
[image: Cover: Data Analytics for Finance Using Python, Advances in Digital Technologies for Smart Applications, written by Nitin Jaglal Untwal and Utku Kose, Published by CRC press, Taylor and Francis Group, Boca Raton, London, New York. CRC press is an imprint of Taylor and Francis Group, an Informa business.]

Data Analytics for Finance Using Python

Unlock the power of data analytics in finance with this comprehensive guide. Data Analytics for Finance Using Python is your key to unlocking the secrets of the financial markets.

In this book, you’ll discover how to harness the latest data analytics techniques, including machine learning and inferential statistics, to make informed investment decisions and drive business success. With a focus on practical application, this book takes you on a journey from the basics of data preprocessing and visualization to advanced modeling techniques for stock price prediction.

Through real-world case studies and examples, you’ll learn how to:

	Uncover hidden patterns and trends in financial data

	Build predictive models that drive investment decisions

	Optimize portfolio performance using data-driven insights

	Stay ahead of the competition with cutting-edge data analytics techniques

Whether you’re a finance professional seeking to enhance your data analytics skills or a researcher looking to advance the field of finance through data-driven insights, this book is an essential resource. Dive into the world of data analytics in finance and discover the power to make informed decisions, drive business success, and stay ahead of the curve.

This book will be helpful for students, researchers, and users of machine learning and financial tools in the disciplines of commerce, management, and economics.

Advances in Digital Technologies for Smart Applications

Series Editor: Saad Motahhir

The Advances in Digital Technologies for Smart Applications series publishes leading-edge research on innovative digital technologies and their application in smart systems. Key topics include AI, IoT, blockchain, and their integration into various sectors, including finance, healthcare, and public governance.

Data Analytics for Finance Using Python

Nitin Jaglal Untwal, Utku Kose

Big Data and Blockchain Technology for Secure IoT Applications

Shitharth Selvarajan, Gouse Baig Mohammad, Sadda Bharath Reddy, Praveen Kumar Balachandran

Technology-Based Teaching and Learning in Pakistani English Language Classrooms

Muhammad Mooneeb Ali

Medical Knowledge Paradigms for Enabling the Digital Health Ecosystem

Usha Desai, Vivek P Chavda, Ankit Vijayvargiya, Ravichander Janapati

Soft Computing in Renewable Energy Technologies

Najib El Ouanjli, Mahmoud A. Mossa, Mariya Ouaissa, Sanjeevikumar Padmanaban, Said Mahfoud

Leveraging the Potential of Artificial Intelligence in the Real World: Smart Cities and Healthcare

Tien Anh Tran, Edeh Michael Onyema, Arij Naser Abougreen

eGovernment Whole-of-Government Approach for Good Governance: The Back-Office Integrated Management IT Systems

Said Azelmad

Advances in Digital Marketing in the Era of Artificial Intelligence: Case Studies and Data Analysis for Business Problem Solving

Moez Ltifi

For more information about this series, please visit: https://www.routledge.com/Advances-in-Digital-Technologies-for-Smart-Applications/book-series/ADT

Data Analytics for Finance Using Python

Nitin Jaglal Untwal and Utku Kose

[image: Logo: Published by CRC press, Taylor and Francis Group, Boca Raton, London, New York. CRC press is an imprint of Taylor and Francis Group, an Informa business.]

First edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Nitin Jaglal Untwal and Utku Kose

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-61821-0 (hbk)

ISBN: 978-1-032-61823-4 (pbk)

ISBN: 978-1-032-61824-1 (ebk)

DOI: 10.1201/9781032618241

Typeset in Caslon

by Apex CoVantage, LLC

Contents

PREFACE

AUTHORS

CHAPTER 1 STOCK INVESTMENTS PORTFOLIO MANAGEMENT BY APPLYING K-MEANS CLUSTERING

1.1 Introduction

1.1.1 Introduction to Cluster Analysis

1.1.2 Literature Review

1.2 Research Methodology

1.2.1 Data Source

1.2.2 Study Time Frame

1.2.3 Tool for Analysis

1.2.4 Model Applied

1.2.5 Limitations of the Study

1.2.6 Future Scope

1.3 Feature Extraction and Engineering

1.4 Data Extraction

1.5 Standardizing and Scaling

1.6 Identification of Clusters by the Elbow Method

1.7 Cluster Formation

1.8 Results and Analysis

1.8.1 Cluster One

1.8.2 Cluster Two

1.8.3 Clusters Three and Four

1.8.4 Cluster Five

1.8.5 Cluster Six

1.9 Conclusion

CHAPTER 2 PREDICTING STOCK PRICE USING THE ARIMA MODEL

2.1 Introduction

2.2 ARIMA Model

2.2.1 Literature Review

2.3 Research Methodology

2.3.1 Data Source

2.3.2 Period of Study

2.3.3 Software Used for Data Analysis

2.3.4 Model Applied

2.3.5 Limitations of the Study

2.3.6 Future Scope of the Study

2.3.7 Methodology

2.4 Finding Different Lags Autocorrelation

2.5 Creating the Different ARIMA Models

2.5.1 Comparing the AIC Values of Models

2.6 Selecting the Best Model Using Cross-Validation

2.7 Conclusion

CHAPTER 3 STOCK INVESTMENT STRATEGY USING A LOGISTIC REGRESSION MODEL

3.1 Introduction to the Logistic Regression Model

3.1.1 Introduction to a Multinomial Logistic Regression Model

3.1.2 Literature Review

3.1.3 Applied Research Methodology

3.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

3.3 Data Description and Creating Trial and Testing Data Sets

3.4 Results Analysis for the Logistic Regression Model

3.4.1 The Stats Models Analysis in Python

3.5 Model Evaluation Using Confusion Matrix and Accuracy Statistics

3.5.1 Calculating False Negative, False Positive, True Negative, and True Positive

3.6 Accuracy Statistics

3.6.1 Recall

3.6.2 Precision

3.7 Conclusion

CHAPTER 4 PREDICTING STOCK BUYING AND SELLING DECISIONS BY APPLYING THE GAUSSIAN NAIVE BAYES MODEL USING PYTHON PROGRAMMING

4.1 Introduction

4.1.1 Literature Review

4.2 Research Methodology

4.2.1 Data Collection

4.2.2 Sample Size

4.2.3 Software Used for Data Analysis

4.2.4 Model Applied

4.2.5 Limitations of the Study

4.2.6 Future Scope of the Study

4.3 Methodology

4.4 Feature Engineering and Data Processing

4.5 Training and Testing

4.6 Predicting Naive Bayes Model with Confusion Matrix

4.6.1 Creating Confusion Matrix

4.6.2 Calculating False Negative, False Positive, True Negative, and True Positive

4.6.3 Result Analysis

4.7 Conclusion

CHAPTER 5 THE RANDOM FOREST TECHNIQUE IS A TOOL FOR STOCK TRADING DECISIONS

5.1 Introduction

5.2 Random Forest Literature Review

5.3 Research Methodology

5.3.1 Data Source

5.3.2 Period of Study

5.3.3 Sample Size

5.3.4 Software Used for Data Analysis

5.3.5 Model Applied

5.3.6 Limitations of the Study

5.3.7 Future Scope of the Study

5.3.8 Methodology

5.4 Defining the Dependent and Independent Variables for the Random Forest Model

5.5 Training and Testing with Accuracy Statistics

5.6 Buying and Selling Strategy Return

5.7 Conclusion

CHAPTER 6 APPLYING DECISION TREE CLASSIFIER FOR BUYING AND SELLING STRATEGY WITH SPECIAL REFERENCE TO MRF STOCK

6.1 Introduction

6.2 Decision Tree

6.3 Research Methodology

6.3.1 Data Source

6.3.2 Period of Study

6.3.3 Software Used for Data Analysis

6.3.4 Model Applied

6.3.5 Limitations of the Study

6.3.6 Methodology

6.4 Creating a Data Frame

6.5 Feature Construction and Defining the Dependent and Independent Variables

6.6 Training and Testing of Data for Accuracy Statistics

6.7 Buying and Selling Strategy Return

6.8 Decision Tree Analysis

6.9 Conclusion

CHAPTER 7 DESCRIPTIVE STATISTICS FOR STOCK RISK ASSESSMENT

7.1 Introduction

7.1.1 Related Work

7.2 Research Methodology

7.2.1 Data Source

7.2.2 Period of Study

7.2.3 Software Used for Data Analysis

7.2.4 Model Applied

7.2.5 Limitations of the Study

7.2.6 Future Scope of the Study

7.3 Performing Descriptive Statistics in Python for Mean

7.4 Performing Descriptive Statistics in Python for Median

7.5 Performing Descriptive Statistics in Python for Mode

7.6 Performing Descriptive Statistics in Python for Range

7.7 Performing Descriptive Statistics in Python for Variance

7.8 Performing Descriptive Statistics in Python for Standard Deviation

7.9 Performing Descriptive Statistics in Python for Quantile

7.10 Performing Descriptive Statistics in Python for Weakness

7.11 Performing Descriptive Statistics in Python for Kurtosis

7.12 Conclusion

CHAPTER 8 STOCK INVESTMENT STRATEGY USING A REGRESSION MODEL

8.1 Introduction to a Multiple Regression Model

8.2 Applied Research Methodology

8.2.1 Data Source

8.2.2 Sample Size

8.2.3 Software Used for Data Analysis

8.2.4 Model Applied

8.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

8.4 Correlation Matrix

8.5 Result Analysis for the Multiple Regression Model

8.5.1 R-Square

8.6 Conclusion

CHAPTER 9 COMPARING STOCK RISK USING F-TEST

9.1 Introduction

9.1.1 Review of Literature

9.2 Research Methodology

9.2.1 Data Source

9.2.2 Period of Study

9.2.3 Software Used for Data Analysis

9.2.4 Model Applied

9.2.5 Limitations of the Study

9.2.6 Future Scope of the Study

CHAPTER 10 STOCK RISK ANALYSIS USING T-TEST

10.1 Introduction

10.2 Research Methodology

10.2.1 Data Source

10.2.2 Period of Study

10.2.3 Software Used for Data Analysis

10.2.4 Model Applied

10.2.5 Limitations of the Study

10.2.6 Future Scope of the Study

10.3 Conclusion

CHAPTER 11 STOCK INVESTMENT STRATEGY USING A Z-SCORE

11.1 Introduction to Z-Score

11.2 Applied Research Methodology

11.2.1 Data Source

11.2.2 Sample Size

11.2.3 Software Used for Data Analysis

11.2.4 Model Applied

11.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

11.4 Calculating the Z-Score for the Stock

11.5 Results Z-Score Analysis

11.6 Conclusion

CHAPTER 12 APPLYING A SUPPORT VECTOR MACHINE MODEL USING PYTHON PROGRAMMING

12.1 Introduction

12.1.1 Review of Literature

12.2 Research Methodology

12.2.1 Data Collection

12.2.2 Sample Size

12.2.3 Software Used for Data Analysis

12.2.4 Model Applied

12.2.5 Limitations of the Study

12.2.6 Future Scope of the Study

12.3 Methodology

12.4 Feature Engineering and Data Processing

12.5 Training and Testing

12.6 Predicting a Support Vector Machine Model with a Confusion Matrix

12.6.1 Creating a Confusion Matrix

12.7 Calculating False Negative, False Positive, True Negative, and True Positive

12.7.1 Result Analysis

12.8 Conclusion

CHAPTER 13 DATA VISUALIZATION FOR STOCK RISK COMPARISON AND ANALYSIS

13.1 Introduction to Data Visualization

13.1.1 Review of Past Studies

13.1.2 Applied Research Methodology

13.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

13.2.1 Data Visualization Using Scatter Plot

13.3 Data Visualization Using Bar Chat

13.4 Data Visualization Using Line Chart

13.5 Data Visualization Using Bokeh

CHAPTER 14 APPLYING NATURAL LANGUAGE PROCESSING FOR STOCK INVESTORS SENTIMENT ANALYSIS

14.1 Introduction

14.2 Research Methodology

14.2.1 Data Source

14.2.2 Period of Study

14.2.3 Software Used for Data Analysis

14.2.4 Model Applied

14.2.5 Limitations of the Study

14.2.6 Future Scope of the Study

14.3 Fetching the Data into a Python Environment

14.4 Sentiments Count for Understanding Investors’ Perceptions

14.5 Performing Data Cleaning in Python

14.6 Performing Vectorization in Python

14.7 Vector Transformation to Create Trial and Training Data Sets

14.8 Result Analysis Model Testing AUC

14.9 Conclusion

CHAPTER 15 STOCK PREDICTION APPLYING LSTM

15.1 Introduction

15.1.1 Review of Literature

15.2 Research Methodology

15.2.1 Data Source

15.2.2 Period of Study

15.2.3 Software Used for Data Analysis

15.2.4 Model Applied

15.2.5 Limitations of the Study

15.2.6 Future Scope of the Study

15.3 Fetching the Data into a Python Environment

15.4 Performing Data Cleaning in Python

15.5 Vector Transformation to Create Trial and Training Data Sets

15.6 Result Analysis for the LSTM Model

15.7 Conclusion

Preface

In today’s fast-paced and rapidly changing financial landscape, data analytics has become an essential tool for making informed investment decisions and driving business success. With the increasing availability of financial data, professionals in the finance industry are turning to data analytics to gain a competitive edge and stay ahead of the curve.

This book is designed to provide finance professionals, researchers, and students with a comprehensive guide to the application of data analytics in finance. The book covers a wide range of topics, from the basics of data preprocessing and visualization to advanced machine learning models and inferential statistical techniques for stock price prediction.

This book provides a strong basic foundation for machine learning and its application in finance. It emphasizes various machine learning algorithms and their application to the finance discipline. The advanced machine learning concepts are discussed lucidly over their practical application and theoretical understanding. The topics covered in the book act as a step-by-step guide for the application of machine learning tools in finance. The advanced machine learning topics which are covered are as follows:

	Chapter 1: Stock investments portfolio management by applying K-means clustering

	Chapter 2: Predicting stock price using the ARIMA model

	Chapter 3: Stock investment strategy using a logistic regression model

	Chapter 4: Predicting the stock buying and selling decisions by applying the gaussian naive bayes model using python programming

	Chapter 5: The random forest technique as a tool for stock trading decisions

	Chapter 6: Stock management and decision tree technique for proper investment

	Chapter 7: Descriptive statistics for stock risk analysis and its management

	Chapter 8: Stock prediction using a multiple regression model

	Chapter 9: F-test for stock risk assessment

	Chapter 10: T-test for stock risk assessment

	Chapter 11: Z-test for stock risk assessment

	Chapter 12: Support vector machine learning model for stock prediction

	Chapter 13: Stock risk analysis by visualization

	Chapter 14: NLP for sentiment analysis for stock

	Chapter 15: LSTM for stock price prediction

This book highlights the use and application of machine learning tools and techniques in the finance area to further improve the performance of researchers and analysts. The themes will be helpful for students, researchers, and many other users of these technologies. This book is a catalyst for bringing together machine learning and the financial discipline to develop a deep understanding of the subject.

In addition, we offer our collective expertise and knowledge in this book, providing readers a unique and insightful perspective on finance and computer science and engineering.

Authors

Nitin Jaglal Untwal, PhD, is a distinguished scholar and educator in the field of finance, with a remarkable academic background and research expertise. Holding a doctorate in finance and master’s degrees in related fields like commerce, management, and econometrics, he has established himself as a prominent authority in financial data analytics, technology management, and econometrics modeling. With over 11 years of experience in teaching and research, Dr. Untwal has published numerous papers in esteemed databases like Scopus and Web of Science, solidifying his reputation as a leading researcher in his field. Recognized as a postgraduate faculty member by the S.P. University of Pune since 2008, he has also achieved success in prestigious eligibility tests, including UGC-SET in Management and State Eligibility Test Commerce. Additionally, he has completed a Faculty Development Program from the Indian Institute of Management, Kozhikode (IIM-K). Dr. Untwal’s wealth of knowledge and experience make him an invaluable contributor to this book.

Utku Kose, PhD, a distinguished scholar in computer science and engineering, joins Dr. Untwal in this literary endeavor. With over 200 publications to his name, Dr. Kose has demonstrated his expertise in artificial intelligence, machine ethics, biomedical applications, and more. His impressive academic background and extensive research experience make him a significant contributor to this book.

1
STOCK INVESTMENTS PORTFOLIO MANAGEMENT BY APPLYING K-MEANS CLUSTERING

DOI: 10.1201/9781032618241-1

1.1 Introduction

National Stock Exchange Indices is the owner of the Nifty 50 and earlier it was known as Index Services and Product Limited. Nifty 50 covers 12 sectors of the Indian economy. The Nifty 50 is a portfolio of companies from the financial industry, information technology (IT), oil and gas, consumer goods, and automobiles. The composition includes the financial sector with 36.81 percent share, information technology (IT) companies with 14.70 percent share, 12.17 percent share for oil and gas, 9.02 percent share for consumer goods, and 5.84 percent share for automobiles. These companies are considered to be the top performers. Clustering is a technique that classifies the data sets into different groups based on their similarities. The technique of clustering is based on pattern recognition. The Nifty 50 is a group of top-performing companies listed on the National Stock Exchange. The researcher applied K-mean clustering to Nifty 50 stocks to create clusters considering different parameters related to stock valuation. The study is conducted by considering seven parameters: last traded price, price-to-earnings ratio (P/E), debt-to-equity ratio, earning per share (EPS), dividend per share (DPS), return on equity (ROE), and face value. The clustering of high-performing companies is very useful for getting insight into high-value stocks for investors.

The last traded price is the price of a share which is stated at the end of the day. It is the price that occurred as the last traded price. It differs from the closing price. Price-to-earnings ratio is the ratio of the current market price of the share to earnings per share, also called price multiple ratio. It is a handy tool for comparing the price and performance of different stocks. It majors the proportion of a company’s stock price to earnings per share. A high P/E ratio indicates that a company’s stock is overvalued or that the investors expect high growth rates.

Debt-to-equity ratio is the ratio of total debt to total shareholders’ equity. It is the ratio of borrowed capital to the owned capital. Higher debt-to-equity ratio means that a company is using borrowed capital for financing. The debt-to-equity ratio of 1 to 1.5 is considered to be the standard ratio. The depth-to-equity ratio may vary from industry to industry.

Earnings per share are calculated by dividing the earnings before interest and tax by the number of shareholders. The company’s financial position is reflected in its EPS. If the EPS is high, it means that shareholders’ value is increased, which is considered to be the main objective of financial management.

Dividend per share in which dividend is the reward to shareholders for investing and taking risks. It is the dividend issued divided by the number of shareholders. The dividend per share is based on the amount of dividend issued from the overall earnings of the company. The retained earnings are kept aside keeping the future growth and expansion plan of the company, further, it plays an important role in deciding the Dividend policy.

Return on equity is the percentage of net income to the value of shareholders’ equity. Higher the percentage, more efficient is the generation of profit.

1.1.1 Introduction to Cluster Analysis

Machine learning: The unsupervised learning models are trained for data sets, which are unlabeled and are allowed to act without any supervision. The grouping of data sets into different clusters helps to generate different meaningful patterns to analyze unlabeled data sets. The clustering machine learning model is an unsupervised learning model that helps in determining the patterns of unlabeled data sets. To find out similar patterns or dissimilar patterns in a data set clustering technique is applied. Every data set has some common features based on which we can draw similar patterns, categories and group the data into different clusters. The K-means technique is one of the very popular clustering techniques for analysis. This is the reason for its highest usage and application. The K-means clustering is very simple to understand and apply. It is one of the best partitioning techniques for data analysis. The cluster technique is based on the concept of centroid which makes clustering formation unique.

The K-means clustering is the technique of grouping and classifying the data sets into different categories based on the nearest distance from the mean. The clustering produces the exact number of clusters of the greatest possible difference, which is known as priori. It also controls the total cluster and the total cluster variance.

It is represented by the equation

j
=

∑

j
=
1

k

∑

i
=
1

n

x
i

(
j
)

−

c
j

2

Here, J is the objective function, k stands for cluster numbers, n denotes the number of cases, x is the number of cases i, and cj is the number of the centroid.

1.1.2 Literature Review

The cluster technique has been applied to study the financial market. Bonanno et al. (2003) worked on network structures of equities and found out the relationship between them further by applying a complex system. Coelho et al. (1996) analyzed large noisy data sets by applying cluster analysis. Jain (2010) and Nanda (2010) applied cluster analysis for portfolio management (Coronnello et al., 2005). Madhavan (2000) applied clustering to study the market microstructure. Onnela et al. (2003) and Bonanno et al. (2001) explored the correlation between different markets (Huang et al., 2011). Mantegna (1999) studied portfolio management strategies for financial forecasting and analysis. Song et al. (2011) applied random matrix theory to develop insights into the movement of the financial market (Kantar & Deviren, 2014; Kenett et al., 2011).

1.2 Research Methodology

1.2.1 Data Source

Nifty 50 database

1.2.2 Study Time Frame

The data selected for analysis is the ratio of different companies under Nifty 50.

1.2.3 Tool for Analysis

Python Programming

1.2.4 Model Applied

For this study, we applied K-means clustering.

1.2.5 Limitations of the Study

The study is restricted to cluster analysis for only Nifty 50 companies.

1.2.6 Future Scope

A similar kind of cluster analysis can be done for the different sectors of the Indian economy at the macro level.

Research Is Carried Out in Five Steps

	
1.3 Feature Extraction and Engineering

	
1.4 Data Extraction

	
1.5 Standardizing and Scaling

	
1.6 Identification of Clusters

	
1.7 Cluster Formation

1.3 Feature Extraction and Engineering

Feature engineering is an important element of the machine learning pipeline. Python directly cannot read a particular file as it does not suit the Python environment; hence, we need to fetch the data into the Python environment. Feature engineering is a process that creates data that can be utilized by the machine learning algorithm for analysis. The raw data cannot be used as they contain so many errors. The raw data need to be transformed depending upon the domain knowledge and also according to the need for machine learning modeling. We cannot create a good machine learning model unless we have done feature engineering. Feature engineering is the process of cleaning, and defining the data into different parameters to make it algorithm-friendly.

1.4 Data Extraction

The process of fetching data from an external source into the Python environment and further making it readable by the Jupiter environment to carry out machine learning analysis is known as data extraction (Refer Figure 1.1). For this study, we need to fetch the Excel file which contains the financial information about the Nifty 50 companies. We use different libraries for K-means clustering in Python such as Pandas, matplotlib, and sklearn.

[image: A screenshot showing the process of data fetching within the Python programming environment, including code and output snippets.]
Figure 1.1
Data fetching in the Python environment.

Data is cleaned by removing the unwanted column from the data frame by applying the Python code below (Refer Figure 1.2):

[image: A table displaying a data frame containing information about Nifty 50 companies, including columns for company names, stock prices, and other financial metrics.]
Figure 1.2
Data frame for Nifty 50 in the Python environment.

1.5 Standardizing and Scaling

Before performing a machine learning algorithm on a particular data set, we need to standardize and scale the data as a huge amount of variation is present in the data set. The huge amount of variation needs to be transformed by scaling to remove the difference in the magnitude of the data set (Refer Figure 1.3). Furthermore, this will remove the difficulty of variation as the K-means clustering algorithm is distance based (Pozzi et al., 2012). Scaling is applied since we need to standardize the data by bringing down the standard deviation and mean of features to one and zero (Lillo & Mantegna, 2003; Peralta & Zareei, 2016).

Python code is applied as follows:

[image: A table presenting descriptive statistics for scaled data, including metrics such as mean, standard deviation, minimum, and maximum values for various variables.]
Figure 1.3
Descriptive statistics for scaled data.

1.6 Identification of Clusters by the Elbow Method

The elbow technique is applied in Python Programming to get a defined number of clusters. The elbow technique is a diagrammatic representation of cluster formation from a given data set. It works on the concept of centroid (Song et al., 2011). It explains the variation in different data sets and finds out the exact number of clusters. The clusters explains variation which also exempts overfitting. It also removes the various constraints in the cluster. Identification and its formation. It also optimizes the number of clusters by applying inertia which acts as a tool for well-defined clusters by applying clustering technique. The elbow technique optimizes the number of clusters with lower inertia and less number of clusters (Peralta & Zareei, 2016).

The calculation of within-cluster inertia is

I
n
e
r
t
i
a
 
(
k
)
=

Σ
−

i
\
i
n

C
−

k

y
−

{
i
k
}
−

μ
−

k

∧

2

where μ_k is the mean of cluster k and C_k corresponds to the set of indices of genes attributed to cluster k.

1.7 Cluster Formation

When we apply the Python code shown below (Refer Figure 1.4), we get the results for clusters one to six according to their characteristics and features.

[image: A line graph illustrating the Elbow technique for determining the optimal number of clusters, with the x-axis representing the number of clusters and the y-axis showing the within-cluster sum of squares, highlighting the ‘elbow’ point.]
Figure 1.4
Cluster formation Elbow technique.

1.8 Results and Analysis

We categorized the data selected for analysis into six clusters in Python (Refer Figure 1.5 and Figure 1.6):

[image: A scatter plot showing the results of cluster formation and classification for scaled data, with data points colour-coded based on their assigned clusters.]
Figure 1.5
Cluster formation results with classification for scaled data.

[image: A graphical representation of cluster analysis, depicting clusters of data points in a two-dimensional space.]
Figure 1.6
Cluster analysis.

1.8.1 Cluster One

After applying clustering, the result shows that there are six clusters. Cluster one includes companies like Bajaj Auto, Britannia, Divis Laboratories, Dr. Reddy’s lab, Hero Motors, lit Maitri, Maruti Suzuki, Tata Steel, TCS, and UltraTech Cement (Refer Table 1.1). The average LTE for cluster one is 5653, the maximum LTE is 10,209, and the minimum LTE is 139. Cluster one includes companies from the automobile sector, cement sector, and pharma, and only one company from food processing sector, which is Britannia.

Table 1.1
Cluster One Classifications tor Nifty 50 Companies

	NAME
	LIP
	P/E
	DEBT TO EQUITY
	EPS (RS.)
	DPS (RS.)
	ROE %
	EACE VALUE
	CLUSTER

	Bajaj Auto
	6,675.00
	21.04
	0
	173.6
	140
	18.81
	10
	0

	Britannia
	5,287.05
	48.17
	0.91
	66.56
	56.5
	66.72
	1
	0

	Divis Labs
	4,014.65
	39.63
	0
	111.07
	30
	25.21
	2
	0

	Dr Reddys Labs
	5,944.40
	43.9
	0.12
	97.85
	30
	8.85
	5
	0

	Hero Motocorp
	4,115.15
	18.53
	0
	123.78
	95
	15.66
	2
	0

	LTIMindtree
	6,153.05
	47.66
	0
	129.14
	55
	26.9
	1
	0

	Maruli Suzuki
	10,209.50
	60.65
	0.01
	124.68
	60
	6.96
	5
	0

	Tata Steel
	139.9
	4.84
	0.29
	270.33
	51
	26.31
	10
	0

	TCS
	3,790.40
	35.84
	0
	104.34
	43
	49.48
	1
	0

	UltraTechCement
	10,205.00
	26.95
	0.2
	245
	38
	14.34
	10
	0

	Avg
	5,653.41
	34.721
	0.153
	144.635
	59.85
	25.924
	4.7
	 

	Max
	10,209.50
	60.65
	0.91
	270.33
	140
	66.72
	10
	 

	Min
	139.90
	4.84
	0
	66.56
	30
	6.96
	1
	 

The price-to-earnings ratio of Maruti Suzuki is the highest at 60 percent. The lowest price-to-earnings ratio is registered with Tata Steel with a value of 4.84. The debt-to-equity ratio of almost all companies is less than 0 only Britannia had a registered debt-to-equity ratio of 0.91. The highest earning per share is registered with Tata Steel with a value of 270. The minimum Earning per share is registered with the value of 66.56 for Britannia. The dividend per share of 140 is registered with Bajaj Auto which is the highest dividend after Hero Motors. Cluster one the automobile companies like Bajaj Auto, Hero Motors, and Maruti Suzuki had given a good dividend. Pharma companies in cluster one had a good LTP but their dividend payout ratio was considerably low in comparison to Pharma. In cluster one, Britannia dominated all financial parameters and showed a sound financial position.

1.8.2 Cluster Two

In cluster 2 the average LTE is 1822 with the maximum of 5749 for Apollo hospital. In cluster two the service sector bank which includes Axis Bank, HDFC Bank, SBI, ICICI Bank had been the key players in cluster 2 represented by the banking sector (Refer Table 1.2). The Apollo Hospital has a good LTP ratio, Debt to the equity ratio and Earnings per share is leading Cluster Two with all financial parameters. Cluster two also includes information technology companies like Wipro, Tech Mahindra, Infosys which are below Apollo Hospital which is a service sector company.

Table 1.2
Cluster Two Classifications for Nifty 50 Companies

	NAME
	LTP
	P/E
	DEBT TO EQUITY
	EPS (RS.)
	DPS (RS.)
	ROE %
	F.V

	Adani Enterprise
	2,930
	307.6
	0.81
	6.55
	1
	13.75
	1

	Apollo Hospital
	5,749
	97.65
	0.33
	46.25
	11.75
	10.88
	5

	Asian Paints
	3,391
	94.25
	0
	32.68
	19.15
	23.48
	1

	Ax.is Bank
	1,091
	17.92
	0
	42.48
	1
	11.32
	2

	Bajaj Firisen
	1,685
	863.27
	0
	11.2
	3
	4.7
	5

	Cipla
	1,282
	27.8
	0
	36.62
	0
	13.13
	2

	Eicher Motors
	3,897
	42.35
	0
	58.02
	21
	14.69
	1

	Grasim
	2,109
	35.81
	0.08
	46.47
	10
	6.27
	2

	HCLTech
	1,473
	29.02
	0.01
	40.1
	42
	25.53
	2

	HDFC Bank
	1,696
	22.01
	0
	66.8
	15.5
	15.39
	1

	Hindalco
	618
	16.38
	0.35
	34.76
	4
	10.11
	1

	HUL
	2,615
	54.59
	0
	37.53
	34
	18.08
	1

	ICICI Bank
	985
	21.7
	0
	33.66
	5
	13.68
	2

	Infosys
	1,533
	37.77
	0
	50.49
	31
	30.63
	5

	ETC
	470
	20.51
	0
	12.22
	11.5
	24.52
	1

	JSW Steel
	870
	10.54
	0.79
	69.48
	17.35
	26.3
	1

	Kotak Mahindra
	1,874
	49.84
	0
	35.17
	0.9
	11.01
	5

	Larsen
	3,447
	31.51
	0.3
	56.09
	22
	11.74
	2

	M&M
	1,656
	19.54
	0.17
	41.28
	11.55
	12.66
	5

	ONGC
	208
	5.12
	0.03
	32.04
	10.5
	16.99
	5

	SBI
	642.8
	13.91
	0
	35.49
	7.1
	11.3
	1

	TATA Cons. Prod
	1,098
	80.89
	0
	9.61
	6.05
	7.53
	i

	Tech Mahindra
	1,279
	29.7
	0
	50.48
	45
	19
	5

	Titan Company
	3,707
	103.26
	0.02
	24.56
	7.5
	23.25
	1

	UPL
	595
	50.01
	0.2
	15.39
	10
	14.33
	2

	Wipro
	470
	26.66
	0.14
	22.2
	6
	22.32
	2

	Avg
	1,822
	81.13
	0.12
	36.44
	13.60
	15.86
	2.38

	Max
	5,749
	863
	0.81
	69.48
	45
	30.63
	5

	Min
	208.07
	5.12
	0
	6.55
	0
	4.7
	1

1.8.3 Clusters Three and Four

Clusters three and four include companies like Sun Pharma and Nestle. Further, the EPS for Sun Pharma is negative and EPS for Nestle is 222 with a dividend per share of 200 (Refer Table 1.3).

Table 1.3
Clusters Three and Four Classifications for Nifty 50 Companies

	NAME
	LTP
	P/E
	DEBT TO EQUITY
	EPS (RS.)
	DPS (RS.)
	ROE %
	FACE VALUE
	CLUSTER

	Sun Pharma
	1,298.80
	−2,286.88
	0.2
	−0.4
	10
	−0.4
	1
	3

	Nestle
	27,240.00
	0
	0.02
	222.46
	200
	102.89
	10
	4

1.8.4 Cluster Five

In cluster Five the highest LTP is registered with Bajaj Finance with 7407. The P/E ratio for Bajaj Finance is 78 and the very high debt-to-equity ratio of 2.78 (Refer Table 1.4). The EPS for Bajaj Finance is highest in cluster Five with 65. The maximum return on equity registered with 22.4 by Power Grid Corporation which is highest in cluster Five

Table 1.4
Cluster Five Classifications tor Nifty 50 Companies

	NAME
	LTP
	P/E
	DEBT TO EQUITY
	EPS (RS.)
	DPS (RS.)
	ROE %
	FACF VALUL
	CLUSTER

	Adani Ports
	1,071.25
	549.08
	1.68
	1.41
	5
	1.11
	2
	5

	Bajaj Finance
	7,407.50
	78.21
	2.78
	65.85
	10
	11
	2
	5

	Bharti Airtel
	1,024.95
	−115.61
	1.31
	−6.53
	3
	−4.59
	5
	5

	NTPC
	306.65
	8.12
	1.33
	16.62
	7
	12.58
	10
	5

	Power Grid Corp
	239
	8.85
	1.77
	24.51
	14.75
	22.44
	10
	5

	Tata Motors
	786.3
	−119.49
	1.16
	−3.63
	0
	−6.97
	2
	5

	Avg
	1,805.94
	68.1933333
	1.671666667
	16.37167
	6.625
	5.928333
	5.166666667
	 

	Max
	7,407.50
	549.08
	2.78
	65.85
	14.75
	22.44
	10
	 

	Min
	239.00
	−119.49
	1.16
	−6.53
	0
	−6.97
	2
	 

1.8.5 Cluster Six

In Cluster six which includes Three Service sector banks and insurance companies (Refer Table 1.5). The highest LTP is registered with Reliance with a value of 20601 and the lowest last credit price is registered for the public sector organization which is Coal India. The highest price-to-earnings ratio is registered with HDFC Life Insurance. The highest debt-to-equity ratio is registered with BPCL. For the highest earning per share is registered with the Indus bank. The

highest dividend per share is registered with Coal India the highest return on equity is also given by Coal India with 68.47.

Table 1.5
Cluster Six Classifications for Nifty 50 Companies

	NAME
	LTP
	P/E
	DEBT TO EQUITY
	EPS (RS.)
	DPS (RS.)
	ROE %
	FACE VALUE
	CLUSTER

	BPCL
	456.45
	8.7
	0.49
	41.31
	16
	17.69
	10
	6

	Coal India
	393.8
	10.07
	0
	18.18
	17
	68.47
	10
	6

	HDFC Life
	645.4
	103.45
	0.05
	6.73
	2.02
	12.15
	10
	6

	IndusInd Bank
	1,585.80
	15.7
	0
	59.57
	8.5
	9.66
	10
	6

	Reliance
	2,601.15
	44.48
	0.41
	59.24
	8
	8.28
	10
	6

	SBI Life Insurance
	1,434.30
	0
	0
	14.56
	2.5
	11.09
	10
	6

	Ave
	118615
	30.4
	0 158333333
	33.265
	9.003333
	21.22333
	10
	 

	Max
	2601.15
	103.45
	0.49
	59.57
	17
	68.47
	10
	 

	Min
	393.8
	0
	0
	6.73
	2.02
	8.28
	10
	 

1.9 Conclusion

The overall cluster formation is classified into six clusters based on different parameters like Last Traded Price, Price earnings ratio (P/E), Debt to Equity, Earning per share (EPS), Dividend per share (DPS), return on equity (ROE), and Face Value. The clustering of high-performing companies is very useful for getting insight into high-value stocks for investors.

References

	Bonanno, G., Caldarelli, G., Lillo, F., Miccichè, S., Vandewalle, N., & Mantegna, R. N. (2003). Networks of equities in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 363–371.

	Bonanno, G., Lillo, F., & Mantegna, R. N. (2001). High-frequency cross-correlation in a set of stocks. Quantitative Finance, 1(1), 96–104.

	Coelho, R., Gilmore, C. G., Lucey, B. M., Richmond, P., & Hutzler, S. (2007). The evolution of interdependence in world equity markets—Evidence from minimum spanning trees. Physica A: Statistical Mechanics and its Applications, 376, 455–466.

	Coronnello, C., Tumminello, M., Lillo, F., Miccichè, S., & Mantegna, R. N. (2005). Sector identification in a set of stock return time series: A comparative study. Quantitative Finance, 5(4), 373–387.

	Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226–231).

	Huang, Z., Cai, Y., & Xu, X. (2011). A data mining framework for investment opportunities identification. KDD-96: The Second International Conference on Knowledge Discovery and Data Mining. Expert Systems with Applications, 38(8), 9224–9233.

	Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.

	Kantar, E., & Deviren, B. (2014). Hierarchical structure of stock markets. Physica A: Statistical Mechanics and Its Applications, 404, 117–128.

	Kenett, D. Y., Shapira, Y., & Ben-Jacob, E. (2011). RMT assessments of the market latent information embedded in the stocks’ raw data. Journal of Probability and Statistics. DOI:10.1155/2009/249370 (2009)

	Lillo, F., & Mantegna, R. N. (2003). Power-law relaxation in a complex system: Omori law after a financial market crash. Physical Review E, 68(1), 016119.

	Madhavan, A. (2000). Market microstructure: A survey. Journal of Financial Markets, 3(3), 205–258.

	Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B, 11(1), 193–197.

	Nanda, S., Mahanty, B., & Tiwari, M. K. (2010). Clustering Indian stock market data for portfolio management. Expert Systems with Applications, 37(12), 8793–8798.

	Onnela, J. P., Chakraborti, A., Kaski, K., Kertész, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 056110.

	Peralta, G., & Zareei, A. (2016). A network approach to portfolio selection. Journal of Empirical Finance, 38, 157–180.

	Pozzi, F., Di Matteo, T., & Aste, T. (2012). Exponential smoothing weighted correlations. The European Physical Journal B, 85(6), 175.

	Song, D. M., Tumminello, M., Zhou, W. X., & Mantegna, R. N. (2011). Evolution of worldwide stock markets, correlation structure, and correlation-based graphs. Physical Review E, 84(2), 026108.

2
PREDICTING STOCK PRICE USING THE ARIMA MODEL

DOI: 10.1201/9781032618241-2

2.1 Introduction

The stock is exposed to different types of risk and uncertainties which have an impact on the price of the stock. It is difficult to predict the stock price. The stock price is influenced by various factors related to demand and supply. For predicting the price of a stock, we require dependent variables like stock market index, similar or identical company, sales, profits, earnings per share, etc. When the dependent variable does not have any impact and it is impossible to predict the stock price in such cases, the stock price is predicted by considering the past stock value on different time horizons like days, week, months, quarterly, or yearly by applying the autoregressive moving average method called ARIMA.

Stock prediction using time series analysis is an emerging area in predictive analytics. It has attracted many researchers because of the utility and accuracy of the model. The main objective of the ARIMA model is to study past observations based on which future models are generated to forecast a given variable. The success of the ARIMA model depends on appropriate model identification and evaluation.

It is essential to understand that the ARIMA model is applied under what circumstances.

	No dependent variable is available.

	Good sufficient historical data is available.

	Autocorrelation.

2.2 ARIMA Model

The ARIMA model has a wide area of application for estimating and predicting the future value of a variable in applied econometrics areas like management, finance, banking, health analytics, and weather forecasting which are crucial for selecting the optimized model that can predict the precise value of a given variable depending on historical and past data. The ARIMA model is considered to be the most reliable model in such a situation; Box and Jenkins is the researchers and scientists who developed the ARIMA model in 1970. The model was used in forecasting and showed tremendous potential to generate a short-term forecast.

The ARIMA model forecasts time lags which are equally spaced in time horizon with univariate time series. In ARIMA, AR stands for autoregressive, which emphasizes on the relationship between the past values and the future values, I stands for integrated, and MV stands for moving average.

It is represented by the equation

yt
=
Φ
 
0
+
Φ
1
 
it
−
1
+
Φ
2
 
it
−
2
+
…
+
Φ
pat-p

+
ϵ
t
−
θ
1

ϵ

−
1
−
θ
2

ϵ
 t-2-
.
.
.
−
θ
q
 
ϵ
 
t
−
q

(2.1)

where actual data values are denoted as yt, coefficients are denoted as Φi and θj, Єi denotes the random errors, and integers p and q represent the degrees of autoregressive and moving averages (Ayodele et al., 2014). The ARIMA model is a mixture of two equations: Autoregressive is the equation based on past lags and the moving average is based on error.

2.2.1 Literature Review

Book explains. Various predictive models, including ARIMA for its practical application and use Burbidge et al. (2001). The time series analysis and its application for forecasting is developed and explained lucidly Burges (1998). The main focus is on forecasting of financial data and risk analysis associated with it Cervantes et al. (2023). Applied hybrid autoregressive integrated moving average method with a neural network model further explains the combination of both the models and has improved the predictive analysts forecasting model Deo (2015). Developed hybrid model includes long-term short-term memory, autoregressive integrated moving average, and the Bayes optimization model for predicting the financial data in the form of forecasting stock price Dhillon and Verma (2020).

Furthermore, various research studies focused on hybrid models of LSTM and machine learning with time series analysis (Ding & Dubchak, 2001; Drucker et al., 1999; Garcia-Lamont et al., 2023; Hinton et al., 2012; Huang et al., 2005; Joachims, 1998; Kim, 2014; Maita et al., 2015; Mountrakis et al., 2011; Nguyen et al., 2020; Pal & Mather, 2003; Schölkopf et al., 2001; Tay & Cao, 2001; Toledo-Pérez et al., 2019; Turk & Pentland, 1991).

2.3 Research Methodology

2.3.1 Data Source

Yahoo Finance financial database is used to create the ARIMA model.

2.3.2 Period of Study

The study period was from 8 January 2023 to 5 January 2024. The interval for the selected data is the daily closing stock price of MRF for analysis.

2.3.3 Software Used for Data Analysis

Python Programming, Anaconda

2.3.4 Model Applied

For this study, we applied the ARIMA model.

2.3.5 Limitations of the Study

The study is restricted to the Stock price Index of MRF only.

2.3.6 Future Scope of the Study

In the future, the study can be done on the macro level by applying it to a different stock at the same time.

2.3.7 Methodology

The autoregressive integrated moving average (ARIMA) model predicts the stock price by using past values. The ARIMA model is applied to understand the relationship between the past values of stock for predicting its future predicted value. The ARIMA model is widely applied in the field of stock price prediction. The ARIMA model is implemented first by understanding the relationship between the past values of stock and its future value. Autocorrelation plays an important role in model development. The check for autocorrelation defines further steps of model evaluation and parameter estimation to select the best ARIMA model for stock prediction using Python. Research is carried out in three steps. First, we need to check the autocorrelation. Then, we need to evaluate different ARIMA models and compare the AIC of other models. The best model is selected with the lowest AIC and mean square error given by train and test data analysis results. The data set is divided into two parts: 70 percent train data and 30 percent test data.

Research is carried out in three steps:

	
2.4 Finding Different Lags Autocorrelation

	
2.5 Creating the Different ARIMA Models

	
2.6 Selecting the Best Model Using Cross-Validation

2.4 Finding Different Lags Autocorrelation

The autocorrelation at different lags (lag1, lag2, lag3, lag4, lag5, etc.) are considered by using matplot, and autocorrelation is detected by studying the projections in autocorrelation charts. Autocorrelation is the relationship between successive values of the same variable. Here, we will cross-check the autocorrelation in our time series data using Python Programming and comparing the autocorrelation at different lags (Figures 2.1–2.5 show the autocorrelation plot for lag = 1 to lag = 5 for the MRF stock).

[image: An autocorrelation plot for MRF Stock with Lag = 1, shows the correlation between the stock’s present value and its value one time period earlier.]
Figure 2.1
An autocorrelation plot with lag = 1 for the MRF stock.

[image: An autocorrelation plot for MRF Stock with Lag = 2, displays the correlation between the stock’s present value and its value two time periods earlier.]
Figure 2.2
An autocorrelation plot with lag = 2 for the MRF stock.

[image: An autocorrelation plot for MRF Stock with Lag = 3, indicates the correlation between the stock’s present value and its value three time periods earlier.]
Figure 2.3
An autocorrelation plot with lag = 3 for the MRF stock.

[image: An autocorrelation plot for MRF Stock with Lag = 4, shows the correlation between the stock’s present value and its value four time periods earlier.]
Figure 2.4
An autocorrelation plot with lag = 4 for the MRF stock.

[image: An autocorrelation plot for MRF Stock with Lag = 5, illustrates the correlation between the stock’s present value and its value five time periods earlier.]
Figure 2.5
An autocorrelation plot with lag = 5 for the MRF Stock.

The plot in Figure 2.1 shows a very high degree of autocorrelation for lag = 1; hence, we further checked the autocorrelation for lag = 2.

The plot in Figure 2.2 does not show the substantial degree of autocorrelation for lag = 2; hence, we further checked the autocorrelation for lag = 3.

The plot in Figure 2.3 does not show a considerable degree of autocorrelation for lag = 3; hence, we further checked the autocorrelation for lag = 4.

The plot in Figure 2.4 shows a lesser degree of autocorrelation for lag = 4; hence, we further checked the autocorrelation for lag = 5.

The plot in Figure 2.5 does not show a substantial degree of autocorrelation for lag = 5. The above analysis from lag1 to lag5 shows that

lag1 has the highest autocorrelation (Figures 2.1–2.5 show the autocorrelation plot for lag = 1 to lag = 5 for the MRF stock).

Akaike information criterion (AIC) for ARIMA model evaluation is considered to be the best method and hence we tried to compare the AIC of different ARIMA models.

2.5 Creating the Different ARIMA Models

We first find out the Akaike Information Criterion (AIC) for model evaluation. The ARIMA models are compared to check the AIC to select the best model. It determines the order of an ARIMA model.

AIC is given by the following equation:

AIC
=
−
2
 
L
o
g
(
L
)
+
2
(
p
+
q
+
k
+
1
)
…
…

(2.2)

where L is the likelihood of the data; k=1 if c ≠ 0; and k = 0 if c = 0. We tested four ARIMA models, and Figures 2.6–2.10 show the details of different ARIMA models as Python Programming output. The ARIMA (1,1,1) model has an AIC value of 7459.

[image: A table presenting the results of the ARIMA (1,1,1) model applied to stock data, including parameter estimates and statistical measures.]
Figure 2.6
Results for the ARIMA (1,1,1) model.

[image: A table displaying the results of the ARIMA (1,0,2) model applied to stock data, including parameter estimates and statistical measures.]
Figure 2.7
Results for the ARIMA (1,0,2) model.

[image: A table showing the results of the ARIMA (0,0,3) model applied to stock data, including parameter estimates and statistical measures.]
Figure 2.8
Results for the ARIMA (0,0,3) model.

[image: A table presenting the results of the ARIMA (1,1,1) model applied to stock data, including parameter estimates and statistical measures.]
Figure 2.9
Results for the ARIMA (1,1,1) model.

[image: A table displaying the results of the ARIMA (1,1,1) model with cross-validation applied to stock data, including parameter estimates and validation metrics.]
Figure 2.10
Results for the ARIMA (1,1,1) model with cross-validation.

Inference—The ARIMA (1,1,1) model has an AIC value of 7459 (Refer Figure 2.6).

Inference—The ARIMA (1,0,2) model has an AIC value of 7485 (Refer Figure 2.7).

Inference—The ARIMA (0,0,3) model has an AIC value of 8058 (Refer Figure 2.8).

2.5.1 Comparing the AIC Values of Models

The Akaike information criterion (AIC) scores of different ARIMA models are compared (refer to Figures 2.6–2.8). The model with the lowest AIC, BIC, and likelihood scores is considered the best fit after comparison of the AIC, BIC, and likelihood scores of different ARIMA models (Refer Table 2.1). The ARIMA (1,1,1) model registered the lowest AIC, BIC, and likelihood scores with no significant p-values.

Table 2.1
Akaike Information Criterion (AIC) and BIC Values for Different ARIMA Models

	S. NO
	ARIMA MODEL
	AIC
	BIC

	1
	(1,1,1)
	7459
	7476

	2
	(1,0,2)
	7485
	7505

	3
	(0,0,3)
	8058
	8078

Inference—The table above has the lowest AIC and hence it is the best ARIMA model (Refer Table 2.1).

2.6 Selecting the Best Model Using Cross-Validation

After comparison of the AIC, BIC (Refer Table 2.1), and p-values of the ARIMA (1,1,1) model, ARIMA (1,0,2) model, and ARIMA (0,0,3) model, it was found that the AIC and BIC values of the ARIMA (1,1,1) model were the lowest and that the p-values were also significant; hence, we cross-validated the models to select the best ARIMA model (Refer Figure 2.9).

2.7 Conclusion

After cross-validation of different ARIMA models, the ARIMA (1,1,1) model was considered the best fit for predicting the stock value of MRF with a mean square error of 3504375. We selected the best ARIMA model depending on the Akaike information criterion and testing mean square error. After comparison of the AIC, BIC, and likelihood scores of different ARIMA models, the ARIMA model with the lowest scores of AIC and testing mean square error (cross-validation) (Refer Figure 2.10) and p-value less than 0.05 was selected as the best model.

References

	Ayodele, A. et al. (2014). “Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction”, Journal of Applied Mathematics, 2014(1), 1–12.

	Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26(1), 5–14. https://doi.org/10.1016/S0097-8485(01)00094-8

	Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555

	Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & López, A. (2023). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2023.104911

	Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930 https://doi.org/10.1161/CIRCULATIONAHA.115.001593

	Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0

	Ding, C., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4), 349–358. https://doi.org/10.1093/bioinformatics/17.4.349

	Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support vector machines for spam categorization. IEEE Transactions on Neural Networks, 10(5), 1048–1054. https://doi.org/10.1109/72.788645

	Garcia-Lamont, F., Cervantes, J., Rodríguez-Mazahua, L., & López, A. (2023). Support vector machine in structural reliability analysis: A review. Structural Safety. https://doi.org/10.1016/j.strusafe.2023.102211

	Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N.,… & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597

	Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522. https://doi.org/10.1016/j.cor.2004.03.016

	Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning, 137–142. https://doi.org/10.1007/BFb0026683

	Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP 2014. https://doi.org/10.3115/v1/D14-1181

	Maita, A. R. C., Martins, L. C., López Paz, C. R., Peres, S. M., & Fantinato, M. (2015). Process mining through artificial neural networks and support vector machines: A systematic literature review. Business Process Management Journal, 21(6), 1391–1415. https://doi.org/10.1108/BPMJ-02-2015-0017

	Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

	Nguyen, H. Q., Nguyen, N. D., & Nahavandi, S. (2020). A review on deep reinforcement learning for robotic manipulation. Computers & Electrical Engineering, 88, 106838. https://doi.org/10.1016/j.compeleceng.2020.106838

	Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9

	Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 14431471. https://doi.org/10.1162/089976601750264965

	Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29(4), 309–317. https://doi.org/10.1016/S0305-0483(01)00026-3

	Toledo-Pérez, D. C., Rodríguez-Reséndiz, J., Gómez-Loenzo, R. A., & Jauregui-Correa, J. C. (2019). Support vector machine-based EMG signal classification techniques: A review. Applied Sciences, 9(20), 4402. https://doi.org/10.3390/app9204402

	Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. https://doi.org/10.1162/jocn.1991.3.1.71

3
STOCK INVESTMENT STRATEGY USING A LOGISTIC REGRESSION MODEL

DOI: 10.1201/9781032618241-3

3.1 Introduction to the Logistic Regression Model

Stock trading is the art of investing. Timely buying and selling (trading) is considered to be the key for successful investment as the decision involves a huge amount of risk. The basic criterion and decisive factor for trading a stock is to predict whether the stock price trend is moving upward or downward, which mostly influences the decision of buying a particular stock or selling it. The buying or selling of stock is based on the golden assumption which is considered to be the rule. Buy the stock when its price is predicted to rise and sell it when its price is predicted to fall. The buying and selling of stock involve a tremendous amount of analysis and research to make the right decision. To overcome the risk as mentioned earlier, the researcher made an attempt to create a reliable logistic regression model for the buying and selling of stock, and a study titled Stock Investment Strategy Using a Logistic Regression Model was conducted here. The logistic regression model is applied when the dependent variable (y) outcome is binary in nature or multinomial in nature. The independent variable (x) may be continuous or binary or multinomial in nature but the dependent variable (y) is always binary or multinomial in nature. The logistic regression model is a supervised learning tool (Huang et al., 2023).

3.1.1 Introduction to a Logistic Regression Model

The supervised learning classification algorithm, the logistic regression model, is used to predict the target variable, which is binary in nature. The outcome (dependent variable) is binary or dichotomous,

with two classes. Furthermore, we can say that it is in binary form as the outcome is binary in nature like success/failure, female/male, and no/yes (Patel et al., 2023; Roberts & Evans, 2023). The logistic regression model predicts P(Y=1) as a function of X. The logistic regression model is extensively applied in various classification problems as it is the easiest and simplest algorithm.

The logistic regression model for predicting the severity of stock buying and selling is represented as

f
(
k
,
i
)
=

β

0
,
k

+

β

l
,
k

x

l
,
i

+

β

2
,
k

x

2
,
i

+
…
+

β

M
,
k

x

M
,
i

Logistic regression applies a linear predictor function f(k,i) to predict the probability that observation i has outcome k.

Figure 3.1 shows a logistic regression model with an example for a better understanding of a dependent variable with classes A, B, and C.

[image: A diagrammatic representation explaining various probabilities involved in the logistic regression model, including illustrations of different probability distributions.]
Figure 3.1
Explanation of different probabilities in the logistic regression model.
(Source: https://www.statstest.com/multinomial-logistic-regression/)

3.1.2 Literature Review

Smith et al. (2023) applied a logistic regression model for predicting patient outcome in health analytics and achieved good accuracy (Brown et al., 2023). They also worked on reducing over-fitting in a logistic regression model Davis and Green (2023). Anderson and Thompson (2023) developed an enhanced logistic regression model. Chen and Zhao (2023) provided deeper insight into probabilistic analysis. Clark and Lewis (2023) worked on the ethical aspects of a logistic regression model and artificial intelligence (Kumar & Singh, 2023; Lee & Kim, 2023; Lee et al., 2023). Garcia and Martinez (2023) worked on combining a logistic regression model with other ML models for improving accuracy. Harris and Brown (2023) applied a logistic regression model for environmental analytics and developed model for environmental analysis. Huang et al. (2023) worked on feature engineering for improving logistic regression model. Johnson and Wang (2023) worked on reducing overfitting in a logistic regression model. Martinez and Perez (2023) applied a logistic regression model for forecasting in social science. Nguyen et al. (2023) applied the logistic regression model in clinical research. Taylor’s and Wilson (2023) worked for optimization and effectiveness in efficiency. White and Black (2023) worked on the stabilization of a logistic regression model (Garcia et al., 2023).

3.1.3 Applied Research Methodology

3.1.3.1 Data Source

Data is taken from Yahoo Finance which is a reliable source.

3.1.3.2 Sample Size

The daily price of the MRF stock is considered for the study from 2 January 2023 to 5 January 2024 (daily stock price).

3.1.3.3 Software Used for Data Analysis

Python Programming libraries used for analysis are statsmodels.api, Pandas, NumPy, and SciPy.

3.1.3.4 Model Applied

The logistic regression model algorithm is applied for the analysis and creation of a model.

3.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

Raw data filtering is a procedure applied in feature engineering. Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched into the Python Anaconda environment using the Jupyter Notebook, as the format of the data file was not readable in Python. The data frame is created by fetching the comma-separated values (CSV) file, making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame is created as per the model requirement. The data frame needs to be structured as per the requirement of the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 3.2.

[image: A screenshot or diagram showing the creation of a data frame in Python, including code snippets and the resulting data frame.]
Figure 3.2
Creating a data frame.

3.3 Data Description and Creating Trial and Testing Data Sets

The study has a dependent variable as the adjusted closing price which is a comparison of the past day’s (yesterday’s) adjusted closing price and (today’s) adjusted closing price (Refer Table 3.1). The thumb rule is if today’s adjusted closing price is higher than yesterday’s adjusted closing price then purchase (buy) the stock and if today’s adjusted closing price is lower than yesterday’s adjusted closing price sell the stock. The buy is denoted by a Variable 1 and the sell is denoted by a 0 variable as the dependent variable. The dependent variables are continuous in nature and are represented as Open, Close, High, and Low.

Table 3.1
Presenting the Classes of the Variables Used in the Logistic Regression Model

	VARIABLE
	CLASSES

	Adjust—Close
	Sell = 0

	(Dependent)
	Buy = 1

	‘Open’
	Continuous

	‘Close’
	Continuous

	‘High’
	Continuous

	‘Low’
	Continuous

3.4 Results Analysis for the Logistic Regression Model

3.4.1 The Stats Models Analysis in Python

The above statistical analysis shows that the four independent variables that are continuous in nature are Open, Close, High, and Low (Refer Figure 3.3). Out of four independent variables, the variable High is highly insignificant with a p-value of 0.418. The p-value of the independent variable is more than 0.05, which is considered to be highly insignificant. The variable Low is highly significant with a p-value of 0.013. The variable Open and the variable Close are also significant.

[image: A table or graph presenting the results of a logistic regression model, including parameter estimates and statistical measures.” This figure likely shows some form of graphical representation or tabular results summarizing the performance metrics or characteristics of a logistic regression model. It might include things like coefficients, accuracy metrics, ROC curves, or other relevant performance indicators.]
Figure 3.3
Results for a logistic regression model.

3.5 Model Evaluation Using Confusion Matrix and Accuracy Statistics

A confusion matrix measures model performance. It evaluates the actual values and predicted values (Refer Table 3.2). It is of the order of N X N, where N denotes the class of dependent/target variable. For binary classes, it is a 2 X 2 confusion matrix. For multi-classes, it is a 3 X 3 confusion matrix.

Table 3.2
The Confusion Matrix

	
	1
	0

	1
	127 (TP)
	94 (TN)

	0
	14 (FP)
	15 (FN)

3.5.1 Calculating False Negative, False Positive, True Negative, and True Positive

The confusion matrix for our data set is as below:

[image: Python code snippets demonstrate how to generate a confusion matrix for evaluating the performance of a classification model. It could involve libraries like scikit-learn, matplotlib, or seaborn to visualize the confusion matrix.]
Figure 3.4
The Python code for the confusion matrix:

	True negatives in the upper-left position

	False negative in the lower-left position

	False positive in the upper-right position

	True positives in the lower-right position

True Positive: The true positive is represented by cell one

True Positive = 127

False Negative: The sum of values apart from the true positive value

False Negative = 15

False Positive: The total value does not include the true positive value.

False Positive = 14

True Negative: The sum of values of all columns and rows excluding the values of that class that we are calculating the values for.

True Negative = 94

3.6 Accuracy Statistics

AccuracyNow, to obtain accuracy from the confusion matrix, we apply the following formulae (Refer Figure 3.5):

Model Accuracy
=

 True Positive
+
 True Negative

 True Positive
+
 True Negative
+
 False Positive
+
 False Negative

=

127
+
94

127
+
94
+
14
+
15

Model Accuracy
=
88
 Percent

[image: Python code snippets that calculate and print accuracy statistics for a machine learning model. Accuracy statistics could include metrics such as accuracy score, precision, recall, F1-score, and others depending on the context.]
Figure 3.5
The Python code for accuracy statistics.

3.6.1 Recall

Recall is the ratio of true positive with correctly classified positive examples divided by the total number of positive examples. High recall indicates that the class is correctly recognized (a small number of FN).

Recall
=

 True Positive

 True Positive
+
 False Negative

Recall
=

127

127
+
15

Recall
=
89
 Percent

3.6.2 Precision

Precision is the measure of how often it is correct when positive results are predicted.

Precision
=

 True Positive

 True Positive
+
 False Positive

Precision
=

127

127
+
14

Precision
=
90
 Percent

3.7 Conclusion

The four independent variables that are continuous in nature are Open, Close, High, and Low. Out of four independent variables, the variable High is highly insignificant with a p-value of 0.418. The p-value of the independent variable is more than 0.05, which is considered to be highly insignificant. The variable Low is highly signifi-cant with a value of 0.013. The variable Open and the variable Close are also significant. The overall accuracy of the model is 80 percent and the precision is 86 percent for selling (0) and 80 percent for buying (1), which will act as an investment strategy for the buying and selling of stock.

References

	Anderson, J., & Thompson, R. (2023). Future directions in logistic regression research. Journal of Advanced Computational Methods, 45(1), 78–92.

	Brown, A., et al. (2023). Genome-wide association studies using logistic regression models. Genomic Data Science, 37(4), 512–527.

	Chen, L., & Zhao, H. (2023). Bayesian logistic regression for probabilistic inferences. Statistics in Medicine, 40(3), 233–245.

	Clark, P., & Lewis, D. (2023). Ethical considerations in logistic regression applications. Journal of Fair AI, 12(2), 98–110.

	Davis, M., & Green, J. (2023). Enhancing model interpretation with SHAP and LIME. Data Science Insights, 29(5), 402–418.

	Garcia, F., et al. (2023). Adaptive logistic regression models. Machine Learning Review, 50(3), 289–305.

	Garcia, M., & Martinez, L. (2023). Hybrid models combining logistic regression and machine learning. AI and Data Science Journal, 44(7), 678–691.

	Harris, N., & Brown, S. (2023). Cross-disciplinary applications of logistic regression. Environmental Modelling & Software, 21(6), 311–326.

	Huang, Z., et al. (2023). Improved feature selection for logistic regression. Computational Statistics, 28(9), 411–429.

	Johnson, R., & Wang, Y. (2023). Regularization techniques in logistic regression. Journal of Statistical Computation, 39(2), 145–160.

	Kumar, S., & Singh, R. (2023). Marketing analytics using logistic regression. Business Analytics Quarterly, 35(3), 256–271.

	Lee, H., & Kim, S. (2023). Multinomial logistic regression in consumer preference modeling. Marketing Science, 38(8), 491–507.

	Lee, Y., et al. (2023). Sparse logistic regression models for high-dimensional data. Journal of Data Science, 25(4), 334–349.

	Martinez, P., & Perez, J. (2023). Logistic regression in social sciences. Sociological Methods & Research, 42(5), 190–205.

	Nguyen, T., et al. (2023). Combining survival analysis and logistic regression. Clinical Trials Journal, 17(1), 23–37.

	Patel, M., et al. (2023). Handling imbalanced datasets in logistic regression. Journal of Machine Learning Research, 55(7), 811–829.

	Roberts, K., & Evans, M. (2023). Financial applications of logistic regression. Journal of Financial Analytics, 47(3), 215–230.

	Smith, J., et al. (2023). Predicting hospital readmissions using logistic regression. Health Informatics Journal, 31(2), 143–157.

	Taylor, G., & Wilson, E. (2023). Enhancing computational efficiency in logistic regression. Computational Optimization and Applications, 36(6), 520–536.

	White, R., & Black, D. (2023). Robustness to outliers in logistic regression. Journal of Applied Statistics, 48(11), 1023–1038.

4
PREDICTING STOCK BUYING AND SELLING DECISIONS BY APPLYING THE GAUSSIAN NAIVE BAYES MODEL USING PYTHON PROGRAMMING

DOI: 10.1201/9781032618241-4

4.1 Introduction

The stock market is exposed to different kinds of risk. The risk cannot be accurately predicted as the stock market is based on the principle of random walk which is depicted in the review of literature. Models like the efficient market hypothesis emphasize the random walk principle on which the stock market usually acts. The different machine learning algorithms like the logistic regression model, support vector machine model, and decision tree model are applied for predicting the stock price and they have given a good precision and accurate predictive models that are almost near to the expected value. Different inferential statistics like the t-test, F-test, and Z-test are also applied for predicting the stock price for measurement and assessment of risk and uncertainties. After analyzing different studies, we concluded that a predictive GNB model needs to be applied for predicting the buying and selling decisions for stock and thus the study titled predicting the stock buying and selling decisions by applying the Gaussian Naive Bayes model using Python Programming was conducted here. It works on Bayes’ theorem of probability to predict the categorical output. It is fast compared to other machine learning models. The algorithm works on some prior model data sets. The model assumes that all independent variables are independent in nature which is not true in real-world scenarios (Lee et al., 2015). The model is extremely used in predictive analytics since it is very simple to apply and has very high efficiency in addition to good performance. It is a powerful tool and is usually applied to large data sets. It outperforms the logistic regression model, support vector machines, and other classification models. The algorithm is based on a model given by Thomas Bayes. As it is one of the best models, we apply it to predict the buying and selling of stock.

4.1.1 Literature Review

Hastie et al. (2009) considered Gaussian Naive Bayes (GNB) model to be the most effective machine learning model for stock market prediction (Huang et al., 2012; Huber, 1964). Although for the GNB model the data should be normally distributed, this assumption is always neglected and not being found in stock market data (Mandelbrot, 1963; Aggarwal et al., 2015). The GNB model has wide areas of application for stock market prediction (Chen et al., 2011). Kim et al. (2013) and Lee et al. (2015) achieved high precise accuracy after applying the GNB model to financial data of stock market. Bishop (2006) applied the GNB model and compared it with other classification models like support vector machine and random forest technique. Wang et al. (2017) found the GNB model to be more reliable than other classification models. The GNB model was also used for feature engineering and feature selection in raw data processing by Guyon et al. (2002) and Li et al. (2018). The GNB model was also applied for detection of anomalies by Aggarwal et al. (2015) and Chandola et al. (2009). Anderson (1962) advocated the application of the GNB model with its pros and cons. Jensen (1969) focused on dynamics of data related to the stock market.

4.2 Research Methodology

4.2.1 Data Collection

Secondary data was collected from Yahoo Finance.

4.2.2 Sample Size

Daily stock price of the MRF stock is considered for the study from 2/1/2023 to 5/1/2024.

4.2.3 Software Used for Data Analysis

Python Programming

4.2.4 Model Applied

For this study, we applied the Naive Bayes machine learning algorithm.

4.2.5 Limitations of the Study

The study is limited to only predicting the stock price of MRF.

4.2.6 Future Scope of the Study

In the future, the study can be extended to compare Naive Bayes models applied to different sectors of industry at the macro level.

4.3 Methodology

For creating a predictive model we selected and applied the Naive Bayes machine learning algorithm.

Research is carried out in five steps:

	
4.4 Feature Engineering and Data Processing

	
4.5 Training and Testing

	
4.6 Predicting Naive Bayes Model with Confusion Matrix

	
4.7 Comparing the Kernel Performance

	
4.8 Results and Analysis

4.4 Feature Engineering and Data Processing

The process of converting raw data into features that can be easily utilized to create a model as per the requirement of the algorithm is called feature engineering (Refer Figure 4.1). The creation of a data frame is the first step in creating a model. The data frame is created to maintain the notion of the model which has different variables. Feature engineering is the process of preparing of data frame according to the need of algorithm hence, it is needs to be converted into nominal scale or ordinal scale etc. in order to prepare data that can be read and utilized by algorithm. It will make raw data ready for program

to utilize in best possible manner. The syntax used for creating a data frame in Python Programming is presented in Figure 4.1.

[image: A screenshot or diagram illustrating the creation of a data frame in Python, showing code snippets and the resulting data frame.]
Figure 4.1
Creating a data frame.

4.5 Training and Testing

To conduct the study, secondary data was collected from Yahoo Finance. The dependent variable for predicting (Y) is the binary class (Figure 4.2) and four independent variables ‘High’, ‘Low’, ‘Open’, and ‘Close’ are continuous in nature.

[image: A screenshot showing the process of defining dependent and independent variables in a dataset, including code snippets and variable definitions.]
Figure 4.2
Defining the dependent and independent variables.

	VARIABLE
	CLASSES

	Buy/Sell (Dependent)
	Tomorrow’s Price > Today’s Price

	 
	Buy = 1

	 
	Tomorrow’s Price < Today’s Price

	 
	Sell = 0

	Open (Independent)
	Continuous

	Close (Independent)
	Continuous

	High (Independent)
	Continuous

	Low (Independent)
	Continuous

For trial and testing, the data is divided into two categories: 80 percent of the data is converted and used for trial and 20 percent of the data is used for testing. With trial and testing the test results are validated by creating a confusion matrix.

[image: A screenshot displaying Python code for trial and testing, including code snippets and descriptions of the testing process.]
Figure 4.3
The Python code for trial and testing.

4.6 Predicting Naive Bayes Model with Confusion Matrix

4.6.1 Creating Confusion Matrix

A confusion matrix measures model performance (Refer Table 4.1). It evaluates the actual values and predicted values. It is of the order of N X N, where N is the class of dependent/target variable. For binary class, it is a 2 X 2 confusion matrix.

Table 4.1
The Confusion Matrix

	
	0
	1

	0
	22 (TP)
	4 (FN)

	1
	0 (FP)
	24 (TN)

4.6.2 Calculating False Negative, False Positive, True Negative, and True Positive

The confusion matrix for our data set is as below:

4.6.3 Result Analysis

4.6.3.1 Accuracy Statistics

It measures the overall accuracy of the model by analyzing the output predicted about incorrect predictions.

To obtain the accuracy of the model we apply the following formula:

Accuracy
=

 True Positive
+
 True Negative

 True Positive
+
 True Negative
+
 False Positive
+
 False Negative

Accuracy
=

22
+
4

22
+
4
+
0
+
24

=
0.93

The accuracy for the overall model is 0.93

4.6.3.2 Recall

It is the ratio of true positive predictions divided by the total number of true positive predictions and false-negative predictions. Higher Recall implies more correct prediction (a small number of FN).

Recall
=

 True Positive

 True Positive
+
 False Negative

Recall
=

22

22
+
4

=
0.85
n

Recall for the overall model is 0.85

4.6.3.3 Precision

Precision measures how correctly we have predicted the true positive prediction. It is the qualitative analysis of correctly predicted values

 Precision
=

 True Positive

 True Positive
+
 False Positive

=

22

22
+
0

=
1.00

The precision for the overall model is 1.00

4.7 Conclusion

The Naive Bayes model predicted the MRF stock with a precision of 100 percent. The overall model accuracy is 93 percent.

References

	Aggarwal, C. C., & others. (2015). Anomaly detection in stock market data using Gaussian Naive Bayes. Journal of Intelligent Information Systems, 46(2), 241–263.

	Anderson, T. W. (1962). An Introduction to Multivariate Statistical Analysis. Wiley.

	Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

	Chandola, V., & others. (2009). Anomaly detection in stock market data using One-Class SVM. Journal of Intelligent Information Systems, 33(2), 147–163.

	Chen, X., & others. (2011). Stock price prediction using Gaussian Naive Bayes. Journal of Computational Information Systems, 7(10), 3565–3572.

	Guyon, I., & others. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422.

	Hastie, T., & others. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

	Huang, W., & others. (2012). Stock price prediction using Gaussian Naive Bayes and SVM. Journal of Computational Information Systems, 8(10), 4321–4328.

	Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1), 73–101.

	Jensen, M. C. (1969). Risk, the pricing of capital assets, and the evaluation of investment portfolios. Journal of Business, 42(2), 167–247.

	Kim, J., & others. (2013). Stock price prediction using Gaussian Naive Bayes and feature selection. Journal of Intelligent Information Systems, 41(2), 241–263.

	Lee, S., & others. (2015). Stock return prediction using Gaussian Naive Bayes and technical indicators. Journal of Financial Markets, 23, 1–15.

	Li, X., & others. (2018). Feature selection for stock price prediction using Gaussian Naive Bayes. Journal of Intelligent Information Systems, 51(2), 241–263.

	Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 392.

5
THE RANDOM FOREST TECHNIQUE IS A TOOL FOR STOCK TRADING DECISIONS

DOI: 10.1201/9781032618241-5

5.1 Introduction

The stock market is exposed to lots of uncertainties. It is difficult to predict the stock price since the value of the stock is influenced by so many factors (Adebiyi et al., 2010). The machine learning models like the logistic regression model, Naive Bayes model, and decision tree model are some of the machine learning tools through which we can predict the stock price (Louppe 2014). The random forest technique is applied since the preliminary results given by different models cannot give precise and effective results and hence we depend on the random forest model. The random forest model is considered to be important since it adds randomness with effective analysis which can remove the bias in the model and hence we conducted the study titled The Random Forest Technique Is a Tool for Stock Trading Decisions (Chen & Guestrin, 2016; Cutler & Cutler, 2009; Cutler et al., 2007; Strobl et al., 2007).

5.2 Random Forest Literature Review

Random forest technique has very wide application and the model improvement for accuracy is carried out in various fields by various researchers like Breiman (2001), Liaw and Wiener (2002a, b), Ishwaran and Kogalur (2007), and Geurts et al. (2006). Strobl et al. (2008) improved interpretation of random forest technique. Wright (2017) applied random forest techniques in C++ and R programming languages. Deng and Runger (2012) applied random forest technique for feature engineering to select proper features for a model. Lopes and Rossi (2015) applied a random forest model for analysis of global sensitivity. Prasad et al. (2006) and Cutler and Cutler (2009) applied and studied the application of random forest techniques in ecological analysis. Chen and Guestrin (2016) and Zhou (2012) developed an ML algorithm Extreme gradient boosting, also known as XG Boost (Cutler & Cutler, 2009; Ishwaran 2008; Ishwaran 2014; Lall 1996).

5.3 Research Methodology

5.3.1 Data Source

Data taken for the study is from Yahoo Finance.

5.3.2 Period of Study

The study period commenced on 2/1/2023 and ended on 5/1/2024. The interval for selected data is the daily price of the MRF stock.

5.3.3 Sample Size

Sample size includes 250 samples as the daily closing price of MRF stock. The data is partitioned as follows: 75 percent of data (183 samples) is used for training and the remaining 25 percent of data (62 samples) is used for testing purposes.

5.3.4 Software Used for Data Analysis

Python Programming

5.3.5 Model Applied

For this study, we applied the random forest model.

5.3.6 Limitations of the Study

The study is restricted to the buying and selling decision of MRF only.

5.3.7 Future Scope of the Study

In the future, the study can be conducted on the macro level by applying it to a group of companies.

5.3.8 Methodology

We selected and applied the random forest model to create a predictive model. The study is carried out in three steps—Defining the dependent and independent variables, training and testing with accuracy statistics, and buying and selling strategy return.

Research is carried out in three steps:

	
5.4 Defining the Dependent and Independent Variables for the Random Forest Model

	
5.5 Training and Testing with Accuracy Statistics

	
5.6 Buying and Selling Strategy Return

5.4 Defining the Dependent and Independent Variables for the Random Forest Model

The dependent variable Buy/Sell(Y) is binary 1 for Buy and −1 for Sell (Refer Table 5.1). The four independent variables are Open-Close, High-Low, Std-5, and Ret-5.

Table 5.1
The Classes of variables used in the Random Forest Model

	VARIABLE
	CLASSES

	Buy/Sell (Dependent)
	Tomorrow’s Price > Today’s Price Buy = 1

	 
	Tomorrow’s Price < Today’s Price Sell = −1

	Open-Close
	= Open − Close Open (Continuous)

	High-Low
	= High − Low Low (Continuous)

	Std-5
	Standard deviation of 5 days (Continuous)

	Ret-5
	The mean of 5 days (Continuous)

We are creating the code in Python Programming for the dependent variable Buy/Sell (Y) (Refer Figure 5.1), binary 1 for Buy, and −1 for Sell, and the four independent variables are Open-Close, High-Low, Std-5, and Ret-5.

[image: A diagrammatic representation illustrating feature construction for a Random Forest model, including descriptions of the features and their importance.]
Figure 5.1
Feature construction for a random forest model.

5.5 Training and Testing with Accuracy Statistics

Here we need to split the data into training and testing data sets to evaluate data mining models. When we separate the data into training data set and testing data set, most of the data is used for training and a small amount of data is used for testing (Refer Figure 5.2). We randomly sample the data to ensure that the training and testing data sets are similar for analysis. By using similar data for training and testing, we can minimize data errors and achieve a better understanding of the model. The data is partitioned as follows: 75 percent of data is used for training and the remaining 25 percent of data is used for testing purposes.

[image: A table or graph presenting the results of training and testing a model, including accuracy statistics and performance metrics.]
Figure 5.2
Training and testing with accuracy statistics.

Inference—Results show an accuracy of 56 percent for the random forest model. A precision of 68 percent is recorded for buying MRF stock, and 45 percent is registered for selling.

5.6 Buying and Selling Strategy Return

The plot (Figure 5.3) shows the distribution of percentage MRF stock return. The strategy helps extract the required information and understand
the density of MRF stock return in percentage (Refer Figure 5.3). The maximum density is seen in the stock return percentage from −1 percent to a 1 percent increase. The spread shows the range of −3 percent to 4 percent.

[image: A chart or graph displaying the strategy for MRF stock returns in percentage, illustrating the expected return over time.]
Figure 5.3
Strategy for MRF stock return in percentage.

Inference—The plot shows the predicted movement of MRF stock return in percentage as indicated by the random forest algorithm.

The trend analysis (refer to Figure 5.4) for the MRF buying and selling strategy shows a downward trend since the beginning of the study period.

[image: A chart or graph presenting the strategy for return in percentage, showing the expected return over a specified period.]
Figure 5.4
Strategy for return in percentage.

5.7 Conclusion

The study has an overall model accuracy of 56 percent, and the precision for buying is 68 percent and for selling it is 45 percent. The data set is split into two parts: train and test. 75 percent of data is used for training and 25 percent of data is used for testing purposes. The maximum density is seen in the stock return percentage from −1 percent to 1 percent increase. The overall movement for buying and selling strategy ranges from a −3 percent decline to a 4 percent rise.

References

	Adebiyi, A. A., Marwala, T., & Sowunmi, T. O. (2010). Bankruptcy prediction using artificial neural networks and multivariate statistical techniques: A review. African Journal of Business Management, 4(6), 942–947.

	Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

	Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). Springer.

	Cutler, D. R., & Cutler, A. (2009). Random Forest: Breiman and Cutler’s random forests for classification and regression. R package version 4.6–10.

	Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.

	Deng, H., & Runger, G. (2012). Feature selection via regularized trees. IEEE Transactions on Knowledge and Data Engineering, 24(6), 1057–1069.

	Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42.

	Ishwaran, H., & Kogalur, U. B. (2007). Random forests for survival, regression and classification (RF-SRC). R News, 7(2), 25–31.

	Ishwaran, H., & Malley, J. D. (2008). An iterative random forest algorithm for variable selection in high-dimensional data. Bioinformatics, 26(4), 1182–1187.

	Ishwaran, H., & Malley, J. D. (2014). Forest floor: Visualizes random forests with feature contributions. R package version 0.9.4.

	Lall, U., Sharma, A., & Tarhule, A. (1996). Streamflow forecasting in the Sahel using climate indices. Journal of Applied Meteorology, 35(10), 274–287.

	Liaw, A., & Wiener, M. (2002a). Breiman and Cutler’s random forests for classification and regression. R News, 2(3), 22–24.

	Liaw, A., & Wiener, M. (2002b). Classification and regression by randomForest. R News, 2(3), 18–22.

	Lopes, F. M., & Rossi, A. L. (2015). Using random forests for global sensitivity analysis of the CLM4. 5-FATES land surface model. Geoscientific Model Development, 8(4), 1059–1075.

	Louppe, G. (2014). Understanding random forests: From theory to practice. PhD Thesis, University of Liège.

	Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181–199.

	Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9(1), 307.

	Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 1–15.

	Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17.

	Zhou, Z. H. (2012). Ensemble Methods: Foundations and Algorithms. Taylor & Francis Group.

6
APPLYING DECISION TREE CLASSIFIER FOR BUYING AND SELLING STRATEGY WITH SPECIAL REFERENCE TO MRF STOCK

DOI: 10.1201/9781032618241-6

6.1 Introduction

Today the stock market is dynamic in nature. The stock market is uncertain with lots of shocks of ups and downs like a rollercoaster. The stock market has been an attractive investment opportunity for stock traders. To exploit the opportunity and to get a good amount of return, the traders need to be very speculative. This speculation cannot be made by humans as it is a very complex phenomenon hence we need to depend upon machine learning tools like logistic regression models, support vector models, regression models, etc. The success of stock investment depends on the buying and selling of stock. The buying and selling of stock decides your returns/profits/losses. The buying and selling of stocks needs accurate predictive analytics; hence, the study titled Applying Decision Tree Classifier for Buying and Selling Strategy with Special Reference to MRF Stock was carried out.

6.2 Decision Tree

Decision tree is a diagrammatic representation of all decisions with their possible outcomes (Li & Cheng, 2023). It is an important tool for strategic management as far as investment is considered. It also gives all possible outcomes. It can act as a regression model by classification of different outcome. It is a tool for the analysis of decisions and all possible outcomes (García & Martínez, 2023; Huang & Zhao, 2023; Kim & Park, 2023). The root node is the starting node of a decision tree and is also known as the mother node. The leaf node is the end node of a decision tree with zero Gini value.

The decision tree can be an effective tool for stock price predictive analytics (Du et al., 2023; Olorunnimbe & Viktor, 2023). The decision tree is highly accurate with stock price prediction since it can predict the volatility and risk of the stock market (Zhou et al., 2023). The efficiency of a decision tree model is enhanced by making a hybrid model with a relative machine learning model such as LSTM (Feng & Zhang, 2023; Liu et al., (2023). The decision tree is used for portfolio management and volatility assessment of the stock market (Chen & Lin, 2023; Kumar & Das, 2023; Wang & Zhang, 2023). The use of the decision tree trading algorithm in market sentiment analysis has shown the importance of decision tree in the finance field (Lee & Kim, 2023; Rodriguez & Lopez, 2023; Patel et al., 2023; Wang 2023). The combination of decision tree with other machine learning techniques and artificial intelligence has a huge impact on financial data analysis decisions (Singh & Gupta, 2023; Patel & Roy, 2023; Yang & Liu, 2023).

6.3 Research Methodology

6.3.1 Data Source

Data taken for the study is from Yahoo Finance.

6.3.2 Period of Study

The study period commenced on 2/1/2023 and ended on 5/1/2024. The interval for selected data is the daily price of the MRF stock for analysis. The total sample size is 250 days.

6.3.3 Software Used for Data Analysis

Python Programming

6.3.4 Model Applied

For this study, we applied the decision tree model.

6.3.5 Limitations of the Study

The study is restricted to the analysis of MRF stock prices.

6.3.6 Methodology

We selected and applied the decision tree model to create a predictive model. The study is carried out in five steps—Creating a data frame, feature construction and defining the dependent and independent variables, creating a confusion matrix, buying and selling strategy return, and decision tree analysis.

Research is carried out in five steps:

	
6.4 Creating a Data Frame

	
6.5 Feature Construction and Defining the Dependent and Independent Variables

	
6.6 Training and Testing of Data for Accuracy Statistics

	
6.7 Buying and Selling Strategy Return

	
6.8 Decision Tree Analysis

6.4 Creating a Data Frame

Before we start the analysis, it is very important to convert the data which can be assessed in a Python environment (Refer Figure 6.1). A data frame is the representation of structured data which will be used for analysis. The raw data is cleaned by removing unwanted data in the data frame so that the data will be ready to use for further analysis. The process of preparing data to make it ready for analysis as per the requirement of the algorithm is called feature engineering. It also helps for an easy understanding of various variables used in machine learning models since it is structured and easy for the algorithm to utilize the data for analysis. It is the first step in the process of building a machine learning model. The syntax used for creating a data frame in Python Programming is presented in Figure 6.1.

[image: A screenshot showing the process of fetching data from a CSV file into Python as a data frame, including code snippets and the resulting data frame.]
Figure 6.1
Data fetching from CSV to Python as a data frame.

6.5 Feature Construction and Defining the Dependent and Independent Variables

The dependent variable Buy/Sell(Y) is binary 1 for Buy and −1 for Sell (Refer Table 6.1). The four independent variables are Open-Close, High-Low, Std-5, and Ret-5.

Table 6.1
Presenting the Variables Used in the Decision Tree Model

	VARIABLE
	CLASSES

	Buy/Sell (Dependent)
	Tomorrow’s Price > Today’s Price Buy = 1

	 
	Tomorrow’s Price < Today’s Price Sell = −1

	Open-Close
	= Open − Close Open (Continuous)

	High-Low
	= High − Low Low (Continuous)

	Std-5
	Standard deviation of 5 days (Continuous)

	Ret-5
	The mean of 5 days (Continuous)

They are creating the code in Python Programming for the dependent Variable Buy/Sell (Y), binary 1 for Buy, and −1 for Sell, and Four Independent variables are Open-Close, High-Low, Std-5, Ret-5 (Refer Figure 6.2).

[image: A diagram illustrating feature construction for a Decision Tree model, including descriptions of the features and their importance.]
Figure 6.2
Feature construction for a decision tree model.

6.6 Training and Testing of Data for Accuracy Statistics

For accuracy statistics, we need to convert data into two parts: training data set and testing data set (Refer Figure 6.3). The major part of the data is used for training purposes since we build the decision tree model on the training data set. The model evaluation is done based on a testing data set. We select random samples of data to ensure that the training and testing data sets are similar for analysis and hence biasedness can be minimized. By using similar data for training and testing, we can minimize data errors and achieve a better understanding of the model.

[image: A table or graph presenting the results of training and testing a model, including accuracy statistics and performance metrics.]
Figure 6.3
Training and testing with accuracy statistics.

Results show an accuracy of 42.85 percent for the decision tree model. A precision of 48 percent is recorded for buying and 40 percent is registered for selling MRF Stocks.

6.7 Buying and Selling Strategy Return

The plot (Figure 6.4) shows the percentage returns distribution by means of a frequency density chart. The percentage helps extract the required information to understand the density of return in percentage. The maximum density is seen in the stock return percentage from −1 percent to 1.80 percent increase.

[image: A chart or graph displaying the strategy for stock returns in percentage, illustrating the expected return over time.]
Figure 6.4
Strategy for stock return in percentage.

Inference—The plot shows the predicted movement of return in percentage as indicated by the decision tree algorithm. The maximum density is seen in the return percentage from −1 percent to 1.80 percent.

6.8 Decision Tree Analysis

The root node is the mother node and is also the starting node of a decision tree. It has no backward step since it is the topmost node. The largest information gain is by std_5 with a Gini value of 0.495 and a
sample size of 49 with class 1 (Buy). The root node splits into Open-Close and High-Low with Gini values of 0.0.472 and 0.245 Decision nodes are the nodes that are next to the root node which generate multiple decision modes and leaf nodes (end nodes) with maximum purity.

[image: A chart or graph presenting the strategy for return in percentage, showing the expected return over a specified period.]
Figure 6.5
Strategy for return in percentage.

Leaf nodes are the end nodes with maximum purity. The leaf nodes have zero Gini values. The leaf nodes classify the data with the highest purity. The outcome is predicted with color nodes. The highest leaf class predicted was Class −1 (Sell) and it was predicted with nine final leaf nodes and Class 1 (Buy) with seven leaf nodes (Refer Figure 6.6).

[image: A diagrammatic representation illustrating the buy and sell strategy for MRF stock using a decision tree model, showing the decision points and expected outcomes.” This figure would show a decision tree model implemented in Python, using libraries like scikit-learn (for standard decision trees) or other frameworks/libraries that support decision tree visualization and modelling. It might include both code snippets and graphical representations of the decision tree structure.]
Figure 6.6
Decision tree in Python.

6.9 Conclusion

Results: The highest leaf class predicted was Class −1 (Sell), which was predicted with nine final leaf nodes and Class 1 (Buy) was predicted with seven leaf nodes. The predicted movement of return in percentage as indicated by the decision tree algorithm and the corresponding maximum density were seen in the return percentage from −1 percent to 1.80 percent.

References

	Chen, X., & Lin, M. (2023). Decision trees in high-frequency trading. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Du, S., Li, X., & Yang, D. (2023). Research on prediction of decision tree algorithm on different types of stocks. In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology—Volume 1: ANIT (pp. 178–181). SciTePress. https://doi.org/10.5220/0012277000003807

	Feng, S., & Zhang, T. (2023). Improving stock market predictions using LSTM and decision tree models. AIP Conference Proceedings, 3072, 020023. https://pubs.aip.org/aip/acp/article/3072/1/020023/3277787

	García, J., & Martínez, A. (2023). Financial market forecasting using decision trees and machine learning. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Huang, Z., & Zhao, Y. (2023). Predicting stock market trends using decision tree algorithms. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Kim, J., & Park, H. (2023). Application of decision tree algorithms for market trend analysis. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Kumar, V., & Das, S. (2023). Decision tree-based risk assessment in stock investments. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Lee, H., & Kim, S. (2023). Decision trees and their role in automated trading systems. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Li, J., & Cheng, S. (2023). A hybrid approach combining decision trees and neural networks for stock prediction. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Liu, Q., et al. (2023). Enhancing stock market predictions with ensemble learning. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Olorunnimbe, R., & Viktor, H. (2023). Stock market prediction with time series data and news. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Patel, A., & Roy, B. (2023). Decision trees in predictive analytics for stock markets. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Patel, J., Shah, S., & Thakkar, P. (2023). A review on decision tree algorithms in financial forecasting. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Rodriguez, P., & Lopez, F. (2023). Using decision trees to analyze market sentiments and stock prices. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Shi, Y., & Chen, L. (2023). Decision trees in financial markets: Construction and applications. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Singh, R., & Gupta, M. (2023). Decision trees for predictive modeling in finance. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Wang, T., & Zhang, L. (2023). Enhancing portfolio management with decision trees. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Wang, Y., & Sun, L. (2023). Comparative study of decision tree models in stock price prediction. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Yang, M., & Liu, H. (2023). Stock market prediction using decision trees and support vector machines. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

	Zhou, X., et al. (2023). Machine learning techniques for stock price prediction and graphic processing. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094

7
DESCRIPTIVE STATISTICS FOR STOCK RISK ASSESSMENT

DOI: 10.1201/9781032618241-7

7.1 Introduction

Descriptive statistics works on organizing and presenting data in a meaningful and lucid manner to describe its features and characteristics. It provides an accurate summary of data. The summary includes central tendencies like mean, median, and mode; dispersion which includes range, variance, and standard deviation; and shape and distribution in the form of kurtosis and skewness.

7.1.1 Related Work

Data wrangling was done with Pandas and NumPy (McKinney, 2017). VanderPlas (2016) worked on different descriptive analysis tools. Das (2018) emphasizes on practical application of descriptive statistics. Shaikh and Prakash (2020) put emphasis on descriptive statistics and its practical application. Saxena and Gupta (2019) worked on COVID-19 data, performed descriptive statistics for academic research work done by MCKinney et al. (2010) and further focused on computational analysis. Das Gupta and Ghosh (2019) carried out empirical analysis. Pedregosa et al. (2011) applied scikit-learn and performed descriptive analysis. Grolemund (2017), Gauda (2016), Getlin (2015), Géron (2019), VanderPlas (2016), and Wickham and Grolemund (2017) contributed hands on to building a machine learning-related model (DePoy & Gitlin, 2015; Géron, 2019; Saxena 2019).

7.2 Research Methodology

7.2.1 Data Source

Yahoo Finance financial database was used to perform Descriptive statistics (Refer Figure 7.2).

[image: A screenshot showing the process of fetching datasets in Python and performing descriptive statistics, including code snippets and statistical outputs.]
Figure 7.1
Python libraries for fetching the data sets into a Python environment and performing descriptive statistics.

[image: A table or screenshot displaying the results of checking for null values in a dataset, including the number and location of null values.]
Figure 7.2
Results of checking for null values.

7.2.2 Period of Study

The study period commenced on 2/1/2023 and ended on 5/1/2023. The interval for selected data the daily opening stock price of MRF for analysis. The study used a sample size of 250 days.

7.2.3 Software Used for Data Analysis

Python Programming, Anaconda (Refer Figure 7.1)

7.2.4 Model Applied

For this study, we applied the t-test.

7.2.5 Limitations of the Study

The study is restricted to t-tests only.

7.2.6 Future Scope of the Study

In the future, the study can be done on different stocks at the same time.

7.3 Performing Descriptive Statistics in Python for Mean

Mean is the total or sum of all values of stock returns divided by the days (Refer Figure 7.3). The average return by the stock is useful to understand the risk by applying standard deviation and variance.

[image: A screenshot showing the calculation of the mean for various variables in a dataset using Python, including code snippets and results.]
Figure 7.3
Performing descriptive statistics in Python for mean.

7.4 Performing Descriptive Statistics in Python for Median

The median represents the middle value of a variable (Refer Figure 7.4). The median value is more than the average, which means the stock value in the middle of the data set is higher.

[image: A screenshot displaying the calculation of the median for various variables in a dataset using Python, including code snippets and results.]
Figure 7.4
Performing descriptive statistics in Python for median.

7.5 Performing Descriptive Statistics in Python for Mode

It is the most apparent score in data sets (Refer Figure 7.5). The mode is 108500, which is higher than the average of 100703 and median of 100773, indicating that the stock gives a higher return than the average return.

[image: A screenshot showing the calculation of the mode for various variables in a dataset using Python, including code snippets and results.]
Figure 7.5
Performing descriptive statistics in Python for mode.

7.6 Performing Descriptive Statistics in Python for Range

The range is the difference between the lowest and highest values, here the min is 81900 and the max is 131600 (Refer Figure 7.6). The min is below the most appeared score in the data sets (mode) of 108500 and it is also lower than the average of 100703 and median of 100773, indicating that the stock gives higher returns than the min return most of the time. The highest is 131600 which is above the mean, median, and mode, indicating a good return. The range has a difference of 49700 and the difference between the average return and max return is 30 897, which is lower than the range. Hence, we can interpret that the returns are above 100773 or close to that value in most of the cases.

[image: A screenshot displaying the calculation of the range for various variables in a dataset using Python, including code snippets and results.]
Figure 7.6
Performing descriptive statistics in Python for range.

7.7 Performing Descriptive Statistics in Python for Variance

Variance is calculated as the average of the squared differences from the mean (Refer Figure 7.7).

[image: A screenshot showing the calculation of the variance for various variables in a dataset using Python, including code snippets and results.]
Figure 7.7
Performing descriptive statistics in Python for variance.

7.8 Performing Descriptive Statistics in Python for Standard Deviation

Standard deviation is the square root of variance (Refer Figure 7.8). It measures the deviation from the mean value. It is a measure of consistency. Smaller the standard deviation, more consistent is the data in nature. The standard deviation of 11169 is way below the difference of range and variance. Hence, we can interpret that the data or stock is more consistent in nature.

[image: A screenshot displaying the calculation of the standard deviation for various variables in a dataset using Python, including code snippets and results.]
Figure 7.8
Performing descriptive statistics in Python for standard deviation.

7.9 Performing Descriptive Statistics in Python for Quantile

Quantile divides data into quarters: first quantile is the 25th percentile, second quantile is the 50th percentile, and third quantile is the 75th percentile (Refer Figure 7.9). Q1 of 89967 says that 25 percent of data is less than or equal to 89967, which is below the average of 100703. The second quantile has a value of 100773, which is above the average of 100703; and the third quantile has a value of 108879, which is above the average and near to the mode value of 108500, indicating less deviation from the average and mode and hence less risk.

[image: A screenshot showing the calculation of different quantiles and the interquartile range (IQR) for various variables in a dataset using Python, including code snippets and results.]
Figure 7.9
Performing descriptive statistics in Python for different quantiles with IQR.

7.10 Performing Descriptive Statistics in Python for Skewness

It is the measurement of symmetry or asymmetry in a normal distribution (Refer Figure 7.10). Asymmetry means the curve appears to be skewed towards the right (positive skewness) or left (negative skewness). It ranges from −1 (negative skewness) to 1 (positive skewness). If it is zero, then the data is normally distributed and there is no skewness. If the skewness is 0.24 (positive skewness), the strategy of

investors is to put the stock on hold, as the stock will give small losses in short term but a good return in long term (Müller & Guido, 2016).

[image: A screenshot displaying the calculation of skewness for various variables in a dataset using Python, including code snippets and results.]
Figure 7.10
Performing descriptive statistics in Python for skewness.

7.11 Performing Descriptive Statistics in Python for Kurtosis

Kurtosis is a measure that determines whether a data distribution has heavy or light tails in comparison to a normal distribution (Refer Figure 7.11). The kurtosis of −0.50 means that the distribution has tails that are thinner than normal distribution. Generally, these do not produce extreme values, which is good for investors who do not want to take risk.

[image: A screenshot showing the calculation of kurtosis for various variables in a dataset using Python, including code snippets and results.]
Figure 7.11
Performing descriptive statistics in Python for kurtosis.

7.12 Conclusion

Descriptive statistics is a good tool for getting analysis of stock for developing a good Investment strategy.

References

	Das, A. (2018). Descriptive Statistics with Python. Packt Publishing Ltd.

	Das Gupta, A., & Ghosh, S. (2019). An empirical study on descriptive data analysis using Python. International Journal of Engineering and Advanced Technology, 8(6), 988–992.

	DePoy, E., & Gitlin, L. N. (2015). Introduction to Research: Understanding and Applying Multiple Strategies. Elsevier Health Sciences.

	Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc.

	McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media.

	McKinney, W., & others. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56.

	Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Inc.

	Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

	Saxena, M., & Gupta, A. (2019). Descriptive statistical analysis of COVID-19 data using python. SSRN Electronic Journal.

	Shaikh, F. B., & Prakash, S. R. (2020). A comprehensive review of descriptive data analysis techniques using Python libraries. Journal of Open Source Software, 5(50), 2284.

	VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media.

	Wickham, H., & Grolemund, G. (2017). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media.

8
STOCK INVESTMENT STRATEGY USING A REGRESSION MODEL

DOI: 10.1201/9781032618241-8

8.1 Introduction to a Multiple Regression Model

The multiple regression model is the statistical tool for predicting the dependent variable based on multiple independent variables. In this method, we identify the independent variable which has a major impact on the dependent variable. In short, we build a model that studies the impact of the independent variable on the dependent variable based on the relationship that exists. In the regression model, we take all information about the independent variable and use it to build a powerful predictive analytics multiple regression model. The multiple regression model is represented by the equation below:

Y = a+b1X1 + b2X2

where

Y is the dependent variable.

a is the Y-intercept.

b1 is the change in the value of Y for each 1 percent change in X1.

b2 is the change in the value of Y for each 1 percent change in X2.

X1 and X2 are the independent variables.

The multiple regression model is developed and implemented with its evaluation in five steps:

	Introduction to a multiple regression model

	Fetching the data into a Python environment and defining the dependent and independent variables

	Correlation matrix for selecting variables for the regression model

	Result analysis for the multiple regression model

	Conclusion For stock market prediction, the multiple regression model is considered to be the most reliable model (Anderson, 1962). The multiple regression model considers the linear relationship between the dependent variable and independent variables (Huber, 1964). By applying the multiple regression model, we can understand the relationship between the factors which influence the stock price (Fama, 1965; Theil, 1950). The portfolio returns are predicted by applying multiple regression analysis and by identifying the factors which influence it (Markowitz, 1952; Sharpe, 1964; Mandelbrot 1963). Before applying the multiple regression model (Huber, 1964), we need to test normality as the stock market data is not normally distributed (Campbell and Lo, 1997). The multiple regression model did not consider the assumption of multi-collinearity (Brown & Forsythe, 1974). Multicollinearity can lead to unstable regression coefficient outputs (Hampel, 1974). The regression model was further developed by Rousseeuw (1984), McCullagh and Nelder (1989), and Breusch and Pagan (1979).

8.2 Applied Research Methodology

8.2.1 Data Source

Data is taken from Yahoo Finance, which is a reliable source.

8.2.2 Sample Size

The daily price of the MRF stock is considered for the study from 2 January 2023 to 27 February 2024 (daily stock price).

8.2.3 Software Used for Data Analysis

Python Programming libraries used for analysis are statsmodels.api, Pandas, NumPy, and SciPy.

8.2.4 Model Applied

Multiple regression model algorithm was applied for analyzing and creating the model.

8.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

Raw data filtering is a procedure applied in feature engineering (Refer Figure 8.1). Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched into a Python Anaconda environment using the Jupyter Notebook, as the format of the data file was not readable in Python. A data frame is created by fetching the comma-separated values (CSV) file making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame needs to be structured in as per the requirement of the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 8.1.

[image: A screenshot or diagram illustrating the creation of a data frame in Python, showing code snippets and the resulting data frame.]
Figure 8.1
Creating a data frame.

8.4 Correlation Matrix

To create a regression model, first we need to select a variable based on collinearity. The selection of variables for a regression model depends upon the relationship between the different variables. To understand the underlying relationship between different variables, we need to create a correlation matrix (Refer Figure 8.2). A correlation matrix is an important tool for understanding the underlying relationships between the variables. The correlation matrix shows the correlation between different variables in the range from −1 to 1. −1 indicates a high degree of negative correlation. The negative correlation is defined as the relationship between two variables moving in opposite directions in which one increases as the other decreases, and vice versa. The positive correlation of 1 is detected when both variables are moving in the same direction. Both may increase or decrease together in the

same direction. If the correlation value is zero, then there exists no correlation between the two variables.

[image: A heatmap or table displaying a correlation matrix for various variables, illustrating the strength and direction of relationships between pairs of variables.]
Figure 8.2
Correlation matrix for selecting variables for the regression model.

We created a correlation matrix for selecting different variables to create a regression model.

The study has a dependent variable, the closing price. The thumb rule is if the degree of correlation is high, the variable can be included in the regression model. The dependent variables are continuous in nature and are represented as Open, High, and Low. In the analysis of the correlation matrix, the variables show a high degree of positive correlation of more than 0.98, which indicates that variables are fit for inclusion in the regression model (Theil, 1950; White, 1980).

8.5 Result Analysis for the Multiple Regression Model

Analysis using p-value —The model accuracy depends upon the p-values of the output results (Refer Figure 8.3). If the p-value is less than 0.05, the variable is considered to be significant; and if the p-value is greater than 0.05, the variable is considered not significant in the regression model. In the present regression model, the dependent variables Open, High, and Low are highly significant.

[image: A table or graph presenting the results of a multiple regression model, including parameter estimates, statistical significance, and goodness-of-fit measures.]
Figure 8.3
Result analysis for a multiple regression model.

8.5.1 R-Square

Analysis using R-square is a tool for measuring variance proportion for the dependent variable which is explained by the independent variable in a predictive multiple regression model (Refer Figure 8.3). If the R-square is 0.50, it means that 50 percent of the dependent variable is explained by the independent variable. The result analysis shows an R-square value of 0.99, which means that 99 percent of the dependent variable is explained by independent variables, implying a high accuracy of the regression model.

Analysis using Durbin Watson measures the autocorrelation for the regression models (Refer Figure 8.3). The Durbin Watson value of 2.0 indicates no autocorrelation and less than zero indicates positive autocorrelation. The regression results show the Durbin Watson value of 1.80, which indicates positive autocorrelation.

8.6 Conclusion

The three independent variables which are continuous in nature are Open, High, and Low, which are highly significant with a p-value of less than 0.05 with the dependent variable Close. The regression results show the Durbin Watson value of 1.80, which indicates positive auto correlation. The result analysis shows an R-square value of 0.99, which means that 99 percent of the dependent variable is explained by independent variables, implying a high accuracy of the regression model.

References

	Anderson, T. W. (1962). An Introduction to Multivariate Statistical Analysis. Wiley.

	Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294.

	Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Association, 69(346), 364–367.

	Campbell, J. Y., & Lo, A. W. (1997). The Econometrics of Financial Markets. Princeton University Press.

	Fama, E. F. (1965). The behavior of stock prices. Journal of Business, 38(1), 34–105.

	Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.

	Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1), 73–101.

	Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 392–417.

	Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

	McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall.

	Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880.

	Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425–442.

	Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 53, 386–392.

	White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4).

9
COMPARING STOCK RISK USING F-TEST

DOI: 10.1201/9781032618241-9

9.1 Introduction

A F-test is a method of inferential statistics that determines the statistical difference between the variances of two variables. The F-test is applied when we want to compare and check whether the variances of two samples are equal or not. We apply the F-test on data that is normally distributed and samples that are independent variables. The F-test is based on F-distribution. The rejection zone is decided by analyzing and comparing critical values. Here, the F-test is performed to compare the risk of two stocks.

The degree of freedom represents the number of observations that are considered for the calculation of the chi-square variables used for calculating the ratio. As the degree of freedom increases, the F-distribution becomes more symmetrical and approaches the bell-shaped normal distribution.

9.1.1 Review of Literature

F-test is applied for comparing the variances of two variables (Montgomery et al., 2017; Allen 2012). The SciPy library is a tool for performing F-test (Vertanen, 2020; Montgomery et al., 2017; Pedregosa et al., 2011; Seabold & Perktold, 2010). F-test is applied for financial analysis of stock markets (Zou et al., 2020; Virtanen et al., 2020). F-test is used for feature engineering on high dimensional data, and F-test is integrated with machine learning models and the workflow for predictive analytics is prepared (Pedregosa et al., 2011). Johnson and Wichern (2007) conducted a conceptual research on its application and constraints. The statsmodels library provides the workflow documentation for applying F-test (Seabold & Perktold, 2010; Gelman et al., 2013). F-test should be applied after checking the normality of the data.

9.2 Research Methodology

9.2.1 Data Source

The Yahoo Finance financial database is used to perform the F-test.

9.2.2 Period of Study

The study period was from 1 January 2023 to 12 January 2023 (Refer Figure 9.2). The interval for selected data is the daily closing stock price of two companies for analysis. The study used a sample size of 12 days.

[image: A screenshot showing the Python libraries used for performing an F-test, including code snippets and library imports.]
Figure 9.1
Python libraries for performing an F-test.

[image: A screenshot displaying the process of fetching datasets in Python for performing an F-test, including code snippets and dataset descriptions.]
Figure 9.2
Fetching the data sets into a Python environment for performing an F-test.

9.2.3 Software Used for Data Analysis

Python Programming, Anaconda (Refer Figure 9.1)

9.2.4 Model Applied

For this study, we applied the F-test.

9.2.5 Limitations of the Study

The study is restricted to t-tests only.

9.2.6 Future Scope of the Study

In the future, the study can be conducted for different stocks at the same time.

Hypothesis

	Null Hypothesis—The variance of group 1 stock is equal to the variance of group 2 stock (same risk).

	Alternative Hypothesis—The variance of group 1 stock is not equal to the variance of group 2 stock.

Conclusion the p-value of the test is 0.13, which is more than the alpha value of 0.05 (Refer Figure 9.3). Hence, we cannot reject the null hypothesis of the test. Based on the above analysis, we conclude that the variance of return of both the stocks is not different, thus rejecting the alternative hypothesis.

[image: A screenshot showing the performance of an F-test in Python using the Scipy.stats library, including code snippets and test results.]
Figure 9.3
Performing an F-test in Python using scipy.stats library.

References

	Allen, F., & Powell, M. (2012). Market Liquidity: A Primer. Oxford University Press.

	Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis (Vol. 2). CRC Press.

	Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Prentice Hall.

	Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2017). Introduction to Time Series Analysis and Forecasting. John Wiley & Sons.

	Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,… & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

	Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with Python. Proceedings of the 9th Python in Science Conference (pp. 92–96).

	Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,… & van der Walt, S. J. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.

	Zou, H., Hastie, T., & Tibshirani, R. (2020). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 27(2), 316–324.

10
STOCK RISK ANALYSIS USING T-TEST

DOI: 10.1201/9781032618241-10

10.1 Introduction

A t-test is a method of inferential statistics that determines the statistical difference between the means of two variables (Lumley et al., 2002). The t-test that was developed by Gosset (1908) is an important tool in statistics for comparing the means of two variables which are significantly different. The t-test is applied in healthcare, social sciences, etc. (Field, 2018; Howell, 2013; Tabachnick 2019). The t-test is applied in different forms such as one-tailed and two-tailed paired test for different experiments in research (Cohen, 1988; Hinkle et al., 2003; Mendenhall & Sincich, 2016). The validity of t-test depends upon the assumption that the data is normally distributed and is independent (Urdan, 2016). When the above assumptions are violated, we applied the U-test (McDonald, 2014). Despite lots of limitations, we still apply t-test because of its simplicity (Sheskin, 2003; Tabachnick & Fidell, 2019). The present study on t-tests will further modify its application and improve its accuracy (Neter et al., 1996; Rosenthal & Rosnow, 2008). It is considered to be the basic test for hypothesis testing (Trochim et al., 2016; Zar, 2010; Mendenhall & Sincich, 2016).

10.2 Research Methodology

10.2.1 Data Source

The Yahoo Finance financial database is used to perform a t-test.

10.2.2 Period of Study

The study period was from 1 January 2023 to 12 January 2023 (Refer Figure 10.2). The interval for selected data is the daily closing stock price of two companies for analysis. The study used a sample size of 12 days.

[image: A screenshot or diagram illustrating the Python libraries for the performance of the t-test.]
Figure 10.1
Python libraries for performing a t-test.

[image: A screenshot or diagram illustrating the performance of the t-test of data sets in the Python environment.]
Figure 10.2
Fetching the data sets into a Python environment for performing a t-test.

10.2.3 Software Used for Data Analysis

Python Programming, Anaconda (Refer Figure 10.1)

10.2.4 Model Applied

For this study, we applied the t-test.

10.2.5 Limitations of the Study

The study is restricted to t-tests only.

10.2.6 Future Scope of the Study

In the future, the study can be conducted for different stocks at the same time.

Hypothesis

	Null Hypothesis—The mean of group 1 stock is equal to the mean of group 2 stock (same risk).

	Alternative Hypothesis—The mean of group 1 stock is not equal to the mean of group 2 stock.

The p-value of the test is 0.23 (Refer Figure 10.3), which is more than the alpha value of 0.05. Hence, we cannot reject the null hypothesis of the test. From the above analysis, we conclude that the mean return of both stocks is different, thus rejecting the alternative hypothesis (Refer Figure 10.4).

[image: A screenshot or diagram illustrating the calculation of variance for various variables in a dataset, including code snippets and results.]
Figure 10.3
Calculating the variance.

[image: A screenshot showing the performance of a t-test in Python using the Scipy.stats library, including code snippets and test results.]
Figure 10.4
Performing a t-test in Python using scipy.stats library.

10.3 Conclusion

The t-test is performed on a small sample size and the average return of two stock variables are calculated by applying Python libraries like scipy.stats. The study period was from 1 January 2023 to 12 January 2023. The interval for selected data is the daily closing stock price of two companies for analysis. The p-value of the t-test is 0.23, which is more than the alpha value of 0.05. Hence, we cannot reject the null hypothesis of the test. From the above analysis, we conclude that the mean return of both stocks is different, which ultimately results in the rejection of the alternative hypothesis.

References

	Box Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Erlbaum.

	Field, A. (2018). Discovering Statistics using IBM SPSS Statistics (5th ed.). Sage.

	Gosset, W. S. (1908). The probable error of a mean. Biometrika, 6(1), 1–25.

	Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied Statistics for the Behavioral Sciences (5th ed.). Houghton Mifflin.

	Howell, D. C. (2013). Statistical Methods for Psychology (8th ed.). Cengage Learning.

	Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23, 151–169.

	McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Sparky House Publishing.

	Mendenhall, W., & Sincich, T. (2016). Statistics for Engineering and the Sciences (6th ed.). Pearson.

	Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (4th ed.). McGraw-Hill.

	Rosenthal, R., & Rosnow, R. L. (2008). Essentials of Behavioral Research: Methods and Data Analysis (3rd ed.). McGraw-Hill.

	Sheskin, D. J. (2003). Handbook of Parametric and Nonparametric Statistical Procedures (3rd ed.). CRC Press.

	Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson.

	Trochim, W. M. K., Donnelly, J. P., & Arora, K. (2016). Research Methods: The Essential Knowledge Base (2nd ed.). Cengage Learning.

	Urdan, T. C. (2016). Statistics in Plain English (4th ed.). Routledge.

	Zar, J. H. (2010). Biostatistical Analysis (5th ed.). Pearson Prentice Hall.

11
STOCK INVESTMENT STRATEGY USING A Z-SCORE

DOI: 10.1201/9781032618241-11

11.1 Introduction to Z-Score

Z-score represents or gives us an interpretation of the number of standard deviations the value of a variable is from the average or mean. It is measured in terms of standard deviation from its average or mean. Z-score value of 2.0 indicates that it is two time the standard deviation away from the mean. A positive Z-score indicates that the value is above the mean and a negative Z-score indicates that the value is below the mean. If the Z-score is zero, then it is equal to the mean. The Z-score is represented by the below formula:

 Z score
=

 Value
(
X
)
−
 Mean
(
μ
)

 Standard Deviation
(
σ
)

where

X is the variable.

µ is the mean, which is given by the value of the variable divided by the number of items.

ϭ is the standard deviation of variable X.

The Z-score model is developed and implemented with its evaluation in five steps:

	Introduction to the Z-score

	Fetching the data into a Python environment

	Calculating the Z-score for the stock

	Result analysis by evaluating the Z-score

	Conclusion

Aanderson (1962) before applying the Z-test we need to test the normality of the data. The normality of data is considered to be a void assumption as far as stock market data is considered (Mandelbrot, 1963; Fama, 1965; Campbell et al., 1997; Fama, 1965; Hampel, 1974; Huber, 1964; Jensen, 1969; Greene 2003). The significance of return is tested by applying Z-testfor stock market analysis. The Z-test is applied to optimize the return on portfolio (Markowitz, 1952; Rousseeuw, 1984; Theil, 1950; White, 1980). Because the Z-test does not accurately capture the volatility of the market, non-parametric tests can be used as an alternative method. The assumption that the Z-test considers equal variance (Brown & Forsythe, 1974) cannot be held in the case of stock market data. Hence, it is important to check homoscedasticity before the application of Z-test (Aanderson, 1962; Brown & Forsythe, 1974).

11.2 Applied Research Methodology

11.2.1 Data Source

Data is taken from Yahoo Finance, which is a reliable source.

11.2.2 Sample Size

The daily price of the MRF stock is considered for the study from 2 January 2023 to 27 February 2024 (daily stock price) (Refer Figure 11.1).

[image: A screenshot or diagram illustrating the creation of a data frame in Python, showing code snippets and the resulting data frame.]
Figure 11.1
Creating a data frame.

11.2.3 Software Used for Data Analysis

Python Programming libraries used for analysis are Pandas, NumPy, and SciPy.

11.2.4 Model Applied

The Z-score model is applied for analysis.

11.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

Raw data filtering is a procedure applied in feature engineering (Refer Figure 11.1). Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched in the Python Anaconda environment using the Jupyter Notebook, as the format of the data file was not readable in Python. A data frame is created by fetching the comma-separated values (CSV) file, making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame is created as per the model requirement. The data frame needs to be structured in as per the requirement of the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 11.1.

11.4 Calculating the Z-Score for the Stock

The Z-score analysis for the stock is done by calculating the Z-score for opening price, closing price day high, day low, and stock volume (Refer Figure 11.2). Calculating the Z-score and determining risk is done by comparing the values of stock with parameters like opening price, closing price day high, day low, and stock volume. The value of a stock is positive and above zero means that it is above the mean and if it is below zero it is considered to be negative or below the mean. The Z-score of zero indicates the value is equal to zero. If the value is above it is a good investment opportunity and if the Z-score is below zero it means the value is going down.

[image: A table or graph presenting Z-scores associated with risk measures for various variables, illustrating the degree of risk relative to the mean.]
Figure 11.2
Calculating the Z-score for the stock.

11.5 Results Z-Score Analysis

The mean of the opening price is 7.86 of the Z-score (Refer Figure 11.3). So we can interpret this as it is the best time to invest since the opening price has given a good return and the Z-score is above seven times of mean return. The Z-score value of the variables High, Low, and Close has given a lower return since the standard deviation of one. The Z-score of minimum ranges from −1.63 to −1.61 which indicates low risk and high return at the opening price as the Z-score mean is high, The maximum Z-score ranges from 2.08 for the opening price and 2.02 for all other variables which show high return and high risk in the opening price.

[image: A table displaying Z-scores alongside descriptive statistics for risk analysis, including mean, standard deviation, and other relevant metrics.]
Figure 11.3
Z-scores with descriptive statistics for risk analysis.

11.6 Conclusion

The four continuous variables are Open, Close, High, and Low which have poor Z-scores. Only the open stock price is exceptional and has a higher return and high risk since the mean of Z-score is 7.86 and the standard deviation is low which indicates that the best investment opportunity is the Opening price.

References

	Aanderson, T. W. (1962). An Introduction to Multivariate Statistical Analysis. Wiley.

	Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Association, 69(346), 364–367.

	Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton University Press.

	Fama, E. F. (1965). The behavior of stock prices. Journal of Business, 38(1), 34–105.

	Greene, W. H. (2003). Econometric Analysis. Prentice Hall.

	Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.

	Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1), 73–101.

	Jensen, M. C. (1969). Risk, the pricing of capital assets, and the evaluation of investment portfolios. Journal of Business, 42(2), 167–247.

	Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 392–417.

	Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

	Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880.

	Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425–442.

	Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 53, 386–392.

	White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838.

12
APPLYING A SUPPORT VECTOR MACHINE MODEL USING PYTHON PROGRAMMING

DOI: 10.1201/9781032618241-12

12.1 Introduction

Supervised machine learning models include the support vector machine (SVM) as one of the reliable models in predictive analytics. The model was developed in 1960, and further its application and accuracy were effectively increased by the 1990s. The model had tremendous accuracy and was known for achieving good results with precise accuracy. It stands unique compared to other machine learning models as it has the minimum classification errors. As we closely analyze the machine learning models, we will learn about the accuracy of the SVM compared to other machine learning models (Refer Figure 12.2). The algorithm differentiates the data points with precise accuracy. The SVM algorithm can classify with tremendous accuracy and create a model that can give good results compared to other machine learning models.

[image: A diagrammatic representation illustrating the bifurcation of data into different classes, showing the classification boundaries and data distribution.]
Figure 12.1
Different bifurcation of the data as per classes.
(Source: https://www.javatpoint.com)

[image: A diagrammatic representation showing the bifurcation of data with the Maximum Margin Hyperplane, illustrating the decision boundary and support vectors.]
Figure 12.2
Different bifurcation of the data with maximum margin hyperplane.
(Source: https://www.javatpoint.com)

The support vector machine algorithm is the most used and applied machine learning classification algorithm. The SVM algorithm is used since it outperforms other machine learning classification models like the logistic regression model and Naive Bayes model. The SVM algorithm gives more optimum solutions than any other machine learning classification model. The SVM algorithm is also known for the accuracy it provides (Refer Figure 12.2). The main utility of the SVM algorithm is to find out the hyperplane (N-dimensional) that creates a difference in data points (refer to Figure 12.1). To bifurcate the data as per classes, many hyperplanes can be drawn. The optimum hyperplane, which has the maximum margin, is considered to be the best (refer to Figure 12.1). The decision boundaries are hyperplanes that help classify the data points.

12.1.1 Review of Literature

In the area of machine learning, support vector machine is considered to be a powerful algorithm for classification and regression analysis (Burbidge et al., 2001). The support vector machine has a wide range of applications (Dhillon & Verma, 2020). Hence, a literature review is conducted in order to grab various related studies and their role in the development of support vector machines. The SVM is being (Varma) applied for image processing in order to improve the clarity and quality of images further by applying high-quality image processing, the image recognition system’s is created.

Deo (2015) applied the support vector machine model in health analytics in order to identify complex medical patterns in predictive health analytics (Cervantes et al., 2023). Jardine et al. (2006) applied a support vector machine learning model in automation for manufacturing and predicted machine failure by analyzing the past data, which improves the maintenance cost. Garcia-Lamont et al. (2023) applied support vector machine learning model for structure safety in the area of infrastructure safety Hinton et al., 2012; Kim 2014; Nguyen et al., 2020; Schölkopf et al., 2001. Toledo-Pérez et al. (2019) applied the SVM algorithm and improved the signal classification accuracy. Huang et al. (2005) applied SVM models in stock market prediction in order to help investors in making investment decisions. Joachims (1998) applied SVM models for natural language processing NLP and improved the accuracy of a documents classification system. Ding and Dubchak (2001) applied SVM models for understanding and classification of the protein structure. Mountrakis et al. (2011) applied SVM models in the remote sensing field and achieved a high data classification accuracy (Burges, 1998).

12.2 Research Methodology

12.2.1 Data Collection

Secondary data was collected from Yahoo Finance.

12.2.2 Sample Size

Daily stock price of the MRF stock is considered for the study from 2/1/2023 to 5/1/2024.

12.2.3 Software Used for Data Analysis

Python Programming

12.2.4 Model Applied

For this study, we applied the support vector machine algorithm.

12.2.5 Limitations of the Study

The study is limited to only predicting the stock price of MRF.

12.2.6 Future Scope of the Study

In the future, the study can be extended to compare SVM models applied to different sectors of industry at the macro level.

12.3 Methodology

For creating a predictive model, we selected and applied the support vector machine algorithm.

Research is carried out in five steps:

	
12.4 Feature Engineering and Data Processing

	
12.5 Training and Testing

	
12.6 Predicting a Support Vector Machine Model with a Confusion Matrix

	
12.7 Calculating False Negative, False Positive, True Negative, and True Positive

	
12.8 Results and analysis

12.4 Feature Engineering and Data Processing

The process of converting raw data into features that can be easily utilized to create a model as per the requirement of the algorithm is called feature engineering (Refer Figure 12.3). The creation of a data frame is the first step in creating a model. The data frame is prepared to maintain the notion of the model which has different variables. The feature engineering is the process of preparing the data according to the need and required to be converted into nominal scale, ordinal scale, etc. Feature engineering prepares data that can be read and utilized by algorithms. Further, it converts raw data which will be ready for the program to utilize it best possible manner. The syntax used for creating a data frame in Python Programming is presented in Figure 12.3.

[image: A table displaying the data frame for MRF stock data, including columns for stock prices, dates, and other relevant metrics.]
Figure 12.3
Creating a data frame.

12.5 Training and Testing

To conduct the study, secondary data was collected from Yahoo Finance (Refer Figure 12.4). The dependent variable for predicting (Y) is the binary class (Figure 12.4) and the four independent variables ‘High’, ‘Low’, ‘Open’, and ‘Close’ are continuous in nature.

[image: A screenshot showing the process of defining dependent and independent variables in a dataset, including code snippets and variable definitions.]
Figure 12.4
Defining the dependent and independent variables.

	VARIABLE
	CLASSES

	Buy/Sell (Dependent)
	Tomorrow’s Price > Today’s Price

	 
	Buy = 1

	 
	Tomorrow’s Price < Today’s Price

	 
	Sell = 0

	Open (Independent)
	Continuous

	Close (Independent)
	Continuous

	High (Independent)
	Continuous

	Low (Independent)
	Continuous

For trial and testing, the data is divided into two categories (Refer Figure 12.5). 80 percent of data is converted and used for trial and 20 percent of data is used for testing to evaluate. With trial and testing, the test results are validated by creating a confusion matrix.

[image: A screenshot displaying Python code for trial and testing, including code snippets and descriptions of the testing process.]
Figure 12.5
The Python code for trial and testing.

12.6 Predicting a Support Vector Machine Model with a Confusion Matrix

12.6.1 Creating a Confusion Matrix

A confusion matrix measures model performance (Refer Table 12.1). It evaluates the actual values and predicted values. It is of the order of N X N, where N is the class of dependent/target variable. For binary classes, it is 2 X 2 confusion matrix.

Table 12.1
The Confusion Matrix

	
	0
	1

	0
	22 (TP)
	4(FN)

	1
	0 (FP)
	24 (TN)

12.7 Calculating False Negative, False Positive, True Negative, and True Positive

The confusion matrix for our data set is as follows:

12.7.1 Result Analysis

12.7.1.1 Accuracy Statistics

It measures the overall accuracy of the model by analyzing the output predicted about incorrect predictions (Refer Figure 12.6).

[image: A screenshot showing Python code for generating a confusion matrix and classification report, including code snippets and the resulting matrix and report.]
Figure 12.6
The Python code for confusion matrix and classification report.

To obtain the accuracy of the model, we apply the following formula:

Accuracy
=
True Positive
+
 True Negative
/
 True Positive
+
 True

Negative
+
 False Positive
+
 False Negative

 Accuracy
=

22
+
4

22
+
4
+
0
+
24

=
0.93

The accuracy for the overall model is 0.93

12.7.1.2 Recall

It is the ratio of true positive predictions divided by the total number of true positive predictions and false negative predictions. Higher recall implies more correct predictions (a small number of false negatives).

 Recall
=

 True Positive

 True Positive
+
 False Negative

 Recall
=

22

22
+
4

=
0.85

Recall for the overall model is 0.85

12.7.1.3 Precision

Precision measures how correctly we have predicted the true positives. It is the qualitative analysis of correctly predicted values.

 Precision
=

 True Positive

 True Positive
+
 False Positive

=

22

22
+
0

=
1.00

The precision for the overall model is 1.00

12.8 Conclusion

The support vector machine model predicted the MRF stock with a precision of 100 percent. The overall model accuracy is 93 percent.

References

	Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26(1), 5–14. https://doi.org/10.1016/S0097-8485(01)00094-8

	Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555

	Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & López, A. (2023). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2023.104911

	Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930 https://doi.org/10.1161/CIRCULATIONAHA.115.001593

	Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0

	Ding, C., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4), 349–358. https://doi.org/10.1093/bioinformatics/17.4.349

	Garcia-Lamont, F., Cervantes, J., Rodríguez-Mazahua, L., & López, A. (2023). Support vector machine in structural reliability analysis: A review. Structural Safety. https://doi.org/10.1016/j.strusafe.2023.102211

	Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N.,… & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597

	Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522. https://doi.org/10.1016/j.cor.2004.03.016

	Jardine, Andrew & Lin, Daming & Banjevic, Dragan. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing. 20. 1483–1510. 10.1016/j.ymssp.2005.09.012.

	Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning (pp. 137–142). https://doi.org/10.1007/BFb0026683

	Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP 2014. https://doi.org/10.3115/v1/D14-1181

	Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

	Nguyen, H. Q., Nguyen, N. D., & Nahavandi, S. (2020). A review on deep reinforcement learning.

	Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471. https://doi.org/10.1162/089976601750264965

	Toledo-Pérez, D. C., Rodríguez-Reséndiz, J., Gómez-Loenzo, R. A., & Jauregui-Correa, J. C. (2019). Support vector machine-based EMG signal classification techniques: A review. Applied Sciences, 9(20), 4402. https://doi.org/10.3390/app9204402

13
DATA VISUALIZATION FOR STOCK RISK COMPARISON AND ANALYSIS

DOI: 10.1201/9781032618241-13

13.1 Introduction to Data Visualization

Today due to the development of information technology and e-commerce in the world, data is being generated on an hourly basis. Financial data like the buying of stock and the movement of the market can be utilized by data visualization. The financial data contains certain trends and patterns which are very difficult to understand as the raw data is in raw format. Hence to overcome this problem, an attempt has been made by means of this study titled Data Visualization for Stock Risk Comparison and Analysis.

It is easy to analyze, observe, understand, and interpret data by visualization in Python Programming. Large amount of financial data can be analyzed and investment strategies can be made based on data visualization. The Python libraries which are mostly used are as follows:

	Matplotlib

	Seaborn

	Bokeh

	Plotly

Here we apply different Python libraries to create a scatter plot, line chart, bar chart, histogram, and bokeh.

13.1.1 Review of Past Studies

Visualizing data in Python is very easy and simple, which is the only reason why it has gained significant attraction and popularity (Smith, 2018; Hunter, 2007; Wang & Liu, 2020; Waskom et al., 2020; Wickham & Grolemund, 2017). Python libraries, like matplotlib, have been used due to their tremendous applications (Waskom et al., 2020). The existence of plotly and seaborn made its application in various areas. Jones et al. (2019) used Python for data analysis in the emerging areas of biology. Wang and Liu (2020) had utilized data visualization for financial data analytics and stock market analysis. McKinney (2017) applied a hybrid model in Python using Pandas (VanderPlas, 2016; Virtanen et al., 2020). Grolemund (2017) compared the utilization of data visualization by comparing R programming and Python. Python’s extensive documentation and its user-interactive, user-friendly, and flexible nature have made data visualization with Python an important tool for researchers and academicians (Hunter, 2007; Jones et al., 2019; McKinney, 2017; Smith, 2018).

13.1.2 Applied Research Methodology

13.1.2.1 Data Source

Data is taken from Yahoo Finance, which is a reliable source.

13.1.2.2 Sample Size

The daily price of the MRF stock is considered for the study from 2 January 2023 to 5 January 2024 (daily stock price).

13.1.2.3 Software Used for Data Analysis

Python Programming libraries used for analysis are statsmodels.api, Pandas, NumPy, and SciPy.

13.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

Raw data filtering is a procedure applied in feature engineering (Refer Figure 13.1). Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched in the Python Anaconda environment using the Jupyter Notebook as the format of the data file was not readable in Python. A data frame is created by fetching the comma-separated values (CSV) file, making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame is created as per the model requirement. The data frame needs to be structured in C as per the requirement of the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 13.2.

[image: A screenshot or diagram illustrating the creation of a data frame in Python, showing code snippets and the resulting data frame.]
Figure 13.1
Creating a data frame.

[image: A plot illustrating the degree of association between closing price and opening price shows the relationship between these two variables.]
Figure 13.2
Creating a scatter plot for understanding the degree of association between the closing price and the opening price.

13.2.1 Data Visualization Using Scatter Plot

It is applied to find out the relationship between two variables (Refer Figure 13.2). It is used to find out correlation and autocorrelation lag in regression and time series panel data analysis. We have taken the opening price and closing price of the MRF stock to find out the relationship between the two variables. The scatter plot shows a close

degree of association between them, and hence we can conclude that the opening price and closing price of the MRF stock remain the same.

It is applied to find out the relationship between two variables. It is used to find out correlation and autocorrelation lag in regression and time series panel data analysis. We have taken the opening price of MRF stock and the closing price of stock to find out the relationship between the two variables the scatter plot shows a close degree of association hence we can conclude that the opening price and closing price of MRF stock remain the same.

13.3 Data Visualization Using Bar Chat

A bar chart represents data with rectangular bars on the axis with lengths and heights that are proportional to the variable’s value (Refer Figure 13.4a). It is created using the bar method. We have applied a histogram to analyze the daily movement of the opening price of the stock (Refer Figure 13.3).

[image: A scatter plot showing the degree of association between closing price and opening price, with data points representing individual observations.]
Figure 13.3
Creating Scatter Plot for understanding degree of association between closing price and opening price.

[image: A histogram displays the distribution of opening prices, illustrating the frequency of different price ranges.]
Figure 13.4a
Creating a histogram for understanding the movement of the opening price.

13.4 Data Visualization Using Line Chart

It is applied to find out the relationship between two variables (Refer Figure 13.4b). It is used to find out correlation and autocorrelation lag in regression and time series panel data analysis. We have taken the opening price and closing price of the MRF stock to find out the relationship between the two variables. The scatter plot shows a close degree of association between them and hence we can conclude that the opening price and closing price of the MRF stock remain the same.

[image: A line plot showing the degree of association between closing price and opening price, with lines connecting data points over time.]
Figure 13.4b
Creating a line plot for understanding the degree of association between the closing price and the opening price.

13.5 Data Visualization Using Bokeh

It generates interactive charts by generating HTML java script which uses web browsers (Refer Figure 13.5). It has a very high level of interactivity. It is applied to find out the relationship between two variables. It is used to find out correlation and autocorrelation lag in regression and time series panel data analysis. We have taken the opening price and closing price of the MRF stock to find out the

relationship between the two variables. The scatter plot shows a close degree of association between them and hence we can conclude that the opening price and closing price of the MRF stock remain the same.

[image: A scatter plot illustrating the degree of association between closing price and opening price, with data points representing individual observations.]
Figure 13.5
Creating scatter graph for understanding the degree of association between the closing price and the opening price.

References

	Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.

	Jones, E., Oliphant, T., & Peterson, P. (2019). SciPy: Open source scientific tools for Python.

	McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc.

	Smith, J. (2018). Python Data Visualization Cookbook. Packt Publishing Ltd.

	VanderPlas, J. T. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media, Inc.

	Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,… & van der Walt, S. J. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.

	Wang, J., & Liu, S. (2020). Python for Finance Cookbook. Packt Publishing Ltd.

	Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas, S.,… & Halchenko, Y. (2020). Mwaskom/Seaborn: v0.11.1 (December 2020). Zenodo.

	Wickham, H., & Grolemund, G. (2017). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media, Inc.

14
APPLYING NATURAL LANGUAGE PROCESSING FOR STOCK INVESTORS SENTIMENT ANALYSIS

DOI: 10.1201/9781032618241-14

14.1 Introduction

The natural language processing (NLP) technique is used to understand the sentiments related to buying a particular stock. NLP is a technique through which we can understand sentiments by analyzing the text or comments posted on social media like Twitter, Facebook, etc. NLP classifies the text into positive and negative sentiments, which can measure the sentiments related to stock investors. NLP is a tool that can classify text and further utilize it to understand the sentiments. Hence to understand the importance of NLP, we conducted the study titled Applying Natural Language Processing for Stock Investors Sentiment Analysis (Al-Rfou & Perozzi, 2019; Bengfort et al., 2018; Bird et al., 2009).

Bird et al. (2009) applied NLP in a simple and lucid manner and his work is a big and rich resource for researchers. Jurafsky and Martin (2019) developed a conceptual literature on NLP. Manning and Schütze (1999) developed a statistical NLP method, which is the landmark work in the area of NLP. Raschka and Mirjalili (2019) give details on implementation of NLP with machine learning models. Vaswani et al. (2017) and Perkins (2016) applied the NLTK library for text mining. Loper and Bird (2002) and Chollet (2018) applied a deep planning model with AI. Al-Rfou & Perozzi (2019) analyzed the multilingual problems in NLP. Vaswani et al. (2017) developed sequence to sequence learning (Chollet, 2018).

14.2 Research Methodology

14.2.1 Data Source

Data was collected from the WhatsApp chat investors group.

14.2.2 Period of Study

The study period was from 1 January 2023 to 1 February 2023.

14.2.3 Software Used for Data Analysis

Python Programming, Anaconda

14.2.4 Model Applied

For this study, we applied the natural language processing technique.

14.2.5 Limitations of the Study

The study is restricted to natural language processing.

14.2.6 Future Scope of the Study

In the future, the study can be conducted on different stocks at the same time.

14.3 Fetching the Data into a Python Environment

Raw data filtering is a procedure applied in feature engineering (Refer Figure 14.1). Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched in the Python Anaconda environment using the Jupyter Notebook as the format of the data file was not readable in Python. A data frame is created by fetching the comma-separated values (CSV) file, making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame is created as per the model requirement. The data frame needs to be structured in as per the requirement of

the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 14.1.

[image: A screenshot showing the Python libraries used for performing NLP and fetching datasets, including code snippets and library imports.]
Figure 14.1
Python libraries for performing NLP and fetching data sets into a Python environment.

14.4 Sentiments Count for Understanding Investors’ Perceptions

The sentiments are nothing but the perception of investors regarding the investment (Refer Figure 14.2). The investor’s sentiments may be positive or negative depending upon their choices. We need to consider and understand investors’ perceptions as they play an important role in deciding the future sales and marketing plan for selling a financial product. To understand the gravity of investors’ sentiments, we need to count the number of positive and negative sentiments and analyze it (Refer Figure 14.2).

[image: A bar graphical chart or table displaying the count of different sentiments in a dataset, illustrating the distribution of positive, negative, and neutral sentiments.]
Figure 14.2
Count of sentiments.

14.5 Performing Data Cleaning in Python

The first step in natural language processing is the removal of unnecessary words (Refer Figure 14.3). The process of cleaning the text data is known as normalization. Normalization is the first step in natural language processing. Natural language processing cleans the text data by punctuation removal, stop word removal, stemming, and lemmatization. The process of normalization of data in the form of text starts with case normalization. Under case normalization, the uppercase word is converted into lowercase to standardize the overall text available for creating an NLP model. After case normalization, we step into punctuation removal. At this stage, we remove special characters and punctuation marks from the text data, making it easy for further analysis. After the punctuation removal, we apply the stop word removal technique to remove similar words. Then, we apply stemming, a process through which the fixes and prefixes of particular words are removed to normalize the given text data.

[image: A screenshot showing the process of data cleaning in Python, including code snippets and descriptions of cleaning steps.]
Figure 14.3
Performing data cleaning in Python.

14.6 Performing Vectorization in Python

In natural language processing, we convert the textual data into numerical values that can be easily understood by the machine learning algorithm (Refer Figure 14.4). The neural language process allows computers to understand the process of human language by understanding meaning and context related to that particular sentiment, through which we can get a useful inside in creating and understanding NLP. NLP combines computational linguistics with statistical machine learning algorithms through which the model is created for analysis purposes. Vectorization is a classic approach to converting linguistic text into real numbers in the form of vectors which are applied for supporting and creating a machine learning model. The vectorization is the first step in the extraction of features. The basic idea behind vectorization is to get distinct features out of the linguistic text available for analysis. The last step is to create a training and test model for analysis.

[image: A screenshot displaying the process of vectorization in Python, including code snippets and descriptions of the vectorization process.]
Figure 14.4
Performing Vectorization in Python.

14.7 Vector Transformation to Create Trial and Training Data Sets

After cleaning the data for sentiment analysis, we need to create trial and training data sets (Refer Figure 14.5). To test the accuracy of the

model applied, we need to test the results by comparing it with original data (Refer Figure 14.4). For comparing the data sets, we need to divide the data set into test and train. A label encoder is used to transform the data of sentiments into numerical values for creating a multinomial Naive Bayes model. The process of transforming the sentiments from text to numerical values is known as vector transformation.

[image: A screenshot showing the vector transformation process to create trial and training datasets, including code snippets, and resulting data sets.]
Figure 14.5
Vector transformation to create trial and training data sets.

14.8 Result Analysis Model Testing AUC

The AUC stands for the area under the ROC curve (Refer Figure 14.6). The AUC provides the accuracy of all possible classifications with its thresholds. The AUC is the ratio between the true positive rate and the false positive rate. An AUC value of 1 is considered to be the best with 100 percent model accuracy. The value of AUC ranges from 0 to 1. In the present study, we have an AUC value of 0.20, which is considered to be poor.

[image: Graph depicting 14.6 AUC score from model testing and result analysis]
Figure 14.6
Result analysis model testing AUC.

14.9 Conclusion

The implementation of natural language processing requires a huge amount of critical analysis. After the implementation of natural language processing, we implemented the Naive Bayes model, which has a low accuracy of 20 percent.

References

	Al-Rfou, R., & Perozzi, B. (2019). Polyglot: Distributed Word Representations for Multilingual NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

	Bengfort, B., Bilbro, R., & Ojeda, T. (2018). Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning. O’Reilly Media.

	Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O’Reilly Media.

	Chollet, F. (2018). Deep Learning with Python. Manning Publications.

	Jurafsky, D., & Martin, J. H. (2019). Speech and Language Processing (3rd ed.). Pearson.

	Loper, E., & Bird, S. (2002). NLTK: The Natural Language Toolkit. CoRR. cs.CL/0205028. 10.3115/1118108.1118117.

	Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. The MIT Press.

	Perkins, J. (2016). Python Text Processing with NLTK 2.0 Cookbook. Packt Publishing.

	Raschka, S., & Mirjalili, V. (2019). Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow (3rd ed.). Packt Publishing.

	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

15
STOCK PREDICTION APPLYING LSTM

DOI: 10.1201/9781032618241-15

15.1 Introduction

Stock prediction and modeling involve a huge amount of analysis. The analysis includes different models applied for analysis. It includes the logistic regression model, regression analysis, and support vector machines, but all these models involve analysis of data that is not panel data. For panel data analysis, we use models like autoregressive moving average (ARIMA) and LSTM. In recent times, the LSTM model, which is popularly known as long short-term memory, has had a huge impact on the prediction of stocks as applied to time series data. LSTM is a deep learning model that is based on the principle of neural networking. The LSTM model consists of three layers: input layer, hidden layer, and output layer. The capability of memorizing the sequence of data makes LSTM a specialized type of recurrent neural network, and hence the study titled Stock Prediction by Applying LSTM was conducted in three steps: fetching the data, cleaning the data number, data transformation and normalization, model analysis.

The LSTM model is known for predicting and developing a predictive model that involves long short-term memory and the removal of irrelevant information. The irrelevant information is deleted from the model in the form of a forget gate. For example, we explain this with the sentence Dr Nitin Stays at Aurangabad (Refer Table 15.1). Dr Nitin has an area of specialization in Financial Analytics. He is a good teacher in the area of ______. From the analysis of the above sentence, we need to fill up the blank space with relevant information. Here the sentence includes information about Dr Nitin and the area of specialization in which he works can be used to fill up the blank space. To fill up the blank space, we need to analyze the relevant information and after analyzing the information from the sentence, the relevant and

irrelevant information produced by analyzing it is required to be used for filling up the blank space. Irrelevant information is to be removed from the analysis. The irrelevant information is about the residence of Dr Nitin which needs to be removed (Refer Table 15.1). The LSTM model that we apply here includes long-term memory in the form of the overall sentence. After removing the irrelevant information, the remaining information is the short-term memory. Here after further analysis, we need to forget about the information regarding the residence of Dr Nitin and we need to analyze the information about the area of specialization in which Dr Nitin works. After applying the past knowledge and long short-term memory we delete the irrelevant information and the blank space is filled up with the correct answer. The correct answer for filling up the blank space is Financial Analytics. Table 15.1 explains the long short-term model.

Table 15.1
The Architecture and Process of the Long Short-[erm Model

	LSTM PROCESS
	SENTENCE

	Long-term memory
	DrNitin stays at Aurangabad. DrNitin has an area of specialization in Financial Analvtics. He is a good feacher in the area of______

	Short-term memory
	Dr. Nitin has an area of specialization in Financial Analytics. He is a good teacher in the area of______

	Input information
	DrNitin stays at Aurangabad. Dr. Nitin has an area of specialization in Financial Analytics. He is a good teacher in the area of______

	Irrelevant information or Forget information
	Dr. Nitin stays at Aurangabad

	Relevant information
	Area of specialization in Financial Analytics.

	Output
	He is a good teacher in the area of Financial Analytics.

15.1.1 Review of Literature

The LSTM model was developed by Hochreiter and Schmidhuber (1997). The model is based on recurrent neural network to overcome vanishing gradient problems (Gers et al., 1999; Graves et al., 2013, 2014). These models are based on sequential data which helps in developing speech recognition (Graves et al., 2013). LSTM models have network units where information moves in a regulated manner (Greff et al., 2016; Sundermeyer et al., 2012). Due to gradient problems, it is difficult to train LSTM models (Pascanu et al., 2013). The bidirectional LSTM architecture was proposed by Schuster and Paliwal (1997) and neural turing machines were developed by Graves et al. (2014; Chen et al., 2016; Lipton 2015).

15.2 Research Methodology

15.2.1 Data Source

Data was collected from Yahoo Finance.

15.2.2 Period of Study

The study period was from 1 January 2023 to 1 February 2023.

15.2.3 Software Used for Data Analysis

Python Programming, Anaconda

15.2.4 Model Applied

For this study, we applied the long short-term memory (LSTM) model.

15.2.5 Limitations of the Study

The study is restricted to the long short-term memory (LSTM).

15.2.6 Future Scope of the Study

In the future, the study can be conducted on different stocks at the same time.

15.3 Fetching the Data into a Python Environment

Raw data filtering is a procedure applied in feature engineering (Refer Figure 15.1). Feature engineering is a process of converting raw data into features that can be utilized in an ML model. The data was fetched in the Python Anaconda environment using the Jupyter Notebook as the format of the data file was not readable in Python. A data

frame is created by fetching the comma-separated values (CSV) file, making it readable in Python and utilizing it for further processing in the form of a data frame. The data frame is created as per the model requirement. The data frame needs to be structured as per the requirement of the model. The first step in creating a data frame is to structure the data so that the program can read and work on the data. Once the data frame is created, it is ready to be used by the algorithm. The syntax used for creating a data frame in Python Programming is presented in Figure 15.1.

[image: A screenshot showing the Python libraries used for performing LSTM (Long Short-Term Memory) and fetching datasets, including code snippets and library imports.]
Figure 15.1
Python libraries for performing LSTM and fetching data sets into a Python environment.

15.4 Performing Data Cleaning in Python

The data frame is prepared to maintain the notion of the model which has different variables (Refer Figure 15.2). The Feature engineering is the process of preparing converting the data into nominal scale or ordinal scale etc. it prepare data that can be read and utilized by algorithm. data which will be ready for the program to utilize. The syntax used for creating a data frame in Python Programming is presented in Figure 15.2.

[image: A screenshot displaying the process of data cleaning in Python, including code snippets and descriptions of the cleaning steps involved.]
Figure 15.2
Performing data cleaning in Python.

15.5 Vector Transformation to Create Trial and Training Data Sets

After cleaning the data for the LSTM ML model, we need to create trial and testing data sets (Refer Figure 15.3). To test the accuracy of the model applied, we need to test the results by comparing it with original data. For comparing the data sets, we need to divide the data set into test and train. For model evaluation, we divide the data into 80 percent of trial data and 20 percent of test data by vector transformation.

[image: A diagram or screenshot illustrating the vector transformation process to create trial and training datasets, including code snippets and the resulting datasets.]
Figure 15.3
Vector transformation to create trial and training data sets.

15.6 Result Analysis for the LSTM Model

The results of the LSTM model show the different layers in the output and the generated parameters for the different layers (Refer Figure 15.4). We applied LSTM layers of 50 units. The representation of parameters in LSTM units are functions involved in calculations. The parameters are generated using the below formula:

 Number of parameters
=

4
*

(

N
+
M
+
1
)

*

m

where

[image: A diagram or screenshot illustrating the vector transformation process to create trial and training datasets, including code snippets and the resulting datasets.]
Figure 15.4
Result analysis for the LSTM model.

N is the number of dimensions in the input variable.

M is the units in the LSTM layer.

1 is the bias parameter.

Substituting the values in the above equation, we get

 Number of LSTM parameters
=
4
*
(
50
+
50
+
1
)
*
50

 Number of LSTM parameters
=
20
,
200

We applied the LSTM model and generated different layers for predicting the opening price and the closing price. The LSTM model is generated with 50 units or neurons. These units from the LSTM

model will be used as input to the next LSTM layer. The next dropout layer is the regulator of the model, which keeps the irrelevant information or the so-called biases away from the LSTM model. The other LSTM-1 layer with 50 neurons or units is followed by the final dense LSTM layer with 2 neurons or units.

15.7 Conclusion

The long short-term memory model is created for predicting the opening price and the closing price. The total parameters generated for the LSTM layer is 20,200. After applying the past knowledge and the LSTM, we deleted the irrelevant information and created an LSTM model for predicting the stock price.

References

	Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems (pp. 2172–2180). https://api.semanticscholar.org/CorpusID:5002792

	Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471.

	Graves, A., Mohamed, A., & Hinton, G.E. (2013). Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 6645–6649.

	Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:1410.5401.

	Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232.

	Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

	Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

	Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In International Conference on Machine Learning (pp. 1310–1318).

	Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.

	Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for language modeling. In Thirteenth Annual Conference of the International Speech Communication Association.

OEBPS/Images/fig1_1.jpg
In [1]: |# importing required Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.cluster import KMeans

OEBPS/Images/fig5_3.jpg
In [9): data['strategy_returns’] = data.percent_change.shift(-1) * model.predict(X)

In [10]: %matplotlib inline
import matplotlib.pyplot as plt
data. strategy_returns[split:].hist()
plt.xlabel("Strategy returns (%))
plt.show()

OEBPS/Images/fig1_6.jpg

OEBPS/Images/fig5_2.jpg
In (3): | # Total dotaset Lengtn
B]

e GRS < 0.7

o 19

I (81: [# Spiteiing the X and y inco tretn and cest
X crain, Keere = X{apric), Xspiter)

foRiiion s fivti e v |

Prine he stze of tpe tratn ond cese datoset
Bt Sratn. shape, X_test-hapa)
Brine(y erstn hape, 3-vert. hape)

L 0 2, 0
G e

In (51: €16 = RandomForestClassifiar(randon statess)

In (811 [# Create the modst_on tratn datesec
i A cran, v xrainy

I (73: [#rem shlosrm.metrics dmvers scourecy_tcors
e Canr T Pl o (x)1 7, euracy_scora(y_test, model prodict(K_tast), normalizesTrue)*100.0)

In [8]: # Run the code to view the classification report metrics
from sklearn.metrics import classification report
report = classification_report(y_test, model.predict(X_test))

print(report)
precision recall fl-score support
- 0.a5 o.58 0.51 24
1 oles o.ss ol61 38

P T .59 °.56 °.57 62

OEBPS/nav.xhtml

Bookmarks

		Cover

		Half Title

		Series

		Title

		Copyright

		Contents

		Preface

		Authors

		Chapter 1 Stock Investments Portfolio Management by Applying K-Means Clustering

		1.1 Introduction

		1.1.1 Introduction to Cluster Analysis

		1.1.2 Literature Review

		1.2 Research Methodology

		1.2.1 Data Source

		1.2.2 Study Time Frame

		1.2.3 Tool for Analysis

		1.2.4 Model Applied

		1.2.5 Limitations of the Study

		1.2.6 Future Scope

		1.3 Feature Extraction and Engineering

		1.4 Data Extraction

		1.5 Standardizing and Scaling

		1.6 Identification of Clusters by the Elbow Method

		1.7 Cluster Formation

		1.8 Results and Analysis

		1.8.1 Cluster One

		1.8.2 Cluster Two

		1.8.3 Clusters Three and Four

		1.8.4 Cluster Five

		1.8.5 Cluster Six

		1.9 Conclusion

		Chapter 2 Predicting Stock Price Using the ARIMA Model

		2.1 Introduction

		2.2 ARIMA Model

		2.2.1 Literature Review

		2.3 Research Methodology

		2.3.1 Data Source

		2.3.2 Period of Study

		2.3.3 Software Used for Data Analysis

		2.3.4 Model Applied

		2.3.5 Limitations of the Study

		2.3.6 Future Scope of the Study

		2.3.7 Methodology

		2.4 Finding Different Lags Autocorrelation

		2.5 Creating the Different ARIMA Models

		2.5.1 Comparing the AIC Values of Models

		2.6 Selecting the Best Model Using Cross-Validation

		2.7 Conclusion

		Chapter 3 Stock Investment Strategy Using a Logistic Regression Model

		3.1 Introduction to the Logistic Regression Model

		3.1.1 Introduction to a Multinomial Logistic Regression Model

		3.1.2 Literature Review

		3.1.3 Applied Research Methodology

		3.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

		3.3 Data Description and Creating Trial and Testing Data Sets

		3.4 Results Analysis for the Logistic Regression Model

		3.4.1 The Stats Models Analysis in Python

		3.5 Model Evaluation Using Confusion Matrix and Accuracy Statistics

		3.5.1 Calculating False Negative, False Positive, True Negative, and True Positive

		3.6 Accuracy Statistics

		3.6.1 Recall

		3.6.2 Precision

		3.7 Conclusion

		Chapter 4 Predicting Stock Buying and Selling Decisions by Applying the Gaussian Naive Bayes Model Using Python Programming

		4.1 Introduction

		4.1.1 Literature Review

		4.2 Research Methodology

		4.2.1 Data Collection

		4.2.2 Sample Size

		4.2.3 Software Used for Data Analysis

		4.2.4 Model Applied

		4.2.5 Limitations of the Study

		4.2.6 Future Scope of the Study

		4.3 Methodology

		4.4 Feature Engineering and Data Processing

		4.5 Training and Testing

		4.6 Predicting Naive Bayes Model with Confusion Matrix

		4.6.1 Creating Confusion Matrix

		4.6.2 Calculating False Negative, False Positive, True Negative, and True Positive

		4.6.3 Result Analysis

		4.7 Conclusion

		Chapter 5 The Random Forest Technique Is a Tool for Stock Trading Decisions

		5.1 Introduction

		5.2 Random Forest Literature Review

		5.3 Research Methodology

		5.3.1 Data Source

		5.3.2 Period of Study

		5.3.3 Sample Size

		5.3.4 Software Used for Data Analysis

		5.3.5 Model Applied

		5.3.6 Limitations of the Study

		5.3.7 Future Scope of the Study

		5.3.8 Methodology

		5.4 Defining the Dependent and Independent Variables for the Random Forest Model

		5.5 Training and Testing with Accuracy Statistics

		5.6 Buying and Selling Strategy Return

		5.7 Conclusion

		Chapter 6 Applying Decision Tree Classifier for Buying and Selling Strategy with Special Reference to MRF Stock

		6.1 Introduction

		6.2 Decision Tree

		6.3 Research Methodology

		6.3.1 Data Source

		6.3.2 Period of Study

		6.3.3 Software Used for Data Analysis

		6.3.4 Model Applied

		6.3.5 Limitations of the Study

		6.3.6 Methodology

		6.4 Creating a Data Frame

		6.5 Feature Construction and Defining the Dependent and Independent Variables

		6.6 Training and Testing of Data for Accuracy Statistics

		6.7 Buying and Selling Strategy Return

		6.8 Decision Tree Analysis

		6.9 Conclusion

		Chapter 7 Descriptive Statistics for Stock Risk Assessment

		7.1 Introduction

		7.1.1 Related Work

		7.2 Research Methodology

		7.2.1 Data Source

		7.2.2 Period of Study

		7.2.3 Software Used for Data Analysis

		7.2.4 Model Applied

		7.2.5 Limitations of the Study

		7.2.6 Future Scope of the Study

		7.3 Performing Descriptive Statistics in Python for Mean

		7.4 Performing Descriptive Statistics in Python for Median

		7.5 Performing Descriptive Statistics in Python for Mode

		7.6 Performing Descriptive Statistics in Python for Range

		7.7 Performing Descriptive Statistics in Python for Variance

		7.8 Performing Descriptive Statistics in Python for Standard Deviation

		7.9 Performing Descriptive Statistics in Python for Quantile

		7.10 Performing Descriptive Statistics in Python for Weakness

		7.11 Performing Descriptive Statistics in Python for Kurtosis

		7.12 Conclusion

		Chapter 8 Stock Investment Strategy Using a Regression Model

		8.1 Introduction to a Multiple Regression Model

		8.2 Applied Research Methodology

		8.2.1 Data Source

		8.2.2 Sample Size

		8.2.3 Software Used for Data Analysis

		8.2.4 Model Applied

		8.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

		8.4 Correlation Matrix

		8.5 Result Analysis for the Multiple Regression Model

		8.5.1 R-Square

		8.6 Conclusion

		Chapter 9 Comparing Stock Risk Using F-Test

		9.1 Introduction

		9.1.1 Review of Literature

		9.2 Research Methodology

		9.2.1 Data Source

		9.2.2 Period of Study

		9.2.3 Software Used for Data Analysis

		9.2.4 Model Applied

		9.2.5 Limitations of the Study

		9.2.6 Future Scope of the Study

		Chapter 10 Stock Risk Analysis Using t-Test

		10.1 Introduction

		10.2 Research Methodology

		10.2.1 Data Source

		10.2.2 Period of Study

		10.2.3 Software Used for Data Analysis

		10.2.4 Model Applied

		10.2.5 Limitations of the Study

		10.2.6 Future Scope of the Study

		10.3 Conclusion

		Chapter 11 Stock Investment Strategy Using a Z-Score

		11.1 Introduction to Z-Score

		11.2 Applied Research Methodology

		11.2.1 Data Source

		11.2.2 Sample Size

		11.2.3 Software Used for Data Analysis

		11.2.4 Model Applied

		11.3 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

		11.4 Calculating the Z-Score for the Stock

		11.5 Results Z-Score Analysis

		11.6 Conclusion

		Chapter 12 Applying a Support Vector Machine Model Using Python Programming

		12.1 Introduction

		12.1.1 Review of Literature

		12.2 Research Methodology

		12.2.1 Data Collection

		12.2.2 Sample Size

		12.2.3 Software Used for Data Analysis

		12.2.4 Model Applied

		12.2.5 Limitations of the Study

		12.2.6 Future Scope of the Study

		12.3 Methodology

		12.4 Feature Engineering and Data Processing

		12.5 Training and Testing

		12.6 Predicting a Support Vector Machine Model with a Confusion Matrix

		12.6.1 Creating a Confusion Matrix

		12.7 Calculating False Negative, False Positive, True Negative, and True Positive

		12.7.1 Result Analysis

		12.8 Conclusion

		Chapter 13 Data Visualization for Stock Risk Comparison and Analysis

		13.1 Introduction to Data Visualization

		13.1.1 Review of Past Studies

		13.1.2 Applied Research Methodology

		13.2 Fetching the Data into a Python Environment and Defining the Dependent and Independent Variables

		13.2.1 Data Visualization Using Scatter Plot

		13.3 Data Visualization Using Bar Chat

		13.4 Data Visualization Using Line Chart

		13.5 Data Visualization Using Bokeh

		Chapter 14 Applying Natural Language Processing for Stock Investors Sentiment Analysis

		14.1 Introduction

		14.2 Research Methodology

		14.2.1 Data Source

		14.2.2 Period of Study

		14.2.3 Software Used for Data Analysis

		14.2.4 Model Applied

		14.2.5 Limitations of the Study

		14.2.6 Future Scope of the Study

		14.3 Fetching the Data into a Python Environment

		14.4 Sentiments Count for Understanding Investorsâ�� Perceptions

		14.5 Performing Data Cleaning in Python

		14.6 Performing Vectorization in Python

		14.7 Vector Transformation to Create Trial and Training Data Sets

		14.8 Result Analysis Model Testing AUC

		14.9 Conclusion

		Chapter 15 Stock Prediction Applying LSTM

		15.1 Introduction

		15.1.1 Review of Literature

		15.2 Research Methodology

		15.2.1 Data Source

		15.2.2 Period of Study

		15.2.3 Software Used for Data Analysis

		15.2.4 Model Applied

		15.2.5 Limitations of the Study

		15.2.6 Future Scope of the Study

		15.3 Fetching the Data into a Python Environment

		15.4 Performing Data Cleaning in Python

		15.5 Vector Transformation to Create Trial and Training Data Sets

		15.6 Result Analysis for the LSTM Model

		15.7 Conclusion

Pagelist

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

Guide

		Cover

		Half Title

		Series

		Title

		Copyright

		Contents

		Preface

		Authors

		Start of Content

OEBPS/Images/fig9_1.jpg
In [1]: import numpy as np
import scipy.stats as stats
import pandas as pd
import numpy as np

OEBPS/Images/fig5_4.jpg
In [11]: (data.strategy_returns[split:]+1).cusprod().plot()
plt.ylabel('Strategy returns (%)')
plt. show()

104

20 200 20 20 230 M0 X0

OEBPS/Images/fig1_3.jpg
In [3):

out(3]:

In (4]

out(a]:

statistics of the data
data.describe()

ue PIE DebtioEquity EPSRs) DPSRs) ROE% Face Value
coum 50000000 50000000 50000000 50000000 S0000000 50000000 5000000
mean 3008194000 16230000 031200 527000 2512400 1744600 422000
sd 270271041 SIS 0SH9I4 61207728 6269028 1BSAGSI ISTEM
min 139300000 220680000 0000000 6530000 0000000 6970000 100000
2% 807360000 1437600 000000 19185000 6012500 10910000 100000
So% 1S5987E000 20410000 0020000 40690000 11525000 14040000 200000
7% I769SS0000 49422600 032500 6634200 30TE0000 70 500000
mex 27240000000 863270000 2780000 27033000 200000000 102690000 1000000

standardtzing the data
from sklearn.preprocessing import Standardscaler
scaler = StandardScaler()
Gatascaled = scaler. Fit.transform(data)

statiseics of scated data

pd.DataFrana(dat.

scaled).descrive()

o 1 2 3 4 s s
Count 50000000+01 _50000006+01 5.0000000+01 _ 5.0000008+01 _5.0000008+01 _5.000000e+01 _5.0000008+01
mean 1154632016 5162637017 4107625617 1854312017 3108624017 111022316 1243450016
34 10101530400 10101536400 10101530000 10101534400 10101536400 10101530400 10101538400
min 678608301 63966600400 5.5505790.01 -1.0681586+00 6997006001 -1.4004160+00

2% 5206199001 242430003 550579001 6ANI6e0! 532242001 4266720001

50% 3426066001 3662204002 5202790001 289671301 ITETI0D! 2662124001 271186001
T 1801023001 950076302 57M1e0) 130001 1567360001 234368001 2201990001
A N e m e ey

OEBPS/Images/fig1_2.jpg
In [2]: import pandas as pd

data = pd.read_excel (r’C:\Users\nitin\Desktop\niftycls.xlsx')
print (data)

e P/E Debt to Equity EPS(Rs.) OPS(Rs.) ROEX \
2930.80 307.60 &lss 100 13.75
1071.25 141 sle0 1.11
5745155 97.es a6125 11175 1088
3391.25 salzs 32068 19115 23.a8
1091156 17.92 22138 iloo 11.32
667500 21.0a 173 60 14000 1881
7407.50 78.21 o585 loloe 11.00
lcas @0 863.27 1136 306 al7e
1024195 -115.61 Cels3 300 -also
256 a5 5.70 a1i31 16l00 17.69
l6 s287.05 4817 s6.56 s6.50 66.72
11 1282020 36.62 33013
12 393l30 1818 17,00 &8.a7
13 aciales 35.e3 111 07 35031
12 Ssasalis a3ise 57 85 alas
15 3as7iss a2.3s Salos 1ales
16 2109.as a6 a7 .27
17 1a73ls0 3010 25053
18 1e96.80 22.01 e .80 isi3s
15 easiac 103.45 673 130318
26 a11s.1s 18.53 123078 15 66
31 ‘eislee 16.38 3al7e friees
32 2015.95 salse 3753 8les
33 “Sasils 31l7e 33lee 13les
2a 1s8s.s0 15.70 59057 5 66
25 1s33.98 37.77 S0la5 s0l63
26 a7o.s: 51 12022 24052
27 870.50 10.5a e5.a8 26030
LA, o S o bt T

VENOVBWUNKED

o0
o0
o0
s
o0
o8
o1
o0
o5
%0
3s
o0
%0
o0
o0
o0
75
u

OEBPS/Images/fig1_5.jpg
In [8]: # k means using 5 clusters and k-means++ initialization
kmeans = KMeans(n_jobs = -1, n_clusters = 6, init='k-means++')
kneans. fit(data_scaled)
pred = kneans. predict(data_scaled)

In [9): frame = pd.DataFrame(data_scaled)
frane[‘cluster'] = pred
frame[' cluster'].value_counts()

out[9]: 2%
10
6
6
1
1

jame: cluster, dtype: int64

Zowanon

OEBPS/Images/fig5_1.jpg
N In [2): # Features construction
data['Open-Close'] = (data.Open - data.Close)/data.Open
data['High-Low'] = (data.High - data.Low)/data.Low
data['percent_change'] = data['Adj Close'].pct_change()
data['std 5'] = data[percent_change'].rolling(5).std()
data['ret 5'] = data['percent_change'].rolling(5).nean()
data. dropna(inplace=True)

X is the input variable
X = data[['Open-Close’, 'High-Low’, 'std 5', 'ret 5']]

#Y is the target or output variable
y = np.where(data['Adj Close'].shift(-1) > data['Adj Close'], 1, -1)

OEBPS/Images/fig1_4.jpg
In (7):

out(7):

fitting multiple k-means algorithes and storing the values in an empty List

st = (]
for Cluster in range(1,20):
knans = Kleans(n_jobs = -1, n_clusters = 6 , dnita"k-seansss’)
kmeans . £1¢(data_scaled)
SSE.append(kmeans. inertia)

converting the results tnto a dataframe and plotting them
frame = pd.Dataframe(("Cluster- srange(1,20), SSE*:SSE))
PIE. Figure(figsizes(12,6))
PIE plot (Frame] ‘Cluster'], frame['SSE'], marker='0")
PIE. xlabel("Nusber of clusters’)

yiabe1(Tnertia’)

Text(

.5, "Tnertia®)

—

OEBPS/Images/fig9_3.jpg
In [3]: # Create the data for two groups
groupl = np.random.rand(11)
group2 = np.random.rand(11)

Calculate the sample variances
variancel = np.var(groupl, ddof=1)
variance2 = np.var(group2, ddof=1)

Calculate the F-statistic
_value = variancel / variance2

Calculate the degrees of freedom
dfl = len(groupl) - 1
df2 = len(group2) - 1

Calculate the p-value
p_value = stats.f.cdf(f_value, dfl, df2)

Print the results
print('Degree of freedom 1:°,df1)
print('Degree of freedom 2:°,df2)
print("F-statistic:”, f_value)
print(“p-value:”, p_value)

Degree of freedom 1: 10
Degree of freedom 2: 10
F-statistic: ©.4831972166614582
p-value: ©.1335063153601323

OEBPS/Images/fig9_2.jpg
In [2]: data = pd.read_csv (r'C:\Users\nitin\Desktop\F.csv')
print (data)

Date groupl group2
1/1/2023 18.799999 4.67
2/1/2023 17.940001 4.63
3/1/2023 17.440001 4.70
4/1/2023 15.540000 4.88
5/1/2023 15.960000 4.72
6/1/2023 16.070000 4.89
7/1/2023 16.660000 4.89
8/1/2023 17.37e001 4.84
9/1/2023 17.110001 4.55
9 10/1/2023 16.420000 4.85
10 11/1/2023 17.549999 4.85
11 12/1/2023 18.379999 5.57

PNV EwWwN RS

OEBPS/Images/fig12_4.jpg
In [3): # defining the independent and dependent variables

#X is the independent variables
X = 1p_data[["High', Low’,"Open’, "Close"]]

#y is the dependent variable

y = np.where(ip_data[‘Adj Close’].shift(1) > ip_data['Adj Close'], 0, 1)

OEBPS/Images/fig12_5.jpg
n (4] X tre X tst, ytra, y_test = skleam.nde, selectonrn est spLt(, y, tst size = .2, radm state =)
print(ttran.shge)
eint(test.shpe)
print(ytran.shape)
ity test.shpe)

(18, 4)
(4
(10,
(5,)

OEBPS/Images/fig12_2.jpg
Maximum
Margin positive

Hyperplane
Maximum o e .
‘Margin o *

Hyperplane LIRS

Support
Vectors

Negative Hyperplane

OEBPS/Images/fig12_3.jpg
M I (1): frem skiearn.sve

Trem Skiearn.Tinesr_model impert Logistichegression
frem Sklearn metrics dmport Classification report
frem Skiearn leport metrics

from sklearn metrics import Classification report
frem Sklearn oport metrics

from sklearn.metrics imort confusion matrix

Lo data = pd.rasdcov (G \Users\ntinDeskEop\mr 1. csv')
print (1p_dat)

oute
o 1223 ssos1.

1 asnes e

2 aen pits

3 aspes onazs!
e 1a.

5 asen 33447 a5
¢ wiesen

7 i 91142 00000
s iz 9318 25000
5 e 971295313
1o 1716223 9228 33156
n e 9526. 75000
12 e S0i96. 83156
13 197 0484 00000
1 120203 955700000
5 123703 90280. 33156
6 172472023 90414.50000
17 s

9571 75000

See the types of data and missing volves in the dataset.
 Cotegoricat. dota (Like gender) naed o be comerted wsing dummy varisbles.
_dat.

Rangeindex: 750 entrien, 8
oarecolumns et 7 Cotumns)
250 non-nuil sbjact

e 250 non-nuil loates
Wign 250 non-mual losted
Low 250 non-nuil flasted
343 Close 250 non-mull flasted
Volume' 350 non-muil inees

types: Floatea(s), Intea(1), obgect())
e wanans SRS N

OEBPS/Images/fig12_6.jpg
In [5]:

In (6]:

from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

CIf = SVC(kernel="linear')
CIF.Fit(X_train,y_train)

y_pred = cIf.predict(X_test)
print(accuracy_score(y_test,y_pred))

0.92
from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))

Results
(122 &
[024])

precision recall fl-score support

[1.00 0.8 0.9 2%

1 0.86 100 0.9 %

avg / total 0.93 0.92 0.92 50

OEBPS/Images/fig12_1.jpg

OEBPS/Images/fig4_3.jpg
In [4]: # splitting X and y into training and testing sets
fron sklearn.nodel_selection inport train_test split
X train, X test, y_train, y_test = train test_split(X, y, test_sizes0.28, randon states1)

OEBPS/Images/fig8_2.jpg

OEBPS/Images/fig8_1.jpg

OEBPS/Images/fig4_2.jpg
In [3]: # defining the independent and dependent variables

X is the independent variables
X = ip_data[['High,'Low’, "Open’,"Close’]]

is the dependent variable
y = np.where(ip_data[*Adj Close'].shift(1) > ip_data['Adj Close'], 0, 1)

OEBPS/Images/fig4_1.jpg
In [1):

In [2):

importing Libraries

mport statsaodels
import pandas as pd
mport nuspy a5 np.
mport pandas as pd
mport nuspy as np.
import scipy 33 scp
mport sklearn

mport statssodels

pi a5 sm

from sklearn.model_selection import train_test_split
from sklearn.linear_nodel import LogisticRegression
from sklearn.metrics import classification_report
from sklearn import metrics

from sklearn.metrics import confusion matrix
from sklearn.naive_bayes inport Gaussianh®

f = pd.read_csv ("

print (46)

Date
1/2/2023
17372023
/472023
1/5/2023
1/6/2023
1/9/2023
171072023
1/11/2023
1/12/2023
/132023
10 1/16/2023
u 177203
12 11872023
B 1192023
14 172002023
15 /2372023
16 172002023
17 1/25/2023

High
88745.35156
8912100000
8907354688
9150000000
9340000000
9399875000
9448000000
9439985156
9166350000
9065000000
9067960156
8996589844
9939995313
96899 06000
9119889844
9053975000
90949, 39844
843600800

Users\nitin\DesktopWRFL.csv")

Low
87879.70313
87962.70313
87398.00000
88441.95313
90557.79688
92962. 00000
9309389844
9075000000
8857300000
89156.29688
89000, 00000
89010.04688
89279.95313
89819. 00000
8925564844
89679.95313
9004504688
8842968156

Close \
8805120313
88876, 14844
88012, 25000
91275. 79688
93141.50000
93447. 60156
9416395313
91142.00000
89518. 25000
89712.95313
8922835156
89526.75000
9919685156
9648400000
89557.00000
90280, 35156
90414.50000
8957175000

OEBPS/Images/Cover.jpg
ADVANCES IN DIGITAL TECHNOLOGIES
FOR SMART APPLICATIONS

Data Analytics
for Finance
Using Python

Nitin Jaglal Untwal

OEBPS/Images/fig8_3.jpg
In (7): # spLit dependent and independent variable
Useeting the volue for X and ¥
X = atal[*Open’, High', ‘Low']]
¥ = datal"close’]

Add_a constant to the independent value
X1 sm. dd_conseant(X)

make_regresston modet
model = Sm.0LS(y, X1

Fte model and print resutts
Frerults = model . FAt0)
print(results. summary())

OLS Regression Results

Close
OLS Ad3: R-squared:
Least Squares F-statisti
Wed, ‘25 Feb 2024 Prob (F-statistic):
It

Log-tikelihood 147308

No. Observations: 285 ALC: 2953,

DF Residusis: s 968,
OF Model: H
Covardance Type nonrobust

P to.025 o.9751

0.a05 e.ea1
saalss o000
17508 o0.000

n738 0.0

39,661 Durbin-watson
Prob(Omntbus) : 01000 Jarque-Bera (38):
Skew: 0192 Prob(38):

Kurtoss: 6.453 Cond. No.

Warnings:
[3]"Standard Errors assume that the covarisnce matrix of the errors is correctly specified.
[2] The condition number is large, 4.554.05. Thiz might indicate that thare are
T Ny s S

OEBPS/Images/fig15_2.jpg
In [3]: gstock_data = gstock_data [['Date’,'Open’,'Close']]
gstock_data .set_index('Date",drop=True, inplace=True)
gstock_data .head()

Out[3]: Open Close
Date

23032023 84949.95313 84168.39844

24032023 84046.39844 8387179688

21032023 8429960156 83602.95313

28032023 84150.00000 8234245313

29.03.2023 8200500000 81982 60156

OEBPS/Images/fig15_1.jpg
In [1]:

In [2]:

out[2]:

Make sure that you have oLl these Libaries available to run the code successfully

import matplotlib.pyplot as plt

import pandas as pd

inport datetine as dt

import urllib.request, json

inport os

import. numpy as np

import tensorflow as tf # This code has been tested with TensorFlow 1.6
from sklearn.preprocessing isport MinMaxScaler

from keras.models import Sequential

from keras.layers import Dense, Dropout, LSTH, Bidirectional

gstock_data = pd.read_csv (r'C:\Users\Ishan\OneDrive\Desktop\HRF .csv')
gstock_data .head()

Date Open Close

0 23032023 8494995313 84168.39844

1 24032023 8404639844 83671.79668
2 27032023 8429960156 8360295313
3 26032023 8415000000 8234245313
4 29032023 82005.00000 81982 60156

OEBPS/Images/fig11_3.jpg
In [5): data.apply(stats.zscore).describe()

Out[S]:

EEERTE N

Open
28500000402
7868949017
1001753400
16351080400
8484805001
4942033002
3694245001
2 0808220400

High
28500000402
2031903615
1001759400
16129390400
8622934001
4301416002
3516437001
20273080400

Low
28500000402
-1.1608656-15
1001759400
16744170400
8427361601
6249725002
3891561001
2 07684%e+00

Close.
28500000402
-2017879-15
1001759400
16428320400
8632115001
5518194002
36763657001
20073970400

Adj Close
2850000402
201787915
100175400
16428320400
8632115601
5518194602
3676367e.01
20273970400

Volume.
28500000402
-38857816-16
1001759+00
33375410400
5633631601
1952610001
3041173001
£ 2083310400

OEBPS/Images/fig15_4.jpg
In [6]: model = Sequential()
odel..add(LSTH(units=50, return_sequences=True, input_shape = (train_seq.shape[0], train_seq.shape[1])))

sodel add(0ropout(0.1))
sodel. add(LSTH(umitse56))

sodel. add(Dense(2))
model. conpiLe(loss="sean_squared_error", optiaizers"adan’, metricss|'sean_absolute_error"])
sodel. summary()

Model: “sequential®

| Layer (type) | output Shape 1 Param # |
‘1;:- (LsTM) (None, 197, 50) t 10,600 |
dropout (Dropout) (None, 197, 50) o |
Istm 1 (LSTH) (tone, s0) 20,200 |
dense (Dense) (None, 2) 102 |

T I W G
Total params: 30,902 (120.71 KB)

Trainable params: 30,902 (120.71 KB)

Tonctsudinshics semnsy: 't 8y

OEBPS/Images/fig15_3.jpg
In [4]:

In [5]:

fron skleamn,preprocessing inport MinMaxScaler

s = MinfaxScaler()

gotock data [gstock data .columns) = M. fit_transfora(gstock data)
training_size = round(len(gstock data) * 0.80)

train data = gstock data [:training size]

test data = gstock data [training size:]

train_seq = train data [:training size]
Create_sequence = test data [training size:]

OEBPS/Images/fig11_1.jpg
kol

OEBPS/Images/fig11_2.jpg
In [3]

data.apply(stats.zscore)

=3 Open ran Low Closs Ad)Close Votume
o omarera 6811017 0793616 6771011 0771011 w636t
1 0006640 0706432 07ADIGA -07ACETE 074676 0776047
2 0768461 0701664 08I0EEG 0676GY -0 67EGGY
3 0040401 0076003 ©0IVI7E 081304 ©DIIGIA
a 0027645 0087226 1006300 -1.006300
5 0962076 0002203 0696703 0036012 0630012
6 0034945 0071000 0964901 0960221 0066221
7 0wr2771 owr7Oes 0877061 081006 -0 9B106H
o 0976149 0900207 1007170 -1.007170
5 1012464 0061067 1012130 0930671 0930671
10 0006601 0026004 0OEEEAE ©001GE7 O OBIGET
11 0073706 010610 0033231 0671366 0671366
12 obe7e1e 0632040 0631350 0703306 070366
14 0030033 0060470 0642736 0009211 0000211
s 0.a7E6A 0.00DGEA 0026UI4 -0 6260I
e 0020602 0790010 0026100 0626100
" 0000661 0961707 0083676 093676
b 1200672 1183000 1183060
b 1270206 1162033 1162033
20 177066 11adeas 1 radces
P 1306708 _1a7eses 1 a7eser
22 ‘1242001 _1.4706a8 1179060
2 1145204 1010060 1010060
24 “10as2a1 1072327 1072327
25 1097347 1102320 1102320
20 0093400 1008363 1000363
20 060397 1067040 1067040
206 1 . 1evesit 1 eoesir 0260130
207 1 h 1670081 1670061 2267460
200 1 . 1601607 16oree7 1arasae
200 1 . 1613171 113171 om72206
202 1 ' 1az6367 1426367 1792430
204 1 ' 1643340 1643340 1204030
zan 1 . 1eosore 1eesors 1700413
206 1724501 1 toonats 1eenars ©7aziar
207 1747013 1 177az6a 1774204 2006400
200 1022703 1 1717101 1717101 2070060
200 17es7z0 4 1020000 1620600 1214632
270 1o0nams 1 1o27a46 1627640
271 1e0a733 4 1670004 1670004
273 1730686 1 1eoe7er 4
275 1sezeae 4 2 reacnz 1
B wmamal O heguicamspnaiiiior

OEBPS/Images/fig7_11.jpg
In [26]: df['Open’].kurt()
Out[26]: -0.5026751359960357

OEBPS/Images/fig7_10.jpg
In [25]: df{'Open"].skeu()
0ut[25]: 9.2432237496022986

OEBPS/Images/fig3_5.jpg
In [9]: #Accuracy statistics
print('Accuracy Score:', metrics.accuracy_score(ytest, prediction))
#Create classification report
class_report=classification_report(ytest, prediction)

print(class_report)

Accuracy Score: 0.884
precision recall fl-score support

0 0.86 0.87 0.87 108
1 0.9 0.89 0.9 10

avg / total 0.88 0.88 0.88 250

OEBPS/Images/fig7_1.jpg
In (1:

n (22

™ 3:
oue(3):
n (a1
ouera):

GF = pd.resd_cav (n'C:\Users\nitin\Desktop\MRFL cav")
brane”cary

oace
1/2/2023
17372023
3/as2023
17572023
17672023
37572023
1/10/2023
171172023
11272023
11372023
To 1/16/2025
1 1772023
12 171872023

open
8860000600
9158000000
93250.00000
5436100000
501000000

Hign Low

j0745.35156 8787970333

9055779688

94480.00000 9309389844
54399 05156 56750.00000
90679 60156 89000.00000

Close
s8051.50313
9314150000
94163 95313
51142100000
228135156

13 1/19/2003 89999100000 90899 00000 89819.00000 90483 00000
13 1/20/2033 90184.00000 91198.89814 89253 asad 89557 00000
15 1/23/2023 89995.00000 90539.73000 89679.95313 90280.3515
16 1/2a/2023 90500.00000 9004504688 9941450000
7 503000000 38425 00156 89571.75000

af.shape.

aso, 7

af.neady

e Open Hion Low Close _ AdjClose_Volume

3 US202) 6850000000 9190000000 B0A419EINI 91276760 9N00SA 22626

OEBPS/Images/fig3_4.jpg
In [7]: from sklearn.metrics import (confusion_matrix,accuracy_score)

confusion matrix
cm = confusion_matrix(ytest, prediction)
print ("Confusion Matrix : \n", cm)

accuracy score of the model
print('Test accuracy = ', accuracy_score(ytest, prediction))

Confusion Matrix :

[[94 14]

[15 127]]
Test accuracy = 0.884

OEBPS/Images/fig7_3.jpg
In [11]: mean = df['Open'].mean()

print(mean)

100703.51631335996

OEBPS/Images/fig7_2.jpg
In [5]: df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 250 entries, © to 249
Data columns (total 7 columns):

Date 250 non-null object
Open 250 non-null float64
High 250 non-null float64
Low 250 non-null float64
Close 250 non-null float64
Adj Close 250 non-null float64
Volume 250 non-null int64

dtypes: float64(5), int64(1), object(1l)
memory usage: 13.8+ KB

In [6]: df.isnull().sum()

Out[6]: Date
Open
High
Low
Close
Adj Close
Volume
dtype: int64

P00 000Q®

OEBPS/Images/fig3_1.jpg
Multinomial Logistic Regression

OEBPS/Images/fig3_3.jpg
In [4): log_reg = sm.Logit(ytrain, Xtrain).fit()

Optimization terminated successfully.
Current function value: 0.259175
Iterations 8

In [5): # printing the summary table
print(log_reg.summary())

Logit Regression Results

Dep. Variabl y No. Observations
Model: Logit DF Residuals:
Method: MLE Df Mode
Date: Mon, 08 Jan 2024 Pseudo R-squ.
Tine: 16:20:59 Log-Likelihood:
converged: True LL-Nall:
LLR p-value:

coef std err Pl [0.025
High 0.0004 0.001 -0.809 0.418 -0.002
Low -0.0018 0.001 -2.497 0.613 -0.003
Open 0.0043 0.001 -6.213 0.000 -0.006

Close 0.0065 0.001 6.565 0.000 0.005

OEBPS/Images/fig3_2.jpg
In [2]: of = pd.read_csv (r
print (df)

Date
1/2/203
1/3/2023
1/4/2023
1/5/2023
1/6/2023
1/9/2023

1/10/2023

1/11/2023

1/12/2023

1/13/2023

10 1/16/2023

u 11772023

12 1/18/2023

13 1/19/2023

14 17202023

15 1/23/2023

16 1/24/2023

7 172572023

CaNanawNnR o

Open
88600.00000
88397.89844.
88892.00000
88500.00000
91580.00000
93600.00000
93250.00000
94261.00000
91597.75000
89700.00000
90100.00000
89682.85156
89360.00000
89999.00000
90484.00000
89995.00000
90500.00000
96300.00000

High
88745.35156
89121.00000
89673.54688
91900.00000
93400.00000
93998.75000
94480.00000
94399.85156
9166350000
90650.00000
90679.60156
89965.89844
96399.95313
90899.00000
91198.89844
90539.75000
90949.39844
90436.00000

\Users\nitin\Desktop\MRFL.csv")

Low

87879.70313
87962.70313
87398.00000
88441.95313
90557.79688
92902.00000
93093.89844.
96750.00000
8857300000
89156.29688
89000.00000
89010.04688
89279.95313
89819.00000
89255.64844.
89679.95313
9004504688
88429.60156

In [3]: | # defining the independent and dependent variables

X is the independent variables

Xtrain = df[["High",

“Low', “Open”.

#Y is the dependent variable
ytrain = np.where(df['Adj Close"

Close’]]

Close \
88051.20313
88876.14804
88012.25000
91275.79688
93141.50000
93447.60156
94163.95313
91142.60000
89518.25000
9712.95313
89228.35156
89526.75000
96196.85156
96484.00000
89557.00000
90280.35156
9414.50000
89571.75000

.shift(1) > ¢F[*Adj Close'], 0, 1)

OEBPS/Images/fig7_9.jpg
In [21]: Q1 = df['Open’].quantile(.25)

@
out[21]: 89967.25

In [19): Q2 = df['Open’].quantile(0.5)
Q@
out[19]: 100773.9492

In [20]: Q3 = df['Open’].quantile(6.75)

@
Out[20]: 108879.0

In[22): IR=Q3 - Q1
IR
out[22]: 18911.75

OEBPS/Images/fig7_8.jpg
In [18]: df['Open’].std()

Out[18]: 11169.414514022828

OEBPS/Images/fig7_5.jpg
In [13]: mode = df['Open'].mode()
print(mode)

0 108500.0
dtype: float64

OEBPS/Images/fig7_4.jpg
In [12]: median = df['Open’].nedian()
print(median)

100773.9492

OEBPS/Images/fig7_7.jpg
In [17]: df["Open'].van()

Out[17]: 124755820, 58606382

OEBPS/Images/fig7_6.jpg
In [14]:
Out[14]:

In [15):
0ut[15]:

In [16]:
Out[16]:

df["Open'].min()
81900.0

4F[Open’]..nax()
131600.0

4#[Open’].max() - df[Open’].min()
49700.0

OEBPS/Images/fig14_2.jpg
In [3): 4F = pd.Dutfrane{ata)
i bead)

plt. Figure(Figsizes(10,5))
sas.comtplot{c'Setisen’, datad, onders'Dtreely eative, Meative’, ‘eutral', ‘Positive’, "Etrenly Pusitive'],)

Ot [3): Cuatplotlib.aves. subplots.AvesSubplot at SxbTb%088)

s

OEBPS/Images/fig14_3.jpg
In [5]: | reg = re.compile(*(B[A-Za-20-9]4)| (¥[A-Zs-20-9]4) (["0-94-Za-2 t])| (ws://5+)")
tueet = [
for i in df(*OriginalTueet"]:
et append(reg.sub(" *, i)
df = pd.concat([dF, pd.DataFrame(tueet, columns=["CleanedTueet"])], axis:1, sortsFalse)

In [6]: df.head()

out[6):
Originaveet Sentiment CleanedTweet

o 0 Extenely Negathe w
1 nolpossble Exremely Negative ol possible:
2 never ExemelyNegate never
3 mowey emeyNegie noway
‘ M@ Exrenel Negatve w

In [7]): from sklearn.feature_extraction.text import TfidfVectorizer
et (stopwords.words('english')) # make a set of stopwords
FidfVectorizen(stop_wordszNone)

OEBPS/Images/fig10_4.jpg
In [4]: # Create the data for two groups
groupl = np.randon, rand(11)
group2 = np.randon, rand(11)
Perforn the two sample t-test with equal variances
stats. ttest_ind(groupl, group?, equal_var=True)

Out[4]: Ttest indResult(statistice1.2193142046867186, pvalue=0.2369105013488233)

OEBPS/Images/fig14_1.jpg
ERERRRERENY

OEBPS/Images/fig14_6.jpg
redTwast"))
B e

ocsee

. predicted’s y_prea)

In (13]: | from sklearn import metrics
Generate the roc curve using scikit-Learn.
for, tor, thresholds = metrics.roc.curve(y. test, y_pred, pos_labels1)

pitiplotifor, tor)
P1t Xlabel(Falze positive rate’)

& Measure the area under the curve. The closer to 1, the “better® the predictions.
Print("AUC of the predictions: (0)"-format(metrics.auc(fpr, tpr)))

noc curve
o
i..
¥
o
™
W e W W

ANE of the bredictions: ©.3005023255810084

OEBPS/Images/fig14_4.jpg
In [8]: X_train = vectoriser.fit_transfora(df["CleanedTueet"])
Encoding the classes in numerical values
fron sklearn.preprocessing inport LabelEncoder
encoder = LabelEncoder()
y_train = encoder. fit_transforn(df['Sentinent'])
fron sklearn.naive_bayes inport NultinonialNB
classifier = MultinonialN8()
classifier.fit(X_train, y_train)

Out[8]: MultinonialNB(alpha=1.0, class prior=None, fit prior=True)

OEBPS/Images/fig14_5.jpg
In (3): | # inporting the Test dataset for prediction and testing purposes
Cest_data = pd.read_csv (+"C:\Users\nitinDesktop\stockremark.csv')
et 4 = pd.Databrase(test_dats)
test 4 hesd()

ou(s)
ongnatess surdmen
> Extemey g
sl Exveney e
v Exvoney Negabe
vy Extoney s
m@ By

0-910)|(#{A-2

In (10]: | reg = re.comile(" (B[1) ([0-58-20-x 4]} wi//50)%)

et = 1]

for 5 n df{“OriginalTuee
tueet.append(reg.sib(" °, 1)

test 4 = pd.concat([test_, pd.OutaFrase(tweet, columnss[“ClesnedTueet])], axiss1, sortsfatse)

tn [11): | dF-hesd)

out{11):
OngaTees Sertman ClsnaaTve

> Exteney Negane)
mtposie ExveneyNephe st
newr Gyt oowr
oy EmmyNeghe 0wy
200 ExvemelyNogsbee -

OEBPS/Images/fig10_2.jpg
In [2]: data = pd.read_csv (r'C:\Users\nitin\Desktop\F.csv')
print (data)

Date groupl group2
1/1/2023 18.799999 4.67
2/1/2023 17.940001 4.63
3/1/2023 17.440001 4.70
4/1/2023 15.540000 4.88
5/1/2023 15.960000 4.72
6/1/2023 16.076000 4.89
7/1/2023 16.660000 4.89
8/1/2023 17.370001 4.84
9/1/2023 17.110001 4.55
9 10/1/2023 16.420000 4.85
10 11/1/2023 17.549999 4.85
11 12/1/2023 18.379999 5.57

PNV A WN RS

OEBPS/Images/fig10_3.jpg
In [5]: # Print the variance of both data groups
print(np.var(groupl), np.var(group2))

9.12303191538629704 0.12295852542416214

OEBPS/Images/fig10_1.jpg
In [1]: # Python program to demonstrate how to
perform two sample T-test

Import the Library
import scipy.stats as stats
import numpy as np

import scipy.stats as stats
import pandas as pd

import numpy as np

OEBPS/Images/fig13_4a.jpg
In [6]:

histogram
plt.hist(data["Open’])

plt.title(Histogram™)

Adding the Legends
plt.show()

Histogram

OEBPS/Images/fig13_4b.jpg
In [7): | # draw Lineplot
sns. 1ineplot(x="Open", y="Close”, datasdata)

setting the title using MatplotLib
plt.title('Title using Matplotlib Function')

plt.show()

Title using Matplotlib Function

guoooo

110000 120000 130000

OEBPS/Images/fig2_6.jpg
In (10]:

from statsnodels. tsa. arina_sodel inport ARIMA
#1,1,1 ARIA Model

nodel = ARIMA(history, orders(1,1,1))
node_f1t = nodel. £1¢(disps0)
print{sode]_fit.summary())

ARIMA Model Results

Dep. Variable: D.y No. Observations: a
ARIMA(, 1, 1) Log Likelihood 3725911

cssale S.D. of innovations 1585.39

Mo, 08 Jan 2024 AIC 7459.822

14:20:46 BIC 7476.020

e 7466.222

coef stdere T opll o [es 097

const. 1051971 76592 133 070 -44.90 255314

L8279 0.405 2043 0.62 -0.03
1631

aR1 -1.2078 +0.0000] 1.2078 0.5000
1 12219 +0.0000) 12219 0.5000

OEBPS/Images/fig6_2.jpg
In [2]: # Features construction
data['Open-Close'] = (data.Open - data.Close)/data.Open
data['High-Low'] = (data.High - data.Low)/data.Low
data['percent_change'] = data['Close'].pct_change()
data['std_5'] = data['percent_change'].rolling(5).std()
data'ret_5'] = data['percent_change'].rolling(5).mean()
data.dropna(inplace=True)

#split dataset in features and target variable

feature_cols = ['Open-Close’, 'High-Low', 'std 5', 'ret 5']
X = data[feature_cols] # Features

#Y is the target or output variable
y = np.where(data['Close’].shift(-1) > data['Close'], 1, -1)

OEBPS/Images/fig2_5.jpg
In [7]: plt.figure()
lag_plot(DEF_data[‘price’], lag=5)
plt.title('DEF - Autocorrelation plot with lag = 1')
plt.show()

DEF - Autocorrelation plot with lag = 1

OEBPS/Images/fig6_1.jpg
In (1): | # Lood Librories
opart pandas 11 94
frem klaarntree inpart DcisionTreeClassifier # Inport Decision Tree Classifier
frem klaarn model_selaction import train test SpUE ¢ Inport (1ol test_spiit function
Trem loorn Lopors mtrics Floport SEURE-Losrn meCrics medule for occurecy CoLoMOEIon
et panaas 21 74
iopars gy 31 19
frem sklear.ensesble Loport RandoaborestClassifier
L mtplottin pyptot ws Pt
frem klaarn. dutusets foport Tosdirks
fram lar.datasets mpors Lowd bresst_cancer
frem klaarn.tree ioport DecisionireeClassifier
from klaarn.snsesble iopart RandonporestClassifise
frem Wi model_selection impors tratn est spIAE
iopart pandas 15 94
iopart gy 34 19
frem ki impers tree
iopare matplotiih prpiot =1 pit
Trom iewrn externats-six doport Stringld
from Thython.aisplay inport Taage
frem slearn.tree Lopars export_graphvis
oot ot

data = pd.resd_cov (r°Co\URers\nSm Deskeap WISL cov')
prine (@ata)

C:\PrograsOuts\Vinsconds3 b\ te-packages\sklearn\ensesble\veigh._bocsting. y:29: Deprecatiorkarning: rumpy. core.smath_t
505 15 00 internal Nanpy module and ol ho be inparted. 1t wiTL be resoved 1h & future Nuspy relesse-
from mmpy.coreunath_tests inport. innerld

H

e Lov Qose \
0 1 mmesse swassie TAWGD sesae1
T Udaen e i EGGL S
3 wapen e werssuss s7sws.ceewe shei2 zsees
3 uSem sases.co0 910000 SeAL9saI 75, 7o6ss
& G gswmleeece ee.cse 3657 33ial e
5 usaes simecee owsnress 9002 eeeen 97ieise
© wloaen e ouimewess v e 3416395313
7 AANID suieee s sersecem 91142 seees
H
H

/1203 91507 7566 916633000 EEST3.00m0 Esia. 2500
I/D/203) o570 ce000 s0cso.cemmn ise.i0ese E7I2.o
/162023 90100 00000 90679.G0156 19000.00000 89228.35156
172023 G2 ESIS 89965090k E9010.00688 80526.75000
Py Suiog.mse

13 1/19/23 9999900000 50099.00000 9361900000 36484, 00000

i
i
H
:
H
H

OEBPS/Images/fig2_8.jpg
#0,0,3 ARINA Model
model = ARIMA(history, orders(0,0,3))
model_fit = model. fit(disp=0)
print(nodel_fit. summary())

In [16]: from statsaodels.tsa.arina_model import ARIMA

ARMA Model Results

425

Dep. Variable: y No. Observation:
Hodel: ARMA(B, 3) Log Likelihood -4024.226
css-ale 5.D. of innovations 3122158
Mon, 08 Jan 2024 AIC 8058.452
14:28:46 BIC 8078.713
o HIC 8066.456
coef std err z pl [e.05 0.975]
const. 9.862e404 662.141 148.939 0.000 9.73es04 9.99404
ma.lly 14758 0.083 34369 X 1.391 1.560
a.L2.y 12982 0.043 30.082 1.214 1.383
ma.L3y 0.6123 0.2 18.973 0.589 0.676
Roots.
Real Inaginary Modulus Frequency
.1 -1.2393 -0.00003 1.2393
m.2 -0.4405 -1.06013 1.1480
(%} -0.4405 +1.06015 1.1480

OEBPS/Images/fig6_4.jpg
data['strategy_returns'] = data.percent_change.shift(-1) * nodel.predict(X)

In [10]): Xmatplotlib inline
import matplotlib.pyplot as plt
data.strategy_returns[split:].hist()

plt.xlabel(’Strategy returns (%)')
plt.show()

OEBPS/Images/fig2_7.jpg
In [12):

from statsnodels.tsa.arina_model import ARIMA
#1,0,2 ARIMA Model

model = ARIMA(history, orders(1,0,2))
model_f1t = mode]. fit(disps0)
print(sodel_fit. summary())

ARMA Mode] Results

Dep. Variable

y MNo. Observations: a2

ARMA(1, 2) Log Likelihood -3737.829
css-ale S.D. of innovations 1588.210

Mon, 08 Jan 2024 AIC 7485658
14:26:13 BIC 7505.919

o WIC 7493662

coef std err el [0.025 0.975)

9.855¢404
0.9955 0.006 169653 0.000 0.984 1.007
0041 0.049 0088 0.93 -0.100 0.09
0.0212

Inaginary Frequency

1 1.0045 +0.0000) 1.0045 0.0000
[0.0971 -6.86713 6.8678 -0.2477
w2 0.0971 +6.86713 6.8678 0.2477

OEBPS/Images/fig6_3.jpg
tn (311

ouer31:

tn (a3:

o (6):

In (8

PR s

B

hapero)

oprain eent 50

Prine cne size of the tratn and tese datasec
it Craan hape, X cent
rim o train.snepe; s_test.

a9, 4y ca06, 2>
@305 0aseTs

#rom sKlesrn.tree import DecisionTreeClassifier
CIF = DeciatonTraeClassifiar(randon.statesl)

model = c1¢.F1E(C tratn, y_train)

#rom sklearn.setrics daport accuracy_score
Print("Correct Prediction (%): ', accuracy._score(y_test, model.predict(X_test), norsslizesTrue)*160.6)

Correct Prediction (): 42.857102857142854

1: | # Run the code to view the classification report metrics
from sklearn.metrics import classification_report
report = classification_report(y_test, model.predict(X_test))

print(report)
precision recall fl-score support
-1 o.40 0.59 o.a8 87
1 o.as o.30 °.37 109

e el .43 .42 106

OEBPS/Images/fig2_2.jpg
In [4):

plt.figure()

lag_plot(DEF_data[‘price’], lag=2)

plt.title('DEF - Autocorrelation plot with lag = 2')
plt.show()

DEF - Autocorrelation plot with lag = 2

OEBPS/Images/fig2_1.jpg
In [3]: plt.figure()
lag_plot(DEF_data[price’], lag=1)
plt.title('DEF - Autocorrelation plot with lag = 1')
plt.show()

DEF - Autocorrelation plot with lag = 1

OEBPS/Images/fig2_4.jpg
In [6]: plt.figure()
1ag_plot(DEF_data[‘price’], lag=4)
plt.title('DEF - Autocorrelation plot with lag = 4')

p1t.shou()
DEF - Autocorrelation plot with lag = 4
130000 - ot
.
120000 * N
e ;
£
b ’ .’
90000
.
80000 ™ ™ T
80000 90000 100000 110000 120000 130000

OEBPS/Images/fig2_3.jpg
In [S5]:

plt.figure()

1ag_plot(DEF_data['price’], lag=3)

plt.title('DEF - Autocorrelation plot with lag = 3')
plt.show()

DEF - Autocorrelation plot with lag = 3

OEBPS/Images/fig6_6.jpg

OEBPS/Images/fig2_9.jpg
In [16]: from statsaodels.tsa.arina_sodel inport ARIMA
#1,1,1 ARIMA Model
model = ARTMA(history, order=(1,1,1))
model_fit = model. fit(disps0)
print(nodel_fit. sumary())

ARIMA Model Results

Dep. Variable: Dy No. Observations: an
ARIMA(1, 1, 1) Log Likelihood -3725.911

cssale S.0. of innovations 1585.390

Mon, 08 Jan 2024 AIC 7459.822

14:20:46 BIC 7476.020

1 HIC 7466.222

coef std err z Pz| [0.025 0.975)
const 1050971 76592 1373 070 -44.92 255314
arllDy -0.8279 0405 2.043 0.682 -0.034
ma.llD.y 0.884 0.415 1974 0.049 1631

Real Inaginary Modulus Frequency

a1 -1.2078 +0.0000] 1.2078 0.5000
.1 -1.2219 +0.00003 1.2219 0.5000

OEBPS/Images/fig6_5.jpg
In [11]: (data.strategy_returns[split:]+1).cumprod().plot()
plt.ylabel('Strategy returns (%)')
plt.show()

OEBPS/Images/Logo.jpg
CRC Press
Toyor & FrancisGroup
St London e Yotk

GRC press s an imprint o e
Bonter B Fasmecls Growss, o0 ot Dusbiont

OEBPS/Images/fig13_3.jpg
In [4]: # Scatter plot
plt.plot(data[‘Open"])
plt.plot(datal ‘Close’])

Adding Titte to the Plot
plIt.title("Scatter Plot™)

Setting the X and ¥ Labels
plt.xlabel(*High')
plt.ylabel(*Low’)

plt.show()

H

10000
120000
110000
0000
so00
w00

OEBPS/Images/fig13_1.jpg
In [1]:

In [2]:

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt

import pandas as pd

inporting the modules
#rom bokeh.plotting import figure, output_file, show

from bokeh.palettes import magma

import pandas as pd

data = pd.read_csv (r"C:\Users\nitin\Desktop\MRFL.csv")

print (data)

Date
1/2/2023
1/3/2023
1/4/2023
1/5/2023
1/6/2023
1/9/2023

1/10/2023

1/11/2023

1/12/2023

1/13/2023

10 1/16/2023

11 1/17/2023

12 1/18/2023

13 1/19/2023

14 1/20/2023

15 1/23/2023

16 1/24/2023

17 1/25/2023

CeNonAWNRO

Open
88600.00000
8839789844
88892.00000
88500.00000
91580.00000
93600.00000
93250.00000
94261.00000
91597.75000
89700.00000

High
88745.35156
89121.00000
89073.54688
91900.00000
93400.00000
93998.75000
9448000000
9439985156
91663.50000
90650.06000
90679.60156.
8996589844
90399.95313
90899.00000
91198.89844.
90539.75000
9094939844
96436.00000

Low
87879.70313
87962.70313
87398.00000
88441.95313
90557.79688
92902.00000
9309389844
90750.00000
88573.00000
89156.29688
89000.00000
89010.04688
89279.95313
89819.00000
89255.64844
89679.95313
9004504688
88429.60156

Close \
88051.20313
88876.14844
88012.25000
91275.79688
93141.50000
93447.60156
9416395313
91142.00000
89518.25000
89712.95313
89228.35156
89526.75000
90196.85156
90484.00000
89557.00000
90280.35156
90414.50000
89571.75000

OEBPS/Images/fig13_2.jpg
In [3]:

Scatter plot with OPEN against CLOSE
plt.scatter(data[Open’], data[Close’])

Adding Title to the Plot
plt.title("Scatter Plot")

Setting the X and Y Labels
plt.xlabel(Open®)
plt.ylabel(’Close”)

plt.show()

OEBPS/Images/fig13_5.jpg
In [8]: # instantiating the figure object

graph = figure(title = "MRFL®)
color = magma(256)

plotting the graph

graph. scatter(data[‘Open’], data['Close’], color=color)

atsplaying the model
show(graph)

MRFL

130005]

OEBPS/Images/fig2_10.jpg
In [3]: train data, test_data = OEF data[@:int(len(OEF data)*0.7)], OEF data
training data = train data['price’].values
test data = test_ datal'price’] valves
history = [x for x in trainig dta]
sodel redictions []
N test observations = len(test data)
o tise goiat in range(test obsenvtions):
sodel. = ARIMhistory, order=(1,1))
el fit = ol it(disp)
oot = nodel, it forecast()
shat = outpat{6]
node]_prediction.appen (hat)
true_test value = test_data[tine point]
history. appendtre test vale)
€ ervor = nean_squaredrvotest_daa, s predictions)
print(Testing Hean Squared Error s {}*.format(ISE ervor))

C:\Prograntanaconda\)it acages|statsodels\base\aodel.py:48: HesanTversonkrning: Iverting besian faile
4, 0 bse or cor garas aalable
“aalatle’, Hsstaalmversionkreig)

Testing Mean Squared Error is 3504375.095176668

