
[image: image]

Cryptography and
Network Security

[image:]

Demystifying the ideas of Network Security,
Cryptographic Algorithms, Wireless Security, IP
Security, System Security, and Email Security

[image:]

Bhushan Trivedi

Savita Gandhi

Dhiren Pandit

[image:]

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-89328-66-0

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

[image:]

www.bpbonline.com

Dedicated to

My teachers

Whose selfless love and dedication to
teach me excelled in writing this book

— Bhushan Trivedi

My loving husband, son, teachers and
late parents

— Savita Gandhi

My family

Whose love, endless support, encouragement and
sacrifices have made this book possible

— Dhiren Pandit

About the Authors

Prof. Bhushan Trivedi, Ph. D. is working as the Dean, Faculty of Computer Technology (FoCT)at GLS University. He has completed almost 3 decades in higher education. Three of his books are published prior to this text, first is on ANSI C++, second is on Computer Networks and the third is on Data Communication and Networks. ANSI C++ enjoyed the status of best-selling in Oxford Higher Education for four consecutive years.

 Apart from books, Prof. Trivedi wrote two courses for EPGPathshala, and two MOOCs on Swayam. Both of his MOOCs, one is on AI and another is on “Computer Networks and Internet Protocols” are part of top 10 in computer engineering and top 20 overall in terms of participation. Both the courses are now chosen for translation into 8 different Indian languages.

 Prof. Trivedi has published about 100 papers and had 4 patents to his credit, almost half of the contribution is in various areas related to security. He has conducted around 70 odd workshops and lectures on many issues related to Security, Effective Teaching, Research, e-content development and AI, across India. Prof. Trivedi received an award for the work on effective teaching by IUCEE in 2009. He is also given Chapter Petron award by Computer Society of India in 2011.

 Other two members who contributed to almost three chapters related to mathematical content of this book, Dr. Savita Gandhi and Dr. Dhiren Pandit, are renowned professors in their own field.

Dr Savita Gandhi is the Director of the School of Computer Science and heads the Department of Computer Science at the Gujarat University. She brings over 40 years of experience teaching computer science and research. She earned a scholarship for graduate studies based on her undergraduate performance in B.Sc. (Mathematics), where she won a gold medal and several prizes in M.Sc (Mathematics). She then went on to get a Ph.D. (Mathematics) degree. Her current research interest areas include image processing, cryptography, data compression, mobile ad-hoc networks, data mining, among others with over 70 well-reviewed papers published.

Prof Savita Gandhi is active in many professional bodies. She is an Associate Member of the coveted Actuarial Society of India, a testament to her strong foundations in mathematics and statistics. Her impact in the teaching is felt beyond the campus of Gujarat University at a national level through her work with the Ministry of Education on e-PG Pathshala and a Massive Open Online Courses (MOOCs) program. Under her leadership a total of 326 modules have been developed on e-PG Pathshala. She is a regular member of National Assessment and Accreditation Council (NAAC) accreditation committees. She is also an IEEE Senior Member and has been part of their Executive Committee.

 Most recently, Dr Gandhi received the Golden Aim Award for excellence and leadership in education in computer science.

Dr Dhiren Pandit is working as an Assistant Professor in Mathematics at the Institute of Technology, Nirma University. He did his Doctorate from NIT Surat in the field of image processing and data mining. Due to his interdisciplinary work in the application of mathematics in computer science and experience, he is able to contribute to this project. He has authored several research papers in reputed journals. He has delivered several expert talks at reputed institutes like NITs on the Application of Mathematics in Computer Science. He has 15 years of broad experience as an academician. Dr Pandit is also an active member of Gujarat Ganit Mandal (Mathematical Society) and does several events in the field of applied mathematics.

Acknowledgements

It is essential to show gratitude towards those who enabled this book. There are two important entities. First are my teachers who taught me many things, especially how to present the content to the audience. Second are my students who tested me with their inexhaustible queries and teaching various nuances of the subject as a by-product. Both of them are prime contenders for the top spot. My parents and family members endured the agony of being author’s relatives especially at family events are occupying the next slot. The support and warmth that I received from them in due course of writing this book is incomparable. Two of my friends, Dr Savita Gandhi and Dr Dhiren Pandit helped with content occupying almost three chapters. I must acknowledge their invaluable contribution to this book. Last but not the least, the BPB staff who bore brunt of my demanding nature and my passion for excellence has done a commendable job in development of this book. I must also thank Maunish bhai who introduced me to Shri Nrip Jain ji and help initiate the process.

— Prof. Bhushan Trivedi

It has been a long time desire of mine to publish a book to help the next generation of thinkers and computer scientists. So, first and foremost, I would like to thank the publishers and the team for making this happen. My colleagues Jigna, Vaidehi, Hiral, Jinali, Rachna and others helped me along the way with digitizing and formatting the material I authored. Further, I would like to express my gratitude to the University administration for providing encouragement and facilitating my writing.

— Dr Savita Gandhi

First of all I would like to thank the supreme power the almighty GOD who has always guided me to work on the right path of life. Next to him are my parents, I wish to thank my parents for their love and encouragement, without whom I would never have enjoyed so many opportunities. I am feeling obliged in taking the opportunity to sincerely thanks to Dr. Bhushan Trivedi(Director, GLS Institute of Computer Technology (GLS-ICT) and Dean, School of Computer Technology at GLS University) for showing faith in me and providing all support whenever I am in need, without which I could never be able to complete this work. At last but not the least I have no valuable words to express my thanks to my better half Apexa and my son Aariv for all love and support and also providing motivation for success.

— Dr Dhiren Pandit

Preface

Cryptography and Network Security has been a subject in computer and IT engineering syllabus since decades. Over the period of time the reliance of the users over web and other electronic media has increased to such an extent that this has becomes one of the most popular subjects in computer science and engineering discipline.

The study of cryptography span decades and it is still being explored in the backdrop of increased challenges. The solutions using cryptography also demands using state of the art mathematical knowledge of some important areas, some of which forms the core part of latest cryptographic solutions used world over. The book describes cryptography and various related ideas with requisite mathematical background.

Cryptography is not the only part of security processing, there are quite a few other aspects, including how one can make sure our documents remain safe, how the sender of a content is authorized and authenticated, how the Internet protocols enable secure operations of the data traveling across and so on. The book covers them as well.

The idea of presenting complex content by using an inductive approach is the key feature of this book. Many real world examples are presented to illustrate the theoretical ideas. The stress on ‘why’ aspect of content is also dully addressed which makes this text quite unique. In short, the book combines real-world practical examples with important theoretical ideas along with proper reasoning.

Let us summarize what we are going to learn in 21 chapters of this book.

Chapter 1 Network and Information Security Overview

This chapter describes security goals, architecture, mechanism and the operational model. This chapter sets the tone for the ensuing discussion of various security principles subsequent chapters. The network and operational security model which defines the terminology used in various security products and principles are presented here.

Chapter 2 Introduction to Cryptography

2nd chapter differentiates classical and modern approaches to cryptography, introduces terminology like substitution, transposition etc. It describes difference between symmetric and asymmetric ciphers, Block and stream ciphers, monoalphabetic and polyalphabetic ciphers, etc.

Chapter 3 Block Cipher and Attacks

3rd chapter describes block ciphers. Block ciphers have typical structure and functioning. The architecture also is vulnerable to typical types of attacks. The chapter describes possible attacks and solutions to them.

Chapter 4 Number Theory Fundamentals

The two chapters 4 and 5 set the mathematical platform for foundation of next few chapters. Chapter 4 on number theory, discusses at length prime numbers and their characteristics, methods to determine large prime numbers, modulo arithmetic, discrete logarithms, etc. which are useful in cryptography.

Chapter 5 Algebraic Structures

Chapter 5 describes algebraic systems like Groups, Rings and Fields, needed to learn Advanced Encryption Standard and other cryptographic solutions. Polynomials and Galois Fields which are the backbone of most current secure solutions today are also discussed.

Chapter 6 Stream Cipher modes

Chapter 6 describes stream cipher with an example of RC4 and how a stream cipher can be deployed in various ways, known as cipher modes. The chapter throws light on a real world stream cipher known as IEEE XTS-AES.

Chapter 7 Secure hash functions and Chapter 8 Message Authentication using MAC

7th chapter describes how one can define and use a secure hash function. It defines some of the important security applications of the secure hash function and also describes SHA-3 as a case study. 8th chapter extends the discussion of secure hash function and exemplifies the generation of Message Authentication Code. Two of the most used real world MACs , i.e. HMAC and CMAC are also described in this chapter. Another real world MAC which is gaining popularity GCM with AEAD is also given due justice in this chapter.

Chapter 9 Authentication and message integrity using Digital Signature

This chapter describes what a digital signature is and a few digital signature methods used in practice.

Chapter 10 Advanced Encryption Standard

This chapter describes the AES method of encryption is details. It describes different rounds, stages of each round, and how the intermediary message is process at each round based on the input key, so the input plaintext eventually converted to a ciphertext.

Chapter 11 Pseudo Random Numbers

This chapter describes one of the major building blocks of the security solutions, the pseudo random number generator. There are various ways in which random numbers can be produced and used. This chapter describes how true random numbers can be generated as well as pseudo random number can be produced; with appropriate real world examples.

Chapter 12 Public key algorithms and RSA & Chapter 13 Other public key algorithms

These two chapters throws light on an important way to handle the cryptographic operations, using public key algorithms. Chapter 12 describes RSA, so far the most commonly used public key algorithm, and various tricks deployed in improving the efficiency of the same. Chapter 13 describes two other popular algorithms, Diffie-Hellman and Elliptic Curve based. Elliptic curves are not in vogue and are very attractive solution to public key algorithms, the chapter showcases how it works and why it is gaining in popularity.

Chapter 14 Key management and exchange & Chapter 15 User authentication using Kerberos & Chapter 16 User authentication using public key certificates

After algorithms, we discuss another key component of cryptography, the keys used to encrypt and generate MACs. There are two types of keys used, their initial idea is provided in Chapter 14. Chapter 15 describes an important real-world protocol which uses Symmetric Keys while chapter 16 discusses how asymmetric keys using public key certificates are deployed to solve public key related problems. These chapters also throw light on how authentication protocols are designed and used to counter different types of attacks during the key exchange and related processed.

Chapter 17 Email Security & Chapter 18 Transport layer security & Chapter 19 IP security & Chapter 20 Wireless security

These four chapters essentially describes a secure communication solution working at different internet layers. They describe how key exchange takes places, how security capabilities between different peers are exchanged, and how the protocol takes over from there on. These four chapters describe various challenges and solutions posed by those networking layer’s functioning and shortcomings. Real world protocols like PGP, SMIME, TLS, IPsec and 802.11i are discussed in detail.

Chapter 21 System Security

There are other security solutions like Firewall, bastion hosts, VPNs and UTMs, fall under the category of system security. This final chapter gives a bird eye view to all those periphery solutions to provide an overall look to the idea of security itself.

The 21st chapter, along with annexures of all other chapters is available as additional reading part of this book. The link is found elsewhere in the book.

Downloading the code bundle, Annexure and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/9328ad

Download Annexure and entire Chapter 21

https://rebrand.ly/gy7el98 [image:]

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit www.bpbonline.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Cryptography-and-Network-Security. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/bpbpublications. Check them out!

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. An Overview of Network and Information Security

Structure

Objectives

1.1 Introduction

1.2 Why security is complex

1.2.1 Design-related issues

1.2.2 Implementation-related issues

1.2.3 Financial issues

1.2.4 Hardware and software-related issues

1.2.5 People-related issues

1.3 Security goals

1.4 Different views on security

1.5 Information security

1.6 The relevance of security measures in the modern era

1.7 Threats to information

1.7.1 Viruses and worms

1.7.2 Hackers

1.7.3 Insiders

1.7.4 Criminal organizations

1.7.5 Terrorists and information warfare

1.8 The security architecture

1.8.1 Security attacks

1.8.1.1 Cryptanalytic attacks

1.8.1.2 Non-cryptanalytic attacks

1.9 The network security model

1.10 Security service requirements

1.11 Prerequisites to the application of security service

Keywords

Recapitulation

Exercises

Conceptual exercises

Practical exercises

2. Introduction to Cryptography

Structure

Learning objectives

2.1 Introduction

2.2 Difference between classic and modern ciphers

2.3 Kerckhoffs’s principle

2.4 Ingredients to a symmetric cipher

2.5 Cryptography

2.6 The Conventional Security Model

2.7 Substitution and transposition

2.8 Monoalphabetic substitution cipher

2.9 Playfair cipher

2.10 Hill cipher

2.11 Vigenere cipher

2.11.1 Cracking Vigenere cipher

2.12 Vernam cipher and Onetime pads

2.13 Transposition cipher

2.14 Substitution cipher and S-box

2.15 Transposition cipher and P-box

2.16 Rotor Machines

2.17 Keywords

2.18 Recapitulation

Conceptual questions

Problems

3. Block Ciphers and Attacks

Structure

Learning objectives

3.1 Introduction

3.2 Cryptographic systems

3.3 Symmetric key algorithms

3.3.1 The ideal cipher

3.3.2 Confusion and diffusion

3.4 Block ciphers

3.4.1 Digital Encryption Standard (DES)

3.4.2 3DES

3.5 Attacks

3.5.1 Brute force attacks

3.5.2 Random and replay attacks

3.5.3 Cryptanalytic attacks and cryptanalysis

3.5.4 Computationally secure algorithm

3.5.5 Attacking block ciphers using non-cryptographic attacks

3.5.6 Differential analysis

3.5.7 Linear cryptanalysis

Power analysis

3.5.8 Timing analysis

Keywords

Points to remember

Excercises

4. Number Theory Fundamentals

Objectives

Contents

4.1 Divisibility

4.1.1 Introduction

4.1.2 Properties of divisibility

4.2 Prime numbers

4.2.1 Prime numbers and composite numbers

4.2.2 Unique factorization theorem

4.2.3 Distribution of prime numbers

4.3 Greatest common divisor

4.3.1 The division algorithm

4.3.2 Euclidean algorithm

4.3.3 Extended Euclidean theorem

4.4 Congruences

4.4.1 Modular arithmetic

4.5 Fermat’s little theorem and Euler’s theorem

4.5.1 Fermat’s little theorem

4.5.2 Euler’s totient function

4.5.3 Euler’s theorem

4.6 Generating large primes: primality tests

4.6.1 Fermat primality test

4.6.2 Miller – Rabin primality test

4.6.2.1 Square roots of 1(mod p); p prime

4.6.2.2 Sequence of successive square roots of 1(mod p); p prime

4.6.2.3 Miller Rabin algorithm

4.6.3 Deterministic primality algorithm

4.7 Modular exponentiation (Exponentiation modular arithmetic)

4.7.1 Fast exponentiation

4.8 Discrete logarithms

4.8.1 Order of a modulo n

4.8.2 Primitive roots modulo n

4.8.3 Properties of discrete logarithms

Additional reading

Recommended reading/references

Keywords

Recapitulation

Exercises

MCQ (Multiple Choice Questions)

Problems

5. Algebraic Structures

Structure

Objectives

5.1 Algebraic structure

5.1.1 Binary operations on a set

5.2 Groups

5.2.1 Cyclic groups

5.2.1.1 Power of an element

5.2.1.2 Definition and examples

5.3 Algebraic systems with two binary operations

5.3.1 Ring

5.3.2 Fields

5.3.2.1 Finite fields

5.3.2.2 Galois Field GF(p)

5.4 Algebraic operations on polynomials

5.4.1 Polynomial rings

5.4.2 Polynomials over GF(p)

5.4.2.1 Polynomials over GF(2)

5.4.3 Greatest common divisor of two polynomials

5.5 Galois Field GF(pn)

5.5.1 Galois Field GF(23)

5.5.2 Representation of polynomials in GF(2n) by n bit string

5.5.3 Key points in arithmetic operations - addition in GF(2n)

5.5.4 Key points in arithmetic operations - multiplication in GF(2n)

5.5.5 Multiplication inverses in GF(2n)

5.5.6 Use of a generator to construct GF(2n)

5.5.7 Inverses in GF(2n) using the generator g

Keywords

Recapitulation

Exercises

MCQ (Multiple Choice Questions)

Problems

6. Stream Ciphers and Cipher Modes

Objectives

6.1 Introduction

6.1.1 Stream cipher structure

6.1.2 RC4

6.1.3 Cipher modes

6.1.3.1 Electronic Codebook Mode (ECM)

6.1.3.2 Cipher Block Chaining

6.2 Cypher feedback mode

6.3 Output Feedback Mode

6.3.1 Using CFM and OFM for multi-bit input-output

6.4 Counter Mode

6.4.1 Advantages of Counter Mode

6.5 IEEE XTS-AES mode

6.5.1 Requirements

6.6 IEEE XTS encryption process

6.6.1 The implementation of ∝j

6.6.2 Encrypting the data units

Keywords

Recapitulation

Exercises

MCQs

Problems

7. Secure Hash Functions

Structure

Objectives

7.1 Introduction

7.2 A simple hash function

7.3 Secure hash functions using block ciphers and CBC

7.4 Why a unique hash value is possible

7.5 Applying a hash function for authentication

7.6 Characteristics of the cryptographic hash function

7.7 Security requirements attacks and countermeasures

7.8 Folding

7.9 Why simple folding fails

7.10 Secure Hash Algorithm (SHA)

7.11 Processing of each round

7.12 The round function Rf ()

7.13 Avalanche effect with SHA-512

7.14 SHA-3

7.15 Iteration function Keccak-f

7.16 Theta Step function

7.17 Rho step function

7.18 Pi step function

7.19 Chi step function

7.20 Iota step function

7.21 Applications of Cryptographic Hash Functions

Keywords

Recapitulatin

Exercises

8. Message Authentication using MAC

Structure

Objectives

8.1 Introduction

8.2 Integrity check

8.3 Other security needs for a message

8.3.1 Sequence of data altered

8.3.2 Introduce an additional delay

8.3.3 Non-repudiation

8.3.4 Help get the right plaintext

8.3.4.1 The birthday attack

8.4 Meet in the middle attack

8.4.1 Message authentication without using encryption

8.5 Factors deciding the security of MAC

8.6 Order of encryption and authentication

8.7 HMAC

8.7.1 HMAC algorithm

8.8 Conventional message digest vs. HMAC

8.8.1 Security of HMAC

8.9 Authenticated Encryption with Associated Data (AEAD)

8.10 Counter with Cipher Block Chaining Message Authentication Code (CCM)266

8.11 GCM-GMAC (Galois Counter Mode-Galois Counter Message Authentication Code)269

8.12 Key wrapping (KW)

8.12.1 Using MAC as pseudo random number generator

Keywords

Recapitulation

Conceptual exercises

9. Authentication and Message Integrity Using Digital Signatures

Structure

Objectives

9.1 Introduction

9.2 What is a digital signature

9.3 Attacks on DS

9.4 Why a digital signature

9.5 Different DS schemes

9.5.1 El Gamal – Pointcheval Stern

9.5.2 Schnorr

9.5.3 NIST-DSA

9.5.4 ECC-DSA

9.5.5 The DSA approach

9.5.6 RSA-PSS (Probability signature scheme)

9.5.6.1 Advantage of the PSS

9.5.6.2 The Mask Generation Function (MSG)

9.6 Improving the process of digital signature

Keywords

Recapitulation

Exercises

10. Advanced Encryption Standard

Structure

Objectives

10.1 Introduction

10.2 AES characteristics

10.3 Prerequisites to AES

10.4 AES architecture

10.5 AES processing

10.5.1 Substitute bytes

10.5.2 Shift rows

10.5.3 Mix columns operation

10.5.4 Add round key operation

10.6 Substitute byte matrix generation

10.7 Key expansion process

10.8 Inverse operations

10.9 Implementation and motivation

Keywords

Recapitulation

Exercises

11. Pseudo-Random Numbers

Objectives

Structure

11.1 Introduction

11.2 PRN, TRN, and PRF

11.3 PRN for solving security problems

11.4 Pseudo random number generators (PRNGs)

11.4.1 Linear Congruential PRNG

11.4.2 BBS (Blum Blum Snub) Generators

11.5 Using a cipher-based PRNG

11.6 Real-world PRNGs

11.6.1 ANSI X9.17

11.6.2 NIST CTR_DRBG

11.7 True Random Numbers (TRNs)

11.7.1 Sources

11.7.2 Comparison with a PRN

11.7.3 Intel DRNG

11.8 Other methods

Keywords

Recapitulation

Exercises

12. Public Key Algorithms and RSA

Objectives

Structure

12.1 Introduction

12.2 The need for public-key systems

12.3 How it works

12.4 The prerequisites to understand RSA

12.4.1 Public key encryption attributes

12.4.2 Misconceptions about public keys

12.5 RSA and processing in RSA

12.5.1 Exponentiation in modular arithmetic

12.5.2 Public key requirements

12.5.3 Example

12.6 Improving efficiency

12.6.1 Using the private key

12.6.2 Using the public key

12.7 Cryptanalysis and attacks on RSA

12.7.1 Brute force

12.7.2 Factoring attack

12.7.3 Timing analysis attack

12.7.4 Adaptive chosen ciphertext attack (Adaptive CCA or ACCA)

12.7.5 Random faults attack

12.8 Countermeasures

12.8.1 Factoring attack

12.8.2 Timing analysis attack

12.8.3 Adaptive chosen ciphertext attack (ACCA)

12.8.4 The random fault attack

12.9 Difference: symmetric and asymmetric encryption

Recapitulation

Keywords

Conceptual exercises

13. Other Public Key Algorithms

Structure

Objectives

13.1 Introduction

13.1.1 Discrete logarithms

13.1.2 The Diffie–Hellman key exchange

13.1.3 Man in the middle attack with Diffie-Hellman

13.2 Introduction to Elliptic Curves

13.2.1 EC over real numbers

Geometry of EC

Algebraic description of addition

13.2.1 Elliptic curves over Zp

Elliptic curves over GF (2m)

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Elliptic curve cryptography

A key exchange based on elliptic curves

Elliptic curve encryption/decryption

Security of elliptic curve cryptography

Recapitulation

Keywords

Exercises

14. Key Management and Exchange

Structure

Objectives

14.1 Introduction

14.2 Key management

14.3 Need for key management

14.4 Encryption location

14.5 The public key distribution

14.6 Randomness and unpredictability of keys

14.7 Symmetric key exchange for authentication

14.7.1 Key exchange using symmetric keys

14.7.2 Reflection attack

14.7.3 Authentication exchange using HMAC

14.7.4 Authentication exchange using a KDC

14.7.5 Authentication exchange using the public key

14.8 Public key exchange using certificates

Keywords

Recapitulation

Exercises

15. User Authentication Using Kerberos

Structure

Learning objectives

15.1 Introduction

15.2 The authentication process in Kerberos

15.2.1 Kerberos architecture

15.3 Kerberos protocol overview

15.4 The challenges and solutions in building a protocol

15.4.1 Security

15.4.2 Flexibility

15.4.3 A central server

15.4.4 Avoid a single point of failure

15.4.5 Secret dialog

15.4.6 Authentication token or ticket

15.4.7 Using short term keys

15.4.8 Replay attack prevention

15.4.9 Using an authenticator

15.4.10 Authorization

15.4.11 User-friendliness and need for TGS

15.4.12 The need to authenticate the server

15.5 Multiple Kerberos realms

15.5.1 Improvements in version 5

15.6 Kerberos version V protocol

15.6.1 Mutual authentication and sequencing

15.6.2 Options and flags

15.6.3 Initial

15.6.4 Pre-Authent

15.6.5 HW-Authent

15.6.6 Invalid

15.6.7 Renewable

15.6.8 May-postdate and postdated

15.6.9 Proxiable and proxy

15.6.10 Forwarded and forwardable

15.6.11 Transited policy checking

15.6.12 Other flags

15.7 Kerberos limitations

Keywords

Recapitulation

Exercises

16. User Authentication Using Public Key Certificates

Structure

Learning objectives

16.1 Introduction

16.2 Using public-key cryptography for authentication

16.2.1 Public key management, certificates, and X.509

16.3 X.509 certificate structure

16.4 Authentication procedures

16.4.1 One-way authentication

16.4.2 Two-way authentication

16.4.3 Three-way authentication

16.4.4 Differences between X.509 version 2 and 3

16.5 Extensions in version 3

16.5.1 Key and policy-related extensions

16.5.1.1 Private key usage period

16.5.1.2 Specifying policy-related information

16.5.1.3 Certificate policies

16.5.1.4 Policy mappings

16.5.1.5 Policy constraint

16.5.2 Subject and the issuer CA-related extensions

16.5.2.1 Subject alternate name

16.5.2.2 Issuer alternate name

16.5.2.3 Subject directory attributes

16.5.2.4 Certification path constraints

16.6 Public key infrastructure

16.6.1 The directory or repository

16.6.2 Revocation

16.6.3 Certificate lifecycle

16.6.3.1 Registration

16.6.3.2 Initialization

16.6.3.3 Certification

16.6.3.4 Key pair recovery

16.6.3.5 Key pair update

16.6.3.6 Revocation request

16.6.3.7 Cross certification

16.7 Certificate Management Protocol

16.8 XML key management protocol

Keywords

Recapitulation

Exercises

17. Email Security: PGP and SMIME

Structure

Learning objectives

17.1 Introduction

17.1.1 Email

17.2 PGP (Pretty good privacy)

17.2.1 Working of PGP

17.2.2 Compatibility test

17.2.3 Encryption methods

17.2.4 Digitally signing the message

17.2.5 Web of trust

17.2.6 Certification scheme

17.2.7 Quality of encryption

17.2.8 Current Status

17.3 PGP goals

17.4 The reasons behind the success

17.5 PGP services

17.5.1 Authentication

17.5.2 Encryption

17.5.3 Encryption with authentication

17.5.4 Compression

17.5.5 Compatibility

17.5.6 Cryptographic keys

17.5.7 Key identifiers

17.5.8 Key rings

17.5.9 Private key ring

17.5.10 Private key encryption

17.5.11 Public key ring

17.5.12 Extracting information from the rings

17.5.13 Public key management

17.5.14 Certification without CAs

17.5.15 Web of trust

17.5.15.1 Multiple IDs with a single key

17.5.16 Revocation

17.6 SMIME functionality

17.6.1 The SMIME certificates or Digital IDs

17.6.2 Some problems in implementing SMIME

17.6.3 SMTP extensions

17.6.4 Key management functions

Keywords

Recapitulation

Exercises

18. Transport Layer Security (TLS) and SSL

Structure

Learning objectives

18.1 Introduction

18.2 Need for securing web transactions

18.2.1 Web security threats

18.3 Different ways to secure web traffic

18.3.1 Application layer

18.3.2 Using the API

18.3.3 Transport layer

18.3.4 Network layer

18.4 TLS and SSL

18.4.1 TLS design

18.4.2 The TLS record protocol design

18.4.3 The TLS handshake protocol design

18.4.4 The Change Cipher Spec protocol design

18.4.5 Alert protocol design

18.4.6 The overview of the TLS process

18.5 Connections and sessions

18.5.1 Sessions

18.5.2 Connection

18.5.3 Session and connection state

18.5.4 A session state

18.5.5 A connection state

18.6 TLS record protocol

18.7 TLS handshake protocol

18.7.1 Only client authentication handshake

18.7.2 Negotiation stage

18.7.3 Application stage

18.7.4 Both server and client authentication

18.7.5 Negotiation stage

18.7.5.1 Application stage

18.7.6 Abbreviated handshake

18.7.7 The handshake processing

18.7.8 Stage 1: Security capability information exchange

18.7.8.1 Cipher suite

18.7.9 Stage 2: Server authentication with the key exchange

18.7.9.1 Signature calculation

18.7.9.2 Cryptographic attributes

18.7.10 Stage 3: The client authentication and key exchange

18.7.11 Stage 4: Finish

18.8 Cryptographic computations

18.8.1 HKDF

18.8.2 Key block

18.8.3 Improvements in TLS v1.3

Keywords

Recapitulation

Exercises

19. IP Security (IPsec)

Structure

Objectives

19.1 Introduction

19.2 Need

19.3 IPsec functionality

19.4 Using IPsec

19.5 IPsec functioning

19.6 IPsec benefits

19.7 IPsec components

19.8 Why IKE

19.9 IPsec services

19.10 IPsec transport and tunnel modes

19.10.1 Transport mode

19.10.2 Tunnel mode

19.11 Deploying the security policy

19.11.1 Security associations

19.11.2 SAD (Security Association Database)

19.11.3 Security policy database

19.11.4 Example: Selectors

19.11.5 Applying SPD

19.12 Traffic processing

19.12.1 Inbound packet processing

19.12.2 Processing outgoing packets

19.12.3 Difference between SAD and SPD

19.13 Encapsulating Security Payload (ESP)

19.13.1 ESP operations

19.13.2 ESP in IPv4

19.13.3 ESP in IPv6

19.14 ESP header design

19.15 Encryption and ICV calculation

19.16 Combining SAs

19.16.1 Shortcomings of IPsec

Keywords

Recapitulation

Exercises

20. Wireless Security

Structure

Objectives

20.1 Introduction

20.2 A brief about 802.11

20.2.1 Ad hoc and infrastructure modes

20.2.2 Access points and service primitives

20.3 Why wireless devices need higher security

20.3.1 Wireless Network issues

20.3.2 Countermeasures

20.4 Introduction 802.11i

20.5 Security services in Wi-Fi (802.11i)

20.6 802.11i phases of operation

20.6.1 Phase 1: Discovery

20.6.2 Phase 2: Authentication

20.6.3 Phase 3: Key management

20.6.4 Phase 4: Secure data transfer

20.6.5 Phase 5: Connection close

20.7 Discovery

20.7.1 Discovery process

20.8 Authentication phase

20.8.1 802.1X based access control

20.8.2 The authentication process

20.8.2.1 Connecting to AS

20.8.2.2 Authentication exchange

20.9 Key management

20.9.1 Initiation

20.9.2 Pairwise key generation

20.9.3 Group Master Key generation

20.9.4 Distributing pairwise key

20.9.5 Distributing a group key

20.10 Secure data transfer

20.10.1 TKIP

20.10.2 CCMP

20.10.3 PRF used in 802.11i

20.10.4 Using PRF

20.11 WPA3

20.12 Wireless security for mobile phones

20.12.1 Security issues

20.12.2 Security concerns due to wireless structure

20.12.2.1 Countermeasures: MDM

20.12.2.2 Countermeasures: Best practices

20.12.2.3 Countermeasures: Training

20.12.2.4 Countermeasures: Architecture

Keywords

Recapitulation

Exercises

Index

CHAPTER 1

An Overview of Network and Information Security

Structure

1.1 Introduction

1.2 Why security is complex

1.2.1 Design-related issues

1.2.2 Implementation-related issues

1.2.3 Financial issues

1.2.4 Hardware and software-related issues

1.2.5 People-related issues

1.3 Security goals

1.4 Different views to security

1.5 Information security

1.6 Relevance of security measures in the modern era

1.7 Threats to information

1.7.1 Viruses and worms

1.7.2 Hackers

1.7.3 Insiders

1.7.4 Criminal organizations

1.7.5 Terrorists and information warfare

1.8 The security architecture

1.8.1 Security attacks

1.9 The network security model

1.10 Security service requirements

1.11 Prerequisites to application of a security service

Keywords

Recapitulation

Exercises

Conceptual exercises

Practical exercises

Objectives

After reading this chapter, the student should be able to

	Network and information security

	How different users perceive the concept of security

	Threats to information

	The security architecture

	Attack

	Security mechanisms

	Security services

	Types of attacks and examples

	How security services combine different security mechanisms to combat attacks

	The conventional and operational models of security

1.1 Introduction

With the advent of computerized applications, the security landscape changed drastically. Administrators felt the need to protect data on computers and other communicating devices, including mobile phones. Earlier, it was confined to only systems that were shared; later on, it was extended to publicly accessible systems, and then it extended to systems that were accessible over the Internet. Internet access has become so common that it becomes possible to connect to almost every system through the Internet. Thus, the information security started with computer security, grew into network security and now it is, Internet security (Web security, a very popular topic, is a subset of Internet Security, cybersecurity which is about the security of our identity and commercial credentials in the cyber world, which again is a subset of web security).

The threats that we regularly encounter in our day-to-day life are associated with computer security, network security or Internet security. For example, let us consider the viruses, a menace every computer user is concerned about, can come from a USB drive (a computer security problem), a server or client from the network (a network security problem) or the Internet (an Internet Security Problem). Thus, our solution to these problems (like running an anti-virus program and periodically, scanning the computer) can be common for all such cases. Most of the problems that we encounter in our daily life are of this type. Computer security (securing ourselves from malicious programs of a single computer, a desktop, or a laptop) is a subset of network security (securing from the attacks coming from the network) while Internet security (securing from the internet-based attacks) is a superset of network security. When we discuss securing anything (computer, network, or the Internet), we are interested in the security of the information within. That is the reason the term Information security is considered the superset of all of the above.

There are many perceptions of security and many levels of control. In this text, we will stress mainly on network security and the methods for implementing network security and cryptography. One may ask the question of why we would confine to the preceding topics. The idea here is to provide a foundation on which other security issues can be discussed and understood. The entire information security field is so wide that it is impossible to cover it in a single book. The essentials covered in this book will help the reader to gain an insight into this area and help understand the basic terminology used in literature and mathematical foundation on which cryptographic solutions for security are built. Also, for a programmer or designer of network systems or a network administrator, learning what we would cover in the text is enough to start with. If nothing else, learning about basic operations and jargons helps a lot.

Let us look at some of the scenarios to understand what we are planning to introduce. Each of the scenarios describes some issues related to network security. We will see in due course how we can provide solutions to these problems:

	A student can snoop into a conversation from an examiner and the exam department and can read the entire test paper before the exam.

	A network administrator sends a list of newly enrolled students of the cryptography and network security course to the server. The server will add them to its list of authorized users to the system. A typical student, who has failed to be enrolled in the course and thus not in the list, updates the list before it reaches the server and adds his name to gain access to the server.

	Instead of modifying a network administrator’s message, the above-mentioned student concocts a message similar to the above with his name to be authorized and sends it to a server in such a way that the server understands that it is coming from the administrator and obeys it.

	A computer operator caught helping students cheating and fired. The network administrator now sends the message to the server to invalidate the operator’s account. The network operator delays the message and removes all possible traces to his misdeeds before his account gets disabled. Later on, when the committee examines the computer records, it cannot find any evidence against the operator.

	An institute orders 300 laptops for the newly enrolled batch of students. The supplier confirms the message indicating a specific price. Finding it later that the laptop prices have gone up, the supplier denies sending such a message.

	A student online feedback system is designed where 1 is poor and 5 is very good. A teacher, who is technically competent but not popular among students, manages to change the program in a way that even when the student rates him as 1, it is inserted as 5.

	An election system is designed to have anonymous voting. One candidate infiltrates the system in a way that he can see who has voted for whom.

	A new car with a computerized control is launched; a hacker hacks into its system and makes sure the breaks are not applied when the driver presses the paddle.

	A doctor’s phone is infiltrated with a virus which orders the insulin pump, embedded in a patient’s body, injects a double dosage of insulin.

The list can go on, but you can get an idea from the preceding examples. What we are planning to cover in this book is to look at such problems, potential solutions to them, and different ways to implement these solutions. The security issues seem simple on the face of it and one can say that simple solutions can handle them, but most of the cases the solutions are much more complex. We will soon see why. Though points 8 and 9 sound like coming from a James Bond (or Rajnikanth) movie, they are a reality now. However, the general solutions that we are going to discuss apply to those cases as well.

We will look at one such example of a solution later, in Chapter 15: User Authentication Using Kerberos, which is known as Kerberos, the system used for login management in many machines, including Windows and few versions of Linux. The seemingly simple username and password method that we rely on for a secure access to Windows and Linux machines is extremely complex. Another critical point is to prove the security level of the proposed solution. As Mathematics can help prove the same, many security solutions are based on some proven mathematical concepts. We will also look at some of them in due course.

1.2 Why security is complex

Any security solution that we are thinking about needs much more elaborate design and attention than what seems at first glance. Why is it so? Some of the reasons for intricacies are as follows. We have categorized them in design-related, hardware, and software-related, people-related, and other categories.

1.2.1 Design-related issues

When the secure solutions are designed, their intrinsic design itself make them vulnerable to some specific types of attacks. Here is the summary.

	We will soon see that the security requirements can be labeled as privacy, confidentiality, authentication, non-repudiation, and integrity. Each of which requires a different solution. Most of the solutions to these requirements are quite complex; sometimes, even impossible unless we put constraints on the system.

	While we design algorithms to help secure the system, we consider some set of possible attacks on the system; we try to see that all those attacks are not fruitful on the system. Many times, the attacker thinks from an angle neglected by the designer and succeeds. For example, if we want to prevent somebody logging in as an administrator by trying multiple times and deciding that we will not allow the user to log in if he fails three (or five or six or whatever we think impossible for a genuine admin to have) times (we restrict to have only three trials for username and password usually for every other user than the admin). We decide that we will disable the system for 5 minutes so such attackers get discouraged. On the contrary, an attacker may try entering a random password to the admin account every five minutes exactly three times to see that the admin account remains disabled throughout and thus, preventing a genuine admin to log in1. Thus, it is possible that the attacker looks from a very different angle and finds a loophole that can be used to attack the system in a way that the designer did not think of. The attacker might make the system automatic by running some program which tries logging to an account using a wrong password, the account remains blocked even when the disability period is short. If the attacker can run the same program every five minutes, the poor administrator may never be able to log in to the system! Most of the solutions require revisions to accommodate additions to combat such unforeseen attacks.

	It is not apparent from the problem statement how complex the solution is going to be. For example, suppose we are given a job of a secure election system where a voter can vote only once, each voter can only look at his vote, the system can only have cumulative votes but cannot pinpoint a specific vote to a single voter are simple guidelines that we can draw. When we start implementing, for example, we store information about the vote cast by a specific voter, we can prevent him to vote again, but that goes against the requirement that the system should not store information related to voting cast by a single voter. A solution to this problem can be extremely complex. Thus, the solution may be quite complex even when the problem has very clear guidelines for what to do when.

	There are various security mechanisms like encryption and authentication. The decision to use them is one issue, where to use them is another. Suppose we want to have encryption to the outgoing data for confidentiality, whether to encrypt them at the application layer (for example, PGP or SMIME encrypts mail messages at the application layer), or at the transport layer (for example, TLS encrypts the messages at the transport layer), or at the network layer (for example, IPsec encrypts the messages at the network layer) can be a very important decision as it will affect other parts of the system. Sometimes, the physical placement of the mechanism is equally important. For example, if we need to implement access control using a firewall, placing a firewall outside periphery is a common choice but placing a firewall on the server itself (a personal firewall) may also be a good idea.

1.2.2 Implementation-related issues

Let us now discuss the issues due to implementing the secure solution.

	One size does not fit all; every problem needs some tailoring of the solution. For example, when we implement a solution where there is a server authenticating a user of the network, we may come across a case where there are two such networks and the user of network 1 may need to log in to the server of network 2. Such requirements require us to tailor our server to accept and validate requests from other networks which require a lot of additional measures which are not thought of otherwise. One may also think of trust relationships to be implemented in such a case. In that case, it is possible that network 1 trusts network 2; thus, a user of network 2 can access data of network 1 but not vice versa. One would also like to extend this mechanism into something known as Single Sign-On. When a user is logged into a single network, he should be seamlessly able to access a few other networks (using the same credentials which he used to log in the first network, without any intervention from the user). The mechanism which allows the user to log in one network, in this case, must be extended to other networks. In other words, the credentials of the user must be passed from one network to another in a confidential manner which in turn adds a lot of additional burden on the designer of the system.

	Suppose the user needs to connect to the remote server and logs in using some secret information (password is usually one but sometimes the pin plus hardware details in case of ATM or credit card details plus CVV number plus password are other possibilities), the solution requires the network to provide communication in real time. For example, assume the ATM system is designed to operate in a way that if the response does not come back in say 10 msec, then the card is blocked or the transaction is invalidated to prevent frauds. If the underlying network takes more than 10 msec, such a system won’t work.

	The situation is like a battle between a thief and the police here. A thief needs to find just one way in the place where he wants to steal, while the police have to find out all possible avenues and blocks. Similarly, the attacker in the cyber world also has to find just one way into the system from potentially infinite ways to get in while the administrator has to block all possible ways. The operating system, the databases, and the applications that run on top of the operating systems, the communication, and other protocols, the helper applications like browsers, and so on, everything can be a potential threat to the system. An attacker might use any vulnerability in any one of them to enter. The admin has to block everything possible in all these software to break into the system. The odds are against the administrator.

1.2.3 Financial issues

Finance is the ultimate requitement for deploying anything, leave alone secure solutions. There are typical problems due to the conventional finance related requirements which we discuss in the following.

	Almost all CSO (Chief Security Officers) face one common problem. When they suggest any new addition (to say implement new IDS-intrusion detection system or even an anti-virus) the management asks for a cost-benefit analysis and also asks them to prove the worth of the proposal. All advantages of the security infrastructure come from the prevention of expected loss. A company that is already a victim of an attack may easily be convinced, but it is hard to convince other managements that the expenses on security products and people are worth it2.

	Something true for hardware and software cost is also true for human resource costs. If the CSO asks for a person who can monitor and manage security operations for a specific class of users, probably management might not approve the proposal for the same reasons cited earlier. The consequence of the same is that already the overloaded staff needs to additionally look at security logs and monitor other activities for security breaches. How long can they cope up with such an additional load and do a justifiable work is always a question mark? When a security breach does not happen for a long period, the staff tends to get complacent and thus results in a severe loss when the actual attack takes place. That demands the system to rely on as much as other automatic mechanisms than human resources as possible.

1.2.4 Hardware and software-related issues

Security solutions consists of two components, hardware as well as software, here are some of the issues related to both components.

	Hardware and software designers are oblivious to the requirement of security. No design used in real industrial development approaches involves security in the process. Ideally, security should be interwoven in the software design and implementation process. For example, the text boxes should be designed with the buffer overflow attack3 in mind so one cannot buffer-overflow such text boxes. Also, the SQL interface should include all possible care to avoid SQL injection. Thus, when one uses the SQL interface, there is no possibility of the SQL injection4 by an attacker.

	The only other solution to have security in the system when the applications are not designed for security is to patch the security in the system. Such patches neither work for long nor are they elegant enough to be extended further. They make the system clumsy, difficult to understand, and most importantly make the user feel that ‘security is somebody else’s problem’.

1.2.5 People-related issues

Eventually the secure solutions are as secure as the people involved in it follow the guidelines. Many serious issues arise when the people does the job in an unexpected manner, here is a description.

	The balance between user-friendliness and efficient operation of the system is hard to achieve. For example, a 25 digit ATM pin would please a security officer but a nightmare for a customer. A two-digit pin would be excellent for a customer but result in a horror-stricken response if proposed to a security office. If proper training is not given, most of the users feel additional restrictions provided by the security system are unnecessary, not acceptable, and learn to work around5. The best way to manage this situation is to train the staff, tell them the consequences of breaching the security, and show them how to use the system, befriend them to learn their problems and solve them, and be ready to modify the system according to user’s needs.

	One major problem with all such training is to ignore social engineering issues. Many times users are trained to operate firewalls and IDS but not to handle unknown callers. For example, somebody who claims to be your manager’s friend can get a lot of information about your organization which otherwise you may not reveal. You must be told not to respond to such calls positively unless confirmed clearly. Combating social engineers is not easy; it requires rigorous training and awareness and a constant reminder of the possibility of such attacks. A more sophisticated version is known as reverse social engineering attack in which the target is lured into contacting the attacker. This is even harder to avoid.

	Phishing is a common problem today and if the users are not capable of handling phishing emails and phone calls, the best of the security can be breached. A voice form of phishing, called vishing, is equally dangerous.

	An old technique ‘Shoulder surfing’ in which an attacker looks over the shoulder of the victim to read the sensitive information being typed while standing next to him has a new avatar now. The invention of tiny and almost inexpensive webcams does not require an attacker to physically remain present just next to the victim. He might just place the camera at a suitable place to shoulder surf from a convenient place. ATMs are the most known victims of such attacks.

[image:]

Figure 1.1: Security issues

1.3 Security goals

Once we have looked at problems, let us try to see what we are trying to achieve for handling those problems. There are three broad goals one would like to achieve. If you observe the examples that we have seen carefully, you will find them falling in either one of the goals that we describe here. The first goal is called confidentiality. Confidentiality prevents an onlooker from reading what is being stored, transmitted, or read by genuine parties. There are many ways to achieve this goal but usually, encryption or encipherment is applied to achieve this goal. Here, the content is changed in a way that makes no sense for anybody other than the intended recipient.

[image:]

Figure 1.2: Security goals

Another goal of security is to provide message integrity that means the message sent by the sender must reach the receiver without any modification by any third party. Even when the modifications are made, the receiver must be able to identify them as messages modified in an unauthorized way and discard it. In a way, this requirement also introduces one more challenge. The receiver must be uniquely able to identify the sender apart from the message being unmodified. The message, if coming from a correct sender, is to only check for integrity. If the receiver is not capable of deciding who the sender is, an attacker can send a message which is not modified by anybody else, and the receiver will accept that message as valid. Thus, the message integrity requirement also includes authentication, a process that identifies the sender as the one who claims so.

The last but equally vital goal is the availability of the system. An attacker, by using normal services of the system, should not be able to make the system inaccessible for others. This does not seem as easy as it sounds. The discussion about why security is complex earlier described a case when an attacker made the system inaccessible to the admin by providing wrong passwords multiple times.

1.4 Different views on security

The word security has many meanings. People while talking about security usually mean either one or more of them. Privacy, security, authentication, and nonrepudiation are by far most talked about such views:

[image:]

Figure 1.3: Four views to security

	Privacy and identity preservation: This is one of the crucial issues today. For example, when people transact on the web, they expect their identity doesn’t get exposed to others. They tried to dislike any measure which can trace them to record what they are doing. The other thing that they are concerned about is their identity as well as the unique information associated with their identity like their name, birth date, parent’s name, and so on. The private information also includes financial information like credit card numbers, bank account numbers, and so on. Identity Theft is one of the major problems people face today.

	Secrecy: The other area of concern is related to the secrecy of information. WikiLeaks is in the big news recently by publishing lots of secret documents on the web for anybody to see. How one can protect the information he owns is a big question and people always ask for solutions that can secure their documents.

	Authentication: The third and equally important question is about authenticating somebody for some operation. A lot of systems that we work with require us to enter the username and password, for example, operating systems like Windows and Linux and database systems like Oracle and Sybase. Usernames and passwords are minimal forms of authentication. Card-based authentication (credit cards, debit cards, and employee cards are examples), biometric authentication (based on fingerprint or retina scan for example) and two-factor authentication (using card-based or biometric authentication in addition to default username and password is an example) are becoming a practice nowadays.

	Non-repudiation: One more issue related to security is called non-repudiation which deals with making sure that the sender or receiver of some information does not deny later about the same. For example, if somebody sends you an order of 100 computers today, and when you pack up and send those computers there, either that party denies given any order or say that the order was only about 10 computers and not 100, and so on. On the contrary, the receiver might also complain that he has not ordered or he has ordered 1000 and not 100 computers. This is a much harder problem than it seems and there is no foolproof solution available in the market which is simple enough for everybody to use.

Note: One solution to this problem is to have a third party that is trusted by all of the users of the system. When a sender sends or receiver receives anything, it is via this trusted third party and thus can, later on, be the arbitrator in case of a dispute. This is hard as it is difficult to get consensus on the trusted third party. One more solution is called a digital signature which is equivalent to a manual signature. The digital signature can be useful only to prevent sender non-repudiation and not receiver non-repudiation unless there is a system that returns a receipt to the sender.

1.5 Information security

We have begun with security problem classification. Let us elaborate now. The first category is called computer security. Computer security encompasses all methods to make the computer itself secure from attacks and intentional malicious operations. Sometimes, people use the word system security to describe computer security. It deals with using better operating-systems and software which can ward off attacks by a better and stronger design. Network security is related to safeguard against network-wide attacks. Network security cannot be achieved if the computers which are part of it are not adequately secured. Web security is the security of web-based transactions. The web is running on the network and if the network itself is not secured, it is hard to protect the web. All these security-related issues that we discussed have something that we have not looked at. Let us try to understand.

When we try to protect a computer, we do not want the CPU or hard disk, or a power supply to be protected. When we try to protect networks, we do not want individual nodes or servers or their hardware components to be protected. What are we trying to protect? Is it the operating system like Windows and Linux? Or the compilers like C++ or interpreters like Java? Or other utility programs like MS Office or Tally or something similar? No. What are we trying to protect then?

You must now be able to understand that in all cases, we are interested in protecting only one thing, the information that we have generated ourselves, for example, our financial transactions, the information that is crucial for our organization to run, for example, purchase orders and unpaid bill details, and so on. The information that we need to live and survive in this world like our credit card numbers and bank account details and so on. For an educational institute, information like attendance, marks, and results, and so on are important. If we get that idea, the introduction to information security becomes straightforward. Information security is the ultimate idea. We would like the information that is critical for us to be protected, to be only accessed by the authenticated person, to look garbage to unauthorized entities even when fall in wrong hands, to make sure that the information being sent is not modified without the knowledge of the sender and receiver, to make sure that the sender cannot deny later of the data being sent, and so on. Thus, whenever we are talking about any security, basically we are interested in information security only.

KIM: No computer, no network is real to be protected. The real thing to be protected is the critical information that they store or communicate.

Thus, our focus now onwards is to look for methods that enable us to protect the information.

One may think that finding a way of storing information in an indecipherable way for everybody but the actual user is a simple and effective solution for every problem6. It is not as simple as it seems at first glance. For example, a standard for securing unclassified information is an advanced encryption standard (AES) that almost took five years to be accepted and documented for everyone to use. The predecessor, digital encryption standard (DES) took much lesser time but enjoyed much lesser acceptance. Even such excellent solutions are not a panacea; we need other things to solve the problems at hand. If we can only solve problems by encryption and the like, we would not need security as a discipline and probably there is no need for this book.

1.6 The relevance of security measures in the modern era

The first safe was built by two English investors in the 18th century while money was invented around 5000 BC. It took that long a period for us to realize that money was vulnerable and needed security. The same is happening to information. All of us are dealing with a huge amount of information and off late realizing the point that information, too, is like money. It is precious, difficult to keep under the locks and we cannot get away with it. People are getting more and more dependent on the Internet; so many jobs are created and sustained by information dissemination and usage, maintaining the information is a vital and indispensable component of the system. We need to see that with the advent of modern technologies like mobile phones with internet access and products with software code embedded to control starting from toys to atomic bombs does not result in misuse. The latest inventions like IoT-based devices and latest trends like using social media for most of us increased the attack surface to a very large extent.

1.7 Threats to information

Before we start discussing the security itself, let us try to understand what the threat to the information is. We store information in databases; databases are housed in servers that are accessible across the network and sometimes over the Internet. The threat includes viruses, worms, outside intruders and disgruntled employees, organizations with criminal intent and last but not least, terrorists. Let us have some idea about how they pose a threat to our information:

[image:]

Figure 1.4: Types of threats to information

1.7.1 Viruses and worms

Viruses are malicious programs that attach themselves to other programs and spread with them. Worms are a little more sophisticated in a way that they do not need a supporter program to attach themselves to and spread on their own. More sophisticated worms can find out open network connections and propagate using them. Both of them are probably the most talked-about security problems.

KIM: To one’s surprise, writing a virus is not a crime but releasing it is. So students can write viruses and test them on their machines. What they should not do is to use it maliciously.

The virus and worms are usually not targeted to a specific person or organization. Any installation where the administrators fail to either patch the running application or is unable to buy the latest release is vulnerable to such viruses and worms. Fortunately, most of the anti-virus solutions are good enough to ward off most of the viruses7.

The word ‘active content’ is used sometimes to denote content that can get active without the user’s intervention. Almost all of the current malware is active content. Currently, the other trend is to target a typical user to attack, which is known as a targeted attack. Another term, APT or advanced persistent threat, is a long and sustained effort by usually a group of people to target specific organization or individual, which is a very dangerous compared to the conventional viruses and worms.

1.7.2 Hackers

Intruders or hackers are people who access computer systems and networks without due authorization. Sometimes, hackers are also involved in the escalation of privilege. A normal user of the system tries to enter the system as an administrator, a normal website user tries attaining the web administrator’s rights, and a visitor to a website, while trying to access a private page without proper authentication are examples.

The process of hacking a system sometimes requires a lot of time and tries to find vulnerabilities and executing exploits. In one such reported case, which the author read about, a hacker worked on a particular company network for about six months and then found a way into the company network.

Some hackers do these things for helping others as well. They are known as ethical hackers or penetration testers. They try hacking into a computer network or a specific machine and if they find some way to do so, help the owner to patch the system to remove that vulnerability. It has become a booming business to run a security company, test vulnerabilities of the system of the client company for free and provide solutions for a fee.

Intruders come in three varieties; those who find out how to SQL inject to a company database using some code published on the web, for example, are the most preliminary types. They are known as script kiddies. Without having much knowledge about hacking, they find scripts that can be used to hack a computer; they just run them to see if it works. If not, they try some other machine. Though they are of a most preliminary type, they can bring your network to a grinding halt if their attack hits the right target.

The next level of hacker is the one who can write such scripts given the vulnerability.

Note: Websites like www.cert.org (Indian version is www.cert-India.org) publishes the latest vulnerabilities in software which unfortunately are first seen by such hackers rather than normal users.

Such hackers are more sophisticated than the first version and are usually focused on targeting a specific company or department or an individual. They can alter the attack unless it becomes possible to exploit the vulnerability they are addressing.

The even higher-end we can find elite hackers who are capable of finding vulnerabilities and do not depend on others to tell them. They are the most skillful (and most dangerous) type of hackers. It is almost impossible to ward off attacks from such hackers as they can come out with entirely new attacks or they can hide their attacks from conventional methods to check them.

1.7.3 Insiders

Disgruntled employees can do what an external intruder cannot. They have system information, they have access to a computer system, they know weaknesses of the system, and they have enough time to explore options without coming under the radar, and most importantly, until they retaliate, are trusted. Also, most of the security is designed to protect against outsiders. The most unfortunate part of this is that the insiders also have the knowledge of the security system and have better chances of evading them while doing their malicious work or even remove traces once the job is done by deleting log files.

1.7.4 Criminal organizations

The latest entrant to this world is the criminal organizations. The business and monitory transactions now preferred to be done online; the criminal organizations must also switch over to this mode of operation. Electronic frauds and extortion threats and transactions using the Internet are common today.

The difference between an individual hacker and an organization is that an organization might have much better ways of getting the information necessary for exploit and also have experts for specialized jobs. They are also willing to pump in more money if the reward is higher.

1.7.5 Terrorists and information warfare

India and the rest of the world are seriously facing the problem of Information warfare. Recent attacks on Indian sites by the ‘Pakistani Cyber Army’ in retaliation to an ‘Indian Cyber Army’ is just one such case. The case is becoming more complicated as the nations are becoming more and more dependent on computer systems for their survival. Unfortunately, the same thing also is becoming their single point of failure. When the systems stop working or start working in different than the required way, the results are disastrous.

Unlike normal military operations, where the target is the opposition military base, the information warfare targets other key establishments like banks, oil refineries, telecommunications, water, and other natural resources distribution links8, etc. Nuclear reactors can be a tempting target for such people. This makes information warfare a much more serious case than conventional warfare.

1.8 The security architecture

We need multiple layers of security to combat all the preceding problems. It starts with the security architecture and deployment of the same. One way to define the problems and solutions systematically is given by ITU-T9 is known as security architecture.

The security architecture recommendation is technically known as X.800. It consists of three components listed as shown in the following figure:

[image:]

Figure 1.5: Three components of security architecture as per ITU-T X.800

	Security attack: When one takes an action that compromises the organization’s security, it is called a security attack. It is an assault on the system security by an intelligent and deliberate act to evade security protections and violate the security policy of the organization.

	Security mechanisms: A security mechanism helps the organization to detect the attack, prevent the attack, or even recover during or after the attack.

	Security services: To counter security attacks, security services are designed to use one or more security mechanisms. They are designed to improve the overall information security of the organization.

Annexure-1 describes each of the items in detail. Let us brief about security attacks here.

1.8.1 Security attacks

A security attack tries to break the system and gains undue advantage out of it. Annexure 1 provides definitions from RFC 4949 and a few other details. We will discuss a few common types in the following.

KIM: An important class of attack is called a brute force attack. It is an exhaustive procedure that tries a large number of possible solutions to the problem. Thus, a brute force attack is based on trying all possible combinations of something. For example, a document is locked using a specific key of length 5 characters. If the attacker tries all possible combinations of 5 character sequences from aaaaa, aaaab, aaaac, .to zzzzz, then it is an example of a brute force attack. One subset of a brute force attack is known as a dictionary attack. Here, instead of trying all possible combinations, the attacker tries all combinations from a given list. For example, if an attacker has collected personal information about the victim, he might try his spouse name, pet name, driving license number, birth date, etc. in all possible combinations to guess his password.

Security attacks can be of two types: cryptanalytic and non-cryptanalytic. Noncryptanalytic is further divided into active and passive. One which tries to find and exploit the vulnerability in the secure algorithm itself and tries to ascertain the secret key is called a cryptanalytic attack. One which tries to snoop the traffic and learn what is going on is an example of a non-cryptanalytic. When a listener just listens, it is passive. When it also tries to modify, it is active.

[image:]

Figure 1.6: Security attack types

[image:]

Figure 1.7: Different types of cryptanalysis attacks

1.8.1.1 Cryptanalytic attacks

Cryptanalytic attacks exploit the vulnerability of the encryption/decryption algorithm. These attacks try to look at statistical properties of the ciphertext (the text which is changed from the original text to make it indecipherable for the intruder) and determine the plaintext (the original message) or deduce the key (something which is used to convert an original message into ciphertext and vice versa) used from it. Some of the attacks that we would look at in Chapter 3: Block Ciphers and Attacks, like linear cryptanalysis, differential cryptanalysis, power analysis, or time analysis all of them are of this type.

1.8.1.2 Non-cryptanalytic attacks

These are attacks that do not exploit the vulnerability of the encryption/decryption algorithm but find loopholes in the encryption/decryption process, implementation of software, communication between the sender and receiver, and processing of information at both ends. The intruder may just try looking at what is going on. He might snoop the traffic flowing from the sender to the receiver, might have programs installed on either the sender or receiver’s machine or intermediate routers to record the traffic details. He may use the information gathered in malicious ways. Such attacks are non-cryptanalytic and divided into two types, active and passive.

Passive attacks are ‘just listen’ type of attack. They continue to listen to what is being transmitted and do nothing to interfere with the transmission going on. Snooping into communication can be done in many ways, including tapping the wire or listening to the same frequency that of the receiver. On the contrary, active attacks involve modification of the message as well as generating forged messages. Both of them are discussed at length in the following:

[image:]

Figure 1.8: Different attacks and their threat to security goals.

[image:]

Figure 1.9: Two types of non-cryptanalytic attacks

1.8.1.2.1 Passive attacks

When an attacker listens to the traffic silently and captures it, it is called a passive attack. The attacker may analyze the traffic to find out information or may read the information and learn something from it. The first serious problem is that an attacker can read whatever is being transmitted. That attack is called the release of content. Here, the attacker does not modify anything; it just copies everything that is being passed. Sometimes, this is used for a subcategory called an offline attack. In this case, the copy is made to another machine and the attacker exploits the data on that machine. For example, many attackers copy a password file from a victim’s machine to their machine and analyze them (the encrypted passwords) for vulnerable passwords (which can be decrypted without having the key) offline. This is called the passive attack as the attacker does not try to modify a genuine message and passively listens to the traffic. Passive attacks many times are stepping stones for more serious active attacks that follow them. For example, when an attacker can get hold of a password file, he may try finding a small password and try to break it offline. Once he gets that password, he again logs into the target system to try that password and change something, thus indulging in an active attack now.

[image:]

Figure 1.10: Release of message contents

Traffic analysis:

[image:]

Figure 1.11: Traffic analysis

Surprisingly, the attacker does not require reading the data for knowing something useful. For example, the attacker finds out that the manager of organizations is sending and receiving a large amount of data to some other company; he might conclude that both companies are planning a joint project or something similar. A more serious case is when a person is transacting with a bank, looking at the length of the message an intruder may get if the user is depositing or withdrawing money. If the deposit message is of 100 bytes and withdrawal takes 200 bytes, one can find which is looking at the length. In this case, the intruder might not need to read the information flowing between two parties. Such an attack is known as traffic analysis. A common practice is to encrypt the data or convert the data into a coded form which is not possible for the third party to understand. Encrypted communication is not vulnerable to releases of content but vulnerable to traffic analysis.

A bank traffic pattern analysis for known transactions can tell you that transactions over Rs. 50,000/- above only are going for authentication by higher authorities. (This can be done by monitoring the bank traffic from the teller to the officer while doing a legitimate transaction and figure out for which transaction the traffic is generated and for which not).

Traffic analysis or release of the content does not alter the data flowing between different parties, therefore are quite difficult to detect. The sender and receiver also find the traffic normal except for little delay sometimes. As a designer, one must stress on methods of reducing the possibility of such attacks rather than detecting them. Encryption or encipherment which we will look at in the next chapter and later is one popular and standard way of handling the release of content. Though it is not obvious at first glance, not all forms of active attacks are thwarted by encryption. If an attacker is aware of what is the encrypted content (say salary for a professor in a salary statement) he can replace it with some other thing that is encrypted (say the salary of a peon). In this case, the attacker, without reading the data, can wreak havoc. For avoiding traffic analysis, one must have other mechanisms in place like VPN which allows not the data but the entire packet, including the information of the sender and receiver to be encrypted. Thus, the intruder, on capturing the packet cannot determine who the sender and receiver are and is not in a position to analyze the traffic for a specific sender or receiver.

1.8.1.2.2 Active attacks

The other type of attack involves the attacker to change the content of the data. One way to categorize these attacks is to divide them into the masquerade, replay, message modification, and denial of service.

Masquerade:

[image:]

Figure 1.12: Masquerade

Masquerade is related to an attacker assuming the identity of somebody else to pretend being friendly with the receiver of the message. A student concocting a message in a way that the server assumes it to come from the administrator is an example of masquerading. Learning about somebody’s password and logging in the system using that password is probably the simplest form of masquerading. Other examples include using somebody else’s MAC or IP address to join a wireless network where the authentication is done on MAC or IP address. Sometimes, masquerade is used in conjunction with another form of active attack. For example, if the student records the communication of the instructor with the server and captures his password (maybe in encrypted form), he can send an authentication request to the same server when the instructor is logged off. When the server asks for username and password, the student may supply the recorded password to get access to the server as an administrator. This is an example of masquerade used with replay. We will study methods of authentication which help thwart the masquerade and other attacks in Chapter 8: Message Authentication using MAC.

Replay:

Let us take an example to understand how an encrypted traffic capturing can be a serious threat.

Suppose the attacker makes a user buy something from his website (by providing a huge discount or free product), the user may use his credit card to pay to the attacker. Now, if the communication to the credit card company is recorded by the attacker and encrypted data is analyzed with other credit card-related transactions, it is possible to find patterns to get encoded credit card-related information. The attacker can supply the same encoded information to credit card companies to repeat the transaction multiple times; this is known as a replay attack.

Replay attacks are based on recording traffic information and resending them in a way to get something done which otherwise is not allowed for him to do. We will study more about replay attacks in the third chapter, Block Ciphers and Attacks. There are various methods to avoid replay attacks based on using time and random strings in communication.

[image:]

Figure 1.13: Replay attack

Message modification:

The message modification can be as simple as changing ‘Allow Lara (a student) to read result.xls’ to ‘Allow Lara to modify result.xls’ or ‘Allow Gayle (a teacher) to modify result.xls’ to ‘Allow Lara to modify result.xls’ or something similar. Sometimes a valid message is altered like ‘Supply 10 computers’ to ‘Supply 1000 computers’. A security mechanism called digital signature is usually deployed to check such attacks. In that case, a digital signature is generated is based on two things; the sender of the message and the message itself. On receipt of the message, including the digital signature, the receiver recalculates the digital signature. If anyone of the information (either the sender or the content of the message) is changed, the digital signature will not match and the sender can always reject such message as forged one. One specific version of this attack is known as a cut-and-paste attack. It is affected by replacing sections of ciphertext with another ciphertext, such that the result appears to decrypt correctly but decrypts to the plaintext that is forged to the satisfaction of the attacker. For example, if an intruder student knows that every 5th block of ciphertext contains student’s marks, he might replace his marks with the top-rank student’s block. When the file is decrypted, the marks of the top-ranked student will also be reflected against the intruders.

[image:]

Figure 1.14: Message modification

[image:]

Figure 1.15: Forging a message

Forging a message as if it is coming from a legitimate sender seems similar to masquerade, but there is a difference of intention. In the first case, the impersonating sender is important while the second case the forged message is important. For example in the case of a smurf attack, the attacker broadcasts the ping message to all machines it can masquerade as a sender. The message itself is not forged. Everybody responds with echo request (ping response) to the poor victim which is swamped under the inflow of responses. The attacker might try sending an order to a company on behalf of the victim using a forged message containing that order. The company, when sends the goods to the victim’s premise, the problem comes to the surface. This is an example of forging a message.

Denial of service:

The last but most intriguing attack is a denial of service attack. Denial of service is defined in RFC 4949 as the prevention of authorized access to a system resource or the delaying of system operations and functions. That means when the user is denied of his legitimate service (for example, access to a server) or delayed in access (makes him wait while he tries to access his server) are examples of denial of service. In this case, the attacker modifies the information sent in a way that the server either is crashed or involved in unnecessary operations so much so that unable to handle other legitimate clients. For example, if somehow an attacker can send the yahoo server 10,000 requests in a second for registering new users and the yahoo server’s maximum capability is so, it will not be in a position to entertain its existing customers. It is hard to protect against denial of service attack as the attacker usually exploits the normal functionality of the server to attack. In our case, it was the new user registration service that Yahoo cannot switch off. Finding out that doing things so fast needs a computer program to do so, Yahoo! and other website providers include a mechanism called captcha (something which requires us to enter the weird-looking text from the screen which humans can easily pass through but a computer program cannot). There are many ways of launching this attack and not all of them are as easily stoppable, makes the problem more interesting.

Unlike passive attacks, active attacks are possible to be detected. Firewalls and Intrusion Detection and Prevention Systems are popular mechanisms to judge and combat active attacks.

Attacks can also be classified as an inside attack and an outside attack depending on their point of initiation. An insider attack is initiated from within the organization while the outside attack is initiated from outside the organization.

1.9 The network security model

What we have discussed so far and what we are planning to discuss further throughout the text is summarized in the following:

[image:]

Figure 1.16: The network security model

There are a sender and a receiver, sending and receiving a message. The message passes through some channels by some type of transmission media. It is important for any communication that both parties involved follow some protocol for this process. The physical channel which enables the message across also is an important entity involved in the process. Usually, the sender and receiver also establish a logical connection over that physical channel for transmission. For example, when a client communicates with a server in a usual Internet case, it, first of all, asks underlying TCP to establish a connection to another end before indulging in any real communication. Almost the same thing happens here. The sender establishes connections and exchange information which helps to secure the communication before the actual data transfer. The process is as follows:

	The sender, first of all, decides what to send. Let us call it a Message.

	It applies some algorithm to this message for encryption as well as authentication (usually) using a key (described in 3).

	The algorithm has one more input called a key. This is usually secret information that helps the sender secure information in a way that the only receiver can get it back using the same secret. This process usually involves authentication as well as encipherment. It might involve other components as well. The message becomes a secret message now.

	The key can be derived using many methods; one popular way is to use a third party who generates a key for us. For example, in operating systems like UNIX and Windows, Kerberos manages the keys generated and distributed from the central authentication server.

	The secret message is sent over to the receiver over some communication channels using some transmission media. Usually, the communication channel is the Internet and the transmission media is wired or wireless.

	On receipt, the receiver follows a reverse process for converting a secure message into the original message.

	The system must be designed in a way that even when the secure message might fall in the wrong hands (we call him an adversary, or attacker or intruder), the attacker should not be able to generate the original message from it.

1.10 Security service requirements

When both the parties involved in communication feels the need for secure communication, the security service comes into the picture. There are two mandatory and one optional component of security involved in this process:

	The message must be processed to generate a secure message. As we have seen earlier, a process of encipherment that converts code into an indecipherable version is one way of processing. A digital signature where an additional data chunk is added to the original doc is also an example of processing. For any secure communication to take place, some processing is a must.

	Both the sender and receiver must share a few things. The first thing that they share is the algorithm of the transformation of the message into a secret message. Only when the receiver is aware of the processing algorithm to convert a message into a secret message, he can convert it back to the original message by reversing the same process. The other information that the sender and receiver share is the key. The key is an important component of the transformation process from the message to a secret message. Changing key changes the secret message for the same original message. Thus, possession of a key is important when the algorithm for the conversion is publicly known.

	Optionally, there is a third party involved who helps both of the communicating parties with specific keys to transact, help two unknown-to-each-other parties to communicate (for example, a buyer and a supplier who does not know each other), resolve conflicts between both the communicating parties (for example, the case when the supplier denies sending a low-price quotation, the third party can act as a mediator and confirm that the supplier has indeed sent the quotation).

1.11 Prerequisites to the application of security service

Looking at the preceding discussion, we can say that there are few requirements before any security service can be provided:

	We must have a consensus of the secret algorithm. We should have a standard algorithm with known strengths so a sender can use it without hesitation. In true sense, it is really hard to build such an algorithm and gain consensus. The latest algorithm of this type is known as AES, which took 5 years to become a full-fledged standard. Chapter 10: Advanced Encryption Standard describes AES in depth.

	When the algorithm is public, the only thing remains private is the key. How to use the key with the algorithm is also an important issue. There are two different approaches: a shared secret key method requires a single key is shared between two communicating parties while the public key method requires two different keys to be used by both parties, one which is private to both of them while the other being public, known to all.

	When we state that key must be shared between communicating parties or each of the potential senders and receivers must have some public key, the next issue is the distribution of that key. How the sender and receiver share a single key when continents apart is an interesting problem to solve. Also, how to have each of the interesting parties the pair of keys (public and private to be precise), in public-key encryption, is equally interesting. Many variants to solve this problem exist; some of them will be encountered during our journey through this book.

	Once we have an algorithm, keys and safe method for key distribution, the next thing is to specify how both communicating parties exchange information about the algorithm used and other parameters like key length, and so on. Also, both parties must agree on the exact sequence of messages to be sent and received to avoid confusion (for example one such scenario is as follows. The sender, first of all, send its own identity and a random number for authentication, the receiver must reply with his own identity and some other random number with sender’s random number, then the sender would send the set of algorithms it can offer to the receiver and then the receiver picks up one of them, and so on. We will encounter a few such message exchange sequences established as a practice popularly known as protocols).

Whatever we have discussed earlier is common in many cases though not all security requirements fall under this category or work this way. When the user wants a server to be protected from unauthorized clients, for example, deploy access control mechanisms and sometimes, a gatekeeper module that restricts access to the server10. The intruder can be of different types ranging from inquisitive students to a curious netizen to a disgruntled employee to a terrorist and the access control mechanism must be designed according to intrusions expected to the system. The conventional username and password access control mechanism is good enough to keep the student or a curious onlooker at bay but to avoid terrorist attacks, more sophistication is required.

One more situation which is common in today’s world is the existence of viruses, worms, Trojans, and other malicious codes to exploit vulnerabilities in the computer system. Such malware poses two different types of threats to the system. The first is related to stealing information by some unauthorized parties; for example, an intruder gaining access to business deals of a rival company. The second is related to a threat to the availability of the system; for example, an intruder making a website of a rival company inaccessible for customers or diverting them to some other location. The latest entrant to the fray is a malicious mail attachment which acts upon the user opening an attachment. The email viruses are usually blended with phishing attacks (you have won a lottery!) which lure the receiver into clicking on the attachment. Another latest trend is to block the user’s machine (using an encryption algorithm usually), and only release it after a ransom is paid. This attack is popularly known as a ransom attack and the software which does so is known as ransomware. WannaCry is one such example of ransomware.

The sophistication of the attacks has increased over the years and blended attacks that combine few of the preceding methods have become common. This resulted in the design of a multilayer defense. The first layer is usually access control layer which includes access control for both, unwanted users and unwanted programs. The usual username and password are common practices for keeping unwanted users at bay. Firewalls and antivirus software controls access by programs by dissecting the incoming traffic and checking of abnormalities and known malware information. The second layer is more sophisticated. The likes of Intrusion Detection System (IDS) and Intrusion Prevention Systems (IPS) look for malicious behaviors of the system or known patterns of malicious behavior and take appropriate actions if so. Unlike Firewalls and Anti-Virus software which acts like a watchman, who guards the entrance, the IDS and IPS act like the police who maintain a vigil on everything that is happening and inquire and take action on anything suspicious. The IDS and IPS are useful when the intruder has bypassed the access control system and gained entry into the system. As an analogy, the firewall acts like a lock that only allows users with a valid key. Having only a firewall or locked place does not work for a long period as somebody who tries continuously with different master keys may succeed in opening that lock. What we additionally need is a burglar alarm which detects somebody trying to break in. The IDS and IPS act like a burglar alarm.

Note: FIPS PUB 140 is the U.S. Government (Federal Information Processing) standard [FP140] for security requirements to be met by a cryptographic module when the module is used to protect unclassified information in computer and communication system.

There is one more model used to describe security operations which is discussed in Annexure 2.

[image:]

Figure 1.17: Multi-layered security

Keywords

	Phishing: An attack where the victim receives a forged mail which leads the victim to a bogus website and steals personal and financial information of the victim thereafter.

	Vishing: Phishing using voice calls. The victim is fooled in revealing personal and financial information by the friendly phone caller with malicious intentions.

	Shoulder surfing: Learning somebody’s password by overlooking the password entry process.

	Confidentiality: Keeping the message in a form that onlookers find garbage. Only the receiver with the proper information will be able to look at the message.

	Integrity: The guarantee that the message received by the receiver is the same that the sender has sent. That means the message is not modified in transit.

	Availability: The guarantee that the legitimate user gets the access of the system as and when needed with the required bandwidth.

	Privacy: Guarantee that the personal information of the user is not revealed to an unauthorized party.

	Secrecy: The guarantee that confidential data remains confidential.

	Authentication: When the sender claims to be X, this method proves that the sender is indeed X or otherwise.

	Non-repudiation: Guarantee that the sender or receiver later cannot deny sending or receiving a specific message.

	Cryptanalytic attacks: Attacks that exploit the vulnerability of the encryption/decryption algorithm.

	Non-cryptanalytic attacks: Attacks that do not exploit the vulnerability of the encryption/decryption algorithm but find loopholes in the encryption/decryption process, implementation of software, and communication between the sender and receiver and processing of information at both ends.

	Passive attacks: Attacks where the intruder only listens to communication and do not try to modify.

	Active attacks: Attacks where intruders not only listen to the conversation but also try to modify messages or generate forged messages pretending to be generated by the sender.

	Replay attack: When an attacker repeats an old conversation to fool the receiver in believing that the sender has sent a message and responds to it, it is known as a replay attack.

	Denial of service: Attacks in which a legitimate user cannot avail services that he is entitled to, or in the form, he is entitled to.

	Security mechanism: A security mechanism is a solution to a component of a security problem. For example, encipherment is a mechanism that can handle confidentiality and the digital signature is a mechanism that can handle the problem of authentication.

	Keystream: Random-like stream generated by a program which enables the sender to send the data encrypted in a stream cipher (byte-by-byte) form.

	Security service: To address the user’s security-related problems, a solution using security mechanisms, sometimes more than one of them, is provided, which is known as a security service. For example, peer entity authentication requires three mechanisms to be applied, encipherment, digital signature, and authentication exchange.

	Blended attack: An attack that combines multiple attacks into one.

Recapitulation

	Network or Internet or system security is designed to secure information stored within.

	There are many ways to intrude and securing the system is not as easy as it seems at first glance.

	Security is complex due to design-related, implementation-related, financial, hardware and software-related, and people-related issues.

	There are three major goals of security, confidentiality, integrity, and availability.

	Users perceive security from four different views privacy, secrecy, authentication, and nonrepudiation.

	Viruses and worms, hackers, insiders, criminal organizations, and terrorists are the usual threats to information.

	ITU-T defines security attacks, security mechanisms, and services.

	Security attacks are a purposeful violation of security policy to harm the system.

	Attacks can be classified as cryptanalytic and non-cryptanalytic.

	Non-cryptanalytic attacks can be classified as passive and active attacks.

	We need consensus on an algorithm, key type and length, and key exchange mechanism to communicate securely.

	The layered security process involves multiple layers of security solutions.

	Any security solution is based on three components, a preventive measure which tries to prevent a security breach, detection of such a breach if it happens, and if detected, take countermeasures for that breach.

Exercises

Conceptual exercises

	Why the word ‘Information Security’ is more appropriate rather than computer security or network security?

	What is non-repudiation? Can we provide non-repudiation for a receiver? That means is it possible for a sender to prove that the receiver has received the message under consideration?

	Why other threats than viruses and worms are more important for a security officer?

	Why do we need more than one security mechanism to provide a specific security service sometimes?

	Differentiate between cryptanalytic and non-cryptanalytic attacks.

	Differentiate between passive and active attacks.

	How can a replay attack be thwarted? Give possible solutions.

	What is an inside attack? Why is it more difficult to handle an inside attack?

	Why a security solution designer should have an attack tree rather than a single attack point?

	How does the process of encipherment differ in the case of symmetric and asymmetric keys?

	Digital signature, unlike human signature, changes with every doc. Explain.

	What is traffic analysis? How traffic padding helps in handling that?

	How can notarization help a non-repudiation problem?

	What is peer entity authentication? How different is it from data origin authentication?

	Why only preventive measures do not suffice in today’s world?

	What is the importance of the automatic response to a security breach?

Practical exercises

	The chapter contains an example of how preventing one type of attack results in the possibility of another attack (restricting user attempts to 3 while logging into account results into the possibility of denial of service attack). Find out similar examples.

	The chapter discusses ‘Single-Sign-On’. Gather more information and study how that is provided by operating systems.

	The chapter discusses the new avatar of ‘Shoulder Surfing’ using webcams. Get more information about the same.

	The chapter discusses some threats to information. Explore and elaborate on each topic in more detail and explain.

	The chapter discusses some examples of passive and active attacks. Find a few other examples of active and passive attacks.

	Biometric access control is in vogue today. Gather more information about the same.

1 As a bonus, he might get some random password matching with actual administrator’s and thus, giving him access to the administrator’s account!

2 A resent ransomware attack “WannaCry” actually prove to be a blessing in disguise for many CSOs for the same reason.

3 A buffer overflow is an attack in which attacker provides more information than an input can handle and by overflowing the buffer used to accept input values. Such overflowing, if done cleverly, can give control of that machine to attacker.

4 An SQL injection (pronounced as see-kwal injection) is an attack in which the attacker enters details such that the SQL statement which is generated as a result contains what the attacker wants and not user expected. It is a very serious type of attack and can easily break any system which is not designed to thwart it.

5 I have written a book with a typical publisher earlier. Whenever I send my manuscript, as the doc contains programming code, the security system (mail marshal) denies that mail. The recipients send me their hotmail or Gmail addresses where I send them the manuscript to overcome this problem. After some time, they have one specific account so I do not need to send the mail to their individual mail ids but still the secure mail system is worked around. The ideal solution is to configure the secure mail system to accept such mails but it is so far not preferred.

6 I have conducted many sessions so far on ‘introduction to information security’ and I am surprised to find how common it is for participants to believe that encryption is the solution to all security problems.

7 An owner of a security products firm once told me ‘if people restrain themselves while browsing the web and follow simple security advices, they do not need any anti-virus software or any other measures to defend themselves from attacks. Anyway, no antivirus software is perfect and one can be falsely concluded to be secure once the anti-virus software is installed’. I enjoyed his comments comparing them to an advice from my doctor, sanitary measures, and balanced lifestyle is obviously most important. Most of the disease stem from imbalanced life. It is obviously similar to bad habits like choosing a simple password; do not change it frequently, restraint in installing unnecessary software, not accessing web sites unnecessarily, and so on. Most of the security problems stem from bad habits of this type.

8 Die-hard-4 movie conveyed the same idea.

9 ITU-T is International Telecommunication Union’s Telecommunication standardization section, a UN sponsored body which defines standards for telecommunications and Open System Interconnection or OSI.

10 In case of VOIP (Voice over IP), which is a phone service over Internet in layman’s terms, the gatekeeper module performs one more function to stop accepting connections when the bandwidth is completely utilized by existing users. Thus, it makes the Internet to resemble the conventional telephony system.

CHAPTER 2

Introduction to Cryptography

Structure

2.1 Introduction

2.2 Difference between classic and modern ciphers

2.3 Kerckhoffs’s principle

2.4 Ingredients to a symmetric cipher

2.5 Cryptography

2.6 The Conventional Security Model

2.7 Substitution and transposition

2.8 Monoalphabetic substitution cipher

2.9 Playfair cipher

2.10 Hill cipher

2.11 Vigenere cipher

2.11.1 Cracking vigenere cipher

2.12 Vernam cipher and one-time pads

2.13 Transposition ciphers

2.14 Substitution cipher and S-box

2.15 Transposition cipher and P-box

2.16 Rotor machines

Learning objectives

After reading the following chapter, the reader will be able to appreciate the following:

	Ciphers, cryptography, and cryptanalysis

	Working of symmetric ciphers

	Block and stream ciphers

2.1 Introduction

Encryption is a way to encode the message so it looks garbage to onlookers. We will look at two different types of encryption methods used in this book. The first method, which was prevalent before the second one came into existence, is known as a shared secret key method and is still in use. Here, the sender and receiver share a key which is known as the shared secret key. The sender, before sending anything, encrypts the text using the shared secret key and an encryption algorithm. The message takes a different form as a result of this process. The resultant form is garbage and thus, remains safe from eavesdroppers. The receiver applies the inverse form of the same algorithm using the same key to produce the same message sent by the sender from that seeming garbage form. This process is known as decryption. As the same key is used for encryption and decryption, we call it a Symmetric key and the encryption process is termed as a symmetric encryption process. Sometimes, this method is also referred to as conventional encryption, secret key encryption, private key encryption, or single-key encryption.

Later, some researchers found one more way to encrypt and decrypt. What they did was to provide encryption using one key and decryption using another key. As the keys were asymmetric, that type of encryption process was termed as asymmetric encryption. We will discuss asymmetric decryption in detail in Chapter 12: Public Key Algorithm and RSA.

As mentioned, Symmetric encryption allows the sender to use an algorithm to encrypt and the receiver to decrypt using the same algorithm in an inverse mode. When the encrypted message passes from the sender to the receiver, an intruder might get a copy of it. The algorithm must be strong enough for the intruder to learn nothing about the message from what he copies from the communication. Researchers are working in the area and there are some very strong algorithms proposed and used in practice, so much so that none could succeed in breaking them so far. The word breaking means converting that seemingly garbage encrypted form, that is, the message into a decrypted form, without having the key. We will take a look at one such algorithm which is almost a standard one for encryption today, AES in Chapter 10: Advanced Encryption Standard. We will also briefly take a look at an algorithm that was quite popular (and also a standard before AES) called digital encryption standard (DES) in Chapter 3: Block Ciphers and Attacks. We will also discuss some other issues related to symmetric encryption in this chapter. Before we embark on the symmetric key algorithm discussion, let us look at two things: a difference between classic and modern ciphers and an important principle.

2.2 Difference between classic and modern ciphers

The ciphers have matured in the last two generations such as DES and AES. They are found to be quite good, impossible to be broken using known and new methods, able to work fast, and even possible to be embedded in hardware. These mature ciphers are known as modern ciphers. Classic ciphers were used to work without the aid of computers and thus were designed for hand-based operations. We will briefly take a look at classical ciphers in this chapter and discuss modern ciphers in this book at later stages.

Most ciphers are based on few very simple principles such as a very common one which is known as Kirchoff’s law, which states that the algorithm should be public, but the keys should be secure, contrary to the conventional wisdom of not disclosing the method to encrypt. We will soon see why this makes sense. Another principle is to use some combinations of substitution and transposition rounds. The modern ciphers also do the same, but they also concentrate on many other aspects like speed and embedding in hardware. Earlier, cryptographers designed methods (on which the classical ciphers were resting) based on empirical results, and it is hard to prove them to be secure. The DES, though considered modern, is hard to prove to be secure. AES, on the contrary, can be proven secure. It is because it is based on a solid mathematical foundation.

A process of encipherment happens at the sender and the inverse happens at the receiver. This process can be modeled by any mathematical model which can safely provide an operation on the message and an inverse operation on that changed message to get the original message back. When mathematics is used to provide such operations over sets which we assume contains building blocks for the messages that we would like to send, it becomes a process that can be proven secure. Modern ciphers are based on this principle. Let us now delve deeper and learn an important principle, the Kirchhoff’s principle.

2.3 Kerckhoffs’s principle

The general presumption is that if the algorithm is not known to the intruders, then they cannot attack the system. Traditionally, this concept is known as security by obscurity. Security by obscurity may be useful sometimes, but there are few disadvantages of keeping the algorithm a secret. Let us list out them one-by-one:

	This approach is not foolproof. One may hide and protect the algorithm used, but there are many ways an intruder can get a fair idea of the algorithm (either by looking at the code or using some social engineering technique like making the user communicate with him and encrypting the message using the same algorithm), and once he has that information, there is no security. In modern times, security by obscurity is still in use but in smaller scales only.

	When the sender and receiver assume that the algorithm is a secret, they rely on this and communicate their secret information freely. They are in the worst situation as the communication is not secure and users have a false feeling of security.

	It is not possible to buy an algorithm off the shelf and use it (as it would be a secret algorithm). Normal users will not be able to use such algorithms.

	The vendors too cannot produce and distribute such algorithms by charging some fees. Also, the mass production of such codes or chips is just impossible because the algorithms should not be publicly known.

	We cannot have any standard algorithm which everyone concerned should implement and expect everyone else to communicate with him using this algorithm. In the case of a standard algorithm, the algorithm must be published and available to everyone so that anybody can implement or download somebody else’s implementation and use it.

	We cannot have a standard algorithm to connect two persons who cannot share an algorithm. Talking to a stranger is not possible unless some specific secret algorithm is decided through consensus.

	A conventional user with little or no idea about cryptography can easily choose a bad algorithm that doesn’t do what it claims.

For all the preceding reasons, algorithms are standardized and published in a way that anybody can program them according to their preferences. Once an algorithm is made public, the only secure part remains is the key. The key determines whether the resulting text is strong enough or not. Though the key is under the users’ control, the algorithm itself needs to be robust enough to generate a strong output that cannot be decoded without having appropriate keys. It is not as easy as it sounds. In Chapter 3: Block Ciphers and Attacks, we will discuss some attacks that emphasize this issue. At the moment, the point is that the algorithms are made publicly available and anybody can use them with a special key known to the sender and the receiver and no one else.

As all of the above suggest that the secret algorithm is not as attractive as an idea as it seems at the first glance. On the contrary, if we have some standard algorithms, we can have a few things in our favor. Let us list them out.

	When it is a standard, others are also using it and if there are some loopholes, somebody else would have already found out. This is especially true when the algorithm survives for a few years.

	When it is to be proposed as a standard, the people who propose it must prove it to be secured against a variety of attacks and those who accept that as a standard insist on extensive proof of that account. So, it is quite possible that the algorithm is foolproof before it is accepted as a standard.

	When there is a standard, it is possible to implement the algorithm in hardware or to develop a software library that provides an application programming interface (Java, dot net, and other frameworks have classes which one can use to implement AES or DES using a very small code.)

When we have standardized algorithms, the downside is that the adversary also is aware of them and we must rely on the keys to have all the strength in the encryption process. Thus, we must have keys that are strong enough so that it makes it infeasible for an adversary to decrypt the encrypted text without having a key.

KIM: Using small keys of 64 bits is no longer considered secret for the symmetric encryption process. For a normal application, a 128-bit key is recommended and for more sensitive applications, a 256-bit key is advised.

The word ‘infeasible’ has a rider. It is possible to find out the original text from the encrypted text given infinite time or infinite computing power. One can try all possible combination of keys to find out one key which correctly decrypts the text. This process is known as a brute force attack.

KIM: Not always such brute force attacks can determine that the decrypted solution is the original text; particularly, if it is a non-text data like an audio file. Unless the decrypted file is played and generates some listenable output, we cannot be sure whether the content of the file is correctly decrypted and the tried key is the right one. If the original file is compressed or processed before encryption, the process is that much harder. If the time taken by this brute force method is more than the time taken when the information to be decoded is valuable, the brute force is not feasible.

Thus, it is always possible to generate a message from the encrypted message given enough computing power and time. We would not like to consider a case with infinite computing power and an inordinate amount of time. We consider the state of the art machines and the time for which the decoded information makes sense. (For example, the decoded question paper makes sense before the commencement of the exam).

Kerckhoffs’s principle states that the strength of the symmetric encryption process should depend on keys and not the algorithm. When we discuss modern ciphers, we will reiterate this point.

Note: In cryptography, Kerckhoffs’s principle (also called Kerckhoffs’s assumption, axiom or law) was stated by Augusta Kerckhoffs’s in the 19th century: A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

2.4 Ingredients to a symmetric cipher

Traditionally, symmetric encryption involves the following ingredients:

	Plaintext: The original text which is to be enciphered is known as the plaintext. The plaintext is the data that is being input to the encryption process, that is, the message that the sender wants to send to the receiver. The plaintext is the document or information that one would like to protect from eavesdroppers.

	Ciphertext: The result of the process which yields the hard-to-decipher, seemingly garbage, text, which is known as the ciphertext; i.e., the data which is the output from the encryption process. This form of data is such that it looks garbage to onlookers.

	Algorithm to encrypt: The algorithm which is used to encrypt the plaintext into ciphertext is known as an encryption algorithm or an algorithm for short. The algorithm shuffles the bits of plaintext in such a way that it is infeasible for the attacker to find the plaintext from the ciphertext (KIM: We do not say impossible but infeasible). This algorithm runs on the sender’s machine.

	Algorithm to decrypt: An exactly inverse process is carried out at the receiving end to convert the ciphertext back into plaintext. It is known as decryption.1 This algorithm is supposed to reverse the process done by the encryption algorithm. The decryption algorithm takes the ciphertext and the key as input and generates the plaintext as the output2. This algorithm is run by the receiver. Usually, the same algorithm is used for encryption as well as decryption. Only a few changes in the execution sequence make the encryption algorithm to run in the decryption mode.
Note: Both AES and DES are capable of decrypting running the same algorithm by little tweaks, an added advantage when converted to hardware; the same circuitry is used for both encryption and decryption, saving a substantial amount of cost.

	Key: To maintain secrecy, encryption and decryption need additional input known only to the users of the system. It is popularly known as the key and it is not always similar to passwords. The key is the only part of the system which is under the user’s control. The key is the only a secret value in the process. An interesting characteristic of the symmetric encryption process is that the sender and receiver use the same key for both encryption and decryption process.
KIM: The longer the key the better the encryption but slower the processing.

 Longer keys are better for encryption but take more time. Why? Let us take a detour to understand. A key of length 32 is best for a 32-bit machine and 64 bits are best for a 64-bit machine. This is because a 32-bit machine can read 32 bits in a single cycle and the architecture like a register and other parts are also optimized for processing a 32-bit entity. Anything bigger, for example, a 128-bit value, is to be broken into 4 words of length 32 bits and processed. A 256-bit value needs to be broken into 8 such words and thus demands more processing and takes more time. The case for a 64-bit machine is similar. A 64-bit entity is processed in a single CPU cycle while a 128-bit entity will take two cycles and a 256-bit value needs 4 such cycles. Thus, larger keys take more time. Longer keys take more time to break for a brute force attack and are thus better. For example, a 3 digit key takes 23 = 8 attempts to try all possible combinations and a 4 digit key takes 24 = 16 attempts to try all possible combinations. Thus, larger keys require more operations to break and thus, more time to break and are more secure.

	The algorithm must be strong to resist attacks. As per Kerckhoff’s law, the algorithm is public and known to even attackers. We can also assume that the attacker also has some pairs of ciphertext and corresponding plaintext. Even after this assumption, the keys should be infeasible to be deduced from the ciphertext. If somebody somehow gets the key, then the entire communication is (obviously) readable.

	There must be a secure method for a key exchange. This means the sender and receiver must secretly exchange this key. If the key falls into the wrong hands at the time of transit, the whole purpose of encryption is defeated. This is one of the most serious problems of the symmetric key algorithm. The sender and receiver must somehow manage to share the key in a way that others are not able to read. The key exchange is an important part of any symmetric key method.

Figure 2.1 shows the components of a traditional symmetric encryption system. The symmetric ciphers use some form of substitution and transposition to shuffle the bits (described later). They also use multiple rounds to shuffle the bits more rigorously. The symmetric key is used to generate multiple keys that can be used in different rounds. Before we embark on the encipherment process, we will take a detour to understand what cryptography is and how substitution and transposition take place.

Note: One of the methods used for the symmetric key exchange is to use the solution based on the asymmetric key. The secrecy of the system now depends on the secrecy of the keys and key exchange methods3.

2.5 Cryptography

Cryptography is the process of communicating in ‘secret writing’ or ciphers. It renders the messages unintelligible to all but the intended receiver.

Cryptography comes in many varieties, but they roughly fall into two categories. In the first category, characters are replaced by other characters or words are replaced by other words. The second category involves shuffling the characters to different positions. The first category is known as a substitution cipher, while the second is known as a transposition cipher. Before we embark on both the ciphers, let us take a look at the conventional security model and the terms used in that model. We will use this model for all encipherment processes except the public key cryptography.

2.6 The Conventional Security Model

The conventional security model is depicted in Figure 2.1:

[image:]

Figure 2.1: Components of a traditional symmetric encryption system

The plaintext and the key are the inputs to the encryption process which in turn generates the ciphertext. The receiver is now picking up the ciphertext and decrypts that using the decryption algorithm and the same key. A passive intruder is the one who tries to sneak a glance at the information passing through the channel, while an active intruder is the one who tries to modify the message in a way that the receiver gets a modified message. For example, a student snooping on his teacher’s communication to get the question papers before the test is a passive intruder. On the other hand, a student snooping on his teacher’s communication to the University to modify his marks is an active intruder.

The process of encryption and the design of a key should be such that it blocks the passive intruder (who is reading the communication to understand what is going on) from breaking into the system. How this is done is the focus of this chapter.

2.7 Substitution and transposition

We have just mentioned two different ways to encrypt—substitution and transposition. The following examples describe these two methods.

Substitution cipher

Assume the statement to be encrypted is as follows:

“This is the final chapter of the security book.”

We apply the substitution cipher and change each character by its next ASCII character. The resulting statement would be as follows:

“Uijt jt uif gjobm …..”4

This method is popularly known as Caesar cipher, as it was invented by the Roman general, Julius Caesar. A better method may shift the characters from more than one place. For example, A becomes C, B becomes D, and so on. When a character is substituted by another character, it is known as a mono-alphabetic substitution cipher. The displacement (in the first case, it was 1; and in the second case, it was 2) is the key here.

A programmer can write this process as Ch = Ch + n or Ch += n5 where n is the displacement and Ch is the character under consideration. The only catch is that what happens to the character value which goes beyond z. Ideally, it should wrap around. For example, if we use the displacement value n to be 3 and the character is y. y + 3 should be b, as it wraps around after reaching z, then picks up a and then stops at b. This effect can be managed by a simple mathematical operation known as a mod. We can improve our statement as follows:

Ch = (Ch + n) mod SetSize where SetSize is the number of characters under consideration.

If we have only uppercase English characters, the set size is 26. For example, if we want to program it using the ASCII character set where character ‘A’ has the value 65 and Z is 91. Thus, the equation changes to a three-step process depicted in Figure 2.2.

[image:]

Figure 2.2: The conversion from plaintext to Ciphertext using a Caesar cipher

What if the character is uppercase or lowercase?

The process needs one more step as depicted in Figure 2.3.

What if we need to have digits? Simple. 48 to 57 are their ASCII values. We will use displacement 48 and mod 10 for them. We can even have lowercase letters as well. The process is depicted in the following figure.

Breaking a Caesar Cipher

Breaking a Caesar’s cipher is not very hard. If we use only uppercase letters, we need to try each of the 26 possible displacements one after another and see if we get back a reasonable answer. The Caesar Cipher is simple but almost of no use!

[image:]

Figure 2.3: The conversion for the case where the input can be either an upper or a lowercase letter

2.8 Monoalphabetic substitution cipher

To make a simple Caesar cipher complex, let us play a trick. In Caesar’s cipher, we have every character replaced by some other. This replacement is based on some displacement value. We can decide some permutation of the same set of alphabets to be used for replacement, without any dependency on the displacement. For example, we decide each character to be substituted by some other and decide that consistently. Two such sequences are presented in Figure 2.4. It is still a single character being replaced by another but without any relation. Thus, if the replacement shown in the top part of the figure is chosen to replace characters, (a by d and b by g c by f and d by b, etc.) we cannot just try 25 possible combinations and succeed. We need much more. In this case, a total of 26 characters can be written in 26! ways6. Trying all possible combinations is a humongous task. Currently, no computer can do it in real-time. This process replaces a single (mono) character by another character and thus is still known as a monoalphabetic cipher. This is a far better version than the Caesar cipher. The price to be paid is that we cannot represent it as the simple code that we have used to represent the Caesar’s cipher.

[image:]

Figure 2.4: Random monoalphabetic cipher

How can one write code for a Monoalphabetic cipher?

Let us assume that the array Cipher [26] contains the substitution values for each of the characters. Thus, Cipher [0] is ‘d’ while Cipher [1] is ‘g’, and so on. Once we have this array in position, we can write the code as follows to get a Ciphertext out of the plaintext.

Position = Ch – 65; (the position of a character between 0 to 25 is obtained)

Ch = C [Position];

Thus, the code is also simple. The price to be paid is that the array must be remembered or stored somewhere. If the adversary has the array, the security is defeated.

However, it is possible to attack this cipher in some other interesting ways. When we substitute a character by another, we can track that character looking at the frequency of the character. The English language is (and all other languages are) designed in such a way that some characters have a higher probability of occurring than others. There are studies made and relative frequencies of each letter in English literature are already determined.

Now, if we want to find out which letter of the ciphertext refers to which actual plaintext letter, we can look at the frequencies of the letters in the ciphertext. If the ciphertext is long enough, the frequencies of the plaintext characters are more likely to match the standard character frequencies.

For example, if we get the frequency of a typical character, consider Z, about 9, it is quite likely to be replaced by T, while if the frequency is found to be 12, it is quite likely to be replaced by E. This is because E enjoys the position of the most frequently occurring character in English literature with frequency 12.7, while T has frequency 9.

One can construct the entire possible plaintext replacing ciphertext characters by the most probable plaintext characters using this method. It is possible to have a tie or no match as it is impossible that all plaintexts follow the standard frequency distribution. So, what to do? There are two things which can come to our rescue. Human readers can easily solve it if most characters are properly in place. For example, if we find the word ‘zxy’ to be converted to ‘thp’, we know that there is no such word. If we expect that most of our characters are properly mapped, it is quite likely that the third character replacement is not y->p but y->e and the word is ‘the’.

The second thing which comes to our rescue is that not only single characters, a combination of two characters, popularly known as diagrams, also have known frequencies. Thus, if we find a diagram ‘ph’ appearing in the text with the frequency as good as ‘an’ in the real world, we can replace ‘p’ with ‘a’ and ‘h’ with ‘n’ and see how it goes. The relation here is stronger as there are fewer right combinations.

The more precise solution can be brought if we also consider trigrams, the three-character combinations, and so on.

Why can we proceed further? Because the ciphertext still has the same statistical property of the plaintext and we are exploiting that.

What is the remedy? We need to break that dependency; the statistical property of the plaintext should not be preserved in the ciphertext. We will repeatedly discuss this issue in multiple places during our journey.

We will look at one Monoalphabetic cipher which uses multiple characters substituted in the process. It is known as the Playfair cipher algorithm.

2.9 Playfair cipher

Quite interestingly, this cipher is not named after its inventor but one who promoted it. Charles Wheatstone invented it and Lord Playfair promoted it. It was used by the British army in World War I and II (but not for the top-secret purpose), even by New Zealand in World War II. Playfair is not considered a secret now but still considered a classic example of cryptography.

This cipher encrypts multiple characters together. It picks up diagrams (two-character combinations) from the plaintext and generates a ciphertext with another diagram. In that sense, it is not truly Monoalphabetic7.

One can easily understand the idea, the frequency analysis one can use for a single letter is just impossible with this method. Though it is possible to have similar frequency analysis for diagrams, several combinations are much higher (25 * 25 = 625 diagrams, as I and J, are considered as one letter and a total of 25 characters are used for the encryption process) and that makes it very hard to decrypt.

Let us take an example to understand. A Playfair cipher, as mentioned earlier, assumes a total of 25 characters as a 5 * 5 matrix (i and j are considered one character, the user may decide to choose one of them actually for a given encryption session). The idea is to arrange these letters in a typical (seemingly random fashion) in the matrix. Once the random sequence of those letters is generated and placed in the matrix, that matrix is used for generating a ciphertext diagram from a plaintext diagram. As the matrix is randomly generated, the newly generated ciphertext diagram is randomly chosen.

The only catch is how to generate a seemingly random matrix based on the key and how both the sender and receiver can generate the same matrix based on the same key. As it turns out to be, it is a simple trick that serves the purpose. Let us understand the process step by step:

	Choose a key, for example, we have chosen a key called “cryptography”.

	Remove all redundant characters, thus making it “cryptogah”.

	Place the key in the topmost row character by character. If the first row is over, continue placing characters in the second row, and so on. Thus, the matrix looks like Figure 2.5(a):

	Pick up all other characters from the alphabet one after another, in alphabetical order only, and fill the matrix. Thus, the content is now, cryptoahbdefgiklmnqstu, which is represented as a matrix in Figure 2.5(b).

[image:]

Figure 2.5: The process of construction of a matrix in a Playfair cipher

Once the matrix is constructed, and anybody who is aware of the key (usually the sender and receiver) can construct it without consulting any other party, the encryption using diagram substitution can happen as follows.

	If the plaintext diagram exists in a single row, it is replaced by characters next to them on the right-hand side. If the last character of the row is to be converted, it wraps around and picks up the first character of the row. For example, if the plaintext contains a diagram “ba”, both of which belong to the same, i.e., the second row, then characters o (next to b, after wrapping around) and h (next to a) are picked up to have a ciphertext diagram “oh”.

	Otherwise, if the plaintext diagram characters are part of the same column, the characters below them are chosen; in the case of the last character, the control wraps around and picks up the top-most character of the same column. For example, if ‘lu’ is found in the plaintext, the diagram is found to be part of the first column. So, characters below them, u (which is below l) and c, (as u is the last character control wraps around and pick up the top-most character of the first column).

	Otherwise, two intersecting points are picked up for both plaintext characters: the first character’s row with the second character’s column and the first character’s column with the second character’s row and are used as ciphertext. For example, if we need to convert a diagram ‘ex’ and the intersecting point of a row of e (3rd) with a column of x (4th) is i/j (which means either i or j depending on user’s choice), let us assume that the user chooses j. The intersecting point for a column for e (2nd) with a row of x (5th) is v, so the ciphertext becomes ‘jv’.

Any other similar method except one described earlier of conversion will also do. The idea is the same of having a random diagram ciphertext for a given diagram plaintext.

What we want to achieve is a ciphertext with almost no statistical resemblance with the plaintext which can be achieved if we use the random Monoalphabetic cipher depicted in Figure 2.4. The Playfair cipher does not do that to the same extent. Researchers have shown that the statistical resemblance for the Playfair cipher is much lesser as compared to Monoalphabetic but much more than a random Monoalphabetic.

2.10 Hill cipher

The Hill cipher is one of the most popular cipher techniques. The process is based on the principle of matrix multiplication. Let us try to understand the process by an example:

	Consider a 3 * 3 matrix A and its inverse A-1. For example, a 3* 3 matrix and its inverse are depicted in Figure 2.6(a) and Figure 2.6(b).

	Now, get the modulo 26 of that matrix; for example, the modulo 26 matrix of an example of step 1 is depicted in Figure 2.6(c). A modulo 26 of a matrix is a new matrix with each element of the matrix is taken modulo 26; i.e., divided by 26 and the remainder is taken.

	Now, the plaintext is divided into trigrams, for example, “I will come tomorrow” is divided into ‘I w’,’ill’, ‘com’, ‘e t’,…

	Convert each trigram into integer values. One method to do so is to use 0 for A, 1 for B, and thus 26 for Z. Here, we ignore the case, so a is the same as A and z is the same as Z. This mapping (A to 0 .. Z to 26) is achieved by applying mod 26.

	Thus, each trigram is converted to a 3 digit number. Represent that number as a single column three-row matrix. For example, the trigram ABC will be converted to 012 and the matrix P will be

	Now, we multiply A * P and take mod 26.

	 * = mod 26 = = C8

[image:]

Figure 2.6: A 3 * 3 matrix, its inverse matrix, and its inverse modulo 26 matrix

	The resultant matrix C will be sent to the receiver. The matrix represents 8, 9, and 6, thus it sends IJA. This IJA is the encrypted version of ABC. An intruder spoofing over the line will get IJA.

	The receiver gets P back by multiplying it with A-1.

	[image:]

	Thus, the receiver understands it to be ABC.

Exhibit: - Mod Operator

The Mod operator returns the remainder when divided by that number. Thus, mod 26 is the remainder when the number in question is divided by 26. The characters, when used in the arithmetic operation are considered as the numeric values represented by their ASCII equivalent values, the A mod 26 is 65 mod 26 = 13. We will study more about the Mod operator in Chapter 4: Number Theory Fundamental.

The process of a hill cipher can be described in short as follows:

	We have a key as a matrix A and A-1.

	The sender, while sending the content, converts it into a single column matrix of the same size as the number of columns in matrix A.

	The matrix A and plaintext p are multiplied and then mod 26 to get C; C = A * P mod 26.

	C is sent to the receiver.

	Receiver calculates A-1 * C mod 26 = A-1 * (A * P mod 26) mod 26 = A-1 * A * P mod 26 = P.

You can understand that this cipher if used with 3 characters as shown earlier is much stronger than the Playfair cipher. This cipher eliminates one, two, and three-letter frequencies in the ciphertext, and thus it is quite good from that angle.

However, the process deployed by the Hill cipher is completely linear. If an attacker gets enough plaintext-ciphertext pairs, he can find the value of the matrix. Let us try to understand.

Suppose we have a few pairs of plaintext and ciphertext. C1 P1, C2 P2, …Cn Pn

As per our calculation:

C1 = A * P1 and P1 = A-1 * C1

C2 = A * P2 and P2 = A-1 * C2

…………………………………………..

Cn = A * Pn and Pn = A-1 * Cn

Now, define M1 = {P1, P2, P3, …., Pn} and M2 = {C1, C2, C3, …, Cn}.

Now, Pi and Ci are all 1 *n matrices if we have assumed n to be the plaintext dimension. In our example, it is 3. Thus, M1 and M2 are n*n matrices. (In our case, we need 3 samples of plaintext and ciphertext, and thus we will have M1 and M2 as 3*3 matrices).

We need to work on getting some K value where

M1 = M2 * K; ……. (Equation 2.1) where K is a 1*n matrix.

If we get K, we have got the key to convert ciphertext into plaintext.

To get K, we need to rewrite the equation 2.1 as follows:

M1 * M2-1 = K

That means, we have to get the inverse of matrix M2, multiply it with M1, and we get the K.

Problem solved.

The only catch is that not always a matrix is possible to be inverted. If M2 is not possible to be inverted, we need to have a few more plaintexts, ciphertext pairs, shuffle them around, and find out another pair of M1 and M2 where M2 is invertible. Once we get that matrix, we are done.

The process of using a matrix and its inverse is quite popular in modern ciphers for an important reason. It produces diffusion. That means it rearranges the content in a form that has very less statistical similarity with the input. We will see how it is used in modern ciphers, especially AES in Chapter 10: Advanced Encryption Standard.

2.11 Vigenere cipher

One more way to complicate the process is to use multiple rounds of Monoalphabetic ciphers. One of the simplest methods to do so is known as the Vigenere cipher. The idea used by this method is using multiple Caesar ciphers together. We learned that the Caesar cipher provides a displacement to be added to every plaintext character. In this case, there are multiple displacements, one for each character for a given length. Let us take an example to understand.

For example, if we want to encrypt “abcdef”. We will decide the displacement, for example, like 126542. Once that is done, we will have the ciphertext as

a+1 mod 26,b+2 mod 26 ,c+6 mod 26,d+5 mod 26,e+4 mod 26,f +2 mod 26. (i.e. each character is displaced as per the respective displacement value)

Thus, the Vigenere cipher is a kind of vector addition:

C = P + K (mod 26) ………………………. (Equation 2.2)

Where P is a plaintext vector (of size 6 in our case), C is a ciphertext vector while K is the displacement vector (or key). The size of the vector is decided by the size of the key. If one chooses the key larger than 3, it hides all one-character, two-character, and three-character statistical information.

We can elaborate equation 2.2 as:

Ci = (Pi + Ki) mod 26 for all i belongs to (1..n) where n is the dimension of the vectors K, C, and P.

The plaintext which is longer than the key (which is usually the case) is required to be broken into blocks of size n, and each block is processed as above. That means if the key length is n, after n, 2n, 3n, we will have the key repeated. That means, for some kth character, the key’s k mod n character is added. For example, if the key length is 3 and the plaintext is 20 characters long. For the first three characters, three characters of the key are used for addition, for the fourth character of the plaintext, again the first character of the key is added, for the 7th character of the plaintext, the first character of the key is added, and so on.

The ith character of Ciphertext, Ci = (Pi + Ki mod m) mod 26 for all i belongs to (1…n) where n is the dimension of the vectors C and P. (The difference between n and m is significant. Ki represents each character, its length is m, the length of the plaintext and ciphertext is n). Pi + Ki mod m indicates the plaintext ith character being added by a typical key character, even in case of repeated keys.

Let us understand the process further. We would like to encrypt the statement “I am going to Delhi.” The next thing we do before is to remove all spaces and convert all other letters to lowercase except the first one. The cipher can work without these two things. This process, however, is a little more secure. Space character happens quite often and if it is part of the text, it can reveal the replacement. Also, the decrypted text, without spaces, is quite easy for the human reader to recognize but hard for an automated reader.

The top part of Figure 2.7 indicates how the key is repeated until the message is completed. Here, the message is an exact multiple of the key. If it is not, padding is done to make sure the plaintext is stretched to the exact multiple of the key. In actual practice, only the plaintext is stored and the key is separately stored. To find which character of the key is to be added to which character of the plaintext, the mod function is used. For example, ‘g’ of plaintext (of part of the word ‘going’), is a 7th character (we start from 0), 7 mod 3 is 1, so we should pick up the second character of the key (here also the count starts from 0); i.e., l.

The process of Vigenere starts with repeatedly applying the key to the entire plaintext. Their ASCII values are shown in the next step. Similarly, plaintext ASCII values are stored below the plaintext itself. The summation is carried out of both plaintexts as well as the stretched key values. The summation is shown in the next row. Once that is done, we need to apply mod 26 which is shown in the next column. The values represented in that row are then converted back to characters assuming that 0 is a, 1 being b, and so on. Whatever is obtained is the ciphertext.

The beauty of this process is that for a single character, there are multiple possibilities of ciphertext based on which key character it is added with. Thus, the frequency information that we are continuously discussing is addressed. One important observation is that larger the key better the encipherment process because of more possibilities of a character needs to be converted to another character and the attacker needs to have that much additional effort to break.

2.11.1 Cracking Vigenere cipher

The first job for cracking the Vigenere cipher is to determine the length of the key. Two occurrences of the same character sequence can generate the same ciphertext if the distance between them is an integer multiple of the key (and thus added to the same character of the key). Finding such occurrences in a long message is quite probable, and thus the attacker might have a fair idea about the key length:

[image:]

Figure 2.7: Process of Vigenere Cipher, K indicates key, AS represents ASCII value, P is plaintext, C is ciphertext, To is total, M26 is mod 26 value, and C is ciphertext.

Once the key length is determined, the problem is reduced to break Monoalphabetic ciphers equal to the length of the key. In the preceding case, the attacker has to find out three different Monoalphabetic ciphers occurring at three different positions (as the key length is 3). He can use the same set of methods; one can use for breaking the Monoalphabetic cipher for each of the three characters.

The solution to this problem is to use a long key; ideally, as big as the plaintext itself. There are some methods used to do so:

	After the key (gls in our example), the plaintext itself has appended. In the preceding example, the key becomes glsIamgoingtode, which is added to Iamgoingtodelhi to generate the ciphertext. The idea is known as an autokey system, but it is not without problems. Both the key and the plaintext having the same frequency of characters (almost as we assume that the key is comparatively much smaller than the plaintext,), the frequency of a character encrypted by itself is a square of a probability of the character’s occurrence normally. This is due to a simple rule of probability that the probability of occurrence of two events together is the multiplication of their respective probabilities.

	Use a random key which is as long as the plaintext. For example, we may use a CD of a movie as the key. We must make an identical copy of the CD to be given to the receiver. Now, our information is added to (obviously mod 26) the content of the CD and sent to the other end. The ciphertext is just garbage from the attacker’s point of view and does not share any statistical property with the input plaintext. Thus, breaking is almost impossible. Though simple and most secured, there is a practical problem that haunted proponents of this method so far. The key must be shared between the communication parties. It is crucial for this method to work. This is not a small key that can be shared by SMS or phone or something more secure. It is a huge file (as large as the data itself). When data to be transferred is in Gigabytes, the key also must be of gigabyte size. How can a user send the key across to a recipient? In the preceding example, how to send the CD to the recipient is one important question. If the sender and receiver are continents apart, it is a hard question to answer. It is also difficult (and most of the time impossible) to remember these long keys. Thus, it is apparent that they must be stored somewhere; therefore, in the preceding example used the CD as the storage for the key. If an attacker finds a stored copy of the key, it is no longer secure. In the preceding example, if the CD containing the key falls into an attacker’s hand, it becomes a trivial matter for him to find out the plaintext from the ciphertext.

	One more method is to use a stream cipher to generate a seemingly random string of key characters known as a keystream. RC4 is one popular algorithm used for that purpose. This solution is quite good except for a mistake that a sender might make to use the same keystream for two different messages, vulnerable to something known as a keystream reuse attack.

2.12 Vernam cipher and Onetime pads

It is clear from the discussion we had so far that the best security is possible if we use the key almost as long as the message itself which has no statistical relation with the plaintext. This idea was given by Gilbert Vernam in 1918. He used XOR instead of adding and taking mod 26. That was quite an intelligent step as XOR is a very fast operation compared to adding and taking MOD.

As mentioned in the previous section, one can use algorithms like RC4 to generate very long keys, which is almost of the same length as most of the average plaintexts. The problem with this approach is that one needs a key to generate such a sequence when the attacker gets hold of that key somehow the security is compromised. Also, with the same key, the random string generated will always be the same. So if the sender uses the same key for two different transmissions, the keystream used will be the same. XORing these two ciphertexts results in XOR of both the plaintext messages. If the attacker has the knowledge of one plaintext, he can get another. Thus, reusing the keystream is an insecure idea. That means the user has to use a different key every time he communicates, which is pretty hard, practically.

The keys produced by such methods are quite long but do get repeated if the plaintext is very long. The ultimate solution is to get the keystream as long as we want with no repetition. Thus, the Vernam cipher is good, but one can get a better solution if we need the key to be exactly of the same length as the plaintext, however, large it is. That random key is popularly known as a one-time pad.

Joseph Maurbogne suggested improvement over the Vernam cipher. He suggested a random key can be used only once for a given message and then discarded. There are quite a few benefits of this system. It is truly unbreakable. As the key is random, the ciphertext is also random and does not possess any similarity or statistical relationship with the plaintext.

Another strong property of the one-time pad is that even the brute force attack cannot produce a foolproof answer. Suppose it is possible to try all possible keys of a required length to produce all possible plaintexts from a given ciphertext. There is a non-negligible probability that there are more than one plaintext produced using two different keys for the same ciphertext. How does a cryptanalyst determine which plaintext is correct? There is no way of knowing it.

One-time pads surprisingly are a simple answer to every problem about cryptography. Here is how the one-time pad is being processed at the sender’s and receiver’s end:

Cipher Text = Plaintext XOR One-Time-Pad

Plaintext = Ciphertext XOR One-Time-Pad

This method is extremely secured as the result does not possess any statistical property of the plaintext. Nothing can be said about the plaintext when we have the ciphertext at our disposal.

Another issue is, however, strong this method is, it is still plagued by the problem we have discussed earlier. It is hard to remember, store, and exchange such long keys. Thus, we need a mechanism where we get three promises:

	We must get a fresh (and random) keystream every time we need to communicate.

	We do not need to store it.

	We can exchange it without the fear of anybody snooping it and learning about it.

A branch of Quantum Mechanics has an answer to that puzzle. It is popularly known as quantum cryptography now. This method uses unique properties of the photon used as a media in fiber optics to achieve this effect. How a sender and receiver can share a one-time pad despite the existence of an intruder and can secretly transmit using one popular algorithm BB84 (Bennet and Brassard introduced it in 1984) is discussed in one more book from the same author9. Kindly consult it for further details. Many researchers extended this idea into various other proposals. The strength of such a system is that the public key algorithms and many classic secret key algorithms become vulnerable once quantum computing becomes a commonplace but these methods do not.

2.13 Transposition cipher

A transposition cipher works by changing the position of the characters. As opposed to the substitution cipher, the transposition cipher changes the order but does not change the characters themselves. For example, it may reshuffle the original string; Figure 2.8 depicts the array used for that transposition.

This method is so trivial that nobody probably uses them in any serious cryptographic application, but they serve the purpose of demonstrating the idea.

The encryption method has a few important characteristics. Let us discuss them.

	In the transposition cipher, where the position of a character changes, it acts as a new position for i = a[i], where a is the array containing information about the new position of the character. This can also be written like a function, new position for ith character = transposition (i), where a function transposition is applied to i to get its new positional value for i. Instead of using an array, a complex function can also be used here.10

[image:]

Figure 2.8: Array for transposition and inverse transposition

Both of them substitution as well as transposition cipher look pretty trivial on the face of it. However, it is possible to combine both of them multiple times and apply a complex function to the original string to make a really good encryption algorithm. Almost all popular encryption algorithms use multiple rounds of substitution and transposition ciphers to encode the data. The variable part in this process is termed as a key. In the case of the transposition cipher, the array element values make the key. One more important property of these two methods is that the encrypted output (ciphertext) depends on the algorithm used as well as the key. Suppose the key is chosen as 2 (displacement) in the substitution cipher, then the ciphertext becomes Vjku for this rather than Uijt.

Consider the same array for encrypting word “Bhushan”, B moves to 2nd position, H to 1st position, and n moves to 6th position; the output being HBHUSNA.

Similarly, if the array elements which used to be 2, 1, 5, 3, 4, 7, 6 before changes to 2, 3, 1.7, 5, 4, 6, and then, the ciphertext for the preceding example changes to HUBNHSA instead of HBHUSNA. Thus, changing the key changes the ciphertext in the transposition cipher as well.

Both the methods, substitution as well as transposition, are reversible. In the case of the substitution cipher, the reverse process is ch = ch – 1 mod 65 or reducing the ASCII value of the character by 1, except for A being changed to Z fetches the original string back.

Similarly, in the case of the transposition cipher, the decryption is done as shown in the following equation. The 1st array depicted in Figure 2.8 used in the process.

Actual position = i, where (a[i] = current position)

That means if the HBHUSNA is given, the decryption process requires the array to be searched for where could H be, where could B be, and so on. For every character, the whole array is to be searched for that character’s position in the original array.

From a programmer’s point of view, it is a very time-consuming operation of finding out the array value that matches the current position of the character and returning its index, especially when the array is large enough to include all characters, special characters, upper and lower cases, digits, and so on. A better solution is to have another array with a reverse operation where b[i] for a given i is such that b[a[i]] is the same as i. Look at the 2nd array of Figure 2.8 which depicts that array. See that a[1] is 2. So the element at position 1 will go to position 2 when we apply the transposition cipher. This is true for all i values in b[i]. Thus, what we have is b[a[i]] = i; The reverse operation only requires referring to this array and getting its original position back. Reversibility is an important feature, as the receiver needs to reverse the process to extract the plaintext from its ciphertext.

Both the methods, the substitution cipher as well as the transposition cipher, follow the same strategy of picking up characters of the plaintext and converting them to ciphertext. Sometimes, a combination of both is used to pick up multiple characters from the plaintext and generate multiple characters of the ciphertext. Such methods are known as block ciphers. DES and AES, which we will study later, fall in that category.

Sometimes, it becomes important to introduce nonlinearity in the process. Thus, the substitution or transposition should not act in a way that they can be represented by a set of linear functions. If that is possible, what we have looked at in the discussion of the Vigenere cipher earlier, it is possible to construct a matrix from a set of ciphertext and plaintext to generate a key matrix.

We discussed how these two methods of encryption generate a ciphertext out of plaintext. The algorithm uses a key value to determine the ciphertext. The key and the algorithm together determine which ciphertext is generated from the plaintext. The following equation illustrates the idea:

Ciphertext = Algorithm (Plaintext, Key)

As discussed earlier, it is also possible to apply the algorithm in the reverse order, if need be. (Not all algorithms are of that type, but in our case, we consider only those). In that case, if ~Algorithm is the inverse of Algorithm, then the following is also true.

Plaintext = ~Algorithm (Ciphertext, Key)

Thus, the sender receives the plaintext from the application and generates its ciphertext which is sent over the network. The receiver, on receiving the ciphertext, applies the reverse algorithm and extracts its original plaintext.

As both the algorithms discussed earlier use the same key value for encryption and decryption, they are known as symmetric key algorithms.

2.14 Substitution cipher and S-box

A substitution cipher replaces a character by another character or a block of characters with another. When the algorithm contains a substitution cipher as a small part that small part is usually denoted as an S-box. As discussed earlier, the hardware implementation is an important aspect of such algorithms.

Figure 2.9 depicts a simple method to implement the substitution cipher. Note that the same circuitry can work both as an S-box and a P-box. An S-box expects an input bit on each incoming line. Suppose we input ‘H’ to an S-box that contains 7 lines (7 bit) characters together for encryption.

[image:]

Figure 2.9: S-box and P-box

2.15 Transposition cipher and P-box

A transposition cipher does not change the character itself, but the order in which they appear in the text. As shown in Figure 2.9(b), the P-box converts the input string ‘Thisiste’ to ‘HiieTsst’.

The preceding example also illustrates the two building blocks used in a cryptographic system, namely, S-box and P-box. An S-box is a piece of code representing the substitution cipher, while a P-box is a piece of code representing the transposition cipher. Sometimes, the job is done by hardware which does the job of an S-box or a P-box.

Not only a P-box, but we may also use other methods as well to implement a transposition cipher. The only requirement is that the technique should reversibly shuffle the characters. In our example, if we supply ‘HiieTsst’ as an input on the right-hand side, then the P-box will produce ‘Thisiste’ on the left-hand side.

There is another simple method to implement transposition ciphers – it uses a key and an array. Suppose we need to send a message ‘This is a book on Cryptography and network security’ in an encrypted way and the key here is ‘Junglea’. Then, the transposition cipher can calculate the ciphertext using the following logic.

First, it writes the message after removing the spaces in between. The message now becomes ‘ThisisabookonCryptographyandnetowrksecurity’. It is now written in seven different columns, as shown in Figure 2.10, under the characters of the key. The transposition cipher is generated using the key (which is ‘Junglea’ in our example but can be anything else).

The algorithm works as follows:

	The key is written in the first row, keeping one row for ordering. The remaining cells are filled up by the plaintext message.

	The key characters are now ordered according to their ASCII sequence. Thus, “Junglea becomes aegJlnu”11.

	The columns are sorted to have the key characters sorted by their ASCII sequence (or any other sequence which was chosen).

The message is read from the third row and it is the ciphertext for a given message. Thus, the message “assTiihCnkbooorgtropydnyaahpkrwnotetiusrcefecydba” is the ciphertext. This message is generated by systematically collecting all characters of one row after another:

[image:]

Figure 2.10: Transposition cipher

In the preceding case, the output size is the same as the input size. They can be generated in such a way that the output size is different than the input size. For example, if we need to get one number from two numbers, we may multiply them. We may square a number to increase the number of digits. Strings can also be manipulated similarly considering their ASCII equivalents as numeric values. Doing this adds an important thing to the process, nonlinearity, which we will see in the next chapter when we discuss attacks and linear cryptanalysis; in short, it reduces possibilities of using matrices of ciphertext and plaintext and generating key vector by inverting ciphertext matrix and multiplying the plaintext matrix with it.

This method of using single word keys for ordering and changing the position of characters is different than the array-based method. In the first case, the arrays themselves represent a key while in the second case the string does so. Both produce different results for different keys. When a single array is used for all cases, it is the case for transposition without the key. For all inputs, the same array produces the output.

2.16 Rotor Machines

The Rotor machines are an extension of our discussion on S and P boxes. It is a method of substituting a character by another using a very complicated process, involving a multi-tier substitution process. It was used by Germans during World War II for their very popular machine ‘Enigma’. Alan Turing helped allied forces in breaking it to eventually win the war.

There are three interesting ideas merged into one in the design of Rotor Machines. First, the substitution is not fixed but changes with every character input. The idea is presented in Figure 2.11. In case 1, character ‘a’ is substituted by ‘q’, ‘b’ by ‘k’, ‘c’ by ‘p’, and ‘d’ by ‘y’, etc. In the actual rotor machine, it contains all 26 letters, but we took only 8 for simplicity. In case 2, the characters are shifted up. Thus, a is now replaced with x, b with z, and so on. In case 3, it again shifted up. The rotor shifts like that so after 26 shifts, it regains the original structure back. Thus, a single rotor acts like a Monoalphabetic substitution cipher with different combinations after each keystroke. After the 26th keystroke, it uses the same substitution. A single-rotor is not a very secure solution, and thus multiple rotors are used as depicted in Figure 2.11. Figure 2.11 describes three different possible rotor substitutions out of many:

[image:]

Figure 2.11: Rotation in rotor machines

[image:]

Figure 2.12: Multiple rotors

The combination of three rotors is shown in Figure 2.12. One can even have more. The first rotor moves exactly like the rotor shown in Figure 2.11. The second rotor moves only when the first rotor has completed all its 26 rotations and moved to the same state which it started with. Similarly, the third rotor moves only when the second rotor completes its cycle of 26 rotations. The first rotor moves with every keystroke, the second moves after every 26th keystroke where the first moves to its original position, the third rotor moves after 26 * 26 keystrokes where both the first (26th time) and the second rotor move to its original position. Thus, the rotor system of 3 rotors comes back to its original position only after 26 * 26 * 26 rotations. Every unique position of the rotor system represents a different substitution, and so we have a total of 26 * 26 * 26 possibilities. If we fear that this number is less than what we expect, we can easily add one more rotor to the system.

Such a system is quite strong. For example, if we have five rotors, several substitution possibilities are well over 11 million, which is infeasible to be processed in real-time, with the best of the computers today.

With that, we conclude this chapter. We have looked at symmetric ciphers and two important methods used in the encipherment process, substitution, and transposition.

2.17 Keywords

	Symmetric cipher: The process of encipherment where the sender and receiver use the same key for encryption and decryption.

	Brute force method: A method in which the attacker tries all possible combinations of the message or keys determining the plaintext given the ciphertext or the key.

	Cryptography: The method which helps the sender make the message difficult to understand for others but easy for the intended recipient.

	Passive intruder: An intruder who only listens to communication but does not try to do it.

	Active intruder: An intruder who tries to modify the message maliciously.

	Caesar cipher: When a character is replaced by another character by shifting them by one place in the ASCII sequence. For example, replacing a by c, b by d, and so on.

	Block cipher: When a block of characters (typically 8 or 16) is encrypted at a time.

	Stream cipher: When a single character is encrypted at a time.

	Substitution cipher: A character is replaced by another in the encryption process.

	Mono-alphabetic: A single character (an alphabet) is replaced by another.

	Random monoalphabetic: There is no statistic relation between a character being replaced and the character replacing it in a monoalphabetic cipher.

	Playfair cipher: This is the cipher marketed by Lord Playfair. It uses a matrix for replacing diagrams of plaintext into diagrams of ciphertext.

	Hill cipher: A method to encipher which uses matrix multiplication for encryption while the inverse of the same matrix is used in multiplication for decryption.

	Vigenere cipher: A method where multiple Caesar ciphers are used together.

	Vernam cipher: A method where XOR is used instead of adding mod 26.

	One-time pad: A method using a random key which is as long as the plaintext to XOR with the plaintext to generate the ciphertext, the random key is known as a one-time pad.

	Quantum cryptography: This is a method based on quantum computing where a one-time pad is generated using photons.

	Transposition cipher: A character’s position is changed in the encryption process.

	S-box: Typical implementation of a substitution cipher where a character to be replaced is connected with a character replacing it.

	P-box: Typical implementation of a transposition cipher where a character position to be replaced is connected with the position of the character replacing it.

	Rotor: A machine that connects a typical combination of 26 characters with another typical combination of 26 characters. After each keystroke is pressed, the connections are changed and a different combination is produced.

2.18 Recapitulation

	Kerckhoffs’s principle suggests that the algorithm must be public and secrecy should entirely depend on the key used.

	Traditionally, symmetric ciphers are used where the sender and receiver share the key which is used to encrypt and decrypt both.

	Cryptography is a study of converting the plaintext into ciphertext and vice versa.

	The two main components of symmetric encryption are substitution and transposition ciphers.

	Block ciphers encrypt an entire block of plaintext into ciphertext while stream ciphers encrypt the plaintext byte by byte.

	One-time pads are an excellent solution to a cryptography problem but difficult to share.

Conceptual questions

	What is Kerckhoffs’s principle? What is the significance of it in the current cipher development process?

	What do traditional ciphers entail? What is the need for using the word ‘infeasible’ rather than ‘impossible’?

	Why can’t substitution and transposition work alone? How are they combined in symmetric ciphers?

	What is a monoalphabetic cipher? What does it do?

	Explain the process of Playfair cipher encryption and decryption.

	What is the problem with a Hill Cipher? Explain.

	Differentiate between the Vigenere and Vernam Cipher.

	Why the one-time pad is considered best?

	Study about quantum cryptography and write a short note on it.

	Why is a rotor machine-based encryption is considered strong?

Problems

	Consider a symmetric cipher with a key “Network Security Book” used to add repeatedly to the plaintext to generate the ciphertext. What is the encryption for a statement “This is a chapter on symmetric cipher including DES, AES, and RC4? It also discusses the different modes of encipherment”.

	Consider a Caesar cipher with key -2 (that means c becomes a, d becomes b, and so on, b becomes z, and a becomes y). What will be the encrypted text if the input is “This is the network security book”?

	Consider a one-time pad is “123456789” and the message is “Network”. What will be the value of the ciphertext?

	Consider the transposition array as follows. What will be the ciphertext if the plaintext is “Security”. What will be the reverse mapping array values?

	
Current character position

	
Original character position

	
1

	
3

	
2

	
5

	
3

	
2

	
4

	
4

	
5

	
1

	
6

	
8

	
7

	
7

	
8

	
6

	Suppose we have an S-box as follows. What will be the ciphertext if the input is “Security”? Hint: Get ASCII values of each character and input them to the S-box.

[image:]

Figure 2.13

	Suppose if a P-box has the same design as the S-box, what will be the output if the input is “Security”?

	If the key to the transposition cipher is “Jungle” and the plaintext is “The quick brown fox jumps over a lazy dog”, what will be the ciphertext?

	Write a program to implement the Creaser cipher. The key is input to the program along with the plaintext. The program should output the ciphertext.

	Write a program to implement a transposition cipher. The program takes a message and key as input and generates a ciphertext.

	Write a program to implement an S-box. The plaintext is input and ciphertext should be the output. The program should also show decrypting by making the S-box work in the reverse order.

	Use the same key as discussed with the Playfair cipher, encrypt ‘Hi’.

	Use the same matrix as given in the discussion of the Hill Cipher and encrypt ‘Why’. Show how the receiver will decrypt it.

	Use key “network” and encrypt “This is a book on security” using the Vigenere cipher.

	Use the array depicted in Section 2.11 and encrypt “Network” using a transposition cipher.

	Use key “security” and encrypt “This is a book on security” using a method based on Section 2.15.

1 Encryption converts the plaintext into the ciphertext, while decryption converts the ciphertext back into its original form, the plaintext.

2 For the same algorithm and different keys, the shuffling of bits must be different so much so that it would be impossible for somebody to decrypt the message without complete knowledge about the key.

3 One more concern is the implementation of these methods as well. Most of the attacks today are based on the vulnerabilities found in the program code of the implementation and exploiting them.

4 To keep the discussion simple, we have ignored the space characters which in normal case will be substituted by its next character (!) or just removed altogether before encryption. The resultant plaintext at the receiver will not contain spaces. The reader will judge the place of the space in the decrypted text himself.

5 This is a valid step in any programming language where integers and characters are interchangeable like C. The addition of n to a character Ch adds n to the ASCII value of Ch. If the result is also an ASCII value of a valid character, the result is that character. For example if Ch is A, and we write Ch += 2; Ch becomes C.

6 Why? Out of 26, the first character can be placed at any of the 26 positions, the second character can be placed at any one of the remaining 25 positions, the third character can be on any one of the remaining 24 positions, and so on till the last character can be placed on the only space left out which makes it 26*25*24…..*1 = 26!

7 That means if two different combinations ab and ac are being converted to a ciphertext, the representation of a is different in both cases. The ensuing discussion exemplifies the same.

8 When a 3*3 matrix M1 is multiplied with a 3*1 matrix M2, we have a 3 *1 matrix as an output (first dimension of the first matrix and second dimension of the second matrix), each row of the resultant matrix is calculated as the summation of multiplication of respective elements of the row of the first matrix and column of the second matrix. In the preceding case, 8 = 1 * 0 + 2* 1 + 3 * 2 for example.

9 “Computer Networks” by the same publisher, Oxford University Press

10 A complex function changes the position of characters in a way that it becomes impossible to extract their original positions back without knowing the key. A function is considered better if it is easier to compute and better still, if it can be implemented in hardware.

11 If the characters are repeated in the key, only one copy of them is kept.

CHAPTER 3

Block Ciphers and Attacks

Structure

Learning objectives

3.1 Introduction

3.2 Cryptographic systems

3.3 Symmetric key algorithms

3.3.1 The ideal cipher

3.3.2 Confusion and diffusion

3.4 Block ciphers

3.4.1 Digital Encryption Standard (DES)

3.4.2 3DES

3.5 Attacks

3.5.1 Brute force attacks

3.5.2 Random and replay attacks

3.5.3 Cryptanalytic attacks and cryptanalysis

3.5.4 Computationally secure algorithm

3.5.5 Attacking block ciphers using non-cryptographic attacks

3.5.6 Differential analysis

3.5.7 Linear cryptanalysis

3.5.8 Timing analysis

The Feistel Structure

How decryption is done

Learning objectives

After the completion of this chapter, the student should be able to:

	Describe the architecture of cryptographic systems

	Narrate the process of conversion of a plaintext into a ciphertext

	List the requirements of symmetric cipher algorithms and encryption systems

	Provide examples of random and replay attacks and methods to thwart them

	List the requirements of an ideal cipher, provide confusion and diffusion in the encryption system, and hide the statistical properties of the plaintext in the ciphertext

	Explain what block ciphers are and their functions

	Explain the functioning of DES and 3DES

	List and describes brute force, random, and replay attacks

	Explain cryptographic and non-cryptographic attacks and the difference between them

3.1 Introduction

We have seen the encipherment process in the previous chapter. In this chapter, we will look at traditional block ciphers, desirable characteristics of the encryption algorithms, and a few attacks possible on those ciphers and remedies. We will look at the requirements of block cipher operations in this chapter. Annexure 1 describes one of the most popular methods to block ciphers. We will briefly mention the DES or Digital Encryption Standard as one of the most common block cipher used so far. We will look at another block cipher (AES) in Chapter 10: Advanced Encryption Standard, which is currently the most popular block cipher. We will start with the discussion on cryptographic systems.

3.2 Cryptographic systems

Cryptographic systems are classified based on three attributes generally. They are listed as follows:

	How a plaintext is converted to a ciphertext and how substitution and transposition are performed on data. Most of the systems, including DES which is described in this chapter and the technique it is based on, the Feistel structure, described in Annexure 1 and AES which is covered in Chapter 10: Advanced Encryption Standard, use multiple rounds of substitution and transposition. It is needless to state that such transformations should not result in any information loss as the receiver is required to regenerate the same message.

	Whether the algorithm is symmetric or asymmetric. The symmetric algorithm requires a single key and an asymmetric algorithm requires two keys. Also, both algorithms are different in many other respects as well.

	There are two ways in which inputs are processed. In one case, the input is picked up in a block of 8 or 16 bytes and the corresponding ciphertext is generated also as a single block of 8 or 16 bytes. In the other case, it is processed byte after byte and the ciphertext is generated byte after byte. The first category is known as a block cipher while the second category is known as a stream cipher. We will describe block ciphers in this chapter while stream ciphers will be discussed in the next chapter.

KIM: A cryptographic system describes the process of encryption as well as decryption and the components involved.

3.3 Symmetric key algorithms

Both substitution and transposition ciphers, in their pure form, are too trivial to be applied in real cases. However, their complex combinations make the ciphertext very hard for an intruder to break. We will discuss a few properties of a symmetric key algorithm here. For understanding and comparing such algorithms, we must understand the attributes that make a good algorithm.

Desirable properties of a symmetric key algorithm

Symmetric key algorithms, where the sender and receiver share a key, can be constructed in many ways, but there are a few desirable properties that make them more suitable or acceptable in a given situation. Most of these properties apply to other breeds of algorithms as well known as asymmetric key algorithms or public key algorithms for short.

	In symmetric key algorithms, it is a prerequisite that both the sender and the receiver have a copy of the same key. Otherwise, it is impossible to have an encrypted communication. Some algorithms use an additional key exchange part that precedes the actual transmission. In that case, the sender sends the key to the receiver in a way that others cannot look at it. There are many ways to do it; we will look at some of them later. Once the key exchange part is over, both parties can use this key and exchange encrypted data. Sometimes, the key is exchanged in a non-networked way, for example, through phones, SMS, and email. Some credit card companies supply code to the users by mail or hard copy which they can use later as a key, for example.

	Ciphertexts generated from seemingly similar plaintexts must be substantially different. The best solution is to have 50% changes in the ciphertext for every 1-bit change in the plaintext.1 In the case of public algorithms, an attacker can always provide an arbitrary input to the algorithm and check the ciphertext generated from it. If the ciphertexts generated are not substantially different from each other, then a hacker can find out the pattern of change and decode the data. All it takes for a hacker to compare a few plaintexts and their respective ciphertexts to decode the pattern and break a ciphertext for which he has no key or plaintext.

	An algorithm should have multiple rounds of encryption. It enables the algorithm to shuffle the bits around in a way that every bit of output is affected by every bit of input. Thus, it becomes harder to guess anything about the plaintext from a given ciphertext.2

	When an algorithm is made public, industrial researchers and people from academia try to find different ways to break it. When none of them can do so after a reasonably long period of time, the algorithm is automatically proven to be secure. When an algorithm is made public, this is the advantage.

	A good algorithm should support easy implementation and if possible, it should be embedded in the hardware. Thus, the algorithm can work with small handheld devices and mobile phones as well as tiny IoT devices.

	The algorithm must accept a variety of key values. For example, normal users who send a few emails may do without any encryption. A user who uploads his personal information may need a bit of encryption, a teacher uploading the marks needs a better level of encryption, while a national security agency working on national classified information requires the most complex level of encryption. Therefore, a good algorithm must be flexible enough to support multiple sizes of keys so that it can work at various levels of complexity. It is important to understand that longer keys take more time to process and slow down the operation. Hence, it is not advisable to use long keys unless required.

	Usually, symmetric key algorithms are reversible multistage algorithms and work in the block mode. It means a block of plaintext is taken and converted to a similar size ciphertext. These algorithms are multistage, as they operate in multiple states one after another. They are reversible, as the receiver decrypts what is encrypted by the sender.

KIM: Longer keys provide a higher level of security at the cost of speed of encryption.

Additional measures while encrypting

Apart from using the algorithm, there are other measures one must take to provide strong encryption. Normally, strong protocols like Kerberos are deployed and the algorithms that we are discussing here are used as one of the components:

	The encryption system should allow enough redundancy in the input data to avoid random value attacks. We will later see what does this mean when we discuss a random value attack.

	A good encryption system should have mechanisms to differentiate between fresh data and replayed data. A replay attack occurs when somebody plays back a conversation and the system is fooled into believing that the input is fresh. We will later see some examples of a replay attack and methods to thwart the same. The encryption system that houses the algorithm should provide them.

	Encryption alone does not serve the purpose of those protocols where a sender is remotely authenticated. There are quite a few tricks required to handle the case. One major requirement is to identify senders and receivers uniquely, using a method called authentication.

KIM: Certain requirements demand complex protocols and other techniques to be used along with encryption algorithms for providing solutions to problems like random and replay attacks and authentication.

3.3.1 The ideal cipher

What is the best method for encryption? We have looked at a one-time pad as one typical solution. There are many other attempts made in the past. Feistel, who introduced DES, describes his version of an ideal cipher as an arbitrary mapping from plaintext to ciphertext. Let us take a look at a 3-bit example to understand.

For a 3-bit binary value, there are 23, a total of 8 values possible for the plaintext, as mentioned in Figure 3.1. There are three different mappings shown in the figure but a total of 8 * 8 = 64 possible mappings can be drawn. Any of the mappings may be chosen for encryption process:

[image:]

Figure 3.1: Three different mappings from plaintext to ciphertext in case of plaintext and ciphertext being 3 bit in size

The idea is simple. Both the sender and receiver need to have only one table out of many for their chosen mapping. Once they decide that, any 3-bit input will be converted to the 3-bit output on the right column of the same table. The conversion is completely arbitrary and thus, the statistical property of the input is completely lost and it is almost impossible for the attacker to examine the ciphertext and make any guesses about the plaintext. This can address many issues raised in the previous chapter.

Unfortunately, 3 bit is too small a value, and if we pick up a 128-bit value (which is considered secure currently), we need a table of size 2128 = 3.4028236692093846346337460743177e+38 which is practically impossible to store and use. Thus, this ideal cipher mechanism is (unless we have some mechanism to store and retrieve this large amount of data without much trouble securely) is impractical.

If the entire table cannot be stored, can we generate that table? We can, but we need a mechanism to do so. We can write an equation of some sort, assuming a total of 128 plaintext bits to have 128-bit ciphertext bits. Here, Weighti-j indicates the weight used to calculate ith bit as a coefficient for jth term.

First Ciphertext Bit = First Plaintext Bit * Weight1-1 + Second Plaintext bit * Weight1-2 + … + 128th plaintext bit * weight1-128 ……

128th Ciphertext Bit = First Plaintext Bit * Weight128-1 + Second Plaintext bit * Weight128-2 + … + 128th plaintext bit * weight128-128

You can understand that this mechanism can produce all of the preceding tables with different weight values. For any given table, we must not store the table but the weight values. However, the weight vector, in this case, is 128 * 128 =16384, not as daunting as the earlier case, i.e., weight vector management is possible to be done in real-time, unlike the earlier case, however, and it is vulnerable to attacks. This is Hill cipher with binary values and so vulnerable due to its linear operation.

3.3.2 Confusion and diffusion

Claude Shannon proposed his version of the ideal cipher in his paper ‘communication theory of secrecy systems’ in 1949. He concentrated on reducing the possibility of guessing the plaintext or the key from ciphertext using the statistical properties of ciphertext and plaintext. He introduced two different concepts known as confusion and diffusion.

Confusion is about concealing the relationship between the key and ciphertext while diffusion is about concealing the relationship between the plaintext and ciphertext.

The ciphertext is a function of plaintext and the key and thus depends on both of these values. An attacker tries to deduce that relationship and thus reduce the work of getting the plaintext or the key from the given ciphertext by using just the brute force (trying all possible cases) attack. The designers cannot eliminate the relationship altogether and thus the idea is to make that relationship as complex as possible. The ideal cipher based on the table of plaintext-ciphertext values that we have discussed earlier is quite attractive from the diffusion point of view. The relationship between the plaintext and ciphertext is non-existent if the values are randomly chosen and thus, it is very hard to break.

The confusion is achieved by the substitution process that we have seen before. The key to ciphertext dependency is reduced when multiple substitution rounds are used. Diffusion is helped by any method which provides the avalanche effect; that is, changing one bit of plaintext changes nearly 50% bits of ciphertext. When we use a product cipher of some sort which processes the plaintext in multiple rounds, changing it a bit each time, using either substitution or transposition or something else in each round; for example, a small change is multiplied in the output and diffusion is achieved. Thus, it is harder to decipher the relationship between plaintext and ciphertext by looking at a few samples or generating a few pairs. As substitution helps confusion, transposition complicates the relationship between the plaintext and ciphertext and thus helps diffusion. Another method used to diffuse is called a permutation. In permutation, the sequence of the character is changed, the characters themselves not. This is achieved by applying transposition of some sort to the sequence. Most block ciphers, including DES and AES use one or the other form of permutation.

The idea of confusion and diffusion is found to be so good that most ciphers used them; even modern ciphers continue to use them. Can you see why a one-time pad is considered good? It provides both confusions as well as diffusion.

KIM: Confusion and diffusion were proposed in 1949 but are still applicable.

3.4 Block ciphers

Neither transposition nor substitution cipher is used in isolation. Usually, they are combined in a complex way to generate the ciphertext that cannot be decoded easily. The ciphers that use a combination of substitution and transposition in their logic are known as product ciphers. Product ciphers are usually applied to a block of input to produce a block of output data. Methods conventionally applied to block ciphers can also be tricked to provide stream encipherment.

KIM: Block ciphers take blocks (of designated length) of plaintext and generate blocks of ciphertext, usually of the same size.

[image:]

Figure 3.2: The block encryption process

Block ciphers take more than one character as input and generate a ciphertext of the same length. For example, DES uses a block size of 8 bytes and AES uses a block size of 16 bytes. These block ciphers are used to convert the plaintext to its ciphertext at the sender and vice versa at the other end. Figure 3.2 illustrates how block ciphers operate on a message.

First, the message is divided into blocks. (AES requires blocks of size 128 bits so message, which uses AES as an encryption algorithm, is divided into 128-bit size blocks of each). A round key (which is generated from the main key) is applied to the plaintext block to generate a corresponding ciphertext block for one particular round. There are multiple round keys. The encryption process is shown as a circle in the process. That process usually is carried out in multiple stages which are not shown in the figure for simplicity. One such case is shown in Annexure 3.1 using a Feistel cipher.

3.4.1 Digital Encryption Standard (DES)

DES was the first popular encryption standard which remains in vogue for almost twenty years. It was originally designed by IBM and later adopted by NIST (then the National Bureau of Standards (NBS)) with a tweak. It was a method for unclassified encryption.

The original DES is no longer considered secure3 but a later version, known as 3 DES, which applies the same DES process in three different rounds, are still in use:

[image:]

Figure 3.3: An overview of DES

Let us brief about DES. It is quite similar to the process depicted in Figure 3.2 where each block is processed as described in the following:

	The plaintext is provided as 64 bit or 8-byte blocks, and the output is a 64-bit ciphertext.

	The user-specified 56-bit key is divided into multiple 48-bit keys to be used in each round.

	The algorithm is published in public except for an S-BOX used in the process4.

	Out of 19 rounds, 2nd to 17th rounds use round keys; first and the last round did not use any key, but a transposition cipher in forward and backward direction.

	The 18th round swaps both halves of the block.

Figure 3.3 shows an overview of a DES single block process. It shows how these 19 rounds are processed. Annexure 1 describes how each round is processed.

17 rounds shuffle the bits around to the extent that a single output bit depends on each of the bits. Thus, the avalanche effect is achieved. Though DES was used extensively for nearly two decades, it was not without controversies. One of them was a fear in the mind of users that NIST has built a backdoor for themselves, so they could decrypt anybody’s transmission.

KIM: Despite multiple controversial attributes, DES was found quite useful and survived quite long.

When the block size of 64 bits was found too small for security reasons, some researchers solved the problem using a 3 round version of DES, known as 3DES or triple DES described in the next section.

3.4.2 3DES

3DES uses three rounds of DES, produces the ciphertext using plaintext and two keys, Key1 and Key2. It is described as follows in short:

Ciphertext = Encrypt(Decrypt(Encrypt(PlainText,Key1)),Key2),Key1)

Encrypt is encryption by DES and Decrypt is decryption with DES. The plaintext is first encrypted with key1 (shown as the underlined portion), then decrypted with another key K2 and again encrypted with key k1.

Figure 3.4 shows the steps involved in the triple DES:

[image:]

Figure 3.4: Triple-DES

One should use AES and not 3DES for any new system development. AES is better in more than one respect. It is faster in operation; deployment in hardware is possible and is proven secure as it is using 128-bit blocks and based on Galois Field theory that we explore in Chapter 5: Algebraic Structures.

3.5 Attacks

No encipherment process is complete if not capable to thwart attacks. It is imperative that we describe some of the most common attacks on symmetric ciphers and brief about what a symmetric algorithm designer should do to thwart them. Here they are.

3.5.1 Brute force attacks

A brute force attack is one of the simplest types of attacks. It is about trying every possible combination of something. For example, if for an encrypted file with the key size of 16 bits, an attacker may try using the key as 0000000000000000, 0000000000000001, 0000000000000010, …., 1111111111111111 one after the other and see if any key produces a plaintext. This is the most common method to use. The problem with this type of attack is that it takes a huge amount of time and when the size of the item to be processed is large, it is just infeasible to apply in real-time. All security solutions are designed to at least thwart the brute force attack.

3.5.2 Random and replay attacks

Here is a discussion of two of the most common types of attacks. The first one is known as a random attack and the second one is called a replay attack. Both are so common that no encryption system is designed without a way to thwart them.

A random attack occurs when an attacker supplies a random value as an input and the system considers it to be a valid input. In a way, the attacker may try any random value as an input into a typical field without really knowing what it is but still be able to confuse the system. For example, if an attacker can try a random value in a credit card number value and CVV number value. If it is his lucky day, he will be able to use that card for his purpose without really knowing who the owner of that card is and if the content is encrypted what the actual number of that card is. He can virtually purchase everything on earth without having any real money. Similarly, if an attacker can type any random value in prepared voucher information, he can get his phone recharged without any money! Telephone companies that provide such services would go bankrupt! The attacker may try slipping in multiple random numbers generated to try his luck.

Almost every designer is aware of this and the systems are designed with the aim in mind to thwart this random attack. A common strategy is to provide some redundant information based on the content and adds that to the number. For example, a 20 digit recharge voucher number is only an 8 digit value and additional 12 digits are designed based on those 8 digit value. That means, if one picks up a random value, it is almost impossible for him to get the right value. So, such an attack is highly unlikely to be successful. Not only that normally designers of such systems also provide a cap on a number of attempts on a given day as well as set a deadline for such recharge vouchers; thus, eliminating any possibility of somebody trying a large number of alternative values in a day. The code must be properly designed for such a system.

Suppose a database contains a secure ID for each user. Assume there are 100 such users and we are having the id field containing 3 digits. Now, the database is made extremely secure to ensure nobody gets that secure code. It is possible for anybody to enter a specific web page on entering that secure ID. Only those users with secret ids can reach that page. Now, if an attacker tries to reach that page and types the URL, the page prompts for the security code. The attacker now types in a random 3 digit number. What is the probability that the code typed in by the attacker is valid? In all probability, an attacker may get access by trying 10 times on an average! (For a total of 1000 values, from 000 to 999, 100 values (random values assigned to different users) are valid, when an arbitrary value is entered, it is possible that on an average one out of ten entries would match with any random number given to a specific user!) This is what is known as a random attack! Any system that is designed must have the ability to thwart this type of attack. The preceding system is not acceptable.

KIM: In a random attack, an attacker provides a random value in the input field and expects it to be accepted as valid.

Figure 3.5 describes the concept. The attacker just fires a random value; the receiver decrypts and accepts that as a valid value:

[image:]

Figure 3.5: Random attack

Exhibit 3.1: Seriousness of first level access to the system

Sometimes, it is assumed that an attacker cannot do much damage after getting access to a normal user account, but it is not so. After getting connected to a network, it becomes easier for the attacker to attack the system. It is because the attacker can launch and run programs like key loggers that log everything running on the network and may even find the administrative-level login name and password. Another option for an intruder is to run a sniffer program that captures every packet on the network and looks for specific information or higher-level usernames and passwords. The third (and most likely) option for an intruder is to find a vulnerable application running on the machine and exploit it by either escalating to a higher privileged account or getting information which otherwise is not possible. One such example is a password cracker program. It tries a few tricks with a brute force attack. A password cracker tries every possible combination of alphanumeric characters to check whether a combination is a password. It may also ask for some personal information about the victim and can combine that with the brute force attack. For example, it can combine the car numbers and birth dates in applying the attack. Additionally, a dictionary attack can also be launched where if the password is a word that belongs to the dictionary, it can be picked up.

To avoid random attacks, the encrypted fields’ address space must be very large and only a few values in the address space should be valid ones. In the case of passwords of eight characters, for a given user, only one is truly out of the total combinations of 368 if we consider only alphanumeric characters (26 letters and 10 digits5). Now, compare this with the other case of numeric code of 3 digits with 100 odd valid values. The attacker has a fair chance to pick up one correct value with a few attempts. That is the reason such strings are usually very large (in the prepaid voucher case, it is sometimes 12 to 20 digits long). One more strategy to avoid random attacks is to limit the number of attempts. Consider the case of ATM PINs. They are usually of 4 to 5 digits. It is quite possible for somebody to steal an ATM card and try all possible combinations of all those digits manually. If the ATM invalidates a card after a few (usually 3 to 5) unsuccessful attempts, such attacks have very little chance to succeed. In some cases, the system deploys such stringent rules for passwords as well.

In this case, the user who supplies some specific number of incorrect passwords is suspended for a while. Unfortunately, such measures sometimes result in customer dissatisfaction and network administrators need to resolve the case by providing a less secure system (like restricting the PIN to just four digits or allow five attempts for a password when usually two attempts are enough for most cases). Another strategy is to limit the lifetime of the code; for example, the OTP is valid for half an hour, etc. to reduce the number of tries one can have in that period.

Let us summarize the solutions to random attacks:

	Use a string longer than required with redundant values dependent on original values such that the possibility of getting a correct value randomly is almost zero.

	Restrict a number of attempts and provide a deadline for validity.

KIM: Redundancy is a key feature in secure solutions to thwart random attacks.

Another such attack is known as the replay attack (Figure 3.6).

Suppose Sachin goes to an online shopping website and purchases something using his bank details. Assume the attacker records everything Sachin does over this conversation completely. Once Sachin completes his purchase and goes offline, the attacker repeats the same process, if possible multiple times. If the attacker is successful, the website assumes Sachin to purchase the same item again and again and the bank also assumes these transactions to be genuine and deducts money from Sachin’s account and credits it to the website’s account accordingly. This will eventually empty Sachin’s bank account! A smarter attacker launches his website and lures Sachin to come to his website (probably, using a very attractive offer on something which Sachin is already interested in). Now, the attacker is getting all the money for Sachin’s purchase!

It is clear from the preceding discussion that it is important to prevent an attacker from playing an old (recorded) transaction to impersonate as the genuine user. One way to do so is to include a TIME attribute in the transaction process. The sender always provides timestamps in the communication process. On receipt, the receiver can easily see that the message is fresh or stale based on that information. A message with recent timestamp is genuine and old timestamp is stale! Problem solved! However, there is another catch. Sometimes, the sender and receiver belong to different time zones and their servers are not also properly updated with time value. That introduces a typical time lag between a genuine time and the timestamp. Other measures are also needed to strengthen that scheme.

Another method to thwart this attack is to use a one-time credit card. It is a virtual card that can only be used once for a typical transaction for a typical period of time only with an amount of user specifies. For example, HDFC bank offers a NetSafe card with a typical card number, CVV values, the amount that you specified and a typical validity period. Once you have generated such a card, you may use them during that period for once. If the attacker records that information, it is not useful as this information can only be used once. Another point is when the user needs to spend 10,000, he only specifies that amount in the process of generating the NetSafe card. This card has two important advantages, it is of the fixed amount the user wants, 10,00, 20,00 or whatever the user wants to spend for that particular transaction. What if some money is saved? For example if we have got the NetSafe card with 15,000 and spend only 10000? The remaining 5000 cannot be used as the card is for a single use only. Such remaining amount is transferred back to the original credit card. So, once that transaction is over, it either does not have any amount of money or already used once so not useful.

The replay attack also involves a conventional username password process. What if an attacker records that transaction? The encryption does not help here. Look at Figure 3.6. When the user encrypts and sends the password pass as Epass (encrypted password) and attacker records that, the attacker has to only replay that value. The receiver will accept him as a valid user. The username and password mechanism used by operating systems is not this weak. We will learn more about that process when we learn about Kerberos later in Chapter 15: User Authentication using Kerberos:

[image:]

Figure 3.6: Replay attack example

KIM: A replay attack is about replaying the genuine conversation by the attacker at later times in the hope to get some work done without the knowledge of secret key or authority.

A method called two-factor-authentication is sometimes used to avoid authentication replay. One of them, a very common form, is known as a one-time password (OTP). It works as follows. The server, on request from the sender, generates a random value which is valid only for a brief period. The value is sent back on another channel, normally over phone or email to the user. If the user successfully sends the value back to the server, it ensures that the user does not only exist and there is no replay of an old value, it also ensures that the user is in the possession of the phone.

KIM: In two-factor authentication, the user is checked for two things; first, the knowledge of username-password and another, possession of something else, a credit card, an email id, a mobile phone, or a device.

Another approach is to use some form of fresh value every time the transaction is made. Nonce (or N once) is a random value sent to the user when he is about to transact, the user provides that to the system while communicating. When the sender gets the same random value as Nonce, it is convinced that the reply is fresh. OTP is also a type of nonce. As it is used only once, a replay attack is surely going to fail.

There are a few other techniques which we will observe in Chapter 14: Key Management and Exchange.

To conclude, both random bit pattern attacks and replay attacks are important and they should be taken into consideration while building a secure system.

3.5.3 Cryptanalytic attacks and cryptanalysis

It is time to recall something that we mentioned in the first chapter. We stated about cryptanalytic and non-cryptanalytic attacks. For example, the passive and active attacks belong to the attack type called non-cryptanalytic attack. They had no relation to the cryptographic process at all. The other type of attack is called non-cryptanalytic attacks which exploit the vulnerability of the cryptography process. Let us briefly look at non-cryptographic attacks here.

As there are designers who work on designing newer cipher techniques, the attackers and testers work on cryptanalysis or breaking the cipher. Breaking the cipher means one can get the plaintext from the ciphertext, without having the key.

Sometimes the attacker, instead of getting the plaintext from the ciphertext, gets the key from other parameters. Even when he is capable to get the key he will be able to decode the ciphertext into plaintext and the result is the same.

That means cryptanalysis is a mechanism of discovering either the plaintext or the key. Normally, cryptanalysis exploits the inherent weakness (known as vulnerability) in either the algorithm itself or the key generation process. The designers need to study cryptanalysis to design a better cryptographic process or encryption algorithm for encryption which can withstand such attacks.

The very idea of cryptography begins with making the transmission content unintelligible for the onlookers, including the attacker. On the other hand, the intruders keep on trying to figure out and if possible, break the transmitted data (which is processed cryptographically), and learn about the content being transmitted. It is a kind of battle virus writers and antivirus companies fighting for years. Both parties try to top the other one with better ideas and solutions. There are potentially infinite ways to code as well as attacking the system so it is unlikely that this battle ends in the near future.

The critical point to note is the study of such attacks and the ways attackers attack the system is to make sure that the systems that we design should not fall for those attacks at least.

KIM: The study of cryptanalysis; i.e., the ways the systems can be attacked, helps in better design of solutions that we design to protect ourselves from those attacks.

A typical way to cryptanalysis the substitution cipher, for example, is to look at the frequency of letters, two-letter and three-letter combinations (known as diagrams and trigrams, etc. As the substitution cipher does not change the position of the characters, only substitute them for other characters, one can find out the frequencies of each character. Let us understand it by a simple example. Now, if one finds a typical character z is used many times. Linguistics and most common readers are aware of the fact that most used characters are t, f, j, etc. Suppose another frequently occurring combination is found to be zv. If z is t, v is most likely to be h as ‘th’ is a common diagram. If we find zvx a commonly used trigram, x is very likely to be e as ‘the’ is again a very common trigram. This is how one can get the substitute values.

Transposition ciphers, on the contrary, can be attacked if the length of the key is properly found. For example, assume a simple transposition moves every character 6 places apart based on the key length. If t and h are found to be 6 characters apart in multiple cases, it is very likely to be a 6 character key that separates these two characters. One can also look at some other known combination; for example, a and n, so see if the initial guess is right.

No secret algorithm uses both substitution and transposition ciphers in their raw form. Both of them are combined with some smart tricks to make the job of the attacker difficult.

KIM: Substitution and transposition ciphers in their native form are not advised to be used as they can be easily attacked.

The attacker can do a few things to find out the relation between the plaintext and ciphertext to learn about the key. He can work in a few different situations where he has various degrees of access to the information. Researchers have categorized them into four common ways. Let us look at them.

Ciphertext only problem: In this case, the attacker only has access to the ciphertext of the content. This is the toughest problem. We assume the algorithm to be a known part of the process. One possible attack is a brute force attack on the key. The attacker systematically tries all possible combinations one after another to see if he receives some intelligible plaintext after the decryption. However, if the keyspace (number of keys possible based on the size of the key itself) is large, this operation is not feasible, i.e., not possible to be completed in real-time. There are a few other points to note. If the plaintext is a normal document, it is fine; otherwise, the attacker must know the type to open the file. For example, it is impossible for somebody to understand anything if a word file does not have a doc or docx extension, and we try to just open and see the content using another application.

The other option that the attacker may try is to find some statistical properties of the ciphertext as well as the plaintext and learn the relation from it. Interestingly, the discerning relation is more feasible if the ciphertext is long to preserve the statistical properties of the language. Suppose if the attacker has “xm%^” and nothing else, the attacker won’t be in a position to find any meaning of that four-letter word. However, if an entire book on Cryptography and Network Security is available, there are many avenues where the attacker can try looking for clues and deducing the key.

The ciphertext only is the toughest problem and thus easiest to defend. Almost all algorithms, barring trivial algorithms, can withstand this. However, the attacker often has more information that ciphertext only problem can provide. Let us discuss the next case where the attacker has some pairs of plaintext and corresponding ciphertext (but no key) known as a known-plaintext attack.

Known plaintext problem: An attacker might stumble upon some valid plaintext with the corresponding ciphertext. (How? There are a few ways, looking at backup files of the victim, looking at his used printouts in the dustbin is the other). Official documents have predefined headers and footers and the attacker can easily guess those values as part of documents being transmitted. If there is an encrypted version of this book available over the web only for the valid users who have the key to decrypt it and read, the attacker may buy (or borrow) a text version and he has the pair. When Excel or Word files are prepared, they have some predefined headers and footers and thus, the encrypted part also carries them. Another case is about a document belonging to a typical domain. When we know that the domain is security, for example, we may try finding words like key, encryption, authentication, attack, intruder, and so on.

This attack is also known as the probable word attack. The attacker will have some ciphertext related to some known plaintext. The attacker - or analyst-can de-code it to guess key or part of the key.

An attacker may have the underlying algorithm and he can make users apply it on different plaintexts to generate their respective ciphertext. (How an attacker can do it, many ways to do so, one way to make sure users buy something from your web site and send confidential information to be passed to a financial company. The attacker has what he sent, and he can also capture when your web site sends those things in the form of ciphertext to the financial institute (Bank or a payment gateway). In this case, the attacker has both, plaintext and corresponding ciphertext even when he does not have any idea about the key that you used. An attacker can influence the sender to insert some specific plaintext in the message to learn about the ciphertext. This method is more efficient in finding out the relation between plaintext and ciphertext. This is known as the chosen plaintext problem. Almost all good block ciphers are designed to withstand the chosen-plaintext attack. Thus, the designers expect an attacker to have some known plaintext inserted inside the message. A similar type of attack is known as a chosen-ciphertext attack where the intruder has chosen a typical set of ciphertexts and gets the corresponding plaintext. In this case, an attacker can provide some ciphertext to the system and generate the corresponding plaintext from it. The algorithms designed for the only chosen-plaintext problem sometimes fail when an attacker can deploy the chosen ciphertext.

KIM: Making sure the cryptographic algorithm withstand the chosen plaintext or chosen ciphertext or both attacks is to make sure the algorithm can work even when the attacker has pairs of ciphertext and plaintext of his choice.

When an attacker has both options, chosen-plaintext, and chosen-ciphertext, it is known as the chosen text problem.

One may wonder why one would like to give the attacker a chance to play with plaintexts to generate ciphertexts or vice versa. We do not give any chances to the attacker here, but we expect the worse part of it; we expect him to somehow launch a chosen plaintext or chosen ciphertext or both attacks. Our algorithm must be ready for it. If a cryptographic system is to be sold, then attackers can also purchase it and play with it. He can launch an offline attack if he gets the ciphertext of the user’s communication with any third party. He might try a brute force attack to find out the key for decrypting the same ciphertext. We must expect the attacker to have that kind of flexibility and should use the size of the key which is not vulnerable to the brute force attack. Getting copies of the plaintext and ciphertext encrypted with the user’s keys are also not difficult in many cases. Sometimes, the copies are available on the user’s machine, so somebody with physical access to that machine can easily have it. Sometimes, they are available for system backups (and admin has forgotten about them), and sometimes, the user himself throws it away (in the form of a hard copy) in the dustbin and the attacker gets it from there, and so on. Fortunately, if the algorithm is designed to withstand this attack, users can be relaxed a bit.

One important reason for keeping the algorithm available for everybody is to invite others to try and break it. If nobody is successful after a substantial amount of time, probably the system is secure enough. Table 3.1 summarizes the idea:

	
Type of attack

	
What is available to the attacker

	
What attacker looks for

	
Comments

	
Ciphertext only

	
Only ciphertext

	
Key, statistical properties in the message

	
The toughest problem for the attacker

	
Known plaintext

	
Some plaintext and related ciphertext

	
Known headers, footers, find relations between them and their encrypted versions

	
A clever attacker might get some idea about key with sufficient information

	
Chosen plaintext

	
The attacker chooses some plaintext for which he gets the corresponding ciphertext

	
How typical plaintext with specific patterns results into ciphertext

	
If the algorithm is poor, the attacker can easily break it. Most of the good algorithms are designed to combat this attack.

	
Chosen ciphertext

	
The attacker chooses some ciphertext and gets the corresponding plaintext.

	
How typically a ciphertext corresponds to a plaintext

	
Sometimes, even seemingly strong algorithms fall for this.

	
Chosen text

	
Both the chosen plaintext and chosen ciphertext are available.

	
How a plaintext to ciphertext and vice versa is related.

	
Best case for an attacker.

Table 3.1: Different types of Cryptanalytic attacks

3.5.4 Computationally secure algorithm

An algorithm is computationally secure if it is infeasible to break. That means as follows:

	The cost of breaking the cipher is more than the cost of information that is released. Suppose one attacks an accounting message and after breaking it is able to get a banking transaction in favor of the attacker. Suppose the banking transaction is worth a hundred thousand dollars (one lakh dollars), and if the cost of attacking it is more than that (you may need to pay two hundred thousand dollars to the insider to get confidential information), then it is not worth it.

	The time taken to break exceeds the useful time period for the information. If the financial information about the company is available before the company announces its quarterly result, it would be useful. One more example is an encrypted test paper that might require five days to decrypt when the exam is two days away makes no sense for a student attacker to try.

The interesting and difficult part of the preceding exercise is to estimate the time and cost of the break. It is very difficult. We can only estimate about cost and time if we consider the algorithm is mathematically sound and there is no indirect way of breaking. The estimate is calculated based on brute force attack; i.e., trying all possible combinations of the key. As per the law of averages, approximately half of the keyspace is required to get the plaintext back.

KIM: A computationally secure algorithm has two attributes; it takes more time to decode information than the important life of the information itself or/and it takes more amount of financial resources than what it can generate for the attacker.

3.5.5 Attacking block ciphers using non-cryptographic attacks

Block ciphers like AES are often subject to attacks (it is the most attacked cipher so far). However, AES is still not yet known to be broken by any attacker, so considered quite robust. Let us try to see some of the common ways to attack block ciphers in a non-cryptographic fashion. The first one that we look at is known as differential analysis.

3.5.6 Differential analysis

Adi Shamir and Edi Biham, two scientists from RSA securities, developed this method. Multiple identical ciphertexts are provided and the process starts off with checking the corresponding ciphertexts. The pairs of ciphertext and plaintext are now XORed so the key impact is eliminated. The pairs also find how a typical change in plaintext results into the change in the corresponding ciphertext. Some algorithms were found week enough to disclose the relation between the plaintext and ciphertext when this attack was tried on them. This attack has more chances to succeed if many such pairs are provided to it. Now, let us look at another popular cryptanalysis method.

3.5.7 Linear cryptanalysis

We have hinted about the idea of linear relationships before. Mitsuru Matsui proposed this method. If the plaintext and ciphertext have some linear relationship, this attack will be successful. Consider we have some pairs of ciphertext and plaintext. Let us call ciphertexts as Ct0 to Ctn and plaintexts as Pt0 to Ptn when we have n pairs of plaintexts and corresponding ciphertexts available with us. The keys used in all cases are the same and so the following equations all hold good:

Ct0 = Encrypt(Pt0,Key)

Ct1 = Encrypt(Pt1,Key)

……………………………

Ctn = Encrypt(Ptn,Key)

You can consider (Ct0, Pt0) indicating as points in an n-dimensional space. Similarly, we have other points like (Ct1, Pt1), and so on till (Ctn, Ptn). One can easily find an equation when having a substantial number of points to define an n-1 dimension plane that describes the relationship. For example, in a two-dimensional space, based on two-point information, (x1,y1) and (x2,y2) one can determine the equation y = mx + c (an equation of line). Based on the m and c values, one can get any y (plaintext) for any x(ciphertext) if the relation is learned.

KIM: All block ciphers need to have some nonlinearity built into them or otherwise, they fall victim to the linear cryptanalysis attack.

Block cipher designers knew this already and had provided nonlinearity in the process. The substitute byte operation in AES provides this nonlinearity.

Power analysis

This attack looks quite bizarre but it is quite real. In this attack, the attacker can learn about the power used by the CPU to process a typical bit and learn whether it is 0 or 1. Normally, the attacker has control over the hardware on which the algorithm runs and slows it down to learn precisely the amount of energy consumed for a given bit to determine its value more accurately. However odd it looks like, this is a very strong attack and unless specific care is taken it is hard to thwart it. The designers deploy a few tricks; for example, code some part in the assembly, to block this attack.

3.5.8 Timing analysis

This attack is equally strange to believe but it is also real. The CPU is also slowed down here as well but to learn about time to process a bit rather than the power it uses. The CPU timing pattern is observed to guess whether one part of the loop or the other part is being executed. For example, we have the following case:

If (Condition) execute loop1

Else execute loop2

Now, based on the time taken by the loop, the attacker can figure out whether it was loop1 or loop2. And if the condition has some relation with the key, it will also reveal the complete or a part of the key.

Both of the preceding techniques can be easily combined to find out the power consumption and time to learn more about what is being executed and guessing the key and the content more precisely.

With that note, we will conclude this chapter.

Keywords

	A block cipher: A block cipher is one that processes the plaintext in the form of fixed-size blocks.

	Stream cipher: A stream cipher processes the plaintext byte-by-byte and output stream of bytes as a ciphertext.

	Round: A typical processing unit of an encryption/decryption algorithm. A typical algorithm usually has multiple such rounds.

	Random attack: Attack where the adversary introduces random values in the input to fool the system into accepting those characters as valid input.

	Ideal cipher: The best cipher which is hardest to break.

	Confusion: Concealing the relationship between the key and ciphertext.

	Diffusion: Concealing the relationship between the plaintext and ciphertext.

	Product cipher: A cipher where substitution and transposition ciphers are combined

	Feistel structure: A typical method used to encrypt the text in multiple rounds designed by an IBM scientist Horst Feistel.

	A round function: A function applied to a typical round of an encryption algorithm to shuffle the bits.

	Brute force attack: An attack where the attacker tries all possible combinations of key or something similar to find the right value to decrypt the ciphertext.

	Two-factor authentication: It is a process of authentication where the user is checked for two things. First, the knowledge of username-password and second, possession of something else, a credit card, an email id, a mobile phone, or a device.

	Ciphertext only: An attack where the attacker only has the ciphertext.

	Known plaintext: An attack where the attacker has some known combination of ciphertext as well as plaintext.

	Chosen plaintext: An attack where the attacker can choose the plaintext for which the ciphertexts are available.

	Chosen ciphertext: An attack where the attacker has the liberty to choose the ciphertext where he can have the plaintext.

	Computationally secure algorithm: An algorithm where the time to decode and efforts needed to decode exceeds the lifetime and cost of information.

Points to remember

	Cryptographic systems describe the encryption and decryption process and how the keys are used to do so.

	Symmetric key algorithms need to have many desirable properties, including a key exchange part, having an avalanche effect, easy and hardware implementation, having varieties of key values and provide a multi-stage solution.

	The ideal cipher is one that provides both diffusion and confusion.

	The Feistel structure is an elegant method used to design block ciphers for symmetric encryption/decryption; DES is one such algorithm.

	In the Feistel structure, the same algorithm is applied in the backward mode with inverse order of keys for decryption.

	DES was quite controversial but used for a very long period as was found quite strong practically.

	3DES applies DES three times and thus makes it more secure.

	Random and replay attacks need to be addressed; if not by the encryption algorithm, then the protocols which embed them.

	Two-factor authentication provides better security.

	Attacks range from ciphertext only to chosen-ciphertext; normally the most complex attacks are chosen to test the algorithm.

	There are multiple ways to attack the encryption algorithm and the designers must look for ways to evade them.

Excercises

	What are the three attributes of the encryption algorithm which are useful for classification?

	The desirable properties of the encryption algorithm include the easy implementation attribute. What do you think that requires? (Hint, programming language knowledge is helpful here)

	The additional 3 attributes listed for the encryption algorithm generally require protocols to implement them in a specific manner. Read chapters 15 to 20 and prepare a comparative study of how these attributes are provided by the systems described in those chapters.

	Give one example each of how confusion and diffusion are achieved in an encryption algorithm.

	What is the advantage of the same algorithm to be used for decryption?

	Section 3.1.2 describes how encryption and decryption process in the Feistel structure generate identical output except for the halves swapped. Generate a generic formula to prove that encryption at the n-ith level generates the same content at decryption at the ith level.

	What is the need for round no. 18 in DES?

	The chapter discusses the S-box issue about DES. Try to gather more information about that issue and write a short note.

	What is a brute force attack? Can you describe a brute force attack on an MS-word file with a password?

	Explain the random bit pattern and replay attacks. What are the countermeasures?

	Why a ciphertext is considered weaker than the chosen-ciphertext?

	The chapter talks about a few examples to test two attributes of the secure file, time to decode, and the cost of doing that. It also talks about two examples. Find at least two more similar examples.

	The chapter talks about differential analysis as well as linear cryptanalysis. Find more information about both of them and write a short note.

	The chapter talks about power analysis as well as timing analysis. Find more information about both of them and write a short note.

1 Why not change it 100%! Such a change will simply inverse the earlier ciphertext which is of no use, whereas a 50% change in the ciphertext will ensure that the bits are farthest from their original positions. A 100% change can be easily detected if we try few samples.

2 For Feistel networks used in DES, Michael Lyby, and Charles Rackoff proved that if the round function is a cryptographically secure pseudorandom function, then only four rounds are enough to make it a strong pseudorandom permutation.

3 If we use all possible combinations of the 56-bit key with 106 decryptions per second, which mainframes today are capable of, DES can be decoded in approximately 10 hours.

4 This s-box was given as a table without the rationale behind it, so was considered secure. Many believed that the S-box is designed in such a way to provide a backdoor to designers. However, when the rationale was revealed in 1994, researchers found them to be very well designed to thwart many attacks. Two researchers, Biham and Shamir, proved that even if a small change in the s-box design weakens it substantially.

5 You probably now learn why some of the systems insist on having at least one special character in the passwords, increasing the chance that the random value has no match with any valid value.

CHAPTER 4

Number Theory Fundamentals

Objectives

Number Theory is a branch of Mathematics associated with integers and their properties such as addition, multiplication, unique factorization, etc. The problems in Number Theory are easy to state and understand, but many times are quite difficult to solve. Number Theory has host of applications in Computer Science, especially in Cryptology. This chapter on Number Theory presents the number theory basics needed for modern day cryptosystems. Messages are represented by numerical values prior to encryption and transmission. In the encryption process, input numerical values are transformed to output numerical values for transmission, through different mathematical operations with an objective to make the process practically irreversible for an attacker. The methods rely on Number Theory, more importantly on theory of Congruence and prime number properties. This chapter presents basic mathematical tools needed to understand the theory underlying these cryptosystems. At the end of this chapter, student should be able to understand

	Primes and their distributions

	Methods to find large primes

	Properties and arithmetic of congruence

	Fermat’s little theorem and Euler’s theorem which form the basis for primality tests

	Fast exponentiation method in modulo arithmetic

	Primitive roots and their applications in discrete logarithms

Contents

4.1 Divisibility

4.1.1 Introduction

4.1.2 Properties of divisibility

4.2 Prime numbers

4.2.1 Prime numbers and composite numbers

4.2.2 Unique factorization theorem

4.2.3 Distribution of prime numbers

4.3 Greatest common divisor

4.3.1 The division algorithm

4.3.2 The Euclidean algorithm

4.3.3 Extended Euclidean theorem

4.4 Congruences

4.4.1 Modular arithmetic

4.5 Fermat’s little theorem and Euler’s theorem

4.5.1 Fermat’s little theorem

4.5.2 Euler’s totient function

4.5.3 Euler’s theorem

4.6 Generating large primes: primality tests

4.6.1 Fermat primality test

4.6.2 Miller – Rabin primality test

4.6.2.1 Square roots of 1 (mod p); p prime

4.6.2.2 Sequence of successive square roots of 1(mod p); p prime

4.6.2.3 Miller Rabin algorithm

4.6.3 Deterministic primality algorithm

4.7 Modular exponentiation (Exponentiation modular arithmetic)

4.7.1 Fast exponentiation

4.8 Discrete logarithms

4.8.1 Order of a modulo n

4.8.2 Primitive roots modulo n

4.8.3 Properties of discrete logarithms

4.1 Divisibility

4.1.1 Introduction

For any two integers a and b with a ≠ 0, we say that b is divisible by a if b is an integral multiple of a, that is, there is no remainder (remainder is 0) on dividing b by a. Mathematically, b = ak for some integer k. The fact that b is divisible by a is also said as a divides b and denoted as a | b. It may be also said as a is a divisor of b or a is a factor of b.

For example, 6 is divisible by 2 as 6 is an integral multiple of 2, 6 being 2 · 3, so we can say 2 divides 6, denoting as 2 | 6.

What about divisibility of 7 by 2? Obviously, 7 is not divisible by 2 because when we divide 7 by 2, the remainder is 1. The fact, b is not divisible by a, that is, a does not divide b is denoted as a ∤ b.

Example 4.1: What are positive divisors of 30?

The positive numbers that divide 30 are 1, 2, 3, 5, 6, 10, 15, and 30.

Example 4.2: 3 divides which of the numbers 2, 5, 6, 8, 9, 10, 12, 13, 15?

3 | 6, 3 | 9, 3 | 12, 3 | 15 and 3 ∤ 2, 3 ∤ 5, 3 ∤ 8, 3 ∤ 10, 3 ∤ 13

Example 4.3: Which numbers divide 17?

Only ±1 and ±17.

Now, let us look at some simple but useful properties of divisibility.

4.1.2 Properties of divisibility

Let a, b, c be integers:

	For every a ≠ 0, a | 0, a | a

	1 | b, for every b

	If a | 1, then a = ± 1

	If a | b and b | a, then b = ± a

	If a | b and b | c, then a | c

	If a | b and a | c, then a | (mb + nc), for all integers m, n

	If a | b, then | a | ≤ | b |

Proof:

	As 0 = a ∙ 0, the value of k is 0 in the definition of a | b (b = ak for some integer k). Therefore, a | 0. Similarly, a = a ∙ 1, so we take k = 1 in the definition to establish a | a.

	b = 1 ∙ b, we take k = b in the definition of divisibility to conclude 1 | b.

	a | 1 gives 1 = a ∙ k, for some integer k, which means either both a and k are 1 or both a and k are -1, that is why, a is either 1 or -1.

	Here, it is given that a | b and b | a. From the definition, b = ak1 and a = bk2 for some integers k1 and k2. Substituting a = bk2 in the expression of b yields, b = (bk2)k1. As b ≠ 0, (b divides a), cancellation of b from both sides gives k1 k2 = 1. Thus, k1 and k2 = 1 or k1 and k2 = –1. If k1 = 1, b = a; and if k1 = –1, b = –a.

	Because a | b and b | c, we can say b = ak1 and c = bk2 for some integers k1 and k2. Therefore, c = (ak1)k2 = a(k1 k2). As k1 k2 is also an integer, we obtain a | c.

	Express a | b and a | c as b = ak1 and c = ak2 for some integers k1 and k2. This gives, mb + nc = m(ak1) + n(ak2) = a(mk1 + nk2), mk1 + nk2 being an integer again, it is proved that a | (mb + nc).

	b = ak, so, |b|=|a||k|. As |k|≥1,|a||k|≥|a|; giving |b|≥|a|.

Example 4.4: Prove that -1 | b, for every b.

b = (-1)(-b), put k = -b in the definition of divisibility.

Example 4.5: Does there exist integers m and n such that 10m + 15n = 84?

Take b = 10, c = 15 in property 6 of this section 4.1.2: Properties of divisibility. As 5 | b and 5 | c, 5 | (mb + nc) for all integers m and n. Hence, 10m + 15n would be always divisible by 5, no matter what m and n are. So, 10m + 15n can never be 84 as 5 ∤ 84.

Observations:

	Every positive integer a has at least 2 positive divisors, namely, 1 and a. (property 1 and 2 of this section 4.1.2: Properties of divisibility)

	Each integer is a divisor of 0 (property 1 of this section 4.1.2: Properties of divisibility)

	Number of positive divisors of b ≤|b| (property 7 of this section 4.1.2: Properties of divisibility)

	When a | b, b = ak, then k | b. So, k also is a divisor of b.

4.2 Prime numbers

Many of the characteristics of prime numbers are very relevant in modern computer security systems, which make them applicable in many security applications. Thus, any cryptology and network security book cannot be complete without their discussion. Though the content of the chapter is based on discoveries by number theorists made long ago (some part discovered even during BC), they have become quite relevant with the advent of computers.

4.2.1 Prime numbers and composite numbers

(An integer greater than 0 is called a natural number) A natural number p > 1 is called a prime number if it’s only positive divisors are 1 and p, that is, the number is divisible only by 1 and itself. (Negative divisors are not considered). Note that 1 is excluded from the definition of prime. The smallest prime number is 2. The beginning few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 .

A natural number n > 1 is called composite if it is not prime. So, every natural number > 1 is either prime or composite. In case, we restrict ourselves to positive divisors, then a composite number n must have positive divisors other than 1 and n. So, if d is a divisor, then 1 < d < n(d ≠ 1, d ≠ n and by property 7 of section 4.1.2: Properties of divisibility). It means that if n is composite, then n can be expressed as n = d ∙ b with 1 < d < n, and 1 < b < n.

Observations: Number 1 is a special case; it is neither prime nor composite. Number 2 is a special case; it is the only even prime.

Example 4.6: Is 6 prime?

6 is not prime. 6 is composite as 6 = 2 · 3; 6 has 2 and 3 as divisors.

Example 4.7: Show that 240 is composite.

240 is not prime, 240 is composite as 240 = 6 · 40

 = 2 · 3 · 40

 = 2 · 3 · 2 · 20

 = 2 · 3 · 2 · 2 · 2 · 5

 = 24 · 3 · 5

Standard Factored Form: For any natural number n > 1, the standard factored form of n is an expression n = p1e1 p2e2 … pkek where k is a positive integer, p1 < p2 < ⋯ < pk are prime numbers and e1, e2, …, ek are positive integers.

Example 4.8: Find the standard factored forms of 13, 16, 91, 720, 550, and 91091.

13 = 13

16 = 24

91 = 7 · 13

720 = 24 ∙ 32 ∙ 5

550 = 2 ∙ 52 ∙ 11

91091 = 72 ∙ 11 ∙ 132

4.2.2 Unique factorization theorem

The unique factorization theorem states that given any integer n > 1, there exists a natural number k, prime numbers p1, p2, …, pk, and positive integers e1, e2, …, ek such that n = p1e1 p2e2 … pkek, and any other expression of n as a product of prime numbers is the same as this product except perhaps for the order in which the factors appear. This theorem is also called Fundamental theorem of arithmetic. In a nutshell, it can be stated in simple words as ‘Every natural number has a unique factorization as the product of primes.’

So, this theorem tells us two facts: one that every positive integer > 1 is either prime or composite. If it is composite, then it has prime factors and these prime factors are unique. For example, if we take the number, (say) 110; 110 = 2 · 5 · 11. There are 3 primes; 2, 5, 11 in the factorization of 110 and only these 3 primes will occur in the factorization. No other primes can occur.

We do not prove this fundamental theorem of arithmetic here. Interested readers can refer [Rosen2015], [Silverman2014] on the number theory. Prime numbers are like basic fundamental blocks of numbers. To find prime factors of a large number is computationally hard in the sense, that no algorithm has been published which can factor a b-bit number n in polynomial time. This means an algorithm to find factors of a b-bit number of order O(bk) for some constant k is not available yet. It is felt that such an algorithm of polynomial time complexity is not feasible but this result is not yet established.

4.2.3 Distribution of prime numbers

Having discovered prime numbers as basic building blocks, for multiplication, a natural question that arises is, whether there are finite numbers of primes or there are infinitely many primes. Euclid in his book the Elements (Book IX, proposition 20) [Aigner and Ziegler2010], proved that there are infinitely many primes in 300 BC that is more than 2300 years ago. The next question which arises is about their distribution. Given x, how many primes are there less than or equal to x? Let us explore the answer to this second question. Let the number of primes ≤ x be denoted as π(x). For example, π(10) = 4 as there are 4 primes ≤ 10, namely, 2, 3, 5, 7. Similarly, π(3) = 2 and π(25) = 9. (Primes ≤ 25 are 2, 3, 5, 7, 11, 13, 17, 19, and 23). If we look at the sequence of prime numbers 1 < p < x as x increases, they get sparser and rarer on the average.

The prime number theorem which describes the asymptotic distribution of prime numbers was proved in 1896 by two French and Belgian mathematicians independently.

Theorem 4.1 (Prime number theorem): The ratio of π(x) to x/(ln x) approaches 1 as x increases without bound. That is, π(x) ≈ [image:] , that is; limit x → ∞ [image:] = 1

π(x) is called prime counting function and lnx = loge x, that is, the natural logarithm of x.

Proof of the prime number theorem is beyond the scope of this book. Large primes are required to be used in cryptography. Suppose we wish to use a 100 digit prime, the number of 100 digit primes can be estimated as π(10100) – π(1099)

[image:]

That is, there is a good number of primes of 100 digits. From the prime number theorem, as π(x) is approximately x/ln x, it can be interpreted that if we pick at random a sufficiently large number, say x, chance of it being prime is approximately (x/ln x)/x = 1/ln x. So, for numbers 100 digit long, chance is [image:] means by 1 in 230 is prime. That is, roughly one may have to check 230 numbers of 100 digits to get a prime number of this size. The next question is how to check whether a number is prime? We shall discuss about efficient methods to do it in detail in section 4.6: Generating large primes: primality tests of this chapter.

4.3 Greatest common divisor

Recall from section 4.1: Divisibility, for integers a, b; a ≠ 0 is a divisor of b, if b = ak, for some integer k. The greatest common divisor of integers a and b, with at least one of them as not 0, is the largest(positive) integer which divides both a and b. It is denoted as gcd(a, b). This can be equivalently said as gcd(a, b) = max {k | k | a and k | b}. It is the greatest of all common divisors of a and b. Equivalently, c is greatest common divisor of a and b iff

	c | a and c | b

	If x | a and x | b then x | c

Example 4.9: What are the values of gcd(6, 4), gcd(5, 11) and gcd(16, 40)?

gcd(6, 4) = 2; gcd(5, 11) = 1; gcd(16, 40) = 8

Relatively Prime: a and b are said to be relatively prime if gcd(a, b) = 1.

Let us look at two standard methods to find the gcd of a and b. One method of finding the gcd of a and b is to do factorization of a and b into primes. Choose those common factors of a and b which are primes. For each common prime, take the smaller of the two powers that appear in the factorization of a and b. Gcd is the smallest prime power kept together. Let us understand this method by taking a look at the following examples:

Example 4.10: Find gcd(700, 60).

Let a = 700, b = 60; prime factorization of 100 and 60 is:

700 = 2 · 2 · 5 · 5 · 7 = 22 ∙ 52 ∙ 7 and

 60 = 2 · 2 · 3 · 5 = 22 · 3 · 5

Common primes are 2 and 5, smaller power of 2 is 2, whereas smaller power of 5 is 1.

Hence, gcd(700, 60) = 22 ∙ 5 = 20.

It may not be easy to find the prime factorization in case a and b are large numbers. An efficient way to find prime factorization is not known so far. Then, the Euclidean algorithm (section 4.3.2: Euclidean algorithm) is a more suitable method to find the greatest common divisor. For this, first let us understand the division algorithm.

4.3.1 The division algorithm

Let a and b be positive integers. If a is divided by b, giving integer quotient q and integer remainder r, then one can write:

a = bq + r, 0 ≤ r < b; q = a | b

Here, x stands for largest integer ≤ x. The preceding equation is called the division algorithm.

Let us understand it. We very well know that the division operation can be achieved through repeated subtraction; very much like multiplication achievable through repeated addition. Consider 20 to be divided by 4. We all know that the answer is 5. Let us subtract 4 repeatedly from 20. We stop on reaching 0. We subtracted 4 five times, so we can say that 20 divided by 4 is 5.

[image:]

Figure 4.1: Division operation through repeated subtraction

Similarly, let us try to find 30 divided by 4. We stop on reaching a number less than divisor, in this case 4. We subtracted 4 seven times. So, we can say that 30 divided by 4 is 7 and remainder is 2.

[image:]

In general, given a and b positive integers, start with a as dividend and b as divisor. Repeatedly, subtract b from a till the number left is less then b, but positive. The number of times b is needed to be subtracted is nothing but the quotient denoted as q and the number left is residue or remainder denoted as r. So, the mathematical equation is a = bq + r, 0 ≤ r < b, q = a | b. For example, if a = 12, b = 5, then q = 12 | 5 = 2 and r = a – bq = 12 – 5 ∙ 2 = 2, Thus 12 = 5 · 2 + 2. Similarly, for (35, 13): 35 = 13 · 2 + 9.

4.3.2 Euclidean algorithm

The Euclidean algorithm uses the division algorithm repeatedly to determine the gcd of two numbers. In this method, the smaller of the two numbers is divided into larger (larger is divided by smaller), giving the quotient and remainder. Now, repeat the steps of dividing the divisor by the remainder until the remainder is zero. It is the same as dividing the remainder of the previous to the previous step by the remainder of the previous step. The last non zero remainder is gcd. Let us understand it with the help of an example.

Example 4.11: Find gcd(482, 216) and gcd(60, 216).

[image:]

Figure 4.2: Euclidean algorithm

Let us now describe the Euclidean algorithm formally. Without loss of generality, let us assume a > b. By the division algorithm, a = bq1 + r1 with 0 ≤ r1 < b. If r1 = 0, then a = bq1, b divides a; so b is gcd of a and b. If r1 ≠ 0, then divide b by r1 giving: b = r1 q2 + r2 with 0 ≤ r2 < r1. Continue in this way until the remainder is zero. Thus, the following sequence of steps is obtained:

[image:]

Figure 4.3: Steps in Euclidean algorithm

Then, gcd is rk. This algorithm does not require factorization and is fast.

Pseudocode:

Euclid (a, b)

{

Input: a, b, intergers, b ≠ 0

Output: r = gcd(a, b)

// Assume a > b, otherwise swap (a, b)

While (b ≠ 0)

{

r = a mod b

a = b

b = r

}

return (r)

}

Let us understand how come the last nonzero remainder rk is the gcd of a and b. Let d be a common divisor of a and b. Then, d | a and d | b. So, d | (a – bq1) (section 4.1.2: property 6 with value of m = 1 and n = –b). But a – bq1 = r1. So, d | r1. Now, d | r1 and d | b gives d | (b – r1 q2), that is, d | r2. Continuing this way, d | r3, d | r4, …, d | rk. Therefore, every common divisor of a and b is a divisor of rk.

Now, if we show that rk divides a and b, then it would be established that rk is not only a common divisor of a and b but is the greatest common divisor of a and b. In the preceding system of equations, we moved from top to bottom to show d | rk. Now, let us move from bottom to top to prove rk is a divisor of a and b. The last equation gives rk | rk–1. rk | rk and rk | rk–1 gives rk | (rk–1 qk + rk); that is, rk | rk-2. Moving up in this way, step by step, we obtain, rk | r1, rk | b, rk | a. Therefore, rk is a common divisor of a and b. This, combined with the fact that every common divisor of a and b divides rk makes us conclude that rk = gcd (a, b).

4.3.3 Extended Euclidean theorem

In the previous section 4.3.2: Euclidean algorithm, we learned the Euclidean algorithm, as a sequence of steps for obtaining gcd(a, b). Let d = gcd(a, b). It is possible to express d as a linear combination of a and b, that is, as d = ax + by for some integers x and y. Let us see how it is possible by first taking a small example: Let a = 40, b = 24; gcd(40, 24) = 8, so by the preceding statement, there exist integers x and y such that 40x + 24y = 8. To verify, we first write the Euclidean algorithm to determine gcd(40, 24).

40 = 24 · 1 + 16

24 = 16 · 1 + 8

16 = 8 · 2 + 0

In the preceding example, we move from bottom to top to express 8 in terms of 40 & 24:

[image:]

Figure 4.4: Extended Euclidean algorithm illustration

Example 4.12: Find gcd (482, 216). (Example considered in the previous section.)

[image:]

Figure 4.5: Extended Euclidean algorithm: bottom-to-top approach

The other method is top down method. It consists of expressing the remainder in each step in terms of a and b. In example 4.12, a = 482, b = 216.

[image:]

Figure 4.6: Extended Euclidean algorithm: top-to-bottom approach

For small examples, the method of moving from bottom to top is more intuitive and easy for hand calculation, but for solving on a computer, the top-down approach is more suitable. So, the Euclidean algorithm is extended to find integers x and y such that ax + by = d where d is the greatest common divisor of a and b. That is the reason for it being called the extended Euclidean algorithm. Thus, the Euclidean algorithm is not limited to just finding d = gcd(a, b), but also x and y where d can be written as d = ax + by, that is, expressing gcd(a, b) as a linear combination of a and b. The pseudocode of the extended Euclidean algorithm is as follows:

Pseudocode:

EXT_EUCL (a, b)

Input: a, b, integers, b ≠ 0

Output: r = gcd(a, b) and x, y such that r = ax + by

//Assume a > b, otherwise swap(a, b)

x_old = 1, x_new = 0

y_old = 0, y_new = 1

r_old = a, r_new = b

Do while r ≠ 0

{

q = r_old div r_new

x = x_old-q ∙ x_new

y = y_old-q ∙ y_new

r = r_old-q ∙ r_new

x_old = x_new

x_new = x

y_old = y_new

y_new = y

r_old = r_new

r_new = r

}

output: x, y, r

The extended Euclidean algorithm turns out to be quite useful in cryptography, in particular in RSA. We shall see its usefulness in finding the inverse of a number modulo n later.

We know that two integers a and b are said to be relatively prime if gcd(a, b) = 1. So, by the extended Euclidean algorithm, if a and b are relatively prime, then there exist integers x and y such that ax + by = 1. We shall use this result to prove the following theorem:

Theorem 4.2: If p is prime and p | ab, where a, b are integers then either p | a or p | b.

Proof: Let p | ab. If p | a, the theorem is proved. So, let p ∤ a We shall prove p | b. Since p is prime, the only positive divisors of p are 1 and p. Therefore, gcd(a, p) = 1 or p. As p ∤ a, p is not a common divisor of a and p, p cannot be the gcd of a and p. That is, gcd(a, p) ≠ p. Thus, gcd(a, p) has to be 1. By the extended Euclidean algorithm, there exist integers x and y such that ax + py = 1. Multiplication by b gives, axb + pyb = b. p | ab gives p | axb and p | p gives p | pyb. Hence, p | (axb + pyb). But axb + pyb = b. Thus, p | b. This proves the result.

Corollary of Theorem 4.2: If p is prime and p divides a product of integers a1 a2 … an, then p must divide at least one of the factors a1, a2, … an.

Proof: By the preceding theorem, if p | a1 a2 …an then p | a1 or p | a2 …an. If p | a1, proof is over; otherwise, p | a2 …an. Again applying the same result, we obtain either p | a2 or p | a3 …an. If p | a2, the result is proved, else p | a3 …an. Continuing in this way, in the last step, we would say, either p | an–1 or p | an. So, p divides at least one of the products.

4.4 Congruences

In this section, we shall focus on congruences, that is, on modular arithmetic. In our day-to-day life, a good number of the times we are interested in the remainder obtained on dividing an integer by a natural number. For example: what time it would be 30 hrs, from now (on 12 hr clock). To get the answer, all what is required is add 30 hrs to the current time and divide by 12. The remainder on division by 12 gives the time. So, if we assume it is 8 o’clock now, then adding 30, we obtain 38. Division by 12 gives 2. We can say it would be 2 o’clock. Similarly, for determining the day of a week, one would work with the remainder on division by 7 and for knowing the month accordingly.

Definition: Let a be an integer and n be a positive integer. The remainder obtained on dividing a by n is denoted as a mod n. Thus, a(mod n) or simply a mod n is the integer r in division algorithm a = nq + r, 0 ≤ r < n.

Thus, 15 mod 4 = 3 and 201 mod 5 = 1

Example 4.13: What are the values of x such that x mod 4 = 1?

The equation obtained in the form of the division algorithm is x = 4 ∙ q + 1. Putting q = 0, 1, 2, …we get x as 1, 5, 9, 13, … and on putting q = –1, –2, –3, …we obtain, x = –3, –7, –11, …

Definition: Let a, b, n be integers with n > 0. We say that a is congruent to b mod n if a – b is a multiple of n. That is if n | (a – b).

The fact a is congruent to b mod n is denoted as a ≡ b(mod n). If a is not congruent to b mod n, then we write as a ≢ b(mod n).

Observation: a ≡ b(mod n) iff a mod n = b mod n

By division algorithm, a = q1 n + r1 and b = q2 n + r2; for some 0 ≤ r1, r2 < n. Subtraction gives, (a – b) = (q1 – q2) n + (r1 – r2); by definition a ≡ b(mod n) if n | (a – b), means (a – b) is a multiple of n, so r1 – r2 = 0. That is r1 = r2. Consequently, a mod n = b mod n.

Example 4.14: Is 13 ≡ 1(mod 4)?

13 – 1 = 12 and 4 | 12. So, 13 ≡ 1(mod 4)

Example 4.15: Is 18 ≡ 2(mod 5)?

18 – 2 = 16 and 5 ∤ 16, Therefore, 18 ≢ 2(mod 5)

Example 4.16: Determine values of x such that x ≡ 1(mod 3).

x ≡ 1(mod 3), implies x – 1 is a multiple of 3. Therefore, x = 1 + 3 k, where k is an integer. So, x = 1, 4, 7, 10 … and x = –2, –5, –8…

4.4.1 Modular arithmetic

Properties:

If a, b, n ≠ 0 are integers, then

	(a + b) mod n = (a mod n + b mod n) mod n

	(a – b) mod n = (a mod n – b mod n) mod n

	(ab) mod n = [(a mod n)(b mod n)] mod n

Proof: We prove the first property here. Proof of property 2 is very similar and left as an exercise. Let a mod n = k1 and b mod n = k2. Therefore, a = in + k1 for some integer i and b = jn + k2 for some integer j giving

(a + b) mod n = (in + k1 + jn + k2) mod n

= ((i + j) n + k1 + k2) mod n

= (k1 + k2) mod n

= (a mod n + b mod n) mod n

For proof of property 3; consider ab

ab = (in + k1)(jn + k2)

= (ijn + k1 j + k2 i)n + k1 k2

(ab) mod n = ((ijn + k1 j + k1 i)n + k1 k2) mod n = k1 k2 mod n

= [(a mod n)(b mod n)] mod n

Example 4.17: Verify the properties of arithmetic modulo operations for a = 10, b = 7, n = 6.

a mod 6 = 10 mod 6 = 4; b mod 6 = 7 mod 6 = 1;

a + b = 17, (a + b) mod 6 = (10 + 7) mod 6 = 17 mod 6 = 5, whereas:

(a mod 6 + b mod 6) mod 6 = (4 + 1) mod 6 = 5 mod 6 = 5

Thus, (10 + 7) mod 6 = (10 mod 6 + 7 mod 6) mod 6

Now, (a – b) mod 6 = (10 – 7) mod 6 = 3 mod 6 = 3; whereas:

(a mod 6 – b mod 6) mod 6 = (4 – 1) mod 6 = 3 mod 6 = 3

Consequently, (10 – 7) mod 6 = (10 mod 6 – 7 mod 6) mod 6

Finally, ab = 10 ∙ 7 = 70 giving (ab) mod 6 = 70 mod 6 = 4; whereas:

[(a mod 6)(b mod 6)] mod 6 = (4 ∙ 1) mod 6 = 4, confirming

(10 ∙ 7)mod 6 = [(10 mod 6)(7 mod 6)] mod 6

Example 4.18: Exponentiation can be performed by repeated multiplication. For example, to find 85 (mod 11), we can proceed as follows:

82 = 8 ∙ 8 = 64; 82 (mod 11) = 64 (mod 11) = 9

84 (mod 11) = (82 ∙ 82) mod 11

= [(82 (mod 11))(82 (mod 11))] mod 11 = (9 ∙ 9) mod 11 = 4

85 mod 11 = (84 ∙ 8) mod 11 = [(84 mod 11)(8 mod 11)] mod 11

= (4 ∙ 8) mod 11 = 32 mod 11 = 10

There is special section 4.7: Modular exponentiation; for detailed discussion of learning faster techniques of calculating exponentiation as modular exponentiation forms a part of RSA cryptography.

4.5 Fermat’s little theorem and Euler’s theorem

These two theorems were discovered around 350 years back. Pierre de Fermat used to make observations about number theory results. Leonhard continued with his work. Fermat’s little theorem is a special case of Euler totient theorem, which was proved later by Euler. Fermat’s little theorem simplifies the computation of exponents in modular arithmetic and plays an important role in the discovery of large prime numbers and public key cryptography.

4.5.1 Fermat’s little theorem

Theorem 4.3: If p is prime and a is a positive number such that p does not divide a (p ∤ a), then, ap–1 ≡ 1(mod p).

Many different methods for proving this theorem are available in literature. Firstly, let us realize its usefulness in simplifying computations by taking some examples.

Example 4.19: Evaluate 332 (mod 7).

Take p = 7 and a = 3. Since 7 ∤ 3, Fermat’s little theorem is applicable, giving

36 ≡ 1(mod 7) ∙ Now, 32 = 6 · 5 + 2. Therefore, 332 = 3(6 ∙ 5 + 2) = (36)5 ∙ 32 and

332 (mod 7) = ((36)5 ∙ 32)(mod 7) = ((36)5 mod 7) ∙ (32 (mod 7))

≡ 15 ∙ (9 (mod 7))

= 2

Example 4.20: Solve x54 ≡ 4(mod 5).

As x ≢ 0(mod 5), by Fermat’s little Theorem, we obtain x4 ≡ 1(mod 5). Raising 13th power of the preceding equation gives x52 ≡ 1(mod 5). In order to get x54, the equation is multiplied by x2 giving, x54 ≡ (x2 (mod 5)). So, our original equation to be solved simplifies to x2 ≡ 4(mod 5). Trial by successive values of x yields, x = 2 and x = 3 satisfy the equation.

Example 4.21: Verify Fermat’s theorem for a = 4, p = 5.

By Fermat’s theorem, ap–1 ≡ 1(mod p); that is 44 ≡ 1 (mod 5). Let us verify:

42 = 6 ≡ 1 (mod 5), 42 ≡ 1 (mod 5)

Example 4.22: Verify Fermat’s theorem for a = 2, p = 13.

ap–1 = 212. We need to find 212 (mod 13).

22 = 4 ≡ 4(mod 13)

24 = (22)2 ≡ (4)2 (mod 13) ≡ 16(mod 13) ≡ 3(mod 13)

28 = (24)2 ≡ (3)2 (mod 13) ≡ 9(mod 13)

212 = 28 ∙ 24 ≡ 9(mod 13) ∙ 3(mod 13) ≡ 27(mod 13) ≡ 1(mod 13)

212 ≡ 1(mod 13), which verifies the Fermat’s little theorem.

Fermat’s Theorem is also expressed alternatively as follows:

Second form of Fermat’s theorem: If p is prime and a is a positive integer, then ap ≡ a(mod p). In this statement, the clause of no divisibility of a by p is not required.

Example 4.23: Verify Fermat’s second form of theorem for p = 3 and a = 6.

ap = 63 = 36 · 6 ≡ 6 (mod 3) ≡ a (mod p)

Example 4.24: Verify Fermat’s theorem (second form), for p = 5 and a = 3.

ap = 35 = 243 ≡ 3 (mod 5) ≡ a (mod p)

Example 4.25: Use Fermat’s little theorem to evaluate 253 (mod 11).

Here a = 2, p = 11; by Fermat’s theorem, ap–1 ≡ 1(mod p); 210 ≡ 1(mod 11)

253 = 250 + 3 = 250 ∙ 23 = (210)5 ∙ 23 ≡ 15 ∙ 23 (mod 11) ≡ 8 (mod 11)

Converse of Fermat’s theorem need not hold true. Nevertheless, if 2n–1 ≡ 1(mod n), usually, number n is prime. There are exceptions to it, examples being n = 561, 1729, etc. 561 is composite. 561 = 3 · 11 · 17 but 2560 ≡ 1(mod 561). 2560 ≡ 1(mod 561) can be easily proved using the Chinese remainder theorem. Similarly, 1729 = 7 · 13 · 19 and 21728 ≡ 1 (mod 1729).

But these exceptions occur quite rarely. So, if 2n–1 ≡ 1(mod n), chance of n being prime is high, and if 2n–1 ≢ 1(mod n), then n cannot be prime. (a = 2 in Fermat’s theorem. If n is prime, 2n–1 ≡ 1(mod n)). As 2n–1 (mod n) can be calculated on a fast mode, it gives a faster technique than the conventional class room method to search for prime numbers. Beginning from a starting point n0, successively check for each odd n ≥ n0, for 2n–1 ≡ 1(mod n). If n fails the test, then n is composite; n cannot be prime, increment to next odd n. Whenever n passes the test, it can be subjected to further testing for primality. The advantage is that many unnecessary n’s are quickly eliminated. Generating large primes is a basic necessity for public key cryptography. Fermat’s little theorem helps in discovering large prime numbers. Generally, primes of the size of 1024 to 2048 bits are required currently for public key algorithms.

4.5.2 Euler’s totient function

Here, we would be learning about Euler’s totient function, which is written as ϕ(n). It would be used in Euler’s theorem presented in the next section 4.5.3: Euler theorem. Recall the positive number a is relatively prime to b if gcd(a, b) = 1. Euler’s totient function is the count of positive integers ≤ n, which are relatively prime to n. It is denoted as ϕ(n). Therefore, it is more commonly called Euler’s phi function or Euler’s ϕ function. Thus, it can be stated that ϕ(n) is the number of integers, 1 ≤ k ≤ n satisfying gcd(k, n) = 1. Such integers k are also called totatives of n. Observe that ϕ(1) = 1 as gcd (1, 1) = 1, 1 is the only integer in the range1 ≤ k ≤ n, satisfying gcd (k, 1) = 1.

Example 4.26: Determine totatives of 10 and ϕ (10).

The numbers relatively prime to 10 are 1, 3, 7, 9; therefore, totatives of 10 are 1, 3, 7, 9 and ϕ(10) = 4 (Number of totatives). gcd (2, 10) = 2, gcd (4, 10) = 2, gcd (5, 10) = 5, gcd (6, 10) = 2, gcd (8, 10) = 2, gcd (10, 10) = 10. So, 2, 4, 5, 6, 8, 10 are not totatives.

Example 4.27: Determine ϕ(11).

11 is prime. It has no factors except 1 and 11. All the positive integers k, 1 ≤ k ≤ 10 are relatively prime to 11 as gcd (k, 11) = 1. gcd (11, 11) = 11. So, ϕ(11) = 10.

Theorem 4.4: Some elementary results of Euler’s phi function are as follows:

	ϕ(1) = 1

	If p is prime then ϕ(p) = p – 1

	If p and q are distinct primes then ϕ(p ∙ q) = ϕ(p) · ϕ(q) = (p – 1)(q – 1)

Example 4.28: Verify ϕ(p ∙ q) = ϕ(p) · ϕ(q) for n = 21

n = 21, ϕ(21) = count of numbers relatively prime to 21

= Ο{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

= 12

Now, 21 = 3 · 7, by above theorem, ϕ(21) = ϕ(3) ∙ ϕ(7), let us verify:

ϕ(3) = 2 and ϕ(7) = 6 as ϕ(p) = p – 1, giving ϕ(3) ∙ ϕ(7) = 2 · 6 = 12 = ϕ(21)

4.5.3 Euler’s theorem

Theorem 4.5: If a and n are relatively prime, then aϕ(n) ≡ 1(mod n).

Euler’s theorem is a generalization of Fermat’s little theorem. It is clear that if n is prime, say n = p, then ϕ(n) = p – 1 and the preceding theorem reduces to ap–1 ≡ 1(mod p) which is nothing but Fermat’s little theorem. So, Fermat’s little theorem is a special case of Euler’s theorem with n as prime.

Example 4.29: Verify Euler’s theorem for a = 4, n = 21.

As n = 21, ϕ(21) = 12, a = 4 is relatively prime to 21. Euler’s theorem is applicable.

aϕ(n) = 412 = (43)4 ≡ 14 (mod 21); as 43 = 64 ≡ 1(mod 21).

Example 4.30: Verify Euler’s theorem for a = 5, n = 12.

As 5 is relatively prime to 12, by Euler’s theorem, 5ϕ(12) ≡1(mod 12), let us verify:

ϕ(12) = 4, (totatives are 1, 5, 7, 11), we are required to show 54 ≡1(mod 12)

Now, 54 = (52)2 and 52 = 25 ≡ 1(mod 12) giving, 54 ≡12 (mod 12) ≡ 1(mod 12)

Example 4.31: If a is relative prime to p and q, p ≠ q, then a(p–1)(q–1) ≡ 1 mod (pq).

Solution is a direct application of Euler’s theorem with n = pq,

ϕ(pq) = (p – 1)(q – 1) giving a(p–1)(q–1) ≡ 1 mod (pq)

This result is used in calculation of public private key pair in the RSA algorithm.

Example 4.32: Compute 343203 (mod 101).

p = 101 is prime and a = 3 is relatively prime to p. By Fermat’s little theorem, ap–1 ≡ 1(mod p), therefore, 3100 ≡ 1(mod 101). Now, 343203 = (3100)432 ∙ 33 ≡ 27(mod 101).

As in Fermat’s theorem, Euler’s theorem can also be stated as aϕ(n) ∙ a ≡ a(mod n), that is, aϕ(n)+1 ≡ a(mod n).

4.6 Generating large primes: primality tests

Prime numbers have fascinated people and in particular mathematicians for many centuries. Different mathematicians and amateurs have worked on finding the answer to questions like:

	How many primes are there?

	Can they be generated by a formula?

	How to determine whether a given number is prime?

The actual use of large prime numbers was discovered in mid to late 20th century, with the advent of use of cryptography in electronic communications. Algorithms like RSA in public key cryptography and digital signatures rely heavily on existence of large prime numbers and the ability to easily pick up large (300+ digits) prime numbers. Therefore, it should be possible to generate a large prime number efficiently. In section 4.2.3: Distribution of prime numbers, we have already discussed about the distribution of prime numbers giving us a fairly good idea that they are available in plenty. Therefore, in this section, we will discuss different algorithms to determine whether a given number n is prime. Determining whether a given number is prime or not is called a primality testing, whereas decomposing the number into its constituent prime factors is called prime factorization. Factorization is a harder problem than primality testing and security of cryptosystem is based on this information. In the early days of learning computer programming, a very simple algorithm is taught for primality testing. It consists of dividing n by each positive integer 2, 3,. . .,[√n], where [x] stands for largest integer ≤ x. As a refinement, even integers > 2 may be omitted. So, trial may consist of division by 2, 3, 5, 7,. . .,[√n], (every odd integer ≥ 3, upto ≤ [√n]. If none of the divisor divides n, then n is prime. It is very simple to implement, but its running time complexity is Ο(√n), which is not suitable for large n. If n is 1000 bit number, then about 2500 operations would be required, which is not computationally feasible. Thus, we are on a hunt for efficient algorithms for the testing of primality of a number.

4.6.1 Fermat primality test

Fermat’s theorem states that if p is prime and a is any number satisfying 1 < a < p, then ap–1 ≡ 1(mod p). This means if there is some integer a with 1 < a < n and an–1 ≢ 1 (mod n) (conclusion of Fermat’s theorem does not hold for this integer n), then n cannot be prime. n has to be composite. This forms the basis of the Fermat primality test.

Test: Let n > 1 be an integer to be tested for primality. Choose a random number a, with 1 < a < n. If an–1 ≢ 1(mod n), then n is composite. If an–1 ≡ 1(mod n), then n is probably prime.

Recall from section 4.5.1: Fermat’s little theorem that converse of Fermat’s theorem is not true, exceptions being 341, 561, 1729, etc. The wonderful thing is that though converse of Fermat’s theorem is not true, it is almost true. Thus, Fermat’s test is quite accurate for large n. If a number is probably prime, then it is very likely to be prime. So, this method of primality test almost works. Moreover, as modular exponentiation is fast (section 4.7: Modular exponentiation), the Fermat test can deliver results quickly. If m a’s are tried, its time complexity is O(m log n).

A composite number n, for which an–1 ≡ 1(mod n), is called pseudo prime for the base a, or simply as base-a pseudo prime. So, if the Fermat primarily test is applied taking a = 2 and 2n–1 ≢ 1(mod n), then n is certainly composite, otherwise n is prime or base-2 pseudo prime. So, this method may make the error of declaring a pseudo prime number to be a prime. Like, in the case of number 561, which is composite as 561 = 3 ∙ 11 ∙ 17 and 2560 ≡ 1(mod 561). Empirical results have shown that there are only 22 such numbers in the range up to 10,000 for which the erroneous conclusion can be made. The first four base-2 pseudo primes are 341, 561, 645 and 1105. Also, as number of bits increase, it has been shown that probability tends to zero. It has been established that a 512 bit, randomly chosen number called prime by the preceding method has a chance less than 1 in 1020 of being classified wrong, that is, of it being base-2 pseudo prime.

Obviously, this method can be improved by applying the Fermat’s theorem on probable prime with second base a = 3. Declare a number n to be prime, only if it is not proved to be composite through some a’s, 2 ≤ a ≤ n – 1. Maximum number of trials of a can be fixed. This does solve the problem to a great extent but not completely. There exist composite numbers which satisfy Fermat’s theorem for every 2 ≤ a ≤ n – 1. Such integers are called Carmichael numbers. The first three Carmichael numbers are 561, 1105, 1729. Of course, Carmichael numbers are very rare, 255 in 100,000,000. Our next algorithm for primality test known as Miller – Rabin algorithm is an improvement over Fermat test and its improved versions do not get fooled by Carmichael numbers.

4.6.2 Miller – Rabin primality test

Miller – Rabin primality test is based on two properties. The first one states that there are no nontrivial square roots of 1 in modulo prime, and the second property is about sequence of successive square roots of 1 in modulo prime. Let us study these one by one.

4.6.2.1 Square roots of 1(mod p); p prime

Property 4.1: For 1 ≤ a ≤ p – 1 with p prime, a2 ≡ 1(mod p); iff a ≡ ± 1(mod p) that is a = 1 or p – 1.

1 and -1 always satisfy the equation a2 ≡ 1(mod n), so they are called trivial square roots of 1(mod n). But in case of modulo theory, it is possible to have square roots other than 1 or −1. For example, if n = 8, a2 ≡ 1(mod 8) has solutions 1, 3, 5, 7 as 32 = 9 ≡ 1(mod 8), 52 = 25 ≡ 1(mod 8) and 72 = 49 ≡ 1(mod 8). So, this equation has 4 square roots namely 1, 3, 5, 7, each mod 8, two of them different from 1 and -1(mod 8). On the other hand, consider, a2 ≡ 1(mod 7). It is satisfied only by a = 1 and a = 6 (62 = 36 ≡ 1(mod 7)); 22 = 4, 32 = 9 ≡ 2(mod 7), 42 = 16 ≡ 2(mod 7), 52 = 25 ≡ 4(mod 7). A square root mod n, that is a, which satisfies a2 ≡ 1(mod n), but is different from 1 and -1(mod n) (not trivial), is called a non-trivial square root. Property 4.1 is important because it tells us that there are no non-trivial square roots of 1 in modulo prime.

4.6.2.2 Sequence of successive square roots of 1(mod p); p prime

Property 4.2: Let p be prime and odd, 2s be the largest power of 2 which divides (p – 1), with p – 1 = 2s ∙ q (q is odd). Let 1 < a < p – 1. Then, either every element of the sequence: ap–1, a(p–1)/2, a(p–1)/4 , …, aq is 1(mod p) is 1 or the first element which is different from 1 in the sequence is −1 (mod p), that is p – 1.

Example 4.33: Verify property 4.2: Sequence of successive square roots of 1(mod p); p prime with p = 11 and a = 2.

p – 1 = 10, express p – 1 as 2s ∙ q with q odd.

10 = 2 · 5 = 21 ∙ 5, giving s = 1 and q = 5.

Thus, the backward sequence is 25, 210 and sequence to be examined is 210, 25. For convenience of calculation, let us calculate the sequence backwards.

25 = 32 ≡ 32(mod 11) ≡ 10(mod 11) ≡ -1(mod 11)

210 = (25)2 ≡ (–1)2 (mod 11) ≡ 1(mod 11)

So the sequence is 1, –1 which agrees with the property.

Example 4.34: Verify property 4.2: Sequence of successive square roots of 1(mod p); p prime with p = 13 and a = 2.

p – 1 = 12, expressing 12 as 2s ∙ q, with q odd gives, 12 = 22 ∙ 3, here s = 2, q = 3

The backward sequence is 23, 26, 212. The sequence is 212, 26, 23. Again for convenience, let us calculate backwards:

23 = 8 ≡ 8 (mod 13)

26 = (23)2 = 82 ≡ 64 (mod 13) ≡ –1 (mod 13)

212 = (26)2 ≡ (–1)2 (mod 13) ≡ 1 (mod 13)

So the sequence is 1, −1, 8, confirming first element in the sequence to be different from 1 as −1.

Example 4.35: Verify property 4.2: Sequence of successive square roots of 1(mod p); p prime with p = 41 and a = 2.

p – 1 = 40, expressing 40 as 2s ∙ q, with q odd gives, 40 = 23 ∙ 5, here s = 3, q = 5

The sequence is 240, 220, 210, 25. Again for convenience, let us calculate backwards:

25 = 32 ≡ 32(mod 41) ≡ (–9)(mod 41)

210 = (25)2 ≡ (–9)2 (mod 41) ≡ 81(mod 41) ≡ –1(mod 41)

220 = (210)2 ≡ (–1)2 (mod 41) ≡ 1(mod 41)

240 = (220)2 ≡ 1(mod 41)

So, the sequence is 1, 1, −1, and 32, which again confirms the property, that first element to be different form 1 in the sequence as −1.

Let us take non-prime number, now and check the values in the sequence of successive square roots of ap–1 (mod p).

Example 4.36: Check property 4.2: Sequence of successive square roots of 1(mod p); p prime for p = 15 and a = 2.

p – 1 = 14; expressing p – 1 as 2s ∙ q gives; 14 = 2 ∙ 7, s = 1, q = 7. The sequence to be considered is 27, 214. Again for convenience, let us calculate backwards:

27 = 128 ≡ 128(mod 15) ≡ 8(mod 15)

214 = (27)2 ≡ (8)2 (mod 15) ≡ 64(mod 15) ≡ 4(mod 15)

So, the sequence is 4, 8 which shows that the property does not hold. Here, p is not prime.

4.6.2.3 Miller Rabin algorithm

Miller Rabin algorithm is nothing but the process of testing whether property 4.2 is satisfied by the number. So, if n is the number to be tested for primality, n has to be > 3 and odd, n – 1 would be even, divide n successively by 2, till the remainder is non-zero. Thus, n – 1 = 2m ∙ k, with m > 0 and k odd. Let a be any random number between 1 and n – 1, that is, 1 < a < n – 1. Now, consider the sequence a2m ∙ k, a2m–1 ∙ k, a2m – 2 ∙ k, …, ak each (mod n). Recall each element in this sequence is a square of its successor. We have observed that in this sequence, if n is prime, the first number a2m ∙ k ≡ 1(mod n), that is a2m ∙ k is 1 modulo n and either every element of the sequence is 1, or the first element different from 1 in the sequence is −1 (mod n), that is, n – 1.

Thus, in the Miller Rabin algorithm, this property is checked as a primality test. If it is not satisfied, it can be concluded with certainty that the number is composite, and if it is satisfied, then the number is probably prime. To check this property, it is more convenient from the computational point of view to begin with the last element ak, as we did in examples. If this last element is ± 1, then the immediate predecessor is 1, (being square of it) and so all other predecessors are 1 and thus, the property is satisfied. Execution is to be stopped with the conclusion that the element is probably prime. Else, that is, if the last element is ≢ ± 1(mod n), then obtain the immediate predecessor by squaring ak (mod n), and if it is ≡ −1(mod n), then the element is probably prime, as all predecessors would be 1(mod n), property is satisfied, by similar arguments as shown earlier. Else, calculate its predecessor by squaring (mod n), if it is ≡ −1(mod n), the element is probably prime. Continue in this fashion, exiting whenever the property is satisfied with the conclusion that the element is probably prime. If we reach the last but one element, that is, the second element in our forward sequence and it is ≢ −1(mod n), then the number is certainly composite.

Pseudocode can be written as:

MILLER_ RABIN TEST (n)

Input: n > 3, odd integer to be tested for primality

Output: composite if n is composite, otherwise probably prime:

Find k and m such that n – 1 = 2m ∙ k, m > 0 and k odd.

Choose a random number, 1 < a < n – 1

Compute b0 ≡ ak (mod n),

If b0 ≡ ± 1(mod n), then return (“probably prime”)

For j = 1 to m – 1, do

{

bj = bj – 12 (mod n)

If bj (mod n) = –1, return (“probably prime”),

}

return (“composite”)

This test Miller-Rabin is also a probabilistic test of primality. The conclusion of the number being composite is certain, but there is a possibility of non-prime also satisfying the property. Thus, one cannot be sure that the number being declared ‘probably prime’ is a prime. It has been shown that for a given odd non-prime number n and a randomly chosen 1 < a < n – 1, the probability that the Miller Rabin Algorithm shall return ‘probably prime’, (fail to detect that the number is composite) is < 1⁄4. Thus, the performance of this test can be improved by making repeated trials with different values of a, 1 < a < n – 1. If this test is applied t number of times, naturally with t different random values of a, then the probability that non-prime will clear all the t tests is < (1⁄4)t. For example, if t = 10, then the probability of wrong classification of non-prime as prime is < (1⁄4)10 < 10–6. Thus, the performance of the Miller Rabin algorithm can be greatly enhanced by repeated number of trials with different values of a for numbers classified as ‘probably prime’, and one can consider the number to be prime, with high degree of confidence.

Let us take a Carmichael number. The smallest being n = 561 for which the Fermat test does not yield the correct result. Now, let us apply the Miller Rabin test to this number.

Example 4.37: Apply the Miller Rabin algorithm to determine whether 561 is prime.

n – 1 = 560 = 24 ∙ 35; so, m = 4 and k = 35

Let us take the easiest a to work with, choose a = 2; we need to the examine the sequence 2560, 2280, 2140, 270, 235 for Miller Rabin test.

b0 ≡ 235 (mod 561) ≡ 263 (mod 561), b0 is neither 1 nor –1(mod 561), so compute

b1 = b02 (mod 561) ≡ (263)2 (mod 561) ≡ 166(mod 561), again b1 is neither 1 nor -1(mod 561), so compute b2 = b12 (mod 561) ≡ (166)2 (mod 561) ≡ 67(mod 561), b2 also is neither 1 nor –1(mod 561), so compute b3 = b22 (mod 561) ≡ (67)2 (mod 561) ≡ 11 (mod 561), which is different from −1. Thus, the number is composite.

There is a similar kind of another primality test called Solovay-Strassen test. Both the tests Miller-Rabin and Solovay-Strassen that run quickly are quite efficient, but do not ensure 100% correctness, in case of the prime number p. They are probabilistic in nature. But they give the result with quite high probability. However, if we wish to compare them against each other, Miller - Rabin test is more efficient than the Solovay-Strassen test and at least as correct as the Solovay-Strassen test. The Miller – Rabin test was published in 1980. Nevertheless, if the application demands 100% reliability on the result generated, the deterministic primality algorithm can be used. But unfortunately, none of the deterministic algorithms known are so time efficient.

4.6.3 Deterministic primality algorithm

In August 2002, Agrawal, Kayal and Saxena [Agrawal, Kayal, and Saxena 2002], Computer Scientist at IIT, Kanpur published the deterministic polynomial time algorithm for testing a number to be prime. This discovery was a major breakthrough in the history of computational number theory to be the first polynomial time solvable primality test, which had eluded mathematicians for so many decades. No doubt, they received in 2006 Go ̈del prize and 2006 Fulkerson prize for their work. This primality test algorithm is based on simple fact: (x – a)p = (xp – a)(mod p), for any a, such that 1 < a < p, iff p is prime. Moreover, it is neither difficult to understand nor difficult to implement. This algorithm now known as the AKS algorithm has time complexity O((log n)12). This discovery generated interest among many researchers all over the globe. Pomerance and Lenstra in 2006 gave the variant of AKS which has time complexity of O((log n)6), but inspite of this improvement, still AKS is not found suitable for practical use. So far, it has remained as theoretically an elegant result, which has not found use in practice, as it is very slow due to polynomial evaluation, high-order hidden constants, and also uses large amount of memory. Nevertheless, researchers are on it. Bernstein gave randomized version of it to run in O((log n)4), but still it is slower than ECPP (Elliptic Curves primality proving: based on Elliptic Curves) and not found suitable. Many researchers are putting their efforts on analyzing and working on different improved techniques of computations so as to make it suitable for practical implementation. Some are also working on enhancing the Miller Rabin test by incorporating some features derived from AKS to have best of both the worlds to some extent. We know that the complexity of Fermat’s theorem and Miller Rabin algorithm is just O(log n) and ECPP is O((log n)3), so, still a long way to go for AKS.

4.7 Modular exponentiation (Exponentiation modular arithmetic)

Public key cryptography like RSA and ElGamal and digital signatures rely on modular exponentiation for encryption and decryption. Modular exponentiation is cornerstone for cryptography. The seemingly widely and commonly used Miller Rabin algorithm for determining large primes also relies on modular exponentiation. That is why, in many of the articles of this chapter, we have come across numbers of the form, ab (mod n) a, b are integers and n is a positive integer, where exponentiation is done over the modulus. We know that, theoretically, ab (mod n) stands for raising integer a to the power b first, that is, multiplying a with itself b times and then performing the operation modulo n. For example, consider 34 (mod 7), 34 = 3 · 3 · 3 · 3 = 81, so 34 (mod 7) ≡ 81(mod 7) = 4. The process of calculating exponentiation is quite easy, but slows down due to a large number of multiplications and even memory requirement becomes substantially high as numbers involved are quite large of the order of 100+ digits. Thus, we need to look for faster and efficient ways to calculate ab (mod n).

4.7.1 Fast exponentiation

One straightforward memory efficient method is to use the property:

(ab) mod n ≡ [(a mod n)(b mod n)] mod n

As a result, intermediate values also do not become large. So, for calculation of ab (mod n), firstly a(mod n) is calculated, then a2 (mod n) as:

a2 (mod n) = [(a mod n)(a mod n)] mod n

a3 (mod n) = [(a2 (mod n))(a mod n)] mod n

⋮

ab (mod n) = [(ab–1 (mod n))(a mod n)]mod n is obtained.

As an illustration, let us calculate 37 (mod 7). If we use just the definition, then we have to calculate 37 first; 37 = 2187, so 37 (mod 7) ≡ 2187 (mod 7) = 3. Now, let us use the product property to determine 37 (mod 7).

32 (mod 7) = [(3 mod 7)(3 mod 7)] mod 7

= (3 · 3) mod 7 = 9 mod 7 = 2

33 (mod 7) = [(32 (mod 7))(3 mod 7)] mod 7 = (2 · 3) mod 7 = 6 mod 7 = 6

Similarly, 34 (mod 7) = (6 · 3) mod 7 = 18 mod 7 = 4

35 (mod 7) = (4 · 3) mod 7 = 12 mod 7 = 5

36 (mod 7) = (5 · 3) mod 7 = 15 mod 7 = 1

Finally, 37 (mod 7) = (1 · 3) mod 7 = 3 mod 7 = 3

The advantage is values will never exceed n2. It requires Ο(b) multiplications. Computation time also reduces. This method can be further improved by using binary exponentiation. Like in calculating 37 (mod 7), exponent is 7. Binary representation of 7 is 111. Thus, 37 can be represented as 34+2+1.

32 (mod 7) = 9 mod 7 = 2

34 (mod 7) = [(32 (mod 7))(32 (mod 7))] mod 7 = (2 · 2) mod 7 = 4

As 37 = 34+2+1 = 34 ∙ 32 ∙ 31, we can write

37 (mod 7) = [(34 (mod 7))(32 (mod 7))(3 mod 7)] mod 7

= (4 ∙ 2 · 3) mod 7 = 24 mod 7 = 3, which is the same as obtained earlier.

More generally, for calculation of ab (mod n), the method consists of expressing b as a binary number say b = bk bk–1 ∙∙∙ b1 b0, where bi = 0 or 1.

[image:]

[image:]

Hence,

[image:]

[image:]

Example 4.38: Calculate 250 (mod 101), using binary exponentiation.

Power is 50, 50 is represented in binary as 110010, giving 50 = 21 + 24 + 25 = 2 + 16 + 32, 250 = 22+16+32 = 22 ∙ 216 ∙ 232, thus we can write as follows:

250 (mod 101) ≡ (22 ∙ 216 ∙ 232) (mod 101)

≡ [(22 (mod 101))(216 (mod 101))(232 (mod 101))] mod 101

We shall obtain 22 (mod 101), followed by 24 (mod 101), 28 (mod 101), and so on.

22 = 4, giving 22 (mod 101) ≡ 4.

24 (mod 101) ≡ (22 ∙ 22)(mod 101) ≡ [(22 (mod 101))(22 (mod 101)] mod 101

≡ (4 ∙ 4) mod 101 = 16

28 (mod 101) ≡ (24 ∙ 24)(mod 101) ≡ [(24 (mod 101))(24 (mod 101))] mod 101

≡ (16 ∙ 16) mod 101 = 256(mod 101) = 54

216 (mod 101) ≡ (28 ∙ 28)(mod 101)[(28 (mod 101))(28 (mod 101))] mod 101

≡ (54 ∙ 54) mod 101 = 2916 (mod 101) = (–13) (mod 101)

232 (mod 101) ≡ (216 ∙ 216)(mod 101) ≡ [(216 (mod 101))(216 (mod 101))] mod 101

≡ ((–13)(–13)] mod 101 = 169 (mod 101) = 68(mod 101) = (–33) (mod 101)

Now, 250 (mod 101) ≡ 22 ∙ 216 ∙ 232 (mod 101)

≡ [(22 (mod 101)(216 (mod 101))(232 (mod 101))] mod 101

≡ [(4 ∙ ((–13) (mod 101)) ∙ ((–33) (mod 101))] mod 101

≡ [((–132) (mod 101))((–13)(mod 101))] mod 101

≡ [(–31) ∙ (–13) (mod 101)] mod 101 ≡ 403(mod 101) ≡ –1(mod 101)

So, 250 (mod 101) ≡ –1(mod 101)

We can verify, by Fermat’s little theorem, 101 being prime, 2101 – 1 ≡ 2100 ≡ 1(mod 101) Recall from the property 4.1 (section 4.6.2.1: Square roots of 1(mod p); p prime), x2 ≡ 1(mod p) iff x = ±1(mod p), giving 250 ≡ ±1(mod 101)

This method is also known as the method of successive squaring. It is very convenient if a, b, n are large numbers (of the order of 100 digits). Simply computing ab may even cause memory overflow, as ab would have more than 10100 digits. Using the preceding method, the number will never be more than 200 digits long and computation can be done in 2 log2 b multiplications, that is , less than 700 steps.

To be able to write pseudocode for determining the value of ab (mod n), by the method of successive squaring, let us first summarize and tabulate the steps needed to be executed for this method in computing ab (mod n).

	Express b as a sum of powers of 2; that is, b = ∑ki=0 bi 2i , where each bi is either 0 or 1. That is binary representation of b is bk-1…b1 b0,where bi = 0 or 1.

	Make table of powers of a(mod n) naming them as a0, a1, a2, …, ak-1, ak using successive squaring as follows:
a ≡ a0 ; with a0 ≡ a(mod n)

a2 ≡ (a)2 ≡ a1; with a1 ≡ a02 (mod n)

a4 ≡ (a2)2 ≡ a2; with a2 ≡ a12 (mod n)

.

.

.

a2k ≡ (ak-1)2 ≡ ak; with ak ≡ ak-12 (mod n)

	Obtain the product a0b0 . a1b1 … akbk (mod n) which is the desired exponent value.

Note that as each bi (power of ai) is either 0 or 1, simply the product of those ai’s (1 ≤ i ≤ k) for which bi = 1 is to be computed.

Thus, now the pseudocode can be written so as to compute ab(mod n) through successive squaring:

MOD_EXPONENT (a, b, n)

{

// a is number, b is power, n is modulo

Input a, n, b with b as (bk bk-1 … b0)2

product = 1

For i = 0 to k

{

If bi = 1 then, product = (product * a) mod n

a = (a * a)(mod n)

}

return (product)

}

This algorithm can be further improved by incorporating the determination of binary representation coefficients bi’s in the algorithm itself. It is quite simple.

MOD_EXPONENT_BIN (a, b, n)

{

// a is number, b is power, n is modulo

Input integer a, n, b

product = 1

Do while b ≥ 1

{

If b is odd, then product = (product * a) mod n

a = (a * a)(mod n)

b = b/2 // it is integer arithmetic, quotient on division by 2 is obtained

}

return (product)

}

4.8 Discrete logarithms

Discrete logarithms play an important role in cryptography. Like factorizing a number, getting a discrete logarithm of a number is a very complex problem and thus used in many cryptographic applications. Diffie-Hellman key exchange algorithm is one such example. We will look at Diffie-Hellman in Chapter 13: Other Public Key Algorithm. For learning discrete logarithms, we shall have to understand the order of an element and primitive root modulo n where n is a positive integer.

4.8.1 Order of a modulo n

For 1 ≤ a ≤ n – 1, let us evaluate the sequence of powers of a mod n, ith element of the sequence being ai mod n. That is, the sequence is ai mod n | i = 1, 2, 3,. . .}. We shall stop, when ai mod n = 1. For example, if a = 3, n = 11, then powers of 3 mod 11 for i = 1, 2, … are:

	
i

	
1

	
2

	
3

	
4

	
5

	
3i (mod 11)

	
3

	
9

	
5

	
4

	
1

Table 4.1: powers of 3 mod 11

5 is the smallest positive number such that 3m ≡ 1(mod 11). We shall call 5 to be the order of 3 modulo 11. Similarly, if we take a = 2, n = 11, the powers ai (mod 11) for i = 1, 2, … are:

	
i

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
2i (mod 11)

	
2

	
4

	
8

	
5

	
10

	
9

	
7

	
3

	
6

	
1

Table 4.2: powers of 2 mod 11

In this case, 10 is the smallest positive number such that 2m ≡ 1(mod 11). Thus, 10 is the order of 2 modulo 11.

Order of an element: Let a and n be relatively prime with a ≠ 0 and n > 0. Order of a(modulo n) is defined as the smallest positive integer m such that am ≡ 1(mod n).

Note that a and n must be relatively prime. It is left as an exercise for the reader to construct the table of values of powers of a mod n (1 ≤ a ≤ n – 1), for n = 5, 6, 7, 11. The following Table 4.3 containing values of powers of a mod n (1 ≤ a ≤ 6) for n = 7 is produced here for your kind reference.

	
ai

	
1

	
2

	
3

	
4

	
5

	
6

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
2

	
2

	
4

	
1

	
2

	
4

	
1

	
3

	
3

	
2

	
6

	
4

	
5

	
1

	
4

	
4

	
2

	
1

	
4

	
2

	
1

	
5

	
5

	
4

	
6

	
2

	
3

	
1

	
6

	
6

	
1

	
6

	
1

	
6

	
1

Table 4.3: Powers of a mod 7

The following Table 4.4 gives the order of different numbers for modulo 5, 6, 7, and 11:

	
modulo 5

	
modulo 6

	
modulo 7

	
modulo 11

	
a

	
Order of a

	
a

	
Order of a

	
a

	
Order of a

	
a

	
Order of a

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
2, 3

	
4

	
5

	
2

	
6

	
2

	
2, 6, 7, 8

	
10

	
4

	
2

	
	
	
2, 4

	
3

	
3, 4, 5, 9

	
5

	
	
	
	
	
3, 5

	
6

	
10

	
2

Table 4.4: Order of different elements for n = 5, 6, 7, 11

4.8.2 Primitive roots modulo n

If a and n are relatively prime with a ≠ 0 and n > 0 and if the order of a modulo n is ϕ(n), then a is called a primitive root modulo n, or a primitive root of n, and n is said to have a primitive root.

For example, if n = 5 then ϕ(5) = 4, so the primitive root modulo 5 will be those positive numbers which are relatively prime to 5 and whose order is 4. Thus, 2 and 3 are primitive roots modulo 5 (Table 4.4, section 4.8.1: Order of a modulo n). Similarly, from Table 4.4, we can easily infer that 5 is a primitive root of 6 as ϕ(6) = 2; and 3, 5 are primitive roots of 7, whereas primitive roots modulo 11 are 2, 6, 7, and 8.

All integers do not have primitive roots. For example, if n = 8 then ϕ(8) = 4 (1, 3, 5, 7 are relatively prime to 8), but none of the numbers is of the order 4 modulo 8, which is evident from the following Table 4.5:

	
ai

	
1

	
2

	
3

	
4

	
1

	
1

	
1

	
1

	
1

	
2

	
2

	
4

	
0

	
0

	
3

	
3

	
1

	
3

	
1

	
4

	
4

	
0

	
0

	
0

	
5

	
5

	
1

	
5

	
1

	
6

	
6

	
4

	
0

	
0

	
7

	
7

	
1

	
7

	
1

Table 4.5: Values of ai (mod 8)

In fact, 8 is the smallest integer, which does not have a primitive root. The following is the table of primitive roots for n ≤ 15:

	
n

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13

	
14

	
15

	
Primitive roots modulo n

	
1

	
2

	
3

	
2, 3

	
5

	
3, 5

	
-

	
2, 5

	
3, 7

	
2, 6, 7, 8

	
-

	
2, 6, 7,11

	
3, 5

	
-

Table 4.6: Primitive roots modulo n

There is a result established that only integers of the form 2, 4, pt, and 2pt have primitive roots where p is any odd prime and t is a positive integer.

4.8.3 Properties of discrete logarithms

Let us quite briefly visit the concepts and results of the logarithm function in ordinary number arithmetic. The logarithm function is the inverse of exponentiation. If y = ax, then it is expressed as logay = x; a in the expression of logay is called the base. That is, logay denotes that number x, a raised to which gives y. That is how logarithm is the inverse of the exponentiation process. In practice, logarithm to the base e, 10 or 2 are more prevalent. The most common properties of logarithms are as follows:

loga 1 = 0 for any base (a0 = 1)

loga a = 1 (a1 = 1)

loga(xy) = loga x + loga y

loga xm = m loga x

With this, let us attempt the definition of discrete logarithm that is logarithm in modular arithmetic.

Discrete logarithm: Let a be a primitive root of positive integer, and let b be a positive integer relatively prime to n. Then, discrete logarithm (or index) of b to the base a modulo n is defined as the unique integer x with 1 ≤ x ≤ ϕ(n), such that ax ≡ b(mod n). We shall denote it as dloga,n (b) = x. There are many different notations prevalent for the same. As pointed, many authors use the word index also for the same. Let us first look at two basic properties before taking up examples.

dloga,p (1) = ϕ(p) as aϕ(p) ≡ 1 (mod p) (section 4.5.3: Euler theorem)

Note that as a0 ≡ 1(mod p), some authors define dloga,p (1) as 0 and dloga,n (a) = 1 as a1 ≡ a(mod n), (a < n).

Let n = 7, primitive roots of 7 are 3 and 5 (Table 4.6). Let us take base as one of the primitive roots, say a = 3. ϕ(7) = 6.

	
x

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
b ≡ 3x (mod 7)

	
1

	
3

	
2

	
6

	
4

	
5

	
1

Table 4.7: Powers of 3 mod 7

From Table 4.7, the following Table 4.8 for dlog3,7 (b) can be generated for 1 ≤ b < 7 and its rearrangement is given in Table 4.9:

	
x

	
1

	
2

	
3

	
4

	
5

	
6

	
dlog3,7 (x)

	
6

	
2

	
1

	
4

	
5

	
3

Table 4.8: Values of dlog3,7 (b)

	
b

	
3

	
2

	
6

	
4

	
5

	
1

	
dlog3,7 (b)

	
1

	
2

	
3

	
4

	
5

	
6

Table 4.9: Values of dlog3,7 (x)

Similarly, if a = 5(mod 7), the following tables give computations of dlog3,7 (x):

	
x

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
5x (mod 7)

	
1

	
5

	
4

	
6

	
2

	
3

	
1

	
x

	
5

	
4

	
6

	
2

	
3

	
1

	
dlog5,7 (x)

	
1

	
2

	
3

	
4

	
5

	
6

Table 4.10: Values of dlog5,7 (x)

	
x

	
1

	
2

	
3

	
4

	
5

	
6

	
dlog5,7 (x)

	
6

	
4

	
5

	
2

	
1

	
3

Table 4.11: Values of dlog5,7 (x) in order

Example 4.39: Determine dlog2,11 (x), for all 1 ≤ x < 11.

We know that 2 is a primitive root of 11. ϕ(11) = 10 as 11 is prime. Every b; 1 ≤ b < 11 is relatively prime to 11. So, dlog2,11 (x), for all 1 ≤ x < 11 is well defined. Let us construct a table of powers of 2x (mod 11) as follows giving values of dlog2,11 (x):

	
x

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
2x (mod 11)

	
1

	
2

	
4

	
8

	
5

	
10

	
9

	
7

	
3

	
6

	
1

⇓

	
x

	
2

	
4

	
8

	
5

	
10

	
9

	
7

	
3

	
6

	
1

	
dlog2,11 (x)

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

Table 4.12: Values of dlog2,11 (x)

If we rearrange in order, we obtain:

	
x

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
dlog2,11 (x)

	
10

	
1

	
8

	
2

	
4

	
9

	
7

	
3

	
6

	
5

Table 4.13: Values of dlog2,11 (x) arranged in order

Example 4.40: Determine dlog3,14 (x).

We know 3 is a primitive root of 14. ϕ(14) = 6. For every b; 1 ≤ b < 14, which is relatively prime to 14, dlog3,14 (x) is uniquely defined. Construct a table of powers of 3x (mod 14) as follows:

[image:]

Table 4.14: Values of dlog3,14 (x)

If we rearrange in order, we obtain:

	
x

	
1

	
3

	
5

	
9

	
11

	
13

	
dlog3,14 (x)

	
6

	
1

	
2

	
3

	
4

	
5

Table 4.15: Values of dlog3,14 (x) arranged in order

Note that 2, 4, 6, 7, 8, 10, 12 are not relatively prime to 14. Consequently, dlog3,14 (x) is not defined for them.

With this, we are ready to establish the other properties of discrete logarithms.

Let x = ak1 (mod p) and y = ak2 (mod p). Therefore, k1 = dloga,p (x) and k2 = dloga,p (y). Now, xy = ak1 (mod p) ak2 (mod p), giving

xy (mod p) ≡ [ak1 (mod p) ak2 (mod p)] mod p

≡ [ak1 · ak2 (mod p)] mod p

≡ ak1+k2 (mod p)

Therefore, k1 + k2 = dloga,p (xy), so dloga,p (xy) = dloga,p (x) + dloga,p (y)

In particular, dloga,p (xm) = m dloga,p (x)

When n is small, the discrete logarithm can be calculated easily by finding the power of base for all i, 1 ≤ i ≤ ϕ(n). But the search becomes exhaustive through all the exponents. When n is large, it no more remains easy and feasible. So far, discrete log are found to be hard to compute. This problem is supposed to be as hard as finding prime factors of a large number. A function f(x) is called a one way function, if f(x) is easy to compute, but given y, it is computationally very hard, almost infeasible to determine x in real time such that f(x) = y. Multiplication of large primes is regarded as one such example of a one way function. It is easy to multiply large primes but difficult to factor the given number. The second such example is modular exponentiation. It is easy to compute the power of an element modulo n, ap(mod n), but solving ax ≡ b(mod n), that is finding x as a discrete logarithm dloga,n(b) = x is believed to be hard so far. One way functions form a basis of cryptographic systems. Such functions are useful in cryptography as the sender and receiver have the original values from which the function calculates y. The y is transmitted to the receiver. Even if the adversary gets y, he/she has no way of determining the constituents in real time. Multiplication of primes is used in RSA cryptography, whereas, discrete logarithms are used in Elgamel cryptography.

Additional reading

	To get a feel of distribution of prime numbers (section 4.2.3: Distribution of prime numbers), graphs and tables of numbers of prime numbers in different ranges can be viewed at https://www.savitagandhi.com/articles/distribution-of-prime-numbers.

	To know and understand the proof of Fermat’s little theorem (section 4.5.1: Fermat’s little theorem) and that of Euler’s theorem (section 4.5.3:Euler’s theorem) you can visit https://www.savitagandhi.com/articles/fermats-little-theorem and https://www.savitagandhi.com/articles/eulers-theorem, respectively.

	The Chinese remainder theorem (section 4.5.1: Fermat’s little theorem) is useful solving in multiple linear congruences is explained with proof and illustrations at https://www.savitagandhi.com/articles/chinese-remainder-theorem.

	A table of values of Euler’s totient function upto 50, graph showing relationship between n and ϕ(n) as well as proof of elementary properties of totient function (section 4.5.2:Euler’s totient function) is presented at https://www.savitagandhi.com/articles/totient-function.

	Proofs of the two base properties used in Miller-Rabin primality test (section 4.6.2: Miller-Rabin primality test) is available at https://www.savitagandhi.com/articles/miller-rabin-primality-test.

	Another common primality test, namely, Solovay-Strassen primality test is discussed, explained, and illustrated with examples at https://www.savitagandhi.com/articles/solovay-primality-test.

Recommended reading/references

	[Agrawal, Kayal & Saxena2004]: M. Agrawal, N. Kayal and N. Saxena, “Primes in P”, Annals of Mathematics 160(2): 781-793, 2004

	[Aigner & Ziegler2010]: Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Fourth Edition, Springer-Verlag, 2010

	[Apostol1976]: Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer Verlag, 1976

	[Diamond1982]: Harold G. Diamond, “Elementary methods in the study of distribution of prime numbers”, Bull. Amar. Math. Soc. 7(1982) PP. 553 – 589

	[Knuth1998]: Donald E. Knuth, The Art of Computer Programming, Addison Wesley, 1998

	[Lenstra & Pomerance2016]: H. W. Lenstra and Carl Pomerance, “Primality testing with Gaussian periods”, preprint, 2016

	[Miller1976]: Gary L. Miller, “Riemann’s Hypothesis and Tests for Primality”, Journal of Computer and System Sciences, 13 (3): 300 – 317, 1976

	[Oysteen1976]: Oystein Ore, Number Theory and Its History, Dover Publication, 1976

	[Rabin1980]: Michael O. Rabin, “Probabilistic Algorithms for testing primality”, Journal of Number Theory, 12(1) : 128 – 138, 1980

	[Riesel2012]: Hans Riesel, Prime Numbers and Computer Methods for Factorization, Birk Hauser, second edition, 2012

	[Rosen2015]: Kenneth H. Rosen, Elementary Number Theory, Pearson In, Sixth Edition, 2015

	[Silverman2014]: Joseph H. Silverman, A Friendly Introduction to Number Theory, Pearson IN, 2014

	[Stallings2015]: William Stallings, Cryptography and Network Security, Pearson In , Sixth Edition, 2015

	[Trappe & Washington2006]: Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with Coding Theory, Pearson In, Second Edition, 2006

	[Wells1993]: David Wells, The Penguin Book of Curios and interesting Puzzles, Penguin Books, 1993

	[Williams1998]: Hugh C. Williams, Edouard Lucas and Primality Testing, Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts, 1st Edition, 1998

Keywords

	Divides: For any two integers a and b with a ≠ 0, we say that a divides b, if b is an integral multiple of a.

	Prime number: A natural number p > 1 is called a prime number if it’s only positive divisors are 1 and p.

	Composite number: A natural number n > 1 is called composite, if it is not prime.

	Greatest common divisor: The greatest common divisor of integers a and b, with at least one of them as not 0, is the largest (positive) integer, which divides both a and b.

	Relatively prime: Two integers a and b are said to be relatively prime if gcd(a, b) = 1.

	a mod n: The remainder obtained on dividing a by n is denoted as a mod n.

	Congruence: a is congruent to b mod n if a – b is a multiple of n denoted as a ≡ b(modn).

	base-a pseudo prime: A composite number n, for which an–1 ≡ 1(mod n).

	Carmichael number: Composite numbers which satisfy Fermat’s theorem for every a, 2 ≤ a ≤ n – 1..

	Euler’s ϕ function: Euler’s totient function, denoted as ϕ(n), is the count of positive integers ≤ n, which are relatively prime to n.

	Totatives: Integers relatively prime to n are called totatives of n.

	Order of a(modulo n): For relatively prime numbers a and n with a ≠ 0 and n > 0, order of a(modulo n) is defined as the smallest positive integer m, such that am ≡ 1(mod n).

	Primitive root: For relatively prime numbers a and n with a ≠ 0 and n > 0, if order of a(modulo n) is ϕ(n), then a is called a primitive root modulo n, or a primitive root of n.

	Discrete logarithm: For a primitive root a, natural number b relatively prime to n, discrete logarithm (or index) of b to the base a modulo n is integer x, with 1 ≤ x ≤ ϕ(n), satisfying ax ≡ b(mod n), denoted as dloga,n (b) = x.

Recapitulation

	Every natural number has a unique factorization as the product of primes called the fundamental theorem of arithmetic or also as the unique factorization theorem.

	For natural numbers a and b, the division algorithm is the equation:
 a = bq + r, 0 ≤ r < b; q = a | b, where x stands for largest integer ≤ x

	The Euclidean algorithm uses the division algorithm repeatedly to determine the greatest common divisor of two numbers.

	The Euclidean algorithm is extended to find x and y to be able to express gcd(a, b) as ax + by that is expressing gcd(a, b) as a linear combination of a and b and this extension is called the Extended Euclidean algorithm

	Fermat’s little theorem states if p is prime and a is a positive number such that p does not divide a (p ∤ a), then ap–1) ≡ 1(mod p). It is useful in generating prime numbers.

	If p and q are distinct primes, then ϕ(p ∙ q) = ϕ(p) · ϕ(q) = (p – 1)(q – 1).

	Euler’s theorem, which is a generalization of Fermat’s theorem states, if a and n are relatively prime than aϕ(n) ≡ 1(mod n).

	Miller – Rabin primality test is based on the two properties:
(1) There are no nontrivial square roots of 1 in modulo prime.

(2) In the sequence of successive square roots of 1 in modulo prime, either every element is 1, or the first element different from 1 is -1.

Exercises

MCQ (Multiple Choice Questions)

	The greatest common divisor of 30, 45 is

	3

	5

	15

	30

	24(mod 13) is

	1

	6

	7

	11

	If a prime number p |ab, p divides

	only a

	only b

	Either a or b

	Both a and b

	The prime factors of 252 are

	2, 3, 5

	2, 3, 7

	3, 5, 7

	4, 9, 5

	If a is an even integer and a2 ≡ k (mod 4), value of k is

	0

	1

	2

	3

	If a is an odd integer and a2 ≡ k (mod 4), value of k is

	0

	1

	2

	3

	If a is a positive integer, the greatest common devisor of a and a + 1 is

	1

	a

	2a

	2

	25 ≡ 4 (mod n) and 35 ≡ 0 (mod n) is satisfied by n =

	3

	5

	7

	11

	Value of 220 (mod 11) is

	1

	3

	7

	9

	The solutions of a2 ≡ 1 (mod 11) for 1 ≤ a ≤ 10 are

	1 and 10

	1 and 5

	1 and 6

	1 and 9

	The number of solutions of a2 ≡ 1 (mod 8) for 1 ≤ a ≤ 8 are

	1

	2

	3

	4

	10 is relatively prime to

	2

	3

	5

	10

	If a is a positive integer, the greatest common divisor of a and a2 is

	1

	a

	2a

	a2

	If all the powers in the prime power factorization of an integer are even, then the integer is

	Even

	Odd

	Perfect square

	All of the above

	3201 (mod 11) is equal to

	1

	2

	3

	5

	Order of 2(mod 9) is

	3

	4

	5

	6

	ϕ(9) is

	3

	4

	5

	6

	--------- is a primitive root of 9

	1

	2

	3

	4

Problems

	Show that 2 | 24, 3 | 66, 5 | 245, 7 | 378 and 12 | 0.

	Show that 1848 is divisible by 2, 3, 7, and 11.

	Which of the following integers are divisible by 11?

	0

	44

	60

	333

	121

	101

	Determine the quotient and remainder in the division algorithm if divisor is 13 and dividend is

	53

	30

	65

	61

	Find all positive integers that divide

	15

	16

	31

	42

	Find gcd of following pairs by finding all positive divisors of each, then finding the greatest among them.

	5, 7

	16, 12

	26, 39

	66, 42

	Determine all positive integers less than 12, which are relatively prime to it.

	Find prime factorization of each of the following integers:

	25

	42

	100

	220

	432

	1080

	144

	Use the Euclidean theorem to determine the greatest common divisor of the following pairs:

	15,18

	9, 27

	16, 20

	22, 66

	Express the greatest common divisor of each pair of integers in Exercise 9 as a linear combination of these integers.

	Factorize 3n – 1 into primes for 1 ≤ n ≤ 5.

	Why n2 – 1 cannot be prime for any n > 2? Explain.

	Find the greatest common divisor of the following pairs of integers given their prime factorization.

	23 ∙ 32 ∙ 7, 22 ∙ 5 ∙ 72 ∙ 11

	2 ∙ 32 ∙ 11, 3 ∙ 5 ∙ 7 ∙ 13

	33 ∙ 52 ∙ 73, 24 ∙ 32 ∙ 5 ∙ 7

	22 ∙ 32 ∙ 52 ∙ 114, 2 ∙ 53 ∙ 5 ∙ 72 ∙ 11

	Verify the following congruences:

	16 ≡ 1 (mod 5)

	10 ≡ 1(mod 3)

	33 ≡ 5 (mod 7)

	17 ≡ 5 (mod 6)

	10 ≡ 0 (mod 2)

	33 ≡ 0 (mod 11)

	28 ≡ 3 (mod 5)

	42 ≡ 2 (mod 8)

	For what values of n, the following statements are true?

	22 ≡ 0(mod n)

	16 ≡ 5(mod n)

	21 ≡ 1(mod n)21

	18 ≡ 3(mod n)

	27 ≡ 4(mod n)

	Check, whether the following pairs (a, b) satisfy a ≡ b (mod 5).

	(12, 2)

	(15, 0)

	(10, 4)

	(11, 1)

	(16, 3)

	(14, 4)

	Show that if a prime number p | a2 then p | a.

	Give a counter example to show that the statement:
If a, b, n ≠ 0 are integers then (a + b) mod n = (a mod n + b mod n) is not true. What would be the correct form of the statement?

	Give a counter example to show that the statement: if a, b, n ≠ 0 are integers then (ab) mod n = [(a mod n)(b mod n)] is not true. What would be the correct form of the statement?

	State Fermat’s little theorem. Show that converse of Fermat’s little theorem is not true by showing 2340 ≡ 1 (mod 341), though 341 is not prime.

	Use Fermat’s little theorem to determine 5100 (mod 7).

	Use Fermat’s little theorem to establish that 63 is not prime.

	Check whether 91 is pseudo prime-base 3.

	What is Carmichael number? Is 341 Carmichael number? Show that 561 is a Carmichael number.

	Check whether ϕ(p ∙ q) = ϕ(p) ∙ ϕ(q), where p = 4, q = 9.

	Find the value of Euler’s ϕ function for

	100

	81

	3 ∙ 5 ∙ 11 ∙ 13

	Compute d log2,13 (3) = x.

	Show that d log2,13 (11) = 7.

	Suppose passwords to a certain application are written as numbers. p is some 500 digit prime, it is secret with you only. When x is a password it is stored in the file as 2x (mod p). When y is given as a password, the number 2y (mod p) is compared with the stored entry in the file of password. Suppose someone is able to access the file storing passwords and the person knows the method of storing the password. Explain why it would be quite difficult for the person to find the password.
Suppose p is a 3 digit prime. Can the application be regarded as secure?

	Use fast exponentiation to calculate 269 mod (101).

	Show that 12 has no primitive roots.

	Show that 20 has no primitive roots.

	Find all primitive roots modulo 13.

	Apply the Miller Rabin test to n = 127 to determine whether it is prime or composite.

	Use method of successive squaring to compute 510 (mod 17) and 413 (mod 11).

	2 is a primitive root of prime 101. You are given that d log2,101 (3) = 69. Using 24 = 23 ∙ 3 and properties of discrete logarithms, determine the value of d log2,101 (24).

	Using 53 ≡ 24(mod 101), determine the value of d log2,101 (24).

CHAPTER 5

Algebraic Structures

Structure

5.1 Algebraic structures

5.1.1 Binary operations on a set

5.2 Groups

5.2.1 Cyclic groups

5.2.1.1 Powers of an element

5.2.1.2 Definition and examples

5.3 Algebraic systems with two binary operations

5.3.1 Rings

5.3.2 Fields

5.3.2.1 Finite fields

5.3.2.2 Galois Field GF(p)

5.4 Algebraic operations on polynomials

5.4.1 Polynomial rings

5.4.2 Polynomials over GF(p)

5.4.2.1 Polynomials over GF(2)

5.4.3 Greatest common divisor of two polynomials

5.5 Galois Field GF(pn)

5.5.1 Galois Field GF(23)

5.5.2 Representation of polynomials in GF(2n) by n bit string

5.5.3 Key points in arithmetic operations - addition in GF(2n)

5.5.4 Key points in arithmetic operations - multiplication in GF(2n)

5.5.5 Multiplication inverses in GF(2n)

5.5.6 Use of a generator to construct GF(2n)

5.5.7 Inverses in GF(2n) using the generator g

Objectives

After completion of this chapter, the student should be able to:

	Define and provide examples of algebraic structures like groups, rings, and fields.

	Define and provide examples of finite fields and use the extended Euclidean theorem or Fermat’s theorem to find the multiplicative inverses in a field.

	Execute polynomial arithmetic operations when coefficients are members of some finite field.

	Perform arithmetic operations on polynomials having coefficients over a finite field Zp, in particular over GF(2).

	Describe an irreducible polynomial and find out irreducible polynomials over a field, and check whether a polynomial is irreducible over a field.

	Work out the polynomial arithmetic modulo irreducible polynomial with polynomial coefficients over a finite field.

	Describe what the finite fields of the form GF(2n) are and how the four arithmetic operations such as addition, subtraction, multiplication, and division can be carried out on elements as polynomials, then as bit strings.

	Construct the field GF(2n) using an irreducible polynomial as a generator.

5.1 Algebraic structure

The algebraic structure is a non-empty set together with one or more binary operations, satisfying specific properties. For example, if * is a binary operation on G, then 〈G, *〉 is an algebraic structure. The set [image:] of natural numbers with binary operation as the addition of natural numbers is an algebraic structure which is denoted as 〈[image:], +〉. Examples of algebraic structures, also called algebraic systems, are groups, rings, fields, lattices, Boolean algebras, and many others. Out of these, we will discuss groups, rings, and fields in this chapter.

5.1.1 Binary operations on a set

Let [image:] be a set and f be a mapping f : X × X → X. Then, f is called a binary operation.

Example 5.1: Let the set A = {1, 2, 3, 4, 5}. For a, b in A, define operation ‘‘as a  b = a + b. ‘’ is not a binary operation on A as A is not closed under ‘‘ (2 + 5 = 7 ∉ A). In other words, the operation ‘‘ does not satisfy the closure property. But if the same operation is considered on the set of [image:] of natural numbers, then ‘‘ is a binary operation on [image:], as [image:] is closed under ‘‘.

5.2 Groups

Let G be a nonempty set and * be a binary operation on G. The algebraic system 〈G, *〉 is called a group if the binary operation * satisfies the following properties:

	Closure: For all a, b ∈ G; a * b ∈ G (* being binary operation satisfies the closure property automatically).

	Associative: For all a, b, c ∈ G; (a * b) * c = a * (b * c).

	Existence of Identity: There exists an element e in G such that a * e = e * a = a for all a in G.

	Existence of inverses: For every a in G, there exists an element denoted as a–1 in G such that a * a–1 = a–1 * a = e.

If number of elements in G is finite, then G is called a finite group and number of elements in G is called the order of group 〈G, *〉, denoted as |G|. Otherwise, the group is infinite. Moreover, if the operator * satisfies the commutative property, that is, for all a, b ∈ G, a * b = b * a, then the group 〈G, *〉 is called an abelian or commutative group.

Example 5.2: The set Z of all integers under usual addition is an infinite abelian group with identity element as 0 and inverse of i in Z as –i. (0 + i = i + 0 = i for all i ∈ Z and i + (–i) = (–i) + (i) = 0).

Example 5.3: The set [image:]* of all non-zero real numbers is an abelian group under multiplication with identity element as 1 and inverse of x as 1/x. [image:].

Example 5.4: Consider the set Z4 = {0, 1, 2, 3} of integers modulo 4 with the binary operation denoted as +4 defined as: For i, j ∈ Z4, i +4 j = (i + j) mod 4.

The composition table for +4 on Z4 is displayed in Table 5.1:

	
+4

	
0

	
1

	
2

	
3

	
0

	
0

	
1

	
2

	
3

	
1

	
1

	
2

	
3

	
0

	
2

	
2

	
3

	
0

	
1

	
3

	
3

	
0

	
1

	
2

Table 5.1: Composition table for +4 on Z4

It is evident from Table 5.1 that Z4 is closed concerning the operation +4 on Z4 . +4 satisfies the commutative and associative property, and 0 is the identity element. 1 and 3 are inverses of each other; the inverse of 2 is 2 itself, and the inverse of 0 is 0 itself. Thus, 〈Z4, +4〉 is a commutative group of order 4. In general, if Zn is the set of integers modulo n for any natural number n, then the algebraic system [image:] is a group, where the addition +n is defined as: i +n j = (i + j) mod n. Here, Zn = {0, 1, 2, …, n – 1}, 0 is the identity element, and inverse of i is n – i. The proof is simple and left as an exercise to the reader.

Example 5.5: Now, consider the set 〈Z4, X4〉 where the operation X4 is defined as:

For i, j ∈ Z4, i X4 j = (i ⋅ j) mod 4. The composition table for X4 on Z4 is given in Table 5.2:

	
X4

	
0

	
1

	
2

	
3

	
0

	
0

	
0

	
0

	
0

	
1

	
0

	
1

	
2

	
3

	
2

	
0

	
2

	
0

	
2

	
3

	
0

	
3

	
2

	
1

Table 5.2: Composition table for X4 on Z4

In 〈Z4, X4 〉, each element does not have an inverse, for example, the inverse of 2 does not exist, there is no a in Z4 satisfying 2 X4 a = 1 (look at the row corresponding to 2). Also, 0 can never have inverse as 0 X4 a = 0 always. It clearly follows that 〈Zn, Xn 〉 under the operator Xn defined as: a Xn b = (a ⋅ b) mod n can never be a group because of 0 Xn a would be 0 always, 0 shall never have an inverse. To overcome this issue, let us define Zn* = Zn – {0}. Now, let us investigate whether 〈Zn*, Xn〉 can be a group like 〈Zn, +n 〉 is. For it, let us first take the case n = 5.

Example 5.6: Consider the composition table of [image:]

	
X5

	
1

	
2

	
3

	
4

	
1

	
1

	
2

	
3

	
4

	
2

	
2

	
4

	
1

	
3

	
3

	
3

	
1

	
4

	
2

	
4

	
4

	
3

	
2

	
1

Table 5.3: Composition table for X5 on Z5*

It can be inferred from above Table 5.3,that [image:] is closed under the binary operation, commutative and associative properties follow, identity element is 1 and every element has inverse given by: [image:]. Therefore, [image:] is a group. If [image:] in [image:] is a composite number, then [image:] with [image:], making[image:] ; with 0 [image:] [image:] is not closed under binary operation. We can conclude that [image:] is not a group, if [image:] is composite.

The natural question which arises is what if [image:] is prime? In this case, say [image:]. For [image:] [image:] [image:] [image:]as[image:]; [image:] ([image:] being prime has no nontrivial factors). Thus, [image:]giving [image:] as closed. Commutative and associative properties hold in [image:]. The identity element is 1. All, we need to determine is the existence of inverses in[image:]. For this, let us study the following Theorem 5.1.

Theorem 5.1: If a and b are relatively prime, that is, if gcd(a, b) = 1, then b has multiplicative inverse modulo a, that is, there exists some c (say) such that b ⋅ c ≡ 1 (mod a), leading to b–1 ≡ c(mod a).

Proof: As gcd(a, b) = 1, by Extended Euclidean algorithm (section 4.3.3: Extended Euclidean Theorem of Chapter 4: Number Theory Fundamentals) there exist integers x and y such that ax + by = 1, giving (ax + by)(mod a) = 1(mod a), that is, (ax (mod a) + by (mod a)(mod a) = 1). Therefore, 0 + by (mod a) = 1, yielding y ≡ b–1 (mod a).

Thus, using the extended Euclid theorem, inverses can be obtained. For large a, this method of finding the inverse is very convenient and has its applicability in Public key crypto systems like RSA and more.

For every a ∈ Zp*, a is relatively prime to p and so a has multiplicative inverse modulo p. We can conclude 〈Zp*, Xp〉 or in short Zp* under multiplication modulo p is a group iff p is prime. 〈Z7*, X7〉, 〈Z5*, X5〉, 〈Z11*, X11〉 are few simple examples of groups of order 7, 5, 11, respectively under multiplication modulo n. In 〈Z7*, X7〉;

2–1 = 4, (2 X7 4 = 8 ≡ 1 mod 7), 4–1 = 2

3–1 = 5, (3 X7 5 = 15 ≡ 1 mod 7), 5–1 = 3

6–1 = 6, (6 X7 6 = 36 ≡ 1 mod 7)

We shall later see in this chapter that Zp* is a significant and an exciting example of a Field of finite order.

5.2.1 Cyclic groups

Cyclic groups are the groups that can be generated by a single element called a generator. All elements of the cyclic group can be obtained by applying a binary operation of the group, * to the generator repeatedly. Cyclic groups are abelian in nature. It turns out that every infinite cyclic group is isomorphic to the set of all integers under addition 〈Z, +〉 whereas every finite cyclic group of order [image:] is isomorphic to 〈Zn, +n〉

5.2.1.1 Power of an element

Let 〈G, *〉 be a group. For any a ∈ G, define:

a0 = e

a1 = a

a2 = a * a

…

an+1 = an * a for n ∈ N;

Thus, ai is defined for every integer i. It can be easily seen that ai * aj = ai+j for i, j ∈ Z

5.2.1.2 Definition and examples

A group 〈G, *〉 is said to be cyclic, if there exists an element a ∈ G, such that every element of G can be written as some power of a, that is, as an for some integer [image:]. Such a is called a generator of the group G, and the cyclic group is said to be generated by a. The generator need not be unique.

Example 5.7: The set 〈Z, +〉 of all integers under addition is an infinite cyclic group with generator as 1 as well as –1.

Under our notations: [image:]; [image:]; [image:];[image:] [image:], [image:];

Example 5.8: Consider [image:]. Obviously, 1 generates[image:]. 2 is also a generator of [image:] under modulo 7. To realize it, let us calculate various powers of 2 [image:].

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

So, the set of various power of [image:] is {0, 2, 4, 6, 1, 3, 5} which is same as [image:]. [image:] is a cyclic group. In fact, every non zero element of [image:]is a generator of [image:] [image:], serves as an example of a finite cyclic group with at least two generators 1 and [image:] [image:] is an example of a cyclic group, where the generators are 1 and 5 only. No other element of [image:] generates it. For example,

[image:]

[image:]

[image:]

So, the set generated by 3 is only {0, 3}.

Example 5.9: Consider [image:] Denote {1, 3, 5, 7} as [image:] is a group of order 4 with composition table given by:

	
X8

	
1

	
3

	
5

	
7

	
1

	
1

	
3

	
5

	
7

	
3

	
3

	
1

	
7

	
5

	
5

	
5

	
7

	
1

	
3

	
7

	
7

	
5

	
3

	
1

Table 5.4: Composition table for [image:]

[image:]is not a cyclic group. It can be verified very easily that none of the elements of A is a generator.

5.3 Algebraic systems with two binary operations

So far, we have studied group, which is an algebraic system with one binary operation. Now, let us study algebraic systems, where instead of one binary operation, two binary operations are used. We shall call these two binary operations as addition and multiplication and denote as ‘ + ‘ and ‘ . ‘, respectively. First, we shall study the ring, which is an abelian group under the operations of addition with some additional properties.

5.3.1 Ring

An algebraic system [image:] is called a Ring if the binary operations +, ⋅ satisfy the following properties:

	[image:] is an abelian group.

	[image:] satisfies associative property, that is, [image:] for all [image:].

	Distributive property of + over ∙ holds, that is, for any [image:] [image:] and [image:], for all [image:]

Note that, being a binary operation, the closure property automatically holds in [image:]. Identity element in [image:] is donated as 0 and the inverse of a is denoted as – a and is called the additive inverse.

The set of real numbers, integers, and rational numbers are the most familiar example of rings under usual operations of addition and multiplication. Similarly, the set of square matrices over real numbers is a ring under usual operations of matrix addition and multiplication. If [image:] is commutative, that is, for [image:], then [image:] is called a commutative ring. As the matrix product does not satisfy the commutative property, the ring of square matrices over real numbers is not commutative, whereas the set of real numbers under usual operations of [image:] and ∙ is a commutative ring.

Example 5.10: [image:] is a commutative ring. We have already established that [image:] is a group under addition modulo n. Associative, commutative, and distributive properties hold in [image:], that is why, [image:]is a ring for every [image:].

If [image:] has an identity element with respect to multiplication ‘⋅‘, then this identity element is denoted as 1 and is called a unit element or unity. Thus, a ⋅ 1 = 1 ⋅ a = a, for all a in R and ring [image:] is called a Ring with unity. Note that a Rring of order 2 or more can never be a group under multiplication as 0 never has an inverse.

The multiplicative inverse of a in [image:], that is, inverse with respect to the operation of multiplication, if exists is denoted as [image:]. As pointed out in the preceding paragraph, [image:]cannot be a group as the additive identity 0 does not have an inverse. Naturally, the question which arises is that if we consider non-zero elements in a ring [image:], can they form a group under multiplication? Let us investigate it. For it, firstly, [image:] must be closed, giving us, [image:]or equivalently [image:] If in a ring [image:], this property holds true then [image:] is called a ring without divisors of 0. Further, a commutative ring [image:] with unity without divisors of 0 is called an Integral Domain. [image:], is an example of integral domain.

Example 5.11: [image:] is not an integral domain as it has divisors of 0 modulo 8. For [image:]. Similarly, [image:] has 2 and 3 as divisor of 0.

Example 5.12: [image:] is an integral domain. We already know it is a commutative ring with unity, and it has no zero divisors because 7 being prime has no factors.[image:] is not feasible.

It can be visualized that [image:] for [image:] prime is an integral domain.

5.3.2 Fields

A commutative ring [image:] with unity in which every non zero element has a multiplicative re inverse is called a Field. We shall denote a field by 〈F , + , ∙〉

Example 5.13: The set of real numbers [image:] is a field. [image:] is a commutative ring with unity as 1. Every [image:] has a multiplicative inverse [image:].

5.3.2.1 Finite fields

Fields having finitely many elements are called Finite fields. Finite fields are of particular interest to us, because of their applicability in cryptography, especially in AES and Elliptic Curve Cryptography and coding theory (Reed-Solomon (RS) codes). It turns out that order of a finite field has to be the power of some prime number that is of the form [image:], for some natural number [image:] and prime number [image:]. The converse is also true. For every number of the form [image:], there exists some field(s) of that order. Thus, we get fields of order 2, 3, 4, 5, 7, 8, 9, 11, 16, 25, and so on.

The finite fields are commonly called Galois field, named in honor of the French mathematician Evariste Galois who studied them (got killed in a duel at age 20) and are denoted as [image:]. He was the one who demonstrated that finite fields of order [image:] are possible only if [image:], where [image:] is prime, and [image:] is a natural number. Let us first elaborate on the special case of Galois field [image:], when [image:], namely fields of prime order. [image:] and [image:], [image:] have quite different structures, so they are explained in different sections.

5.3.2.2 Galois Field GF(p)

[image:] is a commutative ring with unity, and we have explained in Example 5.12 (section 5.3.1: Ring), that it is an integral domain, if [image:] is prime. ([image:] being prime, non-trivial factors of [image:] are not possible). Thus, [image:] does not have zero divisors. Also, recall from the result of Theorem 5.1 (section 5.2: Groups), that [image:] is a group iff [image:] is prime. In other words, we can say that for every non-zero [image:] there exists [image:] such that [image:] Also, cancellation law holds, that is

[image:]

Now onwards, for brevity, let us replace the operator sign [image:] by ⋅ and [image:] by [image:] . Cancellation law can be proved very easily. Multiplication of both sides of [image:] , by[image:], gives : [image:]

[image:]

[image:]

[image:]

Example 5.14: Let us create composition table for the smallest field namely GF(2).

[image:]

Table 5.5: Composition table for GF(2) = (Z2, +, ⋅)

It is evident from the table; that addition is equivalent to X[image:](Exclusive - OR) operation and multiplication is equivalent to AND operation.

The multiplicative inverse of [image:] in [image:] can be obtained easily using extended Euclidean theorem. [image:] [image:] and [image:] can be obtained satisfying [image:] (section 4.3.3: Extended Euclidean theorem of Chapter 4: Number Theory Fundamentals) giving [image:]. Let us demonstrate by taking few examples below:

Example 5.15: Find the multiplicative inverse of [image:]. Here, [image:] and [image:]. Let us apply the Euclidean algorithm. We are seeking [image:] such that [image:]

[image:]

[image:]

[image:] giving [image:]

It can be verified [image:] (additive inverse of i is [image:] (section 5.2: Groups)), thus additive inverse of 5 is 6; 5 + 6 = [image:][image:]11 [image:].

Example 5.16: Find the multiplicative inverse of 7 in [image:] using the method of the Euclidean theorem.

[image:]

[image:]

[image:]

[image:] [image:]

[image:] [image:]

Even Euler theorem’s special case Fermat’s theorem (section 4.5 (4.5.1 and 4.5.3): Fermat’s little theorem and Euler’s theorem of Chapter 4: Number Theory Fundamentals) can be used to find the inverse of [image:].[image:] [image:] 1[image:] where [image:] is the totient function. Therefore,[image:] As [image:] is prime, [image:]; we can say[image:] Using the binary exponentiation theorem,[image:] can be calculated easily.

Example 5.17: Let us rework the same exercise of Example 5.15 using the Fermat’s theorem. Inverse of 5[image:]is given by [image:].

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

which is the same as obtained in Example 5.15.

To enable us to create Galois Field GF[image:]we need to study polynomial ring, its arithmetic, which shall make it easy and straightforward to understand the Galois field. Here, equivalent bit string of numbers would be represented by polynomials, for example, 7 having equivalent bit string 111 would be represented by [image:] and similarly, 8 = 1000 would be represented by [image:]. Representing numbers with polynomials through their bit string representation helps in the construction of field GF[image:].

5.4 Algebraic operations on polynomials

Firstly, we shall revise ordinary polynomial arithmetic operations when coefficients are either integers or real numbers or complex numbers. As we are interested in finite sets, we shall study next the set of polynomials under operations of addition, subtraction, multiplication, and division[image:], when the coefficients [image:] are members of the finite field[image:]. Finally, we shall consider polynomials[image:], (on similar lines as in [image:] to be explained later) with coefficients in GF(2).

5.4.1 Polynomial rings

A polynomial of degree [image:] donated as [image:] is an expression of the form [image:] where [image:]are elements of some algebraic system [image:] of numbers. [image:] are called coefficients, and the polynomial is said to be defined over the set F. A zero-degree polynomial is called a constant polynomial as it does not contain x. Rather than evaluating the polynomial for a particular value of x, our interest lies in different operations of addition, subtraction, multiplication, and division on polynomials. In this context, here variable x is called indeterminate. In polynomial addition/subtraction, the corresponding coefficient of the same power of x is added/subtracted. Thus, if

[image:] and [image:] (say); then

[image:]

While operating two polynomials, arithmetic operations on coefficients are that of F. For example, let [image:] be polynomials over the set of integers[image:], then [image:][image:] and [image:][image:]. It can be shown as follows:

[image:]

[image:]

[image:] and [image:]

Multiplication of [image:] and [image:] is defined as:

[image:]

where [image:] [image:])[image:] [image:]. So, for the same p(x), q(x) considered above

[image:]

[image:]

[image:]

The set of polynomials forms a commutative ring under the operation of polynomial addition and multiplication with identity as zero polynomial, namely, ([image:] = 0), additive inverse of [image:]as [image:]; and multiplicative identity as [image:]. It is denoted as [image:], a ring of polynomials under the algebraic operations of [image:].We shall learn that set of polynomials over a field [image:] forms the Galois Field.

5.4.2 Polynomials over GF(p)

In order that ring of polynomials under polynomial arithmetic forms a field, coefficients must be members of a field. As we are interested in finite fields, we shall restrict the coefficients to be in [image:] The division algorithm for polynomials over a field is:

Let [image:] and [image:] be polynomials with [image:] and [image:] and [image:], then if division of [image:] by [image:] gives quotient [image:] and remainder [image:], we can write:

[image:] [image:]

Let us express the preceding equation as [image:] on similar lines of integer [image:]. Also, if [image:] we would use the language [image:] divides [image:], written as [image:] which is the same as [image:] is a factor/divisor of [image:].

For applications in different cryptography algorithms, polynomials over a special small size field [image:] are very important. (example 5.14, section 5.3.2.2: Galois Field GF([image:]). Recall that in GF(2), 0 and 1 are self-inverses under addition ([image:]).

Example 5.18: Consider field [image:] and let [image:] [image:]

[image:] [image:]

[image:]

[image:]

[image:]

[image:]

[image:]

On similar lines of the definition of a prime number in natural numbers, the irreducible or prime polynomial is defined as: A polynomial [image:] over a field F is called an irreducible or prime polynomial iff [image:] cannot be expressed as the product of two lower degree polynomials over F. In other words, if the polynomial [image:] is reducible, then [image:] can be expressed as a product of two polynomials over F, whose degrees are less than that of [image:]. Irreducible polynomials shall play the same role in our study of fields [image:] as prime [image:] plays in [image:]

5.4.2.1 Polynomials over GF(2)

[image:] or [image:] is the smallest field of order 2, having elements 0 and 1. Recall from Example 5.14, Table 5.5 the operations of addition and multiplication on [image:] as:

[image:]

Table 5.5: The operations on of addition and multiplication on Z2

Coefficients of polynomials over GF(2) are elements of GF(2), and operations follow the Table 5.5. Some of the examples of polynomials over GF(2) are [image:](coefficients can be 0, 1, –1). Let us list all polynomials of degree 3 over GF(2). A polynomial of degree 3 would be of the form [image:], where each of the coefficients a0, a1, a2, a3 is 0 or 1 (a3 = 1 and 1 = –1). Thus, there are eight cubic polynomials, namely: x3, x3 + 1, [image:],[image:] [image:] [image:], [image:]

Let us find irreducible polynomial if any.

[image:]

[image:]

[image:]

[image:]

[image:]

[image:] = [image:]

There are two irreducible polynomials [image:] and [image:]. To be able to create a finite field of non-prime order, that is of order [image:] the irreducible polynomial is a must as using modulo that polynomial, elements of field [image:] and operations are determined.

Example 5.19: Let us show that [image:]does not have a factor. (is irreducible)

It is trivial that x is not a factor of [image:] Also, the value of the polynomial at 1 is not zero, it implies (x – 1) also is not a factor of [image:]Thus, p(x) does not have a linear factor of the form [image:] As [image:] is a cubic polynomial of degree 3, if it is reducible then [image:], with degree [image:]. Also by Division algorithm equation degree ([image:] implying, one of the factors has degree 1, and another factor has degree 2. As no factor of degree 1 exists, it can be concluded that [image:] is irreducible.

5.4.3 Greatest common divisor of two polynomials

The definition of highest common division of two polynomials say [image:] over field F, is just analogous to the definition of gcd of two numbers (section 4.3: Greatest common divisor of Chapter 4: Number Theory Fundamentals), and the same is true for Euclidean algorithm for polynomials.

Definition: The polynomial c(x) is called the greatest common divisor of a(x) iff the following is satisfied:

	c(x) divides a(x) divides b(x)

	If d(x) divides both a(x) and b(x) then d(x) divides c(x) that is, any divisor of a(x) is a divisor of c(x)

A repetitive application of the Division algorithm gives us the Euclidean theorem for polynomials.

5.5 Galois Field GF(pn)

Just to recap the points about finite fields from earlier sections of this chapter, the following observations have been made:

	The order of a finite field has to be [image:], where [image:]is prime and [image:] is a natural number[image:] .

	A special case, when [image:] is a field under modular arithmetic ([image:]).

Now, let us work towards constructing a field for the case [image:]. Consider the set S of all polynomials [image:] of degree [image:] over the field [image:], that is, [image:] , where each [image:]. Each [image:] can take one of the values in the set [image:]. There are [image:] such coefficients, and each coefficient can take any of the [image:] values. Thus, the total number of variations possible is [image:]. Therefore, the order of a set of polynomials of degree [image:], where coefficient are in [image:], for some prime [image:]. We shall work towards converting this set to a field, specifically for [image:].

Example 5.20: Let [image:]. This gives [image:] There would be 8 polynomials over [image:] of degree [image:] The polynomial coefficients can take only 2 values 0 or 1. Polynomials are as follows:

	
0

	
1 + x

	
 x2 + x + 1

	
1

	
 x2

	
 x2 + x

	
x

	
 x2 + 1

	

Table 5.6: Polynomials of degree ≤ 2 over GF(2)

Example 5.21: Let [image:]. There would be [image:] polynomials over [image:] of degree [image:]Coefficient can take any of the values from [image:].

	
0

	

[image:]

	

[image:]

	
1

	

[image:]

	

[image:]

	

[image:]

	

[image:]

	

[image:]

Table 5.7: Polynomials of degree ≤ 1 over GF(3)

Now, we proceed further to define arithmetic operations on the set of these polynomials to visualize [image:] as a field.

	Arithmetic on polynomial coefficients [image:] would be that of [image:].

	Same normal arithmetic operations of polynomial addition, multiplication would be applicable with the following exception:

If the degree of a polynomial on multiplication is [image:], then the polynomial is reduced modulo some irreducible polynomial [image:] of degree [image:] that is, if on multiplication, degree of polynomial obtained [image:] (say) is [image:], then we divide [image:] by [image:] and keep the remainder [image:]. So, if [image:], then the multiplication result is [image:]. Degree of [image:].

Example 5.22: Let us perform arithmetic operations of addition, subtraction and multiplication of [image:] with [image:] in [image:] with the irreducible polynomial as [image:] (Coefficients in [image:]):

[image:]

[image:]

[image:] [image:]

[image:]

[image:]

In analogy to the construction [image:] (set of integers [image:]), we have set of polynomials modulo [image:], where [image:] is an irreducible polynomial of degree [image:] with coefficients of polynomials in [image:], and this set is of order [image:], where each of the member polynomials is of degree [image:] This set turns out to be a field called [image:]. The irreducible polynomial [image:] of degree [image:] over [image:] acts like prime polynomial, that is, no polynomial in the set can divide it. It cannot be factored into a polynomial of degree [image:]

	
Degree

	
Irreducible Polynomials over Z2

	
1

	

[image:]

	
2

	

[image:]

	
3

	

[image:]

	
4

	

[image:]

	
5

	

[image:]

[image:]

Table 5.8: List of irreducible polynomials over Z2

5.5.1 Galois Field GF(23)

Consider GF(23). is the set of polynomials of degree [image:] with coefficients in [image:].[image:]. There are two irreducible polynomials, namely [image:] and [image:]. The multiplication table generated through using polynomial arithmetic modulo(x3 + x + 1) would be different from that obtained using modulo(x3 + x2 + 1). For example:

([image:] [image:]1, whereas

([image:]

Nevertheless, the multiplicative tables under different irreducible polynomials are structurally same, they are isomorphic, thus, structure wise, there is only one field of order [image:]. The composition tables of polynomials in GF(23) under the operation of addition and multiplication modulo(x3 + x + 1) are shown in Tables 5.9 and 5.10:

	
	
	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
	
+

	
0

	
1

	
x

	
x + 1

	
 x2

	
x2 + 1

	
x2 + x

	
x2 + x + 1

	
000

	
0

	
0

	
1

	
x

	
x + 1

	
 x2

	
x2 + 1

	
x2 + 1

	
x2 + x + 1

	
001

	
1

	
1

	
0

	
x + 1

	
x

	
x2 + 1

	
 x2

	
x2 + x + 1

	
x2 + x

	
010

	
x

	
x

	
x + 1

	
0

	
1

	
x2 + x

	
x2 + x + 1

	
 x2

	
x2 + 1

	
011

	
x + 1

	
x + 1

	
x

	
1

	
0

	
x2 + x + 1

	
x2 + x

	
x2 + 1

	
x2

	
100

	
 x2

	
 x2

	
x2 + 1

	
x2 + x

	
x2 + x + 1

	
0

	
1

	
x

	
x + 1

	
101

	
x2 + 1

	
x2 + 1

	
 x2

	
x2 + x + 1

	
x2 + x

	
1

	
0

	
x + 1

	
x

	
110

	
x2 + x

	
x2 + x

	
x2 + x + 1

	
 x2

	
x2 + 1

	
x

	
x + 1

	
0

	
1

	
111

	
x2 + x + 1

	
x2 + x + 1

	
x2 + x

	
x2 + 1

	
 x2

	
x + 1

	
x

	
1

	
0

Table 5.9: Polynomial addition modulo(x3 + x + 1) in GF(23)

	
	
	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
	
⋅

	
0

	
1

	
x

	
x + 1

	
x2

	
x2 + 1

	
x2 + x

	
x2 + x + 1

	
000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
001

	
1

	
0

	
1

	
x

	
x + 1

	
x2

	
x2 + 1

	
x2 + x

	
x2 + x + 1

	
010

	
x

	
0

	
x

	
x2

	
x2 + x

	
x + 1

	
1

	
x2 + x + 1

	
x2 + 1

	
011

	
x + 1

	
0

	
x + 1

	
x2 + x

	
x2 + 1

	
x2 + x + 1

	
x2

	
1

	
x

	
100

	
x2

	
0

	
x2

	
x + 1

	
x2 + x + 1

	
x2 + x

	
x

	
x2 + 1

	
1

	
101

	
x2 + 1

	
0

	
x2 + 1

	
1

	
x2

	
x

	
x2 + x + 1

	
x + 1

	
x2 + x

	
110

	
x2 + x

	
0

	
x2 + x

	
x2 + x + 1

	
1

	
x2 + 1

	
x + 1

	
x

	
x2

	
111

	
x2 + x + 1

	
0

	
x2 + x + 1

	
x2 + 1

	
x

	
1

	
x2 + 1

	
x2

	
x + 1

Table 5.10: Polynomial multiplication modulo(x3 + x + 1) in GF(23)

5.5.2 Representation of polynomials in GF(2n) by n bit string

For simplicity, let us take the case [image:]. If we revisit members of [image:], the elements of [image:] are [image:]. There is nothing special about polynomials, and we can consider powers of [image:] as place holders in a bit string (coefficients[image:]. Thus, polynomials can be viewed as bit strings corresponding to coefficients, where the power of [image:] represents a position in the string. So, members of [image:] correspond to bit strings as given in the following Table 5.11. (Polynomial [image:] shall correspond to [image:]):

	
Polynomial

	
Bit String

	
0

	
000

	
1

	
001

	
x

	
010

	
x2

	
100

	
x + 1

	
011

	
x2 + 1

	
101

	
x2 + x

	
110

	
x2 + x + 1

	
111

Table 5.11: Representation of polynomials in GF(23) by 3 bit string

Replacement of polynomials by their corresponding bit string representations in the composition Tables 5.9 and 5.10 of [image:]gives the following tables for operations of addition and multiplication:

	
+

	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
000

	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
001

	
001

	
000

	
011

	
010

	
101

	
100

	
111

	
110

	
010

	
010

	
011

	
000

	
001

	
110

	
111

	
100

	
101

	
011

	
011

	
010

	
001

	
000

	
111

	
110

	
101

	
100

	
100

	
100

	
101

	
110

	
111

	
000

	
001

	
010

	
011

	
101

	
101

	
100

	
111

	
110

	
001

	
000

	
011

	
010

	
110

	
110

	
111

	
100

	
101

	
010

	
011

	
000

	
001

	
111

	
111

	
110

	
101

	
100

	
011

	
010

	
001

	
000

Table 5.12: Polynomial addition modulo(x3 + x + 1) in GF(23) using bit string

	
⋅

	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
000

	
000

	
000

	
000

	
000

	
000

	
000

	
000

	
000

	
001

	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
010

	
000

	
010

	
100

	
110

	
101

	
111

	
001

	
011

	
011

	
000

	
011

	
110

	
101

	
001

	
010

	
111

	
100

	
100

	
000

	
100

	
101

	
001

	
111

	
011

	
010

	
110

	
101

	
000

	
101

	
111

	
010

	
011

	
110

	
100

	
001

	
110

	
000

	
110

	
001

	
111

	
010

	
100

	
011

	
101

	
111

	
000

	
111

	
011

	
100

	
110

	
001

	
101

	
010

Table 5.13: Polynomial multiplication modulo(x3 + x + 1) in GF(23) using bit string

Further, we can simplify matters by representing these bit strings by equivalent decimal numbers between 0 and 7. The results are shown in the following Tables 5.14 and 5.15:

	
	
	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
	
+

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
000

	
0

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
001

	
1

	
1

	
0

	
3

	
2

	
5

	
4

	
7

	
6

	
010

	
2

	
2

	
3

	
0

	
1

	
6

	
7

	
4

	
5

	
011

	
3

	
3

	
2

	
1

	
0

	
7

	
6

	
5

	
4

	
100

	
4

	
4

	
5

	
6

	
7

	
0

	
1

	
2

	
3

	
101

	
5

	
5

	
4

	
7

	
6

	
1

	
0

	
3

	
2

	
110

	
6

	
6

	
7

	
4

	
5

	
2

	
3

	
0

	
1

	
111

	
7

	
7

	
6

	
5

	
4

	
3

	
2

	
1

	
0

Table 5.14: Polynomial addition modulo(x3 + x + 1) in GF(23) using decimal notation

	
	
	
000

	
001

	
010

	
011

	
100

	
101

	
110

	
111

	
	
×

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
001

	
1

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
010

	
2

	
0

	
2

	
4

	
6

	
3

	
1

	
7

	
5

	
011

	
3

	
0

	
3

	
6

	
5

	
7

	
4

	
1

	
2

	
100

	
4

	
0

	
4

	
3

	
7

	
6

	
2

	
5

	
1

	
101

	
5

	
0

	
5

	
1

	
4

	
2

	
7

	
3

	
6

	
110

	
6

	
0

	
6

	
7

	
1

	
5

	
3

	
2

	
4

	
111

	
7

	
0

	
7

	
5

	
2

	
1

	
6

	
4

	
3

Table 5.15: Polynomial multiplication modulo(x3 + x + 1) in GF(23) using decimal notation

The same technique can be applied to represent [image:] with [image:] bit integers ([image:] of them) for a set of integers [image:] wherever irreducible polynomial of degree [image:] exists.

5.5.3 Key points in arithmetic operations - addition in GF(2n)

	We know that for addition of polynomials in GF(2n),polynomial coefficients are added under arithmetic rules of [image:], that is, in [image:] the set of numbers [image:] 2. As the operation of addition in [image:] is the logical XOR operation, so the addition of [image:] integer in [image:] can be obtained by just taking in bitwise XOR of the [image:] integer. For example in [image:]:

[image:]

Similarly, in [image:] : [image:]

	Subtraction is the same as the addition in [image:] as each number is its additive inverse in [image:] for every [image:] (Table 5.5).

5.5.4 Key points in arithmetic operations - multiplication in GF(2n)

A natural question that arises is can the multiplication of n bit integers in [image:] be obtained directly by multiplying the bits? There is no simple operation like XOR for multiplication in [image:]but multiplication can be achieved using successively shift – left and XOR operations. Let us understand it through an example.

Consider GF(28) (used in AES) with the irreducible polynomial as m(x) = x8 + x4 + x3 + x + 1. [image:]. Let us assume, we want to multiply [image:] by x. Bit representation of f(x) is [image:].[image:][image:] which is equivalent to 1-bit left shift followed by bitwise XOR. Multiplication by higher powers can be achieved by applying the process repetitively.

5.5.5 Multiplication inverses in GF(2n)

The extended Euclidean algorithm can be used to find the multiplicative inverse of a member of [image:], arithmetic being followed that of [image:].

5.5.6 Use of a generator to construct GF(2n)

An element [image:] is called a generator of [image:], if every non zero element of [image:] can be expressed as some power of [image:]. That means, if the order of a finite field F is [image:] and [image:] is the generator, then the field F is the set {[image:]. If the irreducible polynomial is expressed as [image:], then [image:] is the element symbolically satisfying [image:]. There is no need to solve this equation for its roots but it is to be used for deriving the relationship between different powers of [image:] Let us see, how.

Consider [image:]with irreducible polynomial as[image:]. The generator [image:]symbolically satisfies[image:]. Therefore, [image:]. Now, we shall show that every power of [image:] corresponds to some element of [image:].

[image:]

[image:]

[image:] [image:]

[image:] [image:]

[image:] [image:]

Thus, powers of [image:] along with 0 constitutes entire[image:]. Also [image:]for any integer [image:] as [image:]. Once again, we can represent the addition and multiplication table for the elements of [image:], this time using the power representation of the generator. These tables are shown in Tables 5.16 and Table 5.17:

	
	
	
000

	
001

	
010

	
100

	
011

	
110

	
111

	
101

	
	
+

	
0

	
1

	
[image:]

	
[image:]2

	
[image:]3

	
[image:]4

	
[image:]5

	
[image:]6

	
000

	
0

	
0

	
1

	
[image:]

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
001

	
1

	
1

	
0

	
[image:] + 1

	
[image:]2 + 1

	
[image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + [image:]

	
[image:]2

	
010

	
[image:]

	
[image:]

	
[image:] + 1

	
0

	
[image:]2 + [image:]

	
1

	

[image:]

	
[image:]2 + 1

	
[image:]2 + [image:] + 1

	
100

	
[image:]2

	
[image:]2

	
[image:]2 + 1

	
[image:]2 + [image:]

	
0

	
[image:]2 + [image:] + 1

	
[image:]

	
[image:] + 1

	
1

	
011

	
[image:]3

	
[image:] + 1

	
[image:]

	
1

	
[image:]2 + [image:] + 1

	
0

	
[image:]2 + 1

	
[image:]2

	
[image:]2 + [image:]

	
110

	
[image:]4

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2

	
[image:]

	
[image:]2 + 1

	
0

	
1

	
[image:] + 1

	
111

	
[image:]5

	
[image:]2 + [image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + 1

	
[image:] + 1

	

[image:]

	
1

	
0

	
[image:]

	
101

	
[image:]6

	
[image:]2 + 1

	
[image:]2

	
[image:]2 + [image:] + 1

	
1

	
[image:]2 + [image:]

	
[image:] + 1

	
[image:]

	
0

Table 5.16: GF(23) modulo (x3 + x + 1) under addition using generator

	
	
	
000

	
001

	
010

	
100

	
011

	
110

	
111

	
101

	
	
×

	
0

	
1

	
[image:]

	
[image:]2

	
[image:]3

	
[image:]4

	
[image:]5

	
[image:]6

	
000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
001

	
1

	
0

	
1

	
[image:]

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
010

	
[image:]

	
0

	
[image:]

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
1

	
100

	
[image:]2

	
0

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
1

	
[image:]

	
011

	
[image:]3

	
0

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
1

	
[image:]

	
[image:]2

	
110

	
[image:]4

	
0

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
1

	
[image:]

	
[image:]2

	
[image:] + 1

	
111

	
[image:]5

	
0

	
[image:]2 + [image:] + 1

	
[image:]2 + 1

	
1

	
[image:]

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
101

	
[image:]6

	
0

	
[image:]2 + 1

	
1

	
[image:]

	
[image:]2

	
[image:] + 1

	
[image:]2 + [image:]

	
[image:]2 + [image:] + 1

Table 5.17: GF(23) modulo (x3 + x + 1) under multiplication using generator

In general, to create a table of [image:] with an irreducible polynomial f(x), all one has to do is to determine[image:]. Then, calculate higher powers [image:]n+1 onwards up to [image:] 2n–2. The elements of field [image:] are[image:] Wherever required, one has to use [image:]. So, we have learned four distinct representations of composition tables of [image:] namely, using polynomials, [image:]-bit strings, decimal numbers, and finally using a generator. The corresponding equivalence for [image:] is shown in the following Table 5.18:

	
Polynomial representation

	
n-bit representation

	
Decimal number

	
Generator

	
0

	
000

	
0

	
0

	
1

	
001

	
1

	
[image:] 0(= [image:] 7)

	
x

	
010

	
2

	
[image:]

	
x2

	
100

	
4

	
[image:] 2

	
x + 1

	
011

	
3

	
[image:] 3

	
x2 + x

	
110

	
6

	
[image:] 4

	
x2 + x + 1

	
111

	
7

	
[image:] 5

	
x2 + 1

	
101

	
5

	
[image:] 6

Table 5.18: Different representations of elements of GF(23) modulo (x3 + x + 1)

Using generator representations, any two polynomials of [image:] can be multiplied very easily. We are required just to add exponents [image:] ([image:] We can conclude that if [image:] is the generator element of [image:] then[image:].

5.5.7 Inverses in GF(2n) using the generator g

We know, that, every element in GF(2) is the inverse of itself, and coefficients of polynomials in [image:] are in GF(2), it follows that the additive inverse of each element of [image:] is the element itself. For multiplicative inverse, let us understand first by taking illustration in GF(23). Suppose we need to find[image:]. Then,

[image:] [image:]

If one wishes to verify: [image:] ([image:]

 [image:]

 [image:]

 [image:]

Similarly, if we require the inverse of [image:] in [image:], then [image:][image:]. (Exercise 12). In general, the multiplicative inverse of [image:] in [image:] would be [image:].

Keywords

	Group: An algebraic system [image:] where [image:] satisfies closure property, associative property and identity & inverses exist.

	Abelian Group: A group with commutative property.

	Cyclic Group: A group in which every element can be represented as a power of some element (called generator) of the group.

	Ring: An algebraic system [image:], where [image:] is a group and the associative property of multiplication and distributive property of multiplication over addition holds.

	Integral domain: A commutative ring with unity having no zero-divisors.

	Field: A commutative ring with unity in which every non zero element has a multiplicative inverse.

	Finite Field: A field having finite number of elements.

	Irreducible polynomial: A polynomial which cannot be factored over a field.

	Modular polynomial arithmetic: Arithmetic operations on polynomials modulo irreducible polynomial over a field.

	Generator of GF([image:]): An element, whose first [image:] powers generate all non-zero elements of the field [image:] of order [image:].

	Galois Field ([image:]): A finite field, created through modular polynomial arithmetic operations on polynomials of degree [image:], with coefficients in [image:].

Recapitulation

	A non-empty set together with a binary operation on it is called an algebraic system.

	Groups are algebraic systems with one binary operation satisfying certain properties.

	[image:] , [image:] is a cyclic group with generator 1 as well as [image:].

	[image:], with [image:] is a group iff [image:] is prime.

	Set of all integers is an integral domain.

	GF(2) is a finite field having two elements, namely 0 and 1.

	An irreducible polynomial is a polynomial that cannot be factorized into lower degree polynomials.

	Finite fields can be viewed as sets, on whose elements, all the four arithmetic operations of addition, subtraction, multiplication, and division(except 0 element) can be performed.

	[image:] is a field in [image:] is prime.

	Finite fields, called Galois field, have to be of the order[image:], with [image:] prime and are denoted as [image:], [image:]. Conversely, there always exists a field of the order [image:] .

	The particular field [image:] is used for [image:] representation in cryptography, are constructed using polynomial arithmetic over [image:].

	All fields of order [image:] are isomorphic to one another.

	Irreducible polynomial acts as a generator for GF(2n).

Exercises

MCQ (Multiple Choice Questions)

	Which of the following is not a binary operation on the set of natural numbers?

	Addition

	Multiplication

	Division

	All of the above

	The set of all real numbers under usual operations of addition and multiplication is not a

	Group

	Ring

	Field

	Integral Domain

	Which of the following is not an integral domain?

	[image:]

	[image:]

	[image:]

	[image:]

	Which of the following is an integral domain?

	[image:]

	[image:]

	[image:]

	[image:]

	Which of the following is a field?

	[image:]

	[image:]

	[image:]

	[image:]

	Which of the following is not a field?

	[image:]

	[image:]

	[image:]

	[image:]

	The order of a finite field cannot be

	3

	4

	5

	6

	The multiplicative inverse of 2 in [image:]is

	3

	4

	5

	6

	The additive inverse of 2 in [image:] is

	3

	4

	5

	6

	In GF[image:] [image:] [image:]and [image:] are

	2, 1, 0

	0, 1, 1

	2, -1, 0

	0, 1, 0

	Which of the following is true?

	Every group is a field.

	A finite integral domain is a field.

	Every element in a field has multiplication inverse.

	[image:]is a field.

	Which of the elements have a multiplicative inverse in [image:]?

	2, 3, 5, 7

	1, 2, 4, 8

	3, 4, 5, 6

	3, 5, 7, 9

	Which of the following is not a valid Galois field?

	[image:]

	[image:]

	[image:]

	[image:]

	In [image:]

	10

	5

	4

	8

	Using the irreducible polynomial as [image:] the 4 bit string corresponding to [image:] where [image:]denotes the generator is

	1000

	1100

	1011

	0101

	In [image:]

	18

	8

	17

	12

Problems

	Prove under usual notations that [image:] is a group.

	Show that every nonzero element of [image:] is a generator of the group [image:].

	Show that [image:] is an integer domain iff [image:] is prime.

	Find zero divisors in the rings [image:], [image:] and [image:].

	Calculate [image:] in [image:]using Fermat’s theorem.

	Divide [image:] by [image:] over [image:].

	In [image:]find the inverse of
 (i) [image:]

 (ii) [image:]

	Create the composition table for the operations of addition and multiplication in [image:].

	For each of the following n bit integers, find the corresponding polynomial in [image:]. For example, 1001 corresponds to [image:]

	10100

	110

	11

	110010

	10011

	Find the n –bit integer corresponding to each of the polynomials.

	[image:]

	[image:]

	[image:][image:]

	[image:]

	[image:]

	Generate the elements of [image:] using the irreducible polynomial [image:]. Also, create composition tables of addition additions and multiplication in [image:] using the generator.

	The multiplicative inverse of [image:] with respect to the irreducible polynomial [image:]. Find the inverse of [image:]if the irreducible polynomial is [image:].

	Using the irreducible polynomial as [image:], construct the composition table of [image:] using powers of the generator.

	Multiply the following n-bit integer using polynomials:

	[image:]

	[image:]

	[image:]

CHAPTER 6

Stream Ciphers and Cipher Modes

6.1 Introduction

6.1.1 Stream Cipher Structure

6.1.2 RC4

6.1.3 Cipher modes

6.2 Cypher feedback mode

6.3 Output Feedback Mode

6.3.1 Using CFM and OFM for multi-bit input-output

6.1.3.1 Electronic Codebook Mode (ECM)

6.1.3.2 Cipher Block Chaining

6.4 Counter Mode

6.4.1 Advantages of Counter Mode

6.5 IEEE XTS-AES mode

6.5.1 Requirements

6.6 IEEE XTS encryption process

6.6.1 The implementation of ∝j

6.6.2 Encrypting the data units

Keywords

Recapitulation

Exercises

MCQs

Problems

Objectives

After completion of this chapter, the reader should be able to:

	Describe how a stream cipher works and what is its structure

	Differentiate between a stream and a block cipher

	Portray the RC4 working and production of a stream of characters from a key

	Evaluate the usefulness of different cipher modes and decide which mode is used when

	Adjudicate why the counter mode is better than other modes for modern day needs

	Describe the process of cipher feedback mode, output feedback mode, and multi-bit processing in either cases

	Describe the need for processing a real-world cipher mode IEEE XTS-AES and understand why it is a better choice for storage encryption

6.1 Introduction

A block cipher takes a block at a time as input and produces a block of a similar size as an output. Sometimes, interactive applications cannot work like this. One such example is the SSL algorithm which is used to secure the web traffic. The user sends the URL and the web server sends back the page. As soon as the user types the character, it needs to be encrypted and sent across. The system should not wait till 8 or 16 bytes are received before beginning to encrypt. It can be possible that the user may send much smaller information and expects an immediate answer. For example, a remote telnet server is sent the command ls by the client, which is of two bytes only. If the system waits for the complete block to arrive, there will be a deadlock. The system waits for the user to provide input while the user expects the system to deliver the message at the other end and expects a quick response. When a cipher allows the user to provide a byte or a few bytes and provides encryption to that without waiting for the entire block of any size to arrive, that cipher is called the stream cipher. We will take a look at a technique that makes the block ciphers to act as stream ciphers in this chapter, but it is always better to have a cipher designed as the stream cipher. Before we study RC4, one of the most common stream cipher algorithm, we will study the stream cipher structure. We will also look at the different cipher modes or ways to deploy block ciphers for different cases in this chapter.

KIM: The block ciphers can be put to use in different ways. These different ways to use those block ciphers are known as modes.

6.1.1 Stream cipher structure

The stream cipher structure is very simple and logical. It acts like a pseudo random1 number generator. The key, input by the user, is instrumental in generating a unique pseudo random number sequence. Thus, the pseudo random number sequence is not predictable in this process, unless the key is known. A series of bytes generated out of the stream cipher appears randomly.

The output is conventionally known as a keystream (when we take a look at the different modes of encipherment, we will come across different types of keystreams). The plaintext, byte by byte, is XORed with the keystream to produce the outgoing byte, the ciphertext. Decryption is a similar process. The incoming data (ciphertext byte) is XORed with the same keystream generated at the receiver’s end to get the original plaintext back.

KIM: Block ciphers outputs one block of a specified length at a time. A stream cipher, on the contrary, outputs one byte at a time.

It is not that we cannot use block ciphers like AES for this work. In the later part of the chapter, we will discuss two methods to use a block cipher as a stream cipher called the Cipher Feedback mode and Output Feedback mode. These stream cipher modes work exactly like the stream cipher that we are describing here. We will also look at the counter mode which is presently used in many systems later.

The stream cipher output, the keystream, is similar to one-time pads that we have already seen. The difference between both of them is subtle but crucial which is as follows:

	The one-time pad is a pure random sequence while the keystream is a pseudo random sequence.

	The pseudo random generator usually wraps around after a while and repeats itself. If the period by which it repeats itself is small, we may have same keystream repeated for the other data and is vulnerable to repeat the keystream reuse attack. Also, the longer the period, the keystream is more difficult to analyze. There is no such case of one-time pad.

	The keystream should be as near to random as possible. The bytes that produce an output must be have all 256 possible values appearing in the stream with equal probability. Looking from another angle, the possibility of zeros and ones appearing in the byte is equal. More randomized the keystream, more randomized the ciphertext is. This makes the job of an attacker more difficult. There is no such case of one-time pad.

	The pseudo random number generator values depend on the key input. For different keys, the keystream generated must be different. To protect the user from the brute force attack, the key must be long enough. We have discussed this point before while discussing block ciphers. We need at least 128 bits to be on the safer side. As the one-time pad is as long as the plaintext itself, there is no such need there.

If properly designed, a stream cipher’s security strength can be as good as the block cipher of a similar key length. The stream ciphers like RC4 can produce a strong ciphertext as a block cipher with less (programming) code and usually runs much faster. The RC4 can be implemented in just a few lines of code. The downside is that the key used once cannot be used once again to guard against the key stream reuse attack.

KIM: The stream cipher can produce the ciphertext with the same amount of strength as a block cipher of the same key length, but the constraint on the stream cipher is that it cannot use the same key twice.

On the contrary, the block ciphers are not plagued by that problem and one can use the same key again for some other encryption process. We have also mentioned that the block ciphers can also be tweaked to work like a stream cipher using IVs (described later) cleverly. That is also a good option but overkill. The block cipher code is much heavier than the conventional stream cipher’s (RC4 code is just 20 odd lines) and definitely carries a lot of overhead compared to the conventional stream cipher. On the contrary, a stream cipher can also act like a block cipher. It will have to accumulate bytes worth a block and output. For example, if we want a block of 16 bytes, the stream cipher must output only when it has accumulated 16 bytes and not byte after byte.

For the encryption/decryption of a stream of data like over a communication channel or between a browser and a server (SSL and TLS for example; we will look at SSL and TLS in Chapter 18 Transport layer security and SSL) a stream cipher is a better alternative. For applications like FTP, emails, and database transactions which involve bulk data transfer, block encipherment is better. Table 6.1 summarizes the discussion. Let us look at how RC4 works in the following section:

	
Criteria

	
Block cipher

	
Stream cipher

	
Encrypts

	
8 or 16 bytes at a time

	
One byte at a time

	
Strength

	
Very good

	
Can be equally good

	
Generates

	
Almost random output

	
Pseudo random output

	
Repetition

	
 There is no repetition

	
Repeats itself after specific period

	
Can also act otherwise

	
Yes, can act as a stream cipher

	
Yes, output when block size bytes are encrypted

	
As stream cipher

	
More overhead

	
Less overhead

	
Code

	
Complicated

	
Simple

	
Keystream reuse attack

	
Not vulnerable

	
Vulnerable

	
Strength depends on

	
Key length

	
Key length and period length

	
Used for (Example)

	
Encrypting files while downloading

	
Browsing

	
Operates at

	
Bit level

	
Byte level

Table 6.1: Block cipher and stream cipher: the difference

6.1.2 RC4

The RC4 algorithm was designed by Ronald Rivest (RSA Security). The algorithm allows the user to decide the size of the key while encrypting. The algorithm operates on bytes (compared to bytes in the case of block ciphers), and it is compact in size as compared to algorithms demanding bitwise operations. Apart from being fast, it also makes the algorithm simple and easy to explain or implement.

KIM: RC4 is one of the popular stream ciphers designed by Ronald Rivest.

The following are some important facts about RC4:

	It uses the variable key size. 1 byte to 256 bytes can be used to define a key.

	It has byte oriented and not bitwise operations and thus is both faster and easier to implement.

	The cipher period of RC4 is 10100, considerably large. Thus, after 10100 bytes, the keystream wraps around.

	8 to 16 machine operations are required in generating one-byte output, which is considerably faster even in software.

	SSL/TLS use RC4.

	RC4 was initially not public but later it was made public by some anonymous person.

The algorithm can be described as follows:

	Initialization of state vector: There is a state vector StateVector of size 256 bytes (2048 bits). The state array is initialized with values 0 to 255 in the beginning. Each element gets the same value as their order in the array. 0th element gets the value 0, 1st element gets the value 1, 2nd element gets the value 2, …. 255th element gets the value 255.

	Temporary Array Initialization: There is one temporary vector TempArray which is initialized with the key. Key values are repeatedly inserted into the array to completely fill it. The simplest case is where the key is 256 bytes; each of the TempArray byte takes its respective values from the respective key value. If the key size is 128 bytes, we need to take the key values twice to feed into the TempArray. On the other hand, if we have a 1 byte key, we need to take this key value 256 times to completely fill the array. For any arbitrary key value, it might require multiple rounds of the key to fill the TempArray. Suppose the key length is keylength, we need 256/keylength rounds to fill the entire TempArray. In a way, we start with T[0] as Key[0] and go on till TempArray [KeyLen] = Key [KeyLen], after that TempArray [KeyLen + 1] again is given the value of Key[0] and TempArray [KeyLen + 2], and so on. The entire operation is summarized as TempArray [i] = Key[i mod KeyLen].

	Initial Permutation: Once both StateArray and TempArray are filled, the next process, the initial permutation, can start. The next process swaps two different bytes from the state array one after another in such a way that the entire state array is shuffled across. The swapping is designed in such a way that it depends on the key. The operation starts swapping the 0th byte to 255th byte with a byte determined by calculating the value of variable j. It is calculated on the basis of temporary array value which in turn is based on the key value. Though based on the key value, the process only permutes the bytes and thus, the resultant state array still contains value 0 to 255, at altogether different places now. This is a kind of a transposition.

	Keystream Generation: After the initial permutation, the endless process of generating the keystream begins. It processes the input by swapping two bytes of the state array; generate the output byte by adding values stored in two different bytes of the state array and taking mod to see the result to confine to 0 to 255.

The process continues to generate the keystream, read the plaintext, and generate the ciphertext as XOR of the plaintext and keystream byte, and write the ciphertext out. Program 6.1 depicts the complete pseudo code for RC4:

// Stream cipher RC4 algorithm Program 6.1

RC4 ()

{

//Variable definitions

char PlaintextByte;

char CiphertextByte;

int StateArray[256];

int TempArray[256];

int Key;

int KeyLen;

int i,j,k;

void Swap(int , int)

//Initialization

read Key;

for(i=0;i<255;++i)

{

StateArray [i] = i;

TempArray [i] = Key[i mod KeyLen];

}

//Initial permutation

j = 0;

j = j + StateArray[i] + TempArray[i] mod 256;

Swap (StateArray [i], StateArray [j]);

// Key stream generation

i = 0 ; j = 0;

for (;;)

{

i = (i+1) mode 256;

j = (j + StateArray[i])mode 256;

Swap (StateArray [i], StateArray [j]);

k = (StateArray[i] + StateArray [j]) mod 256;

OutputByte = (char) StateArray[k];

// reading plaintext character

read PlaintextByte;

// Calculating ciphertext character

CiphertextByte = PlaitextByte XOR OutputByte;

// Sending output ciphertext character

write CiphertextByte;

}

}

People tried to attack RC4 for years now. With a reasonable key length (over 128 bits or 16 bytes), it is found to be quite strong. One interesting problem is seen in the use of RC4 in WEP (Wired Equivalent Privacy is the first version of security provided to 802.11, which failed miserably). The implementation of RC4 in WEP was found vulnerable due to a typical implementation issue. The problem is not with the RC4 algorithm itself but the way the keys are generated. This problem is particularly with the WEP protocol and no other protocols. This issue illustrates a vital point; the algorithms may be secured, but the effect can only be seen if the protocol which houses these algorithms is equally secured. More or less, the issue of security is heavily biased by the way the algorithms and protocols are implemented rather than designed.

KIM: This point also indicates that one needs good and more disciplined programmers to implement better algorithms! The better algorithm does not suffice; better implementation is equally important!

6.1.3 Cipher modes

Cipher modes are different ways in which the encryption is put to use. AES and DES are very good; they could shuffle bits in a way that it becomes extremely difficult for attackers to extract the plaintext from a given ciphertext. Anyway, being the block ciphers, they are not all that useful if used in their raw form.

Any block cipher has a problem of having the same mapping of characters throughout the text when a single key is used. Suppose we have an e-book version of this text which contains the word ‘Cryptography’ on every page and we have encrypted the document with either AES or DES using a key. Assume that the word ‘Cryptography’ will be encrypted as ‘abcede’ at every instance, as the same process is applied to each block. An attacker can easily exploit this property. Another problem is that we also need solutions for the interactive traffic where the senders do not send a block long data but a byte or two at a stretch (the stream cipher). The third requirement is that sometimes the blocks need to be processed randomly and not sequentially. Any process which is sequential is not going to work in that case. We need to make sure these issues are addressed by the application of the algorithm if not inherent in the algorithm itself.

How can we answer these questions? By carefully deploying different modes, is it? By default, the block ciphers pick up each of the block from the plaintext, encrypt, and provide the ciphertext one after another. The process stops only when the last block of plaintext is done with. This default form is known as Electronic Codebook Mode and is described in the next section.

KIM: Different cipher modes are designed for different purposes.

6.1.3.1 Electronic Codebook Mode (ECM)

The ECM works in a very simple fashion. Consider a file with 5,000 bytes that needs to be encrypted. The 5000 byte content is NOT a multiple of 16 bytes. The nearest multiple of 16 is 5008, so 8 dummy bytes are padded to the content first. The ECM picks up the first 16 byte chunk, encrypts that using AES (Considering AES as an encryption standard being used here), and sends it out. Now, pick up the next 16 bytes and repeat the process unless the last byte of the file is processed.

Unfortunately, this simple scheme is not without problems. We have already seen a problem of the same plaintext being converted to the same ciphertext. Another problem is that the content, even if encrypted, can be replaced by other content for malicious purpose. Consider an encrypted salary statement of a typical company. If an attacker knows an exact location, he can replace a salary of a peon with a director. Even when the attacker has no idea of what exactly he is copying, he is definitely going to reduce the salary of the director. One solution to this problem is to make sure the encryption does not only depend on the content but the position of the content as well. One way to achieve that is to use Cipher Block Chaining (CBC). CBC is used in many real-world systems in one or the other way.

6.1.3.2 Cipher Block Chaining

The answer to this problem lies in devising a solution where the encryption depends on the position of the content as well. A simple trick can serve the purpose as shown in Figure 6.1. An additional value known as Initialization Vector (IV) is introduced. The first block of the plaintext is XORed with IV before it is encrypted. The second block is XORed with the encrypted first block before it is encrypted, and so on. Eventually, the last block is XORed with the encrypted last but one block before encryption:

[image:]

Figure 6.1: Cipher block chaining mode (Sender)

The decryption process is equally straightforward. The first ciphertext block is decrypted and then XORed with IV to generate the first plaintext block, and so on. Because this process chains from the first to the final block while encryption, it is known as the CBC mode.

The CBC mode enables two things: first, it produces different ciphertexts for the same plaintext appearing at different places, and it can detect if a part of the ciphertext is moved elsewhere.

[image:]

Figure 6.2: Cipher block chaining mode (Receiver)

One interesting observation is that the IV used in the process must be hidden from the rest of the world. To understand this, assume IV is = …….. 00………. Now, the attacker changes the IV to ………… 11………. When the receiver decrypts the data, he will do a usual C1 XOR IV to get the plaintext and what will he get? If the original plaintext was …….. 01……., he will get the changed plaintext as ………… 10……… after the process. Thus, it is possible for an attacker to change the first block if he can make the receiver use the modified IV instead of a real one.

KIM: If it is possible for the attacker to change the value of IV, he can inflict the change in the first block of the ciphertext and thus, the plaintext received at the receiver’s end.

6.2 Cypher feedback mode

CBC is quite good for a case where the data is coming in bulk; for example, a file download case. We have already seen that when interactive applications are running, they prefer the stream cipher mode. We have also stated that it is possible to use a block cipher as a stream cipher. Let see how it is possible to do this.

We deploy a smart trick to use the block cipher as a stream cipher. Like CBC, we will use the Initialization Vector or IV here, but for a different purpose. What we need is a single byte to be encrypted at a time. For this, we need a type of keystream. The Cipher Feedback Mode generates such a keystream. The process is depicted in Figure 6.3. Carefully observe what is happening here. In the beginning, the IV is encrypted to set the ball rolling. The IV is of the same length as of the block, 128 bit (16 bytes) in case of AES. For simplicity, we have taken a 64 bit (8 byte) value in the figure. The IV is chosen randomly by the sender and is shared with the receiver before the communication begins.

The process starts with the IV encrypted to another value; let us still call it IV. The new IV, like the old IV, has 8 bytes. We will pick up the leftmost byte IV-B0, exor it with the first plaintext byte P0, and produce the first ciphertext byte C0. First byte encrypted!

Before we pick up the second plaintext byte, we change the keystream, remove the leftmost byte IV-B0 (which we used to exor with the plaintext), and add the first ciphertext byte C0 on the right-hand side. We will still call the content as IV; we again encrypt that and get another 8 byte content which we will still call IV. The leftmost byte, IV-B1, is picked up to exor with the second plaintext byte P1 to produce C1. The second ciphertext byte is generated! We can go on till the entire plaintext file is exhausted.

Figure 6.4 presents another view of the same process. The block which is encrypted every time and a leftmost byte is extracted to generate the ciphertext byte is known as a shift register. You can understand why it is called a shift register; it rotates to the left with every byte encrypted.

The decryption process is identical. The receiver has the same key and IV and so it can also generate the same first keystream which the sender has generated. Closely observe Figure 6.5. The C0 can be XORed with the leftmost byte of the shift register and can thus produce P0. Now, the C0 is added on the LHS of the shift register with the leftmost bye removed and another encryption applied. The process works the same as encryption! The difference is we are exoring with the ciphertext instead of the plaintext and generating the plaintext instead of a ciphertext.

The algorithm does what it is required to, however, without resolving another issue. A case like Wi-Fi networks produces many errors. When a single bit is in error, the cipher feedback mode not only corrupts the byte which contains it but also corrupts 16 more bytes in case of AES. Why? The same corrupted byte is to be used in the next 16 iterations in the shift register and thus corrupt 16 subsequent bytes. When the error rate is very high, there won’t be any byte left without any errors!

[image:]

Figure 6.3: The process for generating shift registers first three iterations

[image:]

Figure 6.4: Cipher feedback mode (Sender)

KIM: The problem with the cipher feedback mode is that a single bit error in the input results into an error long enough to corrupt the content worth the entire shift register size.

[image:]

Figure 6.5: Cipher feedback mode (Receiver)

Now, we have a new problem to manage. We need a solution where the error gets restricted to just one block without propagating to the other blocks. The next solution, the Output feedback mode or stream cipher mode, does exactly the same.

6.3 Output Feedback Mode

The Output Feedback Mode is a solution to the error spreading to the entire shift register problem. The shift register is not needed here but otherwise, the process is quite similar. This is also known as the stream cipher mode.

The output feedback mode uses IV again, but in a different way. It encrypts IV to produce the first block of the keystream, the encrypted IV is encrypted again to produce the second block of the keystream, and so on till the keystream becomes as long as the plaintext itself or the sender stops sending data.

What is the difference here? If there is a single bit error, the content, when XORed with the plaintext, corrupts one bit, and that is all! It is not used further and thus won’t have any issue that plagues the cipher feedback mode. The process is described in Figure 6.6.

The Output Feedback Mode (and most other modes which use a type of keystream which can entirely be determined given the key) introduces another problem. Consider a sender using the same key and IV twice for encrypting two different plaintexts. Consider the first plaintext as PT1 and second plaintext as PT2. The ciphertexts are CT1 and CT2. If the (same) keystream used in both cases is KS, we have the following:

CT1 = PT1 ⊕ KS

CT2 = PT2 ⊕ KS

Assume that the attacker has both the ciphertexts, so he now XORs both of them:

Result = CT1 ⊕ CT2

= PT1 ⊕ KS ⊕ PT2 ⊕ KS

= PT1 ⊕ PT2

Now, if the attacker knows one of the plaintexts (it is quite possible that he has lured the sender to send one of the messages to him only), he can learn about the other plaintext. How? Assume he knows PT2. Now, the attacker has both, the Result and PT2. He can smartly use them as follows:

Result = PT1 ⊕ PT2

Result ⊕ PT2 = PT1 ⊕ PT2 ⊕ PT2

Result ⊕ PT2 = PT1

So the attacker now XORs both Result and PT2 and he will get PT1!

RC4 was plagued by the same problem and the same attack (Keystream Reuse Attack) can break RC4 if the user reuses the same key for encrypting another plaintext:

[image:]

Figure 6.6: Output Feedback mode or Stream Cipher mode.

6.3.1 Using CFM and OFM for multi-bit input-output

Both CFM and OFM can be used for more than one byte. The preceding description shows CFP and OFM both to be used for one byte plaintext to be encrypted into one byte ciphertext. The process to use the same algorithms for a multi-bit (may not be multiple of 8 bit or one byte) input is quite simple.

For CFM, the plaintext comes in exact size which we want; for example, if we want three-byte plaintext to be encrypted, we will extract three bytes from the shift register and not one. XORing it with the plaintext will generate the ciphertext of the same size. The plaintext may be of the size which is not an integer multiple of a byte (for example 20 bit) it can still work, (but it is not done that way usually). The shift register will shift accordingly. For example, for a three-byte plaintext case, the shift register moves three bytes left and the newly generated ciphertext of 3 bytes are appended at the end.

In case of OFM, the encryption process does not change. The IV will be encrypted like before and the keystream will be generated like before. If the plaintext is generated as a 3-byte chunk, the leftmost three bytes from the keystream block is picked up and XORed with the plaintext to generate the 3-byte ciphertext. The rest of the keystream block is discarded. Even this process can work with an arbitrary size of plaintext provided in each iteration.

KIM: CFM and OFM can work with multi-bit output instead of one-bit output.

6.4 Counter Mode

The encryption process may not always be in a sequential fashion. The laptop files, for example, might need to be decrypted in a random fashion. Consider a case where the CBC mode is used to encrypt the entire content of the laptop. Now, assume that the user wants a specific file, the laptop system cannot respond back by decrypting that block. It has to decrypt all blocks before to get the previous block which needs to be XORed with the current block to decrypt that block. Ideally, we want only that block to be decrypted directly. This is called random access in the file structure parlance.

A laptop user in this case demands a decryption system with a random access. A solution, popularly known as a counter mode, is used here. We will study counter mode here. We will look at two of the NIST standards which uses the counter block in the later part of this chapter.

Solutions like IPsec and CMAC also requires random access. We will study IPsec later in the chapter 19. CMAC is described later in the same chapter.

KIM: The keystream nth block is generated in the counter mode by encrypting IV+n-1.

The idea of the counter mode is equally simple. The same IV comes to the rescue yet again. The first block of the keystream is generated by encrypting the IV like OFM. The second block is generated by encrypting the IV + 1, the third block is encrypted by encrypting IV + 2, and so on till the keystream is of the required length.

You can see that unlike the other cases, the generation of the nth block of the keystream does not require the value of any other block. That means, every block of the keystream is generated independently of other blocks. Now, we need to encrypt the plaintext content like we did in all previous cases, XORing it with corresponding keystream blocks.

Figure 6.7 describes the process:

[image:]

Figure 6.7: The counter mode

6.4.1 Advantages of Counter Mode

Here are some of the reasons why the counter mode is gaining popularity.

	Random Access: The most important advantage is what the counter mode is designed for, a random access, which allows decryption of any block irrespective of where it stands. Any block can be accessed without referring to the previous blocks, removing the major hurdle in previous algorithms. One can keep the entire hard disk encrypted and when a block is to be accessed, decrypt only that block and access it. Even files which require random access (for example a customer record file, referred to when a customer sends a query) can be stored in the encrypted form. When a specific block (for example the block describing a specific customer who sent that request) is to be accessed, it is decrypted and accessed.

	Parallel operations on blocks: If you look at Figure 6.7 closely, you will observe that unlike the previous cases, the operation occurs on the plaintext block 2 which has nothing to do with the operation that takes place on the plaintext block 1 or plaintext block 3. Each of the operation is a parallel operation unlike previous cases. The previous cases require a sequential implementation of the algorithm as the output of the first block is an input to the second block, and so on. It is not possible for the system to process the second block unless the first block is processed and the ciphertext related to that is generated. Unlike that, the counter mode is not plagued by the bottleneck of processing the blocks in a sequential fashion. The implication of this statement is that if we have an algorithm to process multiple blocks in parallel and also the physical infrastructure is capable to do so, a huge speedup is possible. One can implement such a parallel algorithm and get the advantage of such speedup. We now have dual core and quad core processors in the single box normally. Such implementations can take advantage of inherent parallelism in the process. For example, P1 is encrypted by the first core while P2 is by the second and P3 and P4 are by the third and the fourth processor if we have four processors or by four different cores in the case of a quad core processor. Nothing else; this will provide us a speed up of 4 times any other sequential algorithm.
The software which provides pipelining and parallel features can also take the advantage of the inherent parallelism in the algorithm. The hardware might not have such parallelism but the software can still provide significant speed up with such schemes.

	Pre-processing and generating keystream beforehand is possible: If you notice closely, it is possible to separate the process of generating a key stream from the entire operation. One needs a key and unique IV to generate a key stream. If the key stream is ready when the plaintext is input, the only operation left is to XOR it with the key stream. That can be done at lightning speed. The only issue is the vulnerability of that key stream to be leaked before. Only if the protection of such a key stream is guaranteed, one can deploy this method. Another issue, of course, is the keystream reuse attack that we mentioned before. One must not use the same key and IV twice to avoid that problem.

	Secure: The counter algorithm is secure if the sender does not use the same key or IV for another transmission. The counter algorithm is vulnerable to the key stream reuse attack. If the sender takes care of this (one needs to just generate random values and use them as IV to solve this problem), the resultant message is as secure as any other method discussed earlier.

	Encryption and decryption is the same process: In encryption and decryption, the user needs to generate the key stream and XOR it with the plaintext or ciphertext. The operation that takes place at the sender and receiver is shown in Figure 6.8.

What is the advantage of having the same process? It is quite economic, in case of hardware implementation, especially. The same circuitry capable of encrypting and decrypting saves half the space and cost also reduces.

KIM: Apart from random access, the counter mode has many other advantages, especially the capability to work on multiple blocks in parallel.

6.5 IEEE XTS-AES mode

The storage of the data such as conventional servers, laptops, and desktops also require encryption. Why? It is because laptops are vulnerable items that can be easily stolen. If the laptop of a senior-level director is stolen and if it falls into the wrong hands, it is a treasure for others who would like to learn about the company. If the server does not keep information in an encrypted fashion, an attacker with a physical access to the server might be able to get hold of the content.

Assume a laptop or desktop which is shared and data that belongs to one person should not be available to others. Also, assume a database installation in which most users can access most data; some classified data might only be allowed to some highly privileged individuals. The same database that allows access to one part of it should not allow access to the other part. All these cases demand encryption on the storage device. We can use the counter mode, but it will not answer all questions that we pose here, especially the database access. Let us see how.

KIM: XTS-AES encryption is designed especially for storage systems by IEEE.

IEEE learned about this problem and provided a standard for encrypting the storage devices (using AES encryption) called standard IEEE 1619-20072. NIST also recommended the standard in their extensive recommendation statement (NIST Special publication 800-38E). Prof. Philip Rogaway, an expert in cryptography, proposed a block cipher mode called XOR Encrypt XOR or XEX for short. The method he proposed found to be so good that the IEEE standard uses that block cipher mode in this system. The method used here is called XTS which stands for the XEX Tweakable Block Cipher with Ciphertext Stealing. The XEX block cipher requires complete blocks for encryption which is not possible in the real-world case. The last block is usually found of an unequal size. Ciphertext Stealing is a method used to manage that part. Tweaking is used to provide some specific features demanded by the problem. We will describe each of these things in more detail in due course in this chapter. Before that, let us describe the requirement of an additional mode.

6.5.1 Requirements

Storage encryption has some special requirements. Unless we learn those requirements, it is hard for us to realize the need for an additional mode. Let us try to get the set of requirements.

The data is in form of fixed size chunks called data units. As IO is performed using such chunks, the encryption process ideally should happen based on the same chunks. As the disk storage is fixed, an important requirement is to have the same size of ciphertext as the plaintext. Obviously, the storage mechanism should not be affected by this process and thus the data structures used cannot be changed over transit or while being stored as to keep the size same.

Same data, if stored at two different locations, must be stored as different text. That means, a ciphertext for a different location must be different even in the case of the plaintext being same. Let us take an example to understand this, seemingly strange, need. Suppose an employee’s salary is encrypted information. If Employee X has a salary of 1, 00,000 and encrypted as XYPQR, and employee Y also has a salary ₹ 1, 00,000, and also encrypted as XYPQR before stored. Now, employee X has access to the complete encrypted data as well as unencrypted data of his own salary and he can learn that 1, 00,000 is mapped as XYPQR. Now, when he can see the same value in the employee Y’s column, without decrypting, he can learn that employee Y is also earning 1, 00, 0003. This requirement clearly indicates that some information related to the location should be used in encryption.

Interestingly, do we need to have different ciphertexts for the plaintext stored at the same location? No because once we have the encryption based on location, the same location with the same plaintext must yield the same ciphertext. This is also important for storing database tables. Consider a table stored on sector 5 and 6. Sector 6 contains data only accessible to special customers. Consider the attacker having a right to only read the content of sector 6, but has read write access to sector 5. He can copy data from sector 6 to sector 5 and will be able to edit the data now. He may be able to deploy some additional techniques on the data to break the cipher now. It is important to understand that it is not possible to stop access to a typical sector and thus everybody including the attacker has the right to read the encrypted data.

Based on the first two points, it is clear that apart from the location relation information, we cannot have any other information about data (which is sometimes called metadata), to be used for encryption. Moreover, the size of plaintext and cipher text has to be the same. That means methods based on adding authentication tag for authentication cannot be used here. We will study about those methods in Chapter 8: Message Authentication using Mac.

Implicitly shown in the previous point, we expect a situation where all users are able to access the data from the database, irrespective of whether the data is encrypted or not. The only authorized users with proper keys can only decrypt the data and see the actual content though. That means, it is possible for other users to have access to the classified encrypted data, and if the laptop or disk is stolen, even adversaries can have an access to the encrypted content, thus the method must include measures which can handle this case.

Random access to blocks is critically important; thus, we cannot have a mechanism which demands decrypting of other blocks for decrypting a typical block. This eliminates some popular candidates like CBC as decrypting a block in CBC demands decryption of all the blocks before.

The above discussion may throw some light on why we cannot use a counter mode or CBC mode. Random access requirement clearly demanded other than the CBC mode. Counter mode satisfies the random access requirement but it does not satisfy the requirement of encryption of the same plaintext to different ciphertext based on the location. Thus, we need a different method.

KIM: Storage demands requirements which other cipher modes cannot provide, so IEEE provided one which does so.

6.6 IEEE XTS encryption process

The XTS method uses XOR Encrypt XOR with ciphertext stealing. Let us try to understand how it works.

Apart from the plaintext and key for the normal AES block encryption process, the XTS mode takes two more things into account. First is a counter which increments with each block. That counter is NOT initialized with 0 or 1 for the first block but with some other number. This counter is popularly known as a tweak and is of size 128 bits or 16 bytes. For example, the first block might have a tweak value 125 as an input; the second block will have 126 as a tweak value, and so on. We will soon study the importance of providing the tweak value. Another input is a value based on the sequence number of the block itself. There is a typical value used to calculate another input known as α. The XTS process calculates the αj where the j value is the sequential number of the block.

KIM: The XTS process is based on repeated polynomial multiplication of a fixed 128 bit value represented by the polynomial x128 + x7 + x2 + x + 1, represented as exponential. The polynomial is repeatedly multiplied for a value known as sequence number, which is unique for a unique storage location.

The element α and the calculation of αj is not based on the standard mathematical operation. The α value is 000…10 (128 bit) while is multiplying α with itself j times, in GF (2128). We have looked at GF (known as Galois Field) in Chapter 4: Number Theory Fundamentals. The multiplication process in this domain is based on modular multiplication of two polynomials (in this case the polynomial is α only). We will also be using multiplication of two polynomials over GF (2) (that is, with binary coefficients) modulo x128 + x7 + x2 + x + 1.

The encryption process is depicted in Figure 6.9. The plaintext is XORed with a temporary value before encryption and also XORed with the same value after encryption. The temporary value is based on the αj value. That temporary value is known as tweak popularly. There is one more thing called the tweak value, (so there are two things, a tweak and a tweak value) which is also an input to calculate the tweak. The tweak value is the sequential number while the tweak itself is the temporary value. We have used Temp instead of tweak to avoid that confusion but you might find that word used at multiple other places elsewhere:

[image:]

Figure 6.8: The XOR Encryption XOR (XEX) encryption process in XTS

Figure 6.9 indicates how the tweak value is used to calculate the tweak or Temp:

[image:]

Figure 6.9: The process of generating temporary value, the tweak, for generating ciphertext

The Temp value is generated using a mechanism depicted in Figure 6.9. First of all, the tweak value is encrypted with AES using another key and multiplied with αj. The result is provided for the ith iteration as the Temp value. For the ith iteration, Pi is the plaintext while Ci is the ciphertext. In a way, this process is quite similar to the ECB mode but with additional input, different for different blocks. The process is also similar to the counter mode where we can decide the keystream well in advance without really having the plaintext. If the key is properly chosen, this process is as strong as the counter mode and offers the same set of advantages as the counter mode.

KIM: The XTS encryption process XOR the input twice, before and after encryption, thus that phase is known as XEX or XOR-Encrypt-XOR.

Additionally, it helps attend the other issues that we have seen the counter mode cannot offer. When we use the Temp value based on the block sequential number (both αi and encrypted tweak value are based on the i value), we achieve the ‘different ciphertext for the same plaintext for different locations’ requirement.

6.6.1 The implementation of ∝j

The implementation process includes multiplication. The following description shows how exponential is calculated by repeatedly multiplying by itself. It is a 16-byte value represented as a 16-byte array.

The input value (the alpha value) is converted into a byte array a0 [k]. (k = 0 .. 15, it represents the 16-byte block, each byte as one element of the array).

Array a0 [k] is changed into a1 [k] in the first iteration, a2 [k] in the second iteration, and so on till we get aj[k].

For k=0 to k=15 do {

/*changing ai[k] to ai+1[k] is about changing the value of kth byte during iteration i+1. We are changing all byte values as shown in the process*/

ai+1 [k] = 2 * ai[k] mod 128

/*multiply by 2 is equal to left shift the value*/

ai+1 [k] = ai+1 [k] ⊕⌊ai [k – 1]/128⌋

/* if there is a carry in (k-1) byte, pass it to kth byte, in which case the previous byte value is more than 128, If not, the value remains the same, obviously the first byte representing k[0] is not affected */

}

ai+1 [0] = ai+1 [0] ⊕ (⌊ai+1[k15]/128⌋ * 135)

The value 135 represents the polynomial x128 + x7 + x2 + x + 1. It is XORed with the first byte in case the final byte shift results into a carry. Thus, the carry is wrapped around.

KIM: The process of calculating αj is based on shifting bits around, which is very fast compared to the conventional exponential calculation process of integers which demands huge amount of processing.

Once the value αj is calculated, the remaining process is quite simple. The key can be either 256 or 512 byte depending on the user’s choice. It is divided into two halves; the first half will be used for encrypting the plaintext while the second half is used for encrypting the tweak.

We have the following information with us:

	Key is the 256 or 512 bit key

	Key1 first half of the key

	Key2 second half of the key

	Plaintext is a block of 128 bit size

	i is the 128 bit tweak

	j is the sequential number

	Ciphertext is a 128 block ciphertext

	TempPlaintext temporary value used just before encryption

	TempCiphertext temporary value generated from encryption and used to XOR with Temp to produce ciphertext

	Temp is a value obtained from multiplying the encrypted sequential number and αj

	⊗ Multiplication in GF(2128). Multiplying two polynomials with binary coefficients modulo 135 (the polynomial x128 + x7 + x2+ x+ 1)

Now, we can write the procedure for the XTS-AES block encryption process:

XTS-AES-BlockEncryption(Key, Plaintext, i, j)

Temp = AES-Encrpt (Key2, i) ⨂ αj

TempPlaintext = Plaintext ⨂ Temp

TempCiphtertext = AES-Encrypt (Key1, TempPlaintext)

Ciphertext = TempCiphertext ⨂ Temp

The process is depicted in Figure 6.9.

6.6.2 Encrypting the data units

The preceding process is a process for encryption of one block. When we need to have a large plaintext, consisting of multiple blocks, the encryption of data units is modeled as follows.

The plaintext is divided into m blocks of size 128; the last block may not be of the size 128 bit (or 16 byte).

Each block is encrypted as per the process shown next, except the last two blocks:

for (k=0 to m-2) XTS-AES-BlockEncryption (Key, Plaintext[k], i, k);

If the last block is of size 16 bytes (that means, the plaintext is an exact multiple of 16 bytes), last two blocks are encrypted in the same manner as others:

for (k=m-1 to m) XTS-AES-BlockEncryption (Key, Plaintext[k], i, k);

Otherwise, the last two blocks are encrypted in the manner shown in Figure 6.10:

[image:]

Figure 6.10: XTS-AES encryption of the last two data unit where the last block is not of 16 byte size

The TempCiphertext is stolen from the previous block and so this method is known as ciphertext stealing. The plaintext of the block m-1 is encrypted to generate the ciphertext, which is divided into two parts. The first part is produced as a ciphertext of the last block. The right-most part TempCiphertext-CP is chosen to be of size which is 16 – size of the last block. So adding it to the last block makes it exactly 16 bytes.

In this typical encryption of the last block, the previous block’s remaining chunk (the TempCiphertext-CP) is concatenated with the final plaintext block to make it an exact 16-byte size and the result is used as the ciphertext of the previous byte. The piece of the ciphertext of the previous block is produced as a ciphertext of the last block.

Can you now understand why the word Ciphertext stealing is used to describe this process? The remaining ciphertext of the previous plaintext is presented as the final block’s ciphertext.

KIM: The encryption process taking the last and last one blocks, and encrypts them, but if the last block is of a smaller size, the ciphertext of the last but one block is used to fill the remaining part. That is why this mode is known as ‘ciphertext stealing’. These two blocks are interchanged to make sure the last block remains of the same size.

The process of decryption is quite similar. Let us try to see how it works. It is important to note that the Temp value is calculated as the same way as in the encryption process, encrypting the tweak value and multiplying it by αj. Figure 6.11 describes the process.

XTS-AES-BlockDecryption(Key, Plaintext, i, j)

Temp = AES-Encrypt (Key2, i) ⨂ αj

TempCiphtertext = Ciphertext ⨂ Temp

TempPlaintext = AES-Decrypt (Key1, TempCiphtertext)

Plaintext = TempPlaintext ⨂ Temp

[image:]

Figure 6.11: The decryption process of XTS-AES mode

Before we conclude, let us understand a critical point. Why ciphertext stealing method is used here. Remember we have looked at security requirements earlier where we stated that the block size is an important parameter. Larger the block size better the security. If the last block is of a smaller size, the attacker can try that block for a brute force attack. Being smaller, it reduces the security accordingly. Now, after ciphertext stealing, the last block, though as short as the plaintext block, it is not a direct representation of the plaintext block (because it is representing the ciphertext of the same number of bytes of the previous block) and the brute force attack is not possible on it.

Keywords

	Keystream: The stream which is as long as the ciphertext and is used to XOR with the plaintext to generate the ciphertext.

	RC4: A stream cipher algorithm developed by Ronald Rivest of RSA security.

	Cipher mode: It is a typical way of using a block cipher.

	ECB mode: Electronic Code Book mode represents old fashioned, replacing one phrase for another method of encryption.

	CBC mode: Cipher Block Chaining mode chains the previous ciphertext block by XORing the current block with it.

	IV: A typical value, as long as the block itself, used as the first block before the plaintext for some encryption modes known as Initialization Vector of IV for short.

	Shift register: A block of values used as an input to block encryption; the output of which is appended by the output of the operation, a byte of the ciphertext. The ciphertext is generated by taking the leftmost byte of the shift register and exoring it with the plaintext byte. It shifts left with every iteration and hence the name.

	Output Feedback Mode: The IV is encrypted again and again and appended continuously with itself to produce a keystream which can be XORed with the plaintext.

	Keystream: A reuse attack in this case; the attacker has two ciphertexts encrypted by the SAME keystream, so he can XOR both the ciphertext to eliminate the keystream.

	Multi-bit input/output: In this process, multiple bits are processed in place of a single bit in the stream cipher case. This multi-bit value is normally not a multiple of a byte.

	Counter Mode: In this mode, the IV is incremented by the block number n and encrypted to XOR with the nth block.

	Random access ability: The ability to decrypt any block without decrypting any other block first.

	Preprocessing ability: The ability to process some part of the process before the message arrives.

	XEX: XOR encrypt XOR is a process where the XOR operation takes place before and after encryption.

	Tweakable: The encryption process where a small random value is additionally provided with the plaintext called tweakable and the random value is known as a tweak.

	Tweak value: A random value which is input to the encryption process. A tweak is one which is generated as an output to the encryption process.

	Tweak: A tweak which is an output to an encryption process involving a tweak value. This tweak is used in a tweakable cipher as an input with the plaintext.

	XTS: XEX with Ciphertext Stealing.

	Ciphertext Stealing: It uses the ciphertext of one block as an input in another block encryption process.

Recapitulation

	Steam ciphers output one byte at a time known as a keystream.

	RC4 is one of the popular stream ciphers proved to be as strong as other block ciphers of equal length.

	Variety of cipher modes are designed for various purposes.

	ECB mode encrypts one mode at a time identically.

	CBC mode encrypts each block and XORs it with the previous block.

	CFM encrypts the shift register, extracts the leftmost byte, XORs with the plaintext byte, sends as the ciphertext byte, and appends the same ciphertext byte at the right-most position.

	OFM or Output Feedback Mode is also known as the Stream Cipher Mode.

	OFM encrypts IV continuously and appends it with earlier one to generate a keystream.

	Counter mode encrypts IV + n to use it as a keystream for nth plaintext block.

	Apart from the random access, the counter mode possesses a lot of additional attributes which makes them attractive for the encryption process.

	XTS-AES is an IEEE approved method of encrypting storage data. It is based on the XES method designed by Prof. Philip Rogaway.

	Ciphertext stealing is used in XTS for improving security.

Exercises

MCQs

	A stream cipher outputs __________ at a time

	a block

	some bits

	a byte

	any value which is equal to the input value

	A keystream is __________.

	a one-time pad

	a random value

	not a random value

	XORed with plaintext

	__________ is using RC4.

	WEP

	SSL

	TLS

	All of above

	The period of the RC4 is __________.

	100

	1000

	10100

	10010

	It is possible to change the ciphertext block without being caught in __________ mode.

	ECB

	CEC

	Counter

	All of above

	The word ‘Chaining’ indicates __________ in CBC.

	XOR with previous block

	chaining of inputs

	chaining of outputs

	some chain in the user’s input

	If the attacker can change the IV value, it can corrupt __________.

	first block

	second block

	all blocks

	IV of the receiver

	In the cipher feedback mode, if one bit is corrupted, it corrupts __________ in the output.

	one bit

	one byte

	a block

	a size of data as long as the shift register

	In the output feedback mode, the __________ is encrypted again and again for appending to the keystream.

	IV

	plaintext

	ciphertext

	all of above

	For a random access __________ mode is used.

	Counter

	CBC

	OFB

	CFB

	Rogaway proposed __________ for encryption.

	AES

	DES

	XEX

	None of above

	For different locations, one needs __________ representation of the same plaintext, in storage encryption.

	same

	different

	random

	any one of above

	In the XTS processing, the value ∝ indicates

	a value

	polynomial

	based on GF(2128)

	all of the above

	When ∝j is calculated, it is computationally __________.

	as slow as taking exponential of a binary value

	very fast

	equivalent to integer exponential

	none of the above

	In XTS encryption process, XOR happens __________.

	before encryption

	after encryption

	both of the above

	none of the above

Problems

	Why the key for a stream cipher should be long?

	Why reusing the key for a stream cipher is not a good idea?

	Write a short note on RC4.

	Why we need a long period for a good stream cipher like RC4?

	What is the problem with the ECB mode? How it is handled in the CBC mode? Take an example of your choice other than shown in the book to explain.

	Can we use CBC for the stream cipher mode? Why?

	What is the need for a shift register in the CFB mode? What is the advantage?

	What is the advantage of OFB over CFB? What is the disadvantage?

	Draw a diagram representing multi-bit process for CFM and OFM.

	When we have multiple processors, the counter mode increases the speed, why?

	Explain how each of the requirements of the storage system. Explain how XTS-AES mode meets with those requirements. Why other modes are not eligible to be used for storage?

	How the data unit encryption takes place in XTS-AES? Why cipher stealing is not used for the last block being equal to the block size?

1 A pseudo random number generator is a mathematical algorithm which generates a sequence of seemingly random numbers. This sequence is not truly random as the input is the same; the sequence of the output character is the same.

2 The Security in Storage Working Group (SISWG) of the P1619 Task Group of the Institute of Electrical and Electronics Engineers, Inc. (IEEE) developed and specified XTS-AES in IEEE Std. 1619-2007

3 Same argument can be cited about passwords. If two employees use the same password just by chance, and the password file only stores encrypted version, looking at that value, one employee can learn about other employee’s password. He can also try changing his password (which is legal) to check whether his encrypted password matches with any other to guess that user’s password. This problem is solved by a trick called salt. A random value called salt is added to the encryption process which is unique for every user and thus eliminates the same encrypted value even in case of multiple users using the same password.

CHAPTER 7

Secure Hash Functions

Structure

7.1 Introduction

7.2 A simple hash function

7.3 Secure hash functions using block ciphers and cbc

7.4 Why the unique hash value is possible

7.5 Applying hash functions for authentication

7.6 Characteristics of the cryptographic hash function

7.7 Security requirements attacks and counter measures

7.8 Folding

7.9 Why simple folding fails

7.10 Secure hash algorithm (sha)

7.11 Processing of each round

7.12 The round function rf ()

7.13 Avalanche effect with sha-512

7.14 Sha-3

Objectives

After completion of this chapter, the reader should be able to

	List and judge the need for a secure hash function.

	Describe and justify the steps in the process of generating a secure hash code.

	Differentiate between a week and strong collision resistance and portray the advantages of having a strong collision resistance and other important characteristics.

	Describe the operation of SHA-3 and five-step functions which comprise the iteration function Keccak-f.

7.1 Introduction

This chapter throws light on an important component of security solutions, the secure functions. These functions help generate many things, including keys, message digests, and hash values which are used at many places in the security domain. We will look at what a secure hash function demands, how it is used in a security solution, and in which ways it can be put to use. We will throw more light on how the process of SHA-3 works, both of its components; the sponge construction and the iterative function.

7.2 A simple hash function

A hash function is one which accepts a value from a very large domain and returns a value to a very small, fixed range. Hash functions are extensively used in cryptography so we will look at them in this chapter. Not all hash functions can be used in cryptographic calculations. Those who are fit to be used in cryptographic applications are called cryptographic hash functions or secure hash functions. We will name other hash functions as simple hash function though they may not be that simple to calculate. Mathematically, to represent the hash function H, we can write it as follows:

Y = h(X) where X is a value from a (comparatively) large domain while Y belongs to a comparatively smaller range.

There are many, potentially infinite, functions one can design. For example, one simple function which applies MOD to x is called mod. Thus, in that case, y = x mod n. Assuming n to be 20, for example, the range of y is between 0 to 19 while x can be any integer.

The other critical question is can we use MOD in cryptographic calculations? The question demands further understanding.

The hash function is used to represent large entities as small tokens. For example, a digital signature represents the entire document plus the sender in a single word or phrase. We will soon formally write down requirements for a secure hash function but two of the critical requirements can still be seen.

	No two inputs generate the same output. That means, no two different documents should be signed by the same signature (so the attacker can replace one by another without the knowledge of the communicating parties and he will succeed).

	It is not possible for somebody to get the original document from the hash value. This property is denoted as a one-way property and the hash function with this property is also known as a one-way hash function. We will soon see why these two things make sense and why we need secure hash functions.

An old tradition was to use the conventional encryption function like AES with cipher block chaining and using the last block as the hash value for this purpose. One can use some other function instead of AES; which is specially designed for this purpose. That function is called a cryptographic hash function and is the center of discussion in this section. We need to discuss what additional features are required in a hash function for it to be accepted as a cryptographic hash function. However, secure functions using block ciphers and CBC are still in use so it deserves some discussion.

7.3 Secure hash functions using block ciphers and CBC

Cryptographic hash functions are used in many security-related operations like producing digital signatures, authenticating a message (confirming that the sender is what who claims to be), and integrity checking. The hash functions have found many applications across the entire computer science domain. Hash tables are used extensively in programming languages for quick access; hash functions are used to fingerprint the documents and even computer programs, so any change to that document invalidates it. It is also useful in applying policy controls when the user renames the banned executables. The admins keep the hash of banned executables and irrespective of names, the process matches the hash and can be prevented from execution.

We have already seen that the block ciphers are invertible while the secure hash functions are one-way, so we need to tweak the operation of the block ciphers. A simple trick can serve the purpose. First of all, the document is encrypted using the block cipher in the CBC mode. When the final block is calculated, it is based on all other blocks before and can be used as the hash value. This simple scheme requires two additions. First, the last block may not be an exact multiple of the block size and may require padding. Another point is the size of the block on which the block cipher operates may not be of the same size as the hash value required. For example, we might need the hash value of 32 bits and the block size is 64 bits. In that case, we need truncation. Some part of the block of the required size is retained and the rest is discarded. When a function is used to produce a comparatively much smaller size of data from an arbitrarily large size of data, that function is known as a compression function. When the message is divided into multiple blocks and processed as discussed earlier, it also acts as a compression function. One such function provided by Merkle and Damgard is considered quite useful. It is popularly known as Merkle-Damgard construction or hash function.

Later, we will describe how SHA-2 is calculated with the help of Merkle-Damgard construction. One interesting characteristic of this method is to pad length at the end of the message. We will soon see why such a decision makes sense.

One more addition is to initialize the hash value before the CBC operation. Typical values are chosen and used as IVs. However good AES and other block ciphers are, they are designed with different goals. For example, AES has a fixed size block. If one wants a bigger hash value than 128, it is very hard. The efficiency of the encryption reduces when different keys are used with different blocks. AES is not as secure as a block cipher when used in a hash function.

Interestingly, quite a few methods based on these schemes were proposed but not used because of vulnerabilities found in them. The secure hash functions, other than ones based on block ciphers, came into existence. However, they are comparatively lightweight and designed for the purpose, inherit many characteristics from the block ciphers, including processing data in rounds, shuffles the bits around in a complex manner as possible, and provide both confusion and diffusion.

However, we must have a proper set of requirements to pick up a good cryptographic hash function for our purpose. We will list the set of requirements for a secure hash function in this chapter.

7.4 Why a unique hash value is possible

The efficiency of the method which uses cryptographic functions depends on a few measures that one must take while choosing a function. Let us rewrite what we have already discussed in a more precise form.

If we have Message-1 and we construct Hash-1 from it, it should be infeasible for an attacker to frame one more message Message-2 such that when we apply the hash function to Message-2, it yields the same Hash-1.

KIM: If Hash-1 = Hash(Message-1), then the attacker has no straightforward way to get a message Message-2 such that Hash-2 = Hash (Message-2) where Hash-2 = Hash-1.

One must understand that a hash function maps a long message to a short string. It is impossible to have a unique hash for each of the messages. Hence, multiple messages may have the same hash value. It is highly likely for a message to have another message where both map to a single hash value. The issue discussed here is the infeasibility of finding a suitable message that generates the same hash value. There is no way an attacker can find a different message that generates the same hash function except by a brute force attack. This requirement is about the infeasibility of this brute force attack to succeed in real-time.

The fact that not all groups of characters that one can write for the length of the message be represented as a valid message helps us here. Let us try to understand.

Consider the message length of 20 bytes. Hello! How are you? It is a valid message and xyz is a hash value that is generated from that message. How many such valid messages can be constructed? Certainly, aaaaaaaaaaaaaaaaaa or bbbbbbbbbbbbbbbb is not a valid message. Similarly, abcdef…. is also not a valid message. In fact, very few of the character sets of 20-byte combination is a message left along a message with the same hash value! If we try and find out all possible sequence of characters which yield the same hash value (the xyz), there is a huge possibility that other messages that generate the same hash values are all garbage. Also, there is no direct method to get those messages. One must try all possible combinations one after another to do so. Thus, it is possible to devise a good hash function having the property that we discussed earlier.

KIM: This property is called weak collision resistance or preimage resistance.

A little better hash function will have one more constraint imposed called strong collision resistance, which will be discussed later.

7.5 Applying a hash function for authentication

We have already seen that, given x, one can easily compute

y = H(x) (where x is known as preimage of y)

but given y, it is infeasible for anybody to get x. the value y, which we commonly refer to as a hash value, also known as a message digest or even message authentication code or authentication tag. We will use these words interchangeably though there is a shade of difference in all these words. Message digest indicates the purported identity of the sender to be valid while MAC indicates the message to be unmodified, while the authentication tag is an indicator of both; authentication as well as integrity checking of a message.

The one-way property can be described as follows:

Given MD = H(M); there is no H-1 which can be applied to get M like M = H-1(MD).

The message M can be of a variety of sizes but the MD is of the fixed size.

There are three different alternatives for applying hash functions as follows:

	Using a shared secret key as an input to the encryption process: The sender uses the shared secret key to encrypt the message digest and the receiver decrypts that using the same key.

	Using public-key encryption in the encryption process: The sender encrypts the message digest using the public key of the receiver so only the receiver can decrypt that. Also, this method does not require keys to be shared.

[image:]

Figure 7.1: Three methods to authenticate

	Using a secret key appended to the plaintext before applying hash value: The receiver, on receipt of the message, appends the secret key and calculates the hash value, accepts if the calculated hash value matches with the received hash value. Interestingly, there is no real encryption that takes place here.

Figure 7.1 describes all these three approaches. The encrypted message digest is known as a digital signature in the first two cases. In the third case, the hash value is known as MAC usually1.

In the first approach, the hash is calculated and encrypted by the shared key between the sender and the receiver. If the message is modified in transit, when the receiver recalculates the hash from the modified message, it won’t match with the transmitted hash which the receiver could successfully decrypt. On the contrary, anybody other than the receiver cannot concoct the hash value themselves as they have no key. Thus, when the receiver successfully decrypts the hash value and when that hash value matches with the calculated hash value by the receiver, there is no doubt that the message is intact and it is indeed sent from the sender.

The second case, more or less, is the same as the first. The only difference is that the encryption is done by the sender’s private key. The receiver will decrypt that by the sender’s public key and match the hash value. It is not possible for anybody other than the sender to encrypt the message by his private key; thus, the receiver can be confident about the integrity of the message as well as the sender who sent it.

The third case is a little different; it does not use any form of encryption. The message has no encryption. The hash value is obtained from a concatenation of a message plus the shared key. It is not possible for the adversary to get the message changed because the shared key is used in the calculation but not sent. Without the key, it is not possible for anybody to construct the correct hash value. Moreover, this method does not require any form of encryption and can produce the same level of security.

So, the third approach is a little better. Let us elaborate on the third approach a little more. This approach assumes that both the sender and receiver share a secret key, SecretKey. Suppose the sender has to send messages to the receiver. The sender must first concatenate the Message with the SecretKey to generate Message||SecretKey. Now, the hash function is applied to the output to generate MAC. Thus, the sender calculates MAC = H (Message||SecretKey). After that, the sender sends Message||MAC to the receiver.2

On receipt of the Message||MAC, the receiver, first of all, removes the fixed-length MAC and gets the message out of it. As the receiver also has SecretKey, it can append it to the message now and apply the same function to the value and recompute the MAC for verification. As the sender does not send the SecretKey, it is not possible for the attacker to modify the message in transit. Also, as long as the key remains secret, the attacker cannot even concoct the false message. MAC is also referred to as the Keyed Hash function sometimes.

Once we have seen these popular methods use a hash function for authentication, let us look at the requirement of a hash function to be used in cryptographic computations.

7.6 Characteristics of the cryptographic hash function

The cryptographic hash functions have some similarities. Almost all of them do folding of the original message into a smaller value first and then do other things. This scheme is also known as compression function. The compression function generates a small value from a large value, hence the name. We have already seen a simple method of compression by dividing the message into multiple blocks of the same size. More or less every known cryptographic hash functions use that approach.

A quick general observation can lead to the following requirements for a secure hash function:

	It must be quick, for any given message, and it must quickly respond with the hash value.

	A small change in the message should lead to quite a different hash value; an avalanche effect that we have already seen that needed for a block cipher.

However good these two requirements are, they are more or less needed for every application which demands unique hash values for every input. For a secure hash function, we need more.

We need to state a few characteristics which make choosing a function as a hash function easier for cryptographic purpose.

An important attack on hash function is a birthday attack which we must try to combat. We will see what a birthday attack is in the next chapter. There are other possible attacks as well. The other requirements of a cryptographic hash function provide solutions to those attacks.

They are as follows:

	The input message may be arbitrarily long. The hash function must somehow be able to work with messages of different sizes. Usually, the message is divided into blocks of similar sizes and processed block by block to enable variable sizes.

	The hash function, by definition, must produce a fixed size output irrespective of the size of the input message.

	A good hash function is easy to calculate. It does not require having complex computations to generate the hash. As a result of it, it is usually possible to implement it in the hardware and work with real-time data.
KIM: Such functions are also used with IPSec. If an ISP implements IPSec on a line of 2 TB, the software module must be able to calculate the hash value at that speed. One cannot do so if the hash function is not lightning fast.

	We have already stated earlier that these hash functions are one way and thus it is infeasible to find given H(x), the value of x. The property of a hash function to survive this practice is known as preimage resistance.

	Suppose we have a message x and we calculate hash H(x) from it. Now, it is infeasible to find out some other message y such that H(y) = H(x). This requirement is known as weak collision resistance. When a hash function with this requirement is used for computation, the sender can be rest assured that the attacker cannot replace the same message with some other message without changing the hash value. If we have n bits in the resultant hash code, finding a message that corresponds to the same hash code can be done using a brute force search in 2n evaluations. The computing environment and the length n decide if this is practically possible. This is sometimes denoted as second preimage resistance.

	Suppose the attacker has an option to choose our message. Let us try to understand. Assume a clerk is given the job of uploading the mark sheet. He is given the handwritten sheet; he has to enter data, prepare a file, get the teacher’s digital signature, and send both of them to the University office. Unlike the case depicted in 5, the clerk has the liberty of generating the mark sheet in different ways. He might provide multiple spaces, use synonyms for some words, and so on to try and get two different mark sheets with the same hash value. Assume that he is able to prepare two mark sheets, one with marks given by the teacher and another one with modified marks and with the same hash value. The teacher signs the first mark sheet but the clerk publishes the other, with the same digital signature of the first document. It is clear that the clerk should not be able to do so. We need a hash function with strong collision resistance to prevent this attack. Here, we expect the hash function with the property that it is not possible for the attacker to generate two different messages with the same hash value. Thus, an attacker cannot find two messages x and y such that H(x) = H(y). This is called strong collision resistance compared to the previous weak requirement as here the attacker has the freedom to choose both the messages compared to only one in the previous case. Thus to thwart this attack the hash function must be stronger. If we have n bit message digest, finding out two messages that have the same hash value, using the birthday attack, comes out to be just 2n/2

The first two characteristics are obvious for any hash function. The third property is important for functions which are to be embedded in hardware or mobile phone. The fourth property is the one-way property which improves security. If we use AES here, an attacker can deduce the key to decrypt the output and get back the message. Here, even when the attacker has the hash, it is impossible to generate a message out of it. This is useful when we are sending the message using the third approach in which the hash value is calculated using the Message||SecretKey. Suppose this property is not satisfied and we have an inverse function H-1 such that if y = H(x), then the x = H-1(y). Now, when an attacker gets the message M (which is sent in plaintext) and the message digest MD, he can apply H-1 (MD) to get M||SecretKey. Now, he already has M, so he can easily deduce SecretKey. Once he has SecretKey, he can construct any message on the sender’s name.

Property number 5 is useful when the encrypted hash is sent along with the message. The attacker can observe the message and the hash value, generate an unencrypted hash code from the message, find out another message with the same hash code, replace the original message with the altered message with the same hash code, concatenate it with the encrypted hash code, and pass it to the receiver. The receiver will get a different message with the correct encrypted hash value and accept the false message as valid. That, however, is not possible for a secure hash function as it disallows the attacker to find a different message with the same hash value in real-time.

A hash function that satisfies the first five properties is known as a weak hash function. If the function also satisfies the sixth property, it is called a strong hash function. An attacker sophistically tries to find two messages, one innocuous message with the correct meaning and another damaging document with incorrect meaning satisfying the attacker’s requirement. He produces one message at the sender’s place and another at the receiver’s place. When the sender endorses the first message with his digital signature or message digest, it is automatically valid for the second, unintended (rather ill-intended) message.

We have seen an example of a clerk with malicious intentions to generate a fake mark sheet. The case demonstrates the danger if an attacker finds another message with the same hash. The sixth property is needed to disallow the attacker to do so.

The message digest or MAC, apart from message authentication, also provides message integrity, which means if the message is altered in transit, the message digest will be different when the receiver calculates it again and is not accepted. In true sense, if the message integrity is not guaranteed, there is little point in providing authentication. Why? Let us try to understand.

Suppose if we have a solution that guarantees the integrity and thus provides surety about the message not modified in transit but no authentication or no guarantee of the sender being genuine. That means, an attacker can generate a completely fake mark sheet and the receiver will accept as it is not modified in transit. On the other hand, if the system guarantees authentication but no integrity, we can assure the message coming from the right sender but with no guarantee that the attacker has not modified the message in transit. Thus, both items must be presented together otherwise they carry little meaning.

It is also possible to encrypt the entire message over and above the processing shown here. That is an additional measure for security. That will increase the security as it also hides the message apart from the onlooker but will increase the time to process. When we do that, we are providing both, encryption as well as authentication. Many security solutions, which require to provide both, authentication as well as encryption, use those methods. Interestingly, when we encrypt the message after calculation authentication tag (or MAC or MD), we are processing the messages again. Thus, we need two passes over the message. If the message is very long, this adds a lot of overhead. A better method called authenticated encryption provides both encryptions as well as authentication together by processing the message in a single pass and is the demand of the day.

Once we have seen the characteristics of a good hash function, let us formalize our discussion on the security requirements and see the types of attacks and countermeasures next.

7.7 Security requirements attacks and countermeasures

We have seen that when we have y = h(x), x is a preimage of y. H, being a function, has a range and a domain. The domain (of the input) is very large compared to the range (of the output) and thus, it is possible to have multiple preimages for a given value. When there are two preimages found for one value, that is, when for one y, there are two or more possible values of x, we call it collision. If there are 5 bits for a domain and 2 bit for a range, we have 25 = 32 values while hashes to total 22=4 values. That means we have 32 values mapped to 4 values; resulting in an average of 32/4 = 8 preimages for every one of the 4 values. In other words, 25-2 = 23 = 8; this explains our reasoning. Mathematically, if the domain has d bits and range has r bits, for each hash value, an average 2d-r number of preimages exist.

Our discussion as far, for multiple blocks or arbitrary length as input to generate a fixed-length hash value, the number of preimages for a given message is huge. We have already seen that even in that case, the number of acceptable plaintexts is quite less and thus, it is practically acceptable. However, other requirements are critically important.

Preimage resistance is about the one-way property of the hash function. We have already seen that without this, an adversary can easily have the key from the hash and thus the purpose is defeated.

Second preimage resistance is critical to ascertain that the adversary cannot find another message with the same hash, while strong collision resistance is critical to see that even when the adversary has the liberty to choose both messages, legal and illegal, their hash values won’t match.

Strong collision resistance automatically means second preimage resistance as a set of strong collision-resistant functions is a subset of second preimage resistant functions3.

Interestingly, functions that satisfy these criteria might still have properties that attackers love to exploit. We will later see how the attacker can work around simple folding. That attack is popularly known as a ‘length extension attack’. When the adversary can get two similar messages with similar digests (not the same), will it do? No. In such cases, it is possible for the attacker to relate the output to the input and thus predict the message, given the hash function. We have seen that the avalanche property of block ciphers was considered critical; it is critical here as well. Ideally, the attacker should not be able to infer anything about the input from the output and acts as a random function. There are some functions that follow all properties that we described earlier and thus are suitable otherwise are not used just because they do not produce random like output and one can relate the output with the input to find the relation and exploit it.

We will learn about the birthday attack in the next chapter, but let us try to recap if somebody wants to have a brute force attack on the SHA-512. That means if you want to find out the message, given the hash value, you may try all possible messages of a given length one after another. How many such messages will be needed? Property 5 (second preimage resistance) demands 2512 such messages while if we can choose both messages ourselves (property 6, collision-resistant), 2256. Why? We will see when we discuss the birthday attack in the next chapter. Generally, an n bit hash value requires 2n/2 operations for finding a collision, if both messages are possible to be chosen. On the contrary, it needs 2n operations if only one of the messages is possible to be chosen and others if fixed. For brute force attacks, in the general sense, the strength of the function is thus determined by the value 2n/2.

Researchers have also worked on the iterative compression function (which takes the message block by block) and also tried to relate that with attacks, they have found some interesting relation. The Merkle-Damgard construction that we discuss while SHA-512 is based on that research. It is proved that the compression function is collision-resistant than the hash function based on it is also collision-resistant.

Let us try to understand the building blocks of the cryptographic hash function. We begin with a simple hash function known as folding, and we will see what prevents that simple function which is to be accepted as a secure hash function, and then see SHA-3 work as an example of secure hash functions used in practice.

7.8 Folding

A simple hash function known as folding is quite useful. A more sophisticated version of folding is used in hashing process and thus it is useful to study how folding works.

Any large number can be mapped to a number between, say 0 to 99, by applying a folding function. The number is segregated into two-digit groups. Then, the groups are added one by one. In the end, we will ignore the carry to have a two-digit value. For example, if we have a value 12345678, the function adds to 12 + 34 + 56 + 78 which is equal to 180 where 1 is a carry. Ignoring the carry, what we get is 80.

Note: A function used here can be anything, but it is better if it generates different strings for different messages. Suppose we have chosen mod as a function. If both 1 and 101 are valid messages, then the function x = y mod 10 does not work, as it maps both of the values to 1.

Suppose we have a long string as an input and we want a four-character (32 bit) output as a hash value. We will take a few examples to see how it works. Suppose the following string is the input to our hash function:

“This is the seventh chapter of the cryptography and network security book”

Now, let us see how folding is applied to the string. What is done is that four characters of the string are picked up and added with the next four, and so on. Thus, the hash value is calculated as follows:

Hash = “This” + “ is “+”the “+……..

When This and is (space, i, s, and space) is added, ASCII values of characters of both the strings are added and a new value is generated. Similarly, other combinations of four characters are added and the hash value is generated.

A little better method would divide the message into multiple blocks and takes an exclusive OR between their bits instead of adding. The advantage of the EXOR operation is that it is fast and also does not require to carry or borrow problems. Mathematically, it is modulo 2 arithmetic additions and is preferred over conventional addition for the reasons cited above.

KIM: One can call it Modulo 2 subtractions as well. The addition and subtraction in modulo 2 are the same

We can write the algorithm in the following steps:

	First, the block size is decided and we generate each block of that same size n.

	The Hash is initialized to zero or some predefined known value. Hash is also of the same size n.

	In the last block, if it is not of the same block size, it is made of the same size by padding zeros. Assume the total number of blocks is m.

	Bits of block 0 to n are now XORed with each other in the following fashion:

	Hash bit 0 = (Bit-0 of block 0) ⊕ (bit-0 of block 1) ⊕ (bit 0 of block 2) …………⊕ (bit 0 of block m)

	Hash bit 1 = (Bit-1 of block 0) ⊕ (bit-1 of block 1) ⊕ (bit 1 of block 2) ………… ⊕ (bit 1 of block m)

	……………..

	Hash bit n = (Bit-n of block 0) ⊕ (bit-n of block 1) XOR (bit n of block 2) ………… ⊕ (bit n of block m)

	Once we have all bits of Hash, the complete hash value is obtained and the job is done.

In the preceding case, each bit of hash value is calculated as XOR of respective bits of each block. In short, it is represented as follows:

Hash ith bit = (ith bit of block 0) ⊕ (ith bit of block 1) ⊕ (ith bit of block 2) ….. ⊕ (an ith bit of block m);

This is nothing but a simple parity calculation. This method is popularly known as the Longitudinal Redundancy Check (LRC). This method is reasonably effective as a method to check for data integrity. If there is an error, the hash value remains the same only if the same bit in even the number of blocks is inverted together. For an n bit block, the total number of possible block values is 2n so the probability of one specific bit is inverted is 1/2n that is 2-n, considering all possibility equally likely.

Sometimes, the case is not that easy. In the case of text files, where only ASCII values of characters in English, the first bit of each character is always zero and thus, if a block size (which is similar to hash size) is 128, every 8th bit of the hash is zero. Thus, out of 128, a total of 16 such bits are always zero and cannot be counted. Thus, the error probability to get unnoticed is reduced from 2-128 to 2-112.

A solution to that problem is to use a circular shift while XORing. The process called RXOR and can be described as follows:

Hash.rotate(left,1);

Hash ith bit = (ith bit of block 0) ⊕ (ith bit of block 1) ⊕ (ith bit of block 2) ….. ⊕ (an ith bit of block m);

The process is the same except the rotation of the hash value by 1 left before starting the XOR operation. Thus, the bit i of Hash is XORed with bit i+1 of block 0, bit i+2 of block 1, and so on. Thus, it is a little better than above as it will not XOR all zero bits together.

Can we use this method to generate the message digest? Unfortunately, any method of plain folding of input does not work in generating a message digest. Remember the requirement number 5. Suppose if we want to replace a valid message by some other message but with the same hash. How can we do that?

7.9 Why simple folding fails

What an attacker needs to do is to concoct a new message, append a useless block of size exactly n with value Hash(M’) XOR Hash(M) and the problem is solved. The resultant message contains the same hash of the preceding message. How? The following is the proof.

Let us see. The following is a known fact about the message original sender is planning to send:

	M = Original Message

	Original H = Hash (M)

Now, the attacker does following:

	M’ = modified message ; Generated by attacker

	ExtraBits = Hash(M’) ⊕ Hash(M) ; Calculated by attacker

	M’ || ExtraBits is sent to the receiver

	Receiver calculates NewH = Hash (M’ || ExtraBits)

	Hash(M’ || ExtraBits) =
Hash (M’) ⊕ ExtraBits ; ExtraBits is of size n and according to

; The process of calculating fold,

; We XOR n bit blocks one by one

	= Hash(M’) XOR Hash(M’) ⊕ Hash(M)

	= (all zeros of length n) ⊕ Hash(M) ; Hash(M’) XOR Hash(M’) is all zero

	= Hash(M)

	= H

Thus, we can conclude that simple folding does not work. Interestingly, it is possible to use the function based on the same idea with quite a bit of modification that can serve the purpose. SHA-512 is one such example.

Our study of block ciphers lead to the following properties of SHA-512:

	Every output bit should be dependent on every input bit.

	The process must have multiple rounds to eliminate the statistical properties of the message present in the digest.

	The process may not need to be reversible in case a shared secret key is used.

Let us describe one of the most popular standards for the cryptographic hash function call Secure Hash Algorithm, SHA. Which is in the current version 2? Though SHA-3 is already available, unless there are serious problems found with SHA-2, it is unlikely that people may start using it. We are describing both, SHA-2 and SHA-3, in this chapter.

7.10 Secure Hash Algorithm (SHA)

The Secure Hash Algorithm (SHA) is the FIPS standard hash algorithm used to generate a digital signature using message digests. It is also an IETF standard. The first version with 160-bit hash output is known as SHA-1 which is no longer used in practice. There are advanced versions of SHA such as SHA-224 SHA-256, SHA-384, and SHA-512, that can generate 224, 256, 384, and 512-bit message digests which are also FIPS standards now. They are collectively known as SHA-2. They have the same structure as that of SHA-1 and functionally quite similar though there are many changes. For new implementations, SHA-1 is not advised to be used.

The SHA-2 variants are used in many real-world protocols like SSL, TLS, PGP, SSH, S/MIME, and IPSec. Normally, they are referred to as SHA-Length, for example, SHA-512.

The SHA-512 algorithm works as follows:

	A message of length less than 2128 bit is the input. The length limit is introduced because the length of the message is appended to the message later. The length field is confined to 128 bits and thus a message of length greater than 2128 is not acceptable.

	The message is divided into 1024 bit blocks. The last block, if not a multiple of 1024 bit, it is padded to make it a multiple of 1024 bits after adding the length value of 128 bit. The padding is of type 100000…. where the first bit is 1 and the rest are 0s. If the message is an exact multiple of 1024 bits, it is padded with one extra block as it needs to have the length information appended at the end. In fact, to append 128-bit length information, if the last block is of length 895, it is best as the length can be added at the end to make it an exact multiple of 1024 after adding just one byte as padding4. One may think that if the last block is of size 896, no padding is required as the length is appended at the end to make it equal to 1024; unfortunately, the standard expects padding in any case, so this case requires maximum padding of 1024 bytes. This is because the padding is compulsory5.

	The rightmost 128 bits are EXORed with the message length. The message length is also represented as a 128-bit number.

	The 512-bit hash is initialized with some constants in the beginning. It uses 8 different registers (sometimes denoted as words) of 64 bit each to initialize. They are known as registers a,b,c,d,e,f,g,h and are initialized with following values.6
a = 6A09E66713BCC908 b = BB67AE8584CAA73B c = 3C6EF372FE94F82B

d = A54FF53A5F1D36F1 e = 510E527FADE682D1 f = 9B05688C2B3E6C1F

g = 1F83D9ABFB41BD6B h = 5BE0CD19137E2179

	First 1024-bit block of the message is picked up and the 512 bit buffer is also picked up. The block is from the message while the buffer is initialized by 8 different constants which are named as a,b,c,d,e,f,g,h. They are also called registers.

	The block and 512 bit buffer is fed into a compression function which does following:

	The block is divided into 16 64-bit words.

	These 16 words are copied to an 80-word array at the beginning of 16 elements.

	The remaining 64 words of the array are generated by EXORing different combinations of words and shifting them.

	Some constants are also used in the process7.

	The digest values (the registers a,b,c,d,e,f) also changed accordingly.

	The resulting value of the digest is added to the original value (the value at the start of this round). This will input to the next round.

	The output block after all these operations is added with the input block and is given to the next round as input. Suppose the input to this round, the block value was X and the output is Y after completion of step 5, the output is X+Y. the value of X+Y is given to the next round as input.

	If the current block is not the last, the next block is taken and the process is continued.

	After all the blocks are done, the value of the digest is the output as a 512-bit hash.

Figure 7.2 shows how SHA-512 message is divided into multiple 1024 blocks. Figure 7.3 describes the complete process indicating how iteratively hash value is updated using round function Rf():

[image:]

Figure 7.2: SHA-2 message division process into 1024 blocks based on Merkle-Damgard construction

[image:]

Figure 7.3: How the hash value is calculated in SHA-512; Rf () is the round function and + is the process of addition

7.11 Processing of each round

Each round is processed in an identical way. The first round has two inputs, one from IV and another from the first block of the message. The message block of size 1024 bits and IV of size 512 bit are input to the round function. The round function Rf() takes two arguments, one 1024 and another 512 bit of information. Rf() also outputs a 512-bit information. The output from Rf() is again added to the IV value to produce the first hash value, which we call Hash1.

Subsequent hash values are calculated in a similar fashion. For ith round, the hash value from i-1th round (a 512 bit value) and ith message block are input to Rf() and Rf() object’s output is added with the hash value of i-1th round. In other words, we can write function SHA-512 where Hash is a 512 bit entity is depicted as follows:

Hash SHA-512 (NumberofBlocks n)

{

int i; //counter

Hash H[n]; //round hash values

Initialize(H); //Initialize with constants

For (i=0;i<n;i++)

{

H(i) = Rf (H(i-1), Block i) + H(i-1) //using H(i) in calculating round hash

}

return H(i); //return final hash

}

The final round output is the final hash value; in this case, it is 512 bits.

7.12 The round function Rf ()

The round function Rf () is where the complexity lies. The preceding snippet expands a single block processing in more detail. The following diagram explains how the processing of a single 1024 block by 80 different rounds in SHA-512:

[image:]

Figure 7.4: The processing of a single 1024 block by 80 different rounds in SHA-512

Each round takes input from the previous round; a total of 512 bytes in eight different registers of size 64 bit. We have already seen how the first round starts with constant values. We call the previous round value as Hi-1. The 1024 bit value of that round from the message is called Block i. The process is divided into a total of 80 rounds. Each round takes a round value W based on the Block i value as an input; W0 is the value derived from Block i value for 1st round, and so on. W79 is the value derived for the 80th round.

Only the first round takes the Hash i-1 value. In each round, new values of all 8 registered are calculated and fed into the next round. Once all 80 rounds are completed, the value is again added with Hash i-1 value. That value is Hash i.

Two pseudocodes, based on C coding system, describe the process in little better way in the following code snippet:

Hash Generate (Block Blocki, Hash Hi-1)

{

Hashi.a = Hashi-1.a;

Hashi.b = Hashi-1.b;

Hashi.c = Hashi-1.c;

Hashi.d = Hashi-1.d;

Hashi.e = Hashi-1.e;

Hashi.f = Hashi-1.f;

Hashi.g = Hashi-1.g;

Hashi.h = Hashi-1.h;

for (j=0;j<80;++j)

{

derive wj from Blockj;

recalculate values of a,b,c,d,e,f,g,h;

update Hashi;

}

Hashi.a += Hashi-1.a; // Modulo 64 addition

Hashi.b += Hashi-1.b;

Hashi.c += Hashi-1.c;

Hashi.d += Hashi-1.d;

Hashi.e += Hashi-1.e;

Hashi.f += Hashi-1.f;

Hashi.g += Hashi-1.g;

Hashi.h += Hashi-1.h;

Return Hashi;

}

In each round, as depicted in the preceding snippet, previous hash values are copied into the current. In other words, the current hash values are initialized with previous values before any other processing. Wj is derived for each round from the ith block. The hash values are represented as a,b,c,d,e,f,g,h which are updated in each of the 80 rounds. The final hash values in these registers are added with the values of the previous round at the end. That final value is returned as the hash value for the current round.

The SHA-512 calculation is done as per the pseudo-code shown in the following code snippet. Once the message is converted to n different blocks, we call the Generate function for each block. The final response is the Hash value. The Generate function takes the hash value from the previous block and produces the hash value for the next block. This figure refines what we described in the code snippet of Hash which is a 512-bit entity:

[image:]

Now, let us try to see how each of the 80 rounds is processed. Let us, first of all, see the symbols used in the processing. Table 7.1 enlists them:

	
⊕

	
Exclusive Or

	
&

	
Bitwise and

	
|

	
Bitwise Or

	
~

	
Bitwise complement

	
+

	
Addition Mod 264

	
Rn

	
Rotate right by n bits

	
Sn

	
Shift right by n bits

Table 7.1: Symbols used in description

Now, the for loop is given in detail in the following code snippet:

[image:]

The functions used in the for loop are described in the following snippet:

[image:]

Let us try to depict the process of the for loop in Figure 7.5. It is a pictorial representation of the same process described as pseudocode in the preceding snippets.

An interesting observation can be made from the figure is that the values of registers a and e only involves multiple operations, the rest are just copies. Word e is a function of d,e,f,g,h, word Wj and constant Kj. word a is a function of every other word except D as well as word Wj and constant Kj.

[image:]

Figure 7.5: Updating register values, M is Maj, ∑ is as defined earlier, + is modulo 264 addition

So far so good! The only thing we are yet to discuss is how each input word of size 64 bit is chosen from a 1024-bit block for the input to every round.

The first 16 words of the message are copied as it is to the word. For others, the following equation holds:

Wj = σ1 (Wj-2) + Wj-7 +σ0 (Wj-15) + Wj-16 ……….. Equation 7.1

Some examples may clarify:

W19 = σ1 (W17) + W12 +σ0 (W4) + W3

W52 = σ1 (W50) + W45 +σ0 (W37) + W36

W79 = σ1 (W77) + W72 +σ0 (W64) + W63

Both σ0 and σ1 are calculated as shown in Figure 7.6:

[image:]

Figure 7.6: How Wj is calculated for j > 16; a pictorial representation of Eq. 7.1

Figure 7.6 indicates the circuitry which is used to generate Wj’s where j > 16. Each rectangle indicates a word. When Wj is the output, the previous rectangle indicates Wj-1, previous to previous indicates Wj-2 and the last indicates Wj-16. The Wj which is the output also is the input back for calculation of the next word, and so on:

[image:]

Looking at all the preceding calculations, we can conclude that SHA-512 makes sure that every output bit depends on every input bit, and thus provides an avalanche effect. That also avoids cases where one can find two messages with the same hash. People have tried doing so, but there is no published result that indicates that it is possible to find two different messages with the same SHA-512 values in real-time.

7.13 Avalanche effect with SHA-512

To test if SHA-512 is good at the avalanche effect, the author has found SHA-512 hash values of three different strings as follows. You can see that the difference is quite huge. In case-2, the ‘s are two characters which are added, in case 3, only a single character s at the end of the string is added but the hash value changes substantially:

[image:]

7.14 SHA-3

SHA-3 is the third generation of the SHA series of hash functions. Though SHA-1 and SHA-2 are quite similar to each other, SHA-3 is drastically different from them. The SHA-2 is considered quite secure, especially SHA-512 so most current implementations use it. However, NIST decided to have the next generation SHA based on the same process it did for AES, a kind of competition. The SHA-3 was a winning secure hash function in that algorithm with a different structure. There are two reasons for providing a different approach:

	As SHA-1 and SHA-2 both had identical designs, if ever a design-based vulnerability is found out, both of them will be rendered useless together

	It takes a while to have a new standard that is properly tested at all levels, it is not possible to stop using the current standard and find a new standard overnight. So, if SHA-3 is ready even when SHA-2 is still unassailable, it is a good idea.

SHA-3 design revolves around two components: one of them is known as a sponge and another is an iterative function. The sponge is a multi-utility function that can act like a hash function where an arbitrary long input generates a fixed-length output as well as it can generate arbitrary long output from a fixed value like a stream cipher. The iterative function is the building block which helps the sponge to do its job.

SHA-3 allows flexibility with the size of the input message as well as with that of the output message. The whole process of SHA-3 is called sponge construction. The input message of n bits is partitioned into blocks of fixed size (say) r bits. If n is not a multiple of r, then the last partially filled block is padded with either the pad10* scheme or pad 10* 1 scheme to make it of the same size of r bits. In the pad10* scheme sequence of the first bit 1 followed by all 0’s is appended to make the size of block as r bits. The Pad 10* 1 scheme is almost the same as pad10* expect that the last bit is 1, that is, the block would be appended with the sequence having the first and last bit 1 within between all 0’s.

So if, [image:] then we can say that the input message of size n is partitioned into k blocks, P0, P1, … , Pk-1; where each is of size r bits (padding of last block included). In case n is a multiple of r, then one entire extra block of r bits is created with padding. You can see that SHA-512 does the same.

The iteration function Keccak- f (explained in the next subsection 7.3.1) called the sponge function operates on each block successively. The iteration function f’s argument is variable s of bitsize b = 1600. Thus, each input block of size r is appended by c bits (called capacity), all of which are 0’s to make them of size b. Different fixed values of r and c are supported (r + c = b).

Sponge construction has two phases named Absorbing phase and Squeezing phase. The first Absorbing phase is performed. At the beginning of the Absorbing phase, the variable s is initialized with all bits as 0’s and XOR of this s is done with Po (expanded block of 1600 bits). The iteration function f operates on s as its argument with the output as new s. This output (new s) is XORed with expanded P1 and again f is applied to generate the modified s. This process is repeated until the last block Pk-1. Thus, in short, in each iteration i of f, (i = 0, 1, 2, …, k – 1) the output s obtained from the previous iteration i – 1 is XORed with extended Pi of 1600 bits and XORed message becomes the input for next iteration i + 1 of fi.

Next, comes the squeezing phase. If the length of the output desired l is ≤ r, then the first l bits of s give the desired output of implementation of the SHA-3 algorithm and there is nothing to be done in the squeezing phase. Otherwise, if the output required is longer than r bits, then the squeezing phase has to be applied. First, r bits of the output s from the Absorbing phase is taken as the first output block Z0. Now, f is applied on s, and now, the first r bits of output s is considered a second output block Z1. Z0 and Z1 are concatenated. This process is continued till (j – 1) iterations such that (j – 1) r < l < j . r ; j = 2, 3,… . First bits from the concatenated string of the block Z0 Z1…Zj-1 are returned as the output.

7.15 Iteration function Keccak-f

Here, the input variable s is a sequence of 1600 bits which is organized in three-dimensional array of size 5 X 5 X 64. Thus, an individual bit in s can be represented as follows:

[image:]

This can be conveniently viewed as 5 X 5 matrix M, where each element of the matrix is an array of 64 bits which we would like to call as 64 bit word. That is, the state variable s is a matrix M5 X 5 where the cell M[x, y] is 64 bit word a[x, y, 0], a[x, y, 1],…,a[x, y, 63]. The columns and rows of matrix of M range from 0 to 4 as shown in Figure 7.7:

[image:]

Figure 7.7: State variable s as 5 x 5 matrix A of 64 bit words

First 64 bits of s are filled in M[0, 0], next 64 bits fill in M[1, 0], then in M[2, 0], and so on. Once the lowest row M[x, 0] for x = 0, 1, 2, 3, 4 gets filled up, the next highest row M[x, 1] for x = 0, 1, 2, 3, 4 is filled in the sequence. Thus, filling takes place from left to right and bottom to top. The mapping of bits of s to a can be described by:

s [64 (5 y + x) + z] = a[x, y, z]

Note that, in a[x, y, z]; x denotes the column number, y denotes the row number of 5 X 5 matrix, and z denotes the sequence number in that particular cell. Given s[n], if we want to determine values of x, y and z in a[x, y, z], then z = n mod 64. If we denote q as n div 64, then x = q mod 5 and y = q div 5. For example, let us determine, x, y, z if n = 517. As 517 = (64 × 8) + 5, we know ρ [517] will be in the 9th cell, so the second row from the bottom (y = 1) and the fourth column from the left (x = 3). (Elements are filled row-wise, bottom to top and within a row, left to right). Thus, we expect ρ [517] = a[3, 1, 5]. Let us calculate it now:

z = 517 mod 64 = 5

q = 517 div 64 = 8; x = q mod 5 = 8 mod 5 = 3; y = q div 5 = 8 div 5 = 1

∴ s [517] = a[3, 1, 5]

The hash function f operates on the matrix M[x, y] obtained from the input 1600 bit variable s as described in the Iteration function Keccak-f. The SHA-3 hash function f is quite easy to implement as it uses just Boolean operators XOR, AND, NOT, and rotation. There are 24 rounds wherein each round consists of five steps performed in order namely:

	Theta : θ

	Rho : ρ

	Pi : π

	Chi : χ

	Iota : ι

The first four steps are the same for all the rounds, whereas the last step iota is different for each round, that is, it depends on the round number. Each round can be expressed as the composition of functions given by:

R = ι ∘ χ ∘ π ∘ ρ ∘ θ

First, θ would be performed, on the output obtained ρ would be performed, followed by π and so on, at the end ι will be performed. The combined operation of these five steps is called a round R, which has to be performed 24 times.

7.16 Theta Step function

This function is performed on every bit of 64-bit word in the cell M[x, y] as follows:

[image:]

Here, the summations are XOR operations. To understand this function equation, let us denote C[x] as bitwise XOR of words (64-bit arrays) in column x as follows:

C[x] = M [x, 0] ⊕ M[x,1] ⊕ M[x, 2] ⊕ M[x, 3] ⊕ M[x, 4] =∑4y=0 M [x, y]

Now, we shall understand the equation in terms of C[x]. The first summation in the equation means that bitwise XOR of 64-bit words in the preceding column (x – 1) (mod 5) is performed giving C[x – 1]. (If applied for the first column x = 0, bitwise XOR of the column corresponding to x = 4 would be done.) Similarly, the second summation is about XOR ing arrays (64-bit words) of the following column (x + 1) (mod 5) giving C[x + 1] followed by a circular shift by 1 to the next position for each bit in 64-bit word in this cell. That is, one at position z is moved to position z + 1 (mod 64), which will form the array ROT (C[x + 1], 1). Thus the operation of the Theta Step function can be expressed in the compact form as M[x, y] ← M[x, y] ⊕ C[x – 1]⊕ ROT (C[x + 1], 1).

For example, let x = 3, y = 2 Then, the new value of the array in the cell M[3, 2] can be depicted in Figure 7.8:

[image:]

Figure 7.8: M[3, 2] ← C[2] ⊕ M[3, 2] ⊕ ROT(C[4], 1) θ step function

We can say that step θ is a substitution, where a new value of the bit in each word is obtained from self-value, the value of one bit in each word of preceding column as well as that of the succeeding column. Thus, 11 bits are used to update every bit.

7.17 Rho step function

This is a permutation of bits within each cell. Permutation here is just the shifting of bits by a fixed number of positions within the cell, but the number of positions to be shifted is different for different cells. M[0, 0] is an exception, where no shifting takes place. For the remaining 24 cells in a 5 X 5 matrix, there are 24 shift values, given by [image:] mod 64, for 0 ≤ t < 24.

The cell M[x, y] in which particular shift is to be operated is given by [image:] mod 5.

For example, let t = 2. Putting t = 2 in the expression of the amount of shift [image:] mod 64, gives shift as [image:] mod 64 = 6 and the cell in which this shift of 6 shall occur is obtained from

[image:]

[image:]

This means that each bit of array of M[2, 1] will be shifted by 6 positions. Thus, for the Rho step function, the formula for permutation of bits can be described as follows:

a[0, 0, z] = a [0, 0, z], Otherwise

[image:]

The table of computed values of positions to be shifted for each cell is given for ready reference:

[image:]

Figure 7.9: Shift values by word position in matrix

7.18 Pi step function

This also is a permutation function, but it is a permutation of cells of the matrix. It relocates the entire cell and the content of cells remain as they are. The scheme of relocation is as follows:

π : M [x, y] ← M [x', y']

[image:]

Which means that 64 bit words are relocated new cell positions where new position is old position and new position is (2x + 3y) mod 5 of old relocation. For example, consider M[3, 2]. M[3, 2] will move to location M[2, (2 . 3 + 3 . 2) mod 5] giving M[2, 2]. If we take M[3, 3], M[3, 3] will move to M [3, (2 . 3 + 3 . 3) mod 5] = M[3, 15] mod 5 = M[3, 0]. The new matrix obtained after applying the Pi step function is shown in Figure 7.10:

[image:]

Figure 7.10: Pi Step function

7.19 Chi step function

This denoted as χ is a substitution function. It can be described mathematically as follows:

a[x, y, z] ← a[x, y, z] ⊕ (NOT (a [x + 1, y, z])) AND (a[x + 2, y, z])

Here, each bit of the 64-bit word is updated using the current value and values at the same corresponding positions in an array of 64-bit word in cells of the same row of next two columns (mod 5). The compact form of the function is as follows:

χ ∶ a[x] ← a[x] ⊕ ((a[x + 1] ⊕ 1) AND a[x + 2])

For example, if x = 1,y = 3, we obtain M[1, 3] ← M[1, 3] ⊕ (M[2, 3]) AND M[3, 3]; whereas if x = 4, y = 2,we would obtain M[4, 2] ← M[4, 2] ⊕ (M[0, 2]) AND M[1, 2]:

[image:]

Figure 7.11: The processing of Chi Step function

M[1, 3] ← M[1, 3] ⊕ (M[2, 3]) AND M[3, 3] and M[4, 2] ← M[4, 2] ⊕ (M[0, 2]) AND M[1, 2]

7.20 Iota step function

This is applied to only the first 64-bit word, that is, to M [0, 0] of the input to the Iota step function. Here, M[0,0] is combined with a rounding constant through the XOR operation. This rounding constant is different for different rounds. This function can be expressed as M[0, 0] ← M[0, 0] ⨁ rj, where rj is 64 bit rounding constant for round j, 0 ≤ t < 24. The table for rounding constants can be viewed in the literature on SHA-3.

With that, our discussion on SHA-3 is over. You can see that SHA-3 is quite complex (like SHA-2). The complexity of the process is done for making sure that all required properties of a secure hash function are observed.

7.21 Applications of Cryptographic Hash Functions

We have already seen how secure hash functions are used for message authentication. We have also seen that cryptographic hash functions can generate a digital signature. When a document with the encrypted hash value is sent, the hash value represents the digital signature. Both the document and the sender is verified by the digital signature. However, there are other possible usages:

	Confirming non-corruption of executables: When computer files, like executable programs, are stored in some library and others are allowed to use them, the designer can also provide the digest with it, so the user can check for malicious modifications to the executables by assessing the hash value and compare it with the original.

	Password hashing: When passwords are stored in a file, they are not stored as is, their hash is stored instead. When the user supplies the password, the system applies the same hash function, generates the hash, and compares it with what it has stored. This mechanism avoids storing passwords. Even if the adversary has access to the password file, it cannot get the password as the hash is a one-way function.

	Proof-of-originality: Hashcash is a system that is used in Bitcoin and other places and has an interesting use of cryptographic hash functions. When a genuine user writes a mail, he spends some time (obviously) to do so. That time is recorded and listed in the mail header. Hashcash is the system which identifies if that timestamp is valid using the SHA-1 hash. Thus, if the hash value is right, the sender has spent some time generating that mail, unlike spams.

	Identifying objects: Files and other resources are possible to be identified by their unique hash identifiers. ID generated from the hash is quite efficient. Many source code management systems use them to tag the source codes using hash functions.

	Pseudo-Random Number Generators: We will refer to Chapter 11: Pseudo-Random Number Generators. One key security need is to generate the next number given a typical value, hash functions are used for that purpose. SSL, IPsec, and many other cryptographic systems need secure data. Applying hash functions generates a number that is relatively independent of the input number, doing it multiple times help generate a long random string, which is also useful in many cases.

Keywords

	Simple hash function: Non-cryptographic hash function.

	Secure hash function: A hash function that satisfies all the six requirements of security.

	Preimage: The x value in the equation y=H(x).

	MAC: Message Authentication Code

	One way: A property of a hash function indicates that it is possible to obtain the hash value from a message but not a message from a hash value.

	Compression function: A function which returns a value smaller than the input.

	SHA – 3: A standard secure hash functions from NIST.

	Absorbing phase: The first of two-phase of SHA – 3 in which the input message is divided into blocks and are processed giving the output.

	Squeezing phase: The second phase of SHA – 3 in which the output message obtained from the absorbing phase is repeatedly operated by iteration function, if needed, and concatenated to increase the size of output to the desired length.

	Keccak-f: It is a function used in SHA-3 operated once on each input block. The operation consists of 24 rounds and each round is the composition of 5 steps in order.

Recapitulatin

	One needs a cryptographic hash function with 6 different characteristics for secure operations.

	Both the hash function based on block ciphers and specifically designed ones are used in practice.

	Though both SHA-2 and SHA-3 operate by dividing the message into blocks and processing them serially, SHA-3 is inherently different than SHA-2.

	There are three ways in which one can use a hash function for generating MAC or MD.

	SHA-512 and SHA-3 both are complicated processes churning the data into a hash where every output bit depends on every input bit.

	SHA-2 operates each block with 80 different rounds.

	In SHA-3 one iteration of Keccak-f has 24 rounds and in each round five steps are performed.

	Except for the last step Iota, all other steps are the same throughout the 24 rounds.

Exercises

	Explain why a simple folding function fails to act as a secure function.

	Describe why it is possible for every valid message to have a unique hash value.

	Differentiate three ways of using hashing functions to authenticate.

	What is the Merkle-Damgard construction?

	Explain how the SHA-2 process takes place.

	Explain how each of the rounds of SHA-2 is processed.

	Explain five-step functions which constitute the iteration function f.

	If t = 4, determine the number of positions for shifting and to which cell the shifting has to be applied for rho function.

	Calculate the new position of cell after application of Pi function.
(i) M[4,0] (ii) M [1,3] (iii) M [0,2] (iv) M [2,3]

	s[133] would go to which cell of M5x5? Express s[133] as a[x,y,z] . Do the same for s[192], s[312].

	The chapter describes a few ways in which the secure hash functions are used. Find one such use apart from the ones that are discussed in the chapter and explain.

1 However, this is not standard nomenclature. Authors have found these words being used interchangeably.

2 || indicates concatenation and the SecretKey is used in calculation of MAC but not sent.

3 This is not true, for preimage and collision resistance, a collision resistant function may not be preimage resistance and vice versa.

4 The algorithm is such that the padding is always done. So if the last message block is exact 896, it adds an entire block of 1024 bits which is the worst possible overhead. If the message length is 895, we have minimum padding of one byte. In case of 896, we have maximum padding of 1024 bytes.

5 This is simply because the designers like to avoid two messages M and M|| Pad to have same hash values. Adding the length and providing compulsory padding are both helpful in that process. For example, if we have two messages M1 = 1010 and M2 = 10101000 and H8 is a 8 bit hash function. You can clearly see that both messages are different. What is the hash value? M2 is already 8 bits so no pad but M1 is to be padded with four bits, as per SHA scheme, it will be 1000 and voila! M1 becomes same as M2 after padding! We would like to avoid that here.

6 One may think, from where these constantans are picked up? A method used like this. First eight prime numbers are taken. Their square root values are calculated. The first 64 bits of the fractional part of those square root values are taken as constants of above eight registered. These values are stored in big-endian format that means, the most significant byte of the word is stored at lower most address (leftmost) of the word.

7 The constants are derived as follows: first eighty prime numbers are selected, their cube roots are taken, first 64 bits of the fractional part of the cubic roots are taken as constants.

CHAPTER 8

Message Authentication using MAC

Structure

8.1 Introduction

8.2 Integrity check

8.3 Other security needs for a message

8.3.1 Sequence of data altered

8.3.2 Introduce additional delay

8.3.3 Non-repudiation

8.3.4 Help get the right plaintext

8.3.4.1 The birthday attack

8.4 Meet-in-the-middle attack

8.4.1 Message authentication without using encryption

8.5 Factors deciding the security of MAC

8.6 Order of encryption and authentication

8.7 HMAC

8.7.1 HMAC algorithm

8.8 Conventional Message Digest vs. HMAC

8.8.1 Security of HMAC

8.9 Authenticated Encryption with Associated Data (AEAD)

8.10 Counter with Cipher Block Chaining Message Authentication Code (CCM)

8.11 GCM-GMAC (Galois Counter Mode-Galois Counter Message Authentication Code)

8.12 Key Wrapping (KW)

8.12.1 Using MAC as pseudo random number generator

Keywords

Recapitulation

Conceptual exercises

Objectives

After completion of this chapter, the student should be able to

	Describe the process of authentication, justify the need of MAC in the process, find the factors deciding the security using MAC, appraise the need for solutions like HMAC, CMAC, and few other real-world cases.

	Narrate the ways in which the message can be altered and remedies to those.

	Describe the birthday and meet-in-the-middle attack and weigh the need to learn them in the process of designing the authentication solution.

	Judge the need for authenticated encryption and describe the process of CCM-CEC and GCM-GMAC.

8.1 Introduction

The encryption helps in keeping the passive intruder at bay. If a message (a file, document, or some other data) is received and the receiver can be assured of their claimed-source and the genuineness of the content, it is considered authentic and the process is known as authentication.

The message authentication does two things: verifies the sender as the one who claims so and checks the integrity of the message such that the receiver can verify if it has been altered or not during the transmission. Thus, if an active intruder has modified the message or concocted the message, authentication can determine so. Thus, we need authentication of the message to thwart active intruders.

When we receive an email or a document or a file or something similar, it is considered authentic when it is genuine and comes from the alleged sender. The active intrusion detection is sometimes more than the content and source verification. For example, sometimes the requirement is to verify the time also. Consider the case of an army commandant instructing the troop to start and stop shelling. If one can record and replay such instructions at some other time, the result can be catastrophic. The receiving troop must also verify that the message is fresh and not only coming from the commandant and genuine.

Apart from time, sometimes the sequence also is important, especially when the order determines the output. Again, consider an army commander sending a message to troop A to march forward and troop B to come back. If the attacker alters the order of the content so that troop A receives the message for troop B and vice versa, the result can be catastrophic. Thus, assuring the order is also important. The methods that we use to check the integrity of the message must also see that the same message with different order is also not accepted as valid or the same message with some other time is also not accepted as valid.

KIM: A message authentication process is required to provide the timing and ordering validity as well.

8.2 Integrity check

Integrity check refers to making sure that the message is not altered in transit. The integrity check is quite useful for applications where there is a possibility of some bits of the message that are likely to be inverted during the journey from the sender to the receiver. The bits might change due to environmental factors or by intention. When the bits are altered due to other than an attacker purposefully doing so, we call it an error and the process of restoring it back is known as error handling. When the attacker does it intentionally thwarting the integrity of the message by changing it to his own benefit, one needs to implement the integrity check which finds out if the message has been altered during the transit. As a result of either the environment or the human doing the damage is same, similar techniques can be applied in error handling and integrity checking. The only difference lies in checking the authenticity of the sender as well while we do integrity checking.

8.3 Other security needs for a message

Though checking for message integrity and source authentication, there are other needs for message authentication. Let us try to learn.

8.3.1 Sequence of data altered

Sometimes, an attacker alters the sequence of data. For example, bonus coupons are sent to a printer in an encrypted and authenticated way so it is not possible for anybody to modify (message integrity is preserved), or see the content (confidentiality needs to be preserved). Customers are standing in a queue and showing their invoices and the operator enters the amount accordingly. If the attacker swaps the data for customers 2 and 3, for example, customer 2 will get bonus coupons of customer 3 and vice versa. You can see that altering the sequence does not require an attacker to modify the data nor decrypting it. The order issue indicated in the introduction part is also critical if the attacker cannot generate or modify or read the content but change the sequence. The solution is to include the authentication process which is aware of the sequence and use it in the calculation so if the sequence is altered, it can catch it.

8.3.2 Introduce an additional delay

Suppose if a customer types appropriate commands to withdraw cash at an ATM machine. The credentials and other information reach the server which verifies the credentials and sends back the command to dispense the cash out. If the attacker introduces an additional delay here, so much so that the customer feels that the ATM is not working and leaves, the cash is dispensed after that. An attacker can now go and collect the money.

Another example is that of a network operator who helps students by supplying the solved problem is caught by the teacher and he instructs the admin to block that operator’s account. The operator can delay that message and clear all logs to prevent anybody to prove his misdeeds in future. The idea is to introduce time in the process and the system to be aware of time-related components and not complete the transaction if it goes beyond a limit. Message authentication alone cannot solve this problem; a complex protocol is needed. We will see how Kerberos and other protocols manage that later.

8.3.3 Non-repudiation

The sender or receiver denying the transaction after committing is a crucial problem. Non-repudiation is a mechanism by which we can avoid that problem. We have seen in Chapter 1: Network and Information Security Overview, that it is possible to make sure about the sender non-repudiation but the receiver non-repudiation is a complex problem. One needs to use a proper protocol for addressing these issues, apart from imposing some other constraints.

The methods to authenticate a message and a sender is summarised in the previous chapter, for a detailed discussion, see the Annexure.

8.3.4 Help get the right plaintext

One interesting problem occurs when the receiver decrypts the ciphertext. How does he know that he has the right plaintext? This can occur if there are multiple keys and the receiver is not very sure of which key is used for encryption, and so he has to try all. Another reason is that the sender might have encrypted with a wrong key. If the plaintext is a text message, the receiver can easily check whether the plaintext (which is decrypted) is right or not. What if a plaintext is a compressed file or an image?

The problem gets more complicated if we need to find automated means (a program) to decrypt and test if it has got the right plaintext. Interestingly, the message authentication process comes to the rescue. There are many real-world cases where some form of authentication is provided before encrypting the message. When the message is decrypted, it is also checked for authentication, if the message is properly decrypted, the authentication code matches, and the problem is solved.

In fact, the problem is more general. Images like X-ray are hard to determine if genuine or otherwise with little modification. The modification may be intentional or accidental but the decryption should be able to catch it. The introduction to error detection codes in most communication protocols are designed to handle such cases. You can refer to the author’s other book on Data Communication and Networks to learn more about them. Some additional information is provided in Annexure 8.1.

8.3.4.1 The birthday attack

A scientist called Yuval proposed an interesting observation about hash functions (which is also applicable to message digests) in his paper How to Swindle Rabin. Let us try to understand what the paper is about. Suppose we have a 64-bit message digest or a hash value (Hash) of a message obtained from applying the said hash function. What an attacker wants to do is to replace the message with his own message, keeping the Hash same. Let us think conventionally first. We have a message of size n bit. We apply the hash function H to get the hash value y = H(x). For getting another y=H (xx), we must pick up both x and xx from all possible messages. Total 2n messages are possible to be drawn from that n bit domain. One value is already tested (the x), the conventional wisdom guides that we need to test the remaining 2n-1 values (as xx) one after another.

Interestingly, according to Yuval, the attacker needs only 232 messages to look for two messages with the same digest of length 64; he does not need 264 messages. That means we need only 2n/2 messages and not 2n-1 messages.

This observation is based on a simple principle of statistics. Assume a distribution of numbers 0 to n – 1 is given to us and these numbers are uniformly distributed. If we draw a random number from the list, what is the probability that we draw the same number again if we try the next time or if we try multiple times? The point is when we increase the number of tries to √n, the probability to draw the same number goes beyond 0.5. Thus, for the n bit message value, where the message itself ranges from to 2n, if we pick data at random, we can get another data block with the same hash value after √2n attempts. That means 2n/2 attempts. This observation is popularly known as birthday paradox.

What is its significance to message digests and security? Let us find out using an example. Suppose a student knows that a teacher’s TA (Technical Assistant,) is sending a mark sheet to the office. The TA happens to be a friend of a student who is not happy with the marks he got in a subject. From the teacher’s point of view, the mark sheet is already published and so it does not have to be secured or encrypted, but care must be taken to see that nobody alters it without being captured. The teacher may give the mark sheet to the TA, tell him the key to be used to sign the mark sheet digitally, and send him a copy of the mark sheet also before sending it to the university.

The student (who can always copy the mark sheet from the web) calculates the hash with the help of the TA. Then, he runs a program with different values of his own marks and checks whether the hash of the new mark sheet (with his marks increased) generates the same hash as that of the original mark sheet. If not, he may try altering the names appearing in the mark sheet by including spaces or changing the spelling in such a way that it is not easily noticeable. If he becomes successful in getting another version of the mark sheet with the same hash, his problem is solved. The TA will send the modified copy to the exam department and the original copy to the teacher who calculates the hash again and send it with the mark sheet. The exam department regenerates the same hash and when it matches, they accept the modified mark sheet as the correct one.

Now the question is – what is the possibility of the disgruntled student to succeed in getting another mark sheet with the same hash value?

Suppose the first mark sheet is denoted by Marksheet1 and the second one is denoted by Marksheet2, then what we want is a Marksheet2 such that:

Hash (Marksheet1) = Hash (Marksheet2)

In the first observation, we may think that the student needs to try all the possible combinations of bits (264) in both mark sheets to be successful, but it is not so. According to Yuval, the student needs to generate just 232 different mark sheets to get the one he wants with the same hash of the mark sheet which the teacher wants with a very high probability. The number 232 sounds really large and if a student uses his desktop to work on it, it might take more than his lifetime to find out the exact mark sheet! But he can try multiple computers in parallel to do so.

The last point is to know why it is called as a birthday attack. If we want to find out the probability of having two students with the same birthday (not year or month, only the day) in a class, the probability will be ½ when the class strength is just 23. If we try to look for two students with the same birthday in two different classes of the same strength (23), it is possible that one of the classes has that pair. The same principle is applied to message digests by Yuval and his result speaks so.

Let us summarize what Yuval proposed.

Assume the sender decides to send the message M. The message is n bit long. The hash value H is h bit long. The sender generates the hash value and encrypts with his private key or a secret key known only to him and the receiver. The encrypted hash is EH.

The attacker, once he has both M and H, he will decide M’, a malicious message he would like to send to the receiver.

The most important next step is to try all possible variations of M’ to get its hash value H’ such that H’ = H. According to Yuval, he is likely to succeed trying only 2n/2 messages.

Now, he sends M’ with EH. The receiver, on receipt, calculates the hash value, decrypts EH, and gets H. When both match, he will accept M’ as a message coming from the sender.

Do you now see how that collision resistance demands 2n/2 and not 2n comparisons?

8.4 Meet in the middle attack

In fact, the birthday attack has another version called meet-in-the-middle attack. In this attack, the attacker starts from both the ends. Let us consider double encryption process using DES Consider M being a message, EM is the result after the first encryption, and EEM after the second encryption. An attacker encrypts all possible Ms and decrypts all possible EEMs, and tries to match both the results. That means, if an attacker finds an encrypted M and decrypted EEM matching, EEM is the output of 2DES

The reason why 3DES instead to 2DES used in practice is because of that attack. Let us elaborate. Consider 2DES deployed and we have a plaintext P and ciphertext C:

C = E(k2,(E(k1,P))

P = D(k1(D(k2(C))

The attacker can compute all ciphertext values for all values of k1. Let us call the set of these values Set1. He can also pick up the ciphertext and for all values of k2 and decrypt them. Let us call the set of these values Set2.

Now, he has to find at least one pair of matching values in both of these sets that means he has to get a value which is the encryption of the plaintext by key k1 and decryption of ciphertext by key k2. Once we get that value, corresponding k1 and k2 are our keys. The complexity of this process is 256 for the encryption process, 256 for decryption process and thus 256 * 256 = 257. This is not at all infeasible looking at the strength of current computers. That is why 3DES and not 2DES are used.

The meet-in-the-middle attack is also possible in other cases; one such case is using block ciphers as cryptographic hash functions using methods similar to CBC. The idea is simple. Once the attacker gets the original message M and hash H, he might construct M’.

The process of using block ciphers for generating hash is depicted in Figure 8.1(a). The attacker has generated M’ which is of total n-2 blocks and thus the process of calculating H for the M’ happens as depicted in Figure 8.1(b):

[image:]

Figure 8.1: The meet-in-the-middle attack for hash based on block ciphers

Do you understand what the attacker is up to? The original message has n blocks, the forged message has n-2 blocks, and their hash values are calculated independently so far. We want the forged message to have same hash as the original message, what should we do? We have the last but two message piece as M i-1 and Mn. We also have the last piece of the hash value as H. What we need to get are two additional blocks such that We need to get the last but two pieces of the message which can, after encrypting the Mn-1’ should produce something, which one can produce decrypting H (which is Hn).

We can try various message blocks to get E(Hn-2’, Mn-1’) and also try D(H, Mn’). Our idea is to get some value Y = E(Hn-2’, Mn-1’) = D(H, Mn’), for two random blocks Mn-1’ and Mn’. That will give us both our nth and n-1th message blocks. According to Yuval, we need to get only 2m/2 blocks of messages to succeed.

It is a general attack and thus the designers must be able to make sure their solution is not vulnerable to that attack. What is the significance of the birthday attack? Can you see it now?

8.4.1 Message authentication without using encryption

Let us closely look at the third method described in the previous chapter which does not even require us to encrypt the message digest or MAC that we send with the message. How is that possible? Why we would like to avoid even the little encryption that we had to do with the digest?

Here are few reasons:

	Even the small message digest encryption adds some overhead. The symmetric algorithms are better when the data arrives in bulk. When the amount of data to be encrypted is small, the initialization and setting up the stage for the algorithm to work adds quite an overhead.

	Though the encryption algorithm can be embedded in hardware and hardware costs are going down, putting a chip in every machine might sound a good idea. Both AES and DES can be embedded in hardware and such chips are available, it is difficult for each node in the network to have them without adding substantial cost.

	In some cases like tablets or mobile phones, adding such hardware would not even be feasible. Adding software library for encryption may also be not possible.

	Not all encryption algorithms are public. If we want to use algorithms like Whirlpool or Idea, we need to pay for the usage. The user might be reluctant to pay for it.

	The popular choice for the encryption of a message digest used to be DES, then 3DES, and then AES. They are not designed for this job and do many things (designed to be invertible for example), which is not required in this process; a light weight option is better.

	However fast, the encryption slows down the process. When the processing power is the issue (in case of mobile phones or tablets), the user may experience noticeable delay. The encryption software (we know it carries out multiple rounds and does a lot of jugglery in those rounds, obviously not without spending time), is slow. When messages keep coming at a steady flow, it becomes difficult for the system to apply hash and also encryption in real time.

How one can authenticate without using the smallest of encryption? The third method using MAC which we have already seen in the previous chapter is the answer to that puzzle.

KIM: The acronym for Message Authentication Code (MAC) is also used to represent the Medium Access Sublayer in networking parlance. Here, whenever we encounter MAC, consider the earlier meaning and not the later one.

8.5 Factors deciding the security of MAC

If an attacker has both, the message and the MAC, is it possible for him to get the secret key? Let us try to explore.

If the size of the key is such that the brute force attack can be done in real time, an attacker would try all possible key values, append them to the message, and calculate the MAC for that key, once he gets the corresponding MAC equaling the one which is received with the message, he also gets the correct value of a secret key and concoct a different message himself correctly.

Another point is the preimage attack. The attacker might try all possible combinations of altered messages to see if the MAC calculated is the same as the original message. If he succeeds, he will send the new message with older MAC. The strength of MAC depends on this factor as well.

Though our discussion so far is in the same line as the block ciphers, the encryption process and MAC generation has few basic differences.

The first difference is that the encryption process must be reversible but the MAC process is not. MAC is a many-to-one function. The domain of this function contains messages and keys while the range contains hash values. The fMac function can be written in the following form, considering fMac being a function and MAC is the value returned. A message is a variable length long value while MAC is a fixed length value. A key is a secret key shared between both, sender and receiver. MAC or message authentication code is also known as authentication tag or authenticator sometimes.

 MAC = fMac(Message, Key) …………….Equation 8.1

For the MAC to be of n bits, there are 2n possible MAC values. Normally, the number of possible messages NM, considering the arbitrary length allowed which is much bigger than the size of the hash value, NM>>2n. (If the maximum message length is m where m is much larger than n, the total number of messages NM = 2m >> 2n.)

The other input, the key, may be of size say k; so we have total 2k values for the key as well. Let us try to understand this with an example. Let us assume size of messages to be maximum 200 bits, key to be 16 bits and hash value as 20 bits. Number of messages NM = 2200, number of possible keys = 216, and number of possible hash values = 220.

Number of messages = 2200 = 220 * 2180; that means it is possible to have 2180 messages mapped to a single MAC value! What is the role of the key? The keys role is to map the input to output, and thus for a given key, we have one set of mapping from those 2200 messages to 220 hash values while for another key we have another set of mapping. How many such mappings are possible? There are 216 keys and thus that many mappings are possible.

Our consideration for the brute force attack on a block cipher does not work here. Let us try to understand. When we have a ciphertext of arbitrary length with us, we can try all possible keys 2k and we are done when one of them matches. The brute force attack is quite straightforward (it takes inordinate time if the key length is more but the attack process is quite straightforward.)

On the contrary, when the attacker can have the access to both the message and a MAC, and he tries all possible keys to get the same in a brute force way, what he gets? It depends on the key size and the MAC size. Assume the key size (k) is 20 bit while the MAC (n) is 16 bit, we have k > n.

Now, assume the attacker has a MAC and a message associated with it. He will try applying equation 8.1 for every possible value of key in the 2k key space. We know that at least one key will surely match (which the sender has used), but other keys are also likely to match. Looking at the difference in the key space and hash space, (2k and 2n) it is possible to have more than one key to produce the same hash. When k=20 and n=16, on an average, we have 220/216 = 220-16 = 24 = 16 keys possible for each hash. Thus, if the key space is uniformly distributed, 16 keys will produce the same hash from the same function and the attacker has to find out which one is actually used by the sender.

What is the solution? The solution is to get another pair of message and the hash. Let us call it M’ and H’. We will have to see which one of the 16 keys will generate H’ from M’. What is the probability that more than one key will match? Looking from the probability point of view, the key space is smaller and thus there is a fair chance that only one key will match and the problem is solved. If the number of keys matching is 2 or more, one must try another pair. This is mathematically probable if k-n is larger than n, or there are more keys to match than total hash values possible.

What if the difference is large? The attacker tries total 2k-n keys in the second half (220-216) and if k-n is larger than n, he has 2k-n/2n keys possible matching, that is, 2k-2n keys matching. So he will have to try another pair of message and a hash and try these keys to regenerate the same hash from that message.

You can see that the attacker has to continue trying till he gets only one match. On an average, he must try k/n times. Consider a case of 256 bit key and 32 bit hash, we need 256/32 = 3 tries on an average.

What if we have a 512 bit hash and 256 bit key? We get the right key most likely in the first try only. What if the key is 4096 bit while the hash is 32 bit? You need 128 pairs of messages and hash on an average! That means this can be more difficult than getting the key through the brute force attack for a simple encryption!

However, other attacks are possible. When our hash is based only on simple functions like XOR, the hash H = M1 ⊕ M2 ⊕ M3 ⊕ M4 ⊕ M5 ⊕ M6 ⊕ M7 ⊕ M8 … where Mi’s are message blocks.

Now, the attacker has to insert his own message M’. What should he do? Simple, he should construct something Y where M’ ⊕ Y equals H. How does he get that Y? Again simple,

H = M’ ⊕ Y that means Y = M’ ⊕ H!

Thus, if the attacker captures M with hash H and send M’ || Y with the same hash H, the receiver is fooled into believing that the message is authentic! However, this is the reason simple XOR function is not used.

What if the length is also encoded somewhere? Most authentication systems do so. We need to make sure our M’ is just one block short of original message. When the last block which compensates for the deviation for the given hash is added, the length also matches.

Our discussion about the block cipher also helps us understand few other critical aspects of MAC security. One is the distribution of the MACs for given messages. The MAC function must distribute them evenly in the hash space. That means, when we have two messages chosen randomly, the probability of their hash value not matching is as high as it can be. If all hashes of length 2n are equally likely, the probability is 1/2n, that is, 2-n.

Another issue is the avalanche effect. So when we change the message a few bits, the hash value should be as different as for two random messages. That means, if we have:

M = fMac(Message, Key) and M’ = fMac(Message’, Key)

The probability that M and M’ are same equals 2-n and changing a few bits of one message results into a very large difference in M and M’. This requirement demands that the MAC function should also have an avalanche effect like a good encryption function.

8.6 Order of encryption and authentication

An interesting debate can be ensued once we decide to provide both encryption and authentication to the message that we want to send. Should we encrypt the message and then add an authentication tag? Or should we add an authentication tag and then encrypt everything? Let us try to see.

If we encrypt and then authenticate, the authentication tag is available for the attacker to see. On the contrary, if we encrypt later, it is not possible.

Take a case of library of executables. When a program produces an executable to be used by other programmers, before sending it to a server, he adds an authentication tag, then encrypts and sends it. Why? As the server can decrypt and store the executable with the tag. The user can always verity and authenticate the executable before using it. If the sender does otherwise, that means the executables are encrypted first and then the authentication tag is attached, every time the user has to use, he has to check the authentication tag and then decrypt it every time to use.

It is possible that some part of the message cannot be hidden, for example, a packet traveling over the network. The sender’s IP address and receiver’s IP address which are part of the header cannot be encrypted because otherwise the routers along the path will not be able to route the packet to its right destination. IPsec, one of the security solutions, calculates the MAC over those fields and does not encrypt those fields but encrypts the tag1. So these values, if ever changed along the path, will not match with the MAC when calculated at the recipient’s end. Thus, authentication and encryption can be used together for a solution. This approach is used by SSL/TLS as they need to keep some fields open to routers but still need to protect them against modification.

One can also design it in a way that user can decide the order and both encryption and authentication can be applied by that order. SSH provides that choice but IPsec does not provide any choice, however, one can also do that by a clever trick.

Interestingly, one can do both, the process to authenticate and encrypt the content, in a single pass. We will soon see how CBC-CMAC does that later in this chapter. When the message block is processed for encryption, it is also processed for calculating the MAC.

8.7 HMAC

It is interesting to see how we can use hash functions like SHA-512 as they are faster than conventional encryption algorithms. Additionally, library code for such functions is also available. The only issue is to have some systematic method of using this hashing function in a manner similar to what we have discussed earlier. HMAC is one way of doing so. It is a little modified version of the MAC based (3rd) approach described in the previous chapter. Let us understand how it works.

HMAC is standard in IPSec and TLS. It is an IETF standard and described in RFC 2104. It is also used in SET (Secure Electronic Transaction).

What should HMAC try to achieve? RFC 2104 describes following objectives of HMAC:

	Any hash function should be used in HMAC without any change in the code. In a way, the hash function to be used must be passed as a parameter to the HMAC algorithm. One can choose a hash function which is efficient in software or code is available off the shelf. One can choose either free or open source code for the function. Idea is to give a user some choice. If he thinks that some particular hash function is vulnerable, he can change it without much trouble.

	Replacing a hash function by another must be easy. As mentioned earlier, one can just pass it as a parameter so a user can replace the current hash function with some other hash function which is faster or more secured or both.

	The HMAC should not add substantial delay in a sense that the performance of the original hash function is preserved in the algorithm that embeds it. In other words, the HMAC algorithm which embeds the hash function must not add much overhead.

	Keys can be handled in a systematic and simple way.

	One should be able to analyze the strength of the authentication mechanism by HMAC. This strength analysis is based on reasonable assumption about the embedded hash function.

Let us try to understand these objectives. The first two objectives are important for HMAC to survive. The HMAC algorithm does not remain dependent of the hash function and thus treats it as a black box. We can use any useful hash function which is available here. Being a black box, it can be easily detachable and also attachable as and when needed. Changing a hash function does not change most of the code. If the hash function is treated as a subroutine that is called when needed, we just need to replace that subroutine with a new one. If a faster or better (in terms of security) function is desired and available, we can just do it by replacing current function with that function. Sometimes, when we feel the security of the current hash function is compromised, we do not need to change HMAC we can always change the function.

The last objective states that HMAC is secured if the function chosen satisfies some properties. The HMAC security depends on the cryptographic strength of the function used.

8.7.1 HMAC algorithm

The HMAC algorithm tries to achieve the 3rd approach of calculation of MAC described in the previous chapter. That means it appends the secret key with the message and then applies hash to it. The only difference between the third approach and HMAC is that HMAC has not one but two rounds. HMAC uses two different keys for both the rounds. It grenades those two keys from the single key user has supplied. In the first round, the first key is prepended to the message and the hash is taken. In the second round, the resultant hash from the first round is appended with the second key and again the hash is calculated. The resultant hash value is returned as the final hash value as depicted in Figure 8.2:

[image:]

Figure 8.2: HMAC operation, three inputs and one output

The algorithm requires the following ingredients:

	Secret key: The secret key shared between the sender and receiver is to be used for calculating the hash. The secret key is not used as it is. There are two operations performed on the key before using it as two different keys. In a way, the key is converted to two different keys to be applied to two of the rounds. We will soon see how these two keys are generated from the single key.

	Message: This is the message that the sender sends to the receiver. The sender must compute the hash of this message using HMAC and then send it across. The message sometimes needs padding as some hashing functions require the message to be in multiple of some bytes. We will call the padded message M.

	Data block: The hash function applies to a fixed block of data that requires the message to be broken into number of data blocks. The data block length (number of bits of a block let us call it BlockLength), total number of such blocks for a given message (let us call it TotalBlocks) are two important parameters.

[image:]

Figure 8.3: HMAC key processing

	Inner pad (ipad) and outer pad (opad): They are used to generate two keys from the secret key. Both these values are as long as the BlockLength. The ipad is 00110110 (0x36) repeated till it is equal to BlockLength. The length of the value is 8 bit and thus the value is to be repeated BlockLength/8 times to have ipad value of BlockLength size. Similarly, opad is 01011100 (0x5c) repeated till it is equal to BlockLength, that is, BlockLength/8 times. The process is depicted in figure 8.3 and complete operation is summarized in Figure 8.4.

	Hashedkey: This is the output of the first operation on the SecretKey. Some hash function is applied to the key to reduce it to the size of output of the hash function. If we apply SHA-512 to the key, the output is 512 bits. The size of the Secret key may be 1024 bits but the HashedKey now is 512 bits.

	PaddedKey: HashedKey is padded on the left by zeros to produce PaddedKey which is of the same length as the BlockLength.

The HMAC can be described as

HMAC(Message,SecretKey) = Hash [(PaddedKey XOR opad) | Hash [(PaddedKey XOR ipad) | Message]].

Let us see how HMAC is generated using the step-by-step algorithm:

	Get the SecretKey and find out HashedKey from it by applying the hash function to the SecretKey.

	Generate PaddedKey by adding zero on the left to the HashedKey.

	XOR PaddedKey with ipad to produce a BlockLength size block. Let us call it IKey (the first key).

	Append Message to the IKey and call it IKey+Message.

	Apply Hash to the IKey+Message and let us call that Result-1.

	XOR PaddedKey with opad to produce BlockLength size block and let us call it OKey (the second key).

	Append Okey with the Result-1.

	Apply Hash to result generated from 7. Let us call it Result-2.

	Output Result-2 as the digest.

[image:]

Figure 8.4: HMAC processing

The IKey and OKey generated from the PaddedKey by XORing with ipad and opad are examples of how one can construct two keys from one key. The bits of ipad and opad are chosen such that though IKey and Okey are generated from the same SecretKey, they are very different.

Note: Original HMAC RFC was 2104, which was improved in 6151.

The order of the HMAC is the same as the hash function. The hash function is called three times in the body of the algorithm, while calculating Result-1, Result-2 and while applying the hash function to the key in the beginning, but not in a loop. Thus, the HMAC is as efficient as the embedded hash function.

8.8 Conventional message digest vs. HMAC

What is the advantage of using HMAC over the conventional message digest method? One important advantage is that it avoids the little encryption that conventional systems need. As a a result it saves some time. On the other hand, it loses out on one important front. If we use the message digest using the public key cryptography, we get the non-repudiation advantage. The sender cannot deny later that it had not sent that message as the message digest is encrypted by its private key and nobody other than the sender has that private key.

In case of HMAC, the shared secret key is used which demands complete trust between sender and receiver. If the receiver himself concoct the message and also HMAC it would be impossible for the sender to prove that he has not sent the message. We learned that a critical component of the shared secret key method is to share the key. HMAC is no exception. Also, the shared secret key also prevents the sender to broadcast the message to multiple recipients. As with multiple recipients, one must share different keys and thus it demands a different HMAC operation for each recipient. On the contrary, if the public key encryption was chosen, the message can be broadcasted. Sharing a single key with multiple recipients is also a bad idea as the sender can be any one of the parties who knows the key and not as the one who claims so. There is no way of knowing. This implies that the conventional MD is quite useful in such cases, especially when used with public key cryptography.

8.8.1 Security of HMAC

Various researchers worked on HMAC security and tried to see how good or bad HMAC is. They have found that HMAC is as secure as the embedded hashing function it uses. The moral of the story is; use a secure hash function and HMAC is a way to go.

In fact, HMAC offers a distinct advantage over a secure function in case of security. Why? Let us try to see. If the message block size is m, according to the birthday paradox, we need to check 2m/2 messages to find another message with the same hash. An attacker, who has both, Message and Hash, can try this offline. That makes securities of some of the older MAC functions like MD5 (of 128 bits) and SHA-1 (160) bits questionable. Interestingly, with a system like HMAC in place, an additional input key is introduced, which complicates the matter. To output 2m/2 messages and hash values at 10 Gbps link, we have the following rough, back of the envelope calculations, for calculating the time to send those messages:

2m/2 = 10 Gb * Time

Time= 2m/2-33 seconds; // 10 Gb is about 233

For m = 128, the exponent comes out to be 64 – 33 = 31, so time = 2,000,000,000 seconds = 68 years approximately.

Additionally, this attack is successful only if the sender continues to send for this long a period, WITHOUT CHANGING its KEY. Thus, HMAC provides a better security here. However, use of MD5 or even SHA-1 is not recommended for a single reason, mentioned by Bruce Shriner long back Attacks are always going to get better, not worse!

8.9 Authenticated Encryption with Associated Data (AEAD)

Interest in generating MAC when encryption is already asked for (as in the case of IPsec) leads to a method which combines both the jobs into one. NIST calls it authenticated encryption. The idea is to generate the authentication tag while the process of encryption is on as a byproduct. Cipher based MAC (CMAC) is one such solution. One popular version of CMAC is known as AES-CMAC which is described in RFC 4493.

How CMAC works? Let us see.

The process which CMAC follows is quite similar to the CBC or cipher block chaining method that we have seen in Chapter 7: Secure Hash Functions. It is used for encryption in a scheme called CCM (described later). Let us see how CMAC works:

	The message is divided into blocks of some size suitable for the symmetric cipher used in the system, for example, 128 bits in case of AES-CMAC.

	If the last block is not a multiple of that size, it is padded with 10000… pattern.

	The following process now begins with the first block and ends when the last block is over. Let us call the current block Temp.
I. The Temp is encrypted with key K.

II. Go to 4 if the next block is the last.

III. Temp = Temp XOR the next block.

IV. Jump to I, now the Temp points to next block.

	Temp = Temp XOR last block XOR Subkey.

	Encrypt Temp.

	Take m leftmost bits of Temp and return as MAC.

Figure 8.5 depicts the complete process:

[image:]

Figure 8.5: CMAC operations

Note that we have shown two keys in the preceding process. The first key K is the major encryption key which is used to encrypt the blocks using the symmetric encryption algorithm like AES. The second key SubKey is derived from K. There are two different Subkeys and one of them is used depending on whether we require padding or not while we are dividing the message into blocks in the first step. For example, if we are using AES and if the message is an exact multiple of 128 bytes, we will use the first SubKey otherwise we will use another SubKey.

A block of all zeros is encrypted using K and result is obtained. The result is left shifted by one bit. If the most significant bit of result is zero, the result is XORed with a constant value otherwise it is used as is. The result is the SubKey. The SubKey is again used to encrypt a block of all zeros and the same way processed. The result is another SubKey. The first SubKey is used when the blocks are of the exact size and no padding is required, while the second SubKey is used when padding is required. Sometimes, the first SubKey is denoted as Subkey1 and the second SubKey is denoted as Subkey2.

Let us rewrite the process as a pseudo-code2:

MAC CMAC (M)

{

Divide Message into blocks M1..Mn

GetSubKeys (Key,SubKey1,SubKey2)); //function described next

If (Size (Mn) == BlockSize)

SubKey = SubKey1

else

SubKey = SubKey2;

Temp = AES3(Key, M1);

For (i=2;i<n; ++i)

{

Temp = AES(Key, Temp ⊕ Mi);

}

Temp = AES(Key, Temp ⊕ Mn ⊕ SubKey)

Tag = truncate (Temp, BitsNeeded);

}

GetSubKeys (Key,SubKey0,SubKey1)

{

Subkey0 = AES(Key,BlockWithAll0);

If Firstbit (Subkey0) <> 0

SubKey1 = SubKey0 << 1;

else

SubKey1 = SubKey0 << 1 ⊕ Constant_b

//a constant value based on block size

If FirstBit (SubKey1) <> 0

SubKey2 = SubKey1 << 1

else

Subkey2 = Subkey1 << 1 ⊕ Constant_b

}

It is important to note that K may be of some other size but both Subkeys are of the same size as the block size itself. This shows how one can use a symmetric cipher to generate keys of the desired size from a key of some other size.

It is interesting to understand what exactly is happening during the subkey generation phase. Well, our GF and polynomial discussion is to be revised for it. Here it is.

We need the first and second order polynomials that are elements of GF(2b), x and x2, or 10 and 100 with rest of the zeroes padded in the beginning to make it of size b.

The process starts with SubKey0 = AES (Key, BlockWithAll0), thus encrypting the entire block with values all zeros using the key Key.

We need multiplication to be done in Finite Field GF(2b) as follows. The value b indicates the block size. There are two possible encryption methods, 3DES and AES. 3DES has a block size of 64 bits while AES has block size of 128 bits.

SubKey1 = SubKey0 * x = Subkey0 << 1

SubKey2 = SubKey0 * x2 = SubKey0 * x * x = SubKey1 * x = SubKey1 << 1

When we use 3DES, the block size is 64; we define it with an irreducible polynomial x64 +x4 + x3 + x+ 1. When we use AES, the block size is 128, and the irreducible polynomial is x128+ x7 + x2 + x + 1.

Before proceeding further, let us read pages from the history. A method called DAA which used DES with 64 bit block and CBC was used in the past with great success. Some researchers showed some flaws in the security of that method and DES was also declining at the same point of time. Some researchers provided addition of the second (other than encryption) key at the final round (which we XOR with the final message block before encryption). The second key can be of two different types: one for the final block being complete size and the other where the final block is not. The other researcher has shown that we do not need three keys but one key only. The other two keys can be generated from that key. We have also seen how two subkeys are generated from the single key. This solution was found to be quite secure and solved all problems DAA had.

Let us now look at how CCM operates. The full form of CCM is Counter with Cipher block chaining Message authentication code.

8.10 Counter with Cipher Block Chaining Message Authentication Code (CCM)

The CCM (Counter with Cipher Block Chaining Message Authentication Code) is used to encrypt and authenticate messages together. It uses AES with Counter Mode for encryption, and AES-CMAC for authentication. AES-CMAC is CMAC where AES is the encryption algorithm. It was originally designed for use with 802.11i (security for wireless networks known as Wi-Fi or 802.114). It is formally known as NIST SP 800-38C.

It works as follows when the message is to be encrypted and authenticated. Some part of the message may not need encryption but only authentication. The part of content which requires both encryption and authentication is called plaintext or payload and the part of the content which only needs to be authenticated is known as associated data. If the user does not have anything which only needs authentication (everything is to be encrypted plus authenticated), he will pass associated data as 0.

A random unique value nonce is chosen. The nonce helps thwarting replay attacks. The sender sends a unique nonce in the request and the receiver replies back the same in response. The sender thus realizes that the response belongs to the latest request that is sent and not the replay of some other old response. The nonce must be unique with a given secret key used.

Here is the process of authenticated encryption

	The message in plaintext is taken. This message requires both encryption and authentication.

	The associated data is also chosen; this part of the message is only to be authenticated.

	The message is divided into blocks, depending on the encryption algorithm chosen. If AES is to be used, the message is divided into blocks of 128 bits each and processed. Currently, only one 128 bit algorithm is part of the standard and it is AES. 3DES is NOT part of the standard.

	One additional block is prepended with the message before. It contains two things. A set of flags and a nonce. The flags indicate the length of three types of data that come afterwards such as Nonce, message and associated data, and some other information.

	Now, CMAC is used to calculate the (unencrypted) authentication tag. It takes the first block as the one defined earlier and the rest is the message. Let us call the result T.

	The encryption is done after that. For that, the counter mode is used. Here, the keystream is generated first. The first block of keystream is used to XOR with T to generate the encrypted authentication tag. Let us call it U. It might require truncating the output to keep U to the required length. For example, one scheme requires only 96 bytes as an output, so 128 bytes is truncated to 96 bytes.

	The message is XORed with the keystream value to generate the ciphertext.

	The ciphertext appended with U is sent across.

Both CMAC and CCM, when applied together in authenticated encryption, uses the same key for both, generating CMAC and also encrypting using CCM. The process described in Figure 8.6 as well as shown as pseudo code as follows:

Pseudocode CCM(N,P,A,Key,M)

Nonce N, Plaintext (or payload) P, and associated data A are identified

Blocks of message M are generated, from M0 to Mr

Previous = AES(Key, M0)

For(i=1;i<r;++i)

{

Temp = AES (Key, M1⊕ Previous);

Previous = Temp;

}

Temp_Tag = Truncate(Temp,Tag_Len);

Num_Counter = P_Len / 128; //number of counters equal to payload length /128

Generate Keystream using suitable counter function; Let’s call them Ctr0,Ctr1..Ctrnum_Counter where num_counters is total such counters

E0 = AES(Key, Ctr0)

CipherText = “”;

for (j=0;j<Num_Counter;++j)

{

Keystreamj = AES(Key, Ctrj);

Temp_Ciphertext = Keystreamj ⊕ Mj;

If (Final_Round)

Truncate (Temp_Ciphertext, Final_Message_Block_Length);

Ciphertext = Ciphertext || Temp_Ciphertext;

}

Ciphertext = Ciphertext || (Temp_Tag ⊕ (truncate (Keystream0,Tag_Len));

// adding the authentication tag at the end

[image:]

Figure 8.6: CCM operation

Though the definition in the standard specifies the linear operation and thus, the author has also described it in that fashion but this description is little different from the standard (although executing in exactly the same fashion as shown in the standard), indicates that there is a possibility of a parallel operation. The block being used in calculating MAC can also be used to XOR with the plaintext at the same point in time. However, the standard does not specify so exactly and it is assumed to have a linear implementation of the same.

Having a standard explicitly designed for a parallel operation is really a nice idea and so, the NIST has gone ahead and provided another standard which is possible to be implemented in parallel fashion, thus providing faster execution at lower cost. This solution is popularly known as GCM-GMAC and it is described next.

8.11 GCM-GMAC (Galois Counter Mode-Galois Counter Message Authentication Code)

We will begin our discussion with the GCM mode of operation. The standard supplies two options. The first is the authenticated encryption process, including the process of encryption and authentication. The second option is to provide only authentication using GMAC.

The GCM-GMAC has two functions as ingredients. GHASH is a hash function and the GCTR function provides counter values. Let us learn about those functions in the beginning.

GHASH (H, X) is a function which is invoked with the hash key H and some Message (of size some multiple of 128 bit) X. It returns a 128 bit hash value. It works as follows:

	The message is divided into multiple blocks each of size 128 bit.

	128-bit Hash is initialized with all zeros. Let us call it Temp.

	Temp is XORed with each block one after the other and multiplied with H over G(2128), and the result is stored as Temp.

	The final Temp is returned as 128-bit hash.

The pseudo-code for GHASH(H,X) is as follows:

Hash GHASH(H,X)

{

X is divided into X1,X2,X3,….XM //Division into blocks

Prev = 0128

// 0128 is 128 bit zero values. Notation used in the standard

For (i=1;i=m;i++)

{

Temp = (Prev ⊕ Xi) * H;

Prev = Temp;

}

return Temp;

}

If you look a little more diligently, the Temp calculation goes as follows

Second Iteration Temp

Temp = 0128 ⊕ (X1 * H) ⊕ X2) * H

= 0128 ⊕ (X1 * H * H) ⊕ X2* H

= 0128 ⊕ (X1 * H2) ⊕ X2 * H

= (X1 * H2) ⊕ (X2 * H) //Anything XORed with all zeroes will retain its value.

Continuing multiplication like this, the final Temp value for m iterations can be calculated as follows:

= X1 * Hm ⊕ X2 * Hm-1 ⊕ X3 * Hm-2 ⊕ … ⊕ (Xm * H)

A clear cut advantage of this mechanism is one can precompute His and use them when the data is available. Also, each component of the XOR process is independent and can be executed in parallel over a multi-core or multi-processor machine with significant speed advantage.

Now, let us look at another function GCTR. It is a counter function with a key and the IV as the input. It generates blocks which one can use in counter mode. It also takes P as a plaintext and return C as a ciphertext having the same length as the plaintext. If you recall our discussion about the counter mode, you might remember that it is about starting with some IV value, encrypt it, and use it as the first block of keystream, increment by one, encrypt that and use that as the second block of keystream and so on; the same thing is happening here.

Processing of GCTR, a counter function with a key and IV as an input.

	If the plaintext is null, return null.

	Divide the plaintext into n blocks of size 128; the last block may be smaller, P1, P2…Pn.

	Initialize Counter0 as IV.

	For each block P1 to Pn-1, increment Counteri-1 to get Counteri; encrypt Counteri with Key and XOR it with Pi to get Ci.

	For the final block, encrypt the Temp, truncate it with the size of Pn and XOR with Pn; that is Cn.

	C = C1||C2…||Cn.

A pseudocode for the same:

C GCTR (P, IV, Key)

{

Divide P into P1 to Pn (Pn may be smaller than 128 bit);

Ctr1 = IV; C = “”;

For (i=1; i<n;++n)

{

Ci = Pi ⊕ AES(Key, Ctri);

C = C || Ci;

Ctri+1 = increment(Ctri);

}

Cn=Pn ⊕ trunc (len(Pn),AES(Key, Ctrn));

C = C || Cn;

return C;

}

The preceding increment function works as follows:

It takes rightmost 32 bits and increments them module 232. The other bits of the counter value do not change. That means only the rightmost past of 32 bit is incremented and once the complete cycle of 232 is over, it wraps around.

How does the authenticated encryption use these two functions? Here is the process:

	Pick up value of IV.

	If IV size is 96 bits, add padding 0….01 (all zeros with last bit being 1) to make it 128 bit, it is termed as a pre-counter block.

	Else
I. IV is padded with minimum number of zeros to make it multiple of 128 bits. If IV is some multiple of 128, no zeros are padded.

II. Append another block of 64 zeroes.

III. Append the block length.

IV. GHASH is applied to the complete string to return a pre-counter block.

	The pre-counter block increments modulo 232 for last 32 bits.

	GCTR is applied with the plaintext P, pre-counter block as IV, and the key as input to generate the ciphertext.
//GHASH is applied to authenticated data, ciphertext, length of both items //together. As it is to be multiple of 128, it generate a tag of 128-bit as follows.

// pre-counter is calculated as per the 3rd step is used in the following:

	TempIV = increment(Pre-Counter);
Ciphertext = GCTR (Plaintext, TempIV, Key);

128-Bit-C = Ciphertext with zeros padded to make it multiple of 128 bit

128-bi-A = Authenticated data with zeros padded to make it multiple of 128 bit

64-bit-Alen = length of authenticated data in 64 bit form

64-bit-Clen = length of ciphertext in 64 bit form

TempTag = GHASH (128-bit-A,128-bit-C,64-bit-Alen,64-bit-Clen);

Tag = trunc(RequiredLength, TempTag);

Return Ciphertext, Tag as CT;

}

Before we move further, one might ask what is better in GCM-GMAC as compared to CCM-CMAC? Both are NIST standards and both are used for authenticated encryption with associated data and both are quite secure. However, the following are plus points for GCM-GMAC:

	Here, the algorithm can be pre-processed. The counter mode has that advantage. One can calculate Ctr0 to Ctrn without even having the plaintext, so whenever the plaintext arrives, it is ready to process.

	It is an online process. That means, we do not need the complete plaintext to arrive before the process begins. We can start processing the first block of the plaintext while the rest are arriving.

	Each block can actually be processed in parallel (like the normal counter mode).

	Both functions that are used by this process only require to work in the forward direction; we do not need to run the encryption process in reverse order. Thus, any other algorithm than AES, which can only work in the forward direction can also be used.

	Both Tag and Ciphertext are separate and thus decryption and verifying the authenticity can happen in any order, even in parallel.

	It is possible to implement the multiplication process in hardware as it is over the Galois field.

	McGrew and Viega, both designers of this algorithm, have done a detailed analysis of the algorithm and compared it with the other existing block cipher modes. They proved that this is the most efficient mode of operation for high speed data networks.

Normally, data processing in secure fashion demands many keys, and the user only has a small key to start with. A process called key wrapping is performed to generate a much larger number of keys from a small, user-defined key. Here is the description.

8.12 Key wrapping (KW)5

IPsec, 802.11i and many other algorithms demand many keys. A key for the sender to encrypt, a key for the receiver to encrypt, a key for the sender to authenticate, and a key for the receiver to authenticate are four minimum such keys. Depending on the process of encryption, it is possible for other processes to also have multiple keys. It is not possible for humans to remember those keys. Additionally, there are many conversations going on at the same point in time which demands all four of these keys for each of those connections. Ideally, a new connection must use a different key set than all previous transmissions, and thus one needs plethora of keys to manage. The best way to manage is to provide a random number as a key, if not, then seemingly a random (or pseudo random) number should be used. Additionally, the initialization vectors or IVs that we used in the previous two AEAD algorithms, many OTPs (one time passwords), and nonces (random number used only once) are also needed. All these things together are known as key material. The process should be designed in such a way that the entire set of key material is generated at one end and also at the other end so that both of them share these sets of keys for a given connection. Usually, there is a master key which is being shared by both the sender and receiver. Both of them use some technique to generate the complete key material from that master key. A diligent reader probably must have guessed how that is done. It is done using a typical block cipher known as key wrapping (KW).

Both parties usually derive another shared key from the master key to derive a key popularly known as the key encryption key; that key is then used for exchanging the key material. Key wrapping is provided by NIST as well as standardized by IETF (NIST 800 38F and RFC 3394).

KW is a different mode. The difference between other modes and KW is as follows:

	It is designed in such a way that a single ciphertext block depends on all plaintext blocks irrespective of the position. In earlier modes that we have discussed, a single ciphertext only depends on the corresponding plaintext block.

	It is (obviously) slower so not preferred for a long text; it is generally preferred to send very small text; usually the key.

	It is capable to manage when the key size is longer than the block size. For example, AES can operate with block sizes of only 128 bit but the key can be 128,192 or 256 bit.

Ok. Let us look at the process of key wrapping:

	The plaintext, multiple of 64 bytes, is picked up; a key encryption key is also picked up

	A typical, fixed value of IV is taken.

	Two functions are used; output of one is fed into the next stage while the output of another is fed into a block, which is n blocks away from the current block.

	These functions are iteratively applied to the plaintext to generate a ciphertext; having one more block than the plaintext.

	When the receiver receives the ciphertext, it decrypts the content and gets both, the plaintext as well as the IV. The process is designed in such a way that if there is some modification, IV is corrupted and the receiver will not accept the plaintext as valid. This means KW provides both encryption as well as authentication. You can now see why we are covering KW here.

We will not cover the exact process of KW here. One can read it from the NIST document.

Exhibit: Confusion between the terms; digital signature, message digest and MAC.

Some authors used message digests (which uses encryption) and MAC (which doesn’t) interchangeably. Also, the digital signature look quite similar to message digests. In fact, both MAC and MD can be used as digital signatures. The MD or hash (which is also named as tag or authentication tag) can be used as a digital signature. The digital signatures can also be provided by other means (for example plain vanilla encryption). Thus, all three of them have a different meaning in true sense.

8.12.1 Using MAC as pseudo random number generator

MAC, as described earlier, can be used for variety of purposes, including message authentication and integrity check. Additionally, MAC can also be used as a random number generator. The idea is quite simple. What we need to do is to get a MAC value (usually HMAC is used), from some input from the user. The output is again fed in the same MACfunction and gets another value; this value is appended with previous value to get double the length of the string of the previous one. We call this function PRNG or pseudo random number generator:

String PRNG (UserInput, Key, MACFunction(), MACOutputSize, RequiredLength)

{

PrevTempOutput = MACfunction(Key, Userinput);

for (i=2; i+ MACOutputSize; i< RequiredLength)

{

TempOutput = PrevTempOutput + MACfunction(Key, PrevTempOutput);

PrevTempOutput = TempOutput; // + is a concatenation operator for strings

}

if (TempOutput > RequiredLength)

TempOutput = trunc (TempOutput, RequiredLength)

return TempuOutput;

}

The logic is like this. Every MAC function has some output size, for example, SHA-512 has a fixed 512 bit output. When a random number generator is required to produce 2k bit output, we need four iterations of MAC calls and concatenate those four outputs (of 512 bits each) to produce a 2k bit output. Thus, the required length is achieved by multiple calls to MACfunction and appending it continuously with itself. If the required length is not an exact multiple of the required length, for example, 2000 bits (instead of 2048 bits as in the preceding case), we need to truncate the output to the required length. The + operator is used to indicate a concatenation operator. The UserInput value is input by the user which is also called seed. One of the important parameters is the length of the UserInput value. Longer it is, more the security. It is called the seed length.

Carefully, observe the body of the for loop. Interestingly, the output of the previous iteration is input to the current iteration. This is the core logic which many designers have tweaked. For example, in 802.11i, the security solution for the wireless network 802.11 or Wi-Fi, instead of feeding the previous output, the output for each iteration is generated from applying MACFunction to a value which is equal to UserInput + i like the counter mode. Thus, the TempOut value is assigned as follows in the loop:

TempOut = PrevTempOut + MACFunction(Key, UserInput + i); // + is concatenation

The MACFunction is now applied to the UserInput value incremented by the iteration counter value i. + is for concatenation and not addition.

The TLS (Transport Layer Security) process also uses the similar logic but with two calls to MACFunction:

TempOutput = PrevTempOutput + MACFunction(Key, MACFunctiion(Key, PrevTempOutput) + UserInput));

In both of the preceding cases, the 802.11i and TLS, the MACFunction is HMAC.

The NIST 800-90 standard (its technical name is SP800-90A revision 1) also allows using a secure hash function instead of a MAC function like HMAC. When a secure hash function is directly applied instead of HMAC, it saves on time as the HMAC applies the secure hash function twice over data. It is also less secure as double application of the same function in HMAC improves security. Probably thinking on the same lines, TLS designers applied HMAC twice over data and thus tried to provide even a stronger security at the cost of double processing. Whether that additional security is worth is a moot point.

When the NIST 800-90 standard suggests to use a secure hash function, it also suggests a small change in the algorithm. The process is similar to the one shown for 802.11i; but with two differences, UserInput changes with every iteration, and the addition is a numeric addition modulo 2SeedLength. We have already seen that the SeedLength is a length of the UserInput value which is a critical security parameter. As the SecureFunction is designed to take value of that range, we need to have the modulo operation so the output remains within the range.

Keywords

	Message authentication: The process of assessing the message integrity as well as making sure that the message has not been altered during the transit.

	Integrity check: The same as message authentication.

	Kerberos: A security protocol used in most operating systems, including Windows, Linux and MAC, to provide username-password based authentication.

	Meet-in-the-middle: A type of attack where the attacker starts from the beginning as well as at the end to meet somewhere in the middle to reduce number of iterations required for a brute force attack.

	MAC: The message authentication code is also termed as authentication tag or tag to indicate a fixed length value generated without using encryption to authenticate the message.

	Authentication tag: The MAC value used for the authenticating message.

	Authenticated encryption: A typical method of processing the plaintext together for generating the authentication tag as well as generating the ciphertext.

	Associated data: The part of the input message which only demands authentication and not encryption.

	CBC: Cipher block Chaining.

	CCM: Counter with Cipher Block Chaining Message Authentication Code.

	Cipher based MAC (CMAC): Here, the process of encryption is used in generating the MAC. However, the MAC is still appended with the input, so it is closer to the third method to generate MAC.

	Galois counter mode (GCM): The counter mode is applied using the increment over a Galois field.

	Galois Counter Message Authentication Code (GMAC): The MAC generated using a typical counter mode where the increment is based on the Galois field.

	Initialization Vector (IV): This is a typical value used to start the block encryption process where every block needs the previous block for processing. IV is used as a previous block for the first plaintext block.

	Pre-counter: A form of IV used in GCM-GMAC calculation.

Recapitulation

	Message authentication provides protection against active intruders.

	The content modification is not the sole reason for providing message authentication; one must guard against changing the order of content, replaying of message, delaying the response, and so on.

	Generating same hash for a different message demands scrutinizing only half of the total messages as per the birthday attack.

	One can try in forward and backward or both directions to speed up the cracking process.

	MAC is used without the encryption process; the process of generating MAC is quite similar to the encryption process but there are differences as well.

	HMAC uses a secure hash function to produce MAC of the required size.

	Authenticated encryption, or encryption with MAC calculation with it, is a preferred approach currently. CCM-CMAC, GCM-GMAC are standards from NIST for authenticated encryption.

Conceptual exercises

	How message integrity and authentication are associated with each other?

	Find some real-world examples to illustrate the order change problem.

	What is the significance of the birthday attack in calculation of MAC?

	Why 2DES is not used? Explain it in the context of the meet-in-the-middle attack.

	Why a folding is not considered a secure hash?

	What is the difference if the order of both encryption and generation and attachment of authentication tag is altered?

	Explain the process of generating HMAC.

	Explain how CMAC is calculated. Can you describe how one can use CCM with CMAC where the duplication of encryption effort can be avoided?

	Write and explain reasons for GCM-GMAC to be a better algorithm for authenticated encryption.

1 IPsec provides a few options to the designer. We will look at IPsec later in the 19th chapter.

2 Some complexities are avoided. For complete discussion, refer to RFC 4493.

3 We assumed AES, but we could also have used 3DES for encryption and the process does not change.

4 Technically, 802.11 is a specification of wireless networks which is extended by standardization of vendors which is known as Wi-Fi. Thus, both the things are different but used here to indicate the network using it.

5 One may ask if this should be covered earlier and not with the message authentication process as this process has nothing to do with message authentication. However, it is quite close (It is SP 800 38F) to whatever we have discussed in this chapter so we are looking at key wrapping here.

CHAPTER 9

Authentication and Message Integrity Using Digital Signatures

Structure

9.1 Introduction

9.2 What is A digital signature

9.3 Attacks on DS

9.4 Why a Digital Signature

9.5 Different DS Schemes

9.5.1 El Gamal – Pointcheval Stern

9.5.2 Schnorr

9.5.3 NIST-DSA

9.5.4 ECC-DSA

9.5.5 The DSA approach

9.5.6 RSA-PSS (Probability signature scheme)

9.5.6.1 Advantage of the PSS

9.5.6.2 The Mask Generation Function (MSG)

9.6 Improving the process of digital signature

Keywords

Recapitulation

Exercises

Objectives

After studying this chapter, the reader should be able to

	Describe what a digital signature entails.

	Narrate what each component of the digital signature, i.e., key generation, signing, and verifying, does.

	List the services provided by a digital signature and process digital signature to provide such services to a document.

	List various attacks on digital signatures.

	Compare various DS schemes provided in real-world systems and describe their functioning. Check how the schemes do what they claim.

9.1 Introduction

We have mentioned digital signatures a few times in the previous two chapters where we learned about cryptographic functions and message authentication codes. A digital signature has a few meanings based on the context:

	It is a mechanism to mimic the manual signature in a cyber world1.

	It is hash which is encrypted by the sender’s private key.

	It is an algorithm people can use to sign their electronic documents.

	This is a structure of the algorithm people can code and implement these algorithms for their use.

Also, we have stated that MAC that we have used and the MD that we mentioned in the previous chapter; both can be used as a digital signature. Digital signature is what all these definitions describe together. We have looked at the simpler aspects of digital signatures in the earlier chapters. We are now equipped with the knowledge of what exactly is to digitally sign the document. We will see how that is done in this chapter. In this chapter, we will look at some popular digital signature (DS) algorithms. We will look at why DS is the best solution and what is the prerequisite to design and test a DS solution.

Ideally, a digitally signed document should give us some guarantee that the document is genuine. Usually, DS is based on some mathematical scheme which can demonstrate the genuineness of the document. Most cryptographic protocol suits, be they IETF standards like SL/TLS, IPsec, or electronic payment solutions like SET, 3Dsecure, and more, use some or the other forms of the digital signature.

In this chapter, we will look at some of these methods and discuss their relevance in the security arena.

9.2 What is a digital signature

A digital signature, typically, has three components:

	A key generation algorithm

	Signing algorithms

	Verifying algorithms

Normally, the DS is applied using a public-key mechanism and thus the key generation algorithm demands a pair of keys to be generated. We will learn about public-key algorithms in Chapter 12: Public Key Algorithm and RSA. There are quite a few signing algorithms, and we will study some of them in this chapter. Verifying algorithms are components that can test whether the signature is genuine or not and is based on the signing algorithm itself.

A digital signature provides the following services as mentioned in Figure 9.1:

[image:]

Figure 9.1: Digital Signature components

The preceding components are explained as follows:

	Authentication: The first and foremost is that DS can provide authentication. It provides reasons for the receiver to believe that the sender and nobody else has designed and sent this document.

	Message integrity: DS also provides a guarantee that the message is not modified during transit.

	Sender non-repudiation: A signature-based on public-key cryptography can also ensure that the sender cannot deny later that he has not sent a specific message, as if it is possible to decrypt the signature with the public key of the sender. It means that the sender, who has the corresponding private key, can only send this message and nobody else.

	Time validation: The signature should also have a time associated with it. For example, when a bank transaction or election voting or placing an order is to be authenticated, time is a critical factor. Usually, the Digital Signature generation process includes a timestamp to calculate the signature to avoid that problem.

	Verification by third-party: When the sender denies placing an order, and the client goes to court, the court expects the process is subject for verification. Thus, the digital signature must be designed in a way that any third party, given the data, can verify the digital signature. Figures 9.2 summarizes these components:

[image:]

Figure 9.2: Services provided by digital signature process

9.3 Attacks on DS

The architecture of the DS system is such that the attacker can try a few different types of attacks to forge a signature, or find the key for encryption, or get another message with the same hash, and so on. The function which is used to sign the digest, or the encryption algorithm or key generation, and distribution system can all be attacked in different ways. Additionally, the attacker might have information about a public key of the sender or a typical message and it’s signed, and nothing else, to the capability of having any arbitrary message with a sign. The attack, in this sense, gets more and more sophisticated. Here is a brief about these types:

	Attacks on hashing and signing function: We have already seen that the hash function which is used to get the hash value from the message can be attacked in a variety of ways. The discussion that we had about those hash and sign function is all valid here too.

	Attack on encryption algorithm: The attacker can try attacking the algorithm chosen for encrypting the hash value. Either the attacker gets the key or the relation between the plaintext and ciphertext or he can generate DS for any document and thus can forge it. We have already looked at many issues related to this point and will elaborate it further when we study AES and public keys systems in chapters 11 to 13.

	Attacks on the key generation and distribution algorithms: We have not yet seen public key algorithms, but it is possible to attack the public key algorithms in a way that given a public key, one can derive at the private key in real-time. In such a system, the private key is a secret while the public key is known to all. If that is possible, the attacker has access to the private key of the sender and thus, he can completely imitate the sender. When DS is provided with a symmetric key algorithm, the key is generated using some random number generating the algorithm and distributed to recipients. In that case, the distribution part is more likely to be attacked. We will look at how that part is managed by many real-world algorithms when we study key management and how they are processed in SSL/TLS, IPsec and Kerberos, in the upcoming chapters from 14 to 20.

	Attacks based on the information the attacker has Our discussion earlier on types of attacks, ciphertext only, chosen-plaintext, etc. can also be extended to describe some types of attacks on digital signatures. They, like those attacks, are categorized on the basis of the information the attacker has, as shown in Figure 9.3:

[image:]

Figure 9.3: Types of attacks on Digital Signatures

	Only the public key of the sender: When the attacker has only the public key of the sender, he should attack the public key to have the private key. This is really hard and almost impossible if a good algorithm is chosen and other information is not available.

	Only messages with digital signatures: When the attacker has some messages and corresponding DS, he can try attacking the DS using the methods we have already discussed. As multiple documents can generate the same DS, the problem is a little more complicated than the decryption of ciphertext case.

	Chosen messages with digital signatures: The adversary is capable to have his choice of messages with the sender’s signature; it is the most serious type of all attacks. When adversaries can choose messages based on earlier conversations, it is even more serious. The DS schemes that one likes to design must be able to thwart attacks based on chosen messages. That means the DS system should not break even when an attacker is able to get the signatures for the message that he chose.

9.4 Why a digital signature

For the documents to be signed and sent over the web, encryption can be used as a simple technique for authentication. When it is possible to be decrypted by the receiver either using the shared secret key or the public key of the sender, it proves the sender is the only one who can send. However, one can even modify an encrypted document randomly and at least create a nuisance. In that case, the receiver decrypts and possibly understands something being uncommon and notices the change. There is a probability that the receiver might not get it. For example, the sender is sending his income tax return. If he encrypts that and sends it to the income tax department, the attacker might not be able to see anything. Replacing a character by another character randomly might produce something wrong and noticeable. For example, the age of the applicant is negative. It might change something which is legal but only can irritate the parties involved, for example, changing some characters of the name or address. It can also change the return value or the total, which can create serious consequences. Thus, a random attack can result in serious consequences. Thus, even when encryption is used, the adequate digital signature is equally important, which can flag any unauthorized modifications to the sent document. Another area is smart cards that are used for payments and other purposes. Cards have tendencies to be stolen and misused. Adequate schemes for ascertaining the user of the card is quite important. Normally, two-factor authentication, which demands users to provide some more information with the card, is needed. The authentication process for a given transaction is not only based on the card but this additional input and won’t get through if either of the input is incorrect. We will see that the digital signature alone cannot solve all these problems and one needs a good protocol for solving while we study some security protocols in chapters 14 to 16.

Many recent advancements have widened the scope of application of digital signatures. Agent-based computing is one such area. When agents travel over the network (agents are programs that run on the user’s behalf, moving to some other computer on the network or Internet), the hosting environment can test the genuineness of the agents using the digital signature and thus, many agent platforms demand the agents should be digitally signed. Interestingly, some cloud-based services also use digital signatures. Some US standards are designed for ascertaining the validity of documents obtained from the cloud. Another movement is called What you see is what you sign to make sure the protocols are designed in such a way that the sender does not sign something unknowingly or hidden from him, the meaning of signature cannot be altered later, and so on. By all means, there are more and more reasons to adopt one or the other techniques for digitally signing documents.

We looked at three different ways of using DS, figures of chapter 7 “Secure Hash Functions”, 7.1(a), 7.1(b) and 7.1(c) described that processing. Now, we will look at some real systems in practice.

9.5 Different DS schemes

We will discuss some schemes to sign digital documents that are used in practice. We will begin with El Gamal, which is a standard algorithm later revised by Pointecheval and Stern, two variants of DS standard, and the latest entrant from RSA securities, RSA-PSS which is considered the most secure method at this point. All of these signatures primarily use a public-key signature which is better than other schemes as it provides the sender non-repudiation and more secure as private keys are not required to be distributed.

9.5.1 El Gamal – Pointcheval Stern

This algorithm was introduced by a researcher known as Tahir El Gammal. (He has also provided an encryption algorithm. That algorithm, also known as El Gamal, is different than the digital signature algorithm that we are discussing here, so please do not get confused with two different things having the same name.)

The idea behind El Gammal (Spoken as Al Jamal) algorithm is pretty simple. The signee and the receiver may decide about three things in advance. That part of the algorithm is known as initialization.

Initialization (choosing three ingredients):

	The first component is a Hash function which is collision-resistant; let us call it H. (The original El Gammal did not have this function; it was added later by Pointecheval and Stern).

	The second component is a large prime number; let us call it P. (large is a fuzzy word; the usual meaning in the current context is 2048 bits).

	The third component is the value of a generator g. (That means a typical integer g such that powers of g from 1 to p-1 (mod p) all generate distinct non-zero elements 1..p-1. The generator value must be less than p-1.) g is also called a primitive root of p.

Armed with these three values, which is public knowledge, one can use El Gammal to sign a document. Let us see how it goes. Let us look at three important steps for using El Gammal for signing a document; that is, generating keys, signing document, and verifying the signature.

Generating keys:

	First, the signee decides a private key; let us call it PrKey which a random value between 1 to p-1, that is, 1 < PrKey < p-1.

	Now, the signee computes a public key PuKey = gPrKey mod p.

	The PrKey is only known to signee while PuKey is public knowledge, receiver is aware of its value (and also the attacker).

Signing a document:

	For signing any document, the signee picks up a random value called r. r should be between 1 to p-1, and r and p-1 should be relatively prime; that is, gcd(r, p-1) =1.

	Find Key such that Key mod p = gr (that means Key ≡ gr (mod p)).

	Let us take the message D, to sign. The hash value H(D) is generated for that document using the function H2.

	Find the multiplicative inverse of r (mod p-1) using the extended Euclidian algorithm, r-1.

	The signee calculates Sign = ((H(D) - PrKey * Key) r-1)(mod p-1). If Sign is 0, pick up another r, calculate new Key and reiterate the process. Here, D is Document or Message.

	Send Key and Sign as the signature. (Signature contain two items.)

Verifying the signature:

When the receiver receives document D (in plaintext) and the sign, he will do the following:

	Calculates H(D) first

	Calculates FirstSign = gH(D) mod p

	Finds SecondSign = PuKeyKey * KeySign

	If both values are congruent modulo p, that is, FirstSign ≡ SecondSign (mod p) the signature is correct and document is to be accepted.

Proof of correctness:

How does this process verify the signature correctly? In cryptographic parlance, it is called proof of correctness. Let us try to see. For the signature being correct, the following two items must be equal:

gH(D) mod p = PuKeyKey * KeySign

= (gPrKey)Key * (gr)Sign mod p

gH(D)-PrKey * Key mod p = (gr)Sign mod p

If the preceding steps are true, and it needs to be true if our signature algorithm is correct, the following is also true based on the property of primitive roots:

H(D)-PrKey * Key ≡ r *Sign (mod p-1) //primitive root powers are congruent,

≡ r * ((H(D) - PrKey * Key) r-1)(mod p-1) // substituting Sign’s value

= H(D)-PrKey * Key //Inverses cancel each other out

That means the signature algorithm is correct.

We have seen the property of the primitive root as follows: for any prime number p, if a is a primitive root of p, then a mod p, a2 mod p, a3 mod p … ap-1 mod p is distinct and following are also true.

For any integer, i, ai mod p =1 that means ai ≡ 1 mod p. For any two integers i, j, ai mod p = aj mod p, that means ai ≡ aj mod p, if and only if i ≡ j mod p.

We have used that derivation in the preceding calculation.

As mentioned earlier, there was an attack possible on the original form of the El Gammal algorithm. We will not describe that attack but a brief introduction is in order. It is possible for an attacker to produce at least one message with a signature where the signature is not generated by the genuine signee if we use M instead of H(M) (which was there in original El Gammal Design). This attack is known as an existential forgery. Both Pointcheval and Stern described it and improved it and produced the version that we have studied, using H(M) instead of M using a secure hash function H additionally. Let us now look at another algorithm used for digital signatures.

9.5.2 Schnorr

The Schnorr algorithm is considered the simplest digital signature algorithm. The processing is divided into three sections. The first section is an initialization, second generates a key pair, a private key which we call PrKey as well as a public key which we call PuKey. The third phase happens when the message arrives at the receiver and he verifies the signature to be valid. In this phase, the receiver recalculates the signature. The receiver accepts the message if the computed signature matches the signature sent with the message.

Initialization:

	It starts with picking up a prime number of length 1024 bits or more.

	It also picks up a prime factor q of p-1. The q value should be 160 bit or more. The value q is both, prime as well as a factor of value p -1.

	It also chooses a hashing function H.
Keypair Generation (This process happens before the message signature is to be produced.)

	Find a such that aq mod p = 1 (aq ≡ 1 mod p).

	User chooses a private key PrKey where 0 < PrKey < q.

	Public key PuKey is calculated as PuKey = a-PrKey mod p.
Whenever the message is encountered, the signature takes place as follows

	A random integer r is chosen such that 0< r < q.

	Calculate b = ar mod p.

	Now, get Message M and concatenate it with b. Thus, M = M||b, apply hash function to it to generate Hash = H(M||b).

	Calculate c = r + PrKey * Hash. Both Hash and c, together, indicate signature.
When the receiver receives the values of Hash and c, along with the message M, he can verify the signature.

	b = ac PuKeyHash mod p.

	If this b is matching with the one concatenated with the message, the signature is verified and not otherwise.

Proof of correctness:

 ac PuKeyHash mod p

 = ac a-PrKey * Hash mod p // PuKey = a-PrKey mod p

 = ac-PrKey * Hash mod p

 = ar + PrKey* Hash - PrKeys * Hash mod p// substituting value of C

 = ar mod p

 = b

There are a few characteristics of SCHORR which makes it a great choice. First, all steps before 7 do not involve M the message, so they can be carried out well in advance. A kind of preprocessing which we have already discussed before in Chapter 6: Stream Cipher and Cipher Modes. Any security algorithm which allows preprocessing reduces the actual overhead at the time of processing the message itself. This will improve user experience and thus acceptability of the system. The downside is if preprocessing is done much before, the attacker has that much more time to attack that content. The message processed in two steps 9 and 10. These two processes involve a single multiplication process of PrKey and Hash, which is quite fast. Schnorr, despite being simple and fast, is also found to be strong to resist attacks so far. Another advantage is the verification process. Not only the signature calculation, but the verification is also equally fast.

Though it is not possible to prove that right now, Schnorr can also work when there are multiple signees. There are cases where a document contains more than one signee, for example, a contract of some sort. A DS mechanism that allows multiple signees is quite useful in that case.

9.5.3 NIST-DSA

Digital Signature Algorithm (DSA) is a standard for digitally signing documents given by NIST. The standard is numbered as FIPS PUB 186-4.

Like earlier algorithms, DSA also has few phases. In the initialization phase, it generates necessary parameters, and in the second phase it generates key pairs for users and signing. The next phase is a signing phase that signs a message (at the sender) and verifies it (at the receiver). Let us look at all the phases one after another.

Initialization:

In the initialization phase, a cryptographic hash function is chosen first. In the first version of DSS, the function was predefined to be SHA-1 but now one can choose any one of the SHA-2 variants.

Like SCHNORR, we choose p and q as primes where q is a factor of p-1. Recommended values of p and q are 1024 and 160 to be minimum and 3072 and 256 for serious security applications. Some other variations in between are also allowed.

Now, we will choose g such that g = h(p-1)/q (g can be chosen in other ways but this is the most common method. We need g to have its multiplicative order modulo p is q). The h is chosen such that the g value is non-zero. A most common choice of h is 2.

Key generation:

	A private key PrKey is chosen as a random value between 0 and q, 0 < PrKey < q.

	The public key is calculated as PuKey = gPrKey mod p.

Sign:

	We assume H being a hashing function and M being the message.

	We begin with choosing a random number k such that 0 < k < q. This k is chosen differently for different messages3.

	Now, we calculate the signature (r, s) as follows:
 r = (gk mod p) mod q;

 s = k-1 (H(M) + PrKey * r) mod q

Verification:

	The receiver computes the following:
 a = s-1 mod q

 b = H(M) * a mod q

 c = r * a mod q

 d = (gb PuKeyc mod p) mod q

	If this d == r, the signature is verified correctly.

Proof of correctness:

	= k-1 (H(M) + PrKey * r) mod q:
 ∴ k ≡ H(M)s-1 + PrKey * r * s-1 // moving s from left to right and k-1 right to left

 ≡ H(M)*a + PrKey * r * a (mod q)

 ∴ gk ≡ gH(M)a + PrKey * r * a mod q

 ≡ gH(M)a gPrKey * r * a mod q

 ≡ gH(M)a PuKeyra mod q

 ≡ gb PuKeyc mod q

	We know that:
 r = (gk mod p) mod q;

 = (gb PuKeyc mod p) mod q // substituting value for gk;

 = d // thus for correct message the signature should match

9.5.4 ECC-DSA

The latest entrant in the digital signature standards fray is Elliptic Curve cryptography. The motivation to use ECCDSA in place of DSA is the ability to provide the same level of security with a lesser number of bits. According to one estimate, when DSA needs a 1024-bit public key, ECDSA can work with a 160-bit key. However, the signature length is required to be the same for both cases for the same level of security.

The ECCDSA has similar phases as other signature algorithms. Let us describe first what happens in the initialization phase. We will look at other phases one after another. It is imperative that you have some ideas about elliptic curve cryptography to understand some of the following content. You may refer to Chapter 13, Other Public Key Algorithms for that discussion. However, you can also assume operation X, G being a generator doing a job quite similar to the exponential operator in earlier cases, and most other things will fall in place.

Initialization:

Three parameters (n, G and X), a typical elliptic curve field, and equation are chosen. We call it EC. We take G as a base point, a kind of generator of an elliptic curve with large prime n. The prime n is such that n X G = 0. The value n is called integer order of G, which means it is the smallest positive integer where this operation X results into 0. Operator X indicates scaler multiplication with an elliptic curve point.

Key pair generation:

The sender generates two values, first, a private key. We denote it as PrKey, as a random value between 1 to n-1 such that a public key, which we denote as PuKey, which is a curve point, where PuKey = PrKey X G.

Signature:

We start with a random value k from the range [1, n–1]4.

We calculate NewPoint = k X G. NewPoint is (x, y). i.e. x and y are respective coordinates of NewPoint. Calculate r = x mod n (x is x coordinate of NewPoint), if r is 0 repeat the process.

All three operations described earlier can be carried out without considering the message, so it can be precomputed. Now, we will calculate the following when we have the message M. Hash = H(M) where H is some hashing function like SHA-512.

Hash-Trunc = trunc(Hash, BitLength) where Bitlength is the bit length of the group order n:

s = k-1 (Hash-Trunc + r * PrKey) mod n

Both r and s, like DSA, are used as a signature.

Verification:

The receiver has the public key PuKey. He can verify that the key to be correct by checking whether the CheckPoint, the point whose coordinates are calculated as shown below, is a point on the said curve and n X PuKey == 05; additionally, he should also check whether both r and s belong to the range 1 to n-1.

The receiver does the following to verify if the signature is valid:

 Hash = H(M) // the same hashing function is used by the receiver over the same message M

 Hash-Trunc = trunc (Temp, BitLength)

 a = s-1 mod n

 b = Hash-Trunc * a mod n

 c = r * a mod n

The curve point CheckPoint = b X G + c X PuKey = (x’,y’).

If r x’ mod n the signature is valid (that means the x coordinates of CheckPoint and NewPoint are congruent, as r is = x mod n).

Proof of correctness:

CheckPoint = b X G + c X PuKey

 = b X G + c * PrKey X G //(PuKey = PrKey X G)

 = (b + c * PrKey) X G

 = (Hash-Trunc * a + r * PrKey * a) X G // substituting values of b and c

 = (Hash-Trunc + r* PrKey) a X G // taking a common

 = (Hash-Trunc + r* PrKey) s-1 X G // substituting value of a

 = (Hash-Trunc + r* PrKey) k (Hash-Trunc + r * PrKey)-1 X G //substitute s

 = k X G

 = NewPoint //which implies the requirement of congruency

That means, when the points are congruent, their x coordinates are also congruent.

9.5.5 The DSA approach

In both of the preceding algorithms, DSA and ECDSA, the process has some similarities if you have noticed. We have a random value chosen in a given range, different for different messages, unique for every message, and we called it k. We also used a hashing function H. The signing process depends on the private key of the sender PrKey and the function along with the value of k. Some parameters based on these values are calculated. PuKey is also calculated based on PrKey. The sender calculates two items, s, and r, based on those parameters. Both s and r, together, is the signature.

The receiver, on receipt of the message and the signature in form of s and r, verifies the signature. The process needs to use PuKey which he is supposed to be aware of.

However, there are differences. ECDSA is considered better as it requires a much lesser key size. As NIST document 800 57 pt. 1 puts it as a table, an ECDSA requires double the size of symmetric key for the same level of security, which is much better than public key-based approaches like RSA. Thus, a 256-bit ECDSA can provide security as well as 128 bit AES or 1024 bit RSA. As symmetric keys are not good for sender non-repudiation and DSA and RSA based keys require much larger sizes, ECDSA is a much more lucrative option.

[image:]

Figure 9.4: The DSA and ECDSA approach to sign and verify; we used r and s in DSA and s and t in ECDSA as signature. In this figure we have used r and s. The processing in the bounded box happens with every new message.

DSA and ECDSA, both require the generating of random k value, which is quite complicated and error-prone if not done properly. Unlike that, RSA does not require any random choice to be made. This argument is in favor of the use of RSA. However, RFC 6979 suggests another deterministic method that should be used instead of that random number generation process. The recommended process neither demands to change the signature mechanism of DSA and ECDSA, nor does it change the key generation process. The storage requirement does not change either and nothing else in the message nor should the hash output changes. In short, one can use DSA or ECDSA with that recommended process without having that random value choice. On the other hand, RSA designers have also proposed a variation with an additional random value (called salt). So this difference does not remain significant any longer.

Figure 9.4 depicts the DSA and ECDSA process in nutshell. The message is hashed to produce H, public and private keys are generated, and a random value k is picked up to process the signature. The bounded box part is executed every time a new message needs to be signed. The receiver uses the public key, the incoming message, hash function, two values indicating the signature, and the public key (PuKey) of the sender to verify the signature. As only the bounded box part happens when a message needs to be signed, the other information like the hash function and the public key of the sender is usually available with the receiver and it has to act based on the incoming Message and the signature coming along with it.

9.5.6 RSA-PSS (Probability signature scheme)

RSA is a very popular public key system which we will be studying in Chapter 12: Public Key Algorithm and RSA. It is a scheme which helps generating a pair of public and private keys. RSA was first of this kind and many other schemes were designed to generate key pairs later. RSA is still considered to be the best and most used method. There is a typical scheme based on RSA which is useful even today (there are no known security flows found yet) and used by many programs. Recently, however, the designers of RSA laboratories have proposed a new scheme for digitally signing which we are describing in the following. They claim this method to be more superior and secure than the original method.

Like earlier algorithms, RSA-PSS follows first hash the message and then sign the hash way of working. PSS is the acronym of the term Probabilistic Signature Scheme. It was coined by two researchers Bellare and Rogaway during their work on enhancing the security of the basic RSA signature process. The new method is based on that extension.

Like earlier algorithms we have three things for initializing; the MGH is a new idea:

	M is a message to be hashed.

	H is a one-way hash function.

	MGH (mask generation function) is a function which can generate a random string of the desired length called mask from a key

The process can be described in short as follows.

	Apply H to the message and generate mHash (we used to call it Hash before).

	Transform the mHash value into the encoded message digest EM by adding some padding and salt values. A salt value is uniquely decided for every message and thus different for different messages. It is different even for a case where the same message is being sent twice.

	The signature process (original RSA method) is applied to the EM to generate the final signature.

The different part is the processing of EM with padding and salt. It is a bit similar to using k value in DSS and EC DSS and b value in SCHNORR which are processed with or concatenated with the hash value. Look at Figure 9.5 which depicts the process.

This processing is described in little more in detail as follows. (This is the expansion of the second step of described earlier.) These eight steps are depicted in Figure 9.6.

	A random value is generated first. We call it salt as it changes the message as salt does to the item being cooked.

	Padding = 00 00… 00 (a 64 –bit all-zeros value).

	Get M’ = Padding || mHash || salt.

	H = Hash(M’).

	DB = Padding’|| salt.
 Padding’ = 00 00 00 …01, (length of padding’ is the length of EM – length of salt – length of the hash value) in BYTES, which means ‘padding’ is of the same size of the encrypted message digest excluding the salt and the hash value. Out of all bytes that comprise ‘padding’, the last two bytes are 0x01 (hexadecimal 01) and the rest are all zeros.

	dbMask = MGH(M’, length of DB).

	maskedDB = dbMask ⊕ DB.

	EM = maskedDB || H || “BC” //this ‘BC’ is appended for compatibility requirements with other standards. It is 0xBC or hexadecimal BC value.

[image:]

Figure 9.5: The process of calculating and comparing RSA-PSS signature

Signing:

The signature process is done using the conventional RSA. We will be studying RSA in detail in Chapter 12: Public Key Algorithm and RSA. However, we will use the formula which is used in RSA as follows to describe the signature process:

Sign = EM’ = EMe mod n // e and n is considered a private key

Verifying:

The verification process is equally straight forward:

	The hash is calculated using the same Hash(M) function to produce mHash.
The signature is decoded using RSA formula.

	Sign’ = EM’d mod n // n and d are termed as public key6.

	If Sign’ is the same as Sign which is part of the received message, the signature is valid.

[image:]

Figure 9.6: How EM is generated using padding, salt and applying the hashing function and MGM at various places

9.5.6.1 Advantage of the PSS

If you have carefully observed, the process in the RSA-PSS is different where the random number (salt) and fixed padding with a little more processing is provided. This process is added for some critical reasons:

	The Mask Generation Function, the salt, and the use of the hash function enable the EM to act like a random oracle, a kind of random string rather than something which depends on the message. This strengthens security.

	The XOR operation, which XORs the dbMask with DB, is a very fast operation that is quite analogous to using a one-time pad, which we have seen to be providing excellent security with the ciphertext having little statistic relationship with the plaintext.

	The same message, because of random salt values, can generate different signatures at different times. This improves security.

	It is possible to prove this method to be secure, unlike other methods we have discussed earlier7.

	It is hard for the attacker to learn what will be the encrypted message in advance as the output depends on the random salt value. In a way, this salt plays the same role as the k variable that we mentioned in DSA and ECDSA algorithms.

	The padding constants also help in assessing if the signature is valid. For example, the computed padding value differs from what it should be if the signature is not valid. Thus, it provides an additional check8.

9.5.6.2 The Mask Generation Function (MSG)

We have mentioned the mask generation function in the beginning of this section. We stated that it is a function that generates a random string based on the key. Though the authors call this function MSG and the output random string is called MASK, it is the same type of function we have seen in the previous chapter which uses a hash value to generate a string of the required length. Let us learn about its working in brief:

Mask MSG(Target, MaskLength)

{

Mask = “”;

for (Counter=0;Counter<k; counter++)

Mask = Mask || (Hash(Target||Counter));

Mask = trunc(Mask, MaskLength)

Return Mask;

}

The function MSG calls Hash repeatedly with a given target value with a counter value and concatenate them together to form the mask. As mentioned in the previous chapter, we might need to have a mask of length other than the multiple of the power of 2 and thus, we might need to truncate it at the end. The number of iterations, the k value, is decided based on the length of the mask needed and the hash function’s output length. For example, if the hash output length is 128 bit and the mask length required is 1024 bits, we need 1024/128 = 8 iterations. If the output mask length is 1000 bits, we need to truncate 24 bits from the output.

It is important for us to notice that the RSA-PSS is now part of IEEE standard (1363aTM-2004) as well as Internet Standard RFC 3447 (which describes PKCS 2.1 standard which is used in securing public key certificates described in Chapter 16: User Authentication Using Public Key Certificate).

9.6 Improving the process of digital signature

The Digital Signature is a critical component of the signing process and whatever we described earlier is used in practice. However, it is not complete without an important component. We have not included the notion of timestamp. If we do so, we include a timestamp in the process of calculating the digital signature, the receiver can learn also about the time when the documents are signed. There is a possibility of the private key being stolen from the user’s computer. Keeping multiple key pairs for use and attaching timestamps are two methods used for making sure one can validate the signature in that case. When we have a timestamp before the forgery, the signature is valid. If the timestamp is of the later time, the signature using other pairs is only accepted.

Another point, it is possible to include a random value called nonce in the process of signing and exchanging messages with the receiver. This nonce is used once in a given time period and the receiver must respond with the same value of nonce in its response, thus making sure the replay attacks are out of the question. Another issue is to use both, digital signature and encryption together. The usual practice is to generate a DS and encrypt the message as well as the DS before sending it. This provides more security than what only the signature mechanism can provide. These and a few other measures are taken care of when the digital signature is applied to the document and sent to the receiver by the protocol which deploys the digital signature.

Another point before we conclude. The process of generating a digital signature using the preceding method follows a typical pattern in almost all cases. We have not stressed on why such a pattern is followed, can any method where we can derive a public and private keys work for digitally signing a document, and so on. The point is that one can use any public key scheme where it is infeasible to find the PrKey value from PuKey. We will stress more on this in Chapter 12: Public Key Algorithm and RSA.

Keywords

	Key Generation Algorithm: The algorithm which generates the pair, i.e., public and private keys.

	Signing algorithm: The algorithm which generates a digital signature (normally a set of two values), which is sent with the document which is signed.

	Verifying algorithm: The algorithm which checks whether the document is authentic by verifying the signature. It normally processes the document and the signature values sent with it and the public key information it has about the sender.

	Initialization: This is a phase in DS algorithms where initial parameters like hash functions and other values related to it are chosen.

	Pre-processing: The amount of work of the DS scheme possible without having the document. More preprocessing, DS does not demand much of processing time when the document arrives and generates the signature faster.

	Mask: A long random-like stream, generated from the key and used in the RSA-PSS DS scheme. A kind of one-time pad.

	MSG (Mask Generation Function): The function which generates the mask value from the key.

	Nonce: A random value used only once for thwarting replay attacks. The sender sends it and the receiver sends it back in its response.

Recapitulation

	A digital signature contains three parts: key generation, signing, and verification. In most cases, initialization is also required which sets the ball rolling.

	A digital signature is used to check authenticity, message integrity, sender nonrepudiation, time, and third party validations.

	Hashing, signing, and encryption algorithms have to be cryptographically strong for a secure DS scheme.

	El Gamal has provided a secure DS scheme which was modified by Pointcheval and Stern by using a hashed message rather than the message itself.

	Schnorr is the simplest and fast DS scheme but equally strong.

	Digital Signature Standard DS comes in two varieties: NIST DSA and ECC DSA. ECC is better as it demands a much smaller key.

	RSA-PSS is an extension to the RSA algorithm which provides much better security than the original RSA algorithm.

	Timestamp and nonce are important in DS calculation as well.

	When both encryption and authentication are done together, normally the message is processed in a single go.

Exercises

	What are the components of a digital signature scheme?

	What are the various ways in which the digital signature can be put to use?

	How one can attack DS? This chapter describes some ways. Find more information on them and write a short note from other sources.

	Explain why one needs a digital signature when there are other methods for authentication are available, for example, the plain vanilla encryption.

	Find out some additional information about how some of the modern solutions use digital signatures. Compare these usages on the application of DS, how the problem is handled, how it improvises the solution parameters.

	Describe the EL GAMAL algorithm with the improvement provided by Pointcheval and Stern. Can you guess why seemingly small change they provide is important? Get more information from the NIST website and other sources and write a short note.

	Compare NIST DSA with NIST ECDSA. Also, describe why they are different.

	Describe RSA-PSS in detail. Explain why the salt value improves security. What do you think the MGF provides to this algorithm?

1 In fact, some researchers’ claim that it is better than a manual signature as it is very hard to forge the digital signature; forging an ink and paper-based signature is not all that hard. The author believes that there are pros and cons of both the approaches but more or less they are best possible solutions for the work they are designed to do.

2 In the original proposal, the hash function wasn’t there but a message was directly used. It was found to be vulnerable to attacks and thus was modified by some other researchers later. This version is sometimes known by their inventors, Pointecheval Stern signature algorithm. However, the contribution by El Gammal is so much that we retained that name

3 It is imperative that k remains unique for each operation. In one such case, where a group of hackers successfully attacked the Sony PlayStation 3 game console because the system failed to generate different k for different messages. The problem, thereafter, is solved by a trick provided in RFC 6979 which suggests choosing k by a deterministic method based on message hash and private key. The algorithm attacked was not DSA but an elliptic curve variant EC-DSA but the process is same. The K value acts like a salt value discussed later.

4 This random number is not truly random or pseudo random. It is chosen from some combination of the message and the private key to avoid generation of the same k for different messages, which leads to the attack described earlier.

5 It should also not be the identity element, the value 0.

6 When we study RSA, we will see how the values of n, e and d are determined.

7 Proving a problem is hard is the first step in any security system. If the problem is really hard, the other thing to check is that the signature forging is as hard as the complexity of the problem. In some cases, it is possible to have problems which are hard but forging signatures based on the same problem is not as hard as the problem itself. In this case, it is possible to prove that forging the signature based on RSA-PSS is as hard as the RSA problem itself. Such security is known as ‘Provably secure;.

8 Other schemes based on RSA also contains some other padding and provide the same benefit.

CHAPTER 10

Advanced Encryption Standard

Structure

10.1 Introduction

10.2 AES Characteristics

10.3 Prerequisites to AES

10.4 AES architecture

10.5 AES processing

10.5.1 Substitute bytes

10.5.2 Shift rows

10.5.3 Mix Columns

10.5.4 Add Round Key

10.6 Generating Round Keys

10.7 Implementation

10.5.1 Substitute Bytes

10.5.2 Shift Rows

10.5.3 Mix Columns Operation

10.5.4 Add Round Key Operation

10.6 Substitute byte matrix generation

10.7 Key Expansion Process

10.8 Inverse operations

10.9 Motivation

Recapitulation

Keywords

Exercises

Objectives

After studying this chapter, the reader should be able to

	Describe the need for the block cipher algorithm like AES

	Depict the structure of the AES algorithm

	Narrate each function of the round in detail

	Present the motivation for typical choices made in the AES design

	Specify the need for key expansion and describe it

10.1 Introduction

The Advanced Encryption Standard (AES) is the de-facto standard of encryption today. It was proposed in November 2001. The NIST had a bad response to a closed-loop procedure for selecting DES. (They chose an IBM algorithm Lucifer as DES which many thought to be a biased decision). The NIST organized a kind of competition for the (then) next-generation symmetric block encryption algorithm. Many rounds were introduced and participants from all over the world with their respective algorithms took part in it. Many people, including representatives of non-government organizations acted as judges and eventually, they zeroed in on a typical algorithm from two Belgium Cryptographers, known as Rijndael. The chosen algorithm is named AES from NIST. The algorithm is also accepted as the standard for encryption for their unclassified information by the US and many other governments thereafter. It is also known as standard FIPS PUBS 197 technically. The algorithm has proved its worth and also recommended for classified usage at later stages. We will learn about AES, its design, its components, and why it is considered to be a very good solution in this chapter.

10.2 AES characteristics

Before we start discussing what exactly AES is planning to do, here is a quick rundown on what AES is planning to achieve:

	It is quite strong and much stronger than 3DES.

	It is quite efficient and does its job using a very optimal coding process. It optimally utilizes the memory as well as the computing power. The algorithm is designed specifically to deal with the plaintext in a fashion that helps it to implement it in hardware.

	It is a block cipher. It processes blocks of 128 bits or 16 bytes of plaintext one after the other to generate blocks of ciphertext of the same size, i.e., 128 bits. (Kindly note that the original Rijndael algorithm can choose any block size between 128 to 256 bits but AES only has one option.)

	AES can have a key of size 128 bit for normal operations, 256 bits for highly secure operations or even a middle value of 192 bit in case the user wants something in between.

	The AES design, which we are going to study in detail later, is open; i.e., available for anybody to implement completely unlike DES where there was one part (the S BOX) which was non-public. This was one of the major reasons for the widespread acceptance of this algorithm.

	Each one of the 128-bit blocks of AES performs exactly as we have shown in Figure 10.1(c). Each round uses a unique key. There is a single key from which all keys needed for every round is constructed. The single key is known as the cipher key. The round keys are generated based on the key expansion method we are going to look at very soon in this chapter.

	When the ciphertext reaches the receiver, the receiver runs the same algorithm in the reverse mode which enables it to generate the exact plaintext from the ciphertext using the same symmetric key which the sender uses to encrypt the plaintext. The receiver generates each round key from that symmetric key exactly as the sender does.

	The AES was designed to work on a variety of platforms and with the ability to thwart all possible attacks known at that time.

	The AES performance was good for different types of processors, including 8, 16, 32-bit and 64-bit processors.

	The AES design is based on a solid mathematical foundation that allows researchers to analyze the security strength of AES. Though it is possible to analyze the strength of AES, one of the critical aspects of the AES design is its simplicity without compromising the performance.

AES is a well-established standard today. Many attempts are made to crack it but it still is considered unbroken. The only success some of the attackers enjoy is to improve the brute force estimation of cracking AES. That means an attacker does not need to try all possible 2128 combinations to brute force the key. However, the reduction still produces the combinations beyond the scope of current processors to perform the brute force attack in real-time. In other words, the AES algorithm is considered quite secure even after two decades of its inception.

KIM: The brute force estimation is the number of different combinations of key values the attacker or analyzer needs to break the key using the brute force attack.

Conventional cryptography dealt with text, and we will find the word text being used in describing the plaintext and ciphertext. That incorrectly conveys a meaning that the text is what is being encrypted and decrypted in the process. In the current context, the application of cryptography is not limited to the text. Graphics, audio, video, and other than text (for example a word doc) files can encrypted and decrypted. AES is found to be equally good in encrypting anything of that type, including text.

Modern block ciphers use a block of plaintext as input and generate a block of ciphertext as output. The strength of block ciphers is derived from their ability to scramble the input such that it is infeasible for an adversary to determine the input given the output. Most of the good ciphers also provide quite strong encryption even when the adversary has the same encryption program installed in his machine and is capable to provide the arbitrary text as input, generating respective outputs and using that in trying to break the code. We have seen different types of such attacks in the previous chapter.

As the Kerckhoffs’ principle suggests, modern ciphers rely on long cryptographic keys to protect the encrypted text against brute force and similar attacks. AES is designed based on that principle. AES is capable to thwart any attack of those types like the known plaintext or chosen plaintext or even chosen text.

We had a good marketing session on AES. It must have probably generated enough curiosity in you to learn how AES is doing this wonderful process of encryption. Hold on. We need to learn a few prerequisites which will help us learn more about the choices made by AES designers and also learn why the process works in the fashion it is designed to. That will also throw some light on why AES has won the encryption battle among many other strong competitors hands down.

10.3 Prerequisites to AES

Before we start learning about AES and its architecture, let us try to see some of the prerequisites to learn AES. AES is based on Galois (pronounced as Galva) Field theory. We have studied GF in Chapter 5: Algebraic Structures. Let us do a quick recap: a field is where our operations like multiplication and addition generate results within the field.

Our idea is to produce a multiplication in the encryption part and use division in the decryption part to undo what the sender has done while encryption. The division in the field is defined as multiplication with an inverse value of the subject. The field has an advantage that the multiplicative inverses of all members also reside in the same field.

When we are interested in using some type of fields for some operations, there are a few options available to us to use. For example, we could use Zn or a field generated by considering numbers less than a typical prime number value. In case we use that, we cannot use all possible bits of a given size of the word. For example, a 64-bit machine case, we can find a prime number just below 64, which is 61. We can now use any number of size 60 bit, but we may not able to use all ranges of the 64-bit number. If we ever encounter a larger number, we will not get a multiplicative inverse. In other words, we are not able to utilize most of the possible values. (260 is 1/32 * 264 or 32nd part of 264) If we use GF(2n), we can actually utilize the complete range and choose any number from 0 to 64 and also get a multiplicative inverse for all those values.

Another advantage of using a typical field is when we have a multiplicative inverse in the same field containing integers; it helps us deal with integers only. Remember that in the conventional mathematics case, the division yields fractional values which are hard to manipulate. In the case of a Galva Field, we have a multiplicative inverse such as {95} has an inverse {8A}. None of them is a fractional value.

The GF(2n) element is a polynomial with power n. The element can be represented as n bit vector of coefficients for each of the terms of the n bit polynomial. In other words, any n bit number represents a unique polynomial in GF(2n). As these coefficients are either zero or one, the set of coefficients represent a binary number. In other words, this is a clever scheme to represent any binary number of power 2. It simplifies the process of multiplication and division. We will see later that the process of multiplication and division is very efficient in implementation as they involve left shifting and XORing with constants.

In the case of AES, not only the multiplication and division but the addition is also a simple implementation. Addition in AES is an XOR of each corresponding bits. For example, if we want to add two polynomials in GF(2n) with coefficients represented as 28 and 35, the addition of these two polynomials in GF(2n) is another polynomial with coefficient represented by bitwise XOR of these two values (which is 41).

We have hinted that multiplication is quite efficient; however, it is a little tricky too. Let us try to understand. We will start with a method to multiply the number by hex value 2 or 0x02.

We need to multiply 0x02 with some number N1. Mby2 is a process that does that for us. Mby2 takes the number which is to be multiplied with (the N1) as an argument. It returns a bit pattern BitPattern representing the result of the multiplication. Here is the description:

BitPattern Mby2(N1)

{

Temp = N1<<1 (which multiplies it by two)

If N1 has first bit nonzero, (we need to consider carry)

Temp = Temp ⊕ (00011011)

Temp = Temp mod m(x) // m(x) is an irreducible polynomial of degree 8

Return Temp

}

The bit pattern 00011011 is a constant devised for this operation. The mod m(x) operation makes sure the result remains within the field. The m(x) represents the irreducible polynomial in GF(28), x8+x4 +x3+x+1. When the first bit of the result is zero, it is already in the required form, i.e., part of the field. When it is not, it is divided by this irreducible polynomial so the result (the residue) remains to be within the range.

Both designers of AES could have chosen some other irreducible polynomial (there were around 30 candidates) to keep the content within the field, they had their reasons for choosing this one. We will not discuss those reasons here.

One typical way the byte value is represented in AES is a combination of two hex values, each one representing four bits. For example, {65} represents 0x06 as leftmost four bits and 0x05 as rightmost four bits. The {} braces indicate a hex value. So 0x06 is same as {06}.

We have learned about addition, multiplication, and division as multiplication with the inverse! The job is done! Hold on! We have described a case where we have multiplied a number with {02}. What if we need to multiply a number with another arbitrary number? Consider N1 is to be multiplied with some other N2? A simple process can handle it. Let us see. Suppose N1 is to be multiplied with a number 13. We can proceed as follows:

Temp1 = Nby2(N1) (= N1 * 2)

Temp2 = Nby2(Temp1) (= N1 * 4)

Temp3 = Nby2(Temp3) (= N1 * 8)

Now N1 * 13 = N1 * ({1} ⊕ {4} ⊕ {8})

= N1 ⊕ N1 * {4} ⊕ {N1 * 8}) // properties of the field

= N1 ⊕ Temp2 ⊕ Temp3

What about the division? Suppose if we need to divide N1 by N2, we need to do the following:

	Find the multiplicative inverse of N2 from GF(28); let us call it ‘N2’.

	Multiply N1 with N2’ exactly like above.

	Return the result as division.

In short, the representation chosen for AES has the following advantages:

	It allows multiplication with any integer of a given field.

	The multiplicative inverse of any element is also an integer so it simplifies the representation and improves the speed.

	It allows the use of all values in a given range of any multiple of two. As AES operates on bytes, it uses GF(28).

Now, when we have learned how AES uses GF(28), it is time to look at the complete AES architecture in detail.

10.4 AES architecture

Before we commence our discussion on the AES architecture, let us learn about a typical nomenclature used by AES. Every byte value in the plaintext is considered a collection of two 4 bit entities; each of which is represented by a hash value as represented in the following table. For example, 0011 1000 is represented as {38} and 1101 0001 is represented as {d1}. Table 10.1 showcases the point:

	
Bit Seq.

	
Value

	
Bit Seq.

	
Value

	
Bit Seq.

	
Value

	
Bit Seq.

	
Value

	
0000

	
0

	
0100

	
4

	
1000

	
8

	
1100

	
c

	
0001

	
1

	
0101

	
5

	
1001

	
9

	
1101

	
d

	
0010

	
2

	
0110

	
6

	
1010

	
a

	
1110

	
e

	
0011

	
3

	
0111

	
7

	
1011

	
b

	
1111

	
f

Table 10.1: How 4 bits are represented in the AES state array.

Another point here is that the non-linear operation is very critical in any block cipher for protecting against linear cryptanalysis. AES provides a non-linear operation known as Substitute Bytes where each of the bytes is replaced by another byte. A byte, for example, is {3A}. There is a table that provides a lookup and gives a substitute value as {80}. That means all {3A} are substituted as {80}. The logic of this process is non-linear. The non-linearity is implied by the process of substituting a byte value by a non-linear method. That means the table is generated using a typical method (which we look at while discussing the substitute bytes operation later), which is non-linear. In all these processes, we will use this format. We will represent every byte in this format only.

AES, like DES and all other block ciphers, operate using multiple rounds. Interestingly, for three options of keys (128, 192, and 256), there are different numbers of rounds. For 128 bit keys, AES uses 10 rounds. We will discuss that case in more detail here. The other two cases, apart from a number of rounds, are similar, so do not warrant any additional discussion. However, interested readers may refer to the AES encryption standard for further details.

The AES processes the plaintext in the form of 16-byte (128 bit) blocks. The 16-byte blocks are arranged as a 4 X 4 matrix which is known as a state array. The process begins when the state array is populated with the plaintext. The plaintext is processed by each round one after another to finally produce the ciphertext of 16 bytes in the same state array. For example, for a 128-bit key, the plaintext is provided to the state array, it is processed 10 different times (known as 10 different rounds), and eventually, the same state array will result in holding the 16-byte corresponding ciphertext. Please take note that every one of the blocks will be processed exactly in the same fashion. When ALL of the blocks are processed, the encryption process is said to be over.

It is quite possible and normal; every plaintext is much larger than 16 bytes. As described in the previous chapter, the first job of any encryption process is to divide the available plaintext into blocks of requisite size. In the case of AES, the plaintext is divided into 16-byte blocks. When the plaintext is not a multiple of 16 bytes, normally encryption algorithms pad the dummy content at the end of the plaintext for the same. Figure 10.1(a) depicts the idea.

Each of the blocks of the input is processed as follows:

	The block content (16 bytes) is copied to the state array; the first four bytes are copied into the first column and the second four bytes into the second column, and so on.

	Initialization now takes place. It is nothing but adding a typical key to the entire state array. When the key is 128 bit, each key byte is added to the corresponding state array byte. The key used in this operation is not the symmetric key that is provided to AES for encryption of the content. The key that is provided to AES at the time of encryption is known as a cipher key. The cipher key is available with both the sender as well as the receiver and so it is symmetric in that sense. This symmetric key or the cipher key is used to generate 11 additional keys. Out of all those 11 keys which are generated from the cipher key, the first key, called K0, is used here. The other 10 keys, K1 to K10, are used in round numbers 1 to 10. Figure 10.1(b) depicts the idea.

	Once the initialization is over, there are 10 rounds of operations performed on the same state array. Let us remind ourselves that for different types of the keys number of rounds are different. Each round is processed in four steps. The idea is captured in Figure 10.1(c):

	The first step is known as substitute bytes. Here, each byte of the state array is substituted by another byte.

	The second step is known as shift rows. In this, each row element is shifted based on the row number.

	The third step is called mix columns. Here, the state array is multiplied GF(28) with a constant matrix.

	The fourth step adds the contents of a typical round key to the state array. This key is different than K0 used in the initialization case. Each round has its key which is used here.

	When all 10 rounds (in case of 192 bit key 12 rounds and 256 bit key 14 rounds) are over, the state array contains the ciphertext for that block. Now, the process begins with the next plaintext block and encrypts it in the same fashion. If no more blocks are remaining, the encryption process is over.

[image:]

Figure 10.1(a): AES processing, message divided into blocks

[image:]

Figure 10.1(b): AES processing, copy to state array and initialization

[image:]

Figure 10.1(c): AES processing, multiple rounds and round operations for each block

10.5 AES processing

Now that we have seen how AES works in an overall way, let us plunge deep and learn about each of the operations of the round one after another. We have already seen that there are multiple rounds each block is subject to pass through. During each round, there are four different transformation processes carried out such as substitute bytes, shift rows, mix columns, and add round key. We will look at each of them in more detail now:

[image:]

Figure 10.2: The process of initialization

An interesting process carried out just before the rounds begin is called initialization. The initialization process adds the corresponding bytes of the K00 or 0th key (which is derived from the cipher key) to the content of the state array.

The 16 bytes of the state array is numbered from B0 to B15 and are stored as shown in Figure 10.2(a). The K00 key has 16 bytes, each of which is represented as K0000 to K0033, which is numbered little differently. The values represent x and y coordinates of the array. That means the key byte K0010 is the byte stored at the second-row first column. This idea is presented in Figure 10.2(b).

The process of initialization results in the state array with every byte value being XORed with the corresponding key byte value as shown in Figure 10.2(d). Once the initialization process is over, the round-based processing starts as mentioned in Figure 10.1(c). How that happens is described in individual segments describing all four operations one after another, that is, substitute byte, shift rows, mix columns, and add round key. Here they are.

10.5.1 Substitute bytes

The substitute byte operation is a substitution cipher process that replaces a byte from the state array with another byte. We have already seen in Table 10.1 how every byte is represented as a combination of two hex values. Table 10.2 describes the content of that table. This table is used for lookup and replaces the characters one after another. The horizontal value in the table is taken as the first byte of the input while the vertical value is picked up as the second byte of the input. In other words, the first byte is the row value and the second byte is the column value is taken as input. The table content at that respective row and column represents the output.

For example, if a typical character value is 2f. Now, we pick up a 2nd row and fth column to get our output, which is 15. What if the input is 63? The content at the 6th row and 3rd column is fb, so that is the output. In other words, the content 63 will be replaced by fb. There is a similar table for inverse transformation as well. How this S Box table is generated? We will soon see.

Each of the bytes of the state array is replaced using this table one after another. Once all 16 bytes are replaced with their corresponding S-BOX values, the substitute byte process is said to be over. As you can see, the process replaces all bytes of the state array and now the state array contains all new byte values:

[image:]

Table 10.2: The S-Box table

10.5.2 Shift rows

In this round, an nth row is shifted to the right n times. That means, the 0th row is shifted 0 times, that is, not shifted, 1st row is shifted once, 2nd row is shifted twice and the 3rd row is shifted 3 times:

[image:]

Figure 10.3: Shift rows operation

Figure 10.3 describes the shift row operation. You can see that the first row, row number 0, is not changed.

Row number 1 changes as follows:

[image:] becomes B5, B9, B13,B1

// Shifting every element left once and the last element to wrap around.

Row number 2 is changed as follows:

[image:] becomes B10, B14, B2, B6

//Shifting every element left twice and last two elements being wrap around.

Row number 3 will have three shifts as follows:

[image:] becomes B15,B3,B7,B11

That is how the rows are shifted! Once the rows are shifted, the next job is to mix columns by multiplying the state array with a constant matrix.

10.5.3 Mix columns operation

The mix columns operation is described in Figure 10.4. In this operation, the state array is multiplied with a typical constant matrix of size 4 X 4 which results in another matrix of size 4 X 4 which is our next state array:

[image:]

Figure 10.4: Mix columns operation

As the definition of matrix multiplication indicates, each corresponding element of the first row of the first matrix and first column of the second matrix is multiplied and added together to generate the first element of the resultant matrix. In other words, the first column of the resultant state array is calculated as follows:

B’0 = 2 X B0 + 3 X B1 + 1 X B2 + 1 X B3

B’1 = 1 X B0 + 2 X B1 + 3 X B2 + 1 X B3

B’3 = 1 X B0 + 1 X B1 + 2 X B2 + 3 X B3

B’4 = 3 X B0 + 1 X B1 + 1 X B2 + 2 X B3

Other columns are also calculated accordingly. Remember the column elements are considered polynomial coefficients in GF(28). AES designers chose the multiplication to be done modulo x4 + 1 to reduce it to a 4 term polynomial, that is, 4-bit value, if the multiplication does not yield so.

You can see that the preceding multiplication is done with a typical set of values (2,3,1,1) of row 1, which are left shifted cyclically in each subsequent rows to generate multipliers for 2nd, 3rd, and 4th elements. It is not a coincidence. It is a typical constant polynomial represented in the standard as follows:

a(x) = {03}x3 + {01}x2 + {01}x + {02}

The terms of the polynomial are such that the multiplication seems perfect for the calculation of B’1. Interestingly, the multiplication is defined in a manner where the polynomial terms are shifted circularly right every time and thus other calculations are carried out accordingly.

Though we have not explicitly specified, you can see that all the numbers that we have mentioned earlier are all hex values. The multiplication is done as shown earlier, while the addition is XORing the contents.

10.5.4 Add round key operation

The add round key operation has already been discussed when we discussed the Initialization phase. The same process is carried out here. However, there is a difference. The key for each round is a different 128-bit value. Consider keys generated for each round available. A sample key for round 1 and round 10 is stored as a 16-byte value as shown in Figure 10.5. Other keys are available in the same manner. The Key01 is the key for the 1st round while the Key10 is the key for the 10th round. The typical values in each cell of the matrix, for example, depicted in Key0100 indicate the byte at the 0th row and 0th column for the key Key01:

[image:]

Figure 10.5: Different keys for different rounds

Keys are added to the state array exactly as shown in the initialization process. Each corresponding element of the state array is XORed with the corresponding element of the key designated for that round. Kindly note that the naming Add round key is quite appropriate even when it is only being XORed. Remember that in GF(28) which is used in AES, the addition is XOR.

10.6 Substitute byte matrix generation

We have seen the matrix used in the substitute byte generation process in Table 10.2. This table is not designed out of nothing. There is a definite process for generating it. Here is the description.

There is a typical binary matrix that is used to transform the input byte. The input byte is represented as a single vector of 8 bits as depicted in Figure 10.6. For generating the table depicted in Table 10.2, we will start with the first-byte value {00} and go on till the last byte value {ff}. For each of them, we will follow the process depicted in Figure 10.7 to generate the output byte value.

The output byte generation process is quite straight forward. In the first step, the constant 8 * 8 matrix is multiplied with the bit vector representing that particular byte. In the second step, the result of the multiplication is XORed with another byte vector that represents the coefficient of a typical polynomial in GF(28). The polynomial represents the bit string 01100011 from below to up. The XOR result is another bit vector that represents the output byte.

Can you comment on how the matrix rows are organized? Kindly note that the matrix rows carry the same content, which is rotated in a typical fashion. The first row is 10001111 which is cyclically rotated to the right to produce the second row. The third row is produced by cyclically rotating the second row, and so on. Thus, every row is produced by cyclically rotating the previous row.

The byte substitution process works as follows, for each of the bytes:

	It finds the multiplicative inverse of the input byte in GF(28). The element {0,0} maps to itself.

	Now, affine transformation1 over GF(2) (it is 2 and not 2n) is applied to that value (the multiplicative inverse) in the following form. The same transformation is matrix multiplication form is depicted in Figure 10.7:
 NewBiti = Biti ⊕ Bit(i+4) mod 8 ⊕ Bit(i+5) mod 8 ⊕ Bit(i+6) mod 8 ⊕ Bit(i+7) mod 8

 // value i indicates an ith bit of the byte, Biti is an old bit at position i

 //while NewBiti is the new bit at position i in the input byte.

 NewBiti = NewBiti ⊕ Ci //this is ith bit of the byte {63}, C is {63} or 01100011

[image:]

Figure 10.6: The substitute byte transformation matrix and multiplicative inverse of the input byte in GF(28)

[image:]

Figure 10.7: Process of generating output byte from input byte’s multiplicative inverse

The matrix multiplication, as you probably rightly have guessed by now, is not conventional. It is on GF(28). It is designed to enable a typical affine transformation we have just seen.

Once this operation gets over for each of the bytes in range {00} to {ff}, we will have our S BOX ready. We can start using it for the substitute byte operation after that.

10.7 Key expansion process

After we have seen all four phases of AES single round processing, it is time to understand how the AES cipher key is used to generate other keys for initialization and different rounds. The cipher key is a 16-byte entity. It is stored as a matrix of size 4 X 4 as we have seen in Figure 10.2(b). We can consider each column as one word of 32 bits. That means this matrix containing key values is considered to be a 4-word entity where each word is one column. In short, a key-value is a 4-word entity, the first four bytes indicate the first word, and the next four indicate the next word, and so on.

The key expansion process expands the 4 -word cipher key into another entity of 44 words. When this 44-word content is obtained, it is divided into 11 4 word chunks. The first four-word chunk describes the first key (key 0), the next four-word chunk describes the second key (key1), and so on. In other words, each of the 4-word chunks (there are 11) is used for the designated purpose to serve as a key for a typical round. First of such 11 words are used as Key00 during the initialization process and the rest is used for other keys for specific rounds.

The process can be specified as follows. Kindly look at how the key is defined here. The key content, the byte is numbered in a typical fashion where the first column contains the first four bytes while the second column contains the next four bytes, and so on. Each of the columns represents a word. This key representation indicates one word for one column. In other words, (k1,k2,k3,k4) describes the first word, (k5,k6,k7,k8), describes the second word, and so on. The key expansion function use four columns, or four words, of this cipher key to produce other keys:

[image:]

Figure 10.8: Key representation used for expansion

There are two different arguments passed to the key expansion function, with two different types. The byte represents an 8-bit entity, the conventional byte. The word represents a 4-byte tuple, a 32-bit value consisting of four bytes. We are passing the cipher key which is a collection of 16 bytes and Word which is a collection of 44 words. The Word, which is passed as an empty value in the function, eventually returns with values for all 44 words:

AESKeyExpansion(byte Key {16], word Word [44])

{

// Generating first four words from the key

for i in (0..3)

Word [i] = [Key (4 * i+1), Key (4 * i+2), Key(4 * i+3), Key(4 * i+4)];

// Generating rest of the words

for i in (4..44)

{

Temp = Word [i-1];

if (i mod 4 == 0) // if key boundary is reached, reached to next round key

Temp = Substitute(Rotate (Temp)) ⊕ RoundConstant [i/4];

// substitute word, rotate and a typical round constant is used

// 10 round constants, one for each 4 word entity

else

Word[i] = Word[i-4] ⊕ Temp;

}

}

The function Substitute is the same which is used in substitute byte operation and depicted in Table 10.2. The Rotate function circularly rotates the word in the left direction. That means the first byte of the original word becomes the last byte after the Rotate function is executed and the rest of them are left-shifted in one position.

For example we have W as [B1,B2,B3,B4]. When we execute:

NewW= Rotate(W)

NewW becomes [B2,B3,B4,B1]

The Round constants are designed in a specific fashion. Let us see how they are generated.

There is a one-byte value; let us call it RConst, for each round. It is defined as follows:

RConst [1] = 1;

for i in 2..10 RConst [i] = {2} * RConst[i-1]

The preceding multiplication is done over field GF(28). Once the RConst value is found, the RoundConstant is a word value defined as follows:

RoundConstant [i] = RConst[i] || 0 || 0 || 0 or [RConst[i],0,0,0]

In a way, having the first byte as what corresponds RConst and the rest three bytes being 0. So when int RConst value for i = 5 is 10, the word RoundConstant is 10000, That means, the RoundConstants are words with only the first byte non-zero and rest three are zero. That also means that the operation XOR, which is performed in the following statement only affects the leftmost byte of Substitute(Rotate (Temp)):

Temp = Substitute(Rotate (Temp)) ⊕ RoundConstant [i/4];

The purpose of the argument i/4 must be clear by now. For the first four words, they belong to the first-round so Round[1] is to be used. RoundConst [2] is used when we reach the 5th word, RoundConst[3] is used when we reach 9th word, and so on. For every 4 word chunk representing a key, we have one RoundConst value, which we will use in the calculation every time we encounter a word belonging to a new round key.

10.8 Inverse operations

Each one of the AES operations, be it substitute byte or shift rows or mix columns or even add round keys, there is an inverse operation available. This is logical as every encrypted text must also be decrypted at the receiver’s end. The AES is designed in that fashion. Whatever the sender has processed and generated the ciphertext from the plaintext must be undone at the receiver. There must be a counterpart of the sender’s processing which processes the ciphertext to produce the very plaintext.

For that inverse processing, similar operations are known as inverse substitute bytes, inverse shift rows, inverse mix columns, and add (no subtract!) round key are provided by AES. For inverse substitute bytes, we have an inverse S-box table, inverse shift rows moving rows back to their position, and inverse mix columns multiply the content with an inverse matrix of the matrix shown in the process of multiplication. The inverse matrix is such that when the matrix used in the process of mix columns is multiplied by the matrix used in the process of inverse mix columns, the result is an identity matrix. We do not provide further insight into this aspect of AES; please consult the AES documentation for further details.

You might wonder why we do not have a subtract key operation. As the add round key is XOR. Adding the same round key produces the original content of the state array and we do not need any subtraction operation. This is the beauty of the XOR operation. Let us summarize our arguments:

Result = StateArray XOR RoundKey is carried out at the sender

Now, when the receiver receives Result, he can do the following:

Result XOR RoundKey = StateArray XOR RoundKey XOR RoundKey = StateArray

So, the receiver gets the same StateArray value back.

10.9 Implementation and motivation

AES is using many specific ideas for doing its implementation process across its design. Let us try to learn about motivation to use those ideas. Let us begin with the design of the S-box.

The linear cryptanalysis attack (and many other similar attacks) is possible when there is a strong correlation between the input and output. We have also seen that when the output can be presented as a linear mathematical function of the input values; it is possible to derive this linear function from enough number of inputs and output (plaintext and ciphertext) values, even when the keys are not available. The S-box here is derived using a typical multiplication with a mod which is not linear. The constant Ci which was used in the 3rd step of the byte substitution process is precisely used to add nonlinearity. Remember that all S-boxes have to be reversible, in the sense that, whenever the receiver decrypts, there is an inverse S-box which converts the output byte to the original input byte. In other words:

Y = S-Box (X)

X = InveS-Box (Y)

However, the process is not linear and saves us from many attacks, including a linear cryptanalytic attack.

The shift row transformation seems quite trivial, shifting the content of one row to another. However, if you carefully observe Figure 10.2(a), you can see that the first four bytes of the block are represented as the first column of the state array and the second column represent the bytes from 5-8, and so on. In the shift rows operation, each row is shifted as many times as the row number itself. For example, 0th row is shifted 0 times, 1st is shifted one column left, 2nd row is shifted two column left and 3rd row shifted 3 columns left. The row elements wraps around when shifted from the first column positions. When an elements moves from a column to a previous column, each byte of that column is shifted four times as each column is 4 bytes wide.

When we shift the rows only once on the left-hand side, each row moves a byte further from its original position 4 times.

The other impact of the shift rows operation is that every column is distributed after the shift rows operation. Every element of the row is now part of a different column (except for the first row which does not experience this movement). For example, in the first column, we had B0 to B3 values. After the shift rows operation, we had B0 still to be part of the first (0th) column but B1 now in fourth (3rd) column, B2 in third (2nd) column, while B3 is in the second (1st) column. Thus, every element is spread to different columns. This happens to all columns. Elements of each row now are part of distinct columns. This helps us get the spread of the content as widely as possible.

The mix columns operation is central to the entire AES design. The matrix represented in Figure 10.4 is specifically chosen. One of the characteristics of that matrix is that it spreads the input to the maximum possible way. The AES designers have proved that after a few rounds of shift rows and mix columns, we achieve the requirement of every output bit being dependent on every input bit. That means, changing one input bit will impact almost all output bits. That means, there is no apparent relationship or bias shown by attempts of an attacker who is trying differential cryptanalytics.

Not only they provide proper security, but also the constants used in the process are also designed for efficient implementation. For example, multiplication with {2}, {3} and {1} can be achieved by shifting and XORing, which is lightning fast. So the encryption process can obtain the performance fitting for modern systems. It is not the same case for decryption though. Decryption demands other constants which do not enjoy that advantage. That means decryption is a bit slower operation than encryption in AES. Having said that, decryption is not always required and so it is not as important as it sounds at first glance. For example, in the systems where only encryption of the content is used to produce the keystream, which is used to XOR with the plaintext to generate the ciphertext while encrypting. While decrypting, the receiver employs encryption only, to generate the same keystream and XOR it with the ciphertext to produce plaintext. That means at no point in time, the receiver is running the AES in the decryption mode. In a way, this is a very clever design which does not appear so, probably, at the first glance.

The add round key operation is probably the simplest and fastest way of involving the key in the entire operation. If you have observed, the other three operations do not involve the key and so act similarly for different keys. This is where the system operates differently for different keys and thus actual security is achieved by this operation. If one does not know the key or provides a wrong key, this step is going to determine so.

The actual complexity of key management lies in the round key generation process. It cannot be proved here but the designers of the AES put it as follows. One may refer to the standard for further details:

	It is infeasible to generate other round keys or the actual key when an attacker has the knowledge of one round key or a part of it.

	Even when an attacker has some part of the expanded key, (some part of the 44-word sequence which is used to generate different keys for different rounds), is known, it is not possible for the attacker to generate the rest of the content of the expanded key.

	The key expansion process is designed to act with speed on varieties of processors.

	Every round treats the bytes of the state array in more or less the same fashion. For each block, the rounds act the same, this is known as symmetry. To remove this symmetry, different round constants were introduced, so they provide displacements and do not get bound to symmetry.

With the description of motivation for a few choices made during the AES design, we conclude here.

Keywords

	Key generation algorithm: The algorithm which generates round keys from the cipher key or the main AES key.

	State array: The array of size 4 * 4. This is where the plaintext is copied in the initialization and ciphertext is extracted at the end.

	S-box: The function where the substitution of the bytes from the state array is produced.

	Initialization: A typical phase where the K0 is added to the content of the state array to start encrypting the content. This is the first step. The encryption process starts from here.

	Substitute bytes: The first operation in every AES round to replace a byte with another byte-based on a typical S-box.

	Shift rows: The second operation in every AES round to left shift nth row n times in cyclic fashion.

	Mix columns: The third operation in every AES round to multiply a typical constant matrix with the content to mix column values further.

	Add round key: This is the fourth and final operation in every AES round, to XOR the content of the state array with a specific round key.

	S-box table: A table for substituting a byte with another.

	Key expansion: The process of generating 44 words of keys to be used in round keys from 4 words of the cipher key. This is typical for a 128-bit key.

	Inverse operation: Every operation of AES is invertible. For each of them, there is an inverse operation possible, like Inverse substitute bytes.

Recapitulation

	AES is the de-facto standard for block encryption and is gaining its popularity ever since its inception.

	It allows three different types of keys: 128 bit, 192 bits and 256 bits. However, it only allows one size for blocks, the 128 bit.

	AES is derived from Rijndael which was developed by two Belgium Cryptographers.

	AES is based on GF(28). Addition and multiplication are defined over GF(28).

	AES has different rounds for different sizes of keys. For 128 bit, there are 10 rounds.

	Each of the AES rounds starts with the substitute bytes operation, followed by shift rows operation, and then, mix columns operation takes places and the round ends when the add round key operation is applied.

	AES processing starts with initialization, copying the plaintext into a 4*4 array known as state array after that a typical key is added to the state array.

	AES uses different keys for different rounds; there is a key expansion process which generates different keys for different rounds and the initialization.

	AES is completely invertible and so all of the operations have an inverse counterpart to be used for decryption. These inverse operations are designed such that they can produce plaintext from the ciphertext.

	AES design looks simple but each step; every idea had sound thinking and designed not only with proper security but efficient execution as well.

Exercises

	Write and explain the characteristics of AES which makes it a suitable choice for encryption.

	Read the AES encryption algorithm documentation from the NIST website and find how it acts differently for the other two types of keys

	Why Galois Field is chosen for AES? Why 28?

	Explain the process of Initialization.

	Explain how the substitute byte operation takes place.

	Describe the process of shift rows. What is the motivation for this process?

	What is the advantage of the mix columns operation? How it is carried out?

	Explain how the add round key operation works.

	Explain how the S-box itself is generated in AES.

	Describe the key expansion process is carried out in AES.

1 The affine transformation is a transformation consisting of multiplication by a matrix followed by the addition of a vector.

CHAPTER 11

Pseudo-Random Numbers

Objectives

After studying this chapter, the reader should be able to:

	List methods to generate random numbers

	Describe the need to use random numbers for various security operations

	Judge why independence and even distribution are important for the random number generation process

	Differentiate between true random numbers, pseudo-random numbers, and pseudo-random functions

	Specify how a number is tested for randomness and the parameters for testing

	Differentiate between linear congruent and BBS generators

	Explain how encryption algorithms can be used as a PRNG.

	Narrate the process of ANSI X9.17, NIST CTR_DRBG Intel DRNG in detail for random number generation

Structure

11.1 Introduction

11.2 PRN, True RN, and PRF

11.3 PRN for solving security problems

11.4 Pseudo random number generators

11.4.1 Linear Congruential PRNG

11.4.2 BBS (Blum Blum Snub) Generators

11.5 Using Cipher-based PRNG

11.6 Real-world PRNGs

11.6.1 ANSI X9.17

11.6.2 NIST CTR_DRBG

11.7 True Random Numbers

11.7.1 Sources

11.7.2 Comparison with PRN

11.7.3 Intel DRNG

11.8 Other methods

Keywords

Recapitulation

Exercises

11.1 Introduction

Many cryptographic algorithms require randomness in processing. We mentioned earlier that in some cryptographic operations, a key is decided to be a random number. Let us take a look at some examples where we need a random number:

	When we need to generate a distinct session key for a specific operation, the best bet is to use a random value. The session key is used only for a typical session and discarded after that. Here, the requirement may not be a strict random number in the statistical sense. A number that is unpredictable by the attacker is good enough. The random numbers, by their nature, are independent of other numbers and thus unpredictable so they are used here. A method that does not produce a true random number but an unpredictable number will just work fine.

	When we need to use RSA like an algorithm, we may need a large prime number. It is really difficult to test if a large number is prime. A conventional brute force algorithm picks up every odd number less than sqrt (P), where P is tested for a prime and checks whether P is divisible by that value. If N is very large (of the order of 10100 to 10150), it is impossible to get the job done in real-time. One simple solution is to choose random values in the range to test if the number is divisible. If the random values chosen are large in number, one can guarantee the primality of that number with some assurance. A similar operation is also required in other similar situations where the complete range of numbers cannot be tested but randomly picked up values are tested because of time constraints.

	An RC4 stream cipher key also is an ideal candidate to use a random number.

	Kerberos like programs use a nonce, a value which is used only once for sending and receiving, to check the freshness of the communication messages. Such values are inherently random. Nonce also is of the type that may not be truly random from the statistical sense. It must not be possible to be predicted.

	The encryption process based on public keys, as mentioned earlier, is much slower than the encryption process based on symmetric keys. The usual solution is to use a random value decided by one of the parties to be used as a symmetric key for encrypting forthcoming communication. It now exchanges that key with the other end using public-key encryption. When communicating parties have the same key, it becomes the symmetric key for that transmission. This value is popularly known as OTP or a one-time password. Many other applications use OTPs. IPsec (IP Security), Wi-Fi (Wireless LAN), TLS are few examples. The best way to decide an OTP is to use some random number generation algorithm.

	Many public systems use random values to indicate file names and folder names, for example, YouTube and Google Drive. The idea is to generate specific names that appear randomly and are not possible for an attacker to guess.

These requirements led to a lot of research in finding out how such random numbers are possible to be generated and what their requirements are. Let us take a look at the second point, the requirements for such random numbers. Researchers found two of them to be the most important ones. We will stress on the method for generating random numbers after that:

	Independence: Each random number must be independent of other members. That means if somebody learns about one random number, he should not be able to predict the next or previous or any other random number in sequence correctly based on this random number value. The requirement is a little more stringent sometimes. It might even be possible for the attacker to get a sub-sequence of a few random numbers generated by that system. The attacker, even in that case, should not be able to pick up other numbers of the same sequence before and after that sub-sequence. Thus, no consecutive set of numbers can be predicted when some consecutive set of numbers are available to the attacker.

	Even distribution: Every number in a given range must have equal or nearly equal probability to be generated by the random number generation algorithm. For example, if we are using RC4 with 16 character key (128 bit), for each of these 16 character positions, all 255 characters are equally possible. Again, random numbers must have a roughly similar number of zeroes and ones. In other words, the distribution of zeros and ones in the sequence should be uniform. The RC4 case, if the programmer observes that every character has an equal probability of appearance of a given range, it automatically ensures the similar distribution of zeros and ones.

Statistically random numbers fulfill both of the preceding criteria. Before we start discussing other types of random numbers, please take a note that the random numbers that we normally describe may not be actually random. For example, if I ask you to guess one number between 1 to 100, you will guess one based on the seemingly random way. There is no deterministic method for you to do so. Unlike that, computers must run a typical algorithm, a deterministic process to do so and it is not going to be completely random. We will throw more light on that part very soon. However, the true random numbers are generated in a real random fashion and it is the best choice for many cases. When we use computer algorithms to produce random-like numbers, they are known as pseudo-random numbers (PRNs). We will study true random numbers (TRNs), PRNs, and functions to produce random numbers known as the pseudo-random function (PRF) in the next section. We will also study how they are used in various applications as well.

11.2 PRN, TRN, and PRF

A TRN is always unpredictable but the inverse is not always true. We have seen in the previous section that many applications do not require TRNs and if the attacker cannot predict the number, it is good enough for them. Generating random numbers is an easy job for a human being where it is technically impossible for a computer with a deterministic algorithm.

TRNs are provided by true random number generators (TRNG). In a way, TRNGs are designed to mimic human beings. Usually, they are based on taking some analog, unpredictable value. A TRNG must rely on some external source of information. The source must be effectively random and referred to as an entropy source sometimes.

For example, samples of temperature values at a random time, the curser value of mouse, mouse movements by the user, keystroke information, and time related to the keystroke, the delay between two keystrokes, pen up, and pen down time in case of graphical activities, disk head positions at a random time, current time or some small fraction of it, captured video or audio information or a small fraction of it, and so on are examples.

The processing may be simple like converting a temperature value into a binary or may involve a few steps. Such steps are needed to provide equal distribution to the system. For example, when one takes a random temperature value, it might be biased to specific temperature values (for example, most of the reading is near the average room temperature and hardly anyone is 0 or 50), the TRNG may only take the fractional part of the temperature value to provide better randomness (more distributed)1. Unfortunately using TRNG in all cases is difficult and not practical. One needs to find an alternative. The pseudo-random number generator (PRNG) comes to the rescue.

Mathematicians have come out with some algorithms which generate numbers in a seemingly random sequence. They are known as PRNs. The numbers generated follow the criteria for randomness to a large extent. The difference lies in the fact that if the seed (one of the inputs provided to that algorithm to randomize the behavior of that algorithm from other occurrences of the same algorithm) is the same; the sequence will exactly be the same.

KIM: For the same seed value, the pseudo-random sequence number generator will always generate the same sequence of random numbers.

This characteristic may not be a disadvantage in every case. Take the case of Frequency Hopping methods deployed by spies and agencies which cannot afford jamming. One old and popular method of generating messages using different frequencies over a specific period (known as dwell time) and continue the ongoing conversation on that frequency. If the attacker catches hold of the frequency used in that communication, he loses it again when the sender and receiver switch over to some other frequency. This solution demands that both the sender and receiver change the current frequency to some other random frequency from time-to-time. The solution is to decide which pseudo-random number algorithm to use which may not necessarily be a secret and a secret seed value is known only to both the sender and receiver. When a sender and receiver run the same algorithm using the same seed, they get the same sequence of numbers (seemingly random). Thus, both of them switch over to the same frequency which appears random to the attacker. When the seed value is not known to the attacker, he/she is in no position to predict the next number and thus kept at bay.

The same principle is also used in cryptography where the sender and receiver need to produce the random number only which both of them are aware of and nobody else. They can follow the same process. They share a seed value and start running the PRN algorithm. When they need the random number, they run the algorithm to get one (or more); the receiver can also produce the same set of random numbers so they can keep on communicating, without sending it at the other end.

The PRNGs use many tricks to avoid using the same seed for different occurrences. One good example is the PGP software which is well known for sending and receiving encrypted emails and other documents. The random number generation algorithm takes the seed by recording both the times the user pressed the previous key and current key as well as the ASCII value of those keys. Such a process automatically generates a different seed every time and the algorithm works almost the same as a TRNG.

There are two types of random number generators that are used in practice. Let us look at them one by one:

	Type 1: They are generally functions that take a seed value and generate the next number in a random sequence. As mentioned earlier, they follow an algorithm based on mathematical principles and thus generate the same sequence of numbers given the same seed. We have already seen that it is helpful in generating the same sequence at both the sender’s and receiver’s end. The numbers generated observe many properties of random numbers. The only problem is that if the attacker learns about the seed (assuming the algorithm is public), he can easily learn about the complete sequence of random numbers. These random number generators generate one number in one call. The RC4 stream cipher that we have seen is an example of this type of random number generator. The seed value, in the case of RC4, is the key. For the same key, the output will always be the same.

	Type 2: These random number generators are popularly known as PRFs. They, instead of generating a new seemingly random number every time, generate a random number of desired lengths when asked for. For example, we might need 256 bytes long random numbers when we supply a 32-byte input. The PRF can help us generate that random number. This PRF is useful in generating a sufficiently large random sequence of user-defined keys when users are supposed to remember only a small length key. SSL and TLS use PRFs.

The difference between both types is just the output that they produce. The first type produces a fixed-length random number each time, while the second type produces a long random value once of the desired length. Both of them use the same type of algorithm and the same type of processing. An algorithm designed for one use can easily be used for other usages. Thus, this difference is just on the surface and not a real one. The important criteria though remain the same that we have seen earlier, the sequence generated must be random and unpredictable.

11.3 PRN for solving security problems

We have looked at two requirements for testing the randomness of a PRN system: independence and uniformity of distribution. Before anyone starts using it for solving security problems, one would like to test any PRN for both these properties.

The distribution property is possible to be assessed quite easily once we produce the sequence of random numbers using a typical system. There are well-defined statistical tests that can help us learn how good or bad that distribution is. However, there is no such test to guarantee independence. One can run the system, produce the sequence, and check whether there is any predictability or dependence for that case. Normally, multiple runs of the same system increase confidence in the system and thus independence are indirectly proved.

The NIST worked in this direction and produced 15 different tests for security applications of PRN systems. These tests will assess both these properties and see how close the system works to produce the PRNs.

In case if you doubt why this randomness test is needed and why NIST has worked to produce these 15 tests, let us try to learn it through an example. Consider you are working on an e-commerce website. Your system generates a PRN of 128-bit size to encrypt the communication. If a system like AES is used to encrypt, we can guarantee that it is safe from most currently known attacks. We have also learned that the brute force attack, which tries all possible combinations of the key, is not possible to be done in real time. The problem is if the key is not completely random, and some part is predictable, the brute force attack only needs to consider the rest of the part. For example, if the first 80 bits can only be one of the few combinations, the attacker has to only value 48 bits later to get the real key. The system is not as foolproof as we think.

There are three assumptions the NIST documentation specifies for the binary sequence of inputs to be tested for randomness. They are as follows:

	Uniformity: When a binary bit pattern is generated, at any point in time, the next bit value can be either zero or one with equal probability. That means the probability of occurrence of 0 is the same as the probability of occurrence of 1. In other words, the probability of the next bit being zero is ½ and the probability of the next bit being 1 is also ½. Consider a sequence of numbers generated that has length n bits total. Out of them, nearly n/2 must be 0 and nearly n/2 must be 1.

	Scalability: When the uniformity property is true for the entire sequence, it is also true for any subsequence; that is, any part of the sequence. If one extracts a typical subsequence out of the sequence at random, the subsequence should also clear the test for randomness. That means randomly chosen parts of the sequence are also random.

	Consistency: When the seed changes, the output of the PRNG changes; however, the PRNG does not treat seeds in any different fashion. It must treat all possible seed values consistently. The working of PRNG, thus, does not depend on the seed values.

All 15 tests check whether there is some non-random property found in the content. Here is a quick rundown describing what these tests are designed to provide:

	One of the tests checks for the proportion of zeros and ones in the entire pattern. If these tests yield other than equal distribution, other tests are not performed.

	A typical m bit block is checked to see if a number of ones are m/2 or otherwise.

	When a typical bit is repeated in a sequence, it is called a run. The next test determines if runs of 0s and 1s found in the sequence are as expected as random. In other words, it determines how fast or slowly the oscillation between ones and zeros takes place.

	Yet another test is performed to check the longest run of 1s in a block of size m. It has to be consistent with the expected length. Checking for 1 automatically checks for zero and so it is not checked.

	There is a test that checks the linear dependence among subsequences.

	One test checks for periodic features or repetitive patterns in the sequence. The appearance of such features is an indicator for non-randomness.

	A test is there to assess a large number of occurrences of aperiodic subsequences. A kind of signature assessment. This test checks for a typical signature.

	Another similar test checks for similar signatures, but a bit differently. When the pattern is found, it may keep on checking from the second bit and do not skip the entire window like earlier cases and do not start from the next bit after the last bit.

	The next test checks whether the sequence can be significantly compressed in a lossless manner. If so, the sequence is considered non-random.

	One more test checks using a Linear Feedback Shift Register. It determines if the sequence is complex enough to be considered random.

	One more test checks whether an m bit pattern is distributed across the sequence randomly as all of 2m total patterns would, in a randomly distributed case.

	One more test checks for cumulative summation of typical subsequences, considering zero as -1. If the summation is near zero, it is fine. Otherwise, it is non-random.

	Yet another test checks how often a particular state occurs in the preceding case. It checks whether there is some regularity when a typical state is visited. If so, the sequence is non-random.

So far so good. We know now that having a PRN and pass the NIST test is quite a task. How one can code for PRN so it can pass all of the preceding tests? The next section discusses.

11.4 Pseudo random number generators (PRNGs)

It is possible to have TRNGs for a program. One must wonder why one needs a PRNG when a TRNG is available. Here are some reasons:

	In many cases, the sender and receiver need to generate the SAME random number which is impossible by a TRNG.

	Even when a TRNG is available, it might not be able to produce random numbers as fast as the application demands. For example, AES encryption on a 10 GB line demands a substantial amount of random keys when the communication is short and multiple parties are communicating together.

	A TRNG may not pass the tests that we have mentioned in the previous session and thus are more predictable than the PRNs! The idea is to have unpredictability rather than the true randomness in most security applications. For example, an application that generates OTP, does not expect the attacker to guess the OTP during its lifetime. If the OTP has some bias (as almost all normal TRNGs have), there is more likelihood of a typical range of OTP than other parts. In that case, the attacker might concentrate on attacking the OTP using brute force on a more probable part; he has more chances of succeeding. Remember, unpredictability is more important in security applications than true randomness!

	When we need to use the keystream such as produced by RC4 or the counter mode with AES, what we expect is a very long period, that is, the keystream should repeat itself after a very long sequence. Unless this condition is satisfied, the keystream reuse attack renders the best of the security useless. A TRNG cannot guarantee such periodicity.

On the other hand, it is difficult to protect the system if the attacker gains access to the seed. He will be able to predict all pseudo-random numbers correctly in that case!

The solution to this problem is to use a TRNG for producing the seed value and then using a PRNG for generating the random number based on it. The sequence generated from the PRNG will depend solely on the value supplied by the TRNG, so it is quite unpredictable, and it also provides all benefits of unpredictability essential for security.

There are two general categories of a PRNG. The first one is Linear Congruential and another is the Blum Blum Shub (BBS) generator. Here is a brief discussion about both of them.

Let us begin with Linear Congruential PRNGs.

11.4.1 Linear Congruential PRNG

The RC4 code has a few operations of the following types:

TempArray [i] = Key[i mod KeyLen];

j = j + StateArray[i] + TempArray[i] mod 256;

i = (i+1) mode 256;

j = (j + StateArray[i])mode 256;

k = (StateArray[i] + StateArray [j]) mod 256;

The idea of these statements can be captured easily by writing the following statement. The next value is the sequence is generated from the old value using a formula of following type:

NewValue = (a * OldValue + c) mod m, where a is known as a multiplier, c is increment, and m is a modulus.

You can see that the new value is calculated from the basis of the old value. The choice of a, c, and m defines how the new value is generated from the old value. Interestingly, you can see that the output generated is between 0..(m-1) and so m is the boundary value for our random numbers. For example, if we have a 32-bit system, the maximum value of that system will be 232 or 65536. We would expect the m value to be 65537 so we have the largest possible range of the random number. However, we cannot just pick the largest value. It is always better to pick up m to be a prime for better distribution. So a prime number comes before that value is chosen normally.

Ideally, there are three needs of a good function for generating random numbers:

	The sequence must produce all numbers in a given range before starting all over again. Our range is 0..m-1; each value in the range must be generated once before starting with the same sequence.

	The sequence should look like a random sequence.

	It should be implemented without much trouble. Better still, there is an effective mechanism to implement this function so it can be used in real-time systems.

With cleverly and properly chosen values of a, c, and m, researchers have found sequences of numbers that act similar to a truly random sequence.

One such choice is a = 75, c = 0, m= 231-1, which was used in IBM 360 computers first and later in many other systems.

However good it looks like, the Linear Congruential algorithm has its drawbacks. It is, as mentioned in the name itself, linear. Learning about a few values of the sequence will help the attacker learn about the values of a, c, and m. Once those values are learned, other values can be predicted easily. There will not be any security.

However, there are a few simple tweaks that make this system work. For example, one can pick up any true random value using a TRNG, generate true random value, and add it to the number generated. Another method is to use the current clock value as the first value (the seed value).

11.4.2 BBS (Blum Blum Snub) Generators

This algorithm is based on factoring a large number. In this algorithm, two prime numbers are taken, p and q. For them, the following is true:

p ≡ q ≡ 3 (mod 4) (both p and q should be congruent to 3(mod 4))

In other words, when either of them is divided by 4, the remainder comes out to be 3. There are many such numbers, and quite a few of them are primes too. 7 and 11 are such numbers. However, the numbers picked up in real cases are quite large.

Another desired property that the value gcd(Φ(p), Φ(q)) is very small value. So, the period of the sequence is large. Once we get our p and q, we can start. The new value calculation is done using the following formula:

NewValue = OldValue2 mod m (=p * q)

If the sequence of numbers is x0,x1..xn, we can state that,

∀ i, i ∈ (1..n), xi+1 = xi2 mod m, where m = p * q

We must choose x0 and subsequent numbers can be generated using a BBS generator. There is a typical requirement for x0 as well. It has to be co-prime to m, that is, their GCD value should be 1, or in other words, they should not have any common factor. Choosing 0 or 1 as x0 also does not work. One must choose some other value.

One typical way to use BBS is to pick up random bits for a typical case. The collection of sufficient random bits will be considered as the random number output. In that case, once the value xi is found, the next bit in sequence can be determined by picking up the least significant bit of xi. The next bit in the sequence is the least significant bit of xi+1. The process continues until sufficient operations for generating enough number of bits is completed.

The BBS generator is found to be quite secure. The designers have shown that even when some of the bits of the sequence are known to the attacker, it is not possible for him to predict the next value. That means, if an attacker learns about xi, or a few previous bit values, he will not be able to learn about xi+1. This is the difference between the Linear Congruential and this method. In other words, the unpredictability that we stressed before is possible to be achieved using this method. Another point in favor of this method is that it is based on a known mathematical problem. When the attacker catches hold of the value m, he has to try each prime value less them m to divide it and find out the factors of m. As there is no direct method to determine the factors of a number, and if the values of p and q are large enough, the time taken to find out factors will be infeasible for an attacker.

Both Linear Congruential and BBS are specifically designed random number generators. It is also possible to use ciphers for the same purpose.

The next section describes the PRNGs based on ciphers.

11.5 Using a cipher-based PRNG

When the programmers need pseudo-random number generators, they opt for two different types of routines. The first class of routines is specifically built algorithms, which we have looked at in the previous section.

Another method used to develop a PRNG based on symmetric block ciphers (like DES or AES). The output, after four rounds or so, for any given input, appears quite random. The reason for the behavior of the cryptographic algorithm to provide such randomness is to make sure the statistical patterns appear in the plaintext should not be visible in the ciphertext. That makes cryptanalysis very difficult. The asymmetric ciphers (for example RSA) and SHA-512 like functions also produce output which appears random. They are also good candidates for using them as PRNGs. One of the problems of a block cipher is that their output is of a fixed size only. When the smaller size of the output is required as a random number, the output is truncated.

The other type of routines is based on mathematical calculations (like RC4 which we have seen in Chapter 6, symmetric cipher and cipher modes) and the other two methods we have seen in the previous section. These methods produce a fixed output based on a typical input but with every characteristic of a random number. Unlike the previous case, these algorithms are specifically designed to generate pseudo-random numbers and are better candidates when one needs a random number generator and not a symmetric cipher. Here are some differences between these two approaches:

	A cipher-based PRNG is useful for cases where the algorithm is already being applied for encryption. One does not need to redesign or find some other algorithm for use.

	A specifically designed PRNG is provided as a generic routine so that one can fittingly use in many cases.

	Specifically designed PRNGs can be analyzed for randomness which is not possible for the cipher-based PRNG. We have looked at the tests which we expect a PRNG to pass. Specifically designed algorithms can be tweaked to suit the needs here.

The repeated encryption process is used in practice to generate a series of random numbers. Two popular ways in which this simple method can be implemented are using the Counter Mode and Output Feedback Mode.

Let us try to see how to a cipher-based PRNG works. Generally, like specifically built algorithms, a typical seed value is taken and is encrypted. The encrypted output is the next number in the sequence. For example, let us take a typical case with AES. Let us assume the initialization vector is available and it has value IV. We start with encrypting the IV and generating the first random number. Once it is done, the first random number is encrypted to get the second random number and so on:

N0 = Encrypt(AES, IV, Key)

N1 = Encrypt(AES, N0, Key)

…

In general, Ni+1 = Encrypt (AES, Ni, Key).

If Ni is longer than (for AES, it is a 16 byte or 128-bit number) required length, they are truncated.

In the counter mode, the seed value is taken as IV and the process works as follows:

N0 = Encrypt(AES, IV, Key)

N1 = Encrypt(AES, IV + 1, Key)

…

In general, Ni= Encrypt (AES, IV + i , Key).

Ni is truncated if they need to be of smaller size, like the previous case.

Let us take another case where we need a long random value. Normally, a long random value is required when the system needs to generate something known as the key material. The key material is used later to produce many keys and IVs for subsequent secure operations. With a simple trick, the preceding process can be used to generate a long random value.

Suppose the output of size N bytes is needed, we will keep on generating N0, N1, and keep on concatenating them. We will keep on doing so till the resultant number becomes at least as large as the required N bytes or more. The concatenated number will always be a multiple of 16 bytes in the case of AES. When the iterations get over, and if the cumulative value is larger, it is truncated:

Output = 0;

i = 0;

While length (Output) < N do

{

Output = Output || Ni; (|| indicates concatenation process)

i++;

}

If length (Output) > N, truncate (Output, N);

Both of the PRNGs are found to be quite good. The key and the IV are the seed values for the generators. They generate random numbers one after another or generate a long random string to be used for a variety of purposes.

11.6 Real-world PRNGs

We have looked at the types of PRNGs, the specifically built as well as the cipher-based. It is time for us to look at some of the real-world PRNGs which are based on those ideas. One of the old but still used Cryptographically Strong Pseudo-Random Number Generator (CSPRNG) in ANSI X9.17. The phrase ‘Cryptographically Strong’ is added for the purpose. It says that the PRNG has properties suitable for using it in cryptographic applications. Normally, there are two properties sited when one calls a PRNG cryptographically secure:

	The first is the next bit property which we have mentioned earlier. Whenever an attacker has learned about k bits of the PRNG, there is no way of learning the next (k+1th) bit with surety.

	The second is the knowledge about the state the system is in. It is possible in some cases to learn about the state of the system and learn about the output based on the state. The idea is to have a PRNG with no such probability. An interesting move, normally deployed by CSPRNG is to have an entropy source. An entropy source is a TRNG and thus adds true randomness to the entire process.

The CSPRNG normally is asked to provide uniqueness (when they are used as OTPs, for example), or high entropy for unguessable outputs (when a random password is generated), or secure key material (when used to generate many other keys and IVs, and so on for future secure operations). In all these cases, both of the preceding requirements are crucial. Many PRNGs fail on one or both fronts. ANSI X9.17 succeeded in providing both the properties and that is why it is considered to be quite good even when it is now quite old. Here is a brief discussion on ANSI X9.17.

11.6.1 ANSI X9.17

Though ANSI X9.17 is quite old, many of the legacy applications are still using it, including PGP, which we will study in Chapter 17: Email Security –PGP and SMIME. It is found to be quite strong and there is no news yet on anybody breaking it. The idea is quite simple.

Here are the properties of ANSI X9.17:

	It has three 3DES encryption modules working in sync.

	All three of these 3DES modules use the same set of 2 keys.

	These keys are kept secret and used only for this purpose (providing seed to pseudo-random number generator). Both keys are 56-bit keys as normally used in DES.

	Another input to the process is an IV which is input to the first round.

	All three of the 3DES modules use EDE mode (Encryption by key1, Decryption by Key2 and Encryption by Key1).

	There are two inputs to the process: one is the IV and the other is the pair of keys.

	The current date-time value at the start of the encryption process is taken as an entropy source. This is required to provide the 2nd property we have described for CSPRNG.

	The output is a 64-bit random number after each round. There may be multiple rounds based on the need of the user.

The encryption process happens in three different phases using three different 3DES encryption modules:

[image:]

Figure 11.1: The ANSI x19.17 PRNG, one typical round

Figure 11.1 describes the process of generating a random number. The IV, date and time, and the keys are input and the output is the next random number and next IV.

The next random number and next IV are generated using formulae described in Figure 11.1 as follows:

Next Random No = 3DES(Key1,Key2, (IV ⊕ 3DES(Key1,Key2, Date and time)))

Next IV = 3DES(Key1,Key2, (Next Random No ⊕ 3DES(Key1,Key2, Date and time)))

This seemingly simple algorithm is proven quite strong for a few reasons. Here is a list:

	Though each one of the keys is only 56 bit, the 3DES process uses both keys in a fashion it comes out to be 112 bit (as two keys are used), which is quite strong.

	There is a total of 3 * 3 encryption operations for three different 3DES modules each one of them encrypting the content thrice.

	Two inputs, both are distinct from the previous random number, date and time and the IV additionally provided so it adds enough entropy in the input.

	Even when a typical random number (the PRN generated from the preceding system), is known to the attacker, it is not possible for him to learn about the next IV. It is because the next IV invites additional encryption.

11.6.2 NIST CTR_DRBG

The NIST has provided a standard for a PRNG called NIST SP (Special Publication) 800-90A for generating random numbers using deterministic random bit generators. It has three algorithms included in it HMAC_DBRG based on HMAC that we have already seen. Hash_DRBG for a hash-based algorithm and CTR_DRBG which is based on the counter mode block cipher operation. All three algorithms generate the random numbers based on deterministic algorithms and thus are known as Deterministic Random Bit Generators or DBRG for short. There was a fourth algorithm which was found to be insecure and was removed later.

Out of these three algorithms, we will take a look at the CTR_DRBG (Counter mode Deterministic Random Bit Generator) as it is used in quite a few real-world systems, including Intel Processors2 and it presents an excellent case of how a deterministic random number generator can be designed.

An interesting aspect of CTR_DRBG is that its security depends on the block length and not key length. That means AES with a 128-bit key provides almost the same security as AES with a 256-bit key, as both versions use the same block size of 128 bits. 3DES, with 168-bit key size, performs poorer than AES with a 128-bit key as it has a block size of only 64 bits.

Before we describe the functioning of CTR_DRBG, let us learn a few things about it:

	Instantiate is the process of setting the ball rolling. When Instantiate is called, it will provide the first key value and a value of IV to be used. The IV and key together are known as seed values here. It calls an update function (explained later) to generate the new seed. As an update function demands an old seed value, it is fine in a normal case but not instantiate. The trick is to provide both values as zeros in the instantiate. That means, the initial key and IV are not user-defined values but generated by calling the update function with seed value 0 (with other things, including a true random number). Thus, the key and the IV are automatically generated and have fewer chances of being compromised.

	Generate is another process that increments the counter and does the job of providing the next state from the current. It acts like a counter but not the same. We will soon see the difference. The invoking application specifies the length of the random number in terms of bits. The generate function iterates until it produces that specific length of the output.

	Reseed is a process of breaking the counter increment and start all over with a new seed and IV, by having a new true random number as an input. ReeseedLen is the length of the pseudo-random number where the counter is to be broken and reseed is to be initiated. The user of DBRG decides this limit.

	An update is another process which produces a new set of seed value and an IV. It is called by Instantiate and later by the reseeding process.

	An entropy source (one which produces a true random number) is used in the process of Initialize and Reseed. This will prevent attacks based on guessing a sequence number. We will call this value ProData.

	Another input is also provided from the calling application called Initial String. This string provides application-specific input to the process, which alters the output based on this value. That means, if the same function is called by two different applications, even when all other things are the same, the output is going to be different. In other words, the application which is going to get the pseudorandom number from the CTR-DRBG will have a different sequence with different initial string values. The application can also provide the Initial String value during the call to Generate, so the sequencing process starts all over again.

	Both the entropy source and the Initial String make sure that the new sequence has no dependency on an older string and no statistical relevance with earlier output.

	Another important term is the length of the seed value known as SeedLen, which is equal to the block length (the IV is also of that size) plus key length. For example, in case of AES with 128 bit key and 128 bit block size, the SeedLen = 128 + 128 = 256. The entropy source produces the true random number of size SeedLen so both key and the IV can have random values from it. In the case of AES, when a TRNG produces a 256-bit value, 128 bit of it will be used as an IV and rest 128 will be used as a symmetric key. (The standard calls the initial block V, but we will continue calling it IV to be consistent with our earlier description).

	The conventional counter has one drawback. If one learns the value of IV, it can predict the next or previous value in the counter as it is just an increment or decrement. The CTR_DBRG designers have made sure that it does not happen here.

As the Update function is a basic building block of the process, let us start learning about the same.

We have considered the following assumptions. The TempSeed and NewSeed are seeds. TempSeed is a temporary variable for generating seed while NewSeed contains the final seed value (as a combination of IV and Key). The job of the Update function is to generate a new seed from the old seed (which is passed as two values key and IV). We also assume an attribute length provides the length of the seed.

Here is the function. The ProData is provided data from the entropy source. Key and IV are current values of key and IV known together as the seed. The Update process now generates the new pair of key and IV as the new seed and returns as the NewSeed variable. The ProData is exactly of the length equal to SeedLen so it can be XORed with Temp when the Temp achieves that length:

NewSeed CTR_DRBG_Update (proData, Key, IV)

// Provided data is TRN of Seedlen size

{

For(TempSeed= “”; TempSeed.length < SeedLen;)

{

TempIV= Increment (IV);

OutputBlock = Encrypt(key, TempIV);

TempSeed = TempSeed || OuputBlock

}

TempSeed = TempSeed ⊕ ProData; // This will randomize output

NewSeed = TempSeed //NewSeed contains new IV and new Key

return NewSeed;

}

The Update function is used by Initialize which initializes the seed (that is, both the IV and the key). Here is the function. It uses a TRN called Entropy in its design. It is assumed that there is a TRNG that provides this value of Entropy. Entropy is exactly equal to the SeedLen value. This function sets the ball rolling by starting with the key and IV values as zeros and calling the update function to have the next pair of keys. You can see that even though the invocation of Instantiate is called with both of these values as zeros, as the entropy and InitialString objects are different and the block encryption process uses a typical encryption key there, the output changes accordingly. The security strength is the value the user specifies to indicate his security requirement. We will not discuss that further here:

State CTR_DRBG_Instantiate(Entropy, InitialString, SecurityStrength)

{

Seed TempSeed;

If InitialString is smaller than SeedLen, pad enough zeros;

//The Initial String is provided by the invoking application,

// Entropy is true random number

SeedMterial = Entropy ⊕ InitialString

State.ReSeedCounter = 1;

TempSeed.Key = 0keylen;

TempSeed.IV= 0Blocklen;

NewSeed = (CTR_DRBG_Update(SeedMaterial, TempSeed.key, TempSeed.IV)

State.IV = NewSeed.IV

State.Key = NewSeed.Key

Return State;

}

The reseeding process is same as update. It returns new key and new IV; however, it uses the entropy input as well as the application specific additional data value. It works as follows:

	It takes the additional data AddData from the application, if it is not of SeedLen size, pad zeros for making it so.

	It decides the SeedMaterial Value as EntropyVal ⊕ AddData.

	It calls CTR_CRBG_Update with SeedMaterial value, old key and old IV.

	The new key and new IV are returned in the new seed which is to be used in further processing.

Note: There is another variant of the CTR_DRBG where it uses a derivation function. Instead of using SeedMaterial directly, it passes Entropy ⊕ InitialString to the derivation function with other parameters to generate the SeedMaterial.

The applications need to call one more function to get the set of random bits it wants. That function is known as Generate and it is described in the following. We assume that the invoking application or calling function knows the number of bits needed, which we call a number of bits (nBit). Remember there is a variable ReseedLen which limits the number of total output bits. If it exceeds, the Generate function returns false and we must invoke the ReSeed function before calling the generate function yet again.

The job of the Generate function is to generate a specific random number of bits for a given case. The calling function or application demands a typical number of random bits and the Generate function generates those bits and returns back. Interestingly, while calling this function, the application may decide to provide its input which we call InitialString. The processing of the function changes based on this value. This function calls the Update function to change the key and IV values before processing. Otherwise, it continues incrementing the IV, encrypts it, and generates the required number of random bits using that encrypted block. In the end, it calls the Update function yet again. This call to Update generates the next Key and IV to be used when the Generate function is called the next time. In a conventional counter mode, the IV keeps on incrementing but does not change. In this case, it does. The idea is, if an attacker catches hold of one typical bit sequence, he will not be able to get the previous or next based on his knowledge of key and IV:

Out CTR_DRBG_Generate(State, nBits, InitialString)

//State contains three items, key and current values of counter and IV

//nBits is the number of random bits needed in calling function

//InitialString is sent from the calling function or application

// Out contain three things as follows

// Status indicates if reseed is required or not

//OutBits indicate generated pseudo-random bits

//New State, indicating new values of Key, IV, and counter

{

If counter > ReseedInterval

set Out.Status=fail and QUIT:

If IntialString is not null

If InitialString is smaller than seedlen, pad it with zeros;

State = (CTR_DRBG_Update(InitialString, State.key, State.IV)

Else

InitialString = all zeros of length SeedLen

Temp = “”;

While (Temp.length <OutputBits)

{

Increment IV in a typical fashion,

OutputBlock = Enctypt(State.Key, State.IV)

Temp = Temp || OutputBlock

}

OutBits = truncate(Temp, nBits)

State = (CTR_DRBG_Update(InitialString, State.key, State.IV)

// This is a deviation from conventional counter mode

// It help avoid attacker learning about previous values

// of both key and IV, if he learns about current value

Out.ReseedCounter ++;

Out.Status = Success;

Out.State = State;

Return Out;

}

Let us try to understand. Generate is the key function of this system. When the counter value is bigger than the Reseed interval value, it quits and demands reseeding, which generates new key IV pairs and also resets the counter to 1. Otherwise, the function works as a conventional PRNG using a counter, incrementing the IV and calling the encryption function, keep on concatenating these output values together and eventually when it gets bigger than required, truncate to the required number of bits.

However, this is a real-world PRNG so there are two additions. First, if the application wants to set the ball rolling in its way, it specifies a typical string. We call it Initial String. When the application provides this initial string, the function works differently, calls Update before and generates a new pair of key and IV, and generates the random numbers accordingly. The other addition is that we call the Update function at the end. This call generates a new key and IV which is used in the next call to this function. In the conventional case, the key is the same and the IV is incremented by one but here, both of them are changed to a new value and the new value calculation process depends on the encryption key which the attacker does not have.

In the end, the Reseed counter is incremented by one, so in the next call, if it is found to be equal to ReseedInterval, the Reseeding process will be initiated. Though the process is quite complex, it throws substantial light on how one can design a PRNG.

We have mentioned TRNs a few times. Let us elaborate on it a little further.

11.7 True Random Numbers (TRNs)

True random numbers are generated from non-deterministic sources like temperature, an average of last few keys pressed by the user, and execution time of an average process on the CPU. Some other sources include taking a hash of the last image the camera has seen, or saved as a picture, taking a sample of the last video or audio call (in case of a communicating device like a mobile phone), and taking a hash of it, and so on.

There are external sources also which can be designed specifically for generating truly random numbers. There is a special category called hardware RNG (HRNG) which is special hardware specially designed for the same. These devices normally sense some natural phenomena, for example, learning about the thermal noise and photoelectric effect; these processes are quite unpredictable and quite suited for our needs. An HRNG normally contains circuitry to convert the natural phenomena input into an input signal (normally an electric signal). However, good they sound, one of the major drawbacks of most HRNGs is that they cannot produce more than a few bits per second, where most cryptographic algorithms need many more bits. As we have already seen in the earlier discussion of PRNGs that they need a random seed to act in a more unpredictable fashion. These HRNGs are used to provide that entropy source.

11.7.1 Sources

RFC 4086 is specifically designed to have the collection of the Internet best practices for generating random numbers and it discusses many things related to it. One of the interesting ideas the RFC presents is about the type of sources for random bit generation. It says we can use the microphone of the laptop or camera where they are not being used. What they receive is a kind of noise that can be used as a TRN. One can obtain disk driver heads seek times and use them. Another case is to measure the timing and content of the mouse movement, information about the keys pressed in a given period and more can also be used. There are many similar inputs possible. Kindly refer to the RFC for more details.

11.7.2 Comparison with a PRN

Let us try to understand how the true random numbers differ from pseudo-random numbers. The idea is to capture the best of the best world’s solution for our cryptographic problems. There are four points on which they can be compared:

	Speed of bit generation: The pseudo-random number generators are designed by fast algorithms so they can generate many bits in a given time. In most cases, the TRNGs do not act that fast.

	Determinism: The downside of the pseudo-random number generator is their deterministic nature. If the attacker catches hold of the parameters used to generate the pseudo-random numbers, they can also determine the random bits.

	Period: All pseudo-random number generators repeat the sequence of numbers after a typical cycle known as a period. In other words, there is a chance that the attacker encounters the same sequence of random numbers are generated after the period and use it for his advantage. This seriously compromises the security of the cryptographic system.

	Skew: Normally, a TRNG is biased towards a typical set of numbers and fails to pass tests that we have described in the beginning. They are not well suited for a case where proper distribution is more important than unpredictability.

Now, you can understand that though it is important to have randomness in cryptography, the TRNs have their limitations. It is better to use them as seeds and generate PRNs from it, which are better distributed and faster to generate.

11.7.3 Intel DRNG

In this section, we will be learning about a typical TRNG, Intel’s Digital Random Number Generator (DRNG). This is a device that produces random numbers using a completely hardware-based solution. The hardware-based solution has one disadvantage that is not possible to change anything once implemented and cast in hardware. For example, any security lapse is found with the implemented algorithm, it will not be able to replace that or modify that hardware at later stages. However, there are two advantages. First, all hardware solution is an order or magnitude faster than a software or hardware + software version and Intel DRNG was found to be quite efficient in that regard. The second advantage is the very property which prevents it from modification for the genuine purpose also prevents it from modification for malicious purpose. This solution is more secure than a solution that contains some part in software.

The DRNG works as follows:

	The Intel DRG is a three-stage design. It uses a hardware circuit in the first stage to work on thermal noise present, which is quite and truly random.

	The output of this circuit is fed into a second stage known as conditioner which de-skews the input. The true random number normally has a bias and the conditioner algorithms are designed to produce a more randomized output from it.

	In the case of a DRNG, the conditioner algorithm uses CMAC using cipher block chaining and returns the last block.

	The third stage, which comes after the conditioner, converts a 256-bit output to 3 GB/sec output using a PRNG. The 256-bit output of the previous stage acts as a seed for this value. As soon as the new value is available, it is used as a new seed in this stage. This is done to improve the speed of output. The hardware may be slow for a typical case and this technique is to speed up the process.

	The output of the 2nd stage, the conditioner, also goes to another module, which provides different keys and other material for any secret key usage.

Intel DRNG is used by operating systems running on top of it for many of its work related to cryptography, for example, generating random passwords for a new user and so on.

11.8 Other methods

There are a few other methods also used for generating and conditioning random numbers. One of them is using stream cipher programs like RC4 which we have studied in Chapter 6: Stream Cipher and Cipher Modes. RC4 has a large period and operates on a seed value, called a key, of 256 bit or less.

Another method to generate a random number is using public-key encryption. The process is quite similar to the encryption using block symmetric ciphers in the OFB mode. The blocks are encrypted using the RSA algorithm (which we will look at in the next chapter) and some part of the output is provided as random bits and the rest is used in further encryption (generating the next block of encrypted content). The rule of thumb is that more bits are used for the randomization part. The algorithm produces more random bits in a given time, and the more bits are used for generating the next block, and the system is stronger against attacks. There are PRNGs that are based on hash functions as well. They also act the same as the symmetric cipher case. Instead of generating the ciphertext from the input, a hash value is taken. In the next iteration, the hash value of the previous hash is taken and it is padded with the earlier hash. It keeps on doing it until the output of the required length is not obtained.

Both these methods that are based on asymmetric ciphers and hash-based have typical shortcomings. The RSA like algorithms needs exponential calculations which prevent them to act fast. The hash-based method produces a fixed output size which in a way reduces the speed of the output. That is the reason they are preferred only when the speed of random number generation is not a prime need of the system. On the contrary, RC4 is quite popular as it is very fast and can produce random numbers for a large range. The NIST CTR_DRBG has two more versions, Hash_DRBG and HMAC_DRBG, one is based on the hash value and the other is based on using the HMAC value. They are considered a little better in terms of security but their speed is comparatively less.

Keywords

	Independence: The ability of the random number to be independent to the previous or next random number.

	Even distribution: The ability of the random numbers to be equally distributed in a given range.

	True random numbers (TRNs): TRNs are numbers that are truly, randomly generated from natural sources.

	Pseudo random numbers (PRNs): PRNs are numbers which are generated using some deterministic algorithms but have both the properties of a random number satisfied.

	RN generator: The module which generates a random number. They generate one number in a call. Every time they are called, they return with one typical fixed size random value.

	Seed: The initial value provided as input the PRN.

	PR function: A function that generates a long random number that can be used later as a key material.

	Key material: Material with random values some part of which is used as keys for encryption and authentication and some part to be used for IVs for various security operations.

	Cipher based PRNG: The PRNG which generates a number based on using some encryption algorithm.

	Cryptographically Strong PRNG: When the PRNG bits are unpredictable even though some of the earlier bits are known to an attacker as well as it is impossible to generate the next state from the knowledge of the current state.

	Entropy: A truly random value used as a seed for generating a sequence of PRNs.

	DRBG: Deterministic Random Bit Generator

Recapitulation

	There are many places where one needs to generate and use a random number in the secure operation.

	Random numbers must be independent and equally distributed.

	A TRN is available from nature; PRN is generated using a deterministic algorithm. Both of them together are used to produce a secure solution for generating random numbers.

	NIST provided tests to generate the randomness of the sequence the PRNG generates.

	PRNGs are useful in many ways, including a case where two communicating parties need to generate some random number sequence.

	Linear Congruential PRNG is fast but predictable if some number of the sequence is known, the BBS generator is better in that regard.

	A cipher-based PRNG is another choice available to the programmer. Encrypting the encrypted content, again and again, to generate multiple outputs and concatenating them is a simple process followed here.

	ANSI X9.17 and NIST CTR_DRBG are two real-world PRNGs while Intel uses the DRNG as a real-world True RNG.

Exercises

	The chapter contains some examples where one needs a random number for the secure operation. Kindly study the surroundings and find out at least two more cases yourself.

	What is the importance of independence and even distribution for a random number generator? What if both of them are not observed?

	PRNG generates the same sequence of random numbers provided the same seed value, what is the advantage of it?

	PRF provides a long random value to be used as a key material for secure operations. Try finding out what is the use of this key material reading chapters 17, 18, and 19.

	PRNs can be tested with a few tests of randomness, only when they pass all tests; the generators which generate them are used for a real purpose. Why TRNs do not need to have such tests?

	Linear Congruential PRNG and BBS generators are two common forms of specifically designed PRNGs used in practice. Compare them.

	A cipher-based PRNG is another popular choice of generating PRNs. Compare two different types of cypher based PRNGs used in practice.

	Real-world PRNGs also require having two more attributes; the next bit or next state of the system should be unpredictable from the current bit or state. Explain both the requirements.

	Explain all three functions of NIST_DRBG.

	What is the usefulness of Intel_DRNG? Explain how it works. Learn more about the usage of this TRNG from other sources and write a short note on it.

1 For example, take the square root of a temperature value and pick up the first five digits of fractional part or cube root and pick up first five digits of the fractional part, and so on. One more algorithm is to take two different values of this type, divide one by another and take the fractional part of it.

2 Some researchers claim that both Hash and HMAC versions have security proofs while the CTR does not have one. So it is better not to use CTR. However, it is being used and found no problems yet.

CHAPTER 12

Public Key Algorithms and RSA

Objectives

After studying this chapter, the reader should be able to

	Differentiate between asymmetric and symmetric encryption by stating the drawbacks of symmetric ciphers and solutions by asymmetric ciphers.

	Explain RSA and write the step-by-step process to encryption using RSA.

	Judge why RSA works the way it is.

	List various techniques used to improve the performance of the RSA algorithm.

	Narrate different types of attacks on RSA and countermeasures used by conventional RSA systems.

Structure

12.1 Introduction

12.2 The need for public key-systems

12.3 How it works

12.4 The prerequisites to understand RSA

12.4.1 Public-key encryption attributes

12.4.2 Misconceptions about public keys

12.5 RSA and processing in RSA

12.5.1 Exponentiation in modular arithmetic

12.5.2 Public Key requiRements

12.5.3 Examples

12.6 Improving efficiency

12.6.1 Using private keys

12.6.2 Using public keys

12.7 Cryptanalysis and Attacks on RSA

12.8 Countermeasures

12.9 Difference: Symmetric and Asymmetric encryption

Recapitulation

Keywords

Conceptual Exercises

12.1 Introduction

We mentioned about public key cryptography or asymmetric key cryptography multiple times in earlier chapters. We will take a look at the concept of asymmetric keys and related issues in this chapter. We will look at how authentication can be done using public-key cryptography and where else can we apply asymmetric cryptography, including digital signatures. The asymmetric key system, unlike the symmetric key system, has two keys for every user instead of one. One of the keys is called the private key and the other is called the public key. The public key is known to the rest of the users while the private key is kept secret with that particular user. Every user has a specific private key and corresponding public key in the system. Interestingly, when encryption is done using one of the keys, decryption is done by another key. So if we encrypt using a public key, decryption is performed using the private key and while we encrypt using the private key, the public key can be used to decrypt.

One may wonder why we need asymmetric keys when symmetric keys are proven useful and a lot of programs are already using them. Let us understand.

12.2 The need for public-key systems

Let us try to learn why one needs the public-key systems. The shared secret key-based systems demand both parties to share a key. Unless they have some secret method to share a key, it is impossible for them to communicate. This is one of the weakest links of the symmetric key algorithms. If ever the key is stolen by the attacker during the exchange period, however strong the encryption process itself is, it defeats the strongest security.

Another common issue with the system is the need for many keys, as many as the number of receivers one would like to communicate with. Consider a website that has 50,000 customers; the website needs to have 50,000 shared secrets to share with each of the customers for secure communication with each of them. Managing such a huge set of shared keys secretly is hard. Not only that, the new customers keep on coming, the old customers keep on generating their keys and the process does not really stop. However, many companies have many more users and still use similar techniques, such as Gmail or Facebook users. They have large systems in place to store passwords, a kind of symmetric encryption. We read a lot of news about those passwords being stolen and compromised even though these companies spend billions in securing their database. A normal website, with a much lesser budget than these companies, has a hard time to keep such huge database protected. As they cannot even deny many users communicating with them in a secret fashion, they need a solution to this problem. Ideally, they should have a single key or a few keys using each potential customer who can communicate with them without any problem.

Another issue that arises is when strangers want to communicate with each other. What if a pair of strangers, a potential buyer and a seller in case of an auction website, for example, wants to communicate in a secure fashion? As they are strangers, they do not have a shared key. Even when they are strangers, they would not like to divulge information to anybody else and need a method for secure communication.

Another problem is related to the sender nonrepudiation. Consider two users sharing a key, and one user receives a message from another user, for example, an order of 100 laptops. While delivering the order, the other user might just deny sending this order, or state that the order was for 10 and not 100 computers, as there is no way of proving it. The sender’s normal argument is that the receiver has concocted the message himself. The receiver can actually concoct such a message himself, so it is not a method to ascertain the sender nonrepudiation. When we study public-key systems, we will see that when the sender sends anything by encrypting using his private key, anybody with the public key (including the court of law) can open it and prove that it is sent invariably by the alleged sender. The sender, after sending such a document, cannot deny later that he has not sent that document. There is no way the receiver can concoct the message himself.

A similar problem with symmetric encryption is related to provide authenticity to a document. We have already seen some methods in Chapter 8: Message Authentication using MAC for message authentication; one of them is using public-key encryption. We have seen how digital signatures can be calculated using public-key systems in Chapter 9: Authentication and Message Integrity Using Digital Signatures. Here is a time to dive deep.

12.3 How it works

The idea of asymmetric key encryption is quite simple. We assume two keys, PrKey and a PuKey, for each user. The users communicate with each other by encrypting anything by the receiver’s public key. The receiver, on receipt, decrypts it by his own private key.

Sounds simple, isn’t it? However, simple it looks like, it is not in the actual sense. The public and private keys are related to each other, without which the preceding conditions cannot be satisfied. The problem is how to stop an attacker with one key (the public key) to learn about the other key (the private key). We will soon see how that is possible to be achieved. We have already hinted about them in chapter 8. In short, the answer is that the algorithms are designed in such a way that generating the key pair is possible using a single operation but learning about the other key from one key demand multiple operations that are infeasible to be carried out in real-time.

The private key (PrKey) is kept with the user and disclosed to nobody. The other key (the PuKey) is purposefully disclosed to everybody who wants to have communication with the user.

If you diligently look at this solution, you can see that this system solves some of the problems that we have mentioned earlier in the section, The need for public-key systems. When anybody’s public key is available (over some form of the directory) to anybody, including a stranger can send anything to that person by encrypting using the receiver’s public key. This guarantees that only the intended receiver, who is in possession of his own private key, can open it and nobody else. The receiver does not need to keep multiple keys, only his public key knowledge is enough for many senders to communicate to him.

Also, the encrypting key, the public key, is public knowledge and there is no harm if it is known even to the attacker. So, sharing a public key does not compromise security. The most important part is that there is no need to share the private key with anybody!

12.4 The prerequisites to understand RSA

Public key cryptography thus has the following components:

	Plaintext: Like the symmetric counterpart, this is the text to be sent and input to the AsEnc.

	Algorithm to encrypt: The AsEnc is used to encrypt the plaintext into the ciphertext. It takes the plaintext and one of the keys to encrypt and generate the ciphertext.

	Public and private keys: One must decide about a pair of keys to be used so that one can be used for encryption and another for decryption. Either of the keys can be decided to be kept private and another can be decided to be made public.

	Ciphertext: Like the symmetric counterpart, this is the output from the AsEnc, in a form that is indecipherable for any attacker. Also, when one uses the different private keys to encrypt the same message, the ciphertext will be different.

	Decryption algorithm: We have denoted this as ~AsEnc. It takes the ciphertext and key, other than the key used for encryption, and produces the plaintext back. In our discussion of digital signatures in Chapter 9: Authentication and Message Integrity Using Digital Signatures, we have seen quite a few examples of different encryption and corresponding decryption algorithms.

How one can work with asymmetric systems? The following steps are involved:

	Each user generates a pair of keys for him to use. There are websites like VeriSign and software like Cleopatra available with GNU Privacy Guard (GNUPG) which can help them do so. We have already seen a few methods ourselves in Chapter 8: Message Authentication using MAC. A little more knowledgeable user can write a Java or C++ program to do so based on the description provided there.

	Each user decides a public key and registers it somewhere for the public to refer. A kind of directory contains public keys in an unforgeable format, which we will discuss in the later part of this chapter.

	Suppose Lara wants to send a message to Gayle and he wants only Gayle to read it (confidentiality), then he encrypts it using Gayle’s public key and sends it across. Now, the message can only be decrypted using Gayle’s private key which is only available with him. Thus, only he can open that message. In a way, this ensures the confidentiality of the message.

	Suppose Lara wants that message to be authenticated and not confidential, he will encrypt that message using his private key. Now, anybody can open that message using Lara’s public key, including Gayle and make sure that the message can only come from Lara and nobody else as only he is in possession of his private key. Thus, this process ensures the authentication of both, the sender as well as the message. Nobody else, except Lara, can change any part of the message. As otherwise, the attacker needs to encrypt it using Lara’s private key, which he does not have.

	What if Lara wants both authentication and confidentiality? One of the solutions to that problem is to encrypt the message first using Gayle’s public key and then using Lara’s own private key. Now, anybody can make sure that the message has come from Lara but only Gayle can decrypt that message to get the original plaintext. These demands double processing the message. First for encrypting using Gayle’s public key and then by Lara’s private key. A better mechanism is to use a digital signature itself. In this case, first, the digital signature of the message is calculated. A digital signature, obviously, is encrypted using the private key of the sender, Lara, so anybody can open it using Lara’s public key to verify the authenticity. Once that is done, the message + digital signature both are encrypted using the receiver’s (Gayle’s) public key. Sometimes, digital signatures are excluded from encryption and calculated after encryption takes place. In fact, we have already seen methods where both these processes calculate the digital signature as well as encrypt the content that happens in a single pass. We called that authenticated encryption. When the encryption process is going on, the very encryption process also generates data needed for calculating the authentication tag. One of the major advantages of the public-key digital signature method is the sender’s nonrepudiation so they are normally used in cases where the sender’s nonrepudiation is a compulsory requirement.

	As and when it deems fit, a user would change his pair of keys and publish them accordingly1. Sometimes, a user might prefer to have multiple such pairs to ensure better security and use them randomly. The only additional part here is to just mention which of the keys (some form of the key ID is required in such a system) is used in communication. Why a user needs multiple such keys?

	Consider a professor in a university who needs to communicate with his students, the university, and the government. He communicates with his students to send those marks and other confidential contents, including research papers he is collaborating with them. He also communicates with the university to send test papers and other confidential items, including examination remuneration and payment of various fees for registration to workshops and seminars the university organizes. He also communicates with the government to discuss his research on government projects and related issues, including payment to various parties involved.

	A good solution, in this case, is to use three different pairs of keys. One for dealing with students, another to deal with the university, and the third with the government. Even when one pair is compromised, communication with the other two parties (which uses the other two pairs) is still protected. Another reason for having multiple keys is to provide multiple levels of security. When dealing with the security of common interests like student marks and assignments, the professor might choose 1024-bit security. Dealing with the university, he might choose a 2048-bit solution. When dealing with a project of national interest, he might even choose a key pair with a much higher size. Please note that larger keys demand more processing and thus take more time, but provide stronger security.

	It is also possible for the sender to sign the document using his private key (instead of a secret key). Apart from sender nonrepudiation, it is also useful when a single document (a document from the government specifying new rules about something for example) is given to multiple recipients; a single copy of such a document suffices unlike multiple docs required for multiple recipients when secret keys are to be used.

	As mentioned earlier, this method can be used for exchanging the secret key. A sender encrypts the secret key using the public key of the receiver and sends it across. Once the receiver opens it, communication using that key can start. This method allows the user to use the best of the features of the public and private encryption. Symmetric encryption is much faster and normally more efficient, but not possible to be used in many cases, including a case where strangers communicate with each other. Here, the public key encryption comes to the rescue. Strangers communicate with each other using public-key encryption to exchange the secret key to start with. They use the secret key for subsequent operations. Many times such secret keys are chosen randomly and used only once for a typical operation. The sender decides the random key-value based on some of the methods that we have studied in Chapter 11: Pseudo-Random Numbers. After that, it sends it across after encrypting it using public-key encryption. Then, the sender deploys the bulk encryption method to encrypt the content using that random number (now shared between the sender and the receiver)2.

Now, armed with the understanding of public-key encryption, let us learn about its attributes.

12.4.1 Public key encryption attributes

There are some important attributes of the public key cryptography, unlike symmetric cryptography. They are as follows:

	Public-key algorithms are based on mathematical functions unlike manipulating bit patterns in case of the symmetric algorithm. That means, we cannot choose the keys that we want. They are generated and have little resemblance to real-world entities. Another point is that they are normally quite long. There is no way humans can remember them. The user has to store them on the hard disk. Many times, this is a serious problem when the hard disk crashes or the data is accidentally deleted; this process runs into a serious snag. It is also possible that the attacker catches hold of the private key from the hard disk. Normally, private keys are stored inside a database and encrypted by another secret key (known as a passphrase). The private key is presented to the user only when he presents a passphrase and not otherwise. However, this method does not help if the disk content is lost. Having multiple key pairs makes it useful in this case as in the case of losing one key, another pair can be put to use.

	Public-key algorithms use two separate keys instead of one. The private key is never shared with anybody unlike symmetric key methods and thus, makes the system extremely confidential. The system is as secure as the method to store the private key on the system. There is no dependency on the security of the key exchange method of any sort.

	Anything a publisher wants to make publicly available in an authenticated way, he can put it with encrypting it using his private key. Anyone who is successfully able to decrypt that using the publisher’s public key can be assured of the authenticity of the doc. Even when the publisher does not want to encrypt the doc, it can use any hash function to generate the message digest and encrypt it using his private key. Any reader who wants to ascertain the authenticity can decrypt the message digest using the publisher’s public key and also calculate the message digest itself. If both of them are the same, the reader is assured of the authenticity of the doc.

So, public keys are not the panacea; however, they are different than symmetric keys and so are useful in cases where symmetric keys fail to work.

12.4.2 Misconceptions about public keys

There are some misconceptions about public key algorithms which we would like to address in the following:

	The first myth is that the public key encryption is more secure than the secret key algorithm. The real fact is that it depends on two things. The first is the length of the key and the second is how much effort the attacker is trying to pull in. Longer keys make the task of an attacker more difficult as it increases the number of combinations to explore. The attacker might have more sophisticated attacking hardware. Another important factor is the implementation of the algorithm. Most of the current attacks are not based on cryptanalysis or brute force, but on the implementation. Poor implementations lead to serious vulnerabilities and thus exploitations. Anyways, one must understand that the key lengths of symmetric and asymmetric algorithms are very different. For example, RSA requires a 2048-bit key to make the data secure according to the current standard. On the contrary, AES requires the 256-bit key to make data equally secure.

	The second myth is that the public-key encryption is superior and will obsolete symmetric cryptography. It is not true. Despite quite a few attractive properties of the asymmetric cryptography, it is abysmally slow in processing for two reasons. First, it involves a lot of exponential operations and second, it involves much longer keys. It is an order of magnitude slower and thus not suitable for bulk encryption (for example, downloading a file after encrypting its content and decrypting it once it is downloaded). Symmetric key encryption is still far better for such operations. Thus, both types of encryptions are going to coexist, at least for a reasonable period of time. We have already seen how a user can take advantage of a system where the secret key is exchanged using a public-key encryption method.

	The third myth is about the public key distribution. Anybody who wants to communicate with anybody else using the public-key encryption must learn about the receiver’s public key. How the receiver distributes its public key, so any potential sender can encrypt his content using it is the point of debate here. Many believe that the public key distribution is trivial compared to the symmetric key distribution. It is true in the sense that when the public key is disclosed during the process of distribution, there is not much of a security issue. But otherwise, one must be able to ascertain the correct value of the public key of the receiver to correctly communicate to it. Acquiring an attacker’s public key while incorrectly believing it to be of the receiver invites security issues. Getting a correct public key for any receiver is a nontrivial problem and requires a systematic mechanism. The public key infrastructure or PKI is a mechanism to allocate, store, and retrieve the public keys for all who are connected to it. One needs a protocol, directory for storage, regularized processes for enrollment for all users, revocation of the keys when feared compromised, and so on, which makes the system extremely complex. In short, public keys are also not exempted from key distribution issues.

Barring all these misconceptions and complexities, the asymmetric encryption process can solve problems symmetric encryption fails to solve and thus has an important place in the cryptographic systems. One of the major players of the asymmetric cryptography algorithm is RSA. It is time to turn to RSA to demonstrate how asymmetric keys can be calculated and used to encrypt and decrypt the content.

12.5 RSA and processing in RSA

In 1976, two cryptographers, Diffie and Hellman, gave the idea of asymmetric encryption described in the previous section. However, they could not provide a practical solution. The practical solution came in 1977-78. The RSA is named from the first initials of three of the investors, Ron Rivest, Adi Shamir, and Len Aldeman from MIT (later, they found the RSA security as their own company). Even after 40 years of its inception, it is still the most commonly used public-key encryption method.

Let us try to see how RSA works:

	The user picks up two large (2048 bits is common today) prime numbers; call them p and q.

	Find out n = p × q and z = Φ(n) = (p−1) × (q−1). (Φ(n) is Euler’s totient we have seen in Chapter 5: Algebraic Structures).

	Find out e relatively prime to z; find d as its multiplicative inverse (mod n). that is, ed mod n = 1; both e and d are chosen < n.

	The ciphertext C is calculated as C = Pe (mod n).

	On receipt, the receiver finds the plaintext using P = Cd (mod n).

How did it work? It worked because d is the multiplicative inverse of e. When the receiver receives C, the ciphertext, it calculates the plaintext as Cd (mod n). He does the following:

 Answer = Cd (mod n)

= (Pe (mod n))d (mod n) // putting C’s value

= (Ped mod n)) (mod n) // module arithmetic

= (P1 mod n)) (mod n) // ed is 1 (mod n)

= P // P is less than n

So, it is proved! The sender uses e and n as the PuKey and receiver uses d and n as PrKeys, and they can actually decrypt the content without really knowing the key which is used in encrypting the content.

One more important thing to note is if the sender uses the PrKey to encrypt and the receiver uses the PuKey to decrypt, the process happens in a similar fashion. It is also important for us to do a quick recap of what we looked at in Chapter 8: Message Authentication using MAC. All public encryption systems used for digital signatures can be described in more detail with proof that the solution is indeed possible. The verification part is done in Chapter 8: Message Authentication using MAC for those digital signature schemes. However, we have not stressed upon other aspects of DS schemes in chapter 8, but we will delve little deeper here.

12.5.1 Exponentiation in modular arithmetic

If you have observed the process described in the previous session carefully, you can find that we have used exponentiation in modular arithmetic. The values of e and d are huge in normal cases and calculating them is very difficult. However, some of the properties of exponentiation in modular arithmetic help in the calculation. Let us explore them:

	(a mod n) * (b mod n) is the same as a * b mod n. This is an important property of modular arithmetic used by RSA.

	It is possible to represent the large exponent as the multiplication of values with small components. (This is the same as in conventional mathematics):

	For example, a9 mod n = a8 mod n * a mod n

	(a2 mod n) = (a mod n) 2 = (a mod n) * (a mod n)

	(a4 mod n) = (a mod n) 4 = (a mod n)2 * (a mod n)2

	That means, if one finds out a mod n, he can use it further to find out any exponential value mod n.

	For example, if we want to calculate a23 mod n, we can do the following:

	a23 mod n = a8 mod n * a8 mod n * a4 mod n * a2 mod n * a mod n

The point is that we can always represent the power as the addition of powers of multiples of two. Once we do that, we will be able to generate the value of an exponent without any problem.

12.5.2 Public key requirements

Based on the discussion on RSA, we can conclude some requirements of public-key cryptography. According to Diffie and Hellman, such algorithms must fulfill the following conditions while generating and using the keys:

	It is computationally easy to generate a pair of public and private keys.

	It is also computationally easy for the sender to generate a ciphertext from the plaintext.

	It is also computationally easy for the receiver to generate the plaintext from the ciphertext.

	It is computationally infeasible for an attacker to generate a private key from the given public key. Looking at the relation between them, it must be proven that it is so. Fortunately, RSA, which is based on a problem of factorizing a large number, is found having this property. Another such problem is discrete logarithms on which few other systems are based. One more such problem is based on elliptic curves. The next chapter deals with both of the problems and how they are put to use.

KIM: It is not so that one cannot generate a private key from a given public key, but the time it takes depends on two things: first, the length of the keys and second, the strength of the algorithm. When the standard algorithm based on the mathematically complex problem is used, longer keys makes the task more infeasible. Not all algorithms are found such strong. One example is a knapsack algorithm which was found to be falling short of infeasibility requirement and not used.

Even when the attacker has both the public key and the ciphertext, it is computationally infeasible for him to generate the plaintext from it. We will look at this issue further when we look at attacks on the public-key systems.

The RSA computation begins with having two large prime numbers. Practically, getting two large prime numbers is not an easy job. One will have to make sure that the number chosen is prime, and one needs to make sure it is not divisible to any prime number less than the square root of that number. It is important to note that n (which is the multiplication of p and q) is available to the attacker and if either of the p and q is small enough, the attacker finds the value using factorization IN REAL TIME. Otherwise, he may get the value but after a very long period. When we use a 2048-bit value as either p or q, it takes an inordinate time to factorize a number which is a multiplication of such large numbers and thus, the factorization is infeasible. The point is that we need a real large prime number as p and q both.

There is no direct method to find a prime number of any range so normally trial and error are deployed. Fortunately for us, there is a number of tests that can provide a probabilistic answer to whether a given number is prime or not. They are known as probability tests for the primality of a number. Once we are armed with a few such tests, we can actually start hunting for a prime number.

Our hunt begins with choosing a large odd number (as even numbers cannot be prime). Once a very large number (in the range of 600 digits) is chosen, the probabilistic tests are applied to test its primality (as factorization will be extremely time-consuming), and accepted as a prime if the chosen number clears all those tests. If the number fails that test, the next odd number is chosen and checked for the same tests again. Eventually (hopefully), we stumble upon a number that passes all the tests and we can ascertain the primality of that number with high probability and use it safely in our calculations.

These primality tests are designed by mathematicians based on some probable mathematical properties of prime numbers. When one test is successful, it can only suggest that the number is a prime with some probability and cannot say the number is a prime for sure. That is why multiple such tests are chosen to test the number. If the number passes all such tests, there is a very high probability that the number is prime. It is important to note that quite a few numbers need to be rejected before one finds a number that passes all tests. However, this job does not need to be done frequently. It is done once in a while when one needs a pair of public and private keys. Now, as long as the user is using that key satisfactorily, there is no need for this time-consuming operation, which is normally some months. The point is that the time spent in choosing the prime number is not a frequent job and can sustain some delay. Once the keys are generated, the user can keep on using it for multiple transactions without incurring any delay for generating keys. Ideally, when the user is using one pair of keys, he can use his spare resources to look for another pair or multiple such pairs. That means, when the life of one pair is over, the other pair is ready.

12.5.3 Example

Now, it is time for us to see how RSA is put to use. Just for demonstration purpose, let us suppose p is set as 11 and q as 5. Please note that such trivial values are not used in calculations for actual RSA computation. However, the example is complete in the sense that it can demonstrate every aspect of the RSA calculation.

The RSA calculations, based on our chosen values, are carried out as follows:

	n = p × q = 11 × 5 = 55

	Φ(n) = (p − 1) × (q – 1) = 10 × 4 = 40

	Let us choose d as 7. It is acceptable as 7 and 40 are relatively prime, have no common factor. In other words gcd(7,40) is 1.

	The e should be the multiplicative inverse of d (mod 40). One such value is 23. We can easily see that d * e mod n = 7 * 23 mod 40 = 161 mod 40 =1. This proves that 23 is actually a multiplicative inverse of 7 (mod 40). We will now consider e as 23.

	Now, let us assume the sender is sending the message cricket to the receiver. Assume a is coded as 1, b as 2, and so on. Thus, the message cricket becomes 3(c), 18(r), 9(i), 3(c), 11(k), 5(e), 20(t).

	The preceding coding of a as 1 etc. is done with a purpose. We need all plaintext values to be less than n; in our case, it is 55, so we chose that coding mechanism. We could have chosen the ASCII value of the character if the n value is bigger.

	Now, the encryption process can start.

Let us take the first character c and see how it is encrypted:

P = c = 3; So C = Pe (mod n) = 323 (mod 55) = 94143178827 mod 55 = 27

27 is sent to the receiver. The receiver decrypts it as follows:

P = Cd (mod n) = 277 mod 55 = 10460353203 mod 55 = 3

The receiver understands 3 as c and the problem is solved!

All other characters are equally encrypted at the sender’s end and decrypted at the receiver’s end. Table 12.1 describes the encryption calculations at the sender’ end and the decryption calculations at the receiver’end:

	
Plaintext

	
Value

	
Pe

	
C = Pe mod n

	
c

	
3

	
94143178827

	
27

	
r

	
18

	
74347713614021927913318776832

	
2

	
i

	
9

	
8862938119652501095929

	
14

	
c

	
3

	
94143178827

	
27

	
k

	
11

	
895430243255237372246531

	
11

	
e

	
5

	
11920928955078125

	
15

	
t

	
20

	
838860800000000000000000000000

	
25

	

	
Ciphertext

	
Cd

	
Value = cd mod 55

	
Plaintext

	
27

	
10460353203

	
3

	
c

	
2

	
128

	
18

	
r

	
14

	
105413504

	
9

	
i

	
27

	
10460353203

	
3

	
c

	
11

	
19487171

	
11

	
k

	
15

	
170859375

	
5

	
e

	
25

	
6103515625

	
20

	
t

Table 12.1: The calculation of the ciphertext from the plaintext and vice versa using RSA

If you look at it carefully, you may observe and admire the designers. The receiver is able to decrypt without any knowledge of the encrypting key. Unlike the symmetric key case, the sender does not need to share the encrypting key. The other thing that you probably would notice is that the complexity of the process. Even in this trivial case, the exponent increases participating values to a very long numbers. Think of having 600 odd digit primes multiplied with other 600 digit primes and values of that range that are used in the exponentiation process. It is really taxing, even for powerful processors of today. If heavy-duty encryption is needed, for example, encrypting files before downloading and decrypting it after downloading at the receiver, such a solution is not preferred. Symmetric keys are better options there.

12.6 Improving efficiency

One important point is that there are some ways in which the processing described in the section Example can be done in a more efficient manner. It is important that the efficient mechanisms are introduced as exponential calculations are quite expensive in terms of computational resource consumption.

12.6.1 Using the private key

The private key is chosen as one which is relatively prime with Φ(n). When prime numbers are chosen before choosing the private key as we have shown in the process, we do not have an issue. Sometimes, though, the primary key e is chosen first and p and q are chosen later. In that case, testing the condition of relative primality is important.

One simple choice for private key being 3, or 17 or 65537, where there are only two bits which are one. Processing them is quite fast. While 3 and 17 are too small to be actually used, 65537 is quite a popular choice. However, the user must make sure that the condition of relative primality with Φ(n) is satisfied.

12.6.2 Using the public key

The public key is the one which is a multiplicative inverse of the private key. Thus, the d value which is the multiplicative inverse of e needs to be calculated here. One of the methods is to use the following.

What we need to do is to decrypt using d and calculate P from C as follows:

P = Cd (mod n)

As d is normally a large value, the following formula can be used instead. It is derived based on the Chinese Remainder theorem and Fermat’s theorem:

P = (P1* Xp + P2 * Xq) mod n.

Here P1 is cd mod p

P1 can also be written as cd mod p-1 mod p

P2 is cd mod q

P2 can also be written as cd mod q-1 mod q

Xp is = q X (q-1 mod p)

Xq = p X (p-1 mod q)

Using this formula has a few advantages:

	The values d mod p-1 and d mod q-1 are much smaller than d itself so the calculation is faster

	Both these values can be pre-calculated as both of them are based on p and q values which the user is aware of before the encryption begins and the plaintext comes in. This improves the encryption time, as these calculations are not to be performed while encrypting.

This formula can speed up the encryption process nearly 4 times.

12.7 Cryptanalysis and attacks on RSA

Let us now throw some light on how RSA can be attacked. We are going to cryptanalyze the RSA and learn how the attacker can try finding a vulnerability to attack. Here is the description on those attacks. Please note that there are many other attacks on RSA, but we will discuss only a few popular ones. The next section describes some of the countermeasures of these attacks.

12.7.1 Brute force

The first attack on any cryptographic system is brute force, where the attacker tries all possible combinations of the key. When we use a very large keyspace, the attacker is not able to explore it in real time and the attack does not remain feasible. The problem is that the ability of the attacker to explore increases with better computers and faster processors. Some cases where one can deploy parallel algorithms, for example, exploring all keys beginning with 10101 on machine 1, 10100 on machine 2, and so on, the effective time reduces significantly. Another problem that is looming large over the horizon is the advent of quantum computers. The quantum computers have phenomenal speeds which will make many cryptographic techniques based on the complexity of computation useless. However, looking at the current scenario, the brute force attack on the 2048-bit (600 digits) prime numbers-based public keys is not feasible.

12.7.2 Factoring attack

We have seen that the value of n is a public knowledge and is available to all, including the attacker. The attacker also has the knowledge of the public key. If the attacker somehow can factor n into p and q, he can catch hold of the private key from that information. The process is quite simple once the attacker gets both the values. Assume the attacker factorized n into p and q.

He finds Φ(n) = (p-1) * (q-1) first and so finds d ≡ e-1 mod Φ(n) to retrieve the private key from the public key. So, it becomes a piece of cake once the values of p and q are found. The RSA designers, therefore, insisted on making sure that is not feasible for the attacker.

In other words, factoring n into p and q is a challenge that RSA designers rely on. When RSA was designed, factoring was considered to be a very difficult problem. It has no longer been the same. There are two reasons for factoring becoming much simpler problem than in the past:

	The computing power of machines increases rapidly and so the same processing is done much faster in a newer machine.

	The factoring algorithms are also improved the way the factorization process is carried out. For example, in the initial run, an algorithm called quadratic sieve was used. In 1996, another algorithm called generalized number field sieve (GNFS) was applied. GNFS was able to reduce the computing to nearly 20%, thus achieving the speed up of nearly 5 times. Another algorithm that was devised later named Specialized Number Field Sieve provided even better results. The point is that it is quite likely that the newer algorithms are found with much better ability to factor numbers and the strength of the RSA cryptosystem may be considerably reduced. The solution to that is simple; recommend longer values of p and q. For example, researchers have stopped recommending p and q values to be of 1024-bit size from 2010 onwards. They expect that a newer range of factoring algorithms will bring the factoring time down to reasonable values for the attacker.

12.7.3 Timing analysis attack

The timing analysis attack is already discussed in Chapter 3: Block Ciphers and Attacks. Timing analysis learns about the time each part of the algorithm takes. Once that is done, the attacker is capable to find out which part of the algorithm is being executed based on the time it takes. In timing analysis, based on the time the process takes, the attacker assumes the path the algorithm takes and determines the key bit being processed3. RSA is a good candidate for deploying timing analysis attacks as the computation is intensive and is more likely that one part takes substantially more time than others. Thus, in the case of RSA, it becomes easier for the attacker to determine the key. Moreover, an efficient version of the algorithm which calculates ab mod n operates the key bit by bit and quite vulnerable to this attack in its native form. However strange it looks like, the timing attack, if not prevented, can easily learn the key.

12.7.4 Adaptive chosen ciphertext attack (Adaptive CCA or ACCA)

We have already learned about CCA or the chosen ciphertext attack. In that attack, the attacker can choose the ciphertext of his choice and get the corresponding plaintext back.

In CCA, the attacker has the liberty to provide multiple ciphertexts of his choice and gets the corresponding plaintexts. When an attacker catches hold of the victim’s secure card which uses RSA for encryption, for example, he can generate many ciphertexts-plaintext pairs of content (using the victim’s public key to decrypt given ciphertext into plaintext). It is called the chosen-ciphertext as the attacker can decide what it wants to decrypt. In a way, when this attack is possible, the attacker has the ability to produce multiple ciphertext plaintext pairs of his choice.

An interesting variation of the CCA attack on RSA is using ACCA. The adaptive CCA differs from the normal CCA in the sense that the attacker uses the output (the plaintext generated) from the previous ciphertext in choosing the next ciphertext. Adaptive CCA is a very complicated type of attack which is quite hard to thwart.

Let us try to take the idea of how CCA can be used using a simple demonstration. Assume we have e as a public key but not d, we will soon see how the attacker can still decrypt the content.

Here, we have assumed that the attacker has e and not d, but it can be vice versa, that is, he might have d and not e. The subsequent discussion remains the same in that case too.

Assume we can have any C1 and P1 as the chosen ciphertext and corresponding plaintext. Here, we can choose any C1 we want. Even when the attacker does not know the decryption key d, and only have access to the encrypting key e, the following holds:

P1 = C1d (mod n).

Now, assume we want to decrypt some C2 which the user has generated. We will choose C1 as C1 = C2 X 2d mod n:

So P1 = (C2 X 2d mod n)d (mod n). // substituting the value of C1

= (C2 mod n) X (2d mod n) // RSA property

= (P2d mod n) X (2d mod n) // Substituting the value of C2

= (2P2d mod n) // RSA property

That means,

P1 = C1d (mod n) = (2P2d mod n)

∴ C1 = 2P2;

We already have C1, so from here, one can get P2. So, we have a public key d and no private key e. The content is encrypted using the public key. However, we will still be able to get a plaintext related to a ciphertext, so getting the secret content right without having the private key.

The crux of the problem is the RSA property. We have already mentioned it before and used it to explain the attack:

(a mod n) * (b mod n) is same as a * b mod n

Thwarting this simple attack is also simple. The RSA solution normally pads random data to the plaintext before encrypting. When that is done, the RSA property does not hold and the attacker fails to get the plaintext.

Alas! More complicated attacks on the same lines are possible based on an adaptive chosen ciphertext attack, where this simple idea of random padding fails to prevent the attacker from getting the plaintext. We will brief about one typical solution to ACCA in the next section.

12.7.5 Random faults attack

Most RSA implementations use the faster method using the Chinese remainder theorem to speed up the modulus calculations we have described in the section Using the public key. When this formula is deployed to calculate the public key, and there is a random bit flipped, the incorrect signature is generated. In that case, out of two, one part of the signature is faulty and the attacker learns about that. The implementation calculates the P as follows:

P = (P1* Xp + P2 * Xq) mod n.

Consider one of the bits of P2 * Xp mod n is flipped, so it is calculated wrongly. That means the P-value is also found wrong. The attacker can, once this malfunctioning occurs, find out which part of the calculation is wrong and so which one is right.

Assume that instead of P2 * Xq mod n, the receiver receives P2’ * Xq mod n because of that flipped bit(s). That means the P1 * Xp mod n value is correctly received. When the attacker knows that P1 * Xp value is correct, he can use P1 * Xp mod n value to determine p. How the attacker can do this is beyond the scope of this book. However, an interesting result says that it takes around 100 hours computation to figure out a 1024-bit key using a conventional desktop.

The random faults are a natural phenomenon but an attacker can generate that as well for a serious attack. Doing so demands physical access to the receiver’s machine and control over it, which is infeasible in most cases, so this attack is not considered very serious. However, if a random fault occurs on its own, this attack can defeat complete security.

12.8 Countermeasures

After looking at the attacks, it is time for the countermeasures! For each of the attacks described earlier, we will describe some common countermeasures used by designers. Like the attacks, there are many possible countermeasures, out of which, we will discuss a few common ones. We will not describe countermeasures to a brute force attack as the solution is already discussed. We need to have a larger keyspace so it cannot be explored in real-time.

12.8.1 Factoring attack

For thwarting a factoring attack, researchers have suggested a few recommendations for choosing p and q values, so let us describe them:

	The p and q both should not differ much in size. A few digit differences are ideal. That means both of them are quite large and pose a significant challenge to a factoring algorithm.

	Both p-1 and q-1 should contain a large prime factor.

	The gcd of p-1 and q-1 should be small.

	Both e and d should also be large enough. If anyone of them is smaller than n/4 while the other is < n, it is quite easy to determine the smaller value.

The idea is to have a few alternatives for p and q values and choose which closely follows the preceding guidelines as much as possible. Closely following the preceding guidelines increases the time the factoring algorithm needs to take to produce p and q values from n.

12.8.2 Timing analysis attack

There are a few techniques that can be used to thwart the timing analysis attack. Let us describe them one after another:

	A very popular process is known as blinding. In this method, the sender multiplies the ciphertext with a secret value before being processed. Thus, when the attacker tries to catch hold of the bits being processed, he will not get the exact bit. The receiver, on receipt, multiplies the received value with the multiplicative inverse of the same secret value, to get the original ciphertext. Now, he can proceed conventionally to get the plaintext from the ciphertext.

	Another method is to add substantial noise in the algorithm by adding random additional delays in the system to prevent the attacker from guessing the timing right.

	A simpler but inefficient solution is to make sure that all exponential processes take the same time. Even when the computation is over, the function returns back only when the time is over. In this case, all exponential processes must run as slow as the slowest process.

12.8.3 Adaptive chosen ciphertext attack (ACCA)

For an adaptive chosen ciphertext attack, a complicated solution called optical asymmetric encryption padding (OLEP) is deployed. As this attack targets decrypting without having the private key, digital signatures based on RSA is vulnerable to this attack. The RSA-PSS which we have described in Chapter 9: Authentication and Message Integrity Using Digital Signatures uses the method where the original messaged is converted to EM and EM is encrypted using RSA. We will not discuss it further here.

12.8.4 The random fault attack

This attack is actually a pain in the neck for many other cases and not RSA. However, random padding effectively handles this problem.

After looking at RSA, it is time to look at how the asymmetric key encryption differs from symmetric key encryption. The next section describes that.

12.9 Difference: symmetric and asymmetric encryption

Here are a few differences between public-key cryptography and symmetric-key cryptography.

The first issue is related to the security of the system. Which of these systems is more secured that is either based on a symmetric cipher or asymmetric cipher? One cannot say for sure unless the complete context is provided. The strength of such a system depends on the following:

	First is the length of the key. Longer the key, the more secure the system is.

	Second is the computational time; longer keys result into more computational time. For a newbie, using the public-key encryption for direct communication sounds a better and simpler option. It may sound simple but usually not followed in practice for the reason that the shared secret key encryption and decryption is far better in performance compared to the public-key encryption method. The other disadvantage is that public key algorithms need very large keys (1024 to 2048 bits) compared to shared secret keys4, which makes it very slow and unacceptable for real-time communication. However, the public-key encryption still remains to be a very secure method for key exchange.

	If some computational time is given as the upper bound, the security of the system cannot go beyond a point. Assume a railway reservation system requires a secure solution; it is impossible to have a system that increases the response time of the system. Once the maximum response time is fixed, the security is bound (one cannot use longer keys as they would increase the processing time and thus, the response time).

A second interesting observation is about the processing of the plaintext into the ciphertext. The symmetric key systems involve multiple rounds, transpositions, and substitutions usually tailored to work fast and even considering the possibility of implementing in hardware. Unlike that, the public-key algorithms are based on some mathematical functions applied to the plaintext to generate the ciphertext and vice versa. The speed of the public key algorithms depends on the speed of calculation of these functions. Methods like RSA involve a lot of computer-intensive calculations and usually slower order of magnitude.

Third, it is important to note that public and private keys have got nothing to do with shared secret keys, even though they are very closely linked in some cases. We have already mentioned the role of the public-key encryption in sharing a secret key between two communicating parties. One may question the need to send a shared secret key using the public-key encryption and then sending the actual data using that shared key. As mentioned earlier, the disadvantage of the asymmetric key is the slowness and the advantage is easier data exchange. The preceding solution takes advantage of both of the properties.

The fourth point is the conventional encryption method using a symmetric key is going to co-exist with the public keys system as the computational time for encryption using public keys is far more than the symmetric keys. It is not possible for the system designers to abolish the use of symmetric keys.

The fifth issue is related to the distribution of the keys. Private keys are difficult to exchange and protocols that do so are quite elaborate and cumbersome. Public key exchange is not that cumbersome, but we must have methods to have reliable key exchange mechanisms. The only part that is still needed is the distribution of public keys which can be broadcasted in a non-secure channel.

The release of the public key is less hazardous than the release of the private key but definitely not without problems. Somebody in possession of our private key can lead to serious problems as he can immediately impersonate us. Unlike that, if somebody is in possession of a public key of ours is not much danger. Though if one can change the public key value of ours at an authorized place, it might lead to a man in the middle attack.

Let us try to understand. Suppose we have our own website and our public key PuKey is listed there. Now, if an attacker can change that to PuKeyAttacker, the sender may send the data encrypted by PubKeyAttacker rather than PubKey. That means, the attacker can now open it using his own private key. Once he opens the message (the plaintext), he can either read (passive attack) or modify (active attack), encrypt that using PuKey and send that to the website owner. On receipt, the website receiver might interpret it in an incorrect fashion. It is also possible that the attacker will also be able to fool the receiver in believing that PubKeyAttacker is the public key of the sender, so the attacker can also open the response, modify it, and send it back to the sender. Thus, it acts as a middle man, knowing about all the conversation without either party being aware of.

The sixth point that is more important today is how the solution can be implemented. A faulty implementation defeats every other factor in favor of a specific type of algorithm.

When we use two keys instead of one solving problem related to confidentiality, the key distribution and authentication solution changes substantially. Some solutions are better solved by the method of having two keys. One such issue is non-repudiation. When a sender sends anything encrypting using his private key, it is easier for a receiver to prove that the sender has sent that message and nobody else because unlike the case of symmetric keys, a receiver cannot concoct the message himself. The designer must decide how the problem needs to be solved and where both symmetric and asymmetric encryption fits. We will see some real-world solutions in later chapters where we see that both types of encryptions are used together to solve the most real-world problems.

Recapitulation

	The symmetric key systems cannot handle some problems, including communicating with strangers, non-repudiation, and more.

	Asymmetric keys use two keys: one is kept private called private key and the other made publicly available called a public key.

	Asymmetric key systems solve those problems but are slower. They are used to solve other problems but not encrypting the ongoing communication. Symmetric keys are still used for the same.

	RSA was the first publicly known asymmetric key algorithm. The strength of RSA is based on a factorizing large number.

	Asymmetric key encryption is also known as public-key encryption.

	The choice of the encryption systems depends on the situation; a combination of public and secret key encryption is also used, for example, asymmetric key systems are used for exchanging symmetric keys.

	RSA is based on modular arithmetic and exponential calculations.

	There are methods for checking primality of a number, raising a number to a large exponent in an efficient manner which is normally deployed by asymmetric key-based systems.

	There are a few possible attacks on RSA, but the researchers have found countermeasures to them as well.

Keywords

	Asymmetric key cryptography: A method of using two different keys for encryption and decryption. As the key which is used to encrypt is not used for decryption, it is called asymmetric.

	Public key cryptography: It is the same as asymmetric key cryptography, or asymmetric key encryption, or public-key encryption.

	Public key: One of the keys used in asymmetric key systems, which is known to all.

	Private key: One of the keys used in asymmetric key systems, which is known only to the owner.

	Primality test: It is a test to see if a number is prime or not.

	Probability-based testing: The test which reveals the probability of something. In our case, the probability of a number to be a prime.

	RSA: Based on the names of inventors, Ron Rivest, Adi Shamir, and Len Aldeman from MIT, this is the first asymmetric algorithm which is also the most popular and de-facto standard. RSA also is the name of a company they established later on for dealing with many security products.

	Timing analysis: Timing analysis learns about the time each part of the algorithm takes. Once that is done, the attacker is capable to find out which part of the algorithm is being executed based on the time it takes.

	Adaptive chosen ciphertext attack (ACCA): In CCA, the attacker has the liberty to provide multiple ciphertexts of his choice and gets corresponding plaintexts. The adaptive CCA differs from the normal CCA in the sense that the attacker uses the output (the plaintext generated) from the previous ciphertext in choosing the next ciphertext. Adaptive CCA is a very complicated type of attack which is quite hard to thwart.

Conceptual exercises

	What are the shortcomings of the symmetric key systems? How they are overcome by the asymmetric key system?

	What are the three misconceptions about asymmetric cryptography?

	Why it is possible to generate two keys (public and private) from the same data but difficult to get another key when either of them is available?

	Describe the pros and cons of public-key cryptography.

	How publishing public keys are vulnerable to man in the middle attack?

	How does RSA generate keys? Explain the process.

	How can the process for generating the keys be made more efficient?

	What are the possible attacks on RSA? What are the countermeasures?

1 The IT Act 2000 requires users to change their digital signatures after every two years. If it is based on public key cryptography, the public key is required to be changed accordingly.

2 This is an excellent example of how a real system uses a combination of things which we study in academics. Academicians normally divide real systems in various academic components and discuss. The student must know that these components are not independent in the true sense; the real-world systems are different than academic perceptions.

3 This process is analogous to a thief learning about time the dialer takes to estimate the number combination being typed while opening the safe lock.

4 A 128-bit shared secret key is considered good for normal usage. A 256-bit is good enough even for national security!

CHAPTER 13

Other Public Key Algorithms

Structure

Learning Objectives

13.1 Introduction

13.1.1 Discrete Logarithms

13.1.2 The Diffie–Hellman Key Exchange

13.1.3 Man in the middle attack with Diffie-Hellman

13.2 Introduction to Elliptic Curves

13.2.1 Elliptic Curves over Zp

13.2.2 Elliptic Curves over GF(2m)

Keywords

Objectives

After studying this chapter, the reader should be able to:

	Describe discrete logarithms.

	The reason why dlogs are useful in cryptography.

	List the steps involved in the process of the Diffie-Hellman key exchange.

	Narrate how the man in the middle attack is possible to be carried out in the Diffie-Hellman key exchange process.

	Define elliptic curves, add points, and multiply a scaler value to a point, with EC.

	Describe how operations of adding points and multiplication of a scaler value to a point is geometrically carried out.

	Explain how points of EC over Zp and GF(2m) are defined and used for cryptographic operations.

	State the ECDL problem and describe how it is fundamental to the use of EC in cryptographic applications.

	Explain how keys are exchanged and encryption and decryption are carried out using elliptic curves.

13.1 Introduction

Two learned scientists, Diffie and Hellman, presented a method to derive a secret key even when the complete communication is in open. The DH key exchange is based on a dlog or discrete logarithms which were introduced in Chapter 4: Number Theory Fundamentals. We will start with the DH key exchange in this chapter as well as one typical problem associated with it, which enables a man in the middle attack on this method. We will look at Elliptic Curve Cryptography after that, which is gaining popularity every passing year.

13.1.1 Discrete logarithms

We have already stated that the power of the Diffie-Hellman algorithm depends on the infeasibility of the computing discrete logarithms. What are the discrete logarithms? We had that discussion in Chapter 4: Number Theory Fundamentals. However, let us have a simpler introduction to start with.

Let us have a prime number p. Let us also have another number a. Now, if the powers of a in modulo n, such as values of a1 mod n, a2 mod n, a3 mod n, …. ap-1 mod n are such that:

	Each of them is unique, which means for distinct values of i and j, ai mod n and aj mod n are different.

	Each of the values of powers (i) is the integer between 1 to n-1. Thus, values of each of a1 mod n, a2 mod n, a3 mod n, …. ap-1 mod n are integers between 1 to n-1.

	In other words, for any integer value between 1 to n-1, say I, we will get unique value i, such that ai mod n = I. This value i lies between 1 to p-1, that is, 0<= i < p.

When the preceding conditions are satisfied, this integer value a is called the primitive root of p. The exponent i used in the preceding equation is called discrete logarithm or dlog or index of I for the base a mod p. In other words, we can write

dlog a,p (I) = i;

What if the mod is not present? It becomes a simple logarithm problem which we have also seen during our journey in Chapter 4: Number Theory Fundamentals. We will have ai = I and thus logaI = i; (remember log in an inverse operation of exponentiation). Now, if we have I and need to get i, we just apply log I to get i. Unfortunately, a similar method is not possible for discrete logarithms, mod complicates the matter, such that one will have to try all possible combinations and no direct computation is possible. As we have seen in Chapter 4: Number Theory Fundamentals, this problem is as complex as the problem of factoring a large number generated from multiplying two large primes. This is the characteristic that is utilized in this processing of the Diffie-Hellman Key Exchange, which is described next.

Before we move on, let us do a recap of what we looked at in Chapter 4: Number Theory Fundamentals. We have already seen that not all numbers have primitive roots. We must choose a typical number which has to proceed further.

13.1.2 The Diffie–Hellman key exchange

In the same paper in which Diffie and Hellman described the concept of public-key encryption, they have also mentioned the method to exchange the secret key. The beauty of the method was such that somebody who is listening to everything that is being sent and received will not be in the position to determine the secret key. It is more important to see that the same exchange helps the sender and receiver to generate a secret key.

The following list shows what it does:

	Both the sender and receiver must agree on two large numbers. The first number n is prime. The n value is around 300 decimal digits or 1024 bits for strong encryption. The second number is g, which is a primitive root of n. Both the values can be public and can also be published on the website, so both of these parties can negotiate using any method and send it over the Internet openly.

	Now, the sender chooses a large number which he keeps secret (again this is ideally a 300-digit or 1024-bit number). Let us call this number x. Similarly, the receiver also chooses a similar number y. The numbers x and y both must be less than n – 1.

	The sender calculates Key1 = gx mod n and sends it across to the receiver. Being a primitive root of p, the value Key1 is an integer value between 1 to n.

	The receiver replies with Key2 = gy mod n. Key2 is a number between 1 to n.

	The sender calculates (Key2)x mod n and the receiver calculates (Key1)y mod n.

	The sender now has (gy mod n) x mod n, while the receiver has (gx mod n) y mod n.

	In mod-n arithmetic, (gy mod n) x mod n is same as (gy) x = gxy and (gx mod n) y is the same as (gx) y = gxy.

	Both the parties now have Key = gxy mod n (gxy in modulo n). They can start using it as a key.

Figure 13.1 shows the entire process:

[image:]

Figure 13.1: Diffie Hellman key exchange

Figure 13.2 describes processing at both the ends:

[image:]

Figure 13.2: Diffie Hellman key calculation at both ends

Can the intruder find out the shared secret key? No, because the calculation is based on discrete logarithms. Let us look at the complexity of computing discrete logarithms in the following.

Suppose the intruder tries to snoop and is able to do so. We assume that the intruder has kept vigil on previous communications between these two parties and he is also aware of the values of g and n. While snooping at the conversation, he also becomes aware of values gx mod n and gy mod n. Now, our job is to see if he can get gxy mod n from the given data. It is important to note that he does not have values of x and y and for getting the key, he must be able to determine either of the values. For example, if he has the value of x, he can raise gy mod n to power x and get gxy mod n so he can get the key. However, to get x, he should be able to do something like this.

The intruder gets the value Key1 as gx mod n, that is, Key1 = gx mod n.

So he needs to compute, x = dlog g,n (Key1). The complexity here is that though it is possible to calculate Key1 = gx mod n and Key2 = gy mod n, and from that the Key = gxy mod n but calculating x = dlog g,p (Key1) is infeasible for a large prime.

Let us take an example to understand. All the values are taken very small for demonstration:

	Let us take n as 353 and g as 3. (Note: - 353 is prime and 3 is its primitive root.)

	The sender decides x value as 23 and the receiver decides y be 17.

	The sender computes Key1 = gx mod n = 323 mod 353= 206.

	The receiver computes Key2 = gy mod n = 317 mod 353=55.

	The receiver computes Key as (gy mod n) x mod n or (Key1) x mod n = (206)17 mod 353 = 129.

	The sender computes Key as (gx mod n) y mod n or (Key1)y mod n = (55)23 mod 353 = 129.

So far so good! Both the receiver and sender get a unique key! Wait a minute, we need to see if an intruder snoops in and can he get this value? Let us see.

An intruder gets, 206 (Key1), 55(Key2), 353(n), and 3(g). He will have to solve either of the equations:

x = dlog g,n (Key1) or y = dlog g,n (Key2)

x = dlog 3,353 (206) or y = dlog 3,353 (55)

The simplified form of equations are 206 = 3x mod 353 or 55 = 3y mod 353.

Unfortunately, there is no direct way to get the value of x and y from the preceding equations. If it was 3x = 206; one could have calculated the logarithms x = log3 206 without trial and error. In our case, mod 353 (or mod n) complicates the matter.

KIM: That is why the calculation here is known as discrete logarithms and not logarithms.

There is no method known which can directly find the discrete logarithms of the case as mentioned earlier. One must try various values and see if it is the answer. There are some algorithms but none of them can calculate the value of x or y directly. For large values of n and g, such calculations are infeasible.1 In our case, the intruder has no way of finding the x value directly, he will have to take x as 1, 2, 3, till 353 to find out which value of x satisfies the preceding equation. In our case, it is possible for the attacker to find the value of x after 23 iterations, but if a sender picked up a very large value of nearly 300 digits, it would not be possible for the intruder to calculate it in real time.

13.1.3 Man in the middle attack with Diffie-Hellman

To conclude, Diffie–Hellman is quite strong. Unfortunately, it cannot stop a man-in-the-middle attack. Let us see how it is done:

	The attacker introduces himself as UserB and presents his key to UserA, using an integer value z. It can get gxz mod n as a key with the sender.

	Now, if UserA sends a message to UserB and encrypts it by the key based on his integer x and attacker’s value z. The intruder now captures the entire message from the sender.

	Now, the attacker introduces himself as UserA to UserB presenting the key based on z.

	The intruder establishes a connection with the receiver impersonating as UserA and gets gzy mod n as the key (assuming he chooses z, he can choose any, and the result does not differ).

	Once this is done, the intruder may receive anything from the sender, decrypts it using the key that he has established with the sender (gxz mod n), and reads it. Then, he can encrypt it using the key that he has established with the receiver (gzy mod n) and send it to the receiver.

	Not only the intruder can read the data, it can modify that as well in this scheme and neither of the users will have any idea about that.

[image:]

Figure 13.3: Man in the middle attack in the DH key exchange

When an intruder can launch a man-in-the-middle attack, we need to have a better method deployed. We will see how the idea extends to a product (Kerberos) which is used in real cases like Microsoft Windows and Linux in Chapter 15: User Authentication Using Kerberos.

13.2 Introduction to Elliptic Curves

RSA is predominantly used in asymmetric cryptography. Pick up the most popular security products from leading companies and you will find that RSA is preferred over other methods for both, public-key encryption, as well as providing digital signatures. As the computing power of the devices increase, so the key length for RSA products, which makes it equally secure with the brute force attack of a much larger scale. However, increasing the key length has a negative side effect. The products and applications which use RSA have to churn much more amount of data for their processing, increasing both the time and effort for the same. The e-commerce sites, which are in vogue today, demand huge volumes of secure transactions to be carried out every time a customer buys something or transacts with the bank or other financial institutes or websites for money transfer.

Researchers have been consistently trying to find economic and faster substitutes for RSA to mitigate this problem. One of the most promising and popular areas of research is the Elliptic Curves (EC) for short. When it is used for cryptography, it is denoted as Elliptic Curve Cryptography (ECC). The research, products, and working prototypes have proved the worth of EC in the field of cryptography so much so that it has become part of most cryptographic standards. IEEE P1363 which is the standard for public-key cryptography is just one example. The popular protocols which we are going to look at in subsequent chapters, such as PGP and SMIME, TLS, IPsec, and 802.11i, all provide an option to the user to have EC-based public key encryption as well as the digital signatures. In Chapter 9: Authentication and Message Integrity Using Digital Signatures, we have looked at one such algorithm ECC-DSA which uses elliptic curves for digitally signing the message.

One of the major reasons for ECC to be in vogue is the demand for a much smaller key size for the same level of security. For example, RSA digital signature systems normally use a 2048-bit key currently, while the ECC DSA only needs a 256-bit key, an order of magnitude reduction. When every byte of outgoing data is processed with these keys, processing overhead is substantially reduced and security demands of Gigabit networks of today are much better addressed. In cryptography, (like in other security domains), people do not trust new things easily. ECC is around for a decade now; many researchers have worked, produced papers and provided proof for its soundness. Many have tried to break into it and tried to see if there is any vulnerability that exists. After all those efforts to break went in vain, there is a trust being seen around ECC products and vendors have started providing products using ECC. Researchers have not stopped probing for vulnerabilities and it is an interesting game going on. This is one of the biggest advantages of the open algorithms, researches, and attackers compete to break them and none succeed in a reasonably long period of time; we can consider the solution robust enough for normal use.

ECC is quite different as compared to other cryptographic solutions and it is kind of a breakthrough invention. The complete mathematical background of this intricate subject is beyond the scope of this book. However, the idea is used in most security products and solutions, and few of our chapters also discuss little about ECC, so here is a brief introduction to the topic.

We have already looked at abelian groups in Chapter 5: Algebraic Structures. We will begin with a quick review of Abelian groups as it lays the foundation for our discussion on EC. Once we are through with the introduction, we will see how we can define and use EC over real numbers, and EC over finite fields, and eventually how it is used in cryptography.

Let us start reviewing Abelian groups.

Abelian group G, sometimes denoted by {G, *}, is a set of elements with a binary operation, denoted by *, that associates to each ordered pair (a, b) of elements in G an element (a * b) in G, such that the following axioms are obeyed.

	(A1) Closure: If a and b belong to G, then a * b is also in G.

	(A2) Associativity: a * (b * c) = (a * b) * c for all a, b, c in G.

	(A3) Existence of identity element: There is an element e in G such that a * e = e * a = a for all a in G.

	(A4) Existence of Inverse element: For each a in G there is an element a′ in G such that a * a′ = a′ * a = e.

	(A5) Commutativity: a * b = b * a for all a, b in G.

Now, when we are armed with the information on abelian groups, let us explore how elliptic curves over real numbers can be defined and used.

13.2.1 EC over real numbers

For those who have little connection with mathematics, probably the name EC is a misnomer. It has nothing to do with ellipses. The EC is a type of group; the laws of which are constructed geometrically. The point is that EC is the type of an abelian group where the membership, the operation *, the idea of identity element, and equality are all defined geometrically for all points of a typical type of graph defined in a typical fashion. The idea is to use those points of the graph to represent bytes of the message, provide cryptographic operations based on methods that choose a resultant point based on input point values. For example, if we have two points A and B defined over a typical graph, the operation A * B results into another point which is part of the same graph. We will use that operation in cryptography. Another interesting idea is to find a multiplicative inverse. For every point of an EC used for cryptography, we have a notion of a multiplicative inverse, a point on the same curve.

A diligent reader probably would like to comment that when an elliptic curve is able to act like this, it can be used where other similar methods are applied. It is rightly so. EC has found its applications in number theory, complex analysis, and mathematical physics along with the area of our focus, cryptography.

EC can have points with coordinates in any field such as FP, Q, R or C described in Chapter 5: Algebraic Structures. EC with points in ZP are finite groups. The best-known algorithm to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) is exponential; this is one of the reasons why elliptic curve groups are preferred for cryptography. More precisely, the best-known way to solve ECDLP for an elliptic curve over ZP takes time O(√p) and these aspects are of interest in cryptography. Later on, we will have a detailed explanation about ECDLP in this chapter.

An EC is a curve given by the cubic equation of the form known as Weierstrass equation y2 + axy + by = x3 + cx2 + dx + e, where a, b, c, d, e are real numbers. Here, we consider the subset of that group, having the equation of the form y2 = x3 + Ax + B. To plot such a curve, we need to compute. It is interesting to note that if we replace y with –y in the preceding-mentioned equation, it remains as valid as it was; hence, the curve under consideration is symmetric about the x-axis.

Let us now delve deeper and learn a bit about the geometry of the EC.

Geometry of EC

sHow do we add points? How do we multiply them? Normal graphs do not have any notion of addition (+) or multiplication (*) nor they have any idea of the identity element. If we want to use EC as a group, we need to define these operations over their points. Here is how we do it.

Let us try to define addition over EC. For that, let us pick up a graph defined in Figure 13.4(a):

[image:]

Figure 13.4: Various EC operations over a typical graph

Let us take two points P and Q depicted in Figure 13.4(b) on an EC E. Here is the process of adding P and Q:

	Draw the line from P to Q as depicted in Figure 13.4(c).

	Find the intersecting point R between the line PQ and the curve E as depicted in Figure 13.4(d).

	Now, draw another line, which is passing through R and perpendicular to X-axis as shown in Figure 13.4 (e).

	This line from R intersects E in another point. This point represents the summation of P and Q. So if this point is S, S = P + Q or P ⊕ Q in this EC, as depicted in Figure 13.4(f).

Now, let us try to see how a point can add to itself over an EC. Pick up the same graph E and look at Figure 13.4(g). Suppose we want to add a point P to itself, here is the process:

	Out of the infinite lines passing through P one of which is shown in Figure 13.4(h), the one that is a tangent, shown as line L in Figure 13.4(i) is picked up.

	Assume that L and the curve intersect at R as shown in Figure 13.4(j). Also, assume a line perpendicular to X-axis from the R intersects the curve at another point Q. This point Q represents the summation of P to itself and denoted as P + P = 2P as shown in Figure 13.4(i).

Another operation is to find a point’s reflection about x-axis over E. For a point P, it is denoted as -P or multiplicative inverse of P and is obtained by drawing a vertical line through P which is perpendicular to X-axis. The process to find -P for any given P over EC E depicted in Figure 13.4(j).

The final operation is about the identity element for addition over E. So, another point O> At infinity is additionally defined. This O is a point on every vertical line and known as identity.

We have an elliptic curve E with + is defined as an addition over points which are members of E as we defined earlier. What can we state the preceding graph E?

	E is closed with respect to the addition of points P + Q ∈ E for all P, Q ∈ E (Closuresness).

	P + (Q + R) = (P + Q) + R for all P, Q, R ∈ E (Associativity).

	There exits point O “At infinity” such that P + O = O + P = P (Existence of identity).

	P + (–P) = O for all P ∈ E (Existence of inverse).

	Also, for all P, Q ∈ E, P + Q = Q + P, hence the addition law + makes the points of E into the commutative group.

Algebraic description of addition

Here, we represent certain results that allow calculation of additions over elliptic curves. Consider two points, P1 = (x1, y1) and P2 = (x2, y2), not additive inverses of each other on the elliptic curve E = y2 = x3 + Ax + B. Let the line connecting P1 and P2 be L: y = mx + c. Unambiguously, the slope and intercept on Y-axis of L are and respectively:

[image:]

To find the intersection of E: y2 = x3 + Ax + B and L: y = mx + c

We need to solve (mx + c)2 = x3 + Ax + B

As solutions x1 and x2 are known, the third solution can be easily found by comparison:

x3 + Ax + B – (mx + c)2 = (x – x1)(x – x2)(x – x3)

= x3 – (x1 + x2 + x3) x2 + (x1 x2 + x1 x3 + x2 x3)x – x1 x2 x3

Equating the coefficient of x2 gives –m2 = –(x1 + x2 + x3) and hence x3 = m2 – (x1 + x2, then we compute y3 = mx3 + c.

That means, given (x1, y1) and (x2, y2) values, we will be able to get (x3, y3), the point which represents the addition of both points over E.

13.2.1 Elliptic curves over Zp

ECC uses EC of the type y2 = x3 + Ax + B of which x, y, and A, B are from the field with finite order. Mainly in cryptographic applications, two sets of elliptic curves are used: prime curves over Zp and binary curves over GF (2m). For an elliptic curve on the finite field Zp with p as prime (called as prime curve), the cubic equation is used in which variables and coefficients take values in the set of integers {0, 1, 2, …, p–1} and calculations are implemented modulo p.

In the binary curve on Galois Field (2m), variables and coefficients are from GF (2m) and calculations are performed over GF (2m). Here, no trivial geometric explanation of the elliptic curve arithmetic on finite fields can be given as we did it for the elliptic curve on the set of real numbers.

For elliptic curves on Zp, the coefficients A, B and variables x, y belongs to Zp. The equation now becomes:

y2 mod p = (x3 + Ax + B) mod p

Let us take one example of a curve over Zp.

For example: The curve E: y2 = x3 – 5x + 8 (mod 37) is one such curve. Let us see how it is so.

The points P = (6, 3) ∈ E(Z37) and Q = (9, 10) ∈ E(Z37) from the description.

That means 32 mod 37 = (63 – 5(6) + 8) mod 37

9 mod 37 = 194 mod 37

9 = 9

Hence, we conclude that the preceding example is indeed the curve over Zp.

Let us take another example of an elliptic curve. Let us consider the set Ep (A, B) consisting of points (x, y) where x, y ∈ Z, along with a point O (at infinity). Here, coefficients (A and B) and variables (x and y) are elements of Zp.

For example: Consider an elliptic curve y2 = x3 + x + 1 with p = 17. In this case, A = B = 1 (that is, E17 (1, 1)). We are only interested in the nonnegative integers in the quadrant from (0, 0) to (16, 16) which satisfy the equation (y2 = x3 + x + 1) mod p. All the points of E17 (1,1) are summarized in Table 13.1 (other than O):

	
(0,1)

	
(0,16)

	
(4,1)

	
(4,16)

	
(6,6)

	
(6,11)

	
(9,5)

	
(9,12)

	
(10,5)

	
(10,12)

	
(11,0)

	
(13,1)

	
(13,16)

	
(15,5)

	
(15,12)

	
(16,4)

	
(16,13)

	
-

Table 13.1: Points on the elliptic curve E17 (1, 1)

Figure 13.5 shows the graph of points of E17 (1,1) with the notification that the points are symmetric about y = 8.5, indicated by a line drawn on the figure at that value, horizontal to the X-axis:

[image:]

Figure 13.5: Elliptic curve E17 (1, 1)

If (x3 + Ax + B) mod p has no repeated factors, It can be proved that a finite commutative group can be defined on the set Ep (A, B). One such group is defined as follows:

(4A3 + 27B2) mod p ≠ 0 mod p.

The addition on Ep (A, B) is the same as the addition described for elliptic curves defined on the set of real numbers. For all points P, Q ∈ Ep (a, b):

	P + O = P.

	If P = (x1, y1), then (x1, y1) + (x1, –y1) = O. Here, (x1, –y1) is the additive inverse (negative) of P, denoted by –P. In E17 (1, 1), for P = (4, 1), we have –P = (4, –1). But –1 mod 17 = 16. Therefore, –P = (4, 16), which also lie in E17 (1, 1).

	If P = (x1, y1) and Q = (x2, y2) with P ≠ –Q, then R = P + Q = (x3, y3) is determined by the following rules:
x3 = (m2 – x1 – x2) mod p

y3 = (m(x1 – x3) – y1) mod p

[image:]

	Multiplication is defined as repeated addition; for example, 4P =P + P + P + P
For example, let P = (6, 11) and Q = (9, 12) in E17 (1, 1). Then

m = [image:] mod 17 = [image:] mod 17 = (6) mod 17 = 6

Note: In the preceding result, the value 1/3 is replaced by 6. How do we get that value? 1/3 is a multiplicative inverse of 3 over E17 (1,1), which is 6. Now, let us apply the formulae for calculating values of both x3 and y3 of the point indicating the addition.

x3 = (62 – 9 – 6) mod 17 = 21 mod 17 = 4

y3 = (6(6 –4) – 11) mod 17 = (12 – 11) mod 17 = 1 mod 17 = 1

So P + Q = (4, 1).

To find 2P,

m = [image:] mod 17 = [image:] mod 17 = (109 × 7) mod 17 = 15

Here, [image:] is (109 × 22–1) i.e. 22–1 is the multiplicative inverse of 22, which is 7

x3 = (152 – 6 – 6) mod 17 = 213 mod 17 = 9

y3 = (15(6 – 9) – 11) mod 17 = (–56) mod 17 = 12

so, 2P = (x3, y3) = (9,12)

The elliptic curve over a finite field Zp denoted by Ep is a finite group. It has at most 2p + 1 points. For each x in Zp there are a 50% chances that the value of x3 + Ax + B is a square in Zp* (as explained in Chapter 5: Algebraic Structures). If f(x) = x3 + Ax + B = y2 is a square, then we get two points (x, ± y) in Ep.

Elliptic curves over GF (2m)

The computer address space is always in the form of some powers of two. Whenever we are dealing with a field of any type, if it is possible to be defined over some power of 2, it can be fully utilized and not otherwise. Hence, cryptographers often use elliptic curves defined over a field Zp having p = 2k elements.

In a field of characteristic 2 (field of characteristic 2 means, we must have the cardinality of F = 2m for some m ≥ 1.), the curve y2 = x2 + Ax + B is always singular, (curve y2 = x2 + Ax + B is singular if x2 + Ax + B has same roots, that is, Discriminant is 0) so a more general cubic equation for cryptographic application is needed which is in the form of E: y2 + a1 xy + a3 y = x3 + a2 x2 + a4 x + a6 different than for Zp.

Many mathematicians (Sato, Kedlaya, Lauder, Wan, Denef, Vercauteren, and more) proposed various types of elliptic curves where it is possible to carry out the operations in the more efficient form to count orders of Ep when p = 2k.

One of the solutions which is found quite efficient, known as a Koblitz curve, is defined as:

E : y2 + xy = x3 + ax2 + 1 with a = 0 or a = 1

Coefficients in the Koblitz curve E are from Z2. For cryptographic purposes, one takes points in E(Zp) with p = 2k and takes the value of k large enough to thwart brute force attacks. For example, k ≥ 160 is a current standard. Because of security reasons, we may take k to be prime. But there are certain efficiency gains available if k is composite. For Koblitz curves, it is convenient to count their points as 2k [image:] + 1

We will not explore the Koblitz curve further in this text. Let us look at interesting problems that account for the use of EC in a few cryptographic solutions. It is known as the Elliptic Curve Discrete Logarithm Problem (ECDLP) and described next.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Let E be an elliptic curve defined over a finite field Zp where the following holds:

E : y2 = x3 + Ax + B, where A, B ∈ Zp.

Let S and T be points in E(zp). Now, let us find an integer k so that T = mkS:

The smallest such integer k with the preceding property is termed as a Discrete Logarithm of T (or Index of T) with respect to S and is denoted as follows:

k = logS(T) = indS (T)

The complexity of the problem lies in finding out this value. Here are some of the methods used for finding it. We will soon learn that it is not possible to apply any method to calculate this value in real-time. We will take each method and discuss this point.

The first method is known as the Exhaustive Search Method: Calculate k1 S, k2 S, k3 S… for randomly chosen values k1, k2, k3,… until you find a multiple with kS = T.

The expected running time is O(p), since k1, k2…

The second method is known as Collision Search Method. We will start with computing two lists for randomly chosen values

List 1: k1 S, k2 S, k3 S,…

List 2: T-k1 S; T-k2 S; T-k3 S ,… until finding an impact

ki S = T-kj S

Expected running time of the preceding process is O(√p) by using the birthday paradox or birthday attack is achieved. We have described the birthday attack in chapter 9. You can see that meet in the middle is effectively applied in this case to reduce the running time.

This is a very good solution with the running time O(√p). However, it demands a lot of space to store these lists; looking at the working of algorithm, you can conclude that the space needed by the algorithm is also O(√p). An improved version is also produced later known as Pollard’s method. This method provides the same running time; that is O(√p); however, with much lesser demand for storage.

The idea here is to choose various values of m and n randomly from the range and look at the value of mS + nT. Whenever a collision is found, the search ends successfully. The collision detection process only needs to store some of the nodes already visited.

We will not discuss any other methods to find discrete logarithms for EC. You can see that the best is O(√p) steps. If we choose large enough p, we keep the brute force attacker at bay.

Elliptic curve cryptography

If you have carefully observed and compared EC and RSA approaches, you could have learned that the addition operation in ECC is similar to the multiplication modulo n in RSA. As a consequence, the multiplication operation in ECC is similar to the exponential operation in RSA. You can now see why EC is faster. The exponential operation is painfully slow due to its nature and the way computers process them. ECC avoids using them and thus offers a more efficient choice.

However, when one wants to use EC for cryptography, one must find a problem infeasible to be solved in real-time, like discrete logarithms problems we have seen in the case of Diffie-Hellman or factoring a multiplication of large primes in the case of RSA. Let us begin with one such simple case.

Consider an elliptic curve defined by the equation Q = kP where Q, P ∈ Ep (A,B) and k < p. You can easily conclude, based on our earlier discussion, that it is easy to calculate Q given k and P, but infeasible to determine the value of k, using brute force. We have already seen that we need to execute O(√p) steps even when we use the best possible algorithm in real time. For a large value of p, it is infeasible.

Let us take an example to understand how one can try all possible values to find the discrete logarithm of a point. Consider the group E17 (6,13). This is the group defined by the equation y2 mod 17 = (x3 + 6x + 13) mod 17. We have taken an example where the value of p is just 17, a trivial case, but in the real case, the value is quite large.

What is the discrete logarithm k of Q = (11, 4) to the base P = (10, 6)?

An attacker deploying brute-force will start with P and keep on adding P to the summation until Q is found to be equal to that value. In other words, we start with P, calculate 2P, and see if it is same as Q, if not, calculate 3P and so on till we get some k where kP value is equal to Q. Here is the set of calculations:

P = (10, 6); 2P = (14, 11); 3P = (2, 4); 4P = (4, 4); 5P = (5, 7); 6P = (0, 9); 7P = (11, 13); 8P = (11, 4); now, we get Q! So, we stop here.

We can see that 8P = (11, 4)= Q. That means, the discrete logarithm Q = (11, 4) to the base k = 8 where k = 8. In a real application, k would be so large as to make the brute force approach takes inordinate steps and thus time.

Now, we will explore how keys can be exchanged and the encryption-decryption process can be carried out using elliptic curves.

A key exchange based on elliptic curves

Like Diffie-Hellman, we would like to use EC for the exchange of a secret key between two parties over open networks. One of the ways by which one can exchange key securely using elliptic curves is described here.

We will start with picking up an integer q which is comparatively large and either a prime number p or an integer of the form 2m with elliptic curve parameters A and B from a finite field Zp. This defines the elliptic group of points Epp (a, b). Now, choose a base point D = (x1, y1) in E_p (a, b) whose order is relatively large.

The order n of a point D on an elliptic curve is the smallest positive integer n such that nD = 0. Here, n and D are parameters of the cryptosystem known to all participants.

A key exchange between Sender S and Receiver R can be comprehended as per the following steps:

Step 1: Finding global public elements

We must get Eq (a, b) the elliptic curve with parameters a, b and q where q is a prime or an integer of the form 2^m.

D is a point of large order n on elliptic curve.

Step 2: Sender S Key Generation

Select private nS; nS < n.

Calculate public PS; PS = nS × D.

Step 3: Receiver R Key Generation

Select private nR; nR < n.

Calculate public PR; PR = nR × D.

Step 4: Calculation of Secret Key by Sender S

K = nS × PR

Step 5: Calculation of Secret Key by Receiver R

K = nR × PS

Let us describe it sequentially:

	The Sender S randomly chooses an integer nS less than n. The value nS is Sender’s private key. Based on nS, the public key value is generated by multiplying it with D. Thus,
PS = nS × D; the public key is a point in Eq (a, b).

	On the other hand, the Receiver R chooses a private key nR randomly and computes a public key PR in a similar way.

	Now, it is time to generate the secret key k. The sender calculates k = nS * PR. The receiver calculates k = nR × PS. You can see that both of them use the information that they have like Diffie-Hellman but stumble upon the same key.
Both the sender and the receiver get the same value of key because of the design of the private and public keys. Here is the proof:

nS × PR = nS × (nR × D) = nR × (nS × D) = nR × PS

Let us reiterate that to learn the private key from a public key, an attacker would need to be able to compute k given D and kD, which is infeasible for a large value of k.

For an example, take p = 251; Ep (0, –2), which is the curve y2 = x3 – 2; and select D = (11, 24). It can be easily calculated that 252D = O. Suppose the Sender S has chosen a private key nS = 110, so the Sender’s public key is PS = 110(11, 24) = (199, 47). Suppose the Receiver’s private key is nR = 205, so the Receiver's public key is 205(11, 24) = (233, 21). The shared secret key is 110(233, 21) = 205(199, 47) = (248, 67).

The secret key is (248, 67), that is, two values. If we have to use it in any symmetric key algorithm, for example, AES, it has to have one single value of typical size (128 bit or 16 bytes). That means (248, 67) cannot be used directly in the symmetric key algorithm. However, we can achieve that with a simple conversion function that takes this value and generate a single value. One of the simplest methods is to use the x-coordinate value as it is. Another is to apply some function on the value itself to generate another value, for example, AES itself can be used. It works like this. Extend 248 to 16-byte value by appending the remaining 13 zeros. Now, encrypt it using AES to get another 128-bit value. Now, we can use that value as a secret key.

Elliptic curve encryption/decryption

Researchers have found many methods of encryption-decryption of messages using EC. In the following, we look at one of them. We need to first convert the message in some form of a point over the EC graph. In other words, we need to convert the message m into a point P(x, y) with some values of x and y unique for that message. When that conversion happens, the point P(x, y) is called point . We need to find a method to encrypt it using some EC-based method and decrypt it at the other end. The message itself cannot be the value of x or y otherwise the attacker can simply read and gather the value; there is no encryption. We must choose a method that converts the values representing the message in some other form in which the attacker cannot convert back to original values in real-time.

There are many ways to convert a message or a part of a message into a point P(x, y) over an EC. Like the key exchange method, here also we need a point G and an elliptic group Eq(a, b) as parameters.

Let us discuss one method based on the same idea we explored in the previous section. Each user chooses a random value as a private key and generates a public key multiplying it by a point G. In other words, user A chooses a private key nA and generates a public key PA = nA × G. Similarly, user B chooses a private key and generates a public key by multiplying it with G. That means, the private key nB and a public key PB = nB × G.

Now, consider a case that user A wants to send message Pm to B. A does not want to send it in open, so he chooses to encrypt it. User A now picks up a random value k which is a positive integer and generates the ciphertext Cm. User A performs the following operation to calculate Cm, a point over Eq (a, b). The first point of the value Cm is calculated as kG while the second point is calculated as Pm + kPB. In other words, the Cm value is calculated using the following formula:

Cm = {kG, Pm + kPB}

Now, let us see how the decryption is done at the receiving end. You can see that while calculating the ciphertext, user A has used the public key of B, PB. The user B needs to to use his private key for the calculation. User B simply multiplies the first point, the kG, by its private key and subtracts it from whatever it received. In other words, user B calculates the following:

Cm – nB (kG)

= Pm + kPB – nB (kG)

= Pm + k(nB G) – nB (kG)

= Pm + nB kG – nB kG

= Pm

You can see that the message Pm is converted to the ciphertext by adding value kPB. The value k is unknown to the attacker. So, even when the public key of B, PB is public knowledge, determining the message from this addition is infeasible. Fortunately for user B, he possesses his private key nB. He can use it in the method shown about to decrypt the message in a straight forward manner. An attacker, who is not aware of the value of k, has to try all possible values of k in a given range in real-time, which is infeasible if the range of k is very large.

Let us consider an example. The global public elements are q = 271; Eq (a, b) = E271 (0, –2), which is equivalent to the curve y2 = x3 – 2; and D = (3, 5). B’s private key is nB = 108, and his public key is PB = nB D = 108(3, 5)= (107, 11). A wishes to send a message to B that is encoded in the elliptic point Pm = (171, 157). A chooses random integer k = 37 and computes kD = 37(3, 5) = (255, 77), kPB = 37(107, 11) = (114, 16) and Pm + kPB = (171, 157) + (114, 16) = (134, 177). A sends the ciphertext Cm = (C1, C2) = {(255, 77), (134, 177)} to B. B receives the ciphertext and computes:

C2 – nB C1 = (134, 177) – 108(255, 77) = (134, 177) – (114, 16) = (171, 157)

If an attacker, ever gets (171, 157), he will have to try all possible k values to find that k = 37 solves the equation and determines the key. However, if the k value is large enough, this operation will take inordinate time and thus will be infeasible for an attacker to execute that in real-time.

Security of elliptic curve cryptography

The security of any system, leave alone ECC, depends on how effectively and efficiently an attacker determines a private key, given a public key. In our case, the efficiency or time to avail the value k given the values of kP and P is critically important. It is popularly known as the EC logarithm problem. The Pollard rho method we mentioned earlier can do it proportional to the square root of the value of p. One of the important references provided in NIST SP800-57 (Recommendation for Key Management—Part 1: General, July 2012), one can find computational time one needs to break given a typical key size, as compared to RSA. Looking at the table, one can easily conclude that ECC requires a much smaller size of key for a similar operation. For the same keys side, the computation overhead is similar in ECC and RSA. The conclusion is: ECC is undoubtedly faster and wins hands down.

Recapitulation

	Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized.

	The development of elliptic curve cryptosystems commenced in 1985 by Koblitz and Miller.

	The discrete logarithm problem as the first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime.

	The idea of discrete logarithms is extended to arbitrary groups and, in particular, to elliptic curve groups.

	The public-key systems using EC provide relatively small block size, high speed, and high security.

	Elliptic curves (EC) over real numbers, with binary operation “+” as the addition of points which is also an abelian group over a field of real numbers are useful for the said operation.

	The elliptic curve group with finite order is defined over fields Zp and GF (2m), normally for cryptographic operations.

	The security of elliptic curve cryptography rests on the assumption that the elliptic curve discrete logarithm problem is hard.

	ECDLP, Exhaustive Search Method, Collision Search Method, and Pollard’s Method are important to study the impact of EC on cryptography.

	ECC Diffie-Hellman Key Exchange, encryption, and decryption are found performing much better as compared to RSA so far.

Keywords

	dlog: dlog or discrete logarithms is a log value calculated based on the context, for example, in case of mod n we have introduced in Chapter 4: Number Theory Fundamentals.

	Key exchange: In the context of this chapter, the key exchange is a method of exchanging a secret key between two parties, despite being connected over an open network.

	Man-in-the-middle attack: In the context of this chapter, the man in the middle is an attack where the sender and receiver both establish a connection with an attacker assuming that they care connected.

	Elliptic Curves: An elliptic curve is a curve given by the cubic equation of the form y2 = x3 + Ax + B.

	Abelian group: The Abelian group is the group with the commutative property.

	EC over real numbers: Elliptic curves y2 = x3 + Ax + B in which the variables x, y, and coefficients A,B are all restricted to elements of a set of real numbers.

	EC over Zp: In the context of this chapter, EC y2 = x3 + Ax + B in which the variables x,y, and coefficients A,B are all restricted to elements of a finite field Zp (i.e. 0 to p – 1).

	Binary curve: It is a non-super singular Elliptic curve y2 + xy = x3 + Ax2 + B where A and B are from Galois Field (2m).

	ECDLP: For an elliptic curve E : y2 = x3 + Ax + B defined over a finite field Zp A, B ∈ Zp, given any two points S and T in E(zp) to find an integer m so that T = mS. The smallest integer m with this property is called the Discrete Logarithm (or Index) of T with respect to S and is denoted: m = logS(T) and this problem of finding m is called the Elliptic Curve Discrete Logarithm Problem.

	ECC: Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC requires smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.

Exercises

	In brief, explain the Diffie-Hellman key exchange.

	Briefly explain the man in the middle attack with Diffie-Hellman.

	Define the following:

	Elliptic curve

	Abelian Group

	Elliptic curve over Zp

	Elliptic curve over Galois Field(2m)

	Elliptic Curve Discrete Logarithm Problem

	How to define the addition of two points on the Elliptic curve? Explain it by selecting points on E37 (1,1). Also, define the Identity element for the addition of points on the elliptic curve and find the same for E37 (1,1).

	Check whether the following elliptic curves over the real numbers with the binary operation is the addition of points on EC fulfill conditions for Abelian group or not.

	y2 = x3 – 3x

	y2 = x3 + 2x + 3

	Consider the EC y2 = x3 + 3x + 4 over real numbers. Which of the following points lie on this curve?

	X = (–1, 0)

	Y = (0, –2)

	Z = (5, 3)

	W = (5, 12)

Also, find e) X + Y f) 2W if they lie on EC.

	Whether E23 (8, 2) (i.e. EC y2 = x3 + 8x + 4 defined over Z23) formed a group with the addition of points on the elliptic curve?

	Consider the elliptic curve E13 (2, 3), that is, the curve is defined as y2 = x3 + 2x + 3 with the modulus of p = 13. Determine all points in E13 (2, 3).

	Find out the negative of the following elliptic curve points over Z13.

	A1 = (3, 7)

	A2 = (6, 6)

	A3 = (7, 10)

	A4 = (10, 3)

	Consider EC E13 (2, 3). Find the inverse and order of an element (point K = (4, 6)) and L = (9, 3).[Hint: For order of an element, K find n such that nK = Identity]

	Consider the problem of elliptic curve encryption/decryption. For some cryptosystem, parameters are E13 (2, 3) and the point is D = (3, 6). Sender’s private key is ns = 7

	Find the sender’s public key.

	The receiver wishes to encrypt the message Pm = (11, 2) and select the random value k = 5. Determine the ciphertext Cm.

	Demonstrate the calculation by which the sender recovers Pm from Cm.

1 Something which is infeasible today may become feasible tomorrow. In case of Diffie Hellman, one may think that we can increase the length of a prime number if the processor speed increases and makes the current choices obsolete. In fact, one can find out a method which can find out discrete logarithms directly, (the case like 5x mod 97 = 25 to be solved for x) the Diffie Hellman just ceases to be an effective method. Many have tried and nobody is successful so far, so one can assume that the method is foolproof and the breaking is infeasible.

CHAPTER 14

Key Management and Exchange

Structure

14.1 Introduction

14.2 Key management

14.3 Need for key management

14.4 Encryption location

14.5 The public key distribution

14.6 Randomness and unpredictability of keys

14.7 Symmetric Key Exchange for authentication

14.7.1 Key exchange using a Symmetric key

14.7.2 A Reflection attack

14.7.3 Authentication exchange using HMAC

14.7.4 Authentication Exchange using a KDC

14.7.5 Authentication exchange using a public key

14.8 Public key exchange using certificates

Keywords

Recapitulation

Exercises

Objectives

After studying this chapter, the reader should be able to:

	Specify the need for key exchange.

	Differentiate between symmetric and asymmetric key exchange.

	Describe the role of a KDC and learn about permanent and session keys and see how connecting applications help the key management.

	Judge the pros and cons of end-to-end and link-level encryption.

	Differentiate between authentication and authorization.

	Define and narrate the need of authentication protocols in the key exchange.

	Elucidate how replay and reflection attacks compromise the authentication protocols and how to challenge a handshake and learn how HMAC comes to the rescue.

	Portray the public key exchange system, the need for CA and the certificates for the public key exchange.

14.1 Introduction

Both types of keys: symmetric and asymmetric, need to be managed. One needs a systematic method of generating, distributing, using, and exchanging the keys. Keys are also exchanged for authenticating the user. Only when the keys are correctly exchanged, the communication can start; authenticity and secrecy of the conversation can be ascertained only after that.

Interestingly, keys, key management, and authentication protocols are closely interlinked. The keys are to be distributed to the user only after due authentication and not otherwise. The authentication protocols use and distribute keys in a fashion such that communicating parties and content are authenticated as well as verified to be correct and timely. This seemingly simple process is quite complicated in the true sense, primarily when we use a shared secret key. The process is also known as an authentication exchange. We will learn a few things about how these two types of keys are managed, exchanged, and used in this chapter. We will also throw some light on how the authentication protocols work and exchange keys. One needs to address many issues, including how to thwart replay and reflection attacks (discussed later in the chapter) while the key exchange is taking place.

The next two chapters provide more insight into symmetric key management and asymmetric key management using real-world key management case studies. This chapter builds the platform for both those chapters, i.e. chapter 15 User authentication using Kerberos and Chapter 16 User authentication using public key certificates.

14.2 Key management

Key management includes the process of generating and using the keys, distributing and exchanging them for their usage. Both types of keys, symmetric and asymmetric keys, demand key management.

Let us look at both of the types of key exchange one after another. We start with shared secret keys. Also, note that sometimes shared secret systems are denoted as private key systems as opposed to a public key system which is used to describe the asymmetric key system.

Shared secret keys, as we hinted earlier, need a secure exchange method, and one of the ways it can be done is using the public key encryption mechanism. Another issue is to provide a safe location to store shared secret keys. One can give a proper database and a foolproof mechanism for doing so. Chapter 15: User Authentication Using Kerberos presents Kerberos, a very successful system using shared secret keys where this point will be elaborated further.

The problem of distributing keys is hard in some cases where the sender and the receiver have no other means of communication; for example, when the sender and the receiver are continents apart. It is clear that without a secure key exchange mechanism, the best security system carries no value.

One more requirement of a shared secret key method is not to continue using the same key for long. As the key is used, more chances that the attacker will have to explore and thus executes the attack successfully. The point is that a frequent change of the key is the best practice. One needs to keep on changing the key used for encryption and authentication and exchange the same with the other communicating parties. That means the key exchange process is not a one-time process; it is a periodic process.

How can we have a key distribution system which is protected from eavesdroppers and attackers? Here are a few suggestions, by no means complete:

	The sender sends an SMS or a WhatsApp message or an email with the key-value or calls the receiver and speaks out.

	There is a third party which is connected to both the sender and receiver (and many others as it is their business). The third party generates and shares a key with both the sender and receiver. Now, the sender and receiver can start communicating using that key.

	Use a public key encryption mechanism for private key exchange.

	A permanent shared key is used to generate a temporary key, which is used only once during the next communication and then thrown away.

Option 4 uses two different types of keys. The first one is called the permanent key, which is already shared between both communicating parties. For example, operating systems, databases, and mailing systems that share the password with each of their users can and do generate permanent keys based on those passwords. The other key which is called the temporary key is also known as the session key as they are valid for a given session only. They are also known as one-time passwords or OTP. These keys are generated using one of the methods that we discussed in Chapter 11: Pseudo-Random Numbers for creating random numbers. This option is preferred when both parties already have a permanent key in place.

Notice that the permanent key is used only in sharing the temporary key. The temporary key is used in the security operations like encryption and authentication for an entire session. Once the communication gets over, a key is thrown in the dustbin, and a new session key is derived and is used for a new session.

The exchange of new keys using an old key has a subtle flow. If an attacker catches hold of one key, he/she can have all subsequent keys. So the secrecy of the permanent key is of paramount importance. This method is prevalent among protocols such as Kerberos, which we will look at in Chapter 15: User Authentication Using Kerberos.

In a large system, each party requires multiple keys to communicate with many other parties. The methods described in point 1 demand using another channel for communication. The idea of having a third party which both sender and receiver trust is really useful when there is a single server to which both sender and receiver are connected to. The server is popularly known as Key Distribution Center or KDC for short. As server is trustworthy, it can act as a mediator and send both the sender as well a receiver a key which they can use to communicate with each other. Both the sender and receiver trust the server and rely on the keys provided for their secure operations in the network. So option 2 is useful in such cases. When the KDC is used, it takes the responsibility of generating the session keys and not only the permanent secret keys.

Having discussed the private keys, let us throw some light on the issues of public key exchange.

How would the sender know the public key of a receiver? Keeping them open on a website may create other problems. A common problem is the man-in-the-middle attack, as described in the previous chapter. So we cannot place the public keys on a website that is not adequately secured. One more method of key distribution is to have a trusted third party like Verisign.com. Such trusted third parties can help the sender and receiver by storing their public keys and passing them to others when needed. What if the receiving party does not have a VeriSign account but some other account? We need an entire Public Key Infrastructure (PKI) for that purpose. So the problem that we had with shared secret keys is not completely eliminated. Therefore, we need to find a safer place rather than putting the public keys on a website.

We need to have some systematic way to have the public keys of other parties known to us. We must have some method to communicate the public keys securely from one party to another. The best answer is to use public-key certificates. We will have a detailed discussion of how that can be done in Chapter 16: User Authentication Using Public Key Certificates.

14.3 Need for key management

The need for key management should be clear by now. The keys cannot be used securely if the secure key management process is not deployed. The key management process should be protected against replay and random attacks, the release of keys, and authentication-related attacks. The authentication exchange is very critical for most real-world problems. Though we will throw more light on this problem in two subsequent chapters, and we will give you a brief about the idea in this chapter as well.

Whenever a shared secret key is used, the receiver must use the same key to decrypt. So far, we have just assumed the receiver to have that key somehow. You can clearly understand that it does not happen automatically, and we need to have some mechanism of sharing a secret key. There are many ways to do so, as we mentioned in the previous section. Not only are the keys to be exchanged, but one must also preserve them, and whenever the sender needs to communicate with a typical receiver, the shared secret key with that receiver needs to be fetched from the database and user. The database itself has to be protected so that no third party can read the content of that database. We have also seen that though public key management does not demand the level of secrecy, it still needs protection so an attacker cannot modify the public keys.

The KDC is a good option when we have KDC as an authenticating authority in the single domain. Let us list the primary responsibilities of the KDC.

	The server must have mechanism to generate and store permenant keys. Remember it shares one key with one party and so KDC shares a key with all potential senders and receivers.

	When two users want to communicate with each other, KDC also help them by generating session keys. Unlike the permanent keys, these session keys are used only for a typical communication. In other words, just before every communication, the sender and receiver receives a session key which they use for protecting the encuing communication

	KDC also helps by providing a secure protocol for exchanging they keys so the attacker who wants to learn about permanent or session keys are kept at bay.

The KDC helps communication in two different ways. In the first approach, it acts as an intermediary. As it shares permanent keys with all users. Any user, who wants to send, sends the data encrypted with the permanent shared key to the KDC. The KDC decrypts and relays that message to the receiver by encrypting the same message by the key being shared between the KDC and the receiver. This approach has a few problems, so another is normally deployed.

In the other approach, the KDC generates a session key, just for the communication between the potential sender and the receiver. The KDC then shares the session key with both the sender and receiver, encrypting it with respective permanent keys of both of them. Once both the sender and the receiver get the session key, they can start communicating directly.

The KDC is deployed as a process and operates automatically without human intervention. There are two reasons for it being a process; first, a sender may want to communicate with the receiver at any point in time, and the human KDC may not be online at that time. The second reason is that a non-human system is generally more secure. Not only the KDC but also the applications running in the sender and receiver are also processes called service set modules (SSM). However, we will call them connecting applications as they are more readable.

A connecting application connects both the sender and the receiver, and it is a module embedded in both the sender and receiver. It is the client software that is installed in the sender and receiver, usually running above the transport layer. Connecting application takes the responsibility of requesting and obtaining session keys from the KDC. These applications, thereafter, use these session keys for encrypting and decrypting messages. The installable modules of Kerberos, SSL, and TLS, IPsec are examples of SSMs or connecting applications. We will learn about all of them in due course.

Let us see how the connection is established, when the KDC is present, using a shared secret key:

	When the sender wants to establish a connection with the receiver, it instructs the application to send a connection request packet to the KDC.

	The application has now established the connection with the KDC using a permanent key shared between it and the KDC.

	The application sends the connection request (to the intended receiver application) over this connection.

	If the KDC approves the connection request, it generates a session key and delivers it to both the sender and receiver applications using the unique permanent keys shared with respective applications.

	The requesting application now understands that the connection is established.

	The sender starts sending to the receiver encrypting and authenticating the content using the shared session key during the entire communication process.

An automated process of this kind helps multiple hosts to connect to several other hosts with ease of use. We purposefully overlooked many additional issues that might arise during communication. We will explore this issue further in Chapter 15: User Authentication Using Kerberos where we will discuss Kerberos.

14.4 Encryption location

The keys are used in the process of encryption and authentication. The key exchange depends heavily on where the encryption is applied. It is essential to learn the place where the encryption is applied, both in terms of physical location and TCP/IP protocol stack. We will see how protection is used at different layers in subsequent chapters in-depth, but here, we will concentrate on physical location for encryption.

There are two broad types of encryption based on physical location. One is known as end-to-end encryption and the other is link-level encryption. The end-to-end encryption is done from the actual sender to the actual recipient. For example, let us take an example of using a browser for sending something, let us call it a message. The end to end encryption ensures that whenever the message leaves the browser from our end, it is encrypted and only when it reaches to the web server at the other end, it is decrypted. The intermediate routers will only process encrypted information.

The link encryption process works like this. A sender sends an encrypted packet to the next router. The packet travels along the line in encrypted fashion until it reaches the router. The next router decrypts that, finds the destination address, finds out the next immediate router to send this packet, and sends the packet after again encrypting it. The next router passes the packet to the next router in the chain in the same way until it reaches the intended receiver. The eavesdropper is kept at bay as the packets are entirely encrypted, and their entire content seems garbage for them.

There are two downsides of link-level encryption. First, we need an encryption–decryption engine at each router, and also each router must decrypt-encrypt every packet besides their routine job of routing and forwarding packets. The second problem is that if one of the routers is compromised, the entire message is leaked as all routers have the message in the plain. Also, the sender and receiver have no control over the encryption process as it is carried out by intermediate routers, which are autonomous. Technically, end-to-end encryption needs a transport layer or above, while the link-to-link encryption uses a data link or network layer.

Another issue with link-level encryption is that the sender and the receiver may like to use a typical algorithm and typical key size based on the content they want to encrypt. Link-level encryption job is done by routers who have little knowledge of what the packet contains so they can only deploy some standard encryption-decryption process.

The end-to-end encryption is better for senders and receivers as they have absolute control over the encryption process. They can choose the encryption algorithm and suitable key size looking at the secrecy required by their message. Additionally, intermediate routers process the packets in their encrypted form only and thus are not able to do any harm if compromised. The senders and receivers remain more assured with end-to-end encryption. The end-to-end encryption demands that the sender and receiver must share the key so the message encrypted by the sender can be decrypted only by the receiver.

The tricky part of end-to-end encryption is to enable routers to process the packets without decrypting the content. Routers can’t route if the entire content is encrypted; thus, only the data part of the packet is encrypted, and the header, including the sender and receiver addresses are left out. Though this design provides enough security for data and also help the routers to route the packets according to the values specified in the address fields, there is a downside. This design with unencrypted headers enables the attacker to have a traffic analysis of the communication as who is sending and who is receiving can be gleaned from the traffic. Not only that, if traffic padding is not provided, looking at the length, an attacker can also decide which type of message is being transmitted.

An exciting solution to this problem is to provide both end-to-end and link encryption, which enables maximum security at the cost of additional overhead and a decrease in speed. One more attractive solution is provided by a technique called a virtual private network (VPN). Here, the entire packet, including the header, is completely encrypted by the sender. That packet is inserted inside another packet as data and sent across. This process is known as tunneling. A VPN is a popular method implemented in many networks for securing remote access to networks and network-to-network communication. We will learn a little bit more about VPNs in Chapter 21: System Security.

14.5 The public key distribution

One may think to have a KDC to distribute the keys even when the public key encryption is provided. Let us assume the KDC is available over the web. Now, every potential sender will generate public and private keys by some means and send the public key to the KDC. The KDC stores the data in the form (party name and public key). Obviously, the names are to be chosen in such a way that we have unique names for each party. Now, anybody who wants to communicate to any other party, just query the KDC to get the public key for the receiver. Problem solved!

This solution has a few practical problems. The KDC must remain online all the time, and the KDC must keep running despite multiple requests from multiple locations of the world; the communicating users must remain online; otherwise, the KDC cannot provide them the public keys of other communicating parties. This does not sound practical. However, another solution where the KDC, who are called Certifying Authorities (CAs) now, remain offline but can still authenticate the public key of any user using an idea called certificates. We will brief about the public key exchange process using certificates in the section ‘Exchange using public key Authentication’ in Chapter 16: User Authentication Using Public Key Certificates, we will throw more light on certificates and their exchange and use for public-key encryption.

14.6 Randomness and unpredictability of keys

Let’s recall our discussion on random number generations in Chapter 9: Authentication and Message Integrity Using Digital Signature. Both the requirements of the random numbers are equally important for the keys, that is, randomness and unpredictability.

There are two cases; one when the user chooses the keys himself, and second, the keys are generated using some PRNG. When the user generates the keys himself, usually the permanent keys, he should take care of both the attributes. Whenever the system generates the keys, normally, the session keys, a good PRNG, should be used. If the PRNG expects a good seed value, the user may supply proper key based on these criteria or use some TRNGs for the same.

14.7 Symmetric key exchange for authentication

Let us pick up a case to exchange a symmetric key between two communicating parties. Let us try to see the issues that pop up when we exchange symmetric keys. One of them is authenticating the other party who is claiming to be a typical user. Let us, first of all, learn a few things about authentication and clear the difference between authentication and authorization.

Suppose we are interested in dealing with our bank and visit the bank’s website for our work. Our app or client running on our browser must make sure that the website they are communicating to is indeed our banks’ and not a forged one. Similarly, the bank, before divulging with any confidential information, must ascertain the identity of the customer. All of us are quite used to provide the username and password to authenticate ourselves. However, authentication based solely on the username and password is found to be insufficient, and nowadays, two-factor authentications are in vogue. For example, we need to provide the OTP comes to our phone or email address. That means the server also verifies that we have access to the phone or the email as well. That means an attacker learning about our password won’t succeed.

We will discuss authentication here which we often confuse with another important aspect of processing, the authorization. Unlike authentication, which only ascertains the IDENTITY of the communicating entity, the authorization judges what is allowed for that entity. In other words, authorization is another process which follows authentication and determines what the authenticated user is allowed to do in the system.

For example, in the case of databases, an operator is allowed to take a backup, but an average user is not. An administrator is allowed to add or remove a user, but an average user is not. Some users might have only read access to a specific table while some others have read as well as write access. These are examples of specific authorizations that are normally managed by access control lists, which is a data structure that stores the authorization information. Authentication is a prerequisite to the authorization process. If one is authenticated as an administrator, he is allowed to add a new user, for example.

The process of authorization may be quite complex; for example, a payroll administrator might have all the rights to access all tables related to the employee’s salary, leave details, and so on, but have no access to the product database. On the contrary, a product manager might have exclusive access to the product database but have no access to the payroll database. The process of authorization deals with such complex cases and manages them. The process of authentication is limited to measures of ensuring the specific user who claims to be X is X himself and nobody else. We will discuss that part here.

Let us try to probe a little further to learn more about the process of authentication. When we are dealing with our network, we get the username and password from the word go from our admin. We start using the network with the default values and change the password as we go along. Unlike that, when we are dealing with remote websites, there is a process of registration that precedes the process of login. The process of registration demands the user to supply information for his authentication; for example, insurance policy number and registered phone number when we are dealing with an insurance website, for example. Providing an OTP coming over the registered email ID and registered phone number in case of a bank website, and so on. Another example is if we connect to a bank website, we usually receive an OTP over our registered email ID or a phone number. We supply that to the website in a short duration to establish our identity. Thus, the identity is established using other measures. Once the identity of the user is ascertained, he can access his account or his details from the website.

Interestingly, the user identity and process identity are altogether different aspects. For example, a user sitting on a machine communicating with a bank website is a case of a human identifying a process running at the other end to be genuine. The website not only identifies the proper username and password-based entity, but it should also identify if the person at the other end is a human or not. There are some techniques, for example, captchas, that are designed for making sure the person at the other end is a human and not the process.

However, we will not discuss either the captchas or authorization process here. We will discuss only one thing . How does an arbitrary process, be it a client or a server of some sort verify the identity of the process at the other end. There are roughly two different types of solutions that exist; one based on symmetric encryption while the other based on public-key encryption.

Both are used in practice. When the network is confined to a single owner, security policies are aligned, servers are trusted, symmetric keys are a better choice. The servers act as KDCs, and they generate permanent keys (based on the passwords that they share with users), session keys, and other symmetric keys. They use those keys to transact with the users. There are servers designated for authenticating users and allow them to do some operations based on their identity, popularly known as Authentication Servers (AS). Their primary job is to manage a suite of symmetric keys to be used for this purpose.

On the contrary, when the communication spans across networks, there are multiple owners, public key exchange methods are preferred. Chapter 16: User Authentication Using Public Key Certificates will describe some of those methods.

We will see how symmetric key encryption is used for symmetric key exchange in the next section, and the subsequent section will deal with the public key encryption method for the symmetric key exchange process. We will conclude with how public keys are exchanged using certificates at the end of this chapter.

14.7.1 Key exchange using symmetric keys

Let us try to restate the problem. We want a solution where an arbitrary process can assure the identity of the person at the other end before divulging any confidential information.

Many myths surround authentication; one of them is authentication being a single-step process. It is not. The authentication requires a few exchanges of messages from both parties unless both of them are assured of the identity of the other. That sequence of operations is popularly known as an authentication exchange. The authentication exchange describes a complete protocol, that is, what exactly each party sends and how the other party responds to that message, in which sequence and in which format. This process is popularly known as a protocol, that we are discussing is also known as an authentication protocol.

Let us start with a case where a user logs in from his machine to a server, providing his credentials; that is, his username and his password. At the first glance, we assume that the following scenario takes place:

	The client sends both the usernames and passwords across the wire to the server.

	The server looks up in the database for both; if found correct, provides access.

Now, this simple first version has a subtle flaw; an attacker who is on the vigil. A communication line will learn about everything that is being sent and received, including the username and the password. So, that cannot work.

Let us try to improvise and be a little smart. We now do not send the password in the plain. We will send it in an encrypted fashion. The encryption is done using the secret key that we share only with the receiver securely before. Armed with the state of the art encryption, we make it impossible for an attacker to decrypt what we are sending. However, is the problem solved? Let us try to see the operation:

	Consider C wants to talk to S; both of them have a key K as a shared secret key.

	Suppose the C’s password is Pass, it will encrypt that using K to EPass.

	Now, C sends its username (in the plain) and EPass to the receiver.

	The receiver decrypts EPass to Pass as it has K.

	The receiver looks in the database for the username and Pass and allows C.

Great! Isn’t it? Not really. Let us see what an attacker A will do:

	Attacker A has captured both the username and EPass.

	A sends the username and EPass to the server.

	The server decrypts EPass correctly to Pass and allows A.

What is the problem? The attacker does not need to decrypt EPass. The server expects the sender to send EPass only! Let us remind ourselves that the above is nothing but an example of a replay attack.

Any eavesdropper who is listening to the preceding communication can masquerade as the sender (C) to S. You can understand that the idea of encrypting the password does not work. Similarly, if we encrypt both the username and password, it won’t work either. The server now expects an encrypted version of both. The eavesdropper will learn about encrypted versions of them only and succeed after sending the recorded values without decrypting them.

The solution to this problem lies in using some form of a challenge handshake. Let us try to learn what a challenge handshake is.

A challenge is a random string generated by the server. As it is a random string, it is generated again every time and not likely to be the same for multiple operations. Let us try to see how it breaks the jinx:

	C sends its username to S.

	S responds with a random challenge, Ch.

	C encrypts the Ch with Pass, converts it to ECh, and sends that to S.

	S decrypts the ECh with its version of the password, finds Ch, and accepts C.

Great! But does it work when the attacker eavesdrops and captures all messages? Let us try to see what happens:

	Attacker A captures the username and ECh is communicated over the line.

	A sends a username to S.

	S responds with some other random challenge Ch’.

	A sends ECh to S.

	When S decrypts ECh, it finds it as Ch and not Ch’ so discards the connection and disallows A.

Why did it work? The server has sent a new challenge to the attacker. The attacker can only send back ECh, which he has recorded. He has no secret key K to encrypt the incoming Ch’ to ECh’ and so it fails!

You can see that attacker A has kept vigil on everything communicated as well as provided the right input when needed, however, failed.

Figure 14.1 shows how a replay attack fails when the users use a challenge handshake:

[image:]

Figure 14.1: Replay attack thwarted using a challenge handshake

We seem to have come across the right answer to our puzzle. However, there is still a problem. In most cases, both parties need to authenticate each other. For example, in the preceding case, Server S is very clear about Client C’s identity, how about the identity of S? In many cases that we discussed earlier, for example, a bank website, the client must be certain about the identity of the server before he provides his confidential information.

In other words, we must enhance our solution to provide authentication from both ends and not one. We again assume both parties are aware of the password that is being shared between them before the communication takes place. Usually, when they are part of the same network, they can use any mechanism described in the section Key management for sharing the password as a shared secret key.

We will see in the next chapter that the password is not used as the shared secret key, but the shared secret key is derived from the password usually using one-way hash function. Why? Because if ever the attacker catches hold of the shared secret key, he will still not be able to learn the password. However, we will not differentiate that right now and assume the password is the same as the shared secret key.

Now, let us try to learn how both parties authenticate each other:

	C sends the username; it also sends a challenge CCh.

	The server sends ECCh as an encrypted challenge from the client, as well as SCh, a random challenge from its side.

	C decrypts ECCh finds CCh, and validates the server’s identity; additionally, it also sends ESCh, the encrypted version of the challenge sent by the server.

	The server, on receipt, decrypts ESCh to SCh and validates the client’s identity.

[image:]

Figure 14.2: Challenge handshake in both directions

So, we can now authenticate both parties! It seems quite a great solution! With only three exchanges, we can ascertain the identity of both the parties. The solution appears robust at first glance but alas! We have overlooked an important problem. Let us try to see what could be the problem with the approach used in authenticating both communicating parties shown in Figure 14.2. The attack is known as a reflection attack, and it is based on the client’s ability to have multiple concurrent connections with the server. The next section elaborates that attack.

14.7.2 Reflection attack

The clients of today can always provide concurrent connections to the server. The reflection attack takes advantage of this fact. Even when one client does not allow the concurrent connection, the attacker can run multiple clients with one connection each to perform this attack. Please understand that servers have to allow multiple concurrent connections from clients as normally, we have a single server responsible for handling multiple clients. Here is the description of how it works:

	The attacker opens one connection, connection-1 with the server.

	The attacker sends the username and ACh to the server.

	The server responds with EACh and SCh.

	The attacker opens another connection; let us call it connection-2 with the server.

	The attacker sends the username and SCh to the server.

	The server responds back with ESCh and SCh’.

	The attacker sends ESCh on connection-1 and drops connection-2.

	The server accepts ESCh on connection-1 and accepts the user as valid.

The attacker, in short, is successful in attacking the server and impersonate as a valid user without having the valid password or encryption key. The trick is simple. The connection establishment process expects the server to send a challenge that the client is expected to return by encrypting. The server’s challenge, denoted as SCh, needs to be encrypted by the attacker using the client’s password, which it does not have. He must get the encrypted SCh or ESCh to respond correctly to the server, so he plays a trick.

He opens another connection with the same server, maybe with the same username or otherwise, and sends the challenge as SCh, the same challenge, the server has sent over the first connection. When the server responds with ESCh, the encrypted SCh, it willfully accepts the value, closes that connection, and responds that back to the server on the first connection. Now, the server is fooled into believing that it is talking to a genuine client! Problem solved! Obviously, for the attacker. For us, this is a new problem, for which we need to find a solution.

This attack, which is summarized in Figure 14.3, is known as a reflection attack, and one must find a solution to that problem:

[image:]

Figure 14.3: Reflection attack

The primary reason for the reflection attack being possible is that the server unknowingly encrypts the challenge that it has sent itself and receives that as valid on another connection. The other problem is that both parties use the same key for encryption. Here, the attacker needs to know the content encrypted by the client’s password, but he gets the content encrypted by the server’s password, and it worked! It is because both side communications are using the same password! Here are some solutions to this problem:

	Both sides use different keys for encryption. So the client uses one key to encrypt while the server uses another key for encryption. They may use the same password, but the key for encryption is different. Most commercial systems use this approach, including IPsec, TLS, and PGP.

	The range of passwords chosen for both parties is different; for example, a client uses all letters in lowercase while the server uses all letters in uppercase. The point is, when the domains for choosing the passwords are different, it is impossible that they are ever the same.

	Disallow concurrent connections from the client. In many cases, the demand from users does not allow the designers to use this option.

	Change the protocol where the sender first authenticates himself altogether, and then the receiver does so. Let it take more than three steps. In our case, it will increase to 4 steps.

[image:]

Figure 14.4: One solution to a reflection attack

If you carefully observe Figure 14.4, you can see that now it is not possible to have a reflection attack. The server is authenticated first, and then the client sends its challenge. The client has no way of learning the ESCh, or the encrypted server challenge. This solution is not without the additional overhead of one more step.

Another point is, though the reflection attack that we have mentioned earlier is not possible on this protocol, another form of reflection attack is still possible. As long as a client can send something which provokes the server to send an encrypted form of what the client has sent, some sort of reflection attack is possible. Another solution, based on HMAC, is in order, which simplifies the process and avoids the possibility of a reflection attack. Let us narrate how that is done in the next section.

14.7.3 Authentication exchange using HMAC

We have already studied HMAC in Chapter 8: Message Authentication using MAC. We are going to use that here. The HMAC allows the shared secret key to be concatenated with the message (twice) and calculates the output hash value based on some hash function of the user’s choice. The sender does not do any encryption actually, but the shared secret key is used cleverly in the calculation of the hash value which is being sent across. The hash value acts as a unique key here. The sender and the receiver, having the secret key, can generate this hash, but the attacker cannot. The output, the hash value generated from the HMAC, is called MAC, or authentication tag or tag for short.

The idea is to generate the HMAC value on a few items, including a nonce. Any method that we have discussed in Chapter 11: Pseudo-Random Numbers can be used here to generate the nonce. The idea of using HMAC allows the receiver to assess the integrity of the message, which wasn’t possible in earlier cases. The process happens as follows:

	C generates his nonce and sends it to S.

	S calculates the HMAC value on a few items, including the nonce sent by C, his nonce, both the identities of C and S and the shared secret key (based on the password).

	S sends back the hash value generated in step 2 and its nonce.

	The C has everything except the server’s nonce value before step 3. Now, it has all those values. So, he calculates that HMAC value and compares that with the hash value received. It accepts the response only if both values match and not otherwise.

	Now, C sends a new HMAC constructed from both of their nonce and the key based on the password. This helps the server to understand that the response is fresh.

The solution based on HMAC is depicted in Figure 14.5:

[image:]

Figure 14.5: Solution based on HMAC

Interestingly, there is no secret key being sent, not even in the encrypted form. The client and server work on the HMAC value matching to accept or reject the other party. The attacker has no way of calculating HMAC on its own. The HAMC value is only possible to calculate if the attacker has the password and not otherwise. There is no way the attacker fools the server into answering its questions. You can see that the server encryption is completely avoided, and thus there is no possibility of a reflection attack.

Shared secret keys are a typical case where there is a central authentication server that needs to help the clients communicate with each other and utilize the services of the OS based on their identification. The idea is extended in a way that the authentication server acts as a KDC. Let us probe a little deeper to learn how a KDC can be used to authenticate both communicating parties by exchanging the shared secret keys.

14.7.4 Authentication exchange using a KDC

Let us now take a case where we have the liberty of having a KDC, which both communicating parties trust. Now, a KDC shoulders the responsibility of assigning and regulating the use of shared secret keys. One of the prerequisites of this model is that all communication parties must have a shared key with the KDC. You can understand that the authentication server in a network acts like the KDC. Each user shares a password with the authentication server. The password is used to generate a shared secret.

Let us begin with a simple solution using the KDC; however, we will see later that this simple solution is not enough:

	C sends the message to the KDC, encrypted by the shared key between C and KDC, and also indicates that the receiver is S.

	The KDC decrypts the message and encrypts it again with the shared key between itself (KDC) and S.

	KDC now sends the encrypted message to S.

	S decrypts that message and accepts it as valid.

Not only the preceding method sends the message to the server intended to be the receiver of the message, but it also provides a kind of non-repudiation. When the KDC sends it with a guarantee that it is initially sent by C, the server should believe that it has come from C and nobody else. When the S responds in the same fashion, the client can also be assured of the identity of the server.

This two-step process is depicted in Figure 14.6:

[image:]

Figure 14.6: The step process with a KDC as an intermediary

This method does everything that we wanted, however, fails to prevent a replay attack. Let us see how an attacker can launch the replay attack on this system. Consider the client is a customer and the server is a bank server. The client is interested in depositing some money, say ₹ 5000 in the attacker’s account. (You may wonder how an attacker makes the client doing so, there are many ways. One of the popular ways of today is to offer something at an unbelievable price, so the customer is enticed to come to the attacker’s website and buys that product). The first leg of that transaction happens between the client and the KDC. The second leg of that transaction happens between the KDC and the bank server. The attacker needs to either record the first or the second transaction and repeat them. Either the client’s request to the KDC or KDC’s instructions to the bank is repeated multiple times; the actual transaction happens multiple times. The poor bank server has no way of knowing that the transaction is a replay attack.

We have already seen that the standard transactions without the KDC also are plagued by this problem, and the solution to this is possible in two ways. First, a timestamp of some sort is attached with each transaction, so the receiver can learn if the message is stale. The timestamp indicates the current time when the message is sent. Based on the network latency, the message remains valid for a few seconds only. In this case, if the attacker captures that message and replays that message, the receiver finds the timestamp out of time and thus disallows the request.

A common problem with such a timestamp-based method is that each node in the network has its clock, and it is quite likely that the clocks of the network nodes are not correctly synced. The real-world protocols must provide some levy to handle this case, and generally, the solution is not to keep the timestamp limit too tight. Now, assume that we have kept a little loose limit on the timestamp and allow any transaction during one minute of the timestamp. If an attacker knows this, and this is not very hard to know as it is network-wide information, he can make sure the replay happens during that one minute, so our strategy fails to counter the attack. In many cases, both of the methods: the timestamp and the nonce are used together. As the nonce is not to be repeated, and a replay attack contains the same nonce as the previous message, the receiver learns about the replay attack and denies the operation. That means if the client uses a nonce 20, for example, while it sends the request to deposit some money to the bank server, and attacker replays that request. The bank server finds the nonce 20 being used again, which is not permitted, so the server disallows that transaction.

Another and more popular approach by the KDC is as follows. In this case, the KDC does not remain an intermediary and decrypts and encrypts each message, but generates a new session key and shares it between both parties and then allows both of them to communicate directly with each other using that session key.

Here is the process:

	C generates a random number as a key K, encrypts that with its shared secret with KDC, and sends it to the KDC with an indication that it wants to communicate with S.

	KDC decrypts K, encrypts with the shared secret of S, and sends that to S, indicating that C wants to communicate with it, using K.

	Now, S is armed with a shared secret key K to communicate with C. Either of C and S may initiate communication encrypted with key K.

This is a better method. Here, the KDC is used as a tool to exchange the shared secret between two unknown-to-each-other but known-to-KDC parties. However, the KDC remains relatively free as it is no longer involved in the process and does not need to shoulder the responsibilities of decrypting and encrypting each passing message.

There is one more version of the preceding method. In that version, the sender C only indicates its willingness to communicate with S. The generation of a shared secret is done by the KDC and shares that with both C and S. The rest is the same.

You can see that if the communication with the KDC is replayed, it won’t bring any benefits, but the C to S communication using K can still be replayed with the same effect. We still need to make sure that the C to S communication either has some form of timestamp or nonce to thwart the replay attack or better still, use them both. Why? Let us elaborate.

When we use pure timestamp-based solutions, they are vulnerable for the period for which the flexibility that we provide with time. On the contrary, when we use a nonce, we have to generate a unique nonce and send that with every request. When the response comes back, we have to match the value. If the response carries the same value, we accept the response as fresh, and if the response bears a nonce value of the past, we consider it as a replay. However, there is an administrative issue here. The user may be communicating with many other users and sending many nonces across. For matching, it also needs to remember all past nonces that it has sent. If the sender has to remember all past nonces, it demands a huge database and search operation. A better solution is to limit the lifetime of the nonce. When the sender uses both timestamp and nonce, we can achieve a foolproof solution. Whenever a sender sends a nonce, he also sends a timestamp with it. The same nonce does not sent it during the lifetime. The sender must remember the nonce for the lifetime only.

14.7.5 Authentication exchange using the public key

Exchanging a private key using public key encryption is quite straight forward. Here are the steps for private key exchange:

	The sender generates a random key for the transaction; let us call it RKey.

	The sender encrypts the RKey using its Public key and generates the ERKey. Thus,
 ERKey = Encrypt(RKey, Receivers-Public-Key)

	The sender sends it across.

	The receiver regenerates the random key by:
 RKey = Decrypt (ERKey, Receivers-Private-Key)

RKey is the key that is now shared and used by both the sender and the receiver. Figure 14.7 depicts the process:

[image:]

Figure 14.7: The symmetric key exchange using public-key encryption

14.8 Public key exchange using certificates

When the KDC solution does not work for public key distribution, a more straightforward solution where the KDC works offline. The KDC is now called CA. The CA, like the KDC, does everything needed for the key management, generates keys for the users, provides the user the private key to be stored securely at the user’s machine, and provides a mechanism for the user to share his public key. The method for sharing the user’s public key is known as a certificate or a public key certificate. The certificate is a digital equivalent of a conventional certificate saying, this ___is the public key of Mr. ___, which I certify hereby- <digital sign of CA>. The CA is the authorizing party that authorizes the public key of the user. Both the name of the user and the public key are part of the certificate. There is a digital signature at the end of the certificate duly signed by the CA, indicating the certificate is genuine. Even when an attacker modifies the certificate, he cannot sign it on the CA’s behalf as he does not have the CA’s private key, and thus the certificate is considered entirely secure. The certificate, once assigned, removes any need for CA to remain online (like KDC) for the users to communicate. He can present his certificate and start communicating. The other party can use the public key presented in the certificate and respond to the sender, without any need to consult CA.

In almost all cases, the certificates authorize the sender’s public key, but certificates have other usages as well. One of the uses is to authorize the age of the sender. So when a user presents this certificate, the website is assured of the user is an adult. The certificate only indicates that the user is above 18 and no other information, and so the privacy of the user is also protected. Another interesting usage of the certificate to identify the role of the user. For example, a certificate indicating the role of operator indicates that the user can act as an operator and thus authorized to all operations an operator can execute.

The certificates on the Internet follow the standard known as X.509. We will throw more light on the X.509 standard in chapter 16. User authentication using public key certificates. These certificates are in widespread use, including IPsec, Transport layer Security (TLS), secure mailing systems, and even in wireless communication.

Keywords

	Key management: Generating, distributing, and using keys for communication parties to be used for secure operations.

	Private key management: Management of the shared secret keys, also known as private keys.

	Public key management: Management of the key pairs of the public key system (private and public keys).

	Key distribution center (KDC): A KDC is a trusted third party that shares the keys with each user and thus can act as an intermediary for secure communication.

	Session key: A shared secret key used only during a typical session and discarded after that. It is usually a random number.

	Service set module (SSM): It is software that is installed in the sender and receiver, usually running at below or above the transport layer. We also call it the connecting application as it takes the responsibility of requesting and obtaining session keys from the KDC.

	Link encryption: The encryption process between intermediaries like routers.

	End-to-end encryption: The encryption process between the actual sender and the ultimate receiver of the secret message.

	Authorization: A process to allow only authorized users to have access to the genuine resource. It is different by authentication in such a way that authentication checks for the genuineness of the user himself.

	Protocol: Something which describes a sequence of operations for doing something and also what exactly which party will send and will receive.

	Challenge-handshake: A protocol that relies on servers sending a random challenge to client and client responding with encrypting the same challenge and sending it back.

	Reflection attack: Attack where the attacker uses the same challenge on two connections simultaneously, on one connection when it receives a challenge, sends the same challenge to the server on another connection, and the replies to it which it uses on the first connection.

Recapitulation

	Key management is an important component of secure communication. Both shared secret keys and public key system demands key management

	It is possible to use a third party, popularly known as the key distribution center (KDC), to shoulder the responsibility of key management.

	The encryption process can happen at the actual sender and decryption at the actual receiver, which is known as end-to-end encryption. This type of encryption is better for the sender and receiver as they have better control.

	Link encryption is between hops. Sending and receiver routers only do the process of encryption-decryption.

	Authentication is a prerequisite for key exchange.

	There is a need for a protocol for authentication exchange. Authentication exchange can happen using private or public key management.

	The shared secret key is not as easy as a method to authenticate; it seems at first glance, one must look for replay attacks.

	A challenge handshake is a solution to replay attacks.

	When authentication is done by both parties together, a reflection attack is possible.

	To thwart the reflection attack, commonly different passwords are used from sending and receiving sides.

	One right solution is to use HMAC with a nonce to authenticate. It thwarts the possibility of a reflection attack.

Exercises

	Explain what key management is. Differentiate between symmetric and asymmetric key management.

	Why is secure key management to be protected against replay and random attacks?

	What is the role of a KDC in secret key management processes?

	What is the need for connecting applications in the secure system?

	Differentiate between end-to-end and link encryption

	Explain the terms: authorization, nonce, and replay in the authentication exchange.

	Explain the reflection attack. Why is a reflection attack possible?

	Explain the process of public key-based key exchange.

	How HMAC-based authentication exchange thwarts a reflection attack?

CHAPTER 15

User Authentication Using Kerberos

Structure

Learning objectives

15.1 Introduction

15.2 The authentication process in Kerberos

15.2.1 Kerberos architecture

15.3 Kerberos protocol overview

15.4 The challenges and solutions in building a protocol

15.4.1 Security

15.4.2 Flexibility

15.4.3 A central server

15.4.4 Avoid a single point of failure

15.4.5 Secret dialog

15.4.6 Authentication token or ticket

15.4.7 Using short term keys

15.4.8 Replay attack prevention

15.4.9 Using an authenticator

15.4.10 Authorization

15.4.11 User-friendliness and need for TGS

15.4.12 The need to authenticate the server

15.5 Multiple Kerberos realms

15.5.1 Improvements in version 5

15.6 Kerberos version V Protocol

15.6.1 Mutual Authentication and sequencing

15.6.2 Options and Flags

15.6.3 Initial

15.6.4 Pre-Authent

15.6.5 HW-Authent

15.6.6 Invalid

15.6.7 Renewable

15.6.8 May-postdate and postdated

15.6.9 Proxiable and Proxy

15.6.10 Forwarded and Forwardable

15.6.11 Transited policy checking

15.6.12 Other flags

15.7 Kerberos limitations

Keywords

Recapitulation

Exercises

Learning objectives

After studying this chapter, the reader should be able to:

	Decide why one needs a centralized authentication solution.

	Judge the need for authentication, ticket-granting, and application servers in the network and what their role is.

	Describe the need for many constructs used in the Kerberos protocol such as session keys, tickets, authenticator, options, and flags.

	Look at the design and point out places where specific security issues like replay attacks, stolen tickets, and more, are addressed in the Kerberos protocol.

	Narrate why a typical option is specified by a client and when a particular flag is set by the TGS or AS.

	List the improvements provided in version 5 and various cases under which it can perform.

15.1 Introduction

In the first half of the Harry Potter movie Harry Potter and Sorcerer’s Stone, a monstrous three-headed dog is shown guarding the sorcerer’s stone. The dog is named as Kerberos or Cerberus in Greek mythology who protects Hade. The word Kerberos in the computer domain is a service for authentication which guards against intruders and hence the name.

Kerberos is a service where there is an authentication server (AS) responsible for authenticating all users of the system. The authentication service is based on the shared secret key that the AS shares with each user. In this chapter, we will study what Kerberos is trying to accomplish and how it uses the shared secret keys in doing so.

KIM: Kerberos is an authentication service using a shared secret key designed to protect against intruders. Its name is picked up from the Greek mythological character of a three-headed dog that guards the entrance to Hade.

Consider a modern network with many servers providing services like Internet access, mail service, file storage, database access, and so on. The nodes of the network, now onwards we call them clients in the Kerberos parlance, are there to avail the services of those servers. The services available to all clients are not the same; it is based on the identity of the client and the administrator’s policies. It is quite possible that one client has complete access to the mailing server but has no access to the file server. On the other hand, another client might have file upload and download access to the file server but might not have any right to add new users to the file server. This kind of distributed environment with multiple servers and clients presents quite an intricate problem for authentication. A user sitting on a typical client must get the service he is allowed to and vice versa.

How these heterogeneous and distributed servers authenticate these users and provide specific services based on that authentication in a distributed environment efficiently and securely are questions Kerberos is designed to answer. It is a single point authentication system in the network. All other servers honor the authentication provided by the authentication server running Kerberos.

KIM: Kerberos provides a single point authentication system in a networked environment with multiple servers and multiple clients connecting to them with a variety of rights.

One may assume that a specific machine can be given specific rights (machine-based and not user-based authentication) but that might not work here as there may be few threats that exist in the system. Let us try to summarize the threats in such a system:

	An intruder might have access to a legitimate user’s workstation and use that to ask for a specific service. In such a case, the authentication based on the identity of a machine cannot help prevent the attacks.

	There are many ways one can change the IP address of the machine. If one is having even a local administrator account, he can do so very easily. When one is not an administrator, there are utilities available that can help the user to do so. If the address is not changed, the attacker may use some utilities available over the web to allow the outgoing packets to bear any source address the sender wishes to. In such a case, even the IP address-based (in other words, network address based, i.e., machine-based) authentication cannot work.

	An attacker might deploy a replay attack that we studied in Chapter 3: Block Ciphers and Attacks. He might just listen to the traffic and replay some parts of it to gain unauthorized access to a specific server if the protocol is not designed to combat this. Thus, an authentication based on some form that allows for replay attack also cannot work here.

	A client (for example, a student in the lab) might work from different machines but prefer to keep his identity and authentication intact. Machine-based authentication just cannot work here.

	Authentication for a mobile node, which is part of various networks at times does not work as such machines change their IP address when they move on.

That means the authentication must be based on user-level credentials (user name and password-based) and not machine-based (IP address-based). Machine level authentication can be an attractive option for two-factor authentication when the user is using a laptop or a mobile phone, or an officially allocated desktop in a corporate office, unlikely to be used by others. The receiver can check for the user name and password and additionally check for the machine level credentials to double-check.

We need to provide secure access to the servers in our problem. If ever an attacker gains access to a server in an unauthorized way, it would be difficult to stop him from thereon. One solution is to build a strong authentication process in each server and let the client directly connect to the server and authenticate himself. This mechanism would work in a single server or a few server cases but otherwise, that would not only cumbersome but also difficult to maintain, especially when there is a large pool of servers. Not only the complete user base is to be copied to each server, but each server also runs the same authentication process. Such redundancy leads to multiple incompatible copies of the user database, an entry point for an attacker if one of the servers provides the weak link and so on. So, such an authentication process does not present a proper solution.

Kerberos, on the contrary, tries to manage the same using a centralized authentication server to authenticate any client for any service by any server. It authenticates a user to a specific server and a server to a specific user. This is a classic example of a third party help mutual authentication of the sender and receiver (or the client and the server).

Kerberos is implemented on Windows 2000 and its later versions. An open-source version of Kerberos is available from Kerberos Consortium formed by MIT, Sun, Google, Microsoft, Apple, Stanford, and more. The protocol was initially developed and nurtured at MIT for its first three versions. The fourth version was publicly available and used. Currently, it is in its fifth version. We have discussed the 4th version in the annexure and concentrated on the 5th version in this chapter. Though Microsoft uses the same Kerberos, it is not based on the open-source version. On the other hand, many other operating systems, including some variants of Linux and UNIX are using the open-source version of Kerberos. The list includes FreeBSD, Red Hat Linux, IBM’s AIX, HPs Open VMS, Sun Solaris, and more. In short, Kerberos is quite popular. Some other important information about the Kerberos is in order.

The authentication exchange mentioned earlier requires read-only access to a database that contains information about usernames and passwords. There is also a need for modification of the said database while new principals (read users who are getting authenticated or servers who are providing services) are added or old ones are removed. For that, one more Kerberos server, the Kerberos administration server (KADM) is needed. There is a protocol for maintaining multiple copies of the Kerberos database. Kerberos also provides an API that applications can call. Whenever any application wants to have an elaborate authentication process, it might use this API. In order to authenticate, the application accepts the username (the password is sent later with other authentication exchange) and calls the Kerberos library using Generic Security Services Application Programming Interface (GSS-API). These calls result in the transmission of the messages necessary to achieve authentication. Kerberos also includes mechanisms to deal with underlying protocol selection (TCP or UDP) for exchanging messages. There is a variant of Kerberos which also provides peer-to-peer authentication. There are many other things one can discuss about Kerberos. Anyway, we will only look at the basic Kerberos process of authentication and related protocol and omit other discussions.

15.2 The authentication process in Kerberos

Why was Kerberos designed as a central authentication server? Why was a single server authentication chosen? Let us try to get answers to the preceding questions and a few other questions.

In the current scenario, the users have intelligent workstations that run client programs which communicate with server programs running on physical servers. A client can connect to more than one server at a time and also connect to each server in a dynamic fashion. Administrators design elaborate access control policies (for example, user A should have access to machine B’s folder C with read-only access, user D will have access to machine B’s folder C with modification access, and so on). The operating system running at the server can help with the usual authentication process (UserID and password) to identify a specific user for a particular server. Once the identity of the user is confirmed, it is easy for the system to look at some tables to check what types of access are available to the user. The job is done!

Easier said than done. It is not that easy to make sure. Let us try to understand. Suppose the OS on one server has authenticated a user, now how do an OS on the other server identify that the request from the user is a genuine one and not concocted or replayed? One might say, let the client log in to the other server as he did with the first! It is not a good option. We must make sure that the user’s credentials are passed to multiple servers without bothering the user himself. In a way, the user needs to log in only once and should be able to access any server any time after that.

Kerberos helps here. The user authenticates to the server designated for authenticating him first (we will call it AS). The authentication process (running in AS) generates a token popularly known as a ticket. When the user requests for any resource like a file, the request produces that ticket as an authentication token to that specific server (for a file, maybe a file server). The server, looking at the ticket, identifies the sender and provides the service accordingly. The Kerberos design has one more server called the ticket-granting server (TGS). TGS looks at the ticket produced by the client and returns the ticket for a specific server. Please understand the difference between both the tickets. The first ticket is a kind of authenticating the user and another is for a specific service. The user gets the first ticket from the authentication server and keeps it with him during the entire session. As soon as he needs a typical service from a typical server, gets the ticket for that service from the TGC, automatically as the client running there presents the first ticket to TGS for the second ticket. The user does not need to intervene while the second ticket is obtained. When the second ticket is presented to the specific server, the server provides that specific service to that user, if he is entitled to it.

Figure 15.1 describes the type of servers:

[image:]

Figure 15.1: Various types of servers in Kerberos

Figure 15.2 describes the type of tickets:

[image:]

Figure 15.2: Various types of tickets in Kerberos

In short, the best solution for multiple users with a different set of rights on varieties of servers in which users need to authenticate themselves with the servers irrespective of the origin of their request is by using an AS. That server (AS) handles the job of identifying users, so other servers are removed from the burden of doing so every time the user seeks services from them. Ideally, there must be more than one authentication server. If one server is down or overloaded, the other servers can help. Kerberos is based on that design.

15.2.1 Kerberos architecture

In Kerberos, the parties involved in the process to authenticate are called Principals. The idea is to first obtain the credentials from the principal.1 In our case, the principals are clients and servers. The principals may be different in different communication but parties involved in the authentication process. Kerberos is designed to verify the principal’s identity. Once the identity is confirmed, the integrity of the messages can be ascertained thereafter. The Kerberos job is to authenticate and allow principals to act accordingly, the application (In most cases the OS but other applications as we have mentioned earlier which uses GSS-API) may use that for any protection as they deem fit. To verify the identity of the principals in a transaction, the client uses a construct called ticket. The ticket helps the receiver to ascertain the authenticity of the request and the requester.

Kerberos uses three different types of servers, AS, TGS, and normal servers providing different services. The authentication server manages the authentication of the user, while the TGS manages the tickets for specific services and their lifetimes. Normal servers provide those services on receiving valid tickets from the clients.

Please pay attention to the difference in the meaning of words client and user. The word user is a person who is trying to get authenticated; the client is the process, initiated by that user, running on that machine. The user is involved in the process when he supplies his credentials when logging into AS, the client is involved in other processes that demand services from either TGS or other servers.

We will soon learn what tickets are; for the time being, you can consider it to be a token for a specific service. It is quite analogous to a token that we get in restaurants with self-service once we pay the amount. As the token is produced at an appropriate counter for the specific type of food, the ticket needs to be produced to a specific server for specific services.

In Kerberos, the authentication server acts like a KDC to maintain the database of secret keys between itself and every client, that is, every user as well as every other server. In Kerberos, services like file management, internet access, or more are provided by the normal servers. Every client and every server who serves them have a shared secret key (the password is hashed form) with the AS (the KDC). The actual communication does take place using a session key and not that shared secret key. The session key is temporarily generated by the AS or TGS for a given transaction.

The shared secret key is a long time value (lasts as long as the user wishes or administrator restricts as a password life) which is not directly used in the authentication. The user, while performing an operation (like accessing a file), needs to authenticate itself before the operation is successfully completed. It does not use the same shared secret key for the authentication process. What the user does is to communicate to the AS and receive a ticket and also a session key both of which are short-lived. It uses that ticket to get a specific service from the specific section of the OS and uses the session key for encryption. Using short-lived tickets and session keys instead of long-lived passwords improves the security of the overall system.

KIM: User’s password is a long-lived entity, while the ticket and the session keys used for accessing the service are short lived entities. Kerberos allows short-lived tickets and session keys instead of a password to improve the security.

Kerberos has two types of tickets. The first ticket is generated by AS to get service from the TGS. That ticket identifies the user and nothing else. It is of type I know the holder of this ticket is Mr. X. The second ticket is generated by TGT to be used to get a specific service from a specific server. That ticket identifies the client process as a valid process. It is of type, This process is authenticated, so please allow this process to access everything Mr. X is authorized to. The ticket-granting ticket (TGT) is issued by AS while SGT or service granting ticket is issued by TGS. The client uses those tickets thereafter for its work. Figure 15.2 captures the idea.

15.3 Kerberos protocol overview

Let us describe the process step by step:

	The protocol commences the transaction by a client sending a request to the authentication server (step 1).

	The client process receives a ticket to be produced with the ticket-granting server (step 4).

	However, the server does not execute step 4 unless the client process produces the identity of the user, which happens in steps 2 and 3. Everything the user does is via the client process.

	The client process interacts with the user only when the password is needed (step 2) otherwise does things on its own.

	The sender provides his credentials (step 3) and if they are fine the server responds (step 4) with the ticket which can help them to produce a ticket-granting server.
Observe Figure 15.3 for the entire Kerberos protocol overview:

[image:]

Figure 15.3: The Kerberos process

KIM: Kerberos tickets are time-stamped.

	The next step is for the client to talk to the ticket-granting server by producing the ticket received from the authentication server (step 5) and ask for a ticket for a specific server (for example, from a file server pqr).

	Once the identity is proved, the ticket-granting server provides a ticket for a specific server authorized to provide that service (step 6).

The ticket received from the TGS is produced to the server (step 7). Each service-providing-servers have a local database that they use to store access rights of various users. Once they receive a specific ticket from the user, they can query that database to find out if that operation is acceptable for that specific user. They would look at the request for some service (for example, access to a specific file is one such service). If the user is authorized to have that service (have privileges to access that file), they allow the user to access that particular service.

Thus, there are three steps involved. First, the user instructs the AS to ask for a ticket. After authenticating the user from a specific client machine, the AS provides the user with a ticket, which we call the ticket-granting ticket. The TGT once obtained, remains with the user (that means stored inside the user machine) during the lifetime of that session (that means until he logs out). Now, during the complete session period, whenever the client is in need of any service from any server, the client (process, not user) produces the same ticket to TGS and obtains a service granting ticket (SGT) for that server from TGS. This ticket is different than the TGT; TGT is used to get this ticket while SGT is used to get specific service from the service providing servers. Now, in the third step, the client produces that ticket to the specific service providing server for availing that service.

A diligent reader might pose a question. Why the three-step process is introduced when we can eliminate the ticket-granting server and can complete the job in two steps? The AS, instead of providing a generic ticket to be used at the TGS, can provide a ticket that the client can produce with a specific server to avail of the service that he wants. Isn’t it? Interesting question! We will soon see the answer. We will see how the additional step and the TGS makes the user’s life simpler.

The following is the summary of what happens in the process. It is a simple version which will soon become more complicated:

	The user sends an authentication request to the AS.

	AS responds with TGT which the client machine stores.

	The user decides to avail services of some servers.

	The client machine sends the TGT with a description of the server to TGS.

	TGS looks at TGT to authenticate the request and sends the SGT back.

	The client machine sends the SGT to a specific server.

	The server, on receipt of the service granting ticket, provides a specific service.

For the operating systems, the shared secret key is nothing but the password issued to the user, albeit in a little different form than what the user knows. The password is converted to a different value by applying a one-way function, which value is used as a shared secret key.

KIM: Though the user password is usually denoted as the shared secret key between AS and the user, the shared secret key used for authentication is not exactly the password itself but the secret key derived from the password.

One more interesting security issue is about the tickets being stolen. All tickets in Kerberos are timestamped and also has a specific validity period associated with it. Thus, minimizing the impact if the ticket is stolen. Moreover, the ticket is also sent along with other information to make sure that the ticket is originated by the principal to whom the ticket was issued. That information is known as an authenticator. The Authenticator is encrypted with the session key (randomly generated for this transaction only). Both the timestamped ticket and authenticator together helps the receiver to provide the right service to the right entity.

A good analogy of the process is a railway e-ticket. The user first generates the e-ticket and carries it with him for availing specific services (the sleeper, second AC, third AC, chair car, and more). The identity card issued by the government acts as an authenticator and establishes a relation between the user and the ticket.

When the authenticator is encrypted with the session key, it is imperative that the session key is guarded against attacks. Two measures are taken for keeping the session key safe. First, the session key is never sent in the clear over the network. Second, the protocol ensures that no one except the requesting principal and the server knows the session key. Both of these measures guarantee security. The messages which are exchanged also need integrity. The session key is used to encrypt the message to provide that. The session key is also part of the ticket. An additional measurement of the exchange sub-session key is also provided in Kerberos. The sub-session keys are used to encrypt subsequent communication between principals (client and TGS server and client and other servers).

15.4 The challenges and solutions in building a protocol

Kerberos is a very complex protocol as it has to find solutions to many challenges. It has evolved from the first three versions which were developed and used only at MIT; it also has inherited some characteristics from the Nidham-Schoroder protocol which is an extended version of the simple protocol that we discussed earlier to manage challenge a handshake and reflection attack in Chapter 14: Key Management and Exchange.

Now, let us list challenges one by one and see how Kerberos solved those challenges.

15.4.1 Security

An attacker should not impersonate other legitimate users by eavesdropping and obtaining the necessary information. The solution is to be strong enough to resist such attacks. When a server receives a request from a client, the server must be able to judge if the client is real or fake. In the case of any network without due security, it is quite possible for an attacker to pose as a genuine user and thus some form of check is a must. When an intruder tries to impersonate a genuine user to get unauthorized access to the server, the server must be able to protect itself from such attack. To combat that threat, each server must be able to access the identity of the requesting user. Similarly, a client may also need to make sure if the server is genuine. Also, all communication must be properly encrypted to keep the onlookers at bay.

15.4.2 Flexibility

The networks grow and sometimes even shrink. The design should be scalable enough to help a large number of clients and servers in the authentication process without losing much of the efficiency. Ideally, additional authentication servers should be deployed without disturbing the users for keeping efficiency to the same levels when the number of servers and clients increase. Kerberos could do so by allowing the deployment of additional authentication servers.

Note: Kerberos versions 1 2 and 3 were never publicly available. They have been in-house versions never used for any real solution. The fourth version is the first real Kerberos protocol used in practice.

15.4.3 A central server

We have already stated that keeping each server equipped with a user authentication mechanism will add a lot of overhead to the server designed to provide some service (for example, Internet service or networking service or something similar) and busy in that job. A separate server for authentication is a lucrative idea considering the load on an individual server and repetition of the job when a single client routinely accesses multiple servers and gets authenticated multiple times.

15.4.4 Avoid a single point of failure

As Kerberos is the central authority for authentication, if the authentication server itself goes down, the entire system goes down with it. Once the AS becomes unavailable, no user can be authenticated and users do not get any services without authentication. A design where more than one AS is deployed and the secondary server taking charge automatically when the primary server goes down is highly appreciated. Kerberos has that capability.

15.4.5 Secret dialog

The protocol requires a few dialogs between different entities involved. The entities involved are AS, TGS, and other servers to provide specific services. The dialog between them must be secure. Kerberos provides a secure key for each pair of communicators. We have followed a nomenclature in our description which informs the reader what that secret key meant. For example, Secret Key UserA-AS indicates a secret key shared between UserA and AS; similarly, Secret Key TGS-Server indicates a secret key shared between the TGS and that server. Each server (for providing specific services like a file service or Internet service), also shares a secret key with AS. This will enable AS to generate a ticket or a message encrypted in a way that only that particular server can decrypt. Distribution of those keys is done in some other secure manner and each server is aware of its key to associate with a specific Kerberos server. These keys are never sent over the network.

15.4.6 Authentication token or ticket

In Kerberos, the tickets are used for getting services. The important requirements of the ticket are that the user himself cannot generate nor should he be able to modify the ticket.

The ticket is encrypted with a shared secret between AS and the receiving server, and not the user and the server. When users or client processes cannot decrypt the same, they cannot modify the same, and they cannot also generate the same. The client can only use it as an authentication token. It is analogous to a token used in banks. If the specified token is with a customer, he may get that service. The tokens are also designed in a way that a customer cannot generate the token himself. This ticket is similar to that token.

15.4.7 Using short term keys

The password is not used but temporary keys are used for most communication for better safety. It is interesting to learn how SessionKey is secretly passed to the other two parties (it is generated by AS). The solution is simple. AS is required to generate the session key (or use a random number generator to do so) first. In the first interaction, the AS sends the SessionKey to the client encrypted by the secret key based on the password. After that, the client may continue to use that session key, which we call the SessionKey for the complete transaction.

This SessionKey is to be used in the communication between TGS and the client. The TGS generates and passes the client another session key which we call ServerSessionKey. The ServerSessionKey is to be used to secure communication between the client and the server (for a specific service).

15.4.8 Replay attack prevention

The replay attack may be performed in a few ways. A dialog between any two parties may be captured and replayed. Another way is to capture the ticket and use that ticket later.

Every ticket contains a user ID as well as its network address. When the ticket also indicates the IP address of the requesting machine, including the user ID, the recipient can check both the user identification as well as machine identification.

The ticket is considered valid only if it comes from the same user (whose user ID is part of the ticket) and also comes from the same machine (from where the ticket request arrived). If the intruder captures the ticket and provides the request from his machine, the server disallows that request comparing the IP address mentioned in the ticket and the IP address of the request. Thus, the ticket is only valid if the ticket is requested from the machine mentioned in the ticket and from nowhere else.

It might also be possible for an attacker to capture the ticket-granting ticket and wait until the user logs off. After the user logged off, the attacker may configure his machine with the IP address of the user and start asking the TGS for specific services. (For a change, he may get access to the machine used by the user so he does not need to spoof the IP address, the ultimate result is the same).

To thwart that, the ticket also contains the validity period. The advantage of a small validity period is to restrict the time for which the ticket is valid and thus making sure that old tickets are not reused by intruders. Interestingly, it is quite possible that the AS may not be synchronized in time with the user and defeating the purpose. The Kerberos that is why restricts the system to make sure servers are not out of sync with other servers beyond a point.

15.4.9 Using an authenticator

Even when Kerberos restricts the lifetime of the ticket, it is still possible for the attacker to capture and use that ticket within its lifetime. How can an AS or TGS makes sure that the user who is asking for a ticket-granting ticket is a genuine user or an attacker impersonating? We need to have some solution to that problem. A network service provider (AS or TGS or a server) must be able to judge the authenticity of the sender, or the user who is asking for the service is the same one whom the ticket is issued. Thus, every request with a valid ticket also requires to have an authenticator. The authenticator is encrypted using the session key. The session key is part of the ticket. Only when the receiver can open the ticket, extract the session key, can decrypt the authenticator. It is thus not possible for an attacker to imitate.

15.4.10 Authorization

The authorization follows authentication. All servers, once the user is authenticated, use a table to check whether he is allowed to do what he asks for.

For example, the receiving server decrypts the ticket and decides if the ticket contains the same ID as mentioned by the client. If so, it grants the requested service. For example, the ticket contains user ID as XYZ001 along with the request to access a typical file to a file server. On request, if the file server looks into its database and finds XYZ001 with access permission to the file it is asking for, the file server allows that file to be opened on the client’s workstation.

15.4.11 User-friendliness and need for TGS

However complicated the system is the user should be able to work without much concern. He should only be bothered when logging in for a user ID and password and not later on while accessing specific services. Such transparency is possible using two servers for the authentication process (authentication and ticket-granting) and clever design.

The number of times a user needs to supply his password determines how user-friendly the system is. Ideally, the user should enter the password only once during his stay on the workstation. Consider the ticket supplied is to be used only once, which means, it is issued as the one-time ticket. This is very analogous to the restaurant tokens that we discussed earlier. Every time we need a new food item, we have to get a new token. It is more secure to manage a single-use ticket but in that case, the sender, for every distinct job, needs to provide his password to get the ticket. We have to avoid that.

Let us understand. Suppose the user logs into the system in the morning and starts his internet session, he needs to supply his password for his client machine to gain access to the internet server. For simplicity, we assume that he only needs the services of the Internet server during his stay in the office. He probably needs to access Internet servers multiple times during his stay in office and thus needs to supply his password that many times if the ticket supplied can be used once only. This is quite cumbersome for the user who is busy enough. One can suggest the ticket that he gets should remain valid for a long period and ideally throughout his connection. So he does not need to provide his credentials anytime he needs the services of the internet server. Problem solved? Not yet!

The user does not only need to access one server; he may need services of multiple servers during his stay. For example, if he downloads a file, he again needs to provide a ticket for accessing the file server which contains that file and needs to get that ticket issued. For that, he again needs to supply his password as the ticket obtained to access the Internet server is not valid for the file server. Similarly, if he accesses a database server, he again needs to have a password for getting a ticket for that database server. The user may need the services of a print server, a mail server, and so on during his login period and in every such case, needs to supply the password to be authenticated by the AS. So the problem is not solved. One innovative solution to this problem is to have one more server in the process called TGS or ticket-granting server.

The idea behind using another server is quite simple. The AS should ideally verify the user being the one he claims to be and nothing else. Using the same identity, he must get access to any server. For example, when we get a driving license or PAN card or something similar, we can use it for a purpose other than specified for identification. The concept of UID is basically to solve those issues. A single ID should serve the purpose. That means the ticket must be universally acceptable for all servers in the network. If a single ticket serves the purpose, the user needs to provide the password only once, get that unique ticket, and use it to gain access to any server. How can we do so?

KIM: The AS checks the user’s credentials and verifies his identity and not anything else. The TGS, on the contrary, looks at the user’s requirement and provides a ticket for a specific server.

The user gets the unique ticket (TGT) from AS which authenticates him to the TGS. Users do not specify the service that they want from the server while providing their identity to the AS. The AS gives them tickets that are valid at the TGS and not any specific server. This ticket is stored in the user machine during the user’s connection throughout and is used to prove the user’s identity with the TGS. The client process keeps it stored on the client machine and uses it whenever it needs the TGT to produce to the TGS. Now, if the user process wants to print something, the process can automatically send that ticket without the user’s intervention to the TGS, suggesting that the client needs the services of the printer server. The TGS, having the valid TGT and assured of the user’s identity, provides the ticket of the type service granting ticket (SGT) for the printer server. If the user now needs access to an Internet server, the client process will again present the TGT to the TGS server suggesting that now the services of Internet server are sought and so the TGS, again checks the ticket and assures the authentication, generates, and provides a ticket for the internet server. The user now uses that ticket to gain access to the internet server. The problem is solved! The ticket-granting ticket (the UID ticket) is only required to be reusable. The user is not asked to provide his credentials every time he needs service. He must get it once and use it multiple times to get specific service from a specific server. That part is done automatically and the user is not required to intervene.

One more interesting improvement is also provided here by most Kerberos implementations. The user is asked to enter the user ID and only on the response from the AS, the user is asked to enter the password. The password, on entry and processing, is removed from the memory. Thus, the client machine does not store the password for a long period. For a little period between two events, when the client machine receives the response from the server and the client completes the verification, the password remains inside the memory. It will be immediately overwritten to prevent any security issues. (For example, if an attacker can crash that machine exactly at that point, he can get and search the memory dump of that crash and obtain a copy of the password, but that time is very limited now). The same algorithm which is deployed on the server is executed to generate the key from the password. That key is used to decrypt the response and get the ticket for the TGS.

Note: Though the protocol specification describes the AS and the TGS as separate servers, in practice, they are implemented as different protocol entry points within a single Kerberos server.

15.4.12 The need to authenticate the server

What happens if the attacker runs a fake server instead of running a fake client? It is sometimes possible for an attacker to exploit some weakness of the server implementation and sabotage that server. After that, all the queries to the real server go to the fake server and that fake server, monitors everything being sent and received will be able to get everybody’s tickets. Once the attacker obtains such tickets he can produce them to real servers and do whatever he wants.

One of the simplest ways to attack is to make sure that all requests transferred to the fake server and the real server does not get any request. With only this done, the attacker makes sure that no user gets the service. Such denial of service attacks is very hard to combat. So there is some need to make sure that the dialog is happening to a real server and not fake.

Kerberos v4 provides that using a simple trick. Whenever the user sends a request, it sends a nonce encrypted with a session key. In the case of the real server, it will be able to decrypt and see that nonce value. It will increment that by one and sends it back in the next exchange. A reading in which, the client is ensured of the identity of the server. In version V, it uses the server session key to encrypt the response. As a fake server does not hold the secret key between real server and TGS, it cannot decrypt the ticket and get the server session to do this process, it cannot respond like the genuine server.

15.5 Multiple Kerberos realms

Version 4 was designed to work with a single network. In today’s world, having more than one network talking to each other is common. It is interesting to see how a node in one network is able to access service from a server belongs to another network. For example, if we have two networks, one catering to MCA students and the other catering to BCA students. A teacher, who is teaching at MCA, is part of the MCA network. When he gets a subject to teach to BCA students, he might need to look at the assignments of those students in the BCA network. How will he be able to access those files? If both the networks have similar Kerberos implementations, there is a way out. The solution is the central theme of this section.

In the preceding case, each Kerberos managed network is called the Kerberos realm. It is the set of nodes under one particular AS. (This AS may have some other back up AS but the set of nodes remains the same). We have already seen that the AS has a database of all user IDs and passwords. All those who are mentioned in that database (other AS who are kept as the backup to this server, ticket-granting servers belong to that network, service granting servers belong to that network, all clients (workstations or nodes) belong to that network who relies on the AS for authentication; together form a single Kerberos realm).

In a general case, a single Kerberos realm contains one Kerberos server (or primary AS server) sometimes denoted as a Kerberos master computer system. It has all user’s user IDs and passwords in the database. All users who want to be part of the network must register first with the Kerberos server. All other authentication servers (if the system contains multiple authentication servers for better uptime) are there, they will have the copy of the same database by synching it with the master server. The Kerberos master server can only add or remove user-related information. Another AS can only have read level access to the database. This design demands physical security for the main Kerberos server. Usually, it is kept in a location where it is difficult for others to go. Additionally, the Kerberos database access is only possible with a master password. All other services providing servers must also register with this Kerberos server. They also share a secret key with the Kerberos server.

Take the case of multiple departments of a company or an educational institute. A production department and sales department prefer to have their realm. An MCA institute of a college would prefer to have its own realm and do not like to have a single realm to be shared with the BCA department. The reasons are many. Only when you are having a single realm for a single administrative domain you have policies implemented. For example, the MCA principal expects each of the students to login to their accounts during the practical lab, and if they fail to do so, the account must be disabled. The BCA principal is not that forcing and do not want to impose this constraint. Thus, we must have two different realms and two different Kerberos servers. In such a case, the problem we discussed earlier might arise. A user of one realm would like to work in another realm and take services from those servers belong to other realms. How can that problem be managed?

KIM: Windows servers have a similar problem of the user of one domain would like to work in another domain. The trust relationship is possible to provide in this case and a user of one domain with specified rights can access the servers of other domains. The administrative solution using multiple domains underneath is implemented using Kerberos multiple realms.

In other words, one needs a kind of inter-realm authentication service. Kerberos version 4 solved this problem by providing a facility for each Kerberos server to register with the other Kerberos server and share a secret with them. If the system contains more than two realms, each AS shares a key with every other AS. How multiple realms are managed by Kerberos v4 is explained in Annexure III. However, Kerberos version 5 has a better mechanism for inter-realm communication. It uses the realm as one of the arguments for connecting a client with a server. That means the client with realm x can communicate with the server of realm y in version 5 if the server in realm y allows so. Even in this case, the servers of different realms must share a key for trusting a request from others.

15.5.1 Improvements in version 5

Kerberos 5 is the latest standard. Though Annexure I describes the version 4 protocol completely, here is a quick rundown describing few improvements in version 5 over version 4.

	Version 5 allows you to use AES with a key length that the user prefers. Version 4 used PCBC which had a few vulnerabilities. You will also find the discussion of PCBC in Annexure-II.

	In version 4, tickets were encrypted twice; Kerberos 5 eliminated that double encryption.

	The session keys are designed to improve the security but when they are used multiple times may create a problem. We have already seen that the authenticator is encrypted using the session key. The client and server may use the same session key for transferring messages securely later on as well. If ever the attacker gains access to the session key by working on these messages, the security is compromised. The version 5 protocol allows the client and server to negotiate sub-session keys which they can use for one connection at a time. For each connection, the client and server use a new sub-session key.

	Version 5 allows a pre-authentication process which makes the job of an attacker difficult (but not impossible or infeasible if the users are not careful). Pre-authentication is applied when the users demand two-factor authentication.

	The method for authenticating and serving a client of another realm in version 4 does not scale well with an increase in the number of realms. In a way, each additional realm requires an additional entry in each of the Kerberos servers of each realm. For N realms, we need total N (N-1) entries. This is truly a huge overhead that is removed in version 5, by providing a hierarchical design similar to how CAs are organized in a hierarchy.

	Suppose a client who has a valid ticket asks a server for an operation which requires the query to another server, the server needs to pass the credentials it received from the client to that server. This process is known as authentication forwarding by that server. If the user asks a server (let us call it a customer information server) whether a specific customer’s details are available and if so, produce for display. The server may need to access the database server to fetch that information. There was no authentication forwarding which could enable the customer authentication server to work on behalf of the client in v4. In version 5, the client can allow the customer information server to access the database server on his behalf. That will make the job simpler for the client as it has not to fetch data from the database server himself. A similar example is on a print server when the client wants to get a file printed, the printer server can fetch the file on behalf of the client.

	The ticket lifetime in v5 is specified as Start and End time, allowing the tickets to be used later.

	In v4, only IPv4 addresses were allowed. The v5 allows IPv6 addresses as well.

	Standard formats are used for messages and ordering in version 5 which was not so in version 4.

15.6 Kerberos version V protocol

Before looking at the protocol, three terms must be learned. They are realm, options, and timers. Here is a brief description of each of them:

	Realm: Indicates the realm the client belongs to.

	Options: Request to set a specific value in specific fields in the ticket-granting ticket. These options enable the ticket to be tailor-made for the situation. We will soon see some options which are useful in specific cases.

	Timers: In v5, the ticket can have explicit timings. The client can ask when she asks for a ticket.

	The desired start time for the ticket. (This will also enable us to receive the ticket to be used in the future!)

	The desired expiration time for the ticket.

	The time till the ticket will have to be renewed.

These three fields are denoted as From, Till, and Rtime.

Now, we are ready to look at the protocol itself. The protocol is also known as the authentication service exchange. Here are the steps:

	The client sends Options, its Client ID, Client-Realm, TGS-ID, Time Information, and Nonce to AS. The options indicate the client’s special needs for the ticket. Client-realm indicates the realm the client belongs to, Time information includes values for three time-related fields in the TGT. The nonce is a random value sent to differentiate between old and new replies.

	AS prepares TGT = to encrypt ((Flags, Session Key, Client-Realm, Client ID, Client Address, Time Information), Secret Key AS-TGS). The ticket-granting ticket contains flags that reflect the client of the need mentioned in the options field. We will be looking at options soon. The ticket also has the User ID, Time information requested and the client’s address.

	The AS sends a Client-Realm, Client ID, TGT, encrypt ((Session Key, Time Information, AS Nonce, TGS-Realm, TGS-ID), Secret Key AS-Client)

	Let us elaborate the preceding step. The AS sends TGT encrypted by the Secret Key AS-TGS; a block encrypted using Secret Key AS-Client and two more values. The block contains the Session Key to be used in communication between the client and the TGS, the TGS realm, and the client ID, and the nonce sent by the client. The TGS-Realm helps the client to verify the remote realm from where it will get service from a remote TGS. The exchange of Client and Server Realm information helps the client access service from a server of any realm and not only the local realm server. The authentication server checks if the client is authorized to access remote TGS and allow him the ticket if so. The unencrypted client ID and client-realm values can help a client decide if the response does not belong to it. (Because other information is encrypted and not possible to decrypt for the client).

	The TGT exchange

	The client prepares the TGS Authenticator as Encrypt ((Client ID, Client-Realm, Authenticator Timestamp) Session Key). This helps TGS to learn the client from which the realm is requiring service. Based on the policies, the server may accept or deny requests from that realm. It also sends a timestamp so old authenticators can be ignored by the receiver if ever repeated by the attacker.

	The client sends Options, Server ID, Time Information, Nonce, TGT, Authenticator to TGS.

	TGS prepares SGT = encrypt ((Flags, Server Session Key, Client Realm, Client ID, Client Address, Time Information) Secret Key TGS-Server)

	All the fields like Flags, Client Realm, and Time information in SGT acts the same as TGT mentioned in 2b, except for the fact that the encrypted block is encrypted using a secret between TGS and the server. Flags are associated with options. A request contains options that are reflected by TGS in the ticket in the form of the flags set. For example, if the client asked for renewable tickets, it sets the option Renew while the ticket contains the flag Renewable.

	TGS sends Client Realm, Client ID, SGT, Encrypt ((ServerSessionKey, Time Information, TGS Nonce, Server Realm, Server ID) Secret Key Client-TGS)

	All these fields are for the same as explained in 1. The difference is that the encrypted block is encrypted using the Client AS secret key in 2c while the Client TGS secret key here.

	Mutual authentication with the server for service

	The client prepares Server Authenticator as Encrypt ((Client ID, Client Realm, Server Authenticator Time Stamp, Sub-key, Sequence Number) Server Session Key)

	This authenticator is similar to the one mentioned in 3 except for the additional information about the client realm and the subkey and the sequence number. The last two of them need a more elaborate introduction which we provide just after this section.

	The client sends Options, SGT, and Server Authenticator to the Server.

	Server Responds with Encrypt ((Timestamp, Sub-key, Sequence Number) ServerSessionKey)

15.6.1 Mutual authentication and sequencing

When the client and server exchange information, there is a need for subkeys for exchanging subsequent messages and also sequencing those messages to thwart the replay attacks. We have already seen that using the ServerSessionKey for encrypting messages between the client and server threatens the security. When a client wishes to use a special subkey for a message exchange, he would specify it here. He also would specify the initial sequence number if he wishes so. When the messages are sequenced, it becomes difficult for an intruder to either reorder or replay messages. Two fields are used here:

	Subkey field: The client’s choice of a random value to be used as the subsequent message encryption key. This is an optional field. When no value is specified, the subsequent message will use the ServerSessionKey specified in earlier messages.

	Sequence number: This is the client’s choice for the initial sequence number. This is also an optional field. One may wonder why initial values are to be specified. Why the sequence number does not start from 1 or zero. The reason is to avoid attacks based on correctly guessing sequence numbers. An attacker can concoct the message with the correct sequence number for the forged message if they are predictable. When a random number is used in the process, the job of sequence number guessing is more difficult.

Interestingly, a server may also specify both these values itself. The message from the server optionally can contain a subkey value and the sequence number. If both the client and server select subkeys and send them to each other, the server’s subkey overrides the client’s subkey. For example, the client’s subkey is ABC and it is specified in the message, if the server’s response contains the subkey value as XYZ. XYZ will be used to encrypt subsequent messages and not the ABC. Similarly, the server’s sequence number field will override the sequence number of the client. The server can specify both the values even when the client has not opted for them.

15.6.2 Options and flags

The Kerberos v 5 requests can bear some options which request the AS and TGS to provide tickets with specific flags turned on (for example a ticket that it would like to use later and not now). The Kerberos V ticket contains the set of flags that are used to indicate additional attributes of that ticket (based on the options clients chose while asking for that ticket). Most of the options/flags are such that a client sets them upon request to specify a requirement, but some of the flags are automatically turned off and on by Kerberos server. The options that the client can initiate include the following.

KIM: Options and flags have almost the same meanings. The context makes the difference. For example, proxiable is an option that clients have in the request indicates that he wants a proxiable ticket. The ticket sent by the server might have a proxiable flag to indicate that the ticket is proxiable.

	Whether pre-authentication (the first round of authentication followed by the conventional username password) is performed in a two-factor authentication case.

	Whether the required ticket is renewable, forwardable, or proxiable.

	Whether the ticket should be postdated or allow postdating of derivative tickets in case of TGT.

	Whether the renewable ticket will be accepted in lieu of a non-renewable ticket.

Table 15.1 lists most of the flags used by Kerberos 5 which can be included in the ticket. The detailed description comes next:

	
Flags and options

	
Meaning

	
Initial

	
This flag indicates that this SGT was issued using the AS protocol and not based on TGT. This ticket is not a TGT but SGT issued by AS. It is a special ticket that can be only issued by AS.

	
Pre-Authent

	
This flag indicates that the client was authenticated before a ticket was issued. The client has provided something to authenticate himself before this process.

	
HW-Authent

	
This flag indicates that the protocol employed for initial authentication required the use of hardware expected to be possessed solely by the client.

	
Renew

	
This option is used only by AS and TGS. The Renew option indicates that the present request is for a renewal. This option will only be honored if the ticket to be renewed has its renewable flag set and if the time in its renew-till field has not passed.

	
Renewable

	
The Renewable flag is normally only interpreted by the TGS and can be ignored by end servers (some particularly careful servers may disallow renewable tickets). A renewable ticket can be used to obtain a replacement ticket that expires at a later time. The RENEWABLE option indicates that the ticket to be issued needs to have its RENEWABLE flag set. It may only be set on the initial request to the TGS. It is also possible when the TGT on which the request is based is also renewable. When the TGS receives a request with the TGT where the renewable flag is set, it issues an SGT with the renewable flag set. If this option is requested, then the rtime field in the request contains the desired absolute expiration time for the ticket. The ticket can be used to obtain another ticket later. The new ticket is the same as the current ticket except expires later. Thus, this ticket is a renewable ticket that enables the client to get a similar ticket with later expiration time.

	
May-Postdate

	
This flag tells the TGS that a post-dated ticket may be issued based on this TGT. The client, using this TGT, can get a ticket that will come into operation at a later time.

	
Allow-Postdate

	
The Allow-Postdate option indicates that the ticket to be issued is to have its May-Postdate flag set.

	
Post-Dated

	
The Postdated option indicates that this is a request for a postdated ticket.

	
Invalid

	
This flag indicates that a ticket is invalid, and it must be validated by the AS or the TGS before use.

	
Validate

	
This option is used only by the ticket-granting service. The Validate option indicates that the request is to validate a postdated ticket. It will only be honored if the ticket presented is postdated; presently, it has an Invalid flag set and would otherwise be usable at this time. A ticket cannot be validated before its starttime.

	
Proxiable

	
The Proxiable flag is normally only interpreted by the AS or TGS and can be ignored by end servers. The Proxiable flag indicates the rule to issue service granting ticket to the original IP address of the sender is relaxed and a ticket to any other IP address (servers) is allowed.

	
Proxy

	
The PROXY option indicates that this is a request for a proxy. The address(es) of the host from which the resulting ticket to be valid are included in the address field of the request. This flag indicates that the ticket is a proxy and obtained on behalf of the user.

	
Forwardable

	
When set, this flag tells the ticket-granting server that it is OK to issue a new TGT with a different network address based on the presented ticket.

	
Forwarded

	
When set, this flag indicates that the ticket has either been forwarded or was issued based on authentication involving a forwarded TGT.

	
Forward

	
This flag indicates that the ticket is either forwarded or obtained on behalf of the user by authenticating based on a forwarded ticket-granting ticket.

Table 15.1

15.6.3 Initial

This flag indicates that this service granting ticket is issued directly by AS and not TGS. We have already studied that the TGS was introduced to reduce the burden on the user to produce a password every time a new service is sought. This flag seems counterintuitive at first glance, a service granting ticket directly obtained by the AS requires the user to enter the password every time the service is required. When is such a seemingly weird behavior needed? Let us take an example of a service that needs the user to enter the password every time they need such service. Consider the password change service which helps the user to change the password. If we allow Kerberos to obtain this service, the user can change the password without supplying the original password as once he gets the ticket-granting ticket from the AS, he can use it to change the password authentication as well. If the operating system specifies that such a service requires a service granting ticket from the AS and not from TGS, then users will have to enter a password (all communication to the AS require the user to enter the password) while changing the password.

15.6.4 Pre-Authent

This flag is useful in the case of two-factor authentication. The two-factor authentication is based on two different rounds of authentication. The first round of authentication may be based on any other information that the client secretly possesses. For example, the user at a cybercafé is given a token containing a number which he may use to authenticate himself in the first round. Another example is to have some form of biometric authentication like a thumb impression or retina scanning. This information may also be based on some hardware the user in possession of. For example, the user may have a hardware card similar to an ATM card and he needs to swipe that card to get through the first round of authentication. This value can also be an OTP received from the email or phone SMS.

In either case, the user needs to get through the second round of authentication based on the conventional username and password mechanism. For that, he needs to send a request to the AS for a ticket-granting ticket. To mention that this is the second round of authentication, the request is different than a conventional request which only requires sending a user ID. The user needs to send something that he received from the first round of authentication; for example, the code written on the token received from the cipher café operator or information received by scratching the card, or the OTP, or more. The request now is encrypted with the key generated from the password. The requested content can vary depending on the first round of the authentication process. The AS may not respond positively if the first round of authentication value is not satisfactory. For example, when the user supplies the OTP, the timestamp is also sent along with the OTP. The AS may not grant the request if the difference between the timestamp and password entry is more than a few seconds. This process eliminates the possibility of intruder capturing OTP and replays it later. The difference allowed by AS is usually based on calculations of network delays and possible time to enter the value of OTP. This is the reason the Kerberos demands strict measures to have clocks synchronized.

15.6.5 HW-Authent

Whenever the hardware-based first round of authentication needs to be performed, the HW-Authent flag is turned on. A typical example used for two-factor authentication is a hardware-based device which displays a number changing every few seconds. As soon as the user wants to log in to the system, he types the number displayed at that point of time with his username and password next. The AS uses the same algorithm as the device to generate the random number is the same as that displayed on the device. When a user supplies his first request (encrypted with the hash generated from the password obviously), the AS compares the number generated from its algorithm with the supplied value and disallows if differs. In this case, it sets the Pre-Authent flag set only if the value matches. In current cases, an OTP serves the same purpose. Only if the OTP value entered by the user matches with what is sent, the Pre-Authent flag is set to true and not otherwise. In the case of a credit card or debit card, some information from the card needs to match with the content stored at the AS to set Pre-Authent to true.

The HW-Authent flag also requires the Pre-Authent flag set. Together both of these flags help the system to fight against easily guessable passwords.

KIM: Even hardware-based authentication cannot help against careless handling which allows a third party to have access or possession of that hardware. Manual errors are hard to compensate for in many cases.

15.6.6 Invalid

The Invalid flag indicates that a ticket is invalid right now. Application servers must reject tickets that have this flag set. A postdated ticket will be issued in this form. Invalid tickets must be validated by the AS or TGS before their use in a request with the Validate option specified. The AS or TGS will only validate tickets after their start time has passed. The validation is required so that postdated tickets that have been stolen before their start time can be rendered permanently invalid.

15.6.7 Renewable

When version 5 provided longer living tickets, applications may desire to hold tickets that can be valid for longer periods of time. However, this can expose their credentials to potential theft for equally long periods, and those stolen credentials would be valid until the expiration time of the ticket(s). Clients may ask for a ticket with a period enough for an attacker to get access of and misuse. A little better option is to use short-lived tickets. Simply using short-lived tickets and obtaining new ones periodically would require the client to have long-term access to its secret key, an even greater risk. Another problem with this approach is that, when the user needs the ticket for a longer period but ask for a shorter duration, ticket issuing process needs to be repeated unnecessarily. This adds overhead to the processing. Renewable tickets can be used to mitigate the consequences of theft.

Whenever a client wants to have a long duration ticket but does not want to provide the attacker a chance of stealing that ticket and using it for a long period, the renewable ticket comes to the rescue. The client has to set this flag on whenever he looks for a renewable ticket. With this flag, the user also provides two other values, time after which the ticket must be renewed and maximum time till the ticket can continue to be renewed. The ticket that is returned in the response contains expiration time and renewable flag set. The ticket also contains the final expiration time after which no renewing is allowed. The user, after the ticket expires, may ask for renewal with a new expiration time, if the final expiration time is not reached, the TGS can issue a new ticket. The new ticket contains its own expiration time as well as the final expiration time. If ever the issued ticket is stolen and TGS is informed about the same, TGS can deny renewing that ticket.

An application client must periodically (that is before it expires) present a renewable ticket to the TGS, with the renew option set in the request. The TGS will issue a new ticket with a new session key and a later expiration time. All other fields of the ticket are left unmodified by the renewal process. When the latest permissible expiration time arrives, the ticket expires permanently. At each renewal, the TGS may consult a hot-list to determine whether the ticket had been reported stolen since its last renewal; it will refuse to renew stolen tickets, and thus, the usable lifetime of stolen tickets is reduced. The renewable flag in a ticket is normally only interpreted by the ticket-granting service it can usually be ignored by application servers. However, some particularly careful application servers may disallow renewable tickets.

15.6.8 May-postdate and postdated

When a client is running a long batch, one more option available to him is to have multiple short-lived tickets instead of a single long-duration ticket. Applications would prefer to have this option if they need multiple tickets for multiple jobs waiting in the queue. The user can get multiple tickets all with different starting times. The user may start using the second ticket when the second job starts and so on. The advantage needs to have all required tickets in a single request and does not need to use the TGT to get the SGT every time the ticket expires. Having all these tickets as valid tickets in the beginning can be dangerous as they are prone to theft for a long period. On the contrary, the postdated tickets remain dormant until the application passes it to TGS and gets it validated and activated. If the ticket theft is reported in the interim, the TGS would refuse to do so and thus the attempt to attack is foiled2.

When the user asks for such a bunch of tickets, all but the first tickets are for later periods. To indicate that the ticket may not be immediately used, the user specifies the May-Postdate flag at the time of the request to the AS or TGS. The TGT also contains a similar flag when the AS accepts the client’s request. When the user uses that TGT to ask for the SGT, the reply form the TGS indicates that the issued ticket is not valid currently and may be used at later times with Postdated and Invalid flags turned on. When the user submits those tickets, the TGS can validate that ticket by turning off the invalid bit if the time is ripe for that ticket. An important difference between renewable and postdated ticket is that the postdated ticket requires a single transaction to get multiple tickets at once and does not require to process them in the server at later stages. Though the postdated tickets are invalid initially and they must be validated by the TGS before being used, the work is much lesser for the TGS compared to issuing a new ticket.

Postdated tickets are requested by setting the option Allow-Postdate in the request sent to the authentication server. The authentication server responds with the May-Postdate flag in the ticket turned on. When an application presents a TGT with the May-Postdate flag turned on, the TGS can respond with the postdated ticket. If an application presents a TGT to TGS for a postdated ticket, this flag must be turned on in the TGT. An application, using a normal TGT, cannot obtain postdated tickets from TGS. The flag May-Postdate is interpreted only by the TGS while it is ignored by application (service providing) servers. It is also possible to get a postdated TGT by setting a Postdating flag in a request to the AS.

15.6.9 Proxiable and proxy

We have seen one of the important checks against a stolen ticket is to look at the ID and also an IP address of the sender and compare it with the one which is specified in the ticket to make sure that the user who is asking for the service is the one who is granted the ticket. Thus, a request for a service coming from another address is not entertained by servers in Kerberos.

We have already seen that the version 5 protocol allows a server to allow asking for another server’s service on behalf of the user (for example, a print server asking for a file to be printed, to the file server, on behalf of the user). Whenever a server wants to act as a proxy for the user, it needs to provide credentials and privileges of the client to the server. This is only possible if the client itself has allowed the server to do so. This mechanism demands a change in the policy of matching IP addresses with the one specified in the ticket.

When the client wants to allow a server to perform on his behalf, he must send the request for a TGT with the Proxiable flag turned on. It can have two more options to choose from. The first is to specify which IP address will be allowed in case of proxy if the client is aware of the address of the proxy server. If not, a client may opt for any IP address case. The proxy server can only act on behalf of the client in the case specified3. When the AS responds back with a TGT it also turns this flag on. When this ticket is sent to the TGS, it allows the request to come from another address than the address from where the request (for TGT) has come (which may also be specified in the TGT if the user has opted for a specific address). The TGS, while issuing that ticket, set the Proxy flag set in that ticket. The idea behind setting this flag is to provide the application the idea that the ticket is obtained by a proxy. An application may ask for additional authentication if it receives a ticket with a Proxy bit set.

The proxiable flag is ignored by the application server. The client can set this flag it conveys that the TGS that it is OK to issue a new ticket with a different network address based on this ticket. It is not possible to get a proxy TGT.

15.6.10 Forwarded and forwardable

The proxy and proxiable flags were introduced for requesting a service granting ticket while a forwardable flag is for requesting ticket-granting tickets as well as service granting tickets. The forwardable flag indicates that a client is asking for authentication forwarding. A client might ask for a forwardable ticket to the AS. When the AS issues the requester the ticket with this flag set, the TGS can provide a ticket to a different network address with the Forwarded bit set. The client can provide a set of addresses for the new ticket instead of one. When a forwarded option is set in the TGT, the TGS issues an SGT with a forwarded bit set automatically. Authentication forwarding is an instance of a proxy where the service that is granted is complete use of the client’s identity. One example of where it might be used is when a user logs in to a remote system and wants authentication to work from that system as if the login were local. A kind of single sign-on.

The ticket can be presented to remote the TGS for some service. This method eliminates the need to have a secret key between requesting and requested realms’ Kerberos servers. It is assumed that the realms are arranged in a hierarchy and the ticket may travel up in the hierarchy and then down to reach a specified realm and the server within, bearing the required credentials. At each step, the ticket is forwarded to the next realm which trusts the current realm.

A ticket may travel through multiple TGSs to reach the target TGS, using a forwarding mechanism at each step.

Though the Kerberos servers do not need to maintain a secret with other Kerberos servers, they must have some trust mechanisms for the forwarding to succeed. In that sense, the servers act like Internet routers which might not know every other router of the world but at least know their neighbors and pass packets to them. One can easily understand from this example that in reality, one Kerberos server does not need to have a secret key with all other Kerberos servers to have one of his clients to access the services of the remote Kerberos; the only requirement is a chain of the Kerberos servers to exist between both of them having the trust relationship.

15.6.11 Transited policy checking

In Kerberos, an application server (or service providing server), irrespective of whatever mentioned in the ticket, is a final decision-maker. The application server might decide to accept the request in a much-restricted form, or do not accept the request at all. For example, a read-write request approved by the TGS and ticket obtained for the same may be used only to the read-only form by the application server. Such a situation is usually possible in case of a request coming from different realms. Many a times an application server looks at the list of realms the request has passed through and if the list does not contain any untrustworthy realm, it might accept the same otherwise not. When the KDC (AS and TGS) decides to have the policy for the entire Kerberos realm, they do so before passing it to an application server. They set the transited policy checked flag if the service ticket passes the test. An application server should not accept any request without this flag set in this case, except that they decide to test the same transit policy check themselves.

15.6.12 Other flags

There are few other flags that are set and used in Kerberos v5. For example, delegate-if-OK helps the client to delegate authority to the server to act on his behalf. The Renewal-OK option allows a client to accept a renewable ticket when the ticket asked for is not renewable but having a long lifetime which is not possible in the Kerberos realm due to a specific policy. Kerberos can also be used for peer-to-peer (user to user) authentication where enc-tkt-in-skey flag is useful. Opt-Hardare_Auth is useful for password-less hardware authentication.

15.7 Kerberos limitations

Though Kerberos is designed to be used in real systems and provide as much as a protection to principals, there are few things Kerberos is not designed to handle:

	The Kerberos protocol does not consider ‘Denial of service’ attacks into its design. An attacker can successfully launch such an attack in a system where the current version of the protocol is deployed. The attacker might be in a position to prevent an application to participate in a specific authentication exchange. Kerberos designers think that such considerations are not needed when administrators and users can handle them. (For example, when a user cannot log in or cannot get a specific service and report to admin. Carefully looking at the process, the administrator can easily determine such an attempt and can take punitive actions.)

	The secret keys (passwords) must be kept secret. If the user or a server’s (principal’s) secret is revealed, Kerberos cannot help. An intruder can masquerade as a user or impersonate as a server in that case.

	Strong and frequently changed password is a good practice. If the user does not follow this and chooses a weak password or does not change the password for a long period, an attacker might be able to guess his password. When the passwords contain the combination of personal information, words from the dictionary, phrases that are well known, names of actors, cricketers and so on, it is more vulnerable to password guessing attack. This problem is not solved by Kerberos.

	One more serious issue is synchronization. The replay detection process requires the timestamp check. The Kerberos standard requires that the clock drift can be a maximum of 5 minutes by default which can be changed at the time of installation or while configuring a specific server. When the synchronization is achieved by some protocol, (Internet Time Protocol for example) the protocol should not be vulnerable to attacks. Kerberos does not check for the same.

	The principals’ (the clients and the servers) rights information is manually updated by administrators. The information about authorization is stored in the ACL (access control lists, a row of an access control matrix that describes what is accessible to a specific principal). Sometimes, an entry related to a deleted principal stays there in the database. Such stale entries can be reused by attackers to get tickets they are not authorized to by using the ID of the deleted principal. Kerberos is not designed to cover for sloppy administration of databases and thus cannot handle this problem as well.

We now conclude the chapter with this description of some of the limitations of Kerberos implementation. Kerberos is found to be so strong that it has almost become a de facto standard for OS implementation for user authentication today.

Keywords

	RFC 4210: Standard RFC 4210 describes the Kerberos v5 protocol.

	Principal: According to RFC 4210, anything other than an authentication server who participates in Kerberos authentication exchange, clients, TGS, and other servers are called principals.

	Session Key: A random key generated for one or a few temporary usages of the authentication exchange.

	Kerberos: A three-headed dog from Hades; the same name is also given to the authentication system which only entertains genuine users and keeps the others at bay.

	AS: Acronym for the Authentication server, a central server in Kerberos for keeping the authentication database and provide authentication tickets to every client.

	TGS: Acronym for a Ticket Granting Server, which assigns tickets for specific server access when the ticket given by the AS is produced.

	Kerberos Realm: A network or part of it which is authenticated by a single AS.

	Ticket lifetime: Time till the ticket is considered valid and it is possible to avail services producing that ticket.

	Authenticator: Encrypted userid and timestamp which helps the receiver authenticate the sender.

	Ticket: Encrypted userid, serverid, timestamp, ticket lifetime session key and network address information, encrypted by the ticket issuing server and the receiving server’s shared secret.

	Network Time Protocol: A protocol which helps to get the correct time from internet time servers.

	Authentication forwarding: When a server authenticates on behalf of its client.

	Subkey: Random keys used uniquely for repeated communication used by Kerberos v 5.

Recapitulation

	When there is a central authentication server to authenticate a user that needs to access different servers for different services, one needs a solution based on a central authenticating agency.

	Kerberos is one solution to a central authentication problem.

	Kerberos has one authentication server and a ticket-granting server apart from many other servers providing multiple services.

	The ticket-granting server helps the user’s machine to ask for different services without the user supplying a password every time the service required.

	The authentication server is usually replicated so when the main authentication server goes down, the secondary server takes care of authentication by clients.

	The process here is divided into three steps. First, the client asks for the ticket from an authentication server. Second, the client asks for a ticket from the ticket-granting server showing the AS ticket, and then asks for the service from the server showing the TGS ticket.

	Version 5 provides authentication forwarding, the new format for ticket lifetime, introduction to a few flags, and a more improved authentication process which avoids double encryption of tickets.

Exercises

	The chapter has described the complete Kerberos version 5 protocol. Explain the use of constructs like a nonce, timestamp, authenticator, and ticket in the protocol.

	Justify the need to have a centralized authentication system with multiple servers.

	Can you judge why a shared secret key method is used here? Find out the consequences of using the public key method here.

	Describe the role of TGS in the Kerberos system. What happens if the TGS is not around?

	Describe the need to have flags and options in the Kerberos system. Differentiate between flags and options.

	The Kerberos protocol uses multiple session keys. Explain where and how they are used.

	Explain how an inter-realm operation is managed by Kerberos.

	Explain how the Kerberos system manages tickets that are needed for a long duration.

	What is authentication forwarding? How does Kerberos manage it?

	Describe the limitations of the Kerberos system.

1 The principal is referred to as an object which can be authenticated in some cases. It can be a user, a machine, a process whatever we want to get authenticated. The servers, though provide services to users, also requires to authenticate themselves on joining the network.

2 The TGS is mentioned as a receiver of such a request but even the AS can be provided with such requests. When a TGT with such flag set is provided, it helps getting a similar ticket from TGS for any service.

3 If the user wants the other server to do more than a specific thing, it should use forwardable and forwarded options rather than proxy. A forwarded request is a much more powerful (and risky) operation where the forwarded server can act completely on the requester’s behalf.

CHAPTER 16

User Authentication Using Public Key Certificates

Structure

Learning objectives

16.1 Introduction

16.2 Using public key cryptography for authentication

16.2.1 Public key management, certificates, and X.509

16.3 X.509 certificate structure

16.4 Authentication procedures

16.4.1 One way authentication

16.4.2 Two way authentication

16.4.3 Three way authentication

16.4.4 Differences between X.509 version 2 and 3

16.5 Extensions in version 3

16.5.1 Key and policy related extensions

16.5.1.1 Private key usage period

16.5.1.2 Specifying policy-related information

16.5.1.3 Certificate policies

16.5.1.4 Policy mappings

16.5.1.5 Policy constraint

16.5.2 Subject and the issuer CA related extensions

16.5.2.1 Subject alternate name

16.5.2.2 Issuer alternate name

16.5.2.3 Subject directory attributes

16.5.2.4 Certification path constraints

16.6 Public key infrastructure

16.6.1 The directory or repository

16.6.2 Revocation

16.6.3 Certificate lifecycle

16.6.3.1 Registration

16.6.3.2 Initialization

16.6.3.3 Certification

16.6.3.4 Key pair recovery

16.6.3.5 Key pair update

16.6.3.6 Revocation request

16.6.3.7 Cross certification

16.7 Certificate management Protocol

16.8 XML key management protocol

Keywords

Recapitulation

Exercises

Learning objectives

After studying this chapter, the reader should be able to

	Judge the need for public-key certificates

	Design the protocol which can authenticate both communicating parties using public key certificates

	Describe the X.509 certificate structure and all its fields

	Narrate how certification process is carried out

	Decide the need for a timestamp and nonce

	Describe PKI systems and its applicability

	Differentiate different versions of X.509 standard

	Justify the need for extensions in V 3 and the need for each extension

16.1 Introduction

Shared secret key authentication is a solution for a centralized system where we have a central server authenticating a user and a service providing servers, eventually acting as a third party to enable communication between them. The operating system is an ideal candidate for such a solution. Unlike that, web-based solutions cannot have a centralized server for obvious reasons, and we need an alternate method for authentication. There is one more problem in the case of web communication. Both communicating parties are owned by different owners, and they have to have a mechanism that helps both of them and start trusting each other. The trusted third party is also required here, but having a single third party is impossible in most cases. One needs a system where communicating parties scattered across the world can still have a trusted chain to communicate with each other. We have learned that public key certificates are the solutions to that problem in chapter 14, Key Management and Exchange. We will also look at how public-key cryptography can solve the authentication problem from two different communicating parties who are unknown to each other, how certificates are used in the real world, the standard X.509, which is commonly used for the same and few other standards in this chapter.

16.2 Using public-key cryptography for authentication

We have already seen that public-key cryptography can provide strong authentication. The only issue to get over is the secure distribution of public keys. How can we use public keys for authentication, once the public key distribution problem is solved? Let us describe. We will use three ingredients mentioned in the previous chapter, that is, public key certificates, nonce, and session keys in solving it. Here is the description. We will use C and S as the communicating client and server like previous chapters.

	C asks for S’s public key.

	S responds with its public key certificate. The public key certificate indicates S’s public key being signed by a specific certifying authority.

	C verifies that the certificate is genuine and accepts S’s public key.

	C sends its own identity and its (C’s) nonce encrypted by S’s public key to S, with its own (C’s) public key certificate.

	S decrypts the content with its private key and learns about C’s identity from it; S also learns about C’s public key from the C’s public key certificate.

	Now, armed with C’s public key, S can now send C’s nonce, its nonce, and the SessionKey that S wants C to use for further communication, encrypted by C’s public key.

	Now, C can decrypt, get the content and assure that S has sent a response, and nobody else is also assured of the timeliness of the message and also the key that is to be used for communication henceforth.

	Now, C starts communicating. He begins with sending S’s nonce encrypted by SessionKey. On receipt, S understands that C owns SessionKey. This also indicates that C’s response is fresh and not a replay because it contains the nonce just sent. Now, both parties are ready for communication using the shared SessionKey.

Figure 16.1 describes the complete key exchange process. Two shaded operations involve the client and server asking for each other’s public key certificates. If they already have the certificate, the key exchange process does not need them. This is to be done once in a while. Another point is that they may not ask for the certificate directly, but to a PKI system, which contains a database of such certificates known as the directory.

How secure is the preceding simple key exchange (simple as compared to the Kerberos V 5 exchange that we have seen in the previous chapter)? The sniffing intruder might catch hold of every bit of transmission and can generate a message described in step 4 as it can have access to S’s public key, or even replay an old message. However, when S sends back the nonce, encrypted by the C’s public key, it cannot decrypt, nor can it have the value of the nonce and session key that is required for further communication. The point is that intruders are kept at bay. You can also see that the process is quite simple as compared to the Kerberos system. The process is also completed in a much smaller number of steps. Interestingly, this method uses a public key certificate mentioned in the previous chapter. We will throw more light on those public key certificates in this chapter.

[image:]

Figure 16.1: Public key based authentication process

16.2.1 Public key management, certificates, and X.509

The certificate is the ultimate solution for public key management. The KDC must sign the certificate and so it is called Certifying Authority or CA while we discuss the public key management process. What do we expect in this certificate-based solution? Here is a list:

	As the certificate needs to be used globally, there has to be a globally accepted standard for defining the content and structure of the certificate. This standard should work with any OS, any browser, and any machine.

	One CA cannot work globally. There has to be some sort of a hierarchical structure for defining and connecting CAs like global telephones or Internet providers. Otherwise, two previously unknown parties signed by different CAs cannot communicate with each other. If there is a procedure to establish some chain of trust between the receiver’s CA and sender’s CA, the problem can be solved. This structure is known as Public Key Infrastructure (PKI).

	One can have more than one certificate based on a variety of needs. A natural mechanism of storing and retrieving those certificates automatically must be provided for browsers. When the website is connected, the browser and the website communicate with each other using the public key certificate precisely, as shown in Figure 16.1. The user is not involved in the process. Only when the certificate has some issues, the user is prompted.

	When a user is no longer in possession of that attribute (the public key), or fears that it is lost, there has to be a facility to revoke the certificate.

The internet has adopted an OSI-based X.509 standard for addressing the first point. The X.509 standard defines the certificate structure and the fields. Each such certificate contains the public key of the user digitally signed with CA’s private key. There are other fields too, which we will look into soon. X.509 standard manages two things; first, allocation and revocation of certificates, and second, insertion and deletion of those certificates from the directory. Allocation of the certificate requires the CA to generate a pair of keys as well as generation of the certificate and conveying and installing the private key on the user’s machine. The directory is the repository of the certificates managed by each CA. The standard defines the complete protocol for all the operations needed for managing public-key certificates of this type.

X.509 is used in S-MIME (Secure MIME, application for secure mailing system which we will discuss in Chapter 17: Email Security-PGP and SMIME), IPSec (IP security, a network layer secure solution, which we will see in Chapter 19-IP Security) and SSL/TLS, secure solution for the transport layer, used by most websites which we will look at in Chapter 18: Transport Layer Security (TLS) and SSL), and SET (Secure electronic transaction, standard for securing credit card transactions). The X.509 facility is directly embedded in browsers, so receiving the certificate, processing it, etc. happens automatically, and the user is not usually involved.

KIM: Very few things developed under the OSI model are used. X.509 is one of them.

The idea behind X.509 to help users to make sure that they have reached a right site and not a fake site. The browser accepts the X.509 certificate from the website (Note: These certificates are also known as SSL certificates as SSL is the technology used to bring the X.509 certificate from the server), and check whether the certificate is valid by looking at the CA credentials. The certificate contains a lot of useful information (which we will study soon), which helps the client determine the authenticity of the server.

The certificate is signed by CA’s private key, and one can always verify the certificate by applying CA’s public key to the certificate’s signature. Thought this design is pretty strong, there are ways to forge. If the third-party website is not designed correctly and maintained, it is possible to break into that website and generate a forged certificate (Some time back a CA called Comodo was attacked in a similar way). In some other cases, a series of certificates were forged with wrong names and serial numbers. It is important that other parts of the system are also strengthened so certificates can prove their worth. The introduction to DNSSec (Domain Name System Security), an extension to the DNS, which helps keeping DNS more scared than before) is one step in the direction. Proper implementation of browsers, proper authentication of root anchors, etc. is also important. However, certificates are found quite useful despite some issues like this and is widely used right now.

This X.509 standard is now in its 3rd version. It was originally issued in 1988. It was subsequently revised in 1993, 1995, 2000, 2005, and 2009. The reason for so many revisions is to address security issues raised by researchers and to provide additional functionalities1.

X.509 assumes strict hierarchical systems of CAs for issuing certificates. We will see a different model (non-hierarchical) used by PGP in the next chapter. PGP (Pretty good Privacy, software for providing encryption and authentication to the mail content) uses a model where anybody can sign a certificate and can decide the validity of any other certificate. The PGP model is not hierarchical but peer to peer and known as the web of trust model. It is called web of trust as peer-to-peer entities that trust each other are connected through links in that model, forming a web of some sort. We will explore it in the next chapter.

The X.509 certification scheme, a CA issues a certificate which binds a public key to a particular name (the identity of a user). Here are a few examples:

	www.glsuniversity.ac.in (an example of a domain name) is bound to the GLS university, the institute where the author works.

	bhushan.trivedi@glsuniversity.ac.in (an example of email address) is bound to the author by DNS.

	CN:bpbonline (an example of a conventional OSI name) bound to BPB publications by DNS.

KIM: Only the third version of X.509, accepts other than the conventional OSI names. There were not allowed in the previous versions. So, only the BPB example (3rd example) is a valid example of the first and second version of X.509 certificate names.

As mentioned earlier, the X.509 standard uses public key cryptography, certificates, and digital signatures. It recommends RSA but not compulsory so one can use other methods if need be. It also does not standardize any digital signature method or hash function. The user may choose the method that he deems fine for his application. In the initial version, a hash algorithm was recommended but dropped from specification in 93 revision when found insecure. All algorithms that we have seen in Chapter 9: Authentication and Message Integrity Using Digital Signatures for public key signatures can actually be used for signing a X.509 certificate.

16.3 X.509 certificate structure

An X.509 certificate contains a series of fields and their values. Some of the important fields are mentioned here:

	Version: (For example, 1 indicates X.509’s first version). The values of this field can be 1,2, or 3 which indicates the version the certificate belongs to.

	Serial number: This serial number value is a unique value given to the certificate by a given CA. Every certifying authority has given a unique serial number to each certificate so that the certificate can be uniquely identified.

	Algorithm identifier: This field indicates the algorithm used to sign this certificate. This field is redundant as the last field also contains the same information.

	Issuer name: This field indicates the name of CA in the X.500 format.

	Validity period: This field contains two dates. The date from which the certificate comes into existence (becomes a valid certificate) and the other date till this certificate is valid. Whenever a browser encounters a certificate which is presented after this date, the browser flashes a warning indicating that this certificate is no longer valid.

	Subject name: This field indicates the name of the user on whose name this certificate is issued. In other words, this certificate relates this person to the corresponding public key. For normal operations, this and the next field are two important fields of the certificate that indicate that this public key belongs to this party.

	Subject public key information: This field contains the public key. The subject is the person or entity on which this public key is issued. For example, as shown in Figure 16.2, paypal.com shows the public key. You can also see that the key is 256 bytes or 2048 bits long. It also contains the algorithm identifier for which the keys are to be used; in this case, it is RSA. If the algorithm requires some parameters to be passed, it might also have them.

	Issuer unique identifier: (Version 2 and 3 only). This is the unique ID of the issuer, the CA. The issuer name may not be unique; this ID helps them to differentiate between those issuers with the same name.

	Subject unique identifier: (Version 2 and 3 only) The same subject might have multiple public keys; this field is unique for the unique key and thus helps differentiate.

	Extensions (Version 3 only): Extensions provide additional information about the certificate; for example, if it contains ‘CA = true’, it indicates that the certificate is about CA itself or the subject is a CA. Extensions are used to provide Internet domain names as alternate names. Extensions are also used to identify the certificate type. We will soon look at this field in more detail.

	Signature: This field contains a hash code of all other fields encrypted with the CA’s private key. It also contains few other fields, including an algorithm identifier which is redundant and already covered by another field.

The extensions allow names like www.bpbonline.com to be accepted as valid subject names. The conventional way to define names is /C=IN /O=BPB /OU= PUBLICATION where C stands for country, O for organization, and OU for the organizational unit. However, all certificates before the third version had names defined in this fashion only.

The X.509 defines a certificate using notation CA1 <<Subject1>> which indicates that the CA named as CA1 certifies a subject called Subject1 using this certificate. That means the public key provided in this certificate belongs to the Subject1 and it is issued (and thus certified) by the CA1.

The notation CA1<<Subject1>> describes an entire certificate containing all the fields that we have described earlier and not only CA and the subject fields. Everything is signed by the private key of the CA (CA1 in this case) which is indicated by a typical set of values enclosed in curly braces ({}).

That means CA <<Subject>> = CA {Version, Serial Number, Signature algorithm Identifier, Issuer Name, Validity Period, Subject Name, Subject’s public key and other information, Issuer unique Identifier, Subject unique Identifier, Extensions}.

In other words, the notation A{B} indicates A issued certificate for B and thus has digitally signed it using the private key of his (A’s). One can always open the certificate B’s signature field using the public key of A and verify the authenticity of that certificate.

These certificates enable two different but nonetheless important things:

	Any user can verify that this certificate is genuine or otherwise, by applying the CA’s public key and looking at the content.

	The certificate cannot be modified by anybody other than the CA without being noticed. Thus, the certificates are unforgeable.

[image:]

Figure 16.2: Certificate and public key for PayPal

The certificates can be kept in a normal directory without any additional protection. If the sending and receiving parties have the same CA signing the certificates, it becomes an easy job to have an authentication dialog between them. They can produce their respective certificates to each other in the first exchange. After both of them verify the certificates by applying the public key of the CA they trust, they can see the content of the certificate and have the public key of the opposite party. They can now communicate further. Both parties can be assured of both confidentiality and authentication. That means if the message is encrypted using the public key of the receiver, then the message will neither be eavesdropped nor modified by an intruder and if the message is additionally signed by the private key of the sending party, the message becomes unforgeable. Thus, the public key certificate will help foil both active and passive attacks.

Having a single CA for all users makes the communication straightforward and secure. The issue becomes complicated when a large number of users want to communicate with other users of different countries. It becomes difficult to agree on a single CA by such diversified set of users. Even when such a CA exists, it is hard for him to manage a very large number of users scattered across the globe. This implies that we must have a scheme with more than one CA signing for a different bunch of users. Now, the question arises is how in such a case one user can verify the certificate of another user not signed by his own CA but some other CA he has never heard of?

The certificate is possible to be read but the sign cannot be verified unless the receiver has the public key of the CA who signed the certificate and also verifies that the claimed public key of the CA is indeed the public key of the CA and nobody else. The user who is participating in communication must have the public key of the CA who has signed the opposite party’s certificate to verify the signature. Moreover, the public key must be provided to the user in absolutely secured and authenticated way. Thus, the user must be assured of the correctness of the key as well as the genuineness of the CA. When there are many CAs who have signed some fraction of users who trust them, the problem is to communicate the other party’s CA’s public key in a secured and authenticated way.

The problem can be solved if both CAs know each other. That means, they have shared their public keys securely with each other. Let us see how. Suppose we have two CA, CA1 who certifies UserA and CA2 who certifies UserB. Now, when UserA wants to send anything to UserB, UserB can produce his certificate signed by CA2. Next, UserA can request CA1 to provide public key for CA2. When UserA has the public key of CA2, it can open the certificate presented by UserB and verify the public key of UserB. Job done!

KIM: Something similar also happens with Kerberos; both Kerberos servers in inter-realm communication require to share a key. Here, the CAs require to have certificates for each other.

The process can be summarized as follows:

	The CA1 provides a certificate of CA2 dully signed on UserA’s request. UserA may keep it in a directory.

	When UserA needs to verify a certificate produced by UserB and signed by CA2, it opens that certificate and extracts the sign.

	It uses the certificate mentioned in 1 to extract the public key of CA2.

	It decrypts the sign of UserB’s certificate using the public key of CA2.

	If the sign is OK, accept the UserB’s certificate and store it in some directory. (Usually, the same directory where the CA2’s certificate is stored.)

	Whenever UserA receives a message from UserB signed by his private key, he can use UserB’s certificate to extract UserB’s public key to open that message.

In the notation of X.509, the preceding steps can be represented as follows:

CA1 <<CA2>>, CA2<<UserB>> (CA1 signs a certificate of CA2, CA2 signs a certificate of UserB)

A diligent reader might also have concluded that this is a subset of a much larger set. It is possible that our CA, (CA1) can certify some CA2, who in turn certifies some other CA3, and so on till some CAn. On receipt of the certificate of the sender signed by CAn, we can follow the entire chain to obtain the public key of CAn in a secure fashion and thus can obtain the sender’s public key signed by CAn securely. In the notation of X.509, the above can be represented as follows

CA1<<CA2>>, CA2 <<CA3>>, CA3<<CA4>>…….CAn<<UserB>>

That means, CA1 certifies CA2 and so on till CAn, the last CA in the chain, who certifies the UserB. If the UserA requires to send a message to UserB, it has to obtain the public key of UserB. UserA will use this chain to validate the certificate of UserB signed by CAn. Now, if the UserB obliges and wants to respond back, it has to find and use the public key of UserA. UserA’s certificate, signed by CA1 needs to be verified at UserB’s end. The exact opposite chain normally exists, thus the following also holds:

CAn<< CAn-1>>, CAn-1 <<CAn-2>>, CAn-2 <<CAn-3>>…….CA1<<UserA>>

It is theoretically possible for UserB to have some other chain to get the UserA’s public key but generally it is not so. Usually, all CAs have mutual trust and always have certificates which reflect that mutual trust. Thus, when CAi has a valid certificate for CA2, CA2 will invariably have a valid certificate for CAi, thus both of them share each other’s public key. This is called cross certification. That is the reason why we have exactly the opposite chain of trust that exists in the second case.

What is the guarantee that we will always obtain such a chain to lead to the sender’s public key certifier? Unfortunately, we cannot have any such guarantee. It is quite possible that a typical CA is isolated from some other CA. The X.509 designers assumed (but do not have any guarantee) the CAs to form a hierarchy where a single higher-level CA certifies a few lower-level CAs. When such a hierarchy is in practice, it is always possible to connect any two CAs using that hierarchy, climbing up to the CA which connects branches that belong to both CAs and then coming down.

Such a hierarchy demands two different types of certificates stored in the directory of CAs. Consider a case of CA1.

The first type of certificate is called a forward certificate. Forward certificates are certificates of the CA1 signed by other higher level and optionally, peer CAs

The second type of certificate is called a backward certificate. Backward certificates are certificates signed by CA1 certifying other CAs; usually, acting at a lower level and sometimes acting at peer level.

The public key infrastructure(PKI) is one such structure, where there is a systematic hierarchy and established secure way to determine a public key of any communicating party. India is an interesting case study which we will be presenting soon.

16.4 Authentication procedures

The authentication can be done in three distinct cases. The first case involves authentication from one side. For example, a website displaying information about tourist spots and charges, etc. Such websites may not need to authenticate the client connecting to it but the client may wish to see that the server is authenticated so the information he gets is genuine. Sometimes, only the client needs authentication. Take the case of a server accepting inquiries about assignments and provide an assignment if the student provides credentials to make sure that he belongs to the institute. The server also accepts submissions if the student properly authenticates himself.

In a normal case, both the client and server need to authenticate each other. Consider a case of filing income tax returns online. Not only does the server needs to authenticate itself for the client to find out whether the server is genuine but the client also needs to authenticate itself to make sure that the income tax return filed is from a genuine client and not someone else. A better example is of business transactions between two parties. In this case, both parties must authenticate each other before transacting. For example, in the case of a supplier and customer, the supplier must ensure that he has received the order from a real customer and nobody else before sending the shipment. Similarly, a customer must ensure the real supplier supplies the online banking information and not any other person before committing the payment. Similarly, when an examiner submits marks, he must make sure that the marks are submitted to the university server and no other server. Similarly, the university server must ensure that the examiner who is supposed to submit the marks has submitted marks and nobody else.

In case of authentication from both communicating parties, there are two cases to consider. If both the parties are synchronized in time, they can exchange timestamps to ensure the timeliness of the messages. When time synchronization is not possible, both parties need to exchange nonce to ensure timeliness. It is always better to use both timestamps and nonce to ensure better security. However, adding a nonce in authentication exchange to enhance security is not without cost. It requires an additional exchange. Though it needs additional exchange, most real-world systems use nonce even when timestamps are used. We will see why it is so, after we study these three different ways to authenticate, based on X.509 certificates.

The first type is known as one-way authentication where only one party authenticates itself. The second type is known as two-way authentication where both parties exchange authentication credentials relying on timestamps for timeliness. The third type is known as three-way exchange where both parties exchange credentials relying on nonce when timestamps cannot be used.

Let us look at each one of the possible authentication processes.

16.4.1 One-way authentication

One-way authentication is a one-way transfer of authentication information. If UserA and UserB are involved in the process, one-way authentication requires only one of them to authenticate to another. For example, UserA authenticates itself to UserB. UserA needs to send the following information to UserB:

	The UserA’s identity.

	The proof that the message is generated by UserA.

	The proof that the message is intended for UserB.

	The message is not modified in transit (integrity) and it is recent and not a replay (timeliness and originality).

[image:]

Figure 16.3: One-way authentication process

It is important to note that the process described in Figure 16.3 verifies only UserA’s identity and not UserB’s.

As a sender ID, UserA must provide his own ID in some agreed upon form. For the proof being a genuine sender, he can add signature using his private key. For point no. 3, he encrypts the message using the public key of UserB. For point number 4, he will add a timestamp (for timeliness) and a nonce (avoid replay). The integrity is automatically managed once it is signed.

Thus, UserA must send a timestamp, a nonce, his own ID, A signature, and a secret key encrypted by the UserB’s public key. The timestamp contains both, generation time (optional) and expiration time, (not optional). The timestamp prevents late delivery of authentication information. The nonce that is used must be unique at least till the expiration time is over. If it is made sure that every nonce used during the lifetime of the message (the timestamp value which estimates the worst time case, including network and processing delays) is unique, the receiver can always distinguish between a genuine and a replayed message.

If UserA just wanted to authenticate and plan to send the data later, the communication does not contain any message. It is also possible that the sender also sends the message along with the authentication information. In that case, the message, with the other information, is signed by UserA’s private key. The signature is an essential part of all authentication processes, including the one-way authentication. Closely observe the process depicted in Figure 16.3 Here, the sender and receiver are indicated by their names. The shaded portion indicates once in a while operation where the sender gets the public key of the receiver by asking a directory.

Two of the above operations, signing for authentication and encrypting (by the receiver’s public key here), are two operations normally all security algorithms provide as a minimum of service. That means, the confidentiality and sender’s authentication are two basic services provided by almost all security systems.

16.4.2 Two-way authentication

Now, we have a case where not only UserA, but UserB also needs to provide its own authentication. UserA now needs to ensure the identity of UserB. As a solution, UserB also needs to provide his own credentials before commencement of communication. The following additional exchanges are made:

	UserB sends its own ID.

	Proof that the replay message is generated by UserB.

	The proof that the message is intended for UserA.

	The message is not modified in transit (integrity) and it is recent and not a replay (timeliness and originality).

[image:]

Figure 16.4: Two-way authentication

Like the one-way case, the reply from UserB requires its ID, encryption using the UserA’s public key, signature using the UserB’s private key, the timestamp, and a nonce generated by UserB. It will also reply back the nonce sent by UserA. This reply may include the message from B as well as the optional Session key encrypted with the public key of UserA. The message includes a timestamp as well. Please note that both the sender as well as the receiver enquires about the other’s public key from the directory, which is shown in the shaded portion. The idea of sending the UserA’s nonce back is to thwart any attempt to replay. When a receiver responds back with the sender’s nonce just sent, it confirms that the response is fresh. However, you can still feel that the protocol lacks something. The sender, if responds back with the nonce just sent, the receiver also has the confirmation. That is precisely what we are doing in the next protocol.

16.4.3 Three-way authentication

When both the parties cannot synchronize their time, it would be hard to rely only on the timestamp being sent by UserA and replied by UserB. The protocol can be foolproof only if UserA also replies to the nonce sent by UserB. Thus, we have one more additional message coming from UserA to UserB just repeating the nonce sent by UserB signed by UserA’s private key. When both nonces have been replied, the communicating parties are assured of the freshness of the message despite timestamps not being used. One can see that replay attacks are not possible here if the nonce value is not repeated in a long time. The shaded portions again describe the process of obtaining certificates from the directory. The authentication process shown in Figure 16.1 is almost the same as Figure 16.5, except for the case that we now assume that there is a directory from where we obtain the certificate for our processing:

[image:]

Figure 16.5: Three-way authentication

In the real world, a combined timestamp and nonce-based approach is used with many other parameters needed for a typical case. Our three examples are just illustrations for most basic needs for a public key-based authentication exchange.

Now, when we have seen both the X.509 structure and the authentication exchange process, let us throw some more light on version 3.

16.4.4 Differences between X.509 version 2 and 3

X.509 v 3 had a substantial change from version 2. Let us see what the changes required in version 3 were and why.

	The first change is the subject field. The X.509 names were quite short and sometimes, it was difficult for a reader to decide whether the name they are looking for is the same. It is sometimes confusing for a reader to learn that/ C=IN/O=GLS/OU=ICT is ict.gls.ac.in and not something else. Those who have ever misspelled the URL and reached some other place can confess that little and seemingly insignificant change in the name yields very different results. So, the OSI (that is, X.500) names make little sense now. A user should specify the URL or an email address or something similar which unambiguously identifies a user. Version 3 allowed the user to define the subject in formats other than OSI formats.

	Some applications require the names to be in either an email address or URL format. For such applications (say FTP), one must specify the name (or IP address) in a specific format which does not comply with the OSI format. Providing flexibility to define the subject name in the format other than the OSI format helps such applications to work (for example, FTP authenticating a user using a certificate using the user’s email address). When we are dealing with applications which demand Internet type naming conventions, we cannot work with OSI type names. You can clearly see the need for a flexible subject in such cases; as we additionally need user addresses defined in the way Internet based applications use.

	The user and CA must have some control over the use of the certificate. Suppose a CA assigns a certificate to the client for business transactions using a specific protocol (for example, Electronic Data Interchange(EDI), which is a known protocol for companies involved in the business, can be used by a company to place an order to another company. EDI helps two distinct applications running in different companies to exchange information2). Version 2 has no provision for mentioning such usage, while Version 3 has. Once a security policy (the certificate C is to be used for process P and nothing else, for example) is set, an X.509 v3 certificate can be made to mention so. In most cases, however, the use of the certificate indicates it is to be used for signing (authentication) or encryption (confidentiality). Such things force the sender to use two different keys for encryption and signing and thus, improving the security.

	Sometimes, some CA is less trusted than others (for example, an Indian company might not trust a CA from Pakistan entirely, or a US company might not trust a CA from Iraq). The reason could be a political situation as the case described above or the CA is new or with relatively inexperienced staff, and so on. When such a CA’s signed certificates are being used, the user would like to have some restriction on the usage of them (for example, such certificates can only be used for transferring one-time session keys and nothing else), so if ever the CA is found to be evil or defective, the impact of damage can be restricted. One such example is to have a certificate that allows business transactions up to ₹ 50000/-. For any transaction beyond this limit, the certificate may be considered invalid. If ever this certificate is compromised, the user’s loss would be limited to ₹ 50000/- and no more.

	It is good to have multiple locks for a house, so if a key to a lock is lost, the owner can start using another lock. Additionally, he might prefer to use different locks at times to improve security. Similarly, an owner of a key pair (private and public keys) may prefer to use another pair either for different types of transactions or just to improve the security. For example, an examiner uses one pair to submit the mark sheet to the university but uses an entirely different pair for sending the manuscript of the test paper. He might also use one more key pair to send his suggestions about the course and examination to the university. Such usage of keys improves security. It provides flexibility if ever the user feels a specific private key being compromised, he may start using some other key pair without wasting time. Version 3 is designed to provide multiple key pairs for a single user.

KIM: Sometimes, the collection of public or private keys is referred to as key rings. A user might have both public and private key rings with multiple corresponding values

This feature also helps users and CAs to regularly update their key pairs to avoid successful guessing by attackers.

Version 2 format (we have seen the format of X.509 certificate already) is not modified much by version 3. It just specified a few extensions to the version 2 format to provide all of the functionalities mentioned earlier. A Version 3 certificate, therefore, is not much different from a version 2 certificate except for extensions. What these extensions are and what their meanings are is explained as follows.

16.5 Extensions in version 3

There are three different types of extensions provided in Version 3 certificates, which are as follows:

	Key and policy-related

	Subject and CA attributes related

	Trust chain related

16.5.1 Key and policy-related extensions

We have already seen that multiple keys and control of key usage are two essential things required in version 3. Some of the extensions used for key usage control are specified here. The control is usually specified in terms of a policy in the company. An example of such a policy is a manager of a department who is free to sanction an expenditure till Rs. 10,000/- as contingency expense in his department. Now, if he has to authenticate such transactions to the accounting department using a certificate, the certificate (i.e., the key specified in that certificate) should only be considered valid if the expenditure is within the limit and not otherwise. How that policy is reflected in the certificate is defined by these extensions. One more such example is of a purchase that can only be made in a way such that the supplier belongs to the approved list of suppliers. The certificate (i.e., the public key associated with it), if used for any other supplier, is considered invalid. However, currently, most keys are defined to be used either for authentication or encryption. So users can specify two different key pairs, one for encryption while the other can be used for signing the documents. Using two different keys for these most common operations enable better security, as even if one pair is compromised, the other key pair can still work. They are the most used ways of the extensions. We have also seen the need to have multiple keys to enhance the security of the system. Having multiple keys solves one problem but introduces another. How can a sender identify a specific key or a certificate related to it? The key-id field described next helps there. The key usage field provides how the key can be used.

Key identifiers are used to distinguish between multiple keys allocated to CAs as well as Subjects, and each key is given a particular key ID. There are two fields given in extensions that manage this: Authority Key Identifier and Subject Key Identifier.

Authority Key Identifier identifies a public key that is used to sign this certificate or Certificate Revocation List (CRL, described later). This is a public key of some CA as it is used in signing a certificate. This key identifier also helps in updating a key pair (explained later) for a CA.

Subject Key Identifier identifies a public key that is being certified. A subject (for example, the examiner we discussed earlier) can have different key pairs for different cases (he might use different pairs for different receivers and also might prefer to use one pair for digital signatures and another for encryption, and so on). A certificate for a specific key might specify what the user should do with this certificate.

The key usage field specifies the purpose of the key that is being certified and under which policy this key should be used. Here, the association of the key with a specific policy is provided. For example, one can specify that the key needs to be used for digital signatures for encrypting using the public key for non-repudiation, for encrypting the secret key, for encrypting the data, verifying CA’s signature on certificates, verifying the CA’s signature on CRL, and more.

16.5.1.1 Private key usage period

This field refers to the private key associated with the public key being certified. It limits the use of a private key to a specified period mentioned in this field. For example, a certificate signed by this key is valid only for a specified period. One may continue using the certificate issued before that time limit after the expiration of the private key but cannot accept the new certificate signed after that period. Thus, the usage of the public key may continue after the expiration of the private key. To continue using the public key after expiration of the private key is logical in some cases where the signatures during a specified period are only valid for certificates. As an analogy, the manual signature is valid until the person remains a manager and not after that. Though the bills signed by him remain valid after that. The government may issue notification signed by the person in charge then. He may cease to have the authority to sign any new document after retirement or transfer, but the notification may still be valid.

16.5.1.2 Specifying policy-related information

There are two more fields used for specifying policy-related information. It is possible to have multiple policies applied in the same environment. A certificate might specify to be used when a specific policy is in force. A certificate certifying a public key with a specific policy might require to be signed by the CA, and it is required to map one CA’s policy to another CA. The process of mapping a policy of one CA to another is popularly called policy mapping. Both of these need to be mentioned in the certificate. We will discuss both the fields now.

16.5.1.3 Certificate policies

The policies that are supported by this certificate are mentioned in this field. The field may additionally contain qualifier information. We have seen a few examples of certificate policies already. The certificate policies indicate the applicability of a certificate to a particular community. It might use a policy qualifier (a kind of a pointer, usually a URL), which might indicate legal terms and usage constraints, and so on in the textual format. A single certificate policy may apply to many certificates. For example, some banking guidelines for customer certificates need to be followed by all customers of the bank. The certificate policy may indicate the usage constraints. It might be possible that the user might use that public key for some other transaction. If the customer’s key is compromised, and he loses a lot of money, and he cannot claim that from the bank as clear policies are provided.

The receiver of the certificate might look at the policy qualifier to decide whether to trust a certificate for a specific transaction and use a public key associated with that for the purpose mentioned. Certificate policies are roughly two categories. The first one helps the receiver to decide whether a particular policy is applicable for a specific community. For example, a company may provide a certificate to the customers for their complaint registration. The second category describes using a certificate for applications having specific attributes. Thus, these certificates are useful for a specific class of applications.

Additionally, they may also provide some level of assurance. For example, the Government of Canada’s PKI policy management authority specifies eight certificate policies, four for digital signature and four for encryption, each of which can also provide a specific level of assurance. The levels of assurance are defined as rudimentary, basic, medium, and high.

16.5.1.4 Policy mappings

When a CA certifies another CA, how the policy of one CA is mapped to another CA is mentioned here. This field allows you to issue a CA to indicate that a policy of the issuer is considered equivalent to a policy used in the subject CA’s domain.

Assume that a supplier and customer decided to link their computerized systems so that the customer’s order is placed directly into the supplier system, and the order status maintained by the supplier system can be seen by the customer. Both of them have their policies for privacy and security, which are different. To generate cross-certification in this case, which enables both the customer and supplier to recognize other party’s certificate, having an entry of the type customer <<CAcustomer>>, CAcustomer <<CAsupplier>>, CAsupplier <<supplier>> is not enough. Both customer’s and supplier’s systems have different policies for certificate usage. For example, a customer might specify that a given certificate can be used for accessing publicly available information of a company. Is it possible for a supplier to use that public key for accessing public information of the customer company?

Thus, one needs to map one company’s policy into the viewpoint of another company. That is known as a policy mapping extension.

16.5.1.5 Policy constraint

The policy constraint field indicates two types of restrictions on the policy. ,The first is related to the certification path. The constraint might specify a minimum requirement for all CAs in the certification path to be met with.

The other type of constraint is about policy mapping. The user might require disabling certificate mapping in the certification path. For example, if domain A trusts domain B and domain B trusts domain C, and if certificate mapping of that type is applicable, domain A is forced to trust domain C. This might not be acceptable to the user of domain A, and he can specify that in the policy constraint. Like earlier two fields, this field can also have a qualifier that points to a URL. Another qualifier may indicate any notice related to the use of the certificate.

16.5.2 Subject and the issuer CA-related extensions

The problems with OSI names and the need for alternate naming methods were discussed while we have seen what is different in version 3. The alternate naming methods and alternate names for this certificate are specified in this extension. This is quite useful as the user might need this information to confirm that the user he is looking for is the same and not someone else. One may provide the complete address of the person (for example, if I am looking for GLS, and when I find the address contains opposite Law Garden, Ahmedabad I can be assured of the identity.

Similarly, if I am looking for Dr. A K Aggarwal (FormerVice-Chancellor at Gujarat Technological University(GTU)) and if I find Vice-Chancellor in the additional information, I can be sure that I get the information about the person I am looking for and nobody else. The best solution may be to provide a photo of the subject. If I find a photo of the person I am looking for, I can be pretty sure about the identity of that subject. Having additional information like postal address, position in the organization, or photo, or something similar is quite handy in making sure that the subject is the one you are looking for. This is the reason it is expected that such additional information accompany other contents of the certificate. For this, the following fields are used in extensions.

16.5.2.1 Subject alternate name

This is the alternative name (one name in compliance with the X.509 standard is already provided in the subject name field) for the same subject. Usually, this format is following the use of this certificate. Applications like IPSec needs an IP address and port number while email applications need the address of the format mailbox@organization.subdomain.domain, and so on. Here, the extension will specify the alternate name useful for that application. This field can specify more than one additional names, so the certificate is valid for all the names specified in this field.

16.5.2.2 Issuer alternate name

This field is quite similar to the previous field. The only difference is that it specifies additional alternate names for the Issuer CA.

16.5.2.3 Subject directory attributes

This field conveys any desired attributes of the subject of this certificate. The attributes (for example, that the owner of the public key, that is, the subject of this certificate, is above 18), are sometimes required by the websites that are mentioned here. The website (for example, an adult website) just requires seeing if the certificate contains this attribute true or not. It does not need to store other information about the certificate, and thus the privacy of the user is maintained.

Similarly, a whistleblower website just needs to see if the person is a citizen and does not need to store other information about the whistleblower to protect his identity. Another example is that of a student feedback system, which ensures that the respondent is a student but does not know who he is. In that case, too, the user only needs to have the certificate indicating so.

16.5.2.4 Certification path constraints

We have already mentioned that there may be political or other reasons to distrust some CAs. The certification path constraints are there to help the user avoid the certification path containing those CAs. This might also restrict a specific CA to issue a specific type of certificate only. There are two fields used here:

	Basic constraints: This specifies if the subject can act as a CA if so, the certification path length should also be specified. If no, all certificates signed by this CA are considered invalid.

	Name constraints: List of names which are valid CAs are specified here. The list or collection of the names can only appear in the certification chain. Otherwise, that certificate is not accepted as valid.

16.6 Public key infrastructure

The PKI or Public Key Infrastructure is a hierarchy of CAs organized in a systematic form. The PKI acts like DNS and makes sure it finds some connection from sending the party’s CA with the receiving party’s CA. Like DNS, there are root CAs that are trusted without any doubt by the browser of the user. The other CA who produced their certificate of the root CA who are called root anchors are accepted by the browsers. Once a CA is accepted by the browser, any certificate signed by that CA is also accepted by the browser. If that CA signs a certificate indicating some other CA, they are also allowed to sign certificates of their customers.

In case the certificate sent by the sender is signed by a CA, which is approved by the receiver’s browser, the receiver immediately accepts the certificate and starts using the sender’s public key. The certificate, additionally, is also stored for future reference.

It is also possible that the sender’s certificate is signed by a CA who is not recognized by the browser of the receiver. The receiver acts as a DNS and sends a query to the PKI system. If the system returns with a proper certificate signed by some CA known to the browser, the communication continues and not otherwise. Unlike DNS, the certificate signed by the CA (who has signed the sender’s CA’s certificate) may also be not known. The receiver recursively looks for the signee of that CA’s certificate and so on till it gets one who is known. Once that is established, a kind of chain of CA, which eventually establishes a trust relationship between the sender and the receiver is available. We have already called it a certification path. The certification path may also end when it finds a root anchor at the end. As root anchors are all trusted, one does not need to have any certificate for their public key to be signed by other CAs. All browsers have their root anchors’ public keys installed inside.

The PKI is little more to the CAs organized in a hierarchy. The PKI aims to provide a foolproof system for the distribution of certificates. For that, it should also provide mechanisms to create certificates, store them, and manage them. Management of the certificate includes searching for a certificate when the user needs from the folder specified, or extracting the public key from the certificate, or fetching the certificate of the CA who has signed the current certificate, and so on. A foolproof mechanism to distribute valid certificates and revoke invalid certificates is also essential. The procedures for creation, distribution, and revocation are equally important to be standardized; the role for all the components (people involved, hardware, software, policies) of the system must be defined. The PKI intends to cover everything mentioned here. The PKI aims to provide a secure, convenient, and efficient way to acquire digital certificates. A working group under IETF (Internet Engineering task force) known as PKI X.509 or PKIX for short manages the functions of the PKI. Before we look at the PKIX functions, we would like to discuss entities involved in the process.

The end user who needs to have a public key is called an End Entity (or the subject). A subject may not be human; sometimes, routers or servers are specified as end entities. They would need PKI services for their job. They have a client program installed to work with the PKI system for fetching, sending, and creating a new certificate.

One of the critical CA jobs is to issue certificates and revocation lists. Sometimes, CAs are not authorized to generate revocation lists, but usually, they are. Sometimes, a CRL issuer is provided whose job is to publish all CRLs. The CRL issuer is an optional component of PKI as sometimes CAs do not delegate that job to the CRL issuer and do it themselves. To support functions described earlier (for example, storing and managing certificates and distributing securely), they may take the services of one or more Registration Authorities (RAs). CAs delegate some of their functions to one or more RAs. The RAs are not allowed to issue a public key certificate themselves but can only help in administrative chores like meeting the end entities and checking the credentials provided by the end entity. The certificates are stored in some form of the repository (or database), which is accessible to the end-user so he can fetch and use certificates. We have referred to them as directory earlier:

[image:]

Figure 16.6: CA hierarchy of India

Let us take an Indian example to understand how the PKI is managed in India. At the helm, there is a controller of certifying authorities, CCA. It is the top-level CA of all other CAs of India. In India, we only have two-level hierarchies, so there are seven CAs, which are defined under CCA, who are authorized to provide public-private key pairs and certificates for their public keys to any client. A CA can appoint registration authorities or RA for taking help in registering clients. A CA is responsible for all actions by RA. Figure 16.6 indicates the PKI hierarchy managed in India.

Kindly note that no CA has the authority to appoint another CA in this setup. There is only one level of CA in India. The users have to choose one of the 7 CAs. Not all CAs can register all users. For example, all government agencies must register under NIC.

The job of getting a certificate for any CA in India is quite simple. One can go to CCA’s website and download it. CCA’s website is quite hardened, and it is quite unlikely that the public key certificate of any CA downloaded from their website can be forged.

Outside India, the picture is not all that clear. For example, a browser vendor installs some root anchor’s certificates and, in a way, allows any CA whose certificate if either the root anchor or any other CA certified by them has signed. How does browser vendor get the root anchor list? There is no technical process. The browser vendors may be charging some fees; whoever is ready to pay that amount is physically verified and then included in the list. As there is no foolproof technical system for the users to verify the root anchors provided by the browsers, all browsers provide the option for the users to remove those certificates. They can, additionally, add a certificate from their side, which the browser itself has not provided.

16.6.1 The directory or repository

One of the critical jobs of the PKI system is to store and retrieve the certificates. A directory service provides the database for these certificates and the interface for storing and retrieving certificates. All registered users’ certificates are stored with their metadata in the directory. One can query for a typical user’s certificate, and based on the metadata about the user, and the certificate is fetched and delivered to the user.

One can query the PKI directory like fetch me the certificate belongs to Mr. Mehta, who works with AES Institute of MCA, and based on the metadata, and the PKI directory returns the certificate or certificates if there is more than one name which matches with the query.

One can easily compare this approach with DNS. Like DNS queries and responses, the PKI system is designed to respond to queries from users. Once the user receives the certificate, the job of the directory is over. Interestingly, it is also possible to combine DNS with X.509 certificates, so one gets a certificate associated with a domain name specified in the DNS. However, it is not yet been in widespread use. However, you can understand from the discussion that the public key distribution problem can be easily solved with this directory-based approach.

16.6.2 Revocation

Each certificate has a period, and it gets obsolete after that time. Once the certificate is expired, it is no longer a valid certificate. The certificate is valid throughout its lifetime mentioned inside. Sometimes, though a certificate needs to be invalidated for similar reasons, manual certificates become invalid. For example, when a student leaves a college without completing his course, the ID he carries as a student of that college is to be invalidated. This is different than a student’s ID is invalid once he completes the course. We call this invalidation process as revocation process and is an integral part of the certification process.

Let us try to see when an X.509 certificate needs to be revoked. Let us suppose a company that was providing certification closes down or is banned by the government for malpractice or something similar. Such cases demand revocation of the certificates already issued by that company. Sometimes, the owner of a certificate may find his private key compromised or stolen. It is also possible that the CA who used to certify this user, ceased to do so (maybe the user failed to pay the annual fees or fail to produce a specific document or the company ownership changes and so on). Sometimes, even a CA’s certificate is compromised (the CA’s private key is stolen is one reason, the manual processing sometimes makes false certificates generated, something similar happened with Microsoft once). In this case, the certificates must be revoked as early as possible. Revocation is an important step. If such certificates are not revoked, they can be misused, which in turn will undermine the credibility of the entire trust chain.

The revocation solves one problem but introduces another. It demands all CAs to and users to remain online while dealing with certificates and ascertain that they are not invalidated. Looking at the level of Internet access that we have right now, it is not a very hard problem to solve. However, this process also slows down the process as every certificate; before we use it, it must be checked. A solution to that problem is to have a revocation list prepared by each CA and exchanged over a typical period with other CAs on demand. Revocation lists are prepared and exchanged with other CAs like routing tables exchanged by routers to let all others know about which certificate is revoked. Once the revocation list reaches all CAs, the revoked certificate cannot be used. So a sender only needs to look at the latest CRL (Certificate Revocation List) before sending it.

To avoid any further delays, a user may cache the CRL in the memory3. Caching helps users continue when the internet connection to the server might not be possible and also speeds up the process.

Each CA is mandated to have the latest updated CRL. The list includes both types of certificates, user certificates, and other CA certificates. The CA also posts the CRL to the directory so users can quickly obtain that list. Each CRL must be signed by the issuer (the CA) with the name of the issuer and date and time when issued. The CRL also contains the scheduled date and time of the next CRL issued by the same CA.

The CRL contains the serial number of the certificate to be revoked and the date when the certificate was revoked. Obviously, for each certificate revoked, there is an entry in the CRL. For example, if the CA has revoked ten certificates, the list contains ten such entries, one for each certificate. The serial number of the certificate is unique (for a single CA), so that the number uniquely identifies a certificate and so other information is not required in a CRL. When the user downloads that CRL, it can match the serial numbers of his own set of certificates with the list for the same CA and find out if any certificate is to be invalidated.

16.6.3 Certificate lifecycle

The PKIX working group specified some functions which must be carried out to work with the PKI. They are listed as follows in the order in which they usually appear.

16.6.3.1 Registration

A user who wants to get a public-private key pair and thus a certificate for the distribution of the public key information, must register first. He can contact the CA directly or through some RA. He may need to provide some form of authentication to make sure that he is the one who claims to be for registration. The certification process might require some documents to be submitted personally or some information provided online or both of them. The user must be enrolled in the PKI (that is, must be placed under that CA) once that process gets over. The certificate (or sometimes more than one certificate with different public keys) can only be issued after that.

As per the standard, the registration authority provides one or more of the following functionalities:

	The identification and authentication of certificate applicants

	Approval or rejection of such applications

	Start revocation or suspension process for some certificates

	Renew or rekey certificates, accept or reject requests from clients about the same

The standard also specifies that the CA should provide binding of a public key to an entity. The CA does not specify how reliable this public key is. The CA gives no guarantee of the secrecy of that public key. The receiver of the certificate must decide the trustworthiness from his sources. The trustworthiness of the certificate depends on many parameters, including how strong the certification verification process is carried out.

16.6.3.2 Initialization

Once the user gets the certificate, he would like to start using it. He may pick up the private key associated with the public key mentioned in the certificate, sign a document with it, and send. There are a few other essential things to be completed before the user can do so. First, the user must also have certificates of all trusted CAs (including trust anchors or root CAs). He should have at least the certificate of the CA who assigned him the public key and the certificate. This information must be installed on the client machine in a specific directory. Once that process is completed, the user can start using the certificate.

16.6.3.3 Certification

The certificate is obtained during this process. The CA generates the key pair, prepares a certificate for the user to specify the public key, and sends it across. If the repository is maintained, the user’s certificate is inserted into the repository.

16.6.3.4 Key pair recovery

Sometimes, we get ourselves into trouble by losing our password. (Quite analogous to losing a key to a house lock). The administrator provides us the new password, and we can start using the same account again. (This is analogous to breaking the lock and installing a new lock at the same place.)

Unlike passwords, these keys are pretty long (300 to 600 digits usually), and not logical for a human being to remember them. That is why they need to be stored on disks. If the disk crashes or OS gets corrupted, or the file containing the key is accidentally overwritten, the private key will be lost. If ever we lose a private key, anything that is encrypted using our public key cannot be decrypted. The key pair recovery scheme makes the CA act like administrators who enable us to get a key pair back. Once we get the key pair back, we can use it to open the encrypted contents. The difference between a conventional forget password scheme and key pair recovery is that the key pair recovery scheme must generate the same key pair and not produce a new pair. As an analogy, when we lose the key, the key pair recovery is like getting a spare key when the original key is lost and open the lock with the spare key.

A forget-password-like facility that generates a new password for us is also required here. Generating a new password is an essential thing that a forget-password scheme does for us. If possible, one must generate and use a new key pair rather than recover the old. Why? Let us understand with an analogy of forgetting a password. When we choose option like ‘forget password’ when we are not in a position to remember the password, the system provides us a new password and not an old one which we forgot. If a malicious user is somehow able to execute forget password correctly, he will not have the existing, but a new password and the old password cannot be used to access the account. Later on, when the actual user tries to access that account, he finds out that the password he knows is not working and complains to the admin who will soon find out the problem and reset the password. If the old password is provided by the forget-password scheme to the attacker, he can continue to log in to the same account without the genuine user realizes so. If the attacker can use this key pair recovery process to get the key pair, the same set of problems could occur. He can sign and encrypt documents in parallel with the genuine user. That is why this process must be done securely. A CA must deploy the secret key back up methods to recover the key pair and make sure that only genuine users can have them. The password update like facility is provided using a key pair update process is discussed next.

16.6.3.5 Key pair update

All key pairs expire after their lifetime gets over, and some get revoked before their lifetime. Some keys are removed from use by the user to improve security or when the key is feared to be compromised. The key update process helps the user to update the key pair. Once the key pair is updated, all new transactions use the new key pair. The certificate is updated and inserted in the repository. The old certificate is removed from the repository just before that.

16.6.3.6 Revocation request

Some abnormal situation compels the CA to revoke the certificate before it expires. Some authorized person would make a revocation request indicating the certificate serial number.

16.6.3.7 Cross certification

When CAs need to authenticate each other, they need cross-certification. A cross certification involves a CA that generates a certificate having another CA as a subject and authenticating the public key that the subject CA is using to certify. The subject CA also generates a similar certificate where the issuer CA of the first certificate becomes the subject CA.

All of the preceding operations are to be carried out using some protocols. We will take a look at the two standard protocols used in practice.

16.7 Certificate Management Protocol

The PKIX CMP is specified in RFC 4210. Earlier, it was covered by RFC 2510, which is now obsolete. The PKIX model messages and operations are covered by this protocol. These messages provide certification management services to clients referred to as end entities in literature. Some of the operations CMP covers are as follows. They assume X.509v3 as standard for certificates:

	Adding a new CA to the list of CAs. This requires the generation of the public key for that CA.

	Periodic key-pair update for CAs. CAs change their keys periodically to provide better security, and the CMP help change their key pair with another.

	When a chain of CAs is used to verify the communicating entities, for example, if party A wants to communicate with party B. Now, if the CA for A is CA-A and CA for B is CA-B. Now, when B produces a certificate from CA-B to A, CA-B’s certificate is checked, and the certificate of the CA who has certified, let us call it CA-C, is sought. After that, the certificate of CA-C is sought, and so on till it reaches to one of the CA CA-A’ trusts. Such cross certification requests are managed by CMP.

	A periodic publication of certificates and CRLs are done by CMP.

	Process the certificate revocation requests from CAs. Whenever CAs feel the certificates are compromised, they send that information, and CRLs are generated accordingly. CMP manages that.

	Certification for a client (known as end entity in PKIX literature) includes the following:

	Registration of the client, issuing the certificate, and putting the certificate in the repository.

	Provide a key-pair update. Some clients want multiple keys to be used for different transactions, while some want to change the key pair which they are used for security purpose, while some others want to change the pair they are using when they fear their current key pair is compromised. The key-pair update process changes the key pair the client is using with a new pair.

	Renewing certificates: When the lifetime of the certificate is over, the certificates are to be renewed; sometimes, when the certificate is feared to be compromised; the client may need such service as well.

	The key pair recovery process is also provided by CMP.

	Online and offline interface to provide all these services is also managed by CMP.

Kindly note that we have just provided an overview of a complex protocol, and CMP is much more than what we have discussed earlier. You may refer to the RFC for more details.

16.8 XML key management protocol

A user who is working over the web sometimes has a critical problem. He wants to communicate with others securely and would like to use a public-private key pairs that he has generated. He wants an infrastructure for him (as well others whom he wants to communicate), which can safely store his (and others) certificates. The mechanism which does so should also allow others to register themselves with the service. XML Key Management Protocol is precisely designed for that purpose. The XML Key Management Specification (XKMS) is drawn by W3C (World Wide WebConsortium), which describes this protocol.

When the user wants to have such a key management service where there is a server (called XKMS compliant server) running. The server helps the user in two ways. It helps the user to register his public key with the server in the form of a certificate and also help him locate public keys for others based on some attribute values. The user process can communicate to the XKMS server using a specific XML-based request and receive an XML-based response. The other thing the user can do is locate the public keys of other registered users.

The server responds to two different types of queries. Locate Service provides the public key associated with some subject. For example, assume Lara wants to send an encrypted document to Gayle@bpbonline.com but has no information about Gayle’s public key. The DNS server at Lara’s place can send the query to bpbonline.com to find the XKMS service running on bpbonline.com, which in turn provides the public key for Gayle. Lara’s machine may send a locate service query with the parameter Gayle@bpbonline.com to that the XKMS server to get the public key information for him. A similar case may be cited for digital signatures. For example, Salman may receive a message from Shahrukh with a digital signature. How can Salman check the digital signature? He can get Shahrukh’s public key querying the XKMS server and verify it!

Another query is called validate query. Whenever a public key’s validity needs to be checked, this query can be sent. For example, Lara received a confidential mail from Gayle, and her browser verifies the signature which is matching. Now, the browser might also want to make sure that the certificate is still trustworthy, and the key is still in use. The browser sends a Validate query to the XKMS server, which validates the entire chain and responds, telling that the public key is still valid (or the certificate is revoked, and the key is not valid).

The standard states that the location service is kind of best-effort service, and no assurance is given about the public key is valid. The validity service has the job of validating. Thus, both services can be used together for a seriously secure operation. We will soon see PGP, where a user can have a mechanism to have his public-private key pairs. Once you have this pair, you would like to communicate with others securely. The XKMS server helps you in both, registering yourself so other can communicate securely with you, and you into getting public keys of others who are registered so you can communicate with them securely.

Keywords

	CA: Certifying authority is the entity which issues a public-private key pair to the user as well as provides a certificate about the issued public key to the user.

	Public Key Certificate: The certificate issued by the CA indicating the public key of the user issued by that CA, digitally signed by that CA.

	X.509 Certificate: A public key certificate using the format provided in the X.509 standard.

	Signature algorithm: The algorithm used to digitally sign the certificate.

	Subject: The name of the person or entity on whose name the certificate is issued.

	Timestamp: A data structure representing various times associated with the certificate like when the certificate came to existence and when it’s validity expires.

	Trust chain: List of CAs which help the sender CA to learn about the receiver’s CA and thus trustworthiness of the CA who has signed the pubic key certificate of the receiver.

	CRL: Certification Revocation List is a list of all certificates which are revoked before their lifetime has expired. Each CA keep the updated list of all certificates it has to revoke.

	Certification path: It is the same as a trust chain; however, this is a complete path indicating how a particular communicating party is trusted, through which CAs.

	PKIX: The standardization body for the PKI system with X.509 certificates. It is part of IETF.

Recapitulation

	The public key authentication exchange is much simpler than the private key exchange.

	Public key cryptography requires both communicating parties to obtain the public key of the other party before communication. They may ask for it and get a certificate or use a dictionary to fetch it.

	X.509 contains many fields, including the name of the user and the public key assigned to it.

	Certificates are very hard to forge and can be kept without much security.

	The certification path or trust chain between the CAs who signed the certificates of communicating parties is a must for both parties to have an authentication exchange.

	The authentication process demands using timestamps and nonces. Authentication can be done only be for one communicating party or both of them.

	Nonce helps synchronization even when parties are not synchronized in time or can use timestamps.

	Version 3 provided all additions with the use of three different types of extensions.

	PKI systems are essential for providing authentication exchange between any two parties.

	One needs protocols for PKI systems to work or even managing keys online.

Exercises

	Explain how certificates make life easy for designers of the authentication exchange.

	Describe the X.509 structure and explain the issue with the names of the subject and issuer. Explain why two ID fields are required.

	The reason why certificates are unforgeable.

	What is a trust chain? Why we need it for authentication exchange?

	Explain how India’s PKI structure is organized. Get some more information from other sources and write a short note.

	Some reasons for revocation of the certificate is provided in the chapter. Find out at least one case study where the certificate was to be revoked.

	Get more information on both protocols discussed in the chapter and write a short note on both of them.

1 Most security systems evolve in this fashion. For example, most mobile apps are frequently updated. Most updates are not for adding new features but removing bugs which are found in previous versions.

2 Suppose a company A has computerized inventory management system in place and company B has purchase order management system in place. A conventional system will make A’s inventory system produce a list of items to be purchased as going law in stock. The system might get it printed and sends it to the company B manually. The list is manually entered in company B and then processed. The systems in companies A and B are developed independently and follow different notations, different software platforms, and different databases probably. It is not easy to provide an automatic solution to transfer orders from A to B. The EDI provides an automatic solution to this problem by providing a standard for conversion and storage of electronic documents related to business. Once EDI is in place, company A’s purchase order for company B is converted to company B’s format purchase order and directly entered into Company B’s system.

3 Browsers usually cache such CRLs in the same place where the certificates are placed. The Firefox browser keeps the revocation lists in the same encryption tab where a view certificate is provided.

CHAPTER 17

Email Security: PGP and SMIME

Structure

Learning objectives

17.1 Introduction

17.1.1 Emails

17.2 PGP (Pretty good privacy)

17.2.1 Working of PGP

17.2.2 Compatibility test

17.2.3 Encryption methods

17.2.4 Digitally signing the message

17.2.5 Web of trust

17.2.6 Certification scheme

17.2.7 Quality of encryption

17.2.8 Current Status

17.3 PGP goals

17.4 The reasons behind the success

17.5 PGP services

17.5.1 Authentication

17.5.2 Encryption

17.5.3 Encryption with authentication

17.5.4 Compression

17.5.5 Compatibility

17.5.6 Cryptographic keys

17.5.7 Key identifiers

17.5.8 Key rings

17.5.9 Private key ring

17.5.10 Private key encryption

17.5.11 Public key ring

17.5.12 Extracting information from the rings

17.5.13 Public key management

17.5.14 Certification without CAs

17.5.15 Web of trust

17.5.15.1 Multiple IDs with a single key

17.5.16 Revocation

17.6 SMIME functionality

17.6.1 The SMIME certificates or Digital IDs

17.6.2 Some problems in implementing SMIME

17.6.3 SMTP extensions

17.6.4 Key management functions

Keywords

Recapitulation

Exercises

Learning objectives

After studying this chapter, the reader should be able to

	Weigh the need to secure mails.

	Describe how PGP protects the content using a combination of private and public key systems, secure hash functions, and clever design.

	Judge how an intelligent non-organizational solution can work to provide certification using a simple web of trust model.

	Differentiate between commercial and open-source PGP solutions and their needs.

	Describe the PGP process, file content and structure, keys and key IDs, public and private key rings.

	Realize the need for browser-based secure mailing system and SMIME as a solution to that problem.

	Differentiate between different types of SMIME solutions and Digital IDs and enhanced security services to be provided by SMIME.

17.1 Introduction

The application layer security is the best possible solution to secure communication. The only hindrance is to make every application capable of having security extensions. Not every programmer would like to have an additional job of providing security extensions to their programs, and those who would like to give a try may not be skillful enough to have a foolproof solution.

Some good programmers have tried to secure an application related to a specific area touching all of us, which is the email. There are two solutions that we will discuss in this chapter; one was designed by an individual, Phil Zimmerman, and was available openly for most of the years, called pretty good privacy (PGP). Only recently acquired by Symantec and one will have to pay if one wants to use that refined version (version 10.2 at the time of writing; it is available in the trial version which one can use to test the functionality). An open-source version (OpenPGP) also is available, which one can use. The other solution is from IETF, which can be added to the browser for mailing. It is known as Secure Multi-Purpose Mail Extension (S-MIME). S-MIME is available with most of the browsers at this time of writing. One solution called Penango is freely available for the Firefox browser at the point of writing this book. We will look at both PGP and S-MIME one by one. We will not discuss how software based on these two technologies can be installed and used. We will look at how the things we have discussed so far are implemented and used in the application layer.

17.1.1 Email

An email is next in popularity after the web over the entire Internet suite of applications. The mailing system is much older than the Internet itself. The email system has evolved from a character-based system to a GUI-based, and webmail solutions have overtaken the desktop-based solution nowadays. Pick up any home or office network, and you will find the email system to be an integral part of it. The email systems are designed such that despite the diversity in email systems, a mobile or desktop or laptop, Android, iOS, Windows, or Linux, the user expects the same experience and email systems lived to their expectations so far.

Earlier, mailing solutions were mere replacements of one-to-one communication between users, but nowadays, it is a way of formal and informal communication users rely on.

Unfortunately, when official communication takes place using emails, the conventional methods are found to be inadequate. Authentication (when xyz@abc.com is specified as the sender, we can ensure that he is the only sender and nobody else maliciously used that mail address) and encryption (nobody should be able to read the content of confidential emails) are standard requirements. The other problem is spamming. PGP and SMIME both are designed to provide encryption and authentication (digital sign) to the mail. In due course, we will see how exactly they do it. Though both of them do an identical job, both of them are based on very different concepts. Before we embark on their work, you may prefer to look at the Annexure III to learn how an email system based on the SMTP protocol works, if you have no idea.

17.2 PGP (Pretty good privacy)

Pretty good privacy (PGP) is a data encryption and decryption program that provides privacy and authentication for data communication. PGP had begun as an email solution but now evolved into a security solution for many other purposes like encrypting and decrypting files, encrypting entire directories and disk partitions, and so on. Phil Zimmermann developed PGP in 1991 to store files confidentially and later on mail them. Some of his friends, who had the PGP code, posted it over the Internet, which became an instant success among users. PGP became trendy soon, and it was being sent outside the U.S. as well. In those days, the U.S. had stringent laws for exporting anything encrypted, so Zimmermann was also involved in a controversial case and investigation. The U.S. soon parted ways with those laws, and Zimmermann was not convicted and sanity prevailed over the entire issue. PGP kept on gaining popularity ever since. A commercial impression is now in its 10th version. PGP has an open-source impression as well, known as OpenPGP from IETF, which is in its 6th version now. OpenPGP is covered by RFC 4880. GNU Privacy Guard (GNUPG) is an open-source implementation of OpenPGP software and available for free. The commercial version is available from Symantec Corporation.

17.2.1 Working of PGP

PGP uses many methods that we have looked at so far in doing its job. It hashes the messages for authentication, uses symmetric key encryption for encipherment of the message, uses a session key or a one-time key in that encryption process, and uses public-key encryption for exchanging the secret key. A few algorithms were chosen based on their strength for each of these operations. The chosen algorithms changed over the period; earlier versions used CAST-128, then AES and now even the elliptic curve-based techniques are used. RSA was used for public cryptography. X.509 certificates as well as a specifically designed model known as a web of trust is used for key exchange. The web of trust is an original model. The web of trust is neither hierarchical like X.509, nor does it have any CAs. The users certify other users and based on the recommending user’s trustworthiness, the certificate is considered valid or otherwise. The user is given a choice by PGP, and he can opt for either authentication or encryption and also can ask for both operations on his message. When a user receives a mail encrypted by PGP, he has to open the mail and authenticate the sender by decrypting the digital signature by the sender’s public key. PGP binds each public key with a username or a mail address for this purpose. Based on the username or email address, a typical pubic key is picked up and used for decrypting the digital signature.

After having a brief introduction, let us delve deeper and learn a few essential aspects of PGP encryption.

17.2.2 Compatibility test

PGP, like other computer software, continues to evolve and provide different sets of encryption and authentication options to the users. It is quite possible that two parties want to communicate using PGP might have different implementations of algorithms. Both parties need to negotiate before the process to learn if one party which can encrypt is possible to be decrypted by the other party. For example, if the sender can encrypt using ECC, but the receiver cannot as it does not have ECC as part of its suit, the system cannot work. Both parties must test each other for compatibility before the commencement of the communication process. Peers always agree on compatible algorithms and other parameters before communicating. This job is much easier for other protocols but very difficult for mailing solutions as both sender and receiver are not expected to be online while this is being done. There is no possibility of the authentication exchange. Usually, all later versions can fall back to older versions and accept emails encrypted by older versions.

17.2.3 Encryption methods

For encrypting the message, symmetric encryption is used. Session keys are generated by a typical method (to generate random numbers) and used here. The email system is asynchronous, so the sender can’t communicate with session keys separately, so the session keys are encrypted with the receiver’s public key and sent with the message. The receiver decrypts the session key with its public key and after that, decrypts the message.

17.2.4 Digitally signing the message

RSA or DSA are possible to be used for digitally signing the message in PGP. It is interesting to note that the digital signature is applied to an already encrypted message. That means, the message is encrypted first and then digitally signed.

17.2.5 Web of trust

Public key distribution was a significant problem PGP had to solve. In 91, we had no idea of CAs. So, Zimmermann thought of quite an innovative way to solve that problem. The web of trust method also used certificates, but unlike the X.509 structure, the signatory can be anybody. The public keys system is used for two purposes here, first, digitally signing the message and second, encrypting the session key. When any random signatory has signed the public key certificate, the problem arises of how much you can trust that random signatory. The web of trust deploys a very intuitive model of setting and assessing the trustworthiness of a signee, the sign, and the public key. We can trust somebody completely, do not trust him at all, or we have an intermediary level of trust. The web of trust model is like the human relation model. When you are introduced to a third party, your trust in that person depends on who the introducer is, how much you can trust the introducer himself. If the same person is introduced by multiple parties, it increases the trust in the identity of that person. When we start trusting some people, our circle of trustworthy people gradually expands when these trustworthy people keep on introducing others to us.

The web of trust works the same way.

When a user receives a mail from anybody, he looks at the signee. There is a confidence level attached to every signatory, and so the certificate is issued by him. If the signatory is wholly trusted, we may start trusting the sender and thus enlarging our circle of trusted senders. If we do not trust that signee, we may get some other certificate for that signee from some other trustworthy source, and the problem is solved! You can see that the idea is to weave a web of trust connections and somehow reach a link whenever we receive a mail from a new sender. If the link successfully terminates into a trustworthy source, the new sender is added to the list of trustworthy entities. It is also possible to share a complete list of all parties we trust with our neighbors like the Internet routers. The routers of the Internet periodically exchange routing information and update our database accordingly. This is a very smart mechanism of distributed trust where one starts trusting public keys for other people. Unlike general assumption, this model can be entirely secure as when there are multiple connections to a single sender, and it is hard to provide a wrong identification and survive. Wrong identification, for example, the incorrect public key for anybody, prompts a failed attempt to send to that party, and the distributed nature of the web of trust distributes that information quickly too. You can see that the revocation is also built into this system.

When the system converges using the web of trust, any genuine sender will be able to produce a chain of trust to the receiver to accept his public key is valid. We will study how the web of trust works soon in more detail.

17.2.6 Certification scheme

OpenPGP supports a hierarchical signatory scheme. A level 0 sign indicates that the key is trusted; the signature only verifies the key. Level 1 key, on the contrary, indicates that the sender is also trusted to sign other keys. In a way, the level 1 key is for parties whom we now trust to sign certificates for others. A level 1 signee can issue as many certificates as he can of level 0. Level 2 signature indicates that the certificate is of a root-level signatory. They can issue certificates for level 1 users. They can also issue as many certificates as they wish for level 1 or level 0. PGP has now added a certification expiry date in the process. Earlier, one needs to revoke that certificate once the usage period expires.

One of the most critical aspects of certification in PGP is that it gives users a chance to choose the level of trust. He may decide to trust everybody or nobody, or anything in between.

17.2.7 Quality of encryption

PGP is considered to have quite close to military-grade encryption; if you believe Bruce Schneir, who is a well-known cryptanalyst when he was talking about PGP older version. The newer versions are even better. PGP design has chosen open and well-known algorithms without any known cryptographic weaknesses.

17.2.8 Current Status

PGP is diversified in various applications now. There is an idea of a PGP server called the central policy server. A desktop PGP client can connect to it for any need. The PGP server provides all operations to the client, for example, constructing a mail and adding an attachment, signing the mail digitally, encrypting the hard disk of the client (called full disk encryption), encrypting files and folders, provide encryption during the file transfer process, encrypting HTTP request-response, etc. Many applications have started providing PGP plugins for security the content; for example, WordPress provided a plugin for session management using the PGP security.

The commercial version of PGP contains many additional features allowing a desktop mailing solution, whole disk encryption, offloading the client with any need for plugins or any security-related processing like generating and storing keys. Everything now is done at the server. Interestingly, Symantec recently renamed all 7-8 PGP products, and now they have no PGP in their name. However, they still keep using the same technology within. It has many other advanced features. The Symantec Encryption Server (earlier known as PGP Universal Server) is capable of providing centralized deployment of all security policies, imposing those security policy constraints to all desktops, managing keys as well as reporting policy-related issues. The SMIME (discussed later), which is another IETF standard for encrypting and authenticating mails by the browser-based solution is also embedded within this product.

17.3 PGP goals

PGP was designed with some specific goals by Paul Zimmermann. Let us have some idea about what he wanted to do:

	He was very clear that he would use the best of the breed (in those days) algorithms that were free. He had a severe aversion to anything which has a government control or proprietary solution and wanted it to be free for all. That leads to using only open algorithms.

	Build the solution which is simple to use. The solution itself uses the algorithms where need is, but the user is not bothered about those algorithms. This is quite unlike solutions at other layers where users negotiate and decide the algorithm and other parameters like the key size.

	Have a command line as well as a GUI version, both being simple and easy to use.

	Everything from the source code, as well as the executable, should be available to all for free.

	Unlike other cases, he invited companies to join the movement. He expected the companies to produce low-cost commercial solutions with continuous support, which some of the customers demanded. The companies can also help in further development. Symantec’s solution is the outcome of the process.

	Though having both versions, open-source as well as commercial, the algorithms should not have any dependency over the typical hardware of the operating system. Interestingly, some of the later PGP versions available for iOS as well as Android platforms apart from all known desktop OS versions.

Having looked at the goals, here is the time to look at why PGP is so popular even today.

17.4 The reasons behind the success

The PGP was an instant success and still very popular across all computing platforms even after three decades. What are the reasons for its success? Let us look at some of the known facts:

	The technology is successful when the user has it in a working condition. Solutions like GNU privacy guard are freely available for anybody to use. PGP is available on Windows, Mac, Linux, UNIX, Android, iOS, and many other platforms. The users also have a choice to go for Symantec’s version of PGP with some cost involved but having a more refined solution to run their business smoothly. In a way, those who want Let me do it myself type solution, they have an open-source version, those who won’t let me get the service and I am ready to pay, they get the commercial version.

	PGP chose all openly available algorithms and security tested extensively by many security experts and researchers. It is highly unlikely that Zimmermann has built any backdoor into it. There are no known attacks on those algorithms until 2018. Some attacks were possible on PGP implementations due to a bug in the implementation process and not due to algorithmic weaknesses. All state-of-the-art, open algorithms are being used even today, however, changing over the past 20 years from 3DES to ECC and SHA-1 to SHA-2.

	The PGP solution is available for a single user and corporate alike. Corporates choose the server-based solution to standardize the process of encrypting and authenticating any communication in a consistent manner across the organization.

	Users have quite a few choices, not only open source or commercial version but many other choices as the open-source code is also available, which they can modify for their liking. Organizational solutions allow corporate administrators to deploy the security policies of their liking.

	PGP no longer has a mailing encryption solution, and it provides many options for encrypting a file, a folder, or an entire disk.

	Some people who are allergic to the establishment prefer the non-standard version of PGP. People who prefer internet standards have OpenPGP, which is standardized by IETF. We will soon see that another mail encryption solution, S-MIME is a standard from IETF, and there is no non-standard version available for it.

	There is a vast community backing up PGP and related movement. The community keeps a tab on the evolution of PGP and help novice users in deploying and using PGP solutions.

After looking at why PGP is so popular, let us see how PGP secures a mail or a document.

17.5 PGP services

Whenever the message or, more precisely, a document needing secure protection is given to PGP, PGP processes the document with some services. Please note the difference between solutions like Kerberos (which we have already looked at), TLS, and IPsec (which we are looking at in the next two chapters), and PGP. Like Kerberos, PGP provides a transparent service to users. Users are not prompted to decide the key or the algorithm to apply. The TLS and IPsec, as we will look at in the next two chapters, provide quite a few choices, on the contrary. The TLS and IPsec, working at transport and network layers demands processes (transport layer processes in the case of TLS while the networking layer processes in the case of IPsec) negotiates about the options available, and there is no user involvement. In other words, PGP works like Give the document to me, and I will give you a secure version without asking a single question kind of a system. To provide that kind of solution, a few services like authentication and encryption, and more need to be provided. Let us look at the services provided by PGP.

17.5.1 Authentication

The first service provided by PGP is the authentication of the message. The first version of PGP used SHA-1 algorithms to generate hash and RSA to sign digitally. Now, SHA-2-based versions are used with RSA. When the user is done with the message, the SHA-2 hash of the message is generated. The hash is encrypted with the private key of the sender. How does PGP get the private key? From a private key ring (or private key database). We will soon learn about it. Once constructed, the digital signature is appended at the end of the message. RSA and SHA-2 are quite formidable and thus, this authentication mechanism is considered quite good.

Whenever the receiver receives the message, it will use the sender’s public key to decrypt the digital signature, generate the message hash using SHA-2, and compare both values, accept if same, and not otherwise. PGP provides an option for the implementor of the algorithm to use DSS or EC-based DS mechanism instead of the default RSA.

An exciting option is to have a detached signature. A detached signature is not part of the message and acts as an independent component. There are some cases when a detached signature makes more sense. Let us try to understand. Consider having generated a library of essential functions. An exciting way to make sure these functions are not maliciously modified is to have a kind of self-check mechanism. This self-check normally generates a signature from the code and sees if it is the same as it should be. For this, whenever a final version of any function is ready and placed in the library, the signature is constructed and stored at a separate secured location. A user can get the encrypted signature from that database, generate the signature from the code, compare that with a decrypted signature obtained from the database, and proceed only if they are the same.

Similar techniques are also deployed with executable files when they are feared to be compromised. When the signature is detached and stored in the other database, the attacker or virus, which changes the code, has no way to change the detached signature, and the user will have a way to learn about it.

Another case where the detached signature is useful is where there are multiple signees for the document. In the usual case, if a digital signature is attached to the document, the second signee does not only sign the document but document + the first signee’s sign! That is not the way legal documents are signed in a manual fashion. Each signee signs only the document. The detached signature mimics the manual process perfectly. When signatures are detached and separated from the document, each signature covers only the document. When the document is presented for processing, all detached signatures of all signees are also brought from the database and presented together. Each signature can be verified independent of any other signature precisely like the manual processing.

Storing the detached signature in a separate database increases security as well. The attacker cannot just manipulate the document to attack now. One can have all official documents in one database and signatures in the other. Before using an official document, the user downloads the signature from another database to compare to see if the document is not modified.

Another solution that we are going to see soon, the S-MIME, also provides an option for a digital signature.

17.5.2 Encryption

The next service is encryption. As mentioned earlier, a session key is generated, and CAST-128 (a typical encryption algorithm which is open) or AES-128 (which is default now) is used to encrypt the entire message by the session key. The session key is 128-bit random number generated just before the mail is to be encrypted. As the session keys are used only once, no two messages are likely to be encrypted by the same key. Unlike Kerberos, the PGP does not enjoy the benefit of the authentication exchange. The reason is that the email system is asynchronous. Whenever the sender is sending, the receiver is not required to be online, so there is no way they can communicate before the mail transfer. Quite an innovative though simple solution deployed by PGP is to just encrypt the session key by the receiver’s public key and send it with the message.

The process for communication with encryption is as follows:

	The sender constructs the message to be encrypted.

	A session key is generated as a random number and the message is encrypted.

	The session key is encrypted with the receiver’s public key and prepended to the message. RSA or El Gammal is used earlier, but now ECC can also be used.

	On receipt, the receiver decrypts the session key with its corresponding private key. The receiver can own multiple public-private key pairs, so determining a corresponding key pair is critical.

	The user, now decrypts the message with the session key.

The preceding process needs to be done for EVERY message separately. So, if the sender is sending multiple messages, all of them will be encrypted by different session keys. Obviously, this improves the security. Some PGP implementations allow the user to choose the key size as well. So, the user can have better security with longer keys if needed.

17.5.3 Encryption with authentication

In most cases, though, the message needs to be processed for both of these operations. In that case, the signature is first generated and added, and then the entire message plus the signature is encrypted. The encrypted session key is prepended at the end. There is a reason for signing the message before encrypting it.

In most cases, the message is stored at the receiver’s end after decryption. However, the receiver can read the message whenever it wishes to, as many times it needs to be, by just checking whether the signature is right, there is no need to decrypt. The point is whenever the document needs to be used multiple times after decryption, this is a better technique. Sometimes, the message is not stored in a secret location or authenticity is of a second priority than confidentiality; encryption is preferred before authentication.

17.5.4 Compression

A mail is a long item generally. To reduce the size of the mail, compression is also thrown in. Compression is the last but one step in the process. Compression happens just before encryption and after signature calculation. There are a few reasons for this decision:

	The compression used by PGP is based on similar patterns one finds in the file. Plaintext tends to have more of such patterns, unlike the ciphertext. The conventional zip algorithm, a form of which being used by PGP, can compress the plaintext to 70% to 80% due to that reason. Ciphertext compression might not work that efficiently!

	When we have an uncompressed message with the sign, we can use it without trouble as we can easily associate a plaintext message with a signature. Unlike that, if the compressed file contains a sign, the message must be uncompressed every time one reads it to check the signature. Even when the messages are stored in the uncompressed form, if one wants to verify the message, it must be compressed to generate verifying a signature to match it with the original signature stored in the database. This design eliminates both these problems.

	The LZ77 algorithm, which is used by PGP is not deterministic. It is possible to implement the algorithm to achieve more compression with less speed or less compression with more speed. Fortunately, all such algorithms are compatible with each other and can decrypt the file encrypted by some other implementation of that algorithm. The algorithm finds out how that file is compressed first, (the header added to the zip version of that file covers that information), and falls back to a specific decryption routine matching with that encryption. This makes all such algorithm implementations able to work together. Any algorithm’s encrypted output can be decrypted by any other algorithm. When compression is performed before encryption, the receiver first decrypts the message and then uncompresses the message using any such algorithm.
Alternatively, if the signature is calculated using the compressed message, the signature value depends on the output of that specific compression routine. If the receiver uses some other compression routine, the signature won’t match, and thus, all the users would be forced to the unrealistic solution to have the same implementation of the zip algorithm. When the signature is calculated before compression, it helps in two ways. First, it hides the signature, and second, it becomes independent of the zip algorithm.

	When encryption is applied after compression, security is more reliable for two reasons. First, the compressed message has less redundancy than the uncompressed message or having fewer statistical patterns for the attacker to look at than the plaintext. Thus, the cryptanalysis is that harder. The other reason is that when an attacker tries a brute force attack, after applying every possible key, the output won’t reveal that it is correct output or not. Every time the attacker additionally must uncompress it to check whether it is the correct output. Thus, it is hard for an attacker to have some automated means of breaking the code, and it takes more time for the brute force attack, and thus, it makes it more difficult.

The last part is not a security-related part but something that has to do with the design of the protocol used to carry our mails across, the SMTP protocol. Let us see what the last stage of PGP needs to do.

17.5.5 Compatibility

The protocol which houses mailing is the Simple Mail Transfer Protocol (SMTP). The protocol was designed when the only transmission that used to take place was ASCII text of 7 bits. The SMTP still accepts 7 bit ASCII. Whenever we send and receive the data other than 7 bit ASCII, we need to convert it to 7bit ASCII. The other than text attachments that we send are examples of items that need to be converted to 7 bit ASCII. There are two methods to do so. One is quoted-printable encoding, which is used when few non-ASCII characters are part of the sequence, and another is BASE-64, which is used when almost every data is non-ASCII and requires conversion.

PGP provides three options such as authentication only, encryption only, and authentication with encryption. It also compresses the output if opted for. As a minimum, a plaintext message with a signature is sent without compression. The sign is non-ASCII data in this case even when the message is pure ASCII. If the encryption only is chosen or both encryption and authentication are chosen, the entire message is non-ASCII. The PGP output, as it compresses the data and also encrypts them afterward, is no longer confined to 7 bit ASCII and requires conversion to send it using SMTP. This conversion is essential for the output of the PGP program to effectively transmit over SMTP (so an SMTP client like our mail system installed on the desktop, can talk to the mail server). This conversion is the last part of the jigsaw puzzle that PGP solves successfully. The output (7 bit ASCII) is known as the radix representation of the input. Thus, radix – 64 is used interchangeably with the Base-64 method.

The only concern here is the conversion to BASE -64 is that it increases the size of the text to 33% (it converts every 6-bit stream of the input into an 8-bit output). Additionally, CRC is added to check the transmission errors. The original message is added with a signature as well as the session key already, so it seems that the increment in size is a real concern.

In the real sense, the increment is not too much. The session key and the signature are too small to warrant any real difference for a reasonably long mail. The ZIP compression, as we have seen earlier, is able to get 50% to 70% compression. So the overall size actually reduces rather than increases. Let us try to see. Suppose the message is of 100 kb. The signature using SHA-256 will add 32 bytes while session keys are also 32 bytes making it 100,000 + 64 = 100,064 bytes, which are almost 100,000 bytes. Thus, we can safely ignore both the additions. Now, assume the ZIP compresses the message to just 50% (the actual compression ratio depends on the redundancy found in the data), the 100 kb message comes down to 50 kb. Now, if we have a 33% increase to this message, the size becomes 50 + 17 (almost) = 67 kb, which is substantially less than the size of the original message (almost two-third). If the message contains more redundancy, the compression ratio can increase. Thus, one should not worry much about this increment by radix-64 conversion.

The latest SMTP extensions allow sending the binary text and are no longer confined to 7 bit ASCII. When all browsers allow SMTP extensions, this last phase of converting the output to BASE-64 won’t be required.

17.5.6 Cryptographic keys

Our description so far concludes that the PGP requires three different types of keys. The first item is the session key, which is used once with every message, the second item is a public key, and the third item is a corresponding private key. There is one more type (it is called passphrase keys, which are a password to the entire PGP system), which we will see later.

There is one more issue with the second and third types of keys, that is, public and private keys. If every user contains only one public key and the corresponding private key, then the problem is very simple, but usually, a user prefers to have multiple pairs of public-private keys. Why? Let us try to see:

	Suppose a user suspects that his private key is stolen, he can immediately switch over to another key if there is a choice. If not, he might need to ask for another key to the authorities in charge, and that might take inappropriate time.

	A user who does not prefer to use the same key to encrypt many documents would like to limit the number of documents to be encrypted by a key. He might just use specific keys for only a few documents. This improves the security as many documents encrypted with the same key have more chances to reveal a pattern that may help identify that key. When the user restricts the number of documents, the attacker is confined to a few documents for identifying the patterns which are not feasible.

	A user who would like to use different keys for different operations would also prefer to have multiple keys. For example, a teacher might use key pair 1 to send anything to students while user key pair 2 to communicate with the University. When he uses a key pair-3 for more confidential work like sending marks or test papers to the University, it makes that more secure.

	The user, also would not like to use the same key forever and would like to change it after some time. This is again a very good practice that a system designer should encourage. The problem is when the user changes the key; some of the old documents may still remain valid. For example, a government official who has signed some official documents with his old private key may still be referred by others and requires verification by his old public key. If the user can have multiple key pairs, adding a new key pair to the list does not eliminate the older one, and the system can continue to function.

When we allow the users to have multiple public-private key pairs, we will have a few additional problems to manage. First, we need a method to identify the key pairs uniquely; we must give each one of them some ID. Second, each sender must have some foolproof way of storing all pairs, especially private key values. Third, each communicating party is also required to store the public keys of everybody else who communicates with him. We will soon see how all these requirements are met within PGP.

17.5.7 Key identifiers

The PGP has its random number generator for generating session keys, which is described in Annexure IV. We have already seen that the user requires multiple key pairs for having better security. When a user has multiple keys, the process described for communication becomes complicated from an additional angle. Let us try to understand which. When the sender sends the session key encrypted with the receiver’s public key, the receiver decrypts the session key first and uses that session key to decrypt the message. As long as there is a single pair of public-private key, there is no confusion, but if there is more than one pair, then the receiver uses which key to decrypt? The only option available is to try all keys one after another if there is no direct method to identify the key used to encrypt is available. Also, decrypting the session key does not reveal that it is right or wrong, as it is a random value. Only decrypting the message will reveal whether the key chosen was right or not.

For the purpose of identifying the key used to encrypt the message from a few candidates, every key is given a unique identifier and that identifier is sent with the encrypted message. The receiver, from the identifier value, finds the public key used to encrypt and thus, finds the corresponding private key without the need to decrypt the message with every possible private key. The next question may be which type of identifier can be used. The best solution is the public key. When the message is sent, the public key can be sent with it. When the receiver receives it, it can find out the corresponding private key and decrypt. Simple, isn’t it? There is one problem, though.

The public keys are not small, nearly 600 digits, thus add a considerable overhead. The other solution is to number each key sequentially, like key 1, key 2, and so on. Have a database to store all IDs and corresponding keys. Whenever the sender sends the doc, it may send the key id and the receiver uses that id to look in the database to get the corresponding private key. More straightforward, isn’t it? Having a database accessible to all potential senders and receivers and a search mechanism for a few keys; a communicating party is an overkill.

What PGP does is even simpler. It generates a hash of the key itself and uses as an identifier. Using hash serves two purposes, being small in size it reduces the overhead compared to the complete public key. The hash is calculated when the sender sends data and adds it in the message. The receiver keeps the hash values with his list of keys. As soon as the message arrives, it uses that hash value as an index and gets the corresponding private key. This solution does not require a global database, and a small local file serves the purpose. The hash algorithm chosen is again a straightforward one; it is as follows:

Hash = PublicKey mod 264

The only issue left to check is to see if this hash function is preimage resistant. We have seen in Chapter 7: Secure Hash Functions that the simple mod function is not preimage resistant. Thus, two keys of a user can map to a single hash value. The probability of such duplication, for a specific user, given that each user might have only a handful of keys is very less and practically zero. Thus, PGP can continue working with such simple non-pre image resistant hash function and still gets away with it.

This key ID is also useful for verifying the digital signature. Remember, the digital signature is signed by the sender’s private key, and the receiver needs the sender’s public key to decrypt and check the digital signature. The digital signature contains a 64-bit key ID of the key, which are the last 64 bits of the public key. The receiver must keep all potential senders’ public keys with their key IDs. As soon as the digital signature is received, the receiver extracts the key ID from it and searches in the list. When it finds a specific public key with the key ID, it uses it to decrypt the digital signature.

Let us try to see the full format of the message now. The message contains three parts, the message itself (encrypted or in the plain), the digital signature (optional, encrypted by the private key of the sender), and the session key (optional, encrypted by the public key of the receiver). Three relevant fields are message, filename, and timestamp. The field message contains the actual data; it is the file named in the field filename and created at the time stored in the field timestamp.

The signature component includes the following:

	Timestamp: The message file (with signature) with the creation time.

	Message Digest: The signature is the SHA-2 value. When the signature is calculated, it not only includes the message itself but also the signature timestamp value. The reason is to protect against the replay attacks.

	First two bytes of the message digest: The first two bytes of the message digest (plaintext) is also kept here. When the receiver starts decrypting the message, it compares the first two bytes of the decrypted message digest with this value. It helps the receiver judge the validity of the key. This is quite a useful trick in the backdrop of multiple keys and a chance of same key ID for different keys. (however little, there is a possibility of having two different keys with same key ID).

	The key ID of the sender’s public key used in encryption: This indicates which key out of a few possible candidates to be used for decrypting the message digest. When the sender encrypts the message digest using a specific private key, it picks up a corresponding public key and attaches the key ID of that public key using the formula PublicKey mod 264, which picks the last 64 bits of the public key.

The session key component contains two items: the encrypted session key and key ID of the recipient’s public key.

The message as well as signature (if opted for) are compressed and then encrypted, and the entire block also encoded using radix-64.

Both decryption of the session key (which requires the receiver’s private key to decrypt) and verifying the digital signature (which requires the sender’s public key to decrypt), requires different processing. The first case requires storing one’s private keys, and the second case requires storing public keys of others. They are stored in databases popularly known as key rings. (Keys are stored in rings together in manual storage, so the word ring is chosen to denote storage of keys in PGP).

17.5.8 Key rings

We have looked at the message format where we have seen that two asymmetric keys are used with every message that is encrypted and signed, the sender’s private key used for encrypting the message digest and receiver’s public key for encrypting the session key.

Two sets of keys are kept with every communicating party. Public keys of all other communicating parties are kept in a data structure called the public key ring and list of private and corresponding public keys of the same party; the owner of the ring is kept in a data structure called a private key ring. It is important to note that the private key ring is a misnomer; it contains both public and corresponding private keys of the owner. The organization of the key rings must be formed in a way that accessing a specific key and details related to the key must be accessed efficiently.

17.5.9 Private key ring

A conventional method to construct a ring is to have a table consist of a few rows and columns. Each row represents a private key and corresponding public key information, while each column represents a field of that information.

The fields for the private key ring are as follows:

	Timestamp: When the keys are generated.

	Key ID: The least significant 64 bits of the public key.

	Public Key: The public key part of this pair.

	Private Key: Encrypted private key of this pair.

	User ID: Some type of user ID, usually an email address. It depends on the user to decide how to fill this information. He may choose some other form to represent the User ID.

The fields can be indexed by both the Key ID as well as the User ID. It is important to note that both of them have some chance to have a duplicate record, albeit very little.

17.5.10 Private key encryption

The private key, even when stored only on the user’s machine and in a form only accessible to the user, is vulnerable to attacks if stored in a plaintext form. If the machine falls into the wrong hands or stolen or some attacker can copy the private key ring (basically a table), the situation can be catastrophic. The solution is to store the private key in some encrypted form. The encryption must be done in a way that even the PGP program cannot get the key decrypted without the user’s permission. That can be achieved by a simple trick. It works as follows:

	When PGP is installed, the software runs an algorithm to generate a public-private key pair using RSA. It stores other information in the table but the private key asks the user to enter a secret value called a passphrase.

	This passphrase is like a password to open this private key ring. The passphrase entered by the user is not stored anywhere. It is used in the processing as follows:

	SHA is applied to the passphrase to generate a hash value.

	The passphrase is thrown away and not stored anywhere.

	The private key is encrypted using the hash value as the key and CAST-128 or some other algorithms chosen.

	The encrypted private key is stored in the private key ring. Thus, the actual private key is not stored anywhere.

	Whenever a user needs to send a doc encrypted with the private key, the systems prompt the user to enter the passphrase.

	The same process is applied to generate a key from the passphrase; that is, the passphrase is used to generate a hash using SHA, which is used as a key for decryption.

	The key is now used to decrypt the private key and used in the process without being stored at any place. Thus, the PGP program can’t use that private key without the user entering the passphrase.

The preceding method is quite a smart scheme as the user does not need to remember the private key, which is decided by the system while the user has no choice over its selection. The private key is quite long (nearly 600 digits) and tedious (all numeric). The user needs to remember only a small passphrase, which he can decide in this scheme. He can decide any string value that he can easily remember (but for better security, it should not be easy for others to find out, like passwords).

17.5.11 Public key ring

Apart from a few fields that we will soon study while discussing a unique way to form a certification process, other fields of the public key ring are quite obvious, almost the same as a private key ring. Let us list those fields first. We will look at other fields when we study the ‘web of trust’, the way PGP provides certification to the users and their public keys. Remember that the users who are communicating with us are sending their certificates with their public keys which are used to populate entries in this table:

	Timestamp: Time when the key is entered into the database.

	Key ID: Least significant 64 bits of the public key.

	Public key: The public key of the other communicator.

	User ID: The user ID, usually an email address of the other communicator. As the private key ring, it is possible to associate multiple user IDs to this key.

17.5.12 Extracting information from the rings

Consider the case where the message is both encrypted and signed. If any of the services are not needed, that part is skipped in a real case. We will have two different processes acting on the message, signing, and encryption. They are described in the following. First, we look at the sender.

Signing the message:

Here is the process of message signing at the sender.

	PGP asks for the user-ID information, and if the information is not provided, it picks up the first entry from the private key ring. If the specific user ID is input, the system finds the first entry with that user ID and retrieves the encrypted private key.

	PGP now prompts and asks the user to input passphrase.

	PGP generates the SHA hash of the passphrase to generate the key.

	PGP decrypts the private key using the key.

	The message hash is taken using SHA and is encrypted using the key to produce the signature of the message.

	Both key and message hash are destroyed and not stored anywhere.

Encrypting the message:

Here is the process of encrypting the message at the sender.

	PGP generates the session key and encrypts the message with it.

	PGP asks for the receiver’s mail address and looks for its public key in the public key ring.

	The session key is encrypted using that public key.

	The timestamp and more are picked up and added to construct the session key part of the message.

Now, we will look at the receiver of the encrypted and signed message.

Decrypting the message:

Now we are at the receiver, decrypting the message is the first step after receiving message. Here is the process.

	On receipt of the message, the PGP system gets the encrypted private key from the private key ring using the Key ID field of the message.

	It prompts the user to enter the passphrase, generate the SHA hash to get the key, and decrypt the private key after that.

	PGP retrieves the session key by decrypting it using the private key.

	PGP decrypts the message using the session key just derived using step 3.

Authenticating the message:

The second step is authenticating the message at the receiver.

	PGP looks for the entry of the sender’s public key in the public key ring. It uses the key ID field of the message to determine the specific public key. There are two key ID fields in the message: one is in the message part, and another is in the signature part. This key belongs to the signature part of the message.

	PGP extracts the message digest from the signature using this key for decryption.

	PGP applies the SHA hash to the message to generate a message digest.

	PGP compares the message digest, which it decrypted in step 2 and generated in step 3.

	If both the values are the same, the message is authenticated otherwise not.

[image:]

Figure 17.1: PGP FILE

The PGP sends information in the form of files. Each file is considered a separate message and thus contains all information, including the session key. The PGP file is also called packets by some authors. This PGP packet has nothing to do with the packet travels in a network. The PGP file is a structure where the encrypted and authenticated information is kept. The sender encrypts and adds a digital signature and thus constructs that file and receiver, on receipt, decrypts and authenticates the sender. The general file structure is shown in Figure 17.1. Based on if only encryption or only authentication or both are chosen, different parts of files are optional. The figure showcases the complete process over a message using PGP services that we have discussed earlier, including compression and radix encoding apart from encryption and authentication.

17.5.13 Public key management

Mentioned as ‘Achilles hill’ in the standard, this part fully deserves mention looking at the complexity it has. The key management can be done in two different ways: an older mechanism of the web of trust and a new edition of X.509 certificates. The conventional web of trust model does not require a designated CA to sign a certificate. Anybody can sign anybody else’s certificate, and every user has exclusive right to trust or distrust any other user’s signature; ultimately, quite an Internet-like structure by a non-IETF body. Let us try to understand what involves public key management in PGP.

First, there is nothing that is fixed. The idea is to start with minimal information and gradually build up the database with keys. It is very similar to routers which operate without much information in the beginning and build the knowledge about the network topology by gradually learning from neighbors. Here, the user starts learning about public keys of other users, and using those public keys, starts learning about public keys of those who communicate with those users, and so on.

The vital part of the solution is to see that no public key is accepted wrongly. For example, if Lara contains a key K supposedly from Gayle. So Lara enters K in the public key ring with name Gayle@bpbonline.com. Now, if the K is not the public key of Gayle, but Darth1 and Lara are mistaken in accepting it as a public key for Gayle. This can lead to a man in the middle attack, as we have seen earlier. Thus before Lara uses K as a public key for Gayle, he must ensure that the key is genuinely Gayle’s and nobody else’s. Man in the middle is a serious problem, and one must get a solution to that problem.

17.5.14 Certification without CAs

PGP does not include any specification of trust authorities (a PKI-like hierarchical structure is not present here) or any standard mechanism for establishing trust. That means, there is no suggestion about how to decide a trust value for a party. A user is free to decide that value. (However, later versions allowed X.509-based certificates additionally).

On the other hand, once the user decides his trust level, PGP provides a precise cut method to use that trust for further processing. Let us try to understand.

When user A installs PGP, one public-private key pair is generated for that user A. Whenever a user adds a key to the public key ring, and he is asked to provide how much trust he has in the key before inserting that key in the ring. This part is a little complicated and requires little more elaboration.

There are three objects with which we can associate trust. The first one is the owner of the public key (that is, the subject), the second is the public key, and the third is the signature. There are three fields related to trust provided in the public key ring, related to these three objects. The first field is called the owner trust field. The owner trust field indicates how trustworthy the owner of that signature is for signing other certificates. At the time of insertion in the ring, PGP asks the user to enter the value of that field. There a total of six values, as indicated in the first column of figure 17.2, possible for the user to specify. The default is undefined trust and is automatically assigned until the user specifies some other value.

The second field that we will look at is signature trust (or sigtrust for short) field. This field specifies how trustworthy this signature is. This field has identical values possible as the owner trust field value in the beginning. When a new public key is inserted in the public key ring, the PGP looks at the signee information. If the signee belongs to the ring, it checks for the owner’s trust value of that signee and assigns that value to the signature. It is important to note that the sigtrust value depends on the value of the owner’s trust field value at that time. If the owner trust value changes as the trust in that owner may change in the eyes of the user, the sigtrust value does not change with it. One can say that the signature trust value is a cached version of the owner’s trust value of the time when the key value is entered.

The third field is called the key legitimacy field. More than one signature may be available for a key; the key legitimacy value, in that case, is decided by the cumulative owner signature trust values. For example, if the key has two signatures, one by user A and another by user B, out of which one signature is ultimately trusted, the key legitimacy value is complete trust.

On the other hand, if there is no signature with ultimate trust, the values are combined in some user decided form. One such example is if a key contains two signatures, one by user A and another by B, and none of which is fully trusted but partially trusted by the user. The key legitimacy value assigned to that key depends on how users interpret this. The user might decide to have complete trust when more than one signee is partially trusted. In that case, this key also has complete trust.

On the contrary, the user may decide to have complete trust only if three signees are found with partial trust or four signees or something similar. The formula depends on the user’s choice. One of the exciting consequences of this method is that if a user trusts a signature, he might assign value accordingly to the key legitimacy field. We will now see how these fields are manipulated. You can see that second and third column in Figure 17.2 displays possible values for trust field values for keylegit and sigtrust fields:

[image:]

Figure 17.2: Different types of trust-related fields

The information about all these three fields is stored in a data structure called Trust Flag Byte. Figure 17.2 indicates what is stored in that byte.

17.5.15 Web of trust

Let us try to see how the web of trust is created for a user U:

	Suppose U enters a new public key to the ring. If the signee is U himself, it is trusted entirely, and thus, the value ‘ultimate trust’ is given to the ownertrust field. The PGP decides if the owner is the signee by looking at the single key ring and finding an entry. If the entry for the same user (U) is found in the private key ring, the key belongs to the owner himself, and thus, the ultimate trust is chosen.

	Suppose the new public key is not signed by U. PGP; simply ask U to assess how trustworthy the key is. The values shown in the field of owner trust in Figure 17.2 are asked to be chosen. When the user chooses one value, it is assigned to the ownertrust field; i.e., undefined trust, unknown user, usually not trusted to sign other keys, usually trusted to sign other keys, completely trusted, always trusted to sign other keys, or the key is present in this key ring (ultimate trust). If no value is mentioned, a default ‘undefined trust’ value is added.

	A new public key may have one or more signatures attached to it. It is also possible to have an entry for the already entered public key when the signee is a new one. In that case, the new signee is added to the old entry, and the new entry is not generated.

	If the key is a new public key, PGP tries to find the entry of the signee in the public key ring. It is processed as follows:

	If an entry is found, the owner trust value is assigned to the signature trust field.

	If the signee is not part of the list, an unknown user value is given to the signature trust field.

	Now, it is the turn of key legitimacy field calculation. It is done as follows:

	If one of the signatures of the key has ultimate trust, the key legitimacy field is given the full trust value.

	If none of the signatures of the key have the ultimate trust value, a user-defined formula is applied to the list. The other possibilities are usually trusted and usually not trusted to sign. Users may decide that X numbers of signatures are required to have ‘usually trusted to sign’ attribute true for the signees for accepting that key. He may also decide that Y number of signatures are required with signees ‘not usually trusted to sign’ for an acceptance. He might also decide that X keys with signees ‘usually trusted to sign’ and Y keys with signees ‘usually not trusted to sign’ together are required to accept that key. In this case, the legitimacy is calculated as follows:
 i. Total is assigned zero.

 ii. For each key of usually trusted to sign, add 1/X to total.

 iii. For each key of usually not trusted to sign, add 1/Y to total.

 iv. See if the total is >= 1; if so, the key is wholly trusted.

 v. If the total is < 1, whatever the total is assigned to the key legitimacy field. Higher the value of that field, tighter is the binding of that value to the user.

	When new signatures are added, old keys might get new signees. The values calculated earlier may get invalidated. That is the reason PGP tries to restore consistency periodically. Every few seconds, PGP does the following:

	It picks up the owner-trust value of each owner. The process begins with picking up signees of keys with ultimate trust.

	PGP scans through the public key ring for all signatures authored by that owner and update signature trust value by making it equal to that value.

	All key legitimacy fields are recalculated in light of the changed value of the attached signatures.

The web of trust is created by linking the certification provided by users. For example, if user A trusted user B to sign and user C produces a certificate signed by B, the key of user C is now trusted (user C may not be trusted signee, the certificate is only trusted and thus the public key associated with it). User B might trust some user D as signee, and thus user A would now accept user D as a signee. Now, every certificate of the users who are signed by user D and user B are trusted public key owners for user A. Thus, the web of trust is woven systematically and grows steadily.

To understand the process in more detail, let us take a simple example depicted in Figure 17.3, Figure 17.4, and Figure 17.5. Web of trust is a graph that we can represent keeping the user under consideration in the center (generally, depicted like a root of a tree). Take a user U in the center, as in Figure 17.3. Suppose users A, B, C are considered as trusted signees by user U, in other words, the user U accepts any key that is signed by anyone of A, B, and C. U signs all three of them; that means, it says officially that it trusts A, B, and C. That means that once somebody starts trusting U, it will accept the keys of A, B, and C signed by U as valid. There is a user D who is signed by C. Let us try to learn what Figure 17.3 indicates. The X->Y notation indicates X is signed by Y or Y signs X. When a circle is shaded, the trust is complete, while the hollow circle indicates no trust. A black dot at center indicates legitimate key while the absence of a black dot at center indicates no complete legitimacy about that key. What can we say about the web of trust indicated by Figure 17.3, Figure 17.4, and Figure 17.5 now?

Let us try to understand the figures and related content in a way that it helps us learn about the process of signing and deciding a trustworthiness of a typical key.

	U signs A, B, and C (as A->U, B->U, and C->U). The convention X->Y indicates that X is signed by Y. In other words, the user has a certificate of the public key of X, which is signed by Y. When the user (U in our case) himself has signed that certificate, these users are having both legitimate keys and also are trusted to sign other users. A completely shaded node is wholly trusted. Here is the interpretation.

	U completely trusts A, B, and C (all three are entirely shaded).

	According to U, public keys of A, B, C, and D are legitimate while the public key of E is not.

	According to U, A, B, and C are trusted signees. That is the reason why the public key of D is considered legitimate; it is signed by C, who is a trusted signee.

	D is not a trusted signee even though its key is legitimate. This may sound contradicting, but it is not. When we can be sure of somebody’s public key, in no way, we can also conclude that whoever he signs also is a valid key. That is the reason why E is not considered legitimate. If at a later stage, U starts trusting D, the key for E automatically promoted to the legitimate key. Such change is possible if a new signature for D is provided with a member whom U trusts fully or D produces two signatures, authors of which are partially trusted considering the user provided that constraint.

	Now, take the case of Figure 17.4, A and B have a different symbol now; there is an additional horizontal line now, indicating they are partially trusted (unlike the previous case where they were fully trusted). PGP considered C legitimate because the user has indicated that if a user gets two signees, both half trusted for a key, a key is considered legitimate.

	Another point is that if we have a key that is signed by only one partially trusted user, it is not considered legitimate. This is fallout of point discussed above. A key need at least two partially trusted parties to sign to get the legal status. Two partially trusted users area simplified case of X always trusted signees, and Y usually trusted signees.

	Let us move to Figure 17.5, and it conveys two essential conventions.

	The user would usually sign all keys it trusts. In the case of B being signed by a trusted user C, U still would like to sign that user additionally. This case also applies to keys that are having owners partially trusted by this user.

	It is also possible that a wholly trusted user is not signed; the case of D illustrates that point. This indicates that though it is a standard practice of signing each user you trust, it is not mandatory to do so.

Figure 17.5 also conveys a concept of an orphan node. When a certificate by E is produced with unknown (one, two, or more) signatures, it is not trusted. That means the key provided by that certificate is not considered legitimate.

[image:]

Figure 17.3: Completely trusted A B and C, legitimate D but not E

[image:]

Figure 17.4: Partially trusted A and B, legitimate C but not D

[image:]

Figure 17.5: Signing a user already signed by a trusted user or otherwise

17.5.15.1 Multiple IDs with a single key

When a user changes his mail ID or have multiple mail IDs and would like to use one key for all of them, it is possible to have one key with multiple user IDs. Each user ID needs to have a signature associated with it (only then we let it enter the public key ring). It is also possible to have a single user ID associated with more than one signatures if there are more than one signees for that user ID and key combination. Thus, a public key, having multiple entries for multiple user id values, forms a tree where a public key is a root, all users IDs being the children at first level, and all signatures associated with them at the second level. For a given user ID, the signature it has decides the binding of it with the key. For complete trust signatures, the binding is complete. For a given key, all such user ids and their binding determine the resultant trust value for that key.

17.5.16 Revocation

Unlike X.509, revocation is built-in part of the PGP certification scheme. The main reason for revocation is the private key is feared to be compromised. We know that the private key is not stored on the private key ring in the plaintext form, and thus, the attacker needs to have the encrypted private key and a passphrase, which is quite a task. If the user has inadvertently stored the unencrypted version of the private key and it is stolen could be another quite rare case. One possible reason for revocation is that the user may like to switch over to some other private key just for the sake of better security. PGP does not do revocation on its own, and the user needs extraordinary efforts to do so.

Anyway, if the keys are to be revoked, PGP requires sending a revocation certificate, by the owner of that private key (signed by the same key) to all its contacts in the public key ring. This certificate is the same in every sense the other PGP certificate that we discussed earlier. The only difference is a flag which indicates that the key is to be revoked.

The only catch is that if the key feared compromised is compromised, the attacker can use this method to launch denial of service attack. Let us try to understand. If the user A’s key is compromised, an attacker D has it. Now, attacker D sends revocation to all users known to A for the same key. Now, A will not be in a position to send anything using that key. This is not a big problem, though. A can always find some other private key and start using it. An attacker would better use that key to impersonate A for more and severe damage.

Enough of PGP! Let us now learn a bit about SMIME, another solution that is not as popular as PGP, nonetheless useful in many cases, especially when users want the secure mailing solution built right into their browser.

17.6 SMIME functionality

Secure Multipurpose Mail Extension (SMIME) is a way to encrypt the mail right from the browser by a mail client. SMIME was developed by the RSA system in the 1990s and later on standardized by IETF. Before we jump to SMTP, a brief about the background in order.

SMTP is a mailing protocol for the Internet. It is one of the oldest protocols and so can only work with 7-bit ASCII data. There is a standard known as MIME that already exists for mailing protocol SMTP. MIME allows using other than 7 bit ASCII to be sent (the attachments) with the mail by converting it into 7 bit ASCII. Annexure describes MIME in the required detail. SMIME extends MIME for adding a few secure operations we are about to discuss.

SMIME defines how a secure mail should be crafted by the mail client, how it is organized as multiple parts, how to carry encryption and authentication information, and more. Currently, it is in the 3rd version and supported by most browsers. Figure 17.6 describes the services provided by SMIME. There are three services: Digitally signing the mail, use the public key to make sure the sender of the mail is the same whose mail id appears as sender and encrypting the mail, so the onlookers are kept at bay:

[image:]

Figure 17.6: Cryptographic services provided by SMIME

SMIME uses X.509 certificates and various encryption, hashing, and digital signature algorithms like other solutions that we have discussed so far. The public keys are used to make sure the receiver is rest assured about the sender’s identity. That means when a mail indicates that it has come from X, it has indeed come from X. You can see that non-repudiation has not been highlighted by other security solutions so far. We can also understand that for the mailing system, authenticating the sender is one very critical function for any secure mailing system, and that is why it is being underlined here. SMIME v 3 uses SHA-2 variants for hashing. DSA and RSA for digitally signing. ECDSA is also provided. AES-128 for symmetric encryption is used for encrypting the content of the mail. SMIME also follows Cryptographic Message Syntax (CMS), as a standard for encrypted and authenticated format for the message.

In short, SMIME provides four different functions as follows:

	Enveloped data: This is an encrypted message. Like PGP, the message is encrypted by a symmetric random key, and the key itself is encrypted by the receiver’s public key.

	Signed data: This is an authenticated message. The message is hashed by the SHA-2 version of the hash function. Hash is encrypted by the sender’s private key to generate a signature. Message and signature are concatenated together after that.

	Clear signed data: This is an authenticated message with a detached signature; except that, it is the same as the Signed Data.

	Compressed data: This is additionally provided to compress the message; whenever this service is provided, the message is compressed by zip, like PGP.

There is a lot more to say about SMIME processing, but this is not the place, Annexure III describes all four types in little more detail. Please refer to RFC for further details.

17.6.1 The SMIME certificates or Digital IDs

SMIME cannot be used without installing certificates on the mail client. As the emails are to be authenticated (by the sender’s private key) and encrypted (using the receiver’s public key), both of them require certificates to be accessible to browsers. Usually, different keys are used for encryption and signature. There are three different types of certificates usually possible to be obtained:

	Class-1 certificate is also known as a basic certificate. This is given to a single person, and this certificate only indicates that the given mail address belongs to that specific person. Thus, the certificate authenticates the From field’s content, indicating from where the mail has come. Nothing more. This does not verify if the name is correct.

	Class-2 certificate is a little better than the first one. A sender of this certificate can help the receiver check the sender’s identity. In this case, the CA verifies the person’s or business agent’s name before issuing a certificate. The class-1 certificate is achieved after sending a mail to CA in most cases, while the class-2 option requires little more elaborate action. Usually, postal addresses are also verified by sending the certificate by post (very similar to the credit card distribution method).

	Class-3 certificate is the highest level of the certificate where the client is required to provide proof of the identity in a much more elaborate form. A notary might be roped in, or some other form of acceptable credentials is to be provided to get this type of certificate. This option usually requires application in person.

Many CAs will provide the necessary certificate for free but charge for other levels. For some, even the necessary certificate is chargeable. For example, Verisign (now part of Symantec) provides a level-1 certificate for free, but just for 25 days.

17.6.2 Some problems in implementing SMIME

Though a quite appropriate solution, SMIME faces some obstacles which are listed below:

	When the receiver’s browser is not capable of handling the SMIME signature, it presents that signature as an attachment with name smime.p7s. An average user will not understand the same and will not understand what to do with such signatures.

	Usually, SMIME add-ons are available with most browsers, but the system requires additional installations to be done. For example, SMIME does not provide key generation and storage system. Key generation and their availability while communicating is a prerequisite with SMIME communication, but it does not provide that itself. That means, some other means to generate and store keys properly must be devised and implemented before you start communicating securely using SMIME. The webmail is hard to have SMIME security. GPG4win on the author’s machine helped him to send signed emails using addons. It is a PGP solution which is used to generate and store public key pairs. Once these keys are in place with their respective certificates, SMIME can be used. Next section, 17.6.4, Key Management Functions, describes these functions in more detail. One more option is to use Penango, which is available with many browsers.
 Note: Firefox and Gmail is one option that the author has used successfully with Penango. The author had to install the certificate before using it.

	Using PGP with SMIME is a good option. One must, though, learn how to create a file using PGP and how to embed it in the webmail client.

	Administrators are wary of cases where the SMIME, like the system not only encrypts the mail but also the malware with it and passes without detection. A user’s compromised machine might send a mail with malware, unknowingly encrypted by the user, so the firewall or the periphery security service will not be able to judge the malware’s presence. Sometimes, the user’s private keys are exposed to periphery security systems to decrypt and check the presence of malware. On the one hand, it improves organizational security, but on the other hand, it presents a severe threat to personal security.

	One more side effect of the preceding problem is that many virus scanners and periphery security solutions block SMIME-based emails upfront.

17.6.3 SMTP extensions

SMTP is extended with more important functionalities recently. One of the important functionality is to use 8 bit ASCII data, which was not possible before. Another is security extensions like SMTP AUTH for authenticating the sender and STARTTLS for encrypting using TLS. Another modern feature is called strict transport security, which allows the servers to generate specific secure channels (tunnels of IPsec, for example), so active intruders are kept at bay. When the SMTP itself is providing security, there is little chance that one needs additional software to secure it. PGP has diversified itself, and so it is going to survive, but SMIME might not as now MIME itself might lose its place. Only the future will tell.

17.6.4 Key management functions

The user will have to manage certain essential management functions as they are not part of the SMIME standard. SMIME standard expects such functions are carried out by the user. Let us understand what such functions are:

	Generating keys: The SMIME does not provide any functionality for generating key pairs; the user must find out some secure ways to generate public-private key pairs. Users must have some utility implemented, which can provide DSS or Diffie-Hellman key pairs on demand from the user, for example. The standard mandates both DSS and Diffie-Hellman methods but do not describe how that should be done. The standard also recommends RSA. Additionally, the standard also mandates a random number generator that has non-deterministic (true random) inputs. This requirement is quite similar to a solution provided by PGP, which includes the user’s keystrokes and related information for generating true random numbers.

	Key length restriction: The standard specifies that if RSA is used, it must have a key length greater than or equal to 512 bits and recommends using key lengths of 768 to 1024 bits.

	Registration: Unlike PGP, a user must be registered with a certification authority. The X.509 certificate assigned to a user signed by a certification authority is only valid. Unlike PGP, a user cannot accept any certificate signed by anybody he trusts.

	Protection to private keys and certificates: The standard specifies that every key pair generated by the user and every public key used to send encrypted messages must be stored in a protected fashion. The standard also specifies that such protection should also be extended to certificates. It is also possible that some administrative programs do this job for multiple users coming under the same authority of control. For example, the storage and retrieval of all public keys and private keys for specific users of a specific organization may be managed by a central server, and a key or certificate is given to clients after due authentication. Again, we have a working solution from PGP, which we can use here.

Fortunately, the latest movement in the direction is to combine both SMIME and PGP. For example, when the author has installed GNUPg4win (a PGP product) on his machine, and use GPA (a module for generating and maintaining keys) for storing keys, he can use the same for sending a mail using SMIME. Thus, the functions that the SMIME designers expect users to perform can be easily handled by the PGP installation.

Keywords

	OpenPGP: An open-source version of PGP.

	GNUPG: GNU Privacy Guard is an open-source implementation of PGP, which the author has also used.

	Web of trust: A certification mechanism provided by PGP designers that can work without any certification authority.

	Passphrase: A password like a construct that is used to encrypt the private keys stored in the PGP database, known as a private key ring.

	Key rings: A database used by PGP to store keys.

	Private key ring: A key ring which stores the public-private key pair for the owner of the database.

	Public key ring: A key ring which stores public keys for all other communicating parties, the owner of the key ring wants to communicate.

	Key ID: Least significant 64 bits of the public key, which is used as an identifier for selecting it from the public key ring.

	Owner trust: A field in the public key ring indicating how much a typical owner of a key is trusted.

	Key legitimacy: A field in the public key ring indicating how the owner considers the legitimacy of the key.

	Signature trust: A field in the public key ring, indicating how trustworthy a typical signature is.

	Cryptographic services: Secure services SMIME provides to the user.

	Clear sign: A message in plaintext with a sign.

Recapitulation

	PGP and SMIME are solutions for email security.

	PGP is a standalone solution, while SMIME is a browser-based solution.

	PGP comes in open source and corporate varieties and very successful.

	PGP processes the data for authentication, encryption, and use a combination of symmetric and asymmetric encryption to do its job.

	Key rings are databases for storing public and private key-related information in PGP.

	Web of trust is an innovative, peer certification based solution used by PGP.

	SMIME is an extension to browsers for providing services like encrypting and signing emails directly from the browser.

	SMIME does not provide key management functions; PGP solutions can be combined with SMIME for doing so.

	Extensions in SMIME are provided for additional security solutions.

Exercises

	Study more about OpenPGP and proprietary PGP solutions. Write a short note on the differences between these two solutions.

	The author described two open source solutions that he implemented himself. You may also try implementing those or related solutions and compare them.

	Why is PGP so successful?

	Explain the complete PGP protection process.

	Why is compression sandwiched between the encryption and signature generation process?

	How public and private keys are maintained in PGP? Describe each field in detail.

	Describe how the PGP file is constructed and why the architecture of the file is designed in the form it is.

	Explain all three fields related to trust in the PGP.

	Explain SMIME functionalities. How does SMIME differ from PGP?

	Differentiate between three different classes of SMIME certificates.

1 The cryptographers believe in legacy. Every cryptography book used to have Bob and Alice communicating and Trudy intercepting illegally. Women opposed (to use their gender as an opponent) and authors started using Darth instead of Trudy.

CHAPTER 18

Transport Layer Security (TLS) and SSL

Structure

Learning objectives

18.1 Introduction

18.2 Need for securing web transactions

18.2.1 Web security threats

18.3 Different ways to secure the web traffic

18.3.1 Application layer

18.3.2 Using the API

18.3.3 Transport layer

18.3.4 Network layer

18.4 TLS and SSL

18.4.1 TLS design

18.4.2 The TLS record protocol design

18.4.3 The TLS handshake protocol design

18.4.4 The Change Cipher Spec protocol design

18.4.5 The Alert protocol design

18.4.6 The overview of the TLS process

18.5 Connections and sessions

18.5.1 Sessions

18.5.2 Connections

18.5.3 Session and connection state

18.5.4 A session state

18.5.5 A connection state

18.6 TLS record protocol

18.7 TLS handshake protocol

18.7.1 Only client authentication handshake

18.7.2 Negotiation stage

18.7.3 Application stage

18.7.4 Both server and client authentication

18.7.5 Negotiation stage

18.7.5.1 Application stage

18.7.6 Abbreviated handshake

18.7.7 The handshake processing

18.7.8 Stage1: Security capability information exchange

18.7.8.1 Cipher suite

18.7.9 Stage2: Server authentication with the key exchange

18.7.9.1 Signature calculation

18.7.9.2 Cryptographic attributes

18.7.10 Stage 3: The client authentication and key exchange

18.7.11 Stage 4: Finish

18.8 Cryptographic computations

18.8.1 HKDF

18.8.2 Key block

18.8.3 Improvements in TLS v1.3

Keywords

Recapitulation

Exercises

Learning objectives

After studying this chapter, the reader should be able to:

	Ascertain the need for providing security at various layers and the advantage of using transport layer security.

	Judge why web transactions need to be secured.

	Describe the design of the TLS protocol and various components.

	Narrate different services and options provided by different TLS versions and differences in the latest version (1.3).

	Describe the handshake protocol in detail and discriminate against the roles of different protocols in the TLS design.

	List the contents of the key block or key material.

18.1 Introduction

The Internet was designed with no security in mind. The design of all protocols considered communication from one end to another and nothing other than that. It worked for years but the situation is changing now. The Internet started hosting commercial websites like banks and people started transacting over the web using their credit and debit cards; things are getting more convoluted. The web has become omnipresent and it is impossible for a common man to live without the web. The number of Internet users is growing rapidly and companies are relying more and more on the web hardly aware of the fact that the web is critically vulnerable to the security attacks. For some who know, they have no other alternative, so they keep their fingers crossed! The safe was invented nearly 700 years after the money was invented. Till then, people were unaware of the fact that money was vulnerable to theft. The same is happening to information. People now realize that information is equally (if not more) vulnerable and realizing that there is a need to protect. Unfortunately, unscrupulous people have realized that earlier than normal public and thus we see a constant increase in web-related crimes.

Protecting information while working online is not a simple job, and it involves many things to study, including discipline to work1. Anyway, the idea here is to see that everything going out of the browser is encrypted until it is read by the web server. The other important need is to see that both parties talking to each other over the web get authenticated before exchanging sensitive information. When the original infrastructure (the internet) is not designed even with the simplest of security mechanisms like authentication and encryption, the onus is on to the programmers to build a layer over the web to provide additional security measures. SSL and TLS (secure socket layer and Transport layer security) are two standards that help users to get more secure web access compared to conventional access. The SSL and TLS are designed to work on top of the conventional transport layer (the TCP) and provide the application a secure communication path to the other end. Given the unsecured suite of protocols below, how SSL and TLS provide security services to an application layer is what we are going to study in this chapter2. Let us also clarify that SSL is the older protocol now being replaced by TLS. Most solutions today use TLS but some may still be using SSL so we mentioned it.

18.2 Need for securing web transactions

The web server hosts information that browsers seek for. Technically, the browsers are HTTP clients and web servers are HTTP servers. The hypertext transfer protocol (HTTP) runs over the TCP/IP suite of protocols. The local Internet known as an intranet is also in vogue. There are some unique problems posed by the Internet from a security point of view. Let us list them as follows:

	The technology to develop web pages is getting more and more complicated. The HTML was pretty simple compared to technologies like dot net, Java, and PHP. Learning complexities of the multi-layer design of today is impossible for a single person’s cup of tea. Every layer is developed independently. While one is working on client coding and another on the server, yet another is working on UI/UX (user interface, user experience a way the user interacts with the system) at the same time the fourth person is working on databases and fifth on business logic, and the sixth on the app interface. Looking at everything in a consolidated, holistic fashion is getting harder and harder. Unless such a vision is available, it is harder to gauge the security requirements. More complex applications, despite more awareness about security flaws and solutions to them, tend to have more bugs. The vulnerability list of applications is increasing.
KIM: The CERT (computer emergency response team) www.cert.org (Indian version is www.cert-india.org) website lists vulnerabilities in software; it is a busier website every passing day.

	The Internet is more connected than any other method of interaction. The web servers which carry information are not only providing information but also receive them. They are under constant danger of attack. The two-way nature of the Internet, unlike other media, is a serious problem for those who want to provide security for it.

	A web server is like a drawing room of a house. It is where all visitors come, not all of them are our well-wishers. The bedrooms where our valuables are usually kept are isolated from the drawing room in a way that people who visit our drawing-room may not have an easy passage to a bedroom. Similarly, web servers, which may be visited by intruders, if they are not properly isolated, can become a window for the intruders to creep in and enter into our production network. If an intruder compromises the web server, he can easily enter in the production network.

	The corporate world is more and more reliant on the web for their existence. So many companies (for example Amazon, Flipkart, and more) have done away with physical offices but just cyber presence. The web is the only way to market their products, connecting with their customers and also for their business transactions. Companies can lose their momentum to the business if the web servers are compromised. The monetary loss can be tremendous sometimes.

	The weakest link in the security chain is the human users who are careless, oblivious of the security policy or just untrained for the security aspects of the job. Such a user who feels that something beyond their normal operation is not their problem and not equipped with the skills to understand and counter a social engineering attack is a serious issue. Gullible users are often targeted by social engineers to reveal important information about the system which can help attackers bypass the best security measures. We will not discuss this topic further in this text as it is more related to humans, their behavior and their training rather than technical issues. We have mentioned it here as it is one of the most important aspects of security and can defeat all other measures that we take when policies to thwart social engineering attacks are not seriously formulated.

18.2.1 Web security threats

There are three basic issues of confidentiality, integrity, and authentication in any system. The web is not different in that sense. A user who is claiming to be X whether it is X or not is to be proved. The system must be there in place to prove so. A user receiving information from some other user must be ensured of the integrity of the data he receives. In other words, if an intruder changes some parts of the data, the receiver must be able to find out. The transmitting information should also not be disclosed to the third party. Harder than the preceding three problems is the denial of service attack which somehow manages to see that genuine users are not allowed to access their legitimate information. There are many ways to denial of service and thus even when multiple measures are taken to combat that, they sometimes fail as the attacker finds a new avenue to attack.

Categorizing the attacks on the web can be done in a few more ways. One can classify them in conventional active and passive attacks. The active attacks include impersonating a genuine user to log in and act as a genuine user, modify the information which is flowing between a browser and a server, and access information on the web server to modify. If the user has access to the physical directory where the web server is hosted, he can deploy attacks that a designer, who thought of having only access to the web server is through a browser, cannot think of. It is common for web administrators to assume incorrectly that the website is accessible through the browser is not accessible by physical access to the machine which hosts the website. One serious variation of this problem is administrators placing important files on a physical directory which is mapped as a virtual directory on the company’s website. They make sure that the information is not available navigating throughout the web pages. So if somebody tries all possible links to a company website, he will not be able to get that information. Unfortunately, one can use a search engine like Google to have their hands on to this information. Many times, the information is as critical as credit card information about clients of the company or passwords of different systems the admin controls. including different servers of the same network3.

The passive attack involves reading the web server’s files while the active attack involves modifying them. The passive attack can also happen in the browser if the browser is either old or not patched and the attacker gains access to it. The attacker, in that case, would read everything that is being sent and received and can also attack actively by changing the content that is sent and received by the browser. One more place where the attack takes place is the channel that connects the client and server. An internal node that is compromised to keep a vigil on client-server traffic and a tapped communication line are two popular ways to attack transmitting data. This clearly demands that the traffic must be integrity checked as well as encrypted. To avoid an attacker to modify or generate a message, impersonating as a legitimate sender, and authentication also needs to be added.

Web servers and browser security also involve securing machines that host them. That demands the software installed on that machine like operating systems and databases and the browsers or servers to be secured. That part falls under system security which we will not discuss in this text. What we will try to address here is the portion which makes the traffic going out of the browser secured till it reaches the web server. We will assume throughout that the client machine which hosts a browser, as well as the server machine which hosts the web server, is secure4.

18.3 Different ways to secure web traffic

Using SSL or TLS is not the only way to secure the web. The IPsec that we will be looking at in the next chapter has also been one of the ways to secure the Internet and the web. In the previous chapter, we saw that there are applications like PGP and S-MIME which can take care of their security themselves. The web transactions can thus be secured in three different ways looking at where the security-related processes (encryption, adding MAC for authentication, and more) are deployed. There are three candidates, application, transport, and network layers with respective advantages as well as disadvantages. Lower two layers (data link and physical) are not end-to-end so they are not the candidates for end-to-end security which the web demands.

18.3.1 Application layer

The application is built in such a way that it has all the required security functions built-in. An example of that is PGP which is self-sufficient in terms of security. This is the best possible alternative, as this provides the strongest security to the application. As soon as the message is out of the client process, it is protected until the application server process reads it. If the machine which originates the message or the receiving machine where the message is terminated is compromised, there is little chance that the message is affected. The application-level process is independent of other processes running. If other processes try to read the message before the application process does so, we only get the garbage.

The message, if processed at the transport or network layer, will not be in a position to protect from malicious processes running on the same address space where the application is running. As soon as the transport layer process relieves the message for the application process, it is clear and any other malicious process can read that. The network layer security ceased to exist after it reaches the network layer of the recipient. If the message is captured after it left the recipient’s network layer to the recipient transport layer or recipient’s transport layer to the recipient’s application layer, the security can be broken.

KIM: Technically, most of the protocol stacks do not move the data; they store it in a specific portion of memory and just pass the pointer to the next level process. The preceding discussion is still valid as when a network layer decrypts the message and passes the pointer to the transport layer, the data is clear and if the attacker can exploit it before the transport layer or application layer reads and processes it, he can play with that data.

The other advantage is that the security can be tailor-made for the application program.

The downside of this solution is that it is not easy for an application-level programmer to incorporate security in the application. The programmers are usually experts in their domains which they try to code. Expecting them to know the complexities of secure coding and a pessimistic approach of checking every corner of application for the possible loophole is too much. Most of the application programmers are not equipped and also not willing to do this additional job. Not only that, every application that needs to be programmed needs to have an almost similar security part5 to be coded with. Such redundant coding leads to lethargic approach and also results in more bugs, more delay in delivering the system, and more complexity of the overall system design process.

18.3.2 Using the API

If we do not want every application developer to code for security, the alternative is to provide an API. One such example is the Java security API (a similar API is also available with dot net, Python, and C++). One such API is provided, and the user needs only to use an API to avail security services and does not require to code them. For example, one can use AES as a function. The plaintext is an argument to this function and output is a ciphertext. The user needs to just use the API and not the internal coding. This helps faster and better coding. Again the downside is that the programmers must be taught to use appropriate API at places where required. If the programmer makes a mistake or forgets to use the API when needed, the security can be compromised. And our discussion about Kerberos and certificates also revealed one more thing. Merely applying security functions does not solve the problem; we need a foolproof protocol, like Kerberos, to make sure no third party can avail information destined for a genuine user. That, is not simple, to say the least.

We have already seen examples of two real-world protocols where the application level security is provided in Chapter 7: Secure Hash Functions. We will now concentrate on a solution to the transport layer.

18.3.3 Transport layer

When the application layer is not possible to be incorporated with security, the next best solution is to provide it at the transport layer. When it is deployed at the transport layer, an individual user who is working with the application does not need to worry about either incorporating security in the program or calling APIs at specific places. Suppose the transport layer TCP is augmented with security requirements, every application which uses TCP will avail security services without any additional coding. Even the older applications designed much before can seamlessly work with all additional security features. TCP is designed to do so many things like retransmission of lost segments and congestion control which applications do not need to bother about. Security can just be one more of such a service. The other advantage is that the coding will have to happen in just one place, the transport layer for all applications to be secured. There is no need to write redundant security modules for different applications. Thus, it is easy to modify or improve the existing security set up (just install the newer version) as long as the modification does not disturb the existing interface.

The TCP is designed and implemented in millions of machines and it is hard to get a newer version with security built-in. The nearest alternative is to append a security layer on top of the TCP layer itself which appends the required security requirements into the transport layer. The transport layer, in this case, contains two parts, the upper layer of security services and the lower layer is a conventional TCP layer. This design helps to retain the old TCP installation and adds the security part on top of it. The SSL and TLS just do so.

KIM: The SSL and TLS are also available as APIs. The browsers provide them with application layer configuration parameters. The browsers like Firefox and IE allow setting whether the user gets the SSL service by default or not. The implementation of SSL has been a layer just above TCP.

The downside of the transport layer security is that another transport layer (in our case the UDP) and the traffic using that layer are not protected (Now, we have DTLS (Datagram TLS) which works on UDP. Though it works like TLS, it is not TLS). This also helps the attacker who would like to find a safe passage to the internal servers. Another problem with transport layer security is that it only provides security if the user of the machine feels so. One can enable or disable TLS or SSL services on his machine. Once that is disabled, the client operates in the plaintext like a normal client and the purpose is defeated6.

18.3.4 Network layer

Implementing security at the network layer has similar advantages to the transport layer as the applications need not be bothered to worry about security nor require to be modified with the new security setup. Another advantage with network layer security is that the organization can control that security by deploying its security in security gateways. Every outgoing packet can be protected and every incoming packet is checked for security. Irrespective of whether the packet contents are secured at the application or transport layer (the UDP traffic for example) it will be secured. The administrator or the organization has the choice to filter the traffic and decides which traffic will follow IPsec (the security solution at the network layer) and which does not. The programmer or the user has no choice. This is a solution for everything passing through the network. One can understand the advantage from the point of view of control. A transport layer is installed on the user’s machine and the user has absolute control over the installation or usage (for example, disabling SSL or TLS is the user’s choice in most cases). Unlike that, the router, which is under the organization’s control, can run IPsec, a network layer solution, to encrypt, and authenticate everything that is being sent and received irrespective of what user machine’s settings are.

The downside of the solution at the network layer is that the authentication process only authenticates the sending and receiving machine (as it is based on IP addresses) and the authentication or encryption only covers the path between sending and receiving machines and not sending and receiving processes, unlike the application layer.

We will see IPsec in the next chapter. We will see the transport layer security in this chapter.

18.4 TLS and SSL

The secure socket layer was a proposal from Netscape in the 90s. As the original Internet protocols had no notion of security, the TCP is missing the options for encryption and authentication and similar security options. The proposal was to provide an additional layer that helps TCP get the missing security part and provide a secure transport layer. The interface from the application layer to the TCP is popularly known as a socket. The socket happens to sit between the TCP and the application layer. The idea is to provide security at the same level, that is, between the application layer and the TCP layer. Hence, the name secure socket for this layer as well as protocol and the API that is used to implement the solution using this protocol.

The effort took real good shape in version 3.0 which a lot of installations started using it, especially all browsers. Though it was a standard drawn from a private company, it started getting attention from a lot of other vendors. The demand for a neutral body standard like IETF started rising.

Note: One may wonder why a standard is again to be standardized. The reason for that is not everybody is willing to accept the standard from a company like them, as they fear that once all others start following the standard, the company may drive the standardization process to their advantage and profit.

The IETF eventually took up the standardization process and came out with TLS 1.0 (which is SSL 3.1 almost, RFC 2246). In 1996, TLS 1.1 was introduced (RFC 4246) TLS 1.1 existed for four years and then we had TLS 1.2 (which one may prefer to call SSL 3.3,). In 2018, TLS 1.3 was introduced. The following discussion is based primarily on the TLS 1.2, but we will also mention changes made in TLS 1.3 (RFC 8446) standard which most of the leading browsers have not yet been implemented. As and when necessary, SSL and earlier TLS versions are mentioned.

18.4.1 TLS design

TLS is implemented on top of the transport layer. TCP was the de facto choice some time back. It is no longer now. UDP also can have DTLS running on top of it which is described in RFC 63467. Though HTTP is still the most prominent protocol (HTTP becomes HTTPS when working over TLS rather than TCP directly), FTP, SMTP, NNTP, and XMPP all are using SSL (rather TLS) now.

Traditionally, IPsec is used to construct tunnels and is the predominant method to provide Virtual Private Networks (VPN). Nowadays, the TLS is also considered to be a candidate for the job. TLS, being near to the application layer, can better manage application layer issues like NAT and is a good candidate for VPN solutions. OpenVPN is one such example. The conventional client-server computing starts taking benefits of TLS (OpenSSL is an example). The Session Initiation Protocol or SIP, useful in real-time communication signaling, also uses TLS for securing its applications like VOIP.

So, TLS is no longer limited to HTTP or TCP and spreading its wing to other applications and even UDP. The importance of TLS is increasing day by day. Fortunately, the basic TLS design remains the same which we will discuss as follows.

The TLS was designed to provide two important security services: privacy using encryption and authentication with data integrity using signatures between two communicating parties. The service is given to a higher layer (especially the browser and a web server). The TLS protocol is divided into two layers: the TLS Record Protocol at the lower layer and four possible protocols, including TLS Handshake Protocol (used to be SSL record and handshake protocols in the SSL versions for the same job) for transmission and security negotiation at a higher layer. There are four different layers till TLS 1.2 and three in TLS 1.3 which can appear on top of the TLS record protocol mentioned in the next section which uses the services of the record layer.

The TLS design evolves around the design of three protocols that are in order. The TLS record layer does the encryption and MAC calculation in the sender while decryption and checking MAC in the receiver. The TLS handshake protocol runs in the beginning and helps in communicating about the keys and the encipherment issues called keyshare. The TLS alert protocol helps to report errors. Till TLS 1.2, there was a protocol called TLS ChangeCipherSpec protocol that signals the change in the value of cipher specifications (algorithms, keys, and more). Figure 18.1 describes the protocol stack involving TLS. As ChangeCipherSpec is no longer part of the protocol stack, it is not mentioned here, however, in older versions, it was considered to be an important component of a protocol stack. The idea of ChangeCipherSpec was to signal the other end to change the cipher specifications. In the current version, it automatically is done once the handshake is over and there is no need for this signal:

[image:]

Figure 18.1: TLS-1.3 protocol stack, in TLS 1.2 there was one more protocol at upper layer known as ChangeCipherSpec

18.4.2 The TLS record protocol design

The TLS record protocol is designed to work over a reliable transport protocol (TCP is a de facto protocol here). The TLS record protocol makes sure of two things:

	The connection remains private, by providing encryption. Symmetric cryptography is used to provide encryption (using either a block cipher like AES or a stream cipher like RC4). The keys for each connection are generated uniquely. The TLS handshake protocol helps to generate and share the keys. There is an option of using the record protocol without encryption. It is important to note that both sides use different keys. The client encrypts using a key called client-write-key while the server encrypts using the server-write-key, for example. Using different keys from both ends helps thwart a reflection attack of any sort.

	The connection is integrity checked and authenticated. A key is used to generate MAC based on secure hash functions like SHA-2. Again, both sides use different keys for encrypting MAC. Symmetric key encryption is used for encrypting MAC. The client uses the client-write-MAC key while the server uses a server-write-MAC key for encrypting MAC. TLS 1.2 defaults to CMAC for calculating the hash while 1.3 uses GCM (with default SHA-256).

Till TLS 1.2, the record protocol also helps negotiate about both encryption and MAC-related information. That means it also carries messages which handle the key exchange. In 1.3 the initial messages are known as ClientHello and ServerHello exchanges using the Keyshare extension.

There are a few choices for the TLS record protocol for encapsulation. The first is the TLS handshake protocol that we will discuss immediately. This protocol is used for the key and other important information exchange. The other two are ChangeCipherSpec and Alert protocols. Please note that ChangeCipherSpec is removed in 1.3. Alert protocol is used to report errors. The other choice for the TLS record protocol encapsulation is the application layer messages. The HTTP protocol is usually the content of the TLS record protocol but it can be other protocols like FTP or SMTP as well.

18.4.3 The TLS handshake protocol design

The TLS handshake protocol allows the client and server to authenticate each other and negotiate an encryption algorithm and keys before the actual communication.

The TLS handshake protocol provides three forms of security to the connection:

	The peer authentication using Asymmetric methods like RSA-PSS. (From 1.3 onwards, RSA in pure form is deprecated).

	The negotiation of a shared secret between two communicating parties in a secure fashion.

	The negotiation is also integrity checked to see that no modification is possible to the communication.

One of the important advantages of the TLS is that it does not require anything from the application. An application can run transparently over the TLS without knowing its existence. Thus, an application designed to run over the TCP can easily run over TLS.

Note: The standard describes the security parameter as a structure as shown in Annexure-1. The annexure discusses these parameters. A handshake protocol decides the values of these parameters and the record protocol uses them.

18.4.4 The Change Cipher Spec protocol design

One more protocol used till TLS 1.2 is known as the Change Cipher Spec Protocol which is removed from 1.3. This protocol signals a change in ciphers. The protocol contains a single message which is encrypted using the current set of ciphers. It can be sent by either of the communicating parties. This message indicates that subsequent messages will be protected using the new set of ciphers. The protocol is used during the handshake process after the security parameters are decided but before the finished message (described later).

18.4.5 Alert protocol design

Alert messages are transmitted using the Alert protocol. The alert message conveys the severity of the message (for example, warning or fatal) and description of the alert. An alert message of is a type of fatal force immediate termination of the connection. In TLS, a session is defined as a bundle of connections. In case one of the connections of the session is closed, the rest can continue. That session, though cannot have new connections now. We will soon elaborate more on sessions and connections:

[image:]

Figure 18.2: Different protocols running over the record protocol and their usage

18.4.6 The overview of the TLS process

The TLS process works like this:

	First of all, let us take a look at the client and server handshake where the following is done.

	They exchange security capabilities (what the client and server can provide, for example, AES with a 128-bit key, AES with 256-bit key, and so on) and other information about their choices (for example, choice of a compression algorithm).

	The server sends its authentication credentials (optional) and asks for the client’s credentials (also optional when a prefixed form is used, otherwise not).

	The client sends its credentials in the predefined form or in the form which the server has asked for.

	The client also sends information about security (the encryption and authentication algorithms, their key length, IVs, and a few other things related to encryption and authentication).

	The client and server switch on to the decided form of encryption as well as authentication.

	They exchange data both encrypted and authenticated by the TLS running at both ends.

	They report to each other about any errors that might occur during the process.

Step 1 is managed by the handshake protocol, Step 2 is carried out by the CipherSpec protocol which is automatically done in version 1.3 and so removed, Step 3 is taken care of by the application protocol, and Step 4 is managed by the alert protocol; all the steps involve the use of the Record Protocol as well.

18.5 Connections and sessions

Cryptographic keys and other materials take time to be constructed. We have already seen that if the process involves public-key encryption and decryption is much more time consuming. When the sender and receiver are connected using multiple connections and for all connections, similar processes are to be repeated for constructing the key material, it is quite wasteful. The solution to that problem is to have a mechanism where the cryptographic keys are constructed in a single operation and the set is shared between multiple connections. To enable this, concepts of session and connection are introduced. A session describes the process of exchange of parameters and constructions of security material while the connections working under that session shares that security material. Kindly note that from version 1.3, sessions are no longer required as the PSK-based (Pre Shared Key) simpler solution replaces the session-based complicated process. However, most current browsers are still using TLS 1.2, so we will describe how those things work in the following.

18.5.1 Sessions

The sessions are associations between the client and the server. Every session contains some set of cryptographic parameters defined. The TLS handshake protocol creates sessions and helps the construction of a set of security parameters to be used. The connections belong to that session can share these security parameters. The construction of security parameters is an expensive operation in terms of computing resources and time. When a new connection opens, it does not need to waste time in the construction of these parameters. They are available from the session they are associated with and help the connection to have a flying start.

18.5.2 Connection

A connection provides a suitable type of service. For the TLS, such connections are peer-to-peer relationships. The connections are transient. They exist for a specific job and are closed once that job is finished. Every connection is associated with some sessions until TLS 1.2. Given a pair of communicating parties, there may be multiple connections. For example, a browser and a web server may have multiple connections. When the browser sends the URL, the server might have a page with multiple items to return. There may be a few image files, a few audio clips, and a few video clips apart from the base HTML file. In that case, a browser can get a few TCP connections in parallel to obtain all these files together using different connections at the application layer. (This is known as pipelining and most of the current web browsers are capable of doing so). Usually, a single type of security setting is used for all these connections and thus a single session describing the same is usually provided. All connections are opened under the same session and thus enjoy the same set of security settings.

It is also possible to have multiple sessions (that means multiple security associations) between two parties but there does not seem to be any practical reasons for having that. If a new connection needs to be secured, it should use the same security parameters and other connections between the same communicating parties. For example, when the browser fetches multiple items from the web server, all such fetches use the same security parameters used by other connections that belong to the same session. It sounds useless to devise one session for each such connection. There is no logic to having a different set of security parameters for such different connections and thus, there is little need for having multiple sessions. The standard, however, provides that facility to ensure that if ever the user wants different sessions for different connections that can be provided.

Though the connections between the same parties usually enjoy being part of the same session and thus avoid the complexities of security-related negotiations, connections between different parties, they are usually constructed using different sessions. The TLS needs to keep track of sessions created so far and association of a connection to a specific session. To store information about sessions, the TLS stores a session state for every session. A session state is a data structure that describes the details of a session. A connection state is a data structure that describes details of a connection. Note that TLS 1.3 only stores information about the connection state. The session state can be obtained from the specific PSK of that previous session.

18.5.3 Session and connection state

A TLS connection can be in various states defined by the session they are in. The state of a TLS connection can be determined by the TLS record protocol. A few items are specified given the connection state:

	A compression algorithm

	The MAC algorithm

	An encryption algorithm

	Additional parameters of an algorithm (block or stream cipher, block size, IV, the key size, and more)

	MAC keys for forward (write) and backward (read) direction

	Block encipherment keys for both forward and backward directions

	Whether the connection is in the pending state or current state

The MAC key and the block encryption keys in both read and write directions are the two important things included in the session state information. (A read direction is an incoming traffic direction while a write direction is an outgoing traffic direction). The connection can be in one of the four states such as reading, writing, ready to read, or ready to write. When the connection is reading, it is said to be in the current read state. Similarly, when a connection is writing, it is said to be in the current write state. When there is something to read, it is said to be in a read pending state while there is something to write, it is said to be in a write pending state. Only when the state is a current read or a current write, the records are processed. The pending states remain pending while their security parameters are decided by the handshake protocol. The handshake protocol decides the security parameters for the connection. ChangeCipherSpec can make the pending parameters common for all connections of a session while a connection state can be identified by individual parameters of the connection. In version 1.3, as soon as the handshake is over, the new parameters come to the effect and so there is no need to have the ChangeCipherSpec protocol. Though connections share security parameters, their other parameters define their identity. The following is a description of attributes for a session and for a connection that helps identify their state. First, we will see the attributes of a session state and then the connection state.

18.5.4 A session state

A session state describes a few parameters which can help the session to store information it needs to process. The following is a list:

	Session identifier: It is a value that identifies a session. A session can be either active or resumable (described later) to have a session identifier. A completed session’s ID is removed from the database. In 1.3, PSK describes a typical connection setting so there is no need for a session ID.

	Peer certificate: An X.509 certificate of the peer.

	Compression method: A compression algorithm can be specified by the session. Compression is done before encryption. In version 1.3, compression algorithms are removed from the specification.

	Cipher spec: Specifications for bulk encryption algorithm which can be block encryption (such as Null, AES), or stream cipher (such as RC4) or AEAD (Authenticated Encryption with Associated Data) which does both, encryption as well as authentication, (for example, CCM-CMAC which we have seen in Chapter 8: Message Authentication using MAC. Another popular method is Galois Counter Mode (GCM) algorithm), and a hash algorithm (for example, SHA-2) used for MAC calculation. Cryptographic attributes like hash_size are also defined in Cipher Spec.

	Master secret: Till 1.2, it is a 48 byte secret between the client and server. It is used to generate key material (from which multiple keys for encryption and authentication are derived.). From 1.3 onwards, the PSK-based solution is used.

	Is resumable: A flag indicating if the session can be used to generate new connections or not. When a fatal alert message arrives, this flag is turned on. This means this session now cannot be used to generate new connections.

18.5.5 A connection state

A connection state contains the following information:

	A server and client random: Random values are chosen by the server and client, respectively. These random values are 32 bytes long.

	A server writes MAC secret: Outgoing messages from the server will use this key to generate the MAC. Whenever the server sends a message, MAC is calculated using this key. This is the client read MAC secret as the client will use this key for message authentication coming in from the server.

	The client writes MAC secret: Outgoing messages from the client will use this key to generate the MAC. Whenever the client sends any message, its MAC is encrypted using this key. The server will use the same key to read and verify MAC from the client.

KIM: The server write-secret is the same as the client read secret and the client writes secret is the same as the server read secretly. This is because whatever the server writes, the client has to read and whatever the client writes, the server has to read using the same shared key.

	SeverWriteKey (or server write secret): This is the encryption key for outgoing server messages to the client. The client uses the same key for decryption of the message coming from the server.

	A ClientWriteKey (or client write secret): This is the client’s key for encryption for an outgoing message to the server. The server will use the same key for decrypting messages coming from the client.

	Initialization vectors: The encryption algorithms use IVs in the encryption process. Each key requires one IV for the encryption. The handshake protocol initializes the values for each IV. Later on, each final ciphertext block is used as an IV for the next record.

	Sequence numbers: Each message for each connection is given a unique sequence number. Whenever the ChangeCipherSpec protocol is executed, the sequence numbers are initialized to zero. For each message outgoing, the sequence number is incremented by one. Maximum sequence numbers can be 264 – 1 which is practically too large to achieve. In the case of TLS v 1.3, whenever a handshake protocol is over, the communication messages are sent, starting with the first message with the sequence number zero.

Both the session and connection state are useful in the processing of the TLS record protocol, which is described next. The TLS handshake protocol commences the process so if one describes the protocols in the sequence; one should discuss the handshake protocol first. The reason for describing the TLS record is that it is the most general protocol which provides services to all the other protocols.

In TLS 1.3, the connection state is kept as it is; however, the system does not keep the session state. The PSK chosen in the earlier connection can be negotiated to reuse the same connection parameters. So the PSK-based simpler mechanism replaces the need to store and use the session state information.

18.6 TLS record protocol

The basic functionality, i.e., encryption and authentication, is the responsibility of the TLS record protocol till 1.2. It has now become the job of Encrypted Extension in TLS 1.3. However, the processing does not change much. The record protocol is a layered protocol that does many things one after another. At each layer, some processing is done on the content. The record protocol takes messages to be transmitted, fragments the data into manageable blocks; optionally, compresses the data (removed in 1.3), (Calculation of a MAC and encryption of the content both of which are now done by EncryptedExceptions), and transmits the result. The received data is decrypted, verified, decompressed (removed in 1.3), reassembled, and then delivered to higher-level clients. Thus, the record protocol does all this processing one after another at both ends.

Four protocols that use the record protocol are described in the TLS: the handshake protocol, the alert protocol, the changecipher spec protocol (till 1.2), and the application layer protocol. In order to allow the extension of the TLS protocol, additional record content types can be supported by the record protocol (only possible in TLS 1.2 and 1.3). Once the TLS handshake protocol finishes the formality of the key and algorithm exchange with parameters, the TLS record protocol provides these services by using that functionality. The following are the steps involved in the process:

	Fragmentation of the application data: The application data must be fragmented for processing as it is difficult to process a continuous stream of data. For example, an application layer might send a file to the other end. If the file is very long, the TLS record protocol must fragment the file into blocks and then apply encryption, and more on those blocks. The largest size of the block is 214 which is equal to 16384 bytes. The SSL also had similar restrictions.
 Compression of the fragmented data: This is an optional stage and cannot be applied by default. RFC 3749 describes the compression methods used in the TLS (now, obsolete with TLS 1.3).The compression, if applied, helps in reducing the size of the input and improves the bandwidth utilization of the channel. While these connections are often short-lived (HTTP 1.0 connections used to have one request and one response and then terminate, HTTP 1.1 uses the persistent connection which lasts a little longer. HTTP/2, which is the latest version of HTTP, demands TLS 1.2 or higher, uses the same structure that of 1.1 but with more efficient implementation) and exchange relatively small amount of data; The TLS is also being used where connections are long-lived and the data transmitted and received can be enormous. For example, XML has become a de facto standard for data representation over the Internet and XML tends to be verbose. Compression within the TLS is one way to help reduce the bandwidth and latency requirements associated with exchanging large amount of data while preserving the security services provided by the TLS.

Sometimes, the compression algorithm does not work well on short-lived transactions with small blocks of data being communicated and produces the output which is larger than the input. The standard says that the compression must be lossless and must not increase the content length by more than 1024 bytes.

	Calculation of MAC: The compressed-or-otherwise data is processed to generate MAC now. The exception is the AEAD methods which deploy both encryption and MAC together in a single pass. Note that from version 1.3 onwards only AEAD algorithms are used and older algorithms are deprecated. When AEAD algorithms are used, both the steps, 3rd (this) and 4th (Next) happen in parallel.
The MAC is computed from the MAC key, the sequence number, the message length, the message contents, and two fixed character strings. The shared secret key determined by handshake protocol is used to calculate MAC for outgoing data before transmission. That is the first item considered for MAC. The MAC calculation includes a sequence number to identify attempts to replay old messages or reorder messages. The 64-bit sequence number allows a large number of messages sent without worrying about the overflow. The MAC calculation includes the message length, the message content (obviously), and message type. The message type content is included to make sure that the message intended for one TLS record layer is not redirected to another.

MAC keys for each party are calculated independently so a message from one party cannot be inserted into another text output. Servers read and write keys are also independent, so they are also included. The protocol version is also included.

The message authentication code is calculated as CMAC (Master Secret) in TLS 1.2, GMAC in 1.3.

	Encrypting the message: The encryption algorithm is applied to the message as well as the MAC added to the data. Thus, MAC is encrypted together with the plaintext (or compressed plaintext if the compression algorithm is also applied).
There are five operations possible to be performed on the message. Calculating digital signature, encryption using a stream cipher, encryption using a block cipher, AEAD operation, and public-key encryption. Whatever operation/s specified before is/are performed here. Whatever values of the keys specified for the connection are used for processing any one or more operations here.

In a stream cipher encryption, the plaintext is exclusive-ORed with an identical amount of output generated from a cryptographically secure keyed pseudorandom number generator. One of the standard algorithms is RC4 which we have studied in Chapter 6: Stream Cipher and Cipher Modes.

The block cipher encryption is always in the CBC mode. The length of the ciphertext has been always equal to the length of the plaintext. In AEAD encryption which is a must in 1.3, the plaintext is processed in a single pass for operations, encryption as well as authentication. The length of the ciphertext from the AEAD operation is equal to the length of the plaintext plus the length of the MAC added at the end of the ciphertext.

The public key encryption (which we studied in Chapter 12: Public key algorithms and RSA) is also possible to be done. RSA-PSS, which we have studied in Chapter 9 Authentication and Message Integrity Using Digital Signatures, is also one of the standard algorithms to choose from. There are many other algorithms also possible to be used here.

One can use the entire AES suit for encryption. There are few GCM AEAD algorithms that are also provided. One interesting inclusion is the CCM mode (counter with CBC-MAC) which is also designed to provide authenticated encryption. We have looked at CCM in Chapter 6: Stream Cipher and Cipher Modes where we have also seen CMAC. The CCM mode is only defined for block ciphers with a block length of 128 bits. The RFC 3610 defines how CCM with AES can be used. The default suite is called TLS_AES_128_GCM_SHA256[GCM] for TLS 1.3, which is self-explanatory. The SHA used here is SHA-256. The default SHA used in TLS 1.3 is SHA-256 but SHA-384 is also recommended. For stream operations as well as block encryption, the integrity check tag (or authentication tag) is added before the encryption is done and thus is covered by encryption. When the block encryption is performed, the plaintext is picked up block by block and the ciphertext is generated. In the case of AES, the 16-byte chunk of plaintext is picked up every time until the end of the message. This implies that the message + MAC length must be a multiple of 128 bits or 16 bytes. In case it is not, padding is applied to make it so. For example, suppose the message is of 110 bytes and SHA-1 is applied to authenticate, making it 130 bytes, which is not a multiple of 16. We need to pad 14 bytes to make it 144 which is multiple of 16.

	Adding the header: The final step is to calculate the values of the header and append it to the beginning of the data. There are four fields in the header:

	Content-type: It is the upper layer in which data is embedded in the record protocol. The receiving TLS will pass it on to that layer. For example, handshake data is given to the handshake layer at the opposite end looking at this value.

	Major and minor versions: These fields indicate the major and minor versions of the protocol. When this helps other parties to learn the version the sender is using, this also helps the receiver to adapt the higher version protocol to work in the lower version mode to communicate. A list of major and minor versions is provided in Annexure 18.3. For TLS 1.2, the version field will contain the value of the type structure with values indicating 3.3.

	The length of compressed data: The length of the compressed fragment (or plaintext fragment if the compression is null). The maximum value is 214 + 1024 (maximum additional bytes possible after compression) + 1024 (maximum size of the MAC allowed) = 214 +2048.

We will not take a look at the application data content here as it depends on the application which uses the TLS.

18.7 TLS handshake protocol

The handshake protocol initiates the process of the TLS and is the most complex part of the entire TLS design. When the content type of the TLS record protocol is 22, it is carries the handshake details. There are three different types of handshakes: the first is when only the client is authenticated, the second when both the client and server are authenticated, and the third when the process is resumed. We will look at examples of each one in detail.

Figure 18.3 depicts the handshake protocol mentioned in the standard. There are four phases of this protocol. The left-hand side describes four different phases and their messages which are being exchanged between the client and the server while the right-hand side describes those phases. Notice that there is a big difference between TLS 1.3 and prior versions. TLS 1.3 is much shorter and much efficient in terms of the handshake.

With different types of handshaking being used, some part of this complete handshake is not carried out. We will describe what exactly is done in all three different types of handshake messages in subsequent sections:

[image:]

Figure 18.3: The complete handshake protocol

18.7.1 Only client authentication handshake

The only client authentication process includes authentication only from a client; the server is not authenticated. It includes two stages: negotiation and application. The negotiation stage includes processing the messages from the client and server.

18.7.2 Negotiation stage

Here are steps for negotiation between the client and the server when only client is authenticated.

	A client sends a ClientHello message (using the highest TLS protocol version it can support), a client secret (a random number chosen by the client), a proposal in the form of a list of CipherSuits (list of security parameters) and compression methods which the client is planning to support the communication, in order of preference.

	The client sends additional information about the extensions in the form of a list also in TLS 1.2 and 1.3. For example, a signature algorithm extension contains information about algorithms for MAC generation. The client may require additional services from the server and the extension is a way of saying so. The extensions are ways to improve the standard without disturbing the existing setup.

	One critical difference in TLS1.3 is the additional Keyshare message with the ClientHello which eliminates the need for key exchange later and improves the speed of handshake. The diagram shows that in bold to indicate it is an addition in 1.3. There is a pre-shared key possible to be exchanged here as well.

	Another change in 1.3 is the truncation of many week algorithms earlier supported like 3DES. In a way 1.3 is more secure but not backward compatible. Now, we have a key exchange and authentication both included in the protocol and not part of the cipher suit any longer. There is an exchange for the hash function as well as stress on AEAD algorithms.

	TLS v 1.3 has mandated RSA-PSS, the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) in the key distribution process, Elliptic curve-based encryption and signing algorithms in the base pack, in a way, improve the security further.

	The server responds with a ServerHello message containing the chosen protocol version8,, a server secret (a random number chosen by the server), a chosen CipherSuit, and a compression method from the list offered by the client.

	In TLS 1.2 and 1.3, the server sends information about accepting some extensions out of the list. A server can ignore an extension the client asks for which it does not understand. A client may abort the handshake if the server may not support some extension the client asks for.

	In TLS 1.3, the Keyshare and pre-shared key information are sent with ClientHello which improves the key exchange time. This will help all messages after ServerHello to be encrypted and authenticated, which wasn’t the case before. EncryptedExtensions is a new extension that helps even previous messages to be encrypted and thus negotiates with the other end using those keys which are predefined either using other channels for communication or during previous connections. It allows the resumption of an earlier suspended connection as well.

	Another advantage of the PSK (pre-Shared Key) is that the client can send the data on the first packet (ClientHello) with the PSK. In that case, the data communication begins from the first packet when the server authenticates the client based on the PSK. This is known as 0-RTT connection.

	The server sends the ServerHelloDone message to indicate that it is done with the negotiation. This message is not there in 1.3.

	The client responds to the ClientKeyExchange message. This message is not there in 1.3 as the key share already does the same job. It can contain a PreMasterSecret, a public key or nothing. A PreMasterSecret can be decided by external means (like a credit card or ATM transactions require hardware-based authentication before the username and password, the browser might need something similar to pass through the first stage of authentication). The PreMasterSecret is encrypted using the public key of the server (mentioned in the certificate mentioned in the server certificate).

	The client and server use these random numbers and PreMasterSecret to calculate a common secret value. This value is known as Master Secret. Complete key material from which every other key used in the transaction is derived from this Master Secret. This key material generation process used PRF in earlier versions and HKDF in 1.3.

	Once the secret keys are determined, the next state intimates the server that now onwards the communication from the client will be authenticated as well as encrypted using those specifications. A ChangeCipherSpec message is sent to indicate that. In layman terms, it is saying something like this to the server now onwards every message that I send will be encrypted and authenticated using the keys that both of us have determined from the master secret. In the case of version 1.3, this message is not sent.

	The client sends an authenticated and encrypted message which is known as Finished Message, containing a hash and MAC over previous messages. This is an optional message in 1.3, unlike earlier versions.

	The server will try to decrypt the Finished message from a client and see if it can get the same values from earlier messages if so, the handshake is considered successful otherwise not.

	Now, the server responds with ChangeCipherSpec which conveys the message to the client that the server will also authenticate and encrypt everything from now on. This message is eliminated in 1.3.

	The server now sends back the authenticated and encrypted Finished message.

	The client checks the message and verifies what the server did.

Note: If you have carefully noted, you can see that all optional messages are not sent in the preceding case. That means when the client is the only entity to be authenticated; only mandatory messages are to be sent.

18.7.3 Application stage

The handshake gets over after the negotiation process is completed. The application process now takes charge. Application messages (with payload type as 23) flow to and fro from the client to the server which will be authenticated and/or encrypted as the Finished message did.

18.7.4 Both server and client authentication

When the server and client need authentication and/or encryption, the process mentioned earlier must be extended to include client authentication/encryption. It is described in the following.

18.7.5 Negotiation stage

Following are steps when both client and server authenticate each other.

	A client sends a ClientHello message like in the earlier case with the highest TLS version, a client secret, a list of suggested CipherSuits, and compression methods. TLS v 1.3 also shares Keyshare as well as the pre-shared key here. Many algorithms of earlier versions are not supported by 1.3 as they are not very secure.

	A server responds with a ServerHello message, which contains the chosen protocol version, a server secret, a cipher suite, and compression method chosen from the list. Compression methods are dropped in 1.3. This also exchanges Keyshare and Pre-shared key in 1.3.

	The server now sends a Certificate message. The message contains the server’s certificate. This is an optional message as there are other ways to share a secret, other than a public key algorithm which demands a certificate.

	The next message the server sends is ServerKeyExchange. This message is not provided in 1.3 as it is redundant after key is already shared. The server requests the client to provide its certificate using the CertificateRequest message. It includes two parameters: CertificateType and CertificateAuthorities. The certificate type indicates the public key algorithm used to sign the certificate. CertificateAuthorities is the list of acceptable CAs.

	The server sends a ServerHelloDone message. The client responds with its certificate using the Certificate message. If the client has no certificate to produce, it sends back a no_certificate alert instead.

	The client sends ClientKeyExchange may be using PreMasterSecret like the previous case for version 1.2 and below. The content of the message depends on the key exchange method chosen during the capability exchange. If RSA-PSS is chosen as the key exchange method, the client generates a random 48-byte PreMasterSecret and sends it across encrypted with the server’s public key. The same thing is done during ClientHello and ServerHello to eliminate the need for ClientKeyExchange and ServerKeyExchange messages in 1.3.

	The client requires proving that he is a real client who owns the certificate he presented. He will now send a signature over the previous handshake messages using its private key. When the server tries to open that message using the public key mentioned in the client certificate and succeed, it can conclude that the client is who he claims. This message is called the CertificateVerify message.

	Now, both of them generate the master secret and subsequent key material from it.

	In the case of TLS 1.2 and below, the client now sends ChangeCipherSpec to indicate encryption and authentication begin from now on based on earlier negotiation.

	The client, to test that master secret shared between both of them is OK, sends the Finished message like the previous case which the server verifies.

	The server sends ChangeCipherSpec now with his Finished Message in TLS 1.2 or below.

18.7.5.1 Application stage

The application protocol takes over from here and continues like the previous case.

18.7.6 Abbreviated handshake

RSA and other public-key encryption mechanisms are quite expensive in terms of computational overhead. A secure shortcut provided by TLS 1.2 and below avoids the encryption mechanism to be performed every time. The handshake process now includes the session ID in the ServerHello message. The client associates this client ID with a server’s IP address and TCP port, so when the client connects to the server, it can use the same Session ID to reduce the overhead. The server contains a database of previously negotiated cryptographic parameters indexed by the session ID, including the master secret. The intruder who somehow gets his hands on the session ID value cannot connect unless having a master secret. The random values (server secret and client secret) are different here so the keys used are different than the previous session. This is known as abbreviated or restarts handshake.

Let us reiterate that TLS 1.3 can have 0-RTT (zero round trip time) option using the pre-shared key, the data can be sent with the first packet of the handshake. Not only that, but 1.3 is also designed in such a way that one does not need to have more than thee packets exchange in most cases. As it does not demand the session ID, it is far more secure than earlier versions. The 1.3 has both options: negotiate a new set of parameters or resume from an old set of parameters, a kind using an abbreviated handshake.

18.7.7 The handshake processing

The handshake protocol allows the communicating parties to authenticate each other, negotiate encryption and MAC algorithms as well as other security parameters. The handshake is a must before any application data transmission.

The handshake process as we have seen in the earlier section has quite a few messages traveling in both directions, from client to server and back. Each message contains three items such as Message Type, Message Length, and the Message Data.

(Note: This is a common way to incorporate an arbitrary number of items of varying length; it is called Type Length Value(TLV) encoding and is used by many internet and other protocols).

	Message type: The message type field is one of the 12 messages possible.

	Message length: The length of the message in bytes.

	Content: The parameters associated with these messages.

The handshake process is divided into four different stages:

	Security capability information exchange

	Server authentication with key exchange

	Client authentication with key exchange

	Key material generation

We will now look at each stage in detail.

18.7.8 Stage 1: Security capability information exchange

In the first stage, the client establishes a logical connection with the server and exchange information related to a secure connection with the server. The exchange begins when the client sends a ClientHello message to the server. The message contains three parameters such as version, client random, session ID (absent in 1.3), and extensions (only in 1.2 and a few more in 1.3). We have already seen the need for all four fields before. They are briefly explained as follows:

	Version: The highest TLS version understood by the client is specified here. As this field is not properly implemented in many TLS implementations, an alternate way is provided in TLS 1.3.

	Client random: This value is generated by a 4-byte timestamp and 28-byte random number. This 32-byte information is like nonce which we have seen before. This value is useful in differentiating older messages from the fresh messages and thus help in detecting the replay attacks.

	Session ID: This is a session identifier of variable length. A value 0 indicates a new connection to a new session. A value indicating some older sessions is for resuming a session (abbreviated session). A value indicating some session that is currently open is for having a new connection over that session. As PSKs can do this job in 1.3, this field is not used in 1.3.

	CipherSuit: This is a list of cryptographic algorithms supported by the client. The list contains both the key exchange algorithm and a CipherSpec. The items in this list are as per the client’s preference for algorithms in decreasing order. Each cipher suite defines a key exchange algorithm, a bulk encryption algorithm (including secret key length), a MAC algorithm, and a PRF. In 1.3, both key exchange and authentication are separated and provided using separate phases. Here, both parties exchange AEAD-based algorithms they support and allow in 1.3, signature algorithm, and a PSK.

	Compression methods: The methods list proposed for compression is specified here, again in decreasing order of preference. 1.3 does not use any compression method.

	Extensions: The TLS allows extensions to provide functionality specific to a specific entity. The extension contains two items: Extension Type and Extension Data coming after one another. The length part is omitted otherwise it is TLV encoding only. The idea is to keep the length fixed for a given type and thus, the type indicates the length implicitly. 1.3 allows many additional extensions, most notably the EncryptedExtensions which improve the security. In 1.3, certain extensions are mandatory to be provided.

18.7.8.1 Cipher suite

The default cipher suite is called TLS_RSA_WITH_AES_128_CBC_SHA in TLS 1.2 and TLS_AES_128_GCM_SHA256 [GCM] for TLS 1.3. This cipher suite is mandatory for all implementations. There are quite a few similar suits available with basically two options for key exchange before TLS 1.3, RSA and three different versions of Diffie-Hellman. There are other cipher-suits, including Elliptic curve cryptography and AEAD-based ones which have become mandatory in 1.3. The extensions provide methods of using them.

CipherSpec: Once the keys are exchanged, additional information is exchanged using CipherSpec, which includes the following:

	Cipher algorithm: This field contains the information about the algorithm the client can support or the server that has been selected from the client list.

	MAC algorithm: SHA-2 in 1.3.

	Cipher Type: Stream or Block.

	HashSize: 32 (SHA-256), 48 (SHA-384), 64 (SHA-512) in 1.3.

	Key material: This is the material used to extract various keys. This material is generated from the master secret. The material is of substantial length so that keys and optionally even IVs can be extracted from it.

	IV size: We have learned that block encryption algorithms use IV. This field denotes the size of the IV used in the process. For example, AES requires each block of size 128 bits and thus IV also will be of the same size.

18.7.9 Stage 2: Server authentication with the key exchange

The server sends its certificate at the beginning of this stage if opted for. We have seen that this part is optional. The certificate message is sent for this purpose.

18.7.9.1 Signature calculation

Let us take a detour to learn how the signature is calculated in the TLS. The conventional method for calculating the signature is to apply a hash to the message and encrypt the hash. In the TLS, the hash is calculated not only over the message, but both the server and client random are also used. Thus, the signature in the TLS is calculated as:

Signature = encrypt (hash (Security Parameters || Server Random || Client Random),Key)

The hash is calculated over security parameters and nonces exchanged at the time of the hello message. This is common in all cryptographic calculation processes in the TLS. The advantage of including nonces is obvious to thwart replay attacks as well as generate signatures like MAC values where the random act like secret values.

18.7.9.2 Cryptographic attributes

There are five cryptographic operations that can take place during the handshake. The five cryptographic operations result in five types of outputs:

	Digitally-signed

	Stream-ciphered, obsolete in 1.3

	Block-ciphered, obsolete in 1.3

	AEAD-ciphered

	Public-key-encrypted

The keys for the preceding operations are taken from the current state of key values. It is important to note that AEAD ciphers are preferred over stream and block ciphers in 1.3 and thus, 2 and 3 are deprecated. The second argument to the certificate request message is the list of acceptable certification authorities. The last message of the second stage is known as the aserver_done message. This message is compulsory and not optional. When only client authentication is required, this is the only message transferred in the second stage. This message has no parameters. The server will have to wait for the client’s response once this message is sent.

18.7.10 Stage 3: The client authentication and key exchange

Unlike server authentication, client authentication is a must in the TLS. Most of the messages in this stage are compulsory for that reason. This stage begins when the client verifies the content received from the server. It checks whether the server certificate is valid and the parameters specified in server_hello are also acceptable. If the server has asked for the client’s certificate, the client sends the certificate back. The certificate contains the client’s identity and its public key. The server will use that public key after that. If the server has asked for the client’s certificate and a client is not in a position to send one, it sends an empty list (post-TLS 1.1 the alert message no_certificate is sent).

The next message is client_key_excahage. This message is a mandatory message until 1.2. For a different type of exchange, the process is different.

Certificate_verify: Finally, an optional certificate_verify message is sent. All preceding messages are hashed and the hash is encrypted with the private key associated with the public key specified in the client certificate. The server thus can verify that the client not only possesses the certificate but also possesses the private key associated with it.

18.7.11 Stage 4: Finish

This stage completes the process of establishing a secure connection. Till 1.2, it was signaled by ChangeCipherSpec but 1.3 does it automatically.

The Finished message is sent at this stage. Both the client and server send this message. The Finished message is sent to check whether the CipherSpec is correctly changed or not. All the messages exchanged so far are encrypted and authenticated using a new set of algorithms and keys and the receiver. The Finished message is constructed as follows:

PRF (master secret, finished_label, SHA (handshake messages)) till 1.2.

Here, the finished label is client finished for the client and server finished for the server. The handshake messages include every other message but this particular message:

In 1.3, first, the new key is generated from the old key known as FinishedKey:

FinishedKey = HKDF-Expand-Label(Key, “finished”, “”, Hash.length)

Data=HMAC(FinishedKey, THash(HSContext, Certificate*, CertificateVerify*))

So, the new keys are generated first, using a function called HKDF expand label which takes three inputs such as an old key, a string finished, and the length of the hash value. Once that is done, the data to be sent by the Finish message is generated using FinishedKey, the Transcript Hash () function which takes Handshake Context, Certificate and Certificate Verify message together and applies HMAC on it.

18.8 Cryptographic computations

We have seen that the master secret is prepared by both the parties once the suit or algorithms and MAC algorithms are decided. Both parties also have exchanged their random values before the master secret is exchanged. Once other things are exchanged, the master secret preparation is the only issue left out. Let us understand that process for TLS versions prior to 1.3. TLS v 1.3 uses HKDF instead of PRF, which is quite similar to PRF but not the same.

18.8.1 HKDF

PRF is the building block used in the TLS prior to 1.3 for generating secret information like MAC keys, encryption keys, and IV. In TLS 1.3, HDKF is used instead. In addition, the expansion of secrets into blocks of data for the purposes of key generation or validation is also required. We will call the output as key_block or key material. The PRF or HDKF is used there as well.

18.8.2 Key block

The key block is partitioned as follows:

	First, ClientWriteKey for MAC calculation is taken from the key block. The MAC key length parameter is given by the security parameters’ field called mac_key_length.

	The ServerWriteKey for MAC is taken next. The length is the same, the mac_key_length.

	Next is ClientWriteKeyfor the encryption process and the length is taken from theenc_key_length field of security parameters.

	ServerWriteKey is picked up next and the length is the same as the client’s write key, the enc_key_length.

	The client-write-IV is picked up from the key block next. The value depends on the block size of the encryption algorithm chosen. For example, if AES is chosen, the value of the IV is 128 bits. That value is stored in the security parameter’s fixed_iv_length field.

	The Server-write-IV is picked up as the last element of the key block. The size will again depend on the algorithm and equal to the value fixed_iv_length parameter from security parameters.

18.8.3 Improvements in TLS v1.3

The TLS 1.3 is a significant deviation from earlier TLS versions. Let us summarize a few important improvements:

	Only AEAD-based encryptions are allowed and the rest are dropped.

	0-RTT mode, where the communication begins from the first packet, using the old PSK, is introduced.

	Static RSA and Diffie Hellman-based cipher suits are removed, RSA-PSS, and few other EC-based algorithms are introduced.

	All handshake messages after Server Hello are now encrypted.

	Key derivation is now based on HMAC-based HKDF.

	Handshake is shortened and improved for efficiency.

With that note, we conclude this chapter.

Keywords

	HTTPS: HTTP-secure is a method of running the HTTP over TLS rather than TCP, thus providing both, encryption and authentication.

	API: Application Programming Interface is a callable routine which a program can call and get the job done.

	IPsec: Network layer-based solution to provide a secure connection between two machines.

	Record Protocol: The TLS protocol which does the job of encrypting and decrypting contents at both ends and adding and verifying authentication tags.

	Handshake protocol: Major protocol of the TLS which decides the security parameter values and secure algorithms to be used by both parties.

	Alert protocol: Another protocol of the TLS which is designed to report errors to the other end.

	ChangeCipherSpec: An old protocol for signaling the new cryptographic parameters are to be used now onwards, now obsolete.

	Session: A type of security association that a typical connection may follow. Now, obsolete.

	PSK: Pre Shared Key is a new method of using a secret key generated using other methods for authentication in the TLS, which supersedes session and key exchange.

	Finished: A final message in the handshake which is an encrypted hash value of all other messages so if any message is modified, it can be checked.

	Key block: The complete secret information, the write and read keys, authentication keys from both sides, IVs to be used from both the ends, etc. It is also called key material.

Recapitulation

	Current age Internet has a serious need to protect web transactions.

	Securing web transactions at the transport layer demands only one solution for multiple applications running on the same server.

	API is one of the most common methods to use the TLS.

	TLS 1.3 is the latest version which is quite different than earlier; it is more secure and efficient as compared to earlier versions.

	The TLS handshake protocol decides the security parameters, alerts protocol report errors, and application protocols run over TLS record protocols with security.

	Every connection has security settings defined in the TLS. PSK is used in determining the typical setting in TLS v 1.3 and sessions in earlier versions.

	There are default cipher suits for each version. TLS 1.3 is using the cipher suit TLS_AES_128_GCM_SHA256.

	HKDF is used for generating key material in 1.3. PRF was used in earlier versions.

	Key material or Key block contains the client and server write and read keys, IVs from both ends, and authentication keys from both ends.

Exercises

	Write reasons for security the traffic between browser and web server.

	Differentiate between ways of security web traffic using the application, transport, and network layers.

	Describe the TLS record protocol design.

	What is the purpose of the alert protocol? Find more information about the alert protocol and write a short note on it.

	Differentiate between connections and sessions. Why TLS v 1.3 does not need sessions?

	Describe the TLS handshake protocol in detail.

	Explain what a key block is and list the contents of the key block.

1 According to Saumil Shah, an expert in security and the owner of a company dealing in security products, “If one is disciplined in visiting web sites, he might not even need an antivirus.”.

2 Those who have studied networking know that TCP is designed for stream like network transport and provide many services like retransmission, congestion control, flow control and fragmentation management. Unfortunately, security is missing from the list.

3 One of my students, who is currently working with a security company as a penetration tester, presented a paper when he was a student and practically demonstrated this.

4 This is not as easy as one can think of. It is usually the case that an ISP hosts multiple sites on a single server. A strongly built website can be cracked by some other weak website hosted on the same network. One can compromise a weak website on such a server and then use system security vulnerabilities in the hosting the OS or other applications running there to attack other websites running there, many a times directly accessing the content.

5 Confidentiality, authentication, and integrity of the message are three common requirements for almost all applications.

6 Users tend to do so when they cannot access websites using secure version. Sometimes, some problems vanish when one uses a version when SSL or TLS is disabled. Rather than looking for a solution to that problem users tend to take a short cut of disabling this transport layer security.

7 DTLS is currently in version 1.2 to remain in sync with TLS 1.2. There is no DTLS 1.1. First version was 1.0.

8 If the client supports TLS 1.2 and server 1.1, the client sends 1.2 and the server responds back with 1.1. In this case, the client TLS will work as TLS 1.1 as all protocols have the capability to fall back to older versions. TLS 1.3 uses a different mechanism and does not use this field for deciding which version to use.

CHAPTER 19

IP Security (IPsec)

Structure

Objectives

19.1 Introduction

19.2 Need

19.3 IPsec functionality

19.4 Using IPsec

19.5 IPsec functioning

19.6 IPsec benefits

19.7 IPsec components

19.8 Why IKE

19.9 IPsec services

19.10 IPsec Transport and Tunnel modes

19.10.1 Transport mode

19.10.2 Tunnel mode

19.11 Deploying security policy

19.11.1 Security associations

19.11.2 SAD (Security Association Database)

19.11.3 Security policy database

19.11.4 Example: Selectors

19.11.5 Applying SPD

19.12 Traffic processing

19.12.1 Inbound packet processing

19.12.2 Processing outgoing packets

19.12.3 Difference between SAD and SPD

19.13 Encapsulating Security Payload (ESP)

19.13.1 ESP operations

19.13.2 ESP in IPv4

19.13.3 ESP in IPv6

19.14 ESP header design

19.15 Encryption and ICV calculation

19.16 Combining SAs

19.16.1 Shortcomings of IPsec

Keywords

Recapitulation

Exercises

Objectives

After studying this chapter, the reader should be able to

	Describe the IPsec functionality and operation.

	Judge the need to protect content at the network layer.

	Assess the complexity of the connectionless network layer to provide this connection-oriented service using an additional application layer protocol.

	Portray why IPsec is more complex, what is security association, and why IPsec needs the services of two different databases, that is, SAD and SPD.

	Recount how IPsec processes incoming and outgoing packets.

	Narrate the ESP mode of the IPsec, differentiate tunnel, and transport modes.

	Compare IPsec with the application layer and transport layer security solutions.

19.1 Introduction

In the next version of IP, the IPv6 standard came with a new addition to protect the content of the packet known as IPsec. The IETF was so impressed with IPsec that it included IPsec in the current version of IP, the IPv4. This is a unique thing never observed in the computer industry before. Normally, a new standard adopts good things from the old; here, it is an exact opposite case. Something from IPv6 is adopted by IPv4.

IPsec is an acronym of IP security. IPsec is designed for authenticating and encrypting the IPv6 and now IPv4 packet contents. It is also a protocol where two IPsec nodes communicate with each other for secure data transmission. Like PGP, TLS, and many other solutions, IPsec needs to share the keys between the sender and receiver and provide other key management functions. The protocol IKE or Internet Key Exchange is designed exactly for that purpose.

One of the IPsec’s biggest advantage is that it is an organization-oriented technology. When an organization decides to deploy IPsec, it can go ahead and implement it without disturbing any user machine or application and even without training their users. IPsec helps organizations deploy organization wise security policies. The organization-wide policies like encrypt every outgoing packet with 128 bit AES encryption and authenticate each packet with SHA-2 hash and secret key of 128 bit, and so on is possible to be deployed using IPsec.

Let us briefly discuss the IPsec before proceeding further.

In 1994, Internet Advisory Board (IAB) felt the need for securing the IP protocol to provide both encryption and authentication. The idea was to insert security in the original TCP/IP design. The initial design of the IP protocol does not incorporate any process for authenticating the sender nor having any mechanism for encrypting the IP packet.

The need for protection is self-evident to the reader of this book now. The encryption should help against unauthorized monitoring of the network traffic while the authentication is useful in making sure of the identity of the sender or recipient. The protected IP packet originates at the sender and reaches the receiver without revealing its content to any router in between. Thus, IP provides an end-to-end connection in the sense that the higher-level (TCP or UDP) content is seen by the sender and the receiver and nobody else. Thus, if the IP content is secured, it does not make any difference if the packet falls in the wrong hands. An intruder, if changes the content, the IP authentication mechanism can make sure that the receiver will find it out and ignore the packet.

IAB indulges in future Internet or long term changes in the Internet, unlike IETF who is busy solving current problems. The design that they proposed in 94 as RFC 1636 is named as Security in the Internet Architecture. The architecture that they proposed is popularly known as IPsec (IP Security). The next version of IP, IPv6, was designed to have IPsec as part of it. The IPv6 contains both encryption and authentication as necessary security features. Nobody is expected to have a Goodnight party to IPv4 on one evening and a welcome party for IPv6 the next morning. It was expected that the transition will take at least a decade (it is taking more time; IPv6 is still not in widespread use after more than 20 years of its inception). One good thing about the IPsec design was such that it was also applicable to IPv4. Most of the vendors providing IPv4 started providing IPsec additionally and now it has already become an Internet standard even for IPv4 communication. So one can use IPsec even when working with IPv4. (This is true for most of the existing installations.)

Though designed by the IAB, IPsec is specified by various RFCs given by IETF. IPsec, after the inception, is revised three times so far so IPsec v3 is the current version.

KIM: One interesting standardization happened during the third revision was that IP was in uppercase and sec was in lowercase. Now, nobody can name IPsec by any other combination of upper and lower case combinations! So IPSEC or IPSec is illegal now! Only IPsec is the correct way to spell it!

19.2 Need

We have already seen that the application and transport layers can have security mechanisms of their own. Why would the IP layer need a security mechanism? Let us try to understand. If we deploy PGP, the email system is secure. If we deploy the TLS, all application traffic running over it is secured. Thus, applications can have secure communication if they desire so just by running it on top of the TLS. This gives the user control to decide if he needs the application security or not and choose a secure solution if he so desires.

What if the organization requires having control over this process? What if the organization expects every communication going out of the organization is encrypted and every communication coming in is allowed only after due authentication irrespective of users willingly doing it or not? IPsec is the solution. The IPsec runs at the network layer and thus allows a way for the organization to secure everything passing through. The beauty of using IPsec is that it runs below the transport layer protocols and thus does not come in direct contact with the applications. When IPsec is implemented, the application is not affected; IPsec remains completely transparent to applications. The other advantage of IPsec is that once IPsec is implemented, every bit of traffic passes through it, irrespective of whatever user preferences are. At the application layer, we may have a variety of traffic (mail, file transfer, web, and more), at the transport layer, we have UDP and TCP if we secure one way, and others remain unsecured. If PGP is used for mail, FTP traffic is still unsecured. If we implement SSL over TCP, UDP is still unsecured. Unlike that, once the IP is made secure, as there is no alternative to IP at the network layer on the Internet, there is no part of the communication which remains unsecured. When IP level security is provided, it cuts across all applications running over it, irrespective of whether they use some form of security mechanism or not. For having organization-wide secure communication, IPsec is an ideal solution.

19.3 IPsec functionality

IPsec incorporates three ideas: authentication, confidentiality, and key management1. Access control is a security service that prevents unauthorized use of a resource. IPsec helps access control for host or security gateway depending on the admin policy.

The authentication process helps the receiver to make sure that the source address of the packet is the actual sender of the packet. The IPv4 packet header contains a 4-byte source address while IPv6 contains a 16-byte source address. The authentication process ensures that the packet which is received is transmitted from the source address specified in the header. Additionally, that also ensures the integrity of the packet header, which guarantees that the content is not altered during transit. The encryption method helps the user to send encrypted messages to other parties. The secret keys required to be used in both authentication and encryption process is managed by the key management (IKE) part.

19.4 Using IPsec

When two IPsec implemented endpoints communicate with each other, every bit of the traffic, all applications and all transport layer content, is encrypted and authenticated. Here is a list of the most common uses of IPsec:

	Connecting from remote: Remotely working employees, salespersons, select customers, and suppliers need to communicate with organizational networks from their location or home. IPsec is normally used for connecting them to organizational network routers.

	Connecting organizational branches: When companies have branches scattered across places, IPsec helps them to communicate with each other securely. A popular solution some time back was to use a leased line, which was pretty expensive. A better solution is to connect over the Internet which is almost inexpensive. Unfortunately, the Internet does not provide a private connection like a leased line and the connection has security related issues.

	VPN (Virtual Private Network): Which we will briefly talk about in Chapter 21: System Security, which provides a secure solution when the connection passes through public networks like the Internet. Many VPN solutions use IPsec. VPNs are also a popular choice for connecting from a remote place.

	Secure access to the Internet and remote servers: A normal user or an organization after deploying IPsec in its router connecting to the Internet, can offer seamless security to them. IPsec can help secure any client-server application. Students can access their university servers, for example, using IPsec clients on their laptops even from their homes. Consider a company C which is producing desktops and laptops. Assume that the company has one supplier S who supplies them the hard disks. Now, it is possible for an application of C which is processing orders from customers to realize that they are running out of stock for hard disks. IPsec can help a client application from C to communicate to a server application in S to place that order automatically and securely.

	Deploying organization-wide security: When a router sitting at the periphery of the organizational network deploys IPsec, it helps encrypting and authenticating every bit of outgoing traffic and enforcing a check for every bit of incoming traffic for proper encryption as well as authentication test. IPsec deployment is independent of any application run by the nodes of the network or the transport layer protocol deployed by them.

19.5 IPsec functioning

IPsec normally is used for two broad functions. When a single node communicates with a network server, IPsec deploys a transport mode communication. When a router representing one network communicates with another router representing another network, IPsec deploys a tunnel mode. The tunnel mode is depicted in Figure 19.1 while the transport mode operation is demonstrated in Figure 19.2.

Closely observer Figure 19.1, there is a network 1 which is connected to router R1 while network 2 is connected to router R2. The connection between the routers R1 and R2 is used for communicating between these two networks and is the focus of our discussion. There is a sender S from network 1 who is interested in sending something to receiver R of the network 2. So it prepares a packet with the sender as S, the receiver as R, and some content. When it passes through R1, it processes it (encrypts and add authentication tag), adds the header, which we call IPsec, and now keep everything inside another (newly generated by R1) packet where the sender is R1 and the receiver is R2. The attacker, if ever catches hold of the packet, will only learn that R1 is sending something to R2 and will have neither any idea what the content is but also who the actual sender and receiver of that content are. When one packet is inserted inside another, it is called tunneling. This is a very common method used in many other places. On receipt, R2 removes the outer packet and sends the inner packet, after processing, to R if properly authenticated and decrypted.

[image:]

Figure 19.1: Tunnel mode communication in IPsec

[image:]

Figure 19.2: Transport mode operation in IPsec

Figure 19.2 describes another case where a sender node S needs to send something to network 2 via R2. Now, R2 can process the packet (like R1 did in the previous case). The actual packet contains S as a sender and R as a receiver with some content. Now, the new packet will have the same header but the content is processed in IPsec fashion. Though the attacker now will be able to see who the sender and receiver are but will get nothing when it tries to look at the content. This is called the transport mode, and it is useful when a remote user needs to communicate with organizational servers remotely. Like the previous case, the R2, on receipt, processes the packet and if decrypted and authenticated properly, sends the packet with contents in clear (means in non encrypted form) to R.

19.6 IPsec benefits

Both application layer security and transport layer security which we have studied in the last two chapters are quite successful. One point may come to your mind that why we need to study a network layer security, or why the designers need to work at network layer security solutions at all. We have given the answers in brief earlier but let us elaborate it further.

PGP or SMIME deployment and application is up to the user of the application to decide. He may do so if he deems fit. It is quite possible that out of two users, who are sharing a machine, one of them chose to use PGP and the other does not. Transport layer security depends on the administrator of the machine where the TLS or DTLS is deployed. If an admin of a typical machine has installed TLS, the users of that machine, when they run their application, automatically get the benefit. However, it is quite possible that a few machines deploy only TLS, a few others use both TLS and DTLS, and a few do not use any transport layer security in the same network.

What if a network admin wants consistent security to be deployed for all traffic going out and coming in the network? Neither of these solutions works, unless all users comply with the admin’s request. Unlike those two types of solutions, IPsec enables the network admin to deploy security at the router connecting the network nodes to the rest of the world, deploy IPsec there in the router and all traffic originating and terminating in this network is processed as per the network admin’s wish! Users are neither involved in the process nor they need to comply with any guidelines for this! This is the major benefit of IPsec. An analogy is to deploy a security check at the entrance of the organization, everybody, irrespective of whom they are or where are they going in the organization or outside, is subject to a consistent secure checking process. Unlike that, application-level security is security deployed in the cubicle of the employee itself and transport layer security is like security deployed at the entrance of a typical department.

However, there are other benefits as well. Let us look at them:

	Single point router level control: In the case of IPsec, when the routers of the organization deploy an organization-wide security policy, they are all under the control of a single administrator so it is a single point control over the routers. Irrespective of how network nodes and servers secure their content or otherwise, all routers encrypt all packets going out as per the guidelines of the admin and expect every incoming packet to follow the guidelines as well. If an incoming packet is not either found to be consistent with required security or fails to pass the authentication or decryption test, it is just dropped. That means if this single point mandates a typical type of security, for any user or node to bypass that security is out of the question.

	No need for application modification: Applications of the network, after the deployment of IPsec, continue to run the same as before. IPsec, which runs at the network layer, does not demand any application-level change or transport layer setting to change. On the contrary, if a user wants to use a secure mailing solution like PGP, he will have to do that process himself. If he wants to use TLS, he will have to install and provide a proper setting related to the TLS in the browser. No such formality is required when an IPsec-based solution is deployed.

	Users need no training: When the application or implementation of the application is not altered, the users who are using the application do not require any additional training to use IPsec. The IPsec is completely transparent to the user and applications. Neither of them needs to change anything. The only exception is remote users, who need to deploy IPsec in their laptops and additionally, need to configure VPN as normally VPN-based IPsec solutions are used for remote secure access to networks. However, it is important that IPsec enables remote users as well as remote networks to communicate.

	Securing router-router communication: Traditionally, Internet routers exchange a lot of information, for example, routing-related information for sending a packet exactly in the direction of the destination. Traditionally, this communication is all unprotected and thus vulnerable to many attacks. An interesting option now is to use IPsec instead to improve the security and protect the network from such attacks.

19.7 IPsec components

IPsec is a quite complicated design unlike the other two which we have seen in the previous two chapters. It contains a few components that we will look at briefly in this section:

	Basic architecture: The IPsec basic architecture describes what the IPsec deployment needs to do, what exactly IPsec is doing, how it implements secure solutions, and basic definitions as well as mechanisms used by IPsec. This component is covered by RFC 4301.

	Authentication header (AH): Authentication header is a mechanism used for deploying only the authentication service. This means the packet origin and the content are authenticated but not encrypted. Soon after the standard was out, admins found out that this service is of little use for two reasons. The first is when the router-to-router communication needs to be done, then encryption is the prime need, and the second is when the organization-wide policy is deployed; hardly, ever the only authentication makes sense. Only authentication is an attractive option when the user decides so as he is aware of the attributes of his application. RFC 4302 describes AH.

	Encapsulating Security Payload (ESP): Encapsulating Security Payload is a mechanism used for deploying encryption plus authentication service. This is the default service by IPsec. ESP operates the IP packet, adds a header and trailer with typical information. We will soon learn how to make ensure the encryption is done and the authentication tag is appended. RFC 4303 describes ESP.

	Key Exchange: As the Internet is connectionless, the packet does not contain any information about the connection it belongs to. There is an application layer protocol additionally needed with IPsec for this purpose, which is known as IKE or Internet Key Exchange. RFC 5996 describes it. We have a detailed discussion of IKE in Annexure III.

	Encryption and authentication algorithms: All secure solutions demand encryption and authentication algorithms, IPsec is no exception. Like TLS, IPsec has a plethora of options for communicating applications to choose from, including the encryption and authentication algorithm and the key side. IKE provides an elaborate handshake process for this job as the network layer is connectionless and cannot perform the handshake itself. IKE works at the application layer. The IPsec, once IKE decides the parameters, follows those parameters for encrypting and authenticating the traffic. A few RFCs, one for each type of algorithm is provided in the standard.

	Deploying Security Policies: Some RFCs specifically deal with how organizational policies are deployed using IPsec in a standard way. Security policy is described by a typical database known as the Security Policy Database or SPD. To deploy a security policy normally, more than one type of processing of a packet is needed. Such processing is described as Security Association or SA. Security associations are stored in another database known as SAD or Security Association Database. We will learn about both of them soon.

IPsec is more complicated and demands a few more RFCs catering to many other needs which we will not explore further here. It is time for us to learn why IKE is needed.

19.8 Why IKE

Both PGP and SMIME at an application layer and TLS at the transport layer do not need any additional protocol for key exchange. Why does IPsec need one? Let us try to understand. IPsec provides both confidentiality and data integrity. Additionally, when the source IP address is protected, it provides data source authentication. Those who have studied computer networks know that IP is both connectionless and stateless. The IP process running on the sender and receiver as well as routers have no idea about the connection the packet belongs to, who the sender is, who the receiver is; they only know the sending machine and receiving machine (their IP address actually). In short, IP does not know and does not preserve any information about the connection or the user.

On the contrary, the TCP process knows and keeps the information about all connections initiated and connected. It becomes easy for TLS to work on well-defined connections to provide requisite protection to them. That means IP demands an additional process that is capable to manage connections. The key exchange between communicating parties can only be exchanged if both parties are known, which IP is incapable of. The IKE manages status information about all connections and provides means for exchanging keys between communicating parties, both for authentication and encryption. IKE sets the ball rolling for IPsec. Let us take an example to understand.

Suppose a communicating party A wants to establish a connection with another party B, with encryption with AES, 128-bit key, MAC using RSA-PSS and ECDSA for key exchange. A now runs an IKE client and communicates with the IKE server running at B, sends this request, and on receiving the acceptance, sends all IP packets with that protection to B. When B receives those packets, as IKE already has informed, it knows how to decrypt and check the authentication tag associated with this packet. IKE manages all connections that originate and terminate at a typical node (client or server), and information on how to protect those packets. IKE is in 2nd version now. When both parties, with the help of IKE, authenticate each other and decide the security processing for their packets, the security processing is popularly known as Security Association (SA).

The characteristic requests and responses of IKE are in order.

	IKE SA is established at the beginning that describes how both parties authenticate each other.

	Both parties now exchange information using this IKE SA.

	Once this handshake is over, for subsequent communication, another SA is produced, popularly known as Child SA.

	Child SA is two; one from A to B and another from B to A. So normally referred to as Child SA pair. After Child SAs are created, IKE’s job is over.

	Now, IPsec takes over, encrypts, and authenticates each packet that belongs to that connection as per the Child SA specifications.

	During communication and handshaking, if any request is not responded in a specific time, they are repeated a few times and later aborted if it has no response.

We have a much detailed description of the IKE protocol in Annexure-II.

19.9 IPsec services

IPsec is a new addition to the IP layer. The new addition provides a few services to the IP itself. Here is the list of services IP gets once IPsec is deployed with it:

	It can decide whether it wants only encryption, encryption + authentication or only authentication. Please note that a preferred option in most cases is encryption plus authentication.

	It now can decide algorithms to be used for the process, decide the keys, how the source machine is to be authenticated, and how the message is encrypted, and more.

	Decide if it wants an anti-replay service. This service enables the sender to use a typical sequence number to be attached to a packet only once for a given SA. So, for a given SA, there won’t be two packets with the same sequence number and thus it can thwart a replay attack. If ever a connection runs longer so much so that the sequence counter is wrapped around, the SA is dropped and a new SA is generated by IKE for that connection, so it won’t let an SA have two packets with the same sequence number.

	The processing is done as per the mutual agreement for each of the packets now.

In short, IKE does the handshake part and IPsec does the security protection part. Once installed, IPsec provides security protection to any connection.

19.10 IPsec transport and tunnel modes

We have introduced transport and tunnel modes earlier. Now, let us learn how IPsec deploys both modes. Let us recap that the tunnel mode provides header protection unlike the transport mode and thus provides traffic confidentiality. The downside of the tunnel mode is that an additional header adds to the overhead.

19.10.1 Transport mode

In the transport mode, only the payload is protected and the header is left alone. That means the IP header of the packet is seen by the routers as well as attackers. The content part, including the TCP or UDP header and application-level part, is encrypted. A diligent reader might pose a question, why the bare header is provided to the router as well as any onlooker? Can’t we encrypt? The point is routers cannot process encrypted header. They read the header information to decide the fate of the packet; for example, the route that the packet should take and the next immediate destination for that packet. Another point, though it is not encrypted, is that they are included in calculating the authentication tag, so if they are modified in transit, the authentication tag reveals that. Great! Unfortunately, we can do that precisely but for two fields. There is a field known as Time To Live in IPv4 and Hop Count in IPv6 which every router changes. Accordingly, one more field is known as Checksum also varies. If the authentication tag is calculated based on its initial value, it won’t match with the receiver. That is why the authentication tag is calculated, including all header fields except these two fields (known as mutable fields).

Also, note that IPv4 and IPv6 packets are processed differently as both formats differ a lot. We will learn about the difference later in this chapter. It is important to reiterate that the transport mode does not hinder the routing process and it has less overhead than the tunnel mode, but traffic confidentiality is not provided.

It is important to know that the transport mode is quite useful for remote access to the network. The sender generates its packet, processes it, and sends it to the company router. The company router processes, checks the authenticity, decrypts the content based on the header information, and sends the plain packet to the destination. You can see that the onlooker, though can see who the sender and receiver are, cannot learn what the content is.

19.10.2 Tunnel mode

In the tunnel mode, unlike the transport mode, the complete packet, including the header and the content, are all encrypted. The encrypted packet is encapsulated inside a new packet and sent over. The new packet has a new header. The old packet, with additional security header, becomes the payload for this new packet. When the intermediary routers examine this new packet traveling down its route, they only look at the outer packet’s headers and the original packet’s headers, along with its content, are not seen by either routers or any onlookers. This process is called IP-in-IP encapsulation or Tunneling.

As the tunnel mode encrypts the entire packet, there is no possibility of any traffic analysis. Let us try to understand. Consider two networks; one is a company network and another is a bank network. There are two routers; one of the company network, and let us call it CR, and the other one is the bank network, so let us call it BR. It deploys the IPsec tunneling for every traffic between these two routers. Now, every packet intermediary routers examine, that is, if the outer packet bears the sender’s address as BR and receiver’s address as CR or vice versa. If a manager deposits a big amount in some other company’s account or an employee checks whether the salary deposited in his account; both look alike to the onlooker. These things are hidden in the new packet’s payload at the sender’s router and only when the receiving router de-tunnels those packets and removes the outer part, the actual sender and destination addresses are learned.

19.11 Deploying the security policy

For any network, admins have some idea about what to allow and what not to allow. When they specify that in some form, it is known as security policy. Security policy is needed for any security solution because based on the policy the defense is designed. In the case of IPsec, the admin policy is based on what is available at the network layer, for example, the IP address of both the sender and the receiver. So one simple example of the IPsec policy is allow packets bearding X IP address as a sender and processes it in a fashion as described and disallows any packet with Y IP address as a sender. The policy describes and uses other fields of the IP header as well as the headers of TCP or UDP as well in most of the cases. In other words, the security policy contains a collection of rules which govern how each packet is to be processed by the IPsec. Please also note that each packet, irrespective of the application it belongs to, is processed as per the policy.

Kindly note that the process commences when the connection is being established. The IKE is invited to deploy a security association for this connection based on the admin’s inputs. The deployment of the policy demands two separate databases: the Security Policy Database and Security Association Database. We will learn about both of them in detail soon. Before we embark on that discussion, let us have some understanding of the word Security Association in the context of IPsec.

19.11.1 Security associations

Security association, in the context of IPsec, is a collection of algorithms for protection like AES-128 and RSA-PSS, as well as other parameters like the length of the key, size of the block, etc. SA is one-way which means it decides the fate of either incoming or outgoing packets. If both types of packets need processing, we need to have two SAs, one for each direction. Even when both directions needs the same processing, we need two similar SAs: one for incoming and the other one for outgoing packets. The SA for outgoing packets is known as outbound SA while the SA for incoming packets is known as inbound SA.

In other words, SA provides defined security services to packets flowing in inbound or outbound direction. The word defined has a typical meaning. Every SA describes a different security service. What exactly an SA does is described in a security association database. The index of that database is known as SPI or Security Parameter Index. We have multiple entries in that database describing different SAs with different security schemes. For example, the first entry might indicate encryption by AES, using the key length of 128 bit and block length of 128 bit, authentication by RSA-PSS and SHA-256, and more. The second might indicate encryption by ECC, 256-bit key and block length of 128 bit, authentication by ECDSA, and more.

It is important to learn that a connection is different than an SA. It is possible that a single connection demands multiple SA processing. We will learn about the two most used cases at the end of the chapter where multiple SAs need to be combined. It is also possible that multiple connections use the same SA. This happens when more than one connection uses the same type of security. For example, a packet going to Server X might observe the same level of security as another packet going to Server Y. In that case, both this connection use the same SA.

A typical security association might also have either AH or ESP processing. It is quite possible that for a typical destination, the AH process is different than ESP. That means a typical destination with AH demands different SA than the same destination with ESP.

In other words, in the context of IPsec, a connection is identified by a three value tuple, SPI + destination address + AH or ESP processing.

An administrator might impose a policy where a packet needs to be processed by more than one SA. We will soon learn how and when such a combination of SA is required. The point is one policy may demand the packet to be processed with more than one SAs. The complete process is described as follows:

	The admin decides the security policy for a typical connection, decides one or more SAs to be applied accordingly.

	Security policy is inserted in the SPD (Security Policy Database) and SA, if not already inserted, inserted in SAD (Security Association Database).

	For every outgoing packet, IPsec determines which connection it belongs to first.

	The SPD entry for that connection is found out first. All SAs belong to that SPD are also located.

	Before that packet is ready to be dispatched, IPsec processes that packet applying SA or SAs. For example, it might encrypt the packet with AES-128-CBC, and authenticate using AES-CBC-CMAC-96.

	Once the processing is done, appropriate headers are added by IPsec.

	The packet is now dispatched along its path.

Step 3 is important. The sender, as well as the receiver, decides the fate of the packet only after learning which connection it belongs to. For the first packet of the sender, the SPD and SAD values are generated or decided. For the rest of them, they are searched and the outgoing packet is processed accordingly.

However, the receiver has more information and so it processes it differently. There is an entire IPsec header now available at the receiver. The receiver finds out what exactly it should do with the packet based on three values. The first is SPI which describes which SA needs to be applied to the incoming packet. The second is the destination IP address and the third is whether AH or ESP is applied to the packet. We have seen that AH (Authentication Header) and ESP (Encapsulating Security Payload) are two different types of operations defined for IPsec. Based on that information, the incoming packet is decrypted and/or authenticated.

Let us delve deeper and learn about SAD and SPD database fields. We will start with SAD.

19.11.2 SAD (Security Association Database)

Security Association Database (SAD) contains information about all SAs defined by IKE in a given system. The SAD contains SPI as the key field and a few other fields for other purposes. Let us learn about them.

	SPI: SPI is the first field, as we have already learned; it is an index that indicates the security processing to be done for this SA.

	Sequence number counter: Whenever a packet is sent, it is sent with a specific sequence number indicated by this field. This field is incremented after each packet sent, so the sequence number for every packet remains unique, and thus helps thwart replay attacks.

	Sequence counter overflow: The sequence number is a 4 byte (32 bit) field. If the connection takes a long time and sends many packets, it is quite possible that this sequence number field wraps around and the sequence number values are now repeated. Newer packets now will bear the sequence number of older packets already sent. This flag will be turned on when that happens; indicating that the sequence number counter is overflowing. A sender may decide not to have two packets with the same sequence number in a given SA to prevent replay attacks. In that case, when this flag is true, this SA is terminated. A new SA must be generated if this connection has to continue.

	Anti-Replay Window: This window help determines if the packet is a replay or an original. Annexure I describes the anti-replay window in more detail.

	AH information: This field describes the authentication algorithm for the AH header.

	ESP information: This field describes the ESP header related parameters. For example, encryption and authentication algorithms, key length, key lifetime, IV, and so on

	IPsec protocol mode: This will tell if the packet needs to be processed as a transport (where only the content is processed) or a tunnel (where the entire packet is processed and embedded in another new packet). There is a third wild card option that can allow the sender to decide which mode to choose on the fly.

	Path MTU: IPsec does not prefer the packet to be fragmented. So, Path MTU (Maximum Transferable Unit), a value that indicates the largest possible size of the packet along the path to a given destination, is specified. The sender, while using this SA, makes sure that the packet it generates remains within the limit specified by this field.

The key management goes hand in hand with the SA formation. IKE and IPsec use the same SPI value to indicate which key needs to be used for which connection. SPI alone cannot identify the connection as we have already seen, but SPI is the common factor between both the entities. The sender needs both, the chosen algorithms, and keys to complete its process.

It is possible to provide more flexibility in the system with the different sequences in which multiple SAs can be applied. For example, one can apply encryption and then authentication or exactly the opposite depending on his own needs.

After looking at the fields, now let us see how packets are being processed by SPD.

19.11.3 Security policy database

The security policy represents the admin’s viewpoint about the organizational security. It also represents the rules and regulations that admins expect all users of the organization to follow for keeping the organization’s important resources secure. Let us take an example, a very trivial example, to understand.

Assume that the organization has some interface X where the external data is going to arrive. The admin just wanted to establish that any traffic from any node 101.1.2.3 should be blocked. Simple! Let us see how that can be represented:

	Generate a filter that returns if the packet contains a source address as 101.1.2.3.

	Connect the drop action to that filter which means whenever a packet is identified by that filter, the action called drop is initiated. Call this rule 1.

	Create another rule which allows all traffic and adds that at the end. Call this rule 2.

In other words, both rules state that any packet coming from 101.1.1.1 should be dropped at this filter and all other packets are welcome on this filter! Simple! Isn’t it? You may be surprised at the third rule but please understand if we do not specify what we are planning to do with the packet which fails to meet the criteria, the default action, which is normally dropping the packet, will be executed.

The, however, simple preceding example conveys the following important points:

	The rule ordering is critical; the rule 2 cannot be placed in the beginning, otherwise, the rule 1, which is right now the first rule, will never be executed.

	Even this simple rule demands two SAs for two different rules.

It may be clear that for a normal case, it is quite possible that for one normal policy, there is a bundle of SAs to be executed. To fulfill this need, the IPsec designers have decided to provide two databases: SPD to store the policies while for each SA, there is another database, SAD. The policy database normally points to the first SA and also decides in which order other SAs are employed. Keeping the SA database separate helps when multiple policies use the same set of SAs or some SAs are used in more than one policy.

The purpose of SAD is to assess the inbound packet’s policy and associate the SA(s) to process the packet accordingly. SAD also helps in processing the outbound packet and determines the SAs to be applied on the packet and process the packet accordingly before sending it out.

Each SPD entry is associated with a single connection. The connection is identified by two endpoints. Each endpoint is a combination of the IP address of the machine and the port number indicates the communicating process. The connection also can be of two types: TCP or UDP so normally that is also specified while describing the connection.

For example, if we have two machines 101.2.3.4 and 202.4.6.8 communicating through processes running at port numbers 7000 and 8000, respectively over TCP, the connection is identified as (101.2.3.4, 7000, 202.4.6.8, 8000, TCP). That means this connection is identified as a tuple containing the following fields such as the sender’s IP address, sending process’s port number, receiver’s IP address, receiving process’s port number, and transport layer protocol. This value is used as an entry that identifies a typical connection in SPD.

19.11.4 Example: Selectors

Consider a very simple case of two networks N1 and N2 having their routers R1 and R2. R1 and R2 are connected directly as depicted in Figure 19.3. For simplicity, we consider this is the only connection R1 and R2 are engaged in. All nodes of N1 have addresses starting with 101.10 while all nodes of N2 have addresses starting with 202.10. Also, consider a typical entry in R1 that indicates that all communication emerging from N1 must be encrypted by AES-128 CBC and authenticated by GMAC SHA-2 96 bit. Assume that SA-12 handles that. A typical entry might be as follows:

(101.10/16, Any, Any, Any, Any, Any) → SA-12

This means that the packet with the source address starting from 101.10 (/16 indicates the first 16 bits of the IP address that is a network address which we are considering here), and any port number, any destination address, any destination port number, and either TCP or UDP, must be processed as per SA-12. The detailed step-by-step process is as follows:

	The packet’s source and the destination address is picked up.

	The transport layer header is poked into and both the sender and receiver port numbers are obtained as well.

	The protocol field in IPv4 and Next Header field in IPv6 is checked to learn about the transport layer protocol.

	Steps 1, 2, and 3 determine all selectors one needs for identifying a connection. Now, an entry in SPD for that connection is searched.

	It finds the SA value as 12, so now look at SAD to find out what SA 12 means, including the encryption and authentication algorithms and other details.

	The packet is now processed as per the specification of SA-12; a proper IPsec header is added and shown the door.

You can see how selectors are picked up and used to find the SA needed in processing the packet.

19.11.5 Applying SPD

Let us try to learn now, how SPD can be appliedon the packet for security processing.

[image:]

Figure 19.3: Networks 101.10/16 and 202.10/16, two security gateways SG1 and SG2 and some nodes in both networks

Consider two networks and 7 nodes (3 belonging to the first network N1 and 4 belonging to the second network N2 as depicted in figure 19.3.) A contrived SPD table for the router R1 is depicted in Figure 19.4.

The first column is an index, the table contains entries in inverse order, and the rule with index 1 is executed last. The second column indicates if the rule is for the inbound packet or outbound packet or both (any). The next five columns are selectors for the connection. 8th column indicates the SA to be applied, if there is an SA bundle to be applied, this is the first SA in sequence. The next column indicates the action to be performed on the matching packet. Two operations are most common; D means discard the packet and B means let the packet go without any processing; that is, bypass IPsec processing. If the packet demands processing, for our trivial example, we have considered three cases: one is IPsec where the R1 decides the IPsec operation (wild card mode), ESP-transport, or ESP-tunnel. The IPsec mode allows any one of the modes to be used for a given connection. A normal SAD table has quite a few additional entries but this is a simpler contrived example just to illustrate the process of policy application.

Now, let us concentrate on how the policies are applied. The table is always viewed and processed from the top for any packet. So, the topmost policy is looked at first and so on till the last policy, the 0th policy. You may notice that the 0th policy, in this case, is the default discard. So, if the packet does not fall in any category of policies that are defined by SAD, it will be discarded. Now, let us look at each one of the entries of this table and see what it means.

The policy number 9 which indicates that the web server is located at 101.10.1.1 can respond back something it received over port 80 (normal web servers receive requests on port 80, which they respond). When that happens, the IPsec processing using SA1 will be applied to it. Let us jump to policy number 2; it indicates no traffic allowed from that web server. Combining 9 and 2, it means, nothing other than web traffic will go out from that server. The policy number 8 indicates that a typical machine, 202.10.1.3 is not trusted so any traffic either going to or coming from is to be discarded.

[image:]

Figure 19.4: SPD table for SG1 of Figure 19.5 (Assuming 10 policy entries at SG1

Policy number 7 is outgoing traffic to port 80; a kind of indication that some node of R1’s network is communicating to any web server outside. You can see that the ESP transport protection is applied to that traffic using SA3. Similarly, policy 4 also indicates that outgoing traffic to a tomcat server (port 8080 indicates so); at node 202.10.1.1 is also to be protected using the ESP tunnel using SA5.

There are no AH entries in our case but it can be in the real case. Another interesting entry is the 5th policy. As the communication using the output port is 443, it is a TLS communication. There is no point in duplicating the effort by encrypting and authenticating it again, so it is bypassed. Similarly, IKE traffic indicated in Policy 6 and error reporting using ICMP denoted n policy 3 is also bypassed. Other than that the specified traffic is discarded as indicated by entries in 2 and 1.

In the actual table, a few additional columns are also present. For example, one column indicates that if policy sharing is allowed. When this flag is NO, no other connection with the same SA is allowed. That means the other connection, if everything else is the same, must have different encryption and authentication keys and IV values.

Kindly note a few things about the SPD table:

	The check for each packet must start from the topmost policy to either the matching policy or the last, that is, the default policy.

	As soon as the matching is found, the SA specified in the act is applied to the packet under consideration.

	The SPD table entry order is critically important. Any misjudgment about rule numbering results in a good packet being discarded or malicious packet passing through.

We are not going to look at an example of the SA table. However, let us learn about it in brief. The SAD entries are hashed and thus the typical SA mentioned in the SPD table is directly fetched and applied on the packet. How the packet is processed? Both incoming and outgoing lines have a typical module working on that part. Let us explore how incoming and outgoing packets are processed.

19.12 Traffic processing

The network layer of the TCP/IP stack implements IPsec where originally the IP used to run. The IPsec-based network layer does everything the IP used to do, plus provides IPsec-related processing.

Let us try to see how incoming and outgoing packets are processed by IPsec. Inbound and outbound packets demand different types of processing so we will have two different sections for both cases. Here, they are.

19.12.1 Inbound packet processing

Closely observe Figure 19.5. It depicts how the incoming packet is processed. Let us elaborate on the steps involved:

	From the packet’s header, the protocol field of IPv4 or the next header of IPv6 is checked. They contain information if the packet is secured. The protocol field value is 50 if it is IPsec security processed.

	IF the packet is not secured:

	It is a conventional IP packet and so we need to check selector values to see if any policy is associated with this type of packet.

	If the policy is to drop this packet, it is dropped.

	If the policy is to bypass this packet, the packet is sent as a normal IP packet.

	If the policy is to apply SA using IPsec, the receiver has no such entry so it needs to be dropped.

	Else (when the packet is secured) there are two possibilities:

	First, there is a SAD entry, and SA available to process that packet. If so, the packet is processed as per that SA or bundle of SAs. If decrypted and properly authenticated, the packet header is peeled off and the packet is sent up.

	Second, there is no SAD entry. The packet must be dropped if so.

[image:]

Figure 19.5: Inbound packet processing

19.12.2 Processing outgoing packets

The outgoing packets are processed as described in Figure 19.6. The processing starts with checking whether the packet matches with an SPD entry. The SPD entry decides the fate of the packet. If there is no SPD entry, the packet is discarded; if it has, it checks the action listed against this type of packet:

	If it is discarded, the packet needs to be dropped.

	If it is the bypass, the packet is sent to the data link layer for further processing, there is no IPsec processing for this packet.

	If the policy is IPsec, the packet must be sent for security processing.

You can see that there are two paths for secured packets in figure 19.6. One where the SA is already created, so the most used path is that where the packet is processed according to the SA and sent to the data link layer for sending it out. The other possibility is where it is the first packet of the connection, so there is no SA generated so far.

The following process is done when the packet has no corresponding SA entry in SAD:

	IPsec invites IKE to generate keys

	The SA entry is generated

Now, the SA entry is generated, and the packet is processed as follows, if the outgoing packet already has an entry, it will come directly here:

	The packet is encrypted and/or authenticated as per SA.

	The ESP header and trailer are calculated for this packet. Sometimes, when the receiver is an old legacy system and demands AH, AH header processing might be required.

	If multiple SAs need to be applied together, processing described in step 1 and 2 is carried out for all SAs that belong to that list.

	The packet is shown the door.

[image:]

Figure 19.6: Processing outbound packets

19.12.3 Difference between SAD and SPD

After discussing both the databases, let us learn about the difference between them:

	SPD is used for admins to insert their policies, so it is connected to the Admin console. Normally, admins have an interface connected to SPD which allows them to add, modify or remove entries, take backup and restore entries, and so on using that console.

	SAD entries are automatically created, based on requirements and preset values. Programmers write applications which in turn interact with SAD using an API which enables the applications to automatically process those entries.

	Both tables are stored and processed in a very different fashion, so they are kept as separate tables. For example, SPD tables’ entries are always in a typical order while SAD entries are indexed. API functions or commands which operate on SPD tables that deploy the linear search while API functions or commands operate on SAD that deploys the index-based search.

Now, when the idea of SPD and SAD is clear, it is time to look at the ESP format. We will not look at the AH format as it is being deprecated.

19.13 Encapsulating Security Payload (ESP)

The current version of IPsec defaults to the ESP mode. ESP by default provides both authentication as well as encryption. Deprecating AH is not provided unless there is a legacy system to communicate with. Let us remind ourselves why AH is being deprecated. AH only provides authentication which is not a normal choice for Security-For-All-packets kind of requirement at the admin level. If ever that is required, ESP can deploy it so AH is anyway a redundant solution.

Interestingly, encryption without authentication is also not usually a choice (although it is possible with ESP). We have already seen that it is possible to replace an encrypted content with another encrypted content to launch an attack. So, encryption only is vulnerable and not preferred.

Encryption and authentication together is the most common form and generally used. We have already seen that there are algorithms like GCC-GMAC which provide both the options by a single pass through the content. Such authenticated encryption algorithms are, thus, preferred here.

19.13.1 ESP operations

ESP provides three different operations on the packet:

	Authentication

	Encryption

	Message Integrity

As we have seen in the last section, authenticated encryption does all three things together. We have already learned that operations 1 and 3 are applied as a single operation without which either of them makes no sense. Though we keep on saying that authentication and encryption are applied to the complete data, there is a minor difference. Not everything that is authenticated is encrypted. There are some fields, for example, SPI, sequence number, and optional IV part, which are not encrypted. However, they are authenticated so the attacker cannot change them even if he can see them. They are not encrypted as the IPsec processing system demands using them. For example, SPI is used to determine SA to be applied and so the method to decrypt and authenticate the content is determined from that part. The decryption cannot begin if the IV information is not available, so it is also kept in plain form. The sequence number is used to determine if there is a replay attack.

The SPI value determines the SA and SA determines the operations to be performed on the packet. We have already seen that host-to-router type of connection is normally the transported mode while the router-to-router is normally tunneled. ESP processing, as it is available in both versions of IP, depends on whether the underlying protocol is IPv4 or IPv6. Let us try to elaborate on how packets are treated in both cases.

19.13.2 ESP in IPv4

IPv4 is a default IP protocol today, which is quickly being replaced by a new version, the IPv6. Both versions have many differences, including the packet format. ESP is possible to be applied in both cases. As both packet formats are different, the ESP processing differs accordingly. We will start with how ESP is processed for an IPv4 packet.

If you have some idea about networking you already know that the TCP/IP protocol stack demands transport layer content (called segment in networking parlance) inside the network layer content (called a packet in networking parlance). The ESP is inserted in between. That means the original design is as follows:

[IPv4_Header [TCP/UDP header…]].

After the insertion of ESP while deploying the transport mode, it becomes:

[IPv4_Header [ESP header [TCP/UDP header…]]].

In the preceding example, the transport mode is applied, and the IPv4_Header value is changed to indicate so. There is a field in the IPv4 packet called a protocol, which indicates the transport protocol that comes next. Now, when the transport protocol does not come next but ESP, the protocol value must change to indicate so. Not only that, but the ESP also has the next field as the transport layer protocol, so it must add that information. When the tunnel mode is deployed, the ESP header is added before the IPv4 header and a new IPv4 header is added, which is as follows:

[new IPv4_Header [ESP header [old IPv4 header [TCP/UDP header…]]]].

Even in this case, each of the headers must have the value of the protocol field set to indicate what is coming next. For example, the new IPv4 header should indicate the next content is ESP and the ESP should indicate that the next content is IPv4. Both types of ESP processing are described in the top part of Figure 19.7.

Look at the first line of Figure 19.7; it describes the conventional packet structure. The second line indicates for a transport mode, how ESP header is inserted in between the network and transport headers for transport mode processing. The third line shows the resultant packet after tunnel mode processing is done on the original packet.

19.13.3 ESP in IPv6

IPv6 uses a different format. Unlike IPv4, IPv6 has multiple IP headers, known as extension headers. There are two types of Extension headers, end-to-end and hop-by-hop. End-to-end headers is set by the sender and seen by the final recipient of that packet. The hop-by-hop headers is examined by intermediate routers. An IPv6 packet contains all hop-by-hop headers before the end-to-end headers. The ESP header comes exactly in between both these types of headers. It is treated just like another end-to-end extension header in IPv6.

[image:]

Figure 19.7: IPv4 and IPv6 ways to insert IPsec header in the protected packet

Figure 19.7 also describes how IPv6 processes both types of modes, transport, and tunnel. The IPv6 has a field called Next Header, which describes the transport layer protocol that comes next; the same job the protocol field does for IPv4. The previous extension header’s Next Header must be modified to indicate that the next header is not ESP and the ESP header itself must indicate the next immediate extension header. After the ESP header, all other extension heads are encrypted and all headers before the ESP header are unencrypted. Now, you can get the idea why hop-by-hop headers come before the ESP headers as they need to be processed by intermediary routers and thus must remain unencrypted. As the end-to-end extension headers are processed only at the receiver, there is no problem if they remained encrypted.

19.14 ESP header design

So far, we have mentioned ESP a few times; it is time to see it in detail now. In this section, we will see all the fields of an ESP header and learn about their usage. Interestingly, ESP also needs a trailer; let us see why.

Consider that the authentication tag needs to be sent with the data. Which is a good choice, sending it before (as a header) or after the data? Let us try to see. If we send it as a header, we must receive the content (from layers above, specifically from applications that demands security), we must store that content on receipt, process it for generating the authentication tag, send the tag first, and now send the stored content byte by byte. In this process, we need to store the content coming from the higher layer, we also need to process it twice, once for calculating the authentication tag and the second time while we are picking it up from the storage and sending it across. This two-pass processing of the content slows down the operation. If, on the contrary, we choose to add it at the end, we can process the incoming (from the upper layer and to be sent out) content for generating authentication tag, sending that content across at the same point in time, and once that data is over, sending the now-generated authentication tag as a trailer. The second option is much better; it does not demand storing the content, it processes the content only once (which is known as one pass solution), and does not slow down the operation. That is why fields like authentication tags are better to be part of the trailer rather than the header. A general rule is that whenever the value of a field needs to be calculated based on the content to be transmitted, it is better to be part of the trailer. One more such example is the checksum field of Ethernet which is calculated based on the content of the Ethernet frame to be transmitted. The checksum value is part of the trailer in the Ethernet frame because of that.

[image:]

Figure 19.8: ESP header, payload and trailer, encryption and authentication range

Figure 19.8 describes the ESP header, payload, and trailer field by field. The figure also indicates the set of fields that are authenticated and a set of fields that are encrypted. The fields which are authenticated but not encrypted are needed by intermediaries for processing the packet. However, as they are included in the calculation of the authentication tag, the intermediaries cannot modify them without the receiver learning about the modification. Let us learn about each field one after another now:

	SPI: We have mentioned SPI multiple times during our discussion on SPD and SAD. SPI is a pseudo-random number identifying a typical SA. SPI + source IP is used for identifying typical SA for an outgoing packet. SPI+ destination IP is used for identifying typical SA for an incoming packet.

	Sequence number: Whenever a sender sends a new packet over a typical SA, it inserts this value as the sequence number for that packet. This value is incremented after every packet sent. The receiver might or might not opt for an anti-replay service; however, this field will always be present in the ESP header. For every SA, we have a separate sequence number field and thus for every different SA, there is a different sequence number value which is incremented independent of other sequence numbers of other SAs.
For faster networks of today, the 32-bit sequence number is not adequate as it wraps around quite fast. Consider packets of 1500 bytes are being sent over a 100 Gbps line, the sequence number wraps around in almost 48 seconds. So, it is highly inappropriate to have a mere 32-bit sequence number for such connections.

 Extended Sequence Number (ESN) is a new option provided by IPsec v3. When this option is on, the sequence number value becomes a 64-bit entity, and now it takes quite a large amount of time for the even fastest possible connection to wrap around. Interestingly, the packet ESP header is not changed with this option and the sequence number value remains to be 32 bit. A 64-bit sequence number value is represented by only sending high order 32 bits to the receiver. The receiver keeps another 32 bit counter. As the receiver keeps tracking the value of sequence number coming in, it can change the lower order bit (i.e. increment the counter value) when the higher-order bit wraps around. That means this clever scheme enables the 32-bit sequence number field to carry a 64-bit sequence number value successfully.

	Payload: The transport layer content, which is protected (that is, encrypted and/or authenticated), is kept here. Additionally, if IV is used, or TFC (Traffic Flow Confidentiality) padding is used, those things are also included in the payload. Sometimes, nonce is used in the IPsec communication if so, the payload also holds it.
There are three reasons for having padding in IPsec. Let us learn about those three needs:

	Encryption with block ciphers demand the input in blocks of typical size, for example, AES demands the content to be in the exact multiple of 128 bits. If the payload is not an exact multiple of 128 bits, the appropriate number of bits is padded to make it so.

	When ESP is used, the next two fields such as the pad length and next header field, both must be aligned to a 32-bit boundary. If it is not, the appropriate number of bits is padded.

	Neither of the preceding thwarts TFA as the maximum number of bytes possible to be padded for the preceding two cases is 255 bytes only. A much larger number of padding bytes is required if TFA is needed. The TFC padding is designed for padding a much larger number of bits to confuse the onlooker. It is important to note that more such padding, more the overhead for this communication.

The first two types of padding demand the next field, padding, while for the third need, TFC padding, which is part of the payload, is used.

	Padding: This field is used for either of the first two types of padding and limited to a maximum of 255 bytes.

	Pad Length: This field indicates the number of bytes padded.

	Next Header: The data in the payload field, a TCP segment, or UDP datagram.

	Authentication Data: It is officially called Integrity Check Value (ICV) but the same as an authentication tag. It is a kind of digital signature.

After looking at the content of the ESP header, we will throw some more light on how the encryption and ICV calculation process is carried out in the next section.

19.15 Encryption and ICV calculation

The protection includes both encryptions as well as authentication. Encryption is applied to four fields. It includes complete payload (except for the IV part), padding, the pad length, and the next header. IV is excluded from encryption as the decryption demands using the same IV and if the IV itself is encrypted, the receiver cannot start the decryption process.

ICV is computed over ESP header, payload and trailer thus include fields that are not encrypted and provide protection against modification of those fields. The length of ICV is different for different MAC algorithms chosen and thus, it is considered a variable-length field. In IPsec, the ICV is calculated after encryption and thus the receiver checks the ICV value before decrypting the content. This design was chosen to enable the receiver to quickly check whether the received data is not modified during transit before decrypting it. In the backdrop of DOS (Denial of Service) attacks where useless content is sent in bulk to busy the receiver in fruitless activities, this design prevents the receiver to quickly discern unauthenticated contents and helps mitigate DOS attacks by avoiding unnecessary decryption.

Current solutions normally use multiple threads; one of them may start checking for ICV correctness while the other might start decrypting the content at the same time; so the overhead is reduced substantially. It is also normally done that one thread processes the content from the beginning of the ESP header while the other from the end, the trailer.

However, there is a downside as well. The ICV value itself is not encrypted. That means we need to use MAC with a secret key and hash function as we have studied in Chapter 7: Secure Hash Functions. The secret key needed is generated using a PRNG and shared using IKE.

19.16 Combining SAs

One of the major changes from older RFC to a newer one is to drop mandatory support for combining various SAs using SA Bundles and provide alternate mechanisms using SA and SPD entries. The SA Bundle is useful for combining SAs depending on some specific user requirements. We will not describe how that is done in more detail; however, a brief on why one needs to combine SAs is really needed. Let us take an example to understand:

[image:]

Figure 19.9: The outer SA-L-SG carrying inner SA-L-S till SG and from SM the inner packet with SA-L-S to S

Suppose a laptop L wants to communicate with a corporate server S. The corporate server S is part of a protected network with a security gateway SG. Additionally, the server S expects an end-to-end security for every connection. S expects the node to connect to it, acts as a sender, and itself as a receiver in an ESP transport communication. Thus, the node L must generate a transport ESP to connect to S. The trouble is the security gateway SG also demands security of its own. SG expects a tunneled connection from anybody connecting to it from outside. Now, how the laptop L gets connected to S in light of these conflicting requirements? Let us try to see how that can be managed.

The problem is a bit more complicated than one can think. It is quite possible that the server S demands a typical type of security, AES-128, CBC-CMAC, for example, while the SG demands quite a different type of security using ECC, ECCDSA-256, for example. The solution has to manage two different types of security, using two different types of SAs as well. Assume the first type of security is defined by SA named SA-L-S, while the second type of security is defined by SA named SA-L-SG.

	L needs to prepare a packet destined to S, ESP header and trailer inserted, and ICV calculated and appended at the end. This connection is transport connection so the IP header is kept outside the ESP header with the sender’s address as L and receiver’s address as S. This packet is designed based on security association SA-L-S.

	The packet is again inserted inside one more ESP header with sending the party as L and the receiving party as SG. This is to be tunneled so an additional IP header is constructed and the entire ESP part is encapsulated within. The first packet, now called the inner packet, becomes the payload of the new packet, called the outer packet. The new, outer packet is designed based on the security association SA-L-SG.

	The resultant packet contains two ESP headers, one outside and another inside, as well as two IP headers, one outside, and another inside.

	Now, this packet is sent to SG. SG processes the outer IP header, checks whether everything is fine as per the SA-L-SG, strips off the outer ESP, checks the ICV, and sends the inner packet to S.

	S receives a packet with the sender as L and receiver as S; also the packet contains an ESP header. The server S, now, can look at the ESP header and decrypt and check ICV to make sure about the authenticity of the packet as per SA-L-S.
If you carefully look at Figure 19.9, the communication over SA-L-S is depicted as a thick arrow, while communication over SA-L-SG as a cylinder with a thick outline. You can see that the outer packet communication is depicted as the cylinder while the inner packet communication is depicted as the thick arrow within.

Let us also try to see one more case. Assume a salesman communicating with an Area Manager. Both of them are using a type of laptop mentioned in the preceding example. Now, the situation is a bit different, the connection does not terminate in S but to another laptop. If the first laptop is L1 and second is L2 and L1 is connected to the security gateway SG1 and L2 is connected to security gateway SG2, we will have a situation depicted in figure 19.10. We will have two packets generated from the connection starts from L1: the first has sender L1 and receiver L2, the second has sender L1 and receiver SG1, each encapsulated in another in that order. When SG1 receives a packet destined for it, it takes out the inner packet where the sender is L1 and receiver is L2. The SG1 now constructs one more packet where SG1 is the sender and SG2 is receiver encapsulate an L1->L2 packet inside. Now, when SG2 receives a packet, it will have to remove headers to get L1->L2 packet. It adds a new ESP header and sends it across to L2. Once L2 receives the packet, it will have to remove the outer headers to get the L1-L2 packet.

[image:]

Figure 19.10: A case of two different laptops communicating with two security gateways in between. Multiple SAs need to be followed and applied to the content in the process

We can continue discussing how SAs can be combined taking different cases but you must have got the point by now. There are many headers to be added and removed and a lot of overhead for processing is also taking place. The process described above is known as an SA bundle (for obvious reasons) and was part of the IPsec original specification. Thus, the older IPsec used to work the way described earlier. The SA bundle was also named as nested security solutions.

The IPsecv3 insists on the appropriate configuration of the SPD and forwarding process to provide similar functionality. The process is quite complicated but generates less overhead. As this process is implementation-dependent and different for different cases, we would not be discussing it further.

19.16.1 Shortcomings of IPsec

Though IPsec is an end-to-end solution for all traffic that passes through the network with no application modification, there are some disadvantages of using IPsec. Let us summarize them as follows before concluding the chapter:

	It is bulkier than SSL-TLS and even application layer protocol as it requires explicit support from IKE.

	It only provides security at the network layer and better for an organization to the organizational type of security and not for others.

	It is better suited to be used with IPv6. Since the deployment of IPv6 is taking time, that hinders the usage of IPsec.

	IPsec adds overhead, especially when used in the tunnel mode. Though various compression algorithms are used to reduce overhead, it still exists.

With that note, we conclude this chapter.

Keywords

	Organization level control: The organization decides the amount and type of security to be applied to incoming and outgoing transmissions. Organizational control enables the organizations to have that type of security to all transmissions.

	AH: IPsec operation for only authenticating the data.

	ESP: Encapsulated Security Payload is an IPsec operation for encrypting as well as authenticating the data.

	IKE: Internet Key Exchange, a protocol which is separately needed by IPsec for key management. IKE is an application layer protocol.

	SPD: A database of security policies specified by the organization to be applied to incoming and outgoing traffic.

	SAD: A database of security associations that describe a typical set of security operations to be applied to a packet.

	SA: Security association describes a typical security operation.

	Transport mode: When security operation only applies to the content of the packet and not the header, the IPsec mode is known as a transport mode.

	Tunnel mode: When security operation applies to the complete content of the packet including the header, the IPsec mode is known as a transport mode. This packet is encapsulated into another normal packet and sent across after the security operations.

	ICV: Integrity Check Value, a kind of MAC used in IPsec.

Recapitulation

	IPsec is designed by IAB to provide security at the network layer; it was designed first for IPv6 and then incorporated into IPv4 standard.

	IPsec works in transport and tunnel modes, router-to-router communication using tunnel mode is the most common operation.

	IPsec provides organizational control to communicating packets, that is, providing consistent security to all packets irrespective of applications or users.

	IPsec demands additional application layer protocol as the network layer is connectionless; this adds a lot of overhead and IPsec is comparatively a bulky protocol.

	IPsec processes each incoming and outgoing packets based on SAD and SPD databases.

	The SAD is randomly accessed and SA is applied, once the SPD entry describes which policy is to be applied to that packet.

	ESP subsumes AH so AH is deprecated.

	Implementing IPsec for real-world demands a complex combination of different security associations.

Exercises

	Describe the need to protect the communication at the network layer

	Why IPsec demands an additional application layer protocol unlike application and transport layer secure solutions?

	The chapter contains some IPsec applications. Find one additional application from your side and write a short note on how IPsec can be applied to it.

	Differentiate between the transport and the tunnel mode operations of IPsec.

	Annexure I describes IKE protocol, read, and write a short note on IKE.

	Explain the need for SAD and SPD. Why we need two databases at IPsec?

	Write a sequence of steps to describe how IPsec processes incoming and outgoing packets

	How ESP provides authentication and encryption? Describe in detail.

	How IPv4 and IPv6 differ in the context of IPsec?

	List the ESP header contents and explain each one of them.

1 You probably now have understood that these are the requirements of almost any security solution.

CHAPTER 20

Wireless Security

Structure

Objectives

20.1 Introduction

20.2 A brief about 802.11

20.2.1 Ad hoc and infrastructure modes

20.2.2 Access Points and Service Primitives

20.3 Why wireless devices need higher security

20.3.1 Wireless Network issues

20.3.2 Countermeasures

20.4 Introduction 802.11i

20.5 Security services in Wi-Fi (802.11i)

20.6 802.11i phases of operation

20.6.1 Phase 1: Discovery

20.6.2 Phase 2: Authentication

20.6.3 Phase 3: Key management

20.6.4 Phase 4: Secure data transfer

20.6.5 Phase 5: Connection close

20.7 Discovery

20.7.1 Discovery process

20.8 Authentication phase

20.8.1 802.1X based access control

20.8.2 The authentication process

20.8.2.1 Connecting to AS

20.8.2.2 Authentication exchange

20.9 Key management

20.9.1 Initiation

20.9.2 Pairwise key generation

20.9.3 Group Master Key generation

20.9.4 Distributing pairwise key

20.9.5 Distributing group key

20.10 Secure data transfer

20.10.1 TKIP

20.10.2 CCMP

20.10.3 PRF used in 802.11i

20.10.4 Using PRF

20.11 WPA3

20.12 Wireless security for mobile phones

20.12.1 Security issues

20.12.2 Security concerns due to the wireless structure

20.12.2.1 Countermeasures: MDM

20.12.2.2 Countermeasures: Best practices

20.12.2.3 Countermeasures: Training

20.12.2.4 Countermeasures: Architecture

Keywords

Recapitulation

Exercises

Objectives

After studying this chapter, the reader should be able to:

	Judge the need for wireless security, Wireless Protected Access (WPA), and wireless security issues.

	Describe the 802.11 security structure, how encryption and authentication are made and keys are exchanged, and how different phases are executed.

	Narrate the 4-way-handshake, which is used by WPA pairwise key exchange and 2-way-handshake for the Group key exchange.

	Critic the process of discovery and the need for the 802.1X protocol for port-based access control and two-hop authentication exchange.

	Differentiate between older but still used TKIP-based protection, state-of-the-art WPA2-based protection and WPA3-based protection which is going to replace it soon.

	List security challenges in mobile phones and wireless networks in general and countermeasures to address them.

20.1 Introduction

Wireless networks are growing both in a number of nodes and sizes. Wireless networks have their own set of problems to handle. We will discuss one of the critical problems of wireless networks, which is security, in this chapter. Wireless security has become a dangerous part of LAN security in recent years as most LANs have a wireless segment. Many new technologies like services provided over the cloud, IoT, and mobile technologies, new trends like BYOD (Bring Your Own Device), and new technology solutions like MDM (Mobile Data Management) added many new dimensions of the world of wireless security.

One of the biggest security challenges of wireless networks lies in the ability of the adversary of attaching to the network from any place. The most attractive feature of the wireless network (can be accessed from anywhere in the range without really having physical connectivity) is also one of the most critical problems for security experts.

Wireless network signals reach everywhere in the given range. One does not need to connect to the network physically. In a wired network, if an attacker has to attach his machine, he requires physical access and a connection process (physical, including taking an IO cable and connecting it to an IO port on one side and computer on the other side). Unlike that, the wireless connection does not require this. For both processes, sending and receiving, a wireless machine can process without any physical connection. In a wired LAN, an administrator can physically secure the LAN by monitoring nodes which are physically connected and also provide stringent measures for physically connecting any device to the network (sometimes, even locking machines to those ports so that nobody can detach existing machines and connect new machines). Such a measure is impossible to provide in wireless LANs.

Thus, we need a better way to secure wireless networks than wired networks.

As 802.11 is the most pervasive type of wireless network, we will discuss that first.

20.2 A brief about 802.11

After the invention of notebook computers in the 1990s, several vendors started with wireless LANs of their own. Unfortunately, they were not compatible with each other. The vendors realized this problem and started pushing for standardization. The IEEE accepted the proposal and started working on it. When the wireless LAN standard was being proposed, Ethernet was very popular. The standardization committee thought it to be a better idea to model the wireless LAN standard on Ethernet itself. The most essential characteristic of Ethernet that is accepted in 802.11 is the connectionless architecture. The 802.11 standards started with the concept that whenever the sender transmits something, it will do so without establishing connections, and therefore, it does not have to terminate the connection at the end.

We will not discuss any technical details about 802.11 here. Our discussion that follows is based on the infrastructure mode where the Access Point (AP) is used as an intermediary for communicating between two client stations.

A standard is a statement that helps us learn what we need to interoperate. Thus, once a standard like 802.11 (a standard for wireless LANs) is adopted, all companies that manufacture wireless cards and access points start competing with each other to build products according to the 802.11 standards. Unfortunately, the standard provides a few choices for the manufacturer and does not describe when to use which choice and so on. Thus, vendors of wireless products based on 802.11 came out with their alliance to build standards for interoperability of 802.11 devices, which is popularly known as the Wi-Fi alliance. The Wi-Fi standard is different from the IEEE 802.11 standard but provides help manufacturers to build a product that is interoperable with other manufacturers.

802.11 operates in a few categories (a, b, g, n, ac), and two operational modes, namely, ad hoc and infrastructure mode. The category b network was first to be introduced and available in India. The second was category a, which is not available in India, and the third is g, which again is available. Category, a and g network, came later. Both b and g work in the range 2.4 GHz to 2.48GHz, which is an ISM band. The category 802.11g works in the range of 5GHz. 802.11b provided max 11MB throughput while a and g provide maximum of 54 Mb throughput. There is a Wi-Fi extension available for better multimedia transmission. 802.11n provides 600 MB while 802.11ac provides 1 GB bandwidth1. Wi-Fi alliance also is working on a wireless gigabit Alliance (WiGig). IEEE 802.11ad, which will work on a 60-GHz band, and is likely to provide speed of up to a whopping 7 GBps. The point is that the wireless technology is evolving pretty fast, so securing it becomes more of a concern.

20.2.1 Ad hoc and infrastructure modes

A wireless LAN can operate in two different ways. One way is to work with a central channel arbitrator known as the access point or AP for short. Here, no node transmits anything unless explicitly granted permission by the access point. The other mode is to talk to each other directly, without any intervention.

The first mode is known as the infrastructure mode, and the second mode is known as the ad hoc mode. Sometimes, the ad hoc mode is also referred to as distributed coordinated function (DCF) because the control is distributed among the nodes that communicate as well as control the network.

Similarly, the infrastructure mode is referred to as point coordinated function (PCF) because the nodes are coordinated by the access point.

For our discussion, we will only discuss the infrastructure mode as this is where the security of AP and the network comes into the picture. Unless a laptop wants to join a network, it does not require to use the infrastructure mode. This is not the case with the ad-hoc mode; the security is not needed, but any method that we have discussed earlier, for example, IPsec, can safely be used to provide adequate security for ad hoc communication between two laptops, which is not the case for the infrastructure mode. There are a few more direct communication solutions like Wi-Fi Direct, etc. that are available today, which follow similar practices that we have discussed in the previous two chapters.

While dealing with infrastructure mode communication, multiple parties such as Access Point and Authorization servers are involved, and it is not as simple as in the case of two parties that are talking to each other on mutually acceptable terms. The AP and AS must deploy the security policy based on the administrator’s instruction (and not based on what the sender and receiver wants; it is quite possible that both of them do not want the level of security that they have to work with, but their choice is not considered) and provide communication based on that. The point is how can any arbitrary sender and receiver of the wireless network be provided security based on the administrator’s policy by AP and Authentication Server? The word authentication server is not used in the same sense that we have used in Kerberos. The AS, in this case, actually does three things; all begin with a; Authentication, Authorization, and Accounting, and so at many places, it is also written as AAA (spoken as triple-A) server.

Before we embark on the precise method to provide security, let us understand few service primitives which are provided by the wireless network that allow wireless nodes to function.

20.2.2 Access points and service primitives

Access points send beacon frames periodically announcing their SSIDs (Service Set Identifier; it is a name of the network that appears on your laptop when you try looking for wireless networks around you) and MAC addresses. A mobile device continuously scans all the channels available in 802.11 networks to see if any AP is announcing these beacon frames on them. It is quite possible that more than one AP shows its presence when we start a mobile device.

A mobile device needs to execute an associate primitive to join a specific AP and thus the network associated with it. The association process is typical for the specific network that AP belongs to. The association process is usually followed by an authentication primitive. The user, whenever he/she chooses the SSID of that protected network, is asked to enter the password. The AP sends a challenge that the mobile device encrypts using the password given to it and sends it back. The AP, being aware of what it has sent and also the passwords entered by the user associated with that device, can always encrypt the challenge itself and compare the result. If the results match, it allows the machine to join the network, and only then it is allowed to proceed further. The 802.11i that we will study later will explain this process in more detail.

Access points, with authentication, can also specify the privacy mechanism, that is, the type of encryption to be used in the transmission. The standard supports AES for WPA2 or RC4 for WPA currently. WPA is an acronym for Wireless Protected Access this is known as privacy primitive being executed by the APs. In the later part of this chapter, we will study the state of the art WPA2 mechanism and look at the complete process used by wireless nodes to secure the communication.

Data transmission is the next primitive that APs support. In fact, this is the service for the users of wireless networks. To support data transmission between two endpoints separated across either wired or wireless networks, the system must support distribution primitive. Also, if the sender and the receiver are separated by some other network like Ethernet, there has to be a conversion mechanism in place to convert 802.11 frames to Ethernet and vice versa. This is known as integration primitive.

The connection to AP is possible to be done in two different ways. The protected mode operation requires authentication, whereas the unprotected mode does not. If a mobile device moves out of the AP’s area and joins some other AP, then the relocation primitive needs to be executed, which helps the mobile device to join the new AP. Similarly, when a mobile device goes out of the coverage area of an AP, it must execute the disassociate primitive to remove that device from the network. Even when a mobile device willingly (logging off) or unwillingly (switched off or drained off power) terminates the connection, the disassociation primitive must be executed. It removes all entries about that user from the AP’s memory. Usually, this primitive is executed by the mobile device, but it can also be executed by the APs when going down for maintenance or battery dipping for wireless APs. Table 20.1 illustrates the primitives and their order:

[image:]

Table 20.1

The primitives indicate how the network operates. Security is managed by two primitives: Authentication and Privacy. But before we see how 802.11i addresses them, let us see why wireless devices need a higher level of security.

20.3 Why wireless devices need higher security

Wireless devices are inherently less secure than wired devices. There are many techniques devised for wired networks, and whatever methods that we have discussed so far are to be used for wired networks as well as wireless networks. Anyways, wireless networks need a little more care for particular reasons.

Here is a list of some well-known reasons:

	Wireless is inherently a broadcast mechanism, and thus anyone in range can receive the signal irrespective of whether that device is authorized or not. A wired network requires an attacker to have access to an IO port to connect.

	As the wireless communication is open, they are more prone to jamming and eavesdropping.

	Wireless communication protocols are also found to be more vulnerable than wired protocols. Primarily for a reason that the bandwidth is scarce and the protocols are designed to optimize the bandwidth usage, ignoring security. We will not discuss the protocols used by wireless protocols here, but you may refer to many other books to learn more about them.

	Mobile devices are frequently moved out of secure network, connect to other insecure networks, and download contents not authorized by the network administrators. Many times, they also connect to the rest of the world by other connections than specified by the administrator (for example, connecting a laptop to the Internet using a mobile phone as a modem or using an Internet dongle). Thus, they bypass all security-based filtering imposed by administrators and thus are at a more significant risk of being compromised.

	Mobile devices usually have less memory as well as processing power, which makes them vulnerable to some denial-of-service attacks. When they use the network like MANet (Mobile Adhoc networks) (networks connected by random wireless devices communicating directly to each other) to communicate, many routing protocols used are susceptible to DOS attacks. This is not the case with wired networks as special-purpose routers are doing this job.

	Mobile operating systems, like Android, are found vulnerable to many attacks. The design of the OS as well as the way new apps are allowed to be installed has many loopholes attackers are taking benefit of. Other mobile operating systems, especially iOS, are much better as apps are tested quite elaborately before allowed to upload to the store.

	Typical types of mobile devices, for example, laptops used for presentation, mobile phones used for the official purpose are kept in the office drawers when not in use, IoT devices which are installed at various locations (for example CCTV cameras, or surveillance devices, sensors for habitat monitoring, and many more.) are often kept where nobody is monitoring them physically, and an attacker can have physical access to those devices. It is possible to execute many things, including physical tempering, render device useless (detach CCTV cables, for example), replace the device by another device, etc. In some cases, wireless printers are hacked to get a copy of the confidential file sent for printing. Most devices like IMD (implantable medical devices) are not using any dangerous method for securing their operations while this is being written. There are many solutions proposed, but none is foolproof. An interesting problem with IMDs is that in the case of emergency (for example, patient meeting with an accident) if the doctor is not available, the patient’s data must be read by any third party. Even when IMDs are designed to provide only secure access to patient’s data to the doctor only after due authentication, there has to be a system that bypasses all these processes during an emergency. It is easy for attackers to generate a fake emergency call to get access to the IMD. Most IoT devices, including IMDs, are using proprietary protocols. It is harder to secure such third-party protocols which are not designed to keep security in mind. Most are designed only to provide the functionally that they are supposed to provide. So, sometimes even simple replay attacks are also possible on them. If there is one standard protocol, one can improve that by providing security extensions. Some researchers have tried in that direction too.

	Fake access points are also a widespread problem. An attacker attaches rough access points in the organization to tap network traffic, and attackers propose their laptop as a free hot spot at public places to make sure the traffic routed through them and thus enable them to passively attack them.

20.3.1 Wireless Network issues

There are some typical characteristics of wireless networks apart from the fact that they act wirelessly and they are mobile. Such characteristics demand different treatments to manage them, including security issues. Here is one such list:

	The users sometimes get lost in the jungle of access points and inadvertently get connected to one that they do not want to. Such unintentional connection is usually caught when the network asks for credentials, but sometimes free networks do not do so.

	Users, when connected to rough access points, reveal information they should not. While using free hotspots, they send and receive information in plaintext, which might result in the simplest of passive attacks possible.

	When users connect to others in an ad-hoc manner, they share information using other devices like routers, many routing-related attacks, and attacks due to distributed processing are possible, which aren’t the case with wired networks. For example, a node claims to be a neighbor to another node you would like to reach may be quite far but uses a much higher power to fool others around. Any data sent to that node might not be forwarded, and the intended recipient never receives the data. This is called a sinkhole attack. Many similar attacks are possible due to the typical nature of such a network. We will not discuss those attacks here as most of them can be thwarted by using combinations of techniques that we have studied so far.

	Sometimes we find unconventional devices that can connect to the network, like bluetooth headsets, smart bulbs, sensors, etc. They pose challenges not seen before. For example, one typical smart bulb was found to be capable of helping hackers to learn about Wi-Fi passwords used in the network. Barcode and QR code readers, handheld devices, RFID tags, etc. send and receive data in a form that can be easily hacked.

	Many times, weak authentication mechanisms based on MAC addresses are used in wireless networks. Telephone Company’s networks use default weak passwords2. One of the author’s students surveyed some local company’s system for authentication as he found many loopholes in such a way that a hacker could enter into the system without having proper credentials.

	A typical set of attacks like denial of service, a man in the middle, or network injection is possible due to faulty architecture and weak protocols. A denial-of-service attack is about making a certain access point busy doing fruitless things so the legitimate node cannot have access to it. Man in the middle is about fooling parties, clients, and the AP, in believing that they are talking to each other while, in a real sense, an intermediary is present. That intermediary can launch an active or passive attack once it can successfully adjust himself in the middle. Network injection is about inserting bogus information mostly by sending fake control frames. If nothing else, network injection is capable of reducing the performance to a large extent.

Unless the network architecture and foolproof protocols are designed, wireless networks remain vulnerable.

20.3.2 Countermeasures

We have seen many problems which wireless devices and networks present. However, they are unavoidable. Thus, security experts all over the world are working on countermeasures to those threats. Some countermeasures are possible and used in wireless networks to thwart the attacker. Here is the list, however, by no means complete:

	Physical placement of access points is made in such a way that access to the wireless network outside the premises is not possible or very hard.

	Reduce power to the access point when needed to achieve the same effect, as mentioned in point 1. Thus, only legitimate machines can access it and not others.

	Name the SSID (Service Set Identifier) in such a way that it is hard for an attacker to get much information about the network.

	If possible, opt for not broadcasting the SSID and let the authorized user type it right to access. Such networks are displayed as hidden networks.

	It is possible to use focused antennas rather than the one that spreads the signal everywhere and using methods to shield signals from going out of the organization. Later versions like 802.11n and 802.11ac provide a higher bandwidth by using multiple antennas together, which are highly focused, so this requirement is not hard for an administrator to provide.

	Deploying and using IPsec or TLS as a must.

	Survey regularly to find out if any unauthorized user is attached to the system.

	Keep APs mounted high enough so that physical tempering is not easy, even if not wholly impossible.

	Use authentication for APs. One such method is based on 802.1X, which we are going to study later in the same chapter.

	Make sure all servers and AP are patched regularly, have an antivirus, firewall, IDS and IPS, OS components, database components, and other required software implemented with their latest version and without having any known bugs at least.

	All default passwords must be changed and SSIDs must change to something that can make sense for the user but not others.

	However, the poor MAC address-based authentication system is that you can augment that with all of the above to make it harder for an attacker to gain access to the system.

As mentioned earlier, keep a wireless network separated from the production network, at least by a single firewall, or better with more.

20.4 Introduction 802.11i

The protocol 802.11i is an amendment to the original protocol 802.11 implemented as Wi-Fi Protected Access-2 (WPA2). Before we start looking at WPA2, let us brief ourselves about two of the previous attempts.

The first security solution for the 802.11 networks is known WEP (Wired Equivalent Privacy). WEP was found to be insecure, so not used much. 802.11 in its default form contains a superficial Authentication and Privacy service, which is now replaced by a better solution. Both the WEP and AP service were replaced by WPA (Wireless Protected Access). Even WPA was found to have some problems which were addressed, and the Wi-Fi alliance implemented 802.11i as a response, and they called it WPA2. It is interesting to note that the WEP and WPA used RC4 Stream cipher, while WPA2 uses AES.

There are many installations that still use WPA. Its technical name is Temporal Key Integrity Protocol (TKIP). WPA requires a smooth upgrade process from the older version. It can be implemented using a firmware upgrade, which does not demand hardware change. WPA2 is sometimes denoted as a full specification or full 802.11i specification. The technical name of WPA2 is a Robust Security Network (RSN). At the time of this writing, WPA2 with RSN is in fashion; however, WPA3 is already out and not in use yet. WPA2 contains AES as an encryption algorithm. Implementing AES on old wireless cards weren’t possible like WPA’s RC4. Thus, those administrators who do not want to upgrade their hardware (wireless cards), still use TKIP or WPA. Those who can afford used WPA2. Most of the current machines, by default, have wireless cards so they can use WPA2. Interestingly, WPA2 is also backward compatible and can manage WPA clients using TKIP key exchange, which does not use AES, and thus old hardware can be accepted.

WPA2 or RSN includes two critical amendments. First is a 4-way handshake protocol for exchanging shared secret keys between AP and a client and a Group Key Exchange for multitasking communication originating from the AP. It is also important to note that the 802.11 infrastructure mode, no two nodes can communicate directly. The sender client always communicates to an access point, and the access point relays the communication to the receiver. Thus, the communication happens in two hops. Both hops can and sometimes use different security solutions. Thus, the Sender to AP may use X while the AP to the receiver might use the Y security solution. 802.11i communication also takes help from the IEEE 802.1X protocol for port access control and authentication services for exchanging cryptographic keys. Every communication over the network happens via accessing ports that connect to the network. 802.1X provides means for accessing those ports only after due authentication. Thus, when a node initiates the communication, it is not in the authenticated state. It can only access ports which can lead to the AS and not others. Only when it passes through the authentication phase successfully, the switch allows the communication from that node over other ports, and the node can access other ports now on.

The idea behind this RSN is only to allow robust security network associations for pairs of machines to communicate securely. The standard mandates the CCMP (explained later) for cryptographic processing and recommends TKIP for backward compatibility. Both are discussed later.

Interestingly, WPA3, which is out after 14 years of WPA2, recently in 2018, is much different than WPA2; we will describe the difference at the end of this chapter. During the discussion henceforth, we will consider WPA2 only.

20.5 Security services in Wi-Fi (802.11i)

As we have already seen with other secure solutions, essential requirements for security include authentication, encryption, and related services like a key exchange. 802.11i is no exception. We will discuss those services here. An important point to note here is that the security in Wi-Fi LANs is divided into two steps: sender to AP and AP to the receiver. When the sender sends anything, the encryption and signature, etc. are performed as per its negotiation with the access point. Once the frame reaches the access point, the security applied is based on the receiver-AS negotiation. Thus, when the sender sends a message, it might be encrypted based on AES-128 till it reaches access point as it is negotiated between them. Once it reaches the access point, during the journey to the receiver, the message might be sent in plain as it is negotiated by the receiver with the access point.

	Encryption: The message is encrypted with the encryption algorithm decided earlier. Some algorithms used are RC4, ACM with Counter, CCM (Counter mode with Cypher block chaining with Message authentication code), and more.

	Authentication: Authentication is provided by a digital signature. It is either HMAC-SHA1-based or TKIP (both not recommended now) or CCM-MAC-based. The authentication process achieves data origin authentication plus data integrity but not user-level authentication. Replay protection is also provided here.

	Access Control: The 802.11i also takes the help of 802.1X port-based access control. That means only allowed ports can access the information in the form required. The idea is to allow the node to access other ports only after due authentication.

	Key generation and exchange: Elaborate mechanisms for key generation and exchange are provided in 802.11i.

When the node needs to be connected to the 802.11 networks securely, it has to pass through five different phases. The next section describes the phases one after another.

20.6 802.11i phases of operation

There are five different phases of operation in 802.11i security processing. They include the discovery of the access point, use a due process for authenticating with it, generate and exchange keys with AP, does the secure data transfer before closing. We will briefly discuss each phase in this section. We will look at each phase in more detail after that:

20.6.1 Phase 1: Discovery

In this phase, a node discovers the AP, and the AP also can announce its presence. The AP sends messages known as Beacon to announce its presence, and the node sends a message called Probe to invite a response from APs in range. The node responds to Beacon, and the AP responds with Probe Response in respective cases. The node identifies the AP to connect to and exchange security parameters like algorithm, etc. The AP presents the choices available, and the node responds with one that it chooses to use for subsequent communication to complete the discovery phase.

20.6.2 Phase 2: Authentication

In this phase, both the node and the AP prove their identity to each other. Until the authentication is successful, the traffic from the node does not go beyond AP except to AS. That is managed by a mechanism called port blocking. Interestingly, AP does not do any authentication itself. It passes all traffic to AS and relays the responses from AS to the node. As both parties are of different types, the protocol used to communicate between a node to an AP and the AP to the AS is different. Thus, AP does not the only relay but does more by converting data of one protocol into another.

20.6.3 Phase 3: Key management

In this phase, keys are generated as well as distributed to all parties involved, AP and clients. Pairwise secret keys are distributed between AP and a typical client pairs while group keys are distributed for AP to broadcast or multicast a secret message, and thus it is distributed to all connected clients. Unique keys for secure operations are generated and used in this phase. This distribution part only involves AP and node, and AS is not involved.

[image:]

Figure 20.1: Phases of 802.11i

20.6.4 Phase 4: Secure data transfer

The data transfer can begin now. This is between the node and some other node, via AP, called unicast communication or AP to multiple nodes, either multicast or broadcast traffic. The two-hop communication from a sender to a receiver node (unicast communication), involves two security operations. The security operations decided are applied during the journey from the node to AP. If the receiver also has communicated with and exchanged with AP earlier, the AP to the receiver security is applied as per their negotiation during the second hop. Thus, for the sender to AP, we have one security operation that is applied while AP to receiver, there is another operation that is applied.

20.6.5 Phase 5: Connection close

Both the parties involved learn about the willingness of the other party to close and follow the process to close the connection. There will not be any security operation on incoming and outgoing data now onwards.

Figure 20.1 describes the complete set of operations, including all five phases.

Let us look at each phase in more detail.

20.7 Discovery

The purpose of this phase is as follows:

	Both nodes and AP find each other.

	They exchange their security capabilities.

	They decide one that suits both.

	They make sure that exchanged security capabilities are used now onwards. They define a kind of security association that subsequent communication will be using.

There are three different types of traffic between a node and an AP:

	Unicast: From the node to AP or AP to node.

	Multicast: AP to a node only. AP sends some messages to nodes part of some group.

	Broadcast: AP to a node only. AP sends some messages to all nodes connected to it.

Out of these three classes, the unicast traffic is the only one where the node has some say. The other two traffics are originated and managed by AP only.

We will discuss the unicast traffic as follows. We will also briefly talk about multicast and broadcast traffic later. The first part of this is about security capability exchange, and the following things are decided:

	Confidentiality and integrity protocol for protecting the unicast traffic. Both parties exchange related algorithms and related parameters for both. Cipher suites (For example, AES-128-CCM) describe the complete set together. There are a few choices provided from one side, and another side decides one of them. It is possible to use WEP (Wired Equivalent Privacy, old and faulty method, only used when backward compatibility is a must), TKIP for machines which do not want to use WEP but cannot afford CCMP (Counter mode Cipher block chaining Message authentication code Protocol. We looked at CCM in Chapter 8: Message Authentication Using Mac), CCMP for modern machines capable of providing AES and other methods which vendor might provide technically, but in most cases WEP is not used, and vendor-defined methods are also used seldom.

	Authentication and key management (AKM) also come as a suite. This suit describes how each communicating party mutually authenticates each other. There are two methods used usually. This suit describes how the pre-master key is decided if the first option is chosen. The admin installs the key on both AP as well as the node which he wishes to be part of the network (Pre-master is also known as root key). Another option is to use a protocol based on IEEE 802.1X for the manual exchange of shared keys. Some vendor-specific non-standard methods can also possibly be used.

Once these two components are executed; RSNA (RSN Association) is said to have been established. It is a logical association over which secure communication takes place. Both entities store the security association information. This information is stored in a data structure known as RSN-IE (Information Element).

20.7.1 Discovery process

The discovery process happens in the following three steps:

	In the first step, the node, which wants to be part of a typical network, must find the AP belonging to that network to which it wants to communicate. Every AP broadcasts its security capabilities to every node, connected or not, in the range and waits for the response. Every AP, when broadcasts a beacon, also includes RSN IE, so security-related information like a list of cipher suites acceptable and so on is available to the receiver. The response from the node includes one of the chosen options.
For this first step to take place, another option is also possible. A node also has the option to send the probe request for all APs in the vicinity to respond. The probe response from the AP contains the same information with RSN-IE. In short, a wireless node might learn about all APs in two different ways. It might sit silent and listen to all beacons on every channel3. Another way is to send a probe request on all available channels to see if there is an AP who responds with a probe response.

	The second step includes both nodes and the AP exchanges their identifiers. This is done with a plaintext. This exchange is known as open system authentication and is done purely to keep this process backward compatible, as this was an essential step for unprotected authentication exchange.

	The final step in this process is called the Association. This is where the security capabilities are exchanged and decided. The node sends an Association Request frame to AP. This frame contains information on one AKM suit (described later), one cipher suite (for both node and AP), and one group key cipher suite (explained later). The response from the node is based on choices sent by AP already. If there is no match from what AP is offering and what node is planning to use, AP refuses the association request. It is also within the prerogative of the node to reject any such request from AP if it suspects the AP to be rough AP or not trustworthy.

Once security capabilities are exchanged, the actual authentication process may begin. This is covered in an authentication phase in the next section.

20.8 Authentication phase

It is essential to have mutual authentication between the AP and the node once security capabilities are decided. The authentication phase is designed to provide steps to complete the mutual authentication process using the decided security exchange. At the end of that process, both parties have successfully authenticated each other and are ready for further processing.

20.8.1 802.1X based access control

A LAN can be accessed by connecting to a switch port or any other port connected to the LAN. Like other methods for authentication, IEEE has also provided a standard for accessing the LAN over the port. It is called a standard for providing LAN access control over ports, 802.1X, which 802.11i is using for authentication. 802.1X is also known as port-based access control. Using 802.1X, an administrator can design to open or close network ports based on whether the authentication is successful or not and thus control the access to the network. To provide port-based access control, a protocol is known as EAP (Extensible Authentication Protocol) is used. A wireless node is known as a supplicant4, AP is known as an authenticator, and the authentication server is known as an AS. The protocol is about how these three parties involved a process play their role for secure authentication to take place. The AS is usually in the wired part connected to AP by a wired connection. Sometimes, AS is connected wirelessly or sometimes AS is a module running in AP. However, our discussion that follows does not differ in those cases. The communication between AP and AS be wired, wireless, or process to process won’t make the protocol different.

In the beginning, when the node is not authenticated, the only port open on AP is the one that connects to AS. Thus, the node can only communicate with AS and no other node of the network. The port connected to AS is known as an open port as it is open all the time. All other ports are blocked, so the node cannot send any command to any other node unless authenticated. All these ports are known as controlled ports. Thus, they are controlled by the protocol 802.1X in such a way that they are only available to clients who are properly authenticated and not otherwise. Also, out of the two types of wireless channels, namely data and control, the only control channel is available to the node before authentication, so it cannot send other than control frames. Only when the node is authenticated, the data port is opened, and AP starts forwarding nodes data to other nodes. However, data forwarding is still based on other restrictions imposed by the administrator. Open data ports do not allow any arbitrary traffic from any authenticated node. The traffic has to follow what the administrator has decided for authenticated nodes.

20.8.2 The authentication process

The process of authentication is divided into two parts. Connecting to AS is the first job. The process begins when the client connects to the AP and then to the AS and presents the secure connection request. In response, the AS sends back the frame indicating acceptance or otherwise in the second step. Let us have some more information on them.

20.8.2.1 Connecting to AS

The first step in the authentication phase begins with the client communicating to the AS for authentication. It sends the request to AP. AP sends back the acknowledgment of the request and then forwards the request to AS. The client must have an association with the AP before this step.

20.8.2.2 Authentication exchange

In this phase, an authentication exchange takes place. There are multiple options for authentication exchange. What we are discussing now is the most general case.

First, the client, communicates with AP using EAPOL (EAP over LAN) protocol, which uses EAP. Once AP receives that message, it communicates to AS using the RADIUS (Remote Authentication Dial-In User Service) protocol. Figure 20.2 explains the concept. Thus, a single communication from the client to AS is divided into two parts, and each part runs its protocol. The AP acts as an intermediary in this process:

[image:]

Figure 20.2: The communication protocols used for two-phase authentication process

The RADIUS is a ubiquitous protocol even in the wired world. Most ISPs use RADIUS for their clients to connect to them in an authenticated way. When a user sends a connection request to the ISP, usually the RADIUS server at the ISP, which authenticates the user. The same set up is generally used here. Another protocol called Diameter (RFC 6733) is also used (DIAMETER has extended RADIUS and thus is called DIAMETER to indicate that. DIAMETER is not an acronym). The diameter has quite a few additional features than RADIUS, so it is getting popular now, and the ISPs world over are switching over to it as this is being written. Anyway, our following discussion won’t change if the RADIUS protocol is replaced with Diameter. The RADIUS and Diameter servers do three jobs; Authentication, Authorization, and Accounting. The authentication process authenticates the user, the authorization part allows, disallows, or controls services based on the user’s authentication, service for which it is registered (for example 2G or 3G, or unlimited plan or 3G for first 1 GB and later 2G unlimited plan and so on) and system resources available. The accounting part manages the required accounting to bill the customer accordingly or change the service accordingly. For example, if the user’s 1 GB data pack consumes 1 GB before the deadline, the service must be degraded to 2G. If the user has chosen to be charged over the volume of usage (1 GB or 10 GB, and more.) or time of usage (28 days or one year, and more.), the accounting part starts billing the customer accordingly. That is why RADIUS or Diameter servers are also known as AAA servers. Those who have BSNL or Reliance or other routers installed at their home, use the router as AP, and the service provider provides a RADIUS server at their premises to authenticate the users logging in from those AP. When a user connects to such routers from an Ethernet port, the AP to AAA communication happens the same. There is no additional authentication for the client to AP in wired case. There are various frame formats used for different messages that are being exchanged during that process. They are discussed in the following discussion. A detailed description of all those frame types and field descriptions may be obtained from the NCST report, which describes the process.

[image:]

Figure 20.3: Authentication Exchange for remote AAA server authenticating a client through AP

Kindly note that the following exchange is just one of the possible ways of this exchange; there are other possibilities as well:

	The AP sends an EAP request-identity frame to the client when the client connects. For example, when you start your laptop and click on the name (or SSID) of the network, AP sends this.

	The client responds with the EAP/Response-identity frame. The frame must be sent to uncontrolled (open) port as the controlled ports are not open without authentication. On receipt, the AP encapsulates this frame in a RADIUS-access-request packet and uses RADIUS over the EAP protocol to send it to the RADIUS server.

	The server responds with the RADIUS-access-challenge packet. When AP receives it, it passes it to the client as an EAP-request packet.

	The client responds with an EAP-response packet. AP relays that packet to AS but encapsulating it in the RADIUS-access-request packet. The idea is to respond to the challenge posed by AS in a typical form. The response to the challenge is kept as one of the fields of this RADIUS-access-request packet.
(There may be multiple rounds of exchanges mentioned in steps 3 and 4, after which it goes to step 5).

	The server, if the responses seem correct, authenticates the client and grants access. The response is named the RADIUS-access-accept packet. AP sends the EAP-success frame back to the client. The control ports are still blocked. Only when the next phase, the key exchange, gets over, the control ports open up, and the user can access the network. All these steps are shown in figure 20.3.

	When the client is finished, it may send an optional EAPOL-Logoff message to restore the controlled port to an unauthenticated state, which is not shown in Figure 20.3. It is not the next immediate step after 5 but happens only at the end of the communication; that means after the data transfer is over.

20.9 Key management

The process begins with either a pre-shared key or an EAP exchange using 802.1X. In case 1, usually, the admin provides a password or pin to the AP and the device. In this option, PBKDF2 (Password-Based Key Derivation Function 2) is applied to the password (or pin value) to generate PSK. The second option requires an authentication server sitting at the other end via AP. The process, in that case, working over EAPOL (EAP over LAN), does the key exchange process in the first step, which we will see in more detail later.

Either option is chosen; this first step ensures the client station (referred to STA in IEEE literature) is authenticated with AP.

The second step is to generate a PMK (pairwise Master Key). For option 1, PSK is the PMK. For the second option, PMK is derived from some values provided by the AS, known as EAP parameters. Now onwards, the process only uses PMK irrespective of the option chosen.

20.9.1 Initiation

The wireless client is also known as a supplicant, and AP is also known as an authenticator. In standard literature, STA or station is also mentioned to indicate the client, AS, indicates the Authentication Server and AP as the Access Point. Sometimes, AS is also mentioned as an AAA server or authentication, authorization, and accounting server. Whatever naming convention is chosen, the process does not change, so our discussion won’t be affected.

Whenever there is a likelihood of malicious access points announce fake SSID, a scheme which does not disclose the PMK is needed, which is provided here. The process, which is also known as the handshake, is quite similar to operations that we have seen during our discussion about Kerberos, Chapter 15: User Authentication Using Kerberos. When each party sends the messages encrypted by PMK, only if the other party can successfully decrypt the message, it is confirmed to have that key and thus authenticated without sending the PMK over the line.

For security reasons, PMK are kept only for the session (that is when the client connects to the network using association until disconnects from the network using disassociation primitive). The PMK (like password-based key) is not used directly in the data encryption process. That is why the four-way handshake also generates another key called PTK (Pairwise transient key), for every communication. Thus, a different PTK is used for different communication. Thus, PTK acts like a session key. To generate PTK, a PRF is applied to a concatenated value of PMK, AP’s Nonce Anonce, STA(Client node) nonce Snonce, AP MAC address, and STA MAC address. The PRF is called by another function, which applies it multiple times to generate the key as long as asked for. Thus, one of the essential outcomes of a four-way handshake process is PTK, which is used for protecting unicast packet traffic. Four-way handshake also generates GTK (Group Temporal Key) for protecting multicast and broadcast traffic).

Thus, this is the phase where the keys are exchanged. For a client to AP communication, pairwise keys are generated while for another type of communication, where AP communicates to multiple clients using multicast, group keys are exchanged.

Let us begin with the pairwise keys exchange.

In this case, there are two alternatives that can be used. First, and the most common, is to use a typical user-defined-pin, which is a shared key5. This pin is installed when the device (the AS) is first installed at the user’s premises, and all clients are physically configured with this pin. The administrators keep that valued secret so they can initiate other devices into the network whenever they deem fit, but others cannot do so. The shared key, which is installed before the authentication can start (thus outside the purview of 802.11i), is known as a pre-shared key.

Another popular alternative is to exchange key during the EAP exchange. That key is known as the AAA key or master session key.

20.9.2 Pairwise key generation

Once the pre-shared key or master session key generation part gets over, the AP has a unique key to share with each of the clients. There are a few more keys derived from this unique key, which all is unique from others. That means each client has a unique bunch of keys for cryptographic functions, which it shares with the AP. Thus, AP contains as many such sets as several clients.

The pre-shared key (PSK) or master session key (MSK) is used to generate other keys, including pairwise keys. The process to generate them described as follows:

	If PSK is used, it is to be used as Pairwise Master Key (PMK) else if MSK is used, and if needed, PMK is derived by truncating MSK. Thus, PMK = PSK or PMK = trunc (MSK, size).

	PMK is used to generate a pairwise transient key (PTK). For every data transfer, a fresh PTK is generated. The process of generating PTK is described in a little more detail later.

	PTK is divided into five components for use; all of them are keys themselves; First three are in all cases, last two are only when TKIP is used:

	Control message authentication key: This key is used for data origin authentication as well as integrity testing. Whenever a client sends a control frame to AP for setting up the security parameters, this key is used for digitally signing them. This key is also known as EAP over LAN Key Configuration Key (EOL-KCK). It is 16 bytes in size.

	Control message encryption key: This key is used in encrypting other keys (for example, GTK) and some control information. This key is also of 16 bytes in size.

	Temporal key: This is the key to actual data traffic protection. As earlier keys, the size of this key is also of 16 bytes.

	Michael MIC Authenticator key (Tx): In TKIP, when AP sends data packets (not broadcast or multicast), this key is used to calculate MIC6.

	Michael MIC Authenticator key (Rx): When TKIP is in use, and a client sends a message to the AP, this key is used to calculate MIC.

When these keys are available, the pairwise key generation part is over, and the Group Master Key generation process starts, which we will discuss in the next session.

20.9.3 Group Master Key generation

Group keys are used when AP multicasts message to clients. The first key in the sequence is known as Group Master Key (GMK), from which Group Temporal Key (GTK) is generated. 802.11i does not specify how the GTK is generated, but the idea is to use some method that generates GTK, which looks quite similar to random values. GTK is derived from the AP’s key material, and the client is not considered here (as it is a key for communication where only the AP is sending to multiple clients). Once the GTK is generated, it is sent to all clients protecting them using the pairwise keys. GTKs are changed every time a device is disassociated. That will prevent the device to reconnect and start reading the communication without due authentication next time.

Like PTK, the GTK is also divided into three components, and the last two only used when TKIP is in use.

The GTK (32 bytes) is divided into three separate keys:

	The first and most important part isthe GTEK (Group Temporal Encryption Key) is 16 bytes, which are used to encrypt all multicast and broadcast data packets traffic from AP.

	Eight bytes of Michael MIC Authenticator Tx Key used to compute MIC on Multicast and Broadcast packets transmitted by AP.

	Eight bytes of Michael MIC Authenticator Rx Key currently unused as stations do not send multicast traffic.

Once both the types of keys are generated, it is crucial to distribute the pairwise keys, and then Group Wise keys, which happens one after another once this phase gets over.

20.9.4 Distributing pairwise key

How are the pairwise keys distributed to all clients during the authentication exchange? Here is the answer. There is a protocol known as a four-way handshake that does the job. In each step, it does exchange some values, generates keys to be used for encryption and digital signature (authentication), and securely complete everything.

Here are the steps:

	In the first step, the client generates Snonce (STA nonce) as nonce from its side; AP sends a message with its MAC address and a nonce known as Anonce (AP’s nonce). The client now has everything for it to construct the PTK, so it does. It generates PTK using Anonce, Snonce, AP’s, and client’s MAC addresses as well as the PMK.

	Now, the client sends a response with Snonce and its address to AP. AP generates PTK using Anonce, Snonce, AP’s, and client’s MAC addresses, as well as the PMK precisely like the client. Thus, the PTK garnetted at both ends is the same. This message from the client is authenticated and integrity checked by MIC (Message Integrity Code)7. It is essential to see that, like the Diffie-Hellman key exchange method, the key exchange process in this four-way handshake does not exchange key itself, but ingredients only and both parties generate the unique key themselves. The MIC, which was used for authentication, used the key KCK for digital signature.
KIM: This message authentication code is renamed as a message integrity code or MIC to differentiate it with the MAC address.

	Once the AP receives this message, it can generate the PTK and sends the first message again authenticated with MIC now.

	Now, the client acknowledges the message from AP; with MIC, though.8

20.9.5 Distributing a group key

Group key exchange is comparatively more straightforward. AP generates the GTK from GMK and distributes it to all clients using a two-message exchange as follows:

	AP sends the client only the essential message with GTK (encrypted by RC4 if TKIP is used or AES if CCMP is used), using KCK as the secret key, and MIC for authentication and integrity added at the end, to all client stations. MIC helps it not to be tempered.

	The client responds with acknowledgment, including MIC for data integrity and authentication to AP.

The process mentioned earlier is also known as Group Key Handshake sometimes. This is also called a two-way handshake as two messages are being exchanged.

GTK may be updated at a pre-set timer or when a device leaves the network. To handle the updating, 802.11i defines a Group Key Handshake that consists of a two-way handshake.

This key exchange confirms PMK ownership and existence check the cipher suite, which is exchanged and verifies it is working. The PTK derived during this handshake is used for protecting the data transfer that happens next. Group keys are exchanged before the secure data transfer can commence. That is the topic that we explore next.

20.10 Secure data transfer

Now, the data transfer can start. Older machines (which cannot upgrade to the hardware needed for AES) use TKIP, while most modern machines with required hardware use CCMP. TKIP does not require hardware change, and if the machine is using the WEP privacy mechanism, firmware or software upgrade is enough to run TKIP. WEP is an older method proven to provide inadequate security, so TKIP is a better solution for such systems. Later, systems with better hardware can use CCMP. As CCMP uses state of the art AES encryption, it demands hardware upgrade for older machines using WEP. Thus, CCMP, though better, a costly solution, and thus most admins prefer to use TKIP instead of such machines. For newer machines, CCMP is the default scheme. TKIP and CCMP both provide two services, message integrity, and confidentiality. We will discuss both of the schemes one after another.

20.10.1 TKIP

Message integrity in TKIP is provided using MIC, which uses an algorithm known as Michael. The MIC not only covers the data field but also includes both MAC addresses and key materials. TKIP generates a 64 bit MIC. Including MAC addresses helps to thwart attacks that an attacker tries from other places of the network and thus having different MAC addresses.

Data confidentiality is provided by encrypting the data plus MIC using RC4.

The keys used for both MIC and encryption are derived from TK. The TK’s 256-bit worth data is used to generate two 64-bit keys and a 128-bit chunk. One 64-bit key is used for authenticating the client to AP communication (Michael Authenticator Tx) while another is used for AP to client communication (Michael Authenticator Rx). The 128-bit chunk (the Temporal Key) is truncated for converting it into a key for the encryption process. That encryption is done by RC4.

To avoid replay attacks, a sequence number is also calculated for each frame and sent along with the data. This sequence number is named as TKIP Sequence Counter (TSC). Apart from replay attacks, TSC is also used in the encryption process to generate a different key for each transmission to make cryptanalysis more difficult. It is combined with session temporal key for transmission. Though the session TK is the same, the TSC is different for each transmission, and thus it generates a unique key every time.

20.10.2 CCMP

CCMP is used for new machines and thus a default choice. CCMP uses authenticated encryption and thus deploys ingenious scheme for providing both authentication and encryption using a single pass over the data. It picks up blocks of the message and uses a counter mode to encrypt with AES, at the same time, the same blocks are also used for calculating MIC using CBC-CMAC. We have looked at Counter mode in Chapter 6: Stream Cipher and Cipher Modes, while CMAC was discussed in Chapter 8: Message Authentication Using Mac. We have looked at AES in Chapter 12: Public Key Algorithms and RSA. Single AES key (128 bit) is used for both operations. The temporal key is the AES key in this process.

20.10.3 PRF used in 802.11i

We will complete our discussion about 802.11i by describing the PRF used in 802.11i. The PRF is used to generate a nonce, PTK, GTK, and other key materials. HMAC with SHA1 is used here.

The PRF takes four parameters such as a key, two strings, and the required length of the output. The process to generate output is as follows:

	The call is made as PRF (Key, FirstSring, SecondString, Length) with required values. We will soon see some examples to describe what they mean clearly.

	Counter = 0

	KeyMaterial = HMAC-SHA1(Key, FirstString || 0||SecondString|| Counter)

	Until the KeyMaterial with length more than Length is produced, do following

	Counter++;

	KeyMaterial = KeyMaterial || HMAC-SHA1(Key, FirstString || 0 ||SecondString|| Counter)

	Truncate KeyMaterial to Length.

	Return Length.

The process is quite straightforward. The HMAC produces 160-bit output based on the input. The next HMAC is produced by changing the counter value used in the input. It is appended with the earlier one. This process continues until the output longer than the required length is produced. As the output is incremented in multiples of 160 bits and the required length is not necessarily the multiples of it, it is quite likely that the final output is longer than the required length. Once such an output is produced, it is truncated to the required length.

20.10.4 Using PRF

The PRF is used in many places. Let us look at a few examples.

While calculating PTK, it calls PRF using a formula:

PRF (PMK, “Pairwise key expansion”, Client or AP address whichever is minimum || Client or server address whichever is maximum || Anonce or Snonce whichever is minimum || Anonce or Snonce whichever is maximum, 384)

You can see that the key input is PMK; the first string is ‘Pairwise key expansion’ while the third is a concatenation of minimum and maximum MAC addresses and minimum and maximum nonce values. The required key length is 384.

For generating a 256-bit nonce value, the PRF is called using:

PRF (Random, “Init Counter”, MAC || Current_Time, 256)

Here, it is assumed that the client or AP has the current network time known to them.

And GTK is generated using:

PRF (GMK, “Group key expansion”, MAC||Gnonce, 256)

You can see that in all preceding cases, the parent key is the first argument. A phrase or string related to the operation is the second argument, and the third argument involves some random value involved in that operation. The fourth argument is the length of the key material that we would like to have.

The process is more standardized recently with the introduction of PBKDF2. It is part of the PKCS (Public key cryptographic system) standard from RSA.

PBKDF2 uses the PRF, takes the input password or passes the phrase along with the salt value, and repeats the process multiple times to produce a key of the required length. Thus, the PRF call is now made by this function. The addition of salt value prevents the case when the attacker uses a pre-computed hash for known passwords to see if the password is the one that contains the hash. As the PRF, by default, uses SHA-1, this is a welcome move. Attackers generate a variety of known password values with their respective hashes in a table known as a rainbow table. It is possible to pick up the hash and get the password from that table. When the salt value is added before the generation of hash, it randomizes the process, and the cryptanalysis becomes very complicated9.

The key derivation function is called with five parameters; the first of them being the PRF:

Key = PBKDF2 (PRF, Password, Salt, c, Len)

PRF is the pseudo-random function that we have mentioned earlier, and the password is the earlier key from where these keys are to be derived, salt is decided based on the situation, and c indicates a minimum number of iterations desired and Len is the length of the key. Some of these values are passed when PRF is invoked. As discussed earlier, we have used the i value, which is nothing but salt.

In recent years, better key derivation functions are being proposed. One excellent example is Argon2, which has won a competition recently in 2015.

20.11 WPA3

In January 2018, the WI-FI alliance announced the extensions to WPA2 as well as WPA3 (Wireless Protected Access 3), the new standard for Wi-Fi security. WPA3 is not compatible directly, and it is not easy to switch over to WPA3 immediately, it is a better standard and likely to be accepted by industry in the next decade. Let us briefly talk about WPA3 differences with the WPA2 standard here:

	It uses 128-bit encryption in personal and 192-bit key in the enterprise mode. It can optionally provide the Commercial National Security Algorithm (CNSA), which is considered an extreme level of security suitable for security-sensitive networks like Defence.

	It enables a replacement for a pre-shared key using a Diffie-Hellman type key exchange, known as Simultaneous Authentication of Equals (SAE),which enables strangers to share a new secret key every time. All attacks based on a known shared key, especially while working with open networks, vanish when this is deployed.

	The SAE authentication eliminates the need to use the 4-way-handshake, which was found vulnerable due to implementation issues and thus makes it more secure.

	Another notable improvement is to eliminate the need to send the hash of the password in the open during the authentication exchange. When a user chooses a week password, a rainbow attack, which maps hash of known weak passwords to passwords, cannot be deployed now. In WPA2, a rainbow attack picks up the hash and determines the password based on the rainbow table.

	256-bit GCM and SHA-384-based authentication and ECC-based encryption will help much better security.

	A new mechanism to manage open Wi-Fi based on Opportunistic Wireless Encryption (OWE), defined in RFC 8110 to protect against passive attacks most open Wi-Fi networks vulnerable with.

	An enhancement to WPA2 mandates a periodic assessment of wireless devices connected to see if they are following best practices.

20.12 Wireless security for mobile phones

Not only wireless networks like Wi-Fi needs security, but current smartphones are also in need of secure operations. Many of the users use their mobile phones for transacting their monetary payments and receipts or even confidential communication. Designers have realized that need and started working on solving that problem for long. A few solutions were proposed. One was WAP, which was designed to use a lightweight version of HTML called WML (Wireless Markup Language) and a lighter version of TLS called WTLS (Wireless TLS). They are no longer in use, so we will not discuss them further here. In short, the current smartphones work precisely like the computers, run a full HTTP protocol, and can deploy the same set of solutions available for conventional computers, which we have already discussed in the last few chapters.

20.12.1 Security issues

Mobile devices have opened Pandora’s Box as long as security challenges are concerned. Older networks had threat issues that were quite static. The network periphery was fixed, and administrators usually deploy tight measures for making sure no unauthenticated an unauthorized program run inside the periphery. They used to control what can be installed on user’s devices, including operating systems, to the programs that the users are allowed to run. Any access crossing the periphery must pass through stringent checks imposed by administrators. The proliferation of mobile devices and their widespread use, even by the employees at the time of their working, has changed the scenario to a large extent.

There is a movement called BYOD. That means employees bring their devices at workplaces. When they do, users enjoy many benefits. For example, I might bring my laptop to the college and thus can work on everything that I am working on, including this book, which can be done consistently at home and the workplace. I can install what I need to without asking for permission and, in fact, choose the laptop that I want at the time of buying and not accept what my college offers me. Organizations are also happy that they need much less number of computers, and they are freed from the maintenance issues as well. They just provide the connectivity, and they can get the work done.

However, this situation, seemingly great for other parts of the organization, is a nightmare for security people. The users inadvertently install malicious apps; they access company data from the organization and carry it out in their smartphone disks, and as they have all control over their own set of apps, and they can try cracking passwords of other employees, access data they are not authorized to, and unconsciously use the insecure device, so hackers get a chance to enter into an organizational network by compromising their devices. One typical case is a simple virus scanning issue. If a user does not use a proper virus scanner and does not update his mobile’s virus scanner just because of massive mobile data operation, it becomes vulnerable to attack and once it is attacked while in the organization, an attacker can access the network through that device. The so-called periphery security is impossible to achieve now.

Another interesting phenomenon is the cloud. There are many free cloud services available to users, and as mobile phones have much lesser storage, users tend to copy their data to cloud rather than organizational servers so they can access that data from everywhere. However, user-friendly clouds are they present a severe security threat. Unlike organization servers, the clouds are accessible to others, and thus hackers have a chance to try their luck.

One more threat is also looming large, but we cannot strictly consider it to be a mobile threat is the threat imposed by IoT devices. IoT represents a tiny device with minimal processing power and memory. There are many serious attempts to use IoT devices for conventional system design. Google car is one such example. Implantable medical devices are other examples. The environmental survey, wildlife monitoring, habitat monitoring, civil construction stress assessment, vehicular networks, and many other areas are attended by IoT devices now. Having less memory and processing power throws more difficult challenges to designers. For example, while using public-key algorithms is common in other cases, even wireless nodes it is not feasible for many IoT devices due to the higher amount of computation it requires. Unlike wired, wireless, or mobile networks, IoT devices do not have any standard protocol for communication leave individualsecurity. The heterogeneity of the devices and the software that they introduces many additional hurdles for securing them. Unlike conventional computers, the users of IoT devices are much lesser known and are more likely to succumb to social engineering attacks. Unlike conventional computers where the security threat only happens in the cyber-world, IoT devices bring attacks to the real world. Some researchers have shown how they can increase insulin dosage for a diabetic patient by controlling the automatic insulin pump or manipulate the pacemaker for increasing or decreasing the heart beats of the patient. IoT, like mobile devices, is likely to become a discipline on its own.

Here is a list of changes that the security experts have to deal with:

	Large and varied types of mobile devices and their growing use: Today, even peons have smartphones. Many varieties of mobile devices, phones, laptops, tabs, and wireless peripherals are in vogue. In many cases, the employees are allowed to use their mobile devices in the organization. In most of those organizations, the administrators are either unaware of the dangers of such proposition or oblivious to the dangers. There is a solution called MDM; it is not without additional problems. MDM allows the administrators to control user’s devices remotely, makes sure only apps that are sanctioned by the admin is allowed to connect and uses network resources, and remotely uninstalls apps when the phone is feared to be lost.

	No strict network periphery: As mobile devices connect to the rest of the world using mobile data packs, they can easily bypass any network periphery security. For example, a user might send a mail using his mobile data pack through his ISP without being checked by the firewall. The user might access any server outside the organization that is not allowed. Also, it is possible to communicate to such devices without permission from the network administrator as the communication is coming directly and not through the periphery. In the real sense, when one allows BYOD, there is no periphery.

	Remote access to network resources: Even when BYOD is not encouraged or strictly monitored, customers and suppliers and other stakeholders expect that the company network is available to them on the go. The marketing team, for example, would like to access the network to show the customers what is the status of their order or display new products, and so on. Such connections demand people on the go ask for connections and access to network resources. That demands security policies and systems in place to entertain them but with due security processes.

	Harnessing social networking bring newer problems: Companies adopt newer ways to business by harnessing social networking and provide IT services over social networking platform. For example, customers can send their complaints about FB or WhatsApp such as insurance agents sending the photo of the accident and the vehicle conditions and other details over social networking media to the company. Using social media invite many additional security problems, compared to what one gets while using only one’s system in a small conventional office or home network, which is restricted to a small lot of users. Many organizations use SKYPE for their business conferences abroad. There is more possibility of recording such a chat than a proprietary solution confined to employees only.

	Google Drive, Microsoft OneDrive, and many such clouds offer free storage that users use. Unfortunately, there is no control over the place where the information is stored or how the information is access controlled. When physical servers restrict the employees for running typical applications, virtual servers might allow and thus add to problems of the people managing security.

So you can see that the attack surface for a modern network is much bigger than the conventional networks, though it offers many challenges, there is a silver line. We expect better standards and better security practices, and people with better security understanding will prevail in the market.

20.12.2 Security concerns due to wireless structure

When we are dealing with mobile security, we come across quite a few security threats that we do not encounter in wired networks. In most cases, the issue is because of two specific characteristics of the wireless devices, mobility, and connection from anywhere the signals are reaching. We will discuss some of the concerns as follows:

	Impossible to physically control data: It is hard and, most of the time, impossible to control the device owned by the user. Losing a mobile device due to being stolen may be more expensive in terms of the information it contains rather than the cost of the device today. In many targeted attacks, the mobile device of the victim is purposefully stolen to access confidential data. When users take the device outside the organization, it is also possible for an unauthorized person to get the data from that device in a fashion which the user is unaware of. Even when the user is not allowed to take the mobile system out of the premise, there are many ways in which he can carry that device to places like a canteen or some other place where some other employees who are not authorized to see that information can poke in. It is also possible for an adversary who is an insider to install spyware or similar software that can monitor the user’s actions on that mobile device. Whenever a security policy for mobile devices is devised, they invariably consider the possibility of the device being stolen or fallen into the wrong hands. FDE (Full Disk Encryption) methods are used for protecting the entire disk based on the encryption methods that we have studied so far. There are solutions that can remotely wipe off the content of a mobile device and so on. One of the crucial jobs of MDM is to provide such remote control of a mobile device.

	Limited or no control over mobile devices: The mobile devices used by employees which they bring to the office are not under the administrator’s control, and the best way to deal with them is to assume no protection provided to those devices. That means consider them malicious unless known to the contrary and block as many things as we can from such devices. Such assumptions are quite valid as these devices might send emails or files in an unencrypted form; users install apps without due care10 or without checking the access rights of the apps. Many even download apps from unknown sources. Such possibilities make such devices high-risk clients.

	Limited or no control over what the mobile device accesses: The production network (the network where the company’s regular processing is done) nodes are under restrictions from administrators and firewalls prevent those devices from accessing untrustworthy sites. They have to follow the guidelines for assessing the websites as well as using a standard service. For example, some organizations deploy a policy that personal email accounts are only accessible during lunch time or outside office hours for all nodes connected to the organizational network. An employee can use his device to skip such checks. When the employee accesses the organizational network from outside the premise, it is quite possible that the place where the employee accesses the network is not safe (for example, a cybercafé). If adequate measures are not taken (one measure is to use IPsec), the organizational network that may be accessible to attackers or an attacker can deploy a man in the middle attack. In the simplest case, a mobile device is quite likely to be susceptible to a passive attack where an attacker gathers what is being transmitted. In that case, a good security policy needs to assume that the network from where the mobile device is allowed to access the organizational network is not safe and take due measures. A few such measures are to use a two-factor authentication, provide end-to-end encryption, and use session control, and so on.

	Using apps from unknown sources: Users tend to download and use apps from unknown and untrustworthy sources. A good security policy is to make sure only authorized apps are allowed to access the organizational network. Many fingerprinting techniques are possible to be used to figure out if a malicious app is renamed as an official app or a Trojan horse is given an official app’s name.

	Automatic sync: Many smartphones automatically sync data like contacts, photos, and posts with cloud or other systems. For example, one of the default features of the Dropbox is to sync photos taken by the smart device to upload automatically to the user’s Dropbox account. Such a facility might unknowingly upload information that is not desired. For example, some organizations have restrictions on uploading photos of the premise. A user who takes a birthday party photo or another photo might, by accident, upload it to violate that policy. Sometimes, the data is also synced back to the mobile phone; one such example is contacted on the laptop. An attacker can misuse this feature to download malicious content over the mobile phone.

	Content can also be malicious: Not only apps, but the content can also be malicious. A malicious content may be obtained from other sources like the QR code which transfers control to a website. A malicious QR code might transfer the control to a malicious website.

	Tracking the user’s location: A mobile device can be used to track the user’s location using GPS. One can monitor the user’s behavior and get much personal information from his movement. For example, a user is visiting a cancer specialist regularly indicates he probably has that disease. Some of the users found cheating by their spouses and divorced. Some of the users are entirely monitored for a few days or weeks, and much personal information about them is revealed as well. For example, people have found out the type of food you like by looking at restaurants you visit or who are your friends or which are the movies that you like and which are the places that you prefer to visit and so on. For business people, it is possible to find if they met a competitor or a vendor or a client by monitoring both of their locations. It is possible to generate a complete map of the daily activities of a user.

Thus, wireless connectivity is a boon for people on the go but bane for security experts and admins.

20.12.2.1 Countermeasures: MDM

Keeping in mind the threats described in the previous section, there are a few countermeasures suggested by some security experts, which we will discuss now. Most believe that BYOD is something that is to be accepted and utilized rather than banned. Keeping in mind that now the employees are allowed to bring their device to the workplace, the IT policy of the organization must include measures for managing these devices. These measures are popularly known as Mobile Data Management. Some of the issues MDM is planning to address are as follows:

	Remote wipe: When a mobile device is feared to be lost or stolen, this feature should be able to wipe off data from the device remotely.

	Encryption: Whatever organizational data stored on the mobile device must be encrypted with the state-of-the-art encryption method, automatically.

	Auto-sync: The patches downloaded by corporate servers or anti-virus software, or the latest versions of organizational software to avoid attacks are auto-synced with the device.

	Remote control of the device: The organization’s IT department should have control over the apps which a mobile device can download or connect to a specific site. They should be able to do so remotely. Thus, they can control the device in a way that these devices have the software they want and apps that they endorse. One critically important thing is to disallow location services and keep them off.

	Secure communication: All communication must be encrypted and authenticated. The mobile device or server should not use any unencrypted or unauthenticated channel for communication. IPsec, VPN, or even TLS can be used.

	Prohibiting unwanted apps and content: Whenever an app is downloaded on the mobile device, it must be from trusted sources. No content which is not trusted is allowed to download.

Quite a few MDM solutions are available in the market, and it has opened an entirely new set of services for organizations.

20.12.2.2 Countermeasures: Best practices

Apart from MDM, which is an automated measure, users are given some guidelines about best practices. Here is a list of some of the best practices:

	Enable the system to lock if not used for a while. A user must provide some secure mechanism to unlock like fingerprint or a password.

	Do not store vital information on the mobile device; it has to store, use encryption.

	All possible content, email, content information, and so on should be stored in a way that an adversary who has physical access to the phone should not be able to get them. For that, either auto deletes the mails once read by the user or encrypted contents, etc. need to be used.

	If there are auto-complete features on the phone, they must be turned off. Thus, an adversary cannot get access to website or content without providing user names and passwords.

	Enable IPsec or TLS by default.

	Routinely install patches for OS and other apps and keep them up-to-date.

	Install and use anti-virus software. Install the MDM client and never disable it.

	Follow organizational policies for using the device; instruct all stakeholders’ especially higher management for following these guidelines:

	Do not carry devices to the place not permitted.

	Do not use the device where not permitted.

	Update antivirus and other mandatory software needed for work regularly.

	Do not auto-sync with open clouds or other websites or devices if the policy does not permit.

	If possible, provide a two-factor authentication scheme for the mobile device. Two-factor authentication is more secure than a conventional username-password method. If possible, one can use biometric measures, which are even better.

However necessary the preceding measures are they are not complete, and for a given case, a detailed policy must be designed, informed, and made mandate in the organization to mitigate the risk of attack. More importantly, there has to be a mechanism to provide business continuity after recovering from a disaster. For example, many companies recently were attacked by WannaCry ransomware. Those who take regular backups and following standard procedures can recover fast and restart their business operations with a minimum of complexity. We will not stress DRBC (Disaster Recovery and Business Continuity) point more in this text, but it is critically important for management, not only in wireless but in a wired world as well.

20.12.2.3 Countermeasures: Training

Users who are using their devices must be trained to use these devices securely. It has been observed that the best of the policies are rendered useless by careless and lazy employees, apart from those who are interested in doing so with malicious intent. Here is a list:

	They should be informed about the risks of not following the policy. They may be provided a negative incentive if need be, so they remain constrained.

	They should be informed about social engineering attacks. They should be given proper examples of such attacks and help them understand the consequences of such attacks.

	Training should also be given about how to use that device elsewhere if allowed to take it out of the organization. That must include simple measures to avoid theft and loss of the device.

The preceding list is not complete by any means; many other items may be added based on the organizational setup and requirements.

20.12.2.4 Countermeasures: Architecture

The network architecture should be designed to secure the network even when the mobile devices are compromised. One way to do so is to separate wired and wireless networks and provide an additional firewall in between. Once these two parts are separated, we can have stricter measures for the wireless part. The firewall between these two segments is also designed to predict and thwart attacks. IDS and IPS sensors must be placed accordingly so that any unwanted traffic can be caught.

If the organization does not allow the separation of two networks, it is better to have more stringent and transparent security policies for mobile devices.

Keywords

	Infrastructure mode: It is the mode where the nodes are connected through the AP.

	Service primitives: The services the AP provides to clients for wireless network operations.

	WPA or 802.11i: Wireless Protected Access is a security mechanism for wireless networks based on the 802.11 architecture.

	Discovery: The first phase of 802.11i, where a node finds a wireless network through an AP.

	802.1X: A port-based authentication method from IEEE used in wireless networks.

	PSK: Pre-shared key, a value provided at the time of installation to be used for authentication primarily in WPA2.

	PMK: Pairwise Master Key, which is derived from PSK and is used to generate a key to be used to generate a temporal key (PTK).

	PTK: Pairwise Temporal Key is the key used to generate key material for unicast messages.

	GMK: Group Master key is used to generate keys (GTKs) for transmitting multicast and broadcast messages.

	GTK: Group Temporal Key is used during the transmission of multicast and broadcast messages.

	MIC: Mobile Integrity Code; it is MAC but with a different name to distinguish it from Network MAC.

	CCMP: Counter CBC MAC Protocol.

	AKM: Authentication and Key Management.

	AAA: Authentication Authorization and Accounting.

	MDM: Mobile Data Management

Recapitulation

	The Wi-Fi infrastructure mode demands a unique security solution, which is provided by 802.11i as WPA2 currently and WPA3 shortly.

	Wireless devices are inherently an easy target for attackers, and so there are many countermeasures one needs to deploy for protecting the wireless networks.

	The WPA provides encryption, authentication, and key management as essential three functions to protect the 802.11 traffic from the user to AP and vice versa.

	802.1X mechanism is deployed by AP to provide port-based access control and authentication from a remote AS.

	Wireless devices, first of all, discover each other, generate and exchange keys for client-AP to communicate for unicast transmission and then from the AP to multiple clients for multicast or broadcast transmission.

	Mobile phones and other devices brought by employees introduces a typical security problem demanding unique solutions like MDM.

	The organization users must follow best practices of using wireless devices to make sure their organizational data remain protected.

Exercises

	Get more information about the 802.11 network and its extensions. Learn what the types of attacks possible on those networks are.

	What is the difference between the infrastructure and ad hoc mode? Why did we discuss only the infrastructure mode in this chapter?

	Explain why wireless devices need a higher level of security as compared to wired devices.

	Differentiate between WPA2 and WPA3 security parameters.

	Explain each phase of the 802.11i security process, in brief, describing their need.

	Explain how keys are managed in 802.11i. Differentiate between PMK and GMK.

	How is data transfer protected in 802.11i?

	Explain why wireless security for mobile phones has become critically important in the current era.

	What is the issue with the design of the wireless networks concerning securing them?

	Write the countermeasures for mobile device security issues.

1 Many times, the wireless bandwidth claimed is not what you get. There are two important things to note. First, the bandwidth is SHARED and thus distributed to all who are currently using it; and second, this value is achieved only when the device is quite near to the access point. When the device moves away from the access point, the available bandwidth is reduced drastically.

2 BSNL routers mostly are configured with the PIN value as the subscriber’s mobile number. In most cases, the subscribers do not bother to change. The router also has a capability to start and stop wireless services as and when need be, but again, most of the subscribers are either unaware of it or too lazy to deploy such stringent measures. So by default, it keeps all services open with weak passwords like the user’s phone number.

3 When we open our laptop and start, it does just that, probes all channels available and builds the database based on probe responses. Over the period of time, when new networks come in place, the APs send their beacon and our laptop learns that there is a new network and it is protected or open.

4 In the general case for 802.1X, any client is a supplicant and not only a wireless node. We will discuss a case where a wireless nodes are authenticated using 802.1X. 802.1X can be used to authenticate a switch or any other 802.1X compatible device which may be wired or wireless.

5 Those who use BSNL routers, probably know this.

6 MIC or Message Integrity Code is nothing but Message Authentication Code that we have seen earlier. MAC is renamed here to make sure reader do not confuse between Message Authentication Code and Medium Access Control. Wireless communication uses MAC addresses so this step is taken.

7 In some documents, the word MAIC is also used which indicates it is Message Authentication and Integrity Code to represent the same field

8 All messages are sent as EAPOL frames defined in 802.1X standard, and AP to AS communication is not specified clearly in the standard, but in most cases, RADIUS or DIAMETER servers are used and messages follow the pattern we discussed.

9 For example, older Unix systems use a Crypt function which used a 12 bit salt value, which demands total 4096 (212) tables for pre-computed values, one for each possible salt value of 12 bit. It is possible that an attacker might afford that level of disk space in current era. Now, Linux machines use the bCrypt function which uses 128 bit salt value, which requires total 2128 tables which are impossible to be generated in real time for any attacker.

10 One such example is a flashlight app. There are quite a few such apps available for free for android users which do more than what they claim to do. Some of them spy on our mobile phone usage and some others monitor on our web access pattern. They may use our calling or SMS feature to provide information to third party in an unauthorized way.

Index

Symbols

3DES 81

802.11i wireless network

about 632, 633

phases of operation 634

security services 633

802.11 wireless network

about 624, 625

access points 626

ad hoc mode 625

infrastructure mode 625

service primitives 626

αj implementation process 197, 198

A

abelian 145

abelian groups

reviewing 389

absorbing phase, sponge construction 233

Access Point (AP) 624

active attacks

about 23

denial of service 26, 27

forging message 26

masquerade 24

message modification 25

replay 24, 25

active intruder 45

adaptive chosen ciphertext attack (ACCA) 373, 374

additional delay 246

additive inverse 150

ad hoc mode 625

Advanced Encryption Standard (AES)

about 14, 304

advantages 309

architecture 309-311

characteristics 305, 306

implementation process 322-324

inverse operations 322

key expansion process 319

motivation 322-324

prerequisites 307-309

processing 312

process of initialization 313

advantages, counter mode

encryption and decryption 191

keystream, generating 191

keystream, pre-processing 191

parallel operations on blocks 190, 191

random access 190

secure 191

AEAD (Authenticated Encryption with Associated Data) 563

AES-CMAC 262

AES processing

about 312, 313

add round key operation 317

mix columns operation 315, 316

shift rows 315

substitute bytes 313, 314

AH (Authentication Header) 599

alert protocol design 558

algebraic operations, on polynomials

about 154

greatest common divisor, of two polynomials 158

polynomial rings 155

polynomials over GF(2) 157, 158

polynomials over GF(p) 156, 157

algebraic structure

about 145

binary operations 145

examples 145

groups 145

algebraic system 145

algebraic systems, with two binary operations

about 150

Field 152

Ring 150

a mod n 125

another block cipher 73

ANSI X9.17

about 342

properties 342

API, web security

using 552, 553

application layer security

about 551, 552

example 554

applications, cryptographic hash function

non-corruption of executables, confirming 240

objects, identifying 240

password hashing 240

proof-of-originality 240

Pseudo-Random Number Generators 240

associate primitive 626

assumptions, NIST documentation

consistency 334

scalability 334

uniformity 334

asymmetric key algorithms 74

asymmetric systems

working with 359-362

attacks

about 81

brute force attacks 82

computationally secure algorithm 91

cryptographic attacks 87

random attack 82

replay attack 85

attacks, on DS

about 282

attack on encryption algorithm 283

attacks based on information attacker has 283

attacks on hashing and signing function 283

attacks on key generation and distribution algorithms 283

attacks, on RSA

adaptive chosen ciphertext attack 373, 374

brute force 371

factoring attack 372

random faults attack 374, 375

timing analysis attack 372, 373

authenticated encryption

GHASH and GCTR functions, using 272

Authenticated Encryption with Associated Data (AEAD) 262

authentication 12

authentication and key management (AKM) 637

Authentication, Authorization, and Accounting (AAA) 626

authentication exchange

performing, HMAC used 425, 426

performing, KDC used 427-429

performing, public key used 430

authentication forwarding 455

authentication phase, 802.11i

802.1X based access control 638, 639

about 635, 638

authentication exchange 640-642

authentication process 639

connecting to AS 640

authentication primitive 626

authentication procedures, public key certificate

about 483, 484

one-way authentication 484, 485

three-way authentication 486, 487

two-way authentication 485, 486

authentication process, in Kerberos 440, 441

Authentication Servers (AS) 418, 437

authentication service exchange 456

authenticator 639, 643

availability 11

B

backward certificate 482

base-2 pseudo primes 119

base-a pseudo prime 119

basic constraints 494

Beacon 634

binary curve 393

binary operations

about 145

example 145

birthday attack 213, 247-249

birthday paradox 248

blended attacks 31

block ciphers

3DES 81

about 61, 73, 78, 79, 174

attacking, with non-cryptographic attacks 92

digital encryption standard (DES) 79, 80

versus, stream ciphers 177

block encryption process 79

Block i value 227

Blum Blum Shub (BBS) generator 336-338

brute force attack 19, 41, 58, 82

brute force estimation 306

BYOD (Bring Your Own Device) 623, 652

C

CA 431

Caesar cipher

about 46

breaking 47

captcha 27

Carmichael numbers 119

CCM (Counter with Cipher Block Chaining Message Authentication Code)

about 266

authenticated encryption 266, 267

working 267-269

CCMP 637

certificate lifecycle, PKI

certification 500

cross certification 502

initialization 500

key pair recovery 500, 501

key pair update 501

registration 499, 500

revocation request 501

Certificate Management Protocol. See CMP

Certificate Revocation List (CRL) 491

certificate_verify message 578

certification path constraints

basic constraints 494

name constraints 495

Certifying Authorities (CAs) 415

challenges and solutions, Kerberos

authentication token or ticket 448

authenticator, using 449

authorization 449

central server 447

flexibility 447

replay attack prevention 448, 449

secret dialog 447

security 446

server authentication, need for 452

short term keys, using 448

single point of failure, avoiding 447

TGS, need for 451

user-friendliness 450

ChangeCipherSpec message 571

Change Cipher Spec protocol design 558

Chi step function 238, 239

chosen-ciphertext attack 90

chosen-plaintext attack 90

chosen text attack 91

Cipher based MAC (CMAC)

about 262

working 262-265

cipher-based PRNG

using 339

working 340

Cipher Block Chaining (CBC) 181-183

cipher feedback mode 175, 183-186

cipher modes

about 180, 181

Cipher Block Chaining (CBC) 182

Electronic Codebook Mode (ECM) 181

ciphers

about 39

classic ciphers 39

modern ciphers 39

CipherSpec

using 576

cipher suite 576

ciphertext only problem 88, 89

ciphertext stealing 192, 199

classic ciphers

about 39

versus, modern ciphers 39, 40

clear signed data 538

client authentication and key exchange 578

CMP

operations 502, 503

Collision Search Method 398

Commercial National Security Algorithm (CNSA) 650

commutative group 145

commutative ring 151

Comodo 476

components, digital signature

key generation algorithm 281

signing algorithms 281

verifying algorithms 281

components, IPsec

authentication header (AH) 592

basic architecture 592

Encapsulating Security Payload (ESP) 592

encryption and authentication algorithms 593

key exchange 593

Security Policies 593

components, security architecture

security attack 18

security mechanisms 19

security services 19

composite numbers 101

compressed data 538

computationally secure algorithm 91, 92

confidentiality 10

confusion 77

congruences

about 111

examples 112

modular arithmetic 112

connections

about 560, 561

connection state

about 561, 562, 563

ClientWriteKey 564

client writes MAC secret 563

initialization vectors 564

sequence numbers 564

server and client random 563

server writes MAC secret 563

SeverWriteKey 563

constant polynomial 155

controlled ports 639

conventional security model 45

countermeasures, RSA

about 375

adaptive chosen ciphertext attack (ACCA) 376

factoring attack 375

random fault attack 376

timing analysis attack 376

countermeasures, wireless security

best practices 658

MDM 657

network architecture 659

training 659

counter mode

about 189

advantages 190

criminal organizations 17

CRL (Certificate Revocation List) 498

cryptanalysis

about 87

ciphertext only problem 88, 89

known plaintext problem 89

substitution cipher 88

transposition cipher 88

cryptanalytic attacks

about 20, 87

types 91

Cryptographically Strong Pseudo-Random Number Generator (CSPRNG) 341

cryptographic computations

about 579

HKDF 579

improvements in TLS v1.3 580

key block 579, 580

cryptographic hash function

about 207

applications 239, 240

characteristics 213-216

Cryptographic Message Syntax (CMS) 538

cryptographic operations 577

cryptographic services 538

cryptographic systems

attributes 73

cryptographic weaknesses 514

cryptography 44, 181

CSO (Chief Security Officers) 8

CTR_DRBG (Counter mode Deterministic Random Bit Generator)

about 343

functioning 344, 345

cyclic groups

about 148

power of element 148

D

DAA 265

data transmission primitive 627

data units

about 193

encrypting 198, 199

decryption 38

defined security service 597

denial of service attack 26

desirable properties, symmetric key algorithms 74, 75

deterministic polynomial time algorithm 124

deterministic primality algorithm 124

DH key exchange

about 382, 383

example 385, 386

man-in-the-middle attack 386-388

process 384, 385

dictionary attack 84

differential analysis 92

Diffie-Hellman key exchange. See DH key exchange

diffusion 78

digital encryption standard (DES)

about 14, 73, 79

overview 80

digital signature

about 280, 281

attacks 282

components 281

features 285

process, improving 300

schemes 286

services 281

Digital Signature Algorithm (DSA) 290

digital signature (DS) algorithms 281

digital signature schemes

DSA approach 294, 295

ECCDSA 292

El Gamal algorithm 286

mask generation function (MSG) 299

NIST-DSA 290

RSA-PSS 295

Schnorr algorithm 288

disassociate primitive 627

discovery phase, 802.11i

about 634

broadcast traffic 636

discovery process 637, 638

multicast traffic 636

purpose 636

unicast traffic 636

Discrete Logarithm of T 398

discrete logarithms

about 129, 382, 383

order of a modulo n 129, 130

order of an element 130

primitive roots modulo n 131, 132

properties 132-135

distributed coordinated function (DCF) 625

distribution primitive 627

divisibility

about 99

divisor 99

examples 99

factor 99

properties 99-101

division algorithm 105, 106

dlog 383

DNSSec 476

DOS (Denial of Service) 614

DRBC (Disaster Recovery and Business Continuity) 659

DSA approach 294, 295

DTLS (Datagram TLS) 554

E

EAP (Extensible Authentication Protocol) 639

EAP parameters 642

ECCDSA

about 292

initialization 292

key pair generation 292

proof of correctness 293

signature 292

verification 293

efficiency, improving

private key, using 370

public key, using 370, 371

Electronic Codebook Mode (ECM) 181

Electronic Data Interchange(EDI) 488

El Gammal algorithm

about 286

document, signing 287

initialization 286

keys, generating 287

proof of correctness 287, 288

signature, verifying 287

Elliptic Curve Cryptography (ECC)

about 388, 389, 399

elliptic curve encryption/decryption 401-403

key exchange, based on elliptic curves 400, 401

security 403

Elliptic Curve Discrete Logarithm Problem (ECDLP) 390, 397, 398

Elliptic Curves (EC)

about 388, 389

algebraic description of addition 393

EC, over real numbers 389, 390

elliptic curves over GF (2m) 397

geometry 390-392

prime curves over Zp 393-396

email 510

Encapsulating Security Payload (ESP)

about 608

authentication data 614

header design 611, 612

in IPv4 609, 610

in IPv6 610, 611

next header 614

operations 609

padding 614

pad length 614

payload 613

encryption

about 38

and ICV calculation 614

encryption location, key management

end-to-end encryption 413

link-level encryption 413

End Entity 496

end-to-end encryption 413, 414

Entropy 346

enveloped data 538

error handling 245

ESP header design

Extended Sequence Number (ESN) 613

sequence number 612, 613

SPI 612

Euclidean algorithm

about 106

example 106, 107

steps 107, 108

Euler’s phi function 116

Euler’s theorem

about 117

examples 117

verifying 117

Euler’s totient function

about 116

examples 116

Euler’s ϕ function 116

Evariste Galois 152

Exhaustive Search Method 398

exponentiation in modular arithmetic

about 125

properties 365, 366

extended Euclidean algorithm

about 108

example 108-111

extensions, in X.509 version 3

key and policy-related extensions 490

subject and issuer CA-related extensions 493

trust chain 490

F

FDE (Full Disk Encryption) 655

Feistel structure 73

Fermat primality test 118, 119

Fermat’s little theorem

about 114

examples 114

second form 115

verifying 115

Fields

about 152

Finite fields 152

Galois Field GF(p) 152

flags, Kerberos 5

forwardable flag 465, 466

forwarded flag 465, 466

HW-Authent flag 462

initial flag 460, 461

invalid flag 462

may-postdate flag 463, 464

other flags 466

postdated flag 463, 464

pre-authent flag 461

proxiable flag 464, 465

proxy flag 464, 465

renewable flag 462, 463

transited policy checking flag 466

folding

about 218

applying 218-220

forget-password-like facility 501

forward certificate 482

full disk encryption 514

G

Galois Counter Mode-Galois Counter Message Authentication Code. See GCM-GMAC

Galois Counter Mode (GCM) algorithm 563

Galois Field GF(p)

about 152

examples 153, 154

Galois Field GF(pn)

about 158

addition in GF (2n) 164

examples 159, 160

Galois Field GF(23) 160, 161

generator, for constructing GF(2n) 165-167

inverses in GF(2n), generator g used 167

multiplication in GF(2n) 165

multiplication inverses in GF(2n) 165

representation of polynomials in GF(2n) by n bit string 162-164

GCM-GMAC

about 269

GCTR function 269, 270

GHASH 269

GCTR function

about 270

using, for authenticated encryption 272, 273

working 271

generalized number field sieve (GNFS) 372

Generate function 347, 349

generator 148

Generic Security Services Application Programming Interface (GSS-API) 439

GF(2n) element 307

GHASH (H, X)

about 269

using, for authenticated encryption 272, 273

working 269, 270

GNU Privacy Guard (GNUPG) 359, 511

greatest common divisor

about 104

division algorithm 105, 106

Euclidean algorithm 106

example 104, 105

extended Euclidean algorithm 108

Group Key Handshake 647

Group Master Key (GMK) 645

groups

about 145

cyclic groups 148

definition 149

examples 146-150

Group Temporal Key (GTK)

about 643, 645

components 645

Gujarat Technological University(GTU) 493

H

hackers 16

handshake process

client authentication and key exchange 578

key material generation 578

security capability information exchange 575

server authentication with key exchange 577

hardware RNG (HRNG) 350

hash-based method 352

hash function

about 206, 207

applying, for authentication 210-213

requirements, for securing 207

securing, with block ciphers and CBC 207, 208

Hash i-1 value 227

HBHUSNA 61

header

content-type 567

major and minor versions 568

Hill cipher

about 52

example 52

process 53, 54

HKDF 579

HMAC

about 256

objectives 256, 257

security 261

versus, conventional message digest method 261

HMAC algorithm

about 257

data block 258

HashedKey 259

inner pad (ipad) 258, 259

message 258

outer pad (opad) 258, 259

PaddedKey 259

processing 260

secret key 258

step-by-step algorithm 259

HMAC-based Extract-and-Expand Key Derivation Function (HKDF) 570

hypertext transfer protocol (HTTP) 548

I

ICV (Integrity Check Value)

about 614

calculating 614

ideal cipher

about 76

example 76, 77

identity 392

IEEE XTS-AES mode

about 192

requirements 193, 194

IEEE XTS encryption process

about 194, 195

data units, encrypting 198-200

implementation of αj 197, 198

IETF (Internet Engineering task force) 496, 509

IKE

about 593

characteristics requests and responses 594

indeterminate 155

infeasible 41

information attacker has, attacks on DS

chosen messages with digital signatures 284

only messages with digital signatures 284

only public key of sender 284

information, extracting from rings

message, authenticating 528

message, decrypting 528

message, encrypting 528

message, signing 527

information security 3, 13, 14

infrastructure mode 625

ingredients, symmetric cipher

algorithm to decrypt 43

algorithm to encrypt 42

ciphertext 42

key 43

plaintext 42

Initialization Vector (IV) 182

initial string 344

insiders 17

integral domain 151

integration primitive 627

integrity 11

integrity checking

performing 245

Intel DRNG

about 351

working 351, 352

Internet Advisory Board (IAB) 585

Internet security

challenges 548

intruders 16

Intrusion Detection System (IDS) 31

Intrusion Prevention System (IPS) 31

inverse operations 322

inverse substitute bytes 322

Iota step function 239

IPsec

about 585, 586

admin policy 597

advantages 587

benefits 590-592

components 592

functionality 587

functioning 588, 589

need for 586

organizational branches, connecting 588

organization-wide security deployment 588

remote, connecting from 588

secure access to Internet 588

secure access to remote servers 588

security policy, deploying 597

services 595

shortcomings 617, 618

traffic processing 605

transport mode 595, 596

transport mode communication 588, 589

transport mode operation 590

tunnel mode 596

using 587

VPN 588

irreducible or prime polynomial 157

issues, SMIME implementation 539, 540

iteration function Keccak-f 234, 235

iterative function 233

K

Kerberos

about 246, 437, 439

architecture 441, 442

authentication process 440, 441

authentication server 440

challenges and solutions 446

improvements, in version 5 454, 455

limitations 467

principals 441

protocol overview 443-446

service providing server 441

threats 438

ticket-granting server 440

tickets 443

type of servers 441

Kerberos administration server (KADM) 439

Kerberos realm

about 452, 453

multiple Kerberos realms 453, 454

single Kerberos realm 453

Kerberos version V protocol

about 455-457

flags 459, 460

mutual authentication and sequencing 457, 458

options 458, 459

Kerckhoffs’s principle 40-42

key and policy-related extensions

about 490, 491

certificate policies 492

policy constraint 493

policy mappings 492, 493

private key usage period 491

specifying policy-related information 491

key block 579

Key Distribution Center (KDC)

about 410

primary responsibilities 412

using 412

using, for establishing connection 413

key exchange 44

key exchange, based on elliptic curves

calculation of Secret key by Receiver R 400

calculation of Secret key by Sender S 400

global public elements, finding 400

Receiver R key generation 400

Sender S key generation 400

key expansion process 319-321

key identifiers 523

key legitimacy field 531

key loggers 83

key management

about 408, 409

encryption location 413-415

need for 411, 412

public key distribution 415

randomness of keys 416

shared secret keys 409

suggestions 410

symmetric key exchange, for authentication 416

unpredictability of keys 416

key management functions

key length restriction 541

keys, generating 541

protection to private keys and certificates 541

registration 541

key management phase, 802.11i

about 635, 642

group key, distributing 646, 647

Group Master Key generation 645

initiation 643, 644

pairwise key, distributing 645, 646

pairwise key generation 644

key rings 525

keystream 58, 175

keystream reuse attack 58

key wrapping (KW)

about 273, 274

process 274, 275

versus, other modes 274

Kirchoff’s law 39

known-plaintext attack 89

L

larger keys 43

length extension attack 217

Linear Congruential PRNG 336, 337

linear cryptanalysis 92, 93

link-level encryption

about 414

issues 414

longer keys 43

Longitudinal Redundancy Check (LRC) 220

M

MAC

factors, deciding security 252-255

using, as pseudo random number generator 275-277

MANet (Mobile Adhoc networks) 628

man-in-the-middle attack, DH key exchange 386, 387

mask generation function (MSG) 299, 300

masquerade attack 24

master session key (MSK) 644

measures, MDM

auto-sync 657

encryption 657

remote control of device 657

remote swipe 657

secure communication 657

unwanted apps and content, prohibiting 657

meet-in-the-middle attack 249-251

Merkle-Damgard construction 208

message authentication

about 244, 245

encryption and authentication, providing 255

integrity checking 245

security needs 245

without, using encryption 251, 252

message modification attack 25

MIC (Message Integrity Code) 646

Miller Rabin algorithm

about 122

applying 123, 124

MILLER_ RABIN TEST (n) 122

Miller - Rabin primality test

about 119

properties 120

properties, verifying 121

sequence of successive square roots of 1(mod p); p prime 120, 121

square roots of 1(mod p); p prime 120

MILLER_ RABIN TEST (n) 122, 123

Mobile Data Management (MDM)

about 623, 657

issues, addressing 657

mod 206

modern ciphers 39

Mod operator 53

modular arithmetic

properties 112

properties, verifying 113

modular exponentiation

about 125

examples 126-128

fast exponentiation 125, 126

MOD_EXPONENT (a, b, n) 128

MOD_EXPONENT_BIN (a, b, n) 129

monoalphabetic substitution cipher

about 47-49

random cipher 48

MTU (Maximum Transferable Unit) 600

multiple rotors

example 66

N

name constraints 495

National Bureau of Standards (NBS) 79

natural number 101

network layer security 554

network security

about 3

issues 4

network security model 27, 28

NewSeed 345

NIST CTR_DRBG 343

NIST-DSA

about 290

initialization 290

key generation 290

proof of correctness 291

signing 291

verification 291

Nonce (or N once) 86

non-cryptanalytic attacks

about 20, 87

active attacks 23

passive attacks 20-22

non-cryptographic attacks

differential analysis 92

non-repudiation 12, 246

Number Theory 97

Number Theory fundamentals

congruences 111

discrete logarithms 129

divisibility 99

Euler’s theorem 117

Euler’s totient function 116

Fermat’s little theorem 114

greatest common divisor 104

large prime numbers, generating 118

primality tests 118

prime numbers 101

O

one-time pads 59

one-time password (OTP) 86

only client authentication handshake

application stage 572

negotiation stage 569-572

open port 639

open-source version (OpenPGP) 509

Opportunistic Wireless Encryption (OWE) 651

optical asymmetric encryption padding (OLEP) 376

options 455

order of a modulo n 129

order of group 145

organization-oriented technology 585

output feedback mode

about 175, 186, 187

CFM, using for multi-bit input-output 188

OFM, using for multi-bit input-output 188

owner trust field 531

P

pairwise transient key (PTK)

about 644

control message authentication key 644

control message encryption key 644

Michael MIC Authenticator key (Rx) 645

Michael MIC Authenticator key (Tx) 644

temporal key 644

passive attacks

about 21, 22

traffic analysis 22, 23

passive intruder 45

passphrase 526

password cracker program 84

payload 266

PBKDF2 (Password-Based Key Derivation Function 2) 642

P-box 62

Penango 509

permanent key 410

PGP services

about 516

authentication 517, 518

certification, without CAs 530-532

compatibility 520, 521

compression 519, 520

cryptographic keys 521, 522

encryption 518

encryption with authentication 519

information, extracting from rings 527-529

key identifiers 523-525

key rings 525

multiple IDs, with single key 536

private key encryption 526, 527

private key ring 525, 526

public key management 529, 530

public key ring 527

revocation 536, 537

web of trust 532-535

PGP Universal Server 514

phases of operation, in 802.11i

authentication 635

connection close 636

discovery 634

key management 635

secure data transfer 636

phishing 10

Pi step function 238

PKCS (Public key cryptographic system) 649

PKI X.509 496

PKIX CMP 502

plaintext 247, 266

Playfair cipher

about 49

example 50, 51

PMK (pairwise Master Key) 642

point coordinated function (PCF) 625

policy mapping extension 493

polynomial rings 155

polynomials over GF(2)

about 157

example 158

polynomials over GF(p) 156

port-based access control 639

port blocking 635

power analysis 93

pre-counter block 272

preimage resistance 209, 217

PreMasterSecret 571

preprocessing ability 191

prerequisites, RSA 359

pre-shared key (PSK) 644

pretty good privacy (PGP)

about 509-511

certification scheme 513

compatibility test 511, 512

current status 514

encryption methods 512

encryption quality 514

goals 514, 515

message, signing digitally 512

reasons for success 515, 516

web of trust 512, 513

working 511

primality tests

about 118

deterministic primality algorithm 124

Fermat primality test 118, 119

Miller - Rabin primality test 119

prime numbers

about 101

and composite numbers 101, 102

distribution 103

unique factorization theorem 102

prime number theorem 103, 104

primitive root modulo n 131

privacy 12

privacy primitive 626

private key encryption 526

private key (PrKey) 294, 358

private key ring

about 525

fields 525

PRNs

for solving security problems 333, 334

probable word attack 89

ProData 345

product ciphers 78

pseudo-random function (PRF) 330

pseudo-random number generator (PRNG)

about 331

BBS (Blum Blum Snub) generators 338

features 335, 336

Linear Congruential PRNG 336, 337

pseudo-random numbers (PRNs)

about 330, 331

tests check 334, 335

PSS (Probabilistic Signature Scheme)

about 295

advantage 298, 299

public key algorithms

about 74

misconceptions 363, 364

public key certificate

about 480

authentication procedures 483

public key cryptography

algorithm to encrypt 359

attributes 362, 363

ciphertext 359

decryption algorithm 359

plaintext 359

public and private keys 359

requirements 366

using, for authentication 473, 474

versus, symmetric key cryptography 377-379

public key distribution 415

public key exchange

certificates, using 431

Public Key Infrastructure (PKI)

about 411, 475, 495, 496

certificate lifecycle 499

directory 497

repository 497

revocation 498, 499

public key management

about 529, 530

certificate 475

certificate-based solution 475, 476

public key ring

about 525, 527

fields 527

public-key systems

need for 357, 358

working 358

PuKey 294

Q

quantum cryptography 59

Quantum Mechanics 59

R

RADIUS (Remote Authentication Dial-In User Service) protocol 640

random access ability 190

random attack

about 82, 83

avoiding 84

seriousness of first level access to system 83

solutions 84

random faults attack 374, 375

random number generators

type 1 332

type 2 333

random numbers

example 328, 329

other methods 352

requirements 330

ransomware 31

RC4 algorithm

about 177

facts 177, 178

initialization of state vector 178

initial permutation 178

keystream generation 178-180

temporary array initialization 178

realm 455

real-world PRNGs

about 341

ANSI X9.17 342

NIST CTR_DRBG 343

redundancy 84

reflection attack

about 422, 423

working 423

Registration Authorities (RAs) 496

relatively prime 104

relocation primitive 627

replay attack

about 24, 85

example 86

preventing 85

reseed 344

reverse social engineering attack 10

revocation 536

Rho step function 236, 237

Ring

about 150, 151

example 151

Ring with unity 151

Robust Security Network (RSN) 632

root-level signatory 513

Rotor machines

about 64

multiple rotors 65

rotations 65

round function Rf () 226, 227

round key generation process 324

RSA

about 364

attacks 371

countermeasures 375

cryptanalysis 371

example 368, 369

exponentiation in modular arithmetic 365, 366

prerequisites 359

processing in 364, 365

public key requirements 366-368

RSA-PSS

about 295

process 296

signature process 297

verification process 297

RSN-IE (Information Element) 637

S

SAD (Security Association Database)

about 598, 599

AH information 600

anti-replay window 599

ESP information 600

IPsec protocol mode 600

Path MTU 600

sequence counter overflow 599

sequence number counter 599

SPI 599

versus, SPD 608

S-box 62

Schnorr algorithm

about 288

initialization 289

proof of correctness 289, 290

secrecy 12

secure data transfer phase, 802.11i

about 636, 647

CCMP 648

PRF used in 802.11i, describing 648, 649

PRF, using 649, 650

TKIP 647, 648

Secure Hash Algorithm (SHA) 222

secure hash functions 207

Secure Multipurpose Mail Extension (SMIME)

about 476, 509, 537

challenges 539, 540

clear signed data 538

compressed data 538

enveloped data 538

signed data 538

security

different views 11, 12

goals 10, 11

security measures, in modern era 14, 15

threats to information 15

security architecture

components 18

security association (SA)

about 594, 597

combining 615-617

process 598, 599

security attacks

about 19

cryptanalytic attack 19

non-cryptanalytic attack 19

security by obscurity

about 40

disadvantages 40, 41

security capability information exchange

cipher suite 576

client random 575

compression methods 576

extensions 576

session ID 575

version 575

security concerns, due to wireless structure

apps, using from unknown sources 656

automatic sync 656

impossible to physically control data 655

limited or no control over mobile devices 655

limited or no control over what mobile device accesses 655, 656

malicious content 656

user’s location, tracking 656, 657

security, hash function

requirements attack and countermeasures 217, 218

security, HMAC 261

Security in the Internet Architecture 586

security needs, for message authentication

about 245

additional delay 246

birthday attack 247-249

meet-in-the-middle attack 249-251

non-repudiation 246

right plaintext 247

sequence of data altered 246

security policy, IPsec

database 600, 601

deploying 597

Security Association Database (SAD) 599, 600

security associations 597-599

selectors example 602

SPD, applying 603-605

security service

prerequisites, to application 29-31

requirements 28, 29

security services, in Wi-Fi (802.11i)

access control 634

authentication 634

encryption 634

key generation and exchange 634

security solution

about 5

design-related issues 5, 6

financial issues 8

hardware-related issues 8, 9

implementation-related issues 7

people-related issues 9, 10

software-related issues 8, 9

sequence number 458

server and client need authentication

application stage 573

negotiation stage 572, 573

server authentication with key exchange

about 577

cryptographic attributes 577

signature calculation 577

server write-secret 563

service granting ticket (SGT) 444

service primitives, 802.11 wireless network

associate 626

authentication 626

data transmission 627

disassociate 627

distribution 627

integration 627

privacy 626

relocation 627

services, digital signature

authentication 281

message integrity 282

sender non-repudiation 282

time validation 282

verification by third-party 282

service set modules (SSM) 412

session key 410

sessions 560, 561

session state

about 561, 562

cipher spec 563

compression method 562

is resumable 563

master secret 563

peer certificate 562

session identifier 562

SET (Secure Electronic Transaction) 256

SHA-1 222

SHA-2 222

SHA-3

about 232, 233

iterative function 233

sponge 233

SHA-512 algorithm

avalanche effect 232

each round, processing 225, 226

properties 221, 222

round function Rf () 226-231

working 222-224

shared secret key authentication 473

shift register 184

shoulder surfing 10

signature component

first two bytes of message digest 524

key ID of sender’s public key used in encryption 524

message digest 524

timestamp 524

signature trust field 531

signed data 538

simple folding

reasons, of failing 221

Simple Mail Transfer Protocol (SMTP) 520

Simultaneous Authentication of Equals (SAE) 651

SMIME certificate

class-1 certificate 539

class-2 certificate 539

class-3 certificate 539

SMIME functionality

about 537, 538

digital IDs 539

key management functions 541

SMIME certificates 539

SMTP extensions 540

smurf attack 26

socket 555

SPD (Security Policy Database)

about 598

applying 603-605

sponge construction

absorbing phase 233

squeezing phase 233

sponge function 233

SSIDs (Service Set Identifiers) 626

SSL (secure socket layer) 548, 555

standard algorithms

advantages 41

standard FIPS PUBS 197 304

stream cipher

about 58, 73, 174, 175

structure 175, 176

strong collision resistance 217

subject and issuer CA-related extensions

about 493

certification path constraints 494

issuer alternate name 494

subject alternate name 494

subject directory attributes 494

SubKey 263, 458

substitute byte matrix generation

about 317

process 318, 319

substitution cipher

about 44, 62

examples 46

S-box, working with 62

supplicant 643

Symantec Encryption Server 514

symmetric cipher

ingredients 42

symmetric encryption

about 38, 39

ingredients 42

symmetric key 38

symmetric key algorithms

about 62, 73

confusion 77

desirable properties 74, 75

diffusion 78

ideal cipher 76

measures, while encrypting 75

symmetric key exchange, for authentication

about 416-418

authentication exchange, using HMAC 425, 426

authentication exchange, using KDC 427-429

authentication exchange, using public key 430

key exchange, with symmetric keys 418-422

reflection attack 423-425

T

TempCiphertext 199

TempCiphertext-CP 199

Temporal Key Integrity Protocol (TKIP) 632

temporary key 410

TempSeed 345

Temp value 196

TFC (Traffic Flow Confidentiality) 613

Theta step function 235, 236

threats to information

about 15

criminal organizations 17

hackers 16, 17

insiders 17

terrorists and information warfare 18

viruses and worms 15, 16

ticket-granting server (TGS) 440, 444

tickets, Kerberos

about 440

service granting ticket 441-443

ticket granting ticket 441-443

timers 455

timing analysis 93, 94

TLS design 555, 556

TLS handshake protocol

abbreviated handshake 574

about 568

design 557

forms of security 558

only client authentication process 569

server and client need authentication 572

TLS record protocol

about 564, 565

calculation of MAC 566

compression of fragmented data 565

design 557

fragmentation of application data 565

handshake process 574, 575

header, adding 567

length of compressed data 568

message, encrypting 566, 567

TLS (transport layer security)

about 548, 553, 554

process overview 559, 560

totatives of n 116

traffic processing, IPsec

about 605

inbound packet processing 605, 606

outgoing packet processing 606, 607

SAD, versus SPD 608

transport mode communication 588

transport mode, IPsec 595, 596

transposition cipher

about 44, 59

characteristics 60-62

P-box, working with 63, 64

triple DES. See 3DES

true random number generators (TRNG) 331

true random numbers (TRNs)

about 330, 349, 350

comparing, with PRN 350

Intel DRNG 351

sources 350

Trust Flag Byte 532

trust-related fields 532

tunneling 415

tunnel mode 588

tunnel mode, IPsec 596

tweak 195

tweakable 192

tweak value 195

two-factor-authentication 86

Type Length Value(TLV) encoding 574

U

unique factorization theorem 102, 103

unique hash value 209

Update function 345, 346

V

Vernam cipher 58

views, on security

about 11

authentication 12

non-repudiation 12, 13

privacy and identity preservation 12

secrecy 12

Vigenere cipher

about 54

cracking 56, 57

example 54, 55

process 56

Virtual Private Networks (VPN) 415, 556

vishing 10

W

W3C (World Wide WebConsortium) 503

WannaCry 31

weak collision resistance 209

web of trust model 477

web security

API, using 552, 553

application layer 551, 552

different ways 551

network layer 554

transport layer 553, 554

web security threats 550, 551

web transactions

security, need for 548, 549

WEP (Wired Equivalent Privacy) 180, 632, 637

Wi-Fi Protected Access-2 (WPA2) 632

Wi-Fi security

WPA3 650

wireless devices

security, need for 628

wireless networks

countermeasures 631, 632

higher security, need for 628, 629

issues 629, 630

wireless security, for mobile phones

about 651

challenges 653, 654

countermeasures 657

security concerns, due to wireless structure 654

security issues 652, 653

WML (Wireless Markup Language) 651

WPA3 (Wireless Protected Access 3) 650, 651

WPA (Wireless Protected Access) 632

X

X.509 certificate

about 476

algorithm identifier 478

extensions, in version 3 479, 490

issuer name 478

issuer unique identifier 478

public key certificate for PayPal 480, 481

serial number 478

signature 479

subject name 478

subject public key information 478

subject unique identifier 478

validity period 478

version 478

version 2, versus version 3 488, 489

X.509 certification scheme 477

X.509 standard 477

XEX 192

XEX Tweakable Block Cipher 192

XML key management protocol 503, 504

XML Key Management Specification (XKMS) 503

XORed 263

XOR Encrypt XOR 192

XTS 192

XTS-AES encryption 192

Y

Yuval proposal 247

Z

zero-degree polynomial 155

OEBPS/images/Image50638.jpg

OEBPS/images/Image50623.jpg

OEBPS/images/Image56225.jpg

OEBPS/images/Image50607.jpg

OEBPS/images/Image56206.jpg
(x~+x+ 1)+ (x-+1

2x-+x+2

¥ -

OEBPS/images/Image50555.jpg

OEBPS/images/Image56188.jpg

OEBPS/images/Image50522.jpg
GF(p")

OEBPS/images/Image56171.jpg
x4+ x4+1

OEBPS/images/Image50506.jpg

OEBPS/images/Image56154.jpg
GF(2%)

OEBPS/images/Image50454.jpg

OEBPS/images/Image56139.jpg

OEBPS/images/Image50447.jpg
s

EAP request/identity

EAP response/identity.

€AP request with challenge

EAP response o challenge

EAP Success

—_—

& a8

RADIUS-access-request

RADIUS-access-challenge

| oo

RADIUS-access-request

N
RADIUS-access-accept

| owsement

Repeated
afew
times

OEBPS/images/Image56119.jpg
x“+x+4+1

OEBPS/images/Image50439.jpg

OEBPS/images/Image56101.jpg

OEBPS/images/Image56086.jpg

OEBPS/images/Image56070.jpg

OEBPS/images/Image50655.jpg

OEBPS/images/Image50412.jpg
Job Prerequisi primiti
Mobile (device) connects to | AP mustbe ONand | oo oo
network ready
Authenticate AP and Mobile must be
Authentication | *-her st 10 ity data transmission
Privacy | Encryption Authentication Data transmission
Deta Sending and recelving data | Association Distseonstion Derfition

transmission

integration, and relocation

Send across multiple

Disassociation, integration, and

lbuton | S1020 brm e | e
teraion | Taramit rough et | Dsvbuton | Dssodtonsnd eocion
vt MoveTomonenetuot | pengugen | Oosiocaton, avbuson
Segmenttoaner g g el
e |ttt [T Fr—
T P

OEBPS/images/Image56053.jpg

OEBPS/images/Image50406.jpg

OEBPS/images/Image56036.jpg

OEBPS/images/Image50389.jpg

OEBPS/images/Image56018.jpg

OEBPS/images/Image50371.jpg

OEBPS/images/Image56001.jpg

OEBPS/images/Image50354.jpg

OEBPS/images/Image55985.jpg

OEBPS/images/Image50322.jpg
G,

OEBPS/images/Image55969.jpg

OEBPS/images/Image50307.jpg
a#0,b+#0inZ, anda -

0(mod 7)

OEBPS/images/Image55954.jpg

OEBPS/images/Image50286.jpg
(Z5,15, X5)

OEBPS/images/Image55934.jpg

OEBPS/images/Image55916.jpg
Z, (a;€EZ,)

OEBPS/images/Image55901.jpg

OEBPS/images/Image50434.jpg
EAPOL RADIUS

>g<

OEBPS/images/Image50423.jpg
802.11i Phases >

Discovery >
1.1 Security Capability exchange
12 Authentication Exchange
Authentication -
21 Client Connects to AS
2.2 Authentication exchange
2.3 Key management
231 Pairwise key management
232 Group Wise key management
2.4 Key distribution
241 Pairwise key distribution
242 Group Wise key distribution
Secure Data Transfer -
3.1 TKIP and CCMP
311 TKIP
312 comp
3.2 The802.11i PRF
Connection close -

OEBPS/images/Image51013.jpg
b =1-c(modp)

OEBPS/images/Image51005.jpg

OEBPS/images/Image50989.jpg

OEBPS/images/Image50973.jpg

OEBPS/images/Image50958.jpg
a -

a-c(modp)

OEBPS/images/Image50938.jpg

OEBPS/images/Image50920.jpg

OEBPS/images/Image50889.jpg

OEBPS/images/Image50880.jpg
¢ (mod p)

aX,c(modp) =b

OEBPS/images/Image50865.jpg

OEBPS/images/cover.jpg
Cryptography
and

Network Security

Demystifying the ideas of Network Security, Cryptographic Algorithms,
Wireless Security, IP Security, System Security, and Email Security

BHUSHAN TRIVED!
SAVITA GANDHI
DHIREN PANDIT

OEBPS/images/Image50844.jpg
beZ

OEBPS/images/Image50826.jpg
ae Z,

OEBPS/images/Image50811.jpg

OEBPS/images/Image50795.jpg
(Z5, X5)

OEBPS/images/Image50778.jpg
s Carn g’}

OEBPS/images/Image50761.jpg

OEBPS/images/Image50743.jpg

OEBPS/images/Image50726.jpg

OEBPS/images/Image50710.jpg
s Carn g’}

OEBPS/images/Image50678.jpg

OEBPS/images/Image51704.jpg

OEBPS/images/Image51687.jpg

OEBPS/images/Image51669.jpg

OEBPS/images/Image51652.jpg

OEBPS/images/Image51636.jpg
S5x+ 11y =1 (moa 11)

OEBPS/images/Image51620.jpg

OEBPS/images/Image51605.jpg

OEBPS/images/Image51584.jpg

OEBPS/images/Image51567.jpg
S5inZ,,

OEBPS/images/Image51552.jpg

OEBPS/images/Image51535.jpg
ax + py

1 modp

OEBPS/images/Image51517.jpg

OEBPS/images/Image51500.jpg

OEBPS/images/Image51481.jpg
Ged (a,p) being 1,

OEBPS/images/Image51463.jpg
Zp,t, ")

OEBPS/images/Image51446.jpg

OEBPS/images/Image51429.jpg

OEBPS/images/Image51270.jpg
Interface | InAdd OutAdd Proto InPrt OutPrt
8 . d TCP » 80
1 - . TCP L 21
2 oy ¥ TCP 8 21
1 130.33.0.0/16 | * TCP * 25
2 130.33.3.1 TCP L 80
2 . 130.33.3.9 ubpP ¥ 53

OEBPS/images/Image51262.jpg
Do InAdd | InPrt OutAdd | OutPrt | Meaning

Block | * - 3 - Block everything by default

n

Do [inAdd [inPrt [OutAdd [OutPrt | Meaning

Allow | * * - . Allow everything by default

n

Do InAdd | InPrt | OutAdd | OutPrt | Meaning

Allow | * L 80 Packets to any website allowed

v

Do InAdd |InPrt | Out Out Prt_| Flags | Meaning

Allow | * - - 80 Packets to any website allowed
Allow | * 80 |* * ACK_| Responses from a website is allowed

OEBPS/images/Image51030.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Authors

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. An Overview of Network and Information Security

		Structure

		Objectives

		1.1 Introduction

		1.2 Why security is complex

		1.2.1 Design-related issues

		1.2.2 Implementation-related issues

		1.2.3 Financial issues

		1.2.4 Hardware and software-related issues

		1.2.5 People-related issues

		1.3 Security goals

		1.4 Different views on security

		1.5 Information security

		1.6 The relevance of security measures in the modern era

		1.7 Threats to information

		1.7.1 Viruses and worms

		1.7.2 Hackers

		1.7.3 Insiders

		1.7.4 Criminal organizations

		1.7.5 Terrorists and information warfare

		1.8 The security architecture

		1.8.1 Security attacks

		1.8.1.1 Cryptanalytic attacks

		1.8.1.2 Non-cryptanalytic attacks

		1.9 The network security model

		1.10 Security service requirements

		1.11 Prerequisites to the application of security service

		Keywords

		Recapitulation

		Exercises

		Conceptual exercises

		Practical exercises

		2. Introduction to Cryptography

		Structure

		Learning objectives

		2.1 Introduction

		2.2 Difference between classic and modern ciphers

		2.3 Kerckhoffs’s principle

		2.4 Ingredients to a symmetric cipher

		2.5 Cryptography

		2.6 The Conventional Security Model

		2.7 Substitution and transposition

		2.8 Monoalphabetic substitution cipher

		2.9 Playfair cipher

		2.10 Hill cipher

		2.11 Vigenere cipher

		2.11.1 Cracking Vigenere cipher

		2.12 Vernam cipher and Onetime pads

		2.13 Transposition cipher

		2.14 Substitution cipher and S-box

		2.15 Transposition cipher and P-box

		2.16 Rotor Machines

		2.17 Keywords

		2.18 Recapitulation

		Conceptual questions

		Problems

		3. Block Ciphers and Attacks

		Structure

		Learning objectives

		3.1 Introduction

		3.2 Cryptographic systems

		3.3 Symmetric key algorithms

		3.3.1 The ideal cipher

		3.3.2 Confusion and diffusion

		3.4 Block ciphers

		3.4.1 Digital Encryption Standard (DES)

		3.4.2 3DES

		3.5 Attacks

		3.5.1 Brute force attacks

		3.5.2 Random and replay attacks

		3.5.3 Cryptanalytic attacks and cryptanalysis

		3.5.4 Computationally secure algorithm

		3.5.5 Attacking block ciphers using non-cryptographic attacks

		3.5.6 Differential analysis

		3.5.7 Linear cryptanalysis

		Power analysis

		3.5.8 Timing analysis

		Keywords

		Points to remember

		Excercises

		4. Number Theory Fundamentals

		Objectives

		Contents

		4.1 Divisibility

		4.1.1 Introduction

		4.1.2 Properties of divisibility

		4.2 Prime numbers

		4.2.1 Prime numbers and composite numbers

		4.2.2 Unique factorization theorem

		4.2.3 Distribution of prime numbers

		4.3 Greatest common divisor

		4.3.1 The division algorithm

		4.3.2 Euclidean algorithm

		4.3.3 Extended Euclidean theorem

		4.4 Congruences

		4.4.1 Modular arithmetic

		4.5 Fermat’s little theorem and Euler’s theorem

		4.5.1 Fermat’s little theorem

		4.5.2 Euler’s totient function

		4.5.3 Euler’s theorem

		4.6 Generating large primes: primality tests

		4.6.1 Fermat primality test

		4.6.2 Miller – Rabin primality test

		4.6.2.1 Square roots of 1(mod p); p prime

		4.6.2.2 Sequence of successive square roots of 1(mod p); p prime

		4.6.2.3 Miller Rabin algorithm

		4.6.3 Deterministic primality algorithm

		4.7 Modular exponentiation (Exponentiation modular arithmetic)

		4.7.1 Fast exponentiation

		4.8 Discrete logarithms

		4.8.1 Order of a modulo n

		4.8.2 Primitive roots modulo n

		4.8.3 Properties of discrete logarithms

		Additional reading

		Recommended reading/references

		Keywords

		Recapitulation

		Exercises

		MCQ (Multiple Choice Questions)

		Problems

		5. Algebraic Structures

		Structure

		Objectives

		5.1 Algebraic structure

		5.1.1 Binary operations on a set

		5.2 Groups

		5.2.1 Cyclic groups

		5.2.1.1 Power of an element

		5.2.1.2 Definition and examples

		5.3 Algebraic systems with two binary operations

		5.3.1 Ring

		5.3.2 Fields

		5.3.2.1 Finite fields

		5.3.2.2 Galois Field GF(p)

		5.4 Algebraic operations on polynomials

		5.4.1 Polynomial rings

		5.4.2 Polynomials over GF(p)

		5.4.2.1 Polynomials over GF(2)

		5.4.3 Greatest common divisor of two polynomials

		5.5 Galois Field GF(pn)

		5.5.1 Galois Field GF(23)

		5.5.2 Representation of polynomials in GF(2n) by n bit string

		5.5.3 Key points in arithmetic operations - addition in GF(2n)

		5.5.4 Key points in arithmetic operations - multiplication in GF(2n)

		5.5.5 Multiplication inverses in GF(2n)

		5.5.6 Use of a generator to construct GF(2n)

		5.5.7 Inverses in GF(2n) using the generator g

		Keywords

		Recapitulation

		Exercises

		MCQ (Multiple Choice Questions)

		Problems

		6. Stream Ciphers and Cipher Modes

		Objectives

		6.1 Introduction

		6.1.1 Stream cipher structure

		6.1.2 RC4

		6.1.3 Cipher modes

		6.1.3.1 Electronic Codebook Mode (ECM)

		6.1.3.2 Cipher Block Chaining

		6.2 Cypher feedback mode

		6.3 Output Feedback Mode

		6.3.1 Using CFM and OFM for multi-bit input-output

		6.4 Counter Mode

		6.4.1 Advantages of Counter Mode

		6.5 IEEE XTS-AES mode

		6.5.1 Requirements

		6.6 IEEE XTS encryption process

		6.6.1 The implementation of ∝j

		6.6.2 Encrypting the data units

		Keywords

		Recapitulation

		Exercises

		MCQs

		Problems

		7. Secure Hash Functions

		Structure

		Objectives

		7.1 Introduction

		7.2 A simple hash function

		7.3 Secure hash functions using block ciphers and CBC

		7.4 Why a unique hash value is possible

		7.5 Applying a hash function for authentication

		7.6 Characteristics of the cryptographic hash function

		7.7 Security requirements attacks and countermeasures

		7.8 Folding

		7.9 Why simple folding fails

		7.10 Secure Hash Algorithm (SHA)

		7.11 Processing of each round

		7.12 The round function Rf ()

		7.13 Avalanche effect with SHA-512

		7.14 SHA-3

		7.15 Iteration function Keccak-f

		7.16 Theta Step function

		7.17 Rho step function

		7.18 Pi step function

		7.19 Chi step function

		7.20 Iota step function

		7.21 Applications of Cryptographic Hash Functions

		Keywords

		Recapitulatin

		Exercises

		8. Message Authentication using MAC

		Structure

		Objectives

		8.1 Introduction

		8.2 Integrity check

		8.3 Other security needs for a message

		8.3.1 Sequence of data altered

		8.3.2 Introduce an additional delay

		8.3.3 Non-repudiation

		8.3.4 Help get the right plaintext

		8.3.4.1 The birthday attack

		8.4 Meet in the middle attack

		8.4.1 Message authentication without using encryption

		8.5 Factors deciding the security of MAC

		8.6 Order of encryption and authentication

		8.7 HMAC

		8.7.1 HMAC algorithm

		8.8 Conventional message digest vs. HMAC

		8.8.1 Security of HMAC

		8.9 Authenticated Encryption with Associated Data (AEAD)

		8.10 Counter with Cipher Block Chaining Message Authentication Code (CCM)266

		8.11 GCM-GMAC (Galois Counter Mode-Galois Counter Message Authentication Code)269

		8.12 Key wrapping (KW)

		8.12.1 Using MAC as pseudo random number generator

		Keywords

		Recapitulation

		Conceptual exercises

		9. Authentication and Message Integrity Using Digital Signatures

		Structure

		Objectives

		9.1 Introduction

		9.2 What is a digital signature

		9.3 Attacks on DS

		9.4 Why a digital signature

		9.5 Different DS schemes

		9.5.1 El Gamal – Pointcheval Stern

		9.5.2 Schnorr

		9.5.3 NIST-DSA

		9.5.4 ECC-DSA

		9.5.5 The DSA approach

		9.5.6 RSA-PSS (Probability signature scheme)

		9.5.6.1 Advantage of the PSS

		9.5.6.2 The Mask Generation Function (MSG)

		9.6 Improving the process of digital signature

		Keywords

		Recapitulation

		Exercises

		10. Advanced Encryption Standard

		Structure

		Objectives

		10.1 Introduction

		10.2 AES characteristics

		10.3 Prerequisites to AES

		10.4 AES architecture

		10.5 AES processing

		10.5.1 Substitute bytes

		10.5.2 Shift rows

		10.5.3 Mix columns operation

		10.5.4 Add round key operation

		10.6 Substitute byte matrix generation

		10.7 Key expansion process

		10.8 Inverse operations

		10.9 Implementation and motivation

		Keywords

		Recapitulation

		Exercises

		11. Pseudo-Random Numbers

		Objectives

		Structure

		11.1 Introduction

		11.2 PRN, TRN, and PRF

		11.3 PRN for solving security problems

		11.4 Pseudo random number generators (PRNGs)

		11.4.1 Linear Congruential PRNG

		11.4.2 BBS (Blum Blum Snub) Generators

		11.5 Using a cipher-based PRNG

		11.6 Real-world PRNGs

		11.6.1 ANSI X9.17

		11.6.2 NIST CTR_DRBG

		11.7 True Random Numbers (TRNs)

		11.7.1 Sources

		11.7.2 Comparison with a PRN

		11.7.3 Intel DRNG

		11.8 Other methods

		Keywords

		Recapitulation

		Exercises

		12. Public Key Algorithms and RSA

		Objectives

		Structure

		12.1 Introduction

		12.2 The need for public-key systems

		12.3 How it works

		12.4 The prerequisites to understand RSA

		12.4.1 Public key encryption attributes

		12.4.2 Misconceptions about public keys

		12.5 RSA and processing in RSA

		12.5.1 Exponentiation in modular arithmetic

		12.5.2 Public key requirements

		12.5.3 Example

		12.6 Improving efficiency

		12.6.1 Using the private key

		12.6.2 Using the public key

		12.7 Cryptanalysis and attacks on RSA

		12.7.1 Brute force

		12.7.2 Factoring attack

		12.7.3 Timing analysis attack

		12.7.4 Adaptive chosen ciphertext attack (Adaptive CCA or ACCA)

		12.7.5 Random faults attack

		12.8 Countermeasures

		12.8.1 Factoring attack

		12.8.2 Timing analysis attack

		12.8.3 Adaptive chosen ciphertext attack (ACCA)

		12.8.4 The random fault attack

		12.9 Difference: symmetric and asymmetric encryption

		Recapitulation

		Keywords

		Conceptual exercises

		13. Other Public Key Algorithms

		Structure

		Objectives

		13.1 Introduction

		13.1.1 Discrete logarithms

		13.1.2 The Diffie–Hellman key exchange

		13.1.3 Man in the middle attack with Diffie-Hellman

		13.2 Introduction to Elliptic Curves

		13.2.1 EC over real numbers

		Geometry of EC

		Algebraic description of addition

		13.2.1 Elliptic curves over Zp

		Elliptic curves over GF (2m)

		Elliptic Curve Discrete Logarithm Problem (ECDLP)

		Elliptic curve cryptography

		A key exchange based on elliptic curves

		Elliptic curve encryption/decryption

		Security of elliptic curve cryptography

		Recapitulation

		Keywords

		Exercises

		14. Key Management and Exchange

		Structure

		Objectives

		14.1 Introduction

		14.2 Key management

		14.3 Need for key management

		14.4 Encryption location

		14.5 The public key distribution

		14.6 Randomness and unpredictability of keys

		14.7 Symmetric key exchange for authentication

		14.7.1 Key exchange using symmetric keys

		14.7.2 Reflection attack

		14.7.3 Authentication exchange using HMAC

		14.7.4 Authentication exchange using a KDC

		14.7.5 Authentication exchange using the public key

		14.8 Public key exchange using certificates

		Keywords

		Recapitulation

		Exercises

		15. User Authentication Using Kerberos

		Structure

		Learning objectives

		15.1 Introduction

		15.2 The authentication process in Kerberos

		15.2.1 Kerberos architecture

		15.3 Kerberos protocol overview

		15.4 The challenges and solutions in building a protocol

		15.4.1 Security

		15.4.2 Flexibility

		15.4.3 A central server

		15.4.4 Avoid a single point of failure

		15.4.5 Secret dialog

		15.4.6 Authentication token or ticket

		15.4.7 Using short term keys

		15.4.8 Replay attack prevention

		15.4.9 Using an authenticator

		15.4.10 Authorization

		15.4.11 User-friendliness and need for TGS

		15.4.12 The need to authenticate the server

		15.5 Multiple Kerberos realms

		15.5.1 Improvements in version 5

		15.6 Kerberos version V protocol

		15.6.1 Mutual authentication and sequencing

		15.6.2 Options and flags

		15.6.3 Initial

		15.6.4 Pre-Authent

		15.6.5 HW-Authent

		15.6.6 Invalid

		15.6.7 Renewable

		15.6.8 May-postdate and postdated

		15.6.9 Proxiable and proxy

		15.6.10 Forwarded and forwardable

		15.6.11 Transited policy checking

		15.6.12 Other flags

		15.7 Kerberos limitations

		Keywords

		Recapitulation

		Exercises

		16. User Authentication Using Public Key Certificates

		Structure

		Learning objectives

		16.1 Introduction

		16.2 Using public-key cryptography for authentication

		16.2.1 Public key management, certificates, and X.509

		16.3 X.509 certificate structure

		16.4 Authentication procedures

		16.4.1 One-way authentication

		16.4.2 Two-way authentication

		16.4.3 Three-way authentication

		16.4.4 Differences between X.509 version 2 and 3

		16.5 Extensions in version 3

		16.5.1 Key and policy-related extensions

		16.5.1.1 Private key usage period

		16.5.1.2 Specifying policy-related information

		16.5.1.3 Certificate policies

		16.5.1.4 Policy mappings

		16.5.1.5 Policy constraint

		16.5.2 Subject and the issuer CA-related extensions

		16.5.2.1 Subject alternate name

		16.5.2.2 Issuer alternate name

		16.5.2.3 Subject directory attributes

		16.5.2.4 Certification path constraints

		16.6 Public key infrastructure

		16.6.1 The directory or repository

		16.6.2 Revocation

		16.6.3 Certificate lifecycle

		16.6.3.1 Registration

		16.6.3.2 Initialization

		16.6.3.3 Certification

		16.6.3.4 Key pair recovery

		16.6.3.5 Key pair update

		16.6.3.6 Revocation request

		16.6.3.7 Cross certification

		16.7 Certificate Management Protocol

		16.8 XML key management protocol

		Keywords

		Recapitulation

		Exercises

		17. Email Security: PGP and SMIME

		Structure

		Learning objectives

		17.1 Introduction

		17.1.1 Email

		17.2 PGP (Pretty good privacy)

		17.2.1 Working of PGP

		17.2.2 Compatibility test

		17.2.3 Encryption methods

		17.2.4 Digitally signing the message

		17.2.5 Web of trust

		17.2.6 Certification scheme

		17.2.7 Quality of encryption

		17.2.8 Current Status

		17.3 PGP goals

		17.4 The reasons behind the success

		17.5 PGP services

		17.5.1 Authentication

		17.5.2 Encryption

		17.5.3 Encryption with authentication

		17.5.4 Compression

		17.5.5 Compatibility

		17.5.6 Cryptographic keys

		17.5.7 Key identifiers

		17.5.8 Key rings

		17.5.9 Private key ring

		17.5.10 Private key encryption

		17.5.11 Public key ring

		17.5.12 Extracting information from the rings

		17.5.13 Public key management

		17.5.14 Certification without CAs

		17.5.15 Web of trust

		17.5.15.1 Multiple IDs with a single key

		17.5.16 Revocation

		17.6 SMIME functionality

		17.6.1 The SMIME certificates or Digital IDs

		17.6.2 Some problems in implementing SMIME

		17.6.3 SMTP extensions

		17.6.4 Key management functions

		Keywords

		Recapitulation

		Exercises

		18. Transport Layer Security (TLS) and SSL

		Structure

		Learning objectives

		18.1 Introduction

		18.2 Need for securing web transactions

		18.2.1 Web security threats

		18.3 Different ways to secure web traffic

		18.3.1 Application layer

		18.3.2 Using the API

		18.3.3 Transport layer

		18.3.4 Network layer

		18.4 TLS and SSL

		18.4.1 TLS design

		18.4.2 The TLS record protocol design

		18.4.3 The TLS handshake protocol design

		18.4.4 The Change Cipher Spec protocol design

		18.4.5 Alert protocol design

		18.4.6 The overview of the TLS process

		18.5 Connections and sessions

		18.5.1 Sessions

		18.5.2 Connection

		18.5.3 Session and connection state

		18.5.4 A session state

		18.5.5 A connection state

		18.6 TLS record protocol

		18.7 TLS handshake protocol

		18.7.1 Only client authentication handshake

		18.7.2 Negotiation stage

		18.7.3 Application stage

		18.7.4 Both server and client authentication

		18.7.5 Negotiation stage

		18.7.5.1 Application stage

		18.7.6 Abbreviated handshake

		18.7.7 The handshake processing

		18.7.8 Stage 1: Security capability information exchange

		18.7.8.1 Cipher suite

		18.7.9 Stage 2: Server authentication with the key exchange

		18.7.9.1 Signature calculation

		18.7.9.2 Cryptographic attributes

		18.7.10 Stage 3: The client authentication and key exchange

		18.7.11 Stage 4: Finish

		18.8 Cryptographic computations

		18.8.1 HKDF

		18.8.2 Key block

		18.8.3 Improvements in TLS v1.3

		Keywords

		Recapitulation

		Exercises

		19. IP Security (IPsec)

		Structure

		Objectives

		19.1 Introduction

		19.2 Need

		19.3 IPsec functionality

		19.4 Using IPsec

		19.5 IPsec functioning

		19.6 IPsec benefits

		19.7 IPsec components

		19.8 Why IKE

		19.9 IPsec services

		19.10 IPsec transport and tunnel modes

		19.10.1 Transport mode

		19.10.2 Tunnel mode

		19.11 Deploying the security policy

		19.11.1 Security associations

		19.11.2 SAD (Security Association Database)

		19.11.3 Security policy database

		19.11.4 Example: Selectors

		19.11.5 Applying SPD

		19.12 Traffic processing

		19.12.1 Inbound packet processing

		19.12.2 Processing outgoing packets

		19.12.3 Difference between SAD and SPD

		19.13 Encapsulating Security Payload (ESP)

		19.13.1 ESP operations

		19.13.2 ESP in IPv4

		19.13.3 ESP in IPv6

		19.14 ESP header design

		19.15 Encryption and ICV calculation

		19.16 Combining SAs

		19.16.1 Shortcomings of IPsec

		Keywords

		Recapitulation

		Exercises

		20. Wireless Security

		Structure

		Objectives

		20.1 Introduction

		20.2 A brief about 802.11

		20.2.1 Ad hoc and infrastructure modes

		20.2.2 Access points and service primitives

		20.3 Why wireless devices need higher security

		20.3.1 Wireless Network issues

		20.3.2 Countermeasures

		20.4 Introduction 802.11i

		20.5 Security services in Wi-Fi (802.11i)

		20.6 802.11i phases of operation

		20.6.1 Phase 1: Discovery

		20.6.2 Phase 2: Authentication

		20.6.3 Phase 3: Key management

		20.6.4 Phase 4: Secure data transfer

		20.6.5 Phase 5: Connection close

		20.7 Discovery

		20.7.1 Discovery process

		20.8 Authentication phase

		20.8.1 802.1X based access control

		20.8.2 The authentication process

		20.8.2.1 Connecting to AS

		20.8.2.2 Authentication exchange

		20.9 Key management

		20.9.1 Initiation

		20.9.2 Pairwise key generation

		20.9.3 Group Master Key generation

		20.9.4 Distributing pairwise key

		20.9.5 Distributing a group key

		20.10 Secure data transfer

		20.10.1 TKIP

		20.10.2 CCMP

		20.10.3 PRF used in 802.11i

		20.10.4 Using PRF

		20.11 WPA3

		20.12 Wireless security for mobile phones

		20.12.1 Security issues

		20.12.2 Security concerns due to wireless structure

		20.12.2.1 Countermeasures: MDM

		20.12.2.2 Countermeasures: Best practices

		20.12.2.3 Countermeasures: Training

		20.12.2.4 Countermeasures: Architecture

		Keywords

		Recapitulation

		Exercises

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. An Overview of Network and Information Security

OEBPS/images/Image64249.jpg

OEBPS/images/Image64226.jpg
GF(2%)

OEBPS/images/Image64210.jpg

OEBPS/images/Image64193.jpg
GF(2%)

OEBPS/images/Image64162.jpg
Y*+x°+x*+x+1inGF(2°%)

OEBPS/images/Image64144.jpg
Y-+ x+ 1inGF(2°)

OEBPS/images/Image64127.jpg

OEBPS/images/Image64111.jpg

OEBPS/images/Image64095.jpg
-+ x+ 1inGF(2°)

OEBPS/images/Image64071.jpg

OEBPS/images/Image64051.jpg
GF(2%")

OEBPS/images/Image64016.jpg
GF(2-)

OEBPS/images/Image63991.jpg
(x=+1)modulo(x*+x+1)

OEBPS/images/Image63974.jpg
(x=+ 1) modulo(x*+x°*+1)

OEBPS/images/Image63957.jpg

OEBPS/images/Image63933.jpg

OEBPS/images/Image63916.jpg

OEBPS/images/Image63900.jpg
Iv=+ 3y + 4

OEBPS/images/Image63879.jpg
(ZL3q, X31)

OEBPS/images/Image63864.jpg

OEBPS/images/Image66042.jpg
Encrypted and B1 is extracted

5 3

B1 Shift Register

PO Shift Register

shift Register
Encrypted and BO is extracted 1
v
B shift Register
Ly,
——[co}——> coistransmitted
>
PO shift Register [

COis appended to shift register

>
———»| C1 —— C1is transmitted
>

c1] c1isappended to shift register

OEBPS/images/Image66032.jpg
Shift register initialized with IV bytes

weo [ve1 |ivB2 |83 ivsa |ives [wes [ve7 |ve7

Ky |——» l ﬂsncrypt

B0 [ve1 |82 |ivB3 s |ives [wves |7 |87

o ¥ 80 dropped and C0 added, Encrypted again

Bl [ve2 |83 [wvea [wes |ivee |87 [co

%] —» ¥ 81 dropped, C1 added and the block encrypted

w82 [ve3 |ivea |wes [ves |ive7 [co [a

o Q&2 dropped, c2 added and the block encrypted

wes |ivea |ives [wes [ve7 o [a |

OEBPS/images/Image66853.jpg
aaaaaa

sssss

ggggg

wwwwwwww

OEBPS/images/Image66191.jpg
Ciphertext

v

S

TempCiphertext

Decryption using AES

Temp

TempPlaintext

o

Plaintext

OEBPS/images/Image66183.jpg
P\aimext [m-1] Plaintext [m] | TempCiphertext-CP

v
XTS-AES-) XTS-AES-
? BlcckEncrypnon ? BlockEncryption
C‘pherlexl

2 v X
Ciphertext [m] TempCiphertext-CP | Ciphertext [m-1]

Ciphertext [m-1] [+ > Ciphertext [m]

OEBPS/images/Image66175.jpg
(9

The Tweak value

for i" input.

Encryption using AES

v

Encrypted Tweak

value for

i™input.

The Seq No. j

|

calculating
o

—

o

Encrypted Tweak value for i input

and ois multiplied

Temp (or Tweak)

OEBPS/images/Image66165.jpg
Plaintext

v

D

TempPlaintext

Key 1 ————|

Encryption using AES

Temp.

v TempCiphertext

D

v

Ciphertext

OEBPS/images/Image66075.jpg
o g e
e aoer e
{ ! !
Key Key Key

To the next block

OEBPS/images/Image66067.jpg
Key

L
=

[

Encryption Encryption Encryption Encryption
using block using block using block using block
cipher cipher cipher cipher
Key To the next block
stream
Block 1

v

Plaintext || Ciphertext Plaintext || Ciphertext Plaintext || Ciphertext
Block 1 Block1 Block 2 Block2 Block 3 Block3

OEBPS/images/Image66053.jpg
Y shift Register —l

Encrypted and BO is extracted

B0 Y shift Register

L
@ ————»| PO ——» POisstored
-

=) Y shift Register 0| cois appended to shift register

Encrypted and B1 is extracted

v
81 BY shift Register

Ls

i — P[P Piisstored

c1 [BY shift Register 1] Clisappended to shift register

OEBPS/images/Image64266.jpg
> +rvy+1isy<+1

OEBPS/images/Image66023.jpg
v
Decryption
using block Gihertext |¢— nput
o slock 1
Plaintext
Block1 b4 ecrypton
ik preve Wl
cpher Block2
v
Output 22
Plaitext Tothe next block
block2
v

Output

OEBPS/images/Image66015.jpg
Encryption
using block
cipher

Ciphertext

b > output

s
- Fa—
v Encryption ‘
Input using block
Input block2

Tt e e

OEBPS/images/Image64420.jpg

OEBPS/images/Image64403.jpg

OEBPS/images/Image64386.jpg

OEBPS/images/Image64346.jpg
GF(2°)

OEBPS/images/Image64330.jpg
x® + x< + 1in GF(2?)

OEBPS/images/Image64304.jpg
Y 4+ rv-+1

OEBPS/images/Image64289.jpg

OEBPS/images/Image56422.jpg

OEBPS/images/Image67083.jpg
x=0 x=l x=2 x=3 x=4
P20l | P[31] | P42 P[03] P[14]
P[40] | PO1] | P[12] P23] P[34]
P[LO] | PR21] | P32 P[43] P[04]
P[0l | P41 | P02 P[13] P[24]
P00l | P[L1] | P[22 PB33] P[4,4]

OEBPS/images/Image56402.jpg

OEBPS/images/Image67071.jpg
y=
y=3
y=2
y=1
y=0

x=0 xml x=2 x=3 x=4
18 2 61 56 14
a1 15 2 8
3 10 13 25 39
36 44 6 55 20
0 A 62 28 27

OEBPS/images/Image67052.jpg

OEBPS/images/Image67044.jpg
y=4
y=3
y=2
y=1
y=0

x=0 b X=2 xX=35 r
M[0,4] M[L4] M[24] M[34] M[4,4]
M[0,3] M[1,3] M[2,3] M[3,3] M[4,3]
M[0,2] M[12] M[2.2] M[3,2] M[4,2]
M[0,1] M[1,1] M[21] M(3,1] M[4,1]
M[0,0] M[L,0] M[2,0] M[3,0] M[4,0]

OEBPS/images/Image56669.jpg
gl o
ok o
1)
), (x° +.
X
+
1)

OEBPS/images/Image56658.jpg
(x“+x+1)

OEBPS/images/Image56650.jpg

OEBPS/images/Image67861.jpg
Padding

Block 1
128 bits

Block 2
128 bits

Block 3
128 bits

L] sockn | subkey
(128 bits)

®

®

@®

eneryoron Encryption
Temp. Temp. v Temp Temp.

MAC

OEBPS/images/Image56504.jpg

OEBPS/images/Image67755.jpg
(]

Message divided into
blocks of size BlockSize bits

«—>
Block1 | Block2
BlockSize
bits

bits

BlockSize
X} Block n

— —

l

IKey as first block

Message as sequence of blocks from second block

H(iKey| | Message)

H(OKey| | PaddedFirstHash)

FirstHash

OKey

SecondHash

HashSize bits

HashSize bits padded to
blocksize

HashSize bits

HMAC(Key,Message, Hash)

OEBPS/images/Image56486.jpg

OEBPS/images/Image67746.jpg
Secret Key

Hashed Key

Hashed Key

Padded Key

PaddedKey ipad PaddedKey

i

IKey

opad

OKey

OEBPS/images/Image56469.jpg

OEBPS/images/Image67736.jpg
@

OEBPS/images/Image56453.jpg

OEBPS/images/Image67728.jpg
Ho=1V;
H = E(Ho, M1)
H = E(Hi, M2)

Hnz = E(Hnz, Mn2)

Ho1 = E(Ho2 , Maa)
Ho=E(Hot , My)

Final hash value H = Hy

Ho' =1V;
Hy' = E(Ho, M1')
Hy' = E(Hy, M2')

Hnz' = E(Hn3, Ma2')

(a)

(b)

OEBPS/images/Image56437.jpg

OEBPS/images/Image67093.jpg
x=0 x=1 x=2 *=3 x=4
y=4 | M[04] | M[14] | M[24] M[34] M[4,4]
y=3 | M[03] | M[13] | M[23] M[33] M[4,3]
y=2 | M02] | M[L2] | M[22] | M[32] M[4,2]
y=1 | M[01] | M[L1] | M[21] M[31] M[41]
y=0 | M[00] | M[LO] | M[20] M[3,0] M[4,0]

OEBPS/images/Image56242.jpg

OEBPS/images/Image66880.jpg
+4+ +++++ +

Hash i

R iniSisisinisigis

N

TF 55 'y
olalololefw]=] =

Hash i-1

OEBPS/images/Image66868.jpg
Processed message with padding and length

W
(constant
values)
512 bits

-
Block 1 Block2 Block 3 Final Block
102abits | | 1024bits | | 2024 bits 1024 bits
R0 NED > @ — @
v v
5 A N) % ~t
v
)))
Hash1 Hash2 Hash3 Final
512 bits 512 bits 512 bits Hash 512

bits

OEBPS/images/Image66860.jpg
Block 1 Block2 Block3 Final Block n
1024 bits 1024 bits 1024 bits bits
N<896

Final
Block
1024 bits

Final-1
Blcok1024
bits

Final
Block
1024 bits

OEBPS/images/Image56385.jpg
I S

OEBPS/images/Image56370.jpg

OEBPS/images/Image56354.jpg

OEBPS/images/Image67035.jpg
1. Thisis cryptography and network security book

279b957d816{0cf428a871c4720528920d2ac7711€092246c390f48307b72c1a08e2db4bf3
3b8c792¢2e9¢c88¢2c76a3b6680f970e915d98e1116124112111d6

2. This is cryptography and network's security book

21b986ecf325e114c3b41fbad 109be7e3bbadf8f2c018908c22ae55671f323953c97e591de
1be9435962569f4€0fd88e72fc1dde0b1610827f01b7504a929e1d

3. This is cryptography and network's security books

b330bfald2cc2a8f73b35690f71d276d4e3c473baceff84556(9e25df010ca206548c954b43
9902eac183017cdeccad7263c13c634834f81b9590f302e1a39f9

OEBPS/images/Image56337.jpg

OEBPS/images/Image67027.jpg
Go=R*(x)+ R¥(x)+ S7(x)
G1=RY(x)+ REI(x)+ S¥(x)

OEBPS/images/Image56320.jpg
moadulo n

OEBPS/images/Image67018.jpg
Wi

4’—D-I—b—> bl »»»*»*+I+
o E3
v £2

+ - + - + e

OEBPS/images/Image56301.jpg
of Z over Z

OEBPS/images/Image67009.jpg
2 4 4 4 % &

OEBPS/images/Image56292.jpg

OEBPS/images/Image67000.jpg
Chx,y,2)=(x&Y) ® (“x&2) //if xthany otherwise z; conditional
Maj (x,y, 2) = (<& y) @ (x & 2) © (y & 2)

//if two or three of the arguments are true, it is true; returns majority

Tofx) = %(x) @ $%(x) © $%(x)

Tilx) = 54(x) @ $(x) © 5(x)

Wjis the word j derived from the message’s" block

K, is the constant used for that particular round

OEBPS/images/Image56277.jpg
X +x*+x+1

1+ x)x*+x+1)+x-+x

OEBPS/images/Image66992.jpg
for (i=0;i<80;i++)
{

//Compute few values which we define later, let us name them as
//Z4(e) Ch(e,f, g) Maj(a,b,c), Zo(a), and W;

T1=h+Xs(e) + Ch(e, f,g) + K+ W;;

T2 = To(a) + Maj (a,b,c);

h=g

OEBPS/images/Image56260.jpg
YT+ 4+ 2+ xv+1

OEBPS/images/Image66891.jpg
Hash SHA-512 (Message M, NumberOfBlocks n)
{
Convert messageinto 1024 bit blocks;
PreviousTemp=IV;
for (i=1; i<n; ++i)
{
Temp = Generate(Block,, PreviousTemp);
PreviousTemp = Temp;
}

return Temp;

OEBPS/images/Image58357.jpg
GF(2°)

OEBPS/images/Image69431.jpg
Initialized State Array UBSHtUTe B vTes
o

i

Add Round Key
Cipher Text

OEBPS/images/Image58347.jpg

OEBPS/images/Image69423.jpg
16-byte Data K0 is added
128 bit Block State Array. Initialized State Array

OEBPS/images/Image56945.jpg

OEBPS/images/Image69414.jpg
128 bit Block 1 128 bit Block 2 128 bit Block n

OEBPS/images/Image56929.jpg
(x*+1)-x) (mod(x*+x“+1))

OEBPS/images/Image69385.jpg

OEBPS/images/Image68754.jpg
Padding as 64 bit zero.

ale

~

mHash Randomsalt Padding’ Random salt
value S value
e N /
~ i \
Ava _5/
Concatenation Concatenation
08'slength
=
DBMask

Maskedop

Concatenation

.

EM

OEBPS/images/Image68747.jpg
Message Message signature
P
Applying hashing ’
Aopling hashing Apolingn ?
functon H v
mHash Sender’s
(?) l Publc Key
Receiver's
Privae Key Calclatig
¥ signature using.
mash =
v
processing ASAsigning
the hash | Process.
v
&M
v
signature

Om

OEBPS/images/Image58457.jpg
GF(2°)

OEBPS/images/Image58440.jpg

OEBPS/images/Image58425.jpg

OEBPS/images/Image69465.jpg
ENFNE N
81, B5, B9, B13
e e fpoal A

OEBPS/images/Image58409.jpg

OEBPS/images/Image69457.jpg
BO | B4 | B8 |B12 BO (B4 |B8 |B12
B1|B5|B9 |Bi3 5 B5 |B9 |B13|B1
B2 | B6 | B10 | B14 B10 | B14 | B2 | B6
B3 | B7 | B11 | B15 B15|B3 | B7 |Bl1

The State Array

The Resultant State Array

OEBPS/images/Image58392.jpg
01, x, x+1, x-,x~+1, x~+x, x~+x+1

OEBPS/images/Image69447.jpg
T w0 ®mND WA WN e O

- 0o o o

63
ca
b7

09
53
do
51
cd
60
e0
e7
ba
70

el

8c

7c
82
fd
c7
83
d1
ef
a3
Oc
81
32
c8
78
3e
f8
al

77
9
93
23
2¢
00
aa
40
13
af
3a
37
25
b5
98
89

7b
7d
26
3
1a
ed
fb
8f
ec
dc
0Oa
6d
2e
66
11
0d

4
2
fa
36
18
1b
20
23
92
sf
2
49
8d
1c
48
69
bf

5
6b
59
3f
96
6e
fc
ad
9d
97
2a
06
ds
a6
03
d9
e6

6
6f
a7
f7
05
5a
b1
33
38
44
90
2
4e

f6
8e
42

7
c5
fo
cc
9
a0
5b
85
f5
17
88
5¢
a9
c6
Oe
94
68

8
30
ad
34
07
52
6a
a5
bc
c4
46
c2
6¢c
e8
61
9b
41

9
01
da
as
12
3b
cb
fo
b6
a7
ee
d3
56
dd
35
le
99

67
a2
e5
80
dé
be
02
da
7e
b8
ac
fa
74
57
87
2d

b
2b
af
f1
e2
b3
39
7f
21
3d
14
62
ea
1f
b9
e9
of

fe
9c
71
eb
29
4a
50
10

de
91
65
4b
86
ce
bo

d
d7
a4
d8
27
e3
4c
3c
ff
5d
Se
95
7a
bd
cl
55
54

ab
72
31
b2
2f
58
9f
f3
19
0b
e4
ae
8b
1d
28
bb

76
c0
15
75
84
cf
a8
d2
73
db
79
08
8a
9e
df
16

OEBPS/images/Image58375.jpg
GF(2°)

OEBPS/images/Image69438.jpg
BO | B4

B8

B12

B1 | BS

B9

B13

B2 | B6 | B10 | B14

B3 | B7 | B11 | B15

(a) The State Array

Koo0O

Koo01

Koo02 | Koo03

Koo10

Kool1

Koo12 | Kool3

Ko020

Koo21

Koo22 | Koo23

Koo30

Koo31

Koo32 | Koo33

(b) The Key 0 to be used just
before the first round

(c) Initialization :- Both State Arr:
by byte to produce a new state as follows

ay and Key 0 are XORed byte

Koo0O XOR BO

Koo01 XOR B4

Koo02 XOR B8

KooO3 XOR B12

Koo10 XOR B1

Koo11 XOR B5

Koo12 XOR B9

Koo13 XOR B13

Koo20 XOR B2

Koo21 XOR B6

Koo22 XOR B10

Koo23 XOR B14

Koo30 XOR B3

Koo31 XOR B7

Koo32 XOR B11

Koo33 XOR B15

(d) The State Array as a result of the initialization process

OEBPS/images/Image56696.jpg
(x> +x*+x*+x°+1),(x>+x*+x“+x+1)

OEBPS/images/Image67907.jpg
Message

EMD

MD

Calculation

MD

H@crvp&

>

EMD

Accept

v <o

Reject

OEBPS/images/Image56687.jpg
[
ok o
1)
), (x> +.
Ll
+.
s
+
i
+
1)
), (x> +

5 el
+
¢
+.
X
+

1),

OEBPS/images/Image67899.jpg
MD

Message calculation

Sender Side activities
1. Message is prepared

o) 2. MD calculated
'a MD. 3. MD encrypted to EMD
4. Sent to receiver
Message EMD || Sent to receiver essage || w0
]
Recelver side activities vD <
1. Message is received with Calculation
EMD
2. EMD Decrypted MD
vo | [mp
. MD calculated from message
4. Calculated and decrypted
MD compared
5. If same, message accepted,
Y @ N
Accept Reject

OEBPS/images/Image56677.jpg
gl
x°+
i
+
x
+
b i ¥
¥ ok
+x°+
1),
EEx™

+
5 4
+

1)

OEBPS/images/Image67885.jpg
Message @ Sender Side activities

1. Message is prepared

OB 2. Message is encrypted

3. Sent to receiver

Encrypted Message | | Sent to receiver Encrypted Message

Receiver side activities

1. Encrypted Message is
received Message

Message is Decrypted
If message is decrypted
properly, message accepted,

rejected otherwise i
s

message

J decrypted L

Accept Reject

OEBPS/images/Image67877.jpg
Message

Error code
calculation

EDC

Sender Side activities
8 Message is prepared
9 EDC calculated

10 Appended to message
11 Sent to receiver

Message

EDC

Sent to receiver

Message | EDC

Receiver side activities

1. Message is received with

Error code
calculation

€DC
2. Message separated
3. EDC calculated from EDc | | EDc
message
4. Appended EDCis separated
5. Calculated and Separated
EDC compared
6. If same message accepted,
rejected otherwise
Same

Y
.

,

Reject

OEBPS/images/Image67870.jpg
Part of Message which needs only Part of Message which needs

Flogs | [Nonce authentication: Associated data authentication + Encryption
MB-1 MB-2 vB-3 MB-m MB me1 MBn
128 bit 128bit | | 128bit | | 128bit 128 bit 128 bit
v
Temporary Tog
Keystream || Ke-1 K82 K83 KB me1
Generator 128 bit 128 bit 128 bit 128 bit
MB-1 mB8-2 MB-m
128 bit 128bit 128 bit
Cipher Cipher Cipher
block 1 block 2 blockm
Authentication
tagu
appandadat MB: - Message Block
the end of the KB: - Keystream Block
ciphertext m:- Total number of blocks which needs Encryption + Auth
nemi- total number of blocks which require only Auth

OEBPS/images/Image56914.jpg

OEBPS/images/Image56894.jpg

OEBPS/images/Image56846.jpg
x*+x 41

OEBPS/images/Image68739.jpg
et = t
Applying hashing. Message | . Pukey
e

et
BEED Random
= e
@® e o
B

o >

¥ [@|

Figure 9.4 The DSA and ECDSA approach to sign and verify, we used r and s in DSA
and s and tin ECDSA as signature. In this figure we have used r and s. The processing
in bounded box happens with every new message.

OEBPS/images/Image56828.jpg
x4+ x4+1

OEBPS/images/Image68732.jpg
Signing
Function

Encryption
Algorithm

Key Generation
and Distribution

Information the
Attacker Has

Only Public Key

Only Message with DS

Chosen Message

OEBPS/images/Image56808.jpg
{01L,x, x+1,x° x*+1, x*+x,x*+x+ 1}

OEBPS/images/Image68723.jpg
Verification by
Integrity [

Third Party

OEBPS/images/Image56790.jpg
GF(2)=Z, ={0,1}

OEBPS/images/Image68715.jpg
Algorithm
Components of DS

Key

Generation RIE0e

OEBPS/images/Image56773.jpg

OEBPS/images/Image67925.jpg
Sender Side activities

Message Message is prepared

Secret Key appended
Hash function applied
MAC calculated
Message + MAC sent

Q

Message | SK

Message | | MAC Sent to receiver Message MAC

Secret key SK

Receiver side acti appended

Message is recelved with MAC

1
2. Message separated Massige.
3. Secret Key appended to Message
4. Hash applied to result
B
6.

Appended MAC s separated
Calculated and Separated MAC
compared

7. If same message accepted,
rejected otherwise

OEBPS/images/Image51921.jpg
a(moa p)

OEBPS/images/Image59212.jpg
GF(2°)

OEBPS/images/p270.jpg
(tH1)X+2)
5

OEBPS/images/Image51905.jpg
(mod 31)

OEBPS/images/Image59196.jpg

OEBPS/images/p269.jpg
(HH1)X+2)
5

OEBPS/images/Image51888.jpg

OEBPS/images/Image59179.jpg
GF(2%")

OEBPS/images/p265.jpg

OEBPS/images/Image51871.jpg

OEBPS/images/Image59162.jpg

OEBPS/images/p189.jpg

OEBPS/images/Image59144.jpg

OEBPS/images/p185.jpg
+Jo 1 olale
=15 0oo|-
1Til% RN

OEBPS/images/Image59127.jpg
modadulo

OEBPS/images/p134.jpg
x

3 (mod 14)

1

dlog, , (x)

w
-

OEBPS/images/p106.jpg

OEBPS/images/N.jpg

OEBPS/images/Image52041.jpg
a®lp)—1

OEBPS/images/Image52024.jpg

OEBPS/images/Image52008.jpg

OEBPS/images/Image59288.jpg
GF(2%")

OEBPS/images/Image51991.jpg

OEBPS/images/Image59271.jpg

OEBPS/images/Image51976.jpg

OEBPS/images/Image59254.jpg
GF(2%)

OEBPS/images/p53.jpg
<2 15 o5 5 205 o
20 11 22 * 9 -391mod26=1=P
M 4 1 6 210 9

OEBPS/images/Image51953.jpg

OEBPS/images/Image59227.jpg
5+7=101+111

01 2

2+3=010+011=001=1
2-3=010+ 011 0 1

OEBPS/images/p270a.jpg

OEBPS/images/Image51752.jpg

OEBPS/images/Image59012.jpg

OEBPS/images/Image69525.jpg

OEBPS/images/Image51737.jpg

OEBPS/images/Image58995.jpg
GF(2")

OEBPS/images/Image69517.jpg
NewBit7 AEARAEAEY YR Bit7 1
NewBit6 1({1f/ofofo0f1(1]1 Bit6 1
NewBit5 0L I BitS [
NewBit4 1j]1]1]1]0l0j0]|1 Bit4 0
NewsBit3 1l2|2]a|1|ojn]o Bit3 o
NewBit2 CAEAREAEAEAENIN) Bit2 1
NewBit1 CARAEAES EA AN Bitl 1
NewBit0 0|0f[O0|1]|1[1]1]1 Bit0 0

OEBPS/images/Image51721.jpg
iy

OEBPS/images/Image58636.jpg

OEBPS/images/Image69509.jpg
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bitl
Bit0

1
1

1
1

1

1

0j|0jO0j1]1
1{0/0]0|1

ojo0]|o0

1
1

0oj0]o0

1
1
1

0j0]o0

OEBPS/images/Image58492.jpg
Laliq lp

OEBPS/images/Image69502.jpg
K0100 | K0101 | Ko:02 | Ko103 K1000 | K1001 | K1002 | K31003
K0110 | Kos11 | Kox12 | Koa13 K1010 | Kiol1 | Kio12 | K13
K0120 | Kos21 | K012 | Kos23 K1020 | K1021 | K102 | K123
K130 | Koi31 | K132 | Koi33 K1030 | K1031 | K1032 | Ki033

Key01 for first round

Key10 for tenth round

OEBPS/images/Image58477.jpg
a,x“+a.x + ag

OEBPS/images/Image69494.jpg
2(3]1[1 BO | B4 | B8 |B12 B0 B4 [B'8 |B'12
11213)1 B1|B5|B9 |B13 B’1|B'S B9 |B'13
1j112]8 B2 | B6 | B10 | B14 B’2 |B'6 [B'10 B 14
3)|1]1]2 B3 | B7 | B11 | B15 B’3 [B'7[B'11 [B'15

The Constant
Matrix

The State Array

The Resultant State Array

OEBPS/images/Image69485.jpg

OEBPS/images/Image69476.jpg

OEBPS/images/Image51853.jpg

OEBPS/images/Image51836.jpg

OEBPS/images/Image51820.jpg

OEBPS/images/Image59111.jpg

OEBPS/images/Image51804.jpg

OEBPS/images/Image59095.jpg

OEBPS/images/Image51789.jpg

OEBPS/images/Image59060.jpg

OEBPS/images/logo1.jpg
To View Complete
898 Publcations Catslogue

Scan the QR Code:

OEBPS/images/Image51769.jpg
Omod 11

OEBPS/images/Image59043.jpg

OEBPS/images/logo.jpg

OEBPS/images/Image51761.jpg

OEBPS/images/Image59028.jpg

OEBPS/images/line.jpg

OEBPS/images/Image52303.jpg

OEBPS/images/Image59711.jpg

OEBPS/images/Image52296.jpg

OEBPS/images/Image59694.jpg

OEBPS/images/Image52280.jpg

OEBPS/images/Image59679.jpg

OEBPS/images/Image52263.jpg

OEBPS/images/Image59663.jpg

OEBPS/images/Image52246.jpg

OEBPS/images/Image59646.jpg

OEBPS/images/Image52228.jpg
1+ x4+ x°

OEBPS/images/Image59629.jpg
GF(2"7)

OEBPS/images/Image59611.jpg
GF(2"7)

OEBPS/images/Image59593.jpg

OEBPS/images/Image52363.jpg
R L]l

OEBPS/images/Image52348.jpg

OEBPS/images/Image52328.jpg
modulo m(x)

OEBPS/images/Image59746.jpg

OEBPS/images/Image52311.jpg

OEBPS/images/Image59731.jpg

OEBPS/images/Image52124.jpg
5(3*)mod11 (5 mod11=3)

OEBPS/images/Image59492.jpg
b, b, bc b, by b, D, D,

OEBPS/images/Image52109.jpg

OEBPS/images/Image59459.jpg
f(x)=b,x" +b.x°+b:x>+by,x*+b,x*+ b,x*+ b,x + b,

OEBPS/images/Image52093.jpg
57 (mod 11)

OEBPS/images/Image59442.jpg
x° mod(m(x)) =x"+x"+x+1

OEBPS/images/Image52076.jpg
5+7=
(mod 11)

OEBPS/images/Image59391.jpg

OEBPS/images/Image52059.jpg

OEBPS/images/Image59374.jpg

OEBPS/images/Image59319.jpg
a €EGF(2)a+a

OEBPS/images/Image59304.jpg

OEBPS/images/Image52210.jpg
(p"), forn= 2,

OEBPS/images/Image52194.jpg

OEBPS/images/Image52178.jpg

OEBPS/images/Image59561.jpg
GF(2"7)

OEBPS/images/Image52163.jpg
3 - 5% (mod11)

OEBPS/images/Image59546.jpg
GF(2"7)

OEBPS/images/Image52142.jpg
5.3-5(mod11) (3°modll=05)

OEBPS/images/Image59507.jpg
xf(x) = (b,x® +b.x" + bx® + b,x> + b,x* + b,x*+ b,x* + byx) (mod m(x)),

OEBPS/images/Image45893.jpg

OEBPS/images/Image52648.jpg

OEBPS/images/Image60074.jpg

OEBPS/images/Image45884.jpg
Query for Receiver's public key

e
«————
X509 certificate with Receiver’s public Key

Encrypt ((Sender ID, Sender’s Nonce), Receiver’s public key),
Signature by sender’s private key o@

Query for Sender’s public key

X.509 certificate with Sender’s public Key

Encrypt ((Receiver ID, Sender’s Nonce, Receiver’s nonce), Sender’s public key),
Signature by Receiver’s private key

&
g g
(receiver’s nonce)signed by sender’s private key)

ol >

Timestamp = {Generation time (optional), expiration time (compulsory)}

&

OEBPS/images/Image52633.jpg

OEBPS/images/Image60059.jpg
g*lmodT7)

OEBPS/images/Image45875.jpg
Query for Receiver’s public key
Cp —

X509 certificate with Receiver’s public Key

Encrypt ((Sender ID, Sender’s Nonce, Sender’s Timestamp),
o Receiver's public key), Signature by sender’s private key

Query for Sender’s public key

X509 certificate with Sender’s public Key.

Encrypt ((Receiver ID, Sender’s Nonce, Receiver's nonce, Receiver's
Timestamp), Sender’s public key), Signature by Receiver's private key

2 .

Timestamp = {Generation time (optional), expiration time (compulsory)}

OEBPS/images/Image52611.jpg

OEBPS/images/Image60043.jpg
GF(2%)

OEBPS/images/Image45867.jpg
Query for Receiver's public key
2

X.509 certificate with Receiver's public Key.

Encrypt ((Sender ID, Sender’s Nonce, Sender’s Timestamp),
Receiver's public key), Signature by sender’s private key

Timestamp = {Generation time (optional), expiration time (compulsory)}

OEBPS/images/Image52594.jpg
p(x) +qg(x) =4— x +2x° + x°

OEBPS/images/Image60026.jpg

OEBPS/images/Image45858.jpg

OEBPS/images/Image52586.jpg
g(x) =3—-2x+ x< + x°

OEBPS/images/Image60009.jpg

OEBPS/images/Image45849.jpg
oK

Queryfor Server's public key

X.509 certificate with Server's public Key

Encrypt ((Client, Client’s Nonce), Server's public key)

X509 certificate with Client’s public Key

Encrypt ((Client’s nonce, SessionKey, Server’s Nonce), Client’s public key)

Encrypt (Server's nonce), Sessionkey)

> B

OEBPS/images/Image52579.jpg
p(x) =1+ x + x°

OEBPS/images/Image59990.jpg

OEBPS/images/Image52562.jpg

OEBPS/images/Image59973.jpg
g*+g-+g

+g+g-+g=g-+1

OEBPS/images/Image52544.jpg
4—x+2x"+ x*

OEBPS/images/Image59956.jpg

OEBPS/images/Image59940.jpg
g -+g+1

OEBPS/images/Image59924.jpg

OEBPS/images/Image46610.jpg
Trust associated with Trust associated with Trust associated with
Public Key Owner Public key/user id Signature

‘Owner Trust ield Values Keylegit Field Values Sigtrust Feld Values

= Undefined trust > Unknown or undefined > Undefined trust

> Unknown user > Not trusted > Unknown user

—> Usually not trusted to sign —> Marginaltrust = Usually not trusted to sign
others —> Complete trust others

= Usually trusted to sign ‘WarnOnly bit (s st f the user — Usually trusted tosign others
others. wants to only generate S ————

sarning in case of encryptior

> Present n private key ring waing neryPacl (ultimate trust)
{oltimate trust] by a key not fully trusted)

Buckstop bit (set i the key is CONTIG bit - if contiguous

found in private key ring) certifcation path leads to

ultimate trust

OEBPS/images/Image46597.jpg
Key ID (Receivers

Public Key)
Session Key
fart Encrypted by
Session Key Receiver's Public
Key
Key D (Sender’s
Public Key)
Signature First two bytes of
Part message digest
Cnoypted by Compressed by
k 2P and then
Digital Signature Sender's Private i
ey encrypted by
session key
Name
Time Stamp
Message
Part

Data

Converted
to Base-64
Encoding

OEBPS/images/Image46555.jpg
(Z, .+,)

OEBPS/images/Image52673.jpg
o Ve (R D o)

Qagb; + a, b,_,+...+a;,_, by + a; by;

OEBPS/images/Image45955.jpg
(1.x=x.1=xforallxeR* and x - §= ,l? - x=1forallxeR")

OEBPS/images/Image52664.jpg
) -at) =) ciex!

=

OEBPS/images/Image44948.jpg

OEBPS/images/Image52483.jpg
qlx) =) _ bixi,n>=m

OEBPS/images/Image59902.jpg
1+g

OEBPS/images/Image44940.jpg

OEBPS/images/Image52466.jpg
plz) =¥ oo

OEBPS/images/Image59885.jpg
GF(2%)

OEBPS/images/Image44931.jpg

OEBPS/images/Image52448.jpg

OEBPS/images/Image59868.jpg

OEBPS/images/Image44924.jpg

OEBPS/images/Image52431.jpg

OEBPS/images/Image59850.jpg

OEBPS/images/Image44917.jpg

OEBPS/images/Image52413.jpg

OEBPS/images/Image59831.jpg
g°+g+1=0

OEBPS/images/Image52395.jpg
p._,(x)=a,+a,x+a,x*+-+a,_,x""

OEBPS/images/Image59824.jpg

OEBPS/images/Image52379.jpg

OEBPS/images/Image59796.jpg
X +x+1

OEBPS/images/Image59778.jpg
GF(2°)

OEBPS/images/Image59762.jpg

OEBPS/images/Image44998.jpg

OEBPS/images/Image44990.jpg

OEBPS/images/Image44977.jpg

OEBPS/images/Image52527.jpg
VA

(a;

€Z)

OEBPS/images/Image44970.jpg

OEBPS/images/Image52508.jpg
1+x+x“and g(x)=3—2x+ x~+ x°

OEBPS/images/Image44961.jpg

OEBPS/images/Image52499.jpg
) 400 =) (a+b)xi+) ax
L

N

OEBPS/images/Image59914.jpg

OEBPS/images/Image47400.jpg

OEBPS/images/Image53061.jpg

OEBPS/images/Image47385.jpg
.

OEBPS/images/Image53046.jpg

OEBPS/images/Image47365.jpg
Z. ,implying (Z , X)

OEBPS/images/Image53030.jpg

OEBPS/images/Image47348.jpg

OEBPS/images/Image53011.jpg
deg(g(x))=m

OEBPS/images/Image47333.jpg
0 moan

OEBPS/images/Image52991.jpg

OEBPS/images/Image47317.jpg
| R W B 1)

OEBPS/images/Image52973.jpg

OEBPS/images/Image47299.jpg

OEBPS/images/Image52956.jpg

OEBPS/images/Image47244.jpg

OEBPS/images/Image52940.jpg

OEBPS/images/Image52909.jpg

OEBPS/images/Image52889.jpg

OEBPS/images/Image47469.jpg

OEBPS/images/Image47449.jpg

OEBPS/images/Image46850.jpg
Recipient Information block (Receipient Info)

Content of the block Information
Certificate ID Contains public key used for encryption
Algorithm ID Algorithm used to encrypt

Encrypted Session Key

OEBPS/images/Image52857.jpg

OEBPS/images/Image46804.jpg
From: Lara Brian <lara@abc.com>

To: Gayle Kris <gayle@def.com>

Date: Sun, 24 Aug 2011 23:56:48 -0800 (PST)

Subject: MIME Multipart message example

MIME-Version: 1.0

Content-type: multipart/mixed;
boundary="Example-boundary"
~ Example-boundary

Content.type: text/plain; charss

Thisis explictly typed plain US-ASCII text.
1t DOES end with a line break. The content type information is
valid for this section only.
~ Example-boundary
wltipart/parallel boundary=special-boundary

Content-typestext/plain
Happy birthday to you
Happy birthday to you
Happy birthday to dear Gayle
Happy birthday to you
- special-boundary
Contenttype: image/jpeg Content Transfer-encoding: base64.
..image to have cake and decorations with “Happy Birthday
Gayle” in the background
- special-boundary
Content-Type: audio/basic
Content Transfer-Encoding:
song saying happy birthday to Gayle is coded here
- special-boundary—

- Example-boundary -

> Theheadors

The Blank line

The epilog which i to
be ignored

The mail begins from
here

I The mailends here

OEBPS/images/Image52841.jpg

OEBPS/images/Image46729.jpg
8 bit data with specific
type and sub type.

MIME

!

7 bit data and conversion
information

SMTP.

8bitdata ——————>|

Application for that
type of data

MIME

7 bit data and conversion
information
s

SMTP.

OEBPS/images/Image52824.jpg

OEBPS/images/Image46720.jpg
Authentication Message Integrity

Non-repudiation of origin

Privacy and Data Security

OEBPS/images/Image52789.jpg

OEBPS/images/Image46619b.jpg

OEBPS/images/Image52772.jpg
34(-24+3)x +3—-2+D)x-+(1+1—-2)x*+(1+ 1)x"+ x°

OEBPS/images/Image46619a.jpg

OEBPS/images/Image52756.jpg

OEBPS/images/Image46619.jpg

OEBPS/images/Image52725.jpg
degree p(x) + degree q(x))

OEBPS/images/Image52705.jpg

OEBPS/images/Image52688.jpg
Ofori>nanab, =0,for i>m

OEBPS/images/Image47228.jpg

OEBPS/images/Image47212.jpg

OEBPS/images/Image47093.jpg
(Ze, Xc)

OEBPS/images/Image52872.jpg

OEBPS/images/Image48791.jpg
(Z5,15)

OEBPS/images/Image48774.jpg

OEBPS/images/Image48756.jpg
(Z5,15)

OEBPS/images/Image53418.jpg
p(x) —g(x) = 3x“+2x+1

OEBPS/images/Image48738.jpg

OEBPS/images/Image53402.jpg
3x“+x+ 2 (modulo5)

OEBPS/images/Image48722.jpg

OEBPS/images/Image53385.jpg
p(x) +g(x) =3x“+6x+7

OEBPS/images/Image48706.jpg
<-4+ 1 =24+1

OEBPS/images/Image53368.jpg

OEBPS/images/Image48691.jpg

OEBPS/images/Image53350.jpg
p(x) =3x~ + 4x + 4,

OEBPS/images/Image48671.jpg

OEBPS/images/Image53333.jpg
Z: = GF(5)

OEBPS/images/Image48654.jpg
e

0(a” =
e)
)

OEBPS/images/Image53317.jpg

OEBPS/images/Image48181.jpg
ae a8

Stage 1

| Clientell, Rey starerpre-sharedkey |,
ServerHello, Keyshare,

Stage 1. - includes exchange of
security capabilities from both the
side. In 1.3 the key share as well as
pre shared key is also exchanged.

stage2 |

Stage 2 - Server hello done s the
only mandatory message here tll 1.2
but no longer in 1.3, key exchange is
managed in key share in 1.3

Stage 3

Stage 4 : - client sends change cipher

T spec and finished til 1.2
L. ChangeChipherspec is removed in

13and

ished become optional

Stage 4.

Shaded messages are not always
sent. They are sent when needed
and not mandatory. Almost all
optional messages are due to the
fact that server authentication is
not compulsory

OEBPS/images/Image53286.jpg

OEBPS/images/Image53266.jpg

OEBPS/images/Image53247.jpg

OEBPS/images/Image48164.jpg
TLS Handshake

TLS Alert

Application Layer (Usually HTTP)

TLS Record Layer

Transport Layer (Usually TCP)

P

OEBPS/images/Image47619.jpg

OEBPS/images/Image53232.jpg

OEBPS/images/Image47603.jpg

OEBPS/images/Image53216.jpg

OEBPS/images/Image47587.jpg
(Z5, Xy)

OEBPS/images/Image53199.jpg

OEBPS/images/Image47572.jpg
a X, b ez,

OEBPS/images/Image53182.jpg

OEBPS/images/Image47534.jpg
aX,b#p

OEBPS/images/Image53162.jpg
moadulo n

OEBPS/images/Image47519.jpg

OEBPS/images/Image53145.jpg

OEBPS/images/Image47503.jpg
1 <a,b<p

OEBPS/images/Image53129.jpg
deg(g(x)=n—m and degr(x) =m-—1

OEBPS/images/Image47486.jpg

OEBPS/images/Image53113.jpg

OEBPS/images/Image53098.jpg

OEBPS/images/Image53078.jpg

OEBPS/images/Image48172.jpg
Protocol Design

Use of the Protocol

Handshake Protocol

Record Protocol

Negotiate between client and server
Transfer the content to the other end securely

Alert Protocol

Record Protocol

Generate and process error messages.
Transfer the content to the other end securely

Change Cipher Spec

Record Protocol

Change cipher specifications to (already negotiated) new values
NOW OBSOLETE INTLS 1.3

Application data protocol

Record Protocol

‘Application data which need to be protected
Transfer the content to the other end securely

OEBPS/images/Image49001.jpg

OEBPS/images/Image48994.jpg
o
Any
Any

any

e
1011011
Any
Any
1011013
1011012
Any
Any
1011011
0112
Any

Inprt
0
Any
Any
500

Any

oup
2021000124
2021013

Any
Any
2021014
221011
any
2021000124
Ay
Aoy

ouprt Proto
Ay | TP
vy | Aoy
0 T
| uor
w | w
s0s0 | Tcr
Ay icwp
T
Any | Any
Ay | Ay

A
EN
e
S

sae

il
s
ol
ol
ol

E5P wansport
5
s

E59 wnel
5

o
o
o

Comment
Trafic to web server
NoTrust
Outgoing Web uaffic
e
s

Tomeat ith tumnel
rrorbypassed
Noother rafic to Web
Nothing other than TLs.
DefauitDiscard

OEBPS/images/Image48985.jpg
L R2 2021014

o011 - &= 57}

1001012

021011 2021012

OEBPS/images/Image48984.jpg

OEBPS/images/Image48973.jpg
Content

psec

content

OEBPS/images/Image48967.jpg

OEBPS/images/Image48960.jpg
D
=

Network 1

OEBPS/images/Image48948.jpg
(Z5,15)

OEBPS/images/Image48931.jpg
(Z5,15)

OEBPS/images/50BookChap-13Eq1.jpg
¥4

x5

3 +A

2y,

B =B
if B=p,

OEBPS/images/Image48914.jpg

OEBPS/images/50BookChap-13Eq2.jpg
L% ydpif B <,
et)
3x+A

2y,

Where m =

mod p if B, =

OEBPS/images/50BookChap-13Eq3.jpg

OEBPS/images/50BookChap-13Eq4.jpg

OEBPS/images/50BookChap-13Eq5.jpg

OEBPS/images/50BookChap-13Eq6.jpg

OEBPS/images/50BookChap-13Eq7.jpg

OEBPS/images/50BookChap-13Eq8.jpg
[l]

OEBPS/images/50BookChap-1Eq1.jpg

OEBPS/images/Image48898.jpg
2 mod 7

OEBPS/images/Image48889.jpg

OEBPS/images/Image48882.jpg

OEBPS/images/Image48872.jpg

OEBPS/images/Image48861.jpg

OEBPS/images/Image48853.jpg

OEBPS/images/Image48844.jpg

OEBPS/images/Image48834.jpg

OEBPS/images/Image48827.jpg

OEBPS/images/Image48809.jpg

OEBPS/images/Image49245.jpg
Proposal ESP-1

Transform-1 Encryption algorithm -> AES

Attribute-1 Key Length -128 Attribute 2 CBC Attribute
Transform-2 MAC algorithm-> SHA-2

Attribute-1 Key Length-256 Attribute2 HMAC

Proposal ESP-2
Transform-1 Encryption algorithm-AEAD
Attribute-1 Key Length-128 Attribute-2 GCM MAC->CMAC MACKey-128

OEBPS/images/Image49237.jpg
Proposal AH-1
Transform-1 MAC algorithm -> SHA-2
Attribute-1 Keylength-512 Attribute-2 HMAC

Proposal AH-2
Transform-1 MAC algorithm -> SHA-2
Attribute-1 Keylength-256 Attribute-2 HMAC

Proposal AH-3
Transform-1 MAC algorithm -> Whirlpool
Attribute-1 Keylength-256 Attrbute-2 CMAC

OEBPS/images/Image49229.jpg
==
Proposall Proposal2 Proposal n
.

Tra

OEBPS/images/Image49221.jpg
Payload Value Parameters
Security Association 33| Proposal, transforms, attributes
Key Exchange 34| DH group number, key exchange data
Identification-Initiator 35
Identification - Responder | 36 | ID type and data
Certificate 37_| Certificate encoding, data
Certificate Request 38| Certificate encoding, certificate authority
Authentication 39| Authentication algorithm, data
Nonce 40_| Nonce data
Notify a1 | Protocol ID, SPI size, notify message type, SPI,
notification data
Delete 42_| Protocol ID, SPI size, Total SPIs, SPI(s)
Vendor ID 43| Vendor ID
Traffic Selector - 34| Total traffic selectors, traffic selectors
Traffic Selector - 45| Total traffic selectors, traffic selectors
Responder
Encrypted 46| IV, encrypted IKE payloads, padding, pad length, ICV.
Configuration 47 _| Configurationtype and attributes
Extensible Authentication | 48 | EAP message

OEBPS/images/Image49212.jpg
1 2 3

01234567890123456789012345678901
e
! Next Payload !C! RESERVED payload Length !
AR R

OEBPS/images/Image49202.jpg
Exchange Type Value

RESERVED 0-33
IKE_SA_INIT 34
IKE_AUTH 35
CREATE_CHILD_SA 36
INFORMATIONAL 37
RESERVED TO IANA 38-239

Reserved for private use | 240-255

OEBPS/images/Image49189.jpg
Exchange Type

Value

RESERVED 0-33
IKE_SA_INIT 34
IKE_AUTH 35
CREATE_CHILD_SA 36
INFORMATIONAL 37
RESERVED TO IANA 38-239
Reserved for private use | 240-255

OEBPS/images/Image49093.jpg

OEBPS/images/Image49076.jpg

OEBPS/images/Image49069.jpg

OEBPS/images/Image49059.jpg

OEBPS/images/Image49052.jpg
2 n1 Not Arrived
n
s A Artived
% Not | i1
013013)
. 12
. .
. .
. .
013012 Not | i+5
P Arri | S
wonicts
w2012
w21

Not Arrived

v +

Sliding window after the arrival of a packet

1 2 3
01234567890123456769012345678901
e ety ey Amde et tn e ettt

IKE_SA Initiator’'s SPT '

B e T e Ses 4mtmemtmam e gm e

1 IKE_SA Responder's SPI t

B St e e ety

| Next Payload | MjVer | Mnver ! Exchange Type ! Flags !

B e
Message ID

AR R RIS S R R OO
! Length '

Sl i R

OEBPS/images/Image49049.jpg

OEBPS/images/Image49043.jpg

OEBPS/images/Image49035.jpg
. -)
2 E

OEBPS/images/Image49032.jpg

OEBPS/images/Image49027.jpg
The Security association identifier No
header (SP1) (4 bytes) encryption
Sequence Number (4 bytes) for these
Payload | Initialization vector (optional) fields
data | Payload data (variable length) | I CV Calculated
Traffic Flow Confidentiality | (authenticated)
(TFC) padding Encrypted
The Padding (0-255 bytes)
Trailer Pad Length (1 byte)

Next Header (1 Byte)

Authentication Data - ICV
(variable, multiple of 4 bytes)

OEBPS/images/Image49017.jpg
7

Origina sequence

(1P header-[TCP/UDP header —{Application header-[data]]]]
Transport mode modied sequence
IP header- [ESP header ~[TCP/UDP header - [Application header-[datal]]]]
Tunnel mode modifed sequence
[New 1P header- [ESP header ~[old IP header [TCP/UDP header ~ [Application header-[data]]]]]

1Pv6

OriginalSequence

(Extension Header Extensin Header 2.TCP/UDP header [Aplicaton Header [Datal.I]
5P modified sequence fo transport mode
. {Estension Header [ESP header [Extension Header +1.(TCP/UDP header (Applicaton Header (Datl].]
5P maied sequence for tumel mode

[[New 1P header{Extension Header | [ESP header [Original P headir[Extension Header 1+1.[TCP/UDP header [Application
Header [Datal].]

OEBPS/images/Image49010.jpg
Coming from router or Transport ayer

Enty? 5PD entry searched
s sDentrysearched
N
Enty?

3|

Sentto Data Layer

N

KE invoked, keys generated

¥

Shentry is enerated

Apply protection and sent to Dta ayer

OEBPS/images/Image49002.jpg
Checkifthe packet is secured

SPD table searched

SAD table searched

Decrypted and authenticated

oropit

Header is removed and sent up

OEBPS/images/50BookChap-1Eq2.jpg

OEBPS/images/50BookChap-1Eq4.jpg
-t

OEBPS/images/50BookChap-1Eq3.jpg

OEBPS/images/50BookChap-4Eq1.jpg

OEBPS/images/50BookChap-2img1.jpg

OEBPS/images/50BookChap-4Eq3.jpg
o i 10 . 4 00 3077 @
“m10® m10® 110|100 99 | 10010
=107-9 / 2.3026

30.109

10%(10-1)

OEBPS/images/50BookChap-4Eq2.jpg
-3

OEBPS/images/50BookChap-4Eq5.jpg

OEBPS/images/50BookChap-4Eq4.jpg
1 1 1

OEBPS/images/50BookChap-4Eq6.jpg

OEBPS/images/50BookChap-4Eq8.jpg
:I:--lilr' (“"nmdn)]nmd i

OEBPS/images/50BookChap-4Eq7.jpg
a'modn—

_‘li!‘l“"]mdn

OEBPS/images/50BookChap-7Eq2.jpg
0:ax,y,7] ol , @3 dllx -1y, 2] ®F alx +133,z~]
= =

OEBPS/images/50BookChap-7Eq1.jpg
alr,y,z] y=0,1,2,34
z=0,12, 63|

OEBPS/images/50BookChap-7Eq4.jpg

OEBPS/images/50BookChap-7Eq3.jpg

OEBPS/images/50BookChap-7Eq6.jpg
pialxy,z] e.[x.y.[z = M;(J]]wm 0%, l(24.mi[: ;] [;] :[;]in GF®)

OEBPS/images/50BookChap-7Eq5.jpg

OEBPS/images/Code.jpg

OEBPS/images/50BookChap-7Eq7.jpg
O O e T T

OEBPS/images/Image20274.jpg
(Zg,tg, Xg)

OEBPS/images/Image285.jpg
s

OEBPS/images/Image278.jpg
4 subtracted repeatedly from 20 | 4 subtracted repeatedly from 30

20-4=16 30-4=26
16-4=12
12-4=8
8-4=4
-4 =0 14-4=10
10-4=6

6—4=2

OEBPS/images/Image302.jpg
a=bq +r, 0=n<b
b=ng+r, 0=r<n
n=nrnqtr, 0S5 <n

Te—2 = Tke—19k Hi], 0 <7 <7y

Tk—1 = T Qi1 R -

OEBPS/images/Image294.jpg
ged (482, 216)
Smaller number is 216. Therefore,
divide 216 into 482 giving
quotient 2 and remainder 50

216 = 50 - 4+ 16;

51)75-3+ € g
16=2-8+0

The last nonzero remainder is 2
Therefore, ged (482, 216) is 2

ged (60, 216)
Divide 60 into 216, giving
quotient 3 and remainder 36

216=60-3+36

60=36-1+24

36=24-1+[12

24= 1540

The last nonzero remainder is 12
Therefore, ged (60, 216) is 12

S~ gad

OEBPS/images/Image347.jpg
[bottom to top

482=216-2+50; 50=16-3+2 ——» 2=50 -16-3
216 =50 - 4+ 16; 216=50-4+16 ——> =50-(216-50-4)3

=-3-216+50-13
50=16-3+2

482=216-2+50 —» =-3-216+(482-216-2)- 13

16 “8+0 =13-482-29-216
giving ged (482, 216) =2

OEBPS/images/Image339.jpg
16=5-2

24=16-1+8 — 8=24-16-1

40=24-1+16 > 8=24-(40-24)-1
8=(~1) 40 +2 (24)
x=-landy=2

OEBPS/images/Image40666.jpg
Security Issues

Design related

Implementation
related

Hardware and
software

People
Related

OEBPS/images/Image356.jpg
482=216-2+50 ——¥ o =482-216-2

216=50-4+16 ——> 16=216-50 -4

=216-(482-216-2) -4
=-4-482+9-216
50=16-3+2 = 2=50-16-3
16=2-8+0
giving ged (482, 216) = 2 =(482-216-2)— (-4 -482+9-216) - 3
=13-482-29-216
giving x =13,y =-29

OEBPS/images/Image40676.jpg
Security Goals

!

l

Confidentiality

Integrity

Availability

OEBPS/images/Image40694.jpg
Threats to
information

|

{ i 1

|

Viruses and worms

Hackers

Insiders

Criminal
organizations

Terrorists.

OEBPS/images/Image40685.jpg
Views to security

l

| I S|

Privacy and
Identity

Secrecy

Authentication

Non-repudiation

OEBPS/images/Image40719.jpg
Security attacks

{

Cryptanalytic attacks

]

Non-cryptanalytic attacks

OEBPS/images/Image40709.jpg
Security
Architecture

{

l

1

Security Attack

Security Mechanism

Security Services

OEBPS/images/Image40735.jpg
Security

Attacks
Snooping Modification Denial of service
Traffic analysis Masquerading Threatto
availability
Threatto Replaying
confidentialit
Repudiation
Threatto

integrity

OEBPS/images/Image40727.jpg
Cryptanalytic
attacks

Ciphertext-
only

Known-
plaintext

Chosen-
plaintext

Chosen-
ciphertext

OEBPS/images/Image40754.jpg
.‘,

Sander

Attacker

Read contents of
WA massae from

“ Sender to receiver

Communication Channel

Keceiver

OEBPS/images/Image40744.jpg
Non-cryptanalytic
Attacks

l

Active Attacks

.

Passive
Attacks

OEBPS/images/Image40772.jpg
Sender

Attacker

Message from Attacker
thatappearsto be from
Sender

Commum(atmnchznnel A

OEBPS/images/Image40763.jpg
Attacker

Observe pattern of
message from
Senderto Receiver

4 Communication Channel

o

OEBPS/images/Image40782.jpg
Attacker

Capture message
and sent later

- Communication Channel

Saridiei: Receiver

OEBPS/images/Image40799.jpg
Communication Channel

Transmit \\
message with
source as Sender

Sasselanr Receiver

OEBPS/images/Image40790.jpg
Attacker

Communication Channel W, Communication Channel

Capture massage \\

from Sender to
- and retransmit -

Sander R

OEBPS/images/Image40822.jpg
Access Control / Gate keeping / Internal Security Controls

Attacker:
-either humanor | Firewall, 105, 1ps, Trusted functionality for
software periphery Virus protection to hardware,

protecion Protection software, 0, processes.

OEBPS/images/Image40812.jpg
Q Algorithm

Secret Message

A

Trusted Third

<> Party <>

Secret Secret

17

o«

Receiver

il

Message

Information Information _,(Agorithm

Communication Channel

8

Attacker

Secret Message

OEBPS/images/Image40959.jpg
shared by sender
and recipient

shared by sender
and recipient

Ciphertext

l

» >
The Plaintext Encryption algorithm Decryption algorithm The Plaintext
S
|« On o — O
PA

g3

OEBPS/images/Image40950.jpg
Op

— @

Trere (?)

Ciphertext

The Plaintext

OEBPS/images/Image40979.jpg
Document

Digital

ature
calculation

Signature
calculation

—

> signature l

Comparison
of self -
generated
signature
with received

signature

Self-generated digital
signature

OEBPS/images/Image40969.jpg
2

v
Key stream generator ’
Plaintext Ciphertext *
byte stream byte stream Key stream generator
Encryption
Ciphertext N Plaintext
byte stream byte stream

OEBPS/images/Image40988.jpg
Security

1

I

1

Data
Confidentiality

Data Integrity

Non-repudiation

Access control

OEBPS/images/Image41006.jpg
Authentication services

{

Peer Entity
Authenticatio

l

Data Origin
Authentication

OEBPS/images/Image40997.jpg
Security Service

—]

categories

"

Peer Entity Connection
Data Origin Connectionless
Field Traffic
flow
Authentication

Connection
Integrity with
recovery

Connection
Integrity without
recovery

Selective Field
Connection
Integrity

Connectionless
Integrity

Selective Field
Connectionless
Integrity

Integrity Availability

Access Destination
Control
Access. Origin
Control
Non-
repudiation

OEBPS/images/Image42415.jpg
he
Plaintext

ey

Encryption
sigorthm

-

ntruder,

Actve Intruder,
modifyingthe
datasnd
sendingit back

he
Plintext

OEBPS/images/Image41063.jpg
Components of operational security model

!

l

Preventive
measures

Detection of
breaches

Response

OEBPS/images/Image42432.jpg
IFUPPERCASE displacement = 65;
else displacement = 92; (because the character ‘a’ has ASCII value 92)
Ch = Ch - displacement; (so the set starts from 0, A becomes 0 while Z becomes 26)

Ch = (Ch + n) mod 26; (26 won't change as the number of uppercase and lowercase
characters are same)

Ch = Ch + displacement;

OEBPS/images/Image42423.jpg
Ch = Ch - 65; (50 the set starts from 0, A becomes 0 while Z becomes 26)
Ch = (Ch +n) mod 26
Ch = Ch + 65 (converting it back to the character value)

OEBPS/images/Image42446.jpg
OF eyt key2

(?) Next Random number

OF eyt Key2

308
Agorithm 2

O (et

Key2

Date and
Time

3DES

Agorithm 1 ® Algorithm 3

OEBPS/images/Image42439.jpg
tm|nfofpfafr|s|tfufviw

x|wlulrinfyltfofs|afl|z

m{nlofp|alr|s|tu]|v]|w

dlg|f|bfc|i|kfa[m|p|v

OEBPS/images/Image42466.jpg
g|1]s |e|t|s|e|r|s|e|[r|s]e]r]s Key is ‘gls’ repeated till the end

Vi[a]im fiaif of] ¥ |imifiad] X [l |idifiec{ L | il B Message is ‘I am going to delhi’

As 103 108 | 115 | 103 | 108 | 115 | 103 | 108 | 115 | 03 [108 | 115 [103 | 108 [115

As |73 | 97 109|103 | 111109 | 110 | 108 | 116 [111 | 100 | 101 | 108 | 104 | 105

To [176 | 205 224 | 206 | 219 | 224 | 213 | 216 | 231 | 214 | 208 | 216 | 211 | 212 | 220

M26|20 |23 |16 [24 |11 16| 5 [8|23 |6 |0 |8 |3 |4 |12

OEBPS/images/Image42458.jpg
nor

ENTIY

o s w

-24 18
20 -15
-5 4

-4
1

2
20
21

18 5
1 22
4 1

(b)

(c)

OEBPS/images/Image42473.jpg
Original | Current Original Transposition
character | character character character
position position position position

i 2 1 2

2 1 2 1

3 5 3 7

4 3 4 5

5 4 5 3

6 7 6 &

& 6 7 6

OEBPS/images/Image42489.jpg
Message after the colums sorted

‘The original message with 'abcdef as
filler

OEBPS/images/Image42482.jpg
FrRroerFro o=

— —1
— —1

> >0
— — 0
— —> 0
— — 0
— —>1

T— —> H
h—p — i
i > > i
s —> —> e
i — — T
s —> —> s
t— —> s
e— —> t

(a) The S-box contains 7 lines. If a
value 1001011 (ASCHI H) comesin,
the outputwill be 1100001 (ASCII f)

(b) The P-box contains 8 lines. If input
is ‘Thisiste’, the outputwill be
HiieTsst.

OEBPS/images/Image42507.jpg
JOPPPP!

PP

CO UT ©uw bO

()

(b)

(a)

OEBPS/images/Image42498.jpg
> P
>0
> x
>y
>n
+»a

IPTIRRYY

a
b
<
d
e
f
4

>z
»p
>0
» X
>y
>m
0

a
b
<
d
e
f
8

>k
>z
>p
>o
>x
>y
+m

- e i I

OEBPS/images/Image43284.jpg
Plaintext | Ciphertext Plaintext | Ciphertext Plaintext | Ciphertext
000 101 000 101 000 011
001 110 001 110 001 100
010 111 010 111 010 000
011 000 011 011 011 001
100 001 100 100 100 010
101 010 101 000 101 101
110 o011 110 001 110 110
111 100 111 010 111 111

OEBPS/images/Image42638.jpg
—_— N X m pW

T .QO U T U u- bn

OEBPS/images/Image43302.jpg
B Round 2
56 bit Key - Computationally

Identical rounds

A Round17

Round 18 Swapping two halves

Round 19 Inverse transposi

OEBPS/images/Image43292.jpg
Message

v v v
Plaintext Plaintext Plaintext
Block 1 Block 2 Block3

Key1

Key2

Key3

Ciphertext
Block 1

Ciphertext
Block2

Ciphertext
Block3

Plaintext
Blockn

Keyn

Ciphertext
Blockn

OEBPS/images/Image43310.jpg
Key1 Key2 Key1

64 bit of DES | bes | DES 64 bit of
plaintext Encrypt | Decrypt | Encrypt ciphertext

OEBPS/images/Image43328.jpg
Pass Sender Receiver

EPass
Encryption
Attacker recording
Receiver

Epass
recorded Epass Pass

Attacker

OEBPS/images/Image43318.jpg
ARandom \\
value

va.d value

after
decryption
Attacker (person or process)

chooses some random value Receiver

OEBPS/images/Image43616.jpg
Both Sender and Receiver decide about n, g and p "
Sender Receiver
publicly and the values of xand y privately

Keyl=gmodn

Sender > Receiver
Key2=g’modn
Sender ¢ Receiver
Sender Receiver
Sender calculates (Key2)* mod n Receiver calculates (Key1)’ mod n

Both use g mod n as a shared secret key
Sender [« -| Receiver

OEBPS/images/Image43401.jpg
First
round

Second
round

Nth
round

Plaintext

ELefto 1 ERight0

Plaintext
Py

Dleftn+1 | DRightn+1

B

l First
£ [e=toved Dleftn | DRightn
Key
T
t First
Eleft1 | ERight1 round
Key
v Second 4
i o Dleftn-1 | DRightn-1
Key
)
Eleft2 ERight2
ELeftn-1 | ERightn-1
1w
S ij—tound Dleftl | DRightl
Key
T
v 1 e
Eleftn | ERightn T eround
Key
>< “Dleft0 | DRight0
Eleftn+1 | ERightn+1 “eRightn || ~ELeftn
Final transposition round Eleftn +1 | ERightn+1

OEBPS/images/Image43624.jpg
Generate random X<

Calculate Keyl-g‘modn

Calculate Key =(Key2) mod n

Generate random Y<

Calculate Key2-g*mod n

Calculate Key=(Key1)* mod n

OEBPS/images/Image43616g.jpg
Both Sender and Receiver decide about n and g "
Sender Receiver
publicly and the values of xand y privately

Keyl=gmodn

Sender > Receiver
Key2=g’modn
Sender ¢ Receiver
Sender Receiver
Sender calculates (Key2)* mod n Receiver calculates (Key1)’ mod n

Both use g mod n as a shared secret key
Sender [« -| Receiver

OEBPS/images/Image43640.jpg

OEBPS/images/Image43632.jpg
AA

&

Generate random X< n;
Calculate Keyl=g*mod n

Calculate SecretKey1 = (Key2) mod n

[Calculate Key2 = g*mod n
B

Generate random Y<n;

Calculate Key = (Keyl)* mod n

&

Generate random A’ <n;

Calculate Key3=g*mod n

CalculateSecretKey2 = (Key4)* mod n

Generate random B' < ;

Calculate Keyé = g*mod n
>

!

Calculate SecretKey2 = (Key3)*mod n

°
-’

&

°
-’

Generate Message M

Get Message kM1

Get Message KM2

Send Encrypted Message | 1| Decrypt using Secretkeyl || Decrypt using Secretkey2
KM1 using ke > >
Laihg ey (May modify M) Read Message M or
Secretkeyl
modified M

Encrypt using SecretKey2

Send Message KM2

OEBPS/images/Image44218.jpg
Username

A random challenge, Ch

ECh= Encrrypt (K, Ch)

Server calculates and compares

Username

Arandom challenge, ECh’

A sends information ECh which it recorded
from earlier communicatioin

] | %]

Server calculates and compares and the
connection request fails

OEBPS/images/Image43751.jpg
Vs

15

0

OEBPS/images/Image44227.jpg
Username and client challenge CCh
e -k
A random challenge from server SCh, and.ECCh

- 8

Server sends its own challenge
with client’s challenge

encrypted
ESCh i.e. encrypted challenge from server
1 8
Client decrypts ECCh to get CCh, Server decrypts ESCh to SCh and
encrypts the server’s challenge compares it with its own

$Ch to ESCh challenge

OEBPS/images/Image44241.jpg
Username

A random challenge, i.e. SCh

ESCh, CCh

C sends encrypted SCh and its own CCh
Encrypted CCh, i.e. ECCh

Client decrypts and compares CCh

OEBPS/images/Image44234.jpg
Connection 1<

Connection 2 <

Connection 1

Username and ACh

>
A random challenge, SCh, with encrypted ACh
Attacker now puts connection 1 on hold and
initiates another connection, connection-2
Username, SCh
>

[«

A random challenge, SC, with encrypted SCh, ESCh

B (BB

Esch

OEBPS/images/Image44257.jpg
Client

(Client’s secret

| ey Cey
€M = Enc(M, CKey) and
Wessage M |—] Encrypt |—»{ M = Enclt, Ckey): > Decrypt
y
xoc Server's secret Clent’s secret oc
| ey SKey ey
M > encrypt] ew=ncmskey) > Decrypt
3 v
Server's secret o

key

OEBPS/images/Image44248.jpg
A random nonce, nonce-1

Server’s nonce nonce-2, HMAC using nonce-1, nonce-2,

¢

Sender’s and Receiver’s identities, and the key

»|

HMAC using nonce-1, nonce-2 and the key

OEBPS/images/Image44820.jpg
Servers in
Kerberos

Authentication
Server

Ticket Granting
Server

Service Providing
Servers

OEBPS/images/Image44266.jpg
Random Key

Receiver’s Public Key

Encryption

Process

Key is generated
Key is Encrypted by
receiver's public key

3. Sentto receiver

Encrypted Key

Encrypted Key Receiver's Private Key

Sent o recatvr >

Receiver side activities

Key s received
Keyis decrypted using
receivers private key

3. Decrypted key is shared
secret.

Decryption
Process

Random Key to be used
as shared secret

OEBPS/images/Image44841.jpg
Authentication
Server

Ticket Granting
Server

Authentication Ticket Granting Ticket Granting Ticket + Service Granting Ticket
Request Ticket Server's Information

1

Service Granting Ticket

Password
Request

‘The Client
Process

Service Providing
Server

User Password

OEBPS/images/Image44833.jpg
Ticket Granting Service Granting
Ticket Ticket

OEBPS/images/Image44907.jpg
UserlD, TGS 10, Request Timestamp -E

Secret key AS-UserA =Hash(UserA's password)
TGT = (Encrypt{UserA, UserA's Network address, TGS 10, TGT
Timestamp, TGT validity period, SessionKey), SecretKey AS-TGS)

Encrypt((SessionKey, TGS-ID, TGT TimeStamp, TGT
vaslidity period, TGT| SecretKey AS-UserA)

Secret key AS-UserA =Hash(UserA’s password)
Decrypt and get SessionKey, TGS 1D, TGT TimeStamp, TGT validity
period and TGT

Authenticator =(Encrypt (User 1D, IP address, Timestamp), Session Key)

ServerID, TGT, Authenticator

SGT=Encrypt({UserA, UserA’s Network address, Server ID, ticket val
period,Timestamp-SGT ServerSessionKey), Secret Key TGS-Server)

Encrypt{(ServerSessionKey, Server ID, SGT TimeStamp,
SGT), SessionKey)
UserA 65

Authenticator = Encrypt ((User ID, IP Address, Timestamp), Server Session Key)

SGT, Authenticator
[e

Server Timestamo = Server Timestamp + 1
Encrypt(Server Timestamp),Server Session Key] El

UserA
Requests for specific services

oer] o]

OEBPS/images/Image642101.jpg

OEBPS/images/Image622791.jpg

OEBPS/images/Image616943.jpg
yk med (27-1)

OEBPS/images/Image616942.jpg

OEBPS/images/Image616941.jpg

OEBPS/images/Image595071.jpg
+ b,x> + b,x* + b,x*+ b,x* + byx) (mod m(x)),

OEBPS/images/Image528241.jpg

OEBPS/images/Image525441.jpg
2x<
x< 4+ x°

OEBPS/images/Image520411.jpg
a®lp)—1

OEBPS/images/Image520242.jpg

OEBPS/images/Image520241.jpg

OEBPS/images/Image506782.jpg

OEBPS/images/Image506781.jpg

OEBPS/images/Image505551.jpg

OEBPS/images/Image505061.jpg

OEBPS/images/R_Italic.jpg

OEBPS/images/Receiver-icon.jpg

OEBPS/images/R.jpg

OEBPS/images/Image61959.jpg
GF(2"7)

OEBPS/images/Image62163.jpg
g°(g=+g)=01+g9)(g" +9)

OEBPS/images/Image62146.jpg

OEBPS/images/Image62128.jpg

OEBPS/images/Image62110.jpg

OEBPS/images/Image62042.jpg
ER(2*) ={0. L. p:.; 0% 9™,

OEBPS/images/Image62024.jpg

OEBPS/images/Image62009.jpg

OEBPS/images/Image61993.jpg
2" —1) of g.

OEBPS/images/Image61976.jpg
moaulo

OEBPS/images/Image61729.jpg

OEBPS/images/Image61714.jpg

OEBPS/images/Image61694.jpg
k med (27-1)

OEBPS/images/Image61677.jpg

OEBPS/images/Image61662.jpg
GF(2")

OEBPS/images/Image61612.jpg

OEBPS/images/Image60839.jpg

OEBPS/images/Image60547.jpg

OEBPS/images/Image60111.jpg
GF(2%)

OEBPS/images/Image60091.jpg

OEBPS/images/Image62444.jpg

OEBPS/images/Image62426.jpg

OEBPS/images/Image62331.jpg

OEBPS/images/Image62589.jpg

OEBPS/images/Image62565.jpg

OEBPS/images/Image62549.jpg

OEBPS/images/Image62533.jpg

OEBPS/images/Image62510.jpg

OEBPS/images/Image62485.jpg

OEBPS/images/Image62469.jpg

OEBPS/images/Image62196.jpg
g -+g+g°+g°

OEBPS/images/Image62180.jpg

OEBPS/images/Image62313.jpg
GF(2")

OEBPS/images/Image62295.jpg

OEBPS/images/Image62279.jpg

OEBPS/images/Image62272.jpg
GF(2%)

OEBPS/images/Image62248.jpg

OEBPS/images/Image62228g.jpg

OEBPS/images/Image62228.jpg

OEBPS/images/Image62211.jpg
g+g*=g+g+1 (g°=1+ g)

OEBPS/images/Image53687.jpg

OEBPS/images/Image62867.jpg

OEBPS/images/Image53670.jpg

OEBPS/images/Image62851.jpg

OEBPS/images/Image53653.jpg

OEBPS/images/Image62834.jpg

OEBPS/images/Image62817.jpg

OEBPS/images/Image62799.jpg

OEBPS/images/Image54309.jpg
»*+x-+1 x*+x-+x

OEBPS/images/Image54289.jpg
*+x+1,

OEBPS/images/Image54272.jpg
x® 4+ x-

OEBPS/images/Image62950.jpg
Irreducible polynomial acts as a generator for GF (2")

OEBPS/images/Image54257.jpg
i N

OEBPS/images/Image62934.jpg

OEBPS/images/Image54189.jpg
a, +a,x + a,x“+a,x°

OEBPS/images/Image62919.jpg

OEBPS/images/Image54156.jpg
x*+x“—1,x°—x+1 x*+1, x+1

OEBPS/images/Image62899.jpg
n Hit

OEBPS/images/Image53703.jpg

OEBPS/images/Image62882.jpg

OEBPS/images/Image53444.jpg
~ra
972 +12x4+12

OEBPS/images/Image62667.jpg

OEBPS/images/Image53433.jpg
p(x)-g(x) =3x“+4x+ 4

OEBPS/images/Image62650.jpg
o S e

OEBPS/images/Image62627.jpg

OEBPS/images/Image62608.jpg
< n

OEBPS/images/Image53617.jpg

OEBPS/images/Image53600.jpg

OEBPS/images/Image53584.jpg

OEBPS/images/Image62782.jpg

OEBPS/images/Image53568.jpg

OEBPS/images/Image62766.jpg
o A R

OEBPS/images/Image53530.jpg

OEBPS/images/Image62750.jpg

OEBPS/images/Image53497.jpg

OEBPS/images/Image62735.jpg

OEBPS/images/Image53479.jpg
X +2x" +2in{Z.,+c, Xc)

OEBPS/images/Image62715.jpg

OEBPS/images/Image53462.jpg
6x°+8x°+8x
ex3+17x2+20x+12

OEBPS/images/Image62698.jpg

OEBPS/images/Image54581.jpg
x4+ x4+ 1.

OEBPS/images/Image63345.jpg
(Z5,+7, X7)

OEBPS/images/Image54544.jpg
x4+ x4+ 1.

OEBPS/images/Image63317.jpg
(Z3, +3, X3)

OEBPS/images/Image54528.jpg
x4+ x4+1

OEBPS/images/Image63300.jpg

OEBPS/images/Image54512.jpg
GF(p")

OEBPS/images/Image63283.jpg
(Zc,+c, X))

OEBPS/images/Image54497.jpg
D",

Ao g

OEBPS/images/Image63263.jpg
(Za,+a, Xa)

OEBPS/images/Image63236.jpg

OEBPS/images/Image63220.jpg
(Zs,+a, Xa)

OEBPS/images/Image54684.jpg

OEBPS/images/Image54664.jpg

OEBPS/images/Image54646.jpg

OEBPS/images/Image63405.jpg

OEBPS/images/Image54631.jpg

OEBPS/images/Image63385.jpg

OEBPS/images/Image54615.jpg

OEBPS/images/Image63363.jpg
(Z5,+7, X7)

OEBPS/images/Image54373.jpg
x(x=+1)

OEBPS/images/Image63126.jpg
R ey o Kol

OEBPS/images/Image54356.jpg

OEBPS/images/Image63110.jpg
G S .

OEBPS/images/Image54340.jpg

OEBPS/images/Image63083.jpg

OEBPS/images/Image54324.jpg
Y +ry-+xv+1

OEBPS/images/Image63063.jpg
{ Z10, 10, X410)

OEBPS/images/Image63045.jpg
(Zg, +<, Xc)

OEBPS/images/Image63028.jpg

OEBPS/images/Image54477.jpg
x*+x 41

OEBPS/images/Image54460.jpg
x4+ x4+1

OEBPS/images/Image54445.jpg

OEBPS/images/Image63204.jpg
(Z4,+3, X3)

OEBPS/images/Image54429.jpg
r»*+x +x+1=x“(x+1)+(x+1)

OEBPS/images/Image63189.jpg

OEBPS/images/Image54411.jpg
x’+x +x=x(x*+x+1)

OEBPS/images/Image63158.jpg
(Zs,+a, Xa)

OEBPS/images/Image54391.jpg

OEBPS/images/Image63141.jpg
B A .

OEBPS/images/Image49676.jpg

OEBPS/images/Image55192.jpg

OEBPS/images/Image63803.jpg
(Zg, +g, Xg)

OEBPS/images/Image49658.jpg

OEBPS/images/Image55176.jpg

OEBPS/images/Image63782.jpg

OEBPS/images/Image49638.jpg
ab,cinR

OEBPS/images/Image55159.jpg

OEBPS/images/Image63764.jpg
o S, S 5

OEBPS/images/Image49620.jpg
(b+c)-a

ra+c-a

OEBPS/images/Image55142.jpg
€ 4,

OEBPS/images/Image63741.jpg
(Lq,+7)

OEBPS/images/Image49603.jpg
a-(b+c)

b+a-c

OEBPS/images/Image55124.jpg
s

p. (x)=a, + a;x++a,_, X

OEBPS/images/Image63722.jpg

OEBPS/images/Image55107.jpg

OEBPS/images/Image63701.jpg
o S,

OEBPS/images/Image55091.jpg
< n—1 (degree=0,1,2,..,n—1)

OEBPS/images/Image63668.jpg

OEBPS/images/Image63643.jpg

OEBPS/images/Image63628.jpg

OEBPS/images/Image49791.jpg
G I

OEBPS/images/Image49775.jpg

OEBPS/images/Image49759.jpg

OEBPS/images/Image55244.jpg

OEBPS/images/Image49744.jpg
a,bin R: a-b=0>D 'a

OEBPS/images/Image55224.jpg
pXpX..Xp(ntimes

OEBPS/images/Image49724.jpg

OEBPS/images/Image55207.jpg

OEBPS/images/Image63818.jpg
(Lq2,+t12, Xq2)

OEBPS/images/Image49436.jpg
(A, Xg)

OEBPS/images/Image55007.jpg

OEBPS/images/Image63558.jpg

OEBPS/images/Image49419.jpg
EEE B TE el

OEBPS/images/Image54990.jpg

OEBPS/images/Image63542.jpg

OEBPS/images/Image49263.jpg
Payload Type

Content

Payload Type

The authentication payload contains RSA or shared key, o DSS
based signatures for authentication purpose. The allowed
algorithms at the point of this writing are shown in Annexure V1.

Configuration

The configuration payload s used to report configuration related
information to the other end

Delete

When the sender deletes an SA, this payload acts an indicator to
help the receiver know and probably remove corresponding SA
from its database.

Encrypted

The encrypted payload s used to encrypt other messages inside.
The encryption is in form of ESP format. It might have ICV if the
option for authentication is also chosen. The IV might also be there
if the encryption algorithm operates in CBC mode (which usually
are) or some other mode which requires it.

EAP

The Extensible Authentication Protocol payload. This is a little
more secured version involving two more exchanges where the
EAP payload authenticates the IKE exchanges

Notify

The notify payload is used to report error and control information

Traffic Selector

The traffic selector payload contain information about traffic
selectors discussed before

Vendor Id

The Vendor Id payload contains vendor specific information.
When both the installations involved in the process are from the
same vendor

OEBPS/images/Image54972.jpg

OEBPS/images/Image63525.jpg

OEBPS/images/Image49255.jpg
Proposal IKE-1

Transform-1 Diffie Hellman Group-> group 2 - 1024 Bit MODP
Attribute-1
Transform-2 Integrity Check Algorithm ->SHA-2)
Attribute-1 Key Length-> 512

Transform-3 Pseudo Random Function -> AES-128-CBC-PRF
Attribute-1Key Length-128

Transform-4 Encryption algorithm AES

Attribute-1 Key Length -> 256 Attribute 2 CBC

Proposal IKE-2
Transform-1 Diffie Hellman Group -> group-1 768 bit MODP
Attribute-1
Transform-2 Integrity Check Algorithm SHA-2

Attribute-1 Keylength-> 256

Transform-3 Pseudo Random Function -> AES-128-CBC-PRF
Attribute-1 Key Length-128

Transform-4 Encryption algorithm->AES

Attribute-1 Key Length->128 Attribute 2->CBC

OEBPS/images/Image54955.jpg

OEBPS/images/Image63508.jpg

OEBPS/images/Image54715.jpg
a(x) and b(x)

OEBPS/images/Image63486.jpg
(Z16, X46)

OEBPS/images/Image54699.jpg
x4+ x4+1

OEBPS/images/Image63464.jpg
(Zg, +a, Xg)

OEBPS/images/Image63436.jpg

OEBPS/images/Image63420.jpg

OEBPS/images/Image49587.jpg
ab,c ER,

OEBPS/images/Image49556.jpg
ab,ceR

OEBPS/images/Image49536.jpg

OEBPS/images/Image55075.jpg
p,. (x)

OEBPS/images/Image49519.jpg

OEBPS/images/Image55060.jpg

OEBPS/images/Image49504.jpg

OEBPS/images/Image55039.jpg
moadulop

OEBPS/images/Image63608.jpg
¥*+x+ 1inGF(2%),

OEBPS/images/Image49471.jpg

OEBPS/images/Image55022.jpg
L,(Ly,+p, Xp)

OEBPS/images/Image63586.jpg

OEBPS/images/Image50202.jpg

OEBPS/images/Image55839.jpg

OEBPS/images/Image50183.jpg

OEBPS/images/Image55827.jpg
v + /

OEBPS/images/Image50165.jpg

OEBPS/images/Image55817.jpg

OEBPS/images/Image50148.jpg

OEBPS/images/Image55808.jpg

OEBPS/images/Image50131.jpg

OEBPS/images/Image55799.jpg
v+ 1

OEBPS/images/Image50116.jpg
a+0b#+#0inR =a ‘b #0

OEBPS/images/Image55789.jpg
2X

OEBPS/images/Image50096.jpg

OEBPS/images/Image55781.jpg

OEBPS/images/Image55736.jpg

OEBPS/images/Image55719.jpg

OEBPS/images/Image50269.jpg
(Z¢,te Xg)

OEBPS/images/Image50254.jpg

OEBPS/images/Image50219.jpg
(Zg,tg, Xg)

OEBPS/images/Image55885.jpg

OEBPS/images/Image49995.jpg

OEBPS/images/Image55668.jpg
D

3 and n

.

OEBPS/images/Image49893.jpg

OEBPS/images/Image55360.jpg

OEBPS/images/Image49878.jpg

OEBPS/images/Image55343.jpg

OEBPS/images/Image49862.jpg
G I

OEBPS/images/Image55326.jpg

OEBPS/images/Image49853.jpg
G I

OEBPS/images/Image55308.jpg

OEBPS/images/Image49808.jpg

OEBPS/images/Image55291.jpg

OEBPS/images/Image55275.jpg
p is equal to p”~

OEBPS/images/Image55259.jpg

OEBPS/images/Image50078.jpg

OEBPS/images/Image50063.jpg

OEBPS/images/Image50047.jpg

OEBPS/images/Image55701.jpg

OEBPS/images/Image50030.jpg

OEBPS/images/Image55684.jpg

