

[image: Cover.png]

Real-World Edge Computing

Scale, secure, and succeed in the realm of edge computing with Open Horizon

Robert High

Sanjeev Gupta

[image:]

Real-World Edge Computing

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Sawant

Publishing Product Manager: Samriddhi Murarka

Book Project Manager: Prajakta Naik

Senior Editor: Kinnari Chohan

Technical Editor: Vidhisha Patidar

Copy Editor: Safis Editing

Proofreader: Kinnari Chohan

Indexer: Manju Arasan

Production Designer: Joshua Misquitta

DevRel Marketing Coordinator: Shrinidhi Manoharan

First published: June 2024

Production reference: 1131015

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83588-584-0

www.packtpub.com

To my wife, Cindy, for all the years she has put up with, and even encouraged, my passions. And to my kids, for turning out great despite my many distractions. I love you all.

– Rob High

This book would not have been possible without encouragement and sacrifice from my loving wife, Alka, who tirelessly let me pursue my dream and passion for building amazing things. And, of course, my two loving kids, who tinkered with me on my projects and, on occasion, lent a patient ear to my crazy ideas.

– Sanjeev Gupta

 Contributors

About the authors

Robert High retired in 2023, after 42 years at IBM. He is currently doing independent freelancing. Prior to his retirement, Rob was IBM Fellow, Vice President, and Chief Technology Officer (CTO) for IBM’s Edge Computing and Networking business. He had architecture and technical strategy responsibility for offerings that will enable a new generation of edge computing – where work is placed close to where data is produced, and actions are performed – and enterprise networking for connecting edge and hybrid Cloud locations. Prior to that assignment, he was the CTO for IBM Watson, responsible for setting the technical strategy and vision for IBM’s leadership in AI computing. High is recognized as a global technical leader, author, and evangelist, and was named an IBM Fellow in 2008 for his pioneering work in the field of SOA and his leadership on WebSphere.

Shout out to Egan Ford, David Booz, Bruce Potter, and the whole team that conceived and shepherded the idea that managing Edge computing deployments was going to be critical to the success of this emerging enterprise architecture.

Sanjeev Gupta, currently edge computing lead for IBM’s Software Networking division, commands a holistic view of why edge computing is needed and how a practical scalable edge solution can be put together with modern container technologies. Having spent nearly four decades in diverse industries ranging from semiconductor, networking, application business process development and automation, and his own multiple start-ups for mobile and IoT applications, he understands the cycle of the ever-evolving technological landscape. He has always been an engineer focused on turning hype into reality. Along the way, he has been encouraged by many colleagues and friends – in particular, Glen Darling, Joe Pearson, Dave Booz, and Carl Girouard, who entrusted him to make significant contributions to the Open Horizon edge computing platform and related networking products.

About the reviewer

Ryan Anderson is IBM’s Architect in Residence in San Francisco and Principal for IBM Global Industries - focused on Aviation and Telecommunications.

He attended Cambridge University, Judge Business School, earning an MBA focused on technology strategy, and previously served on the Linux Foundation Edge (LFEdge) Governing Board. His experience includes electrical engineering for tactical VHF communication systems; work in the energy sector on seismic telemetry equipment for oil exploration; and data science for highly secure unified communications systems. He holds more than 20 patents related to edge computing and other technologies.

Outside of work he enjoys running, orchard gardening, old cars, and is active in startup and VC communities.

David Booz is a software engineer with over 35 years of experience in commercial IT systems and is a founder of the LF Edge Open Horizon project. He has worked on operating systems up through middleware platforms like Websphere, databases and business process applications, and is currently working on simplifying network connectivity through IBM Hybrid Cloud Mesh.

Table of Contents

Preface

Part 1: Managing the Edge

1

Fundamentals of Edge Computing

Technical requirements

A primer on Edge computing

Why is Edge computing needed?

Applications of Edge computing

Quality inspection

POS

Worker safety

Store automation

Automated teller machines (ATMs)

Facilities inspection and the digital transformation of analog production

Site security and loss prevention

Generalizations – AI is the dominant workload at the Edge

The Edge computing ecosystem

Far Edge – Edge devices

Far Edge – Edge servers

Network and metro Edge

Cloud Edge

Perspectives on other ecosystem participants

Summary

2

Practicalities of Edge Computing

Technical requirements

Practical challenges with Edge computing

Designing and building Edge software

Application placement and life cycle management

Managing the scale

Autonomous and flexible operations

Security at the edge

Data privacy

Artificial intelligence at the Edge

Connectivity at the Edge

Organization considerations

CloudOps and DevOps roles and responsibilities

Cost-effective architecture

Decision latency

Skills at the Edge of business

Summary

3

Designing and Building Edge Software

Technical requirements

Sample Edge computing infrastructure

General-purpose processing architectures

Specialized processing architectures

The Linux platform

The container runtime

Roles and responsibilities in successful production Edge deployments

Software engineering

AI/ML training (data science)

Infrastructure provisioning

Software and model deployment

The best-practice enterprise architecture for Edge-native solutions

Start with Cloud-native

The separation of algorithmic logic and ML models

Conditional location independence

Autonomous deployment

Edge connectivity

Summary

4

Edge Container Platforms

Technical requirements

Open Container Initiative (OCI)

Docker

Docker engine

Docker Hub

Podman

Kubernetes

Summary

5

Application Placement and Life Cycle Management

Technical requirements

Deploying containers to the Edge

Introduction to Open Horizon and IEAM

The architecture of the management system

What is a service?

The components of the Management Hub

Agbot

Exchange

Switchboard

Model Manager

Secrets Manager

FDO

Organizations and tenants

More about the Edge Agent

Automatic Agent updates

An examination of service life cycles

An overview of patterns

Policy-based management is key to deployment at scale

Node Policies

Service Policies and Service Definitions

Model Policies

Deployment Policies

Policy-based placement negotiations

Summary

Part 2: Working on the Edge

6

Installing an Edge Agent on an Edge Node

Technical requirements

What is a Management Hub?

What is an Edge Agent?

Supported architectures and operating systems

Options to install the Edge Agent

Automated agent installation

Bulk agent installation

FDO-based agent installation

Preparing the working environment

Setting up a non-root user

Installing AIO Open Horizon Management Hub

Installing the Edge Agent on an Edge device

Summary

7

Registering an Edge Node

Technical requirements

What is Edge node registration?

Verifying the pre-condition

Verifying the current Edge node condition

Registering an Edge device node

Verifying the post-condition

Summary

8

Using the Open Horizon CLI and API

Technical requirements

Using the CLI

Commonly used CLIs

General commands

Edge node registration

Service development, publishing, and deployment

Pattern publishing

Deployment policy

Adding a Node policy using the Management Hub

Managing a local Edge Node using Node policy

User input for services

Deployment check

Model management system

APIs

Directly calling APIs

Summary

9

Autonomous and Flexible Management of Edge Services

Technical requirements

Developing an Open Horizon Service

Developing an Open Horizon Pattern

Publishing an Open Horizon Service and Pattern

Deploying a workload on an Edge device node using a pattern

Combining multiple services and deployments

Summary

10

Managing Edge Scale with Policy-Based Workload Placement

Technical requirements

Policy-based application workload placement

Developing a Service policy

Listing a Service policy

Policy-based Properties and Constraints

Creating a Service policy

Adding a Service policy

Viewing the Service policy’s details

Adding Service policies for other services

Removing a service policy

Developing a Deployment policy

Creating a Deployment policy

Adding a Deployment policy

Listing a Deployment policy

Adding Deployment policies for other services

Removing a Deployment policy

Developing a Node policy

Creating a Node policy

Applying a Node policy

Modifying the Node policy

Practicing Node policy modifications

Removing policies

Summary

Part 3: Advancing the Edge System

11

Machine Learning Workload and Model Deployment

Technical requirements

Use of MMS

MMS components

CSS

ESS

Model deployment policy metadata

Deploying a Service to consume a published model

Deploying the example ML service

Publishing a model file to an Edge node

Verifying model file delivery

Summary

12

Security at the Edge

Technical requirements

Security vulnerabilities at the Edge

Masquerading devices

Software tampering

Backdoor attacks

Replay attacks

Unauthorized channels

Hacking

Excessive privilege

Exploiting software vulnerabilities

Operating failure

System inconsistencies

How Open Horizon protects your Edge

Device attestation

Tamper resistance

Intrusion resistance

Replay resistance

Workload isolation

Blast protection

Role-based privileges

Secrets management

Failure resistance

Infrastructure currency

Workload signing

API keys, secrets, and the Vault

Summary

13

Network Connectivity at the Edge

Technical requirements

The shifting enterprise networking paradigm

The history of network management in connected systems

The classic paradigm is inherently contentious

The connected Edge

Connecting the Edge

How does the enterprise network work?

Operating the connected Edge

Deploying the connected Edge

Summary

Part 4: Edge Management in Practice

14

Building a Real-World Example Application

Technical requirements

A typical Edge device node

Machine inferencing pipeline

Services, Policies, and User Input

Services

Policies

User Input

Publishing Services and Deployment policies

Registering the Edge device node with an initial ML model

User Input

Registering the Edge device node

Verifying the application

Publishing an ML model using MMS

Summary

15

Troubleshooting at the Edge

Technical requirements

Answers to not-so-common questions

Document references

Edge Agent

Service publishing

Pattern-based service deployment

Model management system

Docker usage

Uninstalling Open Horizon Management Hub

Edge device agent verification

Summary

16

Follow-on Topics

Technical requirements

Fleet management

Don’t brick your Edge

Air-gapping your Edge

Edge and mobile computing

Building and maintaining a robust connected Edge

What about multi-access Edge Computing?

But wait, what is the network Edge?

Summary

17

Using the IBM Edge Application Manager Web UI

Technical requirements

Logging into the Home screen of IEAM

Navigating the main tabs of the UI

Exploring the Edge nodes in your organization

Node properties

Node constraints

Deployed services

Publishing and editing your services

Creating deployment policies to initiate a deployment of your service

Viewing and managing patterns

Summary

Index

Other Books You May Enjoy

Preface

Edge computing is a burgeoning field with vast potential to revolutionize industries, but its implementation still poses unique challenges. Authored by industry veterans Rob High and Sanjeev Gupta, this comprehensive guide bridges the gap between theory and practice, leveraging their combined many years of experience in Edge computing and hybrid cloud mesh solutions. Equipping software developers and DevOps teams with the knowledge and skills needed to navigate the complexities of deploying Edge solutions at scale in production environments, this book explores the foundational standards and introduces key factors that may impede scaling Edge solutions.

While Edge computing draws from the successes of cloud computing, crucial distinctions separate the two. High and Gupta elucidate these distinctions, empowering you to grasp the nuanced dynamics of Edge computing ecosystems. With a focus on leveraging LF Edge Open Horizon to overcome pitfalls and optimize performance, this book will help you confidently navigate the intricacies of constructing and deploying resilient Edge solutions in real-world production settings. We will round out your understanding by highlighting the distinction between the LF Edge Open Horizon open source project and the IBM Edge Application Manager product distribution of Open Horizon.

By the end of this book, you’ll understand essential success factors for building and deploying robust Edge solutions in real-world production settings, leveraging Open Horizon for scalable Edge deployments.

You will learn how to do the following:

	Identify common challenges in Edge projects

	Utilize LF Edge Open Horizon to address project issues

	Design and build Edge software using containerization platforms

	Deploy Edge services using pattern-based and policy-based approaches

	Leverage the Model Management Service for AI/ML workload deployment

	Integrate Edge computing with enterprise network connectivity

	Implement security best practices, including workload signing and secrets management

	Enhance team productivity in Edge project management

Who this book is for

This book is for software engineers and DevOps teams aiming to optimize their Edge solutions. Whether you’re already developing Edge solutions or planning to do so, this book equips you with insights to reduce risks and enhance viability, catering to various experience levels, and offering valuable guidance on the nuances between cloud and Edge computing.

What this book covers

Chapter 1, Fundamentals of Edge Computing, lays out the context and establishes the assumptions we make about its utility in commercial settings.

Chapter 2, Practicalities of Edge Computing, delves deeper into the architecture of Edge computing by focusing on the practical issues that have the potential to derail your Edge project and outlines the best practices for dealing with them.

Chapter 3, Designing and Building Edge Software, explores a sample Edge computing infrastructure, the roles and responsibilities for successful production deployments, and the best-practices architecture for Edge-native solutions.

Chapter 4, Edge Container Platforms, takes a closer look at the container platforms that are fundamental to hosting an Edge computing solution.

Chapter 5, Application Placement and Lifecycle Management, examines the practice of application placement and lifecycle management – arguably one of the most important issues in scaling a production Edge solution.

Chapter 6, Installing an Edge Agent on an Edge Node, gets your hands dirty installing an Open Horizon Management Hub and agent that are core to the autonomous management system key to production deployment.

Chapter 7, Register an Edge Node, takes you through the steps of registering your Edge node with the Open Horizon Management Hub.

Chapter 8, Using the Open Horizon CLI and API, takes a step back to provide guidance on the general use of the Open Horizon CLI and APIs.

Chapter 9, Autonomous and Flexible Management of Edge Services, dives into the details for developing and publishing an Edge service, creating a pattern, and then using that pattern to deploy your Edge service to your edge node.

Chapter 10, Managing Edge Scale with Policy-Based Workload Placement, transitions your focus to policy-based deployment – offering even greater flexibility and autonomy in deploying your solution at scale.

Chapter 11, Machine Learning Workload and Model Deployment, steps through the use of the Open Horizon Model Management System to control the deployment of your models for any AI/ML-based services that make up your Edge solution.

Chapter 12, Security at the Edge, explores the security challenges that can occur with Edge solutions, and how to leverage Open Horizon to address those concerns.

Chapter 13, Network Connectivity at the Edge, introduces the symbiotic relationship between Edge computing and network connectivity, and the emerging paradigm shift to DevSecNetOps.

Chapter 14, Building a Real-World Example Application, uses a single real-world example application to help tie together and cement the several capabilities that have been instructed in this book.

Chapter 15, Troubleshooting at the Edge, provides best practice guidance on testing and debugging production software at the Edge.

Chapter 16, Follow-On Topics, summarizes several topics that could not be covered in the scope of this book that you are encouraged to explore further on your own.

Chapter 17, Using the IBM Edge Application Manager Web UI, segues to IBM’s Edge Application Manager – product distribution of the LF Edge Open Horizon project – to detail the Web User Interface (UI) that it provides above and beyond the open source project on which it’s based.

To get the most out of this book

This book is geared to software practitioners who intend, or may have already started, to build and deploy production-ready Edge solutions. It is a good idea to have that solution in mind when reading this book. And, as software developers, we assume you understand the basics of writing and building software – that is, the use of common general-purpose languages, the use of the Make tool, and how to submit your software to a build pipeline.

We highly recommend reading, Edge Computing Patterns for Solution Architects by Joseph Pearson and Ashok Iyengar (ISBN 978-1805124061, Packt Publishing, Jan-2024) to gain more insight into the architecture patterns for a successful Edge computing solution.

Given their importance to production Edge solutions, we will be leveraging Docker and Linux in this book. There is little substitute for knowing Linux, but if you do not know Docker, it may be sufficient to know Podman or Kubernetes.

	
Software/hardware covered in the book

	
Operating system requirements

	
Docker (or Podman or Kubernetes)

	
Linux

	
Make

	

	
bash

	

	
Linux Foundation’s LF Edge Open Horizon

	

	
TensorFlow Lite (or PyTorch or OpenVino)

	

	
OpenCV

	

	
Python

	

You will be installing the Linux Foundation LF Edge Open Horizon project from https://github.com/open-horizon. Confirm that you have access to this site.

Ideally, you will install the Open Horizon Management Hub on one machine (representing your central point of control in your enterprise or cloud data center), and the Open Horizon agent on another machine (representing your Edge device).

For the Management Hub, you will need an x86 machine with at least 4 GB of RAM and 20 GB of storage space.

For the agent (Edge device), you will need an x86, ARM, PowerPC (ppc64le), or Mac (Intel or Silicon) with a minimum of 200 MB of RAM and 400 MB of storage space – plus whatever additional space your Edge application will require on that device.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Real-World-Edge-Computing. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The configstate field can be in three different states.”

A block of code is set as follows:

{
 "name": "",
 "label": "",
 "type": "",
 "defaultValue": ""
}
 Any command-line input or output is written as follows:

hzn key create <organisation-name> <your-email-id>
 Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “The Agent must be run as a Container on Docker when running on macOS.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts

Once you’ve read Real-World Edge Computing, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image:]

https://packt.link/free-ebook/9781835885840

2.	Submit your proof of purchase

3.	That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1: Managing the Edge

Building a successful production-quality Edge solution begins with an understanding of the fundamentals of the architecture and its purpose, the practical issues you must be aware of, and the best practices for how to organize and structure your project. Part 1 of this book will focus on the foundational considerations, including how to prepare the infrastructure of your Edge solution, and introduce you to the Linux Foundation LF Edge Open Horizon open source project for managing application placement and the lifecycle of your Edge services.

This part has the following chapters:

	Chapter 1, Fundamentals of Edge Computing

	Chapter 2, Practicalities of Edge Computing

	Chapter 3, Designing and Building Edge Software

	Chapter 4, Edge Container Platforms

	Chapter 5, Application Placement and Lifecycle Management

1

Fundamentals of Edge Computing

If you’ve chosen this book, chances are you already know what Edge computing is and why it’s important. That’s good because this book is about taking you to the next step – building and deploying an Edge project.

However, if you need a quick refresher on this, we’ll get you up to speed on that in a minute. Regardless, with some 15 billion connected devices already in place, and potentially growing to 35 billion or more over the next few years1, what is clear is that Edge computing is here and, for fundamental reasons that we will discuss throughout this book, is here to stay.

1 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

https://www.techtarget.com/searchcio/tip/Top-edge-computing-trends-to-watch-in-2020

To make a finer point on this, consider what is going on in the automotive industry. The car in your garage already likely has around 100 computer chips in it (plus or minus 50, depending on the age and model). Each chip is dedicated to a specific function in your car – one for controlling your windows, one for your anti-lock braking system, one for your transmission, and so forth. Many of these chips are based on custom application-specific integrated circuits (ASICs). There is virtually no resource sharing, little in the way of interconnectivity between them, and each has its own set of tools for programming them. It is difficult to update these systems, expensive to build them, and almost impossible to introduce new functionality without introducing even more chips and their corresponding modules.

With things such as vehicle safety and autonomous driving features, a new paradigm is needed. Many manufacturers are rethinking the architecture of the car by creating a centralized, general-purpose (but road-safe) computing complex in which many of these individual functions can be converged – sharing resources, creating stronger interconnectivity, and generalizing the approach to software updates and maintenance. Tesla is a prime example of this paradigm shift – enabling features to be fixed and improved, and new features to be introduced over the air.

These vehicles are transforming into Edge devices. Literally, hundreds of millions of Edge devices will be rolling down our roads in the next few years. This is just one of thousands of examples of the transformations that are occurring across virtually every industry sector.

The question isn’t whether to pursue Edge computing, but rather where and how to implement it. That is what this book is about.

In some respects, building out the infrastructure and applications for Edge computing will seem familiar. However, Edge computing can be different than what you’re used to in important ways. It is those differences that create stumbling blocks to achieving the benefits of Edge computing – that either stall Edge computing projects or create uncertainty about whether to implement it at all.

Our goal in this book is to walk you through the process of building Edge computing while pointing out the key challenges to be aware of and providing reliable methods for overcoming them consistently. We will reference key contemporary technologies, tools, and techniques for Edge construction.

As indicated previously, we need to ensure everyone is on the same page regarding what Edge computing is, and why it is important.

In this chapter, we’re going to cover the following main topics:

	A primer on Edge computing

	The application of Edge computing

	The Edge computing ecosystem

Technical requirements

To use this book, it will be helpful for you to be familiar with Linux, Docker, and optionally Kubernetes, as well as how to write software. Ideally, you should already have an Edge project in mind or perhaps one underway. If you need a refresher on what Edge computing is and why it’s important, we’ll provide that in the primer to follow. Otherwise, we presume you appreciate the importance of Edge computing in the modern commercial world. The rest of this book will rely on that appreciation.

A primer on Edge computing

Edge computing was born from the realization that compute capacity is distributed everywhere. It is in our cameras, monitors, cars, automated teller machines (ATMs), cash registers, the equipment on our factory floors and the back of the store, transformers and power switches in the utilities infrastructure, aircraft, rail infrastructure, oil and chemical refineries, drilling platforms, and office systems. Almost any equipment being used in the commercial realm is likely to have compute capacity built into its core, and even consumer products have increasingly incorporated some type of general-purpose CPU and possibly a GPU.

Driving this is the fact that any device whose core functionality is controlled by software is much more flexible and cheaper to improve. Classic products (before the introduction of software-enabled computing in their design) provided a certain function, but that functionality was fixed. You bought it, it did its job, and over time the value of that product diminished as new technologies and competing features evolved in other products.

Now, you can update how a cash register computes sales tax or what offers to present during check-out, when programmed with software. We’ve traditionally referred to these as embedded systems – products typically built with custom ASICs to enable just that level of flexibility.

When these products are connected over the internet, we refer to them as the Internet of Things (IoT). With embedded systems connected over the internet, we can update those devices to fix bugs, improve their performance, introduce new features, and increase their capabilities. In essence, we can future-proof equipment – enhancing their value over time simply by updating the software on the device.

However, more recently, the trend toward IoT has gotten a boost as low-cost, low-power, general-purpose computer chips have become available based on commodity x86, ARM, and, more recently, RISC-V architectures, and running the Linux operating system. The programming of this computing capacity can now tap into the broad ecosystem of software developers. You no longer need to hire and train software engineers with specialized knowledge of a proprietary chip, confined to using highly specialized programming languages and arcane software management tools. Developers can now program any of this modern equipment in C, Python, Golang, or any number of generally available and broadly known programming languages using common developer toolchains, all while employing the latest Agile development practices. Further, Linux has become the de facto and ubiquitous industrial-strength operating system that’s used in the Cloud-native computing world, making it ideally suited for use in Edge computing.

On top of that, irrespective of computerized, purpose-built devices found on the factory floor or in a retail store, it is also common to find general-purpose IT servers in data rooms in a factory or at the back of a store. Again, this general-purpose compute has enabled the exploitation of common software engineering techniques for programming these servers.

By some estimates, there are 7.1 million Cloud-native and 10.4 million container developers2 in the industry. When devices and servers at the Edge are built with general-purpose commodity processors and host the Linux operating system, we can tap into a robust community of engineers to create software for the Edge. This dramatically decreases the cost of designing and building this equipment, enhancing it with valuable functionality, and improves quality by leveraging the wealth of seasoned engineers in the software market.

2 https://www.cncf.io/blog/2022/05/18/slashdata-cloud-native-continues-to-grow-with-more-than-7-million-developers-worldwide/#:~:text=The%20global%20cloud%20native%20developer,million%20cloud%20native%20developers%20worldwide

Moreover, this generalization of the underlying infrastructure for devices and servers at the Edge enables enterprise organizations to have more direct control over how software running on this equipment should be implemented. You no longer need to rely on your equipment supplier to fix bugs or program the functionality you need to run your business.

So, what is Edge computing? Simply put, Edge computing is any compute that is available outside of traditional data centers or hyperscale Cloud centers. Edge computing exploits general-purpose computer architectures virtually always hosting the Linux operating system. Furthermore, Edge computing leverages Cloud-native developer skills, tools, and experiences to build application workloads for commercial (or consumer, although we won’t focus on that as much in this book) purposes. Finally, Edge computing is dominated by the use of hybrid-Cloud technologies such as Docker containers3 and Kubernetes. We’ll get into the rationale and implications of that later.

3	 More accurately, we mean Open Container Initiative (OCI)-compliant containers, but Docker was the original provider of that standard, and the industry largely refers to this as “Docker containers.”

Why is Edge computing needed?

Edge computing is motivated foremost by locality – enabling workloads to be distributed to where the actual work of industry is performed. This means in our factories, distribution centers, retail stores, offices, bank branches, farms, chemical and gas refineries, electrical utilities, mining, care delivery, and more – wherever business workers reside to perform their work. Consider that it is in these environments that most data is generated, whether that is from worker input, sensor data from the machines they work with, or other data collected from the work site itself. Furthermore, consider that it is in these locations that we act on that data – or more accurately, operate on the results of any data processing that is done on that data – and where we make decisions about what we’re doing or need to do next.

In a factory, sensor data is taken from digital gauges, cameras, counters, thermometers, pressure readers, RFID sensors, microphones (for audio data), GPS trackers, and quality-control measures. In a retail store, data is collected from scanners, refrigerator door sensors, ovens, HVAC systems, security cameras, and point-of-sale (POS) terminals. In distribution centers, data is collected from conveyors, stackers, sorters, materials handling carts, and docking stations. In agriculture, data is collected about ground moisture, pesticide and herbicide use, feed and fertilizer, and crop yield. These are just a few examples.

Workers are guided through the next steps in their processes, quality issues, capacity constraints, equipment failures, shift transitions, remediation activities, notifications, and thousands of other signals that inform their working decisions by processing that data.

Furthermore, automated processes, such as those you might find in a production line, can be equally dependent on this data processing. Traditionally, this type of automation was handled with Operations Technology (OT). For decades, equipment manufacturers such as Siemens, ABB, Nixdorf, Schneider, and others have built this type of processing into their OT equipment – their own proprietary embedded systems. As with other forms of legacy embedded systems, the underlying processing architecture, programming languages, and tools for controlling the OT logic were proprietary to the individual manufacturing equipment, or at least to a sub-genre of the industry. This led to what has classically been known as the OT-IT debate.

However, and especially due to the inclusion of more and more advanced analytics in this OT equipment, these manufacturers have begun to embrace modern IT technologies – even if they’re embedded under their OT covers. Doing so helps them tap into the broader pool of data scientists who have grown up using modern IT tools and techniques for building analytical algorithms. Now, it’s less about OT versus IT and more about how to use OT and IT together.

Localizing software workload that processes that data and generates input for work processes has several advantages, including the following:

	Reduced latency: Some processes require that you act very quickly. If you’re visually inspecting the quality of a part being stamped at 200 parts per minute, whether a weld has been performed properly, or detecting whether a person has gotten too close to an active robot, you only have a few milliseconds to do that analysis before you must decide whether to reject it or shut down the robot arm before it hits the person, or any other decision that needs to be made in real time. The round-trip time for a request to be transmitted to the Cloud and back is, on average, 100-500 milliseconds. The defective part will already be on to the next station before you know it is wrong. This latency is not an artifact of bad or inefficient networking infrastructure – it is simply that electrons travel at a finite speed and the distance between the work and the Cloud is too far. That type of processing must be performed locally, where the data is collected and decisions are carried out.

	Transmission costs: Some analytics, such as AI, require an enormous amount of data. For example, using visual inspection to assess the quality of a weld with a high-resolution camera can generate a 15 Mbps video stream. If you have hundreds of these cameras across a production line, you can easily saturate the network. This will result in either losing important information for that analysis or dramatically increasing your cost of networking to transmit all that data back up to the Cloud for analysis. In reality, you only need the one frame that indicates a poor weld contact, so all of that other network traffic is superfluous and an unnecessary overhead.

	Privacy: Some of the data that you collect to do analysis may inadvertently capture private or confidential information. For example, a camera being used to inspect a production step can also pick up background imagery of people walking by, or inventory being handled. This data can be very sensitive to either the person captured in the image or to the business if that knowledge can be used by competitors. Transmitting that data to the Cloud can increase the risk of it being subverted and used for nefarious purposes, and in some cases may even violate certain regulations.

	Resilience: Some processes are critical to the business. For example, if a grocery store in the United States is unable to process Electronic Benefits Transfer (EBT – also known as food stamps) transactions, they may be required to give that food away for free. Even though networking has gotten increasingly more reliable, outages do still occur on occasion. Sometimes, the street repair work being done in front of the store accidentally cuts the telecommunications line, or a tree falls on a telephone pole. If your POS transactions rely on the Cloud for completion, your business could be at risk in the rare case that such an outage does occur.

For all these reasons, Edge computing is an important element of any operating business. It enables your remote and distributed business locations to continue to operate autonomously, even when connectivity to your central or Cloud data center is disconnected for a certain period.

That does not mean that Cloud computing is going away. Just as we saw with mobile computing, the growth of Edge computing will drive more demand for cloud computing. The difference is that with Edge computing, business becomes more effective, safe, and reliable, and the use of cloud resources becomes more efficient. Edge and Cloud computing are symbiotic and enable a better balance of resources and business considerations.

Edge computing should not be an afterthought for any compute-oriented business. Any business undergoing digital transformation must architect and invest now to future-proof itself to avoid the aforementioned issues when it scales its business. A lesson learned from the past is when businesses regarded cybersecurity as an afterthought and hesitated to invest in it initially. We’re all aware of the consequences, with businesses ending up reacting to cyber threats rather than proactively addressing them.

Applications of Edge computing

To gain a better sense of why Edge computing is important, let’s examine a few of the use cases for where Edge computing is beneficial. These examples are all drawn from real-world experiences that we’ve been involved in with enterprise organizations.

Quality inspection

Production quality is traditionally performed randomly, and it’s checked by sampling a small portion of the manufactured product. Typically, inspecting everything is too time-consuming and costly. Performing periodic checks helps find a balance between the cost of inspection versus the cost of remediating an entire batch of quality issues that may creep into the production process.

However, computer vision has improved to the point that we can inspect every single item at every step of the process. A camera can be mounted on the production line, and a visual recognition model can be trained to see the difference between a good part and a problem, potentially rejecting the bad parts. The camera can be attached to a local server, or in many cases an intelligent camera can be loaded with that analytic directly, to perform quality recognition.

Typically, testing the quality of a weld is destructive. You must take the product off the line and either cut it open (and then later repair that cut) or put it in an X-ray machine to determine whether the weld was good. If you do find a problem, you need to backtrack to all the items since the last inspection to identify those affected by the same issue.

In one project, we connected an infrared (IR) camera to the arm of a welding robot. We trained the analytic to recognize the difference between a good weld and one with about 75 weld issues. We were able to determine whether a weld would be good in real time for every single weld. This dramatically reduced the cost of identifying weld problems, enabled real-time remediation, and increased overall quality.

POS

Historically, checking out of a store is mundane and routine. You read a barcode (or in the old days, the price tag) to get the cost of the product, bag the good, tally the total purchase, and collect the payment. However, retailers have come to understand the potential importance of this one reliable point of contact with clients to either promote other offers or engage them in other concerns.

Furthermore, as society has evolved to take on cashless transactions (a trend that was further accelerated by the COVID-19 pandemic) and a blend of in-person and online shopping, the need to perform the check-out process at dedicated points of sales (cash registers) in stores is lessening. Consequently, the distinction between a store associate who might help you with product selection and the cashier responsible for completing your purchase transaction is blurring.

The same tablet a clerk might carry to help you find a product or get more product information can also be used to check out your purchase. Even in a more traditional store setting, the POS interaction is evolving to become more self-service and to take place virtually anywhere in the store that is convenient for customers. In either case, the POS device is getting more intelligent and adaptable to a variety of changing conditions.

We have been involved in a project where we had to automate the drive-through order kiosk at a fast-food restaurant. Using voice recognition and sophisticated conversation models, we programmed the kiosk to interact with drivers in a noisy (roadside) environment, take their orders from the entire menu of products offered by that restaurant, and do so entirely verbally, with a high degree of accuracy. Given the interaction between the conversational system and the person placing the order, it is critical that the processing be performed locally to reduce latency and improve reliability.

Worker safety

Most commercial operations involve some level of hazard. Factories are full of robots and machines running at high speeds. Distribution centers have materials in constant motion. Retail stores have storage rooms with tall stacks of products, and replenishment tasks that involve lots of heavy lifting. Mines have explosives, drills, diggers, and haulers operating in confined spaces. Chemicals and utilities work with highly volatile, caustic, flammable, and even radioactive materials.

Workers are expected to wear personal protective equipment (PPE) such as bright vests, safety aprons, hardhats, fall protection harnesses, and exposure sensors to protect them from some of these hazards. In some operations, access to certain highly dangerous spaces is restricted to authorized personnel. Operating certain machinery is limited to only those who have been trained and certified with that equipment.

In the past, compliance with these expectations has often been left to supervisors to manage against Federal and State regulations. Mistakes are made and regulations are missed – often leading to accidents, injury, and even death.

IoT sensors, when combined with Edge computing, can be used to monitor workers to ensure they are wearing appropriate PPE, are not accessing unauthorized or restricted areas of the site, are warned of impending collisions, have vacated the blast zone of a mine, or even driving machine operations autonomously to limit the proximity of humans to those dangers.

Store automation

Retail stores have transitioned from mere places of purchase to places of experience. You don’t simply visit the grocery store to buy oranges; you go to touch the fruit, examine the fish, pair the wine and cheese, and bask in the smell of fresh-baked bread. You go to clothing stores to discover the latest fashions, feel the fabrics, see the colors, and test the fit. You go to hardware stores to learn about the latest home maintenance tips, materials, and tools. Retailers continue to seek out new ways of engaging their clients – to bring them deeper into the store, and to keep them coming back.

More often, retailers are supplementing these experiences with various forms of automation. Of course, price tags have been replaced with barcodes. But now, the shelf labels are being digitized. Digital displays draw your attention, sometimes personalized to your particular interests or past buying habits. Store aisles are monitored by cameras for spills, produce and other perishables are monitored for spoilage, and store shelves are monitored for stock outages.

All of these activities make heavy use of video recognition – cameras arrayed across the store coupled with computer vision to recognize buyer foot traffic, dwell time, inventory location, misplaced items, spillage, and spoilage – along with other sensor data for monitoring lighting, temperature, doors being left open, and produce misters.

All of this automation not only improves the efficiency of the store but frees store associates to do what they do best – engage their customers. However, that automation also requires localized compute capacity to reduce the amount of data being networked to the Cloud and to protect the privacy of all the customer imagery being picked up in that video data, not to mention providing real-time responsiveness and continuous operations in the case of a network outage.

Automated teller machines (ATMs)

ATMs (also known as self-service terminals) have employed embedded computing since their inception in the 1960s. By the 1980s, IBM, NCR, and Diebold machines all used an early version of the x86 architecture. However, more recently, these machines have been updated to host the Linux operating system and Docker containers. This trend is being extended into other self-service machines, such as ticketing machines at subway and train stations and boarding pass readers in airports. These machines have graduated to the world of Edge devices.

With containerized workloads, it is now easier than ever to keep these machines up to date with the latest versions of software, as well as to enhance the functionality of these machines to offer other services. For example, ATMs have been adapted to exchange cryptocurrencies, enable utility bill paying, as well as to provide offers for local entertainment venues.

Facilities inspection and the digital transformation of analog production

One of the most common and tedious tasks at any commercial facility is to ensure that it is in a safe and compliant condition. For example, safety regulations require that safety equipment such as fire extinguishers, water and gas plumbing, and electrical, lighting, and HVAC systems are inspected regularly. Traditionally, this required a facilities engineer to walk the site with a clipboard, checking all these systems and identifying any issues that needed to be addressed.

This task is prone to being de-prioritized for other daily operations issues, and because of its manual nature, it is subject to mistakes. Regardless, when a problem is identified, the engineer typically needs to bring that back to their desk and open a problem report along with a work order to have the problem corrected. If a fire extinguisher is missing or has lost pressure, it must be replaced, and an order must be put into the system. This assumes that the engineer didn’t forget important details about the problem or get distracted by another problem on their way back.

Robots such as the Boston Dynamics SPOT quadruped robot can be used to automate these tasks. The robot has an array of sensors – visual and infrared cameras, vibrometers, temperature, gas, and radiation detectors – along with onboard Edge computing (making it an Edge device) that can be used to provide local computer vision or other sensor analytics to identify a variety of different inspection tasks. It can be programmed to follow a particular path through the site and has the built-in ability to traverse a variety of terrain, navigate various obstacles, and recover from hazards that could interfere with its mission. It can be wirelessly connected to the local network and used to both document a problem and issue a work order to remediate it.

This same capability can also be adapted to enable SPOT to “read” analog gauges, signals, and valve positions, or to listen for various mechanical sounds (audio recognition) to assess the state of the equipment at a facility – using that to predict maintenance issues that have the potential to disrupt operations. IR cameras can be used to “see” through walls and closed wiring closets for heat signatures that indicate faulty or loose wiring.

These are not fictional but doable now with easily deployable AI and machine-learning-based techniques that are becoming integral parts of any Edge computing solution.

Site security and loss prevention

Protecting access to a property or identifying unauthorized removal of products or components are different versions of the same use case: detecting individuals entering or leaving and recognizing any items they may be carrying that could pose a problem.

A few years ago, a German bank was suffering a rash of break-ins to their ATMs. They had several hundred ATMs distributed in various locations across the city. Each ATM was in a vestibule and monitored with closed-circuit cameras from a central security center. But with so many ATMs to watch on a rotating cycle, the security center wasn’t aware of the break-in until after the criminals had already broken into the machine and fled. By the time the police were notified and arrived, they were too late.

The bank realized that if they were to put visual recognition in place, they could detect if someone came into the vestibule carrying a crowbar or an acetylene torch and put priority attention on that video. However, a high-definition digital camera can generate a 15 Mbps video stream. They only needed the one frame that showed the person entering and what they were carrying – the rest of the video feed was superfluous and an unnecessary overhead. They chose to install intelligent cameras and do the computer-vision processing directly on the camera – directing the video stream to the central security center only in the event of an alert.

Similar approaches can be taken for other cases – whether that’s monitoring unauthorized access to the back door of a factory or assessing whether a patron is leaving the store with products they haven’t paid for.

Generalizations – AI is the dominant workload at the Edge

This was just a small sampling of the use cases we have worked with for which Edge computing brings a significant advantage. In all these cases, the cost of hardware and software development was more than justified by the value it brought or the costs it saved. But they tend to have a similar pattern: collect data either through sensors or directly from the user, analyze that data for anomalies or object detection, and trigger an action.

More often, the needed analytics in Edge computing use cases leverage AI to recognize objects or patterns in the video image, acoustic recordings, vibration signature, or even conversational interactions with end users that are indicative of an anomaly, failure, or important event. This is often referred to in the industry as EdgeAI.

Some of these cases are super time-sensitive – requiring actions to be taken within milliseconds – and some are less so. Many of these require collecting large volumes of data – even if only a fraction of that data is relevant. Some of them risk inadvertently collecting sensitive or private information that should be redacted or at least protected in some way before being transmitted. A lot of the use cases we have been involved with make use of video data – either with connected cameras or more often with intelligent cameras that can process the video analytics directly on the camera itself.

Naturally, all these use cases benefit from Edge computing to either reduce latency, reduce the amount of data that must be transmitted to the Cloud protect personal or private information, or ensure the resilience of the business in the case of a network outage.

The Edge computing ecosystem

As stated previously, the Edge is anything outside of the traditional or Cloud data center. However, there are four relatively distinct tiers of locations where Edge computing can occur. We will discuss those here.

Far Edge – Edge devices

Much of our earlier discussion highlighted IoT – intelligent cameras, vehicles, OT embedded systems that have evolved to exploit general-purpose IT chips and software, POS registers, ATMs, smart refrigerators, and even high-end lighting fixtures. We refer to this entire class of purpose-built, intelligent equipment as Edge devices. You wouldn’t think of them as IT equipment, but because they’re built with commodity, general-purpose computing, and host the Linux operating system, they can be easily programmed with Cloud-native tools and technologies.

In general, any device (or server) that is co-located on the premises where business operations are performed – for instance, on the factory floor, distribution center, or retail store – is referred to as the far Edge. Because Edge devices are inherently built-for-purpose for the task they perform, they are virtually always located at the far Edge.

There are billions of these devices already on the market, and that is likely to grow substantially in the foreseeable future. They are, however, relatively small scale – in today’s terms, they will typically leverage a 2-4 core chip with a couple of GBs of memory, and maybe 100 GB of local storage. An Edge device is always capable of hosting the Docker (or a similar OCI-compliant) runtime, without the use of Kubernetes. They may or may not be battery-operated.

When you run applications on these devices, they can provide sub-millisecond latency to the user based on any data collected on the device – all due to the absence of any network connectivity between the data it collects, the processing it performs, and the results it conveys.

Mobile devices can also fall into this category. Note that an iOS or Android smartphone has most of the characteristics we’ve described here – purpose-built, implemented with ARM-based chips, small memory, and storage (although perhaps beefier than the low end of other Edge devices). The one thing they lack is support for Docker containers. We will discuss this further in Chapter 16, Follow-On Topics.

Far Edge – Edge servers

In addition to Edge devices co-located on-premises with the business operations, it is also common to find servers running in these environments – either directly on the floor or perhaps in data rooms at those sites. Edge servers can be recognized as IT equipment – perhaps a half-rack of compute blades, industrial PCs, or IT appliances. Many IT manufacturers offer servers for use in these types of environments.

Typically, Edge servers will consist of 32 or more cores, have 64 GB or more of memory, and several TBs of storage. Often, they consist of several blades that can be combined to provide a local miniature Cloud infrastructure, hosting the Kubernetes orchestration engine to support elastic resource utilization for multiple workloads.

Network and metro Edge

As network operators have sought new sources of more profitable revenue, they have turned to their vast array of central offices, regional data centers, and hub locations to provide general compute capacity. These network operators often refer to these as multi-access edge compute (MEC) services – or more precisely distributed-MEC or public-MEC services to differentiate them from dedicated-MEC or private-MEC services, which they may offer to host on their client’s premises. In essence, these MEC offerings operate like miniature Cloud computing services – providing elastic scalability over a smaller computing space. We generically refer to these as network Edge locations.

The main advantage these MEC services offer is that they’re located physically closer to where the business operates than the classic hyperscale Cloud providers. This proximity enables them to offer latencies in the 20-50 millisecond range. In many cases, this latency advantage is more than enough for many types of workloads, and when combined with the economic advantages of Cloud-like computing, it is an attractive compromise for the higher operating costs of a far-Edge device or server versus the higher latency of hyperscale Cloud computing.

As it turns out, the co-location (CoLo) vendors can offer some of the same advantages. In many cases, these vendors have data centers located in major metro locations and therefore can offer 15-25 millisecond latency to most business premises. These are generally referred to as metro Edge locations.

Cloud Edge

While we mostly distinguish Edge computing from Cloud computing, there are several similarities. For example, the same Cloud-native development principles – containerization, componentization, loose coupling, and others – apply to both Cloud and Edge computing. Interestingly, the need to make dynamic placement decisions at the Edge based on a combination of software, node, and deployment considerations is becoming increasingly important to Cloud computing – especially as institutions begin to leverage multiple different Cloud providers (including network and metro Edge providers, as discussed previously) in multiple locations with a variety of latency and economic condition.

As such, we also can think of different Cloud providers and locations as being a degenerate form of Edge computing. We refer to this as the Cloud Edge.

The following diagram depicts the various tiers of Edge computing, along with representative locations in which those tiers can be found. While each tier has its unique utility, placing Edge workloads further toward the far Edge has the advantage of progressively increasing operational resilience and efficiency and data privacy while decreasing the latency of user interactions (by reducing the latency of data movement back to the Cloud):

[image: Figure 1.1 – Edge tiers]

Figure 1.1 – Edge tiers

Perspectives on other ecosystem participants

A lot of media attention is given to the Cloud computing movement. The major hyperscale Cloud vendors tend to dominate the headlines, not to mention financial markets. However, this focus on Cloud providers also misrepresents the scope and scale of the Edge computing marketplace.

It is worth noting the range of hardware vendors in the Edge computing space. This begins with all of the OT vendors, such as ABB, Nixdorf, Schneider, and Siemens, , etc., who have evolved to incorporate general-purpose compute architectures – x86, ARM, and RISC-V in particular – while hosting the Linux operating system into their equipment. In doing so, these vendors have essentially transitioned from being pure-play OT vendors to being Edge device or server vendors.

Add to this all the industrial equipment providers and vehicle manufacturers who manufacture purpose-built equipment such as ATMs, POS terminals, PPE, forklifts, trucks and tractors, and even entire airplanes, but again, incorporating general-purpose compute within that equipment. Just because it doesn’t look like a computer doesn’t mean it isn’t using computing as a fundamental part of its design.

Automobile manufacturers traditionally consider themselves to be hardware vendors, deferring to the ECU suppliers such as Harmon, Bosch, Continental, and others for their embedded systems. These ECU vendors are trending toward leveraging general-purpose computing architectures and software development practices more aligned with Edge computing. More advanced automobile manufacturers, such as Volkswagen and Tesla, have come to understand their future relies on their ability to transform into a software vendor business.

Virtually all major computer manufacturers, including Dell, Lenovo, Intel, HP, Hitachi, Advantech, and Eurotech, have versions of their equipment that are targeted for use in industrial settings. Servers, industrial PCs, and compute appliances all are targeted for use in Edge computing scenarios.

Furthermore, a wide variety of software infrastructure and application vendors build applications intended for use in Edge computing. Debian, SuSe, and Ubuntu are common Linux distributions that can be found in the Edge computing space. Red Hat has introduced specific adaptations to its operating system in support of Edge computing. In addition, Avassa, ClearBlade, GK Software, Intel, IOTech Systems, Mimik, Qualcomm, Samsung, Scale Computing, Vantiq, Zededa, and many others are emerging as important platform vendors for Edge computing, along with companies such as Couchbase, Hazelcast, and Single Store, which enable data management systems for the Edge.

Summary

Edge computing is already an established aspect of most businesses’ IT architectures. Its utility is clear and there are compelling reasons for why the use of Edge computing is going to continue to grow rapidly going forward.

Edge computing is not going to replace Cloud computing, but it will complement the use of Cloud computing by making it more efficient and effective – leveraging it for its real power while enabling businesses to grow and respond quickly to changing market conditions at the Edge.

At this point, you should be up to speed or at least aligned with our way of thinking about why Edge computing is important and here to stay. You should have a good grasp of why the basic concepts and terminology we have learned are useful, know how Edge computing is being applied in different industries, and understand the different tiers and participants in the Edge ecosystem.

But that’s not to say that Edge computing is free of challenges. In the next chapter, we will survey the various practical issues that can limit the utility and scale of your Edge solution. We will use that survey to prepare you for how to successfully build and deploy a production Edge solution that will benefit your business.

2

Practicalities of Edge Computing

Even the most perfect architecture can be a disaster if you aren’t familiar with the engineering challenges that are introduced by that architecture or don’t have a basic understanding of how to address them. New York City is full of beautiful examples of architecture in its skyline, with buildings that blend form and function in elegant and durable ways. There are hundreds of iconic examples with a myriad of sizes, shapes, materials, utilities, and statements.

And yet, each of these embodied significant engineering issues – whether that’s finding an economic balance between working space versus service space; managing the distribution of power, water, and ventilation; incorporating gravity-defying cantilevers; or dissipating wind shear. The point is that none of these magnificent structures would exist unless engineers had learned to recognize the various challenges of building construction and developed best practices for dealing with them.

And the same principle applies to the architecture of Edge computing as well. We will use this chapter to introduce you to the most common and significant challenges you will encounter with Edge computing. We will identify the things that could derail a successful Edge solution in your production environment. We will also use this chapter to help set you up for the best practices that we will be covering in the rest of this book.

In this chapter, we’re going to cover the following main topics:

	Practical challenges with Edge computing

	Organization considerations

Technical requirements

As with the prior chapter, this chapter will depend on you having an appreciation for what Edge computing is about, and having a particular Edge solution in mind against which you can assess the challenges we will be covering in this chapter. We presume you know how to write software, have a basic background in Cloud computing practices, and have working experience with DevOps practices for deploying an application to an IT or Cloud production system.

Practical challenges with Edge computing

In many ways, building out an Edge computing capability is very similar to creating software applications in the Cloud. However, there are a few important differences that we will enumerate here.

Designing and building Edge software

If you are familiar with modern, Cloud-native, software engineering practices, you will have a good start on designing and building for the Edge. However, several aspects of those practices need to be highlighted.

Unlike the Cloud, which has “virtually infinite” resources, Edge computing environments are inherently constrained. Componentization and containerization are critical to your software design to keep software components as compact and lightweight as possible. You must minimize redundant logic – leveraging reusable microservices wherever possible. This applies to your code as well as the underlying operating system itself – hence the importance of containerization.

Furthermore, the Edge environment is subject to a high degree of dynamism, such as sensors that are enabled and disabled at different times, updates to hardware configuration and generations, and unplanned outages – consider a worker that accidentally kicks the power cord out of its socket – and the potential for network failures. You must design your software to fail and operate gracefully even when it cannot access the Cloud or other backend resources. You may have to implement that software to be aware of specific I/O sensors that are important to the function you are creating.

You may use all the standard software engineering, versioning, and testing practices you would use for any other cloud project. However, you must keep in mind that your versioning may have to reflect on the variations in the types of devices you intend to use at the Edge. For example, you may have different types of point-of-sale devices at different stores – perhaps intentionally, or just as an artifact of the different generations of hardware or layout you have at different stores. You can reflect on these differences in your versioning schema or you can include conditional logic that is activated by different environmental variables. However, you must be aware of the impact that can have on the software footprint.

You may also need to support the same software implementation but compiled for different processor architectures – x86 versus ARM versus RISC-V, for example. In this case, you must include multiple compilations in your build process.

Application placement and life cycle management

Unlike the cloud, the Edge is often composed of many individual devices and servers, with a high potential for variation from one site to another, and a high rate of change. You may have dumb cameras attached to an x86 server at some locations, and ARM-based intelligent cameras operating on their own in other locations. You may have some stores at an older generation of hardware, and other stores at more current generations. Machines may be updated with more memory, storage, GPUs, or other co-processors in the field. Different machines, even if they have the same architecture and configuration, may be dedicated to different purposes. Different geographies may have different localization or regulatory requirements that must be accounted for in the software you place in those locations.

Given all this diversity, your normal continuous integration/continuous deployment (CI/CD) processes must be reworked. The deployment process must consider what software needs to be placed where – factoring in differences in versions, differences in processor architecture, differences in machine configuration, as well as differences in available sensors, differences in purpose, differences in regulatory conditions, and the potential for local controls to affect those placement decisions.

Managing the scale

Edge projects often start small – building software that will be hosted on one or two Edge devices or servers. We might do this to prototype an idea or to become familiar with the processes. Inevitably, a production deployment of Edge computing will grow to include hundreds of servers and thousands, maybe even tens of thousands, of devices in many locations distributed across many geographies.

When the project is small, you might get by with handling the deployment manually, or even with some simple scripts. However, these approaches to managing deployment will fail as the project grows. You must consider the deployment system at the earliest stages of your project. Make that decision an integral part of your project design scope from the beginning.

Autonomous and flexible operations

Exacerbating the issues of dynamism and diversity is the fact that Edge computing almost always occurs where there are no “IT people.” The Edge happens in factories, distribution centers, banks, and stores miles from any IT data center or central organization. These systems are in the wild – exposed to the public, workers, contractors, and third parties that neither have the training nor the inclination to keep these systems operating correctly. They may even interfere with the equipment, or worse, maliciously subvert the system. You won’t have someone there to guard them, let alone install and keep the software up to date, and in some cases, the equipment cannot be physically reached after it is deployed in operation.

Furthermore, much of the Edge computing hardware that’s leveraged in these environments is headless – that is, there are no keyboards or displays attached to the equipment making it difficult to perform any sort of command entry or graphical user interface (GUI) actions at the machine itself.

Your management processes must account for how to get the operating system installed, apply patches, and update the firmware, not to mention getting your workloads deployed and kept up to date. They must be autonomous, self-healing, and respond flexibly to changing conditions.

Security at the edge

Your Edge workloads will likely leverage services in the Cloud – requiring access with API keys or other authorization credentials. Standard Cloud-native development practices already dictate that you must never hard-code API keys or other security credentials in your code. Rather, you should bind to credentials that are maintained in a local, secure vault.

On the other hand, in a dynamic and diverse environment where you may not know in advance exactly where your software or what version will be deployed, you also don’t want to put a vault in every Edge device or server with a complete copy of every key that any software that might end up at that location will need. Your deployment system must include a mechanism for securely distributing the secrets your workload will need to just those devices and servers where your workload is placed.

Since your workloads will be deployed in far-flung and remote locations, they will be transmitted over the network during deployment. You must protect against that software being tampered with during transmission.

Furthermore, since most Edge devices and servers have a communal purpose – to serve the operations of the business – they often won't have a single user. Software hosted at the Edge must rely on the authenticity of the device to be legitimate and used for authorized purposes, but without relying on a user to prove that veracity. Edge machines must be able to be self-attesting so that you know that your software is being deployed to the equipment you expect, and not some rogue equipment inserted into the network attempting to masquerade as something legitimate.

Finally, despite all the protections you’d expect to have in place at the Edge to ensure a secure hosting environment for your business workload, if someone manages to hack into a particular machine, you need to limit the potential damage they can cause.

Data privacy

The most common use cases for Edge computing involve collecting data from sensors, analyzing that data, and providing conclusions that can be applied to process decisions. Sensor data often doesn’t discriminate the things that matter from the things that are superfluous to their purpose.

An obvious example of this is a camera placed over a production line to perform quality checks. While that camera may be focused on the work in question, it is easy for that same camera to also pick up images of people walking around in the background, or inventory being handled in the field of view. Either way, that superfluous data can be highly sensitive – either exposing the personal information about the worker in view, what they’re doing, or the state of the business.

Moreover, transmitting that data to another location, even if unintentionally, may violate certain privacy regulations. For example, in Australia, a business may use facial recognition to provide customer personalization benefits, such as improving the conversation interaction with that customer resulting from that additional context. However, in Australia, it is illegal to transmit the facial data that’s used for that recognition outside of the store where it is collected.

Your workload design must account for this – by either redacting superfluous information or, if it is necessary to transmit, ensuring that data is encrypted properly before transmission.

Artificial intelligence at the Edge

Many use cases at the Edge involve the use of machine learning (ML) or artificial intelligence (AI)1 algorithms. One property of ML-based algorithms is that they are driven by training models – that is, weighted-value tables that help the algorithm recognize patterns and make predictions based on training data. The model is as important as the algorithm itself and even though the algorithmic logic and the model are distinct, there is a strong correlation between the structure of the algorithm and the structure of the model.

1	 These terms are often conflated and used interchangeably. More accurately, ML is a general algorithmic approach to analyzing data for patterns and making predictions. AI may use ML algorithms to analyze unstructured data representing various forms of human experience to exhibit a form of human-recognizable intelligence. That distinction is not significantly important to this book, so we will just follow the contemporary trend to use the AI and ML terms interchangeably to mean anything that depends on training models to inform the analysis.

Moreover, the resulting analysis is only as good as the data that was used to train the model. Often, the training data is constantly evolving. The quality and strength of the analysis are constantly being improved by adding new experiences to the data and re-training the model. In essence, the model has a life cycle that is generally much shorter than the algorithm.

For this reason, it is important to separate the algorithmic logic (placed in a container) from the model (placed in a separate data file) and deploy them together. However, to avoid re-deploying the same algorithmic logic every time you update the model, your deployment system must enable you to version the model and deploy it separately from the algorithmic logic container that depends on that model.

Connectivity at the Edge

While Edge devices and servers may need to operate for extended periods without connectivity back to the Cloud or other IT data centers, they will almost always connect at some point. Connectedness is an integral part of Edge computing. Connections between devices and servers at the Edge, and to intermediate servers in the network Edge, or back to the Cloud or IT data center, must be secure and managed. More importantly, given the dynamism and diversity outlined previously, connectivity must be secured between the individual workloads that are deployed at the Edge and the services they depend on.

Connectivity between one workload on an Edge server and a service in the Cloud does not necessarily mean connectivity between a different workload on that same server and a service in another cloud should be allowed. This is also relevant to the discussion in Security at the Edge about limiting the blast radius of an attack. The permissions for connecting a legitimate workload to the backend must not be something rogue software can hijack. Doing so can create a back door into the enterprise that could be exploited to compromise that business.

We use the term connected Edge to refer to the principle that Edge devices and servers are connected, at least for some of their time.

The connected Edge enables secure connectivity between individual workloads and the services they depend on. The connected Edge recognizes where workloads are deployed, and how that workload is migrated to different Edge nodes based on the dynamics of the environment and placement decisions for where to run that workload. The connected Edge automatically moves secure connectivity with the workload whenever that workload is migrated to a new location.

Multiple networking options may be available between an Edge location and the Cloud or IT data centers they depend on. A network operator may provide public or private broadband over copper or fiber links. The advent of 5G networks has introduced the potential for connecting over a wireless network. Private 5G makes this even more tenable for many institutions, even at a higher cost if doing so provides a higher level of isolation and avoids costly cabling. Other options, such as Wi-Fi 6, LoRaWAN, LPWA, Thread, and LTE-M are emerging with different trade-offs.

For a period, it was common for institutions to leverage satellite networking as a fallback in case their primary wired connectivity was disrupted. This is less prevalent now but is still part of our heritage, and with the acceleration of Low Earth Orbit (LEO) satellite internet options such as Starlink and Telesat coming online, this may become more prevalent across the industry.

The connected Edge recognizes that the underlying network between locations may have different types and levels of service quality – different levels of reliability, bandwidth, latency, security, and transmission costs. The connected Edge will automatically leverage whatever underlying network is available to it, based on policies that are specific to the workload and institution, and automatically load-balance, route around congestion and failures, and optimize for performance, cost, and quality of service requirements.

The connected Edge accommodates the fact that sometimes, the Edge is disconnected for long periods – either accidentally or intentionally.

Organization considerations

When embarking on an Edge project, it is important to consider how to structure it. We will outline some of the key considerations here.

CloudOps and DevOps roles and responsibilities

The CloudOps and DevOps roles for Edge computing are largely the same as they would be for any Cloud-native development effort. DevOps is generally responsible for creating and maintaining the workload software and building and operating the CI/CD pipeline for integration, testing, and delivery into production. CloudOps is responsible for deploying the infrastructure, allocating or creating the necessary resources for different projects, monitoring and optimizing capacity and availability, and ensuring adherence to compliance policies and regulations.

The following are some significant considerations for Edge computing:

	Infrastructure is highly distributed in remote locations, and generally resource-constrained.

	Devices may employ a variety of different processor architectures, including x86, ARM, and RISC-V.

	Infrastructure capacity and configuration may vary between locations.

	Specific infrastructure may be allocated for specific purposes in particular locations.

	The same software may run on one device or server, or many different devices and servers. Either way, the decision of where to place that software is made late in the CI/CD cycle and may be highly dynamic.

	The decision for where to place workloads may be further influenced by business operations managers and their schedules (in addition to classic CloudOps teams).

These considerations may have an impact on how DevOps and CloudOps are performed – primarily in terms of driving the need for automated placement and deployment processing, which can dynamically sense and respond to changing conditions in real time.

Cost-effective architecture

The primary driver of Cloud computing is the economic flexibility it provides for dynamically allocating and deallocating the availability of resources as utilization demands vary over time. The elasticity that Cloud computing provides stems from its ability to share resources over a large pool of compute capacity that gets dynamically suballocated (and re-allocated) for different users. In turn, this presumes a high degree of uniformity of those resources in that pool, the ability to virtualize those resources, and the assumption that software is written to be agnostic to physical dependencies.

Edge computing, on the other hand, tends to leverage specific compute resources at individual devices and servers that are both resource-constrained as well as highly diverse – both in terms of the processing architecture as well as resource configuration. The ability to elastically allocate and deallocate resources for a set of workloads is more limited. That doesn’t invalidate the utility of Edge computing; it just puts more emphasis on the importance of keeping software lightweight, portable to (compiled for) different processing architectures, and agnostic to being run on Edge devices versus Edge servers.

As with Cloud computing, the extent to which larger capacity servers can be provisioned at the Edge – either in the on-premises location of the production process or at a reasonably nearby network or metro Edge location, depending on the latency requirements of the use case – will provide a higher degree of flexibility and ability to exploit Cloud-like resource elasticity.

This should be combined with a system that makes automated placement decisions that factor in the operating constraints of the software itself – including, for example, the minimum resource and sensor requirements of the software, the processor architectures to which it has been compiled, localization priorities, and the latency requirements of the use cases that depend on that software.

Decision latency

The primary rationale for Edge computing is to address the needs of businesses to be responsive, protective, and resilient. Businesses must be able to operate at the speed of their markets lest they lose competitive advantage, or even the ability to stay alive. The ability to focus on and respond to market dynamics – changes in supply, quality issues, demand curves, economic impacts, even weather, and other external events – is paramount for many institutions.

That priority is reflected in the decisions these businesses make to invest in Edge computing. They need computing to remove latencies between the data collected and the decisions made on the line. These businesses need to ensure the cost of processing that data is kept low, their operating data is protected, and that they’re able to continue to operate even if their network connections are interrupted. Just as important, these businesses need to be able to update their operating processes frequently and quickly. They need their computing systems to enable the dynamism of their business – to both predict change as well as to enable them to respond quickly when it does change.

Edge computing is key to enabling this level of dynamism, but only if the underlying infrastructure is capable of rapid change. In turn, that requires a high degree of automation for things such as where to run different workloads, recovering from failure, and adjudicating the trade-offs between priorities and constraints – in other words, an automated, autonomous, workload placement and deployment system – especially where change must be driven faster than it can be achieved with human intervention at the levels of scale that most businesses operate.

Skills at the Edge of business

At the end of the day, almost no business operates with skilled IT personnel in their operating environments – that is, at the locations where they conduct their core business activity. That’s not to say that everyday factory, distribution center, and retail store workers don’t have IT skills. Almost everyone these days has a smartphone or tablet or uses a laptop or PC at home. Many people have learned how to boot their computer, install applications, run a word processor and spreadsheet, and access the web through a browser.

However, those basic skills are probably not sufficient for installing an operating system, diagnosing and reporting a software bug, applying a security patch, or restoring a corrupted database. Moreover, even if they have the right skills, they may not be certified by the IT team for employing them (lest any mistakes they make could result in shutting down business operations), and in any case, they are not likely to be motivated to spend their time troubleshooting the IT infrastructure in their location versus focusing on their job responsibilities to the operation of the business.

Consequently, Edge computing must operate autonomously and remotely. IT operations teams must be able to install firmware and operating system updates remotely. They need Edge computers to automatically restart themselves in safe mode if they fail. They need to be able to remotely diagnose a problem. They must be centrally managed to get the right software workloads running on the right machines at the right time.

This all requires the right infrastructure and processes for Edge computing that recognize the unique challenges at the Edge.

Summary

You should now appreciate the various key challenges you will face in building and deploying your Edge solution to production. We have summarized the issues of software design, placement and life cycle management, scale, autonomous operations, security, data privacy, AI, connectivity, and organizational responsibilities that are particular to Edge computing.

While we have used this chapter to lay the groundwork for what Edge computing is and the challenges you will face in your Edge deployment, the rest of this book will focus on teaching the best practices for how to build successful Edge computing projects. We will address the practicalities and organizational considerations for building Edge-native solutions to real business problems. We will also leverage the most accepted best practices of cloud-native development and show you how to adapt them to the unique issues of Edge computing.

This book is going to prepare you to be an Edge ninja.

Next, we will build on the fundamentals that were established in this and the prior chapter by focusing on a set of key areas of importance for a successful Edge deployment. We will outline a sample infrastructure typical of Edge computing and the significance that the Linux operating system has taken as a foundation. We will discuss various key roles and responsibilities and describe a preferred enterprise architecture. In particular, we will highlight the use of containers as the primary packaging technology for microservices at the Edge.

3

Designing and Building Edge Software

Having established the core assumptions we made about Edge computing in Chapter 1 and 2, we will now build on that by focusing on a set of key areas of importance for a successful Edge deployment.

General-purpose processing architectures, the Linux operating system, and containerized workloads are all fundamental to Edge computing. We will uncover the implications and rationale for those ingredients in this chapter. More importantly, we will put them in the context of the overall topological and architectural assumptions that underlie Edge computing. Finally, we will discuss the various roles and responsibilities we can find in successful production Edge deployments.

In this chapter, we’re going to cover the following main topics:

	Sample Edge computing infrastructure

	Roles and responsibilities in successful production Edge deployments

	The best-practice enterprise architecture for Edge-native solutions

Technical requirements

As with the rest of this book, this chapter will be better understood if you have skills in any of the general-purpose processing architectures based on x86 (Intel or AMD), ARM, and/or RISC-V, any of the common Linux operating system distributions, and any of the OCI-compliant container runtimes, such as Docker1, Podman2, or Kubernetes3.

1 https://www.docker.com/

2 https://podman.io/

3 https://kubernetes.io/

It is also helpful to have an Edge solution in mind – either something you are already working on or something that you are planning to build and deploy in your enterprise. If you don’t already have a project, then at least get familiar with the sample Edge solution that was discussed in Chapter 14, Building a Real-World Example Application, so that you have something to work with.

Sample Edge computing infrastructure

We’ve already established that general-purpose processing architectures, Linux, and containers are fundamental ingredients to Edge computing. Let’s put that into a little more context.

Recall the different tiers of Edge computing that we discussed in the The Edge computing ecosystem section in Chapter 1 – that is, far Edge – Edge devices, far Edge – Edge servers, network or metro Edge, and cloud Edge. In summary, the far Edge is the premises where your enterprise conducts its actual business. If you’re in retail, this could refer to your physical stores where customers make purchases, your warehouse or distribution center for storing and distributing products, or even the trucks you use for shipping those products. If you’re a manufacturer, the far Edge is the factory where you build products. If you’re a bank, it’s the branch offices and ATMs where customers do their banking.

Within that, an Edge device is any piece of equipment that has been built for a particular purpose, with its functionality controlled by software executing on a general-purpose processor inside that equipment. This could be a point-of-sale terminal, hand-held scanner, smart camera used to detect spillages, spoilage, or shrinkage, a digital display, such as a shelf label, refrigerator, HVAC controller, a re-stocking robot, or a smart shopping cart, just to name a few examples in the retail industry.

In the industrial sector, automated conveyor systems, forklifts, or other materials handling equipment, robotics, quality-inspection cameras, sorters, stackers, pumps, compressors, computerized numerical control (CNC) and other milling machines, safety and other personal protection equipment (PPE), and handheld terminals are all examples of Edge devices that may be found at the far Edge.

The following figure shows just a small sampling of various Edge devices on the market today. All of these devices have built-in general-purpose processors and run software to control their functions and behaviors:

[image: Figure 3.1 – A sampling of Edge devices available in the market today]

Figure 3.1 – A sampling of Edge devices available in the market today

Any of these Edge devices likely embed an ARM or RISC-V, or perhaps an x86 processor, running Linux4. The software running on these Edge devices is most often associated directly with the purpose of these devices. A POS device will have the software needed to check out a customer’s purchase, including applying the appropriate sales tax and discounts. The software on a shelf label display will indicate the product information and price at that location on the shelf. The software on a robot will control its movement and safety.

4 https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices#close-modal

However, in many of these cases, the open-endedness of the device architecture may lend itself to other functions as well. For example, the POS terminal may have been enhanced so that it provides specialized offers to the client at the point of sale or assists the sales associate in answering questions the customer may have about their product or how to better meet their needs.

A camera set up at an endcap in the store to monitor for stock outages may be updated to also provide security checks for anyone entering the stock room that happens to also be in that camera’s field of view.

Typically, a given site may have dozens, if not hundreds or even thousands, of Edge devices. Due to their numbers and as a consequence of their relatively targeted functional capabilities, Edge devices have comparatively small amount of compute capacity to help keep their per-unit costs low. An ARM or RISC-V processor with 1 GB of RAM and 16 GB of storage is prototypical of these devices5.

5	 At least at the time of writing. As with all things in the computer industry, processors continue to get cheaper, faster, and bigger over time.

Many of these devices are mobile – carried by workers on the floor, or attached to carts, mobile robotics, or materials-handling vehicles. Even if the device isn’t mobile, there may be so many of them that the cost of cabling network connectivity can be quite high, if not physically difficult. Consequently, it is common for these devices to be wirelessly connected to the local network. Up until recently, these devices would have been connected to a local Wi-Fi wireless access point. However, with the advent of 5G cellular, especially private 5G networks, it may be even more economical to connect through a telco-provider network.

Further, at the far Edge, you will likely find Edge servers. These might include store controllers in the retail industry, or programmable logic controllers (PLCs) in the industrial sectors. Again, keep in mind that most operational technology (OT) equipment manufacturers are now building their OT equipment using general-purpose IT processors and software within their equipment. The OT and IT worlds are melding. The tasks for building, maintaining, and enhancing OT systems can now be performed with common IT tools and methods.

Most Edge servers are built with x86 architecture processors from either Intel or AMD and again using Linux. In general, Edge servers are just common, off-the-shelf IT servers in a variety of form factors. Edge servers are sometimes placed in a machine room or closet at the far Edge site, perhaps in the manager’s office, or are put right on the production floor. Regardless, these locations are rarely “clean room” environments – certainly nothing equivalent to the raised-floor, air-conditioned, and dust-free environment that you would normally find in an enterprise or cloud data center.

Edge servers may be in industrially hardened cases to protect them from dust, vibration, and temperature extremes that may be a part of the unprotected environment where they are placed. Sometimes, they’re just in brick or pizza-box containers, standard tower cabinets, or perhaps a half or full computer rack. The size and capacity of the Edge servers at the far Edge will vary based on a variety of factors. Typically, there are trade-offs between the cost of the equipment, the space available at the far Edge location, and the amount of compute power needed at each location.

In some cases, an enterprise may be severely restricted on the amount of compute capacity they can place at the far Edge. Some telcos and CoLo vendors, such as Equinix, US Signal, and CoreSite, can provide an alternative that is good enough for many scenarios. These institutions offer Compute-as-a-Service in metro locations that may not be far from your far Edge location. You can think of these as miniature cloud data center locations, but they typically offer 15-50ms latencies from your business operations sites. We generally refer to these at network or metro Edge locations.

If your workloads can handle the slightly longer latencies associated with compute that may be several kilometers away, the network or metro Edge has the additional advantage that you may be able to share this compute capacity among all your business sites in that same general locale. A fast-food restaurant chain, for example, might share a single network or metro Edge service in the same city. This bundling of compute power will typically be offered by the service provider as an elastic Cloud service, thus providing some economies of scale. This may not be as cheap as hyperscale cloud computing, but it will do so with substantially less latency than having to go back to your Coud provider.

While Edge devices are typically network-connected to workloads hosted in Edge servers or perhaps in virtual servers in the network or metro Edge location, in either case, these will typically also be connected to even larger, more centralized services hosted in an enterprise or Cloud data center.

Thus, you can think of the combination of Edge devices, Edge servers, servers in the network or metro Edge, and the enterprise or Coud data center as a multi-tiered distributed computing system. All these tiers work collectively to host and operate the overall Edge solution.

General-purpose processing architectures

Previously, we stated that Edge computing is distinguished from earlier forms of embedded systems through its use of general-purpose processing architectures. By this, we mean things such as x86, ARM, and RISC-V architecture microprocessors6. This is important because it both reflects the economic shifts that are happening in this industry and empowers the entire community of software programmers and engineers to participate in delivering value to the very edges of their business – to the workers and salespeople on the front line of business.

6	 We should note that, while not commonly found in Edge solutions, Power (RISC) systems and System-Z (mainframe) computing architectures qualify as general-purpose architectures and may play a significant role in the topology of the Edge solution.

ARM-based chips dominate in the Edge device space – primarily because these processors inherently require less power and are cheaper to obtain in bulk quantities. RISC-V is vying to take on a prominent role in this space – a bid that took on more urgency when NVIDIA attempted to acquire ARM in 20207 – and is likely to appear more often in the future.

7 https://www.zdnet.com/article/nvidias-ownership-of-arm-could-drive-customers-to-risc-v-other-alternatives-if-not-careful-says-xilinx-ceo/

On the other hand, x86-based chips (primarily from Intel and AMD) dominate the Edge server and network- and metro Edge spaces.

In either case, compilers are readily available for all the major popular programming languages for any of these architectures. Any software can be made to run on any of these architectures simply by re-compiling.

Specialized processing architectures

Notwithstanding the trend toward using general-purpose architectures at the Edge, AI is driving interest in other processing architectures specialized for the unique computational demands of machine learning. The most prevalent of these specialized architectures is the graphical processing unit (GPU) architectures available from NVIDIA, AMD, Intel, Qualcomm, and others.

These chips are commonly provided as co-processors to the primary general-purpose CPU. Leveraging these co-processors for machine learning can be enabled by enabling drivers such as CUDA, AGS, OpenCL, OpenVINO, and others.

Over the next few years, we are likely to see a whole new generation of specialized chips for AI based on neuromorphic computing principles8. These chips promise to make Edge device computing even more powerful, requiring even less energy (thus benefiting battery life and overall operating cost), and opening up even more functional utility.

8	 See https://research.ibm.com/projects/neuromorphic-computing for more information about this emerging technology.

The Linux platform

In line with the trend of general-purpose processor architectures is the trend to use Linux in all these Edge (and Cloud) tiers. The rationale behind Linux is simple: its open source roots have enabled a vibrant community of contribution and safety that are working collectively to ensure the operating system is robust, secure, and optimal. Furthermore, it has been highly specialized to the needs of enterprise organizations – with just the right amount of functionality, and no more. Several vendors have licensed open source to deliver well-supported distributions, each further optimized for specific enterprise markets.

The key commercial Linux distributions in the Edge computing space include Red Hat, Ubuntu, and SUSE. In addition, there are several community-backed distributions, including Debian, Fedora, Arch, and Gentoo.

At one point, Microsoft tried to leverage Windows in the Edge computing space, but that proved to be too heavy-weight, too cumbersome, and too expensive to maintain and so has largely become irrelevant in the Edge computing space9. Vestiges of this effort are mostly being migrated to Linux now.

9 https://www.itprotoday.com/linux/rise-linux-edge-computing-and-iot

The container runtime

Nearly all deployments of Edge solutions now are based on containers that use an OCI-compliant10 container runtime such as Docker, Podman, or Kubernetes.

10 https://opencontainers.org/

Containers are important in the Edge because of the following reasons:

	You can run one or many containers in the same device or server with the confidence that each will remain isolated from the others. A failure in one container will not affect any other container running on that same device.

	Containers are secure. One container cannot communicate with any other container unless explicitly permitted and therefore cannot be subverted by other malicious containers.

	Containers are lightweight. While each container is allocated a private set of resources (isolated from any other container) the kernel services responsible for allocating those resources are virtualized over a common, shared operating system kernel. This isolation is achieved without having to duplicate the entire operating system in its own virtual space.

All of these attributes are key to enabling Edge devices and servers to operate efficiently in the highly resource-constrained environments that are typical at the far Edge.

The Docker runtime is the most common container runtime in Edge devices. The Docker runtime is itself lightweight. More importantly, Edge devices are typically dedicated to supporting a particular purpose associated with the device’s function. For example, cameras are typically used to perform visual activities, point-of-sale terminals are typically used to perform sales-related activities, and ATMs are typically used to handle banking transaction activities. These are not general-purpose IT servers. Their workloads are dedicated to the end user or purpose for that device and will not benefit from being clustered.

Other OCI-compliant container runtimes, such as Podman11, are also relevant to Edge devices – again because they offer the benefits of container support but without the overhead of cluster management. However, at this point, Podman is primarily only used with Red Hat Enterprise Linux (RHEL).

11 https://podman.io/

Edge servers in the far Edge, and other servers in the network or metro Edge, on the other hand, almost always run Kubernetes.

Using Kubernetes in these environments is important as it enables elastic scaling and clustering of the available resources across the many containers that may be hosted in these locations.

Roles and responsibilities in successful production Edge deployments

Like any enterprise IT project, Edge computing solutions are a team sport. It requires participation and collaboration between multiple roles. We recognize that different-sized projects will require different-sized teams – ranging from just one person for very small projects up to potentially several people for larger systems. For that reason, in this section, we won’t address the appropriate size of the team and instead focus on the range of roles and their responsibilities, irrespective of whether those roles are performed by a single person, or those roles are spread across a whole team of people.

Software engineering

Software is the lifeblood of any Edge solution. All your normal Cloud-native software development practices apply, so if you have those skills, you are already most of the way there. We will discuss the core differences between Cloud-native and Edge-native software development later in this chapter. For now, we will just focus on a couple of attributes of the software engineering role in an Edge solution.

Your Edge solution will likely want to either customize the functionality of your Edge devices or at least access sensors in your far Edge environment – the most common of these being video cameras from which you can leverage computer vision. If not a camera, you may need to access data from other sensors – including sound or voice, temperature, humidity, wind speed, pressure, moisture, ambient light, door position, vibration, weight, infrared (as a specific variation of vision), liquid and gas chemicals, electrical, electromagnetic radiation (that is, radio signals or other magnetic pulses), nuclear radiation, GPS, gravity, and so on. This list is only limited by your imagination and business needs.

This requires that you know how to access your device or sensor. Universally, any of the sensor data or devices that you want to use will come with a device driver or some other access-method software. The software engineer will be responsible for accessing these drivers and learning how to use them.

Of course, and as usual, the software engineer will need to know the requirements of the application that you’re trying to create, as well as how to translate those requirements into a system design while following the best practices of enterprise architecture. We’ll discuss these later in this chapter.

AI/ML training (data science)

The most common Edge solutions leverage AI or ML. This depends on whether a model has been trained to enable AI/ML to make predictions (that is, perform recognition tasks).

While the software engineer will be responsible for implementing an appropriate AI/ML algorithm for the task being performed by the solution, the data scientist is responsible for selecting an appropriate algorithm and training the model. This role complements the software engineer but is an entirely separate and distinct role. The selected algorithm will usually come with tools for training the model. These tools are intended to be used by the data scientist.

The most important responsibility of the data scientist is to collect and curate the data that will be used to train the model. For example, if the solution is intended to perform a visual analysis of a video camera feed to detect spillage in a factory or retail store, the data scientist will be responsible for collecting images of various spills with any of the different chemicals and quantities that are possible. These images should capture different situations – for example, with and without people in the area, different materials in the vicinity, different locations, and different lighting – anything that represents the variations that are likely to occur.

As a general rule, the more data (example images, in this case) the AI/ML is trained with, the more accurate it will become at detecting that situation. Often, getting the data is the hardest part of the task, so it is common that a solution will be deployed with a partially trained model, achieving a certain level of accuracy. That minimum threshold will vary depending on the business criteria of the solution, but with modern deep learning-based AI/ML algorithms, it is typical to expect around 85-95% accuracy from an initial model.

However, training is an ongoing process. Almost all business scenarios will want to improve the accuracy of the model over time. More importantly, accuracy will likely drift over time – meaning the accuracy that’s achieved at one point in time may degrade as conditions in the real world change. For example, the thing you are looking for in the image may get upgraded, its packaging might be changed, or the lighting conditions in which it occurs may shift.

For this reason, the AI/ML data scientist should expect to continue to collect data and perform re-training tasks periodically for the life of the solution.

Just as importantly, the use of AI/ML over the last decade has revealed how easy it is to introduce bias in the training data – either by inadvertently over-training for one situation or under-training for other situations that no one is thinking of. Fortunately, there are several good tools on the market to help identify bias in training data. See https://www.ibm.com/blog/shedding-light-on-ai-bias-with-real-world-examples/ for more information on this topic.

The data scientist is ultimately responsible for ensuring the model is free of bias and keeping the final model secured from malicious attempts to subvert the accuracy of its predictions.

Infrastructure provisioning

The Edge environment is unique in that it is, by definition, not confined to the four walls of a protected data center. Building out the infrastructure for Edge computing generally does not have the benefits of a raised floor, specialized power supplies, conditioned air, a loading dock for receiving IT equipment, and highly skilled IT professionals to set it up.

When you provision the Edge environment, you may contract with specialists to set up and mount things such as video cameras and other sensors, or other large, specialized equipment such as ATMs and POS terminals. But for the most part, the equipment will be set up by workers in those far Edge locations with very limited to no IT skills.

To provision the Edge servers in a retail store, it is likely the machines will be set up in advance at a central warehouse, and then bulk-shipped out to the store manager. Their primary task will be to unbox the server, plug it into a wall outlet and an Ethernet port, and power it on. The machine needs to be able to power up, connect to the enterprise network, authenticate itself, and start working, without any further intervention from local staff.

Setting up the machines before they’re sent out to ensure they can be authenticated and will boot up without further local intervention is the role of a provisioning engineer. In some sense, this is a specialization within the operations team.

Further, it is important to recognize that if something goes wrong in the field – even if it is months after the initial installation – there are no specialized IT skills in these locations to diagnose or remediate the problem. If a machine malfunctions and cannot connect to the network, that machine may be rendered inoperable – that is, bricked. The provisioning engineer needs to plan for how to handle these situations as well.

Software and model deployment

Once the hardware, alongside its operating system and network connectivity, has been established, you will need to load those devices along with the software and, if that software includes AI/ML algorithms, the trained models they depend on.

We’ve already discussed how models are constantly being updated and need for them to be pushed back out to where they’re being used. The software is the same. The point of using an Edge device or server is so that its functionality can be improved over time. Those updates may not happen as often as model updates, but they occur often nonetheless.

The task of deploying software is made more complex due to several factors, including the following:

	The same software can run on many different devices and servers and at different locations.

	Different devices and servers may use different processing architectures. The software compilation must match the processing architecture of the machine on which it will run.

	The software may have specific dependencies – such as any GPUs or other specialty processors it may depend on, access to certain sensors, or minimum resource requirements (RAM or storage, for example).

	Customizations might need to be made in specific locations or geographies. Store or factory managers may have the authority to condition certain functionality at their own site, or certain geopolitical regulations may require or even limit certain functionality, for example.

	Different sites may operate on different schedules, with different procedures, or with different operating demands or capacities. Different stores may have different floor spaces and several POS terminals, may or may not have a deli, or cater to a different set of product demands, for example.

	Different locations may have different generations of hardware, overall space, topological structure, or compute capacity.

	The economics of compute within the far Edge location versus access to the network or metro Edge service available in that geography may vary in different regions.

	The frequency of updates for different software applications, or the importance of some applications over others, may vary and may change over time.

The deployment manager is responsible for managing the deployment of software and AI/ML models to the Edge – including Edge devices and servers, as well as network or metro Edge servers – while factoring in all the variations that make this task complicated.

Fortunately, the LF Edge Open Horizon project is designed specifically to manage this complexity. The rest of this book will teach you how to use it to manage your deployments effectively.

Before we dive any further, we must establish some of the best practices for architecting Edge-native solutions.

The best-practice enterprise architecture for Edge-native solutions

Let’s discuss some of the best practices for architecting Edge-native solutions.

Start with Cloud-native

At its core, Edge-native is Cloud-native. Edge-native embraces all the principles that have made constructing modern Cloud solutions successful.

First and foremost is the principle of microservices – that is, to build each service as a component running as a container. Services are loosely coupled, compact, and self-contained. They are idempotent, isomorphic, reentrant, and restartable.

In addition, microservices should be created using Agile development practices to enable them to evolve rapidly to changing requirements. DevSecNetOps practices should also be applied to ensure they are secure, interconnected through the enterprise network, can be deployed using A/B scoping techniques, and rolled back rapidly when necessary.

Note that none of this is new. So, if you’re already practicing Cloud-native principles, you have a solid start.

The distinction between Cloud-native and Edge-native is relatively modest – mostly recognizing that the Edge is made up of both Edge devices and Edge servers, with the latter at both the far Edge as well as network or metro Edge locations.

As we discussed earlier in this chapter, there are a variety of considerations that will affect the location where different services may be deployed. These choices may vary from location to location, and over time. Therefore, Edge services must be constructed to be agnostic to their deployment location, including whether they are deployed in a single-instance Container runtime (such as Docker or Podman) or a multi-instance cluster using Kubernetes.

Since certain Edge services will have been written for specific sensors, any dependencies those services have on specific sensors or other resource types must be declared externally as part of the service metadata. We will discuss how to do this later in this chapter, and in more detail later in this book.

The separation of algorithmic logic and ML models

It is certainly technically feasible to include the logic of an analytics algorithm and the AI/ML model on which it depends in the same container, deployed as a single unit. However, given what we discussed earlier about how much more frequently models are updated, it is much better practice to separate the algorithmic logic from its model. The algorithmic logic should be included along with other programming artifacts of the Edge service in a container. The model, then, should be held in a separate file and stored in a model repository.

In this way, when a model is retrained it needs to be redeployed. The container that contains the algorithmic logic will remain in place and continue to operate even as the model is being updated. Thus, these updates can be made without disrupting the functioning of the device.

This separation has other benefits as it also allows the same algorithmic logic to be deployed in different devices or locations and conditioned with different versions of the model.

For example, if you are trying to use visual recognition to detect stack outages, you may have different cameras placed on different aisles – one on the cereal aisle and one on the pasta aisle, for example. Both cameras are trying to use the same basic logic – to determine if stock is low or out and to inform the stockers to replenish that stock. However, the camera on the cereal aisle can be conditioned with a model that has been trained to recognize different types of cereal, and the other camera can be conditioned with a model that’s been trained to recognize different types of pasta. By specializing each of these models to a smaller range of products, they will both be more compact, and their accuracy will be improved.

The Open Horizon deployment system understands this separation and will ensure the right model is deployed along with the container that depends on it. We’ll discuss this further in Chapter 11, AI/ML Workload and Model Deployment.

Conditional location independence

As discussed previously, Edge services should be developed so that they’re agnostic to where they’re run. This is key to enabling deployment decisions to be made very late in the cycle and updated as needed to accommodate a variety of changing conditions and priorities. We refer to this as location independence.

In a given store, you may have a set of smart cameras with an ARM chip and 2 GB of memory. For this store, it may make sense to deploy the inventory recognition service directly on the camera, sending outage alerts to the stock replenishment service hosted on a server running in the back of the store.

In another store, you may have a set of older “dumb” cameras, so you must run the video analytics services on a shared server in the store.

In yet another store, you may have the latest generation smart cameras but have an older generation server with limited capacity for running stock replenishment services. However, that store may be within the vicinity of a metro Edge where that stock replenishment service can be run on behalf of all the stores in that metro area.

Across these three different stores, your retail institution has different deployment requirements. Further, while the smart cameras may be running with an ARM processor architecture, the servers are likely running with an x86 processor architecture. More importantly, these stores may be updated over time with more (or, perhaps, less) capability, thus changing the deployment requirement over time. You should write your software so that it accommodates these variations. You should also compile your services for the range of different processor architectures on which you will potentially deploy those services.

That said, in practice, there will be limitations to this flexibility. Some of your services may have strong dependencies on specific sensors, or strict latency requirements that tightly constrain the physical distances between the sensor input and where the data is processed. The deployment manager must be informed of these constraints so that they can factor them into their deployment conditions. These constraints must be externally declared in metadata that the deployment manager can access.

We will discuss how Open Horizon codifies this metadata and makes use of it to automate deployment decisions in Chapter 10, Managing Edge Scale with Policy-Based Workload Placement.

Autonomous deployment

If this is your first Edge solution, you will likely begin by experimenting with one or two Edge devices and an Edge server in a single location. Deployment in these environments is relatively straightforward – perhaps you will SSH to your devices and servers and use Docker or Kubernetes commands to pull the container images from your favorite container repo, and then kick them off running.

These steps will get repetitive as you update and refine your service. It will be tempting to just automate these steps using a script as you continue your development cycle or begin to add a few more devices and servers.

However, you will find that as you get closer to production deployment – adding in hundreds or even thousands of devices at tens or hundreds of locations while factoring in all the different processor architectures and location variations, balancing out resource priorities, and more – the scripts you build for deployment will become increasingly complex and brittle. This will be exacerbated as you try to consider all the threats that can exist at the edge – the vulnerability of your software packages and models as they’re transmitted over the network, the potential for someone to spoof a particular device address, or to subvert any secrets (such as API keys) your services depend on.

And, of course, that’s all before changes start being made to the underlying infrastructure on which you depend at different locations at different times.

It is key that you automate the deployment process using a deployment manager such as Open Horizon. The deployment manager must operate autonomously to consider all the variations in your system and factor that against the constraints of your service implementations and operating priorities, and to do so in real time. You should incorporate this into your DevOps activities from day one so that it can grow with you as you scale out your solution during development, and then move that into your production environment.

Edge connectivity

As we have already established, the Edge is not contained in your enterprise or cloud data center. The Edge is out there – where you conduct your business. Nonetheless, the Edge needs to have connectivity to the services in your enterprise or cloud data center and be connected through your enterprise network.

What does that mean? Unless you can afford to build out a private network infrastructure – laying down cables and switches, along with IP management, traffic management, and outage recovery, or commissioning a telco to do that for you – you will need to put a virtual-private overlay network in place. A virtual-private overlay network is just software running at your far Edge and central enterprise or cloud data centers (and points in between if you’re leveraging network or metro Edge sites). This software creates encrypted tunnels that will protect and route your enterprise data traffic securely and optimally over whatever underlying public or private network infrastructure you have in place.

IBM’s Hybrid Cloud Mesh is a good example of a virtual-private overlay network12.

12 https://www.ibm.com/products/hybrid-cloud-mesh

However, note that a virtual private overlay network is made of software at the endpoints – that is, at the Edge and in the enterprise and/or cloud data centers. This software is essentially a set of gateway services that are deployed as containers. They are deployed to the Edge in the same way as any of your application containers – using Open Horizon.

There is a symbiotic relationship between the Edge and enterprise connectivity. Your enterprise connectivity (in the form of a virtual private overlay network) is deployed to the Edge like an application. The Edge depends on the virtual private overlay network to provide secure enterprise connectivity back to your data centers.

More importantly, virtual private overlay networks such as the IBM Hybrid Cloud Mesh operate efficiently by creating unique tunnels for each deployed application – including your Edge applications. These tunnels are created whenever an application shows up at a particular endpoint and destroyed when that application goes away from there. Thus, the autonomous deployment principle that we discussed previously should be integrated into your enterprise networking system to ensure it knows when applications are deployed and un-deployed from your Edge locations.

Summary

The success of deploying your Edge solution in production will be greatly enhanced if you understand the key roles, responsibilities, and proven enterprise architecture principles of other successful Edge projects. In this chapter, we provided you with some examples of the infrastructure typically employed in other Edge solutions. Then, we outlined the key roles and responsibilities that build on and extend those found in successful cloud-native solutions. Finally, we outlined the most important best-practice enterprise architecture principles that will be essential for you to factor into your project.

In the next chapter, we will delve deeper into the various container platforms that you may use in your Edge solution –Docker, Podman, and Kubernetes. We will explore their distinctions and the trade-offs each offers for different Edge computing situations.

4

Edge Container Platforms

As we stated previously, a core attribute of Edge computing is its use of Containers to encapsulate the application services you will deploy to the Edge – far Edge devices, servers, or servers in the network or metro Edge. We explained why this is key to Edge computing in Chapter 3, Designing and Building Edge Software.

A prerequisite to executing a Container is that it runs on a Container runtime, such as Docker, Podman, or Kubernetes. Any of these runtimes can host and execute an OCI-compliant Container. Nonetheless, some essential differences between each of these must be considered before building out your Edge infrastructure. We will discuss those differences and their trade-offs here.

In this chapter, we’re going to cover the following main topics:

	The Open Container Initiative (OCI)

	Docker

	Podman

	Kubernetes

Technical requirements

It is important to understand the basics of Container-based computing for this chapter. We recommend that you are familiar with what Docker1, Podman2, or Kubernetes3 are and their relevance to Containers. It is not necessary to be familiar with all of them, but knowing any one of them will help in this chapter.

1 https://www.docker.com/

2 https://podman.io/

3 https://kubernetes.io/

Important note

At the risk of getting ahead of ourselves, one of the key differentiations we will discuss in this chapter is the concept of locally collaborating groups of Containers. Given the often strong correlation between a Container and the microservice it contains, it is common that a set of Containers must be grouped into a logical set and managed as a unit. This grouping reflects the relatively tight relationship that these microservices have with each other, implying the need for secure communication between them in the local environment. It is important to be aware of this concept in your application design.

Open Container Initiative (OCI)

The Linux Foundation Open Container Initiative (OCI) can be summarized by this quote on its homepage4:

4 https://opencontainers.org/

The Open Container Initiative is an open governance structure for the express purpose of creating open industry standards around container formats and runtimes.

In essence, OCI specifies the standards around Containers and Container-runtimes. They specify three major things related to Containers:

	The Container runtime (aka runtime-spec) – the things the runtime must do and the interfaces it must support

	The Container image (aka image-spec) – the structure of the Container image produced in your build chain that you would write to disk and distribute to the Container runtime

	The Container distribution protocol (aka distribution-spec) – the protocol used to deliver a Container to a particular runtime instance

Important note

The Container industry tends to refer to the act of transmitting a Container from a registry to the runtime instance where it will run as deployment. As you will see, starting in this chapter, there are other things that need to be considered, including not just getting the Container to the instance but also deciding where to place it, and when. For the remainder of this book, we will use the term deployment to refer to that broader definition, inclusive of the key decision mechanisms for where and when to place a given Container.

These specifications are essential to ensure that compliant Containers are portable across families of all major operating systems. Note that this portability is limited only to operating system portability. It is not relevant to processing architecture differences, and in fact, Containers (actually, the code contained within the Container) must be compiled to the specific processor architecture to which it will be run.

The reference implementation of the OCI runtime-spec is runc, although there are others.

The OCI runtime-spec is a low-level spec whose functionality is confined to just the minimum required to enable virtualization of the operating system and portability across operating systems. Most Container platforms encapsulate runc (or other compliant implementations) in higher-level runtime environments, such as containerd and CRI-O. These higher-level runtime environments complete the picture for Container life cycles, supervision, and so on.

[image: Figure 4.1 – Container runtime architecture for Docker and Kubernetes]

Figure 4.1 – Container runtime architecture for Docker and Kubernetes

In particular, it is important to note that the OCI runtime spec does not specify the details of how Containers communicate with each other. This obviously could be a problem for Container portability in a case where a Container has been implemented with a dependence on other Containerized microservices.

Fortunately, the platforms that we will discuss next provide consistent, secure mechanisms for inter-Container communication, thus preserving the goal of enabling the portability of Containers.

Docker

The Docker organization was the primary contributor to the OCI specs. They were early participants in the Container movement and quickly forged partnerships that elevated their platform as a de facto standard. However, to ensure a vibrant community around the idea of Container architectures, they joined with other industry leaders, including Red Hat (2013), Microsoft, Amazon, IBM (2014), and Oracle (2015), to formalize the utility of Containers in the OCI at Linux Foundation.

As a company, Docker has manifested its own set of Container-related products. These include the following:

	Docker Engine – a high-level Container runtime platform, incorporating a fully OCI-compliant low-level Container runtime (specifically, runc).

	Docker Hub – a Cloud-based registry to centrally store Containers to be distributed and run on any (OCI-compliant) Container runtime. The Docker Hub implements the OCI distribution-spec.

	Docker Desktop – a GUI-based tool to assist developers to build and run Containerized applications.

Of these, we will focus most of our attention on the Docker Engine.

Docker engine

The Docker Engine is the runtime to host containerized images on your Edge device. It is composed of three main elements5 – the docker CLI, which acts as a client to the dockerd daemon that processes CLI requests; containerd, which orchestrates the operation of Containers; and runc, which is the OCI-compliant low-level Container runtime that virtualizes the operating system resources demanded by the Container6. Together, these are the most basic runtimes for hosting Containers.

5 https://docs.docker.com/engine/

6	 Both docker and containerd can be configured to use, respectively, other plug-compatible container orchestration or container runtime alternatives.

dockerd and containerd are daemon processes that are started automatically when your machine starts, and they must remain running continuously for as long as your machine is up.

The Docker Engine will consume on the order of 60 MB of memory (not including whatever you need for each of your Containers). What that means is that assuming you only intend to run a couple of small, containerized workloads, you can easily use Docker to host Containers on a small Edge device – a 32-bit or 64-bit processor with 2 cores, 1 GB of RAM, and 4 GB of storage, for example.

Of course, Docker can be used with many larger Containers as well as on larger Edge devices. Each Container will remain isolated from each other. They are allocated their own private storage that will automatically be eliminated whenever that Container is removed from a device.

Each Container can be obtained from different Container registries – that is, sourced from different DevOps chains and/or software vendors.

Conversely, containerd (the container orchestration engine supplied with Docker Engine) simply manages to get Containers created, configured, started, and stopped (the latter two it does through runc). In addition, Docker Engine is responsible for setting up secure inter-container communication where needed. This is the least level of functionality you need to run multiple containers on the same machine while maintaining strong isolation between them.

While that, by itself, does not provide elastic scaling of the compute resources or clustering over multiple server machines, it is sufficient for nearly all Edge device needs.

With one exception, Docker Engine is ideal for use with Edge devices where the workloads you need to run are directly related to the functionality or placement of that device. While you may have some functionality performing disparate tasks, it is likely those workloads are sufficiently interrelated to justify hosting them on the same machine, sharing a common set of compute resources. Without support for elastic scaling or clustering, there is a presumption that these workloads are respectful of the limited compute resource available to that device.

While Docker Engine does provide a mechanism to enable secure communication between co-located Containers, it does not have a mechanism to declare which of those Containers are intended to be part of a collaborating group. It simply offers CLIs in which an administrator can configure the intercommunication between those Containers, presuming the administrator understands which are intended to be enabled in that way.

Fortunately, Open Horizon recognizes this need and provides an abstraction to group collaborating Containers – referred to as dependent services. We will cover that further in Chapter 5, Application Placement and Life Cycle Management.

Docker Hub

For completeness, we should also bring your attention to Docker Hub. Docker Hub is a registry for storing Container images. Docker Hub is not a requirement to use the Docker Engine; nonetheless, you will need a registry somewhere for any Containers you create.

In many cases, your enterprise will select a preferred Container registry. Perhaps they have already selected a registry that is available on your corporate hyperscale Cloud provider or provisioned one in your private Cloud data center, such as Amazon Elastic Container Registry (ECR), Azure Container Registry, IBM Cloud Container Registry, or the Red Hat Quay registry. However, if one has not been selected for you already, Docker Hub is a popular alternative.

More importantly, since many other software vendors have selected Docker Hub for themselves, you may find readily available open source or commercial Containers on Docker Hub7 that can help jump-start your Edge project.

7 https://hub.docker.com/

Tip

You may also see the term Container repository associated with Container registries. These are subtly different. A Container repository is a collection of Container images that have the same name but are distinguished by their tags. You could create a Container repository of the same service that has been compiled for different processor architectures, for example.

A Container registry, then, is a place where you can store and catalog these Container repositories.

Podman

We mentioned earlier that there is an exception when using Docker Engine on your Edge devices. Note that Docker Engine is not available for use on Red Hat Enterprise Linux (RHEL), except for on s390x machines (aka the zOS mainframe, which, arguably, stretches the definition of an Edge device) 8.

8 https://docs.docker.com/engine/install/

Red Hat includes Podman in its Linux OS distribution9 subscription. Podman is OCI-compliant and, thus, can host any of your Containers, just like Docker (and Kubernetes).

9 https://hyperscience.zendesk.com/hc/en-us/articles/6203576198029-Configuring-Podman-in-RHEL-8

Podman introduces some interesting and potentially important differences, including that it implements a fork and exec (aka daemonless) architecture and always runs rootless.

Conversely, RHEL is a relatively large operating system. While it is derived from the same standard open source Linux kernel as other Linux OSes, it has a number of additional features that are deemed important to enterprise IT organizations. Consequently, a minimum configuration for RHEL is typically 4 GB of RAM and 20 GB of storage.

So, if you are running RHEL on your Edge device, you must run Podman. And if the daemonless architecture is important to you, then you should consider Podman even on other OSes. Just be aware that LF Edge Open Horizon may or may not be certified to work with Podman on all OSes.

Unlike Docker Engine, Podman does have a mechanism to declare which Containers are part of a locally collaborating group. These are referred to as Pods, hence the name Podman, matching the same concept available in Kubernetes.

Kubernetes

If you’ve done any software development for Cloud-native applications, you are undoubtedly already familiar with Kubernetes. Kubernetes is a container runtime. It is key to Cloud computing because of the way that it manages Container resources, in the context of the workload deployed to the Cloud.

Most applications running in the Cloud are microservices responding to requests coming from other clients – most notably, mobile phones and now Edge devices, or perhaps other IT or Cloud data centers. The rate at which requests come from different clients into different microservices will vary throughout the day, depending on the nature of that application and the way it gets used.

For example, a news-related service may see significant demand in the early morning, at lunch, and then again right after everyone finishes work, when people are least likely to be focused solely on their job responsibilities. Services related to your enterprise core business may see a fairly steady demand throughout the workday and then taper off at night. Accounting-related services may see their peak demand at the beginning and end of each workweek, with a jump at the end of each month and a massive surge at the end of the quarter and the year.

Dedicating the maximum amount of compute capacity (processor, memory, and storage) for every one of your services all the time doesn’t make sense, given that for any particular service there will likely be long periods of time where those services are under-utilized. Kubernetes will orchestrate the amount of resource allocated to a given resource based on its current level of demand, sharing the unused resource with other services that experience higher demand. This is known as elastic scaling.

Likewise, since some services will experience demands that require resources that exceed a single machine, and because no service should be subject to a single point of failure if a particular machine fails, Kubernetes will distribute the processing of a service’s current demand over two or more machines. This is known as clustering.

Both elastic scaling and clustering are essential to Cloud-based services. Also, they can be very important to Edge servers at the far Edge, and other servers in the network or metro Edge. Kubernetes invariably should be your Container runtime of choice in the Edge server at the far Edge, and in any infrastructure that you deploy at the network or metro Edge.

Summary

Given the importance of containerization in Edge computing, you will need a Container runtime in your Edge devices and servers. Docker’s lightweight footprint makes it ideal for Edge devices, where the set of Containers you host there will be related to the purpose and location of that device, and where the device functionality does not benefit from elastic scaling or clustering.

Podman is an alternative to Docker for some devices and is required if you use RHEL as the OS on your Edge device.

Kubernetes brings support for elastic scaling and clustering, which is important for servers at the far Edge and network or metro Edge.

In the next chapter, we will delve into how the LF Edge Open Horizon project will help you manage the placement of workloads across Edge devices and servers that host any of these Container runtimes.

5

Application Placement and Life Cycle Management

Now that we’ve covered the foundational concepts and attributes of Edge computing, we will take a deeper look at the practice of application placement and life cycle management – arguably one of the most important issues in scaling a production Edge solution. We’ll introduce the Linux Foundation LF Edge Open Horizon project and its commercial distribution provided with IBM Edge Application Manager (IEAM). These will be leveraged heavily in the remainder of this book to assist with reducing the complexities of application placement and life cycle management that can otherwise derail a successful deployment.

In this chapter, we’re going to cover the following main topics:

	Deploying containers to the Edge

	Introduction to Open Horizon and IEAM

	The architecture of the management system

	The components of the Management Hub

	More about the Edge Agent

	An examination of service life cycles

	An overview of patterns

	Policy-based management is key to deployment at scale

Technical requirements

This chapter is going to focus on how the LF Edge Open Horizon, and by extension IEAM, help solve the problem of placing containerized microservices on the Edge – getting the right service to the right place at the right time. To that end, you must have a particular Edge topology, infrastructure, and set of application services in mind that you can use to think about the capabilities we will be discussing here. We recommend that you follow the constructs outlined in the previous chapters as you consider your project.

For this chapter, we will leverage a scenario involving POS terminals and intelligent cameras as edge devices as examples. Nonetheless, the principles can be applied to virtually any industry scenario.

Deploying containers to the Edge

As mentioned in the previous chapter, transferring your container image – what the Cloud industry typically refers to as deployment – is only part of the story when it comes to getting containerized microservices to the Edge. Recall the discussion in the Software and model deployment section of Chapter 3 stating the list of factors that can complicate the choice of where and when to place containers (and AI/ML models) at the Edge. To summarize, those factors include the following:

	The same software on different devices, servers, and locations

	Differences in CPU architecture on different devices and servers

	Specific co-processor and I/O dependencies

	Localized customization requirements

	Variations in operating schedules and procedures

	Differences in hardware generation, capacity, and topology

	Economic trade-offs between the far Edge and network or metro Edge in different geographies

	Differences in life cycles and priorities

	Changes over time for different services

Traditional DevOps practices for statically selecting a location to deploy software that applies to large, centralized cloud locations are far too rigid for use in Edge deployments. You need to condition placement decisions based on any or all of the aforementioned factors (or others not mentioned), and the process of evaluating those conditions needs to be dynamic and continuous.

That level of condition assessment is overwhelming for human operators, even for only one application set of services. This becomes even more extreme when you consider doing it for the many applications you need to run your business.

The LF Edge Open Horizon project was designed specifically to handle this complexity by automating the process of evaluating the various conditions that are important to you, the real-time changes occurring in your infrastructure, and updates to your application over time so that you can make choices for an optimal solution based on your priorities.

Introduction to Open Horizon and IEAM

Open Horizon is a community-based open source project at the Linux Foundation within their LF Edge1 umbrella organization. To quote the project’s introduction page, Open Horizon “...enables autonomous management of applications deployed to distributed webscale fleets of Edge computing nodes and devices without requiring on-premises administrators.” Note the focus on webscale fleets. It is designed to scale with your business.

1 https://lfedge.org/

At the time of writing, Open Horizon is in Stage 2 of maturity. This means it has a growing community of contributors, has an established project leadership structure, well-defined governance, and has active collaboration with other LF Edge projects. In particular, Open Horizon incorporates the FIDO Device Onboard (FDO)2 project to enable zero-touch provisioning of the Open Horizon Agent for Edge devices – reducing the complexity of securely provisioning your environment at scale. It also is compatible with EdgeX Foundry3 and Project EVE4 and is actively collaborating with Akraino5, Home Edge6, and Fledge7.

2 https://lfedge.org/projects/fido-device-onboard/

3 https://lfedge.org/projects/edgex-foundry/

4 https://lfedge.org/projects/eve/

5 https://lfedge.org/projects/akraino/

6 https://lfedge.org/projects/home-edge/

7 https://lfedge.org/projects/fledge/

Chapter 6 will introduce you to and demonstrate how to install the all-in-one (AIO) Management Hub. This is also included in the LF Edge Open Horizon project to make it easy to prototype the use of Open Horizon for managing your Edge deployments.

IBM was the original, main contributor to the Open Horizon project at LF Edge. Virtually everything we’ll discuss in this book is based on what is available in the Open Horizon project.

IBM also packages a distribution of Open Horizon in a product called IBM Edge Application Manager (IEAM). IEAM differs from the core Open Horizon in three significant ways:

	IBM provides maintenance and support for their licensed product. Any issues you encounter will be resolved for you by IBM.

	IBM always hosts the Management Hub on Red Hat OpenShift – a Kubernetes platform with proven enterprise-scale robustness that provides integration with your enterprise LDAP for user credentials.

	IBM has a web UI to help present the operational aspects of managing Open Horizon graphically. See Chapter 17, Using the IBM Edge Application Manager Web UI for more information about the IEAM interface.

And that’s it! Otherwise, IEAM is exactly Open Horizon as presented in this book.

The architecture of the management system

Open Horizon is composed of two main elements:

	A centralized Management Hub

	An Edge Agent

The Management Hub (Hub for short) is the core of the system – providing a portal at which Edge nodes are registered, containerized microservices are published as services, and deployment patterns and policies are defined and managed, among other tasks. Normally, the Management Hub is installed to run in Kubernetes in production environments8.

8	 The AIO packaging of the Management Hub for use in prototyping environments can be installed on a vanilla Docker Engine. The IEAM distribution of Open Horizon is only supported on Red Hat OpenShift.

The Edge Agent (Agent for short) is a small piece of code (about 30 MB) that’s hosted in every Edge device and server under the control of the Open Horizon system. If you have several servers in a single Kubernetes cluster, you only need one Agent for the entire cluster, or you can introduce an Agent for each namespace in that cluster to enable multi-tenant isolation. The Agent can run either in its own process or as a container hosted by the container runtime on that Edge node.

All Agents are connected to their corresponding Hub and take direction from that Hub for any Edge workloads to be deployed to that Edge node. The Agent ensures those services are up and running in the container runtime at that node – including configuring the container runtime to enable any secure communication that needs to be set up for the containers hosted at the node.

This results in a hub-and-spoke configuration for the system, as depicted in Figure 5.1. Here, the Hub is hosted in a central data center, and Agents are depicted as @ symbols that are resident in every Edge device – an intelligent vehicle, handheld device, network device, POS terminal, intelligent shopping cart, intelligent food processor, digital pricing label, intelligent camera, elevator, robot, gauge, sensor, controller, intelligent power equipment, intelligent safety equipment, lighting system, materials handling equipment, and so on – in your system, and servers at the far Edge, or network or metro Edge. Each Agent connects with its assigned Hub:

[image: Figure 5.1 – Topological architecture of the Open Horizon management system]

Figure 5.1 – Topological architecture of the Open Horizon management system

With the system provisioned in this way, it can manage how containerized services are deployed to any of these devices or servers.

What is a service?

By now, you should be wondering what we mean when we use the term service.

A service is a formalism in Open Horizon that essentially declares what containers are so interrelated that they should be treated as a single unit during deployment. A service will often have a one-to-one correlation to a container. However, in other cases, it may compose several containers. An Open Horizon service is similar to a Pod in Podman and Kubernetes terms.

The service is declared through a JSON file that names the service and identifies the containers it composes, including the container registries in which they are held, and other metadata about the service that will be discussed later.

However, one interesting thing about a service worth noting here is that it can have a dependency on one or more other services. This is referred to as dependent services. This property can be recursive, which means it can involve further sub-dependencies.

This mechanism enables services to be constructed in a way that is natural to their design set by the software engineer and yet managed in a way that is natural to the topology of the infrastructure, as determined by the operations team – fulfilling the key principles of loose-coupling and separation-of-concerns in modern DevOps practices.

A service and its tree of dependent services are treated as a unit by Open Horizon for deployment purposes, as well as in setting up inter-microservice network connections within a given Edge node.

Sometimes, in the Open Horizon literature, and even within this book, you will see the term workload used as a synonym for a service and its dependent services tree.

Tip

In this context, the term workload, representing a service and its dependent services tree, should not be confused with the amount of demand being placed on a server, also referred to as workload.

The components of the Management Hub

The Management Hub is comprised of six subsystems that collaborate to provide management of the overall system. These are as follows:

	Agreement Bot (Agbot)

	Exchange

	Switchboard

	Model Manager

	Secrets Manager

	FIDO Device Onboard

We will discuss these further here.

Agbot

Agbot is the heart of the Hub. It is responsible for monitoring all the Edge nodes (through their respective Agents) for node registrations, and any changes that affect the placement of services at any of the nodes. It evaluates the policies and patterns that you have published to make placement decisions continuously. Agbot negotiates agreements with the individual Agents for the placement of specific services.

Agreements

Important note

Agreements are an important concept within Open Horizon. An agreement is a contract, documented in JSON, between an Agent and the Agbot to place a workload at the Edge node. This agreement can be used to audit the decisions the system has made about where to place workloads.

More importantly, it can be used to enable the Agent and Agbot to continuously monitor the environment for changes that would violate the conditions that were necessary to form that agreement in the first place. If those conditions are no longer met, the Agent or the Agbot invalidates the agreement, at which point the state of the environment is evaluated again and new agreements negotiated that may change where workloads are deployed. This will become clearer as we discuss Policy-based management in the Policy-based management is key to deployment at scale section later in this chapter.

Exchange

The Exchange is the record-keeping system for the Hub. All agreements, node states, and published services, policies, and patterns are recorded in the Exchange. Most of the important API or CLI (through their use of underlying APIs) requests to the Hub are handled in the Exchange, against the state that it has recorded about the system.

Switchboard

The Switchboard manages secure communication between the Agents and the Agbot. The Switchboard uses a mailbox system to enable communication between components to resume after any system or network outage. If an Agent and Agbot are interrupted in the middle of negotiating an agreement, that negotiation will resume where it left off after the connection is restored.

Every component and Agent has a mailbox, and messages that are mailed to a recipient are encrypted with the public key of that recipient. Any component can put a message in a mailbox intended for another component, but only the intended component can retrieve messages that have been placed in its mailbox, thus preventing eavesdropping by any other component or adversary. This is key in considering the potential for the Edge environment to have many “bad actors” – the system must operate securely with zero trust in the physical environment in which it exists.

Model Manager

The Model Manager is responsible for storing and securely transmitting model files to any service that has a dependence on that model.

The Model Manager can be used to transmit any kind of file – it doesn’t distinguish between files that contain AI/ML models from files containing any other data. Some projects use this to distribute configuration data to an Edge node, for example. Transmission can be done in either direction – downloading or uploading the file to or from the node. In this way, the Model Manager is also sometimes referred to as a file-sync manager.

The Model Manager determines where to sync its files using model policies and the same negotiation process that is used to determine where to place workloads. We’ll discuss this further in the Model policies section later in this chapter, and then again in Chapter 10, AI/ML Workload and Model Deployment.

Secrets Manager

The Secrets Manager is responsible for binding secrets in a Vault to individual deployed services. Consider for a moment a containerized microservice that you’ve written to make use of an external Cloud-based service. That service will likely require that you use an API key to authenticate your use of that service.

You could hard-code that API key into your microservice, but that would make your microservice fragile – you would have to update your code any time you have to update your API key. It also creates a huge vulnerability. Anyone can reverse-engineer your code and extract your API key – using it to make illegitimate calls to your service by masquerading as your microservice.

It is much better practice to place these API keys (or any similar secret) in a Vault, and then load that into your software memory when it starts its execution.

However, you will not want to put a distinct Vault at every Edge node. And since you won’t necessarily know in advance where your services may get deployed at the Edge, you don’t want to load those Vaults at the Edge with every possible secret you may need – including for services that may or may not ever get deployed to that Edge node.

Furthermore, you may not want the same key at every node or location where your service is deployed at the Edge. You may want different keys for different locations or different uses of your service. It is important to ensure that any secrets that are extracted from a central Vault are transmitted to your service at the Edge securely.

The role of the Secrets Manager is to resolve bindings in your service to specific secrets in the Vault and to transmit them to each of your service instances securely, but only to the nodes where your service has been deployed - and only while that service remains deployed on that node.

FDO

Fast Identity Online (FIDO) Device Onboard (FDO) is a system developed by the FIDO Alliance9 to enable zero-touch provisioning of software to Edge nodes. It is premised on the idea that device manufacturers will create a securely encrypted ownership voucher for each device that can be used to attest to the authenticity of that individual device. A few hundred vendors have joined the FIDO Alliance10, indicating their support for including FDO ownership vouchers in their products.

9 https://fidoalliance.org/

10 https://fidoalliance.org/members/

While Intel led the FIDO Alliance of the FDO specification, they did so knowing that creating an open standard approach is essential to solving the industry-wide challenge of providing secure attestation and automated provisioning of any compute system, wherever it is deployed. Vouching for the authenticity of devices, even when there are no people to confirm that authenticity at the physical location of that device, is critical when you’re dealing with hundreds or even millions of devices. You simply cannot deploy enough people, operating with complete trust and without error, to handle the magnitude of the provisioned environment without a mechanism like FDO.

Open Horizon integrates FDO to support zero-touch provisioning of the Edge Agent. In a nutshell, it operates as follows:

	When a device is manufactured, an ownership voucher is created for that device and registered in a well-known rendezvous service (whose URL is published with that device).

	You purchase that device. Assume, for example, you are a retailer and have purchased several hundred POS terminals that you intend to provision to your stores. You receive that order of devices on a pallet, still in their cartons, at your warehouse.

	Before you distribute the device to stores, you register it with the Management Hub. By doing this, you’re importing the ownership vouchers for each device to Open Horizon. You may receive those vouchers in a manifest file from the manufacturer, or more likely there will be a QR code on the outside of the carton for each device that you can scan and use to download the voucher. The Hub will use that registration to record its expectation of each device to come online later. You can also use this step in the process to identify other properties about each device that are important to you – such as what store it is assigned to, its geographic location, physical address, and so on.

	Under the covers, the Hub will automatically contact the rendezvous service specified by that manufacturer and establish its intention of managing that device, along with a URL the system can use to contact that Hub instance.

	You can then put a shipping label on each of your servers (without ever taking them out of their original cartons) and ship them out to each of your stores.

	At the store, the manager, or some other clerk, can take the device out of its carton, plug it into a network jack, plug in the power, and turn on the machine. When the device starts up, it automatically connects to the rendezvous server, learns what system intends to manage it, and redirects to that Hub instance.

	The Hub then confirms the ownership voucher that was used to prove that the device is what it claims to be and that it is a node that the Hub is expecting to manage – as established in Step 3. This is important to prevent someone from inserting a different, potentially rogue, device into the network and claiming it to be legitimate.

	From there, the latest version of the Edge Agent is downloaded to the server and brought up, and it takes over negotiating with the Agbot over what workloads to place on that device.

All of this is predicated on the assumption that the device manufacturer has created an ownership voucher for their device and has pre-installed an operating system and the container runtime of their preference. That said, if you’re dealing with devices from a manufacturer that doesn’t support FDO, you can generate ownership vouchers on your own and pre-install them, along with any operating system or container runtime you need on the device in your warehouse, and still get the advantages of FDO for zero-touch provisioning at your stores.

At the time of writing, Open Horizon only supports FDO zero-touch provisioning for Edge devices hosting the Docker or Podman container runtime. It does not work with Edge servers running Kubernetes.

Secure Device Onboard (SDO) is a predecessor to FDO that worked similarly. SDO is also supported in Open Horizon but has been superseded with the formally standardized and updated FDO specification.

Organizations and tenants

It’s worth pausing here to point out that the Open Horizon Management Hub is designed to be multi-tenant – that is, the same Hub can support thousands of separate organizations to independently manage their own set of Edge nodes. This is useful in a large enterprise that has many different departments or divisions with different operational responsibilities – for example, one responsible for stores, another for warehouses, another for logistics, and so forth, each with its own set of Edge devices and servers.

This is also a basic prerequisite to qualify as a cloud-native service. Several organizations have indicated interest in provisioning an Open Horizon Management Hub in a cloud infrastructure and offering it as a subscription service.

More about the Edge Agent

The Open Horizon Edge Agent resides at every Edge device or server. In a device, it can execute either as a standalone process in Linux or optionally can be hosted as a container in Docker or Podman.

The Agent must be run as a Container on Docker when running on macOS.

Likewise, the Agent must be run as a container on Kubernetes on Edge servers.

On Edge servers, an Agent can be configured with either a cluster scope or a namespace scope. Cluster-scoped Agents can manage the deployment of services to any namespace in that Kubernetes cluster.

If you need to limit and control namespace isolation, for different tenants of that cluster, for example, a namespace-scoped Agents can only deploy services to the namespace to which it belongs. However, you can have multiple namespace-scoped Agents in the same Kubernetes cluster – each associated with a different namespace.

While the Agent is quite small, it has a significant role in the Open Horizon system, performing several responsibilities:

	Managing secure communication between the Agent and its Management Hub with the Switchboard at that Hub

	Negotiating agreements with the Agbot to place workloads on that node, or deleting the workload from the node when agreements are terminated

	Pulling containers from their respective container registries and verifying their signatures to ensure they haven’t been tampered with

	Ensuring any deployed workloads are up and running, and restarting them in case they fail, or the machine is restarted

	Configuring the container runtime to enable secure communication between Containers within a service, or independent services

	Setting any environment variables used by services when they start executing

	Managing synchronization of any AI/ML models, or other files, assigned to the services hosted on that node

	Securely binding secrets for services on that node with the Vault

	Managing any code updates to itself

	Serving as the CLI to the Open Horizon system to perform local functions, as well as forwarding requests to the Management Hub

As stated earlier, the Agent does not open any listening ports. All connections to the Management Hub are initiated by the Agent. Consequently, it offers no opportunity for an external component to hack its functionality. Just as important, it uses standard https protocols and therefore does not require any special firewall policies to connect it to your enterprise or Cloud data center.

In essence, the Agent will keep polling its mailbox in the Hub to see if there is any work, such as negotiating an agreement, for it to do. To avoid overloading the network, the polling cycle can be configured as an option in the Node Policy file. In addition, if the Agent discovers no new work to do for a long period, it will automatically reduce its frequency of polling under the assumption that its environment is relatively stable – although it will resume at its configured frequency as soon as new work is found.

If at any time the Agent loses connection with the Hub, it will continue to operate offline, fulfilling its role in monitoring local workloads to ensure they remain running, until a connection can be restored. This autonomous operation capability is one of the core features of Open Horizon.

Automatic Agent updates

Once an Agent has been provisioned, it is important to ensure you can keep it up to date remotely, without requiring someone to go out to Edge to manually perform that update.

Open Horizon provides a mechanism for automating these types of updates, referred to as the node management system. This mechanism leverages the same policy-based approach used by the Agbot for determining which nodes to update, and when. Updates, when they occur, are performed in place without disrupting any of the currently executing workloads. There’s no need to restart the node, and certainly not the executing workloads being managed at that node.

Of course, agreement processing is suspended during the upgrade but will resume automatically from wherever it was suspended once the Agent update is completed.

While further details about how the Agent update system works are outside the scope of this book, we encourage you to visit https://open-horizon.github.io/docs/anax/docs/node_management_overview/ for more information.

An examination of service life cycles

Let’s take a moment and think about service life cycles.

For any application made up of multiple interacting microservices, you must consider that each microservice may have multiple versions, with new versions being introduced in the future. You may have different versions representing the following:

	Fixes to bugs or security vulnerabilities

	Enhancements for new features

	Differences in functionality for different circumstances

	Localization or regional customizations

	Processing architecture differences (requiring different compilations)

	Experiments for different optimizations

	Changes in design directions

Any of these differences can be codified in different ways, including the following to name a few:

	Mangling the package names with version numbers

	Tagging the package with property-specific differences

	Repo forks

	Parameterizing the logic through environment variables or configuration files

The specific approach you take will depend on your project needs and enterprise development practices standards.

Fortunately, Open Horizon provides mechanisms that support any of these approaches for managing the versions of your microservices.

Just as important, Open Horizon supports a range of design practices for how you can compose your microservices, including the following:

	Implementing different microservice APIs in a single program

	Bundling multiple microservices in a single container

	Composing multiple containers in a single Open Horizon service

	Creating dependent service trees for a set of services

	Bundling multiple containers in a single Pod – which can only be done with Podman or Kubernetes

Irrespective of these choices, consider that your services will go through periodic updates – ranging from every few days to every few months. As you read through the next sections of this chapter, consider your project needs and how you might leverage Open Horizon to get those updates deployed back out to your Edge environments – automatically and accurately.

An overview of patterns

Open Horizon offers two mechanisms for controlling the deployment of services to the Edge. The first of these is referred to as patterns.

Patterns are simple but effective when you’re first kicking the tires with a couple of nodes. A pattern is a JSON file that lists the services you want to deploy with that pattern. Once you’ve written the pattern JSON file, you can publish it with the Management Hub.

After that, you can reference one or more patterns in the Node Policy document associated with the Edge Agent at each of your nodes. We’ll discuss the Node Policy document later in this chapter.

Whenever the Agent on a particular node starts, it will form an agreement with the Agbot to place the services specified in its referenced patterns at that node.

As you can see, this is a quick way of getting a well-known set of services placed on your nodes. However, it is static. The same services will always be placed at that node until you either change the pattern or remove a reference to it in your Node Policy document.

Policy-based management is key to deployment at scale

The other mechanism provided by Open Horizon for making placement decisions is the Policy system. Policy-based management is key to deploying your production system.

The Policy system makes use of several distinct policy files:

	Node Policies

	Service Policies

	Model Policies

	Deployment Policies

Each of these represents the perspectives of the different actors in the system. Recall the different roles that we outlined in Chapter 2, including the provisioning engineer, software engineer, data scientist,and deployment operations manager. Each of the aforementioned policy files is intended for each of these roles, respectively.

We will discuss these further, and then bring them all together at the end.

Node Policies

Node Polices are specified in a JSON document associated with each Edge node. They are intended to be used primarily by the provisioning engineer to express the capabilities and constraints of that node.

For example, an intelligent camera positioned over the cereal aisle in a store might have a Node Policy that asserts that it has an ARM processing architecture with 4 cores, 6 GB of memory, runs the Debian operating system, and is located on Aisle 4 – all properties associated with its physical capabilities and where it is located.

As indicated earlier, the Node Policy can also be used to express the pattern(s) to place on that node. In that sense, it may be shared between the provisioning engineer and the deployment operations manager.

Regardless of whether it identifies a pattern, and again as an example, the deployment operations manager may also assert a constraint in the Node Policy that that device should only ever run services for doing cereal identification. These, and any other constraints specified in the Node Policy will be factored into the placement decision.

Service Policies and Service Definitions

Service Policies are specified as a section within a larger Service Definition JSON document. The Service Definition document is used by the software engineer to express the properties and constraints of their microservices. For example, they can assert they have compiled their microservice for ARM processing architectures, and can optionally leverage a GPU if one is present. They may assert the constraint that this service can only run on nodes that have at least 2 GB of memory.

If the software engineer knows there are tight timing dependencies between a set of interrelated microservices, they may specify those in a single service definition to ensure they will all be deployed as a single unit.

If their microservice reads from environment variables that need to be set in the environment when it executes, those variables and their values can be specified in the Service Definition.

Furthermore, if the microservice depends on any secrets that need to be obtained from the Vault, those bindings are specified in the Service Definition as well.

Finally, if the microservice is an AI/ML algorithm and depends on a model file (or other file, such as for configuration data), the software engineer needs to create a Model Policy file for that model (or other) file.

Model Policies

Model Policies are used by the data scientist responsible for training the model(s) for a service. The Model Policy is where the data scientist can assert the properties and constraints of the model, including identifying the service to which it belongs.

The deployment operations manager may also revise this Model Policy document to further condition where this model will be used. For example, they may express a constraint that this model is only deployed in the region where the cereals for which this model has been trained are sold.

Deployment Policies

Deployment Policies are used by the deployment operations manager to apply their own operations knowledge of how they want services placed in the field. The Deployment Policy identifies the service(s) to which this policy applies. It then goes on to express the properties and constraints that need to be factored into the deployment of the identified services. Usually, these deployment properties and constraints focus on factors that are relevant to business operations.

For example, the Deployment Policy for a visual product identification service may constrain it to only be deployed on intelligent cameras in regions where local regulations require computer vision processes to be performed within the store. They may allow that same service to be deployed to metro Edge servers in other regions where compute can be consolidated at a lower cost.

Policy-based placement negotiations

With each of those policies defined by the respective actors in the system, the deployment system has enough to do its job.

The Agbot combines the Deployment Policy with the Service Policies for each of the services identified in that Deployment Policy. It then compares that combined set of properties and constraints with the Node Policy for each node in the system.

The constraints expressed in the combined Deployment Policy and Service Policy are evaluated against the properties in the Node Policy. Then, the constraints in the Node Policy are evaluated against the properties in the combined Deployment Policy and Service Policy. If, and only if, both sets of constraints are satisfied will the services identified by that Deployment Policy be placed on that node. The Agbot enters into the agreement protocol with that node’s Agent to deploy the service(s) to the node.

It does this for each Deployment Policy published to the system.

In addition, the Model Manager does a similar evaluation of Model Policy properties and constraints for each of the nodes to which the corresponding service has been deployed with the Node Policies for each of those nodes.

As indicated earlier, an agreement contract is formed for every service that’s deployed to each node. From that, the Agent on each node, and the Agbot in its central position, will continuously evaluate those agreements. Let’s say something changes, such as one of the following:

	A software version update

	A change in any of the policies from one of the actors

	A change in the node’s geofenced position

	A change in the node’s memory, storage, network, or any other resource that is being actively reflected11 in Node Policy properties11	 This type of reflection is typically performed by an external program, perhaps another service, with the right permissions, that has been set up to monitor for these external factors and will reflect them as property changes in the Node Policy document.

In this case, the agreement will be automatically invalidated, the associated workloads will be terminated, and a new set of agreements will be negotiated. In this way, once policies have been set, the system will take responsibility for making placement decisions, deploying services throughout the Edge, and ensuring applications remain up to date and in their correct locations, even as changes are occurring in the operational environment.

Summary

In this chapter, you gained a comprehensive understanding of the Open Horizon system and how it deploys services to the Edge. You learned that deployment in an Edge environment is more complicated than you will find in typical cloud environments. There are many more moving parts at the Edge, under less strict control.

We outlined the architecture of the system, the components, and what each does. We also explained the role of the Edge Agent and Management Hub, and within the Hub the responsibilities of the Agbot, Exchange, Switchboard, Model Manager, Secrets Manager, and FIDO Device Onboard subsystems. We discussed some of the security measures that are built into the design of the Agent, and how the Agent can automatically update itself.

Then, we helped you understand the difference between the Open Horizon open source project and the IEAM commercial product distribution of the Open Horizon project.

Most importantly, you learned about the two systems for controlling the deployment of services to the Edge – patterns and policy-based systems. You also learned how the policy system works to factor in the perspectives of different actors in the system to ensure a large-scale production system can be managed effectively and safely.

Next, we will start diving deeper into how to perform specific tasks using the available CLIs and APIs of the Open Horizon system, starting with installing your own AIO Management Hub to play with, and then installing an Edge device Agent.

Part 2: Working on the Edge

With the fundamentals of a production-grade Edge solution in place, we now shift our attention to how to use Open Horizon to achieve autonomous and flexible management of your production environment at scale. This part of the book will provide step-by-step guidance on installing the Open Horizon Agent on your Edge devices and servers, registering that node with the management system, and using the Open Horizon interfaces to control the deployment of your solution to just one (or thousands of) Edge node(s) in your system. You will learn how Open Horizon helps to ensure you get the right workload to the right place at the right time and to keep them up to date in an ever-changing environment.

This part has the following chapters:

	Chapter 6, Installing an Edge Agent on an Edge Node

	Chapter 7, Registering an Edge Node

	Chapter 8, Using the Open Horizon CLI and API

	Chapter 9, Autonomous and Flexible Management of Edge Services

	Chapter 10, Managing Edge Scale with Policy-Based Workload Placement

6

Installing an Edge Agent on an Edge Node

Now that you have a good idea why Edge computing is needed, what it takes to design and build such a scalable Edge platform, the technologies involved, and what an enterprise-class solution must consider from a workload life cycle management point of view, it is about time we get into the nuts and bolts of putting a practical system together.

For an application workload to be placed on an Edge node, an Edge Agent needs to be installed on the Edge node. Once the Edge Agent has been successfully installed, it works with the Management Hub to manage the complete life cycle of containerized application workload deployment and run the application on the Edge node. As described earlier, Edge nodes are broadly categorized into two types: Edge devices and Edge clusters. The process of installing the Edge Agent on both types of Edge nodes is similar.

In this chapter, we are going to cover the following main topics:

	What is a Management Hub?

	What is an Edge Agent?

	Supported architectures and operating systems

	Options to install the Edge Agent

	Preparing the working environment

	Setting up a non-root user

	Installing the All-in-One (AIO) Open Horizon Management Hub

	Installing the Edge Agent on an Edge device

Technical requirements

To become proficient and practice hands-on examples, it’s required that you have access to an Ubuntu machine, Raspberry Pi, or Mac. Though the process is similar across all variants of Linux, we will be using Ubuntu or Rasbian for the examples in this chapter. While having access to two machines is not essential, it will be useful as we can use one machine for development and the other to observe the deployment of the workload. Also, one machine can have an Edge device node while the other machine can host the Open Horizon Management Hub.

What is a Management Hub?

As described in earlier chapters, though each Edge node functions autonomously, managing the Edge nodes requires a Management Hub. The Management Hub is where deployable services with access to underlying container images for the application workload and deployment policies are published. Once a node registers with its own set of properties, known as a node policy, the Management Hub determines what services need to go to which nodes as per the constraint of the service, as published in the deployment policy earlier. So, the Management Hub only participates in the control plane and is not involved in the data plane, which is the sole responsibility of the application code and developers.

As mentioned earlier, the Management Hub has several components, such as the exchange, agbot, secrets manager, Fido Device Onboard (FDO) system, model management system (MMS), and others, backed by several databases. All components are deployed as containers. In commercial deployments, they are deployed on a Red Hat OpenShift Container Platform (OCP) Kubernetes cluster infrastructure to provide scalability, resiliency, and reliability. The commercial Management Hub is deployed as a Kubernetes operator to make the deployment and maintenance tasks easy to manage.

What is an Edge Agent?

An Edge Agent is a piece of code, about 30 MB in size, that runs as a systemd process on the Linux machine and provides all the capabilities necessary to run the containerized application workload. On Mac, the Edge Agent runs as a Docker container. Additionally, to manage containerized workloads on an Edge device, the Edge Agent requires the Docker or Podman runtime environment on the Linux host. The Edge Agent runs as a pod in a Kubernetes cluster on Edge servers.

Both the Management Hub and the Edge Agent were explained in more detail in Chapter 5, Application Placement and Life Cycle Management.

Supported architectures and operating systems

The Edge Agent can be run on various Edge devices, so long as they support the systemd process and either Docker or Podman runtime environments. This means that a wide range of Linux variants and CPU architectures are compatible, including the following:

	Ubuntu

	Debian

	Raspbian

	Red Hat Enterprise Linux (RHEL)

	CentOS

	MintOS

	SuSE

The supported architectures span the following systems:

	x86_64 or amd64

	ARM

	ARM64

	RISC-V

	Mac (both Intel and Apple silicon)

	Power Systems

	System-Z

For the latest supported versions and architectures, take a look at the official documentation that is available via IBM (https://www.ibm.com/docs/en/eam) or Open Horizon (https://github.com/open-horizon/).

The preparation work that’s required to install an Edge Agent on various hosts may be different but for the most part, an agent-install script makes the Edge Agent installation task easy for the user.

User interactions

Though the Edge Agent runs with root privilege, it is recommended that all user interactions with it be done as non-root users. Wherever necessary, the non-root user privilege may be raised using sudo. Doing so helps users avoid errors while working with the system.

Options to install the Edge Agent

The Open Horizon documentation describes several different ways to install the Edge Agent on Edge devices. The most important options are as follows:

	Automated agent installation

	Bulk agent installation

	FDO-based agent installation

We’ll go through each in brief in the following subsections.

Automated agent installation

The Edge Agent installation process goes through several stages. At a high level, for the proper functioning of the Edge Agent, you must ensure that all prerequisite conditions are met, an Edge node architecture-specific binary is used, an appropriate Management Hub certificate is obtained, and an appropriate container runtime such as Docker or Podman is installed. The details are described in the manual agent installation process of the Open Horizon document1. Given the complexity involving all these variabilities, the Open Horizon development team has done an excellent job of providing an automation script that considers the intricate details and installs the Edge Agent on Edge devices correctly. We will be using this approach in this book.

1 https://open-horizon.github.io/docs/installing/advanced_man_install/

Bulk agent installation

When you have to manage a large number of Edge nodes, then manually installing Edge Agents on each node is not practical. That’s where the bulk agent installation technique comes in handy. If you look at the details, bulk agent installation makes use of the aforementioned automated agent installation technique and repeats the process for each Edge device. It is also possible to use Ansible or similar tools to manage bulk agent installation on a large number of nodes.

FDO-based agent installation

While manual, automated, and bulk installation techniques are handy tools for developers and DevOps personnel, these techniques still require access to each Edge node and access credentials to each device. To truly deploy hundreds or thousands of Edge devices, the process of securely installing the Edge Agent on Edge devices is passed to the device manufacturers. A technique called FDO has been developed by the Open Horizon community in partnership with industry leaders, including the FIDO alliance, Intel, and others.

In a nutshell, in following this approach, the device manufacturer generates a voucher for each Edge node and passes that to a rendezvous server. When an Edge device powers up with internet connectivity, it reaches out to the rendezvous server for instructions to download and install the Edge Agent. The developers of this approach have ensured that the end-to-end process is secured with cryptographically encrypted tokens that are assigned to each device by the manufacturer.

To learn about the details and the exact handoff process, see https://open-horizon.github.io/docs/installing/fdo/.

Preparing the working environment

As we embark on learning about Open Horizon-based edge computing, it’s important to note that the environment we’re setting up is relatively small. In a real production environment, the Management Hub will be hosted on a Red Hat OCP Kubernetes infrastructure with multiple pods running various components of the hub. The Management Hub can be reached over the public internet. IBM provides a commercial offering of Open Horizon called IBM Edge Application Manager.

In contrast, the AIO environment that we will be setting up for this book will be in a LAN environment to keep the complexity low so that you can focus on learning the concepts and be able to practice them locally.

We suggest that you prepare at least two Ubuntu hosts – either two bare-metal machines or two VMs. Though you can do everything with one machine, having two machines makes it easier to follow the hands-on examples.

One machine will be used to host the Open Horizon Management Hub and the other will be used as an Edge device. The Management Hub machine must have a minimum of 4 cores, 4 GB of RAM, and 32 GB of storage.

In practice, there can be a large number of Edge nodes. As an exercise, you can add many more Edge devices over time.

We generally recommend that you use the Linux best practice of using least-privilege access mode for your users. To that end, we will always start with a non-root user who has sudo privilege and uses sudo to accomplish certain tasks as needed.

Setting up a non-root user

Follow these steps:

Tip

We have observed that when the administrative staff create a Linux VM, they usually give users full root access and leave it to the users to create non-root users. Subsequently, typical users will start using root itself for their tasks. However, this practice isn’t the most secure approach in a software environment. We strongly encourage users to create a non-root user, and that’s the direction we’ll follow. This may be somewhat redundant and if your environment is already configured accordingly, you may choose to skip this step. These or similar steps can be used to create a non-root user on all machines that we will use throughout this book. If you are conversant with the Linux environment, you may have a different set of steps to create a non-root user.

	Open a CLI Terminal to work on a Linux machine.

	Log in as a root user using root credentials:
ssh root@<ip-address-of-the-host>

 	Add a user and make the user a member of the sudo group:
useradd -s /bin/bash -d /home/<username> -m -G sudo <username>

 	Add the user to the users group as well:
usermod -g users <username>

 	Create a non-root user login password. When prompted, enter a password of your choice:
passwd <username>

 	Log out as a root user:
exit or CTRL+D

 	Log back in as a non-root user:
ssh <username>@<ip-address-of-the-host>

Installing AIO Open Horizon Management Hub

Since this book is a practitioner book, you will need access to a Management Hub. The developers of Open Horizon have provided an AIO package that installs all the necessary components as a set of Docker containers. Follow https://open-horizon.github.io/docs/mgmt-hub/docs/ to install a Management Hub locally that we will use throughout this book as we learn to deploy workloads at the Edge:

	Open a CLI Terminal to work on a Linux machine that you plan to dedicate to running AIO Open Horizon Management Hub.

	Log in as a non-root user:
ssh <username>@<ip-address-of-the-host>

 	As a matter of practice, it is always a good idea to update and upgrade the Linux operating system. Follow through with the instructions as prompted regarding updating and upgrading your host machine:
sudo apt update
sudo apt upgrade

 	Make a directory where you can git clone the repository. Use your preference to organize your working environment. In this example, we’ve done the following:
mkdir -p ~/github.com/PacktPublishing
cd ~/github.com/PacktPublishing

 	Run git clone for the Open Horizon devops repository. Note that at the time of writing we are using the latest version v2.26.12. While the community is proactive in maintaining backwards compatibility, it is always prudent to check the current version of Open Horizon and adjust for any changes that may have occurred. We do not need the entire repository, just a few of the scripts it contains:
git clone https://github.com/open-horizon/devops.git

 	Change to your directory:
cd devops/mgmt-hub

 	Review the deploy-mgmt-hub.sh script options with -h:
./deploy-mgmt-hub.sh -h
 By default, the preceding command does the following:
	Installs the AIO Open Horizon Management Hub
	Installs basic examples in the AIO Open Horizon Management Hub
	Installs the Horizon CLI (hzn)
	Installs the Edge Agent
	Registers the Edge node

We will do some of the steps separately to understand them in more detail by skipping the Edge device agent installation and registration process initially.
Use the following command with option as specified to install the AIO Open Horizon Management Hub, the hzn CLI, and the basic examples only:
	-A: Skips installing the Edge device agent
	-R: Skips registering the Edge node

Important note

The AIO Open Horizon Management Hub will be used by all the Edge nodes within the LAN only. To keep complexity low, we will be using an http connection, although https can be enabled as well. The IBM Edge Application Manager, a commercial product, provides full https connectivity and access to the public internet.

export HZN_LISTEN_IP=<the-ip-address-of-this-host>
sudo -s -E ./deploy-mgmt-hub.sh -A -R
 After around 5 minutes, AIO Open Horizon Management Hub will be installed with a detailed log that you will see in your Terminal.

Important note

Make sure to follow the instruction that is displayed at the end of the install.

	Save all the export credentials shown in the Terminal in a secure location. Some of them will be needed when you start using the AIO Open Horizon Management Hub.

	Run the docker ps command to see running Docker containers that make up the AIO Open Horizon Management Hub:
sudo docker ps
Here’s an example output:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
830be5e4d131 openhorizon/amd64_agbot:latest "/bin/sh -c /usr/hor…" 26 minutes ago Up 24 minutes (healthy) 127.0.0.1:3110->8080/tcp, 192.168.200.131:3111->8083/tcp agbot
d7560063fd18 openhorizon/fdo-owner-services:testing "/bin/sh -c $WORKDIR…" 26 minutes ago Up 25 minutes (unhealthy) 0.0.0.0:8042->8042/tcp, :::8042->8042/tcp, 0.0.0.0:9008->9008/tcp, :::9008->9008/tcp fdo-owner-services
239cc41700b2 openhorizon/amd64_vault:latest "entrypoint.sh server" 26 minutes ago Up 26 minutes (healthy) 192.168.200.131:8200->8200/tcp vault
9c3fa4382714 openhorizon/amd64_cloud-sync-service:latest "/usr/edge-sync-serv…" 26 minutes ago Up 26 minutes (healthy) 192.168.200.131:9443->8080/tcp css-api
4ad61c145437 openhorizon/amd64_exchange-api:latest "/bin/sh -c '/usr/bi…" 26 minutes ago Up 26 minutes (healthy) 8083/tcp, 192.168.200.131:3090->8080/tcp exchange-api
54443d9e6619 mongo:4.0.6 "Docker-entrypoint.s…" 26 minutes ago Up 26 minutes (healthy) 27017/tcp mongo
adc47eab1a15 postgres:13 "Docker-entrypoint.s…" 26 minutes ago Up 26 minutes (healthy) 0.0.0.0:5433->5432/tcp, :::5433->5432/tcp postgres-fdo-owner-service
58e2f9c33089 postgres:13 "Docker-entrypoint.s…" 26 minutes ago Up 26 minutes (healthy) 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp postgres

Tip

To avoid needing to use sudo with Docker commands, add your username to the Docker group. This will become effective the next time you log in:

sudo usermod -aG Docker <user-name>

	Perform a few simple tests by exporting and running the following commands for the HZN_ORG_ID and HZN_EXCHANGE_USER_AUTH environment variables:
export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:<as-per-your-above-install>

 	Run the following commands to verify your installation:	Check the hzn CLI version. Your version may be different:

hzn version
Here’s an example output:
Horizon CLI version: 2.30.0-1491
Horizon Agent version: failed to get.
If Horizon Agent version is set to failed to get, that’s fine since we didn’t install the Edge Agent on this machine by choice.
	Check the AIO Open Horizon Management Hub version. Your version may be different:

hzn exchange version
Here’s an example output:
2.110.4
	Test user credentials:

hzn exchange user list
Here’s an example output:
{
 "myorg/admin": {
 "password": "********",
 "email": "not@used",
 "admin": true,
 "hubAdmin": false,
 "lastUpdated": "2024-02-13T02:09:45.344124229Z[UTC]",
 "updatedBy": "root/root"
 }
}
	The following are a few other helpful commands for verifying your installation:

hzn exchange node list
hzn exchange service list IBM/
hzn exchange pattern list IBM/

With that, we’ve installed the AIO Open Horizon Management Hub. You will be using it throughout this book. If any of the previous commands fail then it's most likely that you have not exported the ENVIRONMENT variables as instructed. Do save them in a file so that you can source them again as needed.

Installing the Edge Agent on an Edge device

Now that we have AIO Open Horizon Management Hub installed, we can make use of it to install an Edge Agent on an Edge device. Follow these steps:

	Open a CLI Terminal to work on a Linux VM that you plan to use as an Edge device node. We will be installing Edge Agent on it.

	Log in as a non-root user:
ssh <username>@<ip-address-of-the-host>

 	Update and upgrade the Linux operating system. Follow the instructions as prompted about updating and upgrading your host machine:
sudo apt update
sudo apt upgrade

 	 Make a directory in the git-cloned agent-install repository. Organize your working environment as per your preferences:
mkdir -p ~/github.com/PacktPublishing
cd ~/github.com/PacktPublishing

 	Ruin git clone for the Open Horizon anax repository. Note that at the time of writing we are using the latest version v2.30.0-1491. While the community is proactive in maintaining backwards compatibility, it is always prudent to check the current version of Open Horizon and adjust for any changes that may have occurred. We don’t need the entire repository, just a few scripts:
git clone https://github.com/open-horizon/anax.git

 	Change to the anax directory:
cd anax/agent-install

 	Create a directory where you will keep all the environment variables in a file – for example, ENV_OH_AIO_AGENT_INSTALL:
mkdir ~/oh-agent

 	Save the following information in a file – for example, ~/oh-agent/ENV_OH_AIO_AGENT_INSTALL:
export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:<as-per-your-AIO-install>
export HZN_EXCHANGE_URL=http://<ip-address-of-the-VM-running-AIO-OH-mgmt-hub>:3090/v1
export HZN_FSS_CSSURL=http://<ip-address-of-the-VM-running-AIO-OH-mgmt-hub>:9443/
export HZN_AGBOT_URL=http://<ip-address-of-the-VM-running-AIO-OH-mgmt-hub>:3111
export HZN_FDO_SVC_URL=http://<ip-address-of-the-VM-running-AIO-OH-mgmt-hub>:9008/api
export HZN_DEVICE_ID=<arbitrary-edge-node-name>
export ANAX_LOG_LEVEL=<log-level-3-is-a-good-choice>

 	Source the preceding environment variables and verify that the HZN values have been set correctly:
source ~/oh-agent/ENV_OH_AIO_AGENT_INSTALL
env | grep HZN

 	Install the Edge Agent using the following command. Using -s skips the registration process:
sudo -s -E ./agent-install.sh -i 'anax:' -s

 	Run the following commands to verify the installation of edge-agent:
hzn version
hzn exchange version
hzn exchange user list
hzn exchange service list IBM/
hzn exchange pattern list IBM/
hzn exchange node list

You used these commands earlier in this section. They will be explained in more detail in Chapter 8.

Tip

As mentioned earlier, the agent-install.sh script installs as a systemd process and status. Both can be viewed by running sytemctl status horizon.

The process name is anax and can be viewed by running ps -aef | grep anax.

The Edge Agent also creates a file called /etc/default/horizon that contains the necessary details about the EXCHANGE URL, DEVICE ID, NODE ID, and other related values. You should review it.

With that, we’ve installed the Edge Agent on the Edge device.

Summary

In this chapter, you were introduced to Management Hub and the Edge device agent, along with instructions on how to install them in your local Linux environment. You were also introduced to some of the hzn CLI commands that we’ll be utilizing extensively throughout this book.

In the next chapter, you will learn how to register an Edge device node with the Open Horizon Management Hub.

7

Registering an Edge Node

In the previous chapter, we went through the steps of setting up an All-in-One (AIO) Open Horizon Management Hub and installing the Edge Agent on an Edge node. Once the Edge Agent is installed on the Edge node, it is ready to be registered with the Management Hub. Additionally, as we progress through the subsequent chapters, we will begin utilizing various hzn commands and practicing common techniques to verify the expected functionality of the ecosystem you are beginning to work within. These techniques will often be identified in a callout Tip section.

In this chapter, we’re going to cover the following main topics:

	What is Edge node registration?

	Verifying the pre-condition

	Verifying the current Edge node condition

	Registering an Edge device node

	Verifying the post-condition

While the automated Edge Agent installation process usually includes registering the Edge Agent, we have divided the steps in this book to provide a more detailed understanding.

Technical requirements

For the Edge Agent registration to work, ensure the following:

	Open Horizon AIO Management Hub is running and accessible11	See Chapter 6, Installing an Edge Agent on an Edge Node, for more information about setting up the Open Horizon AIO Management Hub if you haven’t already.

	Edge Agent is installed on your Edge device node22	See Chapter 6, Installing an Edge Agent on an Edge Node, for more information about installing the Edge Agent if you haven’t already.

	The Open Horizon CLI (hzn) is functioning on the Edge device node

	You are SSH-connected and logged in to your Edge device node

What is Edge node registration?

As mentioned previously, for an Edge node to be managed for workload placement and to keep the application running, the Edge node must be registered with the Management Hub.

Verifying the pre-condition

It is always a good idea to work with a functioning system before moving to the next set of steps. This will help you avoid the situation where subsequent actions start to fail. Throughout this book, we will highlight such strategies and provide you with guidance so that you’ll be successful.

Tip

The following set of commands can help you verify any pre-conditions and ensure that you are working with a properly functioning Management Hub.

	Verify that HZN_ORG_ID and HZN_EXCHANGE_USER_AUTH are set in your working shell:
env | grep HZN
You should expect to see HZN_ORG_ID and HZN_EXCHANGE_USER_AUTH as defined environment variables.

 	Check that the hzn CLI is installed and the Edge agent is running.
hzn version
You should expect to see text output similar to the following:
Horizon CLI version: 2.30.0-1491
Horizon Agent version: 2.30.0-1491

 	Verify that you can access the Management Hub:
hzn exchange version
You should expect to see text output similar to the following:
2.110.4

 	Confirm that your credentials are valid for working with the Management Hub. This step assumes that Step 1 has been completed.
hzn exchange user list
You should expect to see text output similar to the following:
{
 "myorg/admin": {
 "password": "********",
 "email": "not@used",
 "admin": true,
 "hubAdmin": false,
 "lastUpdated": "2024-02 13T02:09:45.344124229Z[UTC]",
 "updatedBy": "root/root"
 }
}

If any of these conditions aren’t working as expected, make sure you correct them before continuing further.

Tip

If you are struggling with the above conditions not working as expected jump to Chapter 15, Troubleshooting at the Edge for techniques for addressing these problems.

Verifying the current Edge node condition

Before we register the Edge node, let’s check whether the Edge device node is already registered by running the following command. This command shows the current Edge node status, along with other details of the Edge node:

hzn node list
 You should expect to see text output similar to the following:

{
 "id": "edge-device-node",
 "organization": null,
 "pattern": null,
 "name": null,
 "nodeType": null,
 "token_last_valid_time": "",
 "token_valid": null,
 "ha_group": null,
 "configstate": {
 "state": "unconfigured",
 "last_update_time": ""
 },
 "configuration": {
 "exchange_api": "http://<ip-address-of-the-AIO-machine:3090/v1/",
 "exchange_version": "2.110.4",
 "required_minimum_exchange_version": "2.90.1",
 "preferred_exchange_version": "2.110.1",
 "mms_api": "http://ip-address-of-the-AIO-machine:9443",
 "architecture": "amd64",
 "horizon_version": "2.30.0-1491"
 }
}
 Though it is important to understand the meaning of each field, the most important field to pay attention to is configstate and its corresponding state field. The configstate field can be in three different states:

	unconfigured: This is one of the terminal states of the Edge node when the node is not registered with a Management Hub

	unconfiguring: The node can be in this state for a short period when it is unregistering from the Management Hub

	configured: This is one of the terminal states of the Edge node when the node is registered with a Management Hub

While the meaning of some of the other fields is self-explanatory, here is a brief explanation of each:

	id: The HZN_NODE_ID value. You can pass it as a command-line option or set it as an environment value in your shell. If not specified, the value will be picked up from the hostname value.

	organization: The HZN_ORG_ID value is initialized in your shell.

	pattern: The service pattern that this node is running. We will elaborate on this in detail later in this book when we discuss how to deploy services on the Edge node.

	name: The name of the Edge node.

	nodeType: Its value can be device or cluster.

	token_last_valid_time: A timestamp value indicating the last time the authentication token to the Exchange was validated for this node.

	token_valid: This can be true or false, indicating whether the token was deemed to be valid by the Exchange.

	ha_group: The high-availability group that this node belongs to.

	configstate:	state: Current Edge device node state. See the potential state values described previously.
	last_update_time: A timestamp value indicating the last time configstate was updated.

	configuration:	exchange_api: Exchange (part of the Management Hub) API endpoint:
	 exchange_version: Current exchange version
	required_minimum_exchange_version: Required minimum exchange version:
	 preferred_exchange_version: Preferred exchange version
	 mms_api: Model Management System API endpoint
	 architecture: Processor architecture of the Edge device node
	 horizon_version: Current HZN CLI version

Registering an Edge device node

Simply running the hzn register command will register the Edge node with the Management Hub. The provided HZN_ORG_ID and HZN_EXCHANGE_USER_AUTH values are specified as environment variables. To get a better understanding of the register command and the various options that it supports, run the following command with the –h option:

hzn register -h
 Tip

In general, each hzn command and its subcommands provide an extensive detailed description of each option. Take some time to familiarize yourself with the options that deal with other ways of specifying authentication parameters, org names, patterns, policies, and more.

We will be using variations of the hzn register command in later chapters. For now, just use the following command to register the Edge device node:

hzn register
 This will register the Edge device node with the Management Hub. The preceding command shows a detailed output of activities that get performed on the terminal as part of registering the Edge device node with the Management Hub. This output also specifies suggested next steps the user may take.

Verifying the post-condition

In addition to observing the output on the terminal as the Edge device node registers with the Management Hub, you can also utilize the hzn node list command to confirm that the node was registered successfully by observing the changes in the output. Your expected output will look similar to this:

{
 "id": "edge-device-node",
 "organization": "myorg",
 "pattern": "",
 "name": "edge-device-node",
 "nodeType": "device",
 "token_last_valid_time": "2024-02-25 16:27:19 -0800 PST",
 "token_valid": true,
 "ha_group": "",
 "configstate": {
 "state": "configured",
 "last_update_time": "2024-02-25 16:27:19 -0800 PST"
 },
 "configuration": {
 "exchange_api": "http://<ip-address-of-the-AIO-node>:3090/v1/",
 "exchange_version": "2.110.4",
 "required_minimum_exchange_version": "2.90.1",
 "preferred_exchange_version": "2.110.1",
 "mms_api": "http://<ip-address-of-the-AIO-node>:9443",
 "architecture": "amd64",
 "horizon_version": "2.30.0-1491"
 }
}
 You will notice that most of the fields that were either null or "" before the Edge node registration now have values.

It is also important to note that the configstate: state value is now configured.

With that, you’ve learned how to register an Edge device node with the Management Hub.

Summary

In this chapter, you learned how to register an Edge device node with the Management Hub. To achieve this, you learned how to verify the initial condition before registering and the post-condition after registering.

In the next chapter, we will learn about other commands and develop a solid understanding about them so that we can interact with other components of the Management Hub.

8

Using the Open Horizon CLI and API

Now that you have a good understanding of edge computing concepts and have registered an Edge device node with the Open Horizon All-in-One (AIO) management hub, in this chapter, we will delve into various ways to interact with the system. While you used a few hzn commands in earlier chapters, here, we will practice and learn about the commonly used commands, their options, and contexts. Having a good knowledge of these commands will prepare you to build, develop, publish, and deploy real-world applications as we progress through subsequent chapters. We will also explore how APIs are used under the hood by the command-line interface (CLI) commands, and then introduce how you can use them in your projects.

In this chapter, we’re going to cover the following main topics:

	How to use the CLI

	Commonly used CLIs

	Application programming interfaces (APIs)

The Open-Horizon-based end-to-end system can be managed by CLIs and APIs, while IBM Edge Application Manager provides added capabilities for managing large deployments by using a web UI in addition to integrating with other corporate resources such as LDAP for user management. In this book, we will be using CLIs for most of our work.

Technical requirements

As you will be practicing various CLI commands, you’ll need to keep your Open Horizon AIO Management Hub and the registered Edge device node that we set up in the previous chapter running. It’s advised that you follow the Verifying the pre-condition section in Chapter 7 to make sure that the basic system checks out and is running.

Primarily, you must run the following five commands to verify that your system is running correctly:

	Run the following command to ensure that all environment variables have been set correctly:
env | grep HZN

 	The following command ensures the Edge Agent is running:
hzn version

 	The following command ensures the Management Hub is accessible:
hzn exchange version

 	Run the following command to ensure user credentials are valid:
hzn exchange user list

 	Finally, run the following command to ensure the Edge device node is registered:
hzn node list

Using the CLI

The good thing is that you’re already familiar with CLI commands, as demonstrated in the Technical requirements section. However, we’ll begin with the basics here and gradually progress to enhance your understanding. Let’s start with hzn itself by using the –h option. You can use –h or --help with any command or corresponding subcommands to get more information, including options and usage examples.

So, let’s run the hzn –h command:

hzn –h
 You will see a list of subcommands with elaborate options and explanations:

	agbot: List and manage Horizon agreement bot resources

	agreement: List or manage the agreements this Edge node has made with a Horizon agreement bot

	architecture: Show the architecture of this machine

	attribute: List or manage the global attributes that are currently registered on this Horizon Edge node

	deploycheck: Check deployment compatibility

	dev: Development tools for the creation of services

	env: Show the Horizon environment variables

	eventlog: List the event logs for the current or all registrations

	exchange: List and manage Horizon Exchange resources

	key: List and manage keys for signing and verifying services

	mms: List and manage Horizon Model Management Service resources

	nmstatus: List and manage node management status for the local node

	node: List and manage general information about this Horizon Edge node

	nodemanagement: List and manage manifests and agent files for node management.

	policy: List and manage the policy for this Horizon Edge node

	reginput: Create an input file template for this pattern that can be used for the hzn register command

	register: Register this Edge node with the Management Hub

	secretsmanager: List and manage secrets in Secrets Manager

	service: List or manage the services that are currently registered on this Horizon Edge node

	status: Display the current Horizon internal status for the node

	unregister: Unregister and reset this Horizon Edge node

	userinput: List or manage the service user inputs that are currently registered on this Horizon Edge node

	util: Utility commands

	version: Show the Horizon version

	sdo: List and manage Horizon SDO ownership vouchers and keys

	fdo: List and manage Horizon FDO ownership vouchers and keys

These subcommands help manage the process of publishing and deploying services on the Edge nodes in collaboration with the Management Hub.

As mentioned earlier, Edge nodes interact with the Management Hub over HTTPS and make use of underlying REST-based APIs.

While going into the details of each subcommand and their options is outside the scope of this book, we will go over some commands that you will use often. While doing so, we’ll cover what they do and how to use them.

Broadly speaking, there are two major categories of commands:

	Commands that work directly with the Edge node.

	Commands that interact with the components of the Management Hub

The commands mentioned in the following sections should form a good reference. You can try to practice using them as you go along but you do not necessarily need to master them yet. Many of these commands will be used extensively in the subsequent chapters and will be explained further when used in practice.

Tip

Many of the commands we’ll look at confirm the user action by prompting for a Y/N answer. While this is good practice when learning, in many cases, commands use the –f option to override the need for confirmation. Also, when you’re trying to put together any CLI-based automation, using -f helps to execute the commands without confirmation.

All commands and subcommands come with the –h or -–help option. Additionally, most of the options have shorthand and long-form option names.

Commonly used CLIs

To help build your understanding of the system, we’ll group commands here based on different contexts so that you know what part of the system is exercised to accomplish a particular category of tasks. Let’s start with the general commands.

General commands

The following commands provide a general overview of the end-to-end-system:

	Show the installed hzn CLI version and the running Edge Agent version:
hzn version
You should expect to see an output that looks like this:
Horizon CLI version: 2.30.0-1491
Horizon Agent version: 2.30.0-1491

 	Show the CPU architecture of the Edge device node:
hzn architecture
You’ll see an output that’s similar to the following:
amd64

 	Show the environment variables of the Edge device node that this node is operating with. These variables are based on the values that are used while installing the Edge Agent:
hzn env
You should expect to see an output similar to this:
Horizon Agent HZN Environment Variables are:
HZN_ORG_ID: <orgid>
HZN_EXCHANGE_USER_AUTH: admin:******
HZN_EXCHANGE_URL: http://<ip-address-of-AIO>:3090/v1
HZN_FSS_CSSURL: http://<ip-address-of-AIO>:9443
HZN_AGBOT_URL: http://<ip-address-of-AIO>:3111

Edge node registration

These commands are used to register the Edge node and view the inner workings of the results:

	As mentioned previously, the hzn register command, when used without any option, is used to initially register the Edge node without any deployment pattern or policy. (These concepts were outlined in Chapter 5, Application Placement and Life Cycle Management, and will be demonstrated further in Chapter 9, Autonomous and Flexible Monitoring and Management of Edge Services.)Using the –h or --help option, you can understand what options are available, but you won’t necessarily need to master them yet. Just make sure you’re familiar with the following options in particular:
	-u and –o: These are two of the most important options and must be specified. They are usually derived from the HZN_EXCHANGE_USER_AUTH and HZN_ORG_ID environment variables but they can be optionally overridden with these command options.
	-n or --node-id-tok: You can optionally specify node authentication parameters. This is important when you need to have node-based authentication so that each node can have an independent authentication credential.
	-m or --name (optional): Specify a node name. In the absence of this, the system will try to get this from the hostname or HZN_DEVICE_ID environment variable. In the absence of those, it will create a UUID-based name on the fly.
	-f or --input-file (optional): Specify a file that customizes the parameters of the containerized services. This is equivalent to the environment variables that are used in a docker run command.
	-p or --pattern: A pattern is a user-defined collection of services that can be deployed on an Edge node. Suffice it to say that this is somewhat restrictive by design and will be discussed in later chapters.

	Here’s an example of its usage:
hzn register -p IBM/pattern-ibm.helloworld
	--policy: Policy-based deployment is an alternative to the pattern-based approach. This is a much more flexible and scaleable technique for deploying and managing a wide array of services based on Edge node capabilities. This will be discussed in later chapters in much more detail.

 	While working with Edge nodes, you may need to occasionally unregister the Edge node and start all over again. You can use the following command to do so:
hzn unregister
While just using this command is usually sufficient to unregister the Edge node from the Management Hub, the following options are worth noting:
	-f or --force: Skips the Y/N confirmation when unregistering
	-r or --remove: Removes the information from the Management Hub
	-D or --deep-clean: Completely removes all information about the device.

Using –rfD is a powerful option for cleaning the slate with no prompt. However, be aware that it will eliminate all information about your node.

 	While developing an application, you may want to view the log stating what’s happening at the local Edge node as the node registers, node policies are applied, agreements are formed, and the workload starts running on the Edge node. You can use the following command to view the event log on the local Edge node:
hzn eventlog list
The messages are descriptive and self-explanatory. If you have access rights to view the system log, then much more detailed log information can be viewed at /var/log/syslog.

 	You used the hzn node list command while viewing the current status of the Edge node when it is in an unregistered and registered state:
hzn node list
We will not repeat this content for the sake of brevity.

 	While hzn node list provides information about the local Edge node, the following command, though appearing similar, provides a list of all the registered nodes in the Management Hub for the given HZN_ORG_ID value:
hzn exchange node list
To view the details of the node itself, use the preceding command while providing the node’s name as an argument, like so:
hzn exchange node list <node-name>

 	An Edge node can be registered with a pattern or node policy. It is also possible to apply a node policy to the already registered Edge node. In any of these conditions, the Edge node negotiates an agreement with the Management Hub. To form this agreement, the Edge node presents its credentials and the service pattern it would like to register with – or, in case of policy-based deployment, its node policy. Upon such a request, a qualified agreement is formed, the details of which can be viewed using the following command:
hzn agreement list
You should see an output similar to the following when an Edge node is registered with an IBM-provided hello-world example and the agreement has formed:
{
 "name": "pattern-ibm.helloworld_ibm.helloworld_IBM_arm64
 merged with pattern-ibm.helloworld_ibm.helloworld_IBM_arm64",
 "current_agreement_id": "f907057600e0eb12bd66b03d1566b670
 459341e706607ce2ee25b80d5edfd9cb",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-03-03 18:44:16 +0000 GMT",
 "agreement_accepted_time": "2024-03-03 18:44:19 +0000 GMT",
 "agreement_finalized_time": "2024-03-03 18:44:27 +0000 GMT",
 "agreement_execution_start_time": "2024-03-03 18:44:27
 +0000 GMT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "ibm.helloworld",
 "org": "IBM",
 "version": "1.0.0",
 "arch": "arm64"
 }
}
You will notice that the agreement forms over certain period, as evident from the different timestamps associated with these fields – that is, agreement_creation_time, agreement_accepted_time, agreement_finalized_time, and agreement_execution_start_time.
Note that when the start_time is updated, the workload will start to run as a Docker container on the local Edge node. Also, take note of agreement_id, which we will use in the next command.
The preceding agreement is in place while the workload is running until the node is unregistered or a policy is updated.

 	During development, you may run into a situation where you may want to cancel the agreement to ensure an updated container image is downloaded. Canceling an existing agreement using agreement_id is a convenient way of accomplishing this:
hzn agreement cancel <agreement_id>

Within a couple of minutes (a parameter that can be adjusted by the administrator of the Management Hub), a new agreement will be negotiated and a workload will be deployed on the Edge node.

Service development, publishing, and deployment

Creating a service that can be deployed to the Edge is the starting point for managing Edge computing. This process involves three main stages: development, publishing, and deployment. To prepare a service so that it can be published to the Management Hub for subsequent deployment on the Edge nodes, Open Horizon requires that components be described using several JSON files and recommends using a structured directory to organize different files. The following is a convenient command that you can use to set up the directory structure with template files:

hzn dev service new
 You should expect a directory file structure similar to the following to be created in whatever folder you are in when you issue the command:

└── horizon
 ├── dependencies
 ├── hzn.json
 ├── pattern-all-arches.json
 ├── pattern.json
 ├── service.definition.json
 ├── service.policy.json
 ├── servicesecret
 └── userinput.json
 Later in this book, we will update these files so that they can publish services, patterns, policies, and more.

	After creating these files, a service needs to be published into the Management Hub using the following command:
hzn exchange service publish
You may need to provide a few options. The use of these will be further explained in the next chapter when you publish your own Edge service:
	-f or --json-file: An updated service definition file, as per your project details from the preceding template.
	-r or --registry-token: A service requires a container image. This can come from a public Docker container image registry, in which case it doesn’t need to be authenticated or from an authenticated container image registry. In the latter case, you need to provide a read-only credential token while publishing the service into the Management Hub. You can use this option to specify that.
	-P or --pull-image: We recommend using this option to pull a container image. As a side effect, this validates the credential so that it can access the container image registry you will use while developing a service.

 	Once you’ve published a service in the Management Hub by running the preceding command, you can view the service as part of a list of already published services:hzn exchange service list
To view the details of a service, run the preceding command while providing the service’s name as an argument:

hzn exchange service list <service-name>
You can remove a published service by running the following command:
hzn exchange service remove <service-name>
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option. Use this carefully as you won’t be prompted to confirm if you use this option.

 	To deploy published services on Edge nodes, you can use policy-based deployment. To create a service policy, use the following command:
hzn exchange service addpolicy -f <service-policy>
You need to provide a JSON service policy file using the –f or --json-file option that has the necessary policy as metadata. The service won’t deploy until it is referenced by a deployment policy and is evaluated against node policies by the Management Hub. We will discuss this in more detail in Chapter 10, Managing Edge Scale with Policy-Based Workload Placement.

 	Once a service policy has been published to the Management Hub, you can view the details of the service policy by using the service name as an argument:
hzn exchange service listpolicy <service-name>

 	You can remove a published service policy by running the following command:
hzn exchange service removepolicy <service-name>
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option. Use this carefully as you won’t be prompted to confirm if you use this option.

Pattern publishing

You learned how to use patterns when we registered the Edge node with the hello-world pattern. As you develop your project, you must create an applicable pattern using the services that you’ve published.

	Once a service or a set of services has been published into the Management Hub, you can publish a pattern for those services by using the following command and the -f or --json-file option:
hzn exchange pattern publish –f <patten-file-json>
You can use -f or --json-file to specify the pattern file that will identify a set of services. You can have multiple patterns with different combinations of services.

 	Once a pattern has been published into the Management Hub, you can view it in the list of published patterns:
hzn exchange pattern list

 	To view the details of a pattern, use the preceding command while providing the pattern’s name as an argument:
hzn exchange pattern list <pattern-name>

 	You can remove a published pattern by running the following command:
hzn exchange pattern remove <pattern-name>
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option.

Deployment policy

To deploy services on an Edge node, you can use a deployment policy. This provides a much more flexible and dynamic mechanism for managing your Edge system. The deployment policy works in combination with the service policy and the node policy of the Edge node.

	To create a template for the deployment policy, use the following command:
hzn exchange deployment new

 	You can use the template file from the preceding command to create the deployment policy for the service and publish it into the Management Hub using the following command:
hzn exchange deployment addpolicy -f <deployment-policy>
You need to provide a JSON file that contains the necessary metadata while using the –f or --json-file option. We will discuss this in more detail in Chapter 10, Managing Edge Scale with Policy-Based Workload Placement.

 	Once a deployment policy has been published to the Management Hub, you can view it in the list of published deployment policies:
hzn exchange deployment listpolicy
To view the details of a Deployment Policy, use the preceding command while providing the deployment policy’s name as an argument:
hzn exchange deployment listpolicy <deployment-policy-name>

 	Already published deployment policies can be updated by running the following command with the -f or --json-file option:
hzn exchange deployment updatepolicy <deployment-policy-name> -f <updated-deploy-policy-file>

 	You can remove the published deployment policy by running the following command:
hzn exchange deployment removepolicy <deployment-policy-name>
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option.

Adding a Node policy using the Management Hub

The Deployment policy for your services works with the Service policy for that service, as well as the Node policy of the Edge nodes. The deployment policy, in addition to other parameters, has properties and constraints, including those it inherits from the services referenced by that deployment. Likewise, a Node policy also has properties and constraints. These properties and constraints are evaluated against each other by the Management Hub to determine which services will be deployed to a particular Edge node.

	To add a node policy, create a node policy file for the Edge node and run the following command while providing the node policy file as an argument:
hzn exchange node addpolicy <node-name> -f <node-policy-file>
You need to provide a JSON file that contains the necessary metadata by using the –f or --json-file option. We will discuss this in more detail later in this book.
To update an existing node policy, use the addpolicy command. It acts as an add or update operation.

 	Once the node policy has been added for the Edge node in the Management Hub, you can view its details by using the node’s name as an argument, as follows:
hzn exchange node listpolicy <node-name>

 	You can remove the published node policy like so:
hzn exchange node removepolicy <node-name>
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option.

Managing a local Edge Node using Node policy

In addition to managing the node policy via the Management Hub, it is possible to manage the node policy via the node itself. The advantage of managing the Node policy via Management Hub is that the node policy of any target Edge node can be updated. On the other hand, when using any of the following commands, you need to be logged in at that Edge node.

	To create a template for the node policy that will be applied to the node, use the following command:
hzn policy new

 	Once a template has been prepared, it can be applied using the following update command. An update can be used for first-time policy creation, as well as any subsequent updates:
hzn policy update -f=INPUT-FILE
Use the –f or --input-file argument to specify the node policy file.

 	Use the following command to view the currently running Node policy on the Edge node:
hzn policy list

 	The currently applied Node policy can be patched using the following command. The argument is a JSON construct, similar to the content of the template file. This can be used to update a few selected constraints temporarily during development:
hzn policy patch -f=INPUT-FILE

 	You can remove a currently applied node policy as follows:
hzn policy remove
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option.

User input for services

To customize and provide inputs for the containerized services, Open Horizon provides the userinput construct. This user input will be supplied to the services running on a node when it starts.

	To create a template for the userinput construct, which can be applied to the node for the services, use the following command.
hzn userinput new
After generating the template file, update the file with the required metadata for your service.

 	Use the following command to apply the userinput construct to the Edge node by specifying the file using the –f or --file-path option:
hzn userinput add --file-path=FILE-PATH

 	To view the currently applied userinput construct on the Edge node, enter the following command:
hzn userinput list

 	The currently applied userinput construct can be updated by using the update command and the new file content:
hzn userinput update --file-path=FILE-PATH
Use –f or --file-path to specify the updated file.

 	The currently applied userinput construct can be removed from the Edge node as follows:
hzn userinput remove
As expected, the preceding command will ask for Y/N confirmation, which you can override with the –f option.

Deployment check

As part of developing and deploying an application workload, you may run into issues that may not be obvious to resolve. Open Horizon has provided some tools to do checks and provide insight into what may be missing or how to correct them. These commands take pattern or policy as an argument and will provide detailed and contextual help:

	hzn deploycheck all

	hzn deploycheck policy

	hzn deploycheck secretbinding

	hzn deploycheck userinput

Model management system

As discussed in the AI/ML training section of Chapter 3, and further in Chapter 5, Application Placement and Life Cycle Management, the Model Management System (MMS), as part of Open Horizon, provides a differentiated value addition to Edge computing solutions. MMS provides a mechanism to asynchronously deliver files to the Edge nodes. This provides much-needed flexibility in designing ML Edge solutions where AI/ML models need to be delivered without embedding them into the container image.

	To create a template for the object’s metadata, use the following command.
hzn mms object new
The updated metadata file will be used while publishing the object.
After updating the object’s metadata file, use the following command to publish the ML model as an object into the Management Hub:
hzn mms object publish -m <metadata-file-json> -f <file-to-be-published>

 	To view the published file and its progress, use the following command with object-type and id, as defined in the metadata file:
hzn mms object list -t <object-type> -i <id>

 	To list all of the object metadata, use the –l option:
hzn mms object list -t <object-type> -i <id> -l

 	To view the progress of object delivery status, including the destination edge nodes where it is getting delivered, use the –d option:
hzn mms object list -t <object-type> -i <id> -d

 	The published object can be deleted by running the following command:
hzn mms object delete -t <object-type> -i <id>

 	To verify the status of the MMS itself, run the following command:
hzn mms status

In this section, we covered various commands and their options. You will practice using them later in this book when we delve into developing services, patterns, and policies and deploying them on Edge nodes. As mentioned previously, the preceding commands are a subset of everything that Open Horizon supports. We have provided you with information about how you can access other commands as your project needs evolve. Here, hzn –h is your way to explore all that Open Horizon has to offer in terms of managing workloads at the Edge.

APIs

As mentioned previously, the hzn CLI makes use of underlying RESTful APIs that interact with all the components of the Management Hub and the Edge Agent. These extensive CLIs are built upon APIs and provide all that a user would ever need. However, if your project requires access to the APIs, then they are available under the following categories:

	Agent API

	Agbot API

	Agbot User API

	Exchange API

	MMS API

	FDO API

All of these APIs follow standard RESTful API conventions and provide extensive CRUD capabilities via POST, PUT, GET, PATCH, and DELETE functions, as applicable for the object that they manage.

All of the APIs use https as the underlying protocol and require an identical set of user access credentials for the given organization, as specified by HZN_ORG_ID, and an authentication parameter, as specified by HZN_EXCHANGE_USER_AUTH.

A typical hzn CLI command may make use of multiple API calls to complete a user request, as specified by the given hzn command. To learn more, you can run the hzn CLI command with the verbose option, -v.

Let’s examine some previously used commands with the –v option:

	hzn version with the –v option:
hzn version -v
[verbose] Reading configuration file: /etc/horizon/hzn.json
[verbose] Reading configuration file: /etc/default/horizon
[verbose] Config file does not exist: /home/user/.hzn/hzn.json.
[verbose] Reading configuration file: /home/user/horizon/hzn.json
Horizon CLI version: 2.30.0-1491
[verbose] HTTP request timeout set to 0 seconds
[verbose] GET http://localhost:8510/status
[verbose] HTTP code: 200
Horizon Agent version: 2.30.0-1491
Note that this command queries the local node for its status:
[verbose] GET http://localhost:8510/status

 	hzn exchange version with the –v option:
hzn exchange version -v
[verbose] Reading configuration file: /etc/horizon/hzn.json
[verbose] Reading configuration file: /etc/default/horizon
[verbose] Config file does not exist: /home/user/.hzn/hzn.json.
[verbose] Reading configuration file: /home/user/horizon/hzn.json
[verbose] The exchange url: http://<ip-address-of-AIO-management-hub>:3090/v1
[verbose] GET http://<ip-address-of-AIO-management-hub>/v1/admin/version
[verbose] HTTP request timeout set to 30 seconds
[verbose] HTTP code: 200
2.110.4
In this case, the command makes an API call to the Management Hub to get the exchange version.

 	hzn exchange user list with the –v option:
hzn exchange user list -v
[verbose] Reading configuration file: /etc/horizon/hzn.json
[verbose] Reading configuration file: /etc/default/horizon
[verbose] Config file does not exist: /home/user/.hzn/hzn.json.
[verbose] Reading configuration file: /home/user/horizon/hzn.json
[verbose] The exchange url: http://<ip-address-of-AIO-management-hub>:3090/v1
[verbose] GET http://<ip-address-of-AIO-management-hub>:3090/v1/admin/version
[verbose] HTTP request timeout set to 30 seconds
[verbose] HTTP code: 200
[verbose] The exchange url: http://<ip-address-of-AIO-management-hub>:3090/v1
[verbose] GET http://<ip-address-of-AIO-management-hub>:3090/v1/orgs/myorg/users/admin
[verbose] HTTP request timeout set to 30 seconds
[verbose] HTTP code: 200
{
 "myorg/admin": {
 "password": "********",
 "email": "not@used",
 "admin": true,
 "hubAdmin": false,
 "lastUpdated": "2024-02-13T02:09:45.344124229Z[UTC]",
 "updatedBy": "root/root"
 }
}
In this case, the command makes two API calls to the Management Hub to get the user list value:
[verbose] GET http://<ip-address-of-AIO-management-hub>:3090/v1/admin/version
[verbose] GET http://<ip-address-of-AIO-management-hub>:3090/v1/orgs/myorg/users/admin

Directly calling APIs

With the preceding examples, you’ve seen how API calls are made by various CLI commands. Let’s try making an API call with the curl command for hzn version by using the API that was used by the frontend CLI. Given that the output of the API call is in JSON, passing the output to pipe (| jq) formats the JSON output for better readability:

curl http://localhost:8510/status | jq
{
 "configuration": {
 "exchange_api": "http://<ip-address-of-AIO-management-hub>:3090/
 v1/",
 "exchange_version": "2.110.4",
 "required_minimum_exchange_version": "2.90.1",
 "preferred_exchange_version": "2.110.1",
 "mms_api": "http://<ip-address-of-AIO-management-hub>:9443",
 "architecture": "arm64",
 "horizon_version": "2.30.0-1491"
 },
 "liveHealth": null
}
 Here, we can infer that the API may provide more information. Also, the frontend CLI can prune further when presenting the content to the user.

As you have seen, many of the hzn commands require user authentication. When making such an API call, you need to provide the necessary credentials using the -u option when using curl, with the organization’s name and credentials specified as follows:

-u <orgname>/<username:api-key>
 For example, the API corresponding to hzn exchange user list can be called using curl, where the authentication parameter is passed using the –u option:

curl http://<ip-address-of-AIO-management-hub>:3090/v1/orgs/myorg/users/admin -u myorg/admin:<api-key>
 The output will be similar to the one that can be obtained by using the CLI directly:

{
 "users": {
 "myorg/admin": {
 "password": "********",
 "admin": true,
 "hubAdmin": false,
 "email": "not@used",
 "lastUpdated": "2024-02-13T02:09:45.344124229Z[UTC]",
 "updatedBy": "root/root"
 }
 },
 "lastIndex": 0
}
 Using the –v option with other hzn commands while creating, updating, or deleting deployment resources will show the inner workings of the CLIs and expose the API calls that are made. Going over all the APIs is beyond the scope of this book. However, here is a brief introduction to each API category:

	The Agent API performs the actions that are taken by Edge agents running on the Edge nodes.

	Agbot APIs are not remotely accessible, but they are invoked by Exchange APIs.

	Exchange APIs are the most extensive set of APIs and form the interface for external systems.

	MMS has two sub-components. Most users may need to interact with the Cloud Sync Service API.

	The FDO API provides zero-touch provisioning of the Edge nodes.

These APIs are extensively documented as Swagger APIs and can be found at https://open-horizon.github.io/docs/api/. Seeing how authentication can be injected with the API while using curl gives us a good foundation to use APIs and build another level of automation as needed. In this book, we will mostly use hzn CLIs. We’ll start to use them in subsequent chapters.

The web user interface

While CLIs and APIs are inherent to Open Horizon, the web user interface is available as part of IBM Edge Application Manager. This will be described in the Chapter 17, Using the IBM Edge Application Manager Web UI.

Summary

In this chapter, you got a solid foundation and became familiar with a wide category of CLI commands. We also looked into underlying APIs and explored how to use them as project needs arise. As we build, publish, deploy, and register Edge nodes in the subsequent chapters, these commands will be used extensively. You can use this chapter as a reference to answer any questions you might have when using a CLI command.

In the next chapter, using many of the commands discussed here, you will develop a service and a pattern, publish them to the Management Hub, and then register the Edge device node with a pattern.

9

Autonomous and Flexible Management of Edge Services

Now that we have a solid foundation regarding Edge computing concepts and the architectural features required to build an Edge-deployable containerized workload, we are ready to build the components of our application using Open Horizon. The previous chapter on the hzn CLI provided a comprehensive overview of how to use various commands and provided you with the mechanics for interacting with the Edge Agent and Management Hub. Armed with conceptual and practical hands-on experience, in this chapter, we will define, develop, publish, and deploy the actual workload on the Edge device node.

In this chapter, we will cover the following main topics:

	Developing an Open Horizon Service

	Developing an Open Horizon Pattern to deploy services

	Publishing a Service and Pattern to the Management Hub

	Deploying a workload on an Edge device node using the Pattern

	Combining multiple Services and deployments

Technical requirements

To complete this chapter, you will need to do the following:

	Verify the current setup of the All-in-One (AIO) Management Hub and the Edge Agent on your Edge device node, as per the instructions in Chapter 7, in the Technical requirements section.

	Create an account in Docker Hub or any other container image registry where you can push a Docker image and pull from.

	You have observed that the JSON file format is used extensively while providing input for a particular operation or when the system generates output that a user can view or work with.

	We will be using several commonly available tools, such as make and jq, while doing development work.

Developing an Open Horizon Service

As noted earlier, a Service is the most atomic artifact of the Open Horizon managed workload deployment construct. An Open Horizon Service wraps all the pieces that are required to run a containerized microservice on an Edge node.

To define what makes an Open Horizon Service, let’s look at the sample service-definition.json file you created when you used the hzn dev service new command in the previous chapter to create various template files.

Tip

Although it’s not required to utilize the files generated by the preceding command, you have the option to create your own. However, it’s a good idea to adhere to the directory structure and keep all the files under a horizon sub-directory as some of the commands that help check the deployment expect certain files to be in certain directories.

Let’s examine the sample service-definition.json file to understand various fields and their applicability:

{
 "org": "$HZN_ORG_ID",
 "label": "$SERVICE_NAME for $ARCH",
 "description": " ",
 "public": false,
 "documentation": " ",
 "url": "$SERVICE_NAME",
 "version": "$SERVICE_VERSION",
 "arch": "$ARCH",
 "sharable": "multiple",
 "requiredServices": [],
 "userInput": [
 {
 "name": "",
 "label": "",
 "type": "",
 "defaultValue": ""
 }
],
 "deployment": {
 "services": {
 "$SERVICE_NAME": {
 "image": "${DOCKER_IMAGE_BASE}_$ARCH:$SERVICE_
 VERSION",
 "privileged": false,
 "network": "",
 "secrets": {}
 }
 }
 }
}
 While many of the fields may be self-explanatory, we will describe them and provide additional context. As we describe each field, we will identify whether a field requires a value or can be left empty ("" or []):

	org (required): Open Horizon supports multi-tenancy, implying that multiple organizations can be hosted on one Management Hub to keep the overall cost low. This field identifies the organization that this service belongs to.

	label (optional): A short text label for the service.

	description (optional): A detailed description of the service.

	public (required): Usually this is false, though it can also be true. Here, true implies that the service can be used by organizations other than the organization that originally published It. This requires that the underlying container image is publicly available. Open Horizon examples published in the IBM organization have this field set to true.

	documentation (optional): Link to the documentation URL, if any.

	url (required): Though it’s named url, it’s not a URL but a unique name for the service within the Docker network that this service will belong in. We usually follow a dot naming convention; , and, in this book, we will follow a name like rwec.edge.example.network.service1 for example. You may also organize the service name as per your own guidelines.

	version (required): The service version is specified with the x.y.z convention, a subset of the semantic version scheme. The service version is used by the system to deploy or to locate the version of the service when performing a rollback in case of any issues. By convention, 1.0.1 is newer than 1.0.0.

	arch (required): The CPU architecture that the container image is compiled for. You can have support for multiple architectures, such as amd64, arm, arm64, and others, and have compiled service code for each separately.

	sharable (required): Usually, this is set to multiple, though its value can also be singleton. Here, multiple implies that multiple instances of the same service can be used by the application, whereas singleton means that there is only one instance of the service that can be used by the application. This will depend on the needs of your application design.

	requiredServices (optional): This field enables one of the core features of the Open Horizon service management scheme by managing the dependencies of the services. If a top-level primary service requires a secondary service below to function properly, the Open Horizon Edge Agent will run the secondary level service before rendering the primary service running. A secondary service may have its own secondary service or services. A lower-level service may refer to yet another service as peer-service, resulting in a complex graph of services. Using requiredServices, you can build a complex graph of services, not just hierarchical services. Open Horizon Edge Agent manages the asynchronous life cycle of all the dependent services in the service graph, avoiding the need to manage them in your application code. Though the Edge Agent will manage the life cycle of the service by restarting if a service fails, your application code still needs to tolerate the failed service.

	userInput (optional): A service may require some inputs. The supported input types are string, boolean, int, and float. Services may have a default value and can be also overridden for a node to provide flexibility.

This set of fields manages the metadata that is used to manage the service.

The following fields, which can be found in the deployment section, relate to the containerized image of the service:

	deployment (required): This section describes how to deploy the containerized service image itself.

	services (required): A list of services that are defined and managed by this service-definition file. At least one Service needs to be defined.

	$SERVICE_NAME (required): A valid and unique Service name that the Docker network will create and which other services will use to identify this service. If there is only one service, then $SERVICE_NAME could be the same as the url service name defined previously. In the case of multiple services, each Service name needs to be unique and the url service name identifies a collection of these services together.

	image: A fully qualified path to access the Docker image in a container image repository, including the version number.

	privileged: Specify true or false, depending on the need of your application to run the image in privileged mode. This is typically required when the container image needs access to host services such as the filesystem, network, and others.

	network: Uses the network services of the host machine.

We encourage you to review the content of the two following references. As Open Horizon capabilities are constantly being enhanced, the deployment section specifies many more optional fields that an application may want to specify:

	https://open-horizon.github.io/docs/anax/docs/deployment_string/

	https://open-horizon.github.io/docs/anax/docs/service_def/

Developing an Open Horizon Pattern

Once your service has been defined and published (you’ll learn how to publish your service later in the Publishing an Open Horizon service and pattern section), for the services to be deployed and running in the Edge nodes, they need to be managed as a collection using a Pattern-based scheme or a Policy-based scheme. In this chapter, we will consider the Pattern-based scheme. A Pattern is a construct that groups a set of Service(s) into a single deployable unit on a particular node.

Note

One of the restrictions of using an Open Horizon Pattern is that an Edge node can only be registered with one Pattern at a time. You cannot deploy additional services by registering the node with another Pattern that has other Services. If you are using Pattern-based Service deployment, then you must create another Pattern with such desired combinations. Policy-based deployment alleviates this restriction. We will discuss this in the next chapter.

To define what makes an Open Horizon pattern, let’s look at the sample pattern.json file that you created when you used the hzn dev service new command in the previous chapter while creating various template files:

{
 "name": "pattern-${SERVICE_NAME}-$ARCH",
 "label": "Edge $SERVICE_NAME Service Pattern for $ARCH",
 "description": "Pattern for $SERVICE_NAME for $ARCH",
 "public": false,
 "clusterNamespace": "",
 "services": [
 {
 "serviceUrl": "$SERVICE_NAME",
 "serviceOrgid": "$HZN_ORG_ID",
 "serviceArch": "$ARCH",
 "serviceVersions": [
 {
 "version": "$SERVICE_VERSION"
 }
]
 }
]
}
 Relatively, the Pattern definition file has fewer options, and its simplicity makes it attractive for simpler projects. As you can see, many of the fields are self-explanatory, but we will describe them here and provide additional context:

	name (required): The Pattern name that will be used while registering the Edge node.

	label (optional): A short text label for the Pattern.

	description (optional): A detailed description of the Pattern.

	public (required): Usually, this is false, though it can also be true. Here, true implies that the Pattern can be used by organizations other than the organization that originally published it.

	clusterNamespace (optional): This is used when deploying on an Edge cluster node.

	The fields of the services section are important as they list the Services(s) that make up the Pattern.

	services (required): A list of services described by their own set of fields. There can be multiple of these blocks corresponding to different Services or architectures.

	serviceUrl (required): The Service name’s url field defined in service-definition.json.

	serviceOrgid: The organization that published this Service.

	serviceArch: The CPU architecture.

	serviceVersions: This is a list of Service versions that make up this Pattern. This field also optionally includes versioning information about upgrades and rollbacks of Services.

	version: The published Service version.

The Open Horizon documentation describes many more options that may be applicable based on your project: https://open-horizon.github.io/docs/using_edge_services/using_patterns/#using_patterns.

Publishing an Open Horizon Service and Pattern

Having understood what it would take to prepare the service definition, let’s create a simple Service and publish it in the Management Hub. In the previous chapter, we assumed that the container image of the Service exists, which usually may be the case. However, in this book, we will start from scratch.

A typical application development cycle may involve the following steps:

	Develop the microservice code.

	Build a container image for the microservice image.

	Publish the microservice in a container repository.

	Create service-definition JSON for the service.

	Publish the service to the Management Hub.

	Create an Open Horizon Pattern or Deployment Policy for the service.

	Register the node with a Pattern.

	Verify that the Service and the application are running.

We will go through these steps by following the code provided in the example-services repository.

Tip

In the book, we’ll adhere to a directory structure similar to the repository, organizing content into two main directories: publish and register. Additionally, we’ll utilize the readily available make utility found on Linux systems to automate tasks such as building and publishing. It’s important to note that this isn’t mandatory for Open Horizon, and you’re welcome to structure your code according to your preferences and use any IDE you prefer. We’ll also leverage the concept of Linux environment variables to ensure flexibility and portability in building and publishing code.

Let’s take a closer look at publish and register:

1. publish: The content in this directory covers the source code of the application, and all the other artifacts required to publish a Service and Pattern to the Management Hub

2. register: The content in this directory either documents or has the code to register an Edge device node using a Pattern or Policy

Typical content of the publish directory

The publish directory typically contains a makefile file that serves as the top-level file. It contains various targets to automate tasks such as building and publishing application artifacts.

To illustrate the functionality of the interacting services as an example application in this chapter, we will make use of two services: service1 and service2. Both are identical services with a simple variation in messages to help identify the content provided by either of the Services as it’s displayed in the output.

Let’s look inside src/service1. It contains several directories, a Dockerfile, and a Makefile:

	horizon: Contains content related to Open Horizon

	service: This contains application code for a very simple service that outputs text.

	Dockerfile.amd64: A very simple Dockerfle for building a container image for the application

	Makefile: This contains various targets, as outlined here:	build: Builds the Docker image using the specified architecture-specific Dockerfile and tags the image as per the specified image name. This is composed of several ENVIRONMENT variables to help automate the setup process:
	push: Pushes the image to Docker Hub using your credentials. You should have your own Docker container registry credentials.
	publish-service: Publishes the service as per the specified service-definition.json file. Note that the image that’s published to Docker Hub is publicly available, which is why we didn’t specify any credentials while publishing. Otherwise, we would have used the -r option to specify the registry token. If the registry token was provided, it would be stored in the Management Hub securely and provided to the Edge Agent when it later registers with a Pattern or Policy to pull the image from the authenticated container registry.
	publish-pattern: Once a Service has been published, an Open Horizon Pattern can be published to the Management Hub. This can be later used by any registering Edge Agent to deploy the Service on the Edge device node.

Now that we have established the general structure of the various files and techniques that we will use to build, publish, and deploy the services and patterns, let’s begin the actual tasks.

Deploying a workload on an Edge device node using a pattern

In this hands-on exercise, we will build and push container images, publish a Service and Pattern, register the Edge device node with a pattern, and verify that the deployed services are running.

To complete this exercise, take a look at the accompanying example-services repository for any additional instructions. You should look at the content of the Makefile and corresponding targets to understand the underlying commands being used, especially how the Service and Pattern are published to the Management Hub. Also, take a look at service-definition.json and pattern-service.json to develop a good understanding based on real examples and the concepts described so far:

	Set up the ENVIRONMENT variables:
source ~/project/rwec/ENV_RWEC

 	Build the service1 Docker image:
make build
	Verify the built Docker image:docker images | grep service1

Your output should look like this.
rwec.edge.example.service.service1_amd64

 	Push the service1 container image into the container registry:
make push

 	Publish service1 to the Management Hub:
make publish-service
	Verify the published Service:hzn exchange service list

Your output should look like this.
[
 "myorg/rwec.edge.example.service.service1_1.0.0_amd64"
]

 	Publish the pattern to the Management Hub:
make publish-pattern
	Verify the published Pattern:hzn exchange pattern list

Your output should look like this:
[
 "myorg/pattern-rwec.edge.example.service.service1"
]

 	Register an Edge device node with the pattern:
make register
	Verify the registration process by looking at the config state. Its state should be configured when you run the following command:hzn node list

	As service1 starts to be deployed, an Open Horizon agreement will start to form. You can view this by running the following command. When running this command multiple times, you will see different timestamp values start to fill in:hzn agreement list

	Once agreement_execution_start_time has been filled in, you can view the deployed container by running the docker ps command and verify that the container is running.

 	Test and verify the deployed application service:
make test-app-service
The preceding make target does a simple curl call to get the content returned by service1.
Your output should be similar to this:
{
 "hostname": "0e078496c3f9",
 "service": "Service One"
}

 	Unregister the Edge device node:
make unregister
The preceding command will cancel the agreement, stop the service, and unregister the Edge device node.

Here, you practiced building a container image, pushing it to a container registry, and publishing an Open Horizon Service and Pattern. Additionally, you registered an Edge device node with a Pattern and observed the deployment of a containerized microservice on the Edge device node. In the next section, we’ll publish an additional service and combine the services in different combinations of Patterns to illustrate their use.

Combining multiple services and deployments

Now that you’ve learned how to deploy a simple service, let’s explore how multiple services can be deployed using an Open Horizon Pattern.

As an exercise, deploy service2 while following the instructions we used for service1. The code for this can be found in the example-services service2 directory of this book’s GitHub repository.

Simply running make in the service2 directory will build and push the container image, and then publish service2 and a corresponding pattern.

Run make register to register the Edge device node with the pattern we created previously. Once the Edge device node has been fully registered and the service workload has been deployed and is running, you can test the service’s output with make test-app-service.

You should see an output similar to this:

{
 "hostname": "08a1cd0fbf31",
 "service": "Service Two"
}
 At this point, you should review the horizon/service.definition.json and horizon/pattern-service.json files for both services – especially the requiredServices and deployment sections in the service definition file.

So far, you have published two services and two patterns to the Management Hub. They should look similar to the following:

hzn exchange service list
[
 "myorg/rwec.edge.example.service.service2_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service1_1.0.0_amd64"
]
hzn exchange pattern list
[
 "myorg/pattern-rwec.edge.example.service.service2",
 "myorg/pattern-rwec.edge.example.service.service1"
]
 Patterns with complex service combinations

As mentioned earlier, an Edge device node can only be registered with one pattern at a time. You cannot deploy additional services by registering the node with an additional pattern that has other services. If you’re using pattern-based service deployment, then you must create another pattern with such desired combinations.

Let’s use the two services mentioned previously to create higher-level service patterns by using them in different combinations.

Peer services

In this combination, we will combine two services into one service definition file and create a higher-level service and a corresponding pattern that an Edge device node can register with.

Let’s look inside example-services/publish/src/service-peer/horizon and examine the service-definition.json file. You will find that the deployment section has two different Services and that the Service name for this combination is aptly called service-peer.

Note that we are not going to rebuild the container image for the participating Services but rather combine the already built Docker images using the Open Horizon service definition construct.

Let’s go ahead and publish service-peer by running the following command:

make publish-service
 We can also view the list of services:

hzn exchange service list
 At this point, three services have been published in the Management Hub. We can see this by running the previous command:

[
 "myorg/rwec.edge.example.service.service1_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service2_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service-peer_1.0.0_amd64"
]
 Let’s create another pattern:

make publish-pattern
 We can view the list of patterns:

hzn exchange pattern list
 At this point, we have an additional pattern in the Management Hub called service-peer:

[
 "myorg/pattern-rwec.edge.example.service.service2",
 "myorg/pattern-rwec.edge.example.service.service-peer",
 "myorg/pattern-rwec.edge.example.service.service1"
]
 Let’s register the node with the service-peer pattern. Make sure that the Edge device node is unregistered before you register again with a new pattern:

make unregister
make register
hzn agreement list
 After registration and agreement formation, you should see two Docker containers running that correspond to two different Services using docker ps.

When you run make test-app-servicz, which uses curl, you should see output from both services on two different ports:

curl http://localhost:8881 | jq
{
 "hostname": "a768310f25c7",
 "service": "Service One"
}
curl http://localhost:8882 | jq
{
 "hostname": "a822ec1f69f1",
 "service": "Service Two"
}
 This approach provides a simple technique you can use to wire multiple services as peers to be deployed and managed by the Edge Agent running on the node. Note that these peer services do not have dependencies on each other and will be started in a random order, as determined by the Docker runtime.

Required services

It is possible to create dependencies among services to ensure they run in an orderly fashion by using the requiredServices construct, where the top-level service has another service as a required service. A pattern can be created with this combination of services.

Let’s look inside example-services/publish/src/service-required/horizon and examine the service-definition.json file. You will find that this top-level service1 has service2 as a requiredServices construct. The deployment section has one service, service1, and the service name for this composition is service-required.

Once again, we aren’t going to rebuild the container image for the participating Services but rather combine the already built Docker images using the Open Horizon service definition construct.

Let’s go ahead and publish service-required by running the following command:

make publish-service
 We can view the list of services:

hzn exchange service list
 With that, four services have been published in the Management Hub. We can see this by running the following command:

[
 "myorg/rwec.edge.example.service.service1_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service2_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service-peer_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service-required_1.0.0_amd64"
]
 Let’s create another Pattern:

make publish-pattern
 We can view the list of Patterns:

hzn exchange pattern list
 Now, we have a fourth pattern in the Management Hub service-required:

[
 "myorg/pattern-rwec.edge.example.service.service2",
 "myorg/pattern-rwec.edge.example.service.service-peer",
 "myorg/pattern-rwec.edge.example.service.service1",
 "myorg/pattern-rwec.edge.example.service.service-required"
]
 Let’s register the node with the service-required pattern. Ensure that the Edge device node is unregistered before you register again with a new pattern:

make unregister
make register
hzn agreement list
 After registration and agreement formation, you should see two Docker containers running corresponding to two different services using docker ps.

When you run make test-app-service, which uses curl, you should see output from both services on two different ports:

curl http://localhost:8881 | jq
{
 "hostname": "6c6c2edccd44",
 "service": "Service One"
}
curl http://localhost:8882 | jq
{
 "hostname": "8aa9be804509",
 "service": "Service Two"
}
 The Open Horizon pattern construct provides a mechanism to deploy a single service and multiple services on an Edge node in a tightly defined manner.

Summary

In this chapter, you gained a detailed understanding of how services are individually developed, published, and deployed on registered Edge device nodes. You also learned how a pattern-based deployment can be used to deploy a set of services individually, as peer services, and as dependent services.

In the next chapter, we will explore the Policy-based deployment process so that we can deploy Services on the Edge device node.

10

Managing Edge Scale with Policy-Based Workload Placement

In the previous chapter, you learned about and practiced developing Open Horizon services, which form the building blocks of deploying underlying microservices on Edge nodes. You also developed and practiced the pattern-based approach to deploying a collection of services on Edge nodes. The pattern-based approach is simple and might be a reasonable solution for deploying services on a small number of Edge nodes with few microservices. However, we have also seen the limitations of the pattern-based approach when applications need flexibility in deploying microservices on many Edge nodes.

This is where policy-based deployment comes into play. In this chapter, we will develop and practice such an approach by leveraging all the knowledge that we have acquired so far.

In this chapter, we will cover the following main topics:

	Policy-based application workload placement

	Developing a service policy

	Developing a deployment policy

	Developing a node policy

Technical requirements

Please verify the current setup of the All-in-One (AIO) Management Hub and the Edge Agent on your Edge device node, as per the instructions provided in Chapter 7, in the Technical requirements section.

Also, make sure that the Edge device is registered.

Finally, verify that all the services – service1, service2, service-peer, and service-required – that were deployed in the previous chapter are still published in the Management Hub. We will reuse these example services, but this time, we’ll deploy them using a policy-based approach instead of a pattern-based one.

Policy-based application workload placement

As you may recall, the concept of policy-based microservices deployment was introduced in Chapter 5, in the Policy-based management is key to deployment at scale section. It would be a good idea to revisit that.

As described in that section, the Service policy, Deployment policy, and Node policy work together to determine how microservices are deployed on the target Edge node.

Properties are user-defined arbitrary sets of name-value pairs, where name can be any valid string and value can be typically one of the primitive types: int, string, float, or boolean. You may not need to specify the type of the property if the type can be determined by inspecting the specified property value.

Constraints are logical expressions that are specified in terms of conditions and expressed as a set of properties. For a constraint to be valid and to deploy a qualifying service or model, it must evaluate to true for the given Edge node, as specified by its set of node properties.

It’s important to note that typically, properties and constraints make up the contents of policies. The Node policies should express the capabilities as a set of properties (name-value pairs), and any constraints on what services (based on the Service’s properties) can be deployed there. The service policies should express the Service’s capabilities as a set of properties and any conditions required by that service expressed as a constraint. These are typically set by the service developer. The deployment policies can further constrain where that Service may be deployed – typically, this is set by the deployment manager.

See the following Open Horizon reference for additional information: https://open-horizon.github.io/docs/anax/docs/properties_and_constraints/#policy-props.

Developing a Service policy

As noted in Chapter 5, a Service policy is specified by the software developer in terms of Properties and Constraints as a set of requirements needed to run this service. It’s important to note that the service policy is optional, and the initial needed values are automatically provided by Open Horizon.

Let’s look at the sample service.policy.json file that you created when you ran the hzn dev service new command in Chapter 8 to create various template files. The name of the file isn’t fixed, so you can rename or use a different filename as needed for your project:

{
 "description": "a policy for your service",
 "properties": [
 {
 "name": "prop1",
 "value": "value1"
 }
],
 "constraints": []
}
 Let’s take a closer look at the fields of this JSON file and provide additional context:

	description (optional): A brief description of this policy

	properties: A list of a set of name-value pairs	name: The property name as a text string
	value: The property value as int, float, string, boolean

	constraints: In this example, it’s empty, but we will explain this in detail when we cover deployment policies

Listing a Service policy

Let’s practice using some hzn commands to list and examine the contents of some of the services that are already published in the system.

In the previous chapter, we published many services but did not publish any service policies. Despite this, our application worked correctly as expected.

To view the current service policy of a service, run the following command with the service name as an argument:

hzn exchange service listpolicy <service-name>
 We’ll use the service1 service that we published in the previous chapter. But first, let’s use the following command to list all the services in the myorg org:

hzn ex serv ls
[
 "myorg/rwec.edge.example.service.service-peer_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service1_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service-required_1.0.0_amd64",
 "myorg/rwec.edge.example.service.service2_1.0.0_amd64"
]
 You might have noticed that I used ex (for exchange), serv (for service), and ls (for list) as short forms. The following two commands are equivalent:

hzn exchange service list
hzn ex serv ls
 Now, list the service policy by running the listpolicy subcommand while using the service name as an argument to view the content of the service:

hzn ex serv lsp rwec.edge.example.service.service1_1.0.0_amd64
 Your output will look like this:

{
 "properties": null,
 "constraints": null
}
 This is a valid output as we haven’t specified a Service policy for service1.

Review an example

Let’s look at the Service policy of the HelloWorld service, an example provided by Open Horizon:

hzn ex serv lsp IBM/ibm.helloworld_1.0.0_amd64
 The output will look similar to the following:

{
 "properties": [
 {
 "name": "openhorizon.service.url",
 "value": "ibm.helloworld"
 },
 {
 "name": "openhorizon.service.name",
 "value": "ibm.helloworld"
 },
 {
 "name": "openhorizon.service.org",
 "value": "IBM"
 },
 {
 "name": "openhorizon.service.version",
 "value": "1.0.0"
 },
 {
 "name": "openhorizon.service.arch",
 "value": "amd64"
 }
],
 "constraints": [
 "openhorizon.memory >= 100"
]
}
 This example shows various name-value pairs for the properties and a service constraint of the service.

Policy-based Properties and Constraints

Now that you have had some practical hands-on experience with the various aspects of Service policies, let’s work toward deploying the services that were developed in the previous chapter by using Policies instead of Patterns.

In this exercise, we will create Properties and Constraints to meet the following conditions:

	As a software developer, we will specify that service capability is basic for service1 and service2 in their service policies.

	We will specify that service capability is advanced for service-peer and service-required in their service policies.

	service1 will be deployed in an Edge node group called group-east.

	service2 will be deployed in an Edge node group called group-west.

	service-peer and service-required will be deployed in group-north and group-south, respectively.

These conditions are purely example scenarios. They will become clearer as we start working with code samples and start seeing the effect as service, deployment, and node policies are created, modified, and deleted.

The accompanying Makefile automates the task of managing the service policy. For example, the following make target will add a service policy using the hzn command:

make add-service-policy
 Review the Makefile and the corresponding make targets to familiarize yourself with the process. Next, we will outline the steps and the various hzn command references to highlight which hzn command should be run to add, list, and remove policies. You may choose to run the commands manually as well.

Creating a Service policy

To accomplish the simple deployment outlined previously, we will create a service policy for conditions 1 and 2 in a file called service-policy.json, where the capability constraint has a value of basic or advanced.

At this point, we are working in the service1 folder to create a file containing the following code:

horizon/service-policy.json
{
 "properties": [],
 "constraints": [
 "openhorizon.memory >= 100",
 "capability == basic"
]
}
 Adding a Service policy

Once the service policy file has been created, it must be applied to the particular Service by using the addpolicy subcommand.

We will use the service-policy.json file and add a Service policy to service1 while using the –f option to specify the file as an argument, as follows:

hzn exchange service addpolicy -f horizon/service-policy.json "rwec.edge.example.service.service1_1.0.0_amd64"
 An output similar to this will appear in your terminal:

Adding built-in property values...
The following property values will be overridden: service.url, service.name, service.org, service.version, service.arch
Updating Service policy and re-evaluating all agreements based on this Service policy. Existing agreements might be cancelled and re-negotiated.
Service policy updated.
 Viewing the Service policy’s details

Once a service policy is added to a Service, it can be viewed by running the listpolicy subcommand.

Note:

Just for variety and to build familiarity with the short-form subcommand options, you will see the use of short forms of various subcommands here. This book will use a mix of short-form and long-form subcommand options going forward. If in doubt, you should use the –h option to view the complete long forms of commands and subcommands:

hzn ex serv lsp rwec.edge.example.service.service1_1.0.0_amd64
 The output may look like this. You will notice that a new constraint called capability == basic has been added:

{
 "properties": [
 {
 "name": "openhorizon.service.url",
 "value": "rwec.edge.example.service.service1"
 },
 {
 "name": "openhorizon.service.name",
 "value": "rwec.edge.example.service.service1"
 },
 {
 "name": "openhorizon.service.org",
 "value": "myorg"
 },
 {
 "name": "openhorizon.service.version",
 "value": "1.0.0"
 },
 {
 "name": "openhorizon.service.arch",
 "value": "amd64"
 }
],
 "constraints": [
 "openhorizon.memory >= 100",
 "capability == basic"
]
}
 Adding Service policies for other services

Similarly, add Service policies for service2, service-peer, and service-required using the service-policy.json files in the horizon folder of each of the aforementioned services.

After adding service policies for each of the four services, you can verify them by running the following commands. You have seen these before; they are shown here again for convenience:

hzn ex serv lsp rwec.edge.example.service.service1_1.0.0_amd64
hzn ex serv lsp rwec.edge.example.service.service2_1.0.0_amd64
hzn ex serv lsp rwec.edge.example.service.service-peer_1.0.0_amd64
hzn ex serv lsp rwec.edge.example.service.service-required_1.0.0_amd64
 When you run these commands, verify and pay attention to the constraints block of the output. Here, you will find the name-value pair, as specified in the service-policy.json files.

Removing a service policy

Just as a service policy can be added, an existing service policy can be removed. You can do this by using the removepolicy subcommand.

Note

We will practice removing the service policy after we have successfully deployed the service on the Edge device node.

Developing a Deployment policy

As mentioned previously, to deploy a service on an Edge node, in addition to a Service policy, we also need a Deployment policy.

The Deployment policy works very similarly to a Service policy and has a similar concept of Properties and Constraints. Once again, we’ll create a deploy policy file in JSON format to specify name-value pairs with logical expressions. Here, the goal is to use name-value pairs with target deployment scenarios in perspective. Note that the deployment policy has more details in addition to Properties and Constraints.

Note

In practice, the Service policy and Deployment policy are combined internally by the Open Horizon Management Hub while evaluating the Agreement that results in the actual deployment of services on the qualifying nodes. Some software developers just use the Deployment policy and combine Service policy constraints in the Deployment policy itself. Understanding the semantics of a Service policy versus a Deployment policy is important and should be used as appropriate to reflect on separation of concerns and responsibilities.

The accompanying Makefile automates the task of managing the Deployment policy:

make add-deploy-policy
 Review the Makefile and the corresponding make targets to become familiar with the process. In the following sections, we will outline the steps and highlight which hzn command should be run to add, list, and remove policies. You may choose to run the commands manually as well.

Creating a Deployment policy

Following our deployment scenario of deploying in the group-east node group, let’s start in the service1 folder once more. We will create a deployment policy for conditions 3, 4, and 5 in a file called deploy-policy.json in the horizon sub-folder. Here, a constraint named node-group has a value of group-east:

{
 "properties": [],
 "constraints": [
 "node-group == group-east"
]
}
 The actual Deployment policy file has many more fields, as described here and in the online product documents. Please review the content of the Deployment policy file for more details. We will go over the following important fields to provide additional context:

	label: A short string text for identifying this Deployment policy.

	description: A longer string text that’s useful for explaining the use and purpose of the Deployment policy.

	service: This is an important entry as it specifies the service of the Deployment policy, as identified by name, org, arch, and serviceVersions:	name: <service-name>
	org: <owning-organization>
	arch: <target processing architecture>
	serviceVersions:	version: <major-version>
	priority: The relative priority of deploying this version over another version

	properties: Properties of the deployment policy. These are mostly blank.

	constraints: Constraints, as we have discussed previously.

It is recommended that you read through the following Open Horizon reference for more information: https://open-horizon.github.io/docs/anax/docs/deployment_policy/#deployment-policy.

Adding a Deployment policy

Once the Deployment policy file has been created, it must be applied to the Service by using the addpolicy subcommand.

We will add the Deployment policy, as specified in the deploy-policy.json file, while using the –f option as an argument. Note that Deployment policies are individually named and passed as arguments:

hzn exchange deployment addpolicy -f horizon/deploy-policy.json deploy-rwec.edge.example.service.service1_amd64
 An output similar to the following will appear on your terminal:

Deployment policy: myorg/deploy-rwec.edge.example.service.service1_amd64 added in the Horizon Exchange
 Listing a Deployment policy

Once the Deployment policy for a Service has been added, it can be viewed by running the listpolicy subcommand, as follows:

hzn ex dep ls
 The output may look like this.

[
 "myorg/deploy-rwec.edge.example.service.service1_amd64",
 "myorg/deploy-rwec.edge.example.service.service2_amd64"
 "myorg/policy-ibm.helloworld_1.0.0",
 "myorg/policy-ibm.nginx-operator_1.0.1",
 "myorg/policy-ibm.cpu2evtstreams_1.4.3"
]
 To view the details of a Deployment policy, use the listpolicy subcommand, as follows:

hzn ex dep ls deploy-rwec.edge.example.service.service1_amd64
 The output will look similar to the following. Notice that a constraint, node-group == group-east, has been added:

{
 "myorg/deploy-rwec.edge.example.service.service1_amd64": {
 "owner": "myorg/admin",
 "label": "deploy-policy-service1-amd64",
 "description": "A deploy policy for service1 on amd64",
 "service": {
 "name": "rwec.edge.example.service.service1",
 "org": "myorg",
 "arch": "amd64",
 "serviceVersions": [
 {
 "version": "1.0.0",
 "priority": {},
 "upgradePolicy": {}
 }
],
 "nodeHealth": {}
 },
 "constraints": [
 "owner == rwec.edge",
 "deploy == example.service",
 "node-group == group-east"
],
 "created": "2024-04-16T02:34:37.781249902Z[UTC]",
 "lastUpdated": "2024-04-16T02:34:37.782143568Z[UTC]"
 }
}
 Adding Deployment policies for other services

Similarly, add Deployment policies for service2, service-peer, and service-required using the deploy-policy.json files in the horizon folder of each of the aforementioned services.

After adding the Deployment policies for each of the four services, you can verify them by running the following commands. You have seen these before; they are shown here again for convenience:

hzn ex dep ls deploy-rwec.edge.example.service.service1_amd64
hzn ex dep ls deploy-rwec.edge.example.service.service2_amd64
hzn ex dep ls deploy-rwec.edge.example.service.service-peer_amd64
hzn ex dep ls deploy-rwec.edge.example.service.service-required_amd64
 When you run these commands, verify and pay attention to the constraints block of the output. Here, you will find the name-value pair, as specified in the deploy-policy.json files.

Removing a Deployment policy

Just as a deployment policy can be added, an existing Deployment policy can be removed by running the removepolicy subcommand.

Note

We will practice removing the Deployment policy after we have successfully deployed the service on the Edge device node.

So far, from a software developer perspective, we have published the Service and Deployment policies. Now, services can be deployed on an Edge node using a Node policy.

Developing a Node policy

The Node policy, which is also made up of Properties and Constraints, completes the full picture of services being deployed on the target Edge nodes.

Typically, the node policy specifies a set of properties that are matched against the constraints of the service policy and the deployment policy to ascertain which services will be deployed on a particular edge node. Multiple edge nodes may have the same set of properties, thus enabling them to receive the same qualifying services.

This Edge node property-based qualification working with the constraints of the services, as specified in the service and deployment policies, allows the service deployment to be scaled to many edge nodes automatically. The same is true for undeploying the services. By simply modifying the constraints in the deployment policy or the properties in the node policy, services can be undeployed on the Edge node.

The Node policy can be modified on the Edge node or in the Open Horizon Management Hub for any Edge node.

Creating a Node policy

Now, let’s create a node policy and apply it to the Edge node. We will start with the following Node policy and modify it a couple of times to see the effect of changing it:

{
 "properties": [
 {"name": "owner", "value": "rwec.edge"},
 {"name": "deploy", "value": "example.service"},
 {"name": "capablity","value": "basic"},
 {"name": "node-group", "value": "group-east"},
 {"name": "openhorizon.allowPrivileged", "value": true}
],
 "constraints": [
]
}
 Before a policy-based service can be applied, let’s make sure that the Edge device node is registered with the Open Horizon Management Hub and is not running a pattern-based service deployment. To check the current condition of the Edge device node, run the following command.

hzn node list
 Verify that configstate is configured and that the pattern field does not have any associated pattern.

Applying a Node policy

Run the following command to apply the Node policy for the following properties in the node policy file:

 {"name": "capability","value": "basic"},
 {"name": "node-group", "value": "group-east"},
 As per the current Service and Deployment policies, we expect service1 to be deployed on the Edge device:

hzn policy update -f node-policy.json
 Within a few minutes (a parameter that can be configured for the Open Horizon Management Hub) or sooner, you should expect to have an agreement formed.

Run the following command to see the agreement:

hzn agreement list
 The output will look similar to the following:

[
 {
 "name": "Policy for myorg/edge-device-amd64 merged with myorg/
 deploy-rwec.edge.example.service.service1_amd64",
 "current_agreement_id":
 "4f4a340c164ae1125ab615c443f1e0c576d450855b0ab051dd427b84c54ead28",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-04-15 21:15:24 -0700 PDT",
 "agreement_accepted_time": "2024-04-15 21:15:27 -0700 PDT",
 "agreement_finalized_time": "2024-04-15 21:15:39 -0700 PDT",
 "agreement_execution_start_time": "2024-04-15 21:15:28 -0700 PDT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "rwec.edge.example.service.service1",
 „org": „myorg",
 „version": „1.0.0",
 „arch": „amd64"
 }
 }
]
 As before, running the docker ps command will show the container running:

docker ps
 Here’s the output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f507a277c23f /rwec.edge.example.service.service1_amd64 "/bin/sh -c /one.sh" 6 minutes ago Up 6 minutes 0.0.0.0:8881->8881/tcp 4f4a340c164ae1125ab615c443f1e0c576d4508 55b0ab051dd427b84c54ead28-rwec.edge.example.service.service1
 Run the following command to view the output of service1:

curl localhost:8881
 Here’s the output:

{"hostname":"f507a277c23f","service":"Service One"}
 The preceding set of outputs verifies that the node policy that’s working with the service and deployment policies correctly deployed the service1 service on the Edge device node.

Modifying the Node policy

To practice different combinations of node policies, let’s set node-group to group-west in the node policy:

 {"name": "capability","value": "basic"},
 {"name": "node-group", "value": "group-west"},
 Reapply this by updating the Node policy. With this change, we expect service2 to run:

hzn policy update -f node-policy.json
 With that, a new agreement has been formed. The subset of the hzn agreement list output shows the following:

 "workload_to_run": {
 "url": "rwec.edge.example.service.service2",
 „org": „myorg",
 „version": „1.0.0",
 „arch": „amd64"
 }
 As before, running the docker ps command will show the container running:

docker ps
 Here’s the output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5b73d2bdd839 /rwec.edge.example.service.service2_amd64 "/bin/sh -c /two.sh" 6 minutes ago Up 6 minutes 0.0.0.0:8882->8882/tcp f3d6461d956abb1aa4b0de9cbc6e1fde6028509ba47cd22fe3a92b429 0dd09b3-rwec.edge.example.service.service2
 Run the following command to view the output of service2:

curl localhost:8882
 Here’s the output:

{"hostname":"5b73d2bdd839","service":"Service Two"}
 Practicing Node policy modifications

This time, let’s modify the Node policy by setting capability to advanced and node-group to group-north:

 {"name": "capability","value": "advanced"},
 {"name": "node-group", "value": "group-north"},
 Reapply this by updating the Node policy. With this change, we expect both service1 and service2 to be running:

hzn policy update -f node-policy.json
 A new agreement has been formed. The subset of the hzn agreement list output shows the following:

 "workload_to_run": {
 "url": "rwec.edge.example.service.service-peer",
 „org": „myorg",
 „version": „1.0.0",
 „arch": „amd64"
 }
 As before, running the docker ps command will show the containers running:

docker ps
 Here’s the output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
df4bb80e7855 .../rwec.edge.example.service.service2_amd64 "/bin/sh -c /two.sh" 31 seconds ago Up 30 seconds 0.0.0.0:8882 ->8882/tcp a1db77c424e542d2ebcf0e10561abd78bd421ac22ef41d27b29d717 f1039859a-rwec.edge.example.service.service2
4c4fafaeaf18 .../rwec.edge.example.service.service1_amd64 "/bin/sh -c /one.sh" 31 seconds ago Up 30 seconds 0.0.0.0:8881 ->8881/tcp a1db77c424e542d2ebcf0e10561abd78bd421ac22ef41d27b29d717 f1039859a-rwec.edge.example.service.service1
 Run the following command to view the output of both service1 and service2:

curl localhost:8881
{"hostname":"4c4fafaeaf18","service":"Service One"}
curl localhost:8882
{"hostname":"df4bb80e7855","service":"Service Two"}
 At this point, you must be starting to see the power of using policy-based deployment to deploy services by just managing the properties and/or constraints of different policies.

Removing policies

As mentioned previously, added policies can be removed as well. The removal of the policies applies to both service and deployment policies. The effect of removing policies will result in the agreement being canceled, resulting in the workload being terminated on the Edge nodes.

Removing a Service policy

To remove a service policy, list the services by running the following command::

hzn ex serv ls
 To remove the service policy, use the removepolicy subcommand or its short form, rmp:

hzn ex serv rmp rwec.edge.example.service.service1_1.0.0_amd64 –f
 The output will look similar to the following:

Removing Service policy and re-evaluating all agreements. Existing agreements might be cancelled and re-negotiated.
Service policy removed.
 Removing a Deployment policy

To remove a Deployment policy, list the deployment policies by running the following command:

hzn ex dep ls
 To remove the Deployment policy, use the removepolicy subcommand or its short form, rmp:

hzn ex dep rmp deploy-rwec.edge.example.service.service1_amd64
 The output will look similar to the following:

Removing deployment policy myorg/deploy-rwec.edge.example.service.service1_amd64 and re-evaluating all agreements. Existing agreements might be cancelled and re-negotiated
Deployment policy myorg/deploy-rwec.edge.example.service.service1_amd64 removed
 With that, we’ve removed the deployment policy. You may not need to use this often, but knowing how to do this can help you keep your project nice and tidy.

Additional useful commands

To view the log as the agreement is forming, you can use hzn eventlog list.

To view newly added or updated node policy, you can use hzn policy list.

To check if the deployment policy has any obvious constraints or property mismatches, you can use hzn deploycheck pol -b <deploy-policy-name>.

Summary

In this chapter, you learned about Service, Deployment, and Node policies. You also learned about Properties and Constraints and their interactions. We practiced different kinds of deployment scenarios and deployed various Services by modifying the Node policies. We also started to use short forms of subcommands and practiced using them alongside their long forms. Using the same example services from the previous chapter, where we used patterns to deploy them, we deployed them using policies instead. This allowed us to contrast and compare the different approaches. At this point, you have a solid understanding of Edge computing and how to use Open Horizon-based techniques to manage your workload on Edge nodes.

In the next chapter, we will introduce the Model Management Service (MMS), which we’ll use to deploy AI/ML models at the Edge node. By doing this, we’ll be ready to develop a practical Edge-deployable AI/ML solution for object detection in a video stream in the subsequent chapter.

Part 3: Advancing the Edge System

Most Edge solutions will leverage artificial intelligence (AI) or machine learning (ML) algorithms for recognizing conditions of importance at the Edge. Furthermore, any Edge solution must be secured and connected. This part of the book will take you through step-by-step guidance on how to leverage Open Horizon to manage the deployment and lifecycle of your AI/ML models in your Edge solution. Furthermore, it will guide you on how to identify and address the security of your Edge solution with Open Horizon, as well as lay the foundations for managing your connected edge with DevSecNetOps.

This part has the following chapters:

	Chapter 11, Machine Learning Workload and Model Deployment

	Chapter 12, Security at the Edge

	Chapter 13, Network Connectivity at the Edge

11

Machine Learning Workload and Model Deployment

Having acquired knowledge of Edge computing concepts, techniques, and practical hands-on experience to manage microservices on Edge nodes in the last few chapters, let’s start to position ourselves to build a modern, AI-enabled application. In earlier chapters, we discussed that an efficient edge application may need to process data where data is generated. For the AI-enabled application, machine learning (ML)-based inferencing will need to be done locally.

In the last few years, ML-based inferencing at the Edge has started to become an integral part of the overall Edge application. So, it’s imperative that an Edge computing platform inherently provides the capability to deploy and manage ML models to Edge nodes that work seamlessly within the same paradigm of managing the services.

Open Horizon, in addition to all the capabilities discussed earlier, provides just that – where policy-based schemes manage services and ML model deployment on the Edge alike. In the Model Management System section of Chapter 8, we went over some of the CLI commands for model management. We will now put them into practice.

In this chapter, we’re going to cover the following main topics:

	Use of the Model Management System (MMS)

	MMS components

	Model deployment policy metadata

	Deploying a service to consume a published model

	Publishing a model file to an edge node

	Verifying model file delivery

Technical requirements

As before, verify the current setup of the AIO Management Hub and the edge agent on your edge node as per the instructions in Chapter 7’s Technical requirements section.

Make sure that the edge device is registered.

Also, verify that all services – service1, service2, service-peer, and service-required – deployed in the previous chapter are still published in the Management Hub.

We will deploy another service-mms service to learn about MMS.

Use of MMS

Traditionally, using an ML-based inferencing service API running in the Cloud is an accepted approach. However, for reasons such as the need for low latency, data privacy, lower cost, and autonomous operation, the application may want to perform the task of ML model-based inferencing at the Edge.

That will require that the ML model be delivered to the Edge node where needed.

As an alternative solution, some applications may choose to wrap the ML model along with the application code itself within the same container and deploy that composite image to the Edge node. Given the life cycle of frequently updating the ML model, which is usually different from the application code, if you use the composite approach, every time the model is updated, you will need to transfer the entire composite application image to the Edge. This technique also has the disadvantage that your service will suffer downtime for a period while the old container is stopped and the updated container is started. Some applications may not accept the risk of downtime on a running application.

Open Horizon promotes a design pattern where one can decouple the application code from the ML model, thereby delivering the application image and ML model on life cycles independent of each other. This will result in the continuous running of the application without any downtime while the ML model is being delivered. Once the ML model is delivered, the application code can query the system for the new ML model and reinitialize its local inferencing service code to use the newly delivered ML model without interruption.

ML models typically consist of large files, often hundreds of megabytes or larger. While Open Horizon MMS is designed to deliver such large files, MMS can also be used to deliver other files, such as configuration files, and so on. In this chapter, we will use a smaller file to transfer and understand the inner workings of MMS, and in a later chapter, we will use an actual ML model file.

MMS components

While a user interacts with the hzn CLI or the API to use MMS, here we will provide a brief overview of the various components involved in model file transfer. To accomplish the task of delivering the model file to the target edge nodes securely, MMS involves two major components – Cloud Sync Service (CSS) and Edge Sync Service (ESS).

CSS

CSS, a part of Open Horizon Management Hub, receives the published model file along with associated model deployment policy metadata and uses that to determine the Service and the Edge nodes where the model file needs to be delivered.

ESS

ESS, a part of each Edge agent running on the Edge nodes, works with the CSS component in the Open Horizon Management Hub to coordinate the actual file transfer securely.

Tip

Additional details can be found in the Open Horizon GitHub repo at https://open-horizon.github.io/docs/developing/model_management_details/.

Model deployment policy metadata

To publish a model file, the user specifies a model deployment policy as metadata, and this policy determines the Service and the Edge node where the model file will be delivered. To create a template for model deployment policy metadata, let’s run the following command and examine the various fields that would be used in determining the publishing of the model file to the Edge nodes:

hzn mms object new
 Running the preceding command shows a JSON template content. The output comes with a detailed explanation of each field. You will notice while a few fields are required, many of them are optional. We will be using a subset of these fields as we evolve the model deployment policy metadata file for the example that we will develop in this chapter.

Let’s look at the following fields of the JSON output, in the context of the hzn mms commands that you saw in the Model Management System section of Chapter 8:

	ObjectID (Required): A unique text string identifier of the object (the model or other file1) that you create. Usually, this is specified by the –i option when performing a query for MMS objects.1	 Throughout this chapter, we will interchange the terms object and model file. Open Horizon generically refers to the thing being transferred as an object. This chapter is particularly interested in using MMS to transfer configuration or model files.

	objectType (Required): The type of object specified as a text string that you create. Usually, this is specified by the –t option when performing a query for MMS objects.

	destinationOrgID (Required): The organization ID of the object as specified by HZN_ORG_ID.	destinationPolicy: Given that we are actively using policy-based deployment in this book, we will make use of this optional field to identify target Edge nodes.
	properties: You can leave this field as an empty list. It may include a list of name-value pairs representing the capabilities of the object that are evaluated by the Edge node properties.
	constraints: Specify the set of constraints as per the Node policy properties of the target Edge node that would receive this object.
	services: Specify the parameters of the target service identifier that would receive this object.
	description: An optional description.

The additional context provided here will help us as we develop the example deployment policy code in the subsequent sections.

Deploying a Service to consume a published model

As mentioned before, ML models are typically large files and can take several minutes to get delivered to the target Edge nodes asynchronously, depending upon the network bandwidth. In this example, we will use a small text file with easily readable text content to show the delivery of the file to the target service. This simple exercise will help us practice different commands and examine the model delivery process.

In this exercise, we will use a new service-mms example service. This example is a variation of helloMMS to practice MMS foundational concepts. This knowledge will be useful in the complete ML-based object detection application described in Chapter 14.

This standalone service-mms service, in addition to handling MMS functions, also exposes an endpoint that can be queried by another service to retrieve the model file delivered by MMS. The service-mms service also marks or deletes the newly delivered model file so that the file retrieval action does not read the same data again and again, an important part of managing model-file postprocessing.

Similar to service1, let’s build, push, and publish the service-mms service.

After publishing the service, we will deploy the service on the edge device node by modifying the node policy to deploy service-mms on the edge node in addition to service1.

Once the service is running, we will publish a small file, examine the process of file delivery to the Edge node, and retrieve that by querying the endpoint exposed by service-mms.

When a model file is published using MMS, the model file is received by CSS, and based on the model policy metadata file, CSS determines the destination and then, working with the ESS part of the Edge agent, it begins the process of model-file transfer. Model-file transfer may go through several state transitions, from delivering, pending, delivered, and so on. The status can be queried externally. Your application code can query MMS to determine when the model-file transfer has been completed and can begin the process of retrieving object file and using it in the application code.

Tip

Open Horizon provides a helloMMS example that you can view here: https://github.com/open-horizon/examples/tree/master/edge/services/helloMMS

Deploying the example ML service

For the following exercise, view the accompanying example-services service-mms service repository for any additional instructions. You should look at the content of Makefile and corresponding targets to understand the underlying commands being used. Also, look at service-definition.json and deploy-policy.json, which will appear very familiar:

	Set up the environment variables:
source ~/project/rwec/ENV_RWEC

 	Build the service-mms Docker image:
make build
	Verify the built Docker image:docker images | grep service-mms

	Your output should look like this:rwec.edge.example.service.service-mms_amd64

 	Push the service-mms container image into the container registry:
make push

 	Publish service-mms into the Management Hub:
make publish-service
	Verify the published service:hzn exchange service list

	Your output should look like this:["myorg/rwec.edge.example.service.service-mms_1.0.0_amd64"]

 	Publish the deployment policy for service-mms into the Management Hub, as follows:
make add-deploy-policy
	Verify the published deployment policy:hzn ex dep ls | grep service-mms

	Your output should look like this:deploy-rwec.edge.example.service.service-mms_amd64

 	Update the node policy to deploy the additional service-mms service on the edge node. To showcase the flexibility of policy-based service deployment, here we will use the existing service1 node policy and simply add an extra property, node-mms, with a true value to deploy service-mms, like this:
"properties": [
 {"name": "owner", "value": "rwec.edge"},
 {"name": "deploy", "value": "example.service"},
 {"name": "capability","value": "basic"},
 {"name": "node-group", "value": "group-east"},
 {"name": "node-mms", "value": true},
 {"name": "openhorizon.allowPrivileged", "value": true}
],
"constraints": [
]
Apply the updated node policy with the following:
hzn policy update –f node-policy-basic-node-east.json

 	Verify the deployment of service-mms by viewing the agreement formation as follows:
hzn agreement list
Here, you will see two agreements, one for service1 and another for service-mms, showing the versatility of managing multiple services by simply updating node-policy and the additional property:
[
 {
 "name": "Policy for myorg/edge-device-amd64 merged with
 myorg/deploy-rwec.edge.example.service.service1_amd64",
 "current_agreement_id": "b43fd3ad4f7af13c6b9743631a19
 a2795d0e92a4f5c3dcd57b9ada9c745c2bfa",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-04-28 21:52:39 -0700 PDT",
 "agreement_accepted_time": "2024-04-28 21:52:43 -0700 PDT",
 "agreement_finalized_time": "2024-04-28 21:52:54 -0700 PDT",
 "agreement_execution_start_time": "2024-04-28 21:52:44 -0700
 PDT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "rwec.edge.example.service.service1",
 "org": "myorg",
 "version": "1.0.0",
 "arch": "amd64"
 }
 },
 {
 "name": "Policy for myorg/edge-device-amd64 merged with
 myorg/deploy-rwec.edge.example.service.service-mms_amd64",
 "current_agreement_id":"166862ce54cfc768029677630a6e7421d811bdf9
 879cce948360da6ece48fa9e",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-04-28 23:05:07 -0700 PDT",
 "agreement_accepted_time": "2024-04-28 23:05:13 -0700 PDT",
 "agreement_finalized_time": "2024-04-28 23:05:13 -0700 PDT",
 "agreement_execution_start_time": "2024-04-28 23:05:15 -0700
 PDT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "rwec.edge.example.service.service-mms",
 "org": "myorg",
 "version": "1.0.0",
 "arch": "amd64"
 }
 }
]

 	Next, observe the running of the containers using the following command:
docker ps
As expected, you should see two containers running:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
399a07217792 .../rwec.edge.example.service.service-mms_amd64 "/bin/sh -c /mms.sh" 11 minutes ago Up 11 minutes 0.0.0.0:7777->7777/tcp 166862ce54cfc768029677630a6e7421d 811bdf9879cce948360da6ece48fa9e-rwec.edge.example.service.service-mms
7c6d7a8f23e1 .../rwec.edge.example.service.service1_amd64 "/bin/sh -c /one.sh" About an hour ago Up About an hour 0.0.0.0:8881->8881/tcp b43fd3ad4f7af13c6b9743631a19a2795 d0e92a4f5c3dcd57b9ada9c745c2bfa-rwec.edge.example.service.service1

 	You can now retrieve data using the endpoint URL:
curl localhost:7777/testmms
Your output should be like this with no value as we have not published any model file yet:
{"query_http_code":"404","message":"testmms-not-found.Publish-at-least-one-object.","mms_action":"testmms","value":[]}

The preceding exercise sets up the condition that can accept a model file. We will go into the details of publishing in the next section.

Publishing a model file to an Edge node

Now that we have deployed and verified service-mms, which can receive and process incoming MMS-published model files, we are all set to publish the model file and see it in action:

	Let’s go ahead and publish using model policy metadata and a simple model file having JSON content:
hzn mms object publish -m service-mms-publish.json -f test_mms.json
You should see the following output:
Digital sign with SHA1 will be performed for data integrity. It will delay the MMS object publish.
Start hashing the file...
Data hash is generated. Start digital signing with the data hash...
Digital sign finished.
Object test_mms.json added to org myorg in the Model Management Service

 	Publishing may go through several stages. You may view them using the following command:
hzn mms object list -t testmms
Your output should be like this as the published model file goes through several stages:
Listing objects in org myorg:
[
 {
 "objectID": "test_mms.json",
 "objectType": "testmms",
 "destinations": [
 {
 "destinationType": "openhorizon.edgenode",
 "destinationID": "edge-device-amd64",
 "status": "delivering",
 "message": ""
 }
],
 "objectStatus": "ready"
 }
]
The status may change when you repeat the previous command. :
"status": " pending",
"status": "delivered",

You may want to watch the process of model file delivery details and may be curious about where the delivered file resides on the Edge device node. If you have privileged access on the Edge device node, the newly delivered file can be viewed at this location: /var/horizon/ess-store/sync/local.

This is useful for debugging and when starting to use MMS for the first time.

Verifying model file delivery

We have already seen the process of verifying model file delivery using our service-mms service.

Once again, retrieve the published model file using the endpoint URL:

curl localhost:7777/testmms
 Your output should look like this:

{"query_http_code":"204","message":"OK","mms_action":"updated","value":[{"PUBLISH_TEST_MMS":"test-from-mms"}]}
 This time, the output returned by the service running on the Edge node has a value as it was in the original file, test_mms.json.

We have provided this as a good example to learn about the processing steps involved and showcasing the interaction between publishing the model file, its progression through the CSS and ESS components, and, finally, retrieval of the published model file at the edge node.

Summary

In this chapter, you learned about how to asynchronously and securely deliver an ML model to Edge nodes without stopping the running service. We also covered the steps for setting up a container that can be optionally deployed by simply modifying the node-policy property, publishing a model file, and retrieving that at the Edge. The service-mms example service was kept simple as a shell script so that you could easily understand the steps involved. You also got the opportunity to practice hzn mms commands with various subcommand options. In Chapter 14, Building a Real-World Example Application, we will use the MMS concept presented here to build an ML-based application that detects objects in a video stream.

But first, let’s delve deeper into the features Open Horizon provides to help you protect your edge computing solution in the next chapter.

12

Security at the Edge

One of the key benefits that Edge computing offers is better data protection by keeping personal and private information local to the user – in their possession, so to speak. However, Edge computing also introduces some specific security challenges directly related to the fact that Edge devices and servers are not physically protected by the four walls of a data center. Edge computing is done where real work is done, in the presence of working people – giving them unprecedented access to the computers they use to process their work data.

This chapter will discuss those various challenges and how Open Horizon is designed to address them. From this, you will be better equipped to recognize the potential security issues you might encounter and understand how you can leverage Open Horizon to address them. Some of these issues are addressed for you by virtue of how Open Horizon is designed. Others require your participation. This chapter will show you what you need to do to help Open Horizon protect your Edge solution.

In this chapter, we’re going to cover the following main topics:

	Security vulnerabilities at the Edge

	How Open Horizon protects your Edge

	Workload signing

	API keys, secrets, and the Vault

Technical requirements

This chapter will require that you have an appreciation for common security vulnerabilities such as the potential to spoof the system, tamper with workloads, exploit backdoor network connections, the ability to reverse-engineer software to exploit weaknesses in the code, timeliness of attack responses, and so on. We will also be leveraging the Open Horizon hzn commands you learned in the Developing an Open Horizon service section of Chapter 9.

Security vulnerabilities at the Edge

Think back to your last trip to the grocery store. Likely, the point-of-sale (POS) terminal was at a counter with the back facing you in line. All the ports to the computer inside that register were facing out to you – just begging for someone to plug in a USB stick or to pull out one of the network or power cables.

This is typical for nearly all far Edge devices and servers. They are physically exposed to workers, and in retail scenarios, for example, to the general public. This is further exacerbated by the following facts:

	Software must be deployed to the equipment over the network

	Any data stored on the local hard drive can be easily removed

	Network connections (the physical Ethernet jacks, for example) are also exposed, enabling other, potentially malicious, devices to be connected to the enterprise network

	Other, potentially rogue, networks can be plugged into the legitimate equipment

And that creates several vulnerabilities for this equipment. Let’s discuss some of those in this section.

Masquerading devices

How do you know that only legitimate equipment is plugged into your network? With network cables distributed across your facilities, what is preventing someone from bringing their own laptop and just plugging it into your network? Would you recognize it if the device was rogue and not authorized for use on your network?

Of course, there are techniques using wireless network certificates to protect your Wi-Fi or cellular network, and VPNs to protect access to your critical data, but these require a high degree of administrative discipline and, by themselves, may not identify whether the equipment is legitimate or not. Most VPNs are designed to identify the user of the machine, not the machine itself.

A common technique for identifying a piece of equipment is to register and track the machine’s Media Access Control (MAC) address – a unique identifier associated with the network card embedded in the device. However, this can be hard to keep up with if you ever need to replace a network card in the field – the MAC address will change with the new card, even though the machine remains the same machine. In essence, this technique means the same machine can have multiple identities. Furthermore, it is possible to spoof a MAC address in software.

You need a strong mechanism for uniquely attesting to the identity of each individual device, cast in the hardware of the machine so that it can’t be tampered with and won’t change with field upgrades or repairs.

Software tampering

How do you know the software you’ve loaded on the equipment hasn’t been tampered with? Software on your Edge nodes may be installed at the factory or in a secure warehouse location before being sent out to the Edge location. However, most of your software will be downloaded from a central IT or cloud data center over the network and stored locally on the Edge node.

From the time that software is built in your DevOps environment to the moment it is loaded in memory for execution, it is vulnerable to someone tampering with the code – inserting malicious logic to trap or modify the data you collect or subvert the functionality you rely on for your business.

This can occur in the container registry where you store your images, in the network while it is being transmitted to your Edge node, in any intermediate storage locations you use to buffer that distribution, or even in the Edge node itself where you store the image prior to being loaded in memory.1

1	 Theoretically your code could be tampered with even after its loaded in memory, however this is significantly more difficult and there are several hardware architectures coming from ARM, AMD, and Intel to help prevent that – at some additional cost, of course.

You need a mechanism that will detect and protect your code from being tampered with or contaminated at any point in the distribution chain.

Backdoor attacks

The most common remote attack occurs when a rogue is able to connect to a device and hack into the operating system or other software on a device or server. This all begins with connecting to the equipment, which can occur if the software on that machine has opened a listening port on which an outside connection can be made.

Programmers often design their software using a client-server relationship between distributed components – where one component acts as a client to other components operating as a server. In fact, this design point is encouraged by cloud-native microservice architectures. These client-server relationships must be enabled by one end opening a listening port so that the other end can connect to it.

It doesn’t really matter whether the client or the server end, or both, opens the listening port, as long as one can connect to the other. It is instinctually common to suppose the server will open the listening port and the client will connect to it when it needs to, so this becomes the common implementation pattern. And if your client is always at the Edge and your server is in the IT or Cloud data center, then this assumption generally works well.

However, on occasion, the paradigm is reversed, where the client is in the data center and the server is at the Edge. If, as a result, you create a listening port at the Edge device or server to receive connections to your microservice, you have just created an opportunity for rogue software (other clients) to connect to your machine and attack the software and data on your machine.

You can protect those cases by introducing a firewall on your device or server that prevents network connections or packets from clients that you don’t recognize or authorize. However, this requires administrative discipline that gets increasingly more difficult to manage as you increase the number of places where listening ports are open.

You need to limit the number of places where software will open a listening port, and ensure you have the right network protections in place in those locations where those listening ports are necessary. Furthermore, your DevOps pipeline should scan for any software that does open a listening port, and then protect your software from rogues that may tamper with that software by inserting a listening port into it after it leaves your pipeline (see the previous Software tampering discussion).

Replay attacks

One way a rogue can mount an attack on the system is to replay previous legitimate message exchanges. As a simple example, an agent may initiate the download of a large AI/ML model from the Exchange. A rogue performing a classic man-in-the-middle attack inserted in the network, observing that exchange, could copy those messages and fire them repeatedly to the Exchange – masquerading as the original agent – and cause the Exchange to re-download that same file many times. They can use this to overload the system – causing it to do more work than it has resources to accomplish, and possibly forcing it to fail.

You need the system to protect itself from this type of attack by putting in circuit breakers to prevent overloading, as well as to detect and suppress the replaying of earlier legitimate messages.

Unauthorized channels

Following the cloud-native best practice of componentizing your application into a set of microservices can also create a vulnerability. Since the application will be communicating between these microservices to accomplish its functionality, that communication must be protected to ensure that outside applications do not use those microservices in ways that are unauthorized or were not designed for.

In some scenarios, you may not even be aware that your services are being used by a rogue – consuming resources you had not planned for. In the worst case, malicious software may be using your services to subvert the functionality or integrity of your application or the data it operates on.

Of course, these same cases exist in Cloud computing but are exacerbated in Edge computing when these components are distributed between different physical systems, and in the inherently unprotected Edge environments, especially when these systems are also being shared with other applications.

You need the system to isolate all your application components and to protect the communication between them.

Hacking

Hacking is an ever-evolving art – an arms race between hacking techniques and tools for detecting and protecting against them. Arguably, there is a high risk that someone will hack into your system at some point, or at least they will try to. The hack may have been planned over years and introduced through the supply chain, as they did in the XZ Utils attack.2

2 https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/

Your goal must start by trying to prevent that from happening at all. But if it does happen, then you must at least limit the damage that can be done to that system and other systems under your control. This is referred to as reducing the blast radius of an attack.

According to NordVPN,3 one of the most common techniques for hacking into a system is credential reuse – that is, stealing the user ID and password you use for one system and then reusing that login to other systems you also use.

3 https://nordvpn.com/blog/hacking/

Clearly, you need to protect your user credentials from being stolen or otherwise acquired through nefarious means, such as phishing. Just as important, you need to have distinct credentials for each node in your Edge or Cloud system. In this way, even if someone does obtain the credentials for one node, they won’t necessarily be able to access any other node in your system.

Excessive privilege

A related issue is that, often, individual credentials are granted more privileges than they need to perform their duties. Root authority is a good example of this given its power to do virtually anything in the system. As discussed in Hands-on – Set up a non-root user in Chapter 6, granting root authority should be highly constrained – requiring all other activities that don’t need it be performed with privileges that limit users to only performing the tasks needed for their role.

Exploiting software vulnerabilities

Unfortunately, software programmers often have very little training on the issues of security they may be exposed to and how to protect against those in their code. Some of this is simply the consequence of the ever-evolving threat vectors – it is difficult to keep up with these and learn how to mitigate against them.

The DevSecOps4 trend is intended to deliberately infuse a higher awareness of these issues and techniques to protect against the most common and obvious of them in programming practices.

4 https://www.ibm.com/topics/devsecops

One particularly relevant element of this practice is to never hardcode secrets in your software. The rationale for this should be obvious: anything that is hardcoded in a program can be reverse-engineered, even without the source code. Once exposed, it is no longer a secret. A common example of such a secret is the API key you need that grants access to a cloud service – public or private.

You should always maintain these types of secrets in a secure vault and then securely distribute them to your software when needed, and only for as long as they’re needed. These secrets should never be stored persistently where they can be discovered by rogue software.

Operating failure

Of course, any kind of failure in the system can itself be a security issue, or at least prevent security guards in the system from performing as needed. This is true regardless of whether the failure was initiated intentionally by a rogue actor or inadvertently due to latent bugs in the software or a hardware malfunction.

In the world of cybersecurity threats, human responses to these failures may be way too slow. The minutes or even seconds it might take for a person to recognize and remediate an outage may be more than enough time for malicious software to exploit a vulnerability in the system left open by that failure. And, of course, that outage may have a significant impact on whatever business is not being conducted during that outage.

You need systems to constantly monitor themselves for glitches and to automatically recover themselves to close gaps in security and business operations.

System inconsistencies

Perhaps the most common cause of system vulnerabilities is the result of running software that is out of date. Even the most diligent security practices and attempts to close security exposures in software are moot if those remediations are never deployed to the operating environment.

Security teams have many tools that they use to identify exposures. These include performing a red team threat assessment where a group of advocates will perform ethical hacks on the system to see what vulnerabilities they can uncover. Many of these vulnerabilities are the result of poor software practices – things such as opening listening ports, as we discussed in the Backdoor attacks section earlier in this chapter.

These assessments should be taken seriously. Software vulnerabilities in application programs must be patched to remove those exposures. But, most importantly, these updates then need to be deployed back out of the operational system as quickly as possible.

In an Edge system with hundreds or many thousands of devices and servers spread over many geographically diverse locations, it is often too easy to overlook all the nodes that need to be updated. You need to use a deployment system that will automate this process and do so expediently.

How Open Horizon protects your Edge

Open Horizon is a deployment management system designed specifically to address a number of security challenges. We will discuss those capabilities now. However, it is also important to understand that Open Horizon does not intermediate your own application code or any communication it performs with other services in other nodes. You are responsible for ensuring your own code is adhering to good security practices.

Device attestation

As discussed in the Components of the Management Hub section of Chapter 4, Open Horizon supports the FIDO Device Onboard (FDO) system to enable zero-touch provisioning of the Open Horizon agent.

The core of FDO is built on the idea that device manufacturers will create a non-repudiable, secure token representing the authenticity of the individual device. The voucher, and the subsequent registration mechanism supported by Open Horizon, can be used to attest to the authenticity of the device. It is not subject to MAC addresses or any other mechanism that can be replaced in the system that would otherwise result in the equipment’s identity changing with that replacement.

When you acquire equipment from a manufacturer that supports FDO and register that equipment with Open Horizon upon receipt, you will be able to track the provisioning of that device in its intended location, and subsequently, track that device through future changes.

When using the FDO system, if any unrecognized device attempts to connect to your system, Open Horizon will automatically detect that and prevent the agent from being provisioned to that device – and consequently, prevent any workloads from being deployed to that device.

Tamper resistance

When you publish a service to the Open Horizon Management Hub, it will automatically be cryptographically signed. You can have it signed with a key that you provide, or Open Horizon will create a public key pair for you before storing the service in your targeted container registry. When the service is pulled from the registry by the agent, and again before loading that service into memory, its signature is rechecked to ensure it was not changed at any point – in storage, in the network during transmission, or on the local Edge node.

We demonstrate how to publish and sign a service in the Workload signing section later in this chapter.

Intrusion resistance

As we discussed in the Backdoor attacks section, it is important that you avoid creating listening ports in your application software unless you can ensure it is protected by a firewall that is actively maintained. Open Horizon, for its part, never opens any listening ports in the Open Horizon Agent.

All connections between the Agent and the Management Hub are initiated by the Agent. The Management Hub is the only spot in the Open Horizon system that you need to protect with a firewall. Furthermore, communication between the Agent and the Management Hub is performed over the HTTPS protocol, using port 443, and therefore, avoids the need for any special firewall rules.

Even when the Management Hub has work for the Agent to perform, it waits for the Agent to contact it to request those instructions (see the discussion about the switchboard in Chapter 4). This helps Open Horizon resist any intrusion from outside attackers attempting to connect to and coerce the agent’s responsibilities.

Replay resistance

Furthermore, all communication between the Agent and the Management Hub is encrypted with perfect forward secrecy.5 Not only does this protect each message with a unique key that won’t compromise that message, even if the key for other messages is somehow cracked, but it also prevents the same message from being re-sent again in the future. There is no opportunity for a man-in-the-middle attack from replaying messages between the Agent and Management Hub to cause unintended behaviors from either component.

5 https://www.sectigo.com/resource-library/perfect-forward-secrecy

Workload isolation

As we described in What is a service? in Chapter 4, a workload is simply one or more services in a dependency tree, and a service is one or more containers that are published as a unit. A workload implies a collection of inter-related and inter-dependent containerized microservices. They are treated by Open Horizon as a whole. They are deployed as a whole and protected as a whole.

The container runtime (Docker, Podman, or Kubernetes) will isolate each individual container in its own execution environment – giving it virtualized access to the resources it needs to ensure protection between them. But Open Horizon will then create a virtual private network between the containers in a given workload to enable them to communicate with each other over local sockets.

As long as the application does not open its own listening ports, these containers are protected from any outside communication that could be used to subvert their functionality.

Tip

Limit the deployment of external services to only upstream servers and the cloud where you are assured to have a firewall installed that protects access to that service. If your service is intended to be externally accessible, then use a service policy to set a constraint indicating a dependence on a firewall – something along the lines of 'firewall-reqd = true', and then set that property at only those nodes where you have provisioned a firewall.

Blast protection

To ensure damage is limited in the event that someone does hack into any particular Edge device or server, every Edge node is assigned its own credentials. If the credentials of one node are compromised, that cannot be used to subvert any other node.

Furthermore, the capabilities of a node credential are limited to only manipulating information about that one node. You can’t perform actions with those credentials that would change information about any other node.

Role-based privileges

Open Horizon supports several distinct roles, including the following:

	IAM user: This represents the credentials of any user of the system. It is the most basic role any user can have, although other Open Horizon roles are typically assigned when those user credentials are created.

	Exchange root user: This has unlimited authority to perform any action in the Exchange. This is the equivalent of having root authority in any system and so should be assigned with a great deal of caution. This authority can be disabled altogether to provide added security.

	Exchange hub admin user: This is responsible for setting up organizations in a multi-tenanted Open Horizon system.

	Exchange org admin user: This has unlimited access to the Exchange within a given organization.

	Exchange user: This can create resources in the Exchange, including nodes, services, patterns, and policies, and can subsequently update or delete any of the resources they have created. In addition, the Exchange user role can view any resource (public or private) within their own organization, and public resources in other organizations.

	Exchange nodes: This is a role assigned to any node credential, permitting them to read or update the resources for that node, as well as to read any services, patterns, or policy resources of their own organization, and public services, patterns, or policy resources of other organizations.

	Exchange Agbots: This is assigned to Agbots. This role, when assigned to credentials in the IBM organization, can read (but not create or update) resources from any organization.

Important note

User credentials are created in your Identity and Access Management (IAM) system. Open Horizon has an open architecture for plugging in different IAM systems and provides a default plugin for Lightweight Directory Access Protocol (LDAP). You can substitute a different plugin shim for your system if your enterprise does not support LDAP.

By assigning roles to each of your users (including the nodes and services of the system), you constrain what each user can do to just those things needed for their specific responsibilities, and no more. If any of your user’s credentials are compromised, the hacker cannot do more than what they can within the confines of the role assigned to that user. Just as important, if any employees accidentally or maliciously change the system, their damage can be contained.

Secrets management

Integration with the HashiCorp Vault is built into Open Horizon. Any secrets that your services depend on should be stored in the Vault. Through service bindings, Open Horizon will automatically and securely distribute that service’s secrets to that service wherever it ends up being deployed.

We will demonstrate how to program and use the Open Horizon secrets management system in the API keys, secrets, and the Vault section later in this chapter.

Failure resistance

The Open Horizon agent constantly monitors the services running at its node to ensure they are always running. If a service fails, it automatically restarts it. If it fails repeatedly, the agent will revert to an earlier version of the service until a fix can be provided for whatever bug is preventing the current version from running properly. You can specify both the number of retries to perform as well as the version of the service to fall back to in the case of a repeated failure as part of the service definition for that service.

The agent will continue to perform this responsibility even if the node is disconnected from the network.

Tip

You can never know when a network outage will occur. Services that will be deployed to the Edge should be written to tolerate network outages that prevent them from accessing upstream service dependencies for periods of time.

In turn, the Agent is executed as a systemd process and relies on the operating system to restart it in the rare case that it fails. Nonetheless, services will continue to run independent of whether the agent is running to monitor them.

In this way, the system is very resilient – even in nodes that don’t benefit from the additional resilience that Kubernetes can offer – helping to prevent any security lapses that a rogue can use to exploit your enterprise business.

Infrastructure currency

That brings us to the core of what Open Horizon is about – that is, deploying software to your Edge and keeping it up to date.

The policy-based system we have discussed in earlier chapters is designed expressly to handle the various complexities of your Edge system. As new Edge devices and servers are introduced, services are created or updated, the configuration and available resources of Edge nodes are changed, Edge nodes are moved around your facilities or their primary roles and responsibilities are updated to meet your business needs, new operating procedures are updated in your business, and business activities increase or decline, inventories and backlogs shift, and priorities change, Open Horizon will evaluate the published policies to determine what services need to be deployed to which Edge nodes, taking down and moving existing services if needed to ensure those policy conditions are satisfied.

In particular, note that this is performed automatically when you update your services. If you discover a security vulnerability in a service and update that service with a new version, the Open Horizon system will automatically update all the nodes where that service is deployed with that update. In this way, the system is always kept current.

Workload signing

As discussed in the Tamper resistance section, signing your workload is key to protecting it from being tampered with. Fortunately, Open Horizon makes signing your workload easy.

Once you have written and containerized your microservice, for example, using docker build, you need to create a service configuration file, as outlined in the Developing an Open Horizon service section of Chapter 8.

With that in place, you then issue an hzn command to publish that service to the Open Horizon Management Hub, like this:

hzn exchange service publish -f <your-service-config.json>

Substitute the filename you’ve given to your service configuration file in place of <your-service-config.json>.

If you do nothing else, Open Horizon will automatically generate a random key pair and store the public key with the service.

However, if you want to create your own public key pair, you can do so and then store the private key in a file. You can then provide the name of that file in any of the following ways:

	In the -k or --private-key-file= argument of the preceding hzn exchange service publish command

	In the HZN_PRIVATE_KEY_FILE environment variable of your command shell

	In the ~/.hzn/keys/service.private.key file of your filesystem

Open Horizon will evaluate each of these in that order, resorting to generating a random key pair by default if it can’t be found.

Under the covers, Open Horizon will instruct the container registry to sign your workload in the process of registering each of the containers in that workload. Subsequently, the Open Horizon Agent will test the signature of that workload when deploying it to an Edge node, and again before reloading those images at runtime thereafter. This ensures the workload is not tampered with from the moment you publish it to the moment it is loaded in memory for execution.

API keys, secrets, and the Vault

To avoid hardcoding secrets in your application code, Open Horizon includes a secrets manager that will securely make those secrets available to your service wherever it gets deployed. To enable this, Open Horizon integrates with the HashiCorp Vault.

To leverage the secrets manager to protect your application’s secrets, you must follow these steps:

	Write your application with the expectation that any secrets it needs will be made available in a file stored in the container’s private (and protected) storage system (you will specify the name of that file as part of the service configuration file in a later step).

	Create a container image for your microservice.

	In the deployment section of the service configuration file, include the following JSON segment:
"secrets": {
 "<secret-name>": {
 "description": "<optional-description>"
 }
}
Create a label for your secret and substitute it for <secret-name>. This will be the name of the file in which the secret is placed later. Optionally, you can include a description of your labeled secret to help you identify it later.

 	You can now publish your service using the hzn exchange service publish command, as we’ve described previously.

	Store your secrets in the Vault with the following command:
hzn secretsmanager secret add --secretKey <secret-key> --secretDetail <secret-value> <secret-name>
Secrets have two parts – <secret-key> and <secret-value> – both of which are string values. By convention, the key is used to specify the type of the secret – for example, "basicauth", indicating that the value of the secret will be in the form of "user:<password>". Open Horizon assigns no semantics to either part of the secret so you are free to use whatever taxonomy works for your application. <secret-name> is the label you want to refer to this secret as in the Vault. Typically, this will be the same label that you specified in Step 3; however, there will be an opportunity for you to map to the service’s expected label in the next step.

 	Now, you must create a binding to that secret in your pattern or deployment policy that will affect the deployment of your service. Include the following JSON in your pattern or deployment policy JSON file:
"secretBinding": [
 {
 "serviceUrl": "<service-URL>",
 "serviceOrgid": "<service-org-id>",
 "serviceArch": "<service-hardware-architecture>",
 "serviceVersionRange": "x.y.z",
 "secrets": [
 {"<service-secret-name>":
 "<secrets-manager-secret-name>"}
]
 }
]
Here, serviceUrl, serviceOrgid, serviceArch, and serviceVersionRange may be redundant with the similar name, org, arch, and serviceVersion fields in the service portion of the deployment file, but they offer the opportunity to bind different secrets to different variants of the service being deployed.
<secrets-manager-secret-name> should match the secret-name label provided when you created the secret in the Vault in Step 5. <service-secret-name> may be the same, but it must match the name identified in the service definition in Step 3.

 	When you publish the pattern or deployment policy with this secrets binding information and when, as a consequence, Open Horizon now deploys your service to an Edge node, it will retrieve the secret (both the key and value) from the Vault and place them in a file. The file will be given the name you specified in the service definition as <secret-name> in Step 3, will be placed in the open-horizon-secrets folder of the service’s container, and will contain the following JSON structure:
{
 "key": "<secret-key>",
 "value: "<secret-value>"
}
The service will not be deployed if the expected secret has not been already added to the Vault, as described in Step 5.

Your code can now read its secret from the corresponding file.

Summary

The Edge is a vulnerable space – unprotected by the strengths of physical controls we associate with and rely on in enterprise and Cloud data centers. Far Edge equipment is provisioned in the presence of people – both workers and customers – with little or no IT experience. Anyone can access these machines and can either accidentally or maliciously disrupt their intended functionality. Network attachments can be tampered with in uncontrolled ways that are hard to predict and difficult to prevent.

Nonetheless, these concerns should not detract from the real value that Edge computing brings to enhancing user experiences, protecting personal and private customer information, maintaining resiliency, and providing operational efficiency. Instead, we must leverage the benefits that robust deployment systems, such as Open Horizon, offer to help manage and mitigate security exposures that exist at the Edge.

In this chapter, we have outlined the key vulnerabilities that can exist at the Edge and the necessary steps for addressing them. You have learned about the capabilities offered by Open Horizon for mitigating these threats, and how it is essential to ensure the protection of your Edge deployments. We have shown you how to program and control Open Horizon to sign workloads and store and bind secrets in the Open Horizon system.

In the next chapter, we will discuss the symbiotic relationship between the Edge and secure enterprise networking.

13

Network Connectivity at the Edge

Edge computing and networking are deeply intertwined. Edge computing is not viable unless the network over which data (and software) is interchanged can be securely managed to go in and out of the enterprise or Cloud data center. Likewise, the enterprise network itself cannot be secured without the benefits of computational capacity at the outer edges where the enterprise operates its business.

To emphasize this, consider that a retailer operates their business in hundreds or thousands of stores, through dozens of distribution centers and logistics hubs, potentially in thousands of various vehicles, and so on – all of which are considered Edge locations that benefit from Edge computing. All the communication between these remote locations and the data centers must be secured as part of the enterprise network. The enterprise must be protected from unauthorized use of the connected Edge.

Securing the connected Edge requires that data traffic be encrypted, isolated, routed, and load-balanced across the underlying physical network infrastructure. Computation is required at the Edge to perform these activities – to enable communication between the applications you have deployed to the Edge and the services they depend on at the enterprise or Cloud data center.

This chapter will highlight this symbiotic relationship between Edge computing and enterprise network connectivity, and tease out various approaches to how the connected Edge is surfacing as a mainstream topic. This chapter is not intended to make you an expert in creating a secure connected Edge, but it will ensure you are familiar with the topic and whet your appetite to learn more. This chapter should convince you that, even as a developer, you need to take more control of the networking requirements of your applications and control those through the emerging networking tools that empower you to ensure your application is secure and connected.

In this chapter, we’re going to cover the following main topics:

	The shifting enterprise networking paradigm

	Connecting the Edge

	Operating the connected Edge

Technical requirements

To appreciate this chapter, it will be useful to know something about enterprise networking, especially the importance of internet-related networking protocols such as TCP/IP, UDP, and HTTP/S. You likely already know about these from the perspective of programming communication, where you use enterprise or Cloud-based data center services that you access through REST or WebSocket communication.

However, we recognize that most developers are often less familiar with the underlying network infrastructure that connects the source with the destination of that communication. The enterprise network is often considered to be an operations responsibility – left to others. We will address this part of the story later in this chapter to equip you for the role that you will play in connecting your applications at the Edge to the services you depend on in enterprise or Cloud data centers.

The shifting enterprise networking paradigm

Typically, operations folks oversee setting up the infrastructure on which any Edge computing will occur. This includes setting up a secure network over which communication between the Edge and the data centers can occur safely.

It is important to recognize that this paradigm is shifting. The same trend that is driving the idea of DevOps – that is, the alignment of development activities with operations activities – or the trend to expand that further to DevSecOps – the alignment of development, security, and operations – is also leading to DevSecNetOps. As expected, this is the alignment of development, security, network, and operations activities – putting more of the responsibility and control in the hands of developers and centering all these responsibilities around your specific application(s).

On the one hand, that may seem like more burden – more for you to know and manage. On the other hand, this trend empowers you to ensure you can affect the outcomes that are important to your application, and in many ways results in an enterprise solution that is more robust, secure, and efficient.

While the paradigm shift to DevSecNetOps may be novel to you, it is important to understand why this is relevant and motivated by Edge computing.

The history of network management in connected systems

Historically, the enterprise network was primarily concerned with securely connecting computers within a single data center, or between a set of data centers. With the introduction of personal computing in the 1980s, the enterprise network was extended to office locations where workers did their work. With the coincident introduction of embedded systems such as ATMs, branch-office controllers, retail controllers, and manufacturing OT equipment, it was extended to these remote locations as well.

At that time, the enterprise network was composed entirely of physical or virtual interconnections that used Multiprotocol Label Switching (MPLS) and created by network providers to ensure private and secure connectivity for the enterprise between locations.

Then, the internet happened. Internet Protocol (IP), along with its higher-level transport-layer protocols, including TCP and UDP, and further the application-layer protocols, especially HTTP and HTTP/S, suddenly became the standard. The World Wide Web launched, and with the introduction of popular web browsers, businesses quickly expanded their network to enable employees, customers, and virtually anyone to connect to their external applications from anywhere.

The enterprise inserted firewalls and bastion hosts into its network to protect outside access (the internet) from undermining the integrity, security, and privacy of its internal enterprise networks (the intranet). Protecting HTTP or HTTP/S traffic through these firewalls is fairly straightforward and is a standard feature of most firewalls. However, the beauty of the internet is that it accommodates a wide range of transport and application-layer protocols for different application scenarios and requirements.

IP and its range of transport and application-layer protocols can quickly become unwieldy – involving hundreds or thousands of ports and making it hard to ensure you can protect who can access what.

A typical institution may have hundreds or even a few thousand firewall rules to ensure the protection of its network and to address the various protocols in use. You can imagine how difficult that is to manage – especially if your enterprise has lots of firewalls positioned within its data centers, between data centers, to its cloud providers, and with its partners.

This complexity can also cause other complexity. As applications come and go with different networking requirements, it becomes difficult to keep up with the various rule changes that are needed – especially when there are overlapping needs for different applications. Unnecessary rules get left behind or new applications end up with conflicting rule combinations. Worse, rules may not be created where needed and be overlooked in the confusing mass of firewall rules already in place.

This is all exacerbated by the organizational separation that’s inherent in most development pipelines. Commonly, an application will be developed in response to a specific business need. The development team works hard to get that application designed and built to ensure it meets business requirements – and is often driven at speed to meet the scheduling needs of the business or marketplace.

The classic paradigm is inherently contentious

Setting up the enterprise network to support the applications of the institution has traditionally been the responsibility of the operations team – something the operations team must do for your application, as well as the hundreds or even thousands of other applications your enterprise relies on that may be developed concurrently with yours.

Typically, as the application nears completion, someone contacts the operations team to let them know about the application and its need to secure enterprise connectivity. There is a handoff between the development team and the operations team. That handoff is a key transition point where miscommunication can occur.

Worse, if the handoff occurs too late in the cycle, the operations team may not have time to set up the network (ensure the links and IP addresses are created, establish the firewall rules, contract the MPLS interconnects, if needed, and so on) properly, let alone leave time to adjust for any misunderstandings that occur during the handoff.

The result is the application being delayed – impacting the business schedule or market response that the application intends to address. This paradigm generates a natural contention between the development team and the operations team.

The operations team is responsible for the integrity and durability of the enterprise as a whole. Change is disruptive to maintaining integrity and therefore is often handled in a way that slows down the rate of change. They tend toward methodical, incremental change, overseen by strong quality assurance processes.

The development team tries to operate at the speed of the business and marketplace. They are motivated to drive change at a faster pace to enable the business to remain competitive. The two teams are often locked in a contentious debate about how to handle changes needed for the business – how best to balance overall systems and enterprise integrity and stability with the ever-changing marketplaces.

The connected Edge

Now, consider how much more difficult networking gets when you add the thousands, or tens of thousands, of Edge devices that exist at the Edge. Furthermore, consider how much harder it is to keep up with when those applications are deployed dynamically and autonomously by the Edge management system – not only being replicated over many Edge nodes but potentially even being moved due to other circumstances on the fly.

An already complex network management problem can become even more complicated at the Edge. And that complexity is further exacerbated by cost. If you have hundreds of Edge locations (or more), creating an MPLS connection to each location through your network provider can get expensive. Setting up and maintaining the rules for a firewall at hundreds or thousands of Edge locations takes an enormous amount of time operationally.

Fortunately, better alternatives are coming to market to help with this, namely zero-trust, application-centric, virtual-private networks that shift power to the DevOps (that is, DevSecNetOps) team to assume more responsibility for the connectivity needs of their applications. IBM’s Hybrid Cloud Mesh product1 is a good example of such a product. We’ll discuss these alternatives further next.

1 https://www.ibm.com/products/hybrid-cloud-mesh

Connecting the Edge

Modern enterprise networks have shifted to leveraging virtual-private network connections between endpoints – where the applications that must communicate with each other reside. These enterprise networks, and IBM’s Hybrid Cloud Mesh in particular, leverage the principles of zero-trust and application-centricity.

Of course, these virtual-private network connections must still interconnect over a physical network, but they rely less on the security of the physical network to protect the enterprise – zero-trust in the underlying infrastructure – thus reducing the dependence on expensive, dedicated interconnections with MPLS, for example. They create tunnels between applications and services based on the authentication and authorization of the applications, rather than the location or end user’s credentials – secure connectivity is application-centric.

Furthermore, these networks normalize the growing number of differences between copper, fiber, Wi-Fi, cellular 4G and 5G, and satellite linkages by creating a network that overlays the existing physical network while leveraging their presence and qualities-of-service to make routing and load-balancing decisions.

The enterprise network tunnels the communication between applications and services by encapsulating the underlying IP protocol packets into higher-level application-layer or transport-layer protocols (HTTP/S, for example). This results in normalizing the appearance of the traffic to legacy systems, such as routers and firewalls, and consequently reducing the complexity of firewall rules while retaining the routing and load-balancing benefits of the IP protocol.

How does the enterprise network work?

A modern enterprise network creates tunnels formed by software gateways embedded in the endpoint system – either within Kubernetes, Docker, Podman, or even the application software itself. The gateway is provisioned as close to the application and service execution spaces as possible – preferably within its own address space – to avoid any potential interception or subversion of the application’s data protection.

When an application or service is deployed, it is registered with the network management hub2. The DevOps team can then use this management hub to authorize which applications can connect with their services. This authorization can be confined within the application or be expanded to include other external applications. Likewise, authorization can be scoped to include a specific instance of the application and service or multiple instances of either. This authorization is captured in a network policy document that governs connectivity between the entities and location constraints referenced in the policy.

2	 The IBM Hybrid Cloud Mesh has its own management hub and should not be confused with the Open Horizon Management Hub, which serves a similar role for its own management functions.

Tunnels are then formed between authorized applications and their service dependencies - called out in the policy document - thus ensuring communication resources are confined only to legitimate software. All other network traffic is suppressed, or at least de-prioritized to avoid overloading the system with illegitimate communication.

Tunnels are not tied to a specific physical location, nor are they tied to a specific user. Instead, they are formed between the application and its service dependencies, irrespective of where either is physically located or what user is involved – including across multiple locations when the application is distributed across many Edge nodes or Cloud regions, for example.

This abstraction of the application and its service dependency enables a degree of mobility. That is, the policy will be applied to connectivity between the application and its service, irrespective of where those components reside or may be moved to. If the application or its service is migrated – perhaps as a resource reallocation decision or (in the case of Open Horizon) due to changing deployment policy conditions – the secure tunnel will automatically migrate with it. Operations teams do not have to adjust firewall rules to adjust to the new locations of these components.

Because tunnels are created from the authorization of applications and services, operating complexities are dramatically reduced – relying more on the development team to credential their applications and authorize the attributes of legitimate use. This can be performed independently, or perhaps with oversight, of the operations team. This reduces the operations team as a bottleneck, but more importantly, the application network policy document serves as a strongly typed form of representing the application’s network requirements. This dramatically reduces misunderstandings and potential errors when deploying the application.

The operations team is still responsible for creating the physical network and managing the overall integrity and durability of the enterprise system, but in doing so, they can delegate more of the application-specific requirements to the development team – in other words, Dev, Sec, Net, and Ops.

Key to this is that when an application or service is deployed to the Edge, if a connection policy has been created for that application and authorizing it to connect to a service anywhere else, including in the enterprise or Cloud data center, or even at a different Edge location such as a network or metro Edge, a secure enterprise connection can be created for it automatically. Thus, as the deployment management system automatically and autonomously determines where to place that application, even if placed in many Edge nodes, no further operator intervention is required to establish secure connectivity with that application.

Likewise, when that application is moved or even fully removed from the Edge, the connections that are needed to support that application’s service dependencies can be automatically decommissioned and activated elsewhere – preventing that resource from being exploited for other purposes.

Thus, the solution to application placement is coupled with network configuration so that it can be performed by the development team (as part of their DevSecNetOps role) independent of the operations team’s responsibility for provisioning the underlying physical network and communication resources.

Operating the connected Edge

By itself, these application-oriented Edge gateways are sufficient and necessary for creating and maintaining secure tunnels between the application and their dependent services. You can think of them as point-to-point network connections that are agnostic to any sense or control over how packets between the application and its services are routed or load-balanced across the underlying network infrastructure.

However, to maintain a truly robust enterprise network, the operations staff must worry about routing and load-balancing across the entirety of their enterprise infrastructure. For example, if a physical network connection between a factory and the data center should fail, keeping that factory up and running becomes the responsibility of the operations team. They may have provisioned a secondary network interconnect between that factory and the data center that goes through a different network provider. Network traffic that was flowing over one interconnection now needs to be rerouted to flow over the other interconnection without disrupting the applications running at that site.

On the other hand, if both provider networks are available, the operations team may be concerned about how traffic is distributed across the two network interconnects. Perhaps they want it to be evenly distributed to ensure optimal performance from both when they’re both operational. Or perhaps one network is contracted at different rates – one being the primary channel for interconnecting that factory and the other being contracted only as a backup for the first. The two providers might even be using different infrastructure technologies – one using fiber, the other using cellular (5G, for example), or even satellite communications, such as with Starlink or Hughesnet.

These differences may vary from one site to the next – perhaps based on geographical or regional differences. And each of these variations can have implications for all the application traffic between the factory and the data center – not just for one application, but all the deployed applications.

And, of course, all of this may be further complicated when the enterprise operates with multiple enterprise and Cloud data centers, each with its own set of application focus and priorities, as well as constraints or requirements for the underlying network infrastructure.

For this reason, modern virtual-private network overlay solutions – again, such as IBM’s Hybrid Cloud Mesh – offer transit gateways. Like the Edge gateways associated with individual applications or clusters, transit gateways are software containers3 that can be deployed anywhere. Their role is to provide routing and load balancing for the entire collection of application network connections (tunnels) that are formed between applications in one location and services in other locations, including at enterprise and Cloud data centers.

3	Some products have implemented their transit gateways a virtual machine images, limiting their deployment to classic virtual machine provisioning techniques.

Transit gateways understand tunnels – preserving the integrity of those tunnels and routing their encapsulated packets to other transit or edge gateways as configured by operations. They are designed to probe and monitor the interconnections between locations and will respond automatically to interconnection failures, traffic congestion, priorities, and other policies that govern the overall enterprise network performance.

The operations team can use these transit gateways to configure multiple routes between the application and service hosting environments – for example, between a given far-Edge location and the enterprise or Cloud data center. The enterprise network can be configured to leverage all available paths to route traffic between applications in one location and the services they depend on in another location. Alternatively, they may configure the gateways so that they prefer one path or another until an exception is encountered. If one of the paths should fail or become congested, the system will automatically route the network traffic through another available path until the original path can be restored.

Transit gateways are optional, but they add another layer of resilience to the network to help ensure operators can fulfill their obligations to keep the enterprise business up and running and performing efficiently.

Deploying the connected Edge

How do the right software components for the network get put in place? Edge gateways are typically relatively small, containerized components that can be put in place at the node or cluster hosting the application or within the application itself.

They are typically considered to be a part of the application – each Edge gateway is dedicated to that application and forms any tunnels it needs to communicate with the services it depends on and has been authorized to use. They are deployed along with the application, for example, using the Open Horizon deployment management system, and leverage the same pattern or policy-based deployment systems that are offered and discussed throughout this book.

Likewise, the operations staff can also use the deployment management system to place their transit gateways anywhere they are required to provide the redundancy and control required by the operation’s network architecture.

Deploying the network is just like deploying an application.

Summary

Enterprise networking and Edge computing are mutually dependent and synergistic. You can’t have one without the other.

In this chapter, we provided an overview of how enterprise networking is extended to the connected Edge. We also covered the paradigm shift to DevSecNetOps, along with the additional responsibility and empowerment this offers to developers. Then, we distinguished between Edge gateways and transit gateways within the zero-trust, application-centric, virtual-private networking infrastructure. After, we outlined how developers can assume responsibility for deploying Edge gateways as part of their application deployment, and how operations can assume reasonability for deploying transit gateways to increase the robustness of the network. Finally, we indicated that both can be performed using the same Edge deployment management system.

While it is not the intent of this book to delve deeply into the use of modern enterprise networking systems such as IBM’s Hybrid Cloud Mesh product, we highly encourage you to learn more about them and to factor them into the deployment of your Edge solution.

Next, we will walk you through how to construct and deploy a complete end-to-end Edge solution by pulling together everything that we’ve covered in this book. This will enable you to put these principles into practice.

Part 4: Edge Management in Practice

To help ensure that you are fully prepared to put the skills you have learned in this book to use, we will round out the discussion with a real-world example application that leverages computer vision to recognize objects of interest in your Edge environment. We will step you through the tasks of deploying that AI solution to your Edge device, as well as provide practical guidance on how to test and debug your distributed Edge solution. Finally, we will cover a number of topics that are worth additional investigation in your journey to production-ready Edge computing, including a summary of the Web UI capabilities provided by the IBM Edge Application Manager – the commercial distribution of the LF Edge Open Horizon open source project.

This part has the following chapters:

	Chapter 14, Building a Real-World Example Application

	Chapter 15, Testing and Debugging at the Edge

	Chapter 16, Follow-On Topics

	Chapter 17, Using the IBM Edge Application Manager Web UI

14

Building a Real-World Example Application

Now that you understand why edge computing is important, let’s explore what it takes to build a secure and scalable architecture. We’ll get hands-on practice with various components and then start building a real-world example application. This application will have containers, services, policies, and model publishing to deploy machine inferencing and object detection examples at an Edge device node. With this example, we will focus on the end-to-end deployment of containerized services using Open Horizon.

The architecture of the application is depicted here:

[image: Figure 14.1 – Example application architecture]

Figure 14.1 – Example application architecture

This example application consumes video content from either a Real-Time Streaming Protocol (RTSP) stream, a stored video file, or a USB camera on an Edge device such as an Intel NUC (0), Nvidia Nano, Nvidia Xavier, or a Raspberry Pi. The captured video stream is converted to a series of image frames (1). The ML-based object detection (2) analyzes each frame, identifying the objects it finds in each image. The frame is annotated – that is, a bounding box is placed around the object in the image along with a label identifying what it believes that object to be – by the frame annotation service (3). The resulting frames are then re-assembled into an HTTP stream (4) for presentation in a browser (or any other downstream service). Optionally, the ML model can be published into the running pipeline asynchronously to change the inferencing result (D) using the Open Horizon Model Management System (MMS) depicted in the A, B, C flow.

In this chapter, we’re going to cover the following main topics:

	A typical Edge device node

	Machine inferencing pipeline

	Services, Policies, and User Input

	Publishing Services and Deployment policies

	Registering the Edge device node with an initial ML model

	Verifying the application

	Publishing a machine learning (ML) model using MMS

Technical requirements

As with the previous chapters, verify the current setup of the AIO Management Hub and the Edge agent on your Edge node as per the instructions in Chapter 7’s Technical requirements section.

If you happen to be using a standalone Edge device node such as an Intel NUC, you may attach a USB video camera. Using Raspberry Pi, Nvidia Jetson/Xavier or any other similar devices are also good alternatives.

As depicted in Figure 14.1, the video stream can come from an MP4 file, an RTSP stream, or both. Although not required, it would be helpful to familiarize yourself with the concept of an RTSP stream and a VLC player if you are planning to use an RTSP stream in your example.

In this example, we will be using TensorFlow Lite as an ML model. Using PyTorch, OpenVINO, YOLO, and so on are also options.

Additionally, this application uses OpenCV, an open source software (OSS), to perform various image-processing tasks, and this example is written in Python. Knowledge about Python is essential for following the code examples.

A typical Edge device node

So far, we have been using an Edge device node with Linux running on an amd64 CPU architecture. Using arm- or arm64-based CPU architecture Edge devices are equally good options. To keep the example simple, we will use CPU-based machine inferencing. However, in actual deployments, your Edge device nodes may be GPU-enabled. The process of using Open Horizon-based application workload deployment and ML model management is the same for all architectures. As noted in earlier chapters, whichever CPU or GPU architecture you choose, the host operating system should have a Docker runtime available and should support systemd.

Machine inferencing pipeline

Our object detection inferencing pipeline begins with capturing a frame from the incoming video stream. The video stream can be a prerecorded video file, an RTSP stream, or can come from an attached video camera. The frame is then passed to an ML object detector that applies the ML model on the frame to detect a set of objects that the ML model has been trained for. The detector output is a set of detected objects with their bounding boxes, usually a set of coordinates representing a rectangle. This detector output is used to annotate the frame with labels and draw a rectangle around the detected objects. In the interest of keeping the example simple, the annotated frame is then streamed as a Motion JPEG (MJPEG) file so that it can be easily viewed in a browser for verification of the detected objects. It’s possible to stream the detected objects with their bounding boxes to other services or to the Cloud. By locally processing the video stream, such an edge computing solution minimizes the cost of data transmission and provides a degree of privacy.

This pipeline is also set up to receive a newly published ML model and then transition the ML object detector to use that new ML model so that the same hardware setup can perform different functions based on ML models.

The complete example source code for building and deploying the application covered in this chapter is available at the following URL:

https://github.com/PacktPublishing/Real-World-Edge-Computing/tree/main/example-application/mlvision

Note

Significant aspects of this example application are focused on making the application robust and elegant for presentation. This aspect of the application is typically understood as part of the data plane in the microservices community. Open Horizon does not play any role in the data plane and only manages the control plane; that is, deploying services on the edge nodes under the control of policies.

Services, Policies, and User Input

Having understood the general outline of the inferencing pipeline, let’s delve into the details of containers, services, and policies as applicable to this example application.

Invariably, in a practical deployment of a containerized application, you are expected to provide external inputs to set up and customize the application. Open Horizon provides this flexibility using a User Input file that works with the service definition of each of the services. This is somewhat of a new concept in this book, and we will go into the details of User Input later in this section.

Services

This application has three containerized services to build the inferencing pipeline – infer, http, and mms. Each service is deployed using its own container image. We will introduce each of these three services and describe them in detail later when they are deployed and used.

infer

The infer service is the main service of the inferencing pipeline. This multithreaded inference service processes each video stream in a separate thread for object detection, frame annotation, and stitching the individual streams into a composite frame to output the result as an MJPEG frame. This service performs the three functions depicted in the architecture diagram – that is, frame capture (1), ML object detection (2), and frame annotation (3). In other implementations, you might find these three functions broken out as separate services to provide more flexibility over their composition.

This service is identified as the following:

rwec.edge.example.mlvision.infer_1.0.0_amd64
 http

The http service provides a user interface (UI) to view the MJPEG video stream of the detected objects with bounding boxes drawn in a web browser. This service is identified as the following:

rwec.edge.example.mlvision.http_1.0.0_amd64
 Important note

In this application, the http service is a required service for the infer service, and hence the deployment of the http service is managed by the infer service.

mms

The mms service is a model-handling service and receives the published ML models to be provided to the infer service. This service is identified as the following:

rwec.edge.example.mlvision.mms_1.0.0_amd64
 Policies

As expected, the aforementioned services have deployment policies specified as constraints to manage the deployment of the services on the target edge nodes. In addition, the edge node has a node policy with properties so that relevant qualified services get deployed on the target Edge device node.

Deployment policies

Only the infer and mms services have deployment policies. The http service’s deployment is managed by the infer service, thus ensuring that a UI service (http) is always available to view the inference performed by the inference service.

A code snippet of the constraints for the infer service is displayed next:

"constraints": [
 "owner == rwec.edge",
 "deploy == example.mlvision",
 "infer == true"
 Here’s a code snippet of the constraints for the mms service:

"constraints": [
 "owner == rwec.edge",
 "deploy == example.mlvision",
 "mms == true"
]
 Node policy

As expected, the Edge node has a Node policy for the aforementioned services to get deployed and later receive the published ML model updates as well.

Here’s a code snippet of the properties for the edge node to satisfy the aforementioned constraints of the infer and mms services:

"properties": [
 {"name": "owner", "value": "rwec.edge"},
 {"name": "deploy", "value": "example.mlvision"},
 {"name": "mms", "value": true},
 {"name": "infer", "value": true},
],
 User Input

From your experience working with containerized workloads, you must be familiar with the concept of environment variables used to provide external inputs to the Docker container when docker run is invoked. The User Input construct in Open Horizon provides that capability and is specified as a JSON file to be applied typically when the Edge device node is registered. The content of the User Input file provides the required values and can also override the values specified in the service definition file of the service when the service was originally published by the developer.

The service definition file has an optional userInput section. Each input is specified using the following fields:

name: Name of the variable that is available as environment variable in the service.
label: A short label description
type: Primitive type of the value such as string, int, float, boolean
defaultValue: Default value of the variable.
 Important note

A defaultValue instance with no value, specified as "", makes the field value required and must be provided when registering the edge node.

In this example application, we will provide the required values to set up the application as well as override values of certain variables to showcase the customization that each edge device node can have optionally.

The user input file used in this example application is shown next:

{
 "services": [
 {
 "org": "$HZN_ORG_ID",
 "url": "$EDGE_OWNER.$EDGE_DEPLOY.http",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_VIEW_COLUMNS" : $APP_VIEW_COLUMNS
 }
 },
 {
 "org": "$HZN_ORG_ID",
 "url": "$EDGE_OWNER.$EDGE_DEPLOY.mms",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_BIND_HORIZON_DIR" : "$APP_BIND_HORIZON_DIR"
 }
 },
 {
 "org": "$HZN_ORG_ID",
 "url": "$EDGE_OWNER.$EDGE_DEPLOY.infer",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_MODEL_FMWK" : "$APP_MODEL_FMWK",
 "APP_MODEL_DIR" : "$APP_MODEL_DIR",
 "APP_ML_MODEL" : "$APP_ML_MODEL",
 "APP_CAMERAS" : "$APP_CAMERAS",
 "APP_VIDEO_FILES" : "$APP_VIDEO_FILES",
 "APP_RTSPS" : "$APP_RTSPS",
 "APP_VIEW_COLUMNS" : $APP_VIEW_COLUMNS,
 "DEVICE_ID" : "$DEVICE_ID",
 "DEVICE_NAME" : "$DEVICE_NAME",
 "DEVICE_IP_ADDRESS" : "$DEVICE_IP_ADDRESS",
 "SHOW_OVERLAY" : $SHOW_OVERLAY,
 "PUBLISH_STREAM" : $PUBLISH_STREAM,
 "MIN_CONFIDENCE_THRESHOLD": $MIN_CONFIDENCE_THRESHOLD,
 "MMS_POLLING_INTERVAL" : $MMS_POLLING_INTERVAL
 }
 }
]
}
 As you observe, the User Input file is a JSON file where the inputs needed by the services are specified as a key-value pair. We encourage you to review the preceding content with the corresponding service definition files of the http, infer, and mms services to develop a good understanding of the relationship between these two files. Though you can hardcode the values in the User Input file, to further externalize the settings, we suggest that you use the envsubst technique to avoid any hardcoding of values and keep the application flexible and easily customizable. You will practice this in the following sections when we register the edge device node.

Note

The envsubst technique is a useful Linux utility to replace environment variables in a file. It helps customize JSON or YAML files typically used in configuring applications.

Publishing Services and Deployment policies

Having studied at a high level the various Services, Policies, and User Input that will be used to deploy the containerized application workload at the Edge device node, let’s start with the familiar steps to build, push, and publish various components in the AIO Open Horizon Management Hub.

For the following exercise, view the accompanying code example from the mlvision directory. You should look at the content of the Makefile and the corresponding targets to understand the underlying commands being used. You will find that this follows the similar development steps that we have been practicing throughout the book.

Let’s begin with the application code building:

	Set up the environment variables for the application:
source ~/project/rwec/ENV_RWEC_MLVISION

 	Build and publish the http, infer, and mms services using the top-level make targets. We encourage you to review the underlying Makefiles for each of the three services to understand the Dockerfiles that build the container images and the service definition files having user input and image deployment sections:
make publish-http
	Verify the built Docker image:docker images | grep mlvision.http

	Verify the published services:hzn ex serv ls | grep mlvision.http

	Your output should look like this:rwec.edge.example.mlvision.http_1.0.0_amd64

Similarly, to build and publish the infer and mms services, run the following commands:
make publish-infer
make publish-mms
Also, you may verify the Docker images and services using the following commands:
docker images | grep mlvision.infer
hzn ex serv ls | grep mlvision.infer
docker images | grep mlvision.mms
hzn ex serv ls | grep mlvision.mms

3.	Having built and published the services, publish the deployment policies for the infer and mms services as follows:

make deploy-policy
 Also, you may verify the published deployment policies using the following commands:

hzn ex dep ls | grep mlvision
 Your output should look like this:

deploy-rwec.edge.example.mlvision.infer_amd64
deploy-rwec.edge.example.mlvision.mms_amd64
 Now that the services are built and the deployment policies are published in the AIO Open Horizon Management Hub, we can proceed with registering the edge device node so that the services get deployed on the Edge device node.

Registering the Edge device node with an initial ML model

In this exercise, to register the Edge device node, we will be using the User Input file in addition to the Node policy file. Before registering the Edge node, let’s look into the content of the User Input file that provides important variables to set up the application.

User Input

As noted before, the User Input file provides the necessary values for the several environment variables needed to set up the initial conditions for the application. The application developer specifies the variable names, their data primitive types, and their values in the service definition file of the services when they are published.

ML model location

In this example application, we have chosen a TensorFlow Lite model as the inferencing model for object classification, which is already trained with the COCO dataset (https://cocodataset.org/) and can classify 80 different objects.

The following variables defined in the infer service section of the User Input file provide access to the ML model. These variables are purely based on the way the application is designed. It is very possible that alternate application designs can achieve similar results. In this design, the initial ML model will be placed in a directory that is sharable by the mms and infer services. Also, when MMS-published ML models are received, they will also be under the same parent directory structure so that different ML models can be easily accessed programmatically across services.

The following environment variables specify the directory and the filename used by the example application:

	APP_MODEL_FMWK: The ML model framework. The valid value is tflite.

	APP_MODEL_DIR: The directory where ML models are stored. This is derived from combining the APP_BIND_HORIZON_DIR parent directory and the subdirectory value passed during ML model publishing.

	APP_ML_MODEL: The ML model file.

Video stream sources

As noted earlier, this application can consume video streams from several sources concurrently. The video sources can be specified using the following variables:

	APP_CAMERAS: A value of all tries to locate all attached cameras that appear as /dev/videoX. The application code looks for 0-9 attached camera sources. A value of "-" skips the camera as a video source.

	APP_VIDEO_FILES: One or more comma-separated MP4 video files as a list. A value of "-" skips video files as a video source.

	APP_RTSPS: One or more comma-separated RTSP streams as a list. A value of "-" skips RTSP streams as a video source.

At least one of the video sources must be specified. The application will work with all three sources at the same time as well. It is recommended that you start with a video file as a video source and then slowly build it up depending on the available hardware resources on your Edge device.

Note

This is an example application to showcase the capabilities of Open Horizon not to build a feature-rich, highly scalable ML-based object classification system.

UI presentation

The http service can be customized by enriching the screen content with overlay information having relevant data about the ML model, Edge device name, FPS, and so on. The following variables control the presentation view:

	APP_VIEW_COLUMNS: To simultaneously view all annotated output video streams, a composite output frame is stitched together. This value specifies the number of streams that should be shown horizontally. The same value must be provided to the http service in the user input file.

	DEVICE_ID: Shown on the overlay output to identify the video source.

	DEVICE_NAME: A descriptive name is shown on the overlay.

	DEVICE_IP_ADDRESS: Used by our mms service to expose an endpoint for the local service to fetch model data.

	SHOW_OVERLAY: Show the overlay. Can be set to true or false.

	PUBLISH_STREAM: Publish the output stream. Can be set to true or false. Set to true to view.

Inference engine

The infer service supports the following variable:

	MIN_CONFIDENCE_THRESHOLD: A threshold value specified as a float for the object detector to compare the validity of the detected object

MMS

The mms service supports the following variable:

	MMS_POLLING_INTERVAL: An int number in seconds to poll for a new model

This provides a good summary of various variables that are needed for example application working and its customization.

Registering the Edge device node

Now that we have understood how setup parameters can be provided using User Input, let’s register the edge device using the node policy properties specified earlier:

	Run the following command in the register directory to verify that the user input is correctly set up:
envsubst < user_input.json
Your output should look like this:
{
 "services": [
 {
 "org": "myorg",
 "url": "rwec.edge.example.mlvision.http",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_VIEW_COLUMNS" : 1
 }
 },
 {
 "org": "myorg",
 "url": "rwec.edge.example.mlvision.mms",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_BIND_HORIZON_DIR" : "/var/local/horizon"
 }
 },
 {
 "org": "myorg",
 "url": "rwec.edge.example.mlvision.infer",
 "versionRange": "[0.0.0,INFINITY)",
 "variables": {
 "APP_MODEL_FMWK" : "tflite",
 "APP_MODEL_DIR" : "/var/local/horizon/ml/
 model/tflite",
 "APP_ML_MODEL" : "tflite-model-1.0.0-mms.
 zip",
 "APP_CAMERAS" : "-",
 "APP_VIDEO_FILES" : "/var/local/horizon/
 sample/video/
 sample-video.mp4",
 "APP_RTSPS" : "-",
 "APP_VIEW_COLUMNS" : 1,
 "DEVICE_ID" : "<your-device-id>",
 "DEVICE_NAME" : "<your-device-name>",
 "DEVICE_IP_ADDRESS" : " <your-edge-node-ip-
 address",
 "SHOW_OVERLAY" : true,
 "PUBLISH_STREAM" : true,
 "MIN_CONFIDENCE_THRESHOLD" : 0.6,
 "MMS_POLLING_INTERVAL" : 5
 }
 }
]
}

 	Having verified the environment variable substitution for the User Input file, run the following command to register the edge device node:
envsubst < user_input.json | hzn register --policy=node_policy.json -f-
Your output should look like this:
Reading input file -...
Note: No properties and constraints are specified under 'deployment' attribute in the node policy file node_policy.json. The top level properties and constraints will be used.
Horizon Exchange base URL: http://<ip-address-of-oh-mgmt-hub>:3090/v1
Using node ID 'edge-device-amd64' from the Horizon agent
Generated random node token
Node myorg/edge-device-amd64 does not exist in the Exchange with the specified token, creating/updating it...
node added or updated
Node edge-device-amd64 created.
Will proceed with the given node policy.
Updating the node policy...
Initializing the Horizon node with node type 'device'...
Changing Horizon state to configured to register this node with Horizon...
Horizon node is registered. Workload agreement negotiation should begin shortly. Run 'hzn agreement list' to view.

 	As before, run the following command to view the progress of service deployment by observing the agreement:
hzn ag ls
Your output should look like the following, having two agreements – one for the mms service and another for the infer service:
[
 {
 "name": "Policy for myorg/edge-device-amd64 merged with
 myorg/deploy-rwec.edge.example.mlvision.mms_amd64",
 "current_agreement_id":
 "4f9ceff0c12d8d5dc4337527b38cc64bdb52745dac48325ef2eb8b57c31e6
 e47",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-05-13 23:43:04 -0700 PDT",
 "agreement_accepted_time": "2024-05-13 23:43:07 -0700 PDT",
 "agreement_finalized_time": "2024-05-13 23:43:07 -0700 PDT",
 "agreement_execution_start_time": "2024-05-13 23:43:08
 -0700 PDT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "rwec.edge.example.mlvision.mms",
 „org": „myorg",
 „version": „1.0.0",
 „arch": „amd64"
 }
 },
 {
 "name": "Policy for myorg/edge-device-amd64 merged with
 myorg/deploy-rwec.edge.example.mlvision.infer_amd64",
 "current_agreement_id": "8303895168ea20806fc26ce4728f74b01ade
 bf9c7b915eb6d861ed91dcbd96f0",
 "consumer_id": "IBM/agbot",
 "agreement_creation_time": "2024-05-13 23:43:04 -0700 PDT",
 "agreement_accepted_time": "2024-05-13 23:43:08 -0700 PDT",
 "agreement_finalized_time": "2024-05-13 23:43:08 -0700 PDT",
 "agreement_execution_start_time": "2024-05-13 23:43:11
 -0700 PDT",
 "agreement_data_received_time": "",
 "agreement_protocol": "Basic",
 "workload_to_run": {
 "url": "rwec.edge.example.mlvision.infer",
 „org": „myorg",
 „version": „1.0.0",
 „arch": „amd64"
 }
 }
]

Important note

There is no agreement for the http service as the http service is a required service for the infer service. The infer service manages the deployment of the required services as specified in its service definition file – in this case, the http service.

Verifying the application

Now that you have deployed all the components of the application, let’s verify the functioning of the application by going through a series of steps:

	Verify that the needed Docker containers are running using the following command:
docker ps
Your output should look like the following, with three containers running for the following three services – infer, http, and mms:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
283f7fad6dbe .../rwec.edge.example.mlvision.infer_amd64 "/bin/sh -c '/usr/lo…" About a minute ago Up About a minute 8303895168ea20806fc26ce4728f74b01adeb f9c7b915eb6d861ed91dcbd96f0-rwec.edge.example.mlvision.infer
d5994f42d073 .../rwec.edge.example.mlvision.http_amd64 „/bin/sh -c ‚/usr/lo…" About a minute ago Up About a minute 0.0.0.0:5000->5000/tcp myorg_rwec.edge.example.mlvision.http_1.0.0_950a09ef-257f-4e77-a343-287975bd6940-rwec.edge.example.mlvision.http
83ee974dad77 .../rwec.edge.example.mlvision.mms_amd64 "/bin/sh -c /mms_mai…" About a minute ago Up About a minute 4f9ceff0c12d8d5dc4337527b38cc64bdb52 745dac48325ef2eb8b57c31e6e47-rwec.edge.example.mlvision.mms

Important note

In this deployment, there were two agreements but three containers running. This is expected as the http and infer services are deployed under the same agreement as the infer service.

	Access the application UI in a browser using the following URL where you replace ip-address with the ip-address Edge device node:
http://<ip-address>:5000
Your output should look like this in the browser:

[image: Figure 14.2 – Example application UI]

Figure 14.2 – Example application UI

	Click on the Begin Visual Stream View link.You should see streaming output of annotated frames where each detected object is labeled, and a rectangle is drawn around each object. An example screenshot is provided next:

[image: Figure 14.3 – Example application machine inferencing and object detection]

Figure 14.3 – Example application machine inferencing and object detection

The preceding screenshot shows several details about the processed video frame:

	On the top left, you see the name of the video file being processed as Video 1. In case the video source is an attached video camera, you would see /dev/videoX (X would be a number from 0 to 9). If the video source were an RTSP video stream, it would show the URL of the RTSP stream.

	On the top right, a GMT timestamp shows when the inference was performed.

	Various highlighted rectangles show the bounding boxes of the detected objects.

	Each bounding box has a label as to what the detected object is, such as a person, TV, and so on, with confidence level expressed as a percentage.

	On the top left, the overlay shows some additional details about the ML model type, device, and average frame processing time.

	On the bottom left, you see the name of the ML model file used and when the ML model was updated last. The ML model filename has a default prefix to signify that inference is working with the initial seeded model. This prefix will change when the application is using MMS-published models, as we will see in the subsequent section.

Here, you observed the fully functional application running as a set of containerized services and saw the detected objects outlined in each frame using an ML-based inferencing technique.

Publishing an ML model using MMS

Now that you have seen ML model-based object detection happening at the Edge device node, we will use MMS to publish an updated ML model. In this example, to illustrate the deployment of the new model, we have created another version of the same model where some of the objects are wrongly labeled – for example, TV with radio, and so on. We will use two different models with two different metadata model publish files.

Important note

The focus of this example application is not the ML model itself but the delivery of the ML model to the edge nodes asynchronously using MMS.

To receive the MMS-published ML model and to make the model available to the application inference pipeline, this application deploys a standalone mms service. In this application design, the mms and infer services share a common directory structure where the newly received ML model is stored and then later retrieved by the infer service to reinitialize the inference Interpreter object.

To publish the MMS model, a JSON model-publish-definition metadata file is used that specifies user-defined ObjectID and ObjectType values. Also, the metadata file has the destination policy and the service that should receive the published ML model. In this example, the description field is creatively used to pass related data used by the application to further enhance the user experience and determine the subdirectory where the ML model will be stored for the application to retrieve it from under the parent directory, as specified by APP_BIND_HORIZON_DIR. We encourage you to review the model-publish-definition file provided as part of the example application code.

Now, let’s publish the ML model together with its model-publish-definition metadata file. Once again, envsubst is used to customize the metadata file:

	Run the following command in the register directory to verify that the tflite-model-101-publish-definition.json file is correctly set up:
envsubst < tflite-model-101-publish-definition.json

 	Having verified the environment variable substitution for the tflite-model-101-publish-definition.json file, run the following command to publish the 1.0.1 model-version model with the 101 metadata file. These version numbers are arbitrary and used here to easily track them in various commands:
envsubst < tflite-model-101-publish-definition.json | hzn mms object publish -m- -f tflite-model-1.0.1-mms.zip
Your output should look like this:
Digital sign with SHA1 will be performed for data integrity. It will delay the MMS object publish.
Start hashing the file...
Data hash is generated. Start digital signing with the data hash...
Digital sign finished.
Object tflite-model-1.0.1-mms.zip added to org myorg in the Model Management Service

 	As the ML model file is published, you may watch the code status using the following command:
hzn mms object list -d
Your output should look like this as the publishing process goes through several different status changes, such as pending, delivering, and finally delivered:
Listing objects in org myorg:
[
 {
 "objectID": "tflite-model-1.0.1-mms.zip",
 "objectType": "mmsmodel",
 "destinations": [
 {
 "destinationType": "openhorizon.edgenode",
 "destinationID": "edge-device-amd64",
 "status": "pending",
 "message": ""
 }
],
 "objectStatus": "ready"
 }
]
Repeating the preceding command (hzn mms object list -d) will show the changing status in each subsequent run, and eventually, this will settle as delivered:
Listing objects in org myorg:
[
 {
 "objectID": "tflite-model-1.0.1-mms.zip",
 "objectType": "mmsmodel",
 "destinations": [
 {
 "destinationType": "openhorizon.edgenode",
 "destinationID": "edge-device-amd64",
 "status": "delivered",
 "message": ""
 }
],
 "objectStatus": "ready"
 }
]

 	Once the status reaches delivered, soon the infer service will retrieve the just delivered ML model file and reinitialize its Interpreter object. You will notice that in the lower-bottom-right overlay, the model value has changed to tflite-model-1.0.1-mms.zip and the object detection is being performed using the newly delivered ML model. Evidence of the new ML model in action can be observed when a TV appears labeled as radio. This is deliberate as we purposefully labeled the model data incorrectly so that the newly delivered ML model shows an erroneous result:

[image: Figure 14.4 – Example application after first model publishing]

Figure 14.4 – Example application after first model publishing

	To demonstrate the delivery of the ML model once again, this time, we will similarly publish version 1.0.0 with 100 metadata model-publish-definition files:
envsubst < tflite-model-100-publish-definition.json | hzn mms object publish -m- -f tflite-model-1.0.0-mms.zip
Your output should look like this:
Digital sign with SHA1 will be performed for data integrity. It will delay the MMS object publish.
Start hashing the file...
Data hash is generated. Start digital signing with the data hash...
Digital sign finished.
Object tflite-model-1.0.0-mms.zip added to org myorg in the Model Management Service
You may once again watch the publishing progress using the following command and let the status reach delivered for the 1.0.0 version of the ML model:
hzn mms object list -d
You will notice that the following command will list the status of both models:
Listing objects in org myorg:
[
 {
 "objectID": "tflite-model-1.0.0-mms.zip",
 "objectType": "mmsmodel",
 "destinations": [
 {
 "destinationType": "openhorizon.edgenode",
 "destinationID": "edge-device-amd64",
 "status": "delivered",
 "message": ""
 }
],
 "objectStatus": "ready"
 },
 {
 "objectID": "tflite-model-1.0.1-mms.zip",
 "objectType": "mmsmodel",
 "destinations": [
 {
 "destinationType": "openhorizon.edgenode",
 "destinationID": "edge-device-amd64",
 "status": "delivered",
 "message": ""
 }
],
 "objectStatus": "ready"
 }
]
Once the status reaches delivered for the 1.0.0 version of the ML model, the infer service will retrieve the just delivered ML model file and reinitialize its Interpreter object. You will notice that in the lower-bottom-right overlay, the model value has changed to tflite-model-1.0.0-mms.zip, the object detection is being performed using the newly delivered model, and the objects are being detected correctly:

[image: Figure 14.5 – Example application after second model publishing]

Figure 14.5 – Example application after second model publishing

The preceding demonstrations show that ML models can be delivered again and again without interrupting the running of the container on an Edge device.

Summary

Congratulations on deploying a fully functional ML-based object detection containerized application using Edge computing principles that you have been practicing throughout this book! You also saw several interacting services in action and were able to practice publishing ML models and retrieve them in a running application without interrupting the service. You also saw simple programming techniques to abstract away hardcoding to keep the application flexible and easily customizable for each Edge node if so needed. Such design principles form the basis of deploying and managing services on Edge nodes in large numbers.

In the next chapter, we will discuss some of the not-so-common situations that you may run into and how to go about troubleshooting them.

15

Troubleshooting at the Edge

By developing a real-world containerized workload at the Edge, you’ve seen what it takes to deploy and manage Edge services. Throughout this book, we have provided you with practical hands-on guidance as you developed an end-to-end conceptual understanding of the unique opportunities and challenges presented by Edge applications. You may have also noticed that while this book provided a comprehensive framework to manage Edge workloads, we leveraged your existing knowledge of Docker to verify the services and applications as they were built and deployed.

In this chapter, we will further supplement many of the previously mentioned techniques with additional input based on our experience and provide several what-ifs and questions that may arise.

In this chapter, we are going to cover the following main topics:

	Answers to not-so-common questions

	Uninstalling AIO Open Horizon Management Hub

	Edge device Agent verification

Between your experiences in developing and debugging software and the topics covered in this chapter, you should be able to handle most of the common issues that may surface in your Edge solution.

Technical requirements

As before, verify the current setup of the AIO Management Hub and the Edge Agent on your Edge node, as per the instructions provided in Chapter 7, in the Technical requirements section.

This chapter relies on your prior experience in building, deploying, and debugging software in production environments in classic enterprise and Cloud architectures – and especially with container-based microservices.

Answers to not-so-common questions

Though we have described the various aspects of the Open Horizon framework throughout the book in detail, we have collected a curated list of questions and answers that might further help you while you’re building, testing, or debugging your Open Horizon deployed application workloads. We have grouped them into various sub-sections for easy reference.

Document references

What parameters are allowed in service.json?

To find out what parameters are allowed in various configuration json files, we recommend that you study the following documents:

	Deployment strings: https://open-horizon.github.io/docs/anax/docs/deployment_string

	Service definition: https://open-horizon.github.io/docs/anax/docs/service_def/#service-definition

More information related to the Open Horizon Agent can be found at https://open-horizon.github.io/docs/anax/docs/#anaxdocs

The latest documentation that covers the entirety of Open Horizon can be found at https://open-horizon.github.io/.

Moreover, additional information can be found in the IBM Edge Application Manager commercial distribution of Open Horizon: https://www.ibm.com/docs/en/eam/4.5.

The Open Horizon open source community’s support resources can be found at https://open-horizon.github.io/docs/troubleshoot/support/.

Edge Agent

What is the minimum software requirement to install and run an Edge device Agent?

The minimum requirement to install and run the Edge Agent is to have a Linux-based Edge device with systemd and the Docker runtime environment.

How can I add a new non-root user in Ubuntu?

As we have advocated in this book, we recommend that you operate Open Horizon using a non-root user with sudo privileges. Here are some helpful commands you can use to add a non-root user in Ubuntu. Other variants of Linux will have similar commands, and there may be other ways of achieving this as well:

useradd -s /bin/bash -d /home/<userid> -m -G sudo <userid>
usermod -g users <userid>
passwd <userid>
usermod -aG docker <userid>
 How do I know if my Linux system is running in init.d or systemd?

While we have emphasized the need for a Linux host machine based on systemd, let’s look at some commands you can use to find out what is supported on your machine. While there may be other methods, we have found the following helpful.

Run the following command to find out if init.d (upstart) is running:

[[`/sbin/init --version` =~ upstart]] && echo yes || echo no
 Run the following command to find out if systemd is running:

[[`systemctl` =~ -\.mount]] && echo yes || echo no
 A yes or no output quickly confirms the presence or absence of what is running on your system.

Running the agent-install.sh script gives an error on my version of Linux. How can I install the Edge Agent?

Given so many variations of Linux, the Open Horizon team tries to verify many such systems but not all by default. However, they do provide several options that you can use to override the current defaults and try them in your environment. Significant among those are the following options. Many of these can be provided using either the command-line option or by setting up corresponding ENVIRONMENT variables. The following has been taken from the agent-install.sh script:

	SUPPORTED_DEBIAN_VARIANTS_APPEND: A Debian variant that should be added to the default list: ubuntu raspbian debian.

	SUPPORTED_DEBIAN_VERSION_APPEND: A Debian version that should be added to the default list: bullseye jammy focal bionic buster xenial stretch bookworm.

	SUPPORTED_DEBIAN_ARCH_APPEND: A Debian architecture that should be added to the default list: amd64 arm64 armhf s390x.

	SUPPORTED_REDHAT_VARIANTS_APPEND: A Red Hat variant that should be added to the default list: rhel redhatenterprise centos fedora.

	SUPPORTED_REDHAT_VERSION_APPEND: A Red Hat version that should be added to the default list: 7.6 7.9 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1 9.2 9.3 8 9 32 35 36 37 38.

	SUPPORTED_REDHAT_ARCH_APPEND: A Red Hat architecture that should be added to the default list: x86_64 aarch64 ppc64le s390x riscv64.

See ./agent-install.sh –h in your Open Horizon installation directory for more details.

How can I install just the hzn CLI and not the complete Edge Agent?

Typically, when the Edge Agent is installed, the hzn CLI is also installed as part of the Agent installation process. It is possible that you may want to just install the hzn CLI and not the Edge Agent. To accomplish this, perform the following steps:

	Access the installable package at https://github.com/open-horizon/anax/releases.

	Locate the architecture, the version number, and the Linux variant that you want to install. Then, use curl to download the package. An example command has been provided here. Change the various values as necessary:
curl -LO https://github.com/open-horizon/anax/releases/download/v2.30.0-1491/horizon-agent-linux-deb-amd64.tar.gz

 	Unzip and untar the downloaded package into a directory using the following command:
tar zxvf horizon-agent-linux-deb-amd64.tar.gz

 	Install the hzn CLI using a package installer that’s suitable for your Edge device’s host Linux variant and architecture. For example, the command to install the hzn CLI on Ubuntu is as follows:
sudo apt install ./horizon-cli*.deb

After installation, you can run hzn –h to do a quick verification, as shown in Chapter 8, in the Using the Open Horizon CLI and API section.

How do I register an Edge device node name?

You can create a node name before registering an Edge node using the following command:

export HZN_EXCHANGE_NODE_AUTH=<desired-node-name>:<node-auth>
hzn exchange node create -n $HZN_EXCHANGE_NODE_AUTH
 See hzn exchange node create –h for further details.

Service publishing

How can I create the signing key to publish a service?

To create a signing key, use the following command:

hzn key create <organisation-name> <your-email-id>
 See hzn key create –h for more details.

How do I set up an authenticated container registry for Docker container images?

It may be tempting to use Docker Hub, or a similar image container registry, without authentication to manage non-proprietary container images when publishing services in Open Horizon – especially when you are first learning about Edge computing. However, we recommend that you use an authenticated registry for your proprietary images in your production environment. You will need to provide read-only credentials so that the Edge Agent can pull the image from the authenticated container image registry. The authentication credentials to be used by the Edge node are kept securely in the Open Horizon Management Hub.

While publishing a service, you must provide container registry credentials using the –r options, as follows:

hzn exchange service publish -r "<container-registry-and-credential" -f service.definition.json --pull-image
 It’s always a good idea to verify the container registry’s credentials beforehand outside of Open Horizon to ensure their validity by using normal docker commands such as the following:

docker login ...
docker push <image>
docker pull <image>
 See hzn exchange service publish –h for more details.

Pattern-based service deployment

After registering an Edge device with a pattern, even though the node is registered, no agreement is listed – why?

If any of the application’s services require privileged access, then you must register the Edge node with a node policy; otherwise, no agreement will be listed, and no container image will be downloaded on your Edge device node.

For pattern-based deployment, register with a privilege policy that sets the openhorizon.allowPrivileged node property to true.

For example, the node_policy_privileged.json node policy file should have the following properties set at a minimum:

{
 "properties": [
 {
 "name": "openhorizon.allowPrivileged",
 "value": true
 }
]
}
 Then, register the Edge device with the following command:

hzn register -p <pattern-name> --policy=node_policy_privileged.json -f <user-input.json>
 The name of the node policy file, node_policy_privileged.json, is arbitrary and the filename could be anything else.

See hzn register –h for more details.

Model management system

Where does the model management system store data on an edge device node?

Sometimes, you may need to debug the ML model publishing process, and it would be helpful to know the directory location where the newly delivered ML model is saved locally on an Edge device node. The location is a root-protected directory, and the content can be viewed as follows:

sudo ls -Rla /var/horizon/ess-store/sync/local
 Docker usage

When I run the docker ps command as a non-root user, it gives me an error. How can that be fixed?

The reason for this error is that your non-root userid is not in the docker group. To fix this error, add your userid to the docker group by running the following command. Note that you will need sudo access since this is required for installing the Edge Agent:

sudo usermod -aG docker <user-id>
 You must log back into the Edge device node for the Linux group to become effective. Usually, such settings should be done in the initial stages as you set up your Edge device node for development.

How can I install Docker on my Edge device?

One of the easiest ways to install docker is to run the following command on your Edge device. This will install any necessary dependencies and Docker Engine itself.

After installing Docker, it’s a good idea to add your non-root userid to the Docker group and then re-login, as explained previously:

curl -fsSL get.docker.com | sh
sudo usermod -aG docker <userid>
 When I deploy a complex application with many containers using Open Horizon, I see the following error. How do I fix that?

Though this is not directly an Open Horizon error, it is possible that when you deploy a complex application with many services, you may see the following error:

"Error starting containers: API error (404): could not find an available, non-overlapping IPv4 address pool among the defaults to assign to the network"
 The reason for this error is that not enough addresses are available for the Docker network. To fix this, you must do the following:

	Run ifconfig and find out the docker0 inet address.

	Create or edit the /etc/docker/daemon.json file to add an increased pool size for the subnet. You may adjust the CIDR and size value. Use a private IP address range, depending on the address space in class A (10.0.0.0), class B (172.17.0.0), or class C (192.168.0.0).The following two examples are based on the address class that may be running on the Edge device. Here’s the first example:

{
 "default-address-pools": [
 {
 "base": "172.17.0.0/12",
 "size": 20
 }
]
}
The file’s content may also look like this:
{
 "default-address-pools": [
 {
 "base": "172.17.0.0/12",
 "size": 20
 },
 {
 "base": "192.168.0.0/16",
 "size": 24
 }
]
}

In this section, we provided a set of testing and debugging questions that we found our users running into and the answers for these questions were not that obvious for first-time users. Experienced users may not need this handholding, but we realized these might help those who are starting to use Open Horizon in earnest.

Uninstalling Open Horizon Management Hub

In the Installing All-In-One (AIO) Open Horizon Management Hub section of Chapter 6, we learned how to install AIO Open Horizon Management Hub. Though the Open Horizon Management Hub may not need to be uninstalled once it’s running, it is good to know how this can be done just in case.

If you run the deploy-mgmt-hub.sh script with the –h option, you will notice that the same script has an uninstall option that can be invoked using the -S and -P options.

As you may have noticed in Chapter 6, the installation process allocates disk volumes and runs various containers that make up the components of the Open Horizon Management Hub. The uninstallation process does the reverse by stopping the containers, and then purging the volumes and the images. Run the following command to stop and uninstall the Management Hub:

sudo -s -E ./deploy-mgmt-hub.sh -S -P
 You will see an output similar to the following:

------- Checking input and initializing...
Management hub services will listen on http://<ip-address-of-the-host>
Updating apt-get package index...
Installing prerequisites, this could take a minute...
Certificate /etc/horizon/keys/horizonMgmtHubFDO.crt already exists, so not receating it
------- Downloading template files...
Substituting environment variables into template files...
------- Stopping Horizon services...
Unregistering this node, cancelling all agreements, stopping all workloads, and restarting Horizon...
Waiting for Horizon node unregister to complete: No Timeout specified ...
Waiting for Horizon node unregister to complete: No Timeout specified ...
Waiting for agent service to restart and checking the node configuration state...
Horizon node unregistered. You may now run 'hzn register ...' again, if desired.
Stopping the Horizon agent...
Uninstalling the Horizon agent and CLI...
Stopping Horizon management hub services and deleting their persistent volumes...
Removing network hzn_horizonnet
WARNING: Network hzn_horizonnet not found.
Removing volume hzn_postgres
Removing volume hzn_postgresvolfdo
Removing volume hzn_mongovol
Removing volume hzn_agbotmsgkeyvol
Removing volume hzn_fdo-ocs-db
Removing volume hzn_vaultvol
Removing Open-horizon Docker images...
 After the uninstallation is complete, you can run docker ps to verify that the corresponding containers aren’t running anymore.

Edge device agent verification

In Chapter 6, you installed the Edge Agent using the agent-install.sh script and have been using that throughout several exercises and the example applications that you deployed.

You can verify that the Edge Agent is running on an Edge device by running a process check via ps or by running the systemctl status command.

The Edge Agent runs as an anax command and can be easily viewed by running the following ps command:

ps -aef | grep anax
 Your output should look like this:

root 4143 1 0 06:35 ? 00:04:07 /usr/horizon/bin/anax -v 3 -logtostderr -config /etc/horizon/anax.json
horizon 7984 6613 0 06:35 ? 00:00:00 /bin/bash /home/agentuser/anax.service start
horizon 8100 7984 0 06:35 ? 00:03:45 /usr/horizon/bin/anax -v 3 -logtostderr -config /etc/horizon/anax.json
horizon 1799912 1682936 0 17:49 pts/0 00:00:00 grep --color=auto anax
 You can check its status using the following command:

systemctl status horizon
 Your output should look like this:

horizon.service - Service for Horizon control system
 Loaded: loaded (/lib/systemd/system/horizon.service; enabled; vendor preset: enabled)
 Active: active (running) since Tue 2024-05-21 06:35:24 PDT; 11h ago
 Main PID: 4143 (anax)
 Tasks: 11 (limit: 9306)
 Memory: 14.4M
 CGroup: /system.slice/horizon.service
 └─4143 /usr/horizon/bin/anax -v 3 -logtostderr -config /etc/horizon/anax.json
May 21 17:49:41 <device-name> anax[4143]: I0521 17:49:41.987083 4143 worker.go:363] CommandDispatcher: ExchangeMessages command processor non-blocking for commands
May 21 17:49:48 <device-name> anax[4143]: I0521 17:49:48.675114 4143 governance.go:1478] GovernanceWorker: GovernanceWorker dispatching no work handler.
May 21 17:49:48 <device-name> anax[4143]: I0521 17:49:48.675137 4143 governance.go:405] GovernanceWorker: governing agreements
May 21 17:49:48 <device-name> anax[4143]: I0521 17:49:48.690373 4143 worker.go:363] CommandDispatcher: Governance command processor non-blocking for commands
May 21 17:49:51 <device-name> anax[4143]: I0521 17:49:51.987405 4143 worker.go:363] CommandDispatcher: ExchangeMessages command processor non-blocking for commands
May 21 17:49:53 <device-name> anax[4143]: I0521 17:49:53.581031 4143 worker.go:480] CommandDispatcher: Running subworker SurfaceExchErrors
May 21 17:49:53 <device-name> anax[4143]: I0521 17:49:53.585453 4143 worker.go:484] CommandDispatcher: Finished run of subworker SurfaceExchErrors
May 21 17:49:58 <device-name> anax[4143]: I0521 17:49:58.690459 4143 governance.go:1478] GovernanceWorker: GovernanceWorker dispatching no work handler.
May 21 17:49:58 <device-name> anax[4143]: I0521 17:49:58.690478 4143 governance.go:405] GovernanceWorker: governing agreements
May 21 17:49:58 <device-name> anax[4143]: I0521 17:49:58.701384 4143 worker.go:363] CommandDispatcher: Governance command processor non-blocking for commands
 While working on your Edge device node, there may be a time when you need to check the status of the running Edge Agent. These commands may come in handy.

Summary

In this chapter, we covered some of the not-so-obvious questions that you may have, as well as the answers to them. We also discussed how to tear down the AIO Open Horizon Managment Hub and perform cleanup, if needed.

In the next chapter, we will talk about some of the follow-on topics that are relevant to Edge computing.

16

Follow-on Topics

Edge computing is a broad topic. While we will have covered most of the key elements necessary for getting started down the path of a successful production-grade Edge solution, there are several other topics and nuances that are worth exploring. This chapter will discuss other topics of interest that may be covered in other, perhaps future, books.

In this chapter we’re going to cover the following main topics:

	Fleet management

	Don’t brick your Edge

	Air-gapping your Edge

	Edge and mobile computing

	Building and maintaining a robust connected Edge

Technical requirements

We have provided you with a book full of information on how to build and deploy your Edge solution, leveraging the deployment management provided by the open-source Open Horizon project. This chapter presumes you are familiar with the idea of Edge computing, using containers to structure your solution into a set of composable and distributable components, and how to use Open Horizon to manage your production environment to get the right component to the right place at the right time.

Previously, we covered several advanced topics related to your deployment – such as how to create and deploy AI/ML models for your application, how to secure the otherwise exposed environments at your Edge, and the synergies between Networking and Edge computing. We won’t demand any other technical background from you to appreciate the topics we will cover in this chapter.

Fleet management

We’ve stressed the point throughout this book that your enterprise will likely leverage thousands, if not tens or even hundreds of thousands, of Edge devices and servers. They will come in a variety of form factors and sizes (both in terms of their physical dimensions and their compute capacity), serving a variety of needs and purpose. They will be provisioned across hundreds of locations.

The thing they will have in common is they are running Linux, and will host containers on either Docker, Podman, or Kubernetes.

Your Edge deployment manager (presumably based on Open Horizon) will handle getting the right container to the right place at the right time and keeping them up to date – based on your deployment policies, and without any further intervention.

However, there are other elements of provisioning these systems that must be addressed, including the following:

	Credentialling the device

	Imaging the operating system (OS)

	Provisioning the container runtime (Docker, Podman, or Kubernetes)

	Interconnecting them (at the physical and low-level networking level)

	Managing any storage systems attached to these devices

	Maintaining the hardware and infrastructure

Some of the OS vendors have begun to address these issues as part of their systems. As an example, Red Hat Enterprise Linux (RHEL) has built-in functions to assist with fleet management specifically for the Edge. RHEL has already been updated to support FIDO Device Onboard (FDO)1 to help provide device attestation and bootstrap OS imaging.

1	See the FIDO Device Onboard (FDO) topic discussed in Chapter 4 for more information about how FDO works with Open Horizon.

See https://www.redhat.com/en/blog/managing-red-hat-enterprise-linux-edge for more information about Red Hat’s view of RHEL at the Edge.

Don’t brick your Edge

One particularly nasty issue with edge management can occur during device maintenance. Let’s say you have an Edge device at an oil drilling platform in the field – miles from the nearest town, let alone a service center or airport. The device is used to control the drilling operations at that site.

That device has been scheduled to have its OS updated to the latest version or to apply a security patch, but something goes wrong during the update. The OS is partially updated but left in a state that it will no longer be able to run or restart. Your entire drilling operation is out of business, and there is no way to quickly take it into an IT site to be fixed. That can be a costly failure. Your Edge device has essentially become a brick, and further has bricked your drilling operations at that site.

One of the key features we see being added to fleet management is a bootstrapping mechanism that, in these circumstances, will reboot back to a core state that, using something such as FDO, will re-image your machine from scratch.

See https://www.redhat.com/sysadmin/edge-device-onboarding-fdo for more discussion on how RHEL can be used with FDO.

Air-gapping your Edge

Some industries, such as chemical and petroleum refinement, manufacturing, and energy production, to name a few, have strict requirements that all processing must be performed at that site. This includes operations management. The entire site is isolated from the internet to prevent hacking that could undermine the integrity of their operations. In essence, a networking moat is created around the entire perimeter of the site.

We call this air-gapping that location.

In these cases, the entire Open Horizon management system, including the Management Hub, must be contained entirely within that site.

Fortunately, the IBM Edge Application Manager distribution of Open Horizon has been enhanced to support these environments. It requires the introduction of a bastion host.2 The bastion host then is used to mirror the software images for the products you will use, as well as any container registries you will depend on in the production environment.

2	 A bastion host is a dedicated device that does have access to both the Intranet as well as internet. Most air-gapped sites have such a device dedicated for these situations.

The bastion host serves to control access to the external resources you will depend on. It is also used as a place to further virus-check and validate the software components you will be leveraging at your Edge to ensure they have not been infected or tampered with – an additional layer of security for protecting your air-gapped environment.

More information about how to set up an air-gapped installation of IBM’s Edge Application Manager can be found at https://www.ibm.com/docs/en/eam/4.5?topic=installation-installing-ieam-in-air-gapped-environment.

Edge and mobile computing

Throughout this book we have discussed various Edge devices such as POS terminals, intelligent cameras, robots, and cars. We’ve never really used smartphones as an example of an Edge device. This oversight is somewhat deliberate, for two reasons:

	Both Apple and Android smartphones are designed to assume they are possessed by a single person and managed by that person. That person decides what Apps to include on their phone. Both the Apple and Android smart phone ecosystem is geared to the idea that you go to an online store – either the AppStore or PlayStore, for example – and choose your Apps. You then set those Apps up the way you want to use them. Updates to the Apps or OS are your responsibility to keep up with. Even with automated updates turned on, or if you are working with a corporate-managed program that uses a Mobile Device Manager for automating the security and provisioning of the phone, some amount of user intervention is required.

	Neither Apple iOS nor Google Android permit the use of Docker containers. Apps are “containerized” but use a proprietary container runtime and packaging engine – neither of which are OCI compliant, thus preventing the use of a container-management system such as Open Horizon.

These phones and their respective ecosystems are simply not designed to be used in an enterprise or industrial setting as anything other than a personal device.

All that said, conceptually these devices could be a powerful addition to the Edge device marketplace. They run on battery power and are therefore portable. They are radio-connected – with a range of spectrum and protocols, including cellular 4G, LTE, and 5G (with 6G coming), WiFi, Bluetooth, NFC, and even satellite. They have robust compute capacity – including in newer models, with GPUs, TPUs, DPUs, and so on. They have a range of built-in sensors, including cameras, GPS, accelerometers, compasses, temperature, humidity, gravity, barometers, and vibration, and more are coming. In many cases, enterprise contracts with these phone manufacturers make them reasonably inexpensive (given the compute and sensor resources they offer) to deploy in large quantities. In fact, since they are manufactured in such large quantities, their production costs are often lower than other general-purpose equipment.

Wouldn’t it be great if these phones could be mounted over the production line at a manufacturing site and used to perform visual quality inspection? Wouldn’t it be interesting to provision a device on a robotic quadruped, such as Boston Dynamic’s Spot, to provide visual inspection of fire extinguishers or other safety and security equipment at a store warehouse – using Spot to amble through the warehouse while the phone analyzes the equipment it sees; wirelessly transmitting work orders and location information for anything out of place or needing attention? It is not hard to imagine a hundred uses for a mobile phone in the role of an Edge device.

If only the device could host a Docker container.

As it turns out, IBM and Samsung have done some experimental work together to demonstrate exactly that idea. Samsung was able to modify Android to host a rootless version of the Docker runtime. IBM was able to use Open Horizon (actually IBM Edge Application Manager) to deploy containerized workloads to run on the device – using it for everything from quality inspection, facilities inspection, and worker safety, to assembly quality improvements.

You can find more about this work at the following links:

	https://www.ibm.com/consulting/samsung

	https://mediacenter.ibm.com/media/Containers+At+The+Edge/1_yokpupzt

If you too see potential in this idea, we encourage you to reach out to Samsung or IBM to learn more.

Building and maintaining a robust connected Edge

Chapter 12, Network Connectivity at the Edge, explored the synergies between Edge computing and secure enterprise networking. We refer to this as the connected Edge.

Other than alluding to IBM’s Hybrid Cloud Mesh, we did not cover the specifics of building out that network. Unfortunately, we don’t have the space to cover that in much detail here either. Nonetheless, we will take this moment to make a few key points.

How do software-defined wide area networks (SD-WANs), secure access service edge (SASE), and zero-trust network access (ZTNA) apply to edge computing?

As already discussed, you can’t have an Edge computing solution without a corresponding connected Edge. Likewise, you can’t build a robust connected Edge without some form of Edge computing – at least enough to create secure connections, encrypt network traffic, and to manage failure and congestion between computing nodes and locations.

Fortunately, there a growing number of Edge networking offerings on the market. Beyond IBM’s Hybrid Cloud Mesh offering that we’ve already mentioned, there are other offerings that are worth assessing, including, for example, from Alkira, Arrcus, Aviatrix, Cato, Cisco, Cloudflare, Coresite, Equinix, Fortinet, IBM, Juniper, Turnium, Vapor.io, and Versa, to name a few.

In addition, the Cloud vendors – such as Amazon, Google, IBM, and Microsoft – have offerings that enable networking as a service (NaaS). These services enable you to consume networking infrastructure resources on a subscription basis. In other words, turning the cost of networking infrastructure from a capital expense into an operating expense – which may have certain cash-flow and tax benefits.

However, all these vendor products fit into one of three large groupings. Namely, those explained in the following subsections.

Software Defined Wide Area Networking (SD-WAN)

SD-WAN focuses primarily on providing connectivity between geographically distributed areas by using software (rather than hardware) for creating and managing those connections. In many cases, SD-WAN has become an alternative to the more ubiquitous MPLS that network providers have typically offered, using an overlay network. An SD-WAN may offer a less-expensive alternative for connecting your Edge locations.

Secure Access Service Edge (SASE)

SASE is an architecture principle that combines network connectivity and network security. It was introduced originally as a concept by Gartner to represent a way of solving the growing complexity of Cloud-based computing where the enterprise must contend with both their Cloud properties in addition to their legacy enterprise data centers. These same principles apply to the additional complexity that occurs when computing is extended further to the Edge.

Zero-Trust Network Access (ZTNA)

ZTNA is a special form of VPN that create tunnels, not between physical locations, but between the applications hosted at those locations, and based on the authentication and authorization of those applications. ZTNA gets its term – zero-trust – from the idea that you should not always trust the physical connection to protect the variety of co-resident applications that may have a mutual dependence on it.

To make things a little more confusing, these groupings are not necessarily mutually exclusive, with some vendors claiming to support multiple agendas with their offerings. Unfortunately, we are not able to provide much advice regarding these offerings other than to suggest you look closely at what each vendor has to offer and align that with your enterprise’s strategic goals.

We expect there will be more books on this topic in the future.

What about multi-access Edge Computing?

It’s also worth being aware of the Multi-access Edge Computing (MEC) services that many of the network operators offer. These MEC services typically combine a platform for hosting Edge services with their own 5G cellular network connectivity services – that is, the software and radio needed for Edge services running on the MEC device to connect back through their own 5G cellular network.

In principle, bundling the network connectivity for 5G and the compute platform for Edge computing services yields both performance and management benefits. On the other hand, this bundling may also restrict your ability to right-size the platform resources to your specific application needs – especially if you will be sharing the platform for multiple applications, or if your needs will change rapidly over time.

Further, some providers will host the MEC at your far Edge location (sometimes referred to as a dedicated - or private-MEC) or host the MEC at their own network Edge locations (sometimes referred to as a distributed- or public-MEC).

In many cases, it may be worth considering a blended approach – leveraging the MEC for its network connectivity and other Edge node platforms for the remainder of your Edge computing needs.

But wait, what is the network Edge?

Having laid all this out, we now need to point out the use a very similar set of terms and concepts. The network industry uses the term Network Edge. Be careful. Within their context, the term Edge is meant to refer to an element of the network itself – implying elements of the network that are close to (or integrated with) the far Edge, or network- or metro-Edge (as we’ve been using the term through the rest of this book).

The difference is subtle and has more to do with applying similar concepts to different, but related contexts – that is, the network itself versus the applications that are connected by that network.

You can see an example of where the term Network Edge is applied to the network infrastructure here: https://www.fortinet.com/resources/cyberglossary/network-edge#:~:text=Edge%20computing%20involves%20processing%20data,outer%20edge%20toward%20the%20core.

Summary

This book was written for developers – helping you understand the benefits of Open Horizon and how it helps you build and deploy successful, production-grade Edge solutions. We have provided you with a primer on the essential concepts of Edge computing, the potential use cases we’ve worked with in the past, the pitfalls you may encounter on the way, and techniques for how to overcome or avoid those issues altogether. We have given you a running start at using Open Horizon to solve the issues of deploying and managing your production Edge system at scale.

Edge computing is an essential architectural paradigm shift for many of us in the IT industry. It enables us to harness the rapidly growing population of devices and servers that are making their way into our everyday business life – whether in our retail stores, manufacturing production lines, distribution channels and logistics, materials handling, construction, healthcare, mining, travel and transportation, or virtually any other industry. Equipment built with ARM, AMD, Intel, or Risc-V, or even PowerPC or Z-system processors, running Linux, and open architectures that enable them to be programmed and re-programmed to enhance their utility or extend their value are everywhere. Industrial OT equipment is being re-imagined by leveraging commodity IT technologies and software programming tools. Servers that are hardened to operate in industrial or unprotected environments are becoming more compact and self-sufficient to be used outside the IT data center.

We put our business at a competitive disadvantage if we don’t leverage that compute capacity to reduce latency for decision making, improve the protection of our personal and sensitive business information, increase the resilience of our business operations, or get better cost efficiency from our IT and cloud data center resources. All these advantages compel us to harness and exploit the advantages that Edge computing can bring to the table.

However, like the client-server and web-service eras that proceeded this, or even the mobile computing era we are currently in, we are doomed to lose the advantages of distributed computing if we don’t resolve the several issues that burdened those prior architecture generations.

Fortunately, we have paid attention and learned from past mistakes, solving many of the issues of managing at scale with the Linux Foundation LF Edge Open Horizon project. Adopting this type of management architecture in our Edge projects from the very beginning is essential to ensuring the success of those projects. Adopting this technology is not a decision that can be deferred – it needs to be infused into our best practices from the start so that those practices have a chance to grow with you, with your team, and as an integral part of the project.

The corollary is that the longer you take to infuse something such as Open Horizon into your project, the more expensive it becomes to retrofit all your beginning and intermediate practices – imposing both limitations on the growth of your project and business and a major retraining effort for your teams.

With this book, we have attempted to simplify your understanding of edge computing, how to manage it, and specifically how to harness Open Horizon to ensure the success of your production edge projects.

You should now be equipped to move forward in your own, and your project’s success. You are now an Edge ninja.

17

Using the IBM Edge Application Manager Web UI

There are a few differences between the Linux Foundation Edge (LFEdge) Open Horizon open-source project and the IBM Edge Application Manager (IEAM) that we would like to discuss here. IEAM is primarily just a commercial distribution of the Open Horizon project. However, one of the main enhancements that has been made and delivered with IEAM is the inclusion of a web user interface (UI) for managing the various capabilities of Open Horizon.

We will now teach you how to use the IEAM web UI, navigate your fleet of Edge nodes, and perform various tasks through the UI in this chapter.

In this chapter, we’re going to cover the following main topics:

	Logging into the home screen of IEAM

	Navigating the main tabs of the UI

	Exploring the Edge nodes in your organization

	Publishing and editing your services

	Creating deployment policies to initiate the deployment of your service

	Viewing and managing patterns

Technical requirements

All the tasks that we demonstrate in this chapter are based on capabilities provided by Open Horizon and discussed throughout the rest of this book. However, you will only be able to perform the UI activities depicted here if you have acquired a license to the IEAM product. You can contact IBM here to learn more about obtaining access to IEAM:

https://www.ibm.com/products/edge-application-manager?mhsrc=ibmsearch_a&mhq=edge%20application%20manager

Logging into the Home screen of IEAM

When you first come into IEAM, you may be offered different mechanisms for authenticating your identity. The mechanism you use will depend on how your administrator has created credentials for you – either using your enterprise LDAP system, the OpenShift authentication service, or the IBM Cloud credential system.

	If you are the system administrator for IEAM then you must use your IBM-provided credentials. Otherwise, using your Enterprise LDAP is a common and popular choice for most installations.

[image: Figure 17.1 – Authentication selection screen]

Figure 17.1 – Authentication selection screen

	In this case, I will log in through my Enterprise LDAP using my provided username and credentials.

[image: Figure 17.2 – Login screen]

Figure 17.2 – Login screen

	If I belong to multiple organizations, I will be presented with one of them to log into. In this case, I will log into the demo organization.

[image: Figure 17.3 – Organization selection popup]

Figure 17.3 – Organization selection popup

	You will then be presented with the home page for the system under your organization.

[image: Figure 17.4 – Home page]

Figure 17.4 – Home page

	The home screen shows you a summary of your organization’s Edge deployment. In this case, I have 1,040 Edge nodes registered, of which 1,034 are Edge devices, and 6 are Edge servers (aka clusters).

[image: Figure 17.5 – Node type details]

Figure 17.5 – Node type details

Of those 1,040 nodes, 967 are running policy-based service deployments, and 68 are running patterns. We are not experiencing errors on any nodes at this time.

[image: Figure 17.6 – Deployment details]

Figure 17.6 – Deployment details

In addition, we can see that 410 nodes are using x86 (aka amd64) architecture, 195 are using the PowerPC architecture, 214 are using a 64-bit ARM, and 221 are using 32-bit ARM architecture. You can get the actual count by hovering over the bar of interest.

[image: Figure 17.7 – Node architecture details]

Figure 17.7 – Node architecture details

Next, let’s examine how to navigate the main tabs of the UI.

Navigating the main tabs of the UI

Along the top of the home page, you will see four tabs.

[image: Figure 17.8 – Home tabs]

Figure 17.8 – Home tabs

These correspond to the different areas of interest within IEAM. By default, the home screen will display the Edge nodes in your organization. By selecting the other tabs you will be presented with the services in your organization, or public to your organization:

[image: Figure 17.9 – Services home page]

Figure 17.9 – Services home page

By selecting the Patterns tab, you will be presented with the patterns in your organization, or that are public to your organization:

[image: Figure 17.10 – Patterns home page]

Figure 17.10 – Patterns home page

By selecting the Policies tab, you will be presented with the deployment policies in your organization:

[image: Figure 17.11 – The Policies home page]

Figure 17.11 – The Policies home page

We will delve deeper into each of these areas next, starting with the nodes in your organization.

Exploring the Edge nodes in your organization

Returning to the Nodes tab, you can get a list view of your nodes by pressing the list button on the right of your screen.

[image: Figure 17.12 – Node list view selection]

Figure 17.12 – Node list view selection

This will list all the nodes in your organization.

[image: Figure 17.13 – Node list screen]

Figure 17.13 – Node list screen

If needed, you can return to the summary version by pressing the graphics view button just to the left of the list button.

[image: Figure 17.14 – Graphics view selection]

Figure 17.14 – Graphics view selection

You can sort the list by pressing any of the headings at the top of the list. For example, I can sort the nodes by their name by pressing the Name heading in ascending order (or in descending order if I click that header twice).

[image: Figure 17.15 – Name sorting]

Figure 17.15 – Name sorting

You can also filter your nodes in the Find nodes field by including a filter string:

[image: Figure 17.16 – The Find nodes field]

Figure 17.16 – The Find nodes field

In this case, I will filter for cameras in my organization, but you can also filter on Owner, Architecture, Heartbeat, Node State, Deployment Type, Node Type, Installation Name, or Location by selecting the intended field in the query pull-down.

[image: Figure 17.17 – Filter type pull-down]

Figure 17.17 – Filter type pull-down

By clicking on the node name, you can drill into more information about that node.

[image: Figure 17.18 – Node selection]

Figure 17.18 – Node selection

This will bring up the Node details page for that node, providing more information about the node – its name, ID, owner, and so on – as well as any errors that may be occurring with the deployment of the service on that node, properties that were set when the node was registered, any constraints that have been set for the node, and any deployment policies that are currently active on the node.

[image: Figure 17.19 – The Node details page]

Figure 17.19 – The Node details page

Don’t worry if you can’t see all the details on this page – this is here mostly just to give you a sense of its layout. However, let’s take a closer look at some of that information.

Node properties

This node has both properties that affect the deployment of workloads on the node (“deployment properties”) as well as properties that affect the application of management activities such as when and where to update the node agent at that node.

Notice that some of the properties are prefaced with openhorizon. These properties are set automatically by the system. Other properties (those without the openhorizon preface) were set by the owner of the node, indicating attributes of the node they believe are important.

[image: Figure 17.20 – Node properties]

Figure 17.20 – Node properties

To highlight a couple of these, this node has 2 cores (openhorizon.cpu=2), 957 Mbytes of memory (openhorizon.memory=957), is designated as a security camera (type=SecurityCam), video streaming is enabled (video-stream-enabled=true), and does not have a GPU installed (GPUenabled=false).

You can edit these properties from the UI by pressing the pencil button in the upper-right corner of the field.

Node constraints

The constraints of the node will be evaluated against any deployment policies (and any service policies inherited by that deployment policy) when determining whether to place a workload on this node.

In this case, the constraint is that this node can only host security monitoring workloads, or workloads that are intended to check on inventory stock.

[image: Figure 17.21 – Node constraints]

Figure 17.21 – Node constraints

In addition, no constraints have been set for when agent updates can occur on this node.

You can edit these constraints from the UI by pressing the pencil button in the upper-right corner of the field.

Deployed services

No services have been deployed to this node at this time.

[image: Figure 17.22 – Deployed services]

Figure 17.22 – Deployed services

You can use the Nodes page to explore or modify information about your Edge node – device or server.

Publishing and editing your services

Now let’s turn our attention to the Services tab.

[image: Figure 17.23 – The Services page]

Figure 17.23 – The Services page

By default, you will see these services listed as a set of cards. Or, as with the Nodes tab, you can press the list view button in the upper right to get a list of your services.

[image: Figure 17.24 - Services list view selection]

Figure 17.24 - Services list view selection

We’ll stay on the cards view for a moment. Notice that some services may have multiple architectures – that is, they have been compiled to run on multiple different architectures.

[image: Figure 17.25 – Multiple architectures]

Figure 17.25 – Multiple architectures

Or, they may have multiple versions.

[image: Figure 17.26 – Multiple versions]

Figure 17.26 – Multiple versions

Or, they may have both.

[image: Figure 17.27 – Multiple architectures and versions]

Figure 17.27 – Multiple architectures and versions

In any of these cases, clicking on the service card will bring up a side window with all of the variations of the service listed each on their own card.

[image: Figure 17.28 – Selecting a specific service to deploy]

Figure 17.28 – Selecting a specific service to deploy

Clicking on a particular service version and architecture will open the service details window.

[image: Figure 17.29 – The Service details page]

Figure 17.29 – The Service details page

Don’t worry if you can’t see all the details on this page – this is here mostly just to give you a sense of its layout. However, let’s take a closer look at some of that information.

Similar to the Node details screen, the Service details page includes general information about the service – such as its name, owner, version, and architecture.

[image: Figure 17.30 – Service general information]

Figure 17.30 – Service general information

Any facts about the service are included as properties. In particular, this service was developed with the intent of doing security monitoring (purpose=security-monitoring).

[image: Figure 17.31 – Service properties]

Figure 17.31 – Service properties

However, this service also has constraints. It requires at least 200 Mbytes of memory to run (openhorizon.memory is greater than or equal to 200), and video streaming must be enabled on the device (video-stream-enabled is equal to true).

[image: Figure 17.32 – Service policy constraints]

Figure 17.32 – Service policy constraints

As with Node properties and Node constraints, either of these can be edited directly in the UI by pressing the pencil button in the upper-right corner of the field.

In this example, there are no deployment policies that reference this service at this time.

[image: Figure 17.33 – Service deployment policies]

Figure 17.33 – Service deployment policies

Clicking on the Deployment patterns tab, we see no patterns have been created that depend on the service.

[image: Figure 17.34 – Service deployment patterns]

Figure 17.34 – Service deployment patterns

This service does not depend on any environment variables.

[image: Figure 17.35 – Service environment variables]

Figure 17.35 – Service environment variables

If the service depended on any secrets, they would be listed on this page. In this case, the service has no secrets; it depends on the Management Hub Vault.

[image: Figure 17.36 – Service secrets]

Figure 17.36 – Service secrets

It has no dependencies on any other services.

[image: Figure 17.37 – Service dependencies]

Figure 17.37 – Service dependencies

You can use the Services page to examine or update details about your service.

Creating deployment policies to initiate a deployment of your service

To deploy a service, you must create a deployment policy for that service. We could do that from the Policies tab on the home page. However, we can also create one more directly for this service:

	Returning to the Deployment policies tab on the Service details page, press the Add policy button.

[image: Figure 17.38 – The Add policy button]

Figure 17.38 – The Add policy button

This will take you to the Deploy with policy wizard.

[image: Figure 17.39 – Deployment policy wizard]

Figure 17.39 – Deployment policy wizard

	Enter a deployment policy name, optionally give it a description to make it easier to remember what this deployment policy is trying to do, and press the Next button.

[image: Figure 17.40 – Name your deployment policy]

Figure 17.40 – Name your deployment policy

	Next, you will select the services to be included in this deployment policy. Note that the movedetection service has already been selected on the right. That is due to having created the deployment policy from within the service that you were focused on.

[image: Figure 17.41 – Select your service]

Figure 17.41 – Select your service

You can select other services to include in this deployment policy from the list on the left. You can use the demo tab (representing the services that have been published in your organization), or the Shared services tab for any services that other organizations may have made public to you. Also, you can filter on either of these lists using the Find a service field.

[image: Figure 17.42 – Select or find your own or shared services]

Figure 17.42 – Select or find your own or shared services

	If you have selected all the services you want to include, press the Next button.

[image: Figure 17.43 – Press Next]

Figure 17.43 – Press Next

If your service uses environment variables, you can add or override the values you want supplied to your service as part of this deployment policy next.

[image: Figure 17.44 – Configure variables]

Figure 17.44 – Configure variables

If your service had been published for different architectures, you could supply different environment variable values based on their architecture.

	Press Next to continue.If your service has any secrets, it depends on whether you can now bind them to entries in your Vault.

Important note

You can bind to different secrets for the same service in different deployments.

In this case, since the service does not depend on any secrets, you won’t be able to bind to anything in the Vault.

[image: Figure 17.45 – Bind secrets]

Figure 17.45 – Bind secrets

	Press Next to continue.You can now indicate how you want the service handled in case it encounters errors in the deployed environment.
If your service has multiple versions, you can specify what version the agent should roll back to if the current version has failed a specified number of times within a specified timeframe. For example, this tells the agent to roll back to version 1.0.9 if the current version of the service fails to start 6 times within 17 minutes.

[image: Figure 17.46 – Rollback settings]

Figure 17.46 – Rollback settings

Since our service does not have any prior versions, we are not able to specify a rollback setting.

However, we can specify whether to prevent further attempts to deploy this service to any node that has had no heartbeat within a specified period of time, or that hasn’t formed any other agreements within a specified period of time.

[image: Figure 17.47 – Node health settings]

Figure 17.47 – Node health settings

Leaving these values at 0 will direct Open Horizon to disregard these health settings.

	Press Next to continue.You can now supplement the service with any additional constraints or properties you want to include in the evaluation of where to place this service.
Notice that the constraints and properties of the service are included on this page for reference.

[image: Figure 17.48 – Add constraints]

Figure 17.48 – Add constraints

In this demonstration, we will include the additional constraint that we only want this service deployed to nodes that are intended to perform security checks – for example, detecting whether someone is entering the stock room. We do this by describing a condition on the type property – checking that it is equal to SecurityCam.

[image: Figure 17.49 – Constraint builder]

Figure 17.49 – Constraint builder

If you have additional conditions you want to specify, you can press the plus button.

	If you want to add any other properties – perhaps to state further facts about this deployment – you can do so by pressing the Add more properties button in the Add properties section of the page.

[image: Figure 17.50 – Deployment policy properties]

Figure 17.50 – Deployment policy properties

	Press Next to continue.This will take you to the summary page – giving you another chance to confirm your selections.

[image: Figure 17.51 – Deployment summary page]

Figure 17.51 – Deployment summary page

Don’t worry if you can’t see all the details on this page – this is here mostly just to give you a sense of its layout. However, let’s take a closer look at some of that information.

	When you’re ready, you can press the Deploy service button.

[image: Figure 17.52 – The Deploy service button]

Figure 17.52 – The Deploy service button

This will initiate the deployment processes – evaluating the node, service, and your newly created deployment policies to determine which Edge nodes to place this service.

We can verify this deployment by returning to the Node details page we examined earlier in this chapter in the Deployed services section.

[image: Figure 17.53 – The deployed service on the Node details page]

Figure 17.53 – The deployed service on the Node details page

We can see our newly created deployment policy under the Policies tab of the home page.

[image: Figure 17.54 – The Policies page]

Figure 17.54 – The Policies page

	You can delete this deployment policy by either selecting and going into the Policy details page or simply by pressing the trash can button on the policy in the list view.

[image: Figure 17.55 – Delete button]

Figure 17.55 – Delete button

Deleting the policy will result in abandoning any agreements that were formed previously for that service as part of this deployment policy, and terminating those workloads at each of their respective nodes.

Viewing and managing patterns

Finally, let’s take a quick look at the Patterns tab of the home page.

[image: Figure 17.56 – The Patterns page]

Figure 17.56 – The Patterns page

As you may recall from Chapter 6, Register an Edge Node, a pattern can be associated with an Edge node when it is registered. This will instruct Open Horizon to deploy any services referenced in that pattern to that node, irrespective of any other constraints on that service that may be defined in the service or deployment policy for that service.

The patterns that you can associate with the node are listed on this tab.

As with nodes, services, and policies, you can filter the list in the Find patterns field.

You can drill into any given pattern by clicking on its name.

[image: Figure 17.57 – Pattern selection]

Figure 17.57 – Pattern selection

This will take you to the Pattern details page.

[image: Figure 17.58 – The Pattern details page]

Figure 17.58 – The Pattern details page

There is not much you can do on this page other than examine what has already been defined for it through the hzn command that was used to create it. However, you can delete the pattern from here by pressing the trash button in the upper right.

[image: Figure 17.59 – Delete button]

Figure 17.59 – Delete button

Your pattern will now be deleted.

Summary

This book is first and foremost about the LFEdge Open Horizon open-source project. The core functionality that you need to scale your Edge solution is provided by Open Horizon.

However, on occasion, it helps to have the strength of an industry leader stand behind the open source to both ensure its robustness and to take advantage of key enhancements they will have brought to their commercial offering. The IBM Edge Application Manager (IEAM) is exactly that – a commercial distribution of the Open Horizon project.

One of the key enhancements that IBM has made, besides basing the implementation on Red Hat’s OpenShift enterprise Kubernetes platform, is the inclusion of the web-based UI. While we expect that most DevOps practitioners will perform most of their everyday tasks through the Open Horizon CLI or API, it is useful to have a UI through which to monitor the running deployment and perform simple administrative tasks.

In this chapter, you have learned about the UI provided by IEAM, how to navigate the resources under the control of the Management Hub, and how to perform a few particular tasks such as creating a deployment policy.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

A

Agreement Bot (Agbot) 59

agreements 59

agreements 59

AI/ML algorithms

training 36, 37

AIO Open Horizon Management Hub 80

installing 78-82

air-gapped installation, of Edge Application Manager

reference link 219

air-gapping 219

algorithmic logic and ML models

separation of 40

all-in-one (AIO) 55

APIs 105-107

directly calling 107-109

application

verifying 196

application code building 190

applications, Edge computing

ATMs 11

facilities inspection and digital transformation, of analog production 11

generalizations 12, 13

POS 9

quality inspection 8, 9

site security and loss prevention 12

store automation 10, 11

worker safety 10

application-specific integrated circuits (ASICs) 3

artificial intelligence (AI) 23

automated teller machines (ATMs) 5

autonomous deployment 41, 42

B

backdoor attacks 159

bounding boxes 185

C

Cloud Edge 14, 15, 30

cloud-native 39, 40

CloudOps and DevOps

roles and responsibilities 25

Cloud Sync Service (CSS) 149

clusters 228

cluster-scoped Agents 63

co-location (CoLo) vendors 14

command-line interface (CLI)

for deployment check 104

for deployment policy 100, 101

for edge node registration 95-98

for pattern publishing 100

for service deployment 98-100

for service development 98-100

general commands 94

model management system 104, 105

node policy, adding with Management Hub 101

node policy, managing with local Edge node 102

user input, for services 103

using 92, 93

computerized numerical control (CNC) 30

conditional location independence 40, 41

connected Edge 24, 175

deploying 178

enterprise network, usage 175, 176

operating 177, 178

connected systems

network management, history in 172, 173

constraints 128, 134, 138, 187

container image 116

Container registry 49

Container repository 49

container runtime 35

containers

deploying, to Edge 54, 55

continuous integration/continuous deployment (CI/CD) 21

CPU architecture 113

current Edge node condition

verifying 87-89

D

data privacy 22, 23

dependent services 58

deployment operations manager 66, 67

deployment pattern 95

deployment policies 67, 128, 134, 187

adding 136

adding, for other services 137

creating 135

creating, to initiate service deployment 247-257

developing 134

deployment policies 187

node policy 187

listing 136

publishing 190, 191

removing 137, 142, 143

DevSecNetOps 39

directly calling APIs 107, 108

Agbot APIs 109

Agent API 109

Exchange APIs 109

FDO API 109

MMS 109

distributed-MEC services 14

Docker 47

Container-related products 47

Docker Engine 48, 49

Docker Hub 49, 118

Docker image 114, 118

Docker network 114

Docker usage

questions and answers 211

document references 206

E

Edge Agent 56, 62-64, 73, 74, 85, 111, 114, 118

automated agent installation 76

Automatic Agent, updates 64

bulk agent installation 76

FDO-based agent installation 76

installing, on Edge device 82-84

installing, options 76

questions and answers 206-208

supported architectures and operating systems 75

user interactions 75

Edge computing 5, 6, 111, 217

applications 8-13

need for 6-8

practical challenges 20

Edge computing, ecosystem 13

Cloud Edge 14, 15

Edge devices 13

Edge servers 14

network and metro Edge 14

perspectives, on other ecosystem participants 16

Edge computing, infrastructure 30-33

container runtime 35

general-purpose processing architectures 33

Linux platform 34

specialized processing architectures 34

Edge computing, practical challenges

application placement 21

artificial intelligence (AI) 23

autonomous and flexible operations 21

connectivity 23, 24

data privacy 22, 23

Edge software, designing and building 20

life cycle management 21

scale, managing 21

security, at edge 22

edge connectivity 42, 43

Edge device 13, 30

agent verification, performing 213-215

and mobile computing 220, 221

Edge device node 111

registering 89, 193-195

registering, with initial ML model 191

workload, deploying with pattern 118-120

Edge gateways 177

Edge-native solutions

enterprise architecture, best practices 39-43

Edge Node 233-237

constraints 238, 239

deployed services 239

model file, publishing to 154, 155

post-condition, verifying 89, 90

pre-condition, verifying 86, 87

properties 238

registration 86

Edge project, organization considerations 24

CloudOps and DevOps roles and responsibilities 25

cost-effective architecture 25, 26

decision latency 26

skills 26

Edge servers 14, 30

Edge software

designing and building 20

Edge Sync Service (ESS) 149

Elastic Container Registry (ECR) 49

Electronic Benefits Transfer (EBT) 8

enterprise network

classic paradigm, is inherently contentious 173, 174

connected Edge 174

history, in connected systems 172, 173

usage 175, 176

enterprise networking

paradigm, shifting 172

environment variables 188

envsubst technique 189

example ML service

deploying 151-154

Exchange 59

F

far Edge devices 13, 30, 45, 223

Fast Identity Online (FIDO) 61

FDO agent installation and registration

reference link 77

FIDO Device Onboard (FDO) 55, 74, 163, 218

file-sync manager 60

fleet management 218

G

general commands 94

general-purpose processing architectures 33

graphical processing unit (GPU) 34

graphical user interface (GUI) 21

H

hacking 161

Horizon Management Hub

reference link 79

horizon sub-directory 112

I

IBM Edge Application Manager (IEAM) 55, 225

logging into Home screen 226-229

tabs 230-233

versus Open Horizon 56

Identity and Access Management (IAM) 165

infrared (IR) camera 9

Internet of Things (IoT) 5

Internet Protocol (IP) 173

K

Kubernetes 50, 51

L

Lightweight Directory Access Protocol (LDAP) 165

Linux Foundation Edge (LFEdge) 225

Linux platform 34

list view 233

Low Earth Orbit (LEO) 24

M

machine inferencing pipeline 185

machine learning (ML) 23, 147

Management Hub 56, 73, 74, 77, 85, 111, 113, 116-118, 124, 151

Agreement Bot (Agbot) 58

components 58

Exchange 59

FDO 61, 62

Model Manager 60

Secrets Manager 60

Switchboard 59

Media Access Control (MAC) 158

metro-Edge 223

ML-based object detection application 150

ML model

publishing, with MMS 199-203

ML object detector 185

model deployment policy metadata 149, 150

model file 149

delivery, verifying 155

publishing, to edge node 154, 155

Model Management System (MMS) 74, 104, 184

Cloud Sync Service (CSS) 149

components 148

Edge Sync Service (ESS) 149

reference link 149

questions and answers 210

usage 148

Model Manager 60

Model Policy 67

Motion JPEG (MJPEG) file 185

multi-access edge compute (MEC) 14, 222

dedicated 222

private 222

multiple services and deployments combination 120

patterns, with complex service combinations 121

peer services 121-123

required services 123, 124

Multiprotocol Label Switching (MPLS) 173

N

namespace-scoped Agents 63

name-value pairs 128

network Edge 223

network Edge locations 14

networking as a service (NaaS) 221

node management system 64

Node Policy 63, 66, 74, 128, 187

adding, with Management Hub 101

applying 139, 140

creating 138

developing 138

managing, with local Edge node 102

modifications, practicing 141, 142

modifying 140, 141

non-root user

setting up 78

O

object 149

Open Container Initiative (OCI) 46, 47

Open Container Initiative (OCI)-compliant containers 6

Open Horizon 55, 111-114, 163

blast protection 165

device attestation 163

Edge Agent 56

failure resistance 166

infrastructure currency 167

intrusion resistance 163, 164

Management Hub 56

replay resistance 164

role-based privileges 165

secrets management 166

secrets manager, leveraging to protect secrets 168, 169

tamper resistance 163

versus IEAM 56

workload isolation 164

Open Horizon Edge Agent 114

Open Horizon Management Hub

uninstalling 212, 213

Open Horizon pattern

developing 115, 116

publishing 116, 117

Open Horizon service

developing 112-115

publishing 116, 117

OpenShift Container Platform (OCP) 74

Operations Technology (OT) 7, 32

organizations

and tenants 62

ownership vouchers 61

P

pattern-based approach 96

pattern-based service deployment

questions and answers 210

patterns 65

deleting 260

managing 258, 259

viewing 258, 259

personal protective equipment (PPE) 10, 30

Podman 50

point-of-sale (POS) 6, 158

policy-based application workload placement 128

policy-based management 66

Policy system

Deployment Policies 67

Model Policies 67

Node Polices 66

policy-based placement negotiations 67, 68

Service Policies and Service Definitions 66, 67

private-MEC services 14

production Edge deployments

roles and responsibilities 36

production Edge deployments, roles and responsibilities

AI/ML training (model development) 36, 37

infrastructure provisioning 37

software and model deployment 38, 39

software engineering 36

programmable logic controllers (PLCs) 32

properties 128, 134, 138

public-MEC services 14

publish directory

content 117, 118

published model

service, deploying to consume 150

R

Real-Time Streaming Protocol (RTSP) stream 184

real-world example application

example architecture 183, 184

verifying 196-199

Red Hat Enterprise Linux (RHEL) 35, 50, 218

registry token 118

rendezvous service 61

replay attacks 160

resilience 178

robust connected Edge

building 221

maintaining 221

role-based privileges, Open Horizon

exchange Agbots 165

exchange hub admin user 165

exchange nodes 165

exchange org admin user 165

exchange root user 165

exchange user 165

IAM user 165

S

Secrets Manager 60

Secure Access Service Edge (SASE) 221, 222

Secure Device Onboard (SDO) 62

security vulnerabilities 158

backdoor attacks 159

excessive privilege 161

hacking 161

masquerading devices 158

operating failure 162

replay attacks 160

software tampering 159

software vulnerabilities, exploiting 161

system inconsistencies 162

unauthorized channels 160

service 56-58, 99

deploying, to consume published model 150

Service Definition 66

service definition file 99

service-definition.json file 112, 113

service life cycles

examination 64, 65

service-peer 122

Service Policies 66, 128, 134

adding 132

adding, for other services 134

creating 132

details, viewing 133

developing 128

example 130, 131

listing 129, 130

removing 134, 142

service publishing

questions and answers 209

service-required 123

services 186

editing 240-246

http service 186

infer service 186

mms service 187

publishing 190, 191, 240-246

Software Defined Wide Area Networking (SD-WAN) 221, 222

software engineering 36

software gateways 175

specialized processing architectures 34

Switchboard 59

T

transit gateways 177

typical edge device node 185

U

user input 188-191

inference engine 193

ML model location 191

mms service 193

UI presentation 192

video stream sources 192

W

web user interface 109

workload 58, 164

deploying, on Edge device node 118-120

signing 167

Z

Zero-Trust Network Access (ZTNA) 221, 222

[image:]

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Fully searchable for easy access to vital information

	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

[image:]

Edge Computing Patterns for Solution Architects

Ashok Iyengar, Joseph Pearson

ISBN: 978-1-80512-406-1

	Distinguish edge concepts, recognizing that definitions vary among different audiences

	Explore industry-specific architecture patterns that shape custom solutions

	Analyze three proven edge computing archetypes for real-world scalability

	Apply best practices judiciously, adapting patterns to meet specific requirements

	Evaluate data for storage or discarding based on compliance and industry norms

	Advance from the foundational basics to complex end-to-end edge configurations

	Gain practical insights for achieving low-latency, high-bandwidth edge solutions

[image:]

Embedded Systems Architecture

Daniele Lacamera

ISBN: 978-1-80323-954-5

	Participate in the design and definition phase of an embedded product

	Get to grips with writing code for ARM Cortex-M microcontrollers

	Build an embedded development lab and optimize the workflow

	Secure embedded systems with TLS

	Demystify the architecture behind the communication interfaces

	Understand the design and development patterns for connected and distributed devices in the IoT

	Master multitasking parallel execution patterns and real-time operating systems

	Become familiar with Trusted Execution Environment (TEE)

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you’ve finished Real-World Edge Computing, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image:]

https://packt.link/free-ebook/9781835885840

2.	Submit your proof of purchase

3.	That’s it! We’ll send your free PDF and other benefits to your email directly

Contents

	Real-World Edge Computing

	Contributors

	About the authors

	About the reviewer

	Preface

	Who this book is for

	What this book covers

	To get the most out of this book

	Download the example code files

	Conventions used

	Get in touch

	Share your thoughts

	Download a free PDF copy of this book

	Part 1: Managing the Edge

	Chapter 1: Fundamentals of Edge Computing

	Technical requirements

	A primer on Edge computing

	Why is Edge computing needed?

	Applications of Edge computing

	Quality inspection

	POS

	Worker safety

	Store automation

	Automated teller machines (ATMs)

	Facilities inspection and the digital transformation of analog production

	Site security and loss prevention

	Generalizations – AI is the dominant workload at the Edge

	The Edge computing ecosystem

	Far Edge – Edge devices

	Far Edge – Edge servers

	Network and metro Edge

	Cloud Edge

	Perspectives on other ecosystem participants

	Summary

	Chapter 2: Practicalities of Edge Computing

	Technical requirements

	Practical challenges with Edge computing

	Designing and building Edge software

	Application placement and life cycle management

	Managing the scale

	Autonomous and flexible operations

	Security at the edge

	Data privacy

	Artificial intelligence at the Edge

	Connectivity at the Edge

	Organization considerations

	CloudOps and DevOps roles and responsibilities

	Cost-effective architecture

	Decision latency

	Skills at the Edge of business

	Summary

	Chapter 3: Designing and Building Edge Software

	Technical requirements

	Sample Edge computing infrastructure

	General-purpose processing architectures

	Specialized processing architectures

	The Linux platform

	The container runtime

	Roles and responsibilities in successful production Edge deployments

	Software engineering

	AI/ML training (data science)

	Infrastructure provisioning

	Software and model deployment

	The best-practice enterprise architecture for Edge-native solutions

	Start with Cloud-native

	The separation of algorithmic logic and ML models

	Conditional location independence

	Autonomous deployment

	Edge connectivity

	Summary

	Chapter 4: Edge Container Platforms

	Technical requirements

	Open Container Initiative (OCI)

	Docker

	Docker engine

	Docker Hub

	Podman

	Kubernetes

	Summary

	Chapter 5: Application Placement and Life Cycle Management

	Technical requirements

	Deploying containers to the Edge

	Introduction to Open Horizon and IEAM

	The architecture of the management system

	What is a service?

	The components of the Management Hub

	Agbot

	Exchange

	Switchboard

	Model Manager

	Secrets Manager

	FDO

	Organizations and tenants

	More about the Edge Agent

	Automatic Agent updates

	An examination of service life cycles

	An overview of patterns

	Policy-based management is key to deployment at scale

	Node Policies

	Service Policies and Service Definitions

	Model Policies

	Deployment Policies

	Policy-based placement negotiations

	Summary

	Part 2: Working on the Edge

	Chapter 6: Installing an Edge Agent on an Edge Node

	Technical requirements

	What is a Management Hub?

	What is an Edge Agent?

	Supported architectures and operating systems

	Options to install the Edge Agent

	Automated agent installation

	Bulk agent installation

	FDO-based agent installation

	Preparing the working environment

	Setting up a non-root user

	Installing AIO Open Horizon Management Hub

	Installing the Edge Agent on an Edge device

	Summary

	Chapter 7: Registering an Edge Node

	Technical requirements

	What is Edge node registration?

	Verifying the pre-condition

	Verifying the current Edge node condition

	Registering an Edge device node

	Verifying the post-condition

	Summary

	Chapter 8: Using the Open Horizon CLI and API

	Technical requirements

	Using the CLI

	Commonly used CLIs

	General commands

	Edge node registration

	Service development, publishing, and deployment

	Pattern publishing

	Deployment policy

	Adding a Node policy using the Management Hub

	Managing a local Edge Node using Node policy

	User input for services

	Deployment check

	Model management system

	APIs

	Directly calling APIs

	Summary

	Chapter 9: Autonomous and Flexible Management of Edge Services

	Technical requirements

	Developing an Open Horizon Service

	Developing an Open Horizon Pattern

	Publishing an Open Horizon Service and Pattern

	Deploying a workload on an Edge device node using a pattern

	Combining multiple services and deployments

	Summary

	Chapter 10: Managing Edge Scale with Policy-Based Workload Placement

	Technical requirements

	Policy-based application workload placement

	Developing a Service policy

	Listing a Service policy

	Policy-based Properties and Constraints

	Creating a Service policy

	Adding a Service policy

	Viewing the Service policy’s details

	Adding Service policies for other services

	Removing a service policy

	Developing a Deployment policy

	Creating a Deployment policy

	Adding a Deployment policy

	Listing a Deployment policy

	Adding Deployment policies for other services

	Removing a Deployment policy

	Developing a Node policy

	Creating a Node policy

	Applying a Node policy

	Modifying the Node policy

	Practicing Node policy modifications

	Removing policies

	Summary

	Part 3: Advancing the Edge System

	Chapter 11: Machine Learning Workload and Model Deployment

	Technical requirements

	Use of MMS

	MMS components

	CSS

	ESS

	Model deployment policy metadata

	Deploying a Service to consume a published model

	Deploying the example ML service

	Publishing a model file to an Edge node

	Verifying model file delivery

	Summary

	Chapter 12: Security at the Edge

	Technical requirements

	Security vulnerabilities at the Edge

	Masquerading devices

	Software tampering

	Backdoor attacks

	Replay attacks

	Unauthorized channels

	Hacking

	Excessive privilege

	Exploiting software vulnerabilities

	Operating failure

	System inconsistencies

	How Open Horizon protects your Edge

	Device attestation

	Tamper resistance

	Intrusion resistance

	Replay resistance

	Workload isolation

	Blast protection

	Role-based privileges

	Secrets management

	Failure resistance

	Infrastructure currency

	Workload signing

	API keys, secrets, and the Vault

	Summary

	Chapter 13: Network Connectivity at the Edge

	Technical requirements

	The shifting enterprise networking paradigm

	The history of network management in connected systems

	The classic paradigm is inherently contentious

	The connected Edge

	Connecting the Edge

	How does the enterprise network work?

	Operating the connected Edge

	Deploying the connected Edge

	Summary

	Part 4: Edge Management in Practice

	Chapter 14: Building a Real-World Example Application

	Technical requirements

	A typical Edge device node

	Machine inferencing pipeline

	Services, Policies, and User Input

	Services

	Policies

	User Input

	Publishing Services and Deployment policies

	Registering the Edge device node with an initial ML model

	User Input

	Registering the Edge device node

	Verifying the application

	Publishing an ML model using MMS

	Summary

	Chapter 15: Troubleshooting at the Edge

	Technical requirements

	Answers to not-so-common questions

	Document references

	Edge Agent

	Service publishing

	Pattern-based service deployment

	Model management system

	Docker usage

	Uninstalling Open Horizon Management Hub

	Edge device agent verification

	Summary

	Chapter 16: Follow-on Topics

	Technical requirements

	Fleet management

	Don’t brick your Edge

	Air-gapping your Edge

	Edge and mobile computing

	Building and maintaining a robust connected Edge

	What about multi-access Edge Computing?

	But wait, what is the network Edge?

	Summary

	Chapter 17: Using the IBM Edge Application Manager Web UI

	Technical requirements

	Logging into the Home screen of IEAM

	Navigating the main tabs of the UI

	Exploring the Edge nodes in your organization

	Node properties

	Node constraints

	Deployed services

	Publishing and editing your services

	Creating deployment policies to initiate a deployment of your service

	Viewing and managing patterns

	Summary

	Index

	Why subscribe?

	Other Books You May Enjoy

	Packt is searching for authors like you

	Share your thoughts

	Download a free PDF copy of this book

Landmarks

	Cover

	Table of Contents

	Index

OEBPS/image/B22368_14_1.jpg
Open Horizon Managed Application - An Example

Video Source + Machine Inference + Post Processing + Open Horizon +

Mm APPLICATION
(i}

MICROSERVICES.
'CONTAINERS

‘A 10@ "» w
O

use.
CAVERA

INTEL FRAME

FRAME
NUC CAPTTURE DETECTOR ANNOTATION

Open Horizon Management Hub

NVIDIA NVIDA RASPBERAY
Pl

NNo xavieR Edge Agent

=

CSS MODEL RTMODEL
MaT SERVIGE o

OEBPS/image/B22368_04_1.jpg
kubernetes

OEBPS/image/B22368_17_13.jpg
Nodes Services Pattorms Policies.

Q Find nodes

Node states 1

1040 nodes 3 e Last updated: 4 minutes ago.

Name Owner Arcitecture
v edge-camere. sarioo .
v edge-cameras sanenu i
v cdge-camera-t sarees s
v cdgetdevice-node-13 o p—
v edgazdevice-nade-4 e i
v edgezdevice-node-12 aneeu =
v cdgeadevice node-22 o s
v edgetdevicenode-45 o —
v edgatdevica-node-20 sanieev i
v edge-camera:2t aneeu s
v cdgeadevice node-25 o s
v edgezdevice-node-25 e i

Nodo Typo

@

B

@

8

8

Davice

Dvice

Device:

Davice

Davice

Dvice

Device:

Davice

Davice

Dvice

Device
Device.

state

Registerad

Registered

Registered

Rogistorad

Registerad

Registered

Registered

Registorad

Rogisterad

Registered

Registered
Registered

Last updated

Wednesday, July 19, 2023

Tuescay, June 20, 2023

Wednesday, July 18, 2023

Wednesday, July 19, 2023

Wednesday, July 19, 2023

Wodnesday, July 18, 2023

Tuescay, June 20, 2028

Wednesday, July 19, 2023

Wednasday, July 19, 2023

Tuesday. dune 20, 2023

Wednesday, July 18, 2023
‘Wednesday, July 19, 2023

OEBPS/image/B22368_17_56.jpg
Py — 5

s 900 - st cotsiners spor ax B0 O

A frapstens

19pattorns 3 R Last updated: 0 minutes ago

Patom D Owner Senices Avchitctures Last updated
et st e T g A 200k o) i i i 5580
P — oot so amoss,am,ames Sunday arch 19,2020
[—— by 1o amons Sunday arch 19,2020
[oot 5o amast, am,ame Sundoy March 16,2028
R — oot 5o [R—— Sunday, Marc 15,2028
patan-brmloword . ‘o amdta, am,ames, ppcsdln Sunday, March 10,2020
O —— . 1o amons iy, Sotamber 30,2022
pattrn-mms-senvice-certs-amdes L 1o amass Tuesday, Novermber 16, 2021
e P o aness e Novomber 6,202
JOS——— o o " -
Fr— ot o anss -
pattrn-mms-senvce-amdes bl 1o amass Tussday, November 2, 2021
oy jefflu i@ & Tuesday, November 2, 2021

OEBPS/image/B22368_17_54.jpg
P e— .

[ram——— 7 . 000c-so e spr ax Dole

S _

18 policles 3 Refocn Last updated: O minutes ago

Policy D Ouner Label Last Updated

GemofDetect Movement = Detect Movement S miutes s
P et s st
— s S stsenico
aog S —
PENT———— e petaneca2000 Wocrasy e 25,202
aog O —
PENTP———— permanmace 1000 Wecresy e 25,202
oG Domo-Gonation Anss = NS DeroCordon gy,
demorpol - -multiarch-RTP-RP000-00-07-arm64 dovg s sarvios-m kisech Monday, October 24, 2022
I - ot R—
aog mmincoporior
RN Emgncopero i Setomber 0 2022
demo/policy-chunk- d-modei- 1.0.0_amds4. i chnmicaine: senvics Tuesday, May 3, 2022
oo ks ot s 102, oo Sl S
o onicma-sanics
comoloio o saved ot sonves 100, arm e ke i o 2, 2022
/-ibm.edge.example.vision-hzn.vision-sdge-cme_am v dseloyipelcyuision: ursday, November
PR ——————— e oy ol T——
P doplorpote-von-

demo/deploy-ibm.edge.example.vision-hzn.vision-sdge-dle_amd64 Thursday, November 11, 2021

OEBPS/image/B22368_17_1.jpg
Log in to IBM Cloud Pak
Administration Hub

Select your authentication type:

Enterprise LDAP

OpenShift authentication

IBM provided credentials (admin only)

OEBPS/image/B22368_17_48.jpg
montes % B DO

© Nameyourpotey

‘Add constraints to your service

et R S ———————

ey

«
: vy isesstresm-ensbis = true

Codeviow &
* Detoct Movamant

B!

‘Add properties (opti

OEBPS/image/B22368_17_5.jpg
Nodes Services Patterns Policies

Q Find nodes

1040 nodes) Refresh Last updated: 6 minutes ago

Nodes De

Node

96

8% Edge clusters

6

) Edge devices

1,034

Total edge nodes

1,040

Node states No

OEBPS/image/B22368_14_3.jpg
Real World Edge Computing

Edge deployment of container workload and ML model

[el T3 GMT 2024-05-24006155: 11

Detection w22 sec

Overall FPS 4.14

Model: defa thite~mbad

Updated at: z—OS‘ :54.‘."}
Detector: Intef > .
\—# - W

Overlay: YES
Machine Inferencing and Object Detection

OEBPS/image/B22368_17_52.jpg
N 5

OEBPS/image/B22368_17_58.jpg
s % DD O

Pattans / pattem-om cpu2evitroams

4% pattern-ibm.cpu2evtstreams =

Pattern details
Namo pattarn-bm.couzavttreams B Lastupdated Sunday, Mrch 19,202
Ouner ratroot Publc e
Organizaton e
Deseription Patter fo fom cpu2evistrams sending cou and s,
Info o the M1 Event Srsams.
Services (1)
[Wb cpuzevtsieams
amdsd Vorsion 1.43 Sorvico © Somevakes ot st
variables
am Vorsion 1.43
ames Vorsien 1.43 .
Secrets

No secrets defined

OEBPS/image/B22368_17_28.jpg
T —

= 1AM Edge Application Manager

EDevices
Jr— Version Noses
Mutiple 100 3
demo

Last Updatot: Mot

(2) vision-edge-controller

EDevices

A Version Noses
amded Muliple o
demo

Last Updatod: Ml

(@) mms-service

EDevices

Archtacturs arsion Nodss
Matiple Mutiple)
demo

Last Updatod: Mutilo

(2) pi-model-service

EDevices

v Version Noses
Mutiple 108 o

dgemo
Last Updatot: Mot

nginx-operator

2 Clucters.

EDevicss

Version Nodss
amdes. Mutiple 0

demo

Last Updatods Wt

(3) saved-model-service

EDevices

srchiscire Nodes
Muliple o
demo

Last Updateds Wutipio

(2) pi-mms-service

EDevices

Multple 100 °
demo

Last Updateds Wutipio
secret-service-multiarch
@bevices

amd6 100 o
demo

Last Updatod: Thurscy, Juy 27, 2025

mms-service-muitiarch

o -

@ Devices @ Devices

Avcitactre Vorsion

amed 108

otta ofta
Lost Updatod: Wodnasday, Noverbor 3, 2021 Lost Updatos Toasday, Novembar 2, 2021

mms-service mms-service

Devices & Devices

am 109 o arméa 100 o

ot efta
Last Updato: Tomsday,Novemor 2, 2021 LostUpdiatas: Trarscay, Septomonr 16, 2021

OEBPS/image/B22368_17_15.jpg
INOd e State:s 1/ I s

1040 nodes) Refresh Last updated: 9 minutes ago

Owner

sanjeev

v edge-camera-2
demo

sanjeev

¥ edge-camera-3
demo

sanjeev
v edge-camera-1)

Architect

amdé4

amd64

amd6é4

OEBPS/image/Cover.png
Real-World
Edge Computing

Scale, secure,

<> ROBERT HIGH | SANJEEV GUPTA

OEBPS/image/B22368_17_46.jpg
Roll back to a previous version after:

Failed start attempts Within this timeframe
@ —

Version 1.0.10
Version 1.0.9

[] Version1.0.8

demo
doug

demo
doug

demo
doug

60

17 sec mb hrs days

Primary version

Rollback version 1

OEBPS/image/B22368_17_21.jpg
Node constraints Learn more about constraints -+

Services that deploy to this node must (inherited from the node): 2

D

check-stock™ —>

security-monitoring || purpose

Agent updates to this node must (inherited from the node):

0 constraints have been set

OEBPS/image/B22368_17_33.jpg
Deployment

Deployment poli

Deployment patterns

No deployment policies found

Create a deployment policy to get this service
running on nodes

Add policy +

OEBPS/image/B22368_17_3.jpg
Select an organization
Which organization do you want to
use?

demo

OEBPS/image/B22368_17_17.jpg
Nodes Services

Patterns

Q GIERSHECRd Find nodes

Filter by:

Ngde states == @wner

Architecture

26 nodes Refres Heartbeat

Node State

v edge-camera-1

OEBPS/image/B22368_17_42.jpg
Select the service that will be deployed with this policy

These services must already exist in the exchange before they can be added

OEBPS/image/B22368_17_25.jpg
(6) ibm.cpu2evistreams

] Devices

Architecture Version Nodes
Multiple 1.4.3 0
Multiple

Last Updated: Multiple

OEBPS/image/B22368_17_50.jpg
Add properties (optional)

Properties are facts about your policy and useful for grouping related items

movedetection

purpose=security-monitoring £

Add more properties +

(Version 1.0.0)

>l

OEBPS/image/B22368_17_7.jpg
Node architectures
Breakdown of all node architectures

4127
309+
206 amdeé4
count : 410
103
0

amd64 © ppc6dle @ arm64 @ arm

OEBPS/image/B22368_17_34.jpg
Deployment

Deployment policies | Deployment patterns

No deployment patterns found

Create a doployment pattern to get this
service running on nodes

Add pattern

OEBPS/image/B22368_17_27.jpg
(4) mms-service

] Devices

Version
Multiple

Architecture
Multiple

demo
Last Updated: Multiple

Nodes

OEBPS/image/B22368_17_44.jpg
< Deploy with policy _

© Name your polcy

‘Select sarvce

Configure Variables

Bind Secrets

Rollback Settings

Add constraints

Confirmation

Set service variables for this deployment policy
Seting vaves

il 390t 0 very node that matehes the constaints of the deieyment policy

movedetection_1.0.0_amd64 Prmary version Sovice variab
demo 100 © Some valuss ot set

Archiocture

Varisble name Valuos for this policy

A srontacturms

Entar value °

No detaut vlue

OEBPS/image/B22368_17_40.jpg
imconse e384I OSB-00 - St consirs P el tos= @ % [D) @

< Deploy with policy

Gancal

Name your policy

Name your policy

‘Select servcs Give your depteyment plicy name and gsscriv s pupose

ok et Detect Movement

Bind Secrets
Greate a description for your poliy.

 Rollback Settings

Add constraints

Confirmation

OEBPS/image/Packt_Logo-01.png
<PACKD

OEBPS/image/B22368_17_36.jpg
Secrets

0 service secrets

OEBPS/image/B22368_17_23.jpg
P e— =

a¥x B0 O

Q Find services

89 services) Rureen Last updated: O minutes ago oty LastUpdated v

(1) marvin.helm.operator (@) per 00, @) p 100, (@) ibr

Clusters Glusters #Custers EDevices

Acitocturs Verson Nades Awcritactrs Verson Nodes enitecire Varsion Nodss Arentoctre Varsior
amded Mutiple o amoes. Muttple amdee. Mutple ' Mtiple 143
demo domo. Muttile
Last Updatedt: Motile Last Updatac: Mo LastUpdstoa: Multlo Last Updted: Mutiple
(@) ibm.hello-secret (6) ibm.hello-mms {7) ibm.helloworid (9) ibm.gps
EDevices EDevicss EDevices. EDevices
Actecturs Verson Nads shitsctrs Version Noves enitscirs Version Nodss Arentectrs Varsion Nodas
Mutple 100 o Mutiple 110 o Mutiple 100 B Mutiple Mutiple o
Mutiple Mutiple Muttiple
Last Updatod: Mot Last Updiatoc Moo Last Updsto: Multlo Last Updtod: Mutile
(©)ibm.cpu (2) chunk-mms-service @ @
Eevices EDevices Devices. @ Devices
Achtscturs Verson Nads shitsctws Version Nodes ventacure Version Achscture Version Nodos
Mutple Mutiple 4 Mutiple 100 3 Mutiple 100 amdes Mutiple o
Mutiple dgomo demo.

Last Updato: ot Last Uit Mt LastUpdito: Multlo Last Updto: ot

OEBPS/image/B22368_17_31.jpg
Service properties Learn more about properties

Properties 2

purpose=security-monitoring
Facts about your service

OEBPS/image/B22368_17_49.jpg
|71 AND

Constraints added with this deployment policy Code view &

% Detect Movem

Node Property Operator Value

type is equal to x v SecurityCam

-

OEBPS/image/B22368_17_9.jpg
Y — =

co-conseeear " 000 -5 e sopder " ax B0 O

(11) marvin.helm. (3) per 3 p 1100. (6) b
(3) ibm.hello-secret (6) ibm.hello-mms (7) ibm.helloworld () ibm.gps

OEBPS/image/B22368_17_19.jpg
Nodes / odge-camera-1

 edge-camera-1

Node details
Nama. adge-camera-1 o s = Rogtersa e
© demolesge-camera-1 B LostHeartoent atew scondsago
Owner pr— Architecture amass
organzasion aomo Nod type @ Deven
Edge agent erors.
@ No arorsrepored
Node properties Loarm more about proparies
Deplommertproperies (REIRERSEARRTTIOTEON) (TR e

e G))

._ . [.1 1 1 ___]
- R R RN TRR) (EERr ARt

properties

[en— Sompotionconanatistitee | CoumOUSnCRE | oPMIEIEN SEhmandt couPIEON ST

(aombotomabontresi-is)
Node constraints Lo o abos consans
‘Sonice ihat dapoy 1 s e st rertad Fom the e e
{]
“purpose == security-senitoring || purpose == check-stock”
Agent pdatest s node st nered o the node:
0 constrants have baen set
Deployment: Policy
Oruing sevices
Sorice Owner Version Lot Updoted

Thrs a1 o sarvicesruvin o s node,

OEBPS/image/B22368_01_1.jpg
Smart Phones

Chemical and
Petroleum Plants
g

- Commercial Shipping
Personal Protection »
Equipment P -

Warehouses Factories

OEBPS/image/B22368_17_38.jpg
Deployment

Deployment policies | Deployment patterns

No deployment policies found

Greate a deployment policy to get this service
running on nodes

Add policy +

OEBPS/image/B22368_17_55.jpg
19 policies) Rsrssn Last updated: 1 minute ago

Policy ID

‘demofDetact Movement

demolpolicy-secret-service-multarch-edge-auto-ubuntu-2004-amd64-1-amd4

e e R

Owner

demo

doug
demo

doug

Label

Detect Movement

secret-senvics-multiarch
Deployment Policy

ibm.operator Deployment

Last Updated

& minutes ago

Thursday, July 27, 2023

R

OEBPS/image/B22368_17_12.jpg
Services Patterns Policies
@ Find nodes Add node

1040 nodes : Refresh Last updated: 0 minutes ago

Nodes Deployments

Total edge nodes = Edge devices Edge clusters Nodes running a policy ~ Nodes running a pattern Nodes with agent errors

OEBPS/image/B22368_17_47.jpg
Node health settings ©
Stop deploying to nodes that:

Have had no heartbeat in

N J

Or have not formed an agreement in

0@

60

60

sec

min

hrs

days

sec

min

hrs

days

OEBPS/image/B22368_17_20.jpg
Node properties Learn more about properties

Deployment properties ooqhorizon hardwareld=3a8d381a5511312c59d136be3e748740117e0bdc openhorizon.operatingSystem=ubuntu 2

‘openhorizon.containerized=faise (openhorizon.cpu=2) openhorizon.arch=amd64 (openhorizon.memory=957
—— P S e

‘openhorizon.hardwarel

Node management
properties

Facts about your node P container penhorizon.cpu=2 openhorizon. 64 openhorizon.memory=957

a8438125511312050036be3e7497401{7e0bdc openhorizon.operatingSystem=ubuntu

‘openhorizon.allowPrivileget

OEBPS/image/9781805124061.jpg
<packh>

Edge Computing Patterns
for Solution Architects

Learn methods and principles of resilient distributed
application architectures from hybrid cloud to far edge

<> ASHOK IYENGAR | JOSEPH PEARSON

OEBPS/image/B22368_17_39.jpg
cuth s s cotoepoicinrmetpstieszinato= & % B D | @

< Deploy with policy Noxt

Gancal

Name your policy

Name your policy

‘Select sarvce Give your e

Enter aname
Configure Variables

Bind Secrets

Greate a description for your poliy.

 Rollback Settings

Add constraints

Confirmation

OEBPS/image/B22368_17_2.jpg
Log in to IBM Cloud Pak
Administration Hub

Enter your enterprise LDAP username and
password

Username

rob

Password

Change your authentication method

OEBPS/image/B22368_17_22.jpg
Deployment: Policy

0 running services

Service ID Owner

There are no services running on this node.

Version

Last Updated

OEBPS/image/B22368_17_57.jpg
Q_ Find patterns

19 patterns) Refresh Last updated: 4 minutes ago

Pattern ID Owner
pattern-secret-service-multiarch-edge-auto-ubuntu-2004-amd64- doug
1-amd64 demo
. root
pattern-ibm.cpu2evtstreams - i
root

pattern-nginx-operator-amd64 Pt

OEBPS/image/B22368_17_10.jpg
P e—

O 5 cpcamo ax 0D O

16 Edge Appl

Q Find pattemns

19pattorns 3 R Last updated: 0 minutes ago

Pattam D Ouer Servoss Avcitocurss Lastucated
st s - ndo bt 0Lkt o o e s 27,2628
oattern- o cpuzovtseams oot 50 amas,am, s Suncay, wac 19,2028
pater-ngicopeatoramds et) amaes Suncy, i 19,2023
patern-om eto-secret oot 5o amdst, arm, ams Suncay, M 18,2020
RN . 5o —— Sunday, warch 18,2028
P —— et ‘o amdd,am, i, ool Sunday, Marc 19,2028
P — oot 10 ames iy, Septemoer 30,2022
pater-mms-sece-corts-amdd et e _— Tuesda, Noverter 16,2021
i savetmode saica-cats e 1o ames Tussda,Novarmber 16,2021
R o ‘o amst sy, Novombor 8,221
U N o ‘o ams anesday November, 2021
et mms-seice-amd oty 1o amaes Tuesdo,Novomber 2, 2021
ot

pattern-mms-service-arm 14 Tuesday, November 2, 2021

3

OEBPS/image/Packt_Logo-011.png
<paAckm

OEBPS/image/B22368_17_53.jpg
Py — o

amers1 ax B0 O

Node detals

Nome r— o e o st .

o

p— o Nodo e 5 e
Edge agent errors
Node properties Lo e stz

[— .

RO ——

Node consraints Lo s s s

oo sy o et e 1. .

L T

Deployment: Policy

Py Omner e [re—

OEBPS/image/B22368_17_14.jpg
Node statess | ————— v

1040 nodes i Refresh Last updated: 0 minutes ago =

Name Owner Architecture Node Type State Last updated

OEBPS/image/B22368_17_45.jpg
inconse e a3 BaETA4RCOR IO ASOH-00 - St consnrs ppdma e plcsresrpred-etos= & % [D | @

fon Mana

% Deploy with policy .

Gancal) _

© Name your polcy
Bind secrets for services

Bin senvicesecrts withthose n your secrets manager Siect servie

,ordrag and oop a secre rom the manager

‘Select sarvce
© Configure Variabies
€ Bind Secrets
£ Rolloack Sttings ’
£+ Add constraints
No secrets defined
Confirmation

Sacrsts can s added by the owner o e sarvis detilspage.

OEBPS/image/B22368_14_4.jpg
Real World Edge Computing
Edge deployment of container workload and ML model
Video 1
e O

Intel ’uc "g'- <
Detection 30 sec
Overall FPS 3.70

o [

¥
—y

Model: tflite 0d00—1

Updated at: —-05%

Detector: Interndl

Overlay: YES

Machine Inferencing and Object Detection

-—F‘) Oy
. [CEEMY Gl 2024-05-14 06:58:37

OEBPS/image/B22368_17_4.jpg
@ 1BM Edge Application Manag: X +

ax MmO 0

€ 9 us-south.containers.appdomain.
Nodes Services Patterns Policies
Q Find nodes

1040 nodes) Refresh Last updated: 2 minutes ago

Nodes

) Fdge devices

1,034 6

Total edga nodes 33 Fdge clusters

1,040

Node states
Breakdown of nodes by their state

® Active M Registered A Unregistered O Inactive @ Error

®

© -

Add node

Deployments

Nodes running a palicy

967 68 0

Nodes running a pattarn Nodes with agent arrors

Node architectures
Breakdown of all node architectures

4127

309+

206

1034

o

amds4 © ppcodle @ arme4 @ arm

OEBPS/image/B22368_17_59.jpg
Delete [ii]

OEBPS/image/B22368_14_2.jpg
Real World Edge Computing

Edge deployment of container workload and ML model

.;,.
0

OPEN HORIZON

Begin Visual Stream View

Machine Inferencing and Object Detection

OEBPS/image/B22368_17_51.jpg
< Deploy with policy _
Cancel

© Name your policy

Policy details

© Select service Name Detect Movement Description

© Configure Variables 2
Service and variables

© Bind Secrets

movedetection_1.0.0_amd64
© Rollback Settings e

© Add constraints

Service and variables amdé4 @ Some values not set
@ Confirmation
Secrets z
No secrets defined
Secrets can be added by the owner from the service details page.
Rollback and node health settings 2
Rollback 0 rollback settings for this policy Versions Version 1.0.0 (0 rollback)
Agreements. No agreement settings for this policy Heartbeat No heartbeat settings for this policy
Properties ® 2

Properties from the service

() movedetection (Version 1.0.0)

purpose=security-monitoring &

Constraints ©®
Gonstraints from the service

(@ movedetection (Version 1.0.0)

“openhorizon.memory >= 260 AND video-stream-enabled =:

o

true"

AND

Constraints added with this deployment policy

“ Detect Movement

type isequalto SecurityCam

OEBPS/image/B22368_17_16.jpg
Nodes Services Patterns Policies

Q_ Find nodes

Node States 1 1 [

1040 nodes) Refresh Last updated: 1123 minutes ago

OEBPS/image/B22368_17_29.jpg
Services / movedetection_1.0.0_amd64
movedetection_1.0.0_amd64

Service details

Name movedetection_1.0.0_amd64 [u] Last updated

Owner demo/rob Public

Version 1.0.0 Shareable
attributes

Architecture amd64

Description

Service properties
Properties purpose=security-monitoring

Facts about your service

Service constraints

Deploy this service to nodes with:

openhorizon.memory is greater than or equal to 200
AND

video-stream-enabled is equalto true

Deployment

policies Dy patterns

No deployment policies found

Create a deployment policy to get this service
running on nodes

Add policy

Service variables

Variables set for your Service

Name Label
Secrets

0 service secrets
Service dependencies

0 required services

Friday, January 15, 2021
true

Multiple instances @

Default Value

Documentation 2

2

Learn more about properties.

2

Learn more about constraints o

2

Learn how to add a service o

OEBPS/image/978-1-80323-954-5.jpg
<packh

N

Embedded
Systems Architecture

Design and write software for embedded devices to
build safe and connected systems

< ; DANIELE LACAMERA

OEBPS/image/B22368_17_26.jpg
(3) perfhznmodel100.operator

0= Clusters

Version Nodes

Multiple

Architecture
amd64

demo
Last Updated: Multiple

OEBPS/image/B22368_QR_Free_PDF.jpg

OEBPS/image/B22368_17_41.jpg
RERETPRRRER

Deploy with policy

Name your poley
Select the service that will be deployed with this policy

for they can b added
Select service

demo Shared services

 Configure Varables.
Q Findasavice

i) Selectec
Bind Secrets
02 senvices. movedstootion
Rollback Settings
marvin.helm.operator
 Add constraints.
"+ Confirmation
secret-servioe-multiarch
perznmodel200.operator

perfhznmodel100.operator

OEBPS/image/B22368_17_6.jpg
Add node =

Deployments

Nodes running a policy

967

Nodes running a pattern

68

Nodes with agent errors

0

OEBPS/image/B22368_17_18.jpg
Nodes Services Patterns Policies

Node states

26 nodes) Refresh Last updated: 1130 minutes ago

Name Owner Archite
v edge-camera-1 - zaer;izev amdé4
v edge-camera-10 Zae:iiev amdé4
v edge-camera-11 sanjeev amd64

demo

OEBPS/image/B22368_14_5.jpg
Real World Edge Computing
Edge deployment of container workload and ML model
Video 1 .—m e (THZY 3 GMT 2024-05=1407:02:01

TensorFlow Lite OpenCV

Intel NUC
Det&tion

Overall rp;iéo‘
&
N " p

4 /

Model: tfl
Updated at:
Detector: In

Overlay: YES

Machine Inferencing and Object Detection

OEBPS/image/B22368_17_32.jpg
Service constraints

Deploy this se

openhorizon.memory is greater than or equal to 200

AND
video-stream-enabled

isequalto true

Learn more about constraints -+

2

OEBPS/image/B22368_17_35.jpg
Service variables

Variables set for your Service

Name Label Default Value

OEBPS/image/B22368_05_1.jpg
A

//' Enterprise / Cloud \,

\.
N\
\

OEBPS/image/B22368_17_24.jpg
Sort by: Last Updated v N)

(6) ibm.cpu2evtstreams

OEBPS/image/B22368_17_11.jpg
Y e—

€5 0 oo e

Edge Applc

Nodes sarvens Paerns
Q Fipoices
1 policien.) e Las updatc: 0 iutos a0
potey 0 owner Labe
aoug JRT———
damapotey-socret.sanico e odge-ao-ubur 200k mda--amas 9% e
P — don o parsor eplyment
. coug perhanmodszon cporatr
damoeloWordPorHirMode2000peratrPoicy oo [
doug pertanmade 0D cporator
damaetoworaPrHirMose1000peratrPoicy e Bepioment Py
BN Daro-Condiion Anass - o oo g
domo G Domo-rordrPrp - AN Dot
o

demoMWC demo-inference MWG demo-Inference

demo
doug mms-service-multarch

‘demo/policy-mms-service-muliarch-RTP-AP000-00-07-armea foi frectieitns

doug om.nginx-operator

domofibm.nginx-operator-1.0.1 sorn Deployment Poiicy

" joft chunicmims-service
demo/policy-churk-savedmodsi-sarvice.1.0.0_amdd demo Deployment Poiicy
tbubcsnedimoidi et chunkcmms:service
demo/policy-churk-savec-modsi-service_1.0.0_arm (i iy

om0y et cxamBlenon e vson-cdoe-cme. o sanjeey. deploy-polcy-vision-
demo/depioy-om,edge.example.vision-han.vision-edge-cme_amd64 kg it Bisertliton
sarieay deploy-policy-vision-

RS ST ST VS REC TR 4 g Lo S Vo St

Last Updated

Thursdiy, duly 27, 2023

Wadnesday, June 26, 2023

Wednesday, June 28, 2023

Wednesday, June 28, 2023

Tussday, May 2, 2023

Wednesday, February 15, 2023

Wednesday, February 15, 2023

Monday, October 24, 2022

Friday, Septomber 30, 2022

Tuesday, May 3, 2022

Friday, Apr 22, 2022

Thursday, November 11, 2021

Thursday, November 11, 2021

OEBPS/image/B22368_17_43.jpg
©

Selected Services (1)

movedetection

OEBPS/image/B22368_17_30.jpg
Service details Documentation

Name movedetection_1.0.0_amd64 [m] Last updated Friday, January 15, 2021 4

Owner demo/rob Public true

Version 1.0.0 Shareable Multiple instances ®
attributes

Architecture amd64

Description

OEBPS/image/B22368_17_37.jpg
Service dependencies

Learn how to add a sevice (4

OEBPS/image/B22368_17_8.jpg
IBM Edge Application Manager

Nodes Services Patterns Policies

Q, Find nodes

OEBPS/image/B22368_03_1_(Merged).jpg

