
		
			[image: 9781804618844_cover_Low_Res.png]
		

	
		
			HashiCorp Terraform Associate (003)

			Exam Guide

			

			Prepare to pass the Terraform Associate exam on your first attempt

			Chandra Mohan Dhanasekaran

			Manjunath H. Gowda

			[image: Logo]

			HashiCorp Terraform Associate (003) Exam Guide

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Authors: Chandra Mohan Dhanasekaran and Manjunath H. Gowda

			Reviewers: Salim Tekin and Mehdi Laruelle

			Publishing Product Manager: Anindya Sil

			Senior-Development Editor: Ketan Giri

			Development Editor: Kalyani S.

			Presentation Designer: Salma Patel

			Editorial Board: Vijin Boricha, Megan Carlisle, Simon Cox, Ketan Giri, Saurabh Kadave, Alex Mazonowicz, Gandhali Raut, and Ankita Thakur

			First Published: May 2024

			Production Reference: 1310524

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB

			ISBN: 978-1-80461-884-4

			www.packtpub.com

			Contributors

			About the Authors

			Chandra Mohan Dhanasekaran, a.k.a. Chandru D, is an AWS Certified Solutions Architect at Philips, focused on designing world-class resilient and cost-efficient solutions for customers in the public cloud. His previous experience includes stints at banking giants including JP Morgan Chase & Co. and Danske Bank, the largest bank in Denmark and very popular in the Nordic countries. He has close to 15 years of professional IT experience in different domains and various technology stacks ranging from mainframes to frontend, distributed, and container technologies. He has always had a profound love for mainframe systems and is fascinated by the advantages of using IaC tools and cloud services. You can find him at almost all AWS events and meetups around Bengaluru, and he loves to connect with people.

			He always looks to explore new and blossoming open source technologies and is a fan of serverless technologies and Kubernetes. You can connect with him on LinkedIn: https://www.linkedin.com/in/chandrud

			Outside of work, he loves cooking for the kids at the weekend and enjoys jogging whenever he finds time. He’s also a die-hard Manchester United fan and watching “Rafa” (Rafael Nadal) around the tennis court is something he can’t afford to miss!

			Manjunath H. Gowda is a VP of cloud engineering at Lentra.ai. Previously, he worked at AWS as a solutions architect, helping customers migrate to AWS and build cloud-native solutions in the AWS cloud. While working as a freelance consultant, he helped several startups with their AWS architecture, cost optimization, infrastructure security assessment, and automation using IaC tools. He has a special interest in cloud security and infra-automation using IaC tools such as CloudFormation and Terraform.

			When not in front of a laptop, he plays cricket and loves long-distance cycling. He is a loyal RCB fan who genuinely believes in the RCB slogan, “Ee sala cup namde”.

			You can connect with him at https://www.linkedin.com/in/manju712/.

			About the Reviewers

			Salim Tekin is a seasoned Senior DevOps Engineer, currently spearheading the optimization of the Data Science Platform at Generali Germany. Prior to this role, he served as a Cloud Engineer Consultant at Deloitte, where he specialized in crafting tailored cloud solutions. Before his tenure at Deloitte, Salim showcased his versatility as an ADAS Engineer at Bertrandt, simultaneously holding the role of Product Owner for Connectivity Backend on the 'Harry' project. With a rich skill set including Certified Kubernetes Administration and Development, AWS & GCP Architecture, and proficiency in tools like Terraform and Prometheus, Salim excels in driving efficiency and scalability in complex technological landscapes. Holding a Diploma in Industrial Engineering with a focus on Electronics & Informatics, Salim combines academic prowess with practical expertise to deliver impactful solutions. Outside of work, Salim enjoys staying abreast of the latest technological advancements and spending time with family and friends.

			Mehdi Laruelle is a seasoned professional with a diverse background in the industry. With extensive experience working for major players and startups, he's honed his skills as a consultant, particularly in the realm of cloud, DevOps culture and tools. His proficiency extends to HashiCorp software like Terraform and Vault, among others. Passionate about sharing knowledge, Mehdi actively engages in training, writing articles, and organizing meetups. As the co-organizer of the HashiCorp User Group France meetup, he fosters a community of learning and collaboration. His expertise is widely recognized, earning him distinctions as a HashiCorp Ambassador, AWS Community Builder, and AWS Authorized Instructor (AAI). You can find him on GitHub under the username "mehdilaruelle".

		

	
		
			Table of Contents

			Preface

			1

			Introduction to Infrastructure as Code (IaC) and Concepts

			Making the Most Out of This Book – Your Certification and Beyond

			Technical Requirements

			What Is IaC?

			Scenario

			Basic Concepts of IaC

			Declarative Approach versus Imperative Approach

			Version Control

			Idempotency

			Infrastructure Provisioning and Configuration Management

			IaC Tools in the Market

			How to Choose the Right IaC Tool

			HashiCorp Terraform

			Progress Chef

			Creating Your First Recipe

			Puppet

			Pulumi

			AWS CloudFormation

			IaC Use Cases

			Multi-Cloud Deployments

			Application Deployments, Scaling, and Monitoring Tools

			Policy Compliance and Management

			Testing Environments and Software Demos

			Benefits of IaC

			Rapid Deployments and Tool Integration

			Lower Costs and Error Reduction

			Configuration Drift Elimination

			Improved Infrastructure Consistency

			DevOps and CI/CD

			Don’t Repeat Yourself (DRY)

			Creating a Simple AWS DynamoDB Table Using a CloudFormation Template

			Creating an AWS S3 Bucket Using Terraform

			Summary

			Exam Readiness Drill – Chapter Review Questions

			2

			Why Do We Need Terraform?

			History of Infrastructure Provisioning

			Why Is the Cloud Model a Good Fit for Infrastructure Automation?

			Infrastructure Automation Using IaC

			Advantages of IaC

			Various Options for Implementing IaC

			Ad Hoc Scripts

			Configuration Management Tools

			Cloud-Based IaC Services

			Cloud-Agnostic IaC Tools

			What Is Terraform?

			Features of Terraform

			Cloud/Vendor Agnostic

			A Pioneer in IaC

			Wide Partner Integration

			Declarative

			Idempotent

			Easy Learning Curve

			Version Controlled

			Automation

			Documentation

			Community Support

			Licensing Change from Version 1.5.5 (Aug 2023)

			Summary

			Exam Readiness Drill – Chapter Review Questions

			3

			Basics of Terraform and Core Workflow

			Technical Requirements

			How Terraform Works

			Getting Started with Terraform

			Terraform CLI Installation Check

			AWS CLI Installation Check

			Creating Your First Terraform Resource – AWS IAM User

			Setting up AWS Credentials

			Terraform Configuration

			Creating the AWS IAM User

			Terraform Settings

			HCP Terraform Configuration Using the cloud {} block

			Terraform Backend Configuration Using the backend {} Block

			Initialization

			Partial Configuration

			The required_version Setting

			The required_providers {} Block

			Experimental Features

			Provider Metadata

			Terraform Providers

			Types of Terraform Providers

			Official Providers

			Partner Providers

			Community Providers

			Archived Providers

			Provider Requirements

			Local Names

			Source Addresses

			Version Constraints

			Provider Configuration

			Provider Meta-Arguments

			Dependency lock file (.terraform.lock.hcl)

			Resources and Data Sources

			Resources Syntax

			Resources Meta-Arguments

			depends_on

			count

			for_each

			provider

			lifecycle

			Data Sources

			Variables and Outputs

			Input Variables

			Declaring Input Variables

			Supported Arguments

			Input Variables Assignment

			Input Variables Precedence

			Output Values

			Local Values

			Core Workflow

			Write – Creating the Configuration Script

			Plan – Previewing the Changes

			Apply – Provisioning the Infrastructure

			Summary

			Exam Readiness Drill – Chapter Review Questions

			4

			Terraform Commands and State Management

			Technical Requirements

			Basic Workflow Commands

			The init Command

			The plan Command

			The apply Command

			The destroy Command

			Commands for Code Management

			The fmt Command

			The validate Command

			Special Commands

			The login Command

			The logout Command

			The console Command

			The output Command

			The show Command

			The graph Command

			The import Command

			State Management and the terraform state Command

			The state Command

			Subcommands of terraform state

			The terraform state list Command

			The terraform state show Command

			The terraform state mv Command

			The terraform state rm Command

			The terraform state replace-provider Command

			The terraform state pull Command

			The terraform state push Command

			Summary

			Exam Readiness Drill – Chapter Review Questions

			5

			Terraform Modules

			Technical Requirements

			Why Do We Need Modules?

			Complexity

			Duplication of Code

			Segregation

			Misconfiguration

			What Is a Terraform Module?

			Advantages of Modules

			Reduces Complexity

			Reduces Code Duplication

			Segregation

			Reduces Misconfigurations

			Self-Service

			Types of Modules

			The Root Module

			The Child Module

			Local Modules

			Remote Modules

			Private Modules

			Public Modules

			Module Structure

			The Module Block’s Syntax

			Key Points to Consider When You Create a Module

			Key Points to Consider While Using a Module

			Drawbacks of Modules

			Summary

			Exam Readiness Drill – Chapter Review Questions

			6

			Terraform Backends and Resource Management

			What Are Backends?

			Backend Configuration

			Configuring the backend {} Block

			Partial Configuration

			Supported Backends

			local

			remote

			s3

			http

			Environment Variable Support

			pg

			Environment Variable Support

			Kubernetes

			Consul

			azurerm

			cos

			Environment Variable Support

			gcs

			oss

			Resource Addressing and Dependencies

			Resource Addressing

			Module Path

			Resource Specifications

			Addressing Resources with the for_each {} Block

			Resource Dependencies

			Implicit Dependency

			Explicit Dependency

			Expressions and Constraints

			Data Types

			Operators

			Conditional Expressions

			for Expressions

			splat Expressions

			Type Constraints

			The any Type

			“optional”

			Version Constraints

			Summary

			Exam Readiness Drill – Chapter Review Questions

			7

			Debugging and Troubleshooting Terraform

			Configuration Errors

			override.tf File-Related Issues

			terraform validate

			Variable-Related Issues

			Type Constraint

			Input Validation

			Variable Precedence

			State-Related Issues

			Configuration Drift

			State Conflict

			Migrating the State from One Backend to Another

			Core and Provider-Related Issues

			Module-Related Issues

			Missing Features

			Output-Related Issues

			Unsupported Argument

			Version-Related Issues

			Taking Help from the Forum

			Bug Reporting

			Gotchas

			Avoid Lists Where Possible

			Using -target in Terraform Runs

			General Tips

			Summary

			Exam Readiness Drill – Chapter Review Questions

			8

			Terraform Functions

			Technical Requirements

			Function Syntax

			Numeric Functions

			The abs() Function

			The ceil() Function

			The floor() Function

			The max() Function

			The min() Function

			The pow() Function

			The log() Function

			The signum() Function

			The parseint() Function

			String Functions

			The split() Function

			The join() Function

			The endswith() Function

			The startswith() Function

			The chomp() Function

			The substr() Function

			The strrev() Function

			The lower() Function

			The upper() Function

			The trim() Function

			The trimprefix() and trimsuffix() Functions

			The trimspace() Function

			The indent() Function

			The replace() Function

			The strcontains() Function

			The title() Function

			The format() Function

			The formatlist() Function

			The regex() Function

			The regexall() Function

			Date and Time Functions

			The timestamp() Function

			The formatdate() Function

			The plantimestamp() Function

			The timeadd() Function

			The timecmp() Function

			Collection Functions

			The alltrue() Function

			The anytrue() Function

			The chunklist() Function

			The coalesce() and coalescelist() Functions

			The compact() Function

			The concat() Function

			The contains() Function

			The distinct() Function

			The element() Function

			The flatten() Function

			The keys() and values() Functions

			The index() Function

			The length() Function

			The lookup() Function

			The matchkeys() Function

			The merge() Function

			The one() Function

			The range() Function

			The reverse() Function

			Set Functions

			The setintersection() Method

			The setproduct() Method

			The setunion() Method

			The setsubtract() Method

			The slice() Function

			The sort() Function

			The sum() Function

			The transpose() Function

			The zipmap() Function

			Type Conversion Functions

			The can() Function

			The sensitive() and nonsensitive() Functions

			The try() Function

			The type() Function

			Conversion Functions

			Filesystem Functions

			The abspath() Function

			The dirname() and basename() Functions

			The pathexpand() Function

			The file() and filebase64() Functions

			The fileexists() Function

			The fileset() Function

			The templatefile() Function

			IP Network Functions

			The cidrhost() Function

			The cidrnetmask() Function

			The cidrsubnet() Function

			The cidrsubnets() Function

			Encoding Functions

			The base64encode() and base64decode() Functions

			The base64gzip() Function

			The csvdecode() Function

			The jsonencode() and jsondecode() Functions

			The textencodebase64() Function

			The textdecodebase64() Function

			The urlencode() Function

			The yamlencode() and yamldecode() Functions

			Hash and Crypto Functions

			The uuid() Function

			The uuidv5() Function

			Summary

			Exam Readiness Drill – Chapter Review Questions

			9

			Understanding HCP Terraform’s Capabilities

			Terraform Editions

			Shortcomings of Terraform Community Edition

			HCP Terraform Features

			Remote State Management

			Multiple Workflows

			Multiple Execution Modes

			Version Control System Integration

			Private Registry

			Notifications

			Run Tasks

			Role-Based Access Control

			Policy Enforcement

			Cost Estimation

			HCP Terraform Pricing

			Key Concepts of HCP Terraform

			Workspaces

			Projects

			Users

			Teams

			Permissions

			Organizations

			Locking Workspaces

			Sentinel Policies

			Explorer

			HCP Terraform Sign-Up

			Creating an Account with HCP Terraform

			Creating an Account with HCP

			Exercises on Workflows and Execution Modes

			Remote Execution Mode Using the CLI-Driven Workflow

			Local Execution Mode Using the CLI-Driven Workflow

			Remote Execution Mode Using the VCS/UI Workflow

			Creating a Public GitHub Repository and Adding Configuration Files

			Integrating the VCS Repository with HCP Terraform

			Testing the VCS/UI Workflow in HCP Terraform

			Cost Estimation Feature

			Migrating to HCP Terraform or Terraform Enterprise

			Terraform Enterprise Features

			Summary

			Exam Readiness Drill – Chapter Review Questions

			10

			Miscellaneous Topics

			Technical Requirements

			Input Validations

			Preconditions and Postconditions

			The check {} block

			Workspaces

			The dynamic {} block

			Provisioners

			The file provisioner

			The local-exec provisioner

			The remote-exec provisioner

			Handling Sensitive Data

			AWS Access Keys or Admin Credentials

			Variables

			Output Values

			Next Steps

			Summary

			Exam Readiness Drill – Chapter Review Questions

			11

			Accessing the Online Practice Resources

			Other Books You May Enjoy

		

	
		
			Preface

			With the cloud being the new normal for the deployment of applications, Infrastructure as Code (IaC) becomes very important in managing the infrastructure used to host these applications. HashiCorp’s Terraform is leading this space, with many startups and enterprises choosing it over the cloud-native IaC services for infrastructure management.

			The knowledge, working experience, and certification of Terraform will definitely give engineers an edge over their peers.

			This book will help you get a good understanding of Terraform concepts and prepare for the certification. The chapters in the book follow the certification content and cover all the key concepts that you’re expected to understand to pass the certification.

			By the end of the book, you will be confident in managing a Terraform-based setup and deciding which Terraform edition to use for your use case, and will be ready to take the certification.

			Who This Book Is For

			Administrators, CloudOps engineers, DevOps engineers, developers, architects, any other roles related to infrastructure management, and anyone who wants to keep up with the latest in infrastructure management will all benefit from learning Terraform.

			Having some programming background will help you quickly learn Terraform, but this is not mandatory.

			Having a working knowledge of any of the cloud platforms will also help when it comes to trying out the Terraform code.

			What This Book Covers

			Chapter 1, Introduction to Infrastructure as Code (IaC) and Concepts, will help you get a clear understanding of IaC concepts and build your knowledge of the Terraform tool.

			Chapter 2, Why Do We Need Terraform?, will give you an idea about the advantages of IaC when compared to the manual provisioning of infrastructure. The chapter will also discuss the Terraform tool and its benefits over other tools/services used for IaC.

			Chapter 3, Basics of Terraform and Core Workflow, will introduce you to the building blocks that make Terraform an efficient tool to use. It will help you get a basic idea of what constitutes Terraform.

			Chapter 4, Terraform Commands and State Management, is about the various commands you will use while working with Terraform CLI. While some commands are part of almost every infrastructure workflow, some may not be regularly used. But every command has its own significance.

			Chapter 5, Terraform Modules, will introduce you to modules, one of the core concepts of Terraform because of their extensive use in the production environment.

			Chapter 6, Terraform Backends and Resource Management, will cover remote backend configurations with supported backends and the ways to configure them. You will also take a look at some use cases.

			Chapter 7, Debugging and Troubleshooting Terraform, talks about the issues you generally face while managing Terraform and how to either avoid, debug, or fix them.

			Chapter 8, Terraform Functions, will cover the different built-in functions and their syntax with examples for better understanding.

			Chapter 9, Understanding HCP Terraform’s Capabilities, will introduce you to HCP Terraform and Terraform Enterprise, the managed Terraform offerings by HashiCorp.

			Chapter 10, Miscellaneous Topics, will cover topics relevant to the certification exam that could not be covered in the other chapters. These could add value when you encounter special use cases.

			Online Practice Resources

			With this book, you will unlock unlimited access to our online exam-prep platform (Figure 0.1). This is your place to practice everything you learn in the book. How to access the resources. To learn how to access the online resources, refer to Chapter 11, Accessing the Online Practice Resources at the end of this book.

			
				
					[image: Figure 0.1 – Online exam-prep platform on a desktop device]
				

			

			Figure 0.1 – Online exam-prep platform on a desktop device

			Sharpen your knowledge of Terraform concepts with multiple sets of mock exams, interactive flashcards, and exam tips accessible from all modern web browsers.

			Note

			If you are using the digital version of this book, we advise you to type the code and command lines yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the Example Code Files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition. If there are any updates to the code, the GitHub repository will be updated.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out.

			Download the Color Images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/6ryKi.

			Conventions Used

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: In the following command, the file is downloaded under ~/Downloads and hence the command is being run from the Downloads folder.

			A block of code is set as follows:

			terraform {

			 required_providers {

			 aws = {

			 source = "hashicorp/aws"

			 version = "~> 5.0"

			 }

			 }

			}

			provider "aws" {

			 region = "ap-south-1"

			}

			Add the code highlight example before the command line sentence:

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			terraform {

			 required_providers {

			 local name = {

			 source = «source location

			 »version = «version constraint

			 »}

			 }

			}

			Any command line or output is written as follows:

			brew tap hashicorp/tap

			Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an example: This is exactly where Infrastructure as Code (IaC) adds value.

			Tips or important notes

			Appear like this.

			Get in Touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form. We ensure that all valid errata are promptly updated in the GitHub repository, with the relevant information available in the Readme.md file. You can access the GitHub repository at https://packt.link/ykI4S.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Setting up the Environment

			Before exploring the book, you need to set up Terraform CLI and configure one of the cloud platforms for Terraform usage. We use the AWS cloud platform in this book.

			Terraform works seamlessly across multiple operating systems. It offers multiple installation options. The following sections will help you understand the Terraform components and the installation and configuration of Terraform for AWS:

			
					Components of Terraform

					Terraform installation:	macOS
	Linux
	Windows

					Configuring Terraform with AWS

			

			By the end of this section, you will understand the different components of Terraform and the different ways of installing Terraform across Linux, Windows, and macOS.

			Components of Terraform

			When Terraform was launched in 2014, it was a single component that included the provider plugins as part of the binary. In 2017, HashiCorp made the decision to separate the providers to allow the provider’s code to be managed independently from the Terraform binary (from Terraform version 0.10).

			Currently, Terraform has a plugin-based architecture in which the Terraform core makes a remote procedure call (RPC) to the Terraform plugins to provision and manage the infrastructure.

			Terraform is composed of two components:

			
					Terraform core: This is a statically compiled binary written in the Go programming language. Once it has been compiled, you get a binary file that is used as the command-line tool. This binary is downloaded by users and acts as an entry point. The core communicates with the plugins, reads the configuration files, creates a plan, and manages the resources.

					Terraform plugins: Terraform plugins are the binaries that expose an implementation for a specific service/provider, such as AWS, GCP, or Salesforce. These plugins get invoked by the Terraform core over RPC. The providers are a type of plugin that needs to be installed separately. These provider plugins are responsible for authenticating and initializing the libraries to make the API calls to the infrastructure provider.

			

			At the time of this book, Terraform supports the Windows, macOS, FreeBSD, OpenBSD, Solaris, and Linux (Ubuntu/Debian, CentOS/RHEL, Fedora, and Amazon Linux) operating systems. Figure 0.2 summarizes the details of the Terraform installation.

			
				
					[image: Figure 0.2: Terraform installation]
				

			

			Figure 0.2: Terraform installation

			In the following section, you will learn how to install Terraform on macOS, Linux, and Windows.

			Terraform Installation

			The Terraform installation process varies depending on the operating system and the CPU architecture.

			macOS

			You can install Terraform on macOS using a package manager (Homebrew), by downloading the pre-compiled binary, or by compiling it from the source. In this section, you will learn how to install via the package manager and pre-compiled binary.

			Package Manager – Homebrew

			Homebrew is a free, open source package management system for macOS. The following steps will help you install Terraform using the Homebrew package manager:

			
					Install the HashiCorp tap containing the Terraform binary by running the following command:brew tap hashicorp/tap

					Install Terraform by running the following command:brew install hashicorp/tap/terraform

					After installation, you should see some output similar to that shown in Figure 0.3. There may be some variation in the messages received depending on the presence of a previous installation of Terraform.

			

			
				
					[image: Figure 0.3: Terraform installation using Homebrew]
				

			

			Figure 0.3: Terraform installation using Homebrew

			
					Test the installation of Terraform by running the following command, which shows the version:terraform -v

					You should see some output like that shown in Figure 0.04. The version shown on your terminal may be a different one.

			

			
				
					[image: Figure 0.4: Terraform installation validation]
				

			

			Figure 0.4: Terraform installation validation

			Pre-Compiled Binary Download

			If you are looking for a specific version of Terraform, it is recommended to go with the pre-compiled binary option. Another reason to go with this installation option is that the package managers may not always have the latest version of the software.

			Pre-compiled binaries are available in both AMD64 and ARM64. Make sure to choose the right binary depending on your CPU architecture. The following steps will help you install Terraform using a pre-compiled binary:

			
					Navigate to the following URL that has the latest version of pre-compiled binary:

			

			https://developer.hashicorp.com/terraform/install

			
					You should see the binaries, as shown in Figure 0.5.

			

			
				
					[image: Figure 0.5: Pre-compiled binary for macOS]
				

			

			Figure 0.5: Pre-compiled binary for macOS

			
					Depending on the CPU architecture of your laptop or server, you can choose AMD64 or ARM64.

					The binary is downloaded in ZIP format. Navigate to the path where the file was downloaded and unzip it. In the following command, the file is downloaded under ~/Downloads and hence the command is being run from the Downloads folder:~/Downloads $ unzip terraform_1.7.3_darwin_arm64.zip

					You should see the Terraform binary file, as shown in Figure 0.6.

			

			
				
					[image: Figure 0.6: Unzipping the Terraform ZIP file]
				

			

			Figure 0.6: Unzipping the Terraform ZIP file

			
					Now, move the Terraform binary to the appropriate directory on the filesystem. Typically, it is moved to /usr/local/bin:mv ~/Downloads/terraform /usr/local/bin/

					Now you can test the Terraform installation by running the following command:terraform -v

			

			You should see the output detailing the Terraform version as shown in Figure 0.7.

			
				
					[image: Figure 0.7: Pre-compiled binary installation validation]
				

			

			Figure 0.7: Pre-compiled binary installation validation

			Note

			If you get an error when you run terraform -v, make sure your PATH variable has the location where the Terraform binary is moved to. Here, the binary is moved to /usr/local/bin, and this should be present in your PATH environment variable on your operating system.

			Linux

			Terraform is available for Ubuntu/Debian-based OS, CentOS/RHEL-based OS, Fedora, and Amazon Linux operating systems. All operating systems support installation via the package manager, pre-compiled binary, and compilation from the source.

			In the following sections, you will learn how to install Terraform in Ubuntu and Amazon Linux.

			Package Manager

			Use the package manager specific to your Linux OS distribution to install Terraform. Here, you will be using Ubuntu and Amazon Linux as examples. For other OS, refer to https://developer.hashicorp.com/terraform/install.

			Ubuntu

			The following steps will help you install Terraform via the package manager in Ubuntu:

			
					Download HashiCorp’s GPG key onto your OS:wget -O- https://apt.releases.hashicorp.com/gpg | sudo gpg --dearmor -o /usr/share/keyrings/hashicorp-archive-keyring.gpg

					Add HashiCorp’s apt repository that contains Terraform:echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] https://apt.releases.hashicorp.com $(lsb_release
-cs) main" | sudo tee /etc/apt/sources.list.d/hashicorp.list

					Update the repo and install Terraform:sudo apt update && sudo apt install terraform

					Test the installation:terraform version

			

			If you get the version details as output, then Terraform has been installed successfully.

			Amazon Linux

			The following steps will help you install Terraform via the package manager in Amazon Linux:

			
					Install yum-config-manager to manage the repositories:sudo yum install -y yum-utils shadow-utils

					Add the HashiCorp Linux repository:sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/AmazonLinux/hashicorp.repo

					Install Terraform:sudo yum -y install terraform

					Test the installation:terraform version
	If you get the version details as output, then Terraform has been installed successfully.

			

			Pre-Compiled Binary Download

			Copy the appropriate binary’s link for your OS and CPU architecture from the following URL:

			https://developer.hashicorp.com/terraform/install

			All the operating systems have similar steps: install the unzip application, download the Terraform binary, unzip the archive, move the binary to the right location, and test it. To avoid repetition, this section will cover Ubuntu only. For other OS, please make the required changes in the commands (mostly in the unzip installation) before proceeding with this method.

			Ubuntu

			The following steps will help you install Terraform using a pre-compiled binary in Ubuntu:

			
					Install the unzip package, which is required to unzip the Terraform file:sudo apt-get install unzip

					Download the Terraform binary that needs to be installed (you need to copy this link from the HashiCorp downloads URL):wget https://releases.hashicorp.com/terraform/1.7.3/terraform_1.7.3_linux_amd64.zip

					Extract the downloaded file archive:unzip terraform_1.7.3_linux_amd64.zip

					Move the extracted file into a directory as defined in the PATH variable:mv terraform /usr/local/bin/

					Test the installation:terraform version
	If you get the version details, Terraform is installed successfully.

			

			Compile from Source

			The compile from source option is typically used for operating systems that are not directly supported by Terraform, but where you still want to install it.

			The steps to compile the Terraform from source remain the same across the Linux OS. You will have to make sure you use an appropriate package manager to install go. The following steps are done on Ubuntu:

			
					To compile the Terraform binary from source, clone the HashiCorp Terraform repository:git clone https://github.com/hashicorp/terraform.git

					Navigate to the new directory:cd terraform

					Install go, which is required to compile the binary:sudo snap install go

					Now compile the binary by running the following command. The compiled binary is stored in $GOPATH/bin/terraform:go install

					Move the compiled Terraform binary file into a directory searched for executables. You will first have to navigate to the bin folder of the go installation and run the following command:mv terraform /usr/local/bin/

					Test the installation:terraform version
	If you get the version details, Terraform has been installed successfully.

			

			Windows

			You can install Terraform on Windows using the Chocolatey package manager. You do not have to add the location of the Terraform binary in the PATH variable when installed through Chocolatey. The following steps will help you install Terraform in Windows using Chocolatey:

			
					Open the PowerShell CLI as an administrator.

					Enter the following command, which will install the Chocolatey package manager. This has been tested on Windows Server 2022 for the installation of Chocolatey. Please make use of the command appropriate for your version of Windows to install Chocolatey:Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

					Once the installation succeeds, test it by running the following command:choco version

					Output like that in Figure 0.8 confirms the successful installation of Chocolatey:

			

			
				
					[image: Figure 0.8: Chocolatey installation validation]
				

			

			Figure 0.8: Chocolatey installation validation

			
					Use Chocolatey to install Terraform by running the following command:choco install -y terraform

			

			The output will look like Figure 0.9 when Terraform is successfully installed:

			
				
					[image: Figure 0.9: Terraform installation via Chocolatey]
				

			

			Figure 0.9: Terraform installation via Chocolatey

			
					Test the installation:terraform version

					If you get the version details as output, then Terraform has been installed successfully.

			

			Pre-Compiled Binary Download

			The following steps will help you install Terraform on Windows using a pre-compiled binary:

			
					Depending on your operating system’s CPU architecture, download either the 386 or AMD64 binary from the following HashiCorp URL:

			

			https://developer.hashicorp.com/terraform/install

			
					The file you download will be in ZIP format. Extract the contents of the archive to get the terraform.exe file.

					Create a new folder named terraform under C:\Program Files (x86) and move this terraform.exe file into that folder (i.e., to C:\Program Files (x86)\terraform).

					You will have to add the Terraform binary file’s location in the PATH environment variable to make it available for the command line.

					Open the command line and execute SystemPropertiesAdvanced. This should open the System Properties window on the Advanced tab, as shown in Figure 0.10. (Alternatively, you can search for advanced system settings in the search bar.)

			

			
				
					[image: Figure 0.10: System properties]
				

			

			Figure 0.10: System properties

			
					Click on Environment Variables. This should open a new window.

					Select Path under System variables and click Edit as shown in Figure 0.11. This should open another screen.

			

			
				
					[image: Figure 0.11: Modifying the PATH environment variable]
				

			

			Figure 0.11: Modifying the PATH environment variable

			
					On the new screen, either add the terraform.exe file’s location manually as shown in Figure 0.12, or browse to the location of the terraform.exe file to select it. Once the new location appears on the screen, click OK to save it.

			

			
				
					[image: Figure 0.12: Adding the Terraform location to the PATH environment variable]
				

			

			Figure 0.12: Adding the Terraform location to the PATH environment variable

			
					In the command line, run the following command, which should show the Terraform version if the configuration was successful:terraform version

			

			Configure Terraform for AWS

			For Terraform to manage the resources in any platform, it must first authenticate against the platform. The following steps will help you in configuring Terraform to interact with AWS to manage the resources:

			
					Make sure you have installed Terraform and the AWS CLI. You can follow the steps given at the following URL to install the AWS CLI:

			

			https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

			
					Terraform can authenticate against AWS using the following methods:	Parameters in the provider configuration (access key and secret access key in given in the provider config)
	Environment variables (access key and secret access key passed through environment variables)
	Shared credentials files (credentials are taken from $HOME/.aws/credentials)
	Shared configuration files (credentials are taken from $HOME/.aws/config)
	Container credentials (credentials are taken from the container’s task role)
	Instance profile credentials (only if you are running Terraform on EC2 with an IAM role associated)
	Assuming an IAM role (very useful for AWS multi-account login)

			

			In the following steps, you will learn how to configure the Terraform to authenticate to AWS via Shared credentials files:

			
					Log in to the AWS Management Console and create an IAM user with enough permissions to manage the required resources. Detailed instructions to create an IAM user are provided at https://packt.link/7afrg.

					Generate the access key and secret access key for this IAM user from the IAM dashboard. Copy the access key and secret access key, as they will be required in later steps.

					Configure the AWS CLI to use the credentials that were copied in the previous step by running the following command:aws configure

					You will be prompted for the access key, secret key, Region, and output format. Paste these details according to the prompt as shown in Figure 0.13.

			

			
				
					[image: Figure 0.13: Configuring the AWS CLI]
				

			

			Figure 0.13: Configuring the AWS CLI

			
					Once you enter the details, the credentials get stored in the ~/.aws/credentials file in Linux and macOS.

					You can use the following block to finish the final configuration required for Terraform to talk to AWS. Create a file named provider.tf containing the following code:terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 5.0"
 }
 }
}
provider "aws" {
 region = "ap-south-1"
}

			

			Note

			Note that we have not made any reference to the file where the credentials are stored or the profile used by the AWS CLI. If we are using the default options, we do not have to explicitly specify this as Terraform will automatically detect and use them.

			When you run terraform init and terraform plan with the provider code, it should go through without any issues as shown in Figure 0.14:

			terraform init

			terraform plan

			
				
					[image: Figure 0.14: Configuring AWS provider]
				

			

			Figure 0.14: Configuring AWS provider

			You can test the connectivity to AWS by adding a simple VPC creation code from the public module either in the same provider.tf file or by creating a new file named vpc.tf (make sure both files are in the same folder) and then running terraform plan:

			module "vpc" {

			 source = "terraform-aws-modules/vpc/aws"

			 version = "5.5.2"

			}

			You will see terraform plan trying to create four resources (NACL, security group, route table, and VPC). Only the VPC plan is shown in Figure 0.15 for brevity, but note that the plan shows the overall addition of four resources.

			
				
					[image: Figure 0.15: Terraform plan for VPC creation in AWS]
				

			

			Figure 0.15: Terraform plan for VPC creation in AWS

			The terraform plan output confirms that we have successfully configured Terraform to communicate with AWS to manage the resources.

			Note

			There are multiple editors that can be used for writing Terraform code. The choice of editor is very subjective. However, the most common ones are Visual Studio Code (VSCode), Atom, and PyCharm. Irrespective of the editor you choose, make sure you install the Terraform plugin/extension, which helps a lot when writing Terraform code.

			Share Your Thoughts

			Once you’ve read HashiCorp Terraform Associate (003) Exam Guide, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

		

		
			
			

		

		
			
			

		

		
			Download a Free PDF Copy of This Book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below:

			

			
				
					[image: https://packt.link/free-ebook/9781804618844]
				

			

			https://packt.link/free-ebook/9781804618844

			
					Submit your proof of purchase.

					That’s it! We’ll send your free PDF and other benefits to your email directly.

			

		

	
		
			1

			Introduction to Infrastructure as Code (IaC) and Concepts

			In the ever-evolving era of technology, the software applications being built are expected to be scalable in nature at the very minimum. The term scalability means the ability of an application or system to always match the growing needs of its user base and handle the increase in the number of users without any problems. This is applicable to all types of applications, including web applications, backend microservices, and internal apps. Such scalable apps are well suited for deployment in the cloud rather than on-premises because of the dynamic resource needs and because automating the scaling process (both scaling up and scaling down) will reap greater benefits. This is exactly where Infrastructure as Code (IaC) adds value.

			In this chapter, you will explore IaC in detail and the various aspects of this framework through the following topics:

			
					What is IaC?

					Basic concepts of IaC

					IaC tools on the market

					IaC use cases

					Benefits of IaC

			

			By the end of this chapter, you will have a firm understanding of IaC concepts, which will help you build your knowledge of the Terraform tool and focus on getting the HashiCorp Terraform Associate 003 certification in the subsequent chapters.

			Making the Most Out of This Book – Your Certification and Beyond

			This book and its accompanying online resources are designed to be a complete preparation tool for your AZ-204 Exam.

			The book is written in a way that you can apply everything you’ve learned here even after your certification. The online practice resources that come with this book (Figure 1.1) are designed to improve your test-taking skills. They are loaded with timed mock exams, interactive flashcards, and exam tips to help you work on your exam readiness from now till your test day.

			Before You Proceed

			To learn how to access these resources, head over to Chapter 11, Accessing the Online Practice Resources, at the end of the book.

			
				
					[image: Figure 1.1 – Dashboard interface of the online practice resources]
				

			

			Figure 1.1 – Dashboard interface of the online practice resources

			Here are some tips on how to make the most out of this book so that you can clear your certification and retain your knowledge beyond your exam:

			
					Read each section thoroughly.

					Make ample notes: You can use your favorite online note-taking tool or use a physical notebook. The free online resources also give you access to an online version of this book. Click the BACK TO THE BOOK link from the Dashboard to access the book in Packt Reader. You can highlight specific sections of the book there.

					Chapter Review Questions: At the end of this chapter, you’ll find a link to review questions for this chapter. These are designed to test your knowledge of the chapter. Aim to score at least 75% before moving on to the next chapter. You’ll find detailed instructions on how to make the most of these questions at the end of this chapter in the Exam Readiness Drill - Chapter Review Questions section. That way, you’re improving your exam-taking skills after each chapter, rather than at the end.

					Flashcards: After you’ve gone through the book and scored 75% more in each of the chapter review questions, start reviewing the online flashcards. They will help you memorize key concepts.

					Mock Exams: Solve the mock exams that come with the book till your exam day. If you get some answers wrong, go back to the book and revisit the concepts you’re weak in.

					Exam Tips: Review these from time to time to improve your exam readiness even further.

			

			This chapter covers the following main topics:

			
					The benefits of cloud computing

					Cloud deployment models

					Cloud service models

					The core concepts of Azure

			

			Technical Requirements

			This is an introductory chapter on IaC that covers aspects such as use cases, different tools, and benefits that require no prior experience. However, basic knowledge of code development practices, public and private clouds, automation, DevOps, containers, and virtualization will help you understand the chapter better.

			There are a couple of exercises at the end of this chapter to help you get a feel for using IaC tools. To complete them, you need the following:

			
					Amazon Web Services (AWS) account ID with administrator access

					AWS CLI version 2.x.x

					Terraform CLI version 1.5.x or later

					Visual Studio Code or any text editor

			

			The GitHub repository for the chapter contains the graphics and sample scripts used in the chapter and can be found here:

			https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch1

			What Is IaC?

			In simple terms, IaC is the process of managing and provisioning an infrastructure through code instead of manual processes. In software engineering, you usually come across code development in programming languages such as Java, Python, and so many others that follow the Software Development Life Cycle (SDLC) process and then store them in a version-controlled source management tool such as GitHub or Bitbucket when they’re ready. They are then deployed in the appropriate infrastructure where needed, either manually or with the help of an automated CI/CD pipeline.

			The concept of IaC revolves around similar practices, such as creating a set of configuration scripts that will exactly provide the same infrastructure every time when executed and are also version controlled and properly tested.

			IaC tools help us define the infrastructure in human-readable configuration files that can be applied multiple times, and they provide the same infrastructure every time without any changes from the desired state.

			Figure 1.1 shows the IaC workflow and how it can transform the configuration scripts or files into real-world infrastructure components.

			
				
					[image: Figure 1.2 – IaC workflow]
				

			

			Figure 1.2 – IaC workflow

			Scenario

			“Company X wants to build a next-generation e-commerce web application that will be used by millions of its customers. The solution will have multiple microservices working with different architectures and will be deployed in a cloud that needs to run 24x7 for 365 days a year.”

			There are two ways to provide the infrastructure needed to run this application:

			
					Traditional approach

					IaC-based approach

			

			In the traditional approach, there are clear segregations of responsibilities among the different teams involved, such as application development teams for app development, infrastructure teams for provisioning the resources to deploy the application, and operations teams to support the solution in production.

			Once the entire solution has been developed and is ready for production, the development team will get in touch with the infrastructure team and share the requirements to run the application, usually with the ticketing mechanism. Then the infrastructure team will have a dedicated person/team to work on the task and make necessary planning for the deployment.

			The planning process will involve procuring the dependent software and the required licenses and installing them on the server where the app will be running. The team will also spend time creating the scripts that need to be run manually before the deployment to get the environment ready.

			The operations team will work on the monitoring part of the web application and come up with approaches such as health checks and mail notifications when there are any issues to support the deployment. There will be situations where the incoming traffic will increase rapidly, which requires scaling, and they might need to contact the infrastructure team to deploy multiple instances to serve the traffic, and the manual process will repeat once again. If there are any manual errors in this approach, that will delay the deployment of additional instances, which will affect the business.

			As you can see, there are different bottlenecks in the overall execution and the temporary delays will have a bigger impact, and that is where the IaC approach will add real value.

			In the IaC approach, based on DevOps principles, the application development team will also be responsible for the infrastructure provisioning, and they might support the application in production.

			Once the application is ready to be deployed, the team focuses on creating the configuration scripts that will provision the required infrastructure on the cloud or on-premises setup. The team would be comfortable with going with the cloud-based deployment to make use of fully managed services and the pay-as-you-go model to avoid upfront costs.

			The configuration scripts will focus on getting the initial setup ready, and they can be modified according to the varying needs of the application traffic. As the requirements state, the solution is expected to be available 24x7 for 365 days a year, but the volume of traffic will not always stay the same. The application does not need to run with the full set of resources during the night or early in the morning because the traffic will be lower. At the same time, the traffic will be enormous on offer days or during holidays, and this can be managed with very few changes to the configuration scripts and with no manual or operational overhead.

			The entire provisioning process can also be automated to scale up/down the resources based on the incoming traffic so that the configuration can be auto applied to eliminate manual intervention. This allows the application developers not to worry about the infrastructure part at all; it is taken care of so that they can purely focus on implementing the business logic in the applications they design.

			The IaC approach comes with the following benefits:

			
					Easy maintenance

					Less turnaround time

					Automated deployment and scaling

					Less/no manual intervention

			

			Now you can proceed with the basic concepts and characteristics of IaC tools to further deepen your understanding of the topic.

			Basic Concepts of IaC

			IaC tools and practices are built based on the concepts described here. It helps to have a solid understanding of these concepts before exploring the advanced topics.

			Declarative Approach versus Imperative Approach

			Most IaC tools use the declarative approach of defining the required infrastructure, in contrast with the traditional imperative programming style. Before you get to know the declarative approach, you can take a look at what the imperative programming approach achieves.

			The imperative programming approach primarily deals with detailed instructions about how exactly the infrastructure provisioning has to be achieved. This could be similar to the execution of setup scripts in the right sequence to set up a virtual machine or laptop, or similar.

			In contrast, the declarative programming approach details the “what,” and describes the desired state of the infrastructure provisioning. This approach does not get into the implementation details, unlike the previous approach. But it tries to keep the configuration in the desired state as much as possible.

			IaC tools such as Terraform support the declarative approach, and Chef supports both the declarative and the imperative approach.

			Version Control

			In software development, it is very common to keep the generated source code in version-controlled repositories such as GitHub and Bitbucket. This will keep the snapshots of the software from each development iteration and help us with reverting the changes and proper tracking.

			In IaC too, version control is required to keep track of infrastructure changes, and this may not be needed if you just work with the scripts that are always run for every new request. Version control also helps us go back to a particular version if there are problems with the latest upgrades or the software versions used.

			Idempotency

			The idempotency behaviour of IaC tools comes along with the declarative approach, and it basically means that the scripts will produce the same output irrespective of the number of times they are executed. This is vitally important because the intention is not to duplicate/overprovision the required infrastructure if the scripts need to be executed more than once.

			This is again different from the traditional programming languages, which might produce new output every time scripts are executed. For example, if a Java program is created to add a SQL database entry every time it is executed, the row will be inserted in every execution, and you can even say that the program will create a new output every time.

			But with IaC provisioning, you can say that you want the code to add an EC2 instance to an AWS account and that is the desired state. In this case, even if the configuration scripts run multiple times, you always need only one EC2 instance, and this is supported by retaining the current state in state files in Terraform and always comparing it with the desired state. If there is no difference between the current state and the desired state, the code will not perform any action and will return an output message such as “The infrastructure matches the configuration, and no changes are required.”

			Infrastructure Provisioning and Configuration Management

			With the IaC tools firmly taking their place in the IT landscape, you also need to understand the difference between infrastructure provisioning and configuration management. This will help you pick the right toolset.

			Infrastructure provisioning deals with the creation of resources such as EC2 instances, virtual machines, and database tables, and setting up container orchestration tools such as Kubernetes before you start running your application workloads on them. Container orchestration tools manage and automate the life cycle of containers at scale and provide out-of-the-box features such as scaling, networking, and load balancing. Basically, you need infrastructure provisioning to be working perfectly from day one of the setup.

			Configuration management is something usually referred to as a “day-two process” where you have to manage the infrastructure with the security updates, install the latest dependencies, configure the application setup, and so on. There are tools such as Ansible and Chef that support both infrastructure provisioning and configuration management, which you will explore in the next section.

			IaC Tools in the Market

			Traditionally, infrastructure provisioning has been taken care of as part of the software configuration management process by the concerned teams. Now, the scope of infrastructure provisioning has broadened more than ever, and each application team is expected to take care of the infrastructure they need. With this, the importance of selecting the right IaC tool becomes vitally important.

			You are now familiar with IaC concepts and the way they help teams bootstrap their deployment infrastructure process. You will now learn about different IaC tools in the market and how you can choose the right one based on your requirements and the capabilities of the selected tool.

			How to Choose the Right IaC Tool

			Before you decide on the most suitable IaC tool, there are some basic questions that need to be answered to help you make the right decision:

			
					What are the different skillsets within the team (i.e., C#, Python, Golang, TypeScript, or none of them)?

					What cloud platform are you planning to deploy resources into?

					Are you comfortable with the declarative approach or the imperative approach of infrastructure provisioning, and which method are you most familiar with (push versus pull)?

					Are you concerned only about infrastructure provisioning or configuration management as well?

			

			The following are the most widely used IaC tools:

			
					HashiCorp Terraform

					Progress Chef (formerly known as Chef)

					Puppet

					Pulumi

					AWS CloudFormation

			

			HashiCorp Terraform

			Terraform is the IaC tool developed by HashiCorp. It is user-friendly and easy to use for new developers. The tool was initially released in July 2014, and it is written in the Golang language.

			Terraform supports multi-cloud platforms such as AWS, Microsoft Azure, Google Cloud Platform (GCP), and several others. Terraform has an extensive list of providers that can be categorized as Official, Community, Partner, and Archived. The providers provide the logical abstraction for the API interactions and are responsible for exposing the resources.

			Users of Terraform define the required infrastructure resources in a set of configuration files written in a declarative configuration language known as HashiCorp Configuration Language (HCL). The configuration files are saved with the .tf extension, and JSON is also supported as an alternative to HCL to define resource configuration.

			A sample Terraform configuration file called main.tf is provided for reference. It creates an EC2 instance of type t3.large with the specified Amazon Machine Image (AMI) ID.

			The script contains different blocks, such as terraform, provider, variable, resource, and output, and each has its own purpose. The terraform block indicates the Terraform provider to use, and the provider block configures this Terraform provider with the specified parameters. The variable block will take the user input, or it can have default values that will be used in the resource block. It will show the output in the terminal when the script is executed:

			terraform {

			 required_providers {

			 aws = {

			 source = "hashicorp/aws"

			 version = "~> 5.0"

			 }

			 }

			}

			provider "aws" {

			 region = "us-east-1"

			}

			variable "ami" {

			 default = "ami-00e93213821bcacf8"

			 description = "Amazon Machine Image ID for Bottlerocket"

			}

			resource "aws_instance" "demo" {

			 ami = var.ami

			 instance_type = "t3.large"

			 tags = {

			 name = "Demo System"

			 }

			}

			output "instance_id" {

			 instance = aws_instance.demo.id

			}

			Progress Chef

			Progress Chef (formerly known as Chef) is an IaC and configuration management tool initially released in January 2009. It is written in Ruby and Erlang.

			The tool uses pure Ruby, a Domain-Specific Language (DSL) for writing system configurations popularly known as recipes. The recipes describe the servers and utilities to be managed and how they need to be configured. When grouped together, the recipes form “cookbooks” with the main intention of making management easier. The cookbooks can also contain other components, such as attributes, templates, and files. Progress Chef is also integrated with multiple cloud platforms, such as AWS, Azure, and GCP, and always ensures that the provisioned servers are available in the desired state.

			Similar to the concept of community providers in Terraform, Progress Chef has Chef Marketplace, which has community workbooks that you can use as dependencies in custom workbooks.

			Creating Your First Recipe

			Say you want to install OpenJDK 1.8 using Chef. You need to create a cookbook and then add a recipe. Here are the steps you can follow:

			
					First, generate the cookbook using the chef generate command once the Chef Development Kit is installed on your workstation/laptop:$ chef generate cookbook cookbooks/java

					Once the cookbook has been created, create a default recipe to install epel-release and java-1.8.0-openjdk with the following content:package 'epel-release' do
 action :install
end
package 'java-1.7.0-openjdk' do
 action :install
end

			

			With these steps, you should be able to install OpenJDK 1.8 on your workstation.

			Puppet

			Puppet is another IaC tool that’s used for infrastructure provisioning and configuration management that uses its own declarative language to describe the configuration. The tool was initially released in 2005 and has both an open source version, Puppet Software, and a closed source version, Puppet Enterprise.

			Puppet software also supports the use of Ruby DSL to define the configuration. It also supports the resource configuration of Unix and Windows systems.

			With this tool, the configuration information is stored in Puppet manifests, which are compiled into a system-specific catalogue with the details on resources and resource dependencies with the help of a utility called Facter.

			The tool uses a client-server architecture. The client is usually called a Puppet agent, and it interacts with the Puppet server installed on one or more servers. The Puppet agent runs in machines to be managed by Puppet, and it fetches the configuration information from the server and applies the changes. The final status report is sent back to the server on the execution results.

			For example, a Unix user can be defined as a resource using Puppet’s declarative language, as shown here:

			user { 'alan':

			 ensure => present,

			 uid => '1000',

			 shell => '/bin/bash',

			 home => '/var/tmp'

			}

			Pulumi

			Pulumi is different from the tools you have read about so far because it takes the conventional approach of using traditional programming languages to set up infrastructure. It therefore becomes really easy for software programmers to onboard themselves onto the IaC bandwagon with their current expertise.

			Pulumi supports programming languages such as TypeScript, JavaScript, Python, Go, .NET, and Java, and markup languages such as YAML to interact with cloud resources with the use of Pulumi SDK.

			This tool was initially released in June 2018, and it comes with the Pulumi CLI, runtime, libraries, and a hosted service. These work together to deliver a robust and efficient way of provisioning, updating, and managing cloud infrastructure.

			To declare new infrastructure resources in your program, you allocate resource objects whose properties correspond to the desired state of your infrastructure. These properties are also used between resources to handle any necessary dependencies and can be exported outside of the stack, if needed.

			Programs usually reside in a project’s working directory that contains the source code for the program and metadata on how to run the program. After writing your program, you can run the pulumi up Pulumi CLI command from within your project directory. This command creates an isolated and configurable instance of your program, known as a stack. Stacks are similar to different deployment environments that you use when testing and rolling out application updates. This can allow you to have different configuration values for each environment where the resources are going to be deployed.

			The following Java program shows how to create an EC2 instance of type t2.micro with the test-sg security group, which allows port 80 access:

			package testproject;

			import com.pulumi.Context;

			import com.pulumi.Exports;

			import com.pulumi.Pulumi;

			import com.pulumi.aws.ec2.Instance;

			import com.pulumi.aws.ec2.InstanceArgs;

			import com.pulumi.aws.ec2.SecurityGroup;

			import com.pulumi.aws.ec2.SecurityGroupArgs;

			import com.pulumi.aws.ec2.inputs.SecurityGroupIngressArgs;

			import java.util.List;

			public class App {

			 public static void main(String[] args) {

			 Pulumi.run(App::stack);

			 }

			 public static void stack(Context ctx) {

			 final var group = new SecurityGroup("test-sg",

			 SecurityGroupArgs.builder()

			 .description("Enable HTTP access")

			 .ingress(SecurityGroupIngressArgs.builder()

			 .protocol("tcp")

			 .fromPort(80)

			 .toPort(80)

			 .cidrBlocks("0.0.0.0/0")

			 .build())

			 .build());

			 final var server = new Instance("web-server",

			 InstanceArgs.builder()

			 .ami("ami-032930428bf1abbff")

			 .instanceType("t2.micro")

			 .vpcSecurityGroupIds(group.name().applyValue(List::of))

			 .build());

			 ctx.export("publicIp", server.publicIp());

			 ctx.export("publicDns", server.publicDns());

			 }

			}

			AWS CloudFormation

			AWS CloudFormation is a service provided by AWS that helps users create AWS resources in an automated and secure manner. It allows users to spend less time managing their infrastructure resources so they can focus more on applications that will be running on AWS.

			With AWS CloudFormation, the user can create template files that describe all the resources needed (for example, EC2 instances, RDS instances, or any S3 buckets) and the tool will take care of provisioning them. CloudFormation takes care of handling the resource dependencies automatically.

			A CloudFormation template consists of several sections, including resources, parameters, mappings, conditions, outputs, and metadata. The most important section is the resources section, which defines the AWS resources to be created or modified:

			
					Resources: Details the AWS components that are created, updated, or deleted when the CloudFormation stack is created, updated, or modified

					Parameters: Used to pass custom input to the template

					Mappings: Set of key-value pairs that can be used to map the user input to the corresponding output values

					Conditions: Defines conditional statements within the CloudFormation template

					Outputs: Exports the information about the resources created by the template

					Metadata: Additional information about the template or resources within the template

			

			An example CloudFormation template that creates an EC2 instance and associates it with the Elastic IP address is given here for reference:

			{

			 "AWSTemplateFormatVersion": "2010-09-09",

			 "Description": "AWS CloudFormation Sample Template to associate an Elastic IP address with an Amazon EC2 instance",

			 "Parameters": {

			 "InstanceType": {

			 "Description": "EC2 instance type",

			 "Type": "String",

			 "Default": "t1.micro",

			 "AllowedValues": [

			 "t1.micro"

],

			 "ConstraintDescription": "Must be a valid EC2 instance type."

			 },

			 "KeyName": {

			 "Description": "Existing EC2 KeyPair name to enable SSH access to the instances",

			 "Type": "AWS::EC2::KeyPair::KeyName",

			 "ConstraintDescription": "Name of an existing EC2 KeyPair."

			 }

			 },

			 "Mappings": {

			 "AWSInstanceType2Arch": {

			 "t1.micro": {

			 "Arch": "HVM64"

			 }

			 },

			 "AWSInstanceType2NATArch": {

			 "t1.micro": {

			 "Arch": "NATHVM64"

			 }

			 },

			 "AWSRegionArch2AMI": {

			 "us-east-1": {

			 "HVM64": "ami-032930428bf1abbff",

			 "HVMG2": "ami-0aeb704d503081ea6"

			 }

			 }

			 },

			 "Resources": {

			 "EC2Instance": {

			 "Type": "AWS::EC2::Instance",

			 "Properties": {

			 "UserData": {

			 "Fn::Base64": {

			 "Fn::Join": [

			 "",

			 [

			 "IPAddress=",

			 {

			 "Ref": "IPAddress"

			 }

]

]

			 }

			 },

			 "InstanceType": {

			 "Ref": "InstanceType"

			 },

			 "KeyName": {

			 "Ref": "KeyName"

			 },

			 "ImageId": {

			 "Fn::FindInMap": [

			 "AWSRegionArch2AMI",

			 {

			 "Ref": "AWS::Region"

			 },

			 {

			 "Fn::FindInMap": [

			 "AWSInstanceType2Arch",

			 {

			 "Ref": "InstanceType"

			 },

			 "Arch"

]

			 }

]

			 }

			 }

			 },

			 "IPAddress": {

			 "Type": "AWS::EC2::EIP"

			 },

			 "IPAssoc": {

			 "Type": "AWS::EC2::EIPAssociation",

			 "Properties": {

			 "InstanceId": {

			 "Ref": "EC2Instance"

			 },

			 "EIP": {

			 "Ref": "IPAddress"

			 }

			 }

			 }

			 },

			 "Outputs": {

			 "InstanceId": {

			 "Description": "InstanceId of the newly created EC2 instance",

			 "Value": {

			 "Ref": "EC2Instance"

			 }

			 },

			 "InstanceIPAddress": {

			 "Description": "IP address of the newly created EC2 instance",

			 "Value": {

			 "Ref": "IPAddress"

			 }

			 }

			 }

			}

			IaC Use Cases

			This section will cover the most important use cases where IaC adds value and increases the developer’s or team’s productivity.

			Multi-Cloud Deployments

			For mission-critical applications, provisioning infrastructure in multi-cloud deployments will increase fault tolerance and reduce their dependency on one particular cloud provider so that they can be highly available if there are any issues. But multi-cloud deployments come with the increased complexity of handling each provider with their own setup, different tools/services, and different configuration procedures. IaC tools such as Terraform allow us to have the same workflow to deploy applications in multi-cloud environments and handle cross-cloud dependencies.

			Application Deployments, Scaling, and Monitoring Tools

			IaC tools can be used to efficiently deploy, release, scale, and monitor infrastructure for multi-tier applications. The multi-tier application architecture usually consists of a web layer that’s accessible from the internet for customers to interact with, a backend layer that exposes the data to the web layer, and a database layer that actually stores the data. This style allows you to individually scale the components and provides the separation of concerns. Using IaC will help you deploy the components together and handle dependencies. For example, the database layer should be provisioned before the web layer or the backend layer.

			Policy Compliance and Management

			There could be situations where we can enforce policies on the types of resources the internal team uses for development for compliance reasons, and IaC helps here as well. There are policy-as-code frameworks such as Sentinel that can be used to implement policies before the resources are provisioned.

			Testing Environments and Software Demos

			The applications are usually developed and tested in different environments, such as development, QA, and pre-prod, before the code is deployed in production. The different environments mostly have different scaling requirements, but with the same set of tools and dependencies, and IaC tools can help provide the infrastructure based on the environment with the same set of scripts.

			IaC tools will also help set the space/environment for software demos that might be needed temporarily and that do not have to go through the ticketing process or reviews, mainly for bootstrapping the testing environments in no time, when compared to the traditional way of installing software and setting up project-related things.

			Benefits of IaC

			IaC comes with a lot of benefits in every phase of software development and also after the product is implemented in production. This removes a lot of bottlenecks in real-world problems around the installation and management of software products and other open-source tools used in the background.

			Some of the key benefits are listed here.

			Rapid Deployments and Tool Integration

			As discussed earlier in the chapter, IaC practices, along with the cloud migration strategy, help organizations reduce their initial capital expenses and focus more on the applications that will be deployed in the cloud.

			In this way, organizations can get started with application development with very minimal costs and take full advantage of the pay-as-you-go model with the cloud. Cloud service providers always strive to provide the best customer experience and at the same time enhance their products with value-added services.

			For example, AWS provides managed services such as Amazon Managed Streaming for Apache Kakfa (Amazon MSK) and Managed Service for Prometheus. These help customers easily integrate popular tools such as Apache Kafka and Prometheus with their applications in the cloud with AWS doing all the heavy lifting.

			With the use of IaC tools such as Terraform and Crossplane, supporting services and actual services needed for compute and storage can be integrated easily and deployed with clear dependencies with very little manual effort.

			Lower Costs and Error Reduction

			Going with the IaC approach of infrastructure provisioning and configuration management will help organizations and individual teams reduce their management costs to surprising levels.

			Here is another example: an organization, BLUE, uses the IaC approach, and another organization, RED, sticks with the manual approach of providing infrastructure for internal application teams.

			Application teams at BLUE initially have to spend their time setting up their IaC scripts based on the application requirements, and these scripts can be reused in every deployment in all possible environments. They need very little to no help from the infrastructure team because of the stability IaC provides.

			But the same scenario will not work with RED. They have to assign and allocate individuals every time a service request is raised, and they have to figure out deployment scripts and need constant communication with the application teams. If there are any problems, they need to do more work, and they need more capacity to support the same set of applications.

			This clearly shows the advantages BLUE has over RED with regard to capacity costs and lower chances of error with infrastructure provisioning.

			Configuration Drift Elimination

			IaC automatically takes care of the configuration drift problem with its architecture. To understand this better, learn what exactly configuration drift is. This particularly arises when the actual state of the deployment Configuration Items (CIs) is different from the original intended state of the deployment.

			For example, person A and person B from the same team with the same level of access are working on setting up an EC2 instance to run the application. Person A has created a Secure Shell (SSH) configuration script to allow SSH access, and at the same time, person B has created scripts that did not work as expected.

			This creates a scenario where the original intended state might be affected by the problematic scripts created by the other individual and, eventually, the instance might become unusable. This scenario can easily be eliminated with the IaC approach, where the original desired state is always remembered and constantly checked against the current configuration.

			If any differences are found, the scripts can be executed once again so the problematic resources can be removed and recreated with the desired status.

			Improved Infrastructure Consistency

			The IaC methodology also ensures that the provisioned infrastructure is always consistent with the desired configuration and that there are no deviations. Once the configuration scripts are in place after careful design, the scripts will always perform the same actions that result in the same infrastructure with the exact setup, irrespective of the number of executions or the execution environment in the current context.

			This helps teams focus more on the application logic and the improvements in the design rather than worrying about the underlying infrastructure.

			DevOps and CI/CD

			DevOps and CI/CD have taken the world by storm, and one of the core principles of these advanced techniques is automation. Since automation is one of the core benefits you get from using IaC, it works well in this landscape.

			DevOps and CI/CD tools such as Jenkins and GitLab work closely with open-source tools and third-party vendor products in the form of plugins, the build or test pipelines integrate them, and the triggers can be automated as well. The alignment of development and operations teams with the CI/CD processes using IaC through a DevOps approach leads to fewer errors and allows for automated deployments.

			When integrated with IaC, DevOps best practices also help the infrastructure provisioning process where the same code is used for deployment in every environment and the code is going through the same testing pipeline, and version control helps maintain the different versions of infrastructure code.

			Don’t Repeat Yourself (DRY)

			With the benefits being discussed so far, it is evident that IaC helps with the deployment process in different environments with the same code base. This completely removes the redundant steps that have to be performed manually every time for each deployment in the traditional approach.

			Hence, this approach supports the DRY principle to reduce manual effort and increase overall efficiency.

			Note

			As indicated earlier in the chapter, you need the AWS CLI set up with credentials for your AWS account and the Terraform CLI to complete the exercises.

			It is assumed that the setup is ready by this point; you will find every step on the internet if you face any issues at all.

			Creating a Simple AWS DynamoDB Table Using a CloudFormation Template

			You are now going to create a new CloudFormation template that will provision a DynamoDB table based on user input when executed, and you will output the details of the table created at the end of the exercise. This will help you get a firm understanding of the IaC tool’s ability to provision the required infrastructure in a declarative fashion. Here are the steps:

			
					Create the template with the template version field and a short description of the template in JSON format:{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "AWS CloudFormation Template to create a simple DynamoDB_Table"
}

					Next, you will define the Parameters block to get the user inputs and configure the default, minimum, and maximum values: "Parameters": {
 "ElementName": {
 "Description": "Primary Key Name",
 "Type": "String",
 "AllowedPattern": "[a-zA-Z0-9]*",
 "MinLength": "1",
 "MaxLength": "2048",
 "ConstraintDescription": "Only alphanumeric characters are allowed"
 },
 "ElementType": {
 "Description": "Primary Key Type",
 "Type": "String",
 "Default": "S",
 "AllowedPattern": "[S|N]",
 "MinLength": "1",
 "MaxLength": "1",
 "ConstraintDescription": "Pattern values must be either S or N"
 },
 "ReadCapacityUnits": {
 "Description": "Provisioned read throughput",
 "Type": "Number",
 "Default": "5",
 "MinValue": "5",
 "MaxValue": "1000",
 "ConstraintDescription": "RCU must be between 5 and 1000"
 },
 "WriteCapacityUnits": {
 "Description": "Provisioned write throughput",
 "Type": "Number",
 "Default": "10",
 "MinValue": "5",
 "MaxValue": "1000",
 "ConstraintDescription": "WCU must be between 5 and 1000"
 }
 },

					You can now create the Resources block, which is responsible for provisioning the DynamoDB resource: "Resources": {
 "myDynamoDBTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": {
 "Ref": "ElementName"
 },
 "AttributeType": {
 "Ref": "ElementType"
 }
 }
],
 "KeySchema": [
 {
 "AttributeName": {
 "Ref": "ElementName"
 },
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": {
 "Ref": "ReadCapacityUnits"
 },
 "WriteCapacityUnits": {
 "Ref": "WriteCapacityUnits"
 }
 }
 }
 }
 },

					The final step is to create the Outputs block, which will output the name of the table you have just created: "Outputs": {
 "TableName": {
 "Value": {
 "Ref": "myDynamoDBTable"
 },
 "Description": "DynamoDB table name"
 }
 }

					Run the template in the AWS CLI with the following command:aws cloudformation create-stack --stack-name DynamoDB-Test --template-body file://./aws-dynamodb-template-cfn.json --parameters ParameterKey=ElementName,ParameterValue=CustomerID ParameterKey=ElementType,ParameterValue=S --region us-east-1

					Upon successful execution, you will get the StackId value for the template in the CLI output and you will be able to see the table in the console, as shown in Figure 1.2:{
 "StackId": "arn:aws:cloudformation:us-east-1:xxxxxxxxxxxx:stack/DynamoDB-Test/23b50a90-56cb-11ee-b665-0a54a53b11f8"
}

			

			
				
					[image: Figure 1.3 – Table in the console]
				

			

			Figure 1.3 – Table in the console

			You have successfully created a DynamoDB table using a CloudFormation template in this exercise, and this can be done with a template in YAML format as well.

			Creating an AWS S3 Bucket Using Terraform

			This exercise will explore the use of another popular IaC tool, Terraform, which we will focus on throughout the book. This will help you get a feel for its usage and learn how its simplified workflow can create real-world resources without any hassle:

			
					Create a working directory, for example, create-s3-bucket-terraform, on a local machine where you will add your Terraform scripts for this exercise:$ mkdir create-s3-bucket-terraform

					You can now create the first configuration file inside the directory called provider.tf to configure the AWS Terraform provider, which will be used in the background:terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 5.14"
 }
 }
 required_version = ">= 1.4"
}
provider "aws" {
 profile = "default"
 region = "ap-south-1"
}
Here, the first terraform configuration block is used to enforce the version constraints and to apply the configuration. The execution will be successful only if the specified criteria match.
The required_providers sub-block is used to specify the provider requirements, such as the source and the version that will be downloaded in the next step. The provider block will specify some default settings for the resources that will be provisioned.

					It is now time to define the actual S3 bucket resource in the new file, main.tf, with the aws_s3_bucket AWS resource with some default tags. Please note that the bucket name we specify must be unique across all the AWS Regions; otherwise, the resource creation might fail. That’s the reason we add a random prefix:resource "aws_s3_bucket" "test-bucket" {
 bucket = "test-s3-bucket-kquiyrt"
 tags = {
 Name = "S3Bucket"
 CreatedBy = "TestUser"
 }
}

					The S3 bucket will be created with the default settings with the resource definition in the previous step, but we will additionally try to enable versioning for the bucket with the aws_s3_bucket_versioning resource:resource "aws_s3_bucket_versioning" "enable_version" {
 bucket = aws_s3_bucket.test-bucket.bucket
 versioning_configuration {
 status = "Enabled"
 }
}

					You are ready now to test our script with the Terraform CLI. Running the terraform init command will download all the provider plugins referenced in the code:$ terraform init
You should be seeing a similar output to the one shown here:

			

			
				
					[image: Figure 1.4: The output will look like this]
				

			

			Figure 1.4: The output will look like this

			
					You can then run the terraform plan command to see a preview of the resources that will be provisioned with the apply command. You can see that there are two resources that will be provisioned, one each for the S3 bucket and the versioning:$ terraform plan
. . .
. . .
Plan: 2 to add, 0 to change, 0 to destroy.

					You can run the terraform apply command to provision the resources and then view it from the AWS Management Console. When prompted for yes/no, please proceed with yes, or we can also use the -auto-approve option with the original command:$ terraform apply
. . .
aws_s3_bucket.test-bucket: Creating...
aws_s3_bucket.test-bucket: Creation complete after 7s [id=test-s3-bucket-kquiyrt]
aws_s3_bucket_versioning.versioning_demo: Creating...
aws_s3_bucket_versioning.versioning_demo: Creation complete after 3s [id=test-s3-bucket-kquiyrt]
Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

					In the AWS Management Console, you should be able to see the S3 bucket with the versioning option enabled, as shown in Figures 1.5 and 1.6.

			

			
				
					[image: Figure 1.5 – Bucket in the console]
				

			

			Figure 1.5 – Bucket in the console

			
				
					[image: Figure 1.6 – S3 bucket with versioning option enabled]
				

			

			Figure 1.6 – S3 bucket with versioning option enabled

			You will now be able to successfully create an S3 bucket in the AWS account using Terraform with the required configuration settings.

			Summary

			In this chapter, the IaC concept was discussed in detail, and some popular IaC tools were covered to help you understand the differences between them. You then read through various use cases demonstrating the implementation of the IaC approach, and these were followed up with the benefits of using them.

			After having done the practical exercises using CloudFormation and Terraform tools, you now also have a better idea about the actual working of these tools and how they differ from each other.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch1.Alternatively, you can scan the following QR code (Figure 1.7):

			

			
				
					[image: Figure 1.7 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 1.7 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 1.8:

			

			
				
					[image: Figure 1.8 – Chapter Review Questions for Chapter 1]
				

			

			Figure 1.8 – Chapter Review Questions for Chapter 1

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 1.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			2

			Why Do We Need Terraform?

			This chapter will help you understand how infrastructure provisioning was done in different periods of IT history, the challenges associated with it, and how infrastructure automation tools solved those problems.

			You will learn what Infrastructure as Code (IaC) is and its advantages when compared to the manual provisioning of infrastructure. Then, this chapter will discuss the various tools/services available on the market for Infrastructure as Code, and their pros and cons with respect to Terraform.

			Further, the chapter will discuss the Terraform tool and its advantages over other tools/services used for Infrastructure as Code. Finally, the chapter will conclude by providing an overview of the licensing change made by HashiCorp.

			History of Infrastructure Provisioning

			Historically, infrastructure deployment has undergone three key technological changes:

			
					The datacenter period

					The virtualization period

					The cloud period

			

			In the datacenter period, infrastructure deployment and configuration were fully manual. Right from putting up the racks; stacking the servers, routers, and switches; installing operating systems and cabling them; and ensuring offsite backup for disaster recovery. There was very little scope for automation in infrastructure tasks. Automation tasks were limited to installing the OS via the Unattended Install option, configuring the software, and so on.

			In the virtualization period, infrastructure deployment got better. VMware was the pioneer in creating production-grade virtualization offerings. Some of the time-consuming tasks, such as operating system installation and application configuration, could then be deployed in a matter of minutes. Further, centralized backup and patching helped reduce the duration and complexity of tasks. Although virtual machines could be provisioned instantly, this was limited by the hardware you had already purchased for your VMware-based setup in your datacenter.

			Some automation started taking place at this stage with HashiCorp’s Vagrant tool.

			Vagrant helped quickly provision the development environment by adding the required resources and their dependencies in the Vagrant configuration files. These files were then used by the Vagrant tool to create the virtual machine in the VMware Workstation. This helped with quickly creating test environments and pre-production environments to test certain features before moving them to production. Since the provisioning and de-provisioning of the servers was done using the configuration files, the process could be automated easily, making it quicker and less error-prone.

			Though the amount of infrastructure automation increased at this stage, it was limited to vendor-specific tools. Professionals were still using VMware-specific tools and technologies to automate production-grade setups. The same tools could not be carried to other vendors’ solutions.

			To summarize the discussion so far, the following were the challenges of infrastructure automation in the datacenter and virtualization periods:

			
					Manual processes were error-prone

					High expenses

					A long time was needed to set up the infrastructure required for application deployment

					A lack of tight integrations between various products

					Dependence on vendor-specific automation tools in the virtualization world

					Deploying applications in a different geographical region was a herculean task

			

			It was the cloud era that paved the way for infrastructure automation in a significant manner by solving some of the above key challenges.

			Why Is the Cloud Model a Good Fit for Infrastructure Automation?

			The cloud model is considered suitable for infrastructure automation for the following reasons:

			
					Any creation/deletion/modification of a resource in the cloud can be done by calling an API

					There is seamless integration between the various resources of the cloud that can be stitched together for a production-grade solution

					You can access the same set of resources in different geographical regions to deploy the same solution

					The compute, network, security, and SaaS tools are software-defined and can be created, modified, and integrated into the virtual environment

			

			Now that you have reviewed the history of infrastructure provisioning and the challenges associated with each period, you are ready to explore the automation of infrastructure provisioning using IaC.

			Infrastructure Automation Using IaC

			As the name implies, IaC refers to managing infrastructure resources in the form of code instead of manual provisioning. This involves the creation, modification, and deletion of all the infrastructure resources via code.

			One of the key principles of DevOps is automation. IaC precisely fits into this principle. Apart from automation, IaC also provides the advantage of using the same best practices that are used for application code in the Software Development Life Cycle (SDLC). This implies that, now, even infrastructure could be versioned and pipelines can be created for continuous deployment since it is all in code.

			The following section presents the key advantages that IaC provides over manual deployments.

			Advantages of IaC

			While looking at the advantages of IaC, it will be compared against manual deployment. Some of the key advantages are listed below:

			
					Quicker deployment timelines: When the whole solution is in code that has been vetted, tested, and approved, it is easy to deploy everything in one go. This takes less time than the same deployment being done manually.

					Consistently repeatable deployments: As the resources are provisioned with the same set of APIs, you can expect the same behavior every single time it gets deployed. The uniformity of the deployment behavior provides assurance about the stability of the solution.

					Version controlled via a source code management tool such as Git: The configurations and integrations of all the resources can be carried out in code, which is stored in a tool such as Git. This helps you with versioning, merge requests, approvals, and so on. If there is an issue with the latest deployment, it is easy to roll back to the previous version.

					Better operational efficiency: Automating the process of launching and managing resources allows quicker deployment, which frees up the operations team to work on other important items rather than spending time just setting up the environments.

					Self-service: If you want to empower the development team to deploy the infrastructure, you can set certain guidelines for the modules/templates. They can use these guidelines for self-service and don’t have to depend on other teams.

					Accountability: All code written, every modification made, and every line deleted is tracked in the version control system. It is easy to assign accountability to the person responsible for any tasks performed.

					Increased security: IaC embeds security from the base level and in each layer, such as the network, app, and database layers. Once these are validated by the infosec team, they can be used by all teams. This improves the overall security posture of the organization.

			

			In the next section, you will review the various techniques used in the industry for provisioning infrastructure automatically and how they compare against Terraform.

			Various Options for Implementing IaC

			There are many ways of implementing IaC. Which option you choose depends on various factors, such as the level of automation required, the skills available in the team, the cloud platform chosen for application deployment, the plan for a multi-cloud presence, and so on. In the following sections, you will go through the options that are regularly used in the industry. Though there are options, Terraform has emerged as a go-to tool for IaC.

			Ad Hoc Scripts

			Ad hoc scripts are typically written in Shell script, Perl, or Python to automate some of the infrastructure provisioning by directly calling the API and writing the required logic to integrate the resource into the solution. The disadvantage of this is that there is no standardization, and hence each person may solve a problem using different logic and resources in the scripting languages. Scripts written today may not make sense to the same person after three months.

			Configuration Management Tools

			Configuration management tools such as Chef, Puppet, and Ansible are meant to be used for managing the configuration of software within the operating system. These tools also support infrastructure provisioning. All three of these tools were launched before Terraform and were used by engineers for infrastructure automation. However, this is not their primary functionality. It is important to use the right tool for the right job. Using the wrong tool could give sub-optimal results or could require more effort from you to achieve the same result that could have been achieved using the right tool with minimal effort.

			If you want to create the infrastructure for a three-tier architecture-based solution, you may end up spending a similar amount of time on all three tools to create the initial infrastructure. However, the complexity starts when you start modifying the infrastructure.

			Consider an example where you want to increase the number of servers from three to six:

			
					Write commands that will give the number of servers running in the account

					Write logic to calculate the new instances to be launched

					Finally, write code to launch these additional instances

			

			In the case of Terraform, it is as simple as changing the number of servers from three to six. Terraform takes care of figuring out what needs to be done to get the servers to six.

			Cloud-Based IaC Services

			Each of the major cloud vendors has its own service for IaC functionality:

			
					AWS has CloudFormation and Cloud Development Kit (CDK)

					Microsoft Azure has Azure Resource Manager

					GCP has Cloud Deployment Manager

			

			Each of these services has very tight integration with the services of the particular cloud, and their support for new services in that cloud will be significantly quicker than any third-party tool, such as Terraform or Pulumi. However, if you need to be present in multiple clouds, are unsure about sticking with a single cloud provider, or just want the team to learn how to use one tool that can be used across the infrastructure, platform, and SaaS tools provisioning automation, then it is better to choose a tool like Terraform that is not dependent on any single vendor but works across them all.

			Cloud-Agnostic IaC Tools

			Terraform by HashiCorp is a pioneer in cloud-agnostic IaC tools (i.e., able to run on any cloud without getting tied to a single cloud). In recent years, a new tool called Pulumi has also been slowly adopted. Pulumi lets users write code to deploy applications in the language of their choice. Currently, it supports Node.js, Python, Go, .NET, Java, and YAML format.

			Note

			The AWS Cloud Development Kit (AWS CDK) lets you define the AWS cloud infrastructure in a general-purpose programming language such as TypeScript, JavaScript, Python, Java, C#/.NET, or Go. Both Pulumi and AWS CDK expect you to have some programming language knowledge to make the best use of the tool.

			What Is Terraform?

			Terraform is an IaC tool that lets you create and manage your infrastructure by writing code in a simple language called HashiCorp Configuration Language (HCL).

			The following section describes the features of Terraform and explains how the problems of manual provisioning and other IaC options are solved by Terraform.

			Features of Terraform

			We will explore the primary features of Terraform in this section.

			Cloud/Vendor Agnostic

			A tool that is very specifically oriented toward a particular platform becomes highly dependent on the features of the platform and hinders customers’ ability to switch to another platform when they want to. It is very important for an IaC tool to be cloud-/vendor-agnostic (i.e., able to run on any cloud without getting tied to a single cloud/vendor) for such customers. Unlike many IaC tools provided by cloud vendors, Terraform is fully cloud-/vendor-agnostic and works with all the major cloud providers and also the majority of other vendors.

			A Pioneer in IaC

			Terraform was launched by HashiCorp in 2014 when the IT industry used either scripts, cloud-specific tools, or configuration management tools for infrastructure automation. It pioneered a new way of solving the infra-automation problem and brought in multi-cloud support. This was done by using a declarative approach to provisioning infrastructure, along with having “current state and desired state” as the central idea, where Terraform assesses the current infrastructure state with the desired state of infrastructure as defined by the user and then makes relevant changes to change the current state to the desired state. Trust in the HashiCorp brand prompted customers to use Terraform in production even before the general availability of version 1.0, which was announced in 2021. The tool has only improved with newer releases, by adding more features, such as HCP Terraform integration, moved blocks for code refactoring, support for Open Policy Agent (OPA), the ability to import manually created resources, testing frameworks, and so on, and integration with new partners.

			Wide Partner Integration

			Terraform can be used to provision and manage resources on any of the cloud platforms and SaaS offerings. Terraform already has thousands of partners integrated with it. Partners typically integrate with Terraform by creating a plugin that is downloaded by the customer along with the Terraform binary. There is a new set of partners who have products for code scanning, observability, cost management, security, and so on. If you want to support the automation of your product via Terraform, you can write your own custom provider plugin.

			Declarative

			Procedural and declarative ways of coding are an important consideration in understanding IaC.

			In the procedural style, the focus is on clearly defining the steps to achieve the desired end state. Ad hoc scripts and tools such as Ansible and Chef are all procedural language-based. In contrast, declarative style only requires you to outline the end state and the tool takes care of driving the workflow to this end. Terraform uses a declarative approach for infrastructure automation. Hence, the code is easier to write for a newbie.

			Idempotent

			When you run the same command/instruction multiple times and achieve the same result as you got the first time, the command/instruction is called idempotent. Terraform is idempotent. For example, if you have a Terraform file that creates an EC2 instance (a virtual machine in AWS) and you run it for the first time, it will create an EC2 instance. Running it a second or third time will not create additional instances as the desired state has already been achieved.

			Easy Learning Curve

			Terraform supports two formats to write and manage configuration files: JSON and HashiCorp Configuration Language (HCL).

			JSON is typically used by systems for parsing but is tough for humans. In contrast, HCL is very easy to learn and implement even for someone with no programming background.

			Version Controlled

			The Terraform code written for infrastructure management is managed using a source code management tool such as Git. This code is pushed to platforms such as GitHub, GitLab, and so on to keep it in a central location. Storing it centrally helps with team collaborations, rolling back to previous versions in case of issues with the latest version, and creating a pipeline for automated infrastructure deployment.

			Automation

			Manual provisioning of infrastructure is manageable for a simple use case. When you are dealing with the creation of thousands of resources, the manual method will cause delays and errors, and will also be expensive. Automation solves all these problems.

			You may be tempted to do things manually, but anything that needs to be done more than once should be considered for automation. There is a one-time investment of time while you write the code that will then bring you the benefits of automation when you have to provision the same or similar resource multiple times.

			Documentation

			Documentation is crucial to explain the current state of your architecture and resources, but it gets out of date quickly in the cloud world. When Terraform is used for full management of the infrastructure, the Terraform code itself can give you the latest state of the resource or the solution that is deployed. Please note that using Terraform does not take away the need for documentation but can help to reduce exhaustive documentation.

			Community Support

			Terraform is widely used and supported by the community. Whenever cloud vendors add new features to existing products or launch new services, the community quickly adds them to Terraform and creates a merge request with the owners of the repo. Any bugs are also quickly detected and raised with the owners of the plugin for a fix.

			Licensing Change from Version 1.5.5 (Aug 2023)

			Terraform was an open source tool until August 10, 2023, and it changed to the community edition when HashiCorp changed the licensing of their products from Mozilla Public License v2.0 (MPL 2.0) to Business Source License (BSL or BUSL) v1.1.

			Though the BSL license is open, free, and makes the source code available, it does not meet the “open source” criteria defined by The Open Source Initiative (OSI), because of which the Terraform tool cannot be called “open source” anymore. This license is applicable from Terraform version 1.5.5.

			As per the new license, “Organizations providing competitive offerings to HashiCorp will no longer be permitted to use the community edition products free of charge under our BSL license.”

			For more details on new licensing and how it impacts your environment, visit the following links:

			
					https://www.hashicorp.com/blog/hashicorp-adopts-business-source-license

					https://www.hashicorp.com/license-faq

			

			Summary

			In this chapter, you learned about the challenges of the manual provisioning of infrastructure, what IaC is, and what its advantages are. You also reviewed the importance of Terraform in the IaC landscape and examined what differentiates it from other tools on the market. This information will help you understand the big picture of infrastructure automation and the tools available on the market to solve the problems associated with it. This understanding will help you have a meaningful technical conversation with others about infrastructure automation.

			There was a short discussion about the change of license that has stripped the term “open source” from the Terraform feature list.

			Now that you understand why Terraform is required, you are ready to explore the basics of Terraform and its workflow in Chapter 3, Basics of Terraform and Core Workflow.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch2.Alternatively, you can scan the following QR code (Figure 2.1):

			

			
				
					[image: Figure 2.1 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 2.1 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 2.2:

			

			
				
					[image: Figure 2.2 – Chapter Review Questions for Chapter 2]
				

			

			Figure 2.2 – Chapter Review Questions for Chapter 2

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 2.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			3

			Basics of Terraform and Core Workflow

			In the previous chapter, you saw various use cases and scenarios for adopting Terraform into infrastructure-provisioning workflows to reap real benefits. It is now time to cover the basic building blocks that make Terraform an efficient tool to use, whether you have ample experience in IT or you are just starting in your career.

			This chapter will cover the following topics:

			
					How does Terraform work?

					Getting started with Terraform

					Terraform settings

					Terraform providers

					Dependency lock file

					Resources and data sources

					Variables and outputs

					Core workflow

			

			Technical Requirements

			In this chapter, you will deep dive into Terraform concepts and try out multiple programs or scripts that need the right setup. Please ensure that you have the following tools installed and ready to use:

			
					AWS account ID with administrator access credentials

					AWS CLI version 2.x.x

					Terraform CLI version 1.5.x or later

					Visual Studio Code or any text editor

			

			The GitHub repository for the chapter contains the graphics and scripts used in the chapter and can be found using the following link:

			https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch3/getting-started-in-terraform

			How Terraform Works

			The HashiCorp Terraform tool is an Infrastructure as Code (IaC) tool that can be used to create both cloud and on-premises resources with the help of human-readable configuration scripts. This set of scripts can be used numerous times to provision the exact same infrastructure with consistent workflows. Scripts can be shared and reused within the team if multiple developers are working on the same set of resources.

			With the proper backend configuration to store the Terraform state file in a remote location/repository, resources created in different workstations can point to the same configuration, avoiding duplication and reducing costs.

			You can now take a look at the basic workflow of Terraform and how it helps manage and track infrastructure in a more efficient way.

			Terraform creates and manages resources in different cloud environments and other services with the help of application programming interfaces (APIs). Suppose you want to create an S3 bucket (a storage service that stores data as objects) in the AWS cloud and you have the necessary permissions to accomplish the task.

			There are multiple ways to do that:

			
					Use the AWS Management Console and select the S3 service to create the bucket with basic permissions.

					Use the AWS CLI to create the bucket with the aws s3 create-bucket command.

					Use the AWS CloudFormation template.

					Use programs written in Java/Python/C# that use the AWS SDK to interact with the AWS cloud.

			

			In all the preceding options, the final interaction with the AWS cloud happens with the help of the same APIs, but the way you access it slightly differs depending on the selected approach. Similarly, Terraform has also created an abstraction popularly known as providers and has hidden the internal details of how it interacts with APIs of different cloud providers and other services.

			The official Terraform Registry page (https://registry.terraform.io/) lists thousands of providers, such as AWS, GCP, Azure, Docker, and Kubernetes, among several others.

			
				
					[image: Figure 3.1 – A high-level overview of Terraform providers]
				

			

			Figure 3.1 – A high-level overview of Terraform providers

			Getting Started with Terraform

			As mentioned previously, it is assumed that the prerequisite tools are ready in your local workstation. To verify that everything is working without any issues, please try out the following commands and ensure that you get a similar output.

			If you encounter any issues, please resolve them before proceeding with the topics for better understanding.

			Terraform CLI Installation Check

			The below command can be used to check the Terraform CLI version installed on your workstation:

			$ terraform -version

			The command output is as follows

			
				
					[image: Figure 3.2 – Terraform version command output]
				

			

			Figure 3.2 – Terraform version command output

			AWS CLI Installation Check

			The below command can be used to check the AWS CLI version installed on your workstation:

			$ aws --version

			The command output is as follows:

			
				
					[image: Figure 3.3 – AWS CLI version command output]
				

			

			Figure 3.3 – AWS CLI version command output

			If you see similar outputs, you are good to go and can try out the following exercise to get the feel of using Terraform to create a basic AWS IAM user resource and a pair of access keys for the IAM user to use programmatically.

			Creating Your First Terraform Resource – AWS IAM User

			In this subtopic, you will be creating an AWS IAM user resource and attaching a pair of access keys for it. Access keys are long-term credentials that you can attach to AWS IAM users or the root user account. They are used to sign your programmatic requests to the AWS CLI or the API directly (via the AWS SDK).

			The resources you will be creating as part of this topic will end up in the AWS account that will be configured as follows. Please ensure that you have the right set of credentials before this step and that you have complete control of the AWS account. This will be very helpful when you want to visualize and track the changes being performed by Terraform in the background.

			Setting up AWS Credentials

			Here are the steps to set up AWS credentials:

			
					The first step is to configure the environment variables in your workstation with the admin access credentials so the AWS Terraform provider will pick it for resource creation. If you do not have the credentials and possess only the root admin user and password, please log in to the console and create the access keys for the root user in the IAM menu.

					Once you have the credentials, please execute the following commands before you create the Terraform configuration. The following commands will work for Linux. Please use the setx <ENV_VARIABLE_KEY> <ENV VARIABLE VALUE> command for Windows to set the environment variables.Use the AWS access key ID instead of xxxx in the following command:
$ export AWS_ACCESS_KEY_ID=xxxx
Use the AWS secret access key instead of yyyy in the following command:
export AWS_SECRET_ACCESS_KEY=yyyy

			

			Terraform Configuration

			Now, you can create your own set of files inside the working directory to create the IAM user using Terraform. The files where you describe the infrastructure in Terraform are called the Terraform configuration.

			Create a file named main.tf and paste the following configuration. Save it using any text editor:

			terraform {

			 required_providers {

			 aws = {

			 source = "hashicorp/aws"

			 version = "~> 5.0"

			 }

			 }

			 required_version = ">= 1.5.0"

			}

			provider "aws" {

			 region = "us-east-1"

			}

			resource "aws_iam_user" "test_user" {

			 name = "test-aws-user"

			 path = "/test/"

			 tags = {

			 "createdby" = "terraform"

			 }

			}

			resource "aws_iam_access_key" "user_access_keys" {

			 user = aws_iam_user.test_user.name

			}

			This single file contains the entire configuration that can be deployed using Terraform CLI. Basically, the code has three different block types: a terraform block, a provider block, and a couple of resource blocks. The following are explanations of each of these blocks:

			
					The terraform { } block: The terraform { } block contains the Terraform settings along with the different providers that will be used for the configuration. In this case, you are using only one provider, aws, and the required_providers block is used to specify the source and the version attributes. The source attribute will optionally include a hostname, namespace, and provider type. If the hostname is not mentioned, the Terraform Registry, registry.terraform.io, is assumed.The version attribute will include the version, which is optional but still recommended. This is because specifying the version will ensure the configuration scripts work for the version specified and Terraform will not install something that is incompatible.

					The provider { } block: The provider { } block configures the provider you will use. The provider is nothing but a plugin that Terraform uses to create and manage resources by interacting with the cloud provider APIs.Since the credentials are already configured to use the AWS cloud provider, the provider { } block just contains the region, which is set to us-east-1 (North Virginia). You want to create an IAM user that has a global scope and region is not applicable. But if you want to create an EC2 instance, the region parameter becomes important because the resource will be created in the region accordingly.
You can also use multiple provider { } blocks if the configuration involves creating multiple resources from different providers. The provider { } blocks can also be dependent on values from other providers. For example, the secrets retrieved using the vault provider can be used to configure the AWS credentials, which is also possible when the credentials are secured in a vault.

					The resource { } block: The resource { } block is used to define the actual infrastructure resources and these are implementation-specific for each Terraform provider. In this example, you are using the aws_iam_user resource type, which will create an IAM user in the AWS public cloud. The resource name is test_user in the first resource {} block.Inside the resource { } block, the path and name parameters are additionally set to pass the required values. The defined resources can contain one or more parameters in addition to the mandatory ones and the provider documentation in the Terraform Registry will have additional details, such as usage and example resource blocks.
There is also an additional parameter, tags, that can be used to tag the IAM user resource to set additional metadata for the created resource. In AWS, the resource tags have different purposes, such as resource segregation and billing usage, among others.
The second resource {} block will create AWS IAM access keys for the user just created in the previous block. The IAM access keys are used to set programmatic access with user permissions and have different use cases. If the IAM user permissions have to be used to configure the AWS CLI, then you need to create an AWS CLI profile with user access keys, and you need to use access keys similar to the one you are creating here.

			

			IAM access keys are confidential information. If an intruder gets access to the access key, the AWS account can be compromised. So, you must secure the created credentials.

			Creating the AWS IAM User

			Now you have a basic understanding of the Terraform configuration script and can move on to creating the resources:

			
					The first step is to initialize the working directory with the terraform init command. This command will download and install the providers defined in the script, in this case, the aws provider.When the aws provider is successfully downloaded and installed, you can see that Terraform keeps the content in the hidden .terraform directory inside your working directory. The init command will also indicate which provider version was installed in the terminal, and the same operation also creates the .terraform.lock.hcl file, which specifies the exact provider version used.
This will help retain control of the provider versions installed in the future when the provider version changes with the latest upgrades. Figure 3.4 shows the output of the init command for reference.

			

			
				
					[image: Figure 3.4 – terraform init command output]
				

			

			Figure 3.4 – terraform init command output

			
					The terraform validate command can be used after the init operation is successful to validate the Terraform configuration to identify any possible errors. If there are no errors, the message Success! The configuration is valid will be given as output.

					In the Terraform documentation, it is also suggested that the terraform fmt command can be used for consistent formatting of the Terraform configuration scripts. If the command is executed without the -recursive option, only the scripts in the main directory will be formatted, and using it will format the scripts in the subdirectories as well.

					The final step is to apply the configuration with the terraform apply command. The Terraform output in the terminal will be like in Figure 3.5.

			

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			Figure 3.5 – terraform apply console output

			Terraform will use the installed providers to create the final execution plan on how the resources need to be created. You may notice that some of the parameters are set to (known after apply), which means the actual value will be set when the resources are created and it is not a known value. You may also notice that additional parameters such as arn and create_date are displayed. These parameters are not actually coded in the configuration scripts and are specific to the resources being created.

			A user prompt is also given in the output, which needs to be set to yes if you wish to proceed and apply the configuration. If any other value is specified, the apply operation will be terminated. Please enter yes if you are happy to proceed, and you will see the resources are created in the configured AWS account.

			
				
					[image: Figure 3.6 – resource creation from terraform apply]
				

			

			Figure 3.6 – resource creation from terraform apply

			When the resources are created, Terraform creates the terraform.tfstate state file and stores all details about the resources, such as IDs and resource types, so it can update and destroy the resources going forward. Since there is no specific backend configuration, the state file is stored locally inside the working directory and can be inspected with the terraform show command.

			Terraform also has the terraform state command for advanced state management, and the list option can be used to list the resources created with the current configuration:

			$ terraform state list

			aws_iam_access_key.user_access_keys

			aws_iam_user.test_user

			Terraform Settings

			The first step in using the Terraform tool for infrastructure resource provisioning has now been completed successfully and you have a better idea of how to write a simple configuration script based on the requirements using the relevant provider.

			Take a look at each of the blocks in detail now. This section will particularly cover the different configuration settings available for use inside the terraform {} block, and subsequent sections will discuss the provider, resources, and data sources blocks.

			The terraform {} configuration block is mainly used to configure the behaviour of the Terraform tool itself, such as the minimum Terraform version required to run the scripts.

			This block has the following nested blocks, each with its own purpose, and they are not mandatory:

			
					HCP Terraform configuration using the cloud {} block

					Terraform backend configuration using the backend {} block

					The required_version {} block

					The required_providers {} block

					Experimental features using the experiments [] block

					Providers metadata using the provider_meta {} block

			

			HCP Terraform Configuration Using the cloud {} block

			HCP Terraform is a special offering from HashiCorp for teams to work on infrastructure provisioning together without any conflicts. HCP Terraform is a hosted service, accessible from https://app.terraform.io, with the primary intention of providing a consistent and reliable environment for shared access, and additional features such as a private registry, security, and change approvals.

			Small teams can use HCP Terraform for free and run Terraform in a remote environment. Its CLI-driven workflow is easy to adopt and you can start using it without any hassle.

			If there is a requirement to use HCP Terraform instead of using the OSS version, the cloud {} nested block can be used within the terraform {} block to configure the settings pointing to the specific organization and workspaces under the organization. These concepts will be covered in detail in a later chapter covering HCP Terraform.

			Note

			Please note that HCP Terraform and the backend configurations cannot be used at the same time.

			A sample cloud {} nested block is given for your reference, and you can look at each of the arguments inside the block at a high level:

			terraform {

			 cloud {

			 organization = "test-cloud-org"

			 hostname = "app.terraform.io"

			 workspaces {

			 project = "accounting-team"

			 tags = ["accounting", "source:cli"]

			 }

			 }

			}

			The arguments used are as follows:

			
					organization: The name of the organization containing the workspaces that the configuration script should use.

					hostname: The hostname of a Terraform Enterprise installation. If it is not provided, then default to the HCP Terraform app.terraform.io hostname. (Terraform Enterprise is not the same as HCP Terraform; it is a self-hosted Terraform environment for organizations with tighter security requirements and statutory constraints.)

					workspace: This is another nested block that has details on the remote workspaces to be used for the configuration. The workspace block can contain only one argument – either name or tags – not both:	tags: This can contain a set of HCP Terraform tags and the current working directory can be used with any workspace that has the specified tags. The different workspaces can be switched using the terraform workspace select command. This cannot be used if name has already been specified.
	name: This contains the name of the workspace to be used for the current working directory. It is optional like the tags argument.

					project: The name of the HCP Terraform project that contains the workspace. With the terraform workspace list command, the workspaces that will be listed in the output will be filtered with this project name.

					token: The authentication token to be used for HCP Terraform access. The right way to authenticate is by either using the terraform login command or supplying the credentials via the CLI config file.

			

			Terraform Backend Configuration Using the backend {} Block

			The terraform {} block also has a backend nested block to support different backend configurations to store the state file remotely in a secure manner.

			In the previous section, with the first Terraform script, you saw that terraform.tfstate was created in the working directory because no backend configuration was available. But if you wish to store the Terraform state file remotely so the team can access and point to the same state file when multiple people work with the same configuration script, the backend configuration will help.

			The backend nested block is optional, like the other nested blocks; you can configure it if it is applicable to your setup.

			There are multiple backend types available for use; you can select the appropriate ones that work with your design. For example, if the team primarily works with AWS services, the s3 backend type is a natural option, and if microservices are being deployed in Kubernetes clusters, the Kubernetes backend can be selected to store the state as a Kubernetes Secret.

			Unlike the cloud {} nested block, the backend {} block will vary based on the actual backend type selected. This is because the different backend types will have their own custom configuration and the user is expected to pass the relevant values for them.

			A sample s3 backend is given here for your reference. It has arguments such as bucket, region, and key that are specific to AWS:

			terraform {

			 backend "s3" {

			 bucket = "mybucket"

			 key = "path/to/my/key"

			 region = "us-east-1"

			 dynamodb_table = "terraform-s3-backend-xyz"

			 }

			}

			There are different considerations while working with the Terraform backend. They are listed as follows:

			
					If there is no backend block specified, the default local backend will be used. In this case, the state file will be stored in plain text in the current working directory.

					The Terraform configuration script can contain one backend block only.

					The Terraform backend {} block cannot contain references to named values such as variables, locals, and data sources.

			

			Initialization

			When the remote backend configuration is added for the first time, the terraform init command must be rerun to validate the settings.

			If the command execution is successful, the Terraform tool will create the .terraform directory locally and store the most recent backend setup and any associated credentials inside it. This directory should not be committed into your version control tool, such as Git or Bitbucket, as it may contain credentials.

			When there are changes again to the backend configuration, Terraform gives the option to migrate the state to the new backend to avoid duplication and any conflicts.

			Partial Configuration

			Partial configuration is helpful to the user when working with dynamic values or when the backend configuration is not possible in the first stage. You can now try to understand this with an example.

			A software developer writes Terraform scripts with the s3 backend that work for the setup of different lower environments, such as DEV and QA. They like to use the same bucket to store the state files with different values for key or region arguments.

			But environment values such as DEV and QA will be known only during the time of apply command execution and it is not possible to code them beforehand. In this scenario, partial configuration will help with not setting the value in the backend block, and this can be configured while using the terraform init command.

			The terraform init command has the option of setting the backend config with the -backend-config option to set the value for the key or region argument, as follows. This sets values such as key-value pairs. You can also do the same with the config file, even in an interactive manner:

			$ terraform init -backend-config="key=DEV/data/"

			$ terraform init -backend-config="region=us-east-1"

			The required_version Setting

			The required_version {} nested block accepts a version constraint string that enforces a minimum version of Terraform CLI that must be used to run the scripts.

			This ensures that everyone working with the same configuration script has the required Terraform CLI version or the minimum version expected to run the scripts in a collaborative environment.

			The required_version {} nested block version constraint is applicable only for Terraform CLI, and the resources created by the script are not applicable because each Terraform provider follows their own release timelines, independent of the Terraform CLI versions.

			A sample terraform block with the required_version nested block is given for reference:

			terraform {

			. . .

			required_version = "~> 1.4"

			}

			The required_providers {} Block

			The required_providers nested block is used to specify all the providers required by the current configuration script. It maps the local provider name to the source address and the version constraint.

			The provider configuration will be discussed in detail in the upcoming sections of this chapter. A sample provider configuration for AWS is given here for reference:

			terraform {

			 required_providers {

			 aws = {

			 version = ">= 5.17.0"

			 source = "hashicorp/aws"

			 }

			 }

			}

			Experimental Features

			The Terraform team has also introduced experimental features that the community can try and share feedback on before it becomes a backward compatibility constraint.

			The experimental features can be opted for using experiments with a list of features to try out. Experimental features usage is generally not recommended for scripts intended for production use. Check out the following terraform block:

			terraform {

			. . .

			experiments = [feature1, feature2]

			}

			In this example, feature1 and feature2 have been enabled in this configuration.

			Provider Metadata

			The provider metadata block, provider_meta, aids a provider in offering an interface to pass information unrelated to the resources in the module. This topic is particularly technical and is more related to the provider setup.

			You can focus on the configuration of other nested blocks covered so far since they are commonly used in different scenarios and are useful for creating production-grade scripts for infrastructure provisioning.

			You can now move on to understand more about providers and their importance in the Terraform ecosystem.

			Terraform Providers

			As you saw earlier in this chapter, Terraform depends on plugins called providers to interact with cloud providers, SaaS providers, or any other APIs. Before you use them, you need to download and install them in the local working directory so that Terraform can use them. The required providers are declared in the terraform {} block. It is always suggested to declare them explicitly.

			If you have previously worked with languages such as Java or Python, you can assume that providers are equivalent to the Java packages or Python libraries used with the import statements.

			Terraform will look for the declared providers in the configuration scripts and try to download them when the terraform init command is executed for the first time. Without the providers, Terraform cannot manage any kind of infrastructure.

			Basically, if you pick any Terraform provider, the provider will have a set of resources and/or data sources. In most cases, the resources will be the real-world infrastructure components you are interested in creating and the data sources will be used to fetch/retrieve the information about the real-world resources.

			Terraform providers are listed on the Terraform Registry page, https://registry.terraform.io/browse/providers, for the infrastructure platform you use. Some of the most common ones are as follows:

			
					AWS

					Azure

					Google Cloud Platform

					Kubernetes

					HTTP

			

			Types of Terraform Providers

			Some of the providers listed in the Terraform Registry are developed and published by HashiCorp and some are created and maintained by partners. There are also providers maintained by users and volunteers. Special badges are available to identify the provider type and know who maintains it:

			Official Providers

			These are the providers created and maintained by HashiCorp and are available under the HashiCorp namespace. At the time of writing this book, there are 35 official providers available for use.

			For the AWS Terraform provider, you can see the Official badge in Figure 3.7.

			
				
					[image: Figure 3.7 – Official provider: aws]
				

			

			Figure 3.7 – Official provider: aws

			Partner Providers

			These are providers written, validated, and published by third-party companies for their own APIs. Companies must first register and become a HashiCorp partner before they can publish any providers.

			For the Oracle Cloud Infrastructure (OCI) Terraform provider, you can see the Partner badge on their dedicated registry page.

			
				
					[image: Figure 3.8 – Partner provider: oci]
				

			

			Figure 3.8 – Partner provider: oci

			Community Providers

			Community providers are created and maintained by individual maintainers, a group of maintainers, or other members of the Terraform community.

			Community providers do not carry any special badge; it is simply blank.

			
				
					[image: Figure 3.9 – Community provider: ansible]
				

			

			Figure 3.9 – Community provider: ansible

			Archived Providers

			
					These are official or partner providers that are no longer maintained by HashiCorp or the Terraform community. This can happen if the underlying APIs are deprecated or user interest declines.

			

			Provider Requirements

			In the previous section, you would have noticed that the providers are declared inside the required_providers nested block in the terraform {} block.

			A provider requirement consists of the following:

			
					local name

					source location

					version constraint

			

			Here is the template for declaring a Terraform provider:

			terraform {

			 required_providers {

			 local name = {

			 source = «source location»

			 version = «version constraint»

			 }

			 }

			}

			Local Names

			Local names are assigned when the required provider is declared. It has details on the source location and the version constraint. The local names are module specific and should be unique to a module.

			Outside the required_providers block, providers are referred to by the local names only.

			Users have the option to select a local name to use; there are no restrictions. But almost every Terraform provider has a preferred local name. For example, the AWS Terraform provider (hashicorp/aws) has the prefix aws for every resource it contains. In this case, you can use aws as the local name; this is recommended.

			Source Addresses

			The source address of the Terraform provider specifies the primary location where Terraform can download it.

			The source address consists of three parts:

			
					hostname: The hostname of the Terraform Registry that hosts the provider. This is an optional parameter. If this part is omitted, it will be defaulted to the hostname of the public Terraform Registry (registry.terraform.io)

					namespace: The namespace is the organizational namespace in the Terraform Registry. In the case of a public Terraform Registry, this could be the organization that published the provider.

					type: The type is the platform or the system that the provider manages and should be unique within the namespace. This could also be the preferred local name for the provider in some cases.

			

			If source addresses are omitted or not specified, Terraform will try to form the implicit source address with the hostname as registry.terraform.io and the namespace as hashicorp with the local name assumed as the type. The final source address that will be formed implicitly, then, is registry.terraform.io/hashicorp/<LOCAL NAME>.

			Version Constraints

			Each Terraform provider has its own version and release cycle. When declaring a provider, the version should be specified in the version argument so Terraform can select a single version and install it.

			The version argument is optional, but it is always recommended to use the right version to avoid issues.

			To ensure Terraform always installs the same provider version it was tested with, and to avoid being impacted by provider version upgrades, you can use the dependency lock file with the Terraform CLI. The file can also be committed in your version control tool.

			You will learn more about the dependency lock file in an upcoming section.

			Provider Configuration

			Now that you have a good idea about declaring provider requirements in the terraform block, you can proceed with the provider configuration, which will vary based on the provider you want to configure.

			For example, the AWS Terraform provider might expect the user to set the right access keys and region to create the AWS resources. On the other hand, other providers, such as Kubernetes, need details such as the API server endpoint details and the certificate to access it.

			Generally, the provider configuration should be declared in the root module of the Terraform configuration and the sub-modules should get the details from the root module. If the sub-modules expect different configurations, they can override the default provider configuration with their own.

			You can now take a look at the sample provider configuration:

			provider "aws" {

			 region = "us-east-1"

			 access_key = "my-access-key"

			 secret_key = "my-secret-key"

			}

			There are a few things to note here:

			
					The value "aws" next to the provider keyword is the local name provided for the AWS Terraform provider in the terraform {} block.

					Inside the provider block, there are specific parameters, such as region, access_key, and secret_key, with values specific to this provider. It will vary for every provider based on their configuration setup before using it.

					For a few providers, the configuration parameters can also be set using the equivalent environment variables and Terraform will pick the configuration values automatically. In this example, the same access_key value can be set using the AWS_ACCESS_KEY_ID environment variable and the region can be set with the AWS_REGION or AWS_DEFAULT_REGION environment variable.

					Expressions can be used inside the provider configuration block, unlike the terraform {} block, and the parameters required by the provider are expected to be documented on the Terraform Registry page of the provider.

					There are providers such as hashicorp/random that do not need any explicit provider configuration. In this case, Terraform will assume a dummy configuration and no action would be required from the user. You can directly work with the creation of resources without any provider {} block.

			

			Provider Meta-Arguments

			Terraform will define two meta-arguments called alias and version that will be supported for all providers. The version meta-argument is not recommended as the version constraint parameter in the required_providers {} block will handle the different versions.

			The alias Meta-Argument

			To understand a real use case of the alias meta-argument, consider this scenario.

			A cloud architect wants to design an architecture where the application microservices are deployed in EC2 instances running in one AWS region and the underlying databases are expected to run in a different region. This entire setup of the infrastructure will be provisioned via Terraform.

			Here, if you look closely, the cloud architect needs to create AWS resources in two different regions. That also means there are two different sets of provider configurations needed. This is where alias comes into the picture. It allows the user to have two provider configurations for the same provider declared only once inside the terraform {} block.

			Here is an example:

			# Default provider configuration - 1

			provider "aws" {

			 region = "us-east-1"

			}

			# Additional provider configuration - 2

			# This can be referenced "aws.west".

			provider "aws" {

			 alias = "west"

			 region = "eu-west-1"

			}

			The version Meta-Argument

			This meta-argument is deprecated and so there currently isn’t much that needs to be said about it. One important thing to note, however, is that the version meta-argument should be considered if the required_providers block does not contain the version parameter.

			This will be removed in future Terraform versions, so it is better not to use it at all.

			Dependency lock file (.terraform.lock.hcl)

			When Terraform configuration scripts are created to provision resources, there are two types of dependencies that need to be tracked: providers and modules. They have their own life cycles, as discussed already. Hence, it is necessary to track the right versions for providers and modules to ensure that you always work with the compatible versions for the current configuration, so that it does not get impacted by future version upgrades from the provider.

			With the current features, Terraform can only track and work with different versions of providers but not modules. For modules, it always downloads and uses the latest version available.

			Terraform can remember the versions for each dependency with the dependency lock file (.terraform.lock.hcl). So, it can use the same version every time with the help of this file.

			Modules will be discussed in the following chapters in more detail, but you can consider them to be remote scripts that can be used for specific tasks, rather than having to write the code on your own. For example, there is a specific Terraform module for Amazon Elastic Kubernetes Service (EKS) cluster setup that internally creates a variety of resources. In this case, it makes sense to use the module provided by AWS to create the resources relevant for getting your EKS cluster setup up and running.

			The dependency lock file is updated every time you run the terraform init command and it is stored in the current working directory along with other files.

			The following points will help you understand Terraform’s behavior with the dependency lock file:

			
					When the provider versions are modified/updated in the configuration scripts, Terraform will always check the matching versions and update the lock file accordingly.

					If you want to upgrade the version of any provider after the initial terraform init command execution that locked the versions, you can use the -upgrade option with terraform init to override the locked versions.

					If any of the providers are no longer needed, the dependency will be automatically removed in the subsequent command executions when the configuration scripts do not contain any references.

			

			Resources and Data Sources

			Resources are the most fundamental building blocks of Terraform as they describe one or more infrastructure objects, such as virtual machines, storage buckets, and user entities or databases.

			Terraform uses data sources to gather information about resources defined by Terraform or outside Terraform or any objects modified by functions. Say you want to create an S3 bucket and provide access to an AWS IAM user already available in the system. The data sources can then be used to get information about the user with some inputs, and the details can then be used to set up bucket access.

			Resources Syntax

			You can now check out this example resource block:

			resource "aws_ebs_volume" "example_ebs_volume" {

			 availability_zone = "us-east-1a"

			 size = 20

			 tags = {

			 Name = "HelloWorld"

			 }

			}

			This resource block declares the resource of type aws_ebs_volume with the local name set as example_ebs_volume. Inside the block, you have configuration parameters specific to the resource type. In this case, it is an EBS volume (AWS service for block storage). In AWS, when an EBS volume needs to be created, the minimum configuration parameters expected are the Availability Zone and the storage size, which are specified here.

			Tags are common for most resources that can be defined in AWS.

			The local name example_ebs_volume can be used to refer to this resource anywhere inside the module but not outside. Like the parameters coded here, there are also other configuration values or parameters set for this resource, and those can be referred to with the syntax <RESOURCE_TYPE>.<RESOURCE_NAME>.<ATTRIBUTE_NAME>.

			More information about configuration parameters available for specific resource types and example usage and validations can be found in the provider documentation on the Terraform Registry page.

			Resources Meta-Arguments

			Like providers, resources also support the use of meta-arguments and can be used with all possible resource types.

			The following are the meta-arguments supported at the resources level:

			
					depends_on

					count

					for_each

					provider

					lifecycle

					provisioner (not discussed in this chapter)

			

			depends_on

			The depends_on meta-argument is helpful for handling module dependencies or hidden resource dependencies that Terraform cannot automatically infer. To understand this better, say you are creating an AWS IAM user and attach permissions with an IAM policy. In this case, the configuration scripts will be written so that the IAM user is created first and then the IAM policy. The IAM user created in the first place will be referred to while creating the IAM policy to attach.

			In this case, Terraform will ensure that the IAM policy is not created until the IAM user resource is successfully created. However, there will be special scenarios, such as when the resource dependencies are not explicit but there is a logical sequence of how it needs to be used, where there are no direct dependencies. Note that certain resources cannot be created if the prerequisites are not set up.

			As per the Terraform documentation, the depends_on meta-argument has to be used as a last resort when there is no other option to handle hidden resources or module dependencies. Instead of depends_on, the expression references can also be considered.

			Wherever possible, it is always a good practice to include the comment along with the depends_on meta-argument explaining why it is being used.

			The following example illustrates the use of depends_on:

			module "eks_cluster" {

			 source = "./modules/eks_cluster"

			 region = var.region

			 azs = module.vpc.azs

			 environment = var.environment

			}

			module "vault" {

			 source = «./modules/vault»

			 environment = var.environment

			 region = var.region

			 service_secret_path = var.service_secret_path

			# The eks-cluster module creates certain keys that needs to be # added to vault and only when creation is successful.

			 depends_on = [module.eks_cluster]

			}

			count

			The count meta-argument is used when you want to create more than one identical resource with the same resource definition. The default behavior of Terraform is to create one real-world infrastructure object. It can be overridden with this option.

			The count meta-argument can be used with modules as well as for any resource type, and the specific instance can be referred to using the relevant index:

			resource "aws_instance" "server" {

			 count = 3 # create four similar EC2 instances

			 ami = «ami-exdswe123»

			 instance_type = «t2.micro»

			 tags = {

			 instance_count = ${count.index}

			 }

			}

			This example creates three identical EC2 instances with the t2.micro instance type with the same resource definition.

			for_each

			The for_each meta-argument can be used to create multiple resources with the same definition, but the input values will be mapped using the map or set of strings. Please note that count and for_each cannot be used at the same time within the resource block.

			When the resource block contains for_each, the values can be referenced using the each object, such as each.key and each.value. If for_each input is set, both each.key and each.value will be the same.

			Take a look at an example with for_each:

			resource "aws_iam_user" "account-user" {

			 for_each = toset(["Adam", "Bob", "Chris", "Dennis"])

			 name = each.key

			}

			In this example, the AWS IAM user is created for each value in the set.

			provider

			The provider meta-argument is used to refer to the provider configuration to use for the resource. As discussed in the Provider configuration section, multiple provider configurations are possible when the scripts need to work with different regions or access key combinations.

			If the provider meta-argument is omitted, the default provider configuration with the preferred local name will be picked:

			provider "aws" {

			 region = "us-west-1"

			}

			provider "aws" {

			 alias = west

			 region = "us-west-1"

			}

			resource "aws_instance" "server" {

			 provider = aws.west

			 ami = "ami-exdswe123"

			 instance_type = "t2.micro"

			}

			lifecycle

			The lifecycle meta-argument is used to customize the default life cycle behavior of how the resources are managed by Terraform. This can also be used with modules or any resource type.

			The following options are supported for lifecycle:

			
					create_before_destroyIf the Terraform resource cannot be updated in place, Terraform will try to recreate the resource after destroying it. This option will force Terraform to create the replacement resource first and then destroy the previous instance.

					prevent_destroyThis will prevent the accidental deletion of critical objects and cause Terraform to reject any plan that will result in the destruction of the resource.

					ignore_changesThis will ignore future changes to the resource configuration. This is helpful for working with resources that are expected to change in the future but should not result in recreating/updating resources.

					replace_triggered_byThis triggers resource recreation every time the attributes of the different resources are changed:

			

			resource "aws_instance" "server" {

			 ami = "ami-exdswe123"

			 instance_type = «t2.micro»

			 lifecycle {

			 create_before_destroy = true

			 }

			}

			Data Sources

			Data sources are essentially read-only subsets of resources. Each provider will come with a set of data sources along with the resources that are supported. Data sources with the filter criteria are used to fetch the information about the specific resources that are defined already.

			Sometimes it might be necessary to fetch the information about Amazon Machine Image (AMI) IDs before you use them to create the EC2 instance, and data sources can be helpful in this scenario.

			Here is an example data source block:

			data "aws_ami" "my-amis" {

			 most_recent = true

			 owners = ["self"]

			 filter {

			 name = "name"

			 values = ["myami-*"]

			 }

			}

			Here, you can see that the data block has the data keyword and it tried to query the aws_ami resource type and export the result into the local name my-amis. The local name must be unique within the given module and can be referenced with the following syntax: DATA.<RESOURCE_TYPE>.<LOCAL_NAME>.

			The query parameters inside the data {} block are the query constraints that are specific to the resource type. More information can be found on the Terraform Registry page. The main difference between the resources and the data sources is that the resources block can create/update/delete the infrastructure resources, whereas the data sources can only read the information about the provisioned resources.

			The meta-arguments supported by Terraform for the managed resources are also applicable to data sources, but there will be slight differences in the behavior, as follows:

			
					While using depends_on with the data sources, the behavior is exactly the same as with the providers and the data sources will wait until all the dependencies are resolved.

					The count and for_each meta-arguments also behave the same way, and individual resource instances can be referred to in the same way as resources.

					The provider meta-argument can also be used with data sources to work with multiple provider configurations.

					The only exception is lifecycle, which is not supported for data sources, and there might be changes with the future versions of Terraform.

			

			Variables and Outputs

			You started the chapter with a quick hands-on exercise using the Terraform language and continued with the Terraform settings for configuration scripts. You then covered providers followed by resources and data sources.

			You can now proceed with variables and outputs, which help users customize module behavior without changing the source. The Terraform language supports the blocks listed here:

			
					Input variables

					Output values

					Local values

			

			Input Variables

			After providers and resources, input variables serve a unique purpose in the Terraform language when used with modules. With the use of input variables, Terraform modules can be shared across multiple configurations, and users can use different values to customize module behavior.

			The input variables declared in the root module of the configuration can be set using the Terraform CLI as well as the environment variables. If they are declared in the child module, the input variables can be set inside the module {} block.

			Declaring Input Variables

			Input variables are declared using the variable {} block. You will learn about this further with an example variable {} block:

			variable "availability_zone_names" {

			 type = list(string)

			 default = ["us-east-1a"]

			 description = «Availability zone names»

			 sensitive = false

			 nullable = false

			}

			The variable block here has the variable keyword followed by the variable name. This name should be unique in the module and used to refer to the variable’s value inside the module. As per the Terraform documentation, the variable identifiers can be anything except source, version, providers, count, for_each, lifecycle, depends_on, and locals because these are reserved for module configuration blocks.

			The input variables declared can be referenced with the syntax var.<NAME> where NAME is the input variable name.

			Supported Arguments

			The following are the supported arguments for variable declaration:

			
					default: Variable declarations can include the default argument, and if they are present, that makes the input variable optional. If the value is not set, the default value will be used. The value passed should be a literal value and cannot refer to other objects in the configuration.

					type: This argument will help restrict the type of value that can be set for an input variable. When the variable declaration does not specify it, the variable can accept any type of value. But it is always recommended to specify the type that will help Terraform throw an error message if an incorrect value is set.The following are the supported keywords:
	string
	bool
	number
	list(<TYPE>)
	map(<TYPE>)
	set(<TYPE>)
	object
	tuple

					description: The description argument is used to provide a concise description of the input variable.

					validation: You can specify the custom validation rules for the variable with this argument and throw a custom error message if the validation fails.

					sensitive: If the variable declaration is marked as sensitive, the variable will not be printed in the console output. Please remember that the variable value will still be recorded in the Terraform state file. You will learn about handling sensitive values in a state file further in future chapters when covering state management.

					nullable: The variable cannot be set to null when the variable declaration indicates that it is not nullable (nullable = false).

			

			Input Variables Assignment

			Input variables can be assigned in a number of ways:

			
					With the -var command-line option

					Using the .tfvars files

					With environment variables

					With variables set in the HCP Terraform workspace (covered later)

			

			If you are using the -var command-line option, individual variables can be set while executing the terraform plan and terraform apply commands.

			A few examples are given here to understand the usage:

			$ terraform apply -var="user_name=Bob"

			$ terraform apply -var='az_list=["us-east-1a","us-east-1b"]'

			Another option is to use the variable definition files with the .tfvars extension to set lots of variables. In this option, you can use the -var-file command-line option. If comfortable with the JSON format, you can use JSON as well and change the extension to .tfvars.json.

			The .tfvars file will just contain the variable assignments. Here is an example:

			user_name = "Bob"

			az_names_list = ["us-east-1a", "us-east-1b"]

			The last option is to use the environment variables to set the input variables and, in this case, Terraform will search the system environment variables to load the values before applying.

			Here, the environment variable being set should follow a specific naming convention, which is the TF_VAR_<variable_name> prefix. For example, if the variable name is username, the environment variable that should be set is TF_VAR_username.

			Input Variables Precedence

			Terraform loads variables in the following order:

			
					Environment variables

					The terraform.tfvars file, if present

					The terraform.tfvars.json file, if present

					Any *.auto.tfvars or *.auto.tfvars.json file

					Any -var and -var-file options on the command line(this includes variables set by a HCP Terraform workspace)

			

			Output Values

			Output values are mainly used to expose information about the infrastructure to other Terraform configurations to use. This is similar to the return values in the case of programming languages.

			Output values are declared using the output {} block mainly with the value argument. Here is an example output block:

			output "iam_user_arn" {

			 value = aws_iam_user.testuser.arn

			}

			In this block, the output name is iam_user_arn, which is used to output the arn attribute of the aws_iam_user resource type and the testuser resource name.

			Like this, the output names of the child module can be accessed with the syntax module.<child_module>.<output_name>.

			The output values support the following arguments. The usage is exactly the same as was explained in the Provider configuration and the Input variables section:

			
					depends_on

					description

					sensitive

			

			Local Values

			Local values are helpful when you want to use the same expression multiple times in the Terraform configuration and you can assign a name to the expression to be used. This is very similar to the local variables you use with the programming languages.

			The local values are declared using the locals {} block, and local values are referenced with the syntax local.<NAME>.

			An example local block is as follows:

			locals {

			 environment = "dev"

			 team = "accounting"

			}

			Core Workflow

			The core Terraform workflow has three steps. The general idea is that the core Terraform workflow process repeats every time there are changes to the configuration scripts. The three steps are as follows:

			
					Write

					Plan

					Apply

			

			Write – Creating the Configuration Script

			The first step is to create the configuration scripts in Terraform to provision infrastructure components. Once the initial scripts are created, the scripts can be added to a version-controlled repository to save the changes.

			The scripts can be validated using the terraform fmt and terraform validate commands to ensure that the code is rightly formatted and that any syntax errors can be corrected.

			If the team is working on the same configuration scripts rather than individuals, it is also recommended that different branches are created so that the work is not affected by other parallel changes. Automating the application of configuration can also be considered, since the scripts will be tested with the same workflow and the deployments streamlined.

			Plan – Previewing the Changes

			Once the scripts are validated and ready to be deployed, the final plan can be reviewed with the terraform plan command. This gives a clear picture of the resources that will be provisioned in the apply step.

			This is the step to check whether the changes that are going to be applied match the requirements and if any further changes need to be considered.

			Apply – Provisioning the Infrastructure

			The final step is the actual application of the configuration scripts that will provision the resources in the cloud. As indicated earlier in the chapter, the apply step will also update the state file to record the changes being applied.

			Summary

			In this chapter, you have learned about the basics of the Terraform language and the CLI-based workflow and when to apply them. The different block types, configuration settings, and parameters such as input variables and outputs were discussed. You also saw the steps involved in the Terraform core workflow.

			The next chapter will cover Terraform commands in detail, along with the options and the scenarios where they can be used.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch3.Alternatively, you can scan the following QR code (Figure 3.10):

			

			
				
					[image: Figure 3.10 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 3.10 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 3.11:

			

			
				
					[image: Figure 3.11 – Chapter Review Questions for Chapter 3]
				

			

			Figure 3.11 – Chapter Review Questions for Chapter 3

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 3.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			4

			Terraform Commands and State Management

			In the previous chapters, you learned about the building blocks of the Terraform configuration language and the out-of-the-box capabilities it provides, such as multi-cloud support, extensive support for different providers, and state management. This chapter is all about the various commands you will use while working with Terraform CLI.

			Each command has its own significance and purpose, and you may not use everything in regular scenarios. But there are a few commands (such as terraform init, terraform apply, and terraform destroy) that will be a part of almost every infrastructure workflow and are used as and when the need arises.

			The following exam objectives will be covered in this chapter:

			
					Use the core Terraform workflow

					Implement and maintain state

			

			You will start by looking at the aforementioned primary commands and then you will cover the various subcommands. This will then be followed by concepts around Terraform state management.

			This chapter will cover the following topics:

			
					Basic workflow commands

					Commands for code management

					Special commands

					State management and the terraform state command and subcommands

			

			Technical Requirements

			In this chapter, you will deep dive into Terraform commands and try them out on Terraform CLI, installed on your workstation. Please ensure that you have the following installed and ready to use:

			
					An AWS account ID with administrator access credentials

					AWS CLI version 2.x.x

					Terraform CLI version 1.5.x or later

					Visual Studio Code or any text editor

			

			The GitHub URL for the chapter will contain graphics and the sample scripts used in the chapter and can be referred to at the following link:

			https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch4/terraform-commands-and-state-management

			Basic Workflow Commands

			In the previous chapter on Terraform basics, you used the following commands in the sample exercise to create an IAM user. You saw how it helps in different phases of project development. You will now take a closer look at the basic commands. The different options available to use are listed here and will be covered in detail in the subsequent sections:

			
					init

					plan

					apply

					destroy

			

			Please note that all the preceding commands will be preceded by the keyword terraform when you actually use them in Terraform CLI. For every command, you will be look at the command syntax and options, followed by more details on the command usage in different scenarios.

			As a general rule, the command syntax will be as follows:

			$ terraform <command_name> <command_options>

			The init Command

			As you have seen in the previous chapter on Terraform basics, the terraform init command is the first command that should be run to initialize the working directory where the configuration scripts are stored. The init command will download all the required providers and modules needed to run the script.

			Based on the configuration scripts, the init command will perform different activities in the background, but it is safe to say that you do not need to know the details. Suppose the provider or the module version is changed in the script; the init command needs to be rerun to allow the changes to take effect before the resource creation.

			This is how the command is used:

			$ terraform init <init_options>

			Now take a look at some common options supported by the init command:

			
					-input=true: If you are setting this option, it will ask for an input to execute the init command if necessary. If this is set to false, the command will fail directly without the user prompt. The default value is true.This option is like using Amazon S3 as the backend to store the terraform state file and the partial configuration (not all inputs are provided for successful backend configuration) is used in the script.
A backend for S3 would require a bucket name, region, and key name to store the file. If any of the inputs are missing, the default behavior is that it will be prompted when you run the terraform init command.
If this option is set to false, the command will error out immediately.

					-lock=false: This option will disable the locking of state files; locking is enabled by default.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value; the default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

					-no-color: This option will disable color codes in the output.

					-upgrade: This option will upgrade modules and providers to the latest version if applicable. If this option is used, the recorded versions in the dependency lock file will be ignored and the relevant modules and provider plugins will be upgraded to match the version constraints currently in the configuration.

					-from-module=<module_location>: This option will be used in special scenarios where your configuration scripts refer to a module that is not present in the local/current working directory.In this case, the module source location should be provided when running the init command, and this option helps achieve providing the module source location. Take a look at a scenario.
You have created a new Terraform configuration and it has a module block that refers to the code available in GitHub and not available on your local machine. When you run the init command with the -from-module option, in this case, the given module will be copied to the local working directory before the initialization steps are performed.

					-reconfigure: If the Terraform script is configured with the backend block, the init command execution will configure the backend settings accordingly. However, there might be cases where the current backend configuration is not relevant, and changes have been made to use a different backend. This is when this option needs to be specified along with the terraform init command, once again, to reflect the latest changes to use the new backend.

					-migrate-state: This option is used to migrate the state file to the new backend, and, based on the setup, there will be additional prompts for the user to enter values to complete the state migration.

					-force-copy: The use case for this option is exactly the same as the -migrate-state option but the difference is that there will not be prompts and yes will be automatically assumed for state migration.

					-backend=false: This option is used to skip the backend configuration with the current execution of the init command.

					-plugin-dir=<plugin_location>: This option is used to provide the alternate path to search for plugins, and is primarily used in the development stages when you create new modules or develop a new provider plugin.

					-get=false: This option will disable downloading the modules referenced.

					-lockfile=MODE : This is used to set the dependency lock file mode; the only value supported now is readonly.

					-lock=false: This option will not hold the state file during the backend migration, and should be used very cautiously, especially when there will be other developers who can run the same configuration referring to the same workspace. State locking is enabled by default.

			

			The plan Command

			You now have a better idea about using the terraform init command that primarily deals with the initialization of the working directory. You can continue with the commands that form the core part of the Terraform provisioning workflow. The terraform plan command is the first one before the apply and destroy commands.

			The main purpose of the plan command is to evaluate the configuration scripts and determine the desired state of the resources declared. Then, it will compare the desired state with the state of the real infrastructure objects using the state file and figure out the changes to achieve the desired state.

			Once the changes needed are figured out, the plan command presents the execution plan. Please note that the plan command does not make any changes to real-world infrastructure objects. The responsibility of making actual changes is given to the terraform apply command, which usually follows next.

			The plan output from the command can also be saved with the -out option, which can be directly given as input to the apply command to proceed with making the changes.

			In some cases, it is also possible that the real-world infrastructure objects are in sync with the desired state of the declared resources, which means no change is needed. If you run the terraform plan command in this case, the command output will clearly indicate that no infrastructure change is needed.

			This is how the command is used:

			$ terraform plan <plan_options>

			Now you can take a look at some of the options supported by the plan command:

			
					-destroy: This option with the plan command is to clean up all the resources provisioned so far, and this will result in an empty state file. The plan command with the -destroy option will exhibit the same behavior as running the terraform destroy command, which will be discussed in the subsequent sections.

					-refresh-only: This option has two purposes: updating the Terraform state file and output values from the root module to sync with the changes made outside Terraform.Now, when might this be useful? Assume that you have created a resource in AWS such as an IAM user or RDS database instance, initially using Terraform, and the terraform.tfstate state file has been updated. You also went ahead and made changes directly on the AWS Management Console.
It is important to sync the state file with the changes made from the console, and that is when the -refresh-only option can be used.

					-refresh=false: This option will disable the refresh of the Terraform state file before applying the configuration changes. In the default scenario, the plan command will also check the remote objects and refresh the Terraform state to figure out the changes needed to achieve the desired state. This indirectly means Terraform will issue API calls to the respective providers and get the details, which can consume more time.With this option, the refresh part is disabled, and hence, the plan will run faster; this can be considered only in special scenarios because the state file can go out of sync.
This option cannot be used along with the -refresh-only option since the refresh behavior will not happen at all.

					-target=<RESOURCE_ADDRESS>: This option is used to target particular resources or a set of resources for planning rather than for the entire configuration. This will be helpful to provision the resources that you would like to test first before completing the entire development.

					-replace=<RESOURCE_ADDRESS>: This option is used to replace the resources that match the given address; this is similar to the target option to focus on a particular resource or a set of resources that have been manipulated and need replacement. The earlier version of Terraform had a separate command, terraform taint, for this purpose, but it is deprecated now.

					-var "VARIABLE_NAME=VALUE": Use this option to set a value for the variable declared in the main configuration. If there are multiple variables, the option can be used for each variable name.Here is a sample command:
$ terraform plan -var "region=us-east-1"

					-var-file=<FILENAME>: This option is used to set the values of multiple input variables usually using the *.tfvars file. The option can also be used multiple times to pick the values from more than one file.

					-detailed-exitcode: This option changes the exit codes and meanings to provide more information on the output plan. The possible values are zero (0), one (1), and two (2) according to the execution result:exitcode 0: Success with no changes in the plan
exitcode 1: Error condition
exitcode 2: Success with changes in the plan

					-generate-config-out=<PATH>: If there are import blocks available in the configuration, this option will help generate Terraform resource blocks in the HCL language in the path specified. The concept of using import blocks is an advanced topic and will be covered in later chapters when applicable.

					-input=false: This option exactly works the same as we have seen with the init command, and it disables the default prompt for any input variable with the value missing.

					-lock=false: This disables the state file lock operation, which is not generally recommended if there is a possibility of multiple concurrent runs.

					-json: This can be set to enable the JSON formatted output and is very helpful when the Terraform execution happens in an automated fashion and the JSON format is machine readable.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value; the default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

					-no-color: This option is used to disable color codes in the output.

					-parallelism=<COUNT>: This option can be used to override the maximum number of parallel operations on the machine running Terraform. This can be used when you want to intentionally decrease/increase the load on the host machine to have better control. The default value is ten (10).

					-out=<FILENAME>: As already mentioned earlier, the terraform plan command can also include the -out option to save the plan output, which can be used directly with terraform apply.One important thing to note here is that Terraform can accept any filename, but the file should not have any suffix or file extension. If a suffix is present, Terraform will consider it as a different file format and the .tf suffix will also result in Terraform treating it as a regular configuration file.
Here is a sample command:
$ terraform plan -out=tfplan -input=false

			

			Some of these options are also supported by the terraform apply command, and you will read about this in the next section.

			The apply Command

			In the core workflow, the next command is the apply command and its responsibility is to make the changes proposed in the Terraform execution plan. The terraform apply command has two ways of operating: auto plan mode and saved plan mode.

			In the auto plan mode, you cannot expect the terraform plan file to be saved already, and when the apply command is executed, it automatically creates an execution plan for you. This will be followed by a user prompt to confirm the plan and take the necessary actions. In automation cases, the prompt can be disabled with the -auto-approve option.

			In the case of the saved plan mode, terraform plan was executed previously, and you have the plan already. In this mode, the apply operation will run and it does not need any user inputs. In this mode, additional plan options cannot be specified.

			This is how the command is used:

			$ terraform apply <apply_options>

			The following options are also supported in the terraform apply command. Since you have already read about this in the previous topic, the options are just listed here:

			
					-destroy

					-refresh-only

					-refresh=false

					-replace=<RESOURCE_ADDRESS>

					-target=<RESOURCE_ADDRESS>

					-var "VARIABLE_NAME=VALUE"

					-var-file=<FILENAME>

					-input=false

					-lock=false

					-lock-timeout=<DURATION>

					-parallelism=n

					-no-color

			

			Please remember that all the preceding options are applicable when the apply command is executed without a saved plan file.

			Other options supported for apply are as follows, and the last three options are applicable when using the local backend:

			
					-auto-approve: Setting this option will allow the process to proceed without the user prompt to provision the resources and update the state file.

					-compact-warnings: This option will compact the warning messages.

					-state=<PATH>: This option is used to read and save the state file path; if not set, this will default to the terraform.tfstate file in the current working directory.

					-state-out=<PATH>: This option is used to save the state file in a different location, so the old state is not impacted by the latest execution.

					-backup=<PATH>: This is used to back up the state file in the specified path before modifying the state file.

			

			The destroy Command

			The destroy command is used to destroy all the real-world infrastructure objects managed by a particular configuration. As we have seen in this chapter, the destroy command will have the same behavior as the terraform apply command with the -destroy option. So, most of the options supported by the apply command can also be used with terraform destroy.

			This is how the command is used:

			$ terraform destroy <destroy_options>

			Before the actual execution of destroy, you can also review the plan by running the following command:

			$ terraform plan -destroy

			This is helpful in scenarios where the applied configuration will not be used further, and the resources provisioned can be cleaned up.

			Commands for Code Management

			In this section, you will quickly look at a couple of commands – terraform fmt and terraform validate – used in the development stages. There will be no harm to the configuration if these are not used. The intention, however, is to check that it is the right code and is formatted properly, and to check whether there are syntactical errors.

			The fmt Command

			The terraform fmt command is used to rewrite/update the Terraform configuration scripts to a canonical format and style. This is based on the style conventions opinionated of HashiCorp itself to ensure consistency across all the files.

			For example, you can generate a Terraform configuration using the -generate-config-out option with the plan command and the resulting configuration will follow the Terraform styling conventions. You also might write scripts manually for other resources, but using the terraform fmt command will ensure that the code is formatted consistently.

			At the end of the day, it is up to the developer to choose the styling conventions, and there is no problem with the approach. It is not enforced by any means. There will be no change in the result, irrespective of the formatting approach you use.

			This is how the command is used:

			$ terraform fmt <fmt_options> <TARGET>

			Running this command will format the files in the current working directory by default. If the <TARGET> option is used, the command will scan the file/directory passed in the input. If a hyphen is specified for <TARGET>, the command will read the input from standard input (STDIN).

			The following are the options supported by this command and it is not mandatory to use them. Just running the terraform fmt command will also work if you expect the default behavior:

			
					-list=false: Setting this option will not list the files that are not properly formatted.

					-check: This option will just check whether the input files are formatted as per the styling conventions and the exit code will be set accordingly. It will be zero (0) if all input files are formatted properly and non-zero if there are any inconsistencies.

					-rewrite=false: This option will not overwrite the input files and can be used along with the -check option if you are just going to validate the configuration or input files.

					-diff: This option lists differences in the formatting changes.

					-recursive: This option is used to format the input files in the current working directory as well as in subdirectories. The default behavior is that the command will format the files in the current working directory only.

			

			Take a look at a simple example of how terraform fmt will reorganize a simple resource block that will create an Amazon S3 (AWS storage service to store files as objects) bucket. You will notice that the Name key and value alignment are formatted according to the other tag in the tags {} inner block.

			This is before running the terraform fmt command:

			resource "aws_s3_bucket" "testbucket" {

			 bucket = "fmt-test-bucket"

			 tags = {

			 Name = "Test bucket"

			 Environment = "testing"

			 }

			}

			This is after running the terraform fmt command:

			resource "aws_s3_bucket" "testbucket" {

			 bucket = "fmt-test-bucket"

			 tags = {

			 Name = "Test bucket"

			 Environment = "testing"

			 }

			}

			There are few additional

			The validate Command

			The terraform validate command is used to validate the configuration files in the directory, checking whether the configuration is syntactically correct and that there are no inconsistencies with the variable names or any attributes. This command does not access the state file or call the provider APIs, and it works within the directory only.

			The command requires the current working directory to be initialized with the terraform init command.

			This is how the command is used:

			$ terraform validate <validate_options>

			The following are the options supported:

			
					-json: This option produces the machine-readable JSON output and this can help with automation scenarios.

					-no-color: The output will not have any color if this option is specified.

			

			Special Commands

			So far, you have read about the core Terraform workflow commands and then followed this up with the code reformatting commands that will be used in most cases. In this section, you will see some special commands in appropriate scenarios.

			The login Command

			The terraform login command is used to obtain and save an API token for HCP Terraform, Terraform Enterprise, or any other compatible host. In the case of HCP Terraform and Terraform Enterprise, the user will be interacting with the host with the API token as the authentication mechanism and it is applicable to use in interactive scenarios.

			This is how the command is used:

			$ terraform login <HOSTNAME>

			In case HOSTNAME is not specified, it will default to the HCP Terraform host at app.terraform.io.

			If the command execution is successful in CLI, the API token retrieved will be stored locally in the file named credentials.tfrc.json by default. But there is also an option to change this behavior and save the API token in a different location when you run the login command.

			The logout Command

			The terraform logout command is used to remove the API token stored by the login command. With this command, the API token will be removed from the local file storage only and the token stored in the remote server has to be manually revoked.

			This is how the command is used:

			$ terraform logout <HOSTNAME>

			In case HOSTNAME is not specified, it will default to the HCP Terraform host at app.terraform.io.

			The console Command

			The terraform console command is used to start an interactive console to try out and experiment with expressions. For example, if you would like to try out expressions or any functions before using them in the actual configuration, this console-based command will help. This command has two ways of operating based on the state file content.

			If the state file is empty, you can use this command as usual to try out the expressions; if the state file is not empty and you already have the configuration in place, the command will place a lock on the state file during the operation.

			For configurations such as the local backend, the -state command-line option can be used to point to a different state file than the terraform.tfstate file in the current working directory.

			Shortcuts such as Ctrl + C or Ctrl + D can be used to exit the console, and the exit command can also be used.

			This is how the command is used:

			$ terraform console <console_options>

			Look at a simple string function, replace() and uuid(), to print a Universally Unique Identifier (UUID) in the terraform console command:

			$ terraform console

			> replace(«ec2_instances», «_», «-»)

			"ec2-instances"

			> uuid()

			"b00bdca8-7e54-0f08-7127-3184926735f7"

			The output Command

			The terraform output command is used to extract the values of the output variables from the Terraform state file.

			This is how the command is used:

			$ terraform output <output_options> OUT_VARNAME

			If OUT_VARNAME is not specified, the command will extract all the output values, and when specified, it will extract the value of that output variable.

			The following options are supported by the terraform output command to interact with the output values stored in the state file:

			
					-json: This option produces the output in JSON format.

					-raw: This option can be used to produce the output values in string format without any special formatting and it helps when the Terraform execution is integrated with shell scripts. This option only supports string, number, and Boolean values; complex data types will not work.

					-no-color: This option is used to disable color codes in the output.

					-state=<PATH_TO_STATE_FILE>: This is used to point to a state file in a different location and is not applicable for remote backends.

			

			Another important consideration with this command is that the command will display any sensitive value in the state file as plain text when using the -json or -raw option and should be used cautiously to avoid exposing sensitive data.

			Take a look at the output.tf file in this configuration that has a couple of output values, such as the access key ID and the Amazon Resource Name (ARN) of the IAM user the script creates:

			output "access_key" {

			 value = aws_iam_access_key.user_access_keys.id

			}

			output "user_arn" {

			 value = aws_iam_user.test_user.arn

			}

			After the Terraform configuration is applied, you can try the terraform output command, which will show the values from the state file. A few examples follow:

			Example 1 shows terraform output with no output variable names:

			$ terraform output

			access_key = "AKIAEXAMPLETESTVALUE"

			user_arn = "arn:aws:iam::123456789012:user/test/test-aws-user"

			Example 2 shows terraform output in JSON format:

			$ terraform output -json

			{

			 "access_key": {

			 "sensitive": false,

			 "type": "string",

			 "value": "AKIAEXAMPLETESTVALUE"

			 },

			 "user_arn": {

			 "sensitive": false,

			 "type": "string",

			 "value": "arn:aws:iam::123456789012:user/test/test-aws-user"

			 }

			}

			Example 3 shows terraform output with an output variable name:

			$ terraform output user_arn

			"arn:aws:iam:123456789012:user/test/test-aws-user"

			The show Command

			The terraform show command is used to read the state file or the plan output file and show the output in human-readable format. This command can also be used in automation cases with the -json option flag.

			This is how the command is used:

			$ terraform show <show_options> <STATE_OR_PLAN_FILE>

			If STATE_OR_PLAN_FILE is not specified, the state file in the default location will be referenced.

			The following command options are supported by the terraform show command:

			
					-json: This option produces the machine-readable JSON output.

					-no-color: The output will not have any color if this option is specified.

			

			Like the terraform output command, sensitive information will be displayed in plain text if the -json option is specified.

			The graph Command

			The terraform graph command is used to create a graph with the dependency relationships of the resources and data blocks for a given configuration as per the conventions in the DOT language. The DOT language saves the graph with .gv or .dot extensions and these are outside the scope of this book.

			By default, the graph command results in a simple graph of resources and dependencies, and with the -type option, different types of graphs can be created with more detail and are helpful when you work with complex configurations.

			This is how the command is used:

			$ terraform graph <graph_options>

			The supported command options are listed here:

			
					-plan=tfplan: This option creates the graph for the given plan that implies -type=apply.

					-draw-cycles: This option can be used to highlight the cycles in the graph with colored edges, and this is helpful for debugging any cycle errors.

					-type=<operation_type>: This option is used to specify the operation type for which the graph has to be created. The possible values are plan, apply, plan-refresh-only, and plan-destroy.

			

			For the sample configuration you have in this chapter, the terraform graph command produces the following output. Please note that the command needs the Graphviz tool to be installed on your local workstation. Here is the download link: https://graphviz.org/download/

			Here is an example command:

			$ terraform graph | dot -Tpng > ch4_graph.png

			Figure 4.1 shows the resource dependencies in graph format:

			
				
					[image: Figure 4.1: The graph command output]
				

			

			Figure 4.1: The graph command output

			The import Command

			The terraform import command is used to import the existing real-world infrastructure resources into your configuration state so it can be managed by Terraform.

			The import command expects a resource configuration block to be written manually for the resource and then you can run the import command in Terraform CLI. This command itself will not generate any configuration.

			If you would like Terraform to generate the configuration, the import block functionality can be used (available with Terraform v1.5.0 or later). The terraform import command can import only one resource at a time and the import block can import more than one resource at the same time.

			This is how the command is used:

			$ terraform import <import_options> RESOURCE_ADDRESS RESOURCE_ID

			This command will import the resource with the specified Resource ID at the given Resource Address. If the resource is defined inside the module, the module name with the keyword should be appended before the resource address.

			Here is an example:

			$ terraform import module.foo.aws_s3_bucket.testbucket test-bucket-qwi02

			The resource ID can vary based on the resource type you intend to import. In the example configuration you are using in this chapter, the resource ID refers to the access key ID in the case of IAM access keys. So, if you are trying to import an IAM access key resource into Terraform, the import command would look like this:

			$ terraform import aws_iam_access_key.user_access_keys AKIAEXAMPLETESTVALUE

			Take a look at the options available for this command:

			
					-config=<PATH>: This option can be used to specify the alternate location that contains the configuration scripts. If not specified, Terraform will look for configuration scripts in the current working directory.

					-input=true: Setting this option will ask for input to execute the init command if necessary. If this is set to false, it will cause an error if the input is not provided.

					-lock=false: This option will disable the locking of state files.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value. The default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

					-no-color: This option is used to disable color codes in the output.

					-parallelism=<COUNT>: This option can be used to override the maximum number of parallel operations on the machine running Terraform.

					-var "VARIABLE_NAME=VALUE": Use this option to set a value for the variable declared in the main configuration. If there are multiple variables, the option can be used for each variable name.

					-var-file=<FILENAME>: This option is used to set the values of multiple input variables, usually using the *.tfvars file. The option can also be used multiple times to pick the values from more than one file.

					-provider=provider: This option is used to override the default provider configuration while importing the object. By default, Terraform uses the provider specified in the configuration for the target resource. This option is deprecated.

			

			Note

			For configurations using the local backend only, terraform import also accepts the legacy options of -state, -state-out, and -backup. For more details on these options, please refer to the Options section under the terraform apply command.

			State Management and the terraform state Command

			As you have, the Terraform state file, terraform.tfstate, is critical to the core workings of a Terraform tool. The individual entries in the Terraform state file map directly to real-world infrastructure. This allows Terraform to sync the resources whenever there are changes to the configuration.

			The state file is managed and updated automatically when commands such as plan and apply are executed. Sometimes, there might be a need to interact with the state file and make some adjustments to accommodate the changes made outside Terraform. This is where the terraform state command plays a vital role.

			You can start with the terraform state command and the options associated with it. There are also subcommands within the state command that help in different scenarios, which will be discussed further in this topic.

			The state Command

			As discussed previously, the terraform state command is used mainly for state management. This command will modify the state file seamlessly without you having to work directly with the state file and editing it.

			This is how the command is used:

			$ terraform state [subcommand] <state_options> <ARGUMENTS>

			The terraform state command will work the same way with both the local and remote backends. In the case of a local backend, the command will run faster, as there are no network hops, and remote backends take some time and the turnaround time will be delayed. Remote backends have their own advantages, such as security, backup management, and restricted access control.

			The state command output can also be integrated with other tools, such as jq, and can be automated. The subcommands will also take a backup of the state file before it is modified by them. There are also subcommands such as terraform state list and terraform state show that are read-only and will not take any backups.

			Subcommands of terraform state

			The following section will cover the subcommands of the terraform state command; each has its own use case that will be discussed in detail.

			The terraform state list Command

			The terraform state list command will list all the resources within the state file.

			This is how the command is used:

			$ terraform state list <list_options> <RESOURCE_ADDRESS>

			If RESOURCE_ADDRESS is not specified, the command will list all resources available in the state file. When specified, the command will list only the resources matching the criteria.

			There could be situations where you might be dealing with a large number of resources and listing everything in one go may not be required. In that case, you can choose to list only specific resources, all resources belonging to a specific module, all instances created by the same resource group, and so on.

			The options supported by this command are as follows:

			
					-state=<PATH>: This option is used to specify the state file to be considered. If not provided, it will default to the terraform.tfstate file in the current working directory.

					-id=<ID>: This option is used to filter the resource by ID.

			

			For a better understanding, a few examples are provided here:

			Example 1 lists all resources in the state file:

			$ terraform state list

			Output:

			aws_iam_access_key.user_access_keys

			aws_iam_user.test_user

			Example 2 lists resources by resource address:

			$ terraform state list aws_iam_user.test_user

			Output:

			aws_iam_user.test_user

			In this case, if multiple instances of the same resource type are provisioned, all of them will be listed with the index. In your case, you only have one, so it displays the same resource.

			Example 3 filters resources by resource ID:

			$ terraform state list -id=AKIAEXAMPLETESTVALUE

			Output:

			aws_iam_access_key.user_access_keys

			The terraform state show Command

			The terraform state show command is used to display the attributes of a single resource in the state file.

			This is how the command is used:

			$ terraform state show RESOURCE_ADDRESS

			In this command, RESOURCE_ADDRESS is not optional, and hence, needs to be provided always. Upon successful execution, the attributes of the matching resource will be displayed.

			The resource address format can be in any valid form that can be accepted by Terraform, and the supported command option is as follows:

			-state=<PATH>: This option is used to specify the state file to be considered. If not provided, it will default to the terraform.tfstate file in the current working directory.

			You can now run this command with the available configuration:

			$ terraform state show aws_iam_user.test_user

			Output:

			# aws_iam_user.test_user:

			resource "aws_iam_user" "test_user" {

			 arn = "arn:aws:iam::123456789012:user/test/test-aws-user"

			 force_destroy = false

			 id = "test-aws-user"

			 name = "test-aws-user"

			 path = "/test/"

			 tags = {

			 "createdby" = "terraform"

			 }

			 tags_all = {

			 "createdby" = "terraform"

			 }

			 unique_id = "AIDAEXAMPLEUSERIDKHNJ"

			}

			You can see that this command lists all the possible attributes for the given resource from the state file and it is meant for human interaction. If there are any automation scenarios, the terraform show -json command can be used to get the same output in machine-readable JSON format, which we already discussed.

			The terraform state mv Command

			The default behavior of Terraform is that if you change the configuration after provisioning the resources already, it will track the changes and ensure that the remote objects match the current configuration settings.

			How does this work? During the apply stage, Terraform destroys the resource provisioned with the previous snapshot of the configuration and a new resource will be provisioned with the latest changes.

			But there will be rare scenarios where you do not want to destroy the remote object that’s already active and want to track it with the new resource address. This command will help in this case.

			This is how the command is used:

			$ terraform state mv <move_options> SOURCE DESTINATION

			Even here, SOURCE and DESTINATION should follow the resource-addressing conventions. When valid values are provided, Terraform will look at the specific resource address and see whether the object exists. If successful, it will move the resource to the new destination resource address.

			The options supported are as follows:

			
					-dry-run: This option will report all resources in the state matching the source address but will not move/make any changes. It can be used for testing purposes before making the actual change.

					-lock=false: This option will disable the locking of state files; the default behavior is state locking will be enabled.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value and the default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

			

			A simple example to understand this command would be renaming the IAM user resource in the current configuration as follows.

			This is the code before changes:

			resource "aws_iam_user" "test_user" {

			 name = "test-aws-user"

			 path = "/test/"

			. . .

			}

			This is the code after changes:

			resource "aws_iam_user" "preprod_user" {

			 name = "test-aws-user"

			 path = "/test/"

			. . .

			}

			In this case, the terraform state mv command will help us track the IAM user resource under the new address. The command to be used is as follows:

			$ terraform state mv aws_iam_user.testuser aws_iam_user.preprod user

			Note

			For configurations using the local backend only, the terraform state mv command also accepts the legacy options of -state, -state-out, and -backup.

			The terraform state rm Command

			The terraform state rm command will help remove the remote object from the state file so it can continue to exist without destroying it. This also means that if the same configuration is reapplied, the new resources will be created again for the removed instances to be in sync.

			This is how the command is used:

			terraform state rm <remove_options> RESOURCE_ADDRESS

			The supported command options are the same as the terraform state mv command:

			
					-dry-run: This option will report all resources in the state matching the source address but will not move any resources/make a change. It can be used for testing purposes before making the actual change.

					-lock=false: This option will disable the locking of state files.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value and the default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

			

			Note

			For configurations using the local backend only, the terraform state rm command also accepts the legacy options of -state, -state-out, and -backup.

			The terraform state replace-provider Command

			If there are scenarios to replace the provider currently used in the configuration with the new provider configuration, the terraform state replace-provider command can be used. This command will also take a backup of the state file before the update and the backup option cannot be disabled.

			This is how the command is used:

			$ terraform state replace-provider FROM_PROVIDER TO_PROVIDER

			Upon successful execution, resources from FROM_PROVIDER will be moved to TO_PROVIDER. The supported options are listed here:

			
					-auto-approve: This option will execute the changes without waiting for any approvals.

					-lock=false: This option will disable the locking of state files.

					-lock-timeout=<duration>: This option will override the duration of the state lock with the user-provided value and the default is zero seconds. It might help in scenarios where there are parallel processes running pointing to the same state file and it makes sense to wait for the lock to get released for the next process to use it.

			

			Note

			For configurations using the local backend only, the terraform state replace-provider command also accepts the legacy options of -state, -state-out, and -backup.

			The terraform state pull Command

			The terraform state pull command downloads the state file from its current location, upgrades it so that it is compatible with the locally installed Terraform, and prints the raw output to the console.

			This is how the command is used:

			$ terraform state pull

			This command can also be used in cases where the information from the state should be retrieved when paired with other third-party tools such as jq. It is not recommended to use this command with the state file stored in the remote backend.

			The terraform state push Command

			The terraform state push command is used to manually upload a local state file to the remote backend and should be used very rarely, when there are no other alternatives.

			This is how the command is used:

			$ terraform state push <push_options> PATH

			The state file from the specified path will be pushed to the currently configured backend.

			Before the state file is pushed, Terraform performs safety checks to ensure the changes are completely secure. To disable the checks, the -force option can be used but is not recommended.

			Note

			To use the state pull and state push commands, Terraform expects the file to be in UTF-8 format without the byte order mark (BOM).

			Summary

			In this chapter, you read about the core Terraform workflow commands. This was followed by explanations of special-purpose commands such as console, graph, and import, used as and when the need arises. The terraform state command was then discussed in detail with the subcommands. You also looked at how each command helps the developer interact with and manage the state file beyond infrastructure provisioning.

			Now, you can proceed with the next chapter, on how to use the commands with Terraform CLI with full confidence. This will help in increasing productivity and the seamless transition to advanced concepts such as Terraform modules, HCP Terraform, and so on.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch4.Alternatively, you can scan the following QR code (Figure 4.2):

			

			
				
					[image: Figure 4.2 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 4.2 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 4.3:

			

			
				
					[image: Figure 4.3 – Chapter Review Questions for Chapter 4]
				

			

			Figure 4.3 – Chapter Review Questions for Chapter 4

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 4.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			5

			Terraform Modules

			Imagine that your company’s Quality Assurance (QA) team needs a test environment to be spun up in a very short interval and the dependency on your team is causing delays.

			The best way to handle this is to facilitate a self-service option for the QA team where they can create the required environment themselves by passing some unique inputs for each environment. This can be achieved using a module.

			Modules are one of the core concepts of Terraform because of their extensive use in the production environment. You will rarely find a production environment where modules are not used. A good understanding of modules is required not just from a certification perspective but also for day-to-day operations while managing a Terraform-based setup. The following are the key topics that will be covered in this chapter:

			
					Why do we need modules?

					What is a module in Terraform?

					Advantages of modules

					Types of modules

					Module structure

					Module syntax

					Key points to consider before creating modules

					Key points to consider while using a module

					Drawbacks of modules

			

			Once you complete these topics, you will find exercises where you will learn how modules are used in the real world in a practical way:

			
					Using a root module to provision resources

					Using a local module to provision resources

					Using a remote module to provision resources

			

			By the end of this chapter, you will have a good understanding of modules and some of the key considerations from a design point of view. Operationally, you will also be able to write your own modules for any requirement and will be able to use a public module and customize it for your needs.

			Technical Requirements

			This chapter has three exercises. The following are the pre-requisites for you to get started with the exercises:

			
					An AWS account and an IAM user with required permissions (or an SSO user if your organization is using AWS SSO). Refer to the following URL for steps on how to create an IAM user in AWS: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html.

					The AWS CLI installed (version 2.0 and above preferred). For detailed instructions on installing the AWS CLI, go to https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html.

					Terraform installed (version 1.4.0 and above preferred).

					The code required for the exercise is present in our GitHub repository.

					Here is the URL for the GitHub repository: https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main

					Clone the GitHub repository to your local machine by running the following command:git clone https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition.git

					Navigate to Chapter 5 by running the following command:cd Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/ch5

					You should find the README.md file along with three folders, each of which contains an exercise.

					Refer to README.md for instructions on the exercises.

			

			Note

			The exercises launch real resources in the AWS cloud. Almost all the resources are free except for the EC2 instance, which gets charged till you delete it. It should not cost you more than a dollar if you complete the exercise within three to four hours. Please make sure you delete the resources to avoid getting charged.

			Why Do We Need Modules?

			When you start using Terraform, you start by creating a few infrastructure objects by writing code in a single configuration file. As your requirements grow, you start adding additional configurations to the same file or adding new files to the same directory. Theoretically, you can even keep using this approach. However, is this the right approach that is recommended by HashiCorp?

			Before answering this question, take a look at the drawbacks of this approach:

			Complexity

			When you start copy-pasting the code for similar requirements or multiple resources of the same configuration, the complexity (imagine having 50 blocks of code to create 50 instances) will increase with the growth in the number of resources. It becomes very difficult for the team managing Terraform to understand the code and navigate it for either changes or troubleshooting.

			Duplication of Code

			You use the same block of code with minor changes for similar resources. One of the key principles of software development is Don’t Repeat Yourself (DRY). When you are trying to adopt the best practices of software development in Infrastructure as Code (IaC), duplicating the code goes against one of the important principles of software development.
For example, if you want to launch three EC2 instances of the same configuration but with different names, you end up copying the same code thrice and changing a single argument for the name.

			Segregation

			The segregation of different layers of infrastructure resources is important to assign ownership to different teams. Imagine a situation where the network team wants to create code for all the networking requirements and the application team wants to write code for app-related requirements. How are you going to segregate and delegate the ownership?

			Misconfiguration

			When you want to make changes, apart from knowing what exactly the Terraform command does, you also need to know the whole environment to gauge the impact a simple change will have on your setup. The chance of a misconfiguration and its impact on the environment is very high.

			So, how can you solve these problems? What is the recommendation from HashiCorp? What is being followed by the industry? Terraform modules are the answer. By the end of this chapter, you will understand how Terraform solves all these problems.

			What Is a Terraform Module?

			In non-technical terms, a Terraform module is a template using which you can launch logically grouped resources as per your requirement even without knowing its inner workings.

			You define the template once and use it any number of times to launch resources. For example, you can create a module for the launch of a test environment of your product and your QA team can use this module any number of times to launch the test environment.

			HashiCorp calls the module a set of configuration files in a single directory that helps you organize and re-use Terraform configuration. In other words, any directory with Terraform configuration files to create a certain resource(s) can be called a module.

			Terraform uses modules to package resource configurations, and the user can reuse these modules whenever there is a requirement to launch resources packaged in a module.

			Advantages of Modules

			In this section, you will look at some advantages of modules:

			Reduces Complexity

			Modules group logical components, making them easy to manage and update when required. This makes it easy for the team that manages Terraform to understand the code and make the required changes.

			Reduces Code Duplication

			You write modules once (or use public modules) and these get used to launch resources. There is no duplication of code here. You only pass values to the variables to decide the number of resources or the configuration of the resources.

			This not only prevents the duplication of code but also saves time by reducing the effort required for the same task.

			Segregation

			Modules inherently support segregation because you can build one layer on top of another. A root module is the place where a child module gets referenced in one of the configuration files. The child module variable’s value gets passed and the required outputs are defined. The output of one module can be used as input to another resource’s configuration. Hence, you can create a separate layer for each infrastructure tier.
For example, in a typical three-tier architecture, there will be a web layer (presentation layer), an app layer, and a database layer.

			To deploy this three-tier-based application, you also need a network layer, which is managed by the network team.

			The network team will be responsible for creating the networking components that will be used by other teams to deploy their respective layers. The app/web/DBA team will have their own modules for the launch of respective resources. They will own these modules but when they launch the infrastructure objects, they will consume the outputs of the networking layer to make sure these run within the defined network.

			Reduces Misconfigurations

			It is only human to err. You have likely experienced a situation where you or one of your colleagues made changes in an environment/file/resource that were not meant to be made. When you use individual files, you define every single parameter, and hence, the chance of human error is higher. With modules, you standardize most of these configurations and only allow a few important configurations to be modified via variables. This automation helps in reducing the chance of misconfigurations.

			Self-Service

			If you want to allow people to create resources on their own without spending too much time learning about Terraform, modules can help. You can just publish a module and the variables whose values need to be passed by the respective team to create the resource.

			All the complex configurations are hidden under the hood. The end user just needs to understand the inputs and outputs. Inputs can be passed as input variables and the outputs of the modules need to be accessed using standard syntax.

			Apart from these key advantages, modules help in quick deployments and maintain a consistent environment where the best practices of the industry can be tested once and deployed to environments via modules.

			Types of Modules

			Depending on the criteria one uses, modules can be classified in multiple ways. Figure 5.1 shows the classification of modules based on two important criteria:

			
					Based on the entry point for the module (i.e., where terraform plan/apply is run):	Root module
	Child module

					Based on where the configuration files are stored/installed:	Local module
	Remote module[image: Figure 5.1: Types of modules]

			

			Figure 5.1: Types of modules

			Now that you have seen the types of modules, it is time to take a look at each module type in detail in the following section.

			The Root Module

			Any folder with a set of Terraform configuration files to create infrastructure objects can be called a root module.

			If the Terraform module is a template, someone must instantiate it, that is, make a copy of the infrastructure objects using the template. This is where the root module comes in.

			The root module is the primary entry point for the module. This is the directory with the configuration files where the user will run terraform plan or terraform apply.

			A root module can have a few configuration files to create the infrastructure and/or it can call the child modules as shown in Figure 5.2.

			
				
					[image: Figure 5.2: Root module]
				

			

			Figure 5.2: Root module

			A typical root module’s files are shown in Figure 5.3.

			When you call the child module from the current directory (i.e., the root module), it loads the configuration files of the child module and replaces the variable value with the one you defined in the current directory.

			
				
					[image: Figure 5.3: Root module file structure example]
				

			

			Figure 5.3: Root module file structure example

			The Child Module

			A module is called a child module when it gets called by the root module using a module block, as shown in Figure 5.5.

			Once you have created the child module, you can call it any number of times within the configuration files in your root module. It can also be called from multiple root modules, provided they have access to this child module. When you run terraform get or terraform init from the root module, the child module gets downloaded if it’s a remote module. If it is a local module, the modules.json file under .terraform/modules will contain the path of the modules in the local filesystem.

			Note

			When people talk about modules, most of the time it is in the context of a child module. If it is a root module, it is normally specified.

			
				
					[image: Figure 5.4: Child module called by root module]
				

			

			Figure 5.4: Child module called by root module

			While Figure 5.4 is a pictorial representation of the child module’s work, the following Figure 5.5 shows the code/file representation of the module.

			
				
					[image: Figure 5.5: Child module and root module file structure example]
				

			

			Figure 5.5: Child module and root module file structure example

			Note

			Some child modules have their own child modules. Such a module is called a nested module.

			Local Modules

			As explained earlier, a module is a bunch of configuration files and needs to be stored somewhere before it gets called by anyone who wants to use it.

			If you store these configuration files on your local filesystem, it is called a local module.

			When you are calling a local module, it must begin with ./ or ../ to indicate that the module is present in the local filesystem, as shown in Figure 5.6.

			HashiCorp recommends using the relative filesystem paths to refer to the local Terraform modules instead of the absolute filesystem paths. Using the absolute path tightly couples the configuration file path to the specific computer’s filesystem layout.

			You will be able to understand this well with the following example, where you will try both the full path and relative path to call the child module from the root module.

			This is the child module’s path:

			/Users/manju/Desktop/terraform/vpc-module

			This is the root module where the execution is happening:

			/Users/manju/Desktop/terraform/example

			Within the main.tf file of the root module, you will call the child module.

			If you use the full path as follows, your code will not be able to run on your colleague’s laptop as the path where they run Terraform will be different:

			module "vpc"{

				source = "/Users/manju/Desktop/terraform/vpc-module"

				---- Truncated ----

			}

			Instead, you should use a relative path, as follows. This should work on any computer provided the operating system is Linux:

			module "vpc"{

				source = "../vpc-module/"

				---- Truncated ----}

			
				
					[image: Fi﻿gure 5.6: Example code for local module implementation]
				

			

			Figure 5.6: Example code for local module implementation

			While Figure 5.6 shows a local child module’s path, Figure 5.7 illustrates the local child module’s initialization.

			
				
					[image: Figure 5.7: Local child modules getting initialized]
				

			

			Figure 5.7: Local child modules getting initialized

			When installing a local module, Terraform will not download the module, but will instead refer to the source directory using the path of the modules as specified in the modules.json file under .terraform/modules.

			Storing the configuration on a local filesystem limits the ability to share the modules and work as a team. But this works great for testing modules before pushing them to a version control system or the Terraform Registry to make it a remote module.

			Remote Modules

			If a module’s configuration files are stored and downloaded from a remote system like the Terraform Registry, a version control system (for example, GitHub, Bitbucket, etc.), HTTP URLs, an S3 bucket, or a GCS bucket, then these are called remote modules.

			When installing a remote module, Terraform will download the module into the .terraform directory in your configuration’s root directory. Any changes in the remote module will be reflected only after you upgrade the modules by running the terraform init –upgrade command.

			A remote module can be public (Terraform Registry) or private (HCP Terraform private registry).

			The Terraform Registry is the native way of distributing modules. It is integrated directly into Terraform, so a Terraform configuration can refer to any module published in the registry using the <NAMESPACE>/<NAME>/<PROVIDER> syntax: for example, hashicorp/consul/aws.

			A registry is an index of modules and is the easiest way to find public modules that are created by the community.

			Unless you specify a specific version using the ref argument, Terraform will choose the default branch of the selected repository. If you want to use a different version, you can use the ref argument with the tag name, branch, or SHA-1 hash.

			Remote modules can be further divided into two, depending on the availability of the modules to the user:

			
					Private modules

					Public modules

			

			Private Modules

			Private modules are modules that are available only to members of your team/organization based on how you have set them up.

			You can store your modules in the version control system and decide who has access to this repository. Another option is to use the organization’s HCP Terraform private registry that is integrated with your version control system. Apart from keeping modules private, HCP Terraform offers other features that will be discussed in Chapter 9, Understanding HCP Terraform’s Capabilities.

			The private registry modules have the following syntax for their name:

			terraform-<PROVIDER>-<NAME>

			Examples are terraform-gcp-vault and terraform-aws-vpc.

			Public Modules

			Public modules are those that can be downloaded by everyone. The most popular place for hosting a public module is the Terraform Registry. A registry exposes some additional information that is very helpful in deciding whether you can use a module or should try others.

			Some of these modules are uploaded by vendors themselves and are validated by HashiCorp. These are trusted to be good ones.

			You can also see individuals/teams upload modules, allowing everyone to consume them.

			An example of downloading a remote module from the Terraform Registry is shown in Figure 5.8:

			
				
					[image: Figure 5.8: Example code for a public (and remote) module (Terraform Registry)]
				

			

			Figure 5.8: Example code for a public (and remote) module (Terraform Registry)

			An example of downloading a remote module from GitHub’s public repository is shown in Figure 5.9:

			
				
					[image: Figure 5.9: Example code for public (and remote) module (GitHub)]
				

			

			Figure 5.9: Example code for public (and remote) module (GitHub)

			You must always verify public modules before using them. Since anyone can contribute to the public modules on the Terraform Registry, you will not know whether the code is of high quality, free from security issues, or whether it follows best practices without verifying the code yourself. There is enough information about these modules that can help you decide whether you should use them. They are scattered between the Terraform Registry and GitHub.

			Key parameters to verify a module in the Terraform Registry are the following:

			
					How old is the module?

					How active is the module? (How many times has it been downloaded in the last week/month?)

					Versions

			

			Key parameters to verify a module in GitHub are the following:

			
					Is it getting frequent updates in terms of commits and versions?

					Does it have a good number of active contributors and stars?

					Are the license terms compatible with your organization’s policies?

					Does it have pull requests and issues raised by the community? How has the response been for previous issues?

					Take a look at the code to rule out any undocumented resources or features.

			

			Module Structure

			There is no mandatory structure for modules. However, HashiCorp recommends following their standard module structure, since Terraform tools are designed to understand this structure in order to generate documentation and index modules when you upload modules to the Terraform Registry.

			HashiCorp adds a root module as the mandatory component of the module structure. However, the focus here is mostly on the child module’s structure. Hence, you will not see the root module as one of the requirements in the structure given here.

			These are the key files that make up a module:

			
					main.tf: This is the main configuration file that defines the resources that need to be launched.

					variables.tf: Hardcoding the configuration value in the module’s code makes it difficult to reuse it. You parameterize (define the variable but pass the value of the variable during execution) the arguments of the resources as variables and pass the value of these variables when you call this module from the root module. All the variables corresponding to the module are defined in the variables.tf file.

					README.md: This is a helper file to be written in the Markdown format. This gives information to the user on what the module is used for and how the module should be used.

					outputs.tf: All the resources created by the module are encapsulated and the attributes cannot be accessed from the root module unless they are exported in the child module as outputs. This is typically defined in the outputs.tf of the child module.

			

			For example, if a security group is created using a child module, the ID of the security group will be available in the root module only if it is exported as an output in the child module and is also defined as an output in the root module – preferably, in outputs.tf.

			You can use these outputs as input to other configurations or modules.

			You typically refer to output values as module.MODULE_NAME.OUTPUT_NAME.

			Most modules follow the preceding structure, and it is recommended that you use at least these files in a module.

			Figure 5.10 shows the module with the minimum number of files as per the standard structure recommended by HashiCorp:

			
				
					[image: Figure 5.10: Module structure with minimal files]
				

			

			Figure 5.10: Module structure with minimal files

			Some people also prefer to share more information about the module by adding additional files like changelog.md (key changes with version increment), folders like examples (with sample code for users), and modules with child modules. This is optional and you can add required files/folders based on your requirements.

			The following URL is a good example for the module files. It has the changelog.md, LICENSE, and README.md file, along with main.tf, variables.tf, and outputs.tf:

			https://github.com/terraform-aws-modules/terraform-aws-vpc/tree/master

			The Module Block’s Syntax

			When you want to use child modules in the root module, there is a particular syntax you need to make use of. This syntax is part of the module block and is shown in Figure 5.11. Module blocks document the syntax for calling a child module from a parent module, including meta-arguments like for_each:

			
				
					[image: Figure 5.11: Syntax and example of a module block]
				

			

			Figure 5.11: Syntax and example of a module block

			The name specified within " " after the module keyword is considered the local name. This is used by other modules to refer to this module.

			The content within {} is called the module body.

			This module body contains four arguments:

			
					source: This is a mandatory argument. This can be a path of a local filesystem or a remote one (Terraform Registry, GitHub, and more). This has to be a literal string, and expressions or variable interpolations are not allowed here.

					version: This is used to constrain the version of the modules that can be downloaded. It is recommended to pin the version number in production. By default, the latest version gets downloaded when you pull the module. This can cause compatibility issues and break some functionalities. By pinning the versions, you can perform testing for the newer version separately, iron out issues, and then do an upgrade of this module. Here are the other aspects of this argument:	Terraform supports various operators (=, !=, > , >=, <, <=, ~>) to help you pin versions.
	version is not useful in the local modules as these are referenced directly in the local filesystem using the path specified in the modules.json file. Hence, the local modules used are always the latest ones.

					Input variables: Input variables are used to customize the resources of Terraform modules without altering the module’s own source code. This helps to keep the module’s code generic while allowing people to pass the specific values based on their requirements. Here are the other aspects of this argument:	These input variables can be declared in both the root module and the child module.
	While the values for the root module can be passed via the CLI, environment variables, or a .tfvars file, the values for the child module should be passed by the calling module in the module block.

					Additional meta-arguments: Apart from source and version, there are a few more meta-arguments used with modules:	count: Used to create multiple copies of the infrastructure objects defined in a single module block. It is typically an integer that indicates how many times the module needs to be instantiated to launch infra objects.
	for_each: Though for_each is also used to create multiple copies of infrastructure objects, it is used when the argument needed is a distinct value that is present in a map or set. Here, there is no definite number of iterations but it depends on the number of distinct values present.
	depends_on: Terraform understands the implicit dependency (created when the graph gets created during terraform plan/apply). However, if there are any explicit dependencies that need to be configured, you can make use of this meta-argument.

			

			Note

			~> operator: This operator is called the pessimistic constraint operator. You use this operator to allow the upgrade of only the rightmost version component.

			For example, if you define version ~> 1.4.1, the upgrade process is allowed to change to the new version starting from 1.4.1 to 1.4.10, but not 1.5.0.

			If you define version ~> 1.2, the upgrade process is allowed to change the version from 1.2 to 1.10 but not 2.0.

			As you will notice from the two examples, only the last number is allowed to change when you use this operator.

			Key Points to Consider When You Create a Module

			Once you decide to create a module for a certain requirement, there are certain points to keep in mind:

			
					You need to decide whether you are going to create modules to encapsulate all the services required for a particular project or create modules for the resources that are then called by a root module of the project. This is an important consideration and has a long-term impact since you will be using these modules on a day-to-day basis. Hence, it is a good idea to brainstorm this with your team before deciding on the approach.

					An infrastructure object may need multiple arguments to be passed before it can be provisioned. For example, an EC2 instance would need ami-id, instance-type, keypair, security group, and a number of other details. You will have to decide which of these arguments should be exposed to users and which ones to hide (and pass default values). Exposing all the arguments will make it difficult for the user to use the module. These arguments can be exposed to the users as input variables for which a user will pass the value. It is recommended to keep the input variables to a minimum.

					An infrastructure object created by the module can have multiple attributes as output. Are all these important for your requirements? You will have to decide which ones are required and expose them as outputs. These outputs can be consumed by other modules or the user who runs the code.

					Always have different modules for long-lived objects and short-lived objects, for example, VPC in AWS will be present for a long time, unlike application servers, which can be created and destroyed often. The same is true for the database servers, which should be around for a long time compared to a security group rule.

					If your organization allows it, share the module with the community via Terraform Registry. You will not only be helping the community but also helping yourself because the community shares feedback on bugs and new features that can be used to improve your module.

					Documenting the module is important as it helps the end user understand the purpose of the module and how to use the module. Documenting is done using the README.md file, which can be created either manually or using some automated tools. The following are some of the key details that will have to be present in the README.md file:	Resources created by the module
	Example code usage
	Inputs
	Outputs

			

			These are not exhaustive points but are key ones before you get started.

			Note

			terraform-docs is one of the tools used to generate documentation for modules. You may reference https://terraform-docs.io/ for more information.

			Key Points to Consider While Using a Module

			Whether you create a module yourself or use public modules, there are certain points you need to be aware of while using these. Though not exhaustive, the following points are a good starter:

			
					Modules call other modules using a module block.

					After adding or removing module blocks, you must run terraform init to enable Terraform to either download a module or delete a module.

					If you modify a module block, you will have to run terraform init –upgrade to enable Terraform to download the latest changes.

					When you are using a public module from Terraform Registry, go for verified modules unless there is not a verified module for your requirements. Verified modules are reviewed by HashiCorp for compatibility with the Terraform core. These modules also have active contributors from the providers (like AWS, GCP, and so on) to keep the module up to date. The verified badge appears next to modules that are published by a verified source. Public modules can be used in different ways:	You can download a whole module onto your filesystem and start referring to it from your root module. With this option, you will miss out on the latest updates of public modules.
	You can directly refer to a public module in your root module.
	You can create another abstraction and create a new module that refers to a public module. This newly created module is then called from the root module. This adds some flexibility and gives an option to add missing features.

			

			Drawbacks of Modules

			Though modules help in solving several problems, they also come with a few cons that you should be careful about. When you compare the pros and cons, the pros outweigh the cons by a huge margin, but still, you need to know about them. Even HashiCorp recommends using modules in moderation.

			
					When you start using module blocks, your configuration becomes hierarchical, where each module contains its own set of resources and could have its own child modules. This creates a deep, complex tree of resource configurations that make troubleshooting difficult.

					By default, Terraform downloads the latest version of the module from Terraform Registry. Over a period of time, you may end up having incompatibilities due to the untested version upgrade. You can avoid this issue by pinning the module to a certain version in the module block.

					Public modules are created to cover most generic use cases. If you have a use case that is very specific, you will either have to write your own module or create another abstraction (i.e., create another module) using the public module and make the required customizations. This customization helps when you want to add certain features but cannot modify the existing logic of a public module. If you need to do this, you will have to fork the code and modify it for your use case.

					Not every requirement needs a module; some use cases that need to be run only once are better done using resource blocks than writing a new module for them.

			

			Summary

			In this chapter, you learned about Terraform modules. Since there are multiple types of modules, it can be difficult to understand them without understanding the basics.

			You started with a problem statement that the modules solve and then moved on to different ways of using modules.

			With this understanding, you will be able to decide whether you should use a module or go for a one-time implementation via a resource block, create a module yourself, or use a public one, verify whether a public module is trustworthy to use, and so on.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch5.Alternatively, you can scan the following QR code (Figure 5.12):

			

			
				
					[image: Figure 5.12 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 5.12 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 5.13:

			

			
				
					[image: Figure 5.13 – Chapter Review Questions for Chapter 5]
				

			

			Figure 5.13 – Chapter Review Questions for Chapter 5

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 5.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			6

			Terraform Backends and Resource Management

			Think of a scenario where you are part of a large enterprise-level DevOps team, primarily dealing with the provision of infrastructure resources from different cloud providers for multiple project teams. Your team maintains the Terraform configuration scripts and is responsible for end-to-end activities, such as state management and adding/updating resource attributes. There could be situations where you and your colleagues might have to collaborate and work on the same ticket, with the same set of configuration scripts.

			This also means that everyone working on the same configuration needs to refer to the same state file. Terraform creates the state file and stores it locally with the terraform.tfstate filename by default. It is difficult to share the latest state file for every iteration within the team, and losing it completely due to workstation issues or an OS crash can be disastrous. This is where Terraform comes in, with the amazing idea of backends, which we will explore in the upcoming sections.

			The exam objectives that will be covered in this chapter are as follows:

			
					Describe a default local backend

					Differentiate remote state backend options

					Describe a backend block and cloud integration in configuration

			

			The high-level topics that will be covered in this chapter are as follows:

			
					Backend configuration

					Supported backends

					Resource addressing and dependencies

					Expressions and constraints

			

			You can now proceed with the chapter, delving into backends and more.

			What Are Backends?

			Backends basically determine where a state file will be stored for a given configuration. Instead of locally, there are a couple of ways to use backend features:

			
					Integration with HCP Terraform

					Configuring the backend {} block to store the state file in a remote location

			

			The Terraform paid offerings will be discussed in detail as part of Chapter 9, Understanding HCP Terraform’s Capabilities. In this chapter, you will learn about remote backend configurations with supported backends and ways to configure them. The list of backends supported by Terraform will vary between different versions. Refer to the official documentation for the latest information. In the subsequent sections, you will cover the list of backends supported. The list is based on Terraform version 1.5.x at the time of writing.

			Backend Configuration

			As you have just seen, backend configuration can be done either using HCP Terraform or remote backend configuration, based on the type of backend we intend to use.

			The backend configuration in both cases requires us to add the backend {} block to the configuration with the necessary parameters, which will be discussed in detail. Some of the backends will be used only to refer to the state file, and some might have advanced capabilities, such as state locking, that will help preserve the state file content when there is a possibility of simultaneous operations against the same state file.

			If there is no explicit backend configuration, the default “local” backend will be used. The “local” backend does not need any parameters, and it simply stores the state file in the current working directory.

			As per the Terraform 1.5.x documentation, the list of supported built-in backends is as follows:

			
					local

					remote

					s3

					http

					Kubernetes

					azurerm

					consul

					cos

					gcs

					oss

					pg

			

			There were a few backends, such as artifactory, etcd, etcdv3, and swift, that were previously supported in Terraform versions prior to 1.3. So, it is always suggested to refer to the updated documentation for the list of backends that support the version you will use.

			Configuring the backend {} Block

			The backend {} block to configure the backend must be added as a nested block under the terraform {} block. A sample backend {} block looks like this:

			terraform {

			 backend "s3" {

			 bucket = "tf-state-bucket-qu34y"

			 key = "dev/accounting/key"

			 region = "us-east-1"

			 }

			}

			In this example block, the "s3" label indicates the backend you are trying to use, and the parameter(s) inside the block is specific to this particular backend. This "s3" backend is useful when you want to store the state file in the bucket storage provided by AWS Simple Storage Service (S3).

			When using the remote backend configuration, Terraform stores the backend configuration settings inside .terraform/terraform.tfstate for the current working directory. This is also applicable when the plan is created via the terraform plan command, and it will ensure that the same backend settings will be used when the plan is actually applied.

			Based on the type of remote backend, there could be situations where credentials need to be passed. This can be done in multiple ways:

			
					Directly specifying the credentials inside the backend {} block

					Using the -backend-config option in the terraform init command

					Using environment variables

					Out of these options, the use of environment variables is the preferred one because the credentials will not be stored in the state file, whereas using the two other options will result in storing the actual credentials in the state file, and that is risky.

					The backend configuration can also be changed at any time. After the changes, Terraform will automatically detect the changes, and you may be required to reinitialize based on the type of changes. A change could be the use of a completely new remote backend or switching back to the local backend from a remote one. When changing backends, Terraform also provides the option to migrate the existing state file to the new backend. However, it is always recommended to manually back up the current state file to a safe location before performing the migration.

			

			There are a few limitations with backend {} blocks:

			
					Any terraform configuration can contain only one backend {} block

					Usually, the cloud {} block is used to configure the HCP Terraform, and if that is the case, the backend {} block cannot be used at the same time

					Input variables, locals, or data source attributes cannot be referred to in the backend {} block

			

			Partial Configuration

			In the previous section, the path parameter in the sample backend {} block is specified as dev/accounting/key, and this is where the remote state file will be stored. Assume that the value is not known at the time of writing the configuration and you want to keep that dynamic.

			This means that it is possible to use the same configuration and the same backend, but there are parameters that can change based on the context. In such situations, Terraform allows us to write only the known parameters in the backend {} block and specify the dynamic parameters at the time of initialization. This capability is what you can call partial configuration.

			With partial configuration, the following are the ways to specify the missing arguments:

			
					File: A file can be specified for the -backend-config option that will contain the arguments at the time of executing the terraform init command

					Command key/value pairs: The arguments can also be specified in the -backend-config=KEY=VALUE format to specify the arguments as part of the init command

					Interactively: If the previous options are not used, running the terraform init command only will prompt the user to enter the missing arguments in an interactive manner

			

			It is also possible that there are no known arguments at the time of writing the configuration, and if so, an empty backend {} block can be specified:

			terraform {

			 backend "s3" {}

			}

			Note

			If you are planning to use the configuration file option, the suggested naming convention is *.backendname.tfbackend as per the Terraform official documentation. Other names will not harm anything either.

			Valid examples could be config.remote.tfbackend or config.http.tfbackend.

			Supported Backends

			In this section, you will read about the list of supported backends and their actual usage. In most situations, you will stick to the type of backend that is closely associated with your system or application architecture and where it is currently deployed.

			A few backends, such as “s3” and “azurerm”, support a wide range of possible configurations that are specific to a cloud provider, but we will not cover every possibility and will stick to the scope of this book.

			local

			The “local” backend is the default option to store a state file when the remote backend is not configured. With this backend, the state file is stored in the local filesystem and the operations are performed locally.

			A sample configuration for the local backend is given here:

			terraform {

			 backend "local" {

			 path = "/path/to/terraform.tfstate"

			 }

			}

			The “local” backend configuration accepts two parameters:

			
					path: The path to the location of the terraform.tfstate file. This is optional.

					workspace_dir: The path to the non-default workspaces. This is an optional parameter as well.

					Most commands, such as terraform plan and terraform apply, that work with the Terraform state file stored in the local backend accept the following command-line options to change the default behavior. However, they are not necessarily used in all scenarios:

					-state=<FILENAME>: Overrides the default state filename when the command intends to read the state file

					-state-out=<FILENAME>: Overrides the state filename with FILENAME when the command creates a new state file snapshot

					-backup=<FILENAME>: Overrides the default backup filename that the local backend will use to back up the state file

			

			remote

			The “remote” backend is special when compared to all the other available backends because it can support the default function, such as storing the state file, and also support remote operations, such as plan and apply with HCP Terraform.

			HCP Terraform integration involves steps such as setting up workspaces, performing terraform login to log in to HCP Terraform, executing the terraform plan and terraform apply commands, and pointing to a remote workspace in HCP Terraform. You will look at the HCP Terraform configuration in a later chapter, but you should be aware of the remote backend capabilities in this section.

			Another important consideration is that the HCP Terraform configuration can also be done using a cloud {} nested block inside the terraform {} block, and it’s recommended to use it with the latest versions of Terraform because of its additional features.

			This is a sample remote backend configuration:

			terraform {

			 backend "remote" {

			 hostname = "app.terraform.io"

			 organization = "mytestorg"

			 workspaces {

			 name = "payroll-dev"

			 }

			 }

			}

			Here, the label is set as remote to refer to the remote backend, and with HCP Terraform, the hostname will always be app.terraform.io, and the organization value will be set with the organization name defined in HCP Terraform.

			This will refer to the payroll-dev remote workspace for the current configuration, and operations will affect the state file stored in this workspace.

			You can now take a look at the configuration parameters in detail:

			
					hostname: The hostname for the remote backend to connect. This will default to app.terraform.io and is optional.

					organization: The name of the organization that contains the workspaces.

					token: The authentication token to connect to the host. This is optional. As per the Terraform documentation, using the token is not recommended, and instead, the terraform login command should be used before applying the configuration.

					workspaces: This block will have either name or prefix, which will help map the workspace to be used:	name: The name parameter can be used if we are going to work with a single HCP Terraform workspace, and a full workspace name can be specified.
	prefix: The prefix parameter will help work with multiple workspaces, all with the same prefix, and you can switch the intended workspace with the terraform workspace select command.

					For example, if you have workspaces such as billing-dev, billing-preprod, and billing-prod for the same configuration, you can use the prefix value of billing- and the workspaces can be set dynamically.

					If you want to configure the remote backend with the configuration file rather than coding it directly, you can use the -backend-config option with terraform init. A sample config file is given here:terraform {
 backend "remote" {}
}
Here is the config file content:
workspaces { name = "billing-test" }
hostname = "app.terraform.io"
organization = "mytestorg"

			

			s3

			The “s3”backend is used to store the Terraform state file in the bucket created using Amazon Simple Storage Service (S3). This backend supports a state-locking feature with Amazon DynamoDB. It is optional. The S3 bucket and the DynamoDB table should exist already to use this backend, and one table can be used to lock multiple remote state files.

			The recommendation with this backend is that the S3 versioning option should be enabled before using it with Terraform so that you can track the changes later, and you will retain the snapshots every time the state file is updated.

			Here’s a sample configuration:

			terraform {

			 backend "s3" {

			 bucket = "my-tf-bucket-789ew"

			 key = "dev/acc/infra"

			 region = "us-east-1"

			 }

			}

			The credentials that have access to the bucket can be passed with the environment variable option, so it is not exposed in the configuration. There are AWS-specific IAM permissions to provide access to the S3 bucket and DynamoDB table, and those need to be mapped to the credentials before using them with Terraform.

			The most common configuration parameters supported by the “s3” backend are given here:

			
					bucket: The name of the S3 bucket.

					key: The path in the bucket where the state file will be stored.

					dynamodb_table: The name of the DynamoDB table to be used.

					region: The AWS Region of the S3 bucket and the DynamoDB table that is applicable, which is required.

					access_key and secret_key: The AWS credentials to be used to access the bucket and the table. If these parameters are not set, the shared credentials file will be used.

					profile: The name of the profile to be used from the AWS shared credentials file.

					shared_credentials_file: The path location of the shared credentials file.

					endpoint: The custom endpoint of the S3 API.

					dynamodb_endpoint: The custom endpoint of the DynamoDB API.

					iam_endpoint: The custom endpoint of the AWS IAM API.

					sts_endpoint: The custom endpoint to retrieve the STS token from AWS Security Token Service (STS).

					token: The session token to be passed if the temporary credentials option is used.

			

			Some of the other supported parameters are as follows:

			
					acl

					encrypt

					force_path_style

					kms_key_id

					sse_customer_key

					workspace_key_prefix

			

			This backend also supports the Assume Role option, where the AWS IAM role can be used in place of long-lived credentials with access. The environment variables option also can be used for most parameters discussed in this section, and the official documentation can be referred to for a complete list.

			http

			The “http” backend is used to store a state file via a REST client, and this supports state locking and unlocking.

			When using the HTTP endpoint for this type of backend, there are a few requirements:

			
					The state file will be fetched with the GET method.

					The state file will be updated with the POST method.

					The state file will be deleted with the DELETE method.

					The valid HTTP status codes acceptable are as follows:	423 – locked or 409 – a conflict when the state file is locked
	200 for success

			

			A sample “http” backend configuration would look like this:

			terraform {

			 backend "http" {

			 address = "http://myhttp-server.com/state"

			 lock_address = "http://myhttp-server.com/lock"

			 unlock_address = "http://myhttp-server.com/unlock"

			 }

			}

			The following are the most common configuration parameters supported by the “http” backend:

			
					address: The address of the HTTP backend endpoint. This is a mandatory parameter.

					update_method: The HTTP method to be used to update the state file. The default value is POST.

					lock_address and unlock_address: The address for the state locking and unlocking, respectively.

					lock_method and unlock_method: The HTTP methods to use for locking and unlocking, respectively. The default values are LOCK and UNLOCK.

					username and password: The parameters to be used for HTTP basic authentication.

					Some other parameters supported are listed as follows – they will be discussed only in brief because they are outside the scope of this book:

					skip_cert_verification (flag to indicate whether the Transport Layer Security (TLS) verification should be skipped or not and the default value is false)

					retry_max (the maximum count of retries with a default value of two)

					retry_wait_min and retry_wait_max (the wait time between a retry – the default values are 1 and 30 seconds, respectively)

					The parameters for mutual TLS authentication:	client_certificate_pem
	client_private_key_pem
	client_ca_certificate_pem

			

			Environment Variable Support

			
					All the preceding parameters can also be set with environment variables. The convention is TF_HTTP_ appended before the parameter. The parameter name should be uppercase.

					For example, the equivalent environment variable for the lock_method parameter is TF_HTTP_LOCK_METHOD.

			

			pg

			The word “pg” is an abbreviated version of Postgres, and this backend supports storing the state file in a Postgres relational table. The requirement to use it with Terraform is that the database version must be 10 or above.

			This backend type also supports state locking via Postgres’s native way, where the state file locks are automatically released when a connection is not active or aborted. The force-unlock command with LOCK_ID is not supported.

			Here is a sample configuration:

			terraform {

			 backend "pg" {

			 conn_str = "postgres://user:pass@my-tf-db.com/tf_backend"

			 }

			}

			Here, the credentials along with the database address are provided in the connection string format. Another alternative could be setting the credentials in the environment variables, such as PGUSER and PGPASSWORD, and just using the database address as a value for CONN_STR.

			The database must exist already before using this backend in the configuration. If using partial configuration or an empty pg {} block, the Postgres-supported environment variables can be used to pass the required values.

			With this backend, Terraform will try to create a table called states, and each entry in this table will be mapped to the unique workspace we use. If no workspaces are used, the entry will be made with the default value.

			The following are the parameters supported by this backend:

			
					conn_str: The connection string to connect with the postgres://<URL> format.

					schema_name: The name of the schema that will be managed by Terraform to track the state information. If not specified, the default value is terraform_remote_state. The ones given as follows are self-explanatory and can be used when you have a database managed by admin already:	skip_schema_creation
	skip_table_creation
	skip_index_creation

			

			Environment Variable Support

			This backend also supports using environment variables, and the convention is to append PG_ before the parameter. The parameter name should be uppercase.

			For example, the equivalent environment variable for the connection string conn_str parameter is PG_CONN_STR.

			Kubernetes

			Kubernetes is a container orchestration tool that manages containers in the form of clusters, with features such as autoscaling, service discovery, load balancing, and automatic rollouts. This tool has become very popular recently because of its various capabilities and is widely used across different industries in various domains.

			The “kubernetes” backend is also supported by Terraform and can manage the state with Kubernetes Secrets. This also supports state locking, but the restriction is that the Secret cannot be larger than 1 MB in size.

			State locking is supported by provisioning a Lease resource in the given namespace.

			This backend supports more than one way of doing configuration:

			
					Using config_paths or config_path

					Using in_cluster_config

			

			If the configuration has both in_cluster_config or config_paths and config_path, config_path will take precedence.

			The environment variables are different from the configuration parameters. Refer to the official Terraform documentation if you are opting to use environment variables.

			A sample configuration block for the Kubernetes backend is given here:

			terraform {

			 backend "kubernetes" {

			 secret_suffix = "state"

			 config_path = "~/.kube/config"

			 }

			}

			Here, the config_path option is used, and it points to the location of the kubeconfig file. secret_suffix is used when creating secrets in Kubernetes, with the naming convention tfstate-{workspace-name}-secret_suffix.

			The following parameters are supported by this backend, and in most cases, a service account with config_path will do the job:

			
					secret_suffix: The suffix to be used while creating secrets.

					labels: The set of labels to be applied for a secret and the lease resource.

					namespace: The namespace to store the secret and the lease.

					in_cluster_config: If the authentication has to be done from one of the Pods already running in the Kubernetes cluster, this can be used.

					config_path: The path to the location of the kubeconfig file.

					config_paths: The list of paths to the kubeconfig files.

					host: The name of the Kubernetes master host. The default is https://localhost.

					username and password: The username and password to be used for HTTP basic authentication.

					insecure: A flag to indicate whether the connection should be tried without validating the TLS certificate.

					client_certificate, client_key, and client_ca_certificate: Parameters to be used for TLS authentication.

					config_context, config_context_auth_info, and config_context_cluster: The parameters to be used while picking specific context within a kubeconfig file that has more than one cluster config.

					token: The authentication token to be used for the service account.

					exec: The configuration block to use an exec-based credential plugin that will provide user credentials for authentication. The subparameters valid inside the exec block are listed here:	api_version: The API version to decode the user credentials
	command: The command to execute
	args: The list of arguments to pass
	env: The list of environment variables to set for plugin execution

			

			Consul

			Consul is another offering from HashiCorp that primarily helps enterprises secure their applications running in production with identity-based networking policies. For example, a multinational financial company can choose to control the infrastructure access based on an employee’s identity or role, the team, and the business unit or function, and that can be set up using Consul. This backend also enables other prominent features such as secure networking between applications, automated networking, and service discovery.

			The “consul” backend manages the state information with the key-value store supported by Consul (commonly known as the Consul KV store).

			Even here, the environment variables are different from the backend block configuration parameters. Refer to the official documentation for this backend.

			Here is a sample configuration block for the “consul” backend:

			terraform {

			 backend "consul" {

			 address = "myconsul.server.com"

			 scheme = "https"

			 path = "test/secret"

			 }

			}

			The configuration parameters supported are as follows:

			
					address: The DNS name of the Consul server to use

					scheme: The type of HTTP protocol (HTTP/HTTPS) to use to connect to the server

					path: The path to the key-value store

					access_token: The access token

					http_auth: Credentials in the format of user or user:password to be used for authentication

					gzip: A flag to indicate whether the state file should be compressed using gzip or not

					datacenter: The data center to use for the connection

					lock: The flag to indicate the state locking – the default value is true

					ca_file, cert_file, and key_file: The parameters to use for the TLS authentication when applicable

			

			azurerm

			With the “azurerm” backend, you can manage the state file in Blob Storage provided by Azure, and state locking is supported natively.

			This backend has multiple options to configure the backend block, but we will look at the most commonly used one in the following sample configuration:

			terraform {

			 backend "azurerm" {

			 resource_group_name = "Acc-ResourceGrp"

			 storage_account_name = "AzureAcctTest"

			 container_name = "tfstate"

			 key = "prod.tfstate"

			 }

			}

			The following configuration options are supported:

			
					storage_account_name: The name of the storage account.

					container_name: The name of the container within the storage account.

					key: The name of the Terraform state file inside the storage container. This is a mandatory parameter.

					environment: The possible values are "public", "china", "german", "stack", and "usgovernment". The default value is "public".

					endpoint: The custom endpoint for Azure Resource Manager.

					metadata_host: The hostname of the Azure Instance Metadata Service.

					snapshot: A flag to decide whether the state file snapshot has to be created before using it. The default value is false.

					Refer to the official Terraform documentation for more configuration options with this backend.

			

			cos

			The “cos” backend is used to store the state file in the Cloud Object Storage service provided by Tencent Cloud. The service is very similar to the S3 service provided by AWS.

			This supports state locking. The bucket is expected to already exist to store the state file.

			A sample configuration looks like the following:

			terraform {

			 backend "cos" {

			 region = "ap-hongkong"

			 bucket = "tf-bucket-yyitr"

			 prefix = "terraform/state"

			 }

			}

			The following configuration options are supported:

			
					region: The name of the region where the bucket is created.

					bucket: The bucket name to store the state file.

					prefix: The directory to store the state file inside the bucket.

					key: The file key or name for the state file. If not provided, it defaults to “terraform.tfstate”.

					secret_id & secret_key: The credentials to access the bucket.

					security_token: The temporary credentials in the form of a token for bucket access.

					encrypt: This indicates whether the server-side encryption should be enabled or not.

					acl: The access control lists (ACLs) to be applied for the state file.

					accelerate: This indicates whether to enable global acceleration.

					This backend also supports authentication with the “Assume Role” option, where the role can be used for bucket access instead of supplying credentials, and the following options can be used to do the same inside the assume_role {} block:

					role_arn

					session_name

					session_duration

					policy

			

			Here’s an example configuration:

			terraform {

			 backend "cos" {

			 region = "ap-hongkong"

			 bucket = "tf-state-bucket-tpluy"

			 prefix = "terraform/state"

			 assume_role {

			 role_arn = "qcs::cam::uin/xxx:roleName/yyy"

			 session_name = "my-session-name"

			 session_duration = 3600

			 }

			 }

			}

			Environment Variable Support

			This backend also supports using the environment variables, and the convention is "TENCENTCLOUD_" appended before the parameter. The parameter name should be in uppercase.

			For example, the equivalent environment variable for the "region" region parameter is TENCENTCLOUD_REGION.

			gcs

			If you use Google Cloud Platform (GCP) for your application hosting and deployment and plan to use Terraform, the “gcs” backend is the right option, as it provides backend support for state file storage in buckets created using the Google Cloud Storage (GCS) service.

			A sample configuration is given here for reference:

			terraform {

			 backend "gcs" {

			 bucket = "terraform-state-bucket-ytr51"

			 prefix = "terraform/state"

			 }

			}

			The Google account credentials that Terraform will use have to be set up properly with bucket access to manage the state files stored inside.

			Take a look at the configuration parameters supported by this backend:

			
					bucket: The name of the GCS bucket to store the state file. This is a mandatory parameter.

					credentials: The path to the Google account credentials in the JSON format. If this parameter is not set, the application default credentials will be fetched from the default location if available.

					prefix: The prefix inside the bucket to store the state file.

					access_token: The OAuth token to pass for authorization. This is an alternative to the credentials option.

					impersonate_service_account: The service account to be used to access the GCS bucket.

					impersonate_service_account_delegates: Used in conjunction with the previous parameter if a delegation chain is used. This is specific to GCP.

					encryption_key & kms_encryption_key: The parameters to pass the customer-supplied encryption keys and customer-managed encryption keys to encrypt the bucket contents.

					The environment variables are different from the configuration parameters; refer to the official Terraform documentation if you are opting to use environment variables.

			

			oss

			The “oss” backend is used to store the state file in the Object Storage Service provided by Alibaba Cloud. It supports state locking with the OTS TableStore feature.

			A sample configuration looks like the one here:

			terraform {

			 backend "oss" {

			 bucket = "bucket-for-tf-state"

			 prefix = "tf/prod/statefile"

			 region = "cn-beijing"

			 tablestore_endpoint = "https://terraform-remote.cn-hangzhou.ots.aliyuncs.com"

			 tablestore_table = "statelock"

			 }

			}

			The following configuration options are supported:

			
					region: The name of the region where the bucket is created.

					bucket: The bucket name to store the state file.

					prefix: The directory to store the state file inside the bucket.

					key: The file key or name of the state file.

					access_key and secret_key: The credentials to access the bucket.

					security_token: The temporary credentials in the form of a token for bucket access.

					endpoint: The custom endpoint to access the OSS API.

					encrypt: Indicates whether server-side encryption should be enabled or not.

					acl: The ACLs to be applied to the state file.

					shared_credentials_file: The path location of the shared credentials file.

					profile: The profile name in the shared credentials file to be used.

					ecs_role_name: The RAM role name to be used for API operations if applicable.

					tablestore_endpoint and tablestore_table: The parameters to set if the state locking feature is used.

			

			This backend also supports authentication with the Assume Role option where the role can be used for bucket access instead of supplying credentials, and the following options can be used to do the same inside the assume_role {} block:

			
					assume_role_role_arn

					assume_role_policy

					assume_role_session_name

					assume_role_session_expiration

			

			Resource Addressing and Dependencies

			Now that you have seen the backends supported by Terraform, you can delve deeper into resource addressing and how to set and handle resource dependencies while you manage them with the state file.

			Resource Addressing

			When you write Terraform configuration scripts, they primarily consist of multiple resources that will support the overall infrastructure you try to deploy. So, it becomes necessary to refer to a particular resource or a set of resources, manipulating or recreating them if there are any issues.

			This is where resource addressing becomes vital, and any resource address will consist of two parts:

			
					The module path

					Resource specifications

			

			Resource specifications may not always be needed. If you would like to refer to all the resources created by a particular module, specifying the module path will suffice. You can read about each one of them in detail now.

			Module Path

			If there are multiple modules within the configuration, the module path will refer to the particular module, and if there are multiple module calls, it will refer to the particular instance.

			The syntax is as follows:

			module.module_name[module_index]

			Here, the module keyword is static, and it is then followed by the module name. module_index is optional.

			Resource Specifications

			Similar to the module path, resource specifications also have three parts – resource_type, resource_name, and instance_index.

			The syntax is as follows:

			resource_type.resource_name[instance_index]

			The resource type is the type of resource being provisioned, and resource_name is the user-defined value for the resource block. If there are multiple instances of the resource, instance_index will be used to refer to the particular instance.

			For example, the Terraform configuration consists of a module with the name compute. It provisions the AWS EC2 instance with the resource name testinstance and the count parameter is set to 4.

			Then, the first and third individual instances can be referred to as follows:

			module.compute.aws_instance.testinstance[1]

			module.compute.aws_instance.testinstance[3]

			Addressing Resources with the for_each {} Block

			There are possible scenarios where multiple instances of the same resource type are provisioned with the for_each block. If so, the resource address will slightly vary, with the index as the alphanumeric key. The following example will help you to better understand this.

			Consider the following resource block:

			resource "aws_instance" "web" {

			 for_each = {

			 "dev": "testinstance",

			 "prod": "prodinstance"

			 }

			}

			In this case, the resource address will be based on the key inside the for_each block:

			aws_instance.web["dev"]

			aws_instance.web["prod"]

			Resource Dependencies

			With Terraform, the default behavior when applying the configuration is that the resources will be created in parallel. If some of the resource attributes are referenced in another resource block, Terraform will infer the dependency and ensure that the latter resource is created only after the prerequisite resource is provisioned successfully. This is known as implicit dependency.

			This will work most of the time, but sometimes, Terraform will not be able to infer the dependencies on its own, and you need to explicitly specify the dependency with the depends_on argument.

			Implicit Dependency

			Take a look at how the implicit dependency approach works with this sample configuration:

			provider "aws" {

			 region = "us-east-1"

			}

			# Uncomment the below resource block to create default VPC with the below command.

			# terraform apply -target="aws_default_vpc.default"

			#

			# resource "aws_default_vpc" "default" {

			# tags = {

			# Name = "default-vpc"

			# }

			#}

			resource "aws_instance" "testinstance" {

			 ami = "ami-0cb06ac50a7eea4f2"

			 instance_type = "t3.micro"

			}

			resource "aws_eip" "ip" {

			 instance = aws_instance.testinstance.id

			}

			If you look at the configuration carefully, you can see that the instance attribute inside the aws_eip resource type block refers to the instance ID of the EC2 instance created in the same configuration.

			In this case, the implicit dependency comes into effect, and Terraform will automatically wait for the EC2 instance to be created first and then assign the elastic IP address, as shown in Figure 6.1.

			
				
					[image: Figure 6.1 – The terraform apply output – the implicit dependency]
				

			

			Figure 6.1 – The terraform apply output – the implicit dependency

			Explicit Dependency

			As highlighted at the beginning of this section, an explicit dependency can be set with the depends_on argument inside the resource block.

			To understand this, assume that you have an EC2 instance and your application is hosted inside the instance that internally uses an S3 bucket as part of the functionality. This dependency cannot be handled by Terraform, and hence, you can set the dependency explicitly that the S3 bucket has to be created first and then provision the EC2 instance to deploy the application.

			In the following example, you can see that the depends_on argument is set for the EC2 instance resource block:

			provider "aws" {

			 region = "us-east-1"

			}

			#creates a S3 bucket with random name

			resource "aws_s3_bucket" "appbucket" {}

			resource "aws_instance" "testinstance" {

			 ami = "ami-0cb06ac50a7eea4f2"

			 instance_type = "t3.micro"

			 depends_on = [aws_s3_bucket.appbucket]

			}

			When you apply the preceding configuration, you can see that the EC2 instance creation will wait for the S3 bucket because of the explicit dependency you added, as shown in Figure 6.2.

			
				
					[image: Figure 6.2 – The terraform apply output – the explicit dependency]
				

			

			Figure 6.2 – The terraform apply output – the explicit dependency

			Expressions and Constraints

			In Terraform, expressions are computed values within the configuration. Terraform has rich support for different types of expressions, such as a reference to a data source, arithmetic evaluation, complex types, and built-in functions.

			However, there are a few restrictions on the usage of an expression in specific places. For example, it is not allowed within the backend {} block. The official documentation of the Terraform language clearly indicates the scenarios where it can be used and cases where it is not applicable.

			Data Types

			The result of any expression is a value. Suppose that there is an expression such as 2 + 3; it will result in 5, which is the value.

			In Terraform, there are different types of values supported, as follows:

			
					string: Any sequence of characters such as Hi, BobWilliams , or dev-team can be represented with this type.

					number: This can be used to represent numerical values such as 6 and 10.2 (both decimal numbers and fractional values).

					bool: A Boolean value – the possible values are true and false.

					list or tuple: A sequence of values enclosed within square brackets. Each item can be referenced by its index – for example, ["test", "dev", "prod"].

					set: A collection of unique values that do not have an index.

					map or object: A group of values with named labels – for example, {"environment" = "dev", "department" = "accounting"}.

					null: This type represents the absence of a value, and if any attribute is set to null, Terraform will ignore it.

			

			Data types such as string, number, and bool are termed primitive types, whereas list, set, and map are complex types.

			Operators

			An operator is another type of expression that works on one or more expressions to produce a result.

			In Terraform, the following are the different types of operators supported:

			
					Arithmetic operators:	+: Addition
	-: Subtraction
	*: Multiplication
	/: Division
	%: The remainder operator
	-: The negation operator when used with a single expression

					Logical operators:	||: The OR operator
	&& The AND operator
	!: The NOT operator

					Equality operators:	==: Returns true if the expressions are both equal and false if not equal
	!=: Opposite of the == operator function

					Comparison operators:	<: Less than
	<=: Less than or equal to
	>: Greater than
	>=: Greater than or equal to

			

			Conditional Expressions

			A conditional expression uses the Boolean result of an expression to choose between two values. A simple example would be wanting to return a pass or fail value based on the Boolean result of an evaluating mark.

			The syntax is as follows:

			condition ? value_if_true : value_if_false

			If the condition is true, value_if_true will be returned, and if false, then value_if_false will be returned.

			A requirement with conditional expressions is that both the return values should be of the same type, so Terraform will know what type of value will be returned without knowing the condition.

			for Expressions

			for expressions create the complex type value by transforming another complex type. The syntax is given here:

			for <element> in <complex_type> : <expression>

			Here, element refers to the individual element in the input complex type, and the expression on the right-hand side will create the new complex type. The resulting complex type depends on the enclosing brackets that contain the for expression.

			If the for expression is enclosed in [] (square brackets), the new complex type will be a list. If it is (), it will create a set, and so on.

			Here is an example:

			vowel_list = ["a", "e", "i", "o", "u"]

			{for item in vowel_list : item => index(vowel_list, item)}

			The preceding example will create a map, with the key as the item in vowel_list and its position as the value.

			splat Expressions

			A splat expression is very similar to the for expression, but the only difference is the representation, and this is a more concise way to refer to all the elements in the input type.

			Consider this example variable object that has two elements, and each has the "id" attribute:

			obj_list=[{"id" = 1, "name" = "a"}, {"id" = 2, "name" = "b"}]

			To retrieve only the id attribute from both elements, the following for expression can be used:

			[for obj in object_list : obj.id]

			The splat expression can also be used in this case, and the syntax would be as follows:

			var.obj_list[*].id

			Note

			The splat expression is applicable only to lists, sets, and tuples.

			Type Constraints

			We have already discussed the different data types to use in Terraform, and we will now look at the constraints applicable to them.

			Automatic type conversion is applicable in Terraform, meaning a number or Boolean value can be automatically converted to string if needed.

			list and tuple are similar, but tuple can contain different types of elements and list has elements of the same type:

			
					["a", "b", "c"]: list

					["a", 1, true]: luple

			

			The any Type

			There is also a special type called any that a developer can use as a placeholder if the variable type has not been decided upon yet. This type skips setting the right type and is not a recommended solution.

			Here is an example:

			variable "test_variable" {

			 type = any

			}

			“optional”

			When using complex types, you can set some attributes as “optional”, and this will help when the user does not provide a value for the attribute. If the “optional” setting is not used, Terraform will throw an error.

			If default_value is not set when using the optional modifier, Terraform will use null.

			Here is the syntax:

			optional(type, default_value)

			Here is an example:

			variable "optional_var_object" {

			 type = object({

			 name = string # a required attribute

			 age = number # a required attribute

			 birthplace = optional(string)# an optional attribute

			 })

			}

			Version Constraints

			Version constraints are helpful when you want to use specific versions of a module or a provider within your configuration, preventing the automatic use of newer versions in the future.

			This can also be used in the terraform {} block to restrict the Terraform version that should be used to apply the configuration.

			Here is the syntax:

			version = "<condition>"

			The condition has different variations with the operators used, and some of the examples are listed here:

			
					Only the exact version is allowed, and no other version can be accepted:version = "5.38.0"

					Not the specified version, but other versions can be used:version = "!= 3.14.0"

					The version can be in the range of specified version(s):version = "> 2.1.0"
version = "< 5.1.0"
version = ">= 1.2.0, < 2.0.0"

					The last portion of the version can only increase:version = "~> 2.1.0"
In the preceding example, Terraform will accept versions such as 2.1.1 and 2.1.2, but it will not use versions such as 2.0.0 and 2.2.0.

			

			If Terraform does not have the acceptable versions, it will try to download the newest version as per the specified constraints. Also, if the acceptable version cannot be downloaded, Terraform will not allow for plan and apply operations.

			Summary

			In this chapter, you learned about the backend configuration syntax, and then you followed this up by reading about valid backends supported by Terraform and how to configure them with the limitations. Resource addressing and the concept of implicit and explicit dependency were also discussed. Finally, different types of expressions such as splat expressions and for expressions were looked at, with examples.

			A backend configuration for any production-grade configuration script will help teams store the state file securely and interact with it in multiple executions, without any conflict. This is where Terraform stands out from other tools.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch6.Alternatively, you can scan the following QR code (Figure 6.3):

			

			
				
					[image: Figure 6.3 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 6.3 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 6.4:

			

			
				
					[image: Figure 6.4 – Chapter Review Questions for Chapter 6]
				

			

			Figure 6.4 – Chapter Review Questions for Chapter 6

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 6.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			7

			Debugging and Troubleshooting Terraform

			When Terraform fails or does not work as expected, how do you figure out what is wrong? Is it a configuration issue or is it the wrong version? Is it the authentication that is creating an issue or is the problem something else entirely?

			This chapter talks about the issues you generally face while managing Terraform and how to either avoid, debug, or fix them.

			The focus here will be on the general errors you might receive across key areas of Terraform and what steps need to be taken to resolve them. The following types of issues will be covered in the chapter:

			
					Configuration errors

					Variable-related issues

					State-related issues

					Core and provider errors

					Module-related issues

					Bug reporting

					Gotchas

			

			Configuration Errors

			Terraform configuration is defined in the Hashicorp Configuration Language (HCL), which is interpreted by Terraform Core.

			When Terraform core processes the configuration files and finds an error, it will throw an error with additional information about the error along with the line number where it found the problem. These could be interpolation errors or malformed resource definitions.

			The following example code shows a configuration error where a variable has not been defined but is being referred to in the code:

			provider "aws" {

			 region = "ap-south-1"

			}

			resource "aws_instance" "test" {

			 ami = "ami-026255a2746f88074"

			 availability_zone = "ap-south-1a"

			 instance_type = var.instance_type

			 tags = {

			 Name = "Test-EC2"

			 }

			}

			~/terraform-troubleshoot:terraform plan

			Error: Reference to undeclared input variable

			on main.tf line 8, in resource "aws_instance" "test":

			8: instance_type = var.instance_type

			An input variable with the name "instance_type" has not been declared. This variable can be declared with a variable "instance_type" {} block.

			In the preceding error message, you can clearly see the reference to the undeclared variable on line 8. At times, you will come across problems where there is no configuration issue but, still, the resource/resource’s attribute that gets created is not the one you expected. The following section talks about one of the reasons for issues such as this.

			override.tf File-Related Issues

			The override.tf file is used very rarely in the production setup. It overrides specific portions of an existing configuration object that has been defined in the main configuration files.

			The code defined in the following appserver.tf file is used to create an EC2 instance of the t3.small instance type. In this code, instance_type is an attribute that defines the type of EC2 instance to be created.

			However, this attribute is overwritten by the code defined in the override.tf file and the instance type is changed to c5.large.

			The appserver.tf file has the following code (truncated):

			resource "aws_instance" "appserver" {

			 instance_type = "t3.small"

			}

			The override.tf file has the following code:

			resource "aws_instance" "appserver" {

			 instance_type = "c5.large"

			}

			The final code executed by Terraform core will have the following code. Please note that this code is given for reference and you will not see this in any configuration file:

			resource "aws_instance" "appserver" {

			 instance_type = "c5.large"

			}

			As you can see, the instance type defined in the aws_instance resource block has changed from t3.small to c5.large. If you do not know about the presence of the override.tf file, you will not be able to understand why Terraform is creating the wrong instance type.

			terraform validate

			terraform validate can help solve the basic syntax issue in configuration files present in the current working directory. It checks whether the code in the configuration file is syntactically valid and the correctness of the attribute and values of the resource defined in the configuration file. Please note that it only refers to the configuration, does not access any remote services such as remote state or provider APIs, and requires an initialized working directory with any referenced plugins and modules installed. Terraform does not continue validating once it catches an error.

			The following example shows the code used to launch an EC2 instance. However, it will throw an error when you run terraform validate since instance_types is not a valid attribute of the aws_instance resource:

			provider "aws" {

			 region = "ap-south-1"

			}

			resource "aws_instance" "test" {

			 ami = "ami-026255a2746f88074"

			 availability_zone = "ap-south-1a"

			 instance_types = "t3.micro"

			 tags = {

			 Name = "Test-EC2",

			 }

			}

			terraform-troubleshoot:terraform validate

			Error: Unsupported argument

			 on main.tf line 8, in resource "aws_instance" "test":

			 8: instance_types = "t3.micro"

			 An argument named "instance_types" is not expected here. Did you mean "instance_type"?

			Variable-Related Issues

			Variable-related errors are some of the most common errors you will find while working with Terraform. In the following sections, you will see the errors related to the variable type constraint, variable input validation, and variable precedence.

			Type Constraint

			
					One of the issues you might come across while managing Terraform is incorrect input variable values that cause failures during terraform run.

					You can use the type argument in the variable block to restrict the type of the value accepted for the variable.

					An example is if the total number of instances to be launched by Terraform is controlled by the ec2-count variable, which is expecting a number, but the user inputs the string Two instead of the number 2. Terraform runs would fail in this case.

			

			Input Validation

			
					At times, even though the value of the type matches the variable, it may not be in the format that is expected. For such use cases, you can use the validation option in the input variables as a proactive measure to prevent issues.

					This feature is supported in Terraform version 0.13 and above.

					You can specify custom validation rules for a particular variable by adding a validation block within the corresponding variable block. The following example checks whether the AMI ID has the correct syntax:variable "image_id" {
 type = string
 description = "The id of the machine image (AMI) to use for the server."
 validation {
 condition = length(var.image_id) > 4 && substr(var.image_id, 0, 4) == "ami-"
 error_message = "The image_id value must be a valid AMI id, starting with \"ami-\"."
 }
}

					The following conditions are checked by the validation condition in the variable block. All the conditions need to evaluate to TRUE to pass the validation:

					The length function is used to determine the length of a string/map/list. In this code, it is used to determine the length of the image_id variable and then the > comparison operator is used to check whether this length is greater than 4.

					The substr function is used to extract a substring from a given string. In this code, it will extract the first four characters of the image_id variable (i.e., image_id) by offset (from the zero index) and maximum (the total characters to be selected) length and use the equality operator, ==, to compare whether the value returned is equal to ami-: substr (var.image_id, 0, 4) == ami-.

					Finally, when the user inputs the value for the image_id variable, both conditions explained in the previous two points will be checked and the validation will pass only if both conditions return TRUE. Otherwise, the user will get an error message: "The image_id value must be a valid AMI id, starting with ami-".

					Depending on your requirement, you can add the validation either for all your variables or the ones that are prone to wrong input from the users.

			

			Variable Precedence

			
					At times, you will see that the variable has a different value than what you have defined. This is most prevalent during the authentication with cloud providers since there are multiple places from which the credentials can be taken.

					A variable’s value can be defined at multiple places such as the command line, environment variable, tfvars files, and so on. If the variable is given different values in different places, Terraform picks only one value of the variable, and this value is dependent on the variable precedence. Terraform loads variables in the following order, with later sources taking precedence over earlier ones:	Environment variables
	The terraform.tfvars file, if present
	The terraform.tfvars.json file, if present
	Any *.auto.tfvars or *.auto.tfvars.json files, processed in lexical order of their filenames
	Any -var and -var-file options on the command line, in the order they are provided (this includes variables set by a HCP Terraform workspace)

			

			While managing Terraform, you might get authentication errors or permission errors in the cloud despite using the right credentials and permissions. This could be because of the presence of multiple credentials in different locations with different permissions. The credentials with higher precedence would be used by Terraform, but you may be expecting credentials with lower precedence to be used.

			For example, if you have admin credentials in the environment variables but read-only credentials in the terraform.tfvars file, read-only will take precedence as per the variable precedence order.

			State-Related Issues

			As you already know, the Terraform state file (terraform.tfstate) is a JSON document that maps your Terraform configurations to the resources that it is managing. This file tracks the metadata, resource relationships, and the actual state of resources.

			The following sections talk about some of the state-related issues.

			Configuration Drift

			
					There are times when you might have to make changes outside of Terraform. This could be because of a lack of knowledge of how to make these changes from Terraform or you may not have permission to modify the Terraform code. This could also be due to time constraints.

					While dealing with production issues where you are running against time, it is not uncommon to make the changes directly in the console. If you are managing too many resources in a single directory, Terraform can take a long time, and hence, a manual change may be warranted. Though this may not be the ideal way, this happens quite often in the real world. You can reconcile this in a few ways:	If you can afford to roll back the manual changes and apply this change via Terraform at a later time, this is recommended.
	If you have created new resources manually, you will have to add the relevant code in the configuration file and import that resource using terraform import.
	If you have changed the name of the resource manually, you can use the moved block of Terraform to give this file a new name in the state file.

					If you have deleted some resources manually, you can do one of the following:	You can remove that resource from the state using terraform state rm resource for versions prior to Terraform 1.7 or use the removed block for Terraform 1.7+ and delete the relevant code from the configuration file. (Make sure you understand the Terraform state command and its impact before making these changes. Also, take a backup of your state file before the activity.)
	Alternatively, you can delete the relevant code in the configuration file (or change the attribute value) and use terraform refresh for Terraform versions prior to v0.15.4 and terraform apply -refresh-only for versions post v0.15.4. This updates the state file of your infrastructure with metadata that matches the physical resources they are tracking. This will not modify your infrastructure, but it can modify your state file to update metadata. terraform refresh is deprecated but is still available only for backward compatibility.

			

			State Conflict

			
					Simultaneous Terraform runs can cause conflicts if you do not configure the state file locking. It is highly recommended to enable state file locking even if you are the only person using Terraform.

					Remote backends such as Consul, S3 with DynamoDB, Azure Blob storage, HCP Terraform, and a few others offer state locking to prevent such conflicts.

					When you enable state file locking, Terraform makes sure only a single process that has the key modifies the state file. Any other simultaneous process trying to acquire the key will get an error. This is the expected behavior to prevent potential state corruption.

					The following error shows the messages you will see when there is a state-locking error:State locking error:
Acquiring state lock. This may take a few moments…
 Error: Error acquiring the state lock
 Error message: ConditionalCheckFailedException: The conditional request failed
 Lock Info:
 ID: a2324f3-x872-09fs-b216-g87ed071284
 ---- Truncated ----

					You get this error in different situations, and some of them are listed here:

					You run terraform apply while one of your colleagues has already run terraform apply and has the key that locks the state file. This is a genuine use case where you want Terraform to throw this error to prevent state corruption.

					You have run terraform apply by mistake and want to cancel it. You hit Ctrl + C (or Ctrl + Z) to cancel the run. Though the run gets canceled, you end up with a state lock. The state error will show up next time you run either terraform plan or terraform apply since Terraform has not released the lock properly.

					You have run terraform apply on your laptop and Terraform core is making the required changes. If the laptop shuts down during the operation or the session gets disconnected due to a network issue, you will end up with a state lock.

			

			In the first situation, the lock will be automatically released once the process that holds this key is completed. However, the second and third situations need the lock to be released before you can use Terraform. The terraform force-unlock command is used to release the lock. This should be used only in genuine use cases where you have a state lock problem and not to kill the parallel Terraform runs from a colleague.

			When you run terraform plan or apply, you will see the error message and an ID. You will have to supply this ID in the next command:

			terraform force-unlock ID terraform force-unlock a2324f3-x872-09fs-b216-g87ed071284

			Migrating the State from One Backend to Another

			
					There are a number of reasons for migrating the state from one backend to another. It could be due to team collaboration where you want to migrate from the local to a remote backend or to move from the remote backend (such as S3 or Consul) to HCP Terraform.

					Terraform supports the migration of state between backends or from local to remote backends.

					Be very careful while migrating the state from one backend to another (local to remote or from one cloud storage to another).

					Make a backup of the state file before you attempt the migration.

					After adding the relevant backend code in the configuration file, you will have to run the following command to migrate the state:terraform init -migrate-state

					The following output shows the message and prompt you will receive when you are migrating your state from local to S3:Initializing the backend...
Do you want to copy existing state to the new backend?
 Pre-existing state was found while migrating the previous "local" backend to the
 newly configured "s3" backend. No existing state was found in the newly
 configured "s3" backend. Do you want to copy this state to the new "s3"
 backend? Enter "yes" to copy and "no" to start with an empty state.
 Enter a value:

					As the message says, entering yes will copy the state file from the local backend to a remote backend.

					If you enter no, an empty state file will be created in the remote backend.

			

			Note

			If you try running terraform plan or terraform apply before running terraform init, you will see the following error:

			Backend initialization required: please run terraform init Reason: Backend configuration block has changed

			Core and Provider-Related Issues

			
					Terraform core interprets the configuration, manages the state file, constructs the resource dependency graph, and communicates with provider plugins. Errors produced at this level may be a bug. You will have to raise a GitHub issue with HashiCorp for such an error.

					The provider plugins handle authentication, API calls, and mapping resources to services. For any issues you find in the providers, you will have to directly raise a GitHub issue with the provider development team.

					To debug errors related to the core or provider, you will have to enable logging.

					To enable logging in Terraform, you will have to declare a specific environmental variable, TF_LOG, with one of the logging levels that is described in the following points. When you enable logging, the logs are sent to the console where you are running the Terraform commands. Since these logs can be too many to be captured within the console, it is also recommended to use another environment variable, TF_LOG_PATH, to store these logs in a file on the local filesystem.

					There are multiple log levels. You will have to choose the right log level depending on the verbosity of the logs you need. The following are the various log levels supported by HashiCorp:	TRACE: Setting the logging to this level provides the details of every step taken by Terraform during the execution. This is the most verbose log level.
	DEBUG: This is less verbose than the TRACE level and helps developers debug the issues by providing a shorter description of the internal events when the terraform run happens.
	INFO: This provides information instructions similar to the contents of the README file. This is fine for the general logging to get the high-level messages during Terraform runs.
	WARN: This provides information about the misconfigurations but is not a blocker that needs to be fixed immediately.
	ERROR: Enable this level to get the logs only when something is severely wrong and is blocking the Terraform run. This does not generate too many logs.

					The TF_LOG environment variable logs all the components such as Terraform core, providers, and SDKs. If you want to get logs related to a specific component, you can use different environment variables for them.

					TF_LOG_CORE, only Terraform core binary logs are written.

					With TF_LOG_PROVIDER, logs related to all providers and SDKs used in the configuration file are written. To enable the TRACE logging level for all components (from Linux or macOS), run the following command:export TF_LOG=TRACE

					To enable logging only for providers, run the command below:export TF_LOG_PROVIDER=TRACE

					To enable logging only for Terraform core, run the following command:export TF_LOG_CORE=TRACE

					To enable storing the logs in a specific file, run the following command (from Linux/macOS), run the command given below:export TF_LOG_PATH=~/terraform-logs.txt

			

			Module-Related Issues

			You will be able to spot the errors related to modules when you have some basic understanding of child modules getting called from the root module. You will have to know whether the root module is using the local child module or remote child module, the mandatory input variables expected by the child module, and the outputs exposed by the child module to spot an error related to the module.

			Most of the time, the errors are related to the unsupported argument, unable to get the expected output, version mismatch, missing features, and so on. These are discussed in more detail in the following sections.

			Missing Features

			
					If you are writing modules yourself, this is easy to solve. You need to add additional code to the module to add the missing features. Once you add the new code for the feature, you will have to pull the latest changes of the child module in your root module by running terraform init -upgrade if there is no versioning. If you have versioned the modules, then you will have to pull the latest version of the child module in the root module.

					If you are using public modules, this can get tricky. Check whether there is a latest version of the module that adds this feature. If it does, then pull the latest version of the module in the root module.

					There are a couple of other ways to handle such issues:

					Fork this module and make the required changes. But you will have to manage this code yourself going forward.

					Create an abstraction layer where you create a new module using the public module as the source. This new module can be stored in the version control system. With this option, you will still be able to make use of the latest versions of the public module and still add the features that are not present in the public module.

					If you are using local modules, you do not have to upgrade the module. The modules.json file under .terraform/modules will contain the path of the modules in the local filesystem.

			

			Output-Related Issues

			
					This is one of the most common issues while dealing with modules.

					When you call the child module via the root module, you need to make sure the outputs you are defining in the root module are exposed in the child module.

			

			For example, if you are using the child module of EC2 to create the instance and have not defined output for the instance ID or the IP address, you will never be able to get these details from the calling module (i.e., the root module). First, you need to define this in the child module and then refer to it from the root module’s outputs.

			Unsupported Argument

			
					Take a look at the error given below. This error is similar to the output-related issue, where the particular argument is not defined in the child module, and hence, when you pass the value for that argument in the root module, you get an error:Unsupported argument: An argument named "xxxxxxx" is not expected here.

					Review the variables declared in the child module to troubleshoot this issue.

			

			Version-Related Issues

			
					In the production environment, it is highly recommended to lock the versions of the modules.

					One con of this precaution is that you will not upgrade the module version regularly and will fall behind in terms of the features available with the modules.

					Always test the latest version of the module thoroughly before rolling it out to production setup.

			

			Taking Help from the Forum

			
					After you run out of options, you may reach out to the community for help in the HashiCorp forum.

					Make sure you search the existing threads for your issue before raising a new one.

					You may access the Terraform forum using the following URL:https://discuss.hashicorp.com/c/terraform-core/27

					Go through the guidelines of the forum before you post a question:https://discuss.hashicorp.com/t/guide-to-asking-for-help-in-this-forum/48571

			

			Bug Reporting

			Once you eliminate the possibility of language misconfiguration, version mismatch, variable-related issues, or state discrepancies, consider bringing your issue to the core Terraform team or Terraform provider community as a GitHub issue.

			If you would like input from the community before submitting your issue to the repository, consider submitting your issue as a forum topic in the HashiCorp Discuss forum.

			You will have to provide the Terraform version when opening a GitHub issue. Enable Terraform logging by running export TF_LOG_CORE=TRACE and export TF_LOG_PATH=logs.txt.

			Run terraform refresh, which generates the logs and stores them in the logs.txt file.

			Before raising this issue, you will have to confirm whether it is a provider issue or a Terraform core issue. In your logs.txt file, find the final error message and trace it back to the source. It should contain provider-terraform-<PROVIDER-NAME> if it is a provider issue. Make sure you remove any confidential information that may be present in the logs.

			When you determine where your error originated, navigate to the Terraform core GitHub repository or search the provider registry for your provider’s GitHub repository.

			First, navigate to the Terraform GitHub repository, choose Issues from the top tabs, and create one with all the information.

			Gotchas

			In this section, you will see some recommendations that are typically not covered in the Terraform documentation. These are not very obvious unless you go through them in your setup, hence the name “Gotchas.” This section is followed by general tips.

			Avoid Lists Where Possible

			
					When you are dealing with use cases that warrant using lists, try using maps or sets wherever possible.

					When you use a list, Terraform uses the index position to map it to the resource that gets created. Using the index position may be fine for use cases where you do not see many deletions of values in the list, but it should not be used for use cases where you expect the values to be deleted and added to the list in random order. This may sound confusing or may not make sense in the first read. Try reading this again after going through the following example.

					Say, for example, you are creating IAM users using the list type. The following code can be used to create users, and whenever you need a new user, all you need to do is add the username to the default argument in the usernames variable:resource "aws_iam_user" "iam-user" {
 count = length(var.usernames)
 name = element(var.usernames,count.index)
}
variable "usernames" {
 type = list(string)
 default = ["manju","packt","chandru"]
}

					terraform apply will create three IAM users: manju, packt, and chandru.

					Now, you want to remove the packt user. While the resource block remains the same, you would remove the packt user from the variable block in the following manner:variable "usernames" {
 type = list(string)
 default = ["manju","chandru"]
}

					When you run terraform plan, the expectation is to delete the packt user and for all the other users to remain as is. But the output of this modification is given here: # aws_iam_user.iam-user[1] will be updated in-place
 ~ resource "aws_iam_user" "iam-user" {
 id = "packt"
 ~ name = "packt" -> "chandru"
 tags = {}
 # (5 unchanged attributes hidden)
 }
 # aws_iam_user.iam-user[2] will be destroyed
 # (because index [2] is out of range for count)
 - resource "aws_iam_user" "iam-user" {
 - arn = "arn:aws:iam::123456789:user/chandru" -> null
 - id = "chandru" -> null
 - name = "chandru" -> null
 - path = "/" -> null
 - unique_id = "AIDA3LH3Gxxxxxxxx" -> null
 }
Plan: 0 to add, 1 to change, 1 to destroy.

					As you can see, Terraform is trying to rename the packt user to chandru and delete the chandru user.

					From Terraform’s perspective, index position 1 was occupied by the packt user previously, but now the chandru user is present in that position. Hence, it has to be renamed.

					There are only two users in the variable, hence index [2] is out of range (index starts from zero). So, the chandru user must be deleted.

					Alternatively, you can use the for_each option along with the toset function to solve this problem:resource "aws_iam_user" "iam-user" {
 for_each = toset(["manju", "packt", "chandru"])
 name = each.value
}

					This would create three users.

					When you delete the packt function and try running terraform plan, you will see only one deletion: # aws_iam_user.iam-user["packt"] will be destroyed
 # (because key ["packt"] is not in for_each map)
 - resource "aws_iam_user" "iam-user" {
 - arn = "arn:aws:iam::123456789:user/packt" -> null
 - id = "packt" -> null
 - name = "packt" -> null
 - path = "/" -> null
 - unique_id = "AIDA3LH3Gxxxxxxxxxx" -> null
 }
Plan: 0 to add, 0 to change, 1 to destroy.

					Here, the list is converted to a set before for_each iterates over the values.

					The IAM user list does not need an ordered collection, and hence, it is fine to convert it to a set here. But if you need an ordered collection, then this may not be the right option.

			

			Using -target in Terraform Runs

			
					Using the -target option for specific resources makes changes to the dependent resources too. Use the -target option only in exceptional circumstances such as recovering from a mistake or implementing a solution to overcome the limitations of Terraform.

					The code in the following example creates two resources – an EC2 instance and an elastic IP, which has an implicit dependency on the EC2 instance:provider "aws" {
 region = "ap-south-1"
}
resource "aws_eip" "eip" {
 instance = aws_instance.test.id
 domain = "vpc"
}
resource "aws_instance" "test" {
 ami = "ami-026255a2746f88074"
 availability_zone = "ap-south-1a"
 instance_type = "t3.micro"
 tags = {
 Name = "Test-EC2"
 }
}

					When you try to delete just the EC2 instance using the -target option, you will see that Terraform tries to delete the elastic IP too:$~/terraform-troubleshoot:terraform destroy -target="aws_instance.test"
aws_instance.test: Refreshing state... [id=i-01c2645577c1b2b65]
Terraform used the selected providers to generate the following execution plan. Resource actions are
indicated with the following symbols:
 - destroy
Terraform will perform the following actions:
 # aws_eip.eip will be destroyed
 - resource "aws_eip" "eip" {
 ---- TRUNCATED ----
 }
 # aws_instance.test will be destroyed
 - resource "aws_instance" "test" {
 - ami = "ami-026255a2746f88074" -> null
 ---- TRUNCATED ----
 }
Plan: 0 to add, 0 to change, 2 to destroy.
│ Warning: Resource targeting is in effect

					To summarize, -target not only deletes the resource you are targeting but also the dependency. You need to be aware of this while using this option.

			

			General Tips

			Finally, here are some general tips to make things easier for you:

			
					If you do not lock the versions of modules and providers, they get updated during terraform init -upgrade. The updated version might break the compatibility and cause issues in your environment.

					Make sure that Terraform is also locked to a certain version, and that team members are asked to use the same version while dealing with Terraform. Changing the Terraform version that is incompatible with the version you have defined in the Terraform block will throw an error, but will not update the Terraform version in your state file, saving you a lot of pain.

					Whenever possible, try to create the resource manually (or go through the steps for the creation) before writing the Terraform code. Once you get a sense of the steps involved, you will be able to write efficient code or troubleshoot the issue.

					If you are not able to find the resources that you created, make sure you are in the right CLI workspace.

			

			Summary

			In this chapter, you learned about the key areas in which Terraform issues arise and how to handle those issues. The areas or the issues highlighted here are in no way exhaustive but should give you a good understanding of the frequent issues in Terraform.

			You also learned how to enable logging, which is the most important step in troubleshooting issues or raising a bug report with the providers or with HashiCorp.

			In the end, you saw some tips from real-world Terraform management. In Chapter 8, Terraform Functions, you will read about the use of Terraform functions that the Terraform language supports.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch7.Alternatively, you can scan the following QR code (Figure 7.1):

			

			
				
					[image: Figure 7.1 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 7.1 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 7.2:

			

			
				
					[image: Figure 7.2 – Chapter Review Questions for Chapter 7]
				

			

			Figure 7.2 – Chapter Review Questions for Chapter 7

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 7.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			8

			Terraform Functions

			In Chapter 6, Terraform Backends and Resource Management, you read about Terraform expressions and their different variations and took a look at some use cases. The Terraform language also supports the use of Terraform functions as part of these expressions.

			The main use of Terraform’s built-in functions is in expressions and to transform input values and create new values. For example, the toset() function can be used to convert an input value to a set (the input value type can be a list or map), and this can be used in places where the set type is expected.

			In this chapter, you will learn about the different built-in functions and their syntax with examples. Not all functions are regularly used, but knowledge of different functions will help when there are special requirements that can be simplified by using functions.

			Terraform functions are grouped based on the types of values or arguments they can act upon, and the configuration files are also created with the same approach.

			Here is a list of topics that will be covered in this chapter:

			
					Function syntax

					Numeric functions

					String functions

					Date and time functions

					Collection functions

					Type conversion functions

					Filesystem functions

					IP network functions

					Encoding functions

					Hash and crypto functions

			

			After finishing this chapter, it is recommended that you try out the most common functions in your own expressions with different use cases. This will help in the HashiCorp Terraform Associate 003 certification journey as well as with your daily tasks.

			If you only want to try out the functions, the terraform console command will be a good starting point. This feature is particularly useful for understanding the behavior of the different functions with the example inputs before actually using it in the configuration scripts.

			Technical Requirements

			Sample configuration files have been used in the chapter, and you can find them at the following link:

			https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch8/terraform-functions

			
					To use the files, you need the following tools in your workstation:

					AWS account ID with administrator access credentials

					AWS CLI version 2.x.x

					Terraform CLI version 1.5.x or later

					Visual Studio Code or any text editor

			

			Function Syntax

			The functions in Terraform follow this common syntax:

			FUNCTION_NAME(argument-1, argument-2, argument-n)

			FUNCTION_NAME is the name of the function to be called, and the number of arguments it takes will vary from 1 to n based on the function.

			Some of the functions have a definitive set of arguments that they can accept, and a few will accept any variable number of inputs. For example, the endswith() string function will accept only two arguments and return either true or false. The first argument is the string to check and the second is the suffix string.

			But if you take the max() function, which gives the maximum number in the given list of input numbers, you can pass any number of input values and the result will be a single number.

			Numeric Functions

			In this section, you will look at some of the most common functions that work with numeric arguments. Numeric functions will help in cases where you might need to select the smallest value from the given list of values and process accordingly or convert the string representation of the given value to a number to perform some arithmetic operations using the same. It will be clearer once you go through the different functions supported by Terraform with sample inputs.

			The examples used in this section will be available with the filename 1. numeric-functions.txt in the GitHub link provided at the start of this chapter. You just need to take the specific command and try it with your sample inputs in the terraform console terminal.

			The abs() Function

			The abs() function always returns the absolute value of the given number, and it takes only one argument. If the input number is less than zero (0), the value will be multiplied by -1 and then returned. If the input number is greater than zero, the value will be returned with no changes.

			Here is the syntax:

			abs(argument-1)

			Some examples are as follows:

			$ abs(-5)

			> 5

			$ abs(100)

			> 100

			The ceil() Function

			The ceil() function will return the whole number that is greater than or equal to the input number. If the input number is a whole number already, the output will be the same number. If the input number is a fraction, the next closest whole number will be returned.

			Here is the syntax:

			ceil(argument-1)

			Some examples are as follows:

			$ ceil(7)

			> 7

			$ ceil(10.4)

			> 11

			The floor() Function

			The floor() function will return the whole number that is less than or equal to the input number. If the input number is a whole number already, the output will be the same number. If the input number is a fraction, the previous closest whole number will be returned.

			Here is the syntax:

			floor(argument-1)

			Some examples are as follows:

			$ floor(11)

			> 11

			$ floor(8.8)

			> 8

			The max() Function

			The max() function will return the greatest number in the given inputs, and it can take any number of values as input. The function works with the individual arguments; if the input values are already in a complex type such as a list or set, use three dots (...) next to the input list or set to expand the collection.

			If the three dots are not specified when the input is a complex type, the command will fail with the following error:

			Error: Invalid function argument. Invalid value for "numbers" parameter: number required

			Here is the syntax:

			max(argument-1, argument-2)

			max([argument-1, argument-2]...)

			Some examples are as follows:

			$ max(10, 59, 23, 68)

			> 68

			$ max([10, -2, 3, 15]...)

			> 15

			$ max([10, -2, 3, 15]) --- without the three dots

			> Error: Invalid function argument

			│

			│ on <console-input> line 1:

			│ (source code not available)

			│

			│ Invalid value for "numbers" parameter: number required.

			The min() Function

			The min() function will return the smallest number in the given inputs, and it can take any number of values as input. The function works with the individual arguments; if the input values are already in a complex type such as a list or set, use three dots (...) next to the input list or set to expand the collection.

			The behavior is exactly the same when the three dots are not specified for a complex type input value.

			Here is the syntax:

			min(argument-1, argument-2)

			min([argument-1, argument-2]...)

			Some examples are as follows:

			$ min(-2, 5, 11, 1)

			> -2

			$ min([13, 22, 76, 99]...)

			> 13

			The pow() Function

			The pow() function will result in the exponent value based on the input arguments. The first argument will be raised to the power of the second argument, and it always only accepts two arguments.

			Here is the syntax:

			pow(argument-1, power-of-argument-2)

			Some examples are as follows:

			$ pow(2, 2)

			> 4

			$ pow(17, 0)

			> 1

			The log() Function

			This function returns the logarithm of a given number and it takes two arguments. The first argument is the number, and the second argument is the base.

			Here is the syntax:

			log(number-argument-1, base-argument-2)

			An example is as follows:

			$ log(44,2)

			> 5.459431618637297

			The signum() Function

			The signum() function will return the sign of the given number and the value will be between -1 and 1. If the input number is negative, then -1 will be returned; the return value will be 1 in the case of a positive number. This function will return zero if the input value is zero (0).

			Here is the syntax:

			signum(number-argument-1)

			Some examples are as follows:

			$ signum(34)

			> 1

			$ signum(0)

			> 0

			$ signum(-24)

			> -1

			The parseint() Function

			The parseint() function will return the number parsing the string representation of the input value in the specified base. The first argument is the input value in string format and the second argument is the base. The limitation of this function is that the base can only be between the values of 2 and 62.

			If the input value cannot be parsed with the specified base, the function will return an error.

			Here is the syntax:

			parseint(input-argument-1, base-argument-2)

			Some examples are as follows:

			$ parseint("10110", 2)

			> 22

			$ parseint("EDA1", 16)

			> 60833

			With this function, we have covered the numeric functions supported in Terraform and we will proceed with the string functions in the next section. The functions supported might vary with the release of every new Terraform version and the latest documentation will help in those cases.

			String Functions

			The following section will cover the most common string functions supported by Terraform 1.5.x. string functions are primarily used for formatting the input values for different requirements and using the result in the subsequent workflow. The examples used in the section will be available with the filename 2. string-functions.txt in the GitHub link provided at the start of this chapter. You just need to take the specific command and try it with your sample inputs in the Terraform console terminal.

			The split() Function

			The split() function will split the input string in all occurrences where the separator character is present. The resulting value will be of the list type, and if we are using the output values to initialize any variable, the variable should be of the list data type.

			Here is the syntax:

			split(separator-char, input-string)

			Some examples are as follows:

			$ split("-", "test-dev-prod")

			> tolist([

			 "test",

			 "dev",

			 "prod",

])

			$ split(",", "Adam,Bob,William")

			> tolist([

			 "Adam",

			 "Bob",

			 "William",

			The join() Function

			The join() function joins the string elements in the input list and produces the final string with the specified separator. If the separator character is not specified (just double quotes), then the list elements will be just concatenated.

			Here is the syntax:

			join(separator-char, input-list)

			Some examples are as follows:

			$ join("-", ["h", "e", "l", "l", "o"])

			> "h-e-l-l-o"

			$ join("", ["c", "a", "t"])

			> "cat"

			The endswith() Function

			The endswith() function will return either true or false based on whether the input string ends with the specified suffix string or not. The function takes two arguments.

			Here is the syntax:

			endswith(input-string-1, suffix-string)

			Some examples are as follows:

			$ endswith("test-app", "app")

			> true

			$ endswith("terraform-function", "func")

			> false

			The startswith() Function

			The startswith() function will return either true or false based on whether the input string ends with the specified prefix string or not. The function takes two arguments.

			Here is the syntax:

			endswith(input-string-1, prefix-string)

			Some examples are as follows:

			$ startswith("test-app", "test")

			> true

			$ startswith("terraform-function", "test")

			> false

			The chomp() Function

			This function will be very helpful when you read strings from any file that has newline characters at the end, and it takes only one argument. It does not remove the spaces at the end of the input string.

			Here is the syntax:

			chomp("input-string")

			Some examples are as follows:

			$ chomp("hello \n\n")

			> "hello "

			$ chomp("test string 01\n")

			> "test string 01"

			The substr() Function

			The substr() function extracts the part of the string that starts at the specified offset and length. The function takes three arguments, which are the input string, the offset value (which starts from 0), and the length.

			Here is the syntax:

			substr(input-string, offset-value, length)

			Some examples are as follows:

			$ substr("Adam Williamson", 5, 7)

			> "William"

			$ substr("input-string", 0, 2)

			> "in"

			The strrev() Function

			The strrev() function returns the reversed version of the input string and it takes one argument only, which is the input string.

			Here is the syntax:

			strrev(input-string)

			Some examples are as follows:

			$ strrev("olleh")

			> "hello"

			$ strrev("string")

			> "gnirts"

			The lower() Function

			This function converts the input string to lowercase.

			Here is the syntax:

			lower(input-string)

			Some examples are as follows:

			$ lower("Language")

			> "language"

			$ lower("ALPHABETS")

			> "alphabets"

			The upper() Function

			This function converts the input string to uppercase.

			Here is the syntax:

			upper(input-string)

			Some examples are as follows:

			$ upper(«document»)

			> «DOCUMENT»

			$ upper(«characters»)

			> "CHARACTERS"

			The trim() Function

			The trim() function will remove the characters specified in the second argument from the start and end of the input string. Here, every character in the second argument will be replaced individually and does not have to be an exact match in the input string.

			Here is the syntax:

			trim(input-string, remove-chars)

			Some examples are as follows:

			$ trim("football", "fl")

			> "ootba"

			$ trim("sports", "s")

			> "port"

			The trimprefix() and trimsuffix() Functions

			The trimprefix() and trimsuffix() functions will remove the specified prefix and suffix strings from the start and end of the strings, respectively. If the input prefix/suffix is not present in the input string, the output value will be the same with no change.

			Here is the syntax:

			trimprefix(input-string, prefix-to-remove)

			trimsuffix(input-string, suffix-to-remove)

			Some examples are as follows:

			$ trimprefix("bridge", "b")

			> "ridge"

			$ trimsuffix("baseball", "ball")

			> "base"

			$ trimprefix("universe", "one")

			> "universe"

			The trimspace() Function

			The trimspace() function will remove the newline characters from the start and end of the given string. This is different from the regular trim() function, which will remove the specified characters. In this function, newline characters mean \n, \r, and similar characters.

			Here is the syntax:

			trimspace(input-string)

			Some examples are as follows:

			$ trimspace("\n\r test string\n")

			> "test string"

			$ trimspace(" terraform \n \r")

			> "terraform"

			The indent() Function

			The indent() function will be used to indent the strings in the specified multi-line string based on the input value except the first line.

			Here is the syntax:

			indent(number-of-spaces, input-string)

			An example is as follows:

			$ indent(2, "[\n test-line-1,\n test-line-2,\n]")

			> <<EOT

			[

			 test-line-1,

			 test-line-2,

]

			EOT

			The replace() Function

			The replace() function is used to replace the specified character set from the input string with the replacement sequence provided. If the substring to be replaced is wrapped with forward slashes (/), then it is considered to be a regular expression.

			Here is the syntax:

			replace(input-string, string-to-replace, replacement-chars)

			 Some examples are as follows:

			$ replace("This is a test string", " ", "-")

			> "This-is-a-test-string"

			$ replace("There are ten players", "/t.*n/", "10")

			> "There are 10 players"

			The strcontains() Function

			The strcontains() function will return either true or false based on whether the specified substring is present in the input string or not. This function takes two arguments only.

			Here is the syntax:

			strcontains(input-string, string-to-search)

			Some examples are as follows:

			$ strcontains("The game is on", "is")

			> true

			$ strcontains("Apple is Red", "white")

			> false

			The title() Function

			This function will convert the first letter of each word in the specified input string to uppercase and it takes one argument only.

			Here is the syntax:

			title(input-string)

			Some examples are as follows:

			$ title("this is amazing")

			> "This Is Amazing"

			$ title("one two three")

			> "One Two Three"

			The format() Function

			The format() function is used to format the string with the specifications, and this is similar to the printf function in C.

			Here is the syntax:

			format(specification-string, input-string)

			For the specification string, some of the commonly used parameters are the following:

			
					%s: For strings

					%d: For numbers in decimal representation

					%b: For numbers in binary representation

					%f: For fraction notation

			

			Please refer to the Terraform documentation for more options available with this function.

			Some examples are as follows:

			$ format("%s has won the match", "Brazil")

			> "Brazil has won the match"

			$ format("Each team has %d players", 11)

			> "Each team has 11 players"

			$ format("The value of PI is %.2f", 3.14)

			> "The value of PI is 3.14"

			$ format("Binary value of 2 is %b", 2)

			> "Binary value of 2 is 10"

			The formatlist() Function

			The formatlist() function uses the same syntax as the format() function except that this function produces the list of strings with the specifications provided.

			Here is the syntax:

			formatlist(specification-string, input-list-string)

			An example is as follows:

			$ formatlist("%s is a vowel", ["a", "e", "i", "o", "u"])

			> tolist([

			 "a is a vowel",

			 "e is a vowel",

			 "i is a vowel",

			 "o is a vowel",

			 "u is a vowel",

])

			The regex() Function

			The regex() function applies a regular expression to the input string and returns any matching substrings as the output. If the regular expression does not match with any substrings, the function will throw an error. If the pattern sequence itself starts with the backslash, another backslash must be added before use inside the function.

			This function has several advanced features and possible sequences that cannot be covered in this topic. Therefore, please refer to the official documentation for more information.

			Here is the syntax:

			regex(regular-expression, input-string)

			Some of the commonly used regular expression sequences are as follows:

			
					\d: Any ASCII digit from 0 to 9

					[a-z]: Any character between a and z

			

			Some examples are as follows:

			$ regex("\\d\\d", "1234abc5678")

			> "12"

			$ regex("[a-z]", "1234a5678")

			> "a"

			The regexall() Function

			The regexall() function uses the same syntax as the regex() function, but this function produces a list of matching strings.

			Here is the syntax:

			regexall(regular-expression, input-string)

			An example is as follows:

			$ regexall("[a-z]+", "ab123cd")

			> tolist([

			 "ab",

			 "cd",

])

			With this function, you have completed the discussion on string functions and can now proceed with the date and time functions, which are helpful when handling the different date and time formats to use with the Terraform resources.

			Date and Time Functions

			The following section will cover the most common date and time functions supported by Terraform 1.5.x. The examples used in the section will be available with the filename 3. date-and-time-functions.txt in the GitHub link provided at the start of this chapter.

			The timestamp() Function

			The timestamp() function returns the current date and time in the UTC format as per RFC 3339 specifications. This is the same format used internally by Terraform where the timestamps are used; hence, this function also returns with the same syntax.

			Here is the syntax:

			timestamp()

			An example is as follows:

			$ timestamp()

			"2024-03-09T17:03:03Z" ("YYYY-MM-DDTHH:MM:SSZ")

			Note

			The output will vary based on when the function was tried out.

			The formatdate() Function

			The formatdate() function converts the given timestamp into a different date and time format. For more details on the possible format sequences, please refer to the official documentation.

			The date and time format sequences that are commonly used are as follows:

			
					YYYY: Year in four digits

					YY: Year in two digits

					MMM: Month in abbreviated form, such as Jan, Feb, and so on

					MM: Month in two digits

					DD: Date in two digits with padding, such as 01, 02, and so on

					D: Date without padding

					HH: Hour in two digits with padding (12-hour format)

					hh: Hour in two digits with padding (24-hour format)

			

			Here is the syntax:

			formatdate(format, timestamp)

			Some examples are as follows:

			$ formatdate("DD-MM-YYYY", timestamp())

			> "09-03-2024"

			$ formatdate("hh:mm", timestamp())

			> "17:15"

			Note

			The output will vary based on when the function was tried out.

			The plantimestamp() Function

			The plantimestamp() function is like the timestamp() function but the result of the function will change with every plan operation.

			This function is not available within the Terraform console and can be tested with a random terraform plan.

			Here is the syntax:

			plantimestamp()

			The timeadd() Function

			The timeadd() function will return the new timestamp adding the duration specified with the input timestamp. It is possible that the duration parameter can contain negative values as well.

			The valid units are one of the following:

			
					ns (nanoseconds)

					us or µs (microseconds)

					ms (milliseconds)

					s (seconds)

					m (minutes) and

					h (hour)

			

			Here is the syntax:

			timeadd(timestamp-value, duration)

			Some examples are as follows:

			$ timeadd(timestamp(), "4h")

			> "2024-03-10T10:09:20Z"

			$ timeadd(timestamp(), "5m")

			> "2024-03-10T06:15:06Z"

			Note

			The output will vary based on when the function was tried out.

			The timecmp() Function

			The timecmp() function compares the given timestamps and returns a number based on their ordering. This function only accepts two timestamps as arguments.

			Here is the syntax:

			timecmp(timestamp-1, timestamp-2)

			If timestamp-1 < timestamp-2, then the return value will be -1.

			If timestamp-1 = timestamp-2, then the return value will be 0.

			If timestamp-1 > timestamp-2, then the return value will be 1.

			Some examples are as follows:

			$ timecmp(«2024-03-10T06:15:06Z», «2024-03-10T10:09:20Z»)

			> -1

			$ timecmp("2024-03-10T10:09:20Z", "2024-03-10T10:09:20Z")

			> 0

			$ timecmp("2024-03-10T10:09:20Z", "2024-03-10T06:15:06Z")

			> 1

			The date and time functions have now all been discussed, so you can proceed with the collection functions in the next section.

			Collection Functions

			Terraform supports a huge number of functions that work with collection types such as list, tuple, set, or map. In this section, you will briefly look at the most common ones. The examples used in the section will be available with the filename 4. collection-functions.txt in the GitHub provided at the start of this chapter.

			Since these functions can work with different collection types, you will be skipping the syntax part and looking at the examples directly.

			The alltrue() Function

			The alltrue() function will return true (Boolean type) if all the input elements in the list/tuple are true (Boolean type value) or true (string value).

			Some examples are as follows:

			$ alltrue([true, true])

			> true

			$ alltrue([true, false])

			> false

			The anytrue() Function

			This function returns true if any of the elements in the input collection has true (Boolean type value) or true (string value).

			Some examples are as follows:

			$ anytrue([true, false])

			> true

			$ anytrue([true])

			> true

			The chunklist() Function

			This function splits a single input list into a list of lists based on chunk size.

			An example is as follows:

			$ chunklist([11, 22, 33], 1)

			> tolist([

			 tolist([

			 11,

]),

			 tolist([

			 22,

]),

			 tolist([

			 33,

]),

])

			The coalesce() and coalescelist() Functions

			These functions return the first input element that is not null or an empty string. The coalescelist() function will take lists as input.

			Some examples are as follows:

			$ coalesce("", "", null, "a")

			> "a"

			$ coalescelist([], ["a", "b"])

			> [

			 "a",

			 "b",

]

			The compact() Function

			The compact() function will take a list of strings as input and return the list without empty or null values.

			An example is as follows:

			$ compact(["a", "b", "", null, "c"])

			> tolist([

			 "a",

			 "b",

			 "c",

])

			The concat() Function

			The concat() function takes lists as input and produces a single list after concatenation.

			 An example is as follows:

			$ concat(["1", "2"],["3"])

			> [

			 "1",

			 "2",

			 "3"

]

			The contains() Function

			The contains() function returns true or false based on whether the element is present in the list or not.

			An example is as follows:

			$ contains(["1", "2"], "2")

			> true

			The distinct() Function

			The distinct() function will return the list without any duplicates, as in this example:

			$ distinct(["1", "11", "111", "1", "11", "1111"])

			> tolist([

			 "1",

			 "11",

			 "111",

			 "1111",

])

			The element() Function

			This function retrieves a single element from the list, as in this example:

			$ element(["1", "11", "111"], 1)

			> "11"

			The flatten() Function

			The flatten() function will take lists and replace the elements with the flattened sequence of the elements. If the list element is a nested list, that too will be flattened.

			Here is an example:

			$ flatten([["a", "b", "c"], ["d"]])

			[

			 "a",

			 "b",

			 "c",

			 "d",

]

			The keys() and values() Functions

			The keys() and values() functions will return the keys and values of the map, respectively.

			Some examples are as follows:

			$ keys({one=1, two=2, three=3})

			[

			 "one",

			 "three",

			 "two",

]

			$ values({one=1, two=2, three=3})

			> [

			 1,

			 3,

			 2,

]

			The index() Function

			The index() function will return the index of the search element if it is present, as in this example:

			$ index(["a", "b", "c"], "a")

			> 0

			The length() Function

			The length() function will return the length of the list, as in this example:

			$ length(["a", "b", "c"])

			> 3

			The lookup() Function

			The lookup() function will return the value from the map for the provided key, as in this example:

			$ lookup({one=1, two=2, three=3}, "two")

			> 2

			The matchkeys() Function

			The matchkeys() function will create a new list with the elements whose indexes match the corresponding indexes in the keylist. searchvalue is the third argument.

			Here is the syntax:

			matchkeys(valuelist, keylist, searchvalue)

			An example is as follows:

			$ matchkeys(["ec2", "lambda", "dynamodb"], ["server", "serverless", "serverless"], ["serverless"])

			> tolist([

			 "lambda",

			 "dynamodb",

])

			The merge() Function

			The merge() function will take a map or objects as input and create a merged map. If the same key is present in multiple maps, the last occurrence will take precedence.

			Here is an example:

			$ merge({a=1, b=2, c=3},{b=4},{d=5})

			{

			 "a" = 1

			 "b" = 4

			 "c" = 3

			 "d" = 5

			}

			The one() Function

			The one() function will take a list, a set, or a tuple with zero or one element. If the input has zero elements, the function will return null and if it has one element, the first element will be returned. If there is more than one element, the function will throw an error.

			Some examples are as follows:

			$ one([])

			> null

			$ one(["1"])

			> "1"

			The range() Function

			The range() function generates a list of numbers with the specified start value, end value, and step value.

			Here is the syntax:

			range(max-value)

			range(start-value, max-value)

			range(start-value, max-value, step-value)

			Some examples are as follows:

			$ range(3)

			> tolist([

			 0,

			 1,

			 2,

])

			$ range(11, 15)

			> tolist([

			 11,

			 12,

			 13,

			 14,

])

			$ range(2, 10, 2)

			> tolist([

			 2,

			 4,

			 6,

			 8,

])

			The reverse() Function

			The reverse() function takes the input list and returns it in a reversed fashion.

			An example is as follows:

			$ reverse([1,2])

			> [

			 2,

			 1,

]

			Set Functions

			Under collection functions, there is a special category of functions grouped together as set functions and there are four functions available in this category that are similar in syntax. You will now look at the examples directly.

			These functions will work with the input values of the set type.

			The setintersection() Method

			This is the intersection result of the input sets:

			$ setintersection(["adam", "bob"],["bob", "chris"])

			> toset([

			 "bob",

])

			The setproduct() Method

			This is the product result of the input sets:

			$ setproduct(["adam"],["1", "2"])

			> tolist([

			 [

			 "adam",

			 "1",

],

			 [

			 "adam",

			 "2",

],

])

			The setunion() Method

			This is the combined result of the input sets:

			$ setunion(["adam", "bob"],["bob", "chris"])

			> toset([

			 "adam",

			 "bob",

			 "chris",

])

			The setsubtract() Method

			This is the result of the input sets when the common elements are removed from the first set. This takes two sets only as input:

			$ setsubtract(["adam", "bob"],["bob", "chris"])

			> toset([

			 "adam",

])

			The slice() Function

			The slice() function extracts the elements from the specified starting index and last index. The result will not include the element in the last index. This is similar to the substr() function, but the substr() function will use the length attribute instead of the index.

			Here is an example:

			$ slice([11, 22, 33, 44, 55], 1, 4)

			> [

			 22,

			 33,

			 44,

]

			The sort() Function

			The sort() function sorts a given list.

			Here is an example:

			$ sort(["23", "12", "44", "09", "66"])

			> tolist([

			 "09",

			 "12",

			 "23",

			 "44",

			 "66",

])

			The sum() Function

			This function returns the sum of the elements in a given list.

			Here is an example:

			$ sum([11, 22, 33])

			> 66

			The transpose() Function

			The transpose() function takes a map of strings and switches the keys and values.

			Here is an example:

			$ transpose({"s3" = ["aws", "service"]})

			> tomap({

			 "aws" = tolist([

			 "s3",

])

			 "service" = tolist([

			 "s3",

])

			})

			The zipmap() Function

			The zipmap() function creates a map with the specified list inputs as keys and values.

			Here is an example:

			$ zipmap(["a"], ["1"])

			> {

			 "a" = "1"

			}

			With the zipmap() function, you have completed the section on collection functions, and have read about the functions that are primarily used to manipulate the input values or derive new values from it. The next section will deal with type conversions such as changing sensitive values to non-sensitive values and converting an input value to a new type.

			Type Conversion Functions

			This section will cover type conversion functions, as highlighted previously. They will be useful to ensure that input values are always compatible with the written configuration scripts, so they can be handled with the right validations.

			The examples used in the section will be available with the filename 5. type-conversion-functions.txt in the GitHub link provided at the start of this chapter.

			The can() Function

			The can() function is mainly used to validate whether the expression will produce a valid result or not. If a valid result is possible, true is returned; otherwise, false will be returned.

			You can now take a look at a couple of examples:

			$ can(anytrue([true, false]))

			> true

			$ can(one([1, 2]))

			> false

			Here, the anytrue() function will always return a result, so the can() output is true. In the second case, the one() function will throw an error if the input list has more than one element, and hence the function returns false.

			The sensitive() and nonsensitive() Functions

			The sensitive() and nonsensitive() functions are used to create a copy of any value that will be marked as sensitive and non-sensitive, respectively, so Terraform can manage how to handle it.

			These functions can be used in situations where you want to mark any variable value marked as sensitive to a non-sensitive value to print it, and vice versa.

			In the following example in Figure 8.1, there are two variables (outval1 and outval2) but outval1 is set with a sensitive variable value:

			
				
					[image: Figure 8.1 – main.tf with sensitive and nonsensitive variables]
				

			

			Figure 8.1 – main.tf with sensitive and nonsensitive variables

			When the terraform plan command is executed, you can see the outval1 value is hidden and the outval2 value is displayed in the terminal, as shown in Figure 8.2:

			
				
					[image: Figure 8.2 – The terraform plan terminal output]
				

			

			Figure 8.2 – The terraform plan terminal output

			The try() Function

			The try() function will take the argument expressions and return the first one that does not result in an error.

			Here is an example:

			$ try(one([1,2]), ["1", "2"], [])

			[

			 "1",

			 "2",

]

			The type() Function

			The type() function determines the type of the given value.

			Here is an example:

			$ type(["1", "2"])

			> tuple([

			 string,

			 string,

])

			$ type(true)

			> bool

			Conversion Functions

			The following functions convert the input value from one type to another:

			
					tobool()

					tolist()

					tomap()

					tostring()

					tonumber()

					toset()

			

			Some examples are as follows:

			$ tobool("true")

			> true

			$ tonumber("23")

			> 23

			$ tostring(100)

			> "100"

			$ toset(["1", "2", "3", "2"])

			> toset([

			 "1",

			 "2",

			 "3",

])

			$ tomap({"one" = 1, "two" = 2})

			> tomap({

			 "one" = 1

			 "two" = 2

			})

			$ tolist(["a", "b", 1, true])

			> tolist([

			 "a",

			 "b",

			 "1",

			 "true",

])

			Now that you have read about type conversion functions, you can proceed to learn about filesystem functions, which allow you to interact with file-based input handling, along with encoding capabilities.

			Filesystem Functions

			Filesystem functions are used when you work with files to pass configuration values or read the input content and so on. This is very helpful in real-life scenarios such as processing upstream files via automation or creating files to be passed to downstream systems with custom content and encoding. The examples used in the section will be available with the filename 6. filesystem-functions.txt in the GitHub link provided at the start of this chapter.

			Function outputs for the examples in this section will be based on Windows OS but similar outputs can be expected if you use a different operating system.

			For the following examples, create a file with the name test.txt with the content as testfile before trying out these functions.

			The abspath() Function

			The abspath() function will convert the string with the file path to an absolute path.

			Here is an example:

			$ abspath("/terraform")

			"C:/terraform"

			The dirname() and basename() Functions

			The dirname() and basename() functions will return the directory name, removing the filename at the end if present. The behavior of the function will vary based on the operating system.

			Some examples are as follows:

			$ dirname("C:\\Users\\chandru\\test.txt")

			"C:\\Users\\chandru"

			$ basename("C:\\Users\\chandru\\test.txt")

			"test.txt"

			The pathexpand() Function

			The pathexpand() function will expand the file path that might begin with a tilde symbol (~) and replace it with the HOME directory. If the HOME environment variable is not set, the HOMEDRIVE or HOMEPATH value will be used; if that is also not available, the USERPROFILE value will be used to expand the path.

			Here is an example:

			$ pathexpand("~")

			"C:\\Users\\chandru"

			The file() and filebase64() Functions

			The file() and filebase64() functions read the contents of the given file and return it in regular string format and string encoded in the base64 format, respectively.

			Here is an example:

			$ file("C:\\Users\\chandru\\test.txt")

			> "testfile"

			$ filebase64("C:\\Users\\chandru\\test.txt")

			> "dGVzdGZpbGU="

			The fileexists() Function

			The fileexists() function returns true or false based on whether the file exists or not in the specified path, as in this example:

			$ fileexists("C:\\Users\\chandru\\test.txt")

			> true

			The fileset() Function

			The fileset() function will return the set of filenames matching the specified pattern. Please refer to the official documentation for more information on valid patterns.

			Here is the syntax:

			fileset(path, match-pattern)

			The templatefile() Function

			The templatefile() function is useful to read the template file and dynamically set the content of the file using the template variables.

			Here is the syntax:

			templatefile(file-path, template-vars)

			With this, you have finished learning about filesystem functions.

			IP Network Functions

			In this section, you will read about IP network functions supported in Terraform. These are helpful when you work with the setup of AWS resources such as VPC and are creating public and private subnets within the VPC and similar components to provision new infrastructure from scratch. Understanding these functions requires knowledge of network-addressing concepts.

			The examples used in the section will be available with the filename 7. ip-network-functions.txt in the GitHub link provided at the start of this chapter.

			The cidrhost() Function

			The cidrhost() function returns the full IP address for a given host number within the given IP address prefix.

			The function will accept both the IPv4 and IPv6 prefixes.

			Here is an example:

			$ cidrhost("192.168.1.1/16", 10)

			> "192.168.0.10"

			The cidrnetmask() Function

			The cidrnetmask() function converts an IPv4 address prefix to a subnet mask address. This will throw an error if the IPv6 address prefix is given as input.

			Here is an example:

			$ cidrnetmask("192.168.1.1/16")

			> "255.255.0.0"

			The cidrsubnet() Function

			The cidrsubnet() function calculates the subnet address for a given IP address prefix, and this function takes three arguments to extend the prefix. This function accepts IPv4 and IPv6 address prefixes.

			Here is the syntax:

			cidrsubnet(prefix, new-range, net-num)

			An example is as follows:

			$ cidrsubnet("192.168.1.1/16", 4, 2)

			> "192.168.32.0/20"

			The cidrsubnets() Function

			This function returns the sequence of IP address ranges within the CIDR range.

			An example is as follows:

			$ cidrsubnets("192.168.1.1/16", 4, 4)

			> tolist([

			 "192.168.0.0/20",

			 "192.168.16.0/20",

])

			Encoding Functions

			This section will cover the different encoding functions available in Terraform. You can use them to encode the files created in your own configuration or decode a given file in a specific scheme.

			The examples used in the section will be available with the filename 8. encoding-functions.txt in the GitHub link provided at the start of this chapter.

			The base64encode() and base64decode() Functions

			These functions can encode a given string in base64 format, decode a base64 encoded string, and return the original string.

			Here is an example:

			$ base64encode("This is a string")

			> "VGhpcyBpcyBhIHN0cmluZw=="

			$ base64decode("VGhpcyBpcyBhIHN0cmluZw==")

			> "This is a string"

			The base64gzip() Function

			This function compresses a string with gzip and then encodes it with base64 encoding.

			Here is an example:

			$ base64gzip("This is a string")

			> "H4sIAAAAAAAA/wrJyCxWyCxWSFQoLinKzEsHAAAA//8BAAD//z9jdggQAAAA"

			The csvdecode() Function

			The csvdecode() function decodes a CSV string and produces a list of maps. The first line is considered as a header and the remaining lines are considered as data.

			Here is an example:

			$ csvdecode("1,2\na, b\n")

			> tolist([

			 {

			 "1" = "a"

			 "2" = " b"

			 },

])

			The jsonencode() and jsondecode() Functions

			The jsonencode() and jsondecode() functions are used to encode the given string into JSON syntax, and vice versa.

			The Terraform types are converted to the equivalent JSON types as per the predefined conversion rules.

			Here is an example:

			$ jsonencode({"one" = 1, "two" = 2})

			> "{\"one\":1,\"two\":2}"

			$ jsondecode("{\"one\":1,\"two\":2}")

			{

			 "one" = 1

			 "two" = 2

			}

			The textencodebase64() Function

			The textencodebase64() function encodes the given string using the specified encoding scheme.

			Here is an example:

			$ textencodebase64("This is a string", "UTF-8")

			> "VGhpcyBpcyBhIHN0cmluZw=="

			$ textencodebase64("This is a string", "UTF-16")

			> "/v8AVABoAGkAcwAgAGkAcwAgAGEAIABzAHQAcgBpAG4AZw=="

			The textdecodebase64() Function

			The textdecodebase64() function decodes an already encoded base64 string using the specified encoding scheme.

			Here is an example:

			$ textdecodebase64("VGhpcyBpcyBhIHN0cmluZw==", "UTF-8")

			> "This is a string"

			The urlencode() Function

			The urlencode() function encodes a given string in the URL encoding format, as in this example:

			$ urlencode("test url/resource")

			> "test+url%2Fresource"

			The yamlencode() and yamldecode() Functions

			The yamlencode() function encodes the given string using the YAML syntax and the yamldecode() function performs the opposite.

			Here is an example:

			$ yamlencode({"one" = "1"})

			> <<EOT

			"one": "1"

			EOT

			$ yamldecode("one : 1")

			{

			 "one" = 1

			}

			You have learned about encoding functions in this section and can now proceed to the next section on hash and crypto functions, which can be used to generate unique UUIDs. Different hashing algorithm-based functions are also supported.

			Hash and Crypto Functions

			Hash and crypto functions are helpful to generate UUIDs in version 4 and version 5. There are more functions to compute different hashing methods such as SHA1, MD5, and so on, which have applicable use cases in the field of cryptography.

			These functions can also be used to encrypt a file using different methods based on specific requirements. The examples used in the section will be available with the filename 9. hash-and-crypto-functions.txt in the GitHub link provided at the start of this chapter.

			The uuid() Function

			The uuid() function generates a unique UUID identifier. The version 4 UUID generated by this function is random in nature and cannot be duplicated easily. This function will generate a new output every time it is tried out.

			Here is an example:

			$ uuid()

			> "9e3eaa9e-5304-4077-7a9a-4f267e9319aa"

			The uuidv5() Function

			This function generates a version 5 UUID based on the name and namespace values. This is different from the uuid() function, where the generated UUID will be the same if the namespace and name values remain the same (not random in nature).

			The valid values for namespace are "dns", "url", "oid" (object identifier), and "x500".

			Here is the syntax:

			uuidv5(namespace-value, name)

			Here is an example:

			$ uuidv5("url", "https: //www.google.co. in")

			> "1040b910-63b8-53cb-ad98-8d28e9d9eb95"

			Other functions under this category can be grouped into two categories – functions that work on the string and ones that work on files.

			These are the functions with string input:

			
					base64sha256()

					base64sha512()

					bcrypt()

					md5()

					sha1()

					sha256()

					sha512()

			

			Some examples are as follows:

			$ sha1("test string")

			> "661295c9cbf9d6b2f6428414504a8deed3020641"

			$ md5("test string")

			> "6f8db599de986fab7a21625b7916589c"

			$ base64sha256("test string")

			> "1VecRt/MfxggcBPmW0Tky04sIpj0rEV7qPgnQ/Mekws="

			These functions use file input:

			
					filebase64sha256()

					filebase64sha512()

					filemd5()

					filesha1()

					filesha256()

					filesha512()

			

			For the following examples, you can reuse the same test file created previously when filesystem functions were discussed:

			$ filebase64sha256("./test.txt")

			> "03uTlcK68Wj5d86f+ewAfXJw/ITL8VSTJL/I38NDM6k="

			$ filemd5("./test.txt")

			> "8bc944dbd052ef51652e70a5104492e3"

			With this example, you have completed a thorough walk-through of all the available Terraform functions and you should be able to use them in your configuration scripts to make them more dynamic and flexible.

			Summary

			In this chapter, you looked at the different types of functions, starting with basic numeric and string functions, followed by collection functions to work with the complex types. Then, the type conversion functions were covered with file-based functions with encoding options and a few special utility functions.

			From the exam perspective, these functions may not be directly asked about in the questions, but this knowledge will be helpful in other scenario-based questions.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch8.Alternatively, you can scan the following QR code (Figure 8.3):

			

			
				
					[image: Figure 8.3 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 8.3 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 8.4:

			

			
				
					[image: Figure 8.4 – Chapter Review Questions for Chapter 8]
				

			

			Figure 8.4 – Chapter Review Questions for Chapter 8

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 8.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			9

			Understanding HCP Terraform’s Capabilities

			In this chapter, you will learn about HCP Terraform and Terraform Enterprise, the managed Terraform offerings by HashiCorp. While Terraform Community Edition is great, it does have some shortcomings that are fixed by HashiCorp with their HCP Terraform and Terraform Enterprise offerings.

			It is important for you to understand the differences between the Community, HCP Terraform, and Enterprise editions. This knowledge will help you make an informed decision about which edition best serves your company’s interests, not just from a technical perspective but also from a cost perspective.

			The following are the key topics that will be covered in this chapter:

			
					Terraform editions

					Shortcomings of Terraform Community Edition

					HCP Terraform features

					HCP Terraform pricing

					Key concepts of HCP Terraform

					HCP Terraform sign-up

					Exercises on workflows, and execution modes in HCP Terraform

					Migrating to HCP Terraform

					Terraform Enterprise features

			

			By the end of this chapter, you will have a good understanding of the difference between various Terraform editions, as well as the key features of HCP Terraform and Enterprise. This understanding will not only help answer the certification questions related to this chapter but will also help you decide which edition is suitable for your environment if you want to explore the paid options of Terraform.

			Terraform Editions

			HashiCorp provides the following editions of Terraform, which should cover a wide spectrum of customers:

			
					Community

					HCP Terraform

					Terraform Enterprise

			

			The following figure shows the available Terraform editions:

			
				
					[image: Figure 9.1: Terraform editions]
				

			

			Figure 9.1: Terraform editions

			Note

			HashiCorp changed the name of Terraform Cloud to HCP Terraform. All the functionality provided by Terraform Cloud continues in HCP Terraform, with additional features expected to be added in the coming days.

			Shortcomings of Terraform Community Edition

			Imagine you are the only person managing your infrastructure using Terraform and you went with the default Terraform installation, which stored the configuration files and state file on your laptop (though it is not recommended even for a single user).

			With the increase in the number of environments and the workload, you have been asked by your manager to hire additional members to handle the workload. Your new team members will not be able to access the state file and the configuration files as they are locally stored on your laptop. You realize that the default configuration of the Terraform Community Edition is not meant for team collaboration. However, you solve this by customizing Terraform by using version control system providers such as GitHub to store the configuration files, blob storage such as S3 for the state file, and a NoSQL database such as DynamoDB to enable locking for the state file.

			You were able to solve this problem because you knew the shortcomings of the Community edition and how to address them. If you are a beginner with Terraform, you might not be able to get around problems such as this quite so quickly and confidently.

			There are other challenges you will not be able to solve while using Terraform Community Edition. A few of them are listed here:

			
					If your company has a policy to have Service-Level Agreement (SLA)-based support for all third-party applications used in production

					The company’s policy dictates using Single Sign-On (SSO) for all the third-party tools used in production

					Role-based access control

					Enforce a governance policy or cost policy using policy-as-code frameworks

					The team is comfortable using a Graphical User Interface (GUI)

			

			Terraform Community Edition is great when you are the sole engineer working on infrastructure automation and management. However, you will soon notice the following:

			
					The state file, by default, gets stored in the local filesystem (in the default installation)

					No state file locking (in the default installation)

					No private modules

					No policy as code

					No GUI

					No SSO

					No production support

			

			If these shortcomings are impacting your ability to manage the infrastructure, you should explore the paid offerings of HashiCorp, which address these problems and provide additional capabilities. Depending on your requirements, you can choose between HCP Terraform or Terraform Enterprise.

			HCP Terraform Features

			HCP Terraform is a SaaS application that runs Terraform in a stable, remote environment and securely stores state and secrets. HCP Terraform has a GUI that gives you a detailed view of the resources managed by Terraform and good visibility into each Terraform operation. It is available as a hosted service at https://app.terraform.io.

			The key features of HCP Terraform are discussed in the following section.

			Remote State Management

			HCP Terraform acts as a remote backend to store Terraform state. It securely stores and versions Terraform state remotely, with encryption at rest. You also have access to the state file history since the state files are versioned.

			Note

			Please note that the sensitive data is still stored in the state file. Hence, access to the state file directly (via the terraform state command) or indirectly (by accessing the storage where the state is stored) should be tightly controlled.

			Multiple Workflows

			You can initiate Terraform runs (i.e. terraform plan, terraform apply, and any other Terraform commands) in any one of the following workflows:

			
					The CLI-driven workflow: As the name suggests, the workflow initiation happens with the user using the Terraform CLI tool but the runs happen in HCP Terraform. That is, the user will have the configuration files on the local system, and when they run terraform plan or terraform apply, the execution happens in HCP Terraform and the output gets streamed to the local system.

					The UI/Version Control System (VCS) driven workflow: Terraform configuration files are stored in the VCS repositories of providers such as GitHub. Any changes pushed to these repositories trigger runs in the respective workspaces.

					The API-driven workflow: This is an advanced use case. If you want to integrate Terraform directly into your application/workflows, you can trigger the Terraform run directly using its APIs.

			

			Multiple Execution Modes

			You can initiate Terraform runs in one of the following execution modes:

			
					Remote: The plan and apply commands occur on disposable virtual machines in HCP Terraform’s infrastructure. You and your team will have the ability to review and collaborate on runs. You will be able to review the output of the Terraform runs of your colleagues.

					Local: The plan and apply commands occur on the machine where you are running Terraform CLI. HCP Terraform is used to store and synchronize the state only.

					Agent: Agents are used when you want to manage private isolated environments in the on-premises setup. These agents poll HCP Terraform/Enterprise for any changes in the configuration and apply them locally. As it works via a pull-based mechanism through the outbound connectivity, you do not have to allow any ingress traffic through the perimeter firewall. If you work in a highly restricted environment where inbound connectivity is not allowed, then the Agent execution mode can be used.

			

			Version Control System Integration

			Configuration files that are used by Terraform can be stored in a VCS. HCP Terraform supports integration with many VCS providers, such as GitHub, GitLab, and BitBucket. It watches for the changes in the repository and triggers a run when the new commits are merged. While using a VCS is strongly recommended, it is optional.

			Private Registry

			With Terraform Community Edition, you only get access to public modules. But what if you do not want to share your modules with anyone other than your team? A private registry is used in this situation. You can upload the provider and modules to it and share it only with the selected members/team. The user interface remains the same as the public Terraform registry. The modules can be published to the private registry in HCP Terraform and you can control access to these private modules via teams in HCP Terraform.

			There are a few best practices to be followed while publishing a module to a private repository:

			
					You should be the admin of the repository where the code is residing (and is integrated with HCP Terraform).

					Module repositories should follow a standard naming convention: terraform-PROVIDER-NAME – for example, terraform-aws-eip, terraform-gcp-vault, and terraform-aws-ec2-instance (NAME can have additional hyphens to indicate the resources being managed).

					You must follow the semantic versioning convention for the release tag of the modules/providers. Semantic versioning follows the convention of MAJOR.MINOR.PATCH with an optional v at the beginning of the version, for example, v1.2.0, v3.8.2, and v5.4.1.

			

			Notifications

			HCP Terraform can send notifications about Terraform runs to other systems, such as Slack, or any other service that accepts webhooks.

			Run Tasks

			If you want to perform some actions using third-party tools at certain stages of the Terraform lifecycle, you can make use of the run tasks option in HCP Terraform. The stages where you can perform actions using such tools are before terraform plan, after terraform plan, before terraform apply, and after terraform apply.

			Typical use cases of run tasks are cost management, policy compliance, and infrastructure drift detection.

			Imagine you have a mandate to adhere to the Payment Card Industry Data Security Standard (PCI-DSS), which is a security standard for data security in the payments industry, and you want to make sure all your infrastructure deployments are verified against the PCI-DSS compliance policies before they are provisioned.

			run tasks can be utilized in such use cases where the policies related to the PCI-DSS are checked and, if they are successful, the resources will be provisioned, or the run will fail.

			You can take a look at some of the run tasks available in the Terraform Registry at the following URL:

			https://registry.terraform.io/browse/run-tasks

			Role-Based Access Control

			HCP Terraform supports role-based access control to ensure that only approved teams can access, edit, and manage infrastructure with HCP Terraform.

			Policy Enforcement

			Policies are rules that HCP Terraform enforces on Terraform runs. These policies are written using policy-as-code frameworks.

			HCP Terraform supports the following policy-as-code frameworks:

			
					Sentinel: Policies are written in HashiCorp’s Sentinel language.

					Open Policy Agent (OPA): Policies are written in a high-level declarative language called Rego. This is not as intuitive as Sentinel.

			

			Cost Estimation

			HCP Terraform can estimate the cost you will incur when the resources you have defined in the configuration files are provisioned. By default, the cost estimation feature is disabled. You will have to enable this in the organization’s settings. Once enabled, it will start showing the monthly cost you will incur for the resources that are provisioned in each run. Cost estimation is not supported by all the resources.

			At the time of writing this book, HashiCorp has published the supported resources for AWS, Azure, and GCP. If you want to look at the supported AWS resources, check out the following URL:

			https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation/aws

			HCP Terraform Pricing

			HCP Terraform has both free and paid offerings. The amount of features available to you depends on the plan you choose. HCP Terraform has three tiers:

			
					HCP Free (up to 500 managed resources)

					HCP Standard

					HCP Plus

			

			Many key features, such as remote state storage, VCS connection, secure variable storage, private registry, a policy set of five policies (policy set is a collection of policies that can be applied at the individual workspace or all workspaces), and SSO are made available in the HCP Terraform Free edition.

			Though the feature list is good for the free edition, it is very difficult to have a production environment as there is a limitation of 500 managed resources. This option is good for assessing whether the features of HCP Terraform suit your requirements.

			Managed resource/Resources Under Management (RUM) is a resource in an HCP Terraform managed state file where mode = managed. HCP Terraform counts a resource as part of this count starting from the first terraform plan or terraform apply operation on the resource.

			Note

			HCP Terraform does not include resources defined as a null_resource or terraform_data in the total managed resource count.

			RUM-based billing applies to the Free edition and the Standard edition. For the Free edition, you are limited to 500 managed resources. With the Standard edition, you get charged after 500 managed resources.

			For more details on the pricing and features across different editions, refer to the following URL: https://www.hashicorp.com/products/terraform/pricing.

			Key Concepts of HCP Terraform

			When you compare Terraform Community Edition with the HCP Terraform edition, you will see several new concepts have been introduced. Figure 9.1 shows the hierarchy of the concepts within HCP Terraform:

			
				
					[image: Figure 9.2: HCP Terraform concepts hierarchy]
				

			

			Figure 9.2: HCP Terraform concepts hierarchy

			You will learn about some of the key concepts of HCP Terraform in the following section.

			Workspaces

			When you run Terraform locally, you have configuration files, a state file, and variables in a single directory (which is also your working directory). Terraform CLI always looks for configuration files ending with .tf or .tf.json for configuration, .tfvars files for the values of the variables, and the state file to know the current state of the infrastructure in the current working directory (it does not look at the subdirectories).

			When you want to organize infrastructure resources into a meaningful group, you create different directories and have the relevant configuration files in these new directories.

			For example, you could have all the VPC and subnet-related configuration files in the network folder and have all the config files of RDS and DynamoDB in the database folder.

			Similarly, HCP Terraform manages the infrastructure collections with workspaces. You can equate the HCP Terraform workspace to the directory in the local Terraform CLI. A workspace contains the configuration file, a state file, and variables that are needed by Terraform to manage the infrastructure.

			It is recommended that you create multiple workspaces instead of having one big workspace. This means Terraform runs and delegating permissions of different workspaces to different teams are quicker.

			For example, you can delegate the management of the network workspace to your networking team, while an application team can manage the application workspace.

			Note

			Terraform CLI workspaces are different from HCP Terraform workspaces. CLI workspaces are used to deploy multiple environments using the same set of configuration files. Each CLI workspace in this context will have a different state file.

			For example, if you want to have a testing environment that is similar to the production environment, you do not have to duplicate the same code. You can just create two CLI workspaces named production and testing in the same directory. Any resources deployed in the production workspace will be tracked in a state file specific to the production workspace. Similarly, any resource deployed in the testing workspace will be tracked in a separate state file specific to the testing workspace. The production state file will not be visible when you are working in the testing workspace and vice versa. This is one of the features that is not well received by the community and is not recommended as there is a high chance of deleting resources due to confusion and difficulty in restricting access.

			Projects

			Projects let you organize workspaces into groups. Projects are typically used when you want to group a certain workspace based on a theme, such as business units, technology divisions, or subsidiaries.

			Instead of assigning the same permissions to multiple workspaces that belong to the same business units or subsidiaries, you can group them into a single project and assign the permission to this project.

			Each workspace must be part of exactly one project. Unless you create a new project, all the workspaces belong to a default project named Default Project.

			Users

			A user account is created for the individual user who has to log in to HCP Terraform to execute Terraform runs.

			A user can be part of one or more teams that are granted permissions on one or more workspaces. These users can execute Terraform runs within their respective workspace. A user can be part of multiple organizations too.

			Teams

			A team is a group of HCP Terraform users and is used to grant permission on the workspace. The team management feature is available in HCP Terraform Standard.

			Teams can only have permissions on workspaces within their organization, but users can belong to teams of other organizations too.

			Owners team is the default team present in the organization (for all editions) and it cannot be deleted.

			Permissions

			The access a user or a team has in the organization/project or workspace is dictated by permissions. A permission is assigned to a team, and hence users who are part of the team will get these permissions. The permission model is split into organization-level, project-level, and workspace-level permissions. Most of HCP Terraform’s permissions are focused on workspaces.

			There are two ways to assign permission to a team in a workspace:

			
					Fixed permission sets: These are bundles of specific permissions for workspaces that you can use to delegate access to workspaces easily:	Workspace admins: Full permission over the workspace.
	Write: Provisioning and modifying infrastructure.
	Plan: For people who need to modify the configuration files to propose changes.
	Read: For people who need to view the status and configuration of infrastructure.

					Custom permissions: If the fixed permission sets are too wide for your requirements, you can set fine-grained permissions to a team by using custom permissions.

			

			Organizations

			Organizations are a shared space for one or more teams to collaborate on workspaces. It is at the top of the hierarchy in HCP Terraform. To join an organization, you must be invited by one of its owners and must accept the emailed invitation.

			Users who are part of the same organization can collaborate on workspaces and share private modules and providers.

			Locking Workspaces

			If you need to prevent Terraform runs on your HCP Terraform account due to production freeze or any other reason, you can lock a workspace. This prevents all applies (and many kinds of plans) from proceeding, and affects runs created via the UI, CLI, API, and automated systems.

			To enable Terraform runs again, you must unlock the workspace.

			Sentinel Policies

			Sentinel policies are rules that are enforced by HCP Terraform on Terraform runs. It enables HCP Terraform to have granular control over the infrastructure using these policies.

			A collection of these policies makes a policy set that can be applied at the organization level, the project level, or the workspace level.

			Every time a Terraform run happens in the workspace, HCP Terraform checks the plan against the applicable policy, which can be either a Sentinel policy or an Open Policy Agent (OPA) policy.

			As these policies can access the plan, state, and Terraform configurations during the plan stage, they are able to check for violations. Depending on the enforcement level configured, if there is a violation, the run will fail or will display an error message in the UI after allowing the run.

			There are three enforcement levels with Sentinel policies:

			
					Advisory: The runs are not interrupted when the policy is violated but an error will be displayed in the HCP Terraform UI.

					Soft mandatory: The run is stopped when there is a policy violation, but the user can override it and allow the run to complete.

					Hard mandatory: The run is stopped until the user fixes the issue that caused this failure.

			

			An important concept in Sentinel policy is imports. When you write a Sentinel policy, imports give the required information at the respective stage to compare them against the policy. There are four imports:

			
					tfplan: This import gives access to the plan created by Terraform core when the user runs terraform plan.

					tfconfig: This gives access to all the configuration present in the Terraform configuration files that describe the user’s desired state.

					tfstate: This import gives access to the Terraform state, which has details of all the resources under Terraform’s management and shows the current infrastructure state.

					tfrun: This import gives access to the data associated with a run in HCP Terraform.

			

			The HCP Terraform UI displays policy results for each policy set you apply to the workspace.

			Explorer

			As your organization grows, keeping track of all your infrastructure objects will become increasingly complex.

			Explorer helps you analyze your data to understand the organization’s Terraform usage. It displays the information in two main sections: types and usecases.

			Within the types section, you can get information about modules, providers, workspaces, and Terraform versions.

			Within the usecases section, you can get details such as top module versions and top provider versions.

			Clicking any of the options triggers the explorer to perform a query and display the results in a table of data.

			HCP Terraform Sign-Up

			You can use HCP Terraform by creating an account either with HashiCorp Cloud Platform (HCP) or by directly signing up with HCP Terraform.

			If you use HashiCorp’s other products, such as Boundary or Vault, then you can create an HCP account. The same account can be used for HCP Terraform too. If not, you can just create an account with HCP Terraform. The following sections cover both ways of creating an account to access HCP Terraform.

			Creating an Account with HCP Terraform

			The following steps explain how to create an account with HCP Terraform directly:

			
					Navigate to this URL: https://app.terraform.io/public/signup/account.

					Enter your username, email ID, and password, as shown in Figure 9.3.

					Once you read the terms of use and privacy policy, you can select the checkboxes if you agree.

					Click Create account.

			

			
				
					[image: Figure 9.3: HCP Terraform account sign up]
				

			

			Figure 9.3: HCP Terraform account sign up

			
					A confirmation link will be sent to the email address you specified when creating the account. This is for verification. Once you click the link and complete the verification, you are ready to use the HCP Terraform account.

			

			You have learned how to create an account with HCP Terraform.

			The other way to create an account is by signing up with HCP. This is covered in the next section.

			Creating an Account with HCP

			The following steps explain how to create an account with HCP:

			
					Navigate to this URL: https://app.terraform.io/public/signup/account.

					Click on Continue with HCP account.

					If you have a GitHub account, you can sign in to the HCP account by clicking on the Sign in with GitHub option.

					If you do not have a GitHub account or want to create an account using a different email ID than the one you use for GitHub, look for the Sign up hyperlink at the bottom and click on it.

					Enter the email ID and password, and you will be asked to agree to the terms of service and privacy policy on the next screen, as shown in Figure 9.4.

					You may select them if you agree and click Continue.

			

			
				
					[image: Figure 9.4: HCP sign-up screens]
				

			

			Figure 9.4: HCP sign-up screens

			
					An email will be sent to validate the email address you have entered. Once validated, your account will be created in HCP.

					Unlike the account with HCP Terraform, this account can be used to access other HashiCorp products, such as Boundary, Consul, and Vault. Within the HCP console, there is a hyperlink to take you to HCP Terraform. Once you have an account either with HCP or HCP Terraform, you can get started with your infrastructure management using HCP Terraform.

			

			Exercises on Workflows and Execution Modes

			In this section, you will perform three exercises to learn more about the remote execution mode and local execution mode on HCP Terraform. The other topics covered in these exercises are CLI-driven and VCS-driven workflows.

			The following are the pre-requisites for the exercises:

			
					An AWS account and an IAM user with enough permissions to perform the exercises (or an SSO user if your organization is using AWS SSO). Refer to the following URL for steps on how to create an IAM user in AWS:https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html.

					Terraform installed (version 1.4.0 and above preferred).

					HCP Terraform account.

					API token to configure Terraform CLI to access HCP Terraform API.

			

			The following steps will help you create the API token and configure Terraform CLI:

			
					Log in to HCP Terraform via the web browser, which is required to generate the API token.

					Now, log in to HCP Terraform via the CLI by running the following command, which should prompt you for a confirmation to proceed, as shown in Figure 9.5:terraform login

			

			
				
					[image: Figure 9.5: HCP Terraform login via CLI]
				

			

			Figure 9.5: HCP Terraform login via CLI

			
					Once you key in yes and hit Enter, a web page will be opened in your browser with a prompt to create an API token named terraform login with the expiration set to 30 days, as shown in Figure 9.6. (If you do not see this prompt, make sure you have logged in to HCP Terraform.)

			

			
				
					[image: Figure 9.6: API token creation in HCP Terraform]
				

			

			Figure 9.6: API token creation in HCP Terraform

			
					Click Generate token, copy the API token displayed on the screen (this API token is displayed only once in HCP Terraform), and paste it into the CLI prompt, as you can see in Figure 9.7 (as a security measure, the token will not be printed when you paste it in the CLI prompt).

			

			
				
					[image: Figure 9.7: HCP Terraform login via CLI waiting for API token]
				

			

			Figure 9.7: HCP Terraform login via CLI waiting for API token

			
					This token is stored in the $HOME/.terraform.d/credentials.tfrc.json file, which is used to authenticate against HCP Terraform for future runs.

					Once you have logged in successfully, you will see a message that says Welcome to HCP Terraform and a series of steps, as you can see in Figure 9.8:

			

			
				
					[image: Figure 9.8: Successful login to HCP Terraform via the CLI]
				

			

			Figure 9.8: Successful login to HCP Terraform via the CLI

			Remote Execution Mode Using the CLI-Driven Workflow

			In this exercise, you will learn how to run Terraform in remote execution mode in HCP Terraform using the CLI-driven workflow.

			Make sure all the prerequisites highlighted in the preceding section are completed before you go to the next steps.

			The code required for this exercise will be present locally on your system, but terraform plan/apply happens in HCP Terraform with the output being streamed to your local system.

			Follow these steps to complete this exercise:

			
					Clone the Git repository that contains the files required for this exercise. All the resources provisioned in this exercise use a fictitious cloud vendor called Fake Web Services that provisions fake VPC, servers, a load balancer, and a database. As these are not real resources that are provisioned in any cloud, you will not get charged for these resources. git clone https://github.com/hashicorp/tfc-getting-started.git

					Navigate to the tfc-getting-started folder: cd tfc-getting-started/

					Run the script by executing the setup.sh file: ./scripts/setup.sh

					When prompted to press any key, hit Enter (or any other key) to confirm the execution.

					Output like the following should be displayed on your screen too:~/tfc-getting-started : ./scripts/setup.sh
--
Getting Started with HCP Terraform
--
HCP Terraform offers secure, easy-to-use remote state management and allows
you to run Terraform remotely in a controlled environment. HCP Terraform runs
can be performed on demand or triggered automatically by various events.
This script will set up everything you need to get started. You'll be
applying some example infrastructure - for free - in less than a minute.
First, we'll do some setup and configure Terraform to use HCP Terraform.
Press any key to continue (ctrl-c to quit):
Creating an organization and workspace...
Writing HCP Terraform configuration to backend.tf...
===
Ready to go; the example configuration is set up to use HCP Terraform!
An example workspace named 'getting-started' was created for you.
You can view this workspace in the HCP Terraform UI here:
https://app.terraform.io/app/example-org-64362c/workspaces/getting-started
Next, we'll run 'terraform init' to initialize the backend and providers:
$ terraform init
Press any key to continue (ctrl-c to quit):

					This script will create an organization (example-org-******) and workspace named getting-started in the HCP Terraform console.

					It will try to run terraform init, terraform plan, and terraform apply -auto-approve in the next three steps. Each step will ask you to confirm the run by pressing any key to continue.

					By the end of the apply, Terraform will create five resources: one VPC, two servers, a load balancer, and a database. These are all fake resources created using the fakewebservices provider.

					Notice the execution mode set to Remote, as highlighted in Figure 9.9:

			

			
				
					[image: Figure 9.9: CLI-driven remote execution mode completion details]
				

			

			Figure 9.9: CLI-driven remote execution mode completion details

			
					Now that you have learned how to run Terraform in remote execution mode and in the CLI-driven workflow, you can destroy the resources by running the following command:terraform destroy –auto-approve

			

			Do not delete the Terraform code, organization, and workspace used for this exercise. They will be used in the next exercise, which deals with the local execution mode.

			Local Execution Mode Using the CLI-Driven Workflow

			In this exercise, you will learn how to run Terraform in local execution mode using the CLI-driven workflow. This exercise uses the same Terraform code, organization, and workspace as the preceding exercise, Remote Execution Mode Using the CLI-Driven Workflow. Hence, the preceding exercise needs to be completed before you start this exercise.

			When you select local execution mode, terraform plan/apply runs on your local system and the state file is stored in HCP Terraform.

			You will not be able to check the details of the runs on HCP Terraform, but you can see the new state file being created on HCP Terraform after every local terraform apply.

			 Follow these steps to complete this exercise:

			
					If you have already logged in to HCP Terraform, you may continue with this exercise. If not, log in to the HCP Terraform web interface via the browser.

					Select the organization (example: org-******) and workspace (getting-started) that were provisioned in the preceding exercise, Remote Execution Mode Using the CLI-Driven Workflow.

					Navigate to the settings of the workspace (make sure you go to workspace settings and not the organization settings, which impacts all workspaces).

					In the General workspace settings, you should find an option to change Execution Mode.

					You should see Organization Default mode selected. Change this to Local (custom) execution mode as highlighted in Figure 9.10.[image: Figure 9.10: CLI-driven local execution mode configuration]

			

			Figure 9.10: CLI-driven local execution mode configuration

			
					Save the settings.

					In the Remote Execution Mode Using the CLI-Driven Workflow exercise, you used the tfc-getting-started folder on the CLI. This folder has the following configuration files:	backend.tf: Defines the HCP Terraform organization and workspace where these Terraform runs should happen
	provider.tf: Has a provider_token variable and the fakewebservices provider required for our example
	main.tf: Has a resource block to create the fake VPC, servers, load balancer, and database

					In the main.tf file, change cidr_block to 10.0.0.0/8 in the fakewebservices_vpc resource and count to 10 in the fakewebservices_server resource, as shown in Figure 9.11. Do not forget to save this setting.

			

			
				
					[image: Figure 9.11: CLI-driven local execution mode changes]
				

			

			Figure 9.11: CLI-driven local execution mode changes

			
					Run terraform plan to verify that the modifications appear:terraform plan

					You will be prompted to enter a value for var.provider_token. This is the same token that was generated in the prerequisite section and stored in the credentials.tfrc.json file. You can either copy the content of this file and pass it as input when prompted, or you can pass it as an environmental variable, TF_VAR_provider_token.

					You should see that Terraform is trying to add eight resources and modify two resources, as shown in Figure 9.12. The eight servers are added to the load balancer and hence modify that resource too. You also changed cidr_range of the VPC, which is another modification.

			

			
				
					[image: Figure 9.12: terraform plan output for local execution mode]
				

			

			Figure 9.12: terraform plan output for local execution mode

			
					Run terraform apply, which creates/modifies the resources as per the code change:terraform apply

					Log in to the HCP Terraform console and navigate to the overview of the workspace on which you are working. You should see that the number of resources has changed from 5 to 13 (10 servers, 1 VPC, 1 load balancer, 1 database), but the timestamp of the run is not updated, as shown in Figure 9.13. This is because runs from local execution mode are not shown in the console. Unlike remote execution mode, local mode does not have the Runs option in the workspace that shows all previous terraform runs.

			

			
				
					[image: Figure 9.13: CLI-driven local execution mode completion details]
				

			

			Figure 9.13: CLI-driven local execution mode completion details

			
					Notice the execution mode is set to Local.Now that you have learned how to run Terraform in local execution mode using the CLI-driven workflow, you can destroy the resources by running the following command. Enter the API token when prompted. It will delete all 13 resources:
terraform destroy –auto-approve

			

			Remote Execution Mode Using the VCS/UI Workflow

			In this exercise, you will learn how to integrate a VCS with HCP Terraform. You will see how a change committed to the VCS repository will trigger an automatic terraform plan/apply in HCP Terraform.

			In the VCS/UI workflow, there is only the remote execution mode, and every workspace on HCP Terraform is associated with a repository. If you do not associate your workspace with a specific branch of the repository, it gets associated with a main branch.

			HCP Terraform registers webhooks with the VCS provider. Whenever there is a change to the particular branch of the repository that a workspace is associated with, it automatically queues a Terraform run.

			A workspace on HCP Terraform is linked only to one branch of the repository, and any changes to the other branches do not trigger Terraform runs.

			Note

			You must trigger the first run of the workspace manually, after which you can trigger the following runs via the VCS webhook. You will use the Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition repository in this exercise to learn about the VCS workflow in HCP Terraform.

			For the VCS/UI workflow exercise, you will have to complete four tasks:

			
					Create a public repository in GitHub and populate it with the required Terraform configuration files.

					Integrate this repository with HCP Terraform.

					Test the VCS/UI workflow by committing a change to the repository to test the Terraform runs getting triggered in HCP Terraform.

					Cost estimation for the runs.

			

			The steps required for each of the tasks are explained under the respective headings.

			Creating a Public GitHub Repository and Adding Configuration Files

			Follow these steps to complete this task:

			
					You need to create the VCS repository with the required Terraform configuration files:	Log in to your GitHub account.
	Create a new repository. Since this is for learning, you can create a public repository, as shown in Figure 9.14. In this exercise, it is named terraform-vcs-workflow.
	It is recommended to select .gitignore for Terraform, a README, and a license.

			

			
				
					[image: Figure 9.14: Creating a public repository in GitHub]
				

			

			Figure 9.14: Creating a public repository in GitHub

			
					Click on the newly created repository and copy the link (as shown in Figure 9.15) required to clone this repository to a local machine under the home directory.git clone https://github.com/GIT_USERNAME/terraform-vcs-workflow.git ~/terraform-vcs-workflow
Replace GIT_USERNAME with your Git username.

			

			
				
					[image: Figure 9.15: Copying the HTTPS link from the GitHub repository]
				

			

			Figure 9.15: Copying the HTTPS link from the GitHub repository

			
					In the folder where you have cloned the repo, update the remote endpoint URL (as before, replace GIT_USERNAME with your Git username):cd ~/terraform-vcs-workflow
git remote set-url origin https://github.com/GIT_USERNAME/terraform-vcs-workflow.git

					Copy the configuration files of the remote-child-module-example folder used in Chapter 5, Terraform Modules, to the terraform-vcs-workflow folder.

					Clone the Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition repository on your local machine in the home directory:git clone https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition.git ~/terraform-book

					Copy the files to the terraform-vcs-workflow folder:cp ~/terraform-book/ch5/terraform-modules/remote-child-module-example/* ~/terraform-vcs-workflow

					In the providers.tf file, you will notice the terraform block declaring only an AWS provider and no configuration for HCP Terraform. When using the VCS-driven workflow for HCP Terraform, you do not need to define the cloud block in your configuration.

					Git is tracking the changes in the terraform-vcs-workflow folder. Since the new files are copied to this folder, you can add these changes to the Git staging area by running the following command:cd ~/terraform-vcs-workflow && git add .

					Commit the change.cd ~/terraform-vcs-workflow && git commit -m "first set of files to test VCS workflow"

					Push the changes to the repository created in GitHub:git push

					If you encounter any errors during the code push to the repository, make sure you are correctly authenticated against GitHub using the personal access token. The following URL can help you solve this problem:https://packt.link/xpAav

			

			You have completed the creation of the public GitHub repository and have populated the required configuration files within the repository, as shown in Figure 9.16. In the next section, you will integrate this repository with HCP Terraform.

			
				
					[image: Figure 9.16: Exercise files populated in the GitHub repository]
				

			

			Figure 9.16: Exercise files populated in the GitHub repository

			Integrating the VCS Repository with HCP Terraform

			Follow these steps to integrate the public repository you created earlier with HCP Terraform:

			
					If you have already logged in to HCP Terraform (via the browser), you can continue. You need to log in before proceeding to the next steps.

					Create a new organization on HCP Terraform by clicking on the Create new organization option in the bottom-left corner of the HCP Terraform console, as shown in Figure 9.17. In this exercise, the organization is named packt-learn-terraform.

			

			
				
					[image: Figure 9.17: Creating a new organization in HCP Terraform]
				

			

			Figure 9.17: Creating a new organization in HCP Terraform

			
					Once you have selected the organization and clicked Create a Workspace, you will see three options. Select Version Control Workflow as shown in Figure 9.18.

			

			
				
					[image: Figure 9.18: Creating a new workspace with Version Control Workflow]
				

			

			Figure 9.18: Creating a new workspace with Version Control Workflow

			
					Select GitHub for the version control provider and select the GitHub.com version from the dropdown on the screen, as shown in Figure 9.19. A new window will open, asking you to authorize HCP Terraform to verify and use your GitHub account.[image: Figure 9.19: Choosing the version control provider]

			

			Figure 9.19: Choosing the version control provider

			
					If you have multiple GitHub accounts, you will have to select the one you want to use and click the green Authorize Terraform Cloud button to authorize the connection, as shown in Figure 9.20.

			

			
				
					[image: Figure 9.20: Authorization window in GitHub]
				

			

			Figure 9.20: Authorization window in GitHub

			Note

			In Figure 9.20 and Figure 9.21, you can see Terraform Cloud instead of HCP Terraform. HashiCorp is yet to make this name change in these two workflows. Once that update is done, you will see HCP Terraform on those two screens instead of Terraform Cloud.

			
					You will be asked to install Terraform Cloud/HCP Terraform for your GitHub account, as shown in Figure 9.21. When prompted, select the organization where you want to install this app. You may select all the repositories on the next screen to make sure the app installation covers all repositories. You can later select a specific repository that needs to be integrated with the workspace.

			

			
				
					[image: Figure 9.21: Install Terraform Cloud/HCP Terraform in GitHub]
				

			

			Figure 9.21: Install Terraform Cloud/HCP Terraform in GitHub

			
					Once successfully installed, it displays all the repositories in the account. Choose the repository you want, and the name of the workspace is auto-filled with the same name as the repository.

					Click on Create to create a workspace that is integrated with a VCS repository. Once it has been created, you should see the screen shown in Figure 9.22:

			

			
				
					[image: Figure 9.22: Successful creation of a workspace]
				

			

			Figure 9.22: Successful creation of a workspace

			This completes the second task of integrating the VCS repository with HCP Terraform.

			Testing the VCS/UI Workflow in HCP Terraform

			In this final task of the VCS/UI workflow, you will test the end-to-end flow by committing a change to the repository and verify whether it triggers terraform plan/apply in HCP Terraform.

			Now you are ready to trigger your first run manually, which can be done by clicking Start new plan within the user interface of HCP Terraform.

			This first run will fail because the AWS credentials are not configured yet.

			The following steps will help you with the final task of making the change to the public repository and triggering terraform plan in HCP Terraform. The resources that get provisioned in this task will be in the AWS cloud environment and will cost you money. If you finish this exercise within an hour and delete the resources, the cost should be less than $1.

			
					You need to provision an IAM user, assign the required policy, and generate an access key and secret key. For detailed instructions on how to create an IAM user, refer to the following AWS documentation:https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

					Go to the Overview option of the newly created workspace and you will see a Configure variable option. Alternatively, you can directly go to the Variables option under the workspace.

					Click on Add variable and select Environment variable from the variable category.

					You need to add two variables: AWS access key (AWS_ACCESS_KEY_ID) and AWS secret access key (AWS_SECRET_ACCESS_KEY). While adding the secret access key, select the Sensitive checkbox as per best practice. Once the variables are added, you should see entries similar to those shown in Figure 9.23.

			

			Note

			Workspaces support two types of variables: Environment variables and Terraform variables. Environment variables are available in the Terraform runtime environment.

			
					Terraform variables are defined in the configuration file, mostly in variables.tf. In Terraform CLI, you normally pass the value for these variables via the .tfvars file. In HCP Terraform, you pass the value for the variable via the Terraform variable.[image: Figure 9.23: Adding AWS credentials as variables]

			

			Figure 9.23: Adding AWS credentials as variables

			
					Now you have the VCS repository with the required Terraform configuration files, integrated the repository with the HCP Terraform workspace, and configured the AWS credentials to authenticate to AWS for resource provisioning. You can now trigger the Run manually to verify whether everything works as planned.

					You should see terraform plan running successfully, as shown in Figure 9.24. Toward the end of the plan, there is a prompt asking you to either confirm terraform apply or discard run.

			

			
				
					[image: Figure 9.24: terraform plan output for VCS trigger]
				

			

			Figure 9.24: terraform plan output for VCS trigger

			
					Once you click Confirm and apply, add a comment, and click Confirm plan, as shown in Figure 9.25, the resources will get provisioned.

			

			
				
					[image: Figure 9.25: Confirm the Terraform plan to apply]
				

			

			Figure 9.25: Confirm the Terraform plan to apply

			
					The code has created VPC, subnets, a route table, EC2, and a few other things, as shown in Figure 9.26:

			

			
				
					[image: Figure 9.26: Creation of resources after a manual run]
				

			

			Figure 9.26: Creation of resources after a manual run

			
					You can now make changes to the code locally and push it to the GitHub repository. This should automatically trigger terraform run in HCP Terraform.

					Change the keypair name from root-module-kp to vcs-test-kp in the main.tf file, as shown in Figure 9.27:

			

			
				
					[image: Figure 9.27: Changing the keypair name]
				

			

			Figure 9.27: Changing the keypair name

			
					Now add the changed file to Git:git add .

					Commit the change:git commit -m "changed the name of keypair"

					Push the changes to the repository created in GitHub:git push

					Since the keypair cannot be renamed, it will have to be deleted and recreated. The EC2 instance that uses the keypair will also have to be deleted and recreated. The plan that was triggered automatically should confirm these changes.

					As soon as the latest code is pushed to the GitHub repository, HCP Terraform picks up the change and runs terraform plan. It will present the changes as shown in Figure 9.28.

					Go ahead and hit Confirm & apply, add a comment, and hit Confirm plan. You will see the resources getting provisioned.

			

			
				
					[image: Figure 9.28: terraform plan output for the keypair change in the VCS repository]
				

			

			Figure 9.28: terraform plan output for the keypair change in the VCS repository

			You can see that the change committed to the VCS repository has triggered the run in HCP Terraform and provisioned the resources once you approved the change.

			This completes the VCS repository integration with HCP Terraform task.

			Note

			HCP Terraform now supports dynamic provider credentials to authenticate to AWS. This is a recommended way of authenticating against AWS for all production requirements.

			Cost Estimation Feature

			The last task in this exercise is to enable the Cost Estimation feature in the organization setting. This will give us a cost estimate for each run to indicate how much will it cost us to provision and run the infrastructure proposed by terraform run.

			One of the important questions you’ll get from your managers is about cost. This feature helps you to get a quick number that can be used for your discussions.

			You will have to navigate to Organization settings and look for the Cost Estimation option. Click on the Enable Cost Estimation for all workspaces checkbox, as shown in Figure 9.29:

			
				
					[image: Figure 9.29: Enabling the Cost Estimation feature at the organization level]
				

			

			Figure 9.29: Enabling the Cost Estimation feature at the organization level

			To verify that this change is working, we will make a few changes in the configuration file.

			Modify the EC2 instance type from t3.micro to t3.small in the main.tf file and push the changes to the repo. Follow the same steps that changed the keypair name in the preceding exercise on the VCS/UI workflow.

			This should trigger a run, and this time you should see the estimated cost for this infrastructure provisioning, as shown in Figure 9.30.

			Please note that the price can vary a bit depending on the pricing changes made by AWS and the region used by you.

			
				
					[image: Figure 9.30: terraform plan showing the estimated cost]
				

			

			Figure 9.30: terraform plan showing the estimated cost

			This completes the task of enabling and testing the Cost estimation feature in the VCS workflow.

			Before you move on to the next section, please delete all the resources you have created, along with the workspace and organization in HCP Terraform. Though Terraform resources such as the workspace and organization will not cost you, AWS resources will be charged until they are deleted.

			Migrating to HCP Terraform or Terraform Enterprise

			If you are using Terraform Community Edition to manage your resources, you can migrate to HCP Terraform or Terraform Enterprise and continue to manage your resources.

			The following steps need to be followed to complete the migration:

			
					Make a list mapping the Terraform CLI directory with the HCP Terraform workspace.

					Stop all Terraform operations to prevent any interaction with the state files during the migration.

					Now you need to let Terraform know that HCP Terraform will be used going forward to manage the infrastructure. You do this by adding the cloud block within the terraform block of your configuration file. The cloud block has mandatory arguments, such as organization and workspaces, and optional arguments, such as hostname, project, and name. For a single workspace, the following cloud block needs to be added (make sure you change the organization and workspace name to the one you have in your HCP Terraform account):terraform {
 cloud {
 organization = "packt-terraform"
 workspaces {
 name = "networking"
 }
 }
}

					This should migrate the state file into HCP Terraform or to Terraform Enterprise, depending on which one you have used.

			

			Note

			Speculative Plans: These are plan-only runs, that is, these runs can never be applied but will only show the changes that your infrastructure will undergo due to the latest change in the configuration code. In the VCS-integrated workspace, any pull request to the repository will trigger a speculative plan, whereas in the CLI-integrated workspace, the terraform plan command will trigger the speculative plan.

			Terraform Enterprise Features

			If your company has a security mandate to have in-house deployment of the tools used to manage your infrastructure, Terraform Enterprise is the only edition to use.

			Terraform Enterprise is the self-hosted distribution of HCP Terraform.

			In terms of the features, Terraform Enterprise builds on the feature set of HCP Terraform. We will focus only on the unique additional features that are provided by Terraform Enterprise.

			The following features are exclusive to Terraform Enterprise:

			
					Cross-organization registry sharing.

					Both HCP Terraform and Terraform Enterprise support the creation of multiple organizations and using the private registry within them. However, only Terraform Enterprise supports sharing the modules/providers in the private registry with other organizations in the same Terraform Enterprise instance.

					Runtime metrics (Prometheus) and application-level logging.

					Metrics and logs are very important from an observability perspective, as you will need to understand the state of the application and its performance.

					As Terraform Enterprise is a self-hosted application, you will need to monitor the runtime metrics and also keep an eye on the application logs.

					Runtime metrics need to be explicitly enabled as they are disabled by default. You can use Grafana with Prometheus to visualize these exported metrics.

					The application logs are sent directly to standard output and standard error.

					Air gap network deployment.

					If your company has a restricted network environment so that the tools deployed in your network cannot access the internet, you will have to go with Terraform Enterprise.

					Log forwarding.

					It is a common practice in enterprises to aggregate logs in a single location and pass them through security tools for observability, retain them for compliance, and use them for troubleshooting when needed.

					Terraform Enterprise supports forwarding logs to central locations, which could be external destinations such as Syslog server or paid offerings such as Datadog or Splunk. It also supports sending logs to cloud offerings such as AWS S3 and Cloudwatch (only when Terraform Enterprise is running within AWS), GCP Cloud Logging, or Azure Blob storage.

					Support for ServiceNow integration (only the HCP Terraform Plus edition supports this other than Terraform Enterprise).

					Many enterprises use ServiceNow for their workflow automation and prefer using a single tool while working with other applications too. Terraform Enterprise can integrate with ServiceNow, which will help users provision a self-serve infrastructure directly from ServiceNow.

					After the successful integration, end users will be able to use ServiceNow to create workspaces and perform Terraform runs.

					Terraform Enterprise provides an API to back up and restore all its application data.

			

			Terraform Enterprise supports more flexible deployment options, such as Docker Engine (using Compose) and Kubernetes (using Helm).

			Note

			For a full feature comparison between Terraform Community Edition, HCP Terraform, and Terraform Enterprise, visit the following URL and navigate to the features section:

			https://www.hashicorp.com/products/terraform/pricing

			Summary

			In this chapter, you have learned about the various Terraform editions at your disposal after you decide to go with Terraform for infrastructure management. By now, you should have a good understanding of the shortcomings of Terraform Community Edition, when to move to HCP Terraform/Enterprise, and the additional features of these editions. You also learned how to sign up for HCP Terraform and looked at a few exercises that helped you understand how the workflows work and what the local and remote execution modes are.

			Policy as code is one of the key features that is used to enforce certain policies around costing, best practices, and compliance. You learned how this can be implemented using Sentinel. Toward the end of the chapter, you looked at the unique features of Terraform Enterprise.

			In the next chapter, you will look at some miscellaneous topics that have not been covered so far.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch9.Alternatively, you can scan the following QR code (Figure 9.31):

			

			
				
					[image: Figure 9.31 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 9.31 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 9.32:

			

			
				
					[image: Figure 9.32 – Chapter Review Questions for Chapter 9]
				

			

			Figure 9.32 – Chapter Review Questions for Chapter 9

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 9.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			10

			Miscellaneous Topics

			A big congratulations to you for maintaining sheer focus and dedication to your Terraform certification journey – and yes, you have reached the final chapter of this book.

			As you will have noticed, the core aspects of the Terraform configuration language were covered initially. This was then followed by learnings on enterprise offerings such as Terraform Cloud and Terraform Enterprise that elevate the overall development experience for software developers. They also enable you to manage production infrastructure seamlessly with minimal overhead.

			In this chapter, some topics relevant to the certification exam that could not be covered so far will be discussed. The individual topics are not very extensive, but they add value in special scenarios if the use case demands it.

			The topics that will be covered in this chapter are the following:

			
					Input validations

					Preconditions and postconditions

					The check {} block

					Workspaces

					The dynamic {} block

					Provisioners

					Handling sensitive data

			

			Technical Requirements

			There are sample configuration files with the examples used in the chapter and you can find them at the following link:

			https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch10

			To use the files, the following tools are expected to be available on your workstation:

			
					An AWS account ID with administrator access credentials

					The AWS CLI (version 2.x.x)

					The Terraform CLI (version 1.5.x or later)

					Visual Studio Code or any text editor

			

			Input Validations

			In real-world scenarios, it is very common to get the necessary inputs from the user and provision the infrastructure accordingly. For example, you can assume that you are part of a central DevOps team that is involved in setting up the CICD pipelines for any team requiring your service. In this case, they might need to provide basic inputs such as application name/ID, cloud-specific details such as region, and so on.

			If the infrastructure provisioning is automated from your end, such that the workflow will trigger directly when the user provides the input via a ticket, it becomes necessary to run the workflow for valid inputs only. Manual errors in inputs would also need to be filtered as early as possible.

			This is where input validations will help, and in Terraform, this can be achieved by adding the validation {} block with the condition argument specifying the rules in the form of expressions. If the result of the expression is TRUE, the input will be considered valid, and if it’s FALSE, Terraform will return an error message.

			This is primarily used with variable declarations. Take a look at the following code snippet:

			variable "app_id" {

			 type = string

			 description = "The application id for ECR repo creation."

			 validation {

			 condition = length(var.app_id) == 9 && substr(var.app_id, 0, 4) == "app-"

			 error_message = "The app_id value must include the prefix \"app-\" and should be 9 characters long."

			 }

			}

			Here, the app_id variable is to get the user input for the application ID and that will be used to create the Elastic Container Registry (ECR) repository for the application to host Docker images. ECR is a managed service from the AWS cloud provider for customers to host their container images in public or private repositories.

			If the input does not match the criteria of a length of nine characters or is missing the app-, prefix, Terraform will return a coded error message like the one shown in Figure 10.1. This is directly related to the resource lifecycle and terraform applies will go through only if the specified condition is TRUE. You will further look into other functionalities and how they behave:

			
				
					[image: Figure 10.1 – Error message returned by Terraform]
				

			

			Figure 10.1 – Error message returned by Terraform

			The complete code is available at the GitHub link provided previously – feel free to try it out with your AWS account.

			Preconditions and Postconditions

			Input validation stops resource creation in the case of invalid inputs if you run the configuration script, which means the validation takes place before the terraform apply operation.

			But if you want a similar condition(s) to be applied to resources, data sources, or outputs and the evaluation has to be done before and after, based on the scenario, Terraform has precondition and postcondition to explore.

			For resources and data sources, the precondition and postcondition checks need to be added under the lifecycle {} block. The outputs can contain a precondition check only without the lifecycle {} block. The precondition and postcondition check will contain the condition and the error message parameters, such as the one you saw with the input validation.

			Look at the following code snippet:

			data "aws_ecr_repository" "repo_data" {

			 name = aws_ecr_repository.app_repo.name

			 lifecycle {

			 precondition {

			 condition = aws_ecr_repository.app_repo.image_tag_mutability == "IMMUTABLE"

			 error_message = "The only value allowed is \"IMMUTABLE\"."

			 }

			 postcondition {

			 condition = substr(self.name, 10, 4) == "repo"

			 error_message = "Resource suffix \"repo\" missing for the ECR repo"

			 }

			 }

			}

			The data {} block here has one precondition and one postcondition specified. precondition will validate whether the image_tag_mutablity argument is set to IMMUTABLE to allow the resource creation. If not, Terraform will return an error message.

			postcondition will check whether the repo to be created has the right repo suffix appended at the end. If not, the resource creation will be blocked again, and the error message will be returned. This behavior is the same when applied with resource {} blocks as well.

			If you look closely, the self keyword is used to refer to the name attribute within the same data resource block and the validation will come into effect when you issue the terraform plan and terraform apply commands.

			In the case of outputs, only precondition is applicable, and that will be validated before the value parameter. Specifying the precondition with the outputs will help save the right output value in the output, and if there are any problems with the latest changes, it will preserve the previous output value with this type of check.

			The check {} block

			Unlike the input variable validations and the custom preconditions/postconditions, check {} blocks are not tied to the resource lifecycle directly. check {} blocks are used to validate the checks for the overall configuration after the plan/apply operations.

			check {} blocks can help perform the functional validation of the provisioned infrastructure after apply – check {} blocks have assert {} block inside them, which, in turn, contain the condition and error_message arguments.

			Another major difference is that check {} blocks will allow the terraform plan/apply operation to go through in the case of validation failures. The error message will be written at the end if the defined condition seems to be invalid. This can also be used with data sources.

			To understand this block better, we will define an AWS Simple Storage Service (S3) bucket and check the force_destroy parameter in the check {} block:

			resource "aws_s3_bucket" "app_bucket" {

			# force_destroy = true

			}

			check "destroy_check" {

			 assert {

			 condition = aws_s3_bucket.app_bucket.force_destroy == true

			 error_message = "The S3 bucket created with the force_destroy parameter as false"

			 }

			}

			During the planning stage, the force_destroy parameter value that is going to be set is known, and hence, Terraform will throw the error message shown in Figure 10.2.

			
				
					[image: Figure 10.2 – Error message from the check {} block]
				

			

			Figure 10.2 – Error message from the check {} block

			If you proceed with apply, the S3 bucket will still be created, and the error message will also be returned, as shown in Figure 10.3.

			
				
					[image: Figure 10.3 – Output from terraform apply]
				

			

			Figure 10.3 – Output from terraform apply

			Workspaces

			This section is relevant to Terraform CLI workspaces and is different from the Terraform Cloud workspaces covered in the previous chapter.

			As you are aware, Terraform configuration files can be configured to use a particular backend to persist the state file data. This has more advantages over the default local backend in terms of backup and recovery, shared access within teams, security, and so on.

			When you work with the default settings, the configuration stores the state file that belongs to the default workspace. If there is a need to manage and work with multiple workspaces for the same configuration, there is a list of compatible backends that support that.

			Have a look at a scenario and proceed with a sample exercise to know more:

			The accounting team of the ABC company is planning to go ahead and use Terraform for their infrastructure provisioning. They will be deploying resources with the same AWS account to support multiple lower environments. AWS S3 is the backend they will be configuring for their scripts.

			This approach will help with better management. This will also remove the need to deal with multiple AWS accounts. In this case, the configuration scripts that will be used are the same for all environments, and the resources created must be unique to avoid conflicts.

			Instead of creating copies of the configuration for each environment with hardcoded values, you can parameterize the configuration so the resource names are decided dynamically and you can work with a single set.

			This is where Terraform workspaces can help; for the above scenario, the S3 backend can be configured to use different workspaces for each environment, and all state files will be created and managed within the same S3 bucket.

			The main.tf file for the sample exercise is given here:

			provider "aws" {

			 region = "us-east-1"

			}

			locals {

			 queue_prefix = "${terraform.workspace}"

			}

			resource «aws_sqs_queue» «main_queue» {

			 name = "${local.queue_prefix}-accounting-stmt-queue"

			 redrive_policy = jsonencode({

			 deadLetterTargetArn = aws_sqs_queue.dlq_queue.arn

			 maxReceiveCount = 4

			 })

			}

			resource "aws_sqs_queue" "dlq_queue" {

			 name = "${local.queue_prefix}-accounting-stmt-dlq"

			}

			resource "aws_sqs_queue_redrive_allow_policy" "queue_redrive_policy" {

			 queue_url = aws_sqs_queue.dlq_queue.id

			 redrive_allow_policy = jsonencode({

			 redrivePermission = "byQueue",

			 sourceQueueArns = [aws_sqs_queue.main_queue.arn]

			 })

			}

			Here are some things to note:

			
					The local queue_prefix variable will be set based on the current workspace name in the context, and it will decide the final name of the SQS resources to be created.

					The script will create an SQS queue and its respective dead letter queue with a redrive policy. SQS is a fully managed queueing service from AWS to be used in event-driven architectures where different microservices can interact with the queue messages to be processed in an asynchronous fashion. The redrive policy will ensure the unprocessed messages in the dead letter queue will be moved to the standard queue for processing.

			

			More information can be found at the following links:

			
					https://docs.aws.amazon.com/sqs

					https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html

			

			
					The default local backend is used as there is no backend {} block configured.

					On applying this configuration with the default settings, the SQS resources that will be created are as follows:	default-accounting-stmt-dlq
	default-accounting-stmt-queue

			

			The terraform.tfstate file is stored in the default root directory location as expected. If you want to, use the same script to create the same set of resources for the dev environment with the dev prefix.

			As a first step, you can go ahead and create the dev workspace with the following command:

			$ terraform workspace new dev

			Then, the context will be automatically switched to the new dev workspace (marked with the asterisk (*) symbol), which can be validated with the terraform workspace list command, as shown in Figure 10.4.

			$ terraform workspace list

			
				
					[image: Figure 10.4 – terraform workspace list command output]
				

			

			Figure 10.4 – terraform workspace list command output

			Now, rerun the plan and apply commands and see the results:

			
					You will notice that a new terraform.tfstate.d folder has been created in the root directory and it has one subfolder, dev, which has a new state file created.

					The state file will have the following resources defined and is different from the ones created with the default workspace:	dev-accounting-stmt-dlq
	dev-accounting-stmt-queue

			

			You can use the same steps to create multiple workspaces with the same configuration without having to manage multiple backends. To destroy the resources created in the respective workspace(s), please use the terraform workspace select <WORKSPACE_NAME> command, followed by the destroy command.

			You can also refer to the commands.txt file in the GitHub repository for this chapter, which lists the different commands used with these examples.

			The list of supported backends for multiple workspaces is given here:

			
					Azure Resource Manager (RM): Blob storage supported by Microsoft

					Consul: Backend to store the state as Key/Value (KV) in the given path

					COS: Tencent Cloud object storage

					GCS: Google’s object storage service

					Kubernetes: Open-source container orchestration platform

					Local: Default backend supported by Terraform

					OSS: Bucket storage option from Alibaba Cloud

					Postgres: Popular relational database

					Remote: Generic remote backend to configure different backends

					S3: AWS object storage platform

			

			The dynamic {} block

			The dynamic {} block is a special type of block that can be used to generate nested blocks instead of a value. This is different from the for_each expression, which dynamically sets the expression value based on the input complex type.

			The dynamic {} block creates a nested block for special resources, data sources, providers, or provisioner blocks that might accept repeatable nested blocks. A very good example of possible usage is DynamoDB table creation using Terraform.

			AWS DynamoDB is a non-relational NoSQL database service; it can accept multiple attribute blocks, and these blocks can be automatically constructed using the dynamic {} block if the values can be passed from a complex type variable.

			The following configuration snippet uses the dynamic block to define a DynamoDB table with the AccountId and AccountName attributes:

			resource "aws_dynamodb_table" "account-table" {

			 name = "Accounttable"

			 billing_mode = "PROVISIONED"

			 read_capacity = 2

			 write_capacity = 2

			 hash_key = "AccountId"

			 range_key = "AccountName"

			 dynamic "attribute" {

			 for_each = var.dynamodb_attributes

			 content {

			 name = attribute.value["name"]

			 type = attribute.value["type"]

			 }

			 }

			 tags = {

			 Description = "Account Table"

			 CreatedBy = "dynamic block"

			 }

			}

			You might have a question now – how does this actually work?

			
					You have a dynamodb_attributes variable with the list(object) type, with each occurrence having the name and type keys.

					The variable will have a couple of values, AccountID and AccountName, that will be set as attributes using the attribute block.

					The dynamic block generates this type by looping over the variable values using the for_each expression and ensures that different attribute blocks are generated before creating the resource.

					The content {} block will actually set the content for the attribute block with the input values passed.

			

			This is helpful in this particular case, but this should not be applied wherever possible, because that could make the configuration complex and difficult to understand. The dynamic blocks can also be used within other dynamic blocks if needed to create multiple-level nested blocks.

			One limitation with the dynamic {} block is that it can generate nested blocks supported by the resource type but cannot be used for generating meta-argument blocks for lifecycle and provisioner blocks.

			Provisioners

			Terraform supports the concept of provisioners, which can be used to perform some actions on a local machine executing Terraform or a remote machine provisioned using Terraform that works in sync with other real-world objects.

			Local and remote provisioners should be considered as the last option to use in Terraform because it has no control over the actions performed by provisioners and it can depend on multiple things in the local/remote machine. If there are alternatives available from providers to avoid the use of provisioners, they should be considered first as per the Terraform documentation.

			Think of a scenario where a team of developers is working on the same set of configuration scripts with local provisioners and there are dependencies on the scripts for a few resources. The local provisioner will mostly work with the software installed on the local machine, and it can have different versions on different machines. Hence, the behavior of the local provisioner will vary and there are chances of dependent resources being impacted.

			There are a few situations where provisioners are still used:

			
					Passing data to virtual machines using user_data, metadata, or custom_data blocks, based on the cloud provider

					Provisioning files using the cloudinit_config data source

					Running configuration management software

			

			The file provisioner

			The file provisioner is mainly used to copy files to newly created resources in Terraform or create new files. It supports ssh and winrm connection modes.

			The same resource can contain multiple file provisioner blocks if needed, and the parameters supported are as follows:

			
					source: The source file or directory

					content: The actual content to be copied to the file in the new resource

					destination: The destination file or directory

			

			The source and content parameters cannot be used at the same time.

			A sample file provisioner is given here for reference, and for this example to work, the configs folder should be available in the current working directory and SSH access should be enabled on the EC2 machine to be accessible from the local machine running the script:

			resource "aws_instance" "web" {

			 # Copies the configs folder to /etc/configs

			 provisioner « file » {

			 source = « ./configs «

			 destination = « /etc/configs »

			 }

			}

			The local-exec provisioner

			The local-exec provisioner is used to run commands after the resource is created and it runs on the host machine running Terraform.

			The following are the parameters supported for the local-exec provisioner:

			
					command: The command to be executed.

					working_dir: The working directory for the command to run; if not provided, defaults to the current working directory.

					interpreter: The interpreter arguments to pass for the command – examples are [sh, -c] and [/bin/bash, -c].

					environment: The name of the environment in key-value pairs for the command.

					when: To specify when to execute the command and the valid values are when = destroy. This will run when the resource is destroyed.

					quiet: When set to true, the command will not be printed in the output terminal. But still, the output of the command will be displayed.

			

			Here is a sample configuration:

			In this example, the aws configure list command is executed on the local machine to check the current configuration set for the AWS CLI. For this example to work, the AWS CLI tool should be available on the local machine and a valid configuration profile should exist:

			resource "aws_instance" "web" {

			 # ...

			 provisioner "local-exec" {

			 command = «aws configure list»

			 environment = {

			 env = "prod"

			 region = "us-east-1"

			 }

			 when = destroy

			 }

			}

			The remote-exec provisioner

			The remote-exec provisioner is used to execute the command on the new resource created remotely. This provisioner requires the connection block and it supports both ssh and winrm connection types.

			The following parameters are supported when using this provisioner:

			
					inline: The list of commands to execute on the remote machine using the default shell available on the machine. If the default shell needs to be overridden, the first command in the list should be set to the required shell program.

					script: The relative or absolute path of the script available locally to be copied and then executed. This cannot be used if the inline or scripts option is specified.

					scripts: The relative or absolute path of the scripts available locally to be copied and then executed. This cannot be used if the inline or script option is specified.

			

			When using the script or scripts option, arguments are not allowed to be passed. In that case, the file provisioner can be used and then the inline option can be used to pass the arguments for the command.

			As mentioned already, provisioners are not the preferred option for use if providers support an alternative way of executing any commands/scripts when the resource is created.

			Here’s a sample configuration:

			resource "aws_instance" "web" {

			 connection {

			 type = "ssh"

			 user = "testuser"

			 password = base64decode(var.password)

			 host = self.public_ip

			 }

			 provisioner "remote-exec" {

			 inline = [

			 "/bin/bash -c echo ${aws_instance.web.id}"

]

			 }

			}

			Handling Sensitive Data

			When you deal with creating and managing cloud resources using Terraform, there could be situations where you will be working with sensitive data such as admin credentials, database user passwords, vault keys, and so on. So, it is very important that you secure the sensitive data, so it is not exposed to the outside world.

			The sensitive data is stored in the state file as well, since it must record all the relevant attributes of the provisioned resources to track whether there are any changes made subsequently. So, the state file with the sensitive data is important, and you need a proper strategy to decide where it was stored and accessed.

			However, a couple of considerations must be made:

			
					When the state file is stored with the default local backend, the data is stored in plain text format.

					When the state file is stored in a remote backend such as S3, it can be configured to enable encryption at rest so the data will be decrypted and used only when Terraform uses it. Also, bucket policies can be additionally added to enable only specific users to have access to the state file.

			

			The following section looks at the different aspects of handling sensitive data within the Terraform workflow and how to secure them.

			AWS Access Keys or Admin Credentials

			In AWS, the most common way of provisioning resources is by using admin credentials in the background. There are special cases where the AWS CLI is also expected to be configured already on the host machine running Terraform.

			There are multiple ways to set up admin credentials:

			
					provider {} block configuration values

					Environment variables

					Shared credentials/configuration file

					Container credentials

					Instance profile credentials

			

			But the preferred way is to use the environment variables option so that it does not get recorded in the state file as it is and does not use hardcoded credentials.

			Variables

			Terraform variables are also expected to contain sensitive information sometimes, to be passed for configuration, such as database initial credentials such as usernames and passwords.

			In this case, the sensitive attribute of the variable has to be set to true, so it is not exposed directly in the console during the plan and apply operations.

			But remember that the variable value will be stored in plain text fashion in the state file. When setting variable values, the environment variables option is preferred with the TF_VAR_<variable_name> convention.

			You can use the .tfvars file to set variable values, but then again, you need to ensure that the configuration scripts with the .tfvars file are accessible only to a special group of people.

			Another good practice is to fetch the values from an external secret engine such as AWS Secrets Manager, HashiCorp Vault, or similar tools.

			This is how you should declare a variable that might contain a sensitive value:

			variable "database_password" {

			 description = "Database password"

			 type = string

			 sensitive = true

			}

			Output Values

			Output values also can refer to a variable marked as sensitive in the configuration, like any other variable. In this case, Terraform would throw an Output refers to sensitive values error message.

			To overcome this issue, the output value also needs to be marked as sensitive using the attribute and then the output value will also be hidden from the console output. Again, the values will be recorded in plain text inside the state file.

			Next Steps

			Now that you have covered miscellaneous topics, you should be good to go ahead and try out the practice exams.

			Once you feel confident, schedule the certification exam and get certified with flying colors!

			Summary

			In this chapter, the focus was more on topics that are not vast but are very important to understand when you want to build and deploy complex applications using Terraform. Provisioners are very helpful if you know how to use them effectively and handle exceptions that can occur. The usage of sensitive data in Terraform needs to be planned well ahead of the project schedule and external secret engines should be utilized whenever possible.

			Exam Readiness Drill – Chapter Review Questions

			Apart from a solid understanding of key concepts, being able to think quickly under time pressure is a skill that will help you ace your certification exam. That is why working on these skills early on in your learning journey is key.

			Chapter review questions are designed to improve your test-taking skills progressively with each chapter you learn and review your understanding of key concepts in the chapter at the same time. You’ll find these at the end of each chapter.

			How to Access these Resources

			To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing the Online Practice Resources.

			To open the Chapter Review Questions for this chapter, perform the following steps:

			
					Click the link – https://packt.link/HCorp003Ch10.Alternatively, you can scan the following QR code (Figure 10.5):

			

			
				
					[image: Figure 10.5 – QR code that opens Chapter Review Questions for logged-in users]
				

			

			Figure 10.5 – QR code that opens Chapter Review Questions for logged-in users

			
					Once you log in, you’ll see a page similar to the one shown in Figure 10.6:

			

			
				
					[image: Figure 10.6 – Chapter Review Questions for Chapter 10]
				

			

			Figure 10.6 – Chapter Review Questions for Chapter 10

			
					Once ready, start the following practice drills, re-attempting the quiz multiple times.

			

			Exam Readiness Drill

			For the first three attempts, don’t worry about the time limit.

			ATTEMPT 1

			The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix your learning gaps.

			ATTEMPT 2

			The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections in the chapter again to fix any remaining learning gaps.

			ATTEMPT 3

			The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

			Tip

			You may take more than three attempts to reach 75%. That’s okay. Just review the relevant sections in the chapter till you get there.

			Working On Timing

			Target: Your aim is to keep the score the same while trying to answer these questions as quickly as possible. Here’s an example of how your next attempts should look like:

			
				
					
					
					
				
				
					
							
							Attempt

						
							
							Score

						
							
							Time Taken

						
					

				
				
					
							
							Attempt 5

						
							
							77%

						
							
							21 mins 30 seconds

						
					

					
							
							Attempt 6

						
							
							78%

						
							
							18 mins 34 seconds

						
					

					
							
							Attempt 7

						
							
							76%

						
							
							14 mins 44 seconds

						
					

				
			

			Table 10.1 – Sample timing practice drills on the online platform

			Note

			The time limits shown in the above table are just examples. Set your own time limits with each attempt based on the time limit of the quiz on the website.

			With each new attempt, your score should stay above 75% while your “time taken” to complete should “decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.

		

	
		
			11

			Accessing the Online Practice Resources

			Your copy of HashiCorp Terraform Associate (003) Exam Guide comes with free online practice resources. Use these to hone your exam readiness even further by attempting practice questions on the companion website. The website is user-friendly and can be accessed from mobile, desktop, and tablet devices. It also includes interactive timers for an exam-like experience.

			How to Access These Resources

			Here’s how you can start accessing these resources depending on your source of purchase.

			Purchased from Packt Store (packtpub.com)

			If you’ve bought the book from the Packt store (packtpub.com) eBook or Print, head to https://packt.link/hsh003practice. There, log in using the same Packt account you created or used to purchase the book.

			Packt+ Subscription

			If you’re a Packt+ subscriber, you can head over to the same link (https://packt.link/hsh003practice), log in with your Packt ID, and start using the resources. You will have access to them as long as your subscription is active.

			If you face any issues accessing your free resources, contact us at customercare@packt.com.

			Purchased from Amazon and Other Sources

			If you’ve purchased from sources other than the ones mentioned above (like Amazon), you’ll need to unlock the resources first by entering your unique sign-up code provided in this section. Unlocking takes less than 10 minutes, can be done from any device, and needs to be done only once. Follow these five easy steps to complete the process:

			STEP 1

			Open the link https://packt.link/hsh003unlock OR scan the following QR code (Figure 11.1):

			
				
					[image: Figure 11.1 – QR code for the page that lets you unlock this book’s free online content.]
				

			

			Figure 11.1 – QR code for the page that lets you unlock this book’s free online content.

			Either of those links will lead to the following page as shown in Figure 11.2:

			
				
					[image: Figure 11.2 – Unlock page for the online practice resources]
				

			

			Figure 11.2 – Unlock page for the online practice resources

			STEP 2

			If you already have a Packt account, select the option Yes, I have an existing Packt account. If not, select the option No, I don't have a Packt account.

			If you don’t have a Packt account, you’ll be prompted to create a new account on the next page. It’s free and only takes a minute to create.

			Click Proceed after selecting one of those options.

			STEP 3

			After you’ve created your account or logged in to an existing one, you’ll be directed to the following page as shown in Figure 11.3.

			Make a note of your unique unlock code:

			IPW4426

			Type in or copy this code into the text box labeled ‘Enter Unique Code':

			
				
					[image: Figure 11.3 – Enter your unique sign-up code to unlock the resources]
				

			

			Figure 11.3 – Enter your unique sign-up code to unlock the resources

			Troubleshooting Tip

			After creating an account, if your connection drops off or you accidentally close the page, you can reopen the page shown in Figure 11.2 and select Yes, I have an existing account. Then, sign in with the account you had created before you closed the page. You’ll be redirected to the screen shown in Figure 11.3.

			STEP 4

			Note

			You may choose to opt into emails regarding feature updates and offers on our other certification books. We don’t spam, and it’s easy to opt out at any time.

			Click Request Access.

			STEP 5

			If the code you entered is correct, you’ll see a button that says, OPEN PRACTICE RESOURCES, as shown in Figure 11.4:

			
				
					[image: Figure 11.4 – Page that shows up after a successful unlock]
				

			

			Figure 11.4 – Page that shows up after a successful unlock

			Click the OPEN PRACTICE RESOURCES link to start using your free online content. You’ll be redirected to the Dashboard shown in Figure 11.5:

			
				
					[image: Figure 11.5 – Dashboard page for HashiCorp Terraform Associate (003) practice resources]
				

			

			Figure 11.5 – Dashboard page for HashiCorp Terraform Associate (003) practice resources

			Bookmark this link

			Now that you’ve unlocked the resources, you can come back to them anytime by visiting https://packt.link/hsh003practice or scanning the following QR code provided in Figure 11.6:

			
				
					[image: Figure 11.6 – QR code to bookmark practice resources website]
				

			

			Figure 11.6 – QR code to bookmark practice resources website

			Troubleshooting Tips

			If you’re facing issues unlocking, here are three things you can do:

			
					Double-check your unique code. All unique codes in our books are case-sensitive and your code needs to match exactly as it is shown in STEP 3.

					If that doesn’t work, use the Report Issue button located at the top-right corner of the page.

					If you’re not able to open the unlock page at all, write to customercare@packt.com and mention the name of the book.

			

			Share Feedback

			If you find any issues with the platform, the book, or any of the practice materials, you can click the Share Feedback button from any page and reach out to us. If you have any suggestions for improvement, you can share those as well.

			Back to the Book

			To make switching between the book and practice resources easy, we’ve added a link that takes you back to the book (Figure 11.7). Click it to open your book in Packt’s online reader. Your reading position is synced so you can jump right back to where you left off when you last opened the book.

			
				
					[image: Figure 11.7 – Dashboard page for HashiCorp Terraform Associate (003) practice resources]
				

			

			Figure 11.7 – Dashboard page for HashiCorp Terraform Associate (003) practice resources

		

	
		
			[image:]

			www.packtpub.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			
				
					[image: Cybersecurity]
				

			

			Developing Solutions for Microsoft Azure AZ-204 Exam Guide

			Paul Ivey, and Alex Ivanov

			ISBN: 978-1-83508-529-5

			
					Identify cloud models and services in Azure

					Develop secure Azure web apps and host containerized solutions in Azure

					Implement serverless solutions with Azure Functions

					Utilize Cosmos DB for scalable data storage

					Optimize Azure Blob storage for efficiency

					Securely store secrets and configuration settings centrally

					Ensure web application security with Microsoft Entra ID authentication

					Monitor and troubleshoot Azure solutions

			

			
				
					[image: Cybersecurity]
				

			

			Azure Data Engineer Associate Certification Guide

			Giacinto Palmieri, Surendra Mettapalli, and Surendra Mettapalli

			ISBN: 978-1-80512-468-9

			
					Design and implement data lake solutions with batch and stream pipelines

					Secure data with masking, encryption, RBAC, and ACLs

					Perform standard extract, transform, and load (ETL) and analytics operations

					Implement different table geometries in Azure Synapse Analytics

					Write Spark code, design ADF pipelines, and handle batch and stream data

					Use Azure Databricks or Synapse Spark for data processing using Notebooks

					Leverage Synapse Analytics and Purview for comprehensive data exploration

					Confidently manage VMs, VNETS, App Services, and more

			

		

		
			Share Your Thoughts

			Now you’ve finished HashiCorp Terraform Associate (003) Exam Guide, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

		

		
			Download a Free PDF Copy of This Book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below:

			

			
				
					[image: https://packt.link/free-ebook/9781804618844]
				

			

			https://packt.link/free-ebook/9781804618844

			
					Submit your proof of purchase.

					That’s it! We’ll send your free PDF and other benefits to your email directly.

			

		

	OEBPS/image/B16190_05_05.jpg
~ OPEN EDITORS
~ APP

*~/terraform—-code/app $tree

— Child Modules

Root Module

~ modules —
v ec2 -
:"ﬂ"‘-* —— README.md
v — main.tf
¢ variables.tf —— modules -
~ networking L ecz
Sl - README.md...
@ README.md — main.tf
¥ variables.tf — outputs.tf
T — — variables.tf
¥ outputs.tf — networking
@ README.md — README . md
*:a\il:.rti:bles.lf —J — main.tf
¥ outputs.tf — outputs.tf
?D' providers.tt — variables.tf
S — security-group
—— README.md
— main.tf
—— outputs.tf
— variables.tf —
— outputs.tf
—— providers.tf
— variables. tf . |

> OUTLINE

OEBPS/image/B19160_11_05.jpg
Practice Resources

DASHBOARD

HashiCorp Terraform Associate (003) Exam Guide

Prepare to pass the Terraform Associate exam on your first attempt

Mock Exams v] [Chapter Review Questions

@ Flashcards v] \ Q Exam Tips

BACK TO THE BOOK

HashiCorp Terraform Associate (003) Exam Guide

Chandra Mohan Dhanasekaran, Manjunath H Gowda

OEBPS/image/B19160_09_09.jpg
Y o/l -

< Workspact

jetting-starte
[
Runs
States
Variables

Settings

R exam

A
Organization
b

iects & works

getting-started

ID: ws-arz6KTHANWLWxCUY

Add workspace description.
f Unlocked B Resour
Latest Run

Triggered via CLI

trigg

Outputs

NAME PROVIDER

prod_db hashicorp/fakew.

d a run an hour ago v

orm v1.2.4

Overview

Workspace

1O Updated an hour ago

View all runs

' Applied

Plan &3 urces changed
durat
: +5 ~0 -0
Less than'a See details
minute
as of the most r
TYPE MODULE CREATED
onbeon . Feb 29
fakewebservi root ek

: Remote

1 &VCS

© Auto-apply run triggers: Off

ault Pro

Metrics (last 1run)
Average plan duration < 1min

Average apply duration < 1min

Total failed runs 0
Policy check failures 0
Tags (0)

Add atag 3

Tags have not be
to this works

n added

OEBPS/image/B16190_03_05.jpg
Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the
following symbols:
+ create

Terraform will perform the following actions:
aws_iam_access_key.user_access_keys will be created

+ resource "aws_iam_access_key" "user_access_keys" {
+ create_date (known after apply)

+ encrypted_secret = (known after apply)
+ encrypted_ses_smtp_password_v4 = (known after apply)
+ id (known after apply)
+ key_fingerprint (known after apply)
+ secret (sensitive value)

+ ses_smtp_password_v4 (sensitive value)

+ status ctive"

+ user = "test-aws-user”

OEBPS/image/B19160_preface_08.jpg
PS C:\Users\Administrator> choco version
Chocolatey v2.2.2

OEBPS/image/9781835085295_High_Res.jpg
Developing Solutions for
Microsoft Azure AZ-204
Exam Guide

A comprehensive guide to passing
the AZ-204 exam

Paul Ivey | Alex Ivanov

FLASHCARDS | MOCK EXAMS | EXAM TIPS

OEBPS/image/B19160_09_25.jpg
%

Please review the following changes before continuing:

To create

+18

Choosing "Confirm & apply” below will execute the above changes.
Please review the plan output before proceeding.

| Discard run Add comment |

Contirm & apply
Add a comment to explain this action.

1st Terraform Apply

N | close |

OEBPS/image/B19160_10_05.jpg

OEBPS/image/B19160_preface_06.jpg
~/Downloads $1ls
terraform_1.7.3_darwin_arm64.zip
~/Downloads $
~/Downloads $unzip terraform_1.7.3_darwin_arm64.zip
Archive: terraform_1.7.3_darwin_arm64.zip
inflating: terraform
~/Downloads $
~/Downloads $ls ——color=auto
terraform terraform_1.7.3_darwin_arm64.zip
~/Downloads $

OEBPS/image/B16190_05_13.jpg
<P> Practice Resources Q SHARE FEEDBACK

DASHBOARD >

Terraform Modules

Summary
In this chapter, you learned about Terraform modules. Since there are multiple types of modules, it can be difficult Chq 1. r R Vi W Ues.'.ions
to understand them without understanding the basics. p e e Q
) 3 . The HashiCorp Terraform Associate (003) Exam Guide
You started with a problem statement that the modules solve and then moved on to different ways of using by ChandraMohan Dhanasekaran, Manjunath H
modules. Cavan

With this understanding, you will be able to decide whether you should use a module or go for a one-time Select Quiz
implementation via a resource block, create a module yourself, or use a public one, verify whether a public module

is trustworthy to use, and so on.

SHOW QUIZ DETAILS v/

OEBPS/image/Packt_Logo_New1.png
<packth

OEBPS/image/B19160_09_17.jpg
packt-learn-terraform- | Workspaces

Workspaces

Workspaces in £ Default P

ject
£ Workspaces

B Registry ac|B@o Sfeioifee
i Usage

Settin

@ HashiCorp Cloud Platform 7

b packt-leam-terraform-

OEBPS/image/B19160_06_02.jpg
Plan: 2 to add, @ to change, © to destroy.
aws_s3_bucket.appbucket: Creating...

aws_s3_bucket.appbucket: Creation complete after 7s [id=terraform
aws_instance.testinstance: Creating...

aws_instance.testinstance: Still creating... [10s elapsed]
aws_instance.testinstance: Creation complete after 17s [id=i

—

OEBPS/image/B16190_03_03.jpg
C:\Users>aws --version
aws-cli/2.15.16 Python/3.11.6 Windows/10© exe/AMD64 prompt/off

OEBPS/image/B19160_09_10.jpg
v o'l
—

rkspace Settings
General

Locking

Policies

Run Tasks

SSH Key

Version Control

Destruction and Deletion

General Settings

«

Select the right
workspace

D

ZXzmBnoQBwRF [

05!
Name

getting-started

Default Project

General option _°* =
escription
under workspace,on
settings

Execution Mode

uns will be discarded.
Organization Default
Use your organization's default mode, currently set to remote.
Choose local Remote (custom)
execution mode ur plans and apr ucture. You

am have the ability thin the app.

© Local (custom)

Your plans and applies occur on macl
te

you control. HCP Terraform is only used

synchroni

Agent (custom)
You don't have any agent pools set up. Learn more about Terraform Agents (3

Select the right
organization Remote state sharing

OEBPS/image/B19160_09_23.jpg
Y QoY@ -

< Workspaces

Settings

Terraform (F and Environment (!
v *.auto.tfvars filesin the configu

7t 1o use the Ter

aces using Terraform 0.10.0 or later can al

ariables API to

form Cloud Provider or dd multiple varial

jon. You

Sensitive variables

Sensitive (7 variables are never shown in the Ul or API, and can't

‘ay appear in Terraform logs if your configuration s desig

to output them. To

Workspace variables (2)

jariables defined within a works| vays overwrite variables from variat ne key. Learn more about variable se
precedence (7.
Key value category
AWS_ACCESS_KEY_ID AKIASTI terraform
AWS Access key
AWS_SECRET_ACCESS_KEY sitive - write only terraform

AWS Secret key
SENSITIVE

+ Add variable

OEBPS/image/B19160_09_07.jpg
Terraform must now open a web browser to the tokens page for app.terraform.io.
If a browser does not open this automatically, open the following URL to proceed

https://app.terraform.io/app/settings/tokens?source=terraform-login

Generate a token using your browser, and copy-paste it into this prompt.

Terraform will store the token in plain text in the following file
for use by subsequent commands:
/Users/packt/.terraform.d/credentials.tfrc.json

Token for app.terraform.io:
~ Enter a value: §

OEBPS/image/B19160_preface_01.jpg
Practice Resources

DASHBOARD

HashiCorp Terraform Associate (003) Exam Guide

Prepare to pass the Terraform Associate exam on your first attempt

Mock Exams Chapter Review Questions

Q" Exam Tips

Flashcards v] ‘

BACK TO THE BOOK

HashiCorp Terraform Associate (003) Exam Guide

Chandra Mohan Dhanasekaran, Manjunath H Gowda

OEBPS/image/B16190_05_03.jpg
EXPLORER PROBLEMS ~ OUTPUT ~ DEBUG CONSOLE TERMINAL

 OPEN EDITORS

ﬁf;mﬁ *~/terraform-code/app $tree

¥ outputs.tf .

.® README.md README . md

e main. tf
outputs.tf
terraform.tfvars
variables.tf

1 directory, 5 files

OEBPS/image/B19160_01_07.jpg

OEBPS/image/B19160_preface_14.jpg
® /Users/packt/Desktop $terraform init
Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/aws versions matching "~> 5.0"
— Installing hashicorp/aws v5.37.0...

~ Installed hashicorp/aws v5.37.8 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run “"terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running “terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

® /Users/packt/Desktop $terraform plan

No changes. Your infrastructure matches the configuration.

OEBPS/image/B19160_11_03.jpg
Practice Resources

UNLOCK YOUR PRACTICE RESOURCES

You're about to unlock the free online content that came with your book. Make sure you have your book with you before you start, so that you can access the

resources in minutes.

HashiCorp Terraform Associate (003) Exam Guide

HashiCorp Terraform [T1Book ISBN: 9781804618844

Associate (003)
Exam Guide Chandra Mohan Dhanasekaran « Manjunath H Gowda ¢ May 2024 « 400 pages
Prore ogass e Trrform Assocte

ENTER YOUR PURCHASE DETAILS

Enter Unique Code *

E.9123456789 @ Where To Find This?

Check this box to receive emails from us about new features and promotions on our other certification books. You
can opt out anytime.

OEBPS/image/B16190_09_01.jpg
Terraform Editions J

Terraform Terraform

HCP Terraform

Community Enterprise

[fow) [anard [rue]

* : Up to 500 managed
resources

OEBPS/image/B19160_11_01.jpg

OEBPS/image/B19160_09_19.jpg
@ connecttoves 2] Choose a repository 3) Confirm changes

Connect to a version control provider

Choose the version control provider that hosts the Terraform configuration for this workspace.

©) GitHub v ‘ ‘ &) GitLab v ‘ ‘ T Bitbucket v ‘ ‘ /A Azure DevOps v

OEBPS/image/B19160_08_02.jpg
rm-functions-new\type-conversion-functions> terraform plan
Changes to Outputs:
+ outvall = (sensitive value)

+ outval2 = "test-string-2"

You can apply this plan to save these new output values to the Terraform state, without changing any real infrastructure.

OEBPS/image/B19160_02_02.jpg
<]P> Practice Resources Q SHARE FEEDBACK

DASHBOARD >

Why Do We Need Terraform?

Summary
In this chapter, you learned about the challenges of the manual provisioning of infrastructure, what laC is, and H T
what its advantages are. You also reviewed the importance of Terraform in the laC landscape and examined Chapfer ReVIew QueSflon
what differentiates it from other tools on the market. This information will help you understand the big picture of The HashiCorp Terraform Associate (003) Exam Guide
infrastructure automation and the tools available on the market to solve the problems associated with it. This by Chandra Mohan Dhanasekaran, Manjunath H
understanding will help you have a meaningful technical conversation with others about infrastructure Gowda
automation.

Select Quiz

There was a short discussion about the change of license that has stripped the term “open source” from the

Terraform feature list. 5
Quiz1 START

Now that you understand why Terraform is required, you are ready to explore the basics of Terraform and its SHOW QUIZ DETAILS
workflow in Chapter 3, Basics of Terraform and Core Workfiow.

OEBPS/image/B19160_09_04.jpg
rl'lJ Service agreements

Terms of Service % Required
I'accept the Terms of Service

Create Your Account

. po.
Sign up for HashiCorp to continue Privacy Policy (% Required
@ 1accept the Privacy Policy

packt-terraform@gmail.com| -]

I— Email address

Marketing and newsletters

(] 1would like to be updated via email about HashiCorp
Continue products, features, events, announcements, and
education materials.
Already have an account? Log in

.

€) Continue with GitHub

OEBPS/image/B19160_09_21.jpg
]
Hi

Install Terraform Cloud

Where do you want to install Terraform Cloud?

OEBPS/image/B19160_preface_03.jpg
~$brew install hashicorp/tap/terraform

==> Fetching hashicorp/tap/terraform

==> Downloading https://releases.hashicorp.com/terraform/1.7.3/terraform_1.7.3_darwin_arm64.zip

Already downloaded: /Users/manjunath/Library/Caches/Homebrew/downloads/a@ca203fddc90ae140c9d76ebdf8991f960ab
3c01a8bafldf7626550e389b7d6—terraform_1.7.3_darwin_armé4.zip

==> Installing terraform from hashicorp/tap

==> Downloading https://formulae.brew.sh/api/formula.jws.json

100.0%
==> Downloading https://formulae.brew.sh/api/cask.jws.json

100.0%
Warning: Cask homebrew/cask/terraform was renamed to homebrew/core/terraform.

® /opt/homebrew/Cellar/terraform/1.7.3: 3 files, 88.6MB, built in 4 seconds

==> Running ‘brew cleanup terraform...

Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP.

Hide these hints with HOMEBREW_NO_ENV_HINTS (see “man brew').

~$

OEBPS/toc.xhtml

		

		Contents

			

						HashiCorp Terraform Associate (003) Exam Guide

						Contributors

						About the Authors

						Preface

					

								Who This Book Is For

								What This Book Covers

								Online Practice Resources

								Download the Example Code Files

								Download the Color Images

								Conventions Used

								Get in Touch

								Setting up the Environment

							

										Components of Terraform

										Terraform Installation

									

												macOS

									

								

										Pre-Compiled Binary Download

									

												Linux

												Ubuntu

												Amazon Linux

												Ubuntu

												Compile from Source

									

								

										Windows

										Pre-Compiled Binary Download

										Configure Terraform for AWS

							

						

								Share Your Thoughts

								Download a Free PDF Copy of This Book

					

				

						Chapter 1: Introduction to Infrastructure as Code (IaC) and Concepts

					

								Making the Most Out of This Book – Your Certification and Beyond

								Technical Requirements

								What Is IaC?

							

										Scenario

							

						

								Basic Concepts of IaC

							

										Declarative Approach versus Imperative Approach

										Version Control

										Idempotency

										Infrastructure Provisioning and Configuration Management

							

						

								IaC Tools in the Market

							

										How to Choose the Right IaC Tool

										HashiCorp Terraform

										Progress Chef

										Creating Your First Recipe

										Puppet

										Pulumi

										AWS CloudFormation

							

						

								IaC Use Cases

							

										Multi-Cloud Deployments

										Application Deployments, Scaling, and Monitoring Tools

										Policy Compliance and Management

										Testing Environments and Software Demos

							

						

								Benefits of IaC

							

										Rapid Deployments and Tool Integration

										Lower Costs and Error Reduction

										Configuration Drift Elimination

										Improved Infrastructure Consistency

										DevOps and CI/CD

										Don’t Repeat Yourself (DRY)

										Creating a Simple AWS DynamoDB Table Using a CloudFormation Template

										Creating an AWS S3 Bucket Using Terraform

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 2: Why Do We Need Terraform?

					

								History of Infrastructure Provisioning

							

										Why Is the Cloud Model a Good Fit for Infrastructure Automation?

							

						

								Infrastructure Automation Using IaC

							

										Advantages of IaC

										Various Options for Implementing IaC

									

												Ad Hoc Scripts

												Configuration Management Tools

												Cloud-Based IaC Services

												Cloud-Agnostic IaC Tools

									

								

							

						

								What Is Terraform?

							

										Features of Terraform

									

												Cloud/Vendor Agnostic

												A Pioneer in IaC

												Wide Partner Integration

												Declarative

												Idempotent

												Easy Learning Curve

												Version Controlled

												Automation

												Documentation

												Community Support

									

								

							

						

								Licensing Change from Version 1.5.5 (Aug 2023)

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 3: Basics of Terraform and Core Workflow

					

								Technical Requirements

								How Terraform Works

								Getting Started with Terraform

							

										Terraform CLI Installation Check

										AWS CLI Installation Check

										Creating Your First Terraform Resource – AWS IAM User

									

												Setting up AWS Credentials

												Terraform Configuration

												Creating the AWS IAM User

									

								

							

						

								Terraform Settings

							

										HCP Terraform Configuration Using the cloud {} block

										Terraform Backend Configuration Using the backend {} Block

									

												Initialization

												Partial Configuration

									

								

										The required_version Setting

										The required_providers {} Block

										Experimental Features

										Provider Metadata

							

						

								Terraform Providers

							

										Types of Terraform Providers

									

												Official Providers

												Partner Providers

												Community Providers

												Archived Providers

									

								

										Provider Requirements

									

												Local Names

												Source Addresses

												Version Constraints

									

								

										Provider Configuration

									

												Provider Meta-Arguments

									

								

							

						

								Dependency lock file (.terraform.lock.hcl)

								Resources and Data Sources

							

										Resources Syntax

										Resources Meta-Arguments

									

												depends_on

												count

												for_each

												provider

												lifecycle

									

								

										Data Sources

							

						

								Variables and Outputs

							

										Input Variables

									

												Declaring Input Variables

												Supported Arguments

												Input Variables Assignment

												Input Variables Precedence

									

								

										Output Values

										Local Values

							

						

								Core Workflow

							

										Write – Creating the Configuration Script

									

												Plan – Previewing the Changes

												Apply – Provisioning the Infrastructure

									

								

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 4: Terraform Commands and State Management

					

								Technical Requirements

								Basic Workflow Commands

							

										The init Command

										The plan Command

										The apply Command

										The destroy Command

							

						

								Commands for Code Management

							

										The fmt Command

										The validate Command

							

						

								Special Commands

							

										The login Command

										The logout Command

										The console Command

										The output Command

										The show Command

										The graph Command

										The import Command

							

						

								State Management and the terraform state Command

							

										The state Command

							

						

								Subcommands of terraform state

							

										The terraform state list Command

										The terraform state show Command

										The terraform state mv Command

										The terraform state rm Command

										The terraform state replace-provider Command

										The terraform state pull Command

										The terraform state push Command

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 5: Terraform Modules

					

								Technical Requirements

								Why Do We Need Modules?

							

										Complexity

										Duplication of Code

										Segregation

										Misconfiguration

							

						

								What Is a Terraform Module?

								Advantages of Modules

							

										Reduces Complexity

										Reduces Code Duplication

										Segregation

										Reduces Misconfigurations

										Self-Service

							

						

								Types of Modules

							

										The Root Module

										The Child Module

										Local Modules

										Remote Modules

									

												Private Modules

												Public Modules

									

								

							

						

								Module Structure

								The Module Block’s Syntax

								Key Points to Consider When You Create a Module

								Key Points to Consider While Using a Module

								Drawbacks of Modules

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 6: Terraform Backends and Resource Management

					

								What Are Backends?

								Backend Configuration

							

										Configuring the backend {} Block

										Partial Configuration

							

						

								Supported Backends

							

										local

										remote

										s3

										http

									

												Environment Variable Support

									

								

										pg

									

												Environment Variable Support

									

								

										Kubernetes

										Consul

										azurerm

										cos

									

												Environment Variable Support

									

								

										gcs

										oss

							

						

								Resource Addressing and Dependencies

							

										Resource Addressing

									

												Module Path

												Resource Specifications

												Addressing Resources with the for_each {} Block

									

								

										Resource Dependencies

									

												Implicit Dependency

												Explicit Dependency

									

								

							

						

								Expressions and Constraints

							

										Data Types

										Operators

										Conditional Expressions

										for Expressions

										splat Expressions

										Type Constraints

									

												The any Type

												“optional”

									

								

										Version Constraints

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 7: Debugging and Troubleshooting Terraform

					

								Configuration Errors

							

										override.tf File-Related Issues

										terraform validate

							

						

								Variable-Related Issues

							

										Type Constraint

										Input Validation

										Variable Precedence

							

						

								State-Related Issues

							

										Configuration Drift

										State Conflict

										Migrating the State from One Backend to Another

							

						

								Core and Provider-Related Issues

								Module-Related Issues

							

										Missing Features

										Output-Related Issues

										Unsupported Argument

										Version-Related Issues

							

						

								Taking Help from the Forum

								Bug Reporting

								Gotchas

							

										Avoid Lists Where Possible

										Using -target in Terraform Runs

										General Tips

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 8: Terraform Functions

					

								Technical Requirements

								Function Syntax

								Numeric Functions

							

										The abs() Function

										The ceil() Function

										The floor() Function

										The max() Function

										The min() Function

										The pow() Function

										The log() Function

										The signum() Function

										The parseint() Function

							

						

								String Functions

							

										The split() Function

										The join() Function

										The endswith() Function

										The startswith() Function

										The chomp() Function

										The substr() Function

										The strrev() Function

										The lower() Function

										The upper() Function

										The trim() Function

										The trimprefix() and trimsuffix() Functions

										The trimspace() Function

										The indent() Function

										The replace() Function

										The strcontains() Function

										The title() Function

										The format() Function

										The formatlist() Function

										The regex() Function

										The regexall() Function

							

						

								Date and Time Functions

							

										The timestamp() Function

										The formatdate() Function

										The plantimestamp() Function

										The timeadd() Function

										The timecmp() Function

							

						

								Collection Functions

							

										The alltrue() Function

										The anytrue() Function

										The chunklist() Function

										The coalesce() and coalescelist() Functions

										The compact() Function

										The concat() Function

										The contains() Function

										The distinct() Function

										The element() Function

										The flatten() Function

										The keys() and values() Functions

										The index() Function

										The length() Function

										The lookup() Function

										The matchkeys() Function

										The merge() Function

										The one() Function

										The range() Function

										The reverse() Function

										Set Functions

									

												The setintersection() Method

												The setproduct() Method

												The setunion() Method

												The setsubtract() Method

									

								

										The slice() Function

										The sort() Function

										The sum() Function

										The transpose() Function

										The zipmap() Function

							

						

								Type Conversion Functions

							

										The can() Function

										The sensitive() and nonsensitive() Functions

										The try() Function

										The type() Function

										Conversion Functions

							

						

								Filesystem Functions

							

										The abspath() Function

										The dirname() and basename() Functions

										The pathexpand() Function

										The file() and filebase64() Functions

										The fileexists() Function

										The fileset() Function

										The templatefile() Function

							

						

								IP Network Functions

							

										The cidrhost() Function

										The cidrnetmask() Function

										The cidrsubnet() Function

										The cidrsubnets() Function

							

						

								Encoding Functions

							

										The base64encode() and base64decode() Functions

										The base64gzip() Function

										The csvdecode() Function

										The jsonencode() and jsondecode() Functions

										The textencodebase64() Function

										The textdecodebase64() Function

										The urlencode() Function

										The yamlencode() and yamldecode() Functions

							

						

								Hash and Crypto Functions

							

										The uuid() Function

										The uuidv5() Function

							

						

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 9: Understanding HCP Terraform’s Capabilities

					

								Terraform Editions

							

										Shortcomings of Terraform Community Edition

							

						

								HCP Terraform Features

							

										Remote State Management

										Multiple Workflows

										Multiple Execution Modes

										Version Control System Integration

										Private Registry

										Notifications

										Run Tasks

										Role-Based Access Control

										Policy Enforcement

										Cost Estimation

							

						

								HCP Terraform Pricing

								Key Concepts of HCP Terraform

							

										Workspaces

										Projects

										Users

										Teams

										Permissions

										Organizations

										Locking Workspaces

										Sentinel Policies

										Explorer

							

						

								HCP Terraform Sign-Up

							

										Creating an Account with HCP Terraform

										Creating an Account with HCP

							

						

								Exercises on Workflows and Execution Modes

							

										Remote Execution Mode Using the CLI-Driven Workflow

										Local Execution Mode Using the CLI-Driven Workflow

							

						

								Remote Execution Mode Using the VCS/UI Workflow

							

										Creating a Public GitHub Repository and Adding Configuration Files

										Integrating the VCS Repository with HCP Terraform

										Testing the VCS/UI Workflow in HCP Terraform

										Cost Estimation Feature

							

						

								Migrating to HCP Terraform or Terraform Enterprise

								Terraform Enterprise Features

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 10: Miscellaneous Topics

					

								Technical Requirements

								Input Validations

								Preconditions and Postconditions

								The check {} block

								Workspaces

								The dynamic {} block

								Provisioners

							

										The file provisioner

										The local-exec provisioner

										The remote-exec provisioner

							

						

								Handling Sensitive Data

							

										AWS Access Keys or Admin Credentials

										Variables

										Output Values

							

						

								Next Steps

								Summary

								Exam Readiness Drill – Chapter Review Questions

							

										Exam Readiness Drill

									

												ATTEMPT 1

												ATTEMPT 2

												ATTEMPT 3

									

								

							

						

								Working On Timing

					

				

						Chapter 11: Accessing the Online Practice Resources

					

								How to Access These Resources

							

										Purchased from Packt Store (packtpub.com)

										Packt+ Subscription

										Purchased from Amazon and Other Sources

									

												STEP 1

												STEP 2

												STEP 3

												STEP 4

												STEP 5

									

								

							

						

								Troubleshooting Tips

							

										Share Feedback

							

						

								Back to the Book

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Share Your Thoughts

								Download a Free PDF Copy of This Book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

			

		

	

OEBPS/image/B19160_10_01.jpg
Error: Invalid value for variable

on input-validations.tf line 5:
5: variable "app_id" {

var.app_id is "app-1234"
The app_id value must include the prefix "app-" and should be 9 characters long.

This was checked by the validation rule at input-validations.tf:9,3-13.

OEBPS/image/B16190_05_01.jpg
Types of Modules

Based on where the conf files

Terraform Modules e e

Based on the entry point

Based on how
modules are published

OEBPS/image/B19160_08_03.jpg

OEBPS/image/B16190_03_09.jpg
ansible

by:ansible

Cloud Aut

OEBPS/image/B19160_01_04.jpg
Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/aws versions matching "~> 5.14"...
- Installing hashicorp/aws v5.15.0...

- Installed hashicorp/aws v5.15.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

OEBPS/image/B16190_03_5a.jpg
aws_iam_user.test_user will be created
+ resource “aws_iam_user” "test_user” {

+arn = (known after apply)
+ force_destroy = false
+ id = (known after apply)
+ name "test-aws-user"”
+ path “/test/"
+ tags ={

+ “terraform”
+ tags_all

+ "createdby" = "terraform"”

¥

+ unique_id = (known after apply)

}

Plan: 2 to add, @ to change, @ to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only ‘yes' will be accepted to approve.

Enter a value: J|

OEBPS/image/B19160_09_13.jpg
.H! ool -«
< Workspaces

getting-started
Overview

States

Setin,

exam, getting-started | Overview

0rg-0af879 | Projects & work:

getting-started

TD: ws-DDC6BxyyayoWiVxd

Add workspace description.

d | ED Resour 3 | ‘¥ Terra

formyl74 O Updated 28 minutes ago

o' unloct

Latest Run View all runs

Tiggered via CL

Less thana +0 -0 -0 T
Add minute “
Resources 13 Outputs asot themost
NAME PROVIDER TYPE MoDULE CREATED 4
Jrakew akewebser Feb 20
servers [9] hashicorp/fakew. fakewebservi root pegs
e L —— R — Feb 29

& Lock

run triggers: Off

fault Project

Metrics (last 1run)
Average plan duration < 1min

Average apply duration < 1min

Total failed runs 0
Policy check failures 0
Tags (0)

Add atag 2

Tags have not
to this workspact

OEBPS/image/B19160_09_30.jpg
terraform-vcs-workflow o Force unlock

10: ws—fputChvnmpX3DHMTH

Add workspace descripti

© Running B Resources 20 % Terraform vi7.4 D Updated 11 minutes ago

changed the instance type © curreNT

Estimated cost decrease Plan duration Resources to be changed

v $724 Less than a minute +0 ~1 -0

. triggered a run from GitHub 12 minutes ago

Run Details v/

@ Planfinished 11 minutes ago

5: 0t add, 1to change, 0 to destroy v

@ Cost estimation finished 11 minutes ago Resources: 10f 4 estimated - $15.28/mo - +§7.24 A
Queued 14 minutes ago - Finished 14 minutes ago
RESOURCE NAME HOURLY COST MONTHLY CoST MONTHLY DELTA
A aws_instance this $0.022 $15.277 +$7.238
+Compute Instance $00208 $14.477 +$14.477
+Storage: root: 8 GB. $0.0011494253 $0.80 +$0.80
- Compute Instance $00108 $0.00 -$7.238
- Storage: root: 8 GB. $0.0011494253 $0.00 -$0.80
Ja 30t 4 resources could not be estimated. | show

OEBPS/image/B19160_06_04.jpg
<P> Practice Resources N SHARE FEEDBACK v

DASHBOARD >

Terraform Backends and Resource Management

Summary
In this chapter, you learned about the backend configuration syntax, and then you followed this up by reading Cha p.'.er Review Ques.ho S
about valid backends supported by Terraform and how to configure them with the limitations. Resource
addressing and the concept of implicit and explicit dependency were also discussed. Finally, different types of The HashiCorp Terraform Associate (003) Exam Guide
expressions such as splat expressions and for expressions were looked at, with examples. by Chandra Mohan Dhanasekaran, Manjunath H

Gowda
Abackend configuration for any production-grade configuration script will help teams store the state file securely
and interact with it in multiple executions, without any conflict. This is where Terraform stands out from other Select Quiz

Quiz1 START

SHOW QUIZ DETAILS v

tools.

OEBPS/image/B19160_preface_11.jpg
Environment Variables

User variables for Administrator

Variable Value

Path C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;

TEMP C:\Users\Administrator\AppData\Local\ Temp

™ C:\Users\Administrator\AppData\Local\ Temp

Edit.. Delete.

System variables

Variable Value "

AWS_EXECUTION_ENV. 2

Comspec C\Windows\system32\cmd.exe

DriverData C:\Windows\System32\Drivers\DriverData

EC2LAUNCH_TELEMETRY 1

NUMBER_OF PROCESSORS 1

os Windous NT

Delete.

Cancel

OEBPS/image/B19160_09_28.jpg
changed the name of keypair @ current

Pending confirmation Resaurces to be changed
Less than a minute 42 -0 2

- riggered a run from GitHub a few seconds ago Run Details

@ Planfinished a few seconds ago Resources: 2 to add, 0 to change, 2 to destroy A

Started a few seconds ago

+ 2tocreate — 2to destroy

nished a fow seconds ago

Fiter by action v | O Show data sources Terratorm 174 | [Download raw log
> s aws_key_pair.root_module_kp
> s module.ec2_instance.aws_instance.this[0]
&, Download Sentinel mocks @ Sentinel mocks can be used for testing your Sentinel policies
P

& Apply pending

% Please review the following changes before continuing:

Tocreate Todestroy
+2 -2

Choosing "Confirm & apply" below will execute the above changes.
Please review the plan output before proceeding.

Discardrun | [Add comment

OEBPS/image/B19160_10_03.jpg
Creating...
Creation complete after 6s [id=terraform-

aws_s3_bucket.app_bucket:
aws_s3_bucket.app_bucket:

Warning: Check block assertion failed

on check-assertions.tf line 7, in check "destroy_check":
7R condition = aws_s3 bucket.app bucket.force destroy == true

aws_s3_bucket.app_bucket.force_destroy is false

The S3 bucket created with the force_destroy parameter as false

Apply complete! Resources: 1 added, © changed, © destroyed.

OEBPS/image/B19160_preface_05.jpg
Binary download

AMD64 ARM64
Download & Download &
Version: 1.7.3 Version: 1.7.3

OEBPS/image/B16190_05_08.jpg
module "ec2_instance" {

(source = "terraform-aws-modules/ec2-instance/aws™)
version = "5.6.0"
name = "public-module-ec2"
ami = data.aws_ami. root_module_ami.id(” source path is referring to the
instance_type = "t3.micro" implied terraform public registry|
subnet_id = module.vpc.public_subnets[0] for child module
vpc_security_group_ids = [module.security_group.security_group_id]
key_name = aws_key_pair.root_module_kp.id
tags = {
Name = "public-module-ec2"
i

OEBPS/image/B16190_05_10.jpg
v APP TERMINAL PROBLEMS ~ OUTPUT DEBUG CONSOLE

> .terraform

e aormiothel ® ~/terraform-code/app $tree

¥ main.tf README. md
¥ outputs.tf main.tf
® README.md outputs. tf

¥ variables.tf variables. tf

1 directory, 4 files
~/terraform-code/app $li

OEBPS/image/B19160_07_01.jpg

OEBPS/image/B19160_11_07.jpg
BACK TO THE BOOK

HashiCorp Terraform Associate (003) Exam Guide

Chandra Mohan Dhanasekaran, Manjunath H Gowda

OEBPS/image/B16190_05_12.jpg

OEBPS/image/B16190_03_07.jpg
aWS aws
N—"
- by: () HashiCorp

Public Cloud

OEBPS/image/B16190_05_06.jpg
CREATING VPC, SUBNET, ROUTE TABLE, IGW
module "vpc" {

(source = "./modules/networking"
vpc_cidr_block 10.51.0.0/16"
vpc_name child-module-vpc"
subnet_cidr_block = "10.51.1.0/24"

az = "ap-south-la" source path is within
igw_name = "child-module-igw" the local filesystem

CREATING SECURITY GROUP AND RULES
module "security_group" {

(source = "./modules/security-group"
vpc_id = module.vpc.vpc_id
security_group_name = "child-module-sg"
allowed_ip = "0.0.0.0/0"

from_port = "22"

to_port = "22"

OEBPS/image/B19160_09_32.jpg
<P> Practice Resources

A SHARE FEEDBAC| v

DASHBOARD >

Understanding HCP Terraform’s Capabilities

Summary

In this chapter, you have learned about the various Terraform editions at your disposal after you decide to go with
Terraform for infrastructure management. By now, you should have a good understanding of the shortcomings of
Terraform Community Edition, when to move to HCP Terraform/Enterprise, and the additional features of these
editions. You also learned how to sign up for HCP Terraform and looked at a few exercises that helped you
understand how the workflows work and what the local and remote execution modes are.

Policy as code is one of the key features that is used to enforce certain policies around costing, best practices, and
compliance. You learned how this can be implemented using Sentinel. Toward the end of the chapter, you looked
at the unique features of Terraform Enterprise.

In the next chapter, you will look at some miscellaneous topics that have not been covered so far.

Chapter Review Questions

The HashiCorp Terraform Associate (003) Exam Guide
by Chandra Mohan Dhanasekaran, Manjunath H
Gowda

Select Quiz

SHOW QUIZ DETAILS

OEBPS/image/B16190_04_02.jpg

OEBPS/image/B19160_09_15.jpg
“* terraform-vcs-workflow Pusiic X Pin | ©unwatch 1

P main ~ § 18Branch © 0Tags Q Gotofile © | Addfile -

Local
Clone
[.gitignore Initial commit
HTTPS SSH
[ucense Initial commit
https://github. coni Jterraforn-ves-
[README.md first set of config fi

Clone using the web URL.

OEBPS/image/B16190_03_11.jpg
<P> Practice Resources N\ SHARE FEEDBACK ™

DASHBOARD >

Basics of Terraform and Core Workflow

Summary

In this chapter, you have learned about the basics of the Terraform language and the CLI-based workflow and
when to apply them. The different block types, configuration settings, and parameters such as input variables and

Chapter Review Question

outputs were discussed. You also saw the steps involved in the Terraform core workflow. The HashiCorp Terraform Associate (003) Exam Guide
by Chandra Mohan Dhanasekaran, Manjunath H
The next chapter will cover Terraform commands in detail, along with the options and the scenarios where they Cowda

can be used.

Select Quiz

Quiz1 START

SHOW QUIZ DETAILS v

OEBPS/image/B19160_01_02.jpg
Infrastructure as Code (laC)

©

|

Templates Scripts Policies
«— —>
.3, -
RS
Source Automation Verification

Control

|
“z & & B

Network Application Storage Servers

OEBPS/image/9781804618844_cover_Low_Res.png
HashiCorp Terraform
Associate (003)
Exam Guide

Prepare to pass the Terraform Associate
exam on your first attempt

Chandra Mohan Dhanasekaran
Manjunath H. Gowda

FLASHCARDS | MOCK EXAMS | EXAM TIPS

OEBPS/image/B19160_01_01.jpg
Practice Resources

DASHBOARD

HashiCorp Terraform Associate (003) Exam Guide

Prepare to pass the Terraform Associate exam on your first attempt

Mock Exams Chapter Review Questions

Q Exam Tips

~ Flashcards v] [

BACK TO THE BOOK

HashiCorp Terraform Associate (003) Exam Guide

Chandra Mohan Dhanasekaran, Manjunath H Gowda

OEBPS/image/B19160_02_01.jpg

OEBPS/image/B19160_09_18.jpg
Y o/l -

Manage

B) Projects & workspaces
B Registry

i Usage

£ Settings

® Explorer

Cloud Platform

@ HashiCorp Cloud Platform (&

packt-learn-te

Projects & workspaces | New Workspace

Create a new Workspace

Terraform Cloud organizes your infrastructure resources by workspaces. A workspace
contains infrastructure resources, variables, state data, and run history. Learn more
about workspaces in Terraform Cloud.

Choose your workflow

Version CLI-Driven API-Driven
Control Workflow Workflow
Workflow Trigger runs in a Trigger runs using the

workspace using the Terraform Cloud API

Trigger runs based on s

changes to
configuration in Y Best for thos
repositories & comfo

t for those
with custom

ations a

Cancel

OEBPS/image/B19160_09_16.jpg
/ terraform-vcs-workflow Q Type /] to search

11 Pullrequests (® Actions [Projects [0 wiki @ Security |+~ Insights @ Settings

- terraform-ves-workflow pusic e BT I
£ main ~ § 1Branch © 0 Tags Q Gotofile © | addfie ~ About)

This repository has the Terraform

first set of config files to test vcs orkflow ecabeaa - 6 minutes ago D) 2 Commits configuration files to test VCS workflow
O gitignore Initial commit 1 hour ago 00 Readme
5 Apache-2.0 license
[LICENSE Initial commit 1 hour ago)
A Activity
[README.md first set of config files to test ves orkflow 6 minutes ago ¢ Ostars
. ® 1watchin,
O maintf first set of config files to test ves orkflow 6 minutes ago o
% Oforks
[outputs.tf first set of config files to test vcs orkflow 6 minutes ago
[providers.tf first set of config files to test ves orkflow 6 minutes ago Releases
No releases published
[variables.tf first set of config files to test vs orkflow 6 minutes ago N ————

OEBPS/image/B19160_10_04.jpg
aces-example> terraform workspace list
default
* dev

OEBPS/image/B16190_03_04.jpg
Initializing the backend...

Initializing provider plugins...
- Reusing previous version of hashicorp/aws from the dependency lock file
- Using previously-installed hashicorp/aws v5.19.8

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

OEBPS/image/B19160_11_04.jpg
Practice Resources

PACKT PRACTICE RESOURCES

You've just unlocked the free online content that came with your book.

HashiCorp Terraform Associate (003) Exam Guide

[T Book ISBN: 9781804618844

HashiCorp Terraform
Associate (003)
Exam Guide Chandra Mohan Dhanasekaran ¢ Manjunath H Gowda « May 2024 « 400 pages

Prepore foposs the
‘exomon your st

Chondra Mohan Dhanasakaran
Monjunath H Gowda

© Unlock Successful

Pro Tip: You can switch seamlessly between the ebook version of the book and the practice resources. You'll
find the ebook version of this title in your Owned Content

OEBPS/image/B19160_preface_15.jpg
module.vpc.aws_vp

+ resource "aws_vpc" "this" {

+

O A I A e

Plan: 4

arn
cidr_block
default_network_acl_id
default_route_table_id
default_security_group_id
dhcp_options_id
enable_dns_hostnames
enable_dns_support
enable_network_address_usage_metric:
id
instance_tenancy
ipv6_association_id
ipv6_cidr_block
ipv6_cidr_block_network_border_grou
main_route_table_id
owner_id
tags

> "Name" = "
It
tags_all

to add, @ to change, @ to destroy.

his[8] will be created

(known after apply)

= (known
(known
(known
(known
true

true

(known
(known

(known
(known
(known
(known
(known
=1

= (known

"10.0.0.0/16"

after
after
after
after

after
after

"default"

after
after
after
after
after

after

apply)
apply)
apply)
apply)

apply)
apply)

apply)
apply)
apply)
apply)
apply)

apply)

OEBPS/image/B16190_05_04.jpg
Networking Module EC2 Module Sef:;lr:z l:;:;oup

a Root Module JL JL \

o Configuration File o Output values of
Values of variables calling Child Modules i

\ Creates resources /

AWS Region

,@E ______________

Subnet

Security Group
s

|
|
' I |
' | ‘ |
|
|

OEBPS/image/B19160_preface_07.jpg
~/Downloads $terraform -v
Terraform v1.7.3
on darwin_arm64

OEBPS/image/B19160_09_26.jpg
Manual-run-to-test | ® current |

Plan & apply duration Resources changed

1 minute +18 ~0 -0
i riggered a run from Ul a few seconds ago Run Details v
@ Planfinished afew seconds ago Resources: 18 to add, 0 to change, 0 to destroy v

@ Apply finished afew seconds ago

: 18 added, 0 changed, 0 destroyed A

Started aminute ago - Finished a few seconds ago

+ 18 created
Filter by action v Terraform 1.7.4. ‘ [Download raw log ‘

> 4 s aws_key_pair.root_module_kp | v Created id=root-nodule-kp |

Filter resources by addres

> -4 s module.ec2_instance.aws_instance.this[0] | v Created id=i-04963c3c3b4692ac

OEBPS/image/B19160_09_08.jpg
Welcome to HCP Terraform! N

Documentation: terraform.io/docs/cloud

New to HCP Terraform? Follow these steps to instantly apply an example config
uration:

$ git clone https://github.com/hashicorp/tfc-getting-started.git
$ cd tfc-getting-started
$ scripts/setup.sh

OEBPS/image/B16190_09_02.jpg
HCP Terraform Heirarchy

‘ Organization]

Y A
Project 1 Project 2 Project N

\ 4 \ 4 l
Workspace 1 {Workspace 2] [Workspace N]

OEBPS/image/B19160_01_08.jpg
<P> Practice Resources N SHARE FEEDBACK v/ ’

DASHBOARD >

Introduction to Infrastructure as Code (IaC) and Concepts

Summary

In this chapter, the laC concept was discussed in detail, and some popular laC tools were covered to help you Chqp.'.er ReVieW Ques‘ﬁons

understand the differences between them. You then read through various use cases demonstrating the

implementation of the laC approach, and these were followed up with the benefits of using them. The HashiCorp Terraform Associate (003) Exam Guide
by Chandra Mohan Dhanasekaran, Manjunath H
After having done the practical exercises using CloudFormation and Terraform tools, you now also have a better Covda

idea about the actual working of these tools and how they differ from each other.

Select Quiz

Quiz1 START

SHOW QUIZ DETAILS v

OEBPS/image/B19160_08_01.jpg
W maintf > ...

1
2
=)
4
5
6
73
8
9

10
&1
2
13
14
15
16
1z
18
19
20
21

variable "test-sensitive" {

type string
sensitive = true
default = "test-string-1"
}
variable "test-nonsensitive" {
type = string
sensitive = false
default = "test-string-2"
}

output "outvall" {
value = var.test-sensitive
sensitive = true

output "outval2" {
value = var.test-nonsensitive

OEBPS/image/Packt_Logo_New.png
<paAckn

OEBPS/image/B19160_QR_Free_PDF.jpg

OEBPS/image/B19160_06_01.jpg
Do you want to perform these actions?
Terraform will perform the actions described above.
Only ‘'yes' will be accepted to approve.

Enter a value: yes

aws_instance.testinstance: Still creating... [10s elapsed]
aws_instance.testinstance: Creation complete after 17s [id=i-
aws_eip.ip: Creating...

aws_eip.ip: Creation complete after 4s [id=eipallcc-

16]

OEBPS/image/B19160_06_03.jpg

OEBPS/image/B19160_09_11.jpg
~/tfc-getting-started $1s
LICENSE README. md backend. tf main.tf provider.tf
~/tfc-getting-started $cat main.tf
resource "fakewebservices_vpc" "primary_vpc" {
name = "Primary VPC"
cidr_block = "10.0.0.0/8"——— cidr_block is changed to 10.0.0.0/8
}

resource "fakewebservices_server" "servers" {
count = 10 ———> Number of servers changed to 10

name = "Server ${count.index + 1}"
type = "t2.micro"
vpc = fakewebservices_vpc.primary_vpc.name
}
resource "fakewebservices_load_balancer" "primary_lb" {
name = "Primary Load Balancer"
servers = fakewebservices_server.servers [*].name

}

resource "fakewebservices_database" "prod_db" {
name = "Production DB"
size = 256

}

scripts

OEBPS/image/B19160_preface_09.jpg
PS C:\Users\Administrator> choco install terraform
Chocolatey v2.2.2

Installing the following packages:

terraform

By installing, you accept licenses for the packages.
Progress: Downloading terraform 1.7.3... 100%

terraform v1.7.3 [Approved]

terraform package files install completed. Performing other installation steps.
The package terraform wants to run 'chocolateyInstall.psl’.

Note: If you don't run this script, the installation will fail.

Note: To confirm automatically next time, use '-y' or consider:

choco feature enable -n allowGlobalConfirmation

Do you want to run the script?([Y]es/[A]ll - yes to all/[N]o/[P]rint): Y

Removing old terraform plugins

Downloading terraform 64 bit
from 'https://releases.hashicorp.com/terraform/1.7.3/terraform_1.7.3_windows_amdé4.zip"

Progress: 100% - Completed download of C:\Users\Administrator\AppData\Local\Temp\chocolatey\terraform\1.7.3\terraform_1.
7.3_windows_amdé4.zip (25.85 MB).
Download of terraform_1.7.3_windows_amdé4.zip (25.85 MB) completed.
Hashes match.

Extracting C:\Users\Administrator\AppData\Local\Temp\chocolatey\terraform\1.7.3\terraform_1.7.3_windows_amdé4.zip to C:
ProgramData\chocolatey\lib\terraform\tools. ..
C:\ProgramData\chocolatey\lib\terraform\tools

ShimGen has successfully created a shim for terraform.exe

OEBPS/image/B19160_09_24.jpg
Overview

Runs.

States

Variables

Setin,

& workspac

m-ves-workflow

run-kg2JYooEYuFbje22

terraform-vcs-workflow & Force unlock
TD: ws—fputChvnmpX3DMTH [2

Add workspace description.

@ Running BB Resourt Terraform v174 ® Updated a few seconds ago

Manual-run-to-test (®© CURRENT

b

g confirmation

Less than a minute +18 ~0 -0

ed a run frc

Ul a few sec

Run Details v

@ Planfinished afew seconds ago

Started afew seconds ago - Finished a few seconds ago

= Filter by action v | (JShow data sourc Terraform [pownload raw log

> + WS aws_key_pair.root_module_kp

> 4 3 module.ec2_instance.aws_instance.this[0]

> + WS module.security_group.aws_security_group_rule.egress_with_cidr_blocks[0]

OEBPS/image/B19160_11_02.jpg
Practice Resources

UNLOCK YOUR PRACTICE RESOURCES

You're about to unlock the free online content that came with your book. Make sure you have your book with you before you start, so that you can access the
resources in minutes.

HashiCorp Terraform Associate (003) Exam Guide

HashiCorp Terraform (11 Book ISBN: 9781804618844

Associate (003)
Exam Guide Chandra Mohan Dhanasekaran ¢ Manjunath H Gowda « May 2024 « 400 pages

Prapor opassthe Teraform Assoicte

[ioadtratoonmu Do you have a Packt account?

O Yes, | have an existing Packt account O No, I don’t have a Packt account

OEBPS/image/B19160_preface_13.jpg
~ $aws configure

AWS Access Key ID [Nonel: AKIAYC

AWS Secret Access Key [None]: EdMKRvx40S5
Default region name [Nonel: ap-south-1
Default output format [None]: json

~§

VJo5NzUO5gA

OEBPS/image/B19160_09_06.jpg
Creating a user token

Description Required
o help you identify this token later.

terraform login

Expiration

This token will expire March 29th, 2024

OEBPS/image/B16190_03_02.jpg
C:\Users>terraform -version
Terraform v1.5.7
on windows_amdé4

OEBPS/image/B16190_05_02.jpg
Root Module

Values of variables | CoiiEuEten [l 5 Outputvalues of
calling child Modules provisioned resources
Creates resources
AWS Region
e s N T
E m/ T T T T T T T T T T ~)
i I N |
| 172.16.0.0 |
| [z1e9) @
I [Tz1e20] |
Internet
I VPC Route table gateway :

OEBPS/image/B19160_01_06.jpg
test-s3-bucket-kquiyrt

Objects ‘ Properties ‘ Permissions ‘ Metrics Management Access Points

Bucket overview

AWS Region Amazon Resource Name (ARN) Creation date
US East (N. Virginia) us-east-1 arn:aws:s3:test-s3-bucket-kquiyrt September 1, 2023, 05:54:07 (UTC+05:30)

Bucket Versioning

Versioning is a means of keeping multiple variants of an object in the same bucket. You can use versioning to preserve, retrieve, and restore every version of every object stored
in your Amazon S3 bucket. With versioning, you can easily recover from both unintended user actions and application failures. Learn more

B

Multi-factor authentication (MFA) delete

OEBPS/image/B19160_10_06.jpg
DASHBOARD >

Miscellaneous Topics

Summary

In this chapter, the focus was more on topics that are not vast but are very important to understand when you Ch0 p.'.er Review Ques*io S

want fo build and deploy complex applications using Terraform. Provisioners are very helpful if you know how to

use them effectively and handle exceptions that can occur. The usage of sensitive data in Terraform needs to be The HashiCorp Terraform Associate (003) Exam Guide

planned well ahead of the project schedule and external secret engines should be utilized whenever possible. by Chandra Mohan Dhanasekaran, Manjunath H
Gowda

Select Quiz

Quiz1 START

SHOW QUIZ DETAILS

OEBPS/image/B19160_09_12.jpg
Plan: 8 to add, 2 to change, @ to destroy.

OEBPS/image/B16190_03_01.jpg
5
¥

Terraform

Terraform
provider

EE——

Target
API

OEBPS/image/B19160_09_20.jpg
| LR] Authorize Terraform Cloud

% github.comylogin/oauth/authorize?response_type=.. = | @ A

Terraform Cloud by HashiCorp would like
permission to:

,q Verify your GitHub identity

D Know which resources you can access

‘ J\, Act on your behalf
@ resmpmare

Learn more about Terraform Cloud

—— Authorize Terraform
Cloud

Authorizing will redirect to
https://app.terraform.io

OEBPS/image/B16190_04_01.jpg
[root] provider[“registry.terraform.io/hashicorp/aws”] (close)

v

aws_iam_access_key.user_access_keys

v

aws_iam_user.test_user

provider[‘registry.terraform.io/hashicorp/aws”]

var.region

OEBPS/image/B19160_01_05.jpg
Buckets (8) info

Copy ARN Empty Delete _
Buckets are containers for data stored in S3. Learn more [
Q, test X | 1match <1 > @&

Creation date v

Name A AWS Region v Access v

September 1, 2023, 05:54:07
(UTC+05:30)

O test-s3-bucket-kquiyrt US East (N. Virginia) us-east-1 Bucket and objects not public

OEBPS/image/B19160_09_05.jpg
~ $terraform login
Terraform will request an API token for app.terraform.io using your browser.

If login is successful, Terraform will store the token in plain text in
the following file for use by subsequent commands:
/Users/packt/.terraform.d/credentials.tfrc.json

Do you want to proceed?
Only 'yes' will be accepted to confirm.

Enter a value:

OEBPS/image/B19160_preface_12.jpg
Edit environment variable

SESystemRoot A\ system32
SESystemRoot%

SESystemRoot4\System32\Whem
SESYSTEMROOTI4\System32\WindowsPowerShell\v1.0v
S4SYSTEMROOTS4\System32\OpenSSH\

Edit

Move Up

Move Down

Edittext...

oK

Cancel

OEBPS/image/9781805124689cov_High_Res.jpg
Azure Data
Engineer Associate
Certification Guide

Ace the DP-203 exam with advanced data
engineering skills

Giacinto Palmieri | Surendra Mettapalli
Newton Alex

FLASHCARDS | MOCK EXAMS | EXAM TIPS

OEBPS/image/B19160_09_03.jpg
Create an account ..

count? Sign in
Continue with HCP account
OR

Username

packt-terraform-book
Email

packt-terraform@gmail.com =2
Password

Iagree to the Terms of Use.

Tacknowledge the Privacy Policy.

review the Terms of Use and Privacy Policy.

OEBPS/image/B19160_preface_10.jpg
System Properties

Computer Name = Hardware | Advanced IRemote

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in

Startup and Recovery
System startup, system failure, and debugging information

fErwiotm\;mem Variables... {

ok | [canca | [ASRH

OEBPS/image/B16190_05_09.jpg
¥ maintf X

¥ main.tf
1 module "example" {
2 (source = "github.com/manj u712/terrafurm—remote—module‘)
3 }
4

(Source path is referring to the GitHub’s repository.)

OEBPS/image/B19160_09_22.jpg
packt-learn-terraform- | Projects & workspaces | New Workspace

Workspace created!

Go to workspace overview
Workspace v terraform-ves-workflow

Next step: Configure Terraform variables

No variables found

Your configuration does not contain input variable definitions that need values entered.

Continue to workspace overview -

Start your first plan

After you configure any required input variables, start your first plan.

Start new plan

OEBPS/image/B19160_preface_02.jpg
Terraform installation

Supported OS

Y

Supported CPU
architecture

nux| (macos | (windows | omer os]J

1. Ubuntu/Debian
2. CentOS/RHEL

3. Fedora
4. Amazon Linux

\ 4

1. FreeBSD
2. OpenBSD
3. Solaris

1. 386 (Windows, Linux,
FreeBSD, OpenBSD)

2. AMD64 (All OS shown in the
upported OS branch)

3. ARM (Linux and FreeBSD)

4. ARM64 (Linux and macOS)

Supported
installation types

1. Package manager

2. Pre-compiled binary
3. Compile from source

OEBPS/image/B19160_08_04.jpg
<P> Practice Resources A\ SHARE FEEDBACK

DASHBOARD >

Terraform Functions

Summary

In this chapter, you looked at the different types of functions, starting with basic numeric and string functions, Chapfer Review Quesfion

followed by collection functions to work with the complex types. Then, the type conversion functions were

covered with file-based functions with encoding options and a few special utility functions. The HashiCorp Terraform Associate (003) Exam Guide

by Chandra Mohan Dhanasekaran, Manjunath H
From the exam perspective, these functions may not be directly asked about in the questions, but this knowledge Govwda
will be helpful in other scenario-based questions.

Select Quiz

SHOW QUIZ DETAILS

OEBPS/image/B16190_04_03.jpg
<P> Practice Resources g SHARE FEEDBACK v/

DASHBOARD >

Terraform Commands and State Management

Summary

In this chapter, you read about the core Terraform workflow commands. This was followed by explanations of C ap.'.er ReVieW Ques‘ﬁons

special-purpose commands such as console, graph, and import, used as and when the need arises. The terraform
state command was then discussed in detail with the subcommands. You also looked at how each command helps The HashiCorp Terraform Associate (003) Exam Guide
the developer interact with and manage the state file beyond infrastructure provisioning. by Chandra Mohan Dhanasekaran, Manjunath H

Gowda
Now, you can proceed with the next chapter, on how to use the commands with Terraform CLI with full

confidence. This will help in increasing productivity and the seamless transition fo advanced concepts such as Select Quiz

Terraform modules, Terraform Cloud, and so on.
SHOW QUIZ DETAILS \/

OEBPS/image/B16190_03_08.jpg
O -
%~ Partner | by:oracle

Infrastructure (laaS)

OEBPS/image/B16190_05_07.jpg
*~/terraform-code/app $terraform init

Initializing the backend...

Initializing modules...

- ec2_instance in modules/ec2)

- security_group in modules/security-group -0ca child modules
- vpc in modules/networking getingintiaized

Initializing provider plugins...

- Finding hashicorp/aws versions matching "5.34.0"...

- Installing hashicorp/aws v5.34.0...

— Installed hashicorp/aws v5.34.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

OEBPS/image/B19160_09_14.jpg
Create a new repository
A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repositor,

Required fields are marked with an asterisk

Owner * Repository name *
| terraform-ves-workflow
© terraform-ves-workflow is available.
Great repository names are short and memorable. Need inspiration? How about solid-guide ?
Description (optional)

This repository has the Terraform configuration files to test VCS workflow

o [Public

Anyone on the intermet can see this repository. You choose who can commit
o Private

You choose who can see and commit to this repository.

Initialize this repository with:

[Add a README file
This is where you can write a long description for your project. Learn more about READMES.

Add_gitignore
gitignore template: Terraform ~

Choose which files not to track from a lst of templates. Learn more about ignoring files.

Choose a license
License: Apache License 2.0 ~

Alicense tells others what they can and can't do with your code. Learn more about licenses.

@ You are creating a public repository in your personal account.

Create repository

OEBPS/image/B19160_09_29.jpg
packt-learn-terraform- | Settings | Cost Estimation

Cost Estimation

Enable Cost Estimation for all workspaces
When possible, display an estimated monthly cost for resources provisioned.

OEBPS/image/B19160_09_31.jpg

OEBPS/image/B19160_01_03.jpg
DynamoDB » Tables

Tables (3) info Actions v Delete _

Q, Find tables by table name ‘ l Any tag key v ‘ Any tag value v <1 > @&
(] Name S Status Partition key Sort key Indexes
O DynamoDB-Test-myDynamoDBTable-QEC907JOSHL6 @ Active CustomerID (S) - 0

OEBPS/image/B16190_03_10.jpg

OEBPS/image/B19160_preface_04.jpg
~$terraform -v
Terraform v1.7.3
on darwin_armé4

+ provider registry.terraform.io/hashicorp/aws v4.64.0
~$

OEBPS/image/B19160_09_27.jpg
resource "aws_key_pair" "root-module-kp" {
key_name = "vcs-test-kp"

OEBPS/image/B16190_03_06.jpg
aws_iam_user.test_user: Creating...
aws_iam_user.test_user: Creation complete after 1s [id=test-aws-user]
aws_iam_access_key.user_access_keys: Creating...

aws_iam_access_key.user_access_keys: Creation complete after @s [id=

Apply complete! Resources: 2 added, @ changed, @ destroyed.

OEBPS/image/B19160_10_02.jpg
Plan: 1 to add, @ to change, © to destroy.
Warning: Check block assertion failed

on check-assertions.tf line 7, in check "destroy_check™:
743 condition = aws_s3_bucket.app bucket.force_destroy == true

aws_s3_bucket.app_bucket.force_destroy is false

The S3 bucket created with the force_destroy parameter as false

OEBPS/image/B19160_11_06.jpg

OEBPS/image/B16190_05_11.jpg
GENERIC SYNTAX OF MODULE
module "local-name-for-the-module" {

source = "Local/Remote location of the child module"

version = "Version number of the module to be downloaded from the above source"
VARIABLE1 = Valuel

VARIABLE2 = Value2

EXAMPLE OF A MODULE

module "key. {
source erraform-aws-modules/key-pair/aws"
version = "2.0.2"

key_name = "my—keypair"
create_private_key = true
}

OEBPS/image/B19160_07_02.jpg
<{P> Practice Resources Q i SHARE FEEDBACK v

DASHBOARD >

Debugging and Troubleshooting Terraform
Summary

In this chapter, you learned about the key areas in which Terraform issues arise and how to handle those issues.
The areas or the issues highlighted here are in no way exhaustive but should give you a good understanding of the

Chapter Review Question

frequent issues in Terraform. The HashiCorp Terraform Associate (003) Exam Guide
by Chandra Mohan Dhanasekaran, Manjunath H
You also learned how to enable logging, which is the most important step in troubleshooting issues or raising a bug Govan

report with the providers or with HashiCorp.

Select Quiz

In the end, you saw some tips from real-world Terraform management. In Chapter 8, Terraform Functions, you
will read about the use of Terraform functions that the Terraform language supports.

SHOW QUIZ DETAILS v

