is to build the system modularly, i.e. break down a complex system into smaller, independent components or modules that can function independently, yet also work together to form the larger system. Building it modularly helps in improving all the requirements of the large scale system:

          
            	Maintainability

            	
              Modules can be updated or replaced individually without affecting the rest of the system.

            

            	Reusability

            	
              Modules can be reused in different systems or projects, reducing the amount of new development required.

            

            	Scalability

            	
              Modules can be added or removed and even scaled independently as needed to accommodate changes in requirements or to support growth.

            

            	Reliability

            	
              Modules can be tested and validated independently, reducing the risk of system-wide failures.

            

          

          Modular systems can be implemented in a variety of ways, including through the use of microservices architecture, component-based development, and modular programming, which we will cover in more detail in chapter 7. However, designing modular systems can be challenging, as it requires careful consideration of the interfaces between modules, data sharing and flow, and dependencies.

        

        
          Guideline of Simplicity : Keep it Simple, Silly

          
            Everything should be made as simple as possible, but no simpler. 

            ~Eric S. Raymond

          

          The second guideline is to keep the design simple by avoiding complex and unnecessary features and avoiding over-engineering. To build simple systems using the KISS (Keep it Simple, Silly) guideline, designers can follow these steps:

          
            	
              1. Identify the core requirements: Determine the essential features and functions the system must have, and prioritize them.

            

            	
              2. Minimize the number of components: Reduce the number of components or modules in the system, making sure each component serves a specific purpose.

            

            	
              3. Avoid over-engineering: Don’t add unnecessary complexity to the system, such as adding features that are not necessary for its functioning.

            

            	
              4. Make the system easy to use: Ensure the system is intuitive and straightforward for users to use and understand.

            

            	
              5. Test and refine: Test the system to ensure it works as intended and make changes to simplify the system if necessary.

            

          

          By following the KISS guideline, you as a system designer can build simple, efficient, and effective systems that are easy to maintain and less prone to failure.

        

        
          Guideline of Performance: Metrics Don’t Lie

          
            Performance problems cannot be solved only through the use of Zen meditation. 

            ~Jeffrey C. Mogul

          

          The third guideline is to measure then build, and rely on the metrics as you can’t cheat the performance and scalability. Metrics and observability are crucial for the operation and management of large scale systems. These concepts are important for understanding the behavior and performance of large-scale systems and for identifying potential issues before they become problems.

          
            	Metrics

            	
              Metrics are quantitative measures that are used to assess the performance of a system. They provide a way to track key performance indicators, such as resource utilization, response times, and error rates, and to identify trends and patterns in system behavior. By monitoring metrics, engineers can detect performance bottlenecks and anomalies, and take corrective actions to improve the overall performance and reliability of the system.

            

            	Observability

            	
              Observability refers to the degree to which the state of a system can be inferred from its externally visible outputs. This includes being able to monitor system health and diagnose problems in real-time. Observability is important in large scale systems because it provides a way to monitor the behavior of complex systems and detect issues that may be impacting their performance.

            

          

          Together, metrics and observability provide the information needed to make informed decisions about the operation and management of large scale systems. By ensuring that systems are properly instrumented with metrics and that observability is designed into the system, you can detect and resolve issues more quickly, prevent outages, and improve the overall performance and reliability of the system.

        

        
          Guideline of Tradeoffs: There Is No Such Thing As A Free Lunch

          
            Get it right. Neither abstraction nor simplicity is a substitute for getting it right. 

            ~Butler Lampson

          

          The fourth guideline is “there is no such thing as a free lunch” (TINSTAAFL), pointing to the realization that all decisions come with trade-offs and that optimizing for one aspect of a system often comes at the expense of others. In system design, there are always trade-offs and compromises that must be made when designing a system. For example, choosing a highly optimized solution for a specific problem might result in reduced maintainability or increased complexity. Conversely, opting for a simple solution might result in lower performance or increased latency.

          This guideline TINSTAAFL highlights the need for careful consideration and balancing of competing factors in system design, such as performance, scalability, reliability, maintainability, and cost. Designers must weigh the trade-offs between these factors and make informed decisions that meet the specific requirements and constraints of each project.

          Ultimately, you need to realize that there is no single solution that is optimal in all situations and that as system designers, you must carefully consider the trade-offs and implications of their decisions to build the right system.

        

        
          Guideline of Usecases: It Always Depends 

          
            Not everything worth doing is worth doing well. 

            ~Tom West

          

          The fifth guideline is that design always depends, as system design is a complex and multifaceted process that is influenced by a variety of factors, including requirements, user needs, technological constraints, cost, scalability, maintenance and even, regulations. By considering these and other factors, you can develop systems that meet the needs of the users, are feasible to implement, and are sustainable over time. Since there are many ways to design a system to solve a common problem, it indicates a stronger underlying truth: there is no one “best” way to design the system, i.e. there is no silver bullet. Thus, we settle for something reasonable and hope it is good enough. 

        

      

      
        Conclusion

        This chapter covered the basics of system design, the concepts around system design, the trade offs that arise in such large scale software systems, the fallacies to avoid in building such large scale systems and the guidelines to avoid such fallacies. As an overall guideline, System design is always a trade-off between competing factors, and you as a system designer must carefully balance these factors to create systems that are effective and efficient. 

        In the upcoming chapters in Part I, we will cover the basic concepts of system components including datastores, caches, load balancers, networking, orchestration etc, followed by dive deep into AWS systems in Part II, which will help you build and understand large scale system design use cases on AWS in Part III. Let’s turn to exploring the different types of data storage solutions and introduce you to relational databases in the next chapter.

      

    


      Chapter 2. AWS Network Services

      A Note for Early Release Readers

        With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

        
        This will be the 9th chapter of the final book. Please note that the GitHub repo will be made active later on.

        
        If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.

        

      People interact with multiple applications (or with each other) via the internet. We touched upon concepts around ‘Communication Networks and Protocols’ in Chapter 6—this chapter is an extension of Chapter 6 that will introduce you to AWS networking services such as VPC, Route 53, Load Balancer, API Gateway. This is intended to help you set up networking infrastructure via AWS cloud and explore the networking concepts related to different services and how to establish connectivity between them.

      To make systems more reliable, safe, and to ensure they operate as per their own business requirements, companies used to prefer setting up their own infrastructure in on-premise data centers, but that comes with a high infrastructure management cost. If you are just launching your start-up idea, it will likely be too costly to set up a personal data center. Cloud provides cost benefits (analyzing the cost of resources and optimizing them to full potential) along with a lot of flexibility. For example, It is much harder to sell back a physical server that you bought for setting up your personal data center than it is to turn off a EC2 machine (server) in AWS cloud. The decision of whether to go with a Cloud provider based solution (and if yes, then which Cloud provider?) or with an on-premise data center will heavily depend on the business requirements.

      AWS operates on a shared responsibility model, meaning the customer and AWS both work together to make best use of services,in a secure and cost effective way where AWS is responsible for “security of the cloud” and customers are responsible for “security in the cloud”. Before we deep dive into multiple AWS Networking Components, let’s dig a little into where these AWS services are located and how they are segregated per customer.

      
        Getting Started With AWS

        To start with AWS Cloud, customers need to create an AWS account. An AWS Account is a fundamental entity in Amazon Web Services that provides access to a wide range of cloud services. This account will hold all the information related to your AWS resource (such as compute instances, storage, networking etc) creation, management, operations, support, billing etc. With an AWS account, you can provision and configure resources, monitor usage and costs, set security and access controls, and interact with various AWS services. It will be very important to identify how many AWS accounts should be set up. This will vary from use case to use case and scale the company operates on—below are some general suggestions to consider when deciding what number of AWS accounts one should configure: 

        
          	
            Complete separation of applications, meaning every application is launched in a new AWS account. This option presents benefits of full separation and effective cost management of applications, but presents challenges in the way of too much operational cost. 

          

          	
            Separation of AWS accounts based on business type—for example, a cab booking company operates in domains like cab availability, payments, analytics etc. All applications related to a single business will operate in a single account, which also provides the advantages of correlated applications located near to each other optimizing latency and offloading requirements of resource setup for service connection between different accounts. These applications can be segregated in VPCs or AZs depending on the use-case.

          

          	
            Separation of AWS accounts based on software domains—for example, having separate accounts for networking, monitoring, storage, and security and auditing. This kind of setup provides the benefits of easier operations management.For example, all the networking configurations are present in a single account that can be managed by the Network engineering team.

          

        

        AWS recommends creating a multi account set up to ensure there is clear division of responsibility and keeping future scaling of systems in mind. For example, separate networking accounts will help to keep all networking configurations at a single place and with access only to the networking team. AWS offers a service called Landing Zone, which provides a baseline to get started with multi-account architecture, identity and access management, governance, data security, network design, and logging. AWS Landing Zone can be orchestrated by customers themselves or as a managed service. One such service, AWS Control Tower, can be used to set up initial prescriptive configuration and further customizations can be made as organizations scale.

        
          AWS Regions

          Once the AWS account is created, you’re ready to launch the first server in the cloud. A very intriguing question though, where is this cloud? AWS Cloud operates from a physical location which might be near or far from you. AWS defines these geographically distributed locations around the world where AWS operates data centers as AWS regions - for example the US North Virginia region is called us-east-1. Each region is a separate and independent geographic area, isolated from other regions. You can choose the AWS region to launch resources per your business requirements, such as latency constraints or compliance regulations, or for AWS service availability in the region. For example Netflix architecture has presence in three AWS regions, ensuring high availability even in cases of a regional failure. Keeping resources at multiple locations helps to build resilient systems, which we touched upon in Part-I of this book. Further, there are some global services such as S3 or Identity and Access Management(IAM) service where region selection is not a requirement. You can check the complete list of regions available across the globe here.

          Note

            There is a possibility that not all AWS services are present in your AWS region.

          

        

        
          AWS Availability Zones

          Customers choose to deploy resources in multiple regions to improve availability, latency, and many other business use-cases. A key point to note is not everyone can afford to replicate resources at multiple AWS regions. Does that mean they compromise application availability then? Cloud providers work on a shared responsibility model which means that in order to ensure a good run on cloud, customers and cloud providers have to work together. A simple example could be deploying your servers in multiple availability zones instead of just one. That way, even if one AZ goes down, there are servers operational in other AZs to serve the traffic. You can think of a single region as a cluster of data centers and each individual (or combination of) data center is an availability zone. An availability zone is physically isolated from other availability zones by meaningful distance with independent power, cooling and fast private fiber-optic low-latency network connectivity. The purpose of AZs is to provide fault tolerance, resilience, and high availability by allowing you to distribute your applications and data across multiple AZs within a region.

          AZ are classified with suffix to region names—for example, us-east-1a or us-east-1b are AZs within the us-east-1 region.

        

        
          AWS Local Zones

          Consider the following scenario: you are all set to launch your startup for the people of New Delhi, India. The application setup requires single digit p99.99 latency for API operations, but the nearest AWS region is Mumbai, India. The operations are optimized well and your use-case doesn’t allow you to use pre-cached data such as utilizing Content Delivery Network or retrieving data from servers located at specific AZ. How can you overcome such an issue? This can potentially be solved by placement of database instances near to customers and this can be achieved via AWS Local Zones. Local Zones help to set up infrastructure near to customers, which is connected to AWS regions via fast paced network.

          AWS Local Zones are an extension of an AWS Region and are designed to bring AWS services closer to specific geographic areas with low latency requirements. Local Zones are geographically separate from their parent region and are located in metropolitan areas. They provide a subset of AWS services and are primarily intended for latency-sensitive workloads that require proximity to end-users or specific on-premises resources.

          You can check all available locations for Local Zones here and list of AWS services supported here.

        

        
          AWS Edge Locations

          Consider that HBO is planning to stream a new season of Game of Thrones and the first episode will be out on upcoming Sunday morning 8AM. GOT is popular worldwide and it is expected to be watched in multiple countries at the same time. How can HBO ensure the best customer experience via full HD video quality with no video buffering? The AWS Content Delivery Network Service called CloudFront helps to place the content near to users at locations referred as Edge Locations so they can be served in minimum time possible. 

          AWS Edge Locations are points of presence (PoPs) distributed globally to bring AWS services closer to end-users. Edge Locations help improve the performance of content delivery by acting as caching and content delivery endpoints for Cloudfront, thus reducing latency and improving data transfer speeds. 

          You can think of AWS Edge locations as data centers which are connected with AWS regions to support fast upload and download of data. Some other services like Route53, an Amazon DNS service use the same setup for faster resolution of DNS queries. Figure 2-1 shows connectivity of users via AWS edge locations to AWS regions. We’ll explore more about Route 53 and CloudFront towards the end of this chapter. 

          
            [image: Connectivity to AWS region via Edge Location]
            Figure 2-1. Connectivity to AWS region via Edge Location

          

          We gathered a very high level of view of how AWS Cloud is set up and made accessible to customers across the globe. Let’s dig right into how connectivity can be established with AWS Cloud and look at different networking components within it.

        

      

      
        Introduction to AWS Networking Services

        Figure 2-2 from the last section described how users are establishing connections to AWS services located within the AWS region. It’s important to understand how this accessibility is maintained and how AWS Cloud provides a similar abstraction to one’s private data center. This section will introduce you to multiple offerings provided by AWS in the context of networking and connectivity.

        
          VPC

          Setting up your own data center could be costly both in terms of monetary costs and operations management. AWS VPC, short for Virtual Private Cloud, provides a similar level of infrastructure separation as you’d have in a personal private data center. We can think of VPC as your personal data center located inside AWS Cloud.

          Amazon Virtual Private Cloud (VPC) is a service provided by Amazon Web Services (AWS) that allows you to create a virtual network in the cloud. It provides you with control over your network environment, including IP address range selection, creation of subnets, configuration of route tables, and network gateways. AWS VPC enables you to securely launch resources like EC2 instances, RDS databases, and Elastic Load Balancers within a logically isolated section of the AWS cloud.

          AWS Cloud is utilized by a lot of customers and VPC plays a vital role in setting up boundaries between the customer resources. AWS accounts come with one default VPC to launch resources and further more VPCs can be created as per business use-case requirements. There is a default limit of 5 VPCs per account which can be increased by raising a query with AWS Support Center.

          Let’s dig into VPC in more detail, beginning with how to set up your first VPC.

          Note

            This book will not outline the infrastructure setup steps but will focus more on a deep dive into AWS core concepts and will provide links to AWS documentation for the most updated guidance on setup.

          

          
            Networking Basics for VPC

            Let’s take the first step in setting up our own personal data center in AWS by creating the first VPC—but before that we’ll gather some basic networking knowledge to make better decisions while creating our first VPC. 

            Let’s consider a real-world example. You’re very excited to meet your new friend in person and both of you agreed to meet at Cafe Delhi Heights, 3rd Floor, 301 & 302, Ambience Mall, Gurugram, India. However, you need a specific location, more specifically a table number in this restaurant and not just the restaurant location. This pin-pointed location in the networking world is called an IP address—a unique string of characters that identifies each computer. Every device should have an IP address to connect with another device on the internet. IP addresses can be of type IPv4 or IPv6. Let’s discuss each of these in a bit more detail.

            
              IPv4

              IPv4 is a 32 bit or 4 byte address space where each byte is represented via decimal numbers (binary octet) and separated by dot (.), for example 192.168.1.0. How can we identify to which destination the traffic should be routed to? To establish a similar analogy, how do you think the Postal Service delivers mail at your doorstep or you know to meet your new friend at Table Number 21 at Cafe Delhi Heights? There are two components required in general for unique identification. For physical mail, it would be your zip code/postalcode/area PIN code (depending on your country) and your house number, and for meeting your new friend, it would be the restaurant location in Ambience Mall, Gurugram and then the table number in this restaurant.

              In similar fashion, to deliver network packets to your personal computer, there are two components involved—a network component (network ID) and a host component (host ID). For example, your office network will map to a network ID and your personal computer will map to a host ID.

              The division of the number of bits that should be allocated to network Id and host Id is defined via IP classes as shown in Figure 2-2. There are in total 5 IP classes from A-E, out of which Class D is reserved for multi-tasking and Class E is reserved for research purposes. 

              
                [image: IP address classes]
                Figure 2-2. IP address classes

              

              One difference between Class A, B, and C is the number of bits assigned to each network Id and host Id. Another is the range of IP addresses that are allowed in each class, as represented in Table 9-1.

              
                Table 2-1. Class-wise IPv4 Address range
                
                  	IP Address Class
                  	From Range
                  	To Range
                

                
                  	Class A
                  	1.0.0.0
                  	127.255.255.255
                

                
                  	Class B
                  	128.0.0.0
                  	191.255.255.255
                

                
                  	Class C
                  	192.0.0.0
                  	223.255.255.255
                

              

              Deciding which class suits your specific business use-case depends on the requirement of the number of networks and the number of hosts in a network. For example, Class A provides 126 network IDs and 16,777,214 host Ids, whereas Class C provides 2,097,152 network Ids and 254 host IDs. The division of IP address or network space into network and host address is achieved via Subnet Masks. 

              As the name suggests, subnets help in dividing the parent network into sub-networks. Subnet mask is the division of IP address into network and host address. It is a 32 bit number where host bits are set to 0 and network bits are set to 1. AWS VPC logically isolates the resources at regional level and further division into AZ can be achieved via subnets—we’ll be exploring this while creating our first VPC in follow up sections. Figure 2-3 shows an example IPv4 address along with subnet mask representation.

              
                [image: Representation of IPv4 address and subnet mask]
                Figure 2-3. Representation of IPv4 address and subnet mask

              

              Note

                Keep in mind that 0 and 255 are reserved for special purposes and therefore can’t be assigned to hosts. Hence the number of host Ids in Class A is 126 and not 128.

              

              A specific problem that arises with IPv4 addresses is the very limited number of addresses available in comparison to the number of devices and networks across the world. The intermittent solution to slow down exhaustion of IPv4 addresses is via Classless Inter-Domain Routing (or CIDR).

              CIDR is a way of representing an IP address and its subnet mask. The classless concept was introduced in 1993 to slow down the exhaustion of IPv4 addresses. CIDR helps in varying subnet mask length, skipping standard division via classes. For example, you can create either /16 or /24 subnet masks but not /20. This kind of division helps in optimizing the class space of IP addresses. You can see this represented in Figure 2-4.

              
                [image: Variable length Subnet mask]
                Figure 2-4. Variable length Subnet mask

              

              However, the long term solution is migration to IPv6 addresses.

            

            
              IPv6

              IPv6 is 128 bits which helps in much larger network space as compared to 32 bits IPv4 address. IPv6 is represented by 8 groups of 4 hexadecimal digits and separated by colons. For example, ab90:cd00:0000:0cef:0123:0000:211f:345d. Figure 2-5 describes simple IPv6 notation where site prefix represents public topology allocated by an Internet Service Provider(ISP) or Regional Internet Registry, subnet Id represents private topology which is internal to specific network, and interface Id represents a unique device identifier which is configured via interface’s MAC address by using IEEE’s Extended Unique Identifier (EUI-64) format.

              
                [image: Simple IPv6 address representation]
                Figure 2-5. Simple IPv6 address representation

              

              Both IPv4 and IPv6 addresses can be further divided into public and private IP addresses based on their visibility. The concept of public-private is more used for IPv4 addresses considering the limited availability of addresses. We’ll be using examples of IPv4 addresses to walk through it.

            

            
              Private and Public IP Addresses

              Let’s refer back to our earlier real-life example. You agreed to meet your friend at a reserved table number 21 at Cafe Delhi Heights and enjoyed the positive vibe and food of the restaurant. You got curious and decided to visit the kitchen where this delicious food was prepared, but the restaurant owner denied access to the kitchen and mentioned only specific individuals can go to the kitchen. Here the kitchen is private space and the general sitting area is public space. Certainly there are ways to get to the private space (aka the kitchen in this scenario) and we’ll explore this in follow up sections.

              Consider the example of your work from home setup—you’ve a router for Wi-Fi connection and all the devices (such as mobile phone, office laptop, personal laptop, etc.) connect with this router to access the internet. If you run a Google search on all the devices for, “What’s my IP?”, you’ll get the same IP address. This IP address is called a public IP address and is assigned by the ISP. Restarting the router might lead to a different IP address on all the devices, but it will be the same across the devices. 

              All these devices can connect with each other without going over the internet via Private IP address. A Private IP address is assigned by the router to each device connected to it. Table 9-2 shows the range of addresses allowed for Private IP—the rest all can be used for public network space.

              
                Table 2-2. Private IPv4 address space per class
                
                  	Class
                  	IP Range
                

                
                  	Class A
                  	10.0.0.0 – 10.255.255.255
                

                
                  	Class B
                  	172.16.0.0 – 172.31.255.255
                

                
                  	Class C
                  	192.168.0.0 – 192.168.255.255
                

              

              The IP addresses are assigned dynamically from the provided IP address range on AWS resource creation. In case there is a requirement to associate specific IP addresses to a resource, we can utilize Elastic IP addresses.

            

            
              Elastic IP Address

              Elastic IP address is a static and public IPv4 address associated with an AWS account which can be assigned to an EC2 instance or network interface without changing on any state change. This can be considered to be used for scenarios with requirements of static IP address without being changed over time. For example, avoid EC2 instance IP address change if a new instance is spawned up to replace an unhealthy instance. 

              Further, there is additional cost associated with Elastic IP addresses.It is chargeable and bought for a specific region. IP of one region is not accessible in other regions.

            

          

          
            Considerations for VPC Creation

            The networking ideas we gathered in previous sections will help us to set up our first VPC. The VPC wizard asks for IPv4 CIDR block, IPv6 CIDR block, and tenancy. The IPv4 CIDR block is a required input that must be added to proceed further. The VPC can work in dual mode, operating with both IPv4 and IPv6, and the allowed CIDR block for IPv4 is between /16 to /28 and for IPv6, it is fixed to /64.

            You’ll need to consider the following points about CIDR block:

            
              	
                VPC creation requires an initial IPv4 CIDR block, although you might have a use-case to just use IPv6 address space. AWS VPC supports both IPv4 and IPv6 address space in a single VPC and it can be specified during creation.

              

              	
                The CIDR block should be specified from the RFC 1918 range, and it is recommended to use a private IP address range, though public can also be chosen.

              

              	
                The size of the CIDR block can’t be changed once created. Customers should carefully plan the size of CIDR considering future needs to avoid hurdles or rework in the future. In short, bigger CIDR blocks can be chosen if you’re not able to gather concrete details to have more flexibility in the future.

              

              	
                The CIDR block should not overlap with existing CIDR blocks associated with VPCs. This is also essential for utilizing services such as VPC Peering and Direct Connect, the CIDR blocks should not overlap across the VPCs. 

              

              	
                You can associate up to 5 additional CIDR blocks( this is a soft limit and can be adjustable up to 50) to a VPC, the additional CIDR block’s range should be strictly smaller than the primary CIDR block.

              

            

            Note

              Soft Limit means the limit is adjustable and can be increased by following AWS Service Quotas or with help of AWS Support team.

            

            Next we need to consider tenancy. Let’s go back to our real-world example. There are two ways of booking Cafe Delhi Heights for meeting your new friend. The first option is to book the entire restaurant, as this is a top secret meeting and you don’t want any other people to be available in your booked time. This is called dedicated tenancy.

            The second option is to reserve a table for two—other available tables can be booked by other people which is called shared tenancy. It’s logical to go with option two considering the cost unless there are specific reasons such as a secret meeting. The same concept is applicable when we request servers from AWS. The instances can either run on shared hardware (other people’s instances can run on the same hardware via virtualization) or on dedicated hardware where your instances are separated from other customer’s resources, depending on your business needs. This option can be selected at the time of VPC creation and all the instances launched in VPC are created with the same option by default, unless overridden.

            Note

              AWS provides multiple tools for creation of resources such as AWS CLI, AWS CDK or via AWS Console. As a beginner, you can start experimenting via AWS Console but as systems scale, we recommend maintaining a code repository to provision any AWS resources, popularly known as Infrastructure as Code(IaC). This could help on multiple fronts like replicating the same resources in another region or maintaining infrastructure audit.

            

            The next step in VPC configuration is setting up subnets. Subnets help in separation of resources across multiple availability zones. Let’s dig into those.

          

          
            Subnets

            As mentioned earlier in the chapter, subnet means a sub network, logical subdivision of IP Address range inside the VPC CIDR block. Why should one divide network space into multiple sub-networks? The general idea of separation of resources per availability zone is to ensure high application availability. Each subnet is associated with an availability zone (AZ) within an AWS region.and by associating resources to the specific subnets, we ensure resources are launched into that specific AZ. One interesting fact around subnet mapping to AZ is it could vary from customer to customer—the us-east-1a for you can be us-east-1b for your friend. AWS abstracts out these details from customers to ensure uniform allocation (or as per availability) of resources.

            Each subnet should be assigned a CIDR block similar to VPC—the CIDR block to be assigned can be the same as the VPC CIDR block or subset of it. The key point is that the CIDR block across the subnets inside your VPC should not overlap. The first four and the last IP address in each subnet CIDR block are reserved and can’t be assigned to resources. The subnet can be a public subnet or private subnet depending on its connectivity to the internet. Let’s dig a little deeper into that.

            
              Public Subnet vs Private Subnet

              Public and private subnets look similar, the difference lies in their ability to connect to the internet. For example, a web application’s servers can be placed in a public subnet so that it is accessible to the general public, and the database servers can be placed in a private subnet to limit accessibility from the general public, see Figure 2-6 for reference. You were denied access to take a look at Cafe Delhi Heights kitchen as it’s located in a private space (or private subnet) though you can freely roam in a general sitting area, as this is public space or public subnet.

              
                [image: Overview of different networking components]
                Figure 2-6. Overview of different networking components

              

              The resources in the public subnet can access the internet due to the presence of a direct route to an Internet Gateway, whereas resources in the private subnet require a Network Address Translation(NAT) service or a NAT instance to access the internet—more details are captured in the NAT gateway and Internet gateway section. 

              The key point is that the direct route to the internet gateway is the only differentiating factor between public and private subnets. A subnet with resources having a public IPv4 address but no direct route to the internet gateway is referred to as a private subnet.

              When setting up your VPCs and subnets inside your AWS account, consider these following best practices:

              
                	
                  Use multiple subnets: Create multiple subnets within different availability zones to achieve fault tolerance and high availability.

                

                	
                  Isolate resources: Use separate subnets for different types of resources to improve security and network segmentation.

                

                	
                  Public and private subnets: Place resources with public access in public subnets and sensitive resources in private subnets.

                

              

            

          

        

      

      
        Internet Connectivity

        As we mentioned earlier, VPC provides a logically isolated network in AWS Cloud, but how does this logically isolated section connect with the internet? Or how can internet traffic access the resources located in the subnets? The routing of traffic and securing of resources is achieved via components such as route tables, internet gateway, security groups, etc which we’ll be focusing on in the following sections.

        
          Route Tables

          In the AWS Cloud, you just need to configure required routes in the route table and don’t have to worry about setting up a router. A route table is a collection of rules, referred to as routes, that determine where network traffic from your subnet or gateway is directed. We can assume AWS internally maintains a router to facilitate this routing.

          Every subnet should be associated with a route table, and the main route table is created implicitly to provide private access among the subnets. You should create more custom route tables as required and assign them to subnets—note that the same route table can be associated with multiple subnets. The key consideration here should be to create a route table for clear division of routing responsibility—this helps in better maintainability and readability of routes by not overcrowding a single route table.

          Let’s consider the two kinds of route tables:

          
            	Main Route Table 

            	
              The Main Route Table, which automatically comes with a VPC, by default contains the first entry for local routing in the VPC, which helps resources in different subnets to establish connectivity with each other. Every subnet creation leads to implicit association to the main route table. If required, customers can create a custom route table and explicitly associate it to a subnet.

              There are a couple of things you need to consider about the Main Route Table:

            
              	
                It can’t be deleted and the custom route table can’t be set as the main route table, though it can be replaced with a custom route table for subnet association.

              

              	
                You can add additional routes to the main table—our recommendation would be to avoid this and create custom route tables for adding custom routes.

              

            

            

            	Custom Route Table

            	
              Custom Route Tables don’t contain any routes by default and should be updated as per network traffic routing requirements. Custom route tables can be deleted unlike the main route table though there should be no subnet associations for this operation to be successful.

            

          

          Now that you understand the two types of route tables and their purpose, let’s look at how these routes are added and what they look like. There are two important inputs in the route table - Destination and Target.

          
            	
              Destination is added as CIDR, basically a range of IP addresses that specifies where the network packets should go, for example, 10.0.0.0/16.

            

            	
              Target specifies how the network packets will reach the destination, such as gateway, network interface or a connection—for example internet gateway(igw) for routing traffic to internet or VPC peering connection. An example Route Table is shown in Table 9-3.

            

          

          
            Table 2-3. Route Table with internet connectivity via Internet Gateway
            
              	Destination
              	Target
            

            
              	VPC CIDR
              	Local
            

            
              	0.0.0.0/0
              	igw-id
            

          

          Route Tables direct network traffic in and out of a subnet but it doesn’t apply any security filters on this traffic. AWS provides software firewalls, Security Groups(SGs) and Network Access Control Lists(NACLs) to implement traffic filters which are useful in controlling the network traffic permissions. Both of these components help to control the traffic that can flow in and out of VPC. 

        

        
          Security Groups 

          Let’s understand how SGs can help to control the traffic we want to essentially filter out or disallow any unwanted traffic. SGs are created at the VPC level and assigned at an instance level, controlling inbound and outbound traffic at an instance level based on protocols, ports and IP addresses. Your EC2 instance can have one or more SGs. There will always be one SG associated to an instance, and, if not created, a default SG will be associated, which is created at time of VPC creation.

          To secure and limit access for incoming and outgoing traffic to instances, you need to add inbound and outbound rules to your SG. Inbound rules define traffic that is allowed to the instance and outbound defines traffic that is allowed from the instance.

          Consider the following facts about SGs:

          
            	
              SGs are stateful. For example, you fire one request from your personal laptop to an EC2 instance to get some data and your IP address is added as part of Inbound rules. You’ll get a response back even if there are no outbound rules included for your personal laptop. In short, rules allowed in one direction will automatically be allowed in the opposite direction, there is no requirement for explicitly adding them.

            

            	
              You can’t delete the default SG. Our recommendation would be to create a custom SG as needed. Multiple SGs can be associated to an instance, but you should create SGs keeping future scale in mind. For example, you should avoid duplicate rules SG and reuse wherever it’s possible.

            

            	
              You should only add required access and not overexpose the resources. For example, for SSH connection, only allow Port 22 for a set of IP addresses and not the entire internet.

            

            	
              SG doesn’t provide an option to define explicit deny rules—all the rules which don’t match the allowed rules condition are implicitly denied access to resources.

            

          

          For each rule added as part of inbound or outbound rules, you’ll need to specify the following parameters as shown in Table 9-4: 

          
            	Type 

            	
              It represents the type of traffic. On the basis of chosen ‘type’ value, AWS determines Protocol and Port range automatically. There is also a custom type to add custom values,for example for port range.

            

            	Source or Destination 

            	
              Source attribute is added for inbound rules and Destination attribute is added for the outbound rules. Here, you can add specific IP addresses, complete CIDR blocks or other security groups as well.

            

            	Description 

            	
              It is helpful to identify why a certain rule is added or what purpose it solves. This is an optional field, but we recommend adding a description for easy future references.

            

          

          
            Table 2-4. Example SG Outbound Rule
            
              	Type
              	Protocol
              	Port Range
              	Destination
              	Description
            

            
              	SSH
              	TCP
              	22
              	117.212.92.68
              	Test SSH rule
            

          

        

        
          Network Access Control Lists

          NACLs are stateless packet filters which are attached at the subnet level, unlike SGs, thus controlling inbound and outbound traffic at the subnet level. NACLs provide the ability to add, allow, or deny rules for outbound or inbound traffic at the subnet level. You may think of NACLs as an additional layer of security on top of SGs which ensure to block the traffic if SGs are too flexible. 

          If you think back to our example of the Cafe Delhi Heights kitchen, consider that there are individual chefs in the kitchen—you may be allowed to enter the kitchen, but still the chef may refuse to talk to you.

          There are a few key things that you need to remember about NACLs:

          
            	
              NACLs are stateless. Customers need to add explicit rules for both inbound and outbound traffic to allow or deny actions.

            

            	
              VPC comes with a default NACL, which will be attached to all the subnets inside VPC and it allows all inbound/outbound traffic. For fine grain traffic control, you can create a custom NACL or modify rules in an existing one—our recommendation would be to create custom NACLs as needed.

            

            	
              NACLs define inbound or outbound rules to allow or deny actions. The rules will be evaluated in sequence and once a particular rule succeeds, all the rules in sequence below will be skipped. If none of the rule succeeds, then final rule marked as ‘*’ will evaluate it as a deny action.

            

          

          For each inbound or outbound rule, you’ll need to specific the following parameters as shown in Table 9-5: 

          
            	Rule Number 

            	
              Rule numbers a sequence of numbers in which rules are evaluated which can be numbered from 1 to 32766. 

            

            	Type

            	
              Type represents type of traffic. Based on chosen type, AWS pre-populates protocol and port range. Custom protocol and port range can also be added as per selected type.

            

            	Source 

            	
              Source represents inbound rules added as a CIDR block.

            

            	Destination 

            	
              Destination represents outbound rules added as a CIDR block.

            

            	Allow or Deny 

            	
              For every rule, an explicit action should be added as ‘Allow’ or ‘Deny’. This action determines if traffic is allowed or denied.

            

          

          
            Table 2-5. Example NACL Inbound Rule 
            
              	Rule Number
              	Type
              	Protocol
              	Port Range
              	Source
              	Allow/Deny
            

            
              	100
              	All traffic
              	All
              	All
              	0.0.0.0/0
              	Allow
            

            
              	*
              	All traffic
              	All
              	All
              	0.0.0.0/0
              	Deny
            

          

          Route Tables, SGs and NACLs help to configure the routes and configure network security. To enable the connectivity as per the configured routes, AWS offers Internet Gateway or NAT Gateway which we’ll be exploring in the next section.

        

        
          VPC To Internet Connectivity

          We described VPC as a personal data center in AWS Cloud, but how will the users establish connectivity with this personal data center and how will this personal data center connect to the internet? In this section, we’ll dig into different AWS components which helps to resolve these connectivity hurdles.

          
            Internet Gateway

            In the section ‘Route Tables’ Table 9-3, we showed you a route as Destination ‘0.0.0.0/0’ and Target as ‘igw-id’ for allowing internet access to resources. The destination for this route refers to the entire internet and the target is an internet gateway identifier. 

            Internet Gateway (IGW) is a horizontally scalable and highly available AWS managed VPC software component that provides connection between your VPC and the internet. IGW is managed by AWS and is a highly available, redundant and horizontally scalable application.

            Internet Gateway is attached to VPC and can span across the subnets in different AZs.

            In the context of our Cafe Delhi Heights restaurant, IGW represents the front door to get in or get out of the restaurant. Much like you can only go to the public sitting area in the restaurant and can’t go inside the kitchens, the same applies to the IGW—it only helps to connect to resources in public subnets.

            Here are a few key points about IGW:

            
              	
                IGW helps in establishing connectivity in both the directions, from internet to VPC and vice versa by using public IP addresses.

              

              	
                IGW provides NAT support for instances with public IPv4 addresses in the subnet. For traffic leaving for the internet from instance, IGW makes sure the reply to request is sent back to public IPv4 address, and for traffic destined for resource public IPv4 address, IGW ensures translation to instance’s private IP address before the traffic is delivered to VPC.

              

              	
                Internet Gateways are used in conjunction with route tables to determine the path of network traffic. A route table associated with the VPC directs traffic destined for the internet to the Internet Gateway. It acts as the default gateway for outbound traffic and routes it to the appropriate destination.

              

              	
                Internet Gateways enable VPC resources to communicate with other AWS services, such as Amazon S3 or Amazon DynamoDB, over the internet.

              

              	
                Internet Gateways are stateless, which means they don’t maintain any information about the state of network connections. Each packet is evaluated independently based on routing rules and security settings.

              

              	
                 Internet Gateways are designed to be highly available and scalable. They are automatically replicated across multiple availability zones within a region, providing redundancy and fault tolerance.

              

            

            IGW helps to establish internet connectivity from public subnets but how about private subnets? There can be scenarios of private subnet resources requiring internet access, one such example could be downloading the latest software update. The private subnet to public internet connectivity is achieved via a NAT Gateway.

          

          
            NAT Gateway

            The cooks working in the kitchen asked the head chef if she can collect feedback from customers about the food served—only the head chef is allowed to interact with customers directly in the main restaurant space and cooks only work in the kitchen, just to avoid overwhelming the customers or increasing the crowd in the main area.

            The role of head chef is served by the NAT gateway for a subnet—it helps instances in a private subnet to connect with the internet via the Internet Gateway. You may think of NAT gateway as a bridge between internet gateway and private instances. Internet gateway requires public IP for interaction with the internet and NAT gateway facilitates that support. This support is available for TCP, UDP and ICMP protocols.

            NAT Gateways (Network Address Translation Gateways) are AWS-managed network devices that allow resources within private subnets in a VPC to initiate outbound internet connections while preventing direct inbound access from the internet by hiding their private IP addresses.

            To go a layer deeper, NAT means Network Address Translation, in simple terms it converts private IP address to NAT device public IP address and is mapped back to private IP address on return of response from internet. To establish a NAT Gateway, you need to allocate an Elastic IP address (EIP) and associate it with the NAT Gateway. The EIP serves as a static, public IP address that represents the NAT Gateway and is used for communication with the internet.

            Here are the key things you need to consider about NAT Gateway:

            
              	
                For high availability, NAT Gateway should be set up at the AZ level so that if an AZ goes down, it doesn’t impact traffic serving capability from other AZs.

              

              	
                Another reason for NAT Gateway division at AZ level could be avoiding packet drops for traffic greater than 10 million packets per second.

              

              	
                NAT gateway can’t be used by external internet to initiate connection with instances in private subnet. 

              

              	
                NAT gateway provides public(default) and private connectivity. Public will be useful for connectivity with outside internet while private will be useful for connection with other VPCs or on-premise networks.

              

              	
                NAT Gateway comes with additional infrastructure cost unlike Internet Gateway, whose pricing only depends on traffic flow via it.

              

            

            As we discussed connectivity to personal data centers(meaning VPC), there could also be scenarios where we own multiple such data centers. The follow up section covers different mechanisms available in AWS to create cross VPC connectivity, 

          

        

        
          VPC to VPC Connectivity

          You may have use cases such as AWS resources integration across VPCs, security, presence in multiple regions, etc. where different components need to connect with each other residing in different VPCs, which could be in the same or different AWS accounts while maintaining isolation. To return to our cafe example, Cafe Delhi Heights is becoming more popular day by day and more people are coming in, so the restaurant head opened a new place for customers to sit—however, the food is still prepared in the old kitchen. Now here, there is a requirement to establish good connectivity for faster delivery of food to the newly opened location, in a secure way so as no one finds out. In similar fashion, there can be a need to operate two microservices in different VPCs(or different AWS accounts altogether) and for these microservices to communicate with each other in a secure way, AWS provides different connectivity options.

          These connectivity options mainly fall under two kinds of relationships: many-to-many and hub-and-spoke. Traffic is managed individually between each VPCs in many-to-many VPC relationships, whereas a central resource manages traffic routing between the VPCs in hub-and-spoke model. The follow up section explores both of these models.

          
            VPC Peering

            VPC Peering is based on a many-to-many approach where one VPC peers with another VPC to enable full bidirectional private network connectivity. It enables resources in different VPCs to communicate with each other using private IP addresses as if they were in the same network. VPC Peering doesn’t support transitive dependency and can be a cost effective interconnectivity method if the number of VPC is less than 10. As the number of VPC increases, the mesh can become really complex to manage and operate. 

            You can manage the connections via route tables, SGs and NACLs to allow specific resources or subnets to utilize the VPC peering connection. The network packets between the VPCs flow via AWS private network with no bandwidth constraints—there is no physical hardware required for this setup, you only pay for the amount of data transfer.

            Think of a scenario where all the Cafe Delhi Heights restaurants have their own bar, but food is prepared at a central location and supplied to all the smaller setups, extending this example to a system architecture consisting of web frontend and backend. The connectivity between the backend and frontend tier can be established via VPC Peering assuming both are hosted in separate VPC. Figure 2-7 shows connectivity between servers running in different VPCs via VPC Peering connection.

            
              [image: VPC Peering]
              Figure 2-7. VPC Peering

            

            The downside of establishing connection with VPCs at large scale via VPC Peering is resolved with another AWS Service called Transit Gateways.

          

          
            Transit Gateways

            Transit Gateway is a scalable solution to establish connectivity between multiple VPCs, on-premise networks and other AWS services. Transit Gateway is a regional resource based on hub and spoke model which acts as intermediary to set up all the network routing at a single place via routing tables, be it VPCs or hybrid connectivity methods such as Virtual Private Network(VPN) or Direct Connect.

            For better control of networking routes, Transit Gateway can be set up in a separate networking AWS account where network engineers can manage at centralized location. Figure 2-8 shows Transit Gateway acting as a central resource for providing connectivity between VPCs, AWS Direct Connect and VPN Connection.

            
              [image: AWS Transit Gateway]
              Figure 2-8. AWS Transit Gateway

            

            The key difference between Transit Gateway and VPC Peering is scale—transit gateway is scalable for connectivity across thousands of VPCs. Other parameters are favorable to VPC peering such as lower cost, no bandwidth constraints and reduced latency.

            Figure 2-8 depicted frontend and backend tier connectivity via VPC Peering which are present in different VPCs—another solution for this kind of setup is utilizing AWS PrivateLink.

          

          
            AWS PrivateLink

            AWS PrivateLink helps to privately expose an application to consumers in another VPC and ensures traffic flows in AWS backbone network without going over the internet. The key difference is traffic flow direction—VPC Peering provides bidirectional connectivity, but if clients need to server requests only using private IP addresses, AWS PrivateLink will facilitate this kind of connectivity. 

            
              Connectivity via AWS PrivateLink

              AWS PrivateLink is established between two parties: the one which allows access to its specific service can be referred as the service provider and others consuming this service are considered the consumers.

              
                	Service Provider

                	
                  To make service available in a region, service providers will create an endpoint service which is mapped with a network load balancer. Application Load balancer can’t be directly attached with endpoint service.

                

                	Service Consumer

                	
                  Service consumers create a VPC endpoint to connect their VPC to endpoint services by specifying the service name which is being created by the service provider.

                  As represented in Figure 2-9, the endpoint could be an interface endpoint or gateway endpoint. An Interface endpoint helps to establish connection to an endpoint service in another VPC, where Gateway helps to connect with Amazon S3 or DynamoDB using private IP addresses.

                  One more type is gateway load balancer which can be used to manage third party virtual appliances, for example compliance. (More on load balancer shortly.)

                

              

              
                [image: Connectivity via Endpoint Services]
                Figure 2-9. Connectivity via Endpoint Services

              

              Apart from establishing connectivity between multiple VPCs, there are certain businesses which still operate on on-premise data centers. In the process of migrating to Cloud, there can always be an intermediary state where some operations are served by on-premise data centers and rest via AWS Cloud. Let’s explore different solutions offered by AWS to establish connectivity between these two separate data centers.

            

          

        

        
          Hybrid Connectivity

          Current infrastructure of Cafe Delhi Heights is that food is prepared at a central location and a bar is located at all the locations. To make our systems more efficient, we’re planning to move most of our food preparation to all the locations as well, but still some of the key dishes will be prepared at the central location. In this scenario, the operations happen at two places, this is what we mean by hybrid connectivity.

          It could be possible that you started with your personal data center but over time you decided to move to AWS Cloud. Now, the service infrastructure is maintained by AWS but the databases are still managed on an on-premise data center. To support this, there needs to be some mechanism to establish connectivity between on-premise data centers and AWS data centers—that’s a Virtual Private Network.

          
            Virtual Private Network

            What mechanism can be used to securely connect on-premise data centers to AWS VPC? The service framework which ensures this data security is Virtual Private Network, aka VPN. Figure 2-10 describes an example connection setup using AWS VPN from customer data center to VPC located in an AWS region.

            
              [image: VPN Connection]
              Figure 2-10. VPN Connection

            

            The components for VPN setup are:

            
              	Customer Gateway 

              	
                A software or hardware component which is setup at the customer’s end. You can read more about device requirements here.

              

              	VPN Connection 

              	
                A secure and encrypted connection channel between the customer gateway and VPN gateway. There are two tunnels being setup so as to avoid any availability issue due to failure or scheduled maintenance.

              

              	VPN Gateway 

              	
                This component is present at AWS side to ensure communication between VPC and VPN connection.

              

            

            VPN transfers data packets over the internet anonymously. AWS provides another service to configure dedicated networks for connectivity, referred to as AWS Direct Connect.

          

          
            AWS Direct Connect

            AWS Direct Connect provides the capability to configure a dedicated network connection (Ethernet fiber-optic cable) for data transfer from the customer data center to an AWS direct connect location without the use of the internet. AWS direct connect location is configured with a router to route the traffic and connect to the AWS backbone network. It provides consistent and high-bandwidth connectivity, suitable for large-scale or latency-sensitive workloads. You can use AWS Direct Connect Resiliency toolkit to ensure maximum availability of connections set up from personal data center to AWS Direct Connect Location. Figure 2-11 is an extension of Figure 2-6 and describes an example connection setup from customer data center to Amazon VPC via Direct Connect location. The main components are:

            
              	Customer Router

              	
                The customer router is installed at an on-premises data center holding all networking rules and helps routing the traffic from data center to AWS Direct Connect Location. Customer Router connects with router at Direct Connect Location via 802.1Q VLAN ethernet cable.

              

              	Direct Connect Location

              	
                Direct Connect is available worldwide at multiple locations. We can select a location closest to on-premise data center to minimize cost and latency. You can check for all networking requirements on AWS doc.

              

              	Direct Connect Gateway

              	
                Direct Connect Gateway helps in establishing connection between VPC and Direct Connect Location via private virtual interface.

              

              	Virtual Interface(VIF)

              	
                Virtual Interfaces are helpful in setting up private secure connections to required resources such as S3 without going over the internet. You can select either Public VIF, Private VIF or transit VIF depending on use-case.

              
                	
                  Public VIF is helpful in connecting to AWS resources over public IP addresses such as Amazon S3.

                

                	
                  Private VIF is helpful in connecting to AWS resources using their private IP addresses hosted in AWS VPC.

                

                	
                  Transit VIF is helpful in connecting to AWS resources using their private IP addresses hosted in AWS VPC through the transit gateway.

                

              

              

            

            
              [image: AWS VPC connectivity with On prem data center via Direct Connect]
              Figure 2-11. AWS VPC connectivity with On-prem data center via Direct Connect

            

            We explored multiple concepts and AWS services revolving around how network packets flow inside the Amazon network, as well as multiple connectivity options. The rest of the chapter focuses on the entry point for these network packets as applications scale such as Route 53, Load Balancers, API Gateway. We’ll conclude the chapter by discussing AWS provided Content Delivery Network referred as AWS CloudFront for placing data content near to users to enable faster retrieval.

          

        

      

      
        Route 53

        Route 53 is a scalable and highly available Domain Name System(DNS) available in the AWS ecosystem which helps in domain registration, DNS routing and health checking. We started our ‘IP Addresses’ section by stating that every device on the internet requires an IP address to establish connection with other devices, but what if a human being is operating one side of a connection? It can be very difficult to remember all the IP addresses, well unless you’ve photographic memory.

        Human beings are good at remembering names as compared to numbers—it’s easier to remember www.google.com instead of 192.168.1.0 or to remember Cafe Delhi Heights, Ambience Mall instead of latitude and longitude as 28.525446566084423, 77.09008858115097. Domain Name System makes our lives easy by facilitating the conversion from domain name to IP addresses. Figure 2-12 shows how a domain such as www.google.com is resolved to an IP address and finally accessible to end users.

        
          [image: DNS resolution via Route 53]
          Figure 2-12. DNS resolution via Route 53

        

        These are the key considerations about Route 53:

        
          	
            Route 53 can be used to register new domain names and additionally you can transfer existing DNS to be managed by it.

          

          	
            You can create, update and manage your public DNS records via AWS Route 53 along with health checks to monitor the health of applications, web servers and related resources. 

          

          	
            You can configure routing policies for traffic management on DNS records, specifying how Route53 responds to queries.

          

          	
            Route53 supports various DNS record types such as A, AAAA, CNAME, MX, TXT, and more, enabling flexible DNS configuration.

          

          	
            DNS records of your domain are collectively stored in Hosted Zones to answer the domain queries.

          

          	
            Route 53 utilizes Anycast as networking and routing technology, which helps in reduced latency via routing requests through the nearest data center and higher availability via presence of multiple servers to respond to traffic instead of just one origin server.

          

        

        Next we’ll turn our attention to the AWS Elastic Load Balancer.

      

      
        AWS Elastic Load Balancer

        As discussed in Chapter 5 on Scaling Approaches and Mechanisms, Load Balancers help improve the availability, scalability, and fault tolerance of applications by distributing traffic across healthy targets. Load balancers can automatically scale based on traffic patterns and health checks, ensuring optimal performance.

        The AWS Elastic Load Balancer (ELB) is a managed service which scales for the customer’s traffic on the go and provides the following capabilities:

        
          	
            Distribute the incoming traffic among a pool of resources.

          

          	
            Capability to serve requests without disruption as new resources are added or old ones removed.

          

          	
            Monitoring resource health via ELB provided health checks.

          

        

        AWS ELB is available as Application Load Balancer (ALB), Network Load Balancer (NLB), Classic Load Balancer(CLB) and Gateway Load Balancer(GWLB). As the name suggests, ALB operates at application layer(Layer 7) for HTTP, HTTPS and gRPC protocols, NLB operates at network layer(Layer 4) for TCP, UDP and TLS protocols and CLB is a legacy version of load balancer which supports both layer4/layer7 traffic. GWLB is used as a Layer 3 Gateway and Layer 4 load balancer for IP protocol.

        You can read a detailed product comparison on AWS.

        Our recommendation is to take a bottoms up approach by thinking about the base feature requirements for a given workload. These requirements along with pricing will decide which load balancer type is best suitable to your workload—there can be additional features offered by ELB that will be cherry on the top. Figure 2-13 shows traffic distribution by ELB to different types of targets. The main components of ELB are: 

        
          	Load Balancer

          	
            LB is a single point of contact from the client’s perspective, it can then further forward the request to configured listeners.

          

          	Listeners

          	
            Listener is a process that checks for the client’s request using the configured protocol and port number. The request is forwarded to target groups based on the rules associated with a listener.

          

          	Target Groups

          	
            Target Groups directs traffic to configured targets using the configured port and protocol, for example EC2 instances, IP addresses, etc.

          

        

        
          [image: Elastic Load Balancer]
          Figure 2-13. Elastic Load Balancer

        

        A few key considerations about ELB are:

        
          	
            NLB can have targets such as ALB, containers, instances and IP. ALB can have targets as containers, instances, IP and lambda, and GWLB can have targets as IP and instance.

          

          	
            Gateway Load Balancers are useful in systems such as firewalls, intrusion detection and prevention systems, deep packet inspection systems, etc. It enables customers to deploy, scale and manage virtual appliances. One example scenario for inspection systems is placement of GWLB in between source and destination for packet analysis and monitoring.

          

          	
            ALB doesn’t provide support for private link and static IP addresses for inbound traffic— NLB is a suitable choice for this use-case. In scenarios where additional features of ALB are value-add to NLB or vice-versa, ALB can be used as a target to NLB to gain benefits from both worlds.

          

          	
            As ALB has request header data, it can support request routing in multiple ways, such as path based, host based, query string parameter based and source IP address based routing. In contrast to this, NLB doesn’t have capability to inspect the HTTP request which makes it a little lighter in processing as compared to ALB resulting in reduced latency.

          

          	
            NLB is optimized to handle sudden spiky traffic patterns; for ALB it’s a best practice to inform AWS Support in advance if a traffic spike is expected to pre-allocate the capacity.

          

          	
            NLB supports long lived TCP connections unlike ALB. This is helpful in scenarios with requirements such as a huge number of persistent connections, such as WebSocket connection for an online gaming application.

          

          	
            ALB provides support for AWS Web Application Firewall(WAF) and authentication mechanisms such as Amazon Cognito, OpenID Connect, etc. This helps in offloading this responsibility from the application and making it lighter.

          

          	
            The load balancer will reside in a public subnet and you can host the backend resources in a private subnet, which are not directly accessible to outside traffic.

          

          	
            Idle Timeout configuration for ALB can be set between 1 to 4000 seconds (the default is 60 seconds) where for NLB this configuration is 350 seconds.

          

        

        Now let’s turn our attention to the API gateway.

      

      
        API Gateway

        API Gateway is a fully managed AWS service that helps in creating, publishing, maintaining, monitoring and securing REST, HTTP and WebSocket APIs. Consider a scenario that instead of human beings serving your order at Cafe Delhi Heights, there are robots deployed who take and serve the food orders. You order food by selecting the food items from the kiosk installed at the table and once the food is prepared, it is served by robots to you—well in this scenario you don’t know if in the kitchen the food is prepared by robots or human beings. That’s the beauty of resource abstraction, customers use the API Gateway’s published API to perform specific functions at scale and API Gateway can internally connect with any AWS service as shown in Figure 2-14.

        
          [image: API Gateway connectivity with AWS Services]
          Figure 2-14. API Gateway connectivity with AWS Services

        

        There are a few key considerations with API Gateway:

        
          	
            API Gateway supports both stateless and stateful APIs. 

            
              	
                REST and HTTP APIs are type of stateless APIs. These both support the same basic functionality and are HTTP based to support standard methods like GET, PUT, POST, etc. REST APIs support some additional features such as API keys, per-client rate/usage throttling, request validation etc.

              

              	
                WebSocket APIs are stateful which operate on the basis of WebSocket protocol with full duplex client-server communication.

              

            

          

          	
            API Gateway can support authentication via AWS IAM(Identity and Access Management) policies, Lambda authorizer functions and Amazon Cognito user pools.

          

          	
            API Gateway provides monitoring via CloudWatch and CloudTrail services.

          

          	
            API Gateway can avoid web exploits such as SQL injection via AWS Web Application Firewall(WAF) integration.

          

          	
            API Gateway can directly connect with AWS Services such as DynamoDB(DDB) via service APIs reducing intermediary infrastructure cost. Consider a scenario of retrieving DDB record basis partition key. The general implementation would be API Gateway invokes a Lambda which then connects with DDB to get data. API Gateway removes the need for AWS Lambda in between and can directly connect with DDB and serve responses. 

          

          	
            API Gateway doesn’t provide health checks for backend resources the way it is supported via ELB. 

          

          	
            API Gateway REST APIs timeout configuration lies between 50 milliseconds to 29 seconds, 30 seconds for HTTP APIs and 2 hrs connection duration for WebSocket API with idle timeout as 10 minutes.

          

          	
            API Gateway can be used for cross account/region integration—for example, AWS Lambda owned by different teams in different AWS accounts as per business requirements but served by central AWS account API Gateway.

          

          	
            API Gateway supports caching of endpoint’s responses which helps in reducing traffic to endpoint and improvement in latency. Time to Live(TTL) for caching can vary from 0(caching is disabled) to 3600 seconds with default as 300 seconds.

          

        

        API Gateway and Load Balancers help to abstract out backend infrastructure from customers. Consider a scenario where a customer’s requests hit API Gateway and further one of the microservice fetches data from S3, this operation is definitely latency intensive if the file size is large. The latency can be reduced by placing the content near to the customer’s location via the AWS Content Delivery Network service referred as CloudFront.

      

      
        CloudFront

        We briefly touched on two ways to manage food preparation and delivery operations for Cafe Delhi Heights, first one was food is prepared at a central location and delivered to smaller storefronts as per demand and second was to set up kitchens at all the locations.

        There is definitely an extra cost to set up kitchens at every location—another option is analyzing the food item demands and preparing the food in advance at a central location and storing it at smaller outlets ahead of time. This way the food is prepared at only a single place and the customers are served at all the outlets in the minimum time possible.

        In software systems, one key factor to improve customer’s experience is via serving the request with minimum latency. One potential solution is to replicate infrastructure in multiple AWS regions and utilize AWS local zones. This solution should only be accessed as a last resort for your business architecture and latency should not be the key factor to finalize it. Another cost effective solution is to cache the content near the customer’s location via a Content Delivery Network (CDN), as discussed in chapter 4. AWS CloudFront is CDN, a world-wide network of data centers called edge locations which helps to achieve low latency for serving both static and dynamic content in a secure way via AWS Shield, IAM, WAF and TLS certificates.

        There are a few things you need to keep in mind about CloudFront:

        
          	
            CloudFront can be used to serve both static and dynamic content over HTTP or WebSocket protocols. For example, static content placed in S3 buckets or dynamic content generated via any web service such as running on EC2 servers can be directly served via CloudFront as described in Figure 2-15.

          

          	
            CloudFront by default integrates with AWS Shield to help avoid DDoS attacks and additionally can be integrated with AWS WAF for application layer security.

          

          	
            CloudFront provides both encryption at rest and in transit. Data at edge locations is always stored in encrypted format and Amazon Certificate Manager or custom certificates can be used for in-transit traffic.

          

          	
            For ensuring user level access to content, CloudFront provides options for signed cookies, signed URLs and geo-restriction. 

          

        

        
          [image: Content Distribution via AWS CloudFront]
          Figure 2-15. Content Distribution via AWS CloudFront

        

      

      
        Conclusion

        We touched upon different types of AWS networking services and how these services enable customers to enable connectivity with AWS Cloud. AWS Cloud comes with a plethora of services and it’s really important to understand how a specific service will solve a problem statement.

        In the next chapter, we’ll explore different types of AWS Storage services such as DynamoDB, S3, Relational Databases and discuss how we can choose a service analyzing the business requirement in hand.

      

    


  About the Authors

  Jayanth Kumar is a software development manager at Amazon, where he is currently building large-scale software systems. Kumar is a millennial polymath, published poet, certified AWS Solutions Architect Professional, entrepreneur, engineering leader and an assistant professor. He earned his bachelor’s degree from IIT Bombay and his master’s degree from UCLA, where he studied Multi-Objective Deep Learning. He formerly held software engineering positions at SAP Germany and Silicon Valley. Later, as an entrepreneur, he held the positions of Head of Engineering at Goodhealth and Engineering Manager at Delhivery, an Indian unicorn company. He is always seeking a challenge and new opportunities for learning, and focuses on building robust mechanisms and systems that will stand the test of time.

  Mandeep is a software engineer at Jupiter. He fell in love with Cloud, AWS Technologies and Distributed Systems in the role of Big Data Cloud Support Associate at AWS and as a Software Engineer at Amazon. He supports the learning and development of others by sharing lessons on Cloud and Distributed Systems on his YouTube channel. He enjoys morning runs, weight lifting, cooking and spending time with his family in the serene ambience of his hometown.



OEBPS/Images/untitled_658775_05.png
Availability of two components in sequence
= Availability of component 1
+ Availability of component 2
=999 + 999 =
998001 ~ 99.8%





OEBPS/Images/untitled_658775_04.png
Node
El El crent

p Node 1 Node 2 — EI

Node 2

‘Sequential Parallel
‘System System





OEBPS/Images/untitled_658775_03.png
Availability %
_ (Total Time — Sum total of time system was down)
- Total Time

* 100





OEBPS/Images/math0103.png
Availability of 2 components in parallel
= 1 - Unavailability of both components
=1 — P(component 1going down) + P(component 2 going down)
=1~ (001+.001)
1 - 000001 = 999999 ~ 99.9999%





OEBPS/Images/untitled_658775_09.png
Mean time between failures (MTBF)
(Total Elapsed Time — Sum total of time system was down)

Total Number of Failures






OEBPS/Images/untitled_658775_08.png
Client 1

Client 2

Read/Write i
_ Peadiie,

Leaer 1

|
|
|
|
|
|
|
! Replcation
|

|

|

|

|

ReadWrite
e N
|
|
\ Leader2

Mult Leader System

Reaawile |
|
|
|
Client 1 !
e | Leader |
|
i eplication |
|
|
Read ! teplication |
e |
|
|
Client 2 i
| Folowers |
i |
Read | 1
|
A \
Clent i Folower2
. ,

Single Leader System





OEBPS/Images/math0105.png
. X Total Maintenance Time
Mean time to repair (MTTR) = 5o PEREERE T





OEBPS/Images/untitled_658775_07.png
Ciient

Requests

Ciient

Requests " on
| tailover
v

B B

Node 1 Node 2
(active) (active)

Active Active System

B B

Node 1 Node 2
(active) (passive)
Active Passive System





OEBPS/Images/untitled_658775_02.png
Node 2

Node 1

Client

return x=0
road
return x=2
Eventual Consistency

Node 2

Node 1

Client

|

replcation
process.

return x=2

Strong Consistency





OEBPS/Images/untitled_658775_01.png
AR AR

pary A Pary B ParyA Pary B
& sendromest | 1 sondroment
waitfor | rocess T chockfor 1osp0n58) byrogess
response | fequest N fequest

; J—
3 retum response. 1 working
H wmrosponse T
-
Synchvonous Asyneronous

Communication Communication





OEBPS/Images/untitled_752870_08.png
‘Amazon
Ve

!

= :
0\

e AWS Direct

‘Connect
Connection  frangit Gateway






OEBPS/Images/untitled_752870_09.png
©

Service Provider VPC

AWS.
Ieace | PrvateLink
endpoint
Gateway

endpoint

Amazon
DynamoDB

AWS Public endpoints






OEBPS/Images/untitled_752870_04.png
255 255 0 o

——

Out of 8 bits, 4 bits are used for network and rest 4 for host Id
So subnet mask =8 +8+4= 120






OEBPS/Images/untitled_752870_05.png
ab90:cd00:0000 ocef 0123:0000:211f:345d
T T T
Interface Id
Site Prefix Subnet ld






OEBPS/Images/untitled_752870_06.png
AWS

Region

1000016

Amazon
Ve

Amazon EC2
Web servers/
bastion host

‘Amazon RDS.

us-east-la

Amazon EC2

Network
access
control st

Network
access
control st

i route2

i route2

K

Router

Internef gatewa)

S

Internet






OEBPS/Images/untitled_752870_07.png
Amazon
Ve

‘Amazon
Ec2
Subnet 1

‘Amazon
RDS

Subnet2

vec1

fep———

L
{VPCT - Local

{ VPC2 - Peering

Main Route table

VPCL - Local

— &)

Peering

Amazon
Ve

&

‘Amazon
Ec2

VPC2- Lot

Subnet 2

vec2






OEBPS/Images/untitled_752870_01.png
—
Internet

‘Amazon ‘Amazon
Route 53 Cloudront

AWS Edge Locations

Connected via
[€ AwS prvate networ——>]

Availabiity Zone A

Avallabiity Zone B

AWS Giobal Sevices

AWS Region






OEBPS/Images/untitled_752870_02.png
ClassA

Class B

Class €

Byte 1 Byte 2 Byte3 Byte 4
— & T
Network d Hostld
T T
Network d Host d
L
+ T
Network d Host Id






OEBPS/Images/untitled_752870_03.png
11000000 10101000 00000000 00000001
192 168 0 1
Network Id Hostld
255 255 255 0
8 J
T
Subnet Mask
24bits

Network and subnet can be represented as 192.168.0.0124






OEBPS/Images/untitled_658775_14.png
| ] m

[ consistency |
AP Theorem

A4






OEBPS/Images/untitled_658775_13.png
CAP Theorem

Consistency
All nodes in the system
see the same data at

the same time





OEBPS/Images/cover.png
OREILLY"

Learning
System Design
on AWS

Building and Scaling Enterprise Solutions

Early
Release

RAW &
UNEDITED

Jayanth Kumar &
Mandeep Singh






OEBPS/Images/untitled_658775_12.png
Response Time = Latency + Processing Time





OEBPS/Images/untitled_658775_11.png





OEBPS/Images/untitled_752870_15.png
Internet

g]. &)

‘Amazon ‘Amazon
Route 53 Cloudront

AWS Edge Locations

[ PR

Connectef
“Aws prag
networl

B
Amazon
W
Aopictton
et
Balancer B
Amazon
W
Aws
> Giobal
hmezon
= Sevces

AWS Region






OEBPS/Images/untitled_752870_11.png
AWS

Region

oot
W weasa )<

i i ; ; .

; t} Network  {0.000-igwid | gateway
; access - :

; b control list

i Amazon EC2

i Webseners NAT gateway

i bastonhost

Private Subnet 10.01.0124

Sever  cluster

Private
Virtual

P nterface—
IR

QE@ L .
. §10.00.0736 - ocal
<>

Amazon EC2 Network | 0.0.0.000 - vgw-id Direct Customer
access Connect endpoint router
control ist Gateway :

Customer Data Centre

Direct Connect Location






OEBPS/Images/untitled_752870_12.png
21 Get oot domain of >
‘v google.com

S —
DN root name

sener
—
Avamohoge com |5 Get Rouess Name Sener,
) ‘geog! for www.google.com
o ons Routess Name Senver b Level
Resoher Dormain
01| Name Server

Routes3 Npme Server
fe————19011—— ]

161920.1.1- >

7] g00ple.com webpage——————————————wrgobgle.com

192.0.1.1 webserver





OEBPS/Images/untitled_752870_13.png
—
Internet

Source

-0z

Rule 1

ELB

Rule 2

Listener

E NG

‘Amazon
TS e

Oo—

1P Address,

Applcation
Load
Balancer

Destination Targets






OEBPS/Images/untitled_752870_14.png
Clients.

<«

%

‘Amazon API
Gateway

<>

BERE

‘Amazon
Ec2

amezon
OYmamGDS endponts  Services

Lambde Fugate
Puic  AWS

@—

Endpoint

On premise
Private.
applications





OEBPS/Images/untitled_752870_10.png
AWS

Region

Amazon EC2
Web servers/
bastion host

Amazon EC2

Bublic Subnet 10.0.0.0i24

isecurity}
rowp |
g Network
access
b control st

NAT gateway

Network
access
control st

<> 10000116 - iocal
{0000

L
! 10,0,0,0116 - ocal
1000000 vgwla
1000000 natlg

(T

n

Internet
gateway

N

Internet

On-prem

&)

VPN
gateway

DB cluster

VPN
Connection
Customer Data Centre






